

Aalborg Universitet

Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection

Nielsen, Mads Lausen; Christiansen, Gunna; Poulsen, Thomas Bouet Guldbæk; Birkelund, Svend

Published in: Microbes and Infection

DOI (link to publication from Publisher): 10.1016/j.micinf.2018.10.007

Creative Commons License CC BY-NC-ND 4.0

Publication date: 2019

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Nielsen, M. L., Christiansen, G., Poulsen, T. B. G., & Birkelund, S. (2019). Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection. Microbes and Infection, 21(2), 73-84. https://doi.org/10.1016/j.micinf.2018.10.007

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

Accepted Manuscript

Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection

Mads Lausen, Gunna Christiansen, Thomas Bouet Guldbæk Poulsen, Svend Birkelund

PII: \$1286-4579(18)30192-8

DOI: https://doi.org/10.1016/j.micinf.2018.10.007

Reference: MICINF 4614

To appear in: Microbes and Infection

Received Date: 30 July 2018

Revised Date: 11 October 2018 Accepted Date: 11 October 2018

Please cite this article as: M. Lausen, G. Christiansen, T.B. Guldbæk Poulsen, S. Birkelund, Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection, *Microbes and Infection*, https://doi.org/10.1016/j.micinf.2018.10.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Immunobiology of monocytes and macrophages during

2 Chlamydia trachomatis infection

5

6

4

- 7 ^aDepartment of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b,
- 8 9220 Aalborg Ø, Denmark
- 9 beartment of Biomedicine, Aarhus University, Wilhelms Meyers Allé 4, 8000 Aarhus,
- 10 Denmark.

11

- *To whom correspondence should be addressed:
- 13 Mads Lausen, MSc., Department of Health Science and Technology, Aalborg University,
- 14 Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark. Email: mln@hst.aau.dk

15	Abstract
16	Infections caused by the intracellular bacterium Chlamydia trachomatis are a global health
17	burden affecting more than 100 million people annually causing damaging long-lasting
18	infections. In this review, we will present and discuss important aspects of the interaction
19	between C. trachomatis and monocytes/macrophages.
20	
21	Keywords: Monocytes; macrophages; Chlamydia trachomatis
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	

1 Introduction

34

35	Chlamydia trachomatis (C. trachomatis) is a small intracellular Gram-negative human
36	pathogenic bacterium, which comprises a range of serovars based on variations in the major
37	outer membrane protein (MOMP). These serovars are genetically similar, but cause different
38	pathological manifestations. Serovar A-C cause the blinding eye condition, trachoma; D-K
39	cause sexually transmitted genital infection, which can lead to pelvic inflammatory disease,
40	ectopic pregnancy, and infertility. Finally, serovar L1-L3 can spread from the genital tract to
41	the lymphatic system causing more disseminated infections.
42	Chlamydiae are obligate intracellular bacteria with a unique biphasic developmental cycle.
43	Initially, the small (0.3 μm) infectious but metabolic inactive elementary body (EB) infects
44	the epithelial host cell. Intracellularly, the EB transforms to a larger (1 μm) and metabolic
45	active reticular body (RB) and the RB starts to replicate.
46	C. trachomatis serovars preferably infect mucosal epithelium, but can also infect a range of
47	other cells including fibroblasts and cells of the immune system [1].
48	Monocytes and macrophages are recruited to the genital tract during experimental genital
49	Chlamydia infection and the initial engagement between macrophages and C. trachomatis
50	may determine the overall outcome of the infection [2,3]. Efficient phagocytosis and
51	intracellular killing can limit ascension of the infection and provide antigenic material for
52	activating CD4+ T-cells towards a Th1-mediated immune response - the most critical immune
53	response to eradicate C. trachomatis infections [4]. Different murine infection models have
54	demonstrated the importance of these mechanisms in controlling <i>Chlamydia</i> infections.[5,6].
55	However, if intracellular elimination in macrophages fails, macrophages may be used as
56	Trojan horses for bacterial dissemination to the lymphatic system with bacterial replication in
57	the draining lymph nodes. Especially the L-biovars have been linked to intracellular survival
58	and dissemination [7]. Lastly, monocytes and macrophages also play important roles in the

59	immunopathology of <i>C. trachomatis</i> infections by secreting proinflammatory cytokines
60	causing collateral tissue damage [3]. Thus, understanding the interaction between
61	macrophages and C. trachomatis is critical to understand how protective immunity develops
62	and how the immunological response causes pathology.
63	A proposed role for <i>C. trachomatis</i> -infected monocytes in the pathogenesis of reactive
64	arthritis prompted a number of studies in the late 1980's trying to understand the interaction
65	between monocytes/macrophages and C. trachomatis. Since these initial studies, several
66	efforts have been made to understand monocyte/macrophage functions in <i>Chlamydia</i> -induced
67	inflammation and to understand why C. trachomatis infections tend to be chronic.
68	Clearly, the intracellular fate of <i>C. trachomatis</i> in macrophages is completely distinct from
69	the normal developmental cycle observed in epithelial cells. Thus, before discussing the
70	immunobiology of macrophages during chlamydial infection, we will begin with a concise
71	presentation of current knowledge about the developmental cycle in epithelial cells to set the
72	scene for discussions.

73 2 The developmental cycle of *C. trachomatis* in epithelial cells

The developmental cycle of C. trachomatis in epithelial cells has been studied in decades and 74 75 is now rather well characterized. Depending on the serovar, C. trachomatis EBs engage epithelial cells in the eye or in the genital mucosa where they attach to host cell surface 76 components namely heparan sulfate proteoglycans. Upon attachment, C. trachomatis induces 77 its own uptake by secreting pre-formed effector proteins into the host cell cytosol through a 78 79 type III secretion system. One of these effectors is translocated actin-recruiting 80 phosphoprotein (TarP), which is tyrosin phosphorylated by host cell kinases when 81 translocated [8,9]. TarP is an actin modifying protein inducing rearrangement of the actin 82 cytoskeleton and uptake of C. trachomatis into a membrane-enclosed vesicle [10]. Each chlamydial EB is taken up in an independent vesicle, which is transported to the microtubule-83

organizing center in the perinuclear area of the cell. This process is facilitated by interaction 84 85 with microtubules and the motor protein dynein [11]. At the microtubule organizing center, the independent *Chlamydia*-containing vesicles undergo homotypic fusion thereby 86 87 establishing a single large membrane enclosed vacuole called an inclusion [12]. The stability and unique physiology of this replicative niche is established by inserting 88 translocated secreted inclusion membrane proteins (Incs) into the inclusion membrane. Inc 89 proteins face the cytoplasmic site of the inclusion membrane and interact with different 90 91 membrane-sorting proteins including numerous Ras-related protein Rab (Rab) GTPases. These interactions inhibit fusion with destructive vesicular compartments, e.g. lysosomes 92 93 while promoting fusion with nutrient-rich compartments such as lipid-rich Golgi-derived vesicles [13]. 94 During inclusion formation, the infectious EBs differentiate into metabolically active RBs 95 96 that start replicating by binary fission or polarized cell division leading to growth of the inclusion [14]. After 48-72 hours, the end of the developmental cycle is reached when RBs 97 98 have transformed back to EBs. Burst of the cell or membrane extrusion liberates infectious 99 EBs ready for new rounds of infection. Generally, the underlying mechanisms mediating host cell exit remain poorly described. However, it was recently shown that chlamydial membrane 100 extrusion is mediated by interaction with inclusion membrane proteins and host Ca²⁺-channels 101 102 reducing myosin motor activity necessary for extrusion formation [15].

3 Macrophage encounter of C. trachomatis

103

104

105

106

107

The first encounter between *Chlamydia* and mononuclear phagocytes takes place in the genital tract mucosa. The genital mucosa contains tissue-resident macrophages and monocytes which engage *Chlamydia* EBs once liberated from lysed epithelial cells after completion of the developmental cycle [16]. In early infectious stages, epithelial cells secrete

108 several chemokines and proinflammatory cytokines leading to local inflammation and 109 leukocyte recruitment [17,18]. Using mouse models of genital C. trachomatis infection it was 110 demonstrated that CD11b-positive cells (monocytes/macrophages) infiltrate the mucosa 111 during infection [2]. This recruitment is likely induced by secretion of chemokines including 112 CCL2 and macrophage inflammatory protein-1α known to attract monocytes to the site of infection [19,20]. Thus, both resident macrophages and monocyte-derived macrophages 113 recruited from the bloodstream engage invading C. trachomatis in the genital mucosa. The 114 115 encountered Chlamydia organisms, liberated from the epithelial cells, consist of both EBs and RBs. Both forms can trigger the inflammatory response and provide antigenic material as 116 117 discussed in the following sections.

Macrophage sensing of C. trachomatis

118

131

At the site of infection, macrophages recognize the bacteria directly through different innate 119 immune receptors. Abundant evidence shows that *C. trachomatis* recognition activates 120 MyD88- and P38/ERK-dependent signaling pathways, suggesting a role for pattern 121 122 recognition receptors (PRRs) in chlamydial sensing [21–23]. Monocytes and macrophages are equipped with numerous PRRs, which detect a variety of 123 124 conserved structural motifs known as pathogen associated molecular patterns (PAMPs). C. trachomatis contains several PAMPs; the most well-studied being LPS and Heat Shock 125 Protein (HSP) 60. Furthermore, HSP70, pORF5, lipoproteins, and macrophage infectivity 126 127 potentiator (MIP) have been confirmed to activate host macrophages through PRRs [21,23,24]. 128 Using photo-chemically inactivated C. trachomatis EBs, Bas et al. show a prominent cell 129 130 activation of monocytes and macrophages [24]. In addition, macrophages stimulated with viable or inactivated C. trachomatis display different cytokine profiles [25–27]. Collectively,

132	these observations suggest that both surface and intracellular receptors detect and respond to
133	chlamydial infection presumably activating different downstream signaling pathways.
134	Particularly, members of the toll-like receptor (TLR) family and the nucleotide-binding
135	oligomerization domain (NOD) like receptor family have been implicated in chlamydial
136	recognition.
137	The macrophage receptors involved in C. trachomatis recognition and the subsequent
138	intracellular events are illustrated in Fig. 1.

4.1 Toll-like receptors in *C. trachomatis* recognition

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Like other Gram-negative bacteria C. trachomatis contains LPS in the outer membrane, a potent ligand for TLR4 and the co-receptor CD14. Therefore, it is rational to expect an important role of TLR4 in C. trachomatis recognition. Using CD14 and TLR4 transfected cell lines, early studies did indeed discover a role for these receptors in recognition of chlamydial LPS [28,29]. In support, Heine et al. showed that preincubating human peripheral blood mononuclear cells with a CD14-blocking antibody completely abrogated cellular activation by chlamydial LPS confirming the *Chlamydia*-sensing role of CD14 [29]. More recent studies, however, suggest that the contribution of TLR4 in chlamydial recognition by monocytes may be limited [23,24,30]. Instead, several reports suggest that *C. trachomatis* induced activation of monocytes is TLR2 dependent. These observations originate from studies using different strategies including cell lines transfected with different TLRs, primary cells treated with receptor-blocking antibodies, and primary cells from TLR-deficient mice [21,23,24,30–32]. Collectively, these studies suggest that TLR2 recognizes live C. trachomatis EBs together with several PAMPs such as LPS, pORF, lipoproteins, and MIP. Interestingly, Agrawal et al. found that both TLR2 and TLR4 are involved in C. trachomatis recognition in human cervical monocytes with a time-dependent contribution of each receptor[16]. Thus, early detection was TLR4-dependent, but switched to TLR2-dependent

157	recognition at later time points. In addition, activation through TLR4, but not TLR2, induced
158	interleukin(IL)-12 production [16]. These observations outline the necessity of careful
159	interpretation of studies investigating chlamydial activation of host cell receptors when
160	considering experimental design.
161	An interesting study by Nagarajan et al. found that neither TLR2 nor TLR4 are involved in C.
162	trachomatis induced interferon (IFN)- β production. Instead they showed the induction of
163	IFN- β was dependent on endosome acidification and the adaptor molecule MyD88 [26]. The
164	authors did not identify the involved receptors, but suggested that the recognition could be
165	mediated by intracellular TLRs, including TLR7, -8, and -9 [26]. However, using
166	macrophages from TLR7- and TLR9 KO mice, the same authors demonstrated that these
167	receptors are dispensable for IFN-β production [32]. Applying macrophages generated from
168	human induced pluripotent stem cells, Yeung and colleagues demonstrated an important role
169	for interferon regulatory factor 5 (IRF5) in intracellular survival of C. trachomatis in
170	macrophages [33]. IRF5 is activated downstream of TLR7 and TLR8, suggesting a possible
171	role for these receptors in chlamydia recognition by human macrophages.
172	Lastly, also TLR1 and TLR6 have been shown to participate in chlamydial recognition by
173	inducing cell activation in response to chlamydial MIP and the lipopeptide PamCSK4 [24].
174	Yet, blocking these receptors does not have the same effect as blocking TLR2. Thus, TLR2
175	seems to be the predominating TLR used for macrophage recognition of C. trachomatis while
176	Chlamydia-induced type I interferon response is TLR-independent highlighting the
177	importance of other PRRs outside the TLR family.
178	4.2 NOD-like receptors

4.2 NOD-like receptors

TLR-deficiency or TLR-blockage does not abrogate cellular activation completely, proposing 179 180 a redundancy in TLR-based C. trachomatis recognition. NOD-like receptors are cytosolic receptors playing an important role in microbial sensing and innate defense. The NOD-like 181

receptor family consists of 23 members of which two have been reported in <i>C. trachomatis</i>
sensing: NOD1 and nucleotide-binding domain, leucine-rich repeat family, pyrin domain
containing 3 (NLRP3). The involvement of NOD1 in Chlamydia recognition was established
using expression and gene knockdown studies in HeLa cells [32,34,35]. At present, no direct
evidence for NOD-based recognition in macrophages exists, although NOD contribution has
been confirmed for other intracellular bacteria and may also be involved in macrophage
recognition of C. trachomatis [36]. Nonetheless, the contribution of NOD1 has been obscure
since these receptors recognize and ligate peptidoglycan fragments from the bacterial cell wal
[37]. Until recently, peptidoglycan has not been directly detected in C. trachomatis, even
though the C. trachomatis genome contains all necessary genes for peptidoglycan assembly
and is sensitive to beta-lactam antibiotics [38]. In 2014, the Maurelli group, however, directly
detected peptidoglycan in C. trachomatis using a novel metabolic cell wall labeling approach
[39] and later confirmed the presence of muropeptides using mass spectrometry [40]. Finally,
it has been demonstrated that NOD2 expression is upregulated in C. trachomatis-infected
macrophages, suggesting that NOD2 may also participate in macrophage recognition of C .
trachomatis [41].
NLRP3 is another NOD-like receptor which senses molecules associated with cell damage
including adenosine triphosphate (ATP) and uric acid [37]. It constitutes the pattern
recognition moiety of a large multiprotein complex known as the inflammasome. PAMP
mediated inflammasome activation leads to caspase-1 activation and subsequently cleavage
and secretion of IL-1 β and IL-1 θ . Chlamydial infection of monocytes activates the
inflammasome in a NLRP3, AIM2 and MyD88-dependent manner [27,42,43]. Whether
NLRP3 directly recognizes chlamydial PAMPs or if the activation results from endogenous
danger-associated molecular patterns (DAMPs) induced by <i>C. trachomatis</i> is not fully

understood, but a role for reactive oxygen species (ROS) [43] and autocrine cytokine signaling (please see the section below) [27] have been proposed.

4.3 Cytosolic DNA receptors

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

Finally, the cytosolic DNA sensors stimulator of interferon genes (STING) and the absent in melanoma 2 (AIM2) might also participate in C. trachomatis recognition by sensing chlamydial nucleic acids (Fig. 1). STING detects cytosolic double-stranded DNA and plays an important role during both bacterial and viral infections. It was previously demonstrated that STING mediates IFN-β induction in *Chlamydia* infected HeLa cells and that *C*. muridarum induced IFN-β production in J774 macrophages was cyclic GMA-AMP synthase (cGAS)-dependent. cGAS is a cytosolic DNA-sensing enzyme that detects foreign DNA converting it to cyclic nucleic acids which is recognized by STING [32,44]. Direct STINGmediated recognition of Chlamydia by macrophages was shown recently by Webster and colleagues [27]. They demonstrated that STING recognizes cyclic di-AMP from metabolic active C. trachomatis in murine macrophages leading to IFN-β secretion and autocrine IFN-β dependent inflammasome activation and IL-1β secretion [27]. However, this observation awaits confirmation in human primary macrophages. Translating this conclusion directly to human conditions is controversial due to the debatable metabolic state of C. trachomatis in human primary macrophages. AIM2 is another cytosolic receptor sensing double-stranded DNA and like NLRP3 involved in inflammasome activation. A recent study showed that C. trachomatis-induced inflammasome activation in murine macrophages was AIM2 dependent implying that AIM2 might detect chlamydial DNA [27,42].

4.4 Cellular activation and cytokine production

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

Although the exact mechanisms mediating macrophage recognition of *C. trachomatis* are not fully comprehended, macrophage engagement with *C. trachomatis* elicits a potent cell activation inducing the expression of several cytokines, chemokines, and growth factors that are summarized in Table 1.

5 C. trachomatis entry into macrophages

Several C. trachomatis serovars are internalized into both murine and human primary macrophages and into different cell lines. However, the involved receptors and molecular mechanisms mediating chlamydial entry into host immune cells have not been determined yet [1,43,45,46]. The entry mechanisms are supposedly carried out by phagocytosis or by receptor-mediated endocytosis [46–48] and the involved receptors might be located to lipid rafts in the plasma membrane [49]. Comparing chlamydial infection rates in cell types with different surface receptor profiles could highlight the involvement of receptors and receptor families. Since C. trachomatis infects many different cell types the receptors involved may be ubiquitously expressed or involve multiple entry mechanisms working with essentially equal efficiency [1,50,51]. This theory is supported by the findings by Sun et al. who observed a similar infection rate between HeLa cells and murine RAW macrophages [52]. In contrast, others find that C. trachomatis entry occurs much less efficiently in monocytes compared to epithelial cells indicating involvement of cell-specific receptors [53]. However, this study, among others, evaluated the entry efficiency by enumerating inclusions two days post infection. Thus, the data presented in this study may not reflect the actual entry efficiency, since inclusion numbers after two days also depend on bacterial survival and replication.

251	Glycosylated chlamydial surface proteins may provide a moiety for host cell attachment and
252	entry. Kuo et al demonstrated that C. trachomatis entry into macrophages was significantly
253	reduced in macrophages deficient in the mannose receptor [54]. The chlamydial ligand
254	attaching to the mannose receptor has not been identified, but it has been suggested that
255	chlamydial MOMP is glycosylated by mannose [55] and might therefore serve as ligand for
256	the mannose receptor facilitating chlamydial entry. The mannose receptor is used by
257	Mycobacterium tuberculosis to enter macrophages and entry through this receptor is
258	beneficial for intracellular survival [56].
259	Another receptor involved in <i>Mycobacterium tuberculosis</i> entry is the complement receptor
260	CR3 [57]. Complement receptors are also likely involved in chlamydial entry because <i>C</i> .
261	trachomatis is opsonized by the complement C3 fragment iC3b which is recognized by CR3
262	expressed on monocytes and macrophages [58,59]. We recently demonstrated that
263	complement C3 facilitates rapid uptake of C. trachomatis in human monocytes supporting the
264	role for CR3 in chlamydial uptake, [59].
265	Lastly, chlamydial recognition and uptake may be dependent on how Chlamydia are liberated
266	from infected epithelial cells after completing the development cycle. C. trachomatis liberated
267	by membrane extrusion is engulfed by murine macrophages through an actin-dependent
268	mechanism involving extrusion membrane phosphatidylserine (PS) [60].). PS is normally
269	exposed in the membrane of apoptotic cells and is recognized by apoptotic receptors on
270	phagocytes. However, blocking PS-receptor interaction by annexin V only partially inhibit
271	macrophage uptake of Chlamydia containing extrusions, indicating involvement of other
272	receptor-ligand interactions [60].

6 The intracellular fate of C. trachomatis in macrophages

274	Studies exploring the intracellular fate of <i>C. trachomatis</i> in macrophages have been carried
275	out since the 80's, but despite more than 30 years of research there is still no clear
276	understanding of the intracellular trafficking and fate of <i>C. trachomatis</i> in macrophages. Early
277	studies indicated that <i>C. trachomatis</i> can persist in monocytes for more than 7 days [61–63],
278	while others, more recent studies, show that C. trachomatis is rapidly degraded in
279	macrophages [52]. One thing is however certain; the intracellular fate of <i>C. trachomatis</i> in
280	monocytes and macrophages differs drastically from the normal developmental cycle seen in
281	epithelial cells as demonstrated in Fig. 2.
282	After macrophage entry C. trachomatis can induce a state of persistency, where the bacterium
283	is viable and metabolic active, but does not replicate [1,22,63]. This phenomenon has been
284	demonstrated for several serovars including Ba, D, K, and L2. Although viable and metabolic
285	active, the different serovars cannot maintain the developmental cycle, except for serovar L2
286	[22,64,65]. It appears that serovar L2 can maintain its infectious potency during monocyte
287	infection, because lysates from L2-infected monocytes induce inclusion formation in HeLa
288	cells [53,65]. Nonetheless, we recently demonstrated that C. trachomatis L2 were unable to
289	maintain its infectious and growth potential after 24 hours of incubation within monocytes
290	[59]. Different infection/incubation protocols are likely to cause these discrepancies. Table II
291	provides an overview of studies investigating the intracellular fate of C. trachomatis in
292	monocytes and macrophages as well as the main findings. Collectively, these findings
293	indicate that monocytes may respond differently to different serovars; that serovar-specific
294	survival mechanisms exist; that infection protocols may affect the chlamydial outcome and/or
295	different macrophage cell types respond differently to C. trachomatis infection.

273

6.1 Macrophage strategies to restrict <i>C. trachomatis</i> gro	wth
---	-----

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

Why is the development of *C. trachomatis* infection successful in epithelial cells but not in macrophages? Following entry into the epithelial cell, *C. trachomatis* forms a membrane-bound vacuole; the inclusion, as previously described in section 1. Yet, *C. trachomatis* fails to form a mature inclusion in macrophages and this failure is likely due to several mechanisms involving phagosome-lysosome fusion, autophagy, and nutrient starvation.

6.1.1 Targeting C. trachomatis for lysosomal degradation

Lysosomal degradation of engulfed bacteria is an important mechanism for bacteria elimination. Usually, a coordinated procedure involving sequential trafficking to vesicles of increased acidity target endocytosed or phagocytosed bacteria to lysosomes. . Recruitment of the proton pump vacuolar H+ ATPase (V-ATPase) mediates the acidification and the sequential trafficking is coordinated by a set of GTP-binding proteins including the Rab GTPases. Of these, Rab5 and Rab7 target vesicles for early endosomes and late endosomes, respectively [66]. Several studies propose that *C. trachomatis* fails to inhibit phagosome-lysosome fusion in macrophages. Shortly after entry into murine macrophages, chlamydial EBs locate to Rab7positive compartments, a late endosome marker, and subsequently associate with the lysosome marker lysosomal-associated membrane protein 1 (Lamp1) [52,67]. Reducing lysosome acidification by inhibiting V-ATPase supports chlamydial growth in macrophages and suggests that C. trachomatis EBs are trafficked through the conventional phagosome/lysosome pathway in macrophages [52,67,68]. This is completely different from epithelial cells where Rab GTPases, different from Rab5 and Rab7, are recruited and target the *Chlamydia*-containing vesicles to non-destructive vesicular compartments.

320	6.1.2 Anti-chlamydial defense by autophagy
321	Autophagy is another means of targeting bacteria to lysosomes. Autophagy induction by C .
322	trachomatis was first described by Pachikara et al. in HeLa cells [69] and accumulating
323	evidence suggests that autophagy also plays a substantial role in macrophage clearance of C .
324	trachomatis [52,67].
325	Autophagy is a ubiquitous mechanism used to degrade and sequester cytosolic protein and
326	organelles to maintain cell homeostasis [70]. During autophagy, a double membrane structure
327	assembles which surrounds the protein/organelle/pathogen thereby creating a vesicular
328	structure called an autophagosome. The autophagosome is directed to lysosomes and after
329	fusion, the autophagosomal content is degraded [70]. The autophagic pathway is illustrated in
330	Fig. 3.
331	Upon entry into macrophages, C. trachomatis associates with the autophagosomal marker
332	LC3 and is observed in large doubled membrane structures resembling autophagosomes
333	[52,68]. In accordance, functional experiments show that autophagic activity is elicited in
334	infected macrophages, but not in infected epithelial cells [52]. Knockdown of autophagy
335	protein 5 (ATG5), a key regulator of autophagy, increases C. trachomatis progeny numbers in
336	THP-1 cells [67]. The autophagic potency of macrophages can be enhanced by IFN- γ
337	stimulation mediated by IFN-inducible proteins called guanylate-binding proteins. During

IFN-γ cell activation, these proteins co-localize with chlamydial EBs and direct them for

lysosomal fusion through an autophagy-dependent pathway [67]. External ATP stimulation

can induce chlamydial vacuole fusion with lysosomes in addition to IFN-y activation,, but

whether this process occurs through autophagy has not been determined [71]. The entry and

intracellular trafficking of *C. trachomatis* into macrophages is illustrated in Fig. 3.

342343

338

339

340

341

6.1.3	Direct	interaction	bv	perforin-2
0.1.0	Direct	III CI action	~,	periorin =

Perforin-2 is a phylogenetic conserved pore-forming protein containing a domain, which is also found in other vital immunological proteins such as complement C9 and perforin-1 [72]. Varying expression of perforin-2 during C. trachomatis infection may account for the different infection outcome between macrophages and epithelial cells [73]. Monocytes and macrophages constitutively express perforin-2, and IFN-y stimulation induce expression in epithelial cells. Unfortunately, this induction is inhibited by chlamydial proteins [73]. Perforin-2 expression increases in macrophages, but not in epithelial cells, during C. trachomatis infection indicating that perforin-2 expression may be regulated by gene regulatory factors acting downstream of immune receptors. The local cytokine milieu generated by C. trachomatis infected epithelial cells increases perforin-2 expression in either resident macrophages or invading monocytes, potentially boosting perforin-2 expression before direct contact with the bacterium [74]. Inducing perforin-2 knock down by small interfering RNA in macrophages leads to maturation of *C. trachomatis* inclusions and the growth pattern resembles that of epithelial cells. In addition, chlamydial growth is restricted in perforin-2 expressing epithelial cells. The anti-chlamydial defense mechanism responsible for these observations is mediated through direct contact with the bacterium [73]. Thus, macrophages synthesize perforin-2 in response to C. trachomatis and prevent chlamydial-induced perforin-2 degradation by limiting chlamydial de novo protein synthesis. This provides an efficient chlamydial killing mechanism involving direct contact with the bacterium.

365

366

367

368

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

6.1.4 Induction of reactive oxygen and nitrogen species

Production of reactive oxygen species and reactive nitrogen species (ROS and RNS) are important microbicidal mechanisms against various pathogens [75]. Inducible nitric oxide

synthase (iNOS) is produced during *C. trachomatis* infection in macrophages and leads to nitric oxide production [16,64], which is strongly correlated with chlamydial clearance [76]. The mechanisms leading to iNOS induction involve a ROS- and cathepsin-dependent mechanism acting downstream of TLR2 activation [77]. In addition, *C. trachomatis*, but not *C. pneumoniae*, induces ROS production in macrophages. The differential induction of ROS could explain why *C. trachomatis* is killed earlier than *C. pneumoniae* in macrophages [64]. Indeed, macrophages deficient in NADPH oxidase, a ROS generating enzyme, support intracellular survival and replication of *C. trachomatis* [27]. Finally, ROS has also been implicated in inflammasome activation since adding an antioxidant to *C. trachomatis* infected macrophages reduces caspase-1 activation [43].

6.1.5 Limiting access to host cell nutrients

metabolism and survival. Hence, restricting chlamydial access to host cell nutrients inhibits bacterial growth.

Tryptophan is an essential amino acid required for chlamydial growth and survival. An essential anti-chlamydial defense mechanism is IFN-γ induced expression of indoleamine 2,3-dioxygenase (IDO). IDO catabolizes tryptophan to L-kynurenine leading to depletion of cytosolic tryptophan and chlamydial growth restriction [78]. Macrophages induce IDO expression in response to *C. trachomatis* infection by different serovars, which may contribute to the growth restriction observed in macrophages [22,79].

Acquisition of host cell lipids to the inclusion membrane is regarded an essential step in chlamydial inclusion maturation and reproduction [80]. This process involves Golgidisruption and acquisition of lipid-containing Golgi-vesicles. By preventing cleavage of golgin84, macrophages prevent Golgi-disruption during infection thereby preventing

C. trachomatis exploits a parasitic nature relying on host cell components for maintaining

inclusion maturation [52]. In epithelial cells however, golgin84 is cleaved leading to Golgi disruption and acquisition of lipid-rich Golgi-vesicles to the growing inclusion [52]. Another approach of restricting chlamydial growth by nutrient starvation is by reducing intracellular iron levels [81]. Increasing intracellular iron levels by reducing surface-expressed ferroportin in macrophages increases the fraction of large *C. trachomatis* inclusions [82]. Thus, chlamydial growth is dependent on host-cell iron metabolism. Modulation of these pathways could provide a defense mechanism against *C. trachomatis*. Expression of ferritin heavy chain is increased during *C. trachomatis* infection of monocytes [79]. Ferritin could be anti-chlamydial by binding intracellular iron thereby decreasing the concentration of free iron available for *C. trachomatis* in the infected cell.

7 Antigen-presentation of *C. trachomatis* infected macrophages

The primary role for monocytes and macrophages in anti-bacterial immunity is mediated by phagocytosis and secretion of proinflammatory cytokines. However, monocytes and especially macrophages contain major histocompatibility complex (MHC) class I and MHC class II molecules making them competent inducers of adaptive immunity. Possible antigen-presentation pathways in *C. trachomatis* infected macrophages are illustrated in Fig. 4.

7.1 Macrophages and CD4+ T-cells in *C. trachomatis* infection

Th1 responses are the predominant adaptive immunological response to control and eliminate
 C. trachomatis infection like most other intracellular bacteria [83]. Activated Th1 cells secrete
 IFN-γ and TNF-α, which potentiate microbicidal mechanisms in macrophages and inhibit
 chlamydial growth in infected epithelial cells as previously described.
 How do monocytes and macrophages contribute to Th1 immunity during chlamydial

infection? Activation of naïve CD4+ T-cells requires T-cell recognition of chlamydial

antigens presented in MHC class II molecules together with co-receptor ligation and an 418 419 appropriate cytokine signal. Several C. trachomatis proteins have been shown to contain 420 MHC class II epitopes including HSP60, MOMP and PMP [84]. During infection with C. 421 trachomatis monocytes upregulate the expression of MHC class II molecules and the co-422 stimulatory receptors CD40, CD80 and CD86 [16,41,74,79]. IFN-γ and IL-12 drive T-cell polarization in the Th1 direction. Several studies have shown that C. trachomatis leads to 423 IFN-γ and IL-12 expression and secretion from infected macrophages (Table I) [16,41,85,86]. 424 425 Hence, macrophages infected with C. trachomatis seem to direct the adaptive response towards Th1 immunity. 426 427 Although Th1 mediated immunity is pivotal for infection control and resolution, the macrophage induced T-cell response is not directed solely against Th1 activation. Some 428 investigations suggest that C. trachomatis infected monocytes might also drive a Th2 429 430 mediated response or modulate the effector functions of activated T-cells [87–89]. Lu et al. 431 showed that murine macrophages pulsed ex vivo with UV-inactivated C. muridarum failed to 432 induce a Th1 dominant response when adoptively transferred. Instead, mice immunized with 433 ex vivo pulsed macrophages had high titers of IgG1 Chlamydia-specific antibodies suggesting an IL-4 mediated Th2 response [88]. The authors did not evaluate whether macrophages in 434 fact induced IL-4 secretion in response to C. trachomatis pulsing. In fact, macrophage 435 436 secretion of IL-4 have not yet been established, but micro array analysis have shown that IL-4 mRNA is upregulated in human monocytes early after infection [90]. 437 Macrophages and CD8+ T-cells in C. trachomatis infection 438 Besides the Th1- response, cell-mediated immunity against *Chlamydia* may also involve 439 CD8+ T-cells. When activated, these cells differentiate into cytotoxic T-cells, which possess 440 441 efficient killing mechanisms targeted against host cells infected with intracellular pathogens. The relevance and importance of CD8+ mediated immunity during chlamydial infections has 442

not yet been funly established. Different studies have shown that Chiamyata-specific CD8+ 15
cells are generated during C. trachomatis infection and that they participate actively in anti-
chlamydial immunity [91].
CD8+ T-cells recognize small peptides loaded on MHC class I molecules. Therefore,
pathogen-derived antigens need to be proteolytically processed before loading onto MHC
class I happens. Enzymatic processing of MHC class I antigens is mediated by the
ubiquitin/proteasome system located in the cytosol. Thus, only pathogens/antigens accessing
the cytosol are targets for MHC class I antigen presentation and CD8+ T-cell activation. The
process of presenting exogenously acquired antigens on MHC class I is known as antigen
cross-presentation and this immunological mechanism is restricted to professional antigen-
presenting cells, such as dendritic cells and macrophages [92]. Accordingly, C. trachomatis is
only a potential target for antigen cross-presentation if chlamydial antigens enter the cytosol.
In epithelial cells, C. trachomatis secretes different proteins into the host cell cytosol. If these
proteins are secreted in macrophages too, entering MHC class I processing is possible[9,93-
95]. However, these proteins are important for inclusion formation and may not be secreted in
macrophages since C. trachomatis fail to induce inclusion maturation in macrophages.
Interestingly though, Prantner et al. demonstrated that the translocon protein sec61 locates to
the chlamydial inclusion in macrophages [32]. Sec61 has recently been demonstrated to
facilitate antigen translocation from an endosomal compartment into the cytosol [96]. Thus,
when C. trachomatis EBs or RBs are degraded in macrophages, chlamydial proteins may
escape the vesicular compartment entering the cytosol and may be tagged for MHC class I
presentation. This process is potentially facilitated by increased expression of MHC class I
and transporter associated with antigen processing (TAP1) in macrophages activated by
conditioned medium from C. trachomatis infected epithelial cells [74]. TAP is a

467	transmembrane protein that facilitates transport of antigenic peptides from the cytosol to the
468	MHC class I loading compartment in the ER.

7.3 Modulation of T-cell responses

Although chlamydial infection initiates both CD4+ and CD8+ cell-mediated immune responses, eradiction of the infection does not occur. The insufficiency of chlamydial clearance mechanisms may be due to chlamydial-induced attenuation of T-cell immunity.

Jendro and colleagues demonstrated that culture supernatants from *C. trachomatis* infected monocytes induced apoptosis of T-cells by a TNF-α dependent mechanism [97,98]. Another way of regulating T-cell immunity is by attenuating T-cell effector functions. It has been demonstrated that chlamydial-infected macrophages reduce IFN-γ release from co-cultured T-cells [99].

8 Summary

Chlamydial growth in monocytes and macrophages is limited and differs drastically from the classical growth pattern seen in epithelial cells. The restricted growth pattern is mediated by several mechanisms including lysosome trafficking, perforin-2 interaction, production of reactive species, and nutrient starvation. The receptors and mechanisms mediating chlamydial recognition and entry are poorly understood and need further investigation. Additionally, there is still dissension on the intracellular trafficking of *C. trachomatis* in macrophages. Confirmation of current observations in human primary cells remains.

Conflict of interest

The authors declare no conflicts of interest.

		Heeli ilb wii toockii i
491	Ack	nowledgements
492	TBGl	P was supported by a grant from the Sino-Danish Center. SB is supported by grants from
493	the B	irthe Meyers Foundation, the Beckett Foundation and, the Hertha Christensen
494	Found	dation. [100,101,110–112,102–109]
495	Refe	erences
496	[1]	Beagley KW, Huston WM, Hansbro PM, Timms P. Chlamydial infection of immune cells: altered
497		function and implications for disease. Crit Rev Immunol 2009;29:275–305.
498		doi:10.1615/CritRevImmunol.v29.i4.10.
499	[2]	Morrison SG, Morrison RP. In situ analysis of the evolution of the primary immune response in murine
500		Chlamydia trachomatis genital tract infection. Infect Immun 2000;68:2870–9.
501		doi:10.1128/IAI.68.5.2870-2879.2000.
502	[3]	Prantner D, Darville T, Sikes JD, Andrews CW, Brade H, Rank RG, et al. Critical role for interleukin-1β
503		(IL-1β) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of
504		IL-1β in mouse macrophages. Infect Immun 2009;77:5334–46. doi:10.1128/IAI.00883-09.
505	[4]	Ziklo N, Huston WM, Hocking JS, Timms P. Chlamydia trachomatis Genital Tract Infections: When
506		Host Immune Response and the Microbiome Collide. Trends Microbiol 2016;24:750–65.
507		doi:10.1016/j.tim.2016.05.007.
508	[5]	Stagg AJ, Tuffrey M, Woods C, Wunderink E, Knight SC. Protection against ascending infection of the
509		genital tract by chlamydia trachomatis is associated with recruitment of major histocompatibility
510		complex class II antigen-presenting cells into uterine tissue. Infect Immun 1998;66:3535-44.
511	[6]	Qiu H, Fan Y, Joyee AG, Wang S, Han X, Bai H, et al. Type I IFNs enhance susceptibility to Chlamydia

muridarum lung infection by enhancing apoptosis of local macrophages. J Immunol 2008;181:2092–102.

de Vries HJC, Smelov V, Middelburg JG, Pleijster J, Speksnijder AG, Morré SA. Delayed Microbial

Birkelund S, Johnsen H, Christiansen G. Chlamydia trachomatis serovar L2 induces protein tyrosine

Cure of Lymphogranuloma Venereum Proctitis with Doxycycline Treatment. Clin Infect Dis

phosphorylation during uptake by HeLa cells. Infect Immun 1994;62:4900-8.

512

513

514

515

516

517

518

[7]

[8]

doi:10.4049/jimmunol.181.3.2092.

2009;48:e53-6. doi:10.1086/597011.

519	[9]	Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, et al. A chlamydial type III
520		translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of
521		actin. Proc Natl Acad Sci U S A 2004;101:10166-71. doi:10.1073/pnas.0402829101.
522	[10]	Clifton DR, Dooley CA, Grieshaber SS, Carabeo RA, Fields KA, Hackstadt T. Tyrosine
523		Phosphorylation of the Chlamydial Effector Protein Tarp Is Species Specific and Not Required for
524		Recruitment of Actin. Infect Immun 2005;73:3860–8. doi:10.1128/IAI.73.7.3860-3868.2005.
525	[11]	Clausen JD, Christiansen G, Holst HU, Birkelund S. Chlamydia trachomatis utilizes the host cell
526		microtubule network during early events of infection. Mol Microbiol 1997;25:441–9.
527	[12]	Suchland RJ, Rockey DD, Bannantine JP, Stamm WE. Isolates of Chlamydia trachomatis that occupy
528		nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun
529		2000;68:360–7.
530	[13]	Hackstadt T, Fischer ER, Scidmore MA, Rockey DD, Heinzen RA. Origins and functions of the
531		chlamydial inclusion. Trends Microbiol 1997;5:288–93. doi:10.1016/S0966-842X(97)01061-5.
532	[14]	Abdelrahman Y, Ouellette SP, Belland RJ, Cox J V. Polarized Cell Division of Chlamydia trachomatis.
533		PLoS Pathog 2016;12:e1005822. doi:10.1371/journal.ppat.1005822.
534	[15]	Nguyen PH, Lutter EI, Hackstadt T. Chlamydia trachomatis inclusion membrane protein MrcA interacts
535		with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation. PLOS
536		Pathog 2018;14:e1006911. doi:10.1371/journal.ppat.1006911.
537	[16]	Agrawal T, Bhengraj AR, Vats V, Salhan S, Mittal A. Expression of TLR 2, TLR 4 and iNOS in
538		Cervical Monocytes of Chlamydia trachomatis-infected Women and Their Role in Host Immune
539		Response. Am J Reprod Immunol 2011;66:534–43. doi:10.1111/j.1600-0897.2011.01064.x.
540	[17]	Hvid M, Baczynska A, Deleuran B, Fedder J, Knudsen HJ, Christiansen G, et al. Interleukin-1 is the
541		initiator of Fallopian tube destruction during Chlamydia trachomatis infection. Cell Microbiol
542		2007;9:2795–803. doi:10.1111/j.1462-5822.2007.00996.x.
543	[18]	Rank RG, Lacy HM, Goodwin A, Sikes J, Whittimore J, Wyrick PB, et al. Host chemokine and cytokine
544		response in the endocervix within the first developmental cycle of Chlamydia muridarum. Infect Immun
545		2010;78:536–44. doi:10.1128/IAI.00772-09.
546	[19]	Belay T, Eko FO, Ananaba GA, Bowers S, Moore T, Lyn D, et al. Chemokine and chemokine receptor
547		dynamics during genital chlamydial infection. Infect Immun 2002;70:844-50. doi:10.1128/IAI.70.2.844-
548		850.2002.

549	[20]	Shi C, Pamer EG. Monocyte recruitment during infection an inflammation. Nat Rev Immunol
550		2011;11:762–74. doi:10.1016/j.biotechadv.2011.08.021.Secreted.
551	[21]	Zhou H, Huang QL, Li ZY, Wu YM, Xie XB, Ma KK, et al. pORF5 plasmid protein of Chlamydia
552		trachomatis induces MAPK-mediated pro-inflammatory cytokines via TLR2 activation in THP-1 cells.
553		Sci China Life Sci 2013;56:460–6. doi:10.1007/s11427-013-4470-8.
554	[22]	Datta B, Njau F, Thalmann J, Haller H, Wagner AD. Differential infection outcome of Chlamydia
555		trachomatis in human blood monocytes and monocyte-derived dendritic cells. BMC Microbiol
556		2014;14:209. doi:10.1186/s12866-014-0209-3.
557	[23]	Wang Y, Liu Q, Chen D, Guan J, Ma L, Zhong G, et al. Chlamydial Lipoproteins Stimulate Toll-Like
558		Receptors 1/2 Mediated Inflammatory Responses through MyD88-Dependent Pathway. Front Microbiol
559		2017;8:78. doi:10.3389/fmicb.2017.00078.
560	[24]	Bas S, Neff L, Vuillet M, Spenato U, Seya T, Matsumoto M, et al. The proinflammatory cytokine
561		response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a
562		lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J Immunol
563		2008;180:1158–68. doi:180/2/1158 [pii].
564	[25]	Yilma AN, Singh SR, Fairley SJ, Taha MA, Dennis VA. The anti-inflammatory cytokine, interleukin-10,
565		inhibits inflammatory mediators in human epithelial cells and mouse macrophages exposed to live and
566		UV-inactivated chlamydia trachomatis. Mediators Inflamm 2012;2012. doi:10.1155/2012/520174.
567	[26]	Nagarajan UM, Ojcius DM, Stahl L, Rank RG, Darville T. Chlamydia trachomatis induces expression of
568		IFN-gamma-inducible protein 10 and IFN-beta independent of TLR2 and TLR4, but largely dependent
569		on MyD88. J Immunol 2005;175:450–60. doi:10.4049/jimmunol.175.1.450.
570	[27]	Webster SJ, Brode S, Ellis L, Fitzmaurice TJ, Elder MJ, Gekara NO, et al. Detection of a microbial
571		metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis
572		infection. PLOS Pathog 2017;13:e1006383. doi:10.1371/journal.ppat.1006383.
573	[28]	Ingalls RR, Rice PA, Qureshi N, Takayama K, Lin JS, Golenbock DT, et al. The Inflammatory Cytokine
574		Response to Chlamydia trachomatis Infection Is Endotoxin Mediated 1995;63:3125–30.
575	[29]	Heine H, Müller-Loennies S, Brade L, Lindner B, Brade H. Endotoxic activity and chemical structure of
576		lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC.
577		Eur J Biochem 2003;270:440–50. doi:10.1046/j.1432-1033.2003.03392.x.
578	[30]	O'Connell CM, Ionova IA, Quayle AJ, Visintin A, Ingalls RR. Localization of TLR2 and MyD88 to

579		Chlamydia trachomatis inclusions: Evidence for signaling by intracellular TLR2 during infection with an
580		obligate intracellular pathogen. J Biol Chem 2006;281:1652–9. doi:10.1074/jbc.M510182200.
581	[31]	Erridge C, Pridmore A, Eley A, Stewart J, Poxton IR. Lipopolysaccharides of Bacteroides fragilis,
582		Chlamydia trachomatis and Pseudomonas aeruginosa signal via Toll-like receptor 2. J Med Microbiol
583		2004;53:735–40. doi:10.1099/jmm.0.45598-0.
584	[32]	Prantner D, Darville T, Nagarajan UM. Stimulator of IFN gene is critical for induction of IFN-beta
585		during Chlamydia muridarum infection. J Immunol 2010;184:2551–60. doi:10.4049/jimmunol.0903704.
586	[33]	Yeung ATY, Hale C, Lee AH, Gill EE, Bushell W, Parry-Smith D, et al. Exploiting induced pluripotent
587		stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis.
588		Nat Commun 2017;8:15013. doi:10.1038/ncomms15013.
589	[34]	Buchholz KR, Stephens RS. The cytosolic pattern recognition receptor NOD1 induces inflammatory
590		interleukin-8 during Chlamydia trachomatis infection. Infect Immun 2008;76:3150-5.
591		doi:10.1128/IAI.00104-08.
592	[35]	Welter-Stahl L, Ojcius DM, Viala J, Girardin S, Liu W, Delarbre C, et al. Stimulation of the cytosolic
593		receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum.
594		Cell Microbiol 2006;8:1047–57. doi:10.1111/j.1462-5822.2006.00686.x.
595	[36]	Franchi L, Park JH, Shaw MH, Marina-Garcia N, Chen G, Kim YG, et al. Intracellular NOD-like
596		receptors in innate immunity, infection and disease. Cell Microbiol 2008;10:1-8. doi:10.1111/j.1462-
597		5822.2007.01059.x.
598	[37]	Franchi L, Warner N, Viani K, Nuñez G. NIH Public Access. Cancer 2010;227:106–28.
599		doi:10.1111/j.1600-065X.2008.00734.x.Function.
600	[38]	Ghuysen JM, Goffin C. Lack of cell wall peptidoglycan versus penicillin sensitivity: New insights into
601		the chlamydial anomaly. Antimicrob Agents Chemother 1999;43:2339-44.
602	[39]	Liechti GW, Kuru E, Hall E, Kalinda A, Brun Y V, VanNieuwenhze M, et al. A new metabolic cell-wall
603		labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 2014;506:507–10.
604		doi:10.1038/nature12892.
605	[40]	Packiam M, Weinrick B, Jacobs WR, Maurelli AT. Structural characterization of muropeptides from
606		Chlamydia trachomatis peptidoglycan by mass spectrometry resolves "chlamydial anomaly". Proc Natl
607		Acad Sci U S A 2015;112:11660–5. doi:10.1073/pnas.1514026112.
608	[41]	Yilma AN, Singh SR, Dixit S, Dennis VA. Anti-inflammatory effects of silver-polyvinyl pyrrolidone

609		(Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis. Int J
610		Nanomedicine 2013;8:2421–32. doi:10.2147/IJN.S44090.
611	[42]	Finethy R, Jorgensen I, Haldar AK, De Zoete MR, Strowig T, Flavell RA, et al. Guanylate binding
612		proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia-infected
613		macrophages. Infect Immun 2015;83:4740-9. doi:10.1128/IAI.00856-15.
614	[43]	Abdul-Sater A a., Saïd-Sadier N, Padilla E V., Ojcius DM. Chlamydial infection of monocytes
615		stimulates IL-1 β secretion through activation of the NLRP3 inflammasome. Microbes Infect
616		2010;12:652–61. doi:10.1016/j.micinf.2010.04.008.
617	[44]	Zhang Y, Yeruva L, Marinov A, Prantner D, Wyrick PB, Lupashin V, et al. The DNA Sensor, Cyclic
618		GMP–AMP Synthase, Is Essential for Induction of IFN-β during <i>Chlamydia trachomatis</i> Infection. J
619		Immunol 2014;193:2394–404. doi:10.4049/jimmunol.1302718.
620	[45]	Rank RG, Whittimore J, Bowlin AK, Dessus-Babus S, Wyrick PB. Chlamydiae and polymorphonuclear
621		leukocytes: Unlikely allies in the spread of chlamydial infection. FEMS Immunol Med Microbiol
622		2008;54:104–13. doi:10.1111/j.1574-695X.2008.00459.x.
623	[46]	Nans A, Ford C, Hayward RD. Host-pathogen reorganisation during host cell entry by Chlamydia
624		trachomatis. Microbes Infect 2015;17:1–5. doi:10.1016/j.micinf.2015.08.004.
625	[47]	Ward ME, Murray A. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa
626		cells: mechanisms of endocytosis. J Gen Microbiol 1984;130:1765–80.
627	[48]	Hodinka RL, Davis CH, Choong J, Wyrick PB. Ultrastructural study of endocytosis of Chlamydia
628		trachomatis by McCoy cells. Infect Immun 1988;56:1456-63.
629	[49]	Norkin LC, Wolfrom SA, Stuart ES. Association of caveolin with Chlamydia trachomatis inclusions at
630		early and late stages of infection. Exp Cell Res 2001;266:229–38. doi:10.1006/excr.2001.5202.
631	[50]	Paland N, Bohme L, Gurumurthy RK, Maurer A, Szczepek AJ, Rudel T. Reduced display of tumor
632		necrosis factor receptor I at the host cell surface supports infection with Chlamydia trachomatis. J Biol
633		Chem 2008;283:6438–48. doi:M708422200 [pii]\r10.1074/jbc.M708422200.
634	[51]	Al-Kuhlani M, Rothchild J, Pal S, De La Maza LM, Ouburg S, Morr?? SA, et al. Trail-R1 is a negative
635		regulator of pro-inflammatory responses and modulates long-term sequelae resulting from Chlamydia
636		trachomatis infections in humans. PLoS One 2014;9. doi:10.1371/journal.pone.0093939.
637	[52]	Sun HSHS, Eng EWY, Jeganathan S, Sin AT-WT-W, Patel PC, Gracey E, et al. Chlamydia trachomatis
638		vacuole maturation in infected macrophages. J Leukoc Biol 2012;92:815–27. doi:10.1189/jlb.0711336.

639	[53]	Datta B, Njau F, Thalmann J, Haller H, Wagner AD. Differential infection outcome of Chlamydia
640		trachomatis in human blood monocytes and monocyte-derived dendritic cells. BMC Microbiol
641		2014;14:209. doi:10.1186/s12866-014-0209-3.
642	[54]	Kuo C, Puolakkainen M, Lin T-M, Witte M, Campbell LA. Mannose-receptor positive and negative
643		mouse macrophages differ in their susceptibility to infection by Chlamydia species. Microb Pathog
644		2002;32:43–8. doi:10.1006/mpat.2001.0479.
645	[55]	Kuo CC, Takahashi N, Swanson AF, Ozeki Y, Hakomori SI. An N-linked high-mannose type
646		oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates
647		attachment and infectivity of the microorganism to HeLa cells. J Clin Invest 1996;98:2813-8.
648		doi:10.1172/JCI119109.
649	[56]	Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E, et al. The human macrophage
650		mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome
651		biogenesis. J Exp Med 2005;202:987–99. doi:10.1084/jem.20051239.
652	[57]	Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y. Immunoevasion and immunosuppression of the
653		macrophage by Mycobacterium tuberculosis. Immunol Rev 2015;264:220–32. doi:10.1111/imr.12268.
654	[58]	Hall RT, Strugnell T, Wu X, Devine D V., Stiver HG. Characterization of kinetics and target proteins for
655		binding of human complement component C3 to the surface-exposed outer membrane of Chlamydia
656		trachomatis serovar L2. Infect Immun 1993;61:1829–34.
657	[59]	Lausen M, Christiansen G, Karred N, Winther R, Poulsen TBG, Palarasah Y, et al. Complement C3
658		opsonization of Chlamydia trachomatis facilitates uptake in human monocytes. Microbes Infect 2018.
659		doi:10.1016/J.MICINF.2018.04.004.
660	[60]	Zuck M, Ellis T, Venida A, Hybiske K. Extrusions are phagocytosed and promote <i>Chlamydia</i> survival
661		within macrophages. Cell Microbiol 2017;19:e12683. doi:10.1111/cmi.12683.
662	[61]	Schmitz E, Nettelnbreker E, Zeidler H, Hammer M, Manor E, Wollenhaupt J. Intracellular persistence of
663		chlamydial major outer-membrane protein, lipopolysaccharide and ribosomal RNA after non-productive
664		infection of human monocytes with Chlamydia trachomatis serovar K. J Med Microbiol 1993;38:278-
665		85.
666	[62]	Numazaki K, Suzuki K, Chiba S. Replication of Chlamydia trachomatis and C. pneumoniae in the
667		human monocytic cell line U-937. J Med Microbiol 1995;42:191–5.
668	[63]	Koehler L, Nettelnbreker E, Hudson a P, Ott N, Gérard HC, Branigan PJ, et al. Ultrastructural and

669		molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes.
670		Microb Pathog 1997;22:133–42. doi:10.1006/mpat.1996.0103.
671	[64]	Marangoni A, Bergamini C, Fato R, Cavallini C, Donati M, Nardini P, et al. Infection of human
672		monocytes by Chlamydia pneumoniae and Chlamydia trachomatis: an in vitro comparative study. BMC
673		Res Notes 2014;7:230. doi:10.1186/1756-0500-7-230.
674	[65]	Mpiga P, Ravaoarinoro M. Effects of sustained antibiotic bactericidal treatment on Chlamydia
675		trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937). Int J
676		Antimicrob Agents 2006;27:316–24. doi:10.1016/j.ijantimicag.2005.11.010.
677	[66]	Kinchen JM, Ravichandran KS. Phagosome maturation: going through the acid test. Nat Rev Mol Cell
678		Biol 2008;9:781–95. doi:10.1038/nrm2515.
679	[67]	Al-Zeer MA, Al-Younes HM, Lauster D, Lubad MA, Meyer TF. Autophagy restricts Chlamydia
680		trachomatis growth in human macrophages via IFNG-inducible guanylate binding proteins. Autophagy
681		2013;9:50–62. doi:10.4161/auto.22482.
682	[68]	Yasir M, Pachikara ND, Bao X, Pan Z, Fan H. Regulation of chlamydial infection by host autophagy and
683		vacuolar ATPase-bearing organelles. Infect Immun 2011;79:4019–28. doi:10.1128/IAI.05308-11.
684	[69]	Pachikara N, Zhang H, Pan Z, Jin S, Fan H. Productive Chlamydia trachomatis lymphogranuloma
685		venereum 434 infection in cells with augmented or inactivated autophagic activities. FEMS Microbiol
686		Lett 2009;292:240–9. doi:10.1111/j.1574-6968.2009.01494.x.
687	[70]	Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010;221:3–12.
688		doi:10.1002/path.2697.
689	[71]	Coutinho-Silva R, Stahl L, Raymond M-N, Jungas T, Verbeke P, Burnstock G, et al. Inhibition of
690		chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity
691		2003;19:403–12. doi:10.1016/S1074-7613(03)00235-8.
692	[72]	McCormack RM, de Armas LR, Shiratsuchi M, Fiorentino DG, Olsson ML, Lichtenheld MG, et al.
693		Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic
694		bacteria. Elife 2015;4:1–29. doi:10.7554/eLife.06508.
695	[73]	Fields KA, McCormack R, de Armas LR, Podack ER. Perforin-2 restricts growth of chlamydia
696		trachomatis in macrophages. Infect Immun 2013;81:3045–54. doi:10.1128/IAI.00497-13.
697	[74]	Johnson RM, Kerr MS. Modeling the transcriptome of genital tract epithelial cells and macrophages in
698		healthy mucosa versus mucosa inflamed by Chlamydia muridarum infection. Pathog Dis

699 2015;73:ftv100. doi:10.1093/femspd/ftv100. 700 Fang FC, Actions A, Species RO, Feeds RSS, Journal a SM. Antimicrobial Actions of Reactive Oxygen [75] 701 Species Antimicrobial Actions of Reactive Oxygen Species. MBio 2011;2:1-6. 702 doi:10.1128/mBio.00141-11.Updated. 703 [76] Chen B, Stout R, Campbell WF. Nitric oxide production: a mechanism of Chlamydia trachomatis 704 inhibition in interferon-gamma-treated RAW264.7 cells. FEMS Immunol Med Microbiol 1996;14:109-705 20. 706 [77] Rajaram K, Nelson DE. Chlamydia muridarum infection of macrophages elicits bactericidal nitric oxide 707 production via reactive oxygen species and cathepsin B. Infect Immun 2015;83:3164–75. 708 doi:10.1128/IAI.00382-15. 709 [78] Soliman H, Mediavilla-Varela M, Antonia S. Indoleamine 2,3-dioxygenase: is it an immune suppressor? 710 Cancer J 2010;16:354–9. doi:10.1097/PPO.0b013e3181eb3343. 711 [79] Krausse-Opatz B, Busmann A, Tammen H, Menzel C, Möhring T, Yondre N Le, et al. Peptidomic 712 analysis of human peripheral monocytes persistently infected by Chlamydia trachomatis. Med Microbiol 713 Immunol 2007;196:103-14. doi:10.1007/s00430-006-0033-y. 714 [80] Heuer D, Rejman Lipinski A, Machuy N, Karlas A, Wehrens A, Siedler F, et al. Chlamydia causes 715 fragmentation of the Golgi compartment to ensure reproduction. Nature 2009;457:731–5. 716 doi:10.1038/nature07578. 717 [81] Raulston JE. Response of Chlamydia trachomatis serovar E to iron restriction vitro and evidence for 718 iron-regulated chlamydial proteins. Infect Immun 1997;65:4539-47. 719 Paradkar PN, De Domenico I, Durchfort N, Zohn I, Kaplan J, Ward DM. Iron depletion limits [82] 720 intracellular bacterial growth in macrophages. Blood 2008;112:866-74. doi:10.1182/blood-2007-12-721 126854. 722 [83] Karunakaran KP, Yu H, Foster LJ, Brunham RC. Development of a Chlamydia trachomatis T cell 723 Vaccine. Hum Vaccin 2010;6:676-80. doi:12299 [pii]. 724 [84] Karunakaran KP, Yu H, Jiang X, Chan Q, Moon KM, Foster LJ, et al. Outer membrane proteins 725 preferentially load MHC class II peptides: Implications for a Chlamydia trachomatis T cell vaccine. 726 Vaccine 2015;33:2159-66. doi:10.1016/j.vaccine.2015.02.055. 727 [85] Mpiga P, Mansour S, Morisset R, Beaulieu R, Ravaoarinoro M. Sustained interleukin-6 and interleukin-728 8 expression following infection with Chlamydia trachomatis serovar L2 in a HeLa/THP-1 cell co-

729		culture model. Scand J Immunol 2006;63:199–207. doi:10.1111/j.1365-3083.2006.01734.x.
730	[86]	Kinnunen A, Surcel HM, Halttunen M, Tiitinen A, Morrison RP, Morrison SG, et al. Chlamydia
731		trachomatis heat shock protein-60 induced interferon-?? and interleukin-10 production in infertile
732		women. Clin Exp Immunol 2003;131:299–303. doi:10.1046/j.1365-2249.2003.02048.x.
733	[87]	Vicetti Miguel RD, Harvey SAK, LaFramboise WA, Reighard SD, Matthews DB, Cherpes TL. Human
734		Female Genital Tract Infection by the Obligate Intracellular Bacterium Chlamydia trachomatis Elicits
735		Robust Type 2 Immunity. PLoS One 2013;8:1–12. doi:10.1371/journal.pone.0058565.
736	[88]	Lu H, Zhong G. Interleukin-12 Production Is Required for Chlamydial Antigen-Pulsed Dendritic Cells
737		To Induce Protection against Live. Society 1999;67:1763–9.
738	[89]	Azenabor AA, York J. Chlamydia trachomatis evokes a relative anti-inflammatory response in a free Ca
739		2 + dependent manner in human macrophages. "Comparative Immunol Microbiol Infect Dis
740		2010;33:513–28. doi:10.1016/j.cimid.2009.09.002.
741	[90]	Schrader S, Klos A, Hess S, Zeidler H, Kuipers JG, Rihl M. Expression of inflammatory host genes in
742		Chlamydia trachomatis-infected human monocytes. Arthritis Res Ther 2007;9:R54. doi:10.1186/ar2209.
743	[91]	Nogueira C V., Zhang X, Giovannone N, Sennott EL, Starnbach MN. Protective Immunity against
744		Chlamydia trachomatis Can Engage Both CD4+ and CD8+ T Cells and Bridge the Respiratory and
745		Genital Mucosae. J Immunol 2015;194:2319–29. doi:10.4049/jimmunol.1402675.
746	[92]	Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol
747		2012;12:557–69. doi:10.1038/nri3254.
748	[93]	Shaw AC, Vandahl BB, Larsen MR, Roepstorff P, Gevaert K, Vandekerckhove J, et al. Characterization
749		of a secreted Chlamydia protease. Cell Microbiol 2002;4:411–24. doi:10.1046/j.1462-
750		5822.2002.00200.x.
751	[94]	Hobolt-Pedersen AS, Christiansen G, Timmerman E, Gevaert K, Birkelund S. Identification of
752		Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell
753		cytoplasm and nucleus. FEMS Immunol Med Microbiol 2009;57:46–58. doi:10.1111/j.1574-
754		695X.2009.00581.x.
755	[95]	Zhong G, Fan P, Ji H, Dong F, Huang Y. Identification of a chlamydial protease-like activity factor
756		responsible for the degradation of host transcription factors. J Exp Med 2001;193:935–42.
757		doi:10.1084/jem.193.8.935.
758	[96]	Zehner M, Marschall AL, Bos E, Schloetel J-G, Kreer C, Fehrenschild D, et al. The Translocon Protein

/59		Sec61 Mediates Antigen Transport from Endosomes in the Cytosol for Cross-Presentation to CD8+ T
760		Cells. Immunity 2015;42:850–63. doi:10.1016/j.immuni.2015.04.008.
761	[97]	Jendro MC, Deutsch T, Korber B, Kohler L, Kuipers JG, Krausse-Opatz B, et al. Infection of human
762		monocyte-derived macrophages with Chlamydia trachomatis induces apoptosis of T cells: a potential
763		mechanism for persistent infection. Infect Immun 2000;68:6704–11. doi:Doi 10.1128/Iai.68.12.6704-
764		6711.2000.
765	[98]	Jendro MC, Fingerle F, Deutsch T, Liese A, Köhler L, Kuipers JG, et al. Chlamydia trachomatis-infected
766		macrophages induce apoptosis of activated T cells by secretion of tumor necrosis factor-α in vitro. Med
767		Microbiol Immunol 2004;193:45–52. doi:10.1007/s00430-003-0182-1.
768	[99]	Azenabor A a., Cintrón-Cuevas J, Schmitt H, Bumah V. Chlamydia trachomatis induces anti-
769		inflammatory effect in human macrophages by attenuation of immune mediators in Jurkat T-cells.
770		Immunobiology 2011;216:1248–55. doi:10.1016/j.imbio.2011.07.002.
771	[100]	Nagarajan UM, Tripathy M, Kollipara A, Allen J, Goodwin A, Whittimore J, et al. Differential signaling
772		pathways are initiated in macrophages during infection depending on the intracellular fate of Chlamydia
773		spp. Immunol Cell Biol 2018;96:246–56. doi:10.1111/imcb.1033.
774	[101]	Zuck M, Sherrid A, Suchland R, Ellis T, Hybiske K. Conservation of extrusion as an exit mechanism for
775		Chlamydia. Pathog Dis 2016;74:ftw093. doi:10.1093/femspd/ftw093.
776	[102]	Chen YJ, Li RN, Lin CH, Yen JH. The role of monocytes and SLC11A1 polymorphisms in the
777		pathogenesis of Chlamydia-induced reactive arthritis. Scand J Rheumatol 2013;42:146-9.
778		doi:10.3109/03009742.2012.729608.
779	[103]	Schnitger K, Njau F, Wittkop U, Liese A, Kuipers JG, Thiel A, et al. Staining of Chlamydia trachomatis
780		elementary bodies: A suitable method for identifying infected human monocytes by flow cytometry. J
781		Microbiol Methods 2007;69:116–21. doi:10.1016/j.mimet.2006.12.013.
782	[104]	Gérard HC, Freise J, Wang Z, Roberts G, Rudy D, Krauß-Opatz B, et al. Chlamydia trachomatis genes
783		whose products are related to energy metabolism are expressed differentially in active vs. persistent
784		infection. Microbes Infect 2002;4:13–22. doi:10.1016/S1286-4579(01)01504-0.
785	[105]	Gérard HC, Köhler L, Branigan PJ, Zeidler H, Schumacher HR, Hudson AP. Viability and gene
786		expression in Chlamydia trachomatis during persistent infection of cultured human monocytes. Med
787		Microbiol Immunol 1998;187:115–20.
788	[106]	Nettelnbreker E, Zeidler H, Bartels H, Dreses-Werringloer U, Daubener W, Holtmann H, et al. Studies

789		of persistent infection by Chlamydia trachomatis serovar K in TPA-differentiated U937 cells and the role
790		of IFN-gamma. JMedMicrobiol 1998;47:141–9. doi:10.1099/00222615-47-2-141.
791	[107]	Zhong GM, de la Maza LM. Activation of mouse peritoneal macrophages in vitro or in vivo by
792		recombinant murine gamma interferon inhibits the growth of Chlamydia trachomatis serovar L1. Infect
793		Immun 1988;56:3322-5.
794	[108]	Bard J, Hall J, Levitt D. Chlamydia trachomatis (L2 serovar) can be bound, ingested and destroyed by
795		differentiated but not by undifferentiated human promyelocyte cell line HL-60. J Gen Microbiol
796		1987;133:899–910. doi:10.1099/00221287-133-4-899.
797	[109]	Yong EC, Chi EY, Kuo CC. Differential antimicrobial activity of human mononuclear phagocytes
798		against the human biovars of Chlamydia trachomatis. J Immunol 1987;139:1297–302.
799	[110]	Bard J, Levitt D. Chlamydia trachomatis (L2 serovar) binds to distinct subpopulations of human
800		peripheral blood leukocytes. Clin Immunol Immunopathol 1986;38:150-60. doi:10.1016/0090-
801		1229(86)90134-0.
802	[111]	Manor E, Sarov I. Fate of Chlamydia trachomatis in human monocytes and monocyte-derived
803		macrophages. Infect Immun 1986;54:90–5.
804	[112]	Kuo CC. Cultures of Chlamydia trachomatis in mouse peritoneal macrophages: factors affecting
805		organism growth. Infect Immun 1978;20:439–45.
806		
807		
808		
809		
810		
811		
812		
813	Figu	re legends
814		
815	Figui	re 1. Macrophage receptors involved in recognition of C. trachomatis. TLRs
816	expre	ssed at the cell surface recognize several chlamydial PAMPs such as LPS, HSP60,
817	lipop	roteins, MIP, pORF5, and probably many others. Ligation of the different TLRs initiate

a signaling cascade that ultimately leads to nuclear translocation of transcription fa	actors and
expression of genes encoding proinflammatory cytokines. After entry, C. trachoma	atis is
engaged by another set of receptors in the intracellular compartment. Induction of	IFN-β is
dependent on endosomal acidification and MyD88, suggesting that intracellular TI	LRs may
participate in IFN-β induction. The cytosolic NOD-like receptor NOD1 recognizes	S
peptidoglycan and ligation leads to activation of IKKs (IκB kinases) and NF-κB. N	NLRP3,
another NOD-like receptor, recruits the adaptor protein ASC (apoptosis-associated	d speck-like
protein containing a CARD) and P-Casp1 (pro-caspase 1) during infection forming	g a
multiprotein complex known as the inflammasome. Inflammasome assembly leads	s to
caspase-1 activation and caspase-1-dependent cleavage and secretion of IL-1β. The	ne NLRP3
activating compound has not been identified yet, but several endogenous molecule	es including
ATP and ROS (reactive oxygen species) can activate NLRP3. Also the DNA-sensi	sing receptor
AIM2 is involved in <i>Chlamydia</i> -induced inflammsome activation. Finally, chlamy	ydial DNA
can be recognized by the ER-associated receptor STING (stimulator of interferon g	genes).
STING ligation leads to translocation of IRF3 (Interferon Regulatory Factor 3) and	d
transcription of type I interferons.	
Figure 2. C. trachomatis infection in epithelial cell and monocyte.	
Both cell types have been cultured with C. trachomatis L2 for 24 hours. In HeLa c	cells (left),
C. trachomatis replicate and form a large inclusion at 24 hours, but it fails to do so	o in
monocytes (right).	
Figure 3. Entry and intracellular trafficking of C. trachomatis in ma	acrophages.
C. trachomatis entry into macrophages is facilitated by both ubiquitous and cell t	type-specific

surface receptors. The entry mechanisms are supposedly carried out by receptor-mediated

endocytosis and phagocytosis, involving the mannose receptor, complement receptors and possibly receptors recognizing phosphatidylserine (PS) in *Chlamydia*-containing extrusions.

Upon entry, *C. trachomatis* EBs are localized to Rab7-positive compartments indicative of late endosomes. Rab7 traffics *Chlamydia*-containing vesicles to lysosomes, where the bacteria are killed by the acidic pH and lysozymes.

Autophagy is another mechanism that targets *C. trachomatis* to lysosomes. Here, several ATG proteins facilitate the formation of a double-membrane structure that surrounds the bacteria creating an autophagosome. Interferon-inducible GBPs (guanylate binding proteins) modifies the autophagosomal membrane and facilitates fusion with lysosomes creating autolysosomes that leads to chlamydial killing. Finally, perforin-2 leads to *C. trachomatis* growth restriction by targeting EB directly or by modulating the compartment in which the bacteria reside.

Figure 4. Antigen-presentation in *Chlamydia*-infected macrophages. Both CD4+ T-cells and CD8+ T-cells are activated during *C. trachomatis* infection. Both MHC class II and the co-stimulatory molecules CD80/CD86 are upregulated in macrophages during chlamydial infection. In addition, both IL-12 and IFN-γ are secreted from activated macrophages directing the CD4+ T-cell differentiation in a Th1 direction. Activated Th1 cells secrete TNF-α and IFN-γ, which potentiate the microbicidal potency of macrophages. In addition, also Th2 immunity is elicited and the Th2-differentiation is mediated by IL-4, which is transcriptionally upregulated in response to infection.

The mechanisms involved in *Chlamydia*-induced CD8+ T-cell activation have not been elucidated, but it may occur through antigen cross-presentation. In this pathway, chlamydial proteins may escape the endosomal compartment leading to enzymatically processing by the proteasome. *Chlamydia*-derived peptides are trafficked to the ER or endosomal structures via

- 868 TAP (Transporter associated with antigen processing) where they are loaded onto MHC class
- 869 I molecules.

Table 1. Cytokines and chemokines induced by Chlamydia in macrophages

Study	Cytokine/chemokine	Species	Cells	Chlamydia	Reference
				spp.	
Abdul-Sater et al.	IL-1β	Human	THP-1	C. trachomatis L2	[37]
Agrawal et al.	IL-1β, IL-6, IL-12, IFN-γ	Human	Cervical monocytes	C. trachomatis*	[9]
Bas et al.	IL-1 β , IL-6, IL-8, TNF- α	Human	Monocytes	C. trachomatis L2	[18]
Darville et al.	IL-6, TNF-α	Mouse	Peritoneal macrophages	C. muridarum	[39]
Datta et al	IL-1 β , IL-10, TNF- α	Human	Monocytes	C. trachomatis Ba, D, and L2.	[16]
Hui et al.	IL-1 β , IL-8, TNF- α	Human	THP-1	pORF5 from C.trachomatis	[15]
Jendro et al.	TNF- α	Human	Monocytes	C. trachomatis K	[40]
Kol et al.	IL-6	Human	Monocytes	HSP60 from <i>C.</i> trachomatis	[41]
Krausse-Opatz et al.	IL-8	Human	Monocytes	C. trachomatis K	[42]
Lausen et al.	IL-6, IL8	Human	Monocytes	C. trachomatis L2	[43]
Manor et al.	TNF- α	Human	Monocyte- derived macrophages	C. trachomatis K and L2	[44]
Marangoni et al.	IFN-γ, TNF- α	Human	Monocytes	C. trachomatis D	[45]
Mpiga et al.	IL-1 β, IL-6, IL-8, IL-12	Human	THP-1 (human)	C. trachomatis L2	[46]
Nagajaran et al.	IFNa, IFNb, IP10, TNF-α	Mouse	Peritoneal macrophages	C. trachomatis Nigg.	[20]
Rothermel et al.	IL-1α, IL-1β	Human	Monocytes	C. trachomatis L2	[47]
Schrader et al	IL-1α, IL-1β, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-11, IL-15, IL-16, IL-17, IL-18, IFN-γ, TGF- β1, TGF- β2,	Human	Monocytes	C. trachomatis K	[48]
V:14 -1	TNF- α	Maria	1774	C	[10]
Yilma et al.	IL-6, IL-8, TNF- α	Mouse	J774 macrophages	C. muridarum	[19]
Yilma et al.	IL-1α, IL-1β, IL-6, IL-9, IL- 12, IL-15, GM-CSF, G-CSF, CCL2, CXCL1, CXCL5, CXCL10.	Mouse	J774 macrophages	C. muridarum	[35]
Wang et al.	MIP-2	Mouse	Monocyte- derived macrophages	Recombinant predicted lipoproteins from <i>C. trachomatis D.</i>	[17]

^{*}Serovar not specified

Table 2. Intracellular survival of C. trachomatis in monocytes/macrophages

Study	Chlamydia spp.	Species	Cells	Method	Results	Ref
Lausen et al. 2018	C. trachomatis L2	Human	Peripheral blood monocytes	IFU ¹ on McCoy cells	No IFUs 24h p.i. ²	[59]
Nagarajan et al. 2018	C. muridarum	Mouse	Peritoneal macrophages	IFU on L929 cells	200% of initial IFUs are recovered 24h p.i.	[100]
Webster et al. 2017	C. trachomatis?*	Mouse	BMDM ³	Quantification of LPS and qPCR on 16S RNA	LPS can be detected 24h p.i.	[27]
Yeung et al. 2017	C. trachomatis F	Human	iPSdM ⁴ and monocyte-derived macrophages	Quantification of GFP and IFU assay on McCoy cells	Bacteria replicates in iPSdM for 48h p.i.	[33]
Zuck et al. 2017	C. trachomatis L2	Mouse	BMDM	IFU assay on HeLa cells	No IFUs 4h and 8h p.i.	[60]
Zuck et al. 2016	C. trachomatis B, D, L2 and C. muridarum	Mouse	BMDM	Direct detection by fluorescence	All serovars except serovar B are detected 6h p.i.	[101]
Finethy et al. 2015	C. muridarum	Mouse	BMDM	qPCR on 16S RNA	Survives 24h p.i.	[42]
Rajaram et al. 2015	C. muridarum	Mouse	RAW264.7 cells	IFU assay on McCoy cells	Reproductive infection is observed 24h p.i.and is MOI ⁵ dependent	[77]
Datta et al. 2014	C. trachomatis Ba, D and L2	Human	Peripheral blood monocytes	IFU assay on HeLa cells	Serovar L2, but not Ba and D survives for 2 days p.i.	[53]
Marangoni et al. 2014	C. trachomatis D	Human	Peripheral blood monocytes	IFU assay on LLC-MK2 cells	No detectable IFUs 24h p.i.	[64]
Chen et al. 2013	C. trachomatis G	Human	Peripheral blood monocytes	IFU assay on Hep-2 cells	IFUs are detected 48h p.i.	[102]
Fields et al. 2013	C. trachomatis B, D, L2 and C. muridarum	Mouse	BV2 macrophages + RAW 264.7 cells	IFU assay on HeLa cells	L2 IFUs are detected 24h p.i	[73]
Sun et al. 2012	C. trachomatis L2	Mouse	RAW 264.7 cells	IFU assay on HeLa cells	IFUs are detected 24h p.i.	[52]
Azenabor et al. 2011	C. trachomatis?*	Human	THP-1 cells	IFU assay on Hep-2 cells	Few detectable IFUs 72h	[99]
Yasir et al. 2011	C. trachomatis L2 and C. muridarum	Mouse	RAW 264.7 cells	IFU assay on HeLa cells	Four times as many IFUs are recovered from muridarum compared to L2 24h p.i	[68]

Paradkar et al. 2008	C. trachomatis ?*	Mouse	BMDM	Direct inclusion visualization	10% cells contain large inclusions 24h p.i.	[82]
Schnitger et al. 2006	C. trachomatis K	Human	Peripheral blood monocytes	qPCR on ompA, euo and groEL1	Expression of all genes are observed after 7 days in monocytes	[103]
Gerard et al. 2002	C. trachomatis K	Human	Peripheral blood monocytes	qPCR on chlamydial rRNA and metabolic enzymes	Most mRNAs are detected after 2 days and rRNA after 5 days p.i.	[104]
Gerard et al. 1998	C. trachomatis K	Human	Peripheral blood monocytes	qPCR on chlamydial mRNA	Transcripts of glyQs, gseA, hsp60 and omp2 are observed 10 days p.i.	[105]
Nettelnbreker et al.1998	C. trachomatis K	Human	U937 cells	Direct inclusion visualization and IFU assay on Hep-2 cells	Chlamydial replication is observed from day 1 to 10 p.i.	[106]
Chen et al. 1996	C. trachomatis D	Mouse	RAW 264.7 cells	Direct inclusion visualization and IFU assay on McCoy cells	IFU recovery increases from 24h to 48h and IFUs are recovered 6 days p.i.	[76]
Koehler et al. 1996	C. trachomatis K	Human	Peripheral blood monocytes	TEM ⁶ visualization of inclusions	Atypical inclusions are observed for up to 10 days p.i.	[63]
Numazaki et al. 1995	C. trachomatis L2	Human	U937 cells	PCR on chlamydial DNA	DNA is detected 90 days p.i.	[62]
Schmitz et al. 1993	C. trachomatis K	Human	Peripheral blood monocytes	IFU assay on Hep-2 cells	3-5% of original inoculum is detected after 2h and few inclusions after 24h. MOMP is detected up until 14 days p.i.	[61]
Zhong et al. 1988	C. trachomatis L1	Mouse	Peritoneal macrophages	In vivo infection followed by IFU assay on HeLa cells	IFUs are recovered 60h p.i.	[107]
Bard et al. 1987	C. trachomatis L2	Human	HL-60 cells	Direct inclusion visualization and IFU assay on McCoy cells	IFUs are recovered 72h p.i	[108]
Yong et al. 1987	C. trachomatis B, C, I, L1 and L2	Human	Peripheral blood monocytes	Direct inclusion visualization and IFU assay on HeLa cells	LGV biovars survive and replicate for 48h, but only in cells incubated for 8-9 days. Trachoma biovars do not survive.	[109]
Bard et al. 1986	C. trachomatis L2	Human	Peripheral blood monocytes	Direct inclusion visualization and IFU assay on McCoy cells	<0,5% IFU yield compared to initial inoculum 32h p.i.	[110]
Manor et al. 1986	C. trachomatis L2	Human	Peripheral blood monocytes and monocyte-derived macrophages	TEM visualization of inclusions + IFU assay on MA-104 cells	Recovery of IFUs from monocytes at all tested time points up until 120h p.i. IFUs from macrophages decrease at 24h and increase at 72h.	[111]

Macrophages contain typical

					inclusions.	
[Kuo et al. 1978	C. trachomatis B and L2	Mouse	Peritoneal macrophages	IFU assay on HeLa cells	Both serovars form inclusions at 48h. 4% of serovar B is recovered after 48h while 50% of serovar L2 is recovered. B is detected for 4 days and L2 for 9 days p.i	[112]

¹IFU: Inclusion forming units; ²p.i.: post inoculation; ³BMDM: Bone marrow-derived macrophages; ⁴iPSdM: Induced pluripotent stem cell-derived macrophages; ⁵MOI: Multiplicity of infection, ⁶TEM: Transmission electron microscopy.

^{*}Serovar not specified

