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Abstract—To analyze the stability of power electronics-
dominated systems, this paper develops a state-space model of
power converters including the DC-link voltage control, where
the power-internal voltage (PIV) characteristics of the power con-
verters are considered. The PIV concept comes from the inertia
characteristic and swing equation of synchronous generators. It
reflects the relationship between the output power and converter
internal voltage, the converter response to grid disturbances, and
finally, the impact of power converters on the grid stability. In
the proposed model, the inputs are the outer controller references
and the converter output power, i.e., the power at the point of
common coupling (PCC). The output of the model is the internal
voltage that determines the grid power distribution, including the
power at the PCC. The power will be fed back to the converters
as an input, and thinks the closed-loop model of the converter-
based system is obtained. Importantly, the parameters of the
proposed model are independent of the power grid, but related
to the converter operation points and parameters. This makes
the model more general and can be employed to analyze multiple
converter-based systems. Furthermore, a case study is conducted
in this paper to demonstrate the model and the stability analysis.

Index Terms—Grid-connected power converter; modeling; in-
ternal voltage; external characteristics; power angle stability;
power electronics-based power systems

I. INTRODUCTION

The fast development of renewable energy has made the
conventional power systems complicated with more power
electronics, toward power electronics-dominated systems.
Power electronic converters with fast dynamics and sophis-
ticated controllers make the entire system to operate more
flexibly and efficiently. On the other hand, challenging issues
are arising in this case [1], [2]. One of the challenges is that the
power electronic converters are controlled by various control
strategies, which are difficult to be synthesized and thereby
operate in harmony. In this context, the stability analysis of the
systems with multiple converters could be over-complicated
if all the converters are modeled precisely. Additionally, an
effective way to evaluate the impact of power electronics on
the conventional grid is of high concern in order to further
increase the renewable energy penetration [3].

It thus calls for a universal assessment model that can be
applied to converters with different control strategies, and it
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should also be simplified properly for the potential system ex-
pansion, as illustrated in [4]. Moreover, the concept of virtual
inertia has been presented as an important and effective tool
for the stability enhancement of power electronics-dominated
systems [5]. Inertia is one of the inherent characteristics of the
conventional synchronous generator (SG). It determines the
power angle stability, i.e., the voltage phase angle difference
between the internal voltage and terminal voltage of the
SG, and further the active power and frequency stability
of the entire system [6]. Accordingly, the power converter
with a novel control strategy was developed as a virtual
synchronous generator (VSG) [7], [8]. However, the operation
of VSGs is supported by large-capacity energy storage systems
(ESSs), which is not specially economical and practical. For
the widespread converters without ESSs, the power-internal
voltage (PIV) characteristics, which are directly related to the
converter virtual inertia, are difficult to explore.

Certain attempts have been made into the inertia charac-
teristics of converters without ESSs. For instance, the inertia
can be alternatively generated from the mechanical rotor
of wind turbines [9], photovoltaic systems [10], and DC-
link capacitors, which are generally used in grid-connected
converters for the DC-link voltage stability [11], [12]. The
exploration of inertia emulating by the DC-link capacitor is
practically viable, as it enables flexible frequency support from
all power converters, especially in small-scale and relatively
weak grids. Moreover, the outcomes would be general and
representative, and it can be applied to the converters with
more complicated control strategies. In this case, minor mod-
ifications may be necessary. For example, a state space model
of the power converter disclosing the dynamics of the DC-link
voltage considering the phase locked-loop (PLL) impact and
AC voltage controller is presented in [13], but the theory has
not been concluded systematically yet. The PIV characteristics
are clearly demonstrated in [14], but the model is transfer
function-based, which is not specifically applicable in multi-
converter-based systems.

To shed light on the inertia of grid-connected converters,
a state space model considering the PIV characteristics is
developed in this paper. It is exemplified in the DC-link
voltage-controlled converters for universal applications. The
aim of the model is to to reveal the relationship between
the output power and internal voltage of the power converter
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Fig. 1. Grid-feeding power converter-based AC grid, where E∠θ and
Ut∠θt are the internal voltage and terminal voltage of the power converter,
respectively, Ug∠0 is the voltage of the AC grid bus as the reference, C is
the DC-link capacitor and Udc is the DC-link voltage, Xf and Xg are the
equivalent reactance of the output filter and the grid, respectively, P , Q and
Pg , Qg are the output powers from the power converter and the grid, and
Pin is the input active power from DC sources.

emphatically. More importantly, the parameters in the model
are all based on converter parameters and its operation points,
being independent of the grid parameters, which makes it more
practical and flexible for the application in multiple converter-
based systems. A case study is presented, where simulations
are performed to validate the model and the analysis.

II. GRID-CONNECTED CONVERTER AND PIV
CHARACTERISTICS

In multi-SG-based systems, i.e., the conventional AC grids
with less power electronics, the power angle stability and
voltage stability are the two most important issues. The power
angle, determined by the inertia of SGs, rules the active power
distribution, and hence, the frequency stability of the systems.
Inspired by this, the concept of inertia can be applied in the
stability analysis of power electronics-based systems, where
the power converters play the roles of SGs in conventional
AC grids.

For power converters without physical rotors, the inertia can
be emulated by the electrical energy transferring in energy
storage devices, such as batteries and DC-link capacitors. The
inertia generated by electrical energy is called virtual inertia.
For a grid-connected converter as shown in Fig. 1, its virtual
inertia characteristic can be represented by the relationship
between the output power and the internal voltage, as indicated
by P,Q and E∠θ in Fig. 1 [15]. It is worth mentioning that
the model will not include the grid parameters (e.g., Xg in
Fig. 1), which makes it more friendly for the analysis of
multiple converters-based systems.

For the dual-loop-controlled converters, the virtual inertia
can be provided directly by charging and discharging the
DC-link capacitor, if a DC-link voltage controller is adopted.
Subsequently, a PIV characteristics-considered model can be
obtained. However, when the active power control is applied,
charging or discharging the DC-link capacitor cannot be
controlled directly. Thus, the converters need supplementary
energy sources, such as energy storage systems (ESSs), pho-
tovoltaic (PV) systems, or wind farms to provide the virtual
inertia, and related additional control strategies are required.
The PIV-considered model will be more complicated with
additional devices corresponding to various supplementary
energy sources. For simplicity, the DC-link voltage control
and terminal voltage control are applied in this paper. When
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Fig. 2. Diagram of dual-loop control system in a grid-connected converter,
where i is the AC current flowing through the filter, Lf is the filter inductor,
θP is the output voltage phase of the PLL, the superscript “∗” denotes the
reference value, and the subscripts (d and q) represent the corresponding dq
components based on the PLL output voltage phase.

the converter adopts other outer controllers such as active
power controller, additional control loops are needed to em-
ulate virtual inertia, and the model should be modified and
improved. However, the concepts of virtual inertia and PIV
characteristic are still available, and the entire system stability
can be analyzed by assembling the inertia of all converters
[14].

III. STATE SPACE MODELING OF GRID-CONNECTED
CONVERTERS

The state space modeling of grid-connected converters
reflecting their PIV characteristics will be illustrated in this
section. The dual-loop vector control strategy is applied in
this paper, where the DC-link voltage controller and terminal
voltage controller are the outer controllers, as shown in Fig. 2.
Certain assumptions should be made for simplicity:

1) The dynamics of the current control loops are neglected,
i.e., it is assumed that the AC currents can immediately follow
the reference currents;

2) The DC source is considered ideal, and the fluctuation
of the converter input power from the DC side is ignored, i.e.,
∆Pin = 0;

3) The interaction of the active and reactive power in the
control is ignored.

A. Voltage Phase Angle Relationship

The relationship of phase angles in the converter control
system should be introduced firstly. Fig. 3 shows the voltage
phase angles in steady state and after small disturbances,
denoted in blue and red, respectively. As shown in Fig. 3,
in steady state, the terminal voltage is typically aligned with
the d-axis, which is determined by the PLL. When there is a



disturbance, the tracking error of the terminal voltage phase
will be introduced in the PLL, and then makes the d-axis shift
from the original voltage ut, as marked by the red sector in
Fig. 3. The deviation may consequently affect the stability of
the power converter and the AC grid. The voltage phase of
the converter internal voltage can be derived as

∆θ = (θP ′E + θ′P )− (θPE0 + θP0) = ∆θPE + ∆θP (1)

where θ, θP and θPE are the internal voltage phase angle,
PLL output phase angle and the difference between these two
phase angles. The subscript “0” denotes the initial value in
steady state, and the superscript “′” denotes the value after
the disturbances.

B. Power Exchange between Internal and Terminal Voltages

The voltage drop on the filter inductor can be given as

e = Ut + jXf i (2)

where e, Ut and i are the internal voltage, terminal voltage
and AC current at the point of common coupling (PCC), Xf

is the filter reactance. Decomposing (2) into the dq-frame
and neglecting the steady-state voltage phase angle difference
between E0 and Ut0 result in

∆E = ∆Ut −Xf∆iq (3)

∆θPE =
Xf

E0
∆id +

Ut0

E0
∆θPt (4)

The active and reactive power flow from the internal voltage
to the terminal voltage are given as

P =
EUtsin(θ − θt)

Xf
(5)

Q =
E2 − EUtcos(θ − θt)

Xf
(6)

Linearizing (5)-(6) yields

∆θ = ∆θt +
Xf

E0Ut0
∆P (7)

∆E =
E0

2E0 − Ut0
∆Ut +

Xf

2E0 − Ut0
∆Q (8)

According to Eqs. (3)-(4) and (7)-(8), it can be obtained
that

∆θPt =
Xf

E0 − Ut0
∆id −

Xf

Ut0(E0 − Ut0)
∆P (9)

∆θPE =
Xf

E0 − Ut0
∆id −

Xf

E0(E0 − Ut0)
∆P (10)

∆Ut =
(2E0 − Ut0)Xf

E0 − Ut0
∆iq +

Xf

Ut0(E0 − Ut0)
∆Q (11)

∆E =
E0Xf

E0 − Ut0
∆iq +

Xf

Ut0(E0 − Ut0)
∆Q (12)
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Fig. 3. Voltage phase angle relationship in the control system of power
converters, where θPE is the difference between the internal voltage phase
and PLL output voltage phase, θPt is the difference between the terminal
voltage phase and PLL output voltage phase, the subscript “0” denotes the
initial value in steady state, and the superscript “′” denotes the value after
disturbances.

C. Outer Control Loops

The outer-loop controllers are designed to regulate the
DC-link voltage controller and the terminal voltage, i.e., the
voltage amplitude at the PCC. The deviation of the converter
output active power will affect the charging or discharging
states of the DC-link capacitor. From Fig. 1, it can be found
that

d

dt
∆Udc = − 1

CUdc0
∆P (13)

As the dynamics of the inner current controller are ne-
glected, they can be linearized as

∆id = ∆ϕdc + kpdc∆Udc − kpdc∆U∗dc (14)
∆iq = ∆ϕt + kpt∆Ut − kpt∆U∗t (15)

where kpdc and kpt are the proportional coefficients, kidc and
kit are the integral coefficients of the PI controllers for the
DC-link voltage controller and the terminal voltage controller.
In addition, ϕdc and ϕt are defined as

d

dt
∆ϕdc = kidc∆Udc − kidc∆U∗dc (16)

d

dt
∆ϕt = kit∆Ut − kit∆U∗t (17)

D. Phase-Locked Loop

The PLL applied in this paper is the synchronous reference
frame phase-locked loop (SRF-PLL), which tracks the grid
voltage phase angle by controlling the q-axis component of
the voltage to zero at the PCC. The linearized model of the
SRF-PLL is given as

d

dt
∆θP = ∆ϕpll + kppll∆θ

P
t (18)
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Fig. 4. Closed-loop model of the grid-connected converter considering the
PIV characteristic, where A,B,C,D are the state matrices of the state space
models.

in which kppll is the proportional coefficient of the PI con-
troller in the PLL, and ϕpll is defined as

d

dt
∆ϕpll = kipll∆θ

P
t (19)

where kipll is the integral coefficient of the PI controller in
the PLL.

According to all the proposed modular models discussed
in the above, the open-loop model of the grid-connected
converter without feedback from the grid can be obtained as

d

dt
∆xcon = Acon∆xcon + B∗con∆U∗ + Bg

con∆PQ (20)

∆ycon = Ccon∆Xcon + D∗con∆U∗ + Dg
con∆PQ (21)

with

∆xcon =
[
∆ϕdc ∆ϕac ∆ϕpll ∆θP ∆Udc

]−1
∆U∗ =

[
∆U∗dc ∆U∗t

]−1
∆PQ =

[
∆P ∆Q

]−1
∆ycon =

[
∆θ ∆E

]−1
and the state matrices as given in Eqs. (22)-(26). In the

power converter model shown in (20) and (21), one of the
input vectors is the power at the PCC, and the output is the
internal voltage of the power converter. It is easy to obtain the
representation of the PIV characteristics as a transfer function
transformed directly from the proposed state space model, as
depicted in [14].

As mentioned, one of the advantages of the proposed model
is that there is no grid parameter in the converter model, and
it can connect to the grid easily in order to obtain the closed-
loop model of the whole system. For the system shown in Fig.
1, the power exchange between the internal voltage and AC
grid bus voltage is given as

P =
EUgsinθ

Xf +Xg
(27)

Q =
E2 − EUgcosθ

Xf +Xg
(28)

which can be linearized without considering the coupling
of the active power and reactive power as

∆PQ = FB∆ycon (29)

where FB is given in (30).

TABLE I
SIMULATION SYSTEM PARAMETERS

Parameters Values

Rated power 20 kW
Rated DC voltage 780 V
Rated AC voltage 400 V
DC-link capacitor 10 mF

Converter inductance 2.53 mH
Equivalent grid inductance 2.53 mH

Fundamental frequency 50 Hz
(kpdc, kidc) (0.5, 50)

(kpt, kit) (0.5, 50)
(kppll, kipll) (50, 10000)

From (20), (21) and (29), the closed-loop model of the grid-
connected converter considering the PIV characteristic can be
obtained as shown in Fig. 4, and it can be given as

d

dt
∆xcon = Agrid∆xcon + Bgrid∆U∗ (31)

∆ycon = Cgrid∆Xcon + Dgrid∆U∗ (32)

with

Agrid = Acon + Bg
con(FB−1 −Dg

con)−1Ccon

Bgrid = B∗con + Bg
con(FB−1 −Dg

con)−1D∗con

Cgrid = Ccon + Dg
con(FB−1 −Dg

con)−1Ccon

Dgrid = D∗con + Dg
con(FB−1 −Dg

con)−1D∗con

being the proposed model with the consideration of the PIV
characteristics.

IV. MODEL VALIDATION AND STABILITY ANALYSIS

To validate the proposed model and to demonstrate its
application in stability analysis, a case study is presented in
this section. A converter connected to the grid as shown in
Fig. 1 is simulated, where the synchronous reference frame-
PLL (SRF-PLL) is applied, and the basic parameters are given
in Table I.

A. Model Validation

At the first, the model is validated by the detailed simulation
model in PSCAD/EMTDC. The DC-link voltage reference
increases 10% at t = 2 s. The responses of the DC-link voltage
Udc and the d-component of AC current id are given in Fig. 5,
where the orange curve and the blue curve correspond to the
time-domain simulation and the system with the proposed
model, respectively. It can be seen that the two curves are
matching well, including the overshoot and damping speed.
Thus, it can be concluded that the model proposed in this
paper is effective.

B. Eigenvalue Analysis

Based on the validated model, stability analysis can be
done as following. As the state matrices of the system are
obtained directly, the system eigenvalues can be calculated and
analyzed. Keeping other parameters unchanged except for the



Acon =


0 0 0 0 kidc
0 kitKUt(2E0 − Ut0)Xf 0 0 0

kipllXf/(E0 − Ut0) 0 0 0 kipllXfKpdc/(E0 − Ut0)
kppllXf/(E0 − Ut0) 0 1 0 kppllXfKpdc/(E0 − Ut0)

0 0 0 0 0

 (22)

B∗con =


−kidc 0

0 −[kitKUt(2E0 − Ut0)Xfkpt + kit]
−kipllXfkpdc/(E0 − Ut0) 0
−kppllXfkpdc/(E0 − Ut0) 0

0 0

 ,

Bg
con =


0 0
0 kitKUtXf

−kipllXf/[Ut0(E0 − Ut0)] 0
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−1/(CUdc0) 0


(23)

Ccon =

[
Xf/(E0 − Ut0) 0 0 1 Xfkpdc/(E0 − Ut0)

0 E0KUtXf 0 0 0

]
(24)

D∗con =

[
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0 −E0KUtXfkpt

]
,

Dg
con =

[
−Xf/[E0(E0 − Ut0)] 0

0 (E0KUtXf +Xf )/(2E0 − Ut0)

] (25)

KUt = 1/[(E0 − Ut0)− (2E0 − Ut0)Xfkpt] (26)

FB =

[
E0Ug0cosθ0/(Xf +Xg) 0

0 (2E0 − Ug0cosθ0)/(Xf +Xg)

]
(30)
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Fig. 5. Performance of the proposed model when the DC-link voltage
reference increases by 10%: (a) DC-link voltage and (b) d-component of
AC current.
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Fig. 7. Simulation results of the system under a disturbance with kppll = 0.01
and 2: (a) DC-link voltage and (b) d-component of AC current.

proportional gain of the PI controller in the PLL kppll, which
is increased from 0.01 to 2, the eigenvalues of the closed-
loop model, i.e., the eigenvalues of Agrid can be obtained, as
shown in Fig. 6. It can be seen from Fig. 6 that when kppll
increases from 0.01 to 2, the dominant eigenvalues will cross
the imaginary axis (the red dot line). The result demonstrates
that when kppll is too small, the system is unstable due to the
lack of damping, but when kppll increases to a larger value,
the system becomes stable with the eigenvalues moving to the
left half-plane region.

To further validate the eigenvalue analysis results, a case
study is carried out on the test system. At t = 2 s, a disturbance
is imposed, where the phase angle of the AC grid bus voltage
increases by 45°. The DC-link voltage and converter output
active power responding to kppll = 0.01 and 2 are given
in Fig. 7. It is observed in Fig. 7 that when kppll = 0.01,
the system is poorly damped and oscillates severely. When
kppll = 2, the oscillation can be damped effectively, and the
system becomes stable. The simulation results are in close
agreement with the eigenvalue analysis, which confirms the
effectiveness of the proposed model in terms of stability
analysis.

C. Bode Diagram Analysis

The Bode diagram is another important way to assess the
system stability. The impact of the DC-link voltage controller
on the system stability will be analyzed by the Bode diagram
in this section. In this case, the system parameters are the same
as given in Table I, but the integral gain of the PI controller
for the DC-link voltage has been changed, i.e., kidc = 5, 20,
and 50. The Bode diagrams of the open-loop model from the
input ∆P to the output ∆θ are obtained, as shown in Fig. 8.
It can be seen that when kidc increases, the open-loop system
phase margin will become smaller, i.e., the system stability is
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20, and 50: (a) DC-link voltage and (b) d-component of AC current.

attenuated. To validate the analysis, a case study is performed
on the simulation model. At t = 2 s, a disturbance is imposed,
where the phase angle of the AC grid bus voltage increases by
45°. The DC-link voltage and converter output active power
response with kidc = 5, 20, and 50 are given in Fig. 9. It can
be seen from Fig. 9 that although the DC-link voltage suffers
a bit larger overshoot under disturbance with smaller kppll,
the oscillation can be damped to a large extent in this case.
As for the converter output active power, it is more obvious
that the oscillation under disturbance can be suppressed faster
with smaller kppll. To sum up, a smaller kppll can promise a
better damping capability of a power converter, i.e., the system
is more stable with a smaller kidc, which confirms the Bode



diagram analysis.

V. CONCLUSION

A state space model of grid-connected converters consid-
ering the power-internal voltage characteristics is proposed in
this paper. Referring to the swing equations of the synchronous
generator, the developed model provides reduced but necessary
information to the grid, i.e., the amplitude and phase angle
of the internal voltage, which contribute to the grid power
distribution. The power distribution of the grid will feedback
to the converter as inputs, and the closed-loop model of
the power converter-based systems can be obtained, based
on which the system overall stability can be analyzed in a
convenient way. One of the advantages of the proposed model
is that the parameters are solely dependent on the converter
parameters and their operation points, which makes it more
practical than other models and it can be applied in large-scale
and multi-converter-based systems. Several case studies have
been performed, which validates the model and the stability
analysis. Moreover, it has been revealed that the proposed
model is accurate in the stability analysis of power converters.
Based on the proposed model, the control parameters of
converters can be designed to satisfy the DC-link voltage
requirement or other stability demands.
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