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Abstract

Data from sensors incorporated into mobile devices, such as networked navi-
gational sensors, can be used to capture detailed environmental information.
We describe here a workflow and framework for using sensors on boats to con-
struct unique new datasets of underwater topography (bathymetry). Starting
with a large number of measurements of position, depth, etc., obtained from
such an Internet of Floating Things, we illustrate how, with a specialized
protocol, data can be communicated to cloud resources, even when using de-
layed, intermittent, or disconnected networks. We then propose a method for
automatic sensor calibration based on a novel reputation approach. Sampled
depth data are interpolated efficiently on a cloud computing platform in or-
der to provide a continuously updated bathymetric database. Our prototype
implementation uses the FACE-IT Galaxy workflow engine to manage net-
work communication and exploits the computational power of GPGPUs in a
virtualized cloud environment, working with a CUDA-parallel algorithm, for
efficient data processing. We report on an initial evaluation involving data
from a sailing vessel in Italian coastal waters.
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1. Introduction

The rapid spread of Internet of Things (IoT) technologies has greatly
increased the use of geographic data [1]. In the work reported here, we
leverage this trend to develop a new approach to the problem of obtaining
high resolution 3-D maps of the sea floor, as required, for example, to model
the impact of sea storms on human coastal activities [2, 3, 4], the diffusion
and dispersion of sea pollutants [5, 6, 7], and the drift of floating objects, as
required for safety at sea [8]. We show how to use crowdsourced data [9] from
leisure boats to create unique and dense sea bathymetry datasets that, due
to the large numbers of such vessels, can be particularly detailed in shallow
waters and coastal areas.

Crowdsourced data collection processes can produce datasets that are
large in size and expansive in geographic extent [10]. However, the resulting
measurements can also be less reliable than those obtained via structured
surveys carried out with more accurate (and expensive) scientific instru-
ments [11]. Thus, we see growing interest in developing effective quality
control mechanisms. Instead of reformulating the problem as an automatic
learning problem [12], in this work we present a novel approach based on a
Collaborative Reputation System [13] applied to Internet of Things sensed
data[14]. However, this approach, when applied in the environmental sci-
ences, usually assumes a high-quality internet connection [15].

One popular strategy for collecting crowdsourced data is to link off-the-
shelf sensors over the network to cloud computational resources and stor-
age [16] to produce a “Sensor Instrument as a Service” (SIaaS) [17]. Even
small mobile devices can then be used as a data collection platform [18].

In this work, we present a SIaaS system that processes leisure boat sensor
data (GPS position and depth sounder) to produce and update a detailed
3-D sea floor (bathymetry) map. (We focus on the bathymetry problem be-
cause bathymetric surveys are rare and expensive, and high-resolution pub-
licly available datasets are difficult to obtain [19].) Data are collected via an
Internet of Floating Things (IoFT) ecosystem called DYNAMO (Distributed
leisure Yacht-carried sensor-Network for Atmosphere and Marine data crowd-
sourcing applications, see Fig. 1) that we have presented previously [20, 21].

We use the cloud-hosted FACE-IT Galaxy workflow engine [22, 23] to
manage and integrate the data collected via DYNAMO, being run at reg-
ular intervals to extract data from the acquired database, selecting only
the sampled depth, in order to interpolate the extracted data to obtain
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Figure 1: Smart devices in the context of an Internet of Floating Things make data crowd-
sourcing affordable. DYNAMO-equipped pleasure boats can contribute to the creation of
open, high-resolution bathymetry datasets.
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the available depth data and update the dataset. In order to process the
large amount of data to be processed at each such execution, the workflow
uses CUDA-accelerated algorithms on virtual machine (VM) instances with
NVIDIA CUDA support, as supplied by the Amazon Web Services (AWS)
cloud. To minimize the costs of using these expensive GPU-equipped vir-
tual machines, we use GVirtuS [24] to virtualize the CUDA calls [25] so
that the interpolation algorithm can be executed on regular VMs and the
CUDA-enhanced algorithms on GPU-equipped VMs, as needed.

We report preliminary results in terms of data sampling using a vessel
sailing in the East Sector of the Central Tyrrhenian Sea during Summer 2017.
We deployed the DYNAMO system on the vessel and collected data using
the on-board instruments including GPS, compass, tachometer, trim, wind
and other environmental sensors, and echo-sounders. DYNAMO then using a
custom delay-tolerant transfer protocol to transfer the collected data to the
cloud counterpart, where they were processed using the FACE-IT Galaxy
workflow engine.

Data processing produces a collection of data tiles (see Section 3.5),
which, similarly to the world maps’ tiles, contain information about the
seafloor at different levels of detail. We implemented two interpolation al-
gorithms, namely the Inverse Distance Weighting (IDW) and Kriging, to
properly position the newly measured data [26]. Indeed, these data usually
contain unavoidable errors, given that they get collected using barely cali-
brated sensors on leisure vessels by volunteers. Moreover, to minimize the
effect of the erroneous measurements, we design and implement a reputation-
based algorithm, which uses the measurements of multiple sensors to improve
the knowledge of errors and to enhance the accuracy of each sensor [27].

As many of the algorithms needed for the system are computationally
expensive, we have implemented efficient versions that exploit the power of
GPUs, and we make use of GPU virtualization techniques to limit the costs
of running the platform[28]. The experiments show that the system processes
the collected data successfully and can easily scale to support larger inputs.
Indeed, we show that gathering environmental data, performing the needed
processing and homogenization, and supporting experiments of computa-
tional environmental science can be realized at large scales and at modest
costs. These results are also confirmed by extensive simulations.

The rest of the paper is organized as follows. Section 2 reviews related
work and technical background; Section 3 describes the system architecture;
and Section 4 describes the CUDA based interpolation algorithm. We discuss
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our proposed method for automatically adjusting vessel data in Section 5
and, in Section 6, describe how we extended FACE-IT Galaxy to support
our application and how the application is implemented. Finally, we report
in Section 7 on tests of all components of our system and conclude and discuss
future work in Section 8.

2. Related work

2.1. Crowdsourced Bathymetry

In crowdsourced data collection, a dataset is constructed with the help of
a large group of people [29]. This technique has been used in marine science to
update nautical charts, increase public safety and environmental stewardship,
and increase navigational efficiency. Many projects, such as ARGUS (Au-
tonomous Remote Global Underwater Surveillance: argus.survice.com),
have sought to involve the marine community in data collection. In par-
ticular, the ARGUS crowdsourcing system involves cooperative surveying
through the acquisition and collective processing of bathymetry data that
can significantly supplement and enhance the accuracy and efficiency of stan-
dard hydrographic surveying. The International Hydrographic Organization
Data Centre for Digital Bathymetry (IHO DCDB: www.iho.int) has a long
history of encouraging the collection of crowdsourced bathymetry data to
identify uncharted features, verify charted information, and support scien-
tific studies in marine areas where no depth data exists.

Other data collection and integration efforts could benefit from crowd-
sourcing. For example, the European Marine Observation and Data Net-
work (EMODnet: www.EMODnet-bathymetry.eu) [30] assembles marine data
(bathymetry is a key dataset) to make data resources from across Europe,
collected in a fragmented way for many years, more available to public
and private users. The U.S.-based Ocean Observatories Initiative (OOI :
oceanobservatories.org) implements and manages a large sensor infras-
tructure for marine data [31].

2.2. GPU Virtualization

As noted above, the large quantities of crowdsourced data to be collected
require GPGPU processing. Here we can take advantage of remote GPU
virtualization as provided by rCUDA [32], which uses a split-driver approach
to allow CUDA-enabled applications to be used without modification, while
executing CUDA kernels on a remote or local GPGPU [33]. Studies shows
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that the overhead due to remote GPU usage in a high performance network
fabric does not exceed 4% [34]. Currently, rCUDA provides high performance
CUDA virtualization and is updated to support the latest CUDA 8.0 frame-
work and its ancillary libraries, so we can take full advantage of InfiniBand
and the related support for RoCE (RDMA over Converged Ethernet) net-
works. A binary distribution of rCUDA is freely available at the rCUDA web
site (rcuda.net), but is not open source.

2.3. CUDA Interpolators

Spatial interpolation is a crucial task in geographic information science.
Frequently used interpolation algorithms include Inverse Distance Weight-
ing (IDW), Kriging, nearest neighbors, and discrete smoothing interpola-
tion [35, 36, 37]. (Falivene et al. [38] provide a comparative survey.) These
interpolation algorithms are computationally expensive and thus parallel im-
plementations can be needed for large datasets. There are many research
efforts in this context that target different parallel architectures and envi-
ronments [39]; for example: multicore-cluster approaches, domain decom-
position strategies, and parallel pipeline procedures. Recently, GPUs [40]
have been used to accelerate some interpolation algorithms, with good re-
sults [41, 42, 43].

We consider here the IDW interpolation algorithms that have been al-
ready parallelized on several platforms. Henneböhl et al. [44] provide a good
survey of parallel implementations of IDW algorithms. In order to achieve
better geophysically consistent results, we implemented a CUDA-enabled
ordinary Kriging. This advanced geostatistical procedure computes an es-
timated surface as a weighted linear/nonlinear combination of scattered set
of points. The Kriging procedure assumes that the distance between sample
points reflects a spatial correlation that can be used to explain the surface
variation [45]. Isaaks et al. [46] proposed an expression of this weighted com-
binations in terms of covariance matrices. The weights can be calculated
using different approaches (i.e., different types of Kriging can be applied)
depending on the stochastic properties of the sample points [47]. These al-
gorithms, implemented for a single CPU, are computationally onerous: the
computational cost scales as the cube of the number of sample points [41].
Thus, GPUs and CUDA have recently been used to accelerate the computa-
tions [48, 41, 49].
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3. Architecture

We now describe the main technologies that are at the core of our novel
application prototype, which as a highly complex system leverages many
state-of-the-art software and hardware components.

3.1. Leisure Vessels as Sensors

The advent of cloud services has helped studies in ocean modeling by
providing convenient access to unprecedented computational and storage
resources, allowing researchers to obtain new findings by processing larger
data [50]. Nevertheless, the fundamental task of collecting the needed data
in the first place remains an issue. Traditional approaches such as research
expeditions are usually expensive to perform and limited in the areas they
can cover. Moreover, some coastal areas present challenges for such tradi-
tional methods: for example, they might be too dangerous to be investigated
using large ships. To overcome these limitations, crowdsourcing techniques
such as the FairWind system that we developed previously [51] have been
proposed. These methods can be used on small leisure vessels to collect
data from their sensors, allowing ordinary citizens to contribute data of con-
siderable importance for science, engineering, and management of natural
resources.

The system that we work with here, DYNAMO, collects data from on-
board sensors and instruments connected with different local network proto-
cols acting as data logger, router, and gateway for NMEA (www.nmea.org),
SeaTalk (www.raymarine.com), and SignalK data.

In previous work, we developed an Android crowdsourcing application,
FairWind, accessible in the Google Play Store [51]. This approach allowed
for fast and easy deployment, but the Android operating system leads to
limitations concerning the amount of memory that can be allocated, Garbage
Collector management [52], and CPU utilization. In particular, the data
collection process can sporadically become highly intensive, which may cause
the operating system to kill the application, negatively impacting the results
of the crowdsourcing activity. To avoid such issues, we developed DYNAMO
as a customized Android distribution. We moved the implementation of the
data logging and routing features into the Linux part of the Android OS,
while retaining the graphical user interface as a normal Android application,
given that it is not resource intensive and thus not at risk of being killed by
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the Android OS. The graphical part of the resulting framework is inspired
by our previous work FairWind, and thus we refer to it as FairWind-Home.

Being a customized Android OS, DYNAMO can be deployed as a pre-
installed solution in marine devices, in a similar way to other marine tools.
Then, users can visualize the collected information via FairWind-Home, while
at the same time the framework transmits the data to the cloud whenever
possible. DYNAMO is highly privacy-oriented, allowing users to customize
the amount of data that they share and to select the level of data anonymiza-
tion preferred. Users can also reduce energy consumption by choosing the
moments when the framework should try to send the data to the cloud.

DYNAMO uses on-board instruments including GPS, compass, tachome-
ter, trim, wind and other environmental sensors and echo-sounders to collect
data, which are then stored on board in packs of SignalK (signalk.org) up-
dates in JSON format. These data are communicated, securely and reliably,
to a cloud-hosted server, whenever a network connection is available. The
information are then stored in a NoSQL database in the cloud for future pro-
cessing: we host the whole computational infrastructure on AWS to manage
the amount of new data available in each run.

DYNAMO defines a framework, the Vessel Manager, that allows for the
development of third-party Android applications, called “Boat Apps,” that
can interact with vessel sensors and actuators. he FairWind-Home appli-
cation’s basic features could be straightforwardly extended and customized
to interact with such apps. From the marine electronics point of view, this
framework is one of the most crucial innovations introduced by DYNAMO
and its ecosystem. Figure 1 presents a detailed picture of the DYNAMO
system.

3.2. Data Transfer in Extreme Environments

In order to mitigate the drawbacks of highly delayed and unstable net-
works [53], exploit the enormous potential of data crowdsourcing, and enforce
security (since sensitive data such as locations can be involved), we leverage in
this work a data transfer framework that we have developed [54] for such ap-
plications. The Internet of Floating Things Data Transfer Framework acts as
a bridge between the vessel segment and the cloud segment of the proposed
application [55]. In the Internet of Things context, applications typically
leverage asynchronous protocols such as MQTT [56], a publish/subscribe
protocol designed for telemetry transport. However, MQTT is not suitable
for marine settings, in which offline periods can last for hours or even days.
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In the kind of application we present in this paper, the constraint is that the
data be transferred as quickly as possible whenever the network is available,
even if only for a short while.

Figure 2 provides a high-level view of the proposed framework, which
is tolerant to unreliable or intermittent networking by design, as required
for our geographical data crowdsourcing applications. Data can be collected
continuously, stored on board, and sent to the cloud when the vessel is in net-
work range. The framework is implemented as a HTTP-based, firewall- and
proxy-friendly transfer protocol that enforces security without the manda-
tory use of HTTPS thanks to the use of mainly GET and POST with file
attach verbs. A key feature of the proposed framework is the use of con-
current streams of parceled data in order to achieve the best performance
when enough connection quality is available. We designed the protocol to
be tolerant to network delays and, in general, to data transfer failures, as
required for effective functioning in marine environments. Each data parcel
can be signed and encrypted in order to enforce data integrity and, above
all, user privacy.

Upon receipt of a data parcel by the cloud service, the signature is verified
with the source public key, the parcel is decompressed, and the local hash
function is evaluated in order to perform signature verification. If the data
parcel passes this stage, its data are ready to be stored in a NoSQL database.
We use a Data Access Layer in order to decouple the Transfer REST API
Engine from the actual database (for example MongoDb). Once the data are
stored in the NoSQL database, they can be consumed by different applica-
tions. In order to maximize the data transfer process, data compression can
also be applied.

The framework is architecture and application independent: each feature
can be activated, or not, depending on the operational context. It supports
bidirectional payloads for loosely coupled remote event firing and could be
extended to support a mesh-based data parcel routing using other nodes as
hops. Thus the framework can be used in different scenarios, such as marine,
automotive, robotics and similar applications.

We recently extended the Internet of Floating Things Data Transfer
Framework by implementing a Node.js (https://nodejs.org) high through-
put software component that enables any SignalK-equipped system to per-
form data logging on the DYNAMO cloud infrastructure. By making this
component available in a wider open source marine electronics environment
as a plugin freely available for download, we aim to increase the number of
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Figure 2: Block diagram of the data transfer protocol implemented using the IoFT data
transfer framework.
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boats that can contribute to our data crowdsourcing mission.

3.3. GPU Virtualization

We leverage GPU virtualization techniques to execute the heavy CUDA
functions of our solution on a remote GPU.We make use of GVirtuS, the most
popular and robust open source solution for GPU virtualization. GVirtuS is
composed of two parts: a back-end and a front-end, a technique known as
split-driver model or driver paravirtualization [57].

The back-end is the component that is installed in a machine with GPU
access and takes care of executing the offloaded CUDA functions. Since the
back-end needs to access the GPU directly, it must be installed in a privileged
domain [58]. Different clients can then access the GPU at the same time,
even remotely, by going through the GVirtuS back-end [59], allowing a better
utilization of the GPU resources [60].

The front-end is the component that is used by developers to add remote
GPU support to their applications. The front-end provides an API with
function signatures similar to those of the CUDA functions. Whenever a
function is called, its name and the addresses of the input parameters, vari-
ables and host/device pointers, are encapsulated in a buffer. These data are
then sent to the back-end through the GVirtuS communicator, completely
transparently to the developer. When the back-end receives the request, it
executes the routine and sends a buffer containing the output variables and
host/device pointers back to the front-end of the calling client [61].

GVirtuS is currently up to date with the most recent CUDA version and
CUDA libraries. Importantly for our project, it has been extended to support
several CUDA ancillary libraries, such as cuFFT, cuDNN, and cuBLAS, for
which NVIDIA provides GPU-accelerated libraries that implement highly
optimized algorithms. Moreover, since GVirtuS is quite modular, developers
can easily integrate more functionality, if needed [62].

3.4. Data-intensive Application Workflow

We use the FACE-IT Galaxy workflow engine for our workflow process-
ing. This system extends the Galaxy bioinformatics workflow system [63]
with specialized datatypes, interfaces, and other features required for earth
science applications. FACE-IT Galaxy incorporates extensions that sup-
port Globus data browsing and transfer as implemented by the Globus Ge-
nomics project [64]; platform improvements used as a foundation for the
earth science-specific applications: advanced versions of XML and JSON
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data types, a common REST interface for remote data browsing, and RAFT
files for grouping datasets into collections; the NetCDF data format and the
NetCDF schema for fast and reliable NetCDF-based data file ‘sniffing’; and
raster and vector map data visualization. Data sources, plotting functions,
format conversions, and numeric models are wrapped as individual tools that
can be combined to implement diverse workflow-based reproducible applica-
tions [5, 65]. Users working on agricultural, climatic, economic, and other
problems can use FACE-IT as cloud computing support for data-intensive
applications. The platform can also be used in developing countries with
limited Internet connections or poor and absent processing power.

We created a new FACE-IT Galaxy instance for this application, hosted
on an AWS Elastic Compute Cloud (EC2) machine, that builds on and im-
proves our prior results [66]. We forked FACE-IT Galaxy directly from the
Galaxy Project instead of using Globus Genomics Galaxy. This is a strategic
choice more than a mere technical issue because we re-implemented all pre-
viously developed components of FACE-IT Galaxy as a tool-shed. We thus
enforce our strict constraint of avoiding any core source code modifications,
so that any new FACE-IT Galaxy workflow-based project can work with
the latest regular Galaxy version and thus leverage the work of the Galaxy
developer community.

The Job Runner is the Galaxy component dedicated to actual tool exe-
cution and to interfacing with the local scheduling. FACE-IT Galaxy uses
the HTCondor Job Runner, which works with EC2. A monitor service
analyzes the number, type, and workload of the VM instances. If a tool
needs an instance that is not available, the HTCondor Job Runner starts
a new one, deploying all needed services, adding a shared file system, and
starting monitoring. Time-related and instance-related policies are imple-
mented in order to ensure scalability, for example by selecting high perfor-
mance instance types or by using scavenged resources instead of on-demand
instances. The latest version of the HTCondor Job Runner implemented
for this application supports EC2 virtual clusters created with CfnCluster
(github.com/awslabs/cfncluster), a framework for deploying and main-
taining high performance computing clusters on AWS.

The previous FACE-IT Galaxy implementation relied on an Elastic Block
Storage volume attached to the Galaxy instance and configured as an NFS
server. Each working node instantiated by the HTCondor Job Runner im-
ported the job scratch directory acting as an NFS client. Here, we use instead
the AWS Elastic File System (EFS) to provide simple and scalable file stor-
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age for use with AWS EC2 instances. We chose to use EFS because is simpler
to manage than NFS, thanks to an interface that enables the developer to
create and configure file systems quickly and in a straightforward fashion.
EFS allows us to achieve our goal of elastic storage capacity that grows and
shrinks automatically as files are added or removed.

3.5. Data Tiles

The use of tiles and pyramids to achieve discrete zoom level maps is
common in internet mapping [67]. Briefly, given a zoom level z, such that
z ≥ 0, the map of the whole globe is represented by a matrix of 2z by 2z

tiles, each at a given pixel resolution (usually 256×256 pixels). Tiles are pre-
rendered or dynamically computed with data drawn using the Web Mercator
projection [68].

We believe that a similar structure can be used to manage data, with
a tile containing data instead of rendered images. We are confident that a
novel software infrastructure based on this approach can push georeferenced
data processing and management to a higher level.

To this end, we define, in a similar manner to the classic image-based
tile, the “data tile” (dile) as a georeferenced matrix of 360× 180 data cells,
as presented in Figure 3. Then, given a zoom level z, we represent the
whole globe by a matrix of 2z by 2z diles (each 360 × 180 cells), in which
data are stored unprojected. The ground resolution of each cell at zoom
level z is thus 1

2z
degrees. Each dile is stored as a compressed NetCDF file

containing only one variable at a given time step and vertical level. Diles
are represented by URIs and can be stored by using various technologies to
match application needs: for example, file system files, S3 buckets, or Globus
endpoints. Moreover, diles can be created, searched, and accessed in parallel.

NetCDF files containing multidimensional environmental data may be di-
rectly accessible using commonly used internet protocols such as HTTP or
FTP, or indirectly via a legacy OpenDAP server. A data crawler [69] can
scrape the web in search of environmental data (github.com/hpsc-smartlab/
NetCDFScavenger).

In numerical weather predictions finer domains are often nested in coarse
domains in order to increase model resolution and, consequently, data density
in certain areas. This approach saves both computing time and storage
needs. In this scenario the use of diles enables the final user to get data
accordingly with the model resolution at a given discrete zoom level. In
a typical configuration, three domains are nested with average cell sizes of
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25km, 5km, and 1km (a 1:5 ratio, 25-5-1). We can re-arrange such data on
the diles schema to match the discrete zoom level and the data consistency.
Considering the 25-5-1 setup, the results are stored in data tiles at zoom
levels 2, 5, and 7.

The use of diles is feasible with high-resolution multidimensional datasets
with a cell size smaller than 1°: i) Instead of a monolithic file, the multidi-
mensional dataset is partitioned in smaller slices, enforcing full topological
coherence. ii) The diles can be named by using an URL schema parame-
terized with the dataset name, variable, time, level, zoom, x and y ; where
zoom, x and y are the dile indices. iii) Spatial data processing, feature search,
and machine learning algorithms can be applied to one or more datasets in
a map-and-reduce fashion[70]. iv) Spatial data simplification methods, by
which general shapes of features are retained, while eliminating unnecessary
details, can be applied to datasets that are frequently accessed at a given
zoom level, generating pre-computed cached data.

The use of the diles approach is not drawback-free. For example, the
data transformations (regridding) that must be applied to surveyed or model-
generated datasets can be computationally/storage expensive and can affect
the overall data quality because of the interpolation/extrapolation process.

In the present application, we deal with well-known datasets that have
associated self-describing metadata. Our dile-based approach relies on meta-
data indexing and uses a NoSQL database for searching operations via the
key/value paradigm.

We use diles as our target domains in this paper because the crowdsourced
data are not uniformly distributed spatially. The dile representation allows
us to produce results with an implicit map simplification related to the zoom
level (see Figure 3).

4. CUDA Bathymetry Interpolation

The topographic variability of the seafloor influences sea currents, the
structure of biological populations, and ecological processes at many spatial
scales. A detailed knowledge of coastal bathymetry is crucial for decision
making in many application fields, ranging from navigation to the protection
of artifacts. In the marine data crowdsourced scenario described in this
paper, new depth data sampled by many barely calibrated echo-sounders are
collected and processed daily. Interpolation algorithms for geophysics are
computationally expensive and thus the use of GPU-accelerated interpolation
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Figure 3: How diles represent the world map at zoom levels 0, 1, and 2. At level 0, the
world is represented by a single dile, with each of its 360×180 cells corresponding to 1°×1°;
at level 1, by four diles with 0.5°×0.5°cells, and so on.
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Figure 4: Our bathymetry target resolution is 1 arc second (about 30m). The figure
represents the area where our first experiments have been conducted covered by diles at
zoom level 12, or about 27m in the latitude dimension. Blue diles: new data points. Yellow
diles: buffer diles used during daily interpolation. Red diles: depth points unavailable
due to echo sounder technical limits. Pink boundary: the area considered for experimental
data. Pink dots: the diles we used as a source query locations in our experiments.
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algorithms is mandatory in this application context [71]. We consider here
two interpolation methods: Inverse Distance Weighting and Kriging. The
first has good performance but introduces unwanted artifacts; the latter is
acclaimed as one of the best solutions for this kind of application [72], albeit
at a significantly higher computational cost.

4.1. The Inverse Distance Weighting Method

Inverse Distance Weighting (IDW) is a spatial interpolation method based
on the idea that near points must have similar values. Let pi ∈ Rn be the
locations whose values zi are known, for i = 1, . . . , N and, let qj ∈ Rn be the
query locations, for j = 1, . . . ,M . As described by Shepard [73], each value
qj can be interpolated by using the values in Qj = {pi : d(pi, qj) < R} (i.e.,
the values within a fixed search radius R), as follows:

z∗j =

∑N
i=1 λjizi∑N
i=1 λji

(1)

where λji is a weighted average, computed using the Euclidean distance,

λji =
1

dist(pi, qj)α
(2)

Here, we use a matrix-vector formulation to deal with the IDW problem.
Starting with a matrix Λ of size M ×N , in which each element is the weight
average λji, as in (1), and denoting by z the vector of the known values and
with z∗ the vector containing the unknown values, we can use the following
algebraic operation to obtain the solution for the IDW problem:

z∗ = Λz (3)

4.2. The Kriging Method

While IDW is the most used interpolation method, it is not the most
accurate, because it is based on a generic approach that is not always suitable
for a specific problem. For this reason, we also considered a Kriging model
in order to compare the obtained solutions.

Kriging is a method of spatial interpolation belonging to the family of
stochastic methods. It represents the link between neighboring points with
a geo-statistical approach (using the covariance concept) [46]. There are
four major Kriging techniques: Simple Kriging, Ordinary Kriging, Universal
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Kriging, and Co-Kriging. The first three are used in the case of univariate
geostatistics, the last in the case of multivariate geostatistics. We consid-
ered the ordinary Kriging model, which computes the prediction values as
a weighted nonlinear combination of data values and uses different types of
models (linear, spherical, exponential, gaussian, rational) to define the co-
variance function. Each model is related to the nature of the data to be
analyzed. Here we choose the Gaussian formulation, as this best suits our
data. This approach can be used on a dataset whose coordinates belong to
a fixed range of analysis.

The mathematical formulation for the ordinary Kriging method (the best
linear unbiased estimator) is based on the build of a covariance matrix C, of
size M ×N , whose elements are:

ci,j = C0 + C1 [1− exp (−3dist(pi, qj)/a)] , (4)

where: dist(pi, qj) = ‖pi − qj‖ again denotes the Euclidean distance between
the query points qj and known points pi; C

0 is a constant that is used when
the phenomenon of Nugget Effect occurs, i.e. to manage the initial disconti-
nuities; C1 is also called sill, or threshold, and handles problems related to
numerical representation; and a is the range value (the the maximum dis-
tance). These values act as a scale factor and they are empirically chosen
according to the problem under examination.

In a similar way, a variance-covariance matrix Ĉ of size N ×N , is built.
For this matrix the elements ĉi,j are computed as in (4), but they depend
only on the distances between the known data.

Using the previous defined matrices, the values z∗j , corresponding to the
query locations qj, can be obtained, firstly solving a linear system of equations

Ĉq = z and then computing a matrix-vector product z∗ = Cq. The ordinary
Kriging method can be expressed more compactly as a matrix-vector product:

z∗ = CĈ−1z, (5)

Note that the computational complexity of the overall Kriging algorithm
is O(N3 +N ·M), while for IDW it is only O(N ·M).

4.3. GPU-parallel approaches

We implemented GPU-parallel algorithms for both the IDW and Kriging
methods in order to compare their accuracy and efficiency. In our imple-
mentations, threads and blocks are synchronized to store dataset points
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into the shared memory before the interpolation phase. Moreover, both al-
gorithms use the CUDA libraries cuBLAS and CUSP to perform the basic
linear algebra operations.

G-IDW provides a parallel implementation of IDW interpolation. It
computes the matrix Λ by a full parallel strategy: the i-th thread computes
the elements (weights) of the i-th row and each element of this row is divided
by the sum of the weights in order to obtain the weighted mean. Finally,
we use an ad hoc cuBLAS library routine to multiply Λ by the vector z,
containing the known values.

G-KRIGING implements a parallel version of the Kriging method. It
determines the matrices Ĉ and C in a similar way to the G-IDW algorithm:
the i-th thread computes the elements of the i-th row. The vector q is
the solution to the linear system Ĉq = z, computing with a CUSP library
routine. As in G-IDW, the matrix C is multiplied by the solution vector q,
using cuBLAS to manage the matrix-vector product.

Large datasets are stored into shared memory in different chunks and the
data transfer, Host-to-Device and vice versa, are minimized at the beginning
and at the end of the program code.

5. A Reputation-Based Approach to Adjusting Vessel Data

Because sensors on different vessels may be imperfectly calibrated, the
data that they collect may be systemically biased. We thus developed a
novel approach to data adjustment based on Collaborative Reputation Sys-
tem methods [74] and related algorithms. Our approach collects depth data
from different vessel sensors, blends all data to compute adjusted values for
each vessel, and uses the adjusted values to establish offset and scale param-
eters estimates for each sensor.

In more detail, let si denote the i-th vessel sensor. We assume that each
sensor may have an inherent unreliability and may provide depth measures
with a certain degree of uncertainty. These sensors, due to different causes,
distort a true value d, by providing a measured quantity d̂. This kind of
measurement error can be modelled as:

d̂ = d+Δm (6)

where Δm represents the measurement error. The error Δm is assumed to
depend on both random and systematic errors, that is:

Δm = Δmsys +Δmran (7)
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and in term of measured quantities:

d̂ = d+Δmsys +Δmran (8)

A general distribution for random noise errors needs to be specified. In
this paper, we assume a normal distribution, that is:

Δmran ∝ N(0, σ2
ran), (9)

with zero mean, and independent of (or uncorrelated with) the explanatory
variable d. Systematic errors are simulated by a linear dependence between
true values and measured quantities, so that for each sensor si we have that:

d̂ = si(d) + Δmran = ai + bi · d+Δmran (10)

More properly, parameters ai and bi represent the offset and the scale
sensor errors, respectively.

To estimate these parameters, classical linear regression could be used
directly. However, that would require that we use actual depth values as
explanatory variables, and such data are not always available. Thus, we
use an iterative filtering approach [75, 76] to remove random errors and thus
recover accurate depth values. In general, an iterative filtering method allows
us to assign reputation (i.e., a measure of reliability) to a set of users who
assign evaluations to a set of objects. At the same time, the algorithm
provides reputation values also to each object as a weighted sum of the
evaluation that it has received from all users. In this way, from a statistical
point of view, discordant evaluations have only modest impact, and objects
receive a more correct average evaluation [77]. In our scheme, to tap the full
potential of iterative filtering, we consider:

• location points ξj = (xj, yj) as objects (xj and yj could be thought of
as latitude and longitude coordinates);

• sensors {s1, s2, . . . , sN} as the N users;

• depth values d̂ij = si(dj)+Δmran, provided by sensor si at location ξj,
as evaluations.

We then use the reputation values of the objects, i.e., the depth values
adjusted by using the filtering averages, as explanatory values to better es-
timate parameters ai and bi of each sensor si. Since new depth data (due
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to the presence of new vessel sensors, or new evaluations provided by old
sensors) become available day by day, our system can be applied repeatedly
over time. To this end, a more general procedure, named a Collaborative
Reputation System (CRS), is preferred. Collaborative Reputation Systems
have been introduced to involve the time variable, which allows for the sim-
ulation of a system in which new users and new objects can be added over
time. In our context, we think of each day as a time step, and the CRS is a
multi-step procedure in which each single step is a simple iterative filtering
procedure. In the proposed approach, we use an iterative filtering-based CRS
with memory, that is a CRS in which the trustworthiness of evaluations at
time d + 1 depends on the information at the previous time d. (Galletti et
al. [78] discuss this procedure in depth.) In more detail, depth data from re-
liable sensors are used primarily to influence mean values, so that new data,
and new sensors, are forced to be coherent with previously collected known
and reliable data [79].

In summary, we use crowdsourced data for three purposes: to mitigate
the effect of random errors; to furnish to each sensor better estimates of
scale and offset parameters; and to enhance the accuracy in depth measures.
Figure 5 summarizes this computing block.

5.1. Simulation

In order to evaluate the Collaborative Reputation System with Memory
we developed a Single Beam Echo-Sounder Simulator (SBESS). The main
purpose of this software component is to provide real world high quality depth
data by using a dataset available in the literature at 1m resolution [80]. In
these simulation experiments, we define a simulated boat to be equipped
with a GPS and an echo-sounder for depth measurement. In our simplified
model, a depth measurement is defined as follows:

depthlon,lat = a+ b ∗ gauss(truelon,lat, s) (11)

where:

lon, lat = longitude and latitude of the fix
true = real depth
a = sensor offset in term of vertical distance from the vessel water line
b = scale error due to the echo-sounder internal behaviour
s = standard deviation of a Gaussian random function
depth = sampled bathymetry.
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Figure 5: The proposed vessel adjustment scheme (day d) for automatic depth sensor
calibration using collaborative reputation with memory. The simulation/evaluation block
shows how the simulated sampled data is generated by defining boats and routes using
the Single Beam Echo-Sounder Simulator (BESS) fed with real world high resolution (1m)
bathymetry data. This dataset is used as sea truth in order to generate difference matrices
with sampled and the corrected data. The Vessel Adjust block is used for both simula-
tion and production. The main component is the Collaborative Reputation System with
Memory used to compute the a and b parameters for each vessel depth transducer. Some
control points are extracted from the sampled high resolution dataset, while in production
the EMODnet bathymetry database is used for initialization. When this methodology is
used in production, the day-1 data is used as trusted depth at each iteration on daily
based.
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Figure 6: The 16 routes (dotted lines) used to simulate real bathymetry data sampling by
vessels echo-sounder.

The simulator produces sampled data along predefined routes by using the
depth dataset as sea truth. The geographic coordinates of each fix belonging
to a route are randomly affected by a Gaussian error in order to imitate the
GPS 2D position error.

5.2. Evaluation

We performed our evaluation of the Collaborative Reputation System
with Memory in the area of the Bay of Pozzuoli in Italy, for which a high
quality dataset acquired using professional equipment and scientifically val-
idated is available. We defined 16 routes, named route01 ... route16, (see
Figure 6) for common vessel paths. We also defined a set of 16 vessels, each
characterized by different depth transducer parameters (a, b, s), as shown in
Table 1. The evaluation then proceeded as follows:

1. The SBESS produced data using 16 vessels sailing along 16 routes for
a total of about 400 000 samples. In the context of the simulation and
evaluation we assume those data are not affected by the tide offset.

2. From the high resolution DTM 1m dataset some control points are
extracted for the reputation system initialization;
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Table 1: For each simulated vessel, the depth transducer parameters defined to generate
the sampled data (a, b, s) and the ones calculated by the Collaborative Reputation System
with Memory (a′,b′) used for measurement correction.
Vessel ID Defined Calculated Vessel ID Defined Calculated

a b s a′ b′ a b s a′ b′

01 -0.250 1.005 0 -0.2570 1.0049 09 -0.250 1 0 -0.2562 0.9999
02 -0.500 1.015 0.100 -0.5047 1.0150 10 -0.500 1 0.100 -0.5201 0.9997
03 -0.750 0.990 0.100 -0.7512 0.9900 11 -0.750 1 0.100 -0.7503 1.0000
04 -1 0.995 1 -1.0160 0.9948 12 -1 1 1 -0.9933 0.9999
05 0 1.005 0 0.0017 1.0050 13 -0.250 1.005 0 -0.2454 1.0051
06 0 1.015 0.100 -0.0047 1.0150 14 -0.500 1.015 0 -0.4952 1.0151
07 0 0.990 0.100 -0.0051 0.9900 15 -0.750 0.990 0 -0.7530 0.9900
08 0 0.995 1 0.1113 0.9961 16 -1.00 0.995 0 -1.0078 0.9949

3. The Collaborative Reputation System with Memory provides estimated
depth values (as reputation values) which are used to compute a set of
a and b parameters, one for each simulated boat.

4. A depth data is performed using the a and b parameters.

5. The corrected sample values are incorporated in the initial low resolu-
tion depth dataset [81].

6. The initialization dataset enriched by simulated sampled points is in-
terpolated on a grid with 1x1m spatial resolution.

7. Finally, the newly produced dataset is compared with the high resolu-
tion DTM 1x1m considered as sea truth.

Figure 7 shows how the results of the Collaborative Reputation System
with Memory in representing how the interpolated data change as new sam-
pled values are added to the dataset. The columns a′ and b′ of the Table 1
represents the depth transducer parameters computed by using the proposed
component, while in Figure 8 we show the effect of the reputation system on
the Vessel Adjust component.

In production, the behaviour of the Collaborative Reputation System
with Memory is pretty similar: i) The sampled data is corrected by the
Tide Adjust component removing the tide related offset. ii) The initial ves-
sels’ depth transducer trustness is provided by the Vessel Source component.
iii) The computed DTM 1m is used as initial dataset at the day d+ 1.
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Figure 7: We use the Bay of Pozzuoli area for our evaluation due to the availability of a
detailed bathymetry dataset at 1m resolution. Here we show the initial EMODnet dataset
(1/8 minute resolution) interpolated on the final 1m resolution grid (a) enriched by data
form 16 boats sailing route12 (b), routes1,3,5,8,9,10,12,16, and all routes (d).
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Figure 8: The depth difference in meters between the sea truth and the initial EMODnet
dataset (a) and the dataset computed correcting vessel depth data using the Collaborative
Reputation System with Memory presented in this work (b).

6. Data types, Tools, and Workflow

The application’s main data source is the NoSQL database containing the
crowdsourced data as SignalK updates in JSON form. SignalK is a modern
and open data format for marine use, built on standard web technologies
including JSON, WebSockets, and HTTP, providing a method for sharing
information independently of the underlying communications protocol (e.g.,
NMEA0183, NMEA2000, SeaTalk, I2C, 1-Wire, ZigBee) in a way that is
friendly to WiFi, cellphones, tablets, and Internet. SignalK defines two data
formats, full and delta, for representing and transmitting data. An additional
sparse format can be used to communicate just parts of the full tree. Values
and attributes are stored in key/value form.

The following SignalK keys are used to refer to vessel position and depth,
with $uuid being an unique identification string for the vessel:

vessels.$uuid.navigation.position.latitude
vessels.$uuid.navigation.position.longitude
vessels.$uuid.environment.depthBelowTransducer
vessels.$uuid.environment.depthBelowTransducer.timeStamp

The first two keys represent the vessel position, the third the seafloor
depth, while the fourth encodes an attribute of a measurement, which is, in

26



this case, the sampling time: the value associated with the key ending with
depthBelowTransducer.timeStamp

contains the date and the time of the sampled value (a similar timestamp
is associated with position values). In the application prototype presented
in this paper, we consider only the depth, but in a production scenario any
measured value could be used to create consistent scientific datasets.

The first application step is data selection. All depth measurements not
already processed in preceding runs are selected. The $uuid and timestamp
associated with each depth point provide its geographic location. We validate
that the time difference between the position and depth timestamp is less
than one second, in order to avoid misplaced depth positions. The new depth
points are then ready for the application of corrections, as follows:

• Tide adjustment: We use the timestamp and position to perform a
tide adjustment based on a prediction model involving tide calculations
and atmosphere pressure forecasts [82].

• Vessel adjustment: Instruments on boats report the depth below
the transducer, which is typically located below the water level. The
precise evaluation of each vessel’s depth instrument calibration is uncer-
tain or unfeasible in a context of crowdsourced data. In order to avoid
requiring the boat owner to determine the depth of the transducer,
the influence of waterline variation due to boat setup, the implicit in-
strument scale error, and other biases affecting the measurement, we
developed an automatic approach based on collaborative reputation, as
described in Section 5. In general, this tool detects and/or compensates
for faulty data [83]. It uses depth data acquired by all boats partici-
pating in the crowdsourcing process, even if docked, plus in addition
quality proved public datasets, to evaluate the calibration parameters
(transducer offset and scale error) and apply the needed corrections to
the newly acquired data.

We partition the dataset with corrected depth values by geographical
areas, represented as diles, to yield data subsets with varying numbers of
points. This partitioning allows us to perform the interpolation on restricted
geographical domains. The main application process is the interpolation.
The executable implementing the CUDA-enabled IDW algorithm is run on
multiple virtual machine instances managed by the Job Runner sharing one
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Figure 9: Our application workflow. In the gray box are the data source tools. Thick con-
nector lines are collections of datasets. The Interpolator tool manages interactions with the
cloud back-end, leveraging both regular and GPGPU-enabled instances in order to make
the computational costs affordable. NoSQL databases are managed in an offline fashion
with respect to the workflow. The upload of diles to their final storage implementation
depends on the technology used (file system, S3 buckets, Globus endpoints).

or more CUDA-enabled machines as described in Section 4. The application
result is a new set of updated data tiles with different zoom levels (Figure 9).

We enriched FACE-IT Galaxy with new data types based on the En-
hancedJSON data type that we had implemented previously, as follows:

• SignalKDocument: A full SignalK document.

• SignalKUpdate. An updated SignalK document.

• Dile. A dile, identified by its URI. This data type is implemented
as a composite datatype with a NetCDF optional component. If this
component is present, the dataset represents the dile and its content.

• DataPoints. A JSON list of environmental data points, each charac-
terized by a timeStamp, position, and one or more data values labelled
using SignalK keys.
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Figure 10: The FACE-IT Galaxy workflow implementing the proposed Internet of Floating
Things crowdsourced data seafloor interpolation approach.

• VesselList. A position collection of vessels, each identified by is Sig-
nalK $uuid. The vessel data are represented using SignalK keys.

In order to implement the described application, we developed seven new
FACE-IT Galaxy tools (see Figure 10), as follows:

SignalK Source uses a NoSQL query to select a set of depth data points
from the back-end SignalK logging database. The underlying software com-
ponent manages date/time and position. This tool accepts as an input a
dataset with the points already processed in the previous iteration and a
time span of selectable points. By default, points are retrieved for the period
between the latest application run and the current time.

Vessel Source extracts the list of the vessels that produced the selected
points from the source points dataset.

Tide Adjust performs a tidal adjustment on each depth point, considering
the date/time from timestamp and the position. A collection of GRIB2-
format files containing sea level pressure data can optionally be provided for
weather corrections. The tool produces a dataset of corrected depth points.
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In our prototype, we do not make use of direct tide measurements, but we
will consider this more accurate approach in the future.

Vessel Adjust performs the needed calculations to mitigate the biases char-
acteristic of each vessel. It accepts as input a dataset with depth points and
interacts with the back-end SignalK logging database, which is updated at
the end of each application iteration. The tool produces as output a dataset
of corrected depth points.

Dile set creator accepts as input the dataset containing the points to be
processed and produces a collection of datasets representing the diles in-
terested by the data interpolation. Each dile is identified by its URI and
contains the list of the assigned depth points.

Interpolator is the main application workflow tool. It applies the interpo-
lation method to each collection of the dile dataset, spawning the processes
on different instances as managed by the Job Runner. In order to achieve the
best interpolating performance in terms of geophysical accuracy, the software
component wrapped by this tool selects a boundary dile set around each se-
lected dile. This way, we reduce the number of points to be processed. The
output of the tool is a collection of updated diles.

Dile upload is the final application step. It accepts as input a collection of
dile datasets, which it uploads to a publicly accessible storage location, while
also updating the NoSQL database metadata. It also manages the backup
of any existing dile values, in order to record the history of depth variation
of each point in each dile, as required for evaluating vessel adjustments.

7. Evaluation

We analyzed the behaviour of both individual components, where feasible,
and the overall workflow.

7.1. GPGPU Virtualization

We evaluated the performance of the CUDA-enabled G-IDW and G-
KRIGING algorithms in different GVirtuS back-end/front-end configura-
tions. In particular, we measured their performance algorithms while vary-
ing the known sample points and fixing the number of query locations, in
a setup where the GVirtuS back-end is deployed on an AWS p2.large ma-
chine instance equipped with a NVIDIA K80 CUDA-enabled device acting
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Figure 11: The EMODnet bathymetry dataset interpolated using (a) the G-IDW algorithm
and (b) the G-KRIGING algorithm. The original dataset has been downscaled using a
grid spacing of about 25m (search radius equal to 0.005°).
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Figure 12: The EMODnet bathymetry dataset improved with the crowdsourced bathyme-
try data recorded along the red track showed in (a). The dataset has been downscaled
using a grid spacing of about 25m (search radius equal to 0.005°) and the algorithms (b)
G-IDW and (c) G-KRIGING, respectively.
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Table 2: July 2017, single vessel data acquisition.

MON TUE WED THU FRI SAT SUN

July 1 2

Hours 6 6.2
Data (Mb) 15 15.1
Points 10,032 11,275

3 4 5 6 7 8 9

Hours 1.25 3.25 4
Data (Mb) 3.3 7.7 10.8
Points 19,96 5,986 7,288

10 11 12 13 14 15 16

Hours 1.5 2.25 3
Data (Mb) 3.8 5.1 7.8
Points 3,211 4,489 5,589

17 18 19 20 21 22 23

Hours 2.25 1.25 6.7 2.75 5.7
Data (Mb) 5.75 2.9 17.2 6.5 14.5
Points 4,211 2,078 14,312 5,869 12,321

24 25 26 27 28 29 30

Hours 3.5
Data (Mb) 9.2
Points 7218
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Table 3: August and September 2017, single vessel data acquisition.

MON TUE WED THU FRI SAT SUN

August 31 1 2 3 4 5 6

Hours
Data (Mb)
Points

7 8 9 10 11 12 13

Hours 4 7.3 6.5 4.7 4.2 3.9 4.2
Data (Mb) 11.1 18.2 16.5 10.9 11.2 10.1 9.9
Points 8,243 13,298 11,923 11,025 9,122 8,215 8,521

14 15 16 17 18 19 20

Hours 5.25 6.7 6.4 5.2 3.2 4.5 2.9
Data (Mb) 12.7 17.9 16.9 13.1 7.7 11.7 6.9
Points 11,266 13,865 11,984 10,533 5,977 8,911 12,973

21 22 23 24 25 26 27

Hours 6.7 7.2 8.4 7.9 6.45 6.2 3.9
Data (Mb) 15.9 18.2 22.9 14.9 10.8 16.6 10.9
Points 11,920 13,997 17,010 14,220 11,820 11,286 7,109

September 28 29 30 31 1 2 3

Hours 3.9 6.25 5.7
Data (Mb) 10.1 17.8 13.9
Points 7,919 13,002 11,251
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as GPGPU accelerator, while the FACE-IT Galaxy working node is an AWS
micro instance where CUDA 8.0 SDK is available as the GVirtuS front-end.
Both machines are run on the us-west-2b zone.

7.2. Data Acquisition

We performed an acquisition experiment using a single sailing boat during
the period June to September 2017 along the red track in Figure 12a. The
boat used for the experiments was equipped with multiple marine electronic
instruments linked to the DYNAMO single board computer using an ad-
hoc interface in order to harmonize several data network backbones. The
crowdsourced bathymetry data were stored on board and sent to the cloud
services using the protocol described earlier.

Tables 2 and 3 represent the daily collected data and the number of depth
points. The actual data, even if relative to just a single vessel, demonstrate
how the produced data and the number of valid data points vary. It ranges
between zero in regular weekdays, to a few thousand new depth points daily
during the season peek time. If we consider many vessels geographically
distributed over the coastal areas for the whole year, the amount of data size
magnitude rises to gigabytes and more.

7.3. Interpolation

We use data collected during August 13th-20th 2017 to illustrate the use
of the application workflow and to compare and contrast the behaviour of
the different Interpolator tools. We consider a cold start case, in which the
known points are given by the sum of the daily sampled points from the
single available vessel and the EMODnet bathymetry dataset[84].

We show first, in Figures 11a,b, show the EMODnet dataset downscaled
using a grid spacing of about 25m, obtained with G-IDW and G-KRIGING,
respectively. The two interpolation methods differ at fine scales. Next,
we show in Figures 12b,c, the results when the crowdsourced bathymetry
data are added to the native EMODnet data. We see, as we might expect,
significant improvements along the areas of the vessel’s track (as shown in
Figure 12a), especially along coastal regons. We also observe that the inter-
polation method used has considerable impact on the quality of the result.
G-KRIGING, while computationally more demanding, produces better re-
sults than G-IDW.

Next, we compare the computational performance of the two methods.
Table 4 shows the time required to run the Interpolator tool for each day
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in the sample period, when using an AWS micro instance as the FACE-
IT Galaxy computing node and an AWS p2.large instance as the GPGPU
accelerator. We do not consider the tool launching time because this is
affected by AWS instance performance. The first row details the kind of
navigation. The data acquired when the vessel is docked are used for sensor
calibration. The reported number of points represent also the valid depth
data (i.e., no out of range measures). The diles and the buffer lines represents
the number of diles where new data points are acquired and the buffer needed
for interpolation, respectively. Considering the defined grid spacing, the
known points have been calculated adding the number of sample points of
the EMODnet dataset included in the selected dile at zoom level nine (about
1/29 degree) to the number of sample points. The query locations have been
evaluated considering both diles and buffers grids. We see that Kriging runs
twice as fast as IDW, thanks to its use of GPUs via GVirtuS, albeit at higher
cost due to its use of the GPGPU accelerator.

8. Conclusions and Future Work

We have described experiments with a complex infrastructure comprising:
i) DYNAMO for data logging on leisure vessels; ii) a reliable IoT data trans-
fer framework; iii) a cloud-hosted data storage and data adjustment based
on reputation; iv) an interpolation software component provided by GPG-
PU-enabled methods supporting GPGPU virtualization; and v) a FACE-IT
Galaxy cloud instance and job runner for managing computation.

We have used this infrastructure to realize a novel workflow-based appli-
cation prototype that allows data to be collected via a crowdsourcing process
from leisure vessels, thus realizing an ‘Internet of Floating Things.’ The data,
stored as SignalK updates in JSON format, are transferred from vessels to the
cloud using the novel data transfer protocol that we developed by using the
proposed framework, which is designed to work in such harsh environments.

Once data are in the cloud, they are stored in a NoSQL database. The
FACE-IT Galaxy workflow is executed periodically, for example once per day.
Each vessel’s depth sensor is calibrated automatically via a novel reputation
approach in which each datum is compared with other measurements to eval-
uate the offset and the scale calibration parameters of each instrument. The
application computing core is represented by the interpolator tool, which
wraps a CUDA-enabled executable that implements a customized version of
the G-IDW and G-KRIGING algorithms (Figure 11 and Figure 12). We use
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Table 4: Interpolator tool performance for the Season 2017 week with the most data. For
each day, we give the Navigation type (D – Docked; E – sailing using the Engine; S – under
Sail); Points, the number of recorded measurements; Diles, the number of diles considered
for the interpolation (Figure 4); Buffer, the number of diles selected as a buffer around the
sailed track; Known, the number of valid depth measurements, and Queries, the number
of interpolated points (missing values are due to computational issues). The bottom two
sections give the computational costs of the two interpolator tools, in seconds.

MON TUE WED THU FRI SAT SUN

August 14 15 16 17 18 19 20

Navigation S E S E E D D
Points 11,266 13,865 11,984 10,533 5,977 8,911 12,973
Diles 7 9 6 6 3 9 9
Buffer 18 30 18 32 15 10 10
Known (*103) 75.1 77.9 77.3 75.0 71.1 73.6 70.5
Queries (*103) 1,620 2,527 1,555 2,462 1,166 648 648

CPU time (s)
IDW 682.9 1,120.7 672.8 1,034.2 420.1 272.5 235.4
Kriging 0 0 0 0 0 0 0

GVirtuS time (s)
IDW .03 .05 .03 .05 .02 .01 .01
Kriging 322.4 521.7 318.6 489.4 219.7 126.4 121.1
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GVirtuS to run this software on regular EC2 instances that offload CUDA
computations to a reduced number of CUDA-enabled EC2 instances. We
tested the workflow’s most computation demanding tool, the Interpolator,
with a simulated production cycle on real data demonstrating that the ap-
proach of using virtual GPGPU on the cloud is feasible.

We conclude from these experiments that our goal of gathering environ-
mental data, performing the needed processing and homogenization, and then
supporting experiments of computational environmental scientist can be re-
alized at large scales and at modest costs. We are currently enhancing this
prototype and evaluating the relationship between scalability and economic
convenience. The system will soon be deployed and tested on additional ves-
sels, with DYNAMO as the on-board data technology and FairWind Home
as the main smart boating GUI.

Our immediate goal is to improve the overall stability of the system and
perform more detailed and comprehensive performance evaluations results,
especially comparing and contrasting different interpolation algorithms and
related settings. The automatic sensor calibration based on reputation has
to be deeply tested with a consistent number of DYNAMO-equipped vessels
in the fleet. At the time of writing, we have tested a first set of performance-
critical components, namely the Internet of Things data transfer protocol,
GPGPU virtualization and remoting, and interpolation algorithm. Applica-
tion workflow scaling will also become important as the data to be managed
increase with more vessels.

Refining the bathymetry data processing algorithms is our mid-term goal.
We need to introduce better methods for geographic data anonymization [85].
We also want to eliminate our current tight dependency on AWS by making
the data processing component of our application cloud independent [86], so
that it can run on OpenStack public, private, and hybrid clouds.

Long-term goals include a production system capable of supporting many
vessels and updating large datasets routinely, and providing the resulting ma-
rine open data to the public [87]. We also plan to extend beyond bathymetry
to other environmental parameters directly sampled by leisure vessels (wind,
weather, air temperature) or derived by further computations (such as sur-
face currents and sea waves). Finally, we also want to investigate issues of
data quality, uncertainty, and coverage.
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cia Digital e Governo Eletrônico 1 (10) (2014) 377–393.

[30] J.-B. Calewaert, P. Weaver, V. Gunn, P. Gorringe, A. Novellino, The
european marine data and observation network (EMODnet): Your gate-
way to European marine and coastal data, in: Quantitative Monitoring
of the Underwater Environment, Springer, 2016, pp. 31–46.

[31] I. Rodero Castro, M. Parashar, Architecting the cyberinfrastructure for
the National Science Foundation Ocean Observatories Initiative (OOI),
in: Instrumentation Viewpoint, no. 19, SARTI, 2016, pp. 99–101.

[32] F. Silla, J. Prades, S. Iserte, C. Reano, Remote GPU virtualization: Is
it useful?, in: 2nd International Workshop on High-Performance Inter-
connection Networks in the Exascale and Big-Data Era, IEEE, 2016, pp.
41–48.

42



[33] C. Reaño, F. Silla, A performance comparison of CUDA remote GPU
virtualization frameworks, in: International Conference on Cluster Com-
puting, IEEE, 2015, pp. 488–489.

[34] C. Reaño, F. Silla, Reducing the performance gap of remote GPU vir-
tualization with InfiniBand Connect–IB, in: Symposium on Computers
and Communication, IEEE, 2016, pp. 920–925.

[35] S. Cuomo, A. Galletti, G. Giunta, L. Marcellino, Piecewise Hermite in-
terpolation via barycentric coordinates: In memory of Prof. Carlo Cilib-
erto, Ricerche di Matematica 64 (2) (2015) 303–319. doi:10.1007/

s11587-015-0233-0.

[36] S. Cuomo, A. Galletti, G. Giunta, L. Marcellino, A class of piecewise
interpolating functions based on barycentric coordinates, Ricerche di
Matematica 63 (1) (2014) 87–102. doi:10.1007/s11587-014-0214-8.

[37] S. Cuomo, A. Galletti, G. Giunta, L. Marcellino, A novel triangle-based
method for scattered data interpolation, Applied Mathematical Sciences
8 (133-136) (2014) 6717–6724. doi:10.12988/ams.2014.49686.

[38] O. Falivene, L. Cabrera, R. Tolosana-Delgado, A. Sáez, Interpolation
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