Aalborg Universitet AALBORG

UNIVERSITY

Workflow-based automatic processing for Internet of Floating Things crowdsourced
data

Montella, Raffaele; Di Luccio, Diana; Marcellino, Livia; Galletti, Ardelio; Kosta, Sokol; Giunta,
Giulio; Foster, lan

Published in:
Future Generation Computer Systems

DOl (link to publication from Publisher):
10.1016/j.future.2018.11.025

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Montella, R., Di Luccio, D., Marcellino, L., Galletti, A., Kosta, S., Giunta, G., & Foster, |. (2019). Workflow-based
automatic processing for Internet of Floating Things crowdsourced data. Future Generation Computer Systems,
94, 103-119. https://doi.org/10.1016/j.future.2018.11.025

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.


https://doi.org/10.1016/j.future.2018.11.025
https://vbn.aau.dk/en/publications/ba17f684-3472-463f-a0d4-ad0c31d80d0b
https://doi.org/10.1016/j.future.2018.11.025

Downloaded from vbn.aau.dk on: June 18, 2025



Accepted Manuscript e

FIGICIS:
Workflow-based automatic processing for Internet of Floating Things S Rt T

crowdsourced data

Raffaele Montella, Diana Di Luccio, Livia Marcellino, s
Ardelio Galletti, Sokol Kosta, Giulio Giunta, Ian Foster

PII: S0167-739X(18)30767-2
DOI: https://doi.org/10.1016/j.future.2018.11.025
Reference: FUTURE 4589

To appear in:  Future Generation Computer Systems

Received date: 31 March 2018
Revised date: 6 September 2018
Accepted date: 16 November 2018

Please cite this article as: R. Montella, D.D. Luccio, L. Marcellino et al., Workflow-based
automatic processing for Internet of Floating Things crowdsourced data, Future Generation
Computer Systems (2018), https://doi.org/10.1016/j.future.2018.11.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.future.2018.11.025

Workflow-based Automatic Proces.ing
for Internet of Floating Things Crowdsot .c~d Data

Raffacle Montella®”, Diana Di Luccio®®, Livia Marc. lino?®, Ardelio
Galletti®, Sokol Kostad, Giulio Giunta®, "an Fr ster? ¢

@Department of Science and Technologies — Univc rsit> of Napoli “Parthenope”
b Computation Institute — The Universwy of _hicago
¢Department of Computer Science — The  ~wersity of Chicago
dCMI, Department of Electronic Systems - Aalborc University, Denmark
¢Data Science and Learning Division - Ary.mn- National Laboratory

Abstract

Data from sensors incorporated inu > .. abile devices, such as networked navi-
gational sensors, can be used tr ~antire detailed environmental information.
We describe here a workflow and ti. mework for using sensors on boats to con-
struct unique new datasets of nnderwater topography (bathymetry). Starting
with a large number of mr asure1. ents of position, depth, etc., obtained from
such an Internet of Floatu., T'ings, we illustrate how, with a specialized
protocol, data can be com» wunicated to cloud resources, even when using de-
layed, intermittent, or &'~ *on .ected networks. We then propose a method for
automatic sensor c¢ ibration based on a novel reputation approach. Sampled
depth data are interpoicted efficiently on a cloud computing platform in or-
der to provide a co1 “inuously updated bathymetric database. Our prototype
implementation s :s the FACE-IT Galaxy workflow engine to manage net-
work commu iication. and exploits the computational power of GPGPUs in a
virtualized lovd er vironment, working with a CUDA-parallel algorithm, for
efficient d-~*a p.. essing. We report on an initial evaluation involving data
from a sailing  =ssel in Italian coastal waters.

Keyu . ds:
Wor flows, Data crowd sourcing, Mobile Computing, Cloud Computing,
GPG.'T Virtualization, Internet of Things, Bathymetry interpolation
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1. Introduction

The rapid spread of Internet of Things (IoT) tecano’ug..s has greatly
increased the use of geographic data [1]. In the work veported here, we
leverage this trend to develop a new approach to ne prblem of obtaining
high resolution 3-D maps of the sea floor, as requirc 1, for :xample, to model
the impact of sea storms on human coastal act’vicies 2, 3, 4], the diffusion
and dispersion of sea pollutants [5, 6, 7], and t. e .rift of floating objects, as
required for safety at sea [8]. We show how to . e ¢ - wvdsourced data [9] from
leisure boats to create unique and dense sea bath metry datasets that, due
to the large numbers of such vessels, can be . rt* ularly detailed in shallow
waters and coastal areas.

Crowdsourced data collection proce.<es can produce datasets that are
large in size and expansive in geogre=hic exvent [10]. However, the resulting
measurements can also be less reliab,’= chan those obtained via structured
surveys carried out with more & rav> (and expensive) scientific instru-
ments [11]. Thus, we see growing ‘nicrest in developing effective quality
control mechanisms. Instead o1 “~toiuiulating the problem as an automatic
learning problem [12], in this work we present a novel approach based on a
Collaborative Reputation Sysuwem [13] applied to Internet of Things sensed
data[l4]. However, this < proaca, when applied in the environmental sci-
ences, usually assumes . high- aality internet connection [15].

One popular strat oy .or - ollecting crowdsourced data is to link off-the-
shelf sensors over t'.e ney. .~ rk to cloud computational resources and stor-
age [16] to produc: a “Sensor Instrument as a Service” (SlaaS) [17]. Even
small mobile dev’ ~s can chen be used as a data collection platform [18].

In this work we present a SlaaS system that processes leisure boat sensor
data (GPS positic and depth sounder) to produce and update a detailed
3-D sea floc. (b «sthymetry) map. (We focus on the bathymetry problem be-
cause bathyn.. -ric surveys are rare and expensive, and high-resolution pub-
licly ava’.able Jatasets are difficult to obtain [19].) Data are collected via an
Internet ~f Flos ting Things (IoFT) ecosystem called DYNAMO (Distributed
leisur . Vacni-carried sensor-Network for Atmosphere and Marine data crowd-
sour ‘ing apHlications, see Fig. 1) that we have presented previously [20, 21].

We =_ the cloud-hosted FACE-IT Galaxy workflow engine [22, 23] to
. na o and integrate the data collected via DYNAMO, being run at reg-
ular intervals to extract data from the acquired database, selecting only
the sampled depth, in order to interpolate the extracted data to obtain
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the available depth data and update the dataset. In orac. to process the
large amount of data to be processed at each such exe uv'on, vhe workflow
uses CUDA-accelerated algorithms on virtual machinc (V) mstances with
NVIDIA CUDA support, as supplied by the Amaz-~ We. Services (AWS)
cloud. To minimize the costs of using these expesive ('PU-equipped vir-
tual machines, we use GVirtuS [24] to virtualize .“e € UDA calls [25] so
that the interpolation algorithm can be execu ed - .. regular VMs and the
CUDA-enhanced algorithms on GPU-equipped " Ms, s needed.

We report preliminary results in terms of < ta sampling using a vessel
sailing in the East Sector of the Central Tyi henian Sea during Summer 2017.
We deployed the DYNAMO system on 1.~ vesoel and collected data using
the on-board instruments including GPS -~~~ ,ass, tachometer, trim, wind
and other environmental sensors, and echc ~ounders. DYNAMO then using a
custom delay-tolerant transfer protc -u. . *ransfer the collected data to the
cloud counterpart, where they were 1 ocessed using the FACE-IT Galaxy
workflow engine.

Data processing produces ~ colicction of data tiles (see Section 3.5),
which, similarly to the world m»s’ tiles, contain information about the
seafloor at different levels of detail. We implemented two interpolation al-
gorithms, namely the Inscrse Listance Weighting (IDW) and Kriging, to
properly position the newly mes sured data [26]. Indeed, these data usually
contain unavoidable er.ors, given that they get collected using barely cali-
brated sensors on leisu.~ ves.els by volunteers. Moreover, to minimize the
effect of the erronec 's measurements, we design and implement a reputation-
based algorithm, w hich -<es the measurements of multiple sensors to improve
the knowledge ¢ e: "ors and to enhance the accuracy of each sensor [27].

As many o. *h algorithms needed for the system are computationally
expensive, w. have . nplemented efficient versions that exploit the power of
GPUs, and we nak: use of GPU virtualization techniques to limit the costs
of runnine *he !~ form[28]. The experiments show that the system processes
the colle :ted a. ta successfully and can easily scale to support larger inputs.
Indeed, w~ she w that gathering environmental data, performing the needed
proc ssing and homogenization, and supporting experiments of computa-
tione! envi» onmental science can be realized at large scales and at modest
crets. ‘1L uese results are also confirmed by extensive simulations.

T"1e rest of the paper is organized as follows. Section 2 reviews related
work and technical background; Section 3 describes the system architecture;
and Section 4 describes the CUDA based interpolation algorithm. We discuss
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our proposed method for automatically adjusting vessel a.*a 1. Section 5
and, in Section 6, describe how we extended FACE-I" Calaxy to support
our application and how the application is implement 1. #inally, we report
in Section 7 on tests of all components of our system #- 1 co..~lude and discuss
future work in Section 8.

2. Related work

2.1. Crowdsourced Bathymetry

In crowdsourced data collection, a data. ~t is co istructed with the help of
a large group of people [29]. This technique “as i,cen used in marine science to
update nautical charts, increase public sof~*=- == ] environmental stewardship,
and increase navigational efficiency. Ma..r projects, such as ARGUS (Au-
tonomous Remote Global Underwa = [ veillance: argus.survice.com),
have sought to involve the marire co anunity in data collection. In par-
ticular, the ARGUS crowdsourcin> .vstem involves cooperative surveying
through the acquisition and c~"ectiv= processing of bathymetry data that
can significantly supplement and e. hance the accuracy and efficiency of stan-
dard hydrographic surveyine The International Hydrographic Organization
Data Centre for Digital B «thym. try (IHO DCDB: www.iho.int) has a long
history of encouraging the -olle :tion of crowdsourced bathymetry data to
identify uncharted fea’are ., verify charted information, and support scien-
tific studies in marine .~ as v, here no depth data exists.

Other data coll ~tion aud integration efforts could benefit from crowd-
sourcing. For example, the European Marine Observation and Data Net-
work (EMODne’. w 'w.EMODnet-bathymetry.eu) [30] assembles marine data
(bathymetry is ~ J ey dataset) to make data resources from across Europe,
collected in 1 fragi. ented way for many years, more available to public
and privatc ns rs. The U.S.-based Ocean Observatories Initiative (OOI :
oceanobs~~vai.~ 1es.org) implements and manages a large sensor infras-
tructure for me vine data [31].

2.2. SPU Vartualization

£z note « above, the large quantities of crowdsourced data to be collected
recmire wPGPU processing. Here we can take advantage of remote GPU
vii u Jization as provided by rCUDA [32], which uses a split-driver approach
to al, w CUDA-enabled applications to be used without modification, while
executing CUDA kernels on a remote or local GPGPU [33]. Studies shows




that the overhead due to remote GPU usage in a high peric "mai.ce network
fabric does not exceed 4% [34]. Currently, rCUDA provi .es high performance
CUDA virtualization and is updated to support the la =st CUDA 8.0 frame-
work and its ancillary libraries, so we can take full = 'van.. e of InfiniBand
and the related support for RoCE (RDMA over Conver; ed Ethernet) net-
works. A binary distribution of rCUDA is freely avai.~ble at the rCUDA web
site (rcuda.net), but is not open source.

2.3. CUDA Interpolators

Spatial interpolation is a crucial task i. eeogr: phic information science.
Frequently used interpolation algorithms ~cluue Inverse Distance Weight-
ing (IDW), Kriging, nearest neighbore == iscrete smoothing interpola-
tion [35, 36, 37]. (Falivene et al. [38] pro.de a comparative survey.) These
interpolation algorithms are comput. wi. "=~ expensive and thus parallel im-
plementations can be needed for large datasets. There are many research
efforts in this context that target . ®erent parallel architectures and envi-
ronments [39]; for example: 1 -ticc e-cluster approaches, domain decom-
position strategies, and parallel | neline procedures. Recently, GPUs [40]
have been used to accelerate some interpolation algorithms, with good re-
sults [41, 42, 43].

We consider here the 1.°W “aterpolation algorithms that have been al-
ready parallelized on s ver .l platforms. Hennebdhl et al. [44] provide a good
survey of parallel imboic~ ent «tions of IDW algorithms. In order to achieve
better geophysicall’ consiswent results, we implemented a CUDA-enabled
ordinary Kriging. This ~dvanced geostatistical procedure computes an es-
timated surface as  weighted linear/nonlinear combination of scattered set
of points. The ."ri",ing procedure assumes that the distance between sample
points reflect s a spa.ial correlation that can be used to explain the surface
variation [4 1. "saals et al. [46] proposed an expression of this weighted com-
binations ‘= tei.~s of covariance matrices. The weights can be calculated
using di ferent approaches (i.e., different types of Kriging can be applied)
depending on “ne stochastic properties of the sample points [47]. These al-
goritams, "mplemented for a single CPU, are computationally onerous: the
comyj itatic 1al cost scales as the cube of the number of sample points [41].
Thue GrUs and CUDA have recently been used to accelerate the computa-
tio s (48, 41, 49].




3. Architecture

We now describe the main technologies that are at the co. : of our novel
application prototype, which as a highly complex sysw.m leverages many
state-of-the-art software and hardware components.

3.1. Leisure Vessels as Sensors

The advent of cloud services has helped s n“.es n ocean modeling by
providing convenient access to unprecedente. co...putational and storage
resources, allowing researchers to obtain new fincings by processing larger
data [50]. Nevertheless, the fundamental tasx ~f Collecting the needed data
in the first place remains an issue. Tradition.' approaches such as research
expeditions are usually expensive to pe.‘orm and limited in the areas they
can cover. Moreover, some coastal ~=eas piesent challenges for such tradi-
tional methods: for example, they might be too dangerous to be investigated
using large ships. To overcome ti-.» li, itations, crowdsourcing techniques
such as the FairWind system that .7e Jdeveloped previously [51] have been
proposed. These methods can “e used on small leisure vessels to collect
data from their sensors, allowing ora.nary citizens to contribute data of con-
siderable importance for r.ienc, engineering, and management of natural
resources.

The system that wr work . 1ith here, DYNAMO, collects data from on-
board sensors and ins.-ur.ent , connected with different local network proto-
cols acting as data ! gger, - uter, and gateway for NMEA (www.nmea.org),
SeaTalk (www.ray .ar.me.com), and SignalK data.

In previous v .-k, we developed an Android crowdsourcing application,
FairWind, acce ssib'e in the Google Play Store [51]. This approach allowed
for fast and asy eployment, but the Android operating system leads to
limitations r onc :rning the amount of memory that can be allocated, Garbage
Collector mau. ~eeraent [52], and CPU utilization. In particular, the data
collectio . proc-ss can sporadically become highly intensive, which may cause
the oper. ting s 'stem to kill the application, negatively impacting the results
of thr crowasourcing activity. To avoid such issues, we developed DYNAMO
as a ~uston ized Android distribution. We moved the implementation of the
data 1.7 ag and routing features into the Linux part of the Android OS,
w.ue .c.aining the graphical user interface as a normal Android application,
give. that it is not resource intensive and thus not at risk of being killed by




the Android OS. The graphical part of the resulting framc ~ork is inspired
by our previous work FairWind, and thus we refer to it as Fairwind-Home.

Being a customized Android OS, DYNAMO can - r.eployed as a pre-
installed solution in marine devices, in a similar wa - Yo o.>er marine tools.
Then, users can visualize the collected information v ia Fait Vind-Home, while
at the same time the framework transmits the dat. to *.ae cloud whenever
possible. DYNAMO is highly privacy-oriented all~..’ng users to customize
the amount of data that they share and to select ..ie le el of data anonymiza-
tion preferred. Users can also reduce energy c.sumption by choosing the
moments when the framework should try 1~ send - he data to the cloud.

DYNAMO uses on-board instruments .. ~lua.ag GPS, compass, tachome-
ter, trim, wind and other environmental eonon- and echo-sounders to collect
data, which are then stored on board in p.-ks of SignalK (signalk.org) up-
dates in JSON format. These data « ¢ <. ~municated, securely and reliably,
to a cloud-hosted server, whenever a . stwork connection is available. The
information are then stored in a NcSQT. catabase in the cloud for future pro-
cessing: we host the whole con~tat.nal infrastructure on AWS to manage
the amount of new data available " each run.

DYNAMO defines a framework, the Vessel Manager, that allows for the
development of third-part; Ana oid applications, called “Boat Apps,” that
can interact with vessel se. ~ors and actuators. he FairWind-Home appli-
cation’s basic features couv’d be straightforwardly extended and customized
to interact with such «,”s. Trom the marine electronics point of view, this
framework is one ¢’ the most crucial innovations introduced by DYNAMO
and its ecosystem. Fig re 1 presents a detailed picture of the DYNAMO
system.

3.2. Data Tr .nsfer “n Extreme Environments

In orde: to .nit'zate the drawbacks of highly delayed and unstable net-
works [53!] ~xpic** the enormous potential of data crowdsourcing, and enforce
security since . 2nsitive data such as locations can be involved), we leverage in
this work ~ da*a transfer framework that we have developed [54] for such ap-
plice 1ons. The Internet of Floating Things Data Transfer Framework acts as
a brilge be ween the vessel segment and the cloud segment of the proposed
a>nlication [55]. In the Internet of Things context, applications typically
lev r-.ge asynchronous protocols such as MQTT [56], a publish/subscribe
protc ~ol designed for telemetry transport. However, MQTT is not suitable
for marine settings, in which offline periods can last for hours or even days.
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In the kind of application we present in this paper, the cons.-ainy is that the
data be transferred as quickly as possible whenever the ne.work is available,
even if only for a short while.

Figure 2 provides a high-level view of the pror-sed ..~mework, which
is tolerant to unreliable or intermittent networkir g by ¢ 2sign, as required
for our geographical data crowdsourcing application. D= .a can be collected
continuously, stored on board, and sent to the c'oud ."en the vessel is in net-
work range. The framework is implemented as . ATT P-based, firewall- and
proxy-friendly transfer protocol that enforces » ~urity without the manda-
tory use of HT'TPS thanks to the use of .rainly sET and POST with file
attach verbs. A key feature of the propc-=d i.amework is the use of con-
current streams of parceled data in ord~» +~ chieve the best performance
when enough connection quality is avail.™le. We designed the protocol to
be tolerant to network delays and, o o ~~val, to data transfer failures, as
required for effective functioning in m. e environments. Each data parcel
can be signed and encrypted in o.1c" to enforce data integrity and, above
all, user privacy.

Upon receipt of a data parcel 1, the cloud service, the signature is verified
with the source public key. the parcel is decompressed, and the local hash
function is evaluated in o der tc perform signature verification. If the data
parcel passes this stage, its '~ta .re ready to be stored in a NoSQL database.
We use a Data Access La er in order to decouple the Transfer REST API
Engine from the actva: ! .tab ise (for example MongoDb). Once the data are
stored in the NoSC . datavase, they can be consumed by different applica-
tions. In order to maxu ize the data transfer process, data compression can
also be applied.

The framew. vk s architecture and application independent: each feature
can be activs ced. o1 10t, depending on the operational context. It supports
bidirection: - p-ylo-.ds for loosely coupled remote event firing and could be
extended *~ sup > rt a mesh-based data parcel routing using other nodes as
hops. T ws the framework can be used in different scenarios, such as marine,
automoti.~ reHotics and similar applications.

Ve rec ntly extended the Internet of Floating Things Data Transfer
Fran »work oy implementing a Node.js (https://nodejs.org) high through-
pt sottware component that enables any SignalK-equipped system to per-
for m data logging on the DYNAMO cloud infrastructure. By making this
com] nent available in a wider open source marine electronics environment
as a plugin freely available for download, we aim to increase the number of
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boats that can contribute to our data crowdsourcing missio.

3.3. GPU Virtualization

We leverage GPU virtualization techniques to ev--ute ‘he heavy CUDA
functions of our solution on a remote GPU. We mak« use o1 FVirtuS, the most
popular and robust open source solution for GPU vi.*nal'zation. GVirtuS is
composed of two parts: a back-end and a fror-en’, a technique known as
split-driver model or driver paravirtualization |.7).

The back-end is the component that is insta!'2d 1n a machine with GPU
access and takes care of executing the offlc ~ded C JDA functions. Since the
back-end needs to access the GPU directly, * mu.. be installed in a privileged
domain [58]. Different clients can then ~nre~ the GPU at the same time,
even remotely, by going through the GVir. *S back-end [59], allowing a better
utilization of the GPU resources [60,

The front-end is the componert the* is used by developers to add remote
GPU support to their application.”. TLe front-end provides an API with
function signatures similar to *hase ~f the CUDA functions. Whenever a
function is called, its name and t..~ addresses of the input parameters, vari-
ables and host/device pointers, are encapsulated in a buffer. These data are
then sent to the back-enc throuzh the GVirtuS communicator, completely
transparently to the develo, . When the back-end receives the request, it
executes the routine a’.d ¢ nds a buffer containing the output variables and
host/device pointers be.”' to .he front-end of the calling client [61].

GVirtuS is currs atly up co date with the most recent CUDA version and
CUDA libraries. Linpo1. ntly for our project, it has been extended to support
several CUDA e ici 'ary libraries, such as cuFFT, cuDNN, and cuBLAS, for
which NVIDIA »r,vides GPU-accelerated libraries that implement highly
optimized alrorithn.. . Moreover, since GVirtuS is quite modular, developers
can easily i teg.ate more functionality, if needed [62].

3.4. Da a-inte ~sive Application Workflow

We ur~ the FACE-IT Galaxy workflow engine for our workflow process-
ing. [his system extends the Galaxy bioinformatics workflow system [63]
with specie ized datatypes, interfaces, and other features required for earth
science applications. FACE-IT Galaxy incorporates extensions that sup-
po.t slobus data browsing and transfer as implemented by the Globus Ge-
nomu s project [64]; platform improvements used as a foundation for the
earth science-specific applications: advanced versions of XML and JSON
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data types, a common REST interface for remote data brow. ng, and RAFT
files for grouping datasets into collections; the NetCDF ua a format and the
NetCDF schema for fast and reliable NetCDF-based « «te file “sniffing’; and
raster and vector map data visualization. Data sov~-2s, pI~tting functions,
format conversions, and numeric models are wrapp«d as in lividual tools that
can be combined to implement diverse workflow-bas. 1 re jroducible applica-
tions [5, 65]. Users working on agricultural, ¢'ima*.. economic, and other
problems can use FACE-IT as cloud computing supr ort for data-intensive
applications. The platform can also be used .. developing countries with
limited Internet connections or poor and a' <ent p ocessing power.

We created a new FACE-IT Galaxy in. “ance ror this application, hosted
on an AWS Elastic Compute Cloud (F*?) = hine, that builds on and im-
proves our prior results [66]. We forked ."ACE-IT Galaxy directly from the
Galaxy Project instead of using Glol 1> ' >»omics Galaxy. This is a strategic
choice more than a mere technical issw.- because we re-implemented all pre-
viously developed components of 1’'al'H-.T Galaxy as a tool-shed. We thus
enforce our strict constraint of ~vnid. g any core source code modifications,
so that any new FACE-IT Gala. = workflow-based project can work with
the latest regular Galaxy ver<ion and thus leverage the work of the Galaxy
developer community.

The Job Runner is the ('ala.y component dedicated to actual tool exe-
cution and to interfaciag -vith the local scheduling. FACE-IT Galaxy uses
the HTCondor Job h.+aer which works with EC2. A monitor service
analyzes the numb r, type, and workload of the VM instances. If a tool
needs an instance thav ‘s not available, the HTCondor Job Runner starts
a new one, depl yr g all needed services, adding a shared file system, and
starting monitc in .. Time-related and instance-related policies are imple-
mented in or ler to (asure scalability, for example by selecting high perfor-
mance instc nce tyy s or by using scavenged resources instead of on-demand
instances  The '.test version of the HTCondor Job Runner implemented
for this applicc tion supports EC2 virtual clusters created with CfnCluster
(github. rm/-.wslabs/cfncluster), a framework for deploying and main-
taini 1g high performance computing clusters on AWS.

L he pre rious FACE-IT Galaxy implementation relied on an Elastic Block
Starage volume attached to the Galaxy instance and configured as an NF'S
ser e . Hach working node instantiated by the HTCondor Job Runner im-
porte 1 the job scratch directory acting as an NFS client. Here, we use instead
the AWS Elastic File System (EFS) to provide simple and scalable file stor-
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age for use with AWS EC2 instances. We chose to use EFS 1. ~ausc is simpler
to manage than NFS, thanks to an interface that ena! iex the developer to
create and configure file systems quickly and in a st.~ig"itforward fashion.
EFS allows us to achieve our goal of elastic storage ~-paci. - that grows and
shrinks automatically as files are added or removec .

3.5. Data Tiles

The use of tiles and pyramids to achieve (iscrete zoom level maps is
common in internet mapping [67]. Briefly, give» a zoom level z, such that
z > 0, the map of the whole globe is rep.~sentec by a matrix of 2* by 27
tiles, each at a given pixel resolution (usuai'y 203 x 256 pixels). Tiles are pre-
rendered or dynamically computed with 4~*~ - awn using the Web Mercator
projection [68].

We believe that a similar struct «e - be used to manage data, with
a tile containing data instead of rendc ed images. We are confident that a
novel software infrastructure basea o. this approach can push georeferenced
data processing and managemr=* to . higher level.

To this end, we define, in a similar manner to the classic image-based
tile, the “data tile” (dile) as a georeferenced matrix of 360 x 180 data cells,
as presented in Figure 3 The, given a zoom level z, we represent the
whole globe by a matrix o. 2% V¢ 2% diles (each 360 x 180 cells), in which
data are stored unprec,ect d. [he ground resolution of each cell at zoom
level z is thus 2% depere .~ E-ch dile is stored as a compressed NetCDF file
containing only ons variabie at a given time step and vertical level. Diles
are represented by Uk, and can be stored by using various technologies to
match applicatic a1 2eds: for example, file system files, S3 buckets, or Globus
endpoints. Moy ~wv_r, diles can be created, searched, and accessed in parallel.

NetCDF “.les cow aining multidimensional environmental data may be di-
rectly acces ibl: us'ng commonly used internet protocols such as HT'TP or
FTP, or i=direc.™ via a legacy OpenDAP server. A data crawler [69] can
scrape t' e web n search of environmental data (github.com/hpsc-smartlab/
NetCDFSc ~ver _er).

['. num ~rical weather predictions finer domains are often nested in coarse
dom. ins in order to increase model resolution and, consequently, data density
ir certain areas. This approach saves both computing time and storage
ne.ds. In this scenario the use of diles enables the final user to get data
accor lingly with the model resolution at a given discrete zoom level. In
a typical configuration, three domains are nested with average cell sizes of
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25km, 5km, and 1km (a 1:5 ratio, 25-5-1). We can re-arra..>= such data on
the diles schema to match the discrete zoom level and “ne data consistency.
Considering the 25-5-1 setup, the results are stored = cata tiles at zoom
levels 2, 5, and 7.

The use of diles is feasible with high-resolution 1 1wltid1 1ensional datasets
with a cell size smaller than 1°: 7) Instead of a mouw.~litk.c file, the multidi-
mensional dataset is partitioned in smaller slices, ~..“rcing full topological
coherence. i) The diles can be named by usi.., an JRL schema parame-
terized with the dataset name, variable, time, I~vel, zoom, x and y; where
zoom, x and y are the dile indices. i) Spat. ! data drocessing, feature search,
and machine learning algorithms can be «,»lica to one or more datasets in
a map-and-reduce fashion[70]. 4v) Spati=! 4~ , simplification methods, by
which general shapes of features are retai. ~d, while eliminating unnecessary
details, can be applied to datasets wua. = frequently accessed at a given
zoom level, generating pre-computed ¢ ched data.

The use of the diles approach s no. drawback-free. For example, the
data transformations (regriddir ~) tha" must be applied to surveyed or model-
generated datasets can be compuu. tionally /storage expensive and can affect
the overall data quality becanse of the interpolation/extrapolation process.

In the present applica ion, v.= deal with well-known datasets that have
associated self-describine ni *ads ca. Our dile-based approach relies on meta-
data indexing and use a "loSWL database for searching operations via the
key /value paradigm.

We use diles as ¢ 1 targe, domains in this paper because the crowdsourced
data are not uniformly Yistributed spatially. The dile representation allows
us to produce re a1 3 with an implicit map simplification related to the zoom
level (see Figui. 3.

4. CUDA ™r chyv.netry Interpolation

The .opog. wphic variability of the seafloor influences sea currents, the
structure of bir togical populations, and ecological processes at many spatial
scale,. A detailed knowledge of coastal bathymetry is crucial for decision
mak ng in 1 1any application fields, ranging from navigation to the protection
of artiiaces. In the marine data crowdsourced scenario described in this
pa)er, new depth data sampled by many barely calibrated echo-sounders are
collected and processed daily. Interpolation algorithms for geophysics are
computationally expensive and thus the use of GPU-accelerated interpolation
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z=1; 360 x 180; .5° x .5° z=2; 360 x 18}\0; .25° x .25

z=0; v00 x 180; 1° x 1°

Figure 3: How duw. ~ v -present the world map at zoom levels 0, 1, and 2. At level 0, the
world is represe ted by  single dile, with each of its 360x 180 cells corresponding to 1°x1°;

at level 1, by our files with 0.5°x0.5°cells, and so on.
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Figure 4: Our bat’.,. etry target resolution is 1 arc second (about 30m). The figure
represents the are « wh re our first experiments have been conducted covered by diles at
zoom level 12, or abo. - 27m in the latitude dimension. Blue diles: new data points. Yellow
diles: buffer d.tes ised during daily interpolation. Red diles: depth points unavailable
due to echo st *nd or te anical limits. Pink boundary: the area considered for experimental
data. Pink A~ts: 0 » diles we used as a source query locations in our experiments.
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algorithms is mandatory in this application context [71]. 7= cousider here
two interpolation methods: Inverse Distance Weightir sz «nd kriging. The
first has good performance but introduces unwanted ~rti acts; the latter is
acclaimed as one of the best solutions for this kind of wppu.ation [72], albeit
at a significantly higher computational cost.

4.1. The Inverse Distance Weighting Method

Inverse Distance Weighting (IDW) is a spatia. .ater solation method based
on the idea that near points must have simila. ~alues. Let p; € R"™ be the
locations whose values z; are known, for ¢ = 1,..., N and, let ¢; € R" be the
query locations, for j = 1,..., M. As desc-ibex by Shepard [73], each value
¢; can be interpolated by using the valiee i» - = {p; : d(p;, ¢;) < R} (i.e.,
the values within a fixed search radius ., as follows:

N
e DL NjiZi

Py (1)
A ¥

where )\j; is a weighted average, ~ompuated using the Euclidean distance,

1
) dist(p;, q;)®

Here, we use a mat ix-v ector formulation to deal with the IDW problem.
Starting with a matrix .* of s'ze M x N, in which each element is the weight
average \j;, as in (" . and aenoting by z the vector of the known values and
with 2* the vectoi conu.ning the unknown values, we can use the following
algebraic operat'on Yo obtain the solution for the IDW problem:

Aji (2)

¥ =Az (3)

4.2. The Krig,.-a vethod

Whi!> IDW is the most used interpolation method, it is not the most
accurate, “eca-.se it is based on a generic approach that is not always suitable
for e speciSc problem. For this reason, we also considered a Kriging model
in o1 ler to :ompare the obtained solutions.

Kriging is a method of spatial interpolation belonging to the family of
stc "b astic methods. It represents the link between neighboring points with
a geu statistical approach (using the covariance concept) [46]. There are
four major Kriging techniques: Simple Kriging, Ordinary Kriging, Universal
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Kriging, and Co-Kriging. The first three are used in the c.~e o. univariate
geostatistics, the last in the case of multivariate geostatu tics. We consid-
ered the ordinary Kriging model, which computes th - prediction values as
a weighted nonlinear combination of data values an- uses tifferent types of
models (linear, spherical, exponential, gaussian, r tionai to define the co-
variance function. Fach model is related to the n.*nre of the data to be
analyzed. Here we choose the Gaussian formu.atic ., as this best suits our
data. This approach can be used on a dataset ...u0se coordinates belong to
a fixed range of analysis.

The mathematical formulation for the ¢ dinary Kriging method (the best
linear unbiased estimator) is based on the "nila ur a covariance matrix C, of
size M x N, whose elements are:

¢ij=C"+C 1= n(=3aist(p;, q;)/a)], (4)

where: dist(p;,q;) = ||pi — q;|| age . dentes the Euclidean distance between
the query points ¢; and known poin's 1,; C? is a constant that is used when
the phenomenon of Nugget Efjcor oocrs, i.e. to manage the initial disconti-
nuities; C! is also called sill, or thrcshold, and handles problems related to
numerical representation; ~uu - is the range value (the the maximum dis-
tance). These values act as a scale factor and they are empirically chosen
according to the proble n una.~ examination.

In a similar way, ¢ var.anc >-covariance matrix C of size N x N, is built.
For this matrix the clenint, ¢;; are computed as in (4), but they depend
only on the distan e, hetween the known data.

Using the prerious deidned matrices, the values 27, corresponding to the
query locations /;, can be obtained, firstly solving a linear system of equations
é’q = z and then ¢ "mputing a matrix-vector product z* = C'q. The ordinary
Kriging met’iod can be expressed more compactly as a matrix-vector product:

2 =CC7 1y, (5)

Note ~at f.ae computational complexity of the overall Kriging algorithm
is O'N? 4+ N - M), while for IDW it is only O(N - M).

4 3. Gi T-parallel approaches

We implemented GPU-parallel algorithms for both the IDW and Kriging
meth ~ds in order to compare their accuracy and efficiency. In our imple-
mentations, threads and blocks are synchronized to store dataset points
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into the shared memory before the interpolation phase. M. ~eovcr, both al-
gorithms use the CUDA libraries cuBLAS and CUSP 0 perfoim the basic
linear algebra operations.

G-IDW provides a parallel implementation of "™W nterpolation. It
computes the matrix A by a full parallel strategy: she i-t. thread computes
the elements (weights) of the i-th row and each elemc~t o this row is divided
by the sum of the weights in order to obtain .he -._ighted mean. Finally,
we use an ad hoc cuBLAS library routine to ..altir.y A by the vector z,
containing the known values.

G-KRIGING implements a parallel ~ ~vsion « f the Kriging method. It
determines the matrices C' and C' in a simi'ar way to the G-IDW algorithm:
the ¢-th thread computes the elemente ~f = j-th row. The vector ¢ is
the solution to the linear system C’q = ., computing with a CUSP library
routine. As in G-IDW, the matrix ¢ ., ~ltiplied by the solution vector g,
using cuBLAS to manage the matrix-v-ctor product.

Large datasets are stored into sia.~d .memory in different chunks and the
data transfer, Host-to-Device e~ vice versa, are minimized at the beginning
and at the end of the program col~

5. A Reputation-Base'. App "oach to Adjusting Vessel Data

Because sensors on Jiffere.” vessels may be imperfectly calibrated, the
data that they collec m .y Fe systemically biased. We thus developed a
novel approach to d «ta al +stment based on Collaborative Reputation Sys-
tem methods [74] ~.nd related algorithms. Our approach collects depth data
from different ves=~l sensors, blends all data to compute adjusted values for
each vessel, anc use s the adjusted values to establish offset and scale param-
eters estimates fo. ~ach sensor.

In more iet:l, let s; denote the i-th vessel sensor. We assume that each
sensor may L. ¢ 2. inherent unreliability and may provide depth measures
with a ¢ rtain degree of uncertainty. These sensors, due to different causes,
distort ¢ true - alue d, by providing a measured quantity d. This kind of
meas’ .cmeus error can be modelled as:

d=d+Am (6)

w e 2 n represents the measurement error. The error Am is assumed to
dep. 1d on both random and systematic errors, that is:

Am = Amgys + Ay, (7)
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and in term of measured quantities:
CZ - d + Amsys + Am?‘an (8)

A general distribution for random noise errors ieeds to be specified. In
this paper, we assume a normal distribution, that .

Ay, < N(0,02,,, 9)

with zero mean, and independent of (or uncori'ated with) the explanatory
variable d. Systematic errors are simulated by a I 1ear dependence between
true values and measured quantities, so tu.* to. cach sensor s; we have that:

CZ = Sz‘(d) + AMygn = v, + b - d 4+ Amygy, (10)

More properly, parameters a; an' b represent the offset and the scale
sensor errors, respectively.

To estimate these parameters, «las ical linear regression could be used
directly. However, that woula »ey..= . that we use actual depth values as
explanatory variables, and such da.a are not always available. Thus, we
use an iterative filtering ap_iv. ~h [75, 76] to remove random errors and thus
recover accurate depth va’ res. In general, an iterative filtering method allows
us to assign reputation (i.e., . neasure of reliability) to a set of users who
assign evaluations to a st ¢ objects. At the same time, the algorithm
provides reputation valu.~ .so to each object as a weighted sum of the
evaluation that it '.a. received from all users. In this way, from a statistical
point of view, diecordanty evaluations have only modest impact, and objects
receive a more - orre ot average evaluation [77]. In our scheme, to tap the full
potential of itera.’ e filtering, we consider:

e locati n v oin’s & = (x;,y;) as objects (z; and y; could be thought of
as I=**tuac ~.nd longitude coordinates);

e ser.ors { 1,59,...,Sy} as the N users;

« deptL values d;j = si(d;) + Am,q,, provided by sensor s; at location &;,
< ev Juations.

We then use the reputation values of the objects, i.e., the depth values
adjured by using the filtering averages, as explanatory values to better es-
timate parameters a; and b; of each sensor s;. Since new depth data (due
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to the presence of new vessel sensors, or new evaluations rovided by old
sensors) become available day by day, our system can F ¢ «onlied repeatedly
over time. To this end, a more general procedure, r.-mrd a Collaborative
Reputation System (CRS), is preferred. Collaborat:> Re, "tation Systems
have been introduced to involve the time variable, which ‘llows for the sim-
ulation of a system in which new users and new ol ~cte can be added over
time. In our context, we think of each day as ¢ tim» . “tep, and the CRS is a
multi-step procedure in which each single step .. a si-aple iterative filtering
procedure. In the proposed approach, we use au “*erative filtering-based CRS
with memory, that is a CRS in which the “rustwc cthiness of evaluations at
time d 4+ 1 depends on the information av “he p.evious time d. (Galletti et
al. [78] discuss this procedure in depth ' T» = e detail, depth data from re-
liable sensors are used primarily to influe..~e mean values, so that new data,
and new sensors, are forced to be ¢t w.. * with previously collected known
and reliable data [79].

In summary, we use crowdsoui “e.' duta for three purposes: to mitigate
the effect of random errors; t~ furnsh to each sensor better estimates of
scale and offset parameters; and 1. enhance the accuracy in depth measures.
Figure 5 summarizes this compouting block.

5.1. Simulation

In order to evaluat . th . Cotlaborative Reputation System with Memory
we developed a Single ?:am Echo-Sounder Simulator (SBESS). The main
purpose of this softv are component is to provide real world high quality depth
data by using a datase. available in the literature at 1m resolution [80]. In
these simulatior e. »eriments, we define a simulated boat to be equipped
with a GPS an a. echo-sounder for depth measurement. In our simplified
model, a dep.h mea. 1irement is defined as follows:

depthion jat = a + b * gauss(trueion jat, S) (11)

where:

lon lat = longitude and latitude of the fix

true = ceal depth

: = sensor offset in term of vertical distance from the vessel water line
b = scale error due to the echo-sounder internal behaviour

S = standard deviation of a Gaussian random function

depth = sampled bathymetry.
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& Initial Control Points Vessel Adjust
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O, ~ Yepu stion System [,
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Depth Data
Correction
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Longitude;
[ Latitude; Kriging
De .. Interpolation
day-1 data e

Figure 5: The propose . ves. ! ¢ djustment scheme (day d) for automatic depth sensor
calibration using colla’ rative reputation with memory. The simulation/evaluation block
shows how the simulated s. mpled data is generated by defining boats and routes using
the Single Beam Ec’.o- "ounder Simulator (BESS) fed with real world high resolution (1m)
bathymetry data. [Chis dataset is used as sea truth in order to generate difference matrices
with sampled a~d tu corrected data. The Vessel Adjust block is used for both simula-
tion and prod’ ctic .. The main component is the Collaborative Reputation System with
Memory usea '~ - omy ute the a and b parameters for each vessel depth transducer. Some
control poir*~ are « -’ racted from the sampled high resolution dataset, while in production
the EMO Jnet bc *hymetry database is used for initialization. When this methodology is
used in p.~ductic 1, the day-1 data is used as trusted depth at each iteration on daily
based.
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Figure 6: The 16 routes (dotted line=* nsed o simulate real bathymetry data sampling by
vessels echo-sounder.

The simulator producer samy.'ed data along predefined routes by using the
depth dataset as sea truth. The ,eographic coordinates of each fix belonging
to a route are randoml, af’acted by a Gaussian error in order to imitate the
GPS 2D position erro..

5.2. Evaluation

We performe . ~ur evaluation of the Collaborative Reputation System
with Memory 7 the area of the Bay of Pozzuoli in Italy, for which a high
quality datas ‘t acq.ired using professional equipment and scientifically val-
idated is availeble. We defined 16 routes, named routeg; ... routeyq, (see
Figure 6) for . a0n vessel paths. We also defined a set of 16 vessels, each
characte ized | v different depth transducer parameters (a, b, s), as shown in
Table 1. The e aluation then proceeded as follows:

1 The .'BESS produced data using 16 vessels sailing along 16 routes for
> tot .l of about 400000 samples. In the context of the simulation and
~aluation we assume those data are not affected by the tide offset.

2. From the high resolution DTM 1m dataset some control points are
extracted for the reputation system initialization;
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Table 1: For each simulated vessel, the depth transducer parameters ac”"ned to generate
the sampled data (a, b, s) and the ones calculated by the Collabor itiv - Peputation System
with Memory (a’,b") used for measurement correction.

Vessel ID Defined Calculated Vessel ID Deafinea Calculated
a b s a v a b s a v

01 -0.250 1.005 0 -0.2570 1.0049 09 -0.280 1 0 -0.2562  0.9999

02 -0.500 1.015 0.100 | -0.5047 1.0150 10 -0.500 1 0.100 | -0.5201 0.9997

03 -0.750 0.990 0.100 | -0.7512 0.9900 11 0.450 1 0.100 | -0.7503 1.0000

04 -1 0.995 1 -1.0160 0.9948 12 -1 1 1 -0.9933  0.9999

05 0 1.005 0 0.0017  1.0050 13 -..250  7.005 0 -0.2454 1.0051

06 0 1.015 0.100 | -0.0047 1.0150 14 0.50u  1.015 0 -0.4952 1.0151

07 0 0.990 0.100 | -0.0051 0.9900 15 -0.. 70 0.990 0 -0.7530  0.9900

08 0 0.995 1 0.1113  0.9961 1o -1.0)  0.995 0 -1.0078 0.9949

3. The Collaborative Reputation Sys.~m with Memory provides estimated
depth values (as reputation vales) wnich are used to compute a set of
a and b parameters, one for eac. ¢ mulated boat.

4. A depth data is performed us'ng “*he a and b parameters.

5. The corrected sample value. are incorporated in the initial low resolu-
tion depth dataset [81I

6. The initialization d«.“aset ¢ ariched by simulated sampled points is in-
terpolated on a g 1d witi. (x1m spatial resolution.

7. Finally, the ne vly , vocuced dataset is compared with the high resolu-
tion DTM 1¥ ..~ considered as sea truth.

Figure 7 sho vs how the results of the Collaborative Reputation System
with Memory i.. e presenting how the interpolated data change as new sam-
pled values ¢.e adac ! to the dataset. The columns a’ and b of the Table 1
represents t e ¢ ept’. transducer parameters computed by using the proposed
componer* wh..~ m Figure 8 we show the effect of the reputation system on
the Vess 21 Adj. st component.

In prcnct'on, the behaviour of the Collaborative Reputation System
with Memry is pretty similar: i) The sampled data is corrected by the
Tide Adjus. component removing the tide related offset. i) The initial ves-
srle’ depun transducer trustness is provided by the Vessel Source component.
i1n, Tae computed DTM 1m is used as initial dataset at the day d + 1.
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Figure 7: We "se t'1e Bay of Pozzuoli area for our evaluation due to the availability of a
detailed bath, ne ry d .taset at 1m resolution. Here we show the initial EMODnet dataset
(1/8 minut~ ~esolu ** n) interpolated on the final 1m resolution grid (a) enriched by data
form 16 b oats sa.ing route (b), routesi s s89.10,12,16, and all routes (d).
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Figure 8: The depth difference in meters b *~een the sea truth and the initial EMODnet
dataset (a) and the dataset computed correc in¢, vessel depth data using the Collaborative
Reputation System with Memory prese “ed in *this work (b).

6. Data types, Tools, and Vv rkuow

The application’s main ..~ source is the NoSQL database containing the
crowdsourced data as Sig alK u; dates in JSON form. SignalK is a modern
and open data format “or 1. viie use, built on standard web technologies
including JSON, Websoc ets and HTTP, providing a method for sharing
information indepen lenv.;” 0 the underlying communications protocol (e.g.,
NMEA0183, NME .2000, SeaTalk, 12C, 1-Wire, ZigBee) in a way that is
friendly to WiF1i, cellpho. es, tablets, and Internet. SignalK defines two data
formats, full anc de sa, for representing and transmitting data. An additional
sparse format ca. He used to communicate just parts of the full tree. Values
and attribut :s o e stored in key/value form.

The follo - 1g & gnalK keys are used to refer to vessel position and depth,
with $uvu being an unique identification string for the vessel:

vessels % .d.navigation.position.latitude

ve ;sels.%uuid.navigation.position.longitude

ve. sels. juuid.environment .depthBelowTransducer
vassers.$uuid. environment .depthBelowTransducer . timeStamp

the first two keys represent the vessel position, the third the seafloor
depth, while the fourth encodes an attribute of a measurement, which is, in
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this case, the sampling time: the value associated with the 1=v e.ding with
depthBelowTransducer.timeStam .

contains the date and the time of the sampled value ‘a imilar timestamp

is associated with position values). In the applicati-n pic‘otype presented

in this paper, we consider only the depth, but in ¢ produ -tion scenario any

measured value could be used to create consistent s 'ont?.ic datasets.

The first application step is data selection. All ‘.»th measurements not
already processed in preceding runs are selectew. [he $uuid and timestamp
associated with each depth point provide its geog apnic location. We validate
that the time difference between the posi.’on anc depth timestamp is less
than one second, in order to avoid misplacc ! dep v positions. The new depth
points are then ready for the applicatio» ~f =~ _ections, as follows:

e Tide adjustment: We use tl -~ "~estamp and position to perform a
tide adjustment based on a predi *.on model involving tide calculations
and atmosphere pressure for .. ts 82].

e Vessel adjustment: Ins m1uucats on boats report the depth below
the transducer, which is typically located below the water level. The
precise evaluation of - acu -essel’s depth instrument calibration is uncer-
tain or unfeasible i1. » cont xt of crowdsourced data. In order to avoid
requiring the bos, owne. to determine the depth of the transducer,
the influence of wat wrlir ¢ variation due to boat setup, the implicit in-
strument scale erro., ~.nd other biases affecting the measurement, we
developed ar au' ~matic approach based on collaborative reputation, as
described ir Qection 5. In general, this tool detects and/or compensates
for faulty dat . [83]. It uses depth data acquired by all boats partici-
pating 1 tne crowdsourcing process, even if docked, plus in addition
qualit- pr,ved public datasets, to evaluate the calibration parameters
(transaw er - tfset and scale error) and apply the needed corrections to
the newl acquired data.

W- parviwion the dataset with corrected depth values by geographical
area , repr. sented as diles, to yield data subsets with varying numbers of
pointy TP s partitioning allows us to perform the interpolation on restricted
g oy, ~ical domains. The main application process is the interpolation.
The >xecutable implementing the CUDA-enabled IDW algorithm is run on
multiple virtual machine instances managed by the Job Runner sharing one
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Figure 9: Our application workflow. .~ wv.c ; ay box are the data source tools. Thick con-
nector lines are collections of datasets. Tu. Tnterpolator tool manages interactions with the
cloud back-end, leveraging both ~~~ular and GPGPU-enabled instances in order to make
the computational costs afforc ible. 1 »SQL databases are managed in an offline fashion
with respect to the workflow. The uy oad of diles to their final storage implementation
depends on the technology sed (fi system, S3 buckets, Globus endpoints).

or more CUDA-ena"led machines as described in Section 4. The application

result is a new set of up 'ated data tiles with different zoom levels (Figure 9).
We enriched r: CE-IT Galaxy with new data types based on the En-

hancedJSON d. *a .ype that we had implemented previously, as follows:

e Signs K"socament: A full SignalK document.
e SirnalKUpdate. An updated SignalK document.

e Nile. * dile, identified by its URI. This data type is implemented
as a omposite datatype with a NetCDF optional component. If this
~omronent is present, the dataset represents the dile and its content.

e pataPoints. A JSON list of environmental data points, each charac-
terized by a timeStamp, position, and one or more data values labelled
using SignalK keys.
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Figure 10: The FACE-IT Galaxy workuw. v implementing the proposed Internet of Floating
Things crowdsourced data seafloor interpoiation approach.

e VesselList. A positic™ cc lection of vessels, each identified by is Sig-
nalK $uuid. The ves sel data are represented using SignalK keys.

In order to impl- ment 1..e described application, we developed seven new
FACE-IT Galaxy .ools ‘see Figure 10), as follows:

SignalK Sour’ e t3es a NoSQL query to select a set of depth data points
from the back-e..? signalK logging database. The underlying software com-
ponent man .ges date/time and position. This tool accepts as an input a
dataset wit.. t'ie roints already processed in the previous iteration and a
time spar of selec.able points. By default, points are retrieved for the period
between the lai »st application run and the current time.

Vess .. Sousrce extracts the list of the vessels that produced the selected
poin s fron. the source points dataset.

Tide Aujust performs a tidal adjustment on each depth point, considering
the date/time from timestamp and the position. A collection of GRIB2-
form. t files containing sea level pressure data can optionally be provided for
weather corrections. The tool produces a dataset of corrected depth points.
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In our prototype, we do not make use of direct tide measu. ~me.ts, but we
will consider this more accurate approach in the future

Vessel Adjust performs the needed calculations to miu. - .te the biases char-
acteristic of each vessel. It accepts as input a datas ¢ with aepth points and
interacts with the back-end SignalK logging datal ase, w .ich is updated at
the end of each application iteration. The tool p~>duc.. as output a dataset
of corrected depth points.

Dile set creator accepts as input the datasc" co...caining the points to be
processed and produces a collection of d~tasets epresenting the diles in-
terested by the data interpolation. Eac! duc i 1dentified by its URI and
contains the list of the assigned depth points.

Interpolator is the main application wo.'-flow tool. It applies the interpo-
lation method to each collection of v1¢ /- dataset, spawning the processes
on different instances as managed by ti. Job Runner. In order to achieve the
best interpolating performance in t.r1. = of geophysical accuracy, the software
component wrapped by this te ! <elects a boundary dile set around each se-
lected dile. This way, we reduce ..~ number of points to be processed. The

output of the tool is a collection of updated diles.

Dile upload is the final onplica ion step. It accepts as input a collection of
dile datasets, which it vploaa. *» a publicly accessible storage location, while
also updating the No® QI database metadata. It also manages the backup
of any existing dile - alue. i order to record the history of depth variation
of each point in ea 1. 7ile, as required for evaluating vessel adjustments.

7. Evaluatior

We analy zed ‘he nehaviour of both individual components, where feasible,
and the ove, 1" wo kflow.

7.1. GF FPU \irtualization

We avel-ied the performance of the CUDA-enabled G-IDW and G-
KRI FING algorithms in different GVirtuS back-end/front-end configura-
tions. Tn rarticular, we measured their performance algorithms while vary-
i ("~ known sample points and fixing the number of query locations, in
a sutap where the GVirtuS back-end is deployed on an AWS p2.large ma-
chine instance equipped with a NVIDIA K80 CUDA-enabled device acting
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Figure 11: The En D Jnet bathymetry dataset interpolated using (a) the G-IDW algorithm
and (b) t'.e G-K?IGING algorithm. The original dataset has been downscaled using a
grid spaci. ¢ of alHut 25m (search radius equal to 0.005°).
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Figure .2 = ne EMODnet bathymetry dataset improved with the crowdsourced bathyme-
t1- aa . zcorded along the red track showed in (a). The dataset has been downscaled
usin " a grid spacing of about 25m (search radius equal to 0.005°) and the algorithms (b)
G-IDV and (c) G-KRIGING, respectively.
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Table 2: July 2017, single vessel da a ac . sition.

1

MON TUE WED THU FR. SAT  SUN

July 1 2
Hours 6 6.2
Data (Mb) 15 15.1
Points 10,032 11,275
3 4 S 6 7 8 9

Hours 1.25 3.25 4
Data (Mb) 3.3 7.7 10.8
Points 19,96 5,986 7,288
10 11 12 13 14 15 16

Hours 1.5 2.25 3
Data (Mb) 3.8 5.1 7.8
Points 3,211 4,489 5,589
17 .8 19 20 21 22 23

Hours 225 1.25 6.7 2.75 5.7
Data (Mb) 5.75 2.9 17.2 6.5 14.5
Points 4,211 2,078 14,312 5869 12,321
24 25 26 27 28 29 30

Hours 3.5
Dat . (Mb, 9.2
Poin. - 7218
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Table 3: August and September 2017, single vessc” 'ata acquisition.

MON TUE WED THU "RI SAT SUN
August 31 1 2 3 4 ) 6
Hours
Data (Mb)
Points
7 8 Y 10 11 12 13
Hours 4 7.3 A5 4.7 4.2 3.9 4.2
Data (Mb) 11.1 18.2 19.5 10.9 11.2 10.1 99
Points 8,243 13,298 '1,v23 11,025 9,122 8,215 8,521
14 15 16 17 18 19 20
Hours 5.25 6.7 6.4 5.2 3.2 4.5 2.9
Data (Mb) 12.7 1.0 16.9 13.1 7.0 11.7 6.9
Points 11,26¢ ‘] »,865 11,984 10,533 5977 8911 12,973
21 22 23 24 25 26 27
Hours 6.7 7.2 8.4 7.9 6.45 6.2 3.9
Data (Mb) 179 18.2 22.9 14.9 10.8 16.6 10.9
Points 1920 13,997 17,010 14,220 11,820 11,286 7,109
Septembr ¢ 28 29 30 31 1 2 3
Hours 3.9 6.25 5.7
Data ("/b) 10.1 17.8 13.9
Points 7,919 13,002 11,251
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as GPGPU accelerator, while the FACE-IT Galaxy working ~ode is an AWS
micro instance where CUDA 8.0 SDK is available as tb . & VirtuS front-end.
Both machines are run on the us-west-2b zone.

7.2. Data Acquisition

We performed an acquisition experiment using a s mele sailing boat during
the period June to September 2017 along the ~ed t .-k in Figure 12a. The
boat used for the experiments was equipped wiw.. mul iple marine electronic
instruments linked to the DYNAMO single bc>rd computer using an ad-
hoc interface in order to harmonize sever.' data aetwork backbones. The
crowdsourced bathymetry data were storc! on Loard and sent to the cloud
services using the protocol described ea*lior

Tables 2 and 3 represent the daily colic.ted data and the number of depth
points. The actual data, even if rele «vo '~ iust a single vessel, demonstrate
how the produced data and the numb.- of valid data points vary. It ranges
between zero in regular weekdays, "o ~ few thousand new depth points daily
during the season peek time. ™ we consider many vessels geographically
distributed over the coastal areas . >r the whole year, the amount of data size
magnitude rises to gigabytes and more.

7.3. Interpolation

We use data collect od < uring August 13*-20'" 2017 to illustrate the use
of the application wn1..9)w ~.nd to compare and contrast the behaviour of
the different Interp ‘lator tuols. We consider a cold start case, in which the
known points are give.. by the sum of the daily sampled points from the
single available - es. 2] and the EMODnet bathymetry dataset[84].

We show fii.* “a Figures 11a,b, show the EMODnet dataset downscaled
using a grid < pacing >f about 25m, obtained with G-IDW and G-KRIGING,
respectively 7 he .wo interpolation methods differ at fine scales. Next,
we show i~ Figoves 12b,c, the results when the crowdsourced bathymetry
data are addec to the native EMODnet data. We see, as we might expect,
significan. imr.ovements along the areas of the vessel’s track (as shown in
Figu e 12¢", especially along coastal regons. We also observe that the inter-
pola.ion m thod used has considerable impact on the quality of the result.
' KRIG1NG, while computationally more demanding, produces better re-
si.“s Jhan G-IDW.

N xt, we compare the computational performance of the two methods.
Table 4 shows the time required to run the Interpolator tool for each day
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in the sample period, when using an AWS micro instanc. as he FACE-
IT Galaxy computing node and an AWS p2.large inst .nc> as vhe GPGPU
accelerator. We do not consider the tool launching tir.e because this is
affected by AWS instance performance. The first ~~w actails the kind of
navigation. The data acquired when the vessel is ¢ bcked . re used for sensor
calibration. The reported number of points represc~t »'s0 the valid depth
data (i.e., no out of range measures). The diles *nd *'. buffer lines represents
the number of diles where new data points are acuairec and the buffer needed
for interpolation, respectively. Considering t..> defined grid spacing, the
known points have been calculated adding the nt mber of sample points of
the EMODnet dataset included in the selected uiie at zoom level nine (about
1/2° degree) to the number of sample print~  “he query locations have been
evaluated considering both diles and butic < grids. We see that Kriging runs
twice as fast as IDW, thanks to its u. = o0 “'PUs via GVirtuS, albeit at higher
cost due to its use of the GPGPU accc' :rator.

8. Conclusions and Future .o~k

We have described experiments with a complex infrastructure comprising;:
i) DYNAMO for data logg.ng ov. leisure vessels; ii) a reliable IoT data trans-
fer framework; ii7) a cloua hosted data storage and data adjustment based
on reputation; ) an ‘aterpolacion software component provided by GPG-
PU-enabled methods » -m)ort.ng GPGPU virtualization; and v) a FACE-IT
Galaxy cloud instar ce ana job runner for managing computation.

We have used " nis . frastructure to realize a novel workflow-based appli-
cation prototype o>t allows data to be collected via a crowdsourcing process
from leisure ver els thus realizing an ‘Internet of Floating Things.” The data,
stored as Sigr alK u, Jates in JSON format, are transferred from vessels to the
cloud using rhe nov:l data transfer protocol that we developed by using the
proposed framec ek, which is designed to work in such harsh environments.

Once data -re in the cloud, they are stored in a NoSQL database. The
FACE-TI'1 Gala .y workflow is executed periodically, for example once per day.
Eaclk vessel’s depth sensor is calibrated automatically via a novel reputation
app1 ach ir which each datum is compared with other measurements to eval-
uate the uifset and the scale calibration parameters of each instrument. The
ap»liration computing core is represented by the interpolator tool, which
wrap * a CUDA-enabled executable that implements a customized version of
the G-IDW and G-KRIGING algorithms (Figure 11 and Figure 12). We use
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Table 4: Interpolator tool performance for the Season 2y’ 7 week with the most data. For
each day, we give the Navigation type (D — Docked F —saily 1g using the Engine; S — under

Sail); Points, the number of recorded measureme *ts; o

1

~~, the number of diles considered

for the interpolation (Figure 4); Buffer, the number . diles selected as a buffer around the

sailed track; Known, the number of valid dep..

« measurements, and Queries, the number

of interpolated points (missing values are due to ¢ mputational issues). The bottom two

sections give the computational costs of th = vw.

T oter T in nds.
“arpolator tools, in seconds

MON TUF W'D THU FRI SAT SUN
August 14 15 16 17 18 19 20
Navigation S k S B E D D
Points 11,266 12865 11,984 10,533 5,977 8911 12,973
Diles 7 1 6 6 3 9 9
Buffer 18 2) 18 32 15 10 10
Known (*10%) 751  7(9 773 750 7Ll 736  70.5
Queries (¥10%) 1622 ] 7,027 1,555 2,462 1,166 648 648
CPU time (s)
IDW 682.9 1,120.7 672.8 1,034.2 420.1 2725 2354
Kriging 0 0 0 0 0 0 0
GVirtusS tir e (s)
IDW .03 .05 .03 .05 .02 .01 .01
Kriging 322.4 521.7  318.6 489.4 219.7 1264 121.1
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GVirtuS to run this software on regular EC2 instances th." ofhvad CUDA
computations to a reduced number of CUDA-enabled e instances. We
tested the workflow’s most computation demanding .~o] the Interpolator,
with a simulated production cycle on real data der -astr."ing that the ap-
proach of using virtual GPGPU on the cloud is fe sible.

We conclude from these experiments that our gc 1 of gathering environ-
mental data, performing the needed processing ¢ ad b ..1ogenization, and then
supporting experiments of computational envirc..men al scientist can be re-
alized at large scales and at modest costs. We (e currently enhancing this
prototype and evaluating the relationship © atweer scalability and economic
convenience. The system will soon be dep..ea «ud tested on additional ves-
sels, with DYNAMO as the on-board A~*~ #~ " .nology and FairWind Home
as the main smart boating GUIL.

Our immediate goal is to improv ' v... ~verall stability of the system and
perform more detailed and comprehel wve performance evaluations results,
especially comparing and contrast.ny dii.erent interpolation algorithms and
related settings. The automat’~ <ens~r calibration based on reputation has
to be deeply tested with a consisuct number of DYNAMO-equipped vessels
in the fleet. At the time of writing, we have tested a first set of performance-
critical components, nam- 1y the Internet of Things data transfer protocol,
GPGPU virtualization ana ~~mr ¢ing, and interpolation algorithm. Applica-
tion workflow scaling v ill #iso become important as the data to be managed
increase with more ves.'s.

Refining the bat vmetry data processing algorithms is our mid-term goal.
We need to introduce be+er methods for geographic data anonymization [85].
We also want te e iinate our current tight dependency on AWS by making
the data proces.ns, component of our application cloud independent [86], so
that it can " .n on © penStack public, private, and hybrid clouds.

Long-te. m ¢ 0als include a production system capable of supporting many
vessels an 1pactag large datasets routinely, and providing the resulting ma-
rine ope 1 data o the public [87]. We also plan to extend beyond bathymetry
to other ¢ ~virc amental parameters directly sampled by leisure vessels (wind,
weat ter, 2'r temperature) or derived by further computations (such as sur-
face -urren s and sea waves). Finally, we also want to investigate issues of
d~*a quauty, uncertainty, and coverage.
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