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An Iterative Transfer Matrix Computation Method
for Propagation Graphs in Multi-Room

Environments
Ramoni Adeogun, Ayush Bharti and Troels Pedersen

Abstract—This paper presents a reduced complexity method
for computing the transfer matrix of wireless channels in complex
indoor environments with a large number of rooms using
propagation graphs. Multi-room indoor environments can be
represented in a vector signal flow graph with rooms in the
complex structure as nodes and propagation between rooms as
branches. We propose an iterative procedure to compute the
transfer matrix of such complex graphs. The state vector for
each node in the graph is iteratively computed until convergence.
The state vector for the room(s) with the receiver is then used
to compute the transfer function. We show via simulations that
the proposed approach closely approximates the original model
at much reduced complexity.

Index Terms—Multi-room indoor environment, propagation
graph, channel model, signal flow graph, complexity

I. INTRODUCTION

PROPAGATION graphs (PGs) provide a flexible structure
for modelling multlink channels with account for multiple

scattering. PGs describe the channel as a directed graph with
the transmitters, receivers and scatterers as vertices and inter-
actions between vertices as time-invariant transfer functions.
Based on the graph description, closed-form expressions for
the channel transfer function is given in [1].

The PG model has been applied to different scenarios
including: millimetre wave [2], high speed railway [3]–[6],
indoor to outdoor [7], and polarized [8] channel. Hybrid
models combining the PG with other modelling frameworks
have also been studied in [9]–[12]. However, as a result of
a matrix inversion in the closed form expression, the com-
putation cost increases with increasing number of scatterers,
thereby making it unattractive for large environments such as
large buildings, indoor offices and even outdoor environments
where the number of scatterers is large.

In [13], a reduced complexity equivalent of the PG model
for multi-room indoor environments comprising of a number
of adjacent rooms is presented. The PG for the environment is
transformed into a vector signal flow graph (VSFG) with the
rooms as nodes. A closed form expression is then derived for
the channel transfer matrix by applying a matrix equivalent of
Mason’s rule to the VSFG. Although this method yields same
prediction as the original PG model, it requires that the number
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of scatterers in all rooms be equal, which is not realistic in
general environments.

In this letter, we propose a more general method for
computing the transfer matrix without any restriction on the
number of scatterers per room. The method involves iterative
computation of the state matrices for each room in the building
based on node equations obtained from the VSFG.

II. PROPAGATION GRAPH MODEL

Following [1], we consider a simple directed graph G =
(V, E) where vertex set V = Vt ∪ Vs ∪ Vr is a union of three
disjoint sets: a set of Nt transmitters, Vt, a set of Ns scatterers,
Vs and a set of Nr receivers, Vr. Wave propagation between
the vertices is modelled by edges in E . An edge, e = (v, w),
exists if and only if a wave can propagate directly from v to
w. The propagation graph exhibits a special structure; transmit
vertices have no incoming edges; receive vertices have no
outgoing edges; and there are no loops in the graph, i.e., no
edge, e = (w,w) is possible between the same vertex, w. It
should however be noted that cycles may exist in the graph.

Wave propagation in the graph is defined by the actions of
the scatterers and edges. A scatterer re-emits weighted version
of the sum of signals arriving via the incoming edges to the
outgoing edges. An edge e = (v, w) ∈ E transfers a signal
from v to w according to its transfer function, Ae(f), defined
as

Ae(f) =

{
ge(f) exp(j2πfτe + φe); e ∈ E

0; e /∈ E
(1)

where ge(f), τe and φe are the gain, propagation delay and
random phase of the edge, respectively. The edge transfer
functions are collected into sub-matrices:

D(f) ∈ CNr×Nt : transmitters→ receivers

T(f) ∈ CNs×Nt : transmitters→ scatterers

R(f) ∈ CNr×Ns : scatterers→ receivers

B(f) ∈ CNs×Ns : scatterers→ scatterers.

Assuming that the channel is time-invariant, the received
signal vector Y(f) reads

Y(f) = H(f)X(f), (2)

where X(f) is the transmitted signal vector and the transfer
matrix, H(f) ∈ CNr×Nt of the propagation graph is expressed
as

H(f) = D(f) +R(f)[I−B(f)]−1T(f); ρ(B) < 1, (3)
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Fig. 1: Illustration of VSFG representation. The dashed line in (b)
denotes partition of an L-shaped corridor into two rooms.

where ρ(·) denotes the spectral radius. Evaluation of (3) at
frequency, f , requires inversion of Ns ×Ns matrix, which is
an O(N3

s ) operation.

III. REPRESENTATION OF MULTI-ROOM INDOOR
ENVIRONMENTS AS VSFG

As shown in Fig. 1, the scatterers in the multi-room scenario
are partitioned into N sub-sets, Vs1,Vs2 . . . ,VsN according to
rooms in the building. From this, a VSFG can be constructed
by applying two rules:

1) Each scattering subset (i.e room), Vsn is designated as
a vertex with a loop corresponding to the interactions
between scatterers within the room.

2) Inter-room propagation through walls are represented as
edges between the nodes with each pair of neighbouring
vertices having a forward and reverse going edge.

We define a state vector for each vertex in the VSFG as
Sn ∈ CNsn×1;n = 1 . . . , N , where Nsn denotes the number of
scatterers in room n. The state vector, Sn, represents the signal
at the output of scatterers in room n. The transmitted signal
X corresponds to the state vector of the transmitting nodes.
The signal in each room can be represented as (suppressing
the frequency dependency for clarity)

Sn = BtnX+BnnSn +
∑

m∈Nn

BmnSm; n = 1, . . . , N, (4)

where

Btn =

{
Tn if room n has transmitter(s)
0 if room n has no transmitter(s),

(5)

is the transfer matrix between the transmitters, Vt and the scat-
terers in Vsn, Bij is the transfer matrix between the scatterers

in the ith and jth rooms and Nn is the set of neighbours of
node n. The state vector of the node corresponding to the
receiver gives the channel transfer matrix as

Hnm = Dnm +RmSm, (6)

where the direct transfer matrix Dnm ∈ CNr×Nt , is only non-
zero if n = m; Rm ∈ CNr×Nsm is the transfer matrix between
the scatterers in Vsm and the receivers, Vr.

We write the expression in (4) in the form:

Sn = [I−Bnn]
−1(BtnX+

∑
m∈Nn

BmnSm). (7)

The factor [I − Bnn]
−1 can be expanded into an infinite

geometric series of the intra-room scattering matrix, Bnn, cap-
turing the infinite reverberations within room n. For realistic
buildings, the scatterers in a room are strongly connected to
each other; less strongly linked to scatterers in neighbouring
rooms, and not connected at all to scatterers in rooms further
away. We exploit this structure to solve (4) by iterating over
inter-room interactions only, rather than iteration over all
interactions.

IV. ITERATIVE STATE VECTOR COMPUTATION METHOD

Starting with an initial state vector, Sn[0] = 0;n =
1, . . . , N , the state matrices for all rooms are iteratively
updated until convergence via

Sn[k] = [I−Bnn]
−1(BtnX+

∑
m∈Nn

BmnSm[k−1]); k = 1, 2, · · ·

(8)
The matrix inversions in (8) can be computed prior to the

iterative procedure.

Theorem 1. Provided that ρ(B) < 1, the convergence of the
iterative equation in (8) is guaranteed.

Proof. Let S = [ST
1 · · ·ST

N ]T . Then by (4),

S[k] = TX+BS[k − 1]. (9)

The error, ε[k] = S[k]− S[k − 1] is bounded as

||ε[k]|| = ||Bε[k − 1]||
≤ ||B|| · ||ε[k − 1]||. (10)

Since ρ(B) < 1, ||ε[k]|| < ||ε[k − 1]|| and hence ε[k] → 0
for k → ∞, which completes the proof.

To evaluate the speed of convergence of (8), we define a
metric, ξnorm, as the change in the norm of the state vectors
of the rooms normalized by the norm at the previous iteration
and averaged over all frequency values. Thus,

ξnorm[k] =
1

Z

Z∑
z=1

||S[k, z]− S[k − 1, z]||
||S[k − 1, z]||

, (11)

where Z denotes the number of frequency samples. The
algorithm is said to have converged when ξnorm is less than
or equal to a predefined threshold ξconv.

The proposed Iterative State vector Computation Method
(ISCM) is stated in Algorithm 1.
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Algorithm 1 Iterative State Vector Computation Method (ISCM)

Input: N ; Bnm;n/m = 1, . . . , N ; T; R; ξconv
1: Initialization: Sn[0] = 0;∀n; k = 0; ξnorm = 1
2: Compute Cnn = [I−Bnn]

−1 and Nn for all N .
3: while ξnorm > ξconv do
4: k = k + 1
5: for n = 1 : N do
6: if transmitter is in room n then
7: Sn[k] = Cnn(BtnSt +

∑
m∈Nn

BmnSm[k − 1])
8: else
9: Sn[k] = Cnn(

∑
m∈Nn

BmnSm[k − 1])

10: end
11: end
12: Compute ξnorm using (11)
13: end
14: Compute H(f) using (6)
Output: H(f)

V. COMPLEXITY ANALYSIS

Since the complexity of the PG using (3) and the ISCM is
dominated by matrix multiplications and inversions, we count
the number of such operations in the algorithms. For a general
structure with N rooms and Ns scatterers per room, computing
the transfer matrix at each frequency value using the PG model
in (3) is dominated by the inversion of the NNs×NNs matrix,
B and has time complexity, O(N3N3

s ). On the other hand,
the dominant operation in the ISCM is inversion of the Ns ×
Ns matrix, Bnn for all N rooms. Therefore, the ISCM has
time complexity, O(NN3

s ). Thus, as the number of rooms N
increases, channel computation using the PG becomes more
complex than with the ISCM.

VI. SIMULATION STUDY

We perform simulations to compare accuracy and time
complexity of the ISCM with the original PG. We consider
the two structures in Fig. 1, i.e., P1: a simple four-room
building with transmitter(s) in room 1 and receiver(s) in room
4 and P2: a more complex 8-room building with transmitter
in room 1 and receiver in reciever in room 5. As with the
original model, the computation methods presented in this
paper are generic in that they can be applied with general
edge transfer functions. For our simulations, we utilize the
edge transfer functions given in the example model in [1]
and scale the transfer function of inter-room edges by a
multiplicative wall penetration factor, 0 ≤ η ≤ 1 to account
for wall penetration losses. For simplicity, η is set equal for
all walls in the simulations. This is however not a requirement
of the method. Except where otherwise stated, the channel is
generated following the procedures highlighted in [1] with the
parameters in Table I. The scatterers are uniformly distributed
within the volume of the rooms.
A. Algorithm Convergence

We utilize the convergence metric, ξnorm, defined in (11).
In Fig. 2, we plot the ξnorm against number of iterations
for P1. We observe that ξnorm decays exponentially with fast
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Fig. 2: Convergence metric, ξnorm against number of iterations for
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TABLE I: Simulation Parameters.

Parameter Value Parameter Value

Room sizes 3× 4× 3m3 g 0.52
Freq. range 58GHz− 62GHz Pvis 0.92
Numb. of samples 801 Ns 10
Transmitted signal Rectangular pulse ξconv 10−3

TABLE II: Averaged total power, mean delay and RMS delay spread
for Plan P1 with ξconv = 10−3.

η Total Power [dB] Mean Delay [ns] RMS DS [ns]
PG ISCM PG ISCM PG ISCM

0.2 -143.60 -143.60 44.66 44.66 8.05 8.05
0.4 -131.75 -131.75 45.30 45.30 7.89 7.89
0.6 -124.66 -124.64 44.58 44.55 8.23 8.23
0.8 -119.37 -119.37 44.86 44.86 8.71 8.69
1.0 -115.62 -115.62 45.52 45.49 9.44 9.33

decay rates for all values of wall penetration factors consid-
ered indicating that convergence of the iterative computation
procedure is guaranteed. With ξconv = 10−2 (i.e., the norm
of the the current state vector is equal to 99.9% of that of
the previous state vector), the algorithm requires only about
K = 5 iterations to converge. Fig. 3 shows that the number of
iterations required for convergence increases with increasing
wall penetration factor and also with decreasing value of ξconv.

B. Simulated Channel Comparison

We now compare the power delay profile (PDP) of the
channel generated using both methods. Fig. 4 shows that,
with ξconv = 10−3, the PDP of P1 obtained from both
methods are sufficiently close for all values of penetration
factor considered. This indicates that a threshold value of
ξconv = 10−3 is sufficient to accurately generate the channel
from the ISCM in this scenario. In Fig. 5, we notice a
significant difference between the PDP from the PG and ISCM
with threshold values of ξconv = 10−1 and ξconv = 10−2 and
that PDP from both methods agree closely with ξconv ≥ 10−3.
With ξconv ≥ 10−3, we observe in Tab. II that the averaged
total power, mean delay and root mean square delay spread for
both the PG and ISCM for P1 are nearly equal for all values
of penetration factor considered.

Finally, Fig. 6 shows the PDP obtained from both methods
for the more realistic 8 rooms structure with an L-shaped
corridor with VSFG in Fig. 1b. We observe that a somewhat
lower threshold, ξconv ≥ 10−4 is required to approximate
the late part of the true PDP. The number of iterations to
convergence are however seen to be similar to those in Fig. 3
for the simpler structure, P1.

C. Time Complexity

We now compare the computation time of ISCM with the
PG via simulations. We set the number of iterations for the
ISCM, K = 5. In Fig. 7, we observe that the PG has slightly
lower time complexity than the ISCM at lower number of
scatterers (Ns ≤ 90) per room for P1. The computation time
for the PG is also seen to grow much faster than that of the
ISCM resulting in much lower computation time for the ISCM
at Ns ≥ 100. With Ns = 180, a computation time reduction of
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about 6ms(≈ 35%) is obtained from using the ISCM. Similar
trend is seen for P2 where the ISCM yields computation
time saving of about 4.45ms(≈ 45.5%) with 60 scatterers
per room. Fig. 7 also shows that with increasing number of
rooms, the computation time for the PG and ISCM exhibit
cubic and linear growth, respectively. The PG requires slightly
lower computation time than the ISCM with few rooms, but
becomes more computationally intensive with further increase
in N . Similar time complexity is seen in Fig. 7 for the ISCM
with the convergence threshold, ξconv = 10−3.

VII. CONCLUSION

The proposed iterative state vector computation method
(ISCM) is able to reduce the complexity needed to compute
channel transfer matrices in multi-room indoor environments
based on a propagation graph (PG) model. The ISCM approx-
imates the exact PG model to an arbitrary level of accuracy
by limiting the in-between room propagations, while still
accounting for infinitely many interactions within each room.
This reduces the required computation time significantly, in
particular for complex environments. The method is applicable
to other complex environments provided the VSFG is sparse.
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