

Aalborg Universitet

A Foundation for Spatial Data Warehouses on the Semantic Web

Gur, Nurefsan; Pedersen, Torben Bach; Zimányi, Esteban; Hose, Katja

Published in:
Semantic Web

DOI (link to publication from Publisher):
10.3233/SW-170281

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Gur, N., Pedersen, T. B., Zimányi, E., & Hose, K. (2018). A Foundation for Spatial Data Warehouses on the
Semantic Web. Semantic Web, 9(5), 557-587. https://doi.org/10.3233/SW-170281

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: October 19, 2024

https://doi.org/10.3233/SW-170281
https://vbn.aau.dk/en/publications/a41a2154-a627-4481-94f9-3d5c5710e28d
https://doi.org/10.3233/SW-170281

Aalborg Universitet

A Foundation for Spatial Data Warehouses on the Semantic Web

Gur, Nurefsan; Pedersen, Torben Bach; Zimányi, Esteban; Hose, Katja

Published in:
Semantic Web

DOI (link to publication from Publisher):
10.3233/SW-170281

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Gur, N., Pedersen, T. B., Zimányi, E., & Hose, K. (2018). A Foundation for Spatial Data Warehouses on the
Semantic Web. Semantic Web, 9(5), 557-587. https://doi.org/10.3233/SW-170281

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: september 04, 2019

https://doi.org/10.3233/SW-170281
http://vbn.aau.dk/en/publications/a-foundation-for-spatial-data-warehouses-on-the-semantic-web-(a41a2154-a627-4481-94f9-3d5c5710e28d).html

Undefined 1 (2009) 1–5 1
IOS Press

A Foundation for Spatial Data Warehouses on
the Semantic Web
Editor(s): Mark Gahegan, The University of Auckland, New Zealand
Solicited review(s): Grant McKenzie, University of Maryland, United States. Benjamin Adams, University of California, United States. Kristin
Stock, University of New Zealand, New Zealand.

Nurefşan Gür a,b,∗, Torben Bach Pedersen a, Esteban Zimányi b and Katja Hose a

a Center for Data Intensive Systems, Aalborg University, Selma Lagerlöfsvej 300, DK-9220 Aalborg Ø, Denmark
E-mail: {nurefsan,tbp,khose}@cs.aau.dk
b Department of Computer and Decision Engineering, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50,
B-1050 Brussels, Belgium
E-mail: {nurefsan.gur,ezimanyi}@ulb.ac.be

Abstract. Large volumes of geospatial data are being published on the Semantic Web (SW), yielding a need for advanced
analysis of such data. However, existing SW technologies only support advanced analytical concepts such as multidimensional
(MD) data warehouses and Online Analytical Processing (OLAP) over non-spatial SW data. To remedy this need, this paper
presents the QB4SOLAP vocabulary, which supports spatially enhanced MD data cubes over RDF data. The paper also defines a
number of Spatial OLAP (SOLAP) operators over QB4SOLAP cubes and provides algorithms for generating spatially extended
SPARQL queries from the SOLAP operators. The proposals are validated by applying them to a realistic use case.

Keywords: Spatial OLAP, Spatial data, Multidimensional data, Data modelling, RDF, SPARQL

1. Introduction

The Semantic Web (SW) has evolved, from focus-
ing mostly on data publishing to also support increas-
ingly complex queries such as interactive analytical
queries. Simultaneously, the data available on the SW
has evolved from being simple, most alphanumeric
data, to also include complex data such as spatial data.
Indeed, geospatial data is now common on the SW, but
it remains difficult to analyze it.

In a non-SW context, the main tools for interac-
tive data analyses have been Data Warehouses (DWs)
and Online Analytical Processing (OLAP) tools and
queries. DWs store large volumes of data and are de-
signed with a multidimensional (MD) modeling ap-
proach, which has shown itself to be intuitive for inter-
active data analytics. Concretely, DWs consist of MD
data cubes. The cells of the cube represent the topic

*Corresponding author. E-mail: nurefsan@cs.aau.dk.

of analysis, and associate observation facts with nu-
merical measures that can be aggregated. For example,
a sales fact cube has measures such as QuantitySold
and SalesPrice. Facts are linked to dimensions, which
provide contextual information, e.g., sales date, prod-
uct, and location. Dimensions are perspectives, which
are used to analyze data, and are organized into hier-
archies with levels, e.g., Store, City, and Region, that
allow users to analyze and aggregate measures at dif-
ferent levels of detail. Levels have a set of attributes
that describe the characteristics of the level members.
In traditional DWs, the location dimension is widely
used, but as a conventional dimension with alphanu-
meric data and thus only nominal reference to spatial
concepts such as areas and places. This does not al-
low manipulating through spatial location data or de-
riving topological relations among the hierarchy lev-
els of the location dimension. This yields a demand for
truly spatial DWs for better analysis purposes. Includ-
ing the geometric information of the location data, sig-

0000-0000/09/$00.00 c© 2009 – IOS Press and the authors. All rights reserved

The final publication is available at IOS Press through http://dx.doi.org/10.3233/SW-170281

2 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

Spatial RDF
Endpoints

SOLAP

User Spatial RDF Data Warehouses

SOLAP to SPARQL

QB4SOLAP

Fig. 1. QB4SOLAP approach to SOLAP on the SW

nificantly improves the analysis process (i.e., proxim-
ity analysis of the locations) with additional perspec-
tives by revealing dynamic spatial hierarchy levels and
new spatial members.

Similarly, providing deep spatial analytics support
for spatial SW data is very valuable. Spatial data re-
quires specific treatment techniques, in particular en-
coding, special functions and different manipulation
methods, which should be considered in the modeling
process and querying. The current state of the art for
the geospatial Semantic Web focuses on techniques for
publishing, linking and querying spatial data, but sup-
ports only “plain” spatial SW data (without support for
spatial DW concepts such as spatial hierarchies, levels,
and measures) and does not consider analytical queries
over spatial RDF data (see Section 2 for details).
Problem Definition. The proliferation of open geospa-
tial data on the SW creates possibilities for advanced
analysis of such data. Many examples exist of spa-
tial Linked Open Data (LOD) published on the SW as
RDF1,2,3,4. These datasets have observations and mea-
sures that are well suited for analytical queries (e.g.,
water/air quality measurements, immigration rates, EU
subsidies in agriculture, crop revenue, etc.). However,
such datasets are typically not modeled with spatial
dimension levels and hierarchies. Thus, they cannot
be queried with interactive spatial analytical queries
(a.k.a. SOLAP) on the SW. In the current state of the
SW, if a (spatial) DW user would like to query the
existing spatial RDF data from the SW with SOLAP
operations, the user needs to download the RDF data,
map it to a relational data model (i.e., with a snowflake
schema), and then import it into a traditional spatial

1EuroStat: http://ec.europa.eu/eurostat
2UK Environmental Data: http://environment.data.

gov.uk
3Danish Agricultural Data: https://datahub.io/

dataset/govagribus-denmark
4Australian Climate Observations: https://datahub.io/

dataset/acorn-sat

data warehouse in order to query with SOLAP, which
is slow, labor-intensive, and stores the data in a non-
open format.
Our Approach. On the contrary, annotating spatial
RDF datasets with QB4SOLAP [17,16] allows users
to define spatial multidimensional concepts on top of
existing RDF data. Hence, the user can create and
publish spatial data warehouses on the Semantic Web,
which can be easily queried with SOLAP operations.
Fig. 1 depicts the general workflow scenario, where
the spatial RDF datasets from endpoints can be an-
notated with QB4SOLAP. This makes it possible for
end users to use SOLAP queries. However, writing a
SOLAP query in SPARQL can be very complicated
for users inexperienced with SPARQL (e.g., traditional
DW users). Due to the lack of MD semantics of spatial
RDF data and the lack of translation techniques from
high-level SOLAP expressions to SPARQL, there is
a considerable entry barrier for advanced spatial data
analysis on the SW for data warehouse users.
Contributions. In order to address these issues, this
paper makes a number of contributions. First, we
propose QB4SOLAP, a generic and extensible vo-
cabulary (metamodel) for spatial DWs on the SW.
QB4SOLAP extends the most recent stable version of
the QB4OLAP vocabulary with spatial concepts. We
provide a full formalization of QB4SOLAP. The key
concepts of spatial cube members, spatial hierarchies
and levels, spatial measures, spatial aggregate func-
tions (e.g., union, buffer, and convex–hull) and topo-
logical relations among spatial dimension and hierar-
chy level members (e.g., within, intersects, and over-
laps), are defined. Second, we define a number of an-
alytical Spatial OLAP (SOLAP) operators over the
model including giving formal semantics of the opera-
tors. The operators support advanced analytical queries
over MD geospatial SW data. Third, we provide al-
gorithms for generating spatially extended SPARQL
queries for individual and nested SOLAP operators,
which allows writing SOLAP queries without knowl-
edge of RDF/SPARQL. Fourth, we validate the vocab-
ulary, operators, and query generation algorithms by
applying them to a realistic use case.
Paper structure. The remainder of the paper is struc-
tured as follows. Section 2 discusses related work. Sec-
tion 3 defines preliminary spatial and OLAP concepts.
Section 4 defines the QB4SOLAP vocabulary, while
Section 5 defines the SOLAP operators. Section 6 pro-
vides the SPARQL query generation algorithms. Fi-
nally, Section 7 concludes the paper and points to fu-
ture research.

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 3

2. Related work

DW and OLAP technologies have been successful
for analyzing large volumes of data [1]. Combining
DW/OLAP technologies with RDF data makes RDF
data sources more easily available for interactive anal-
ysis. The following work concerns the integration of
DW/OLAP with the SW.

DW/OLAP and Semantic Web. Using OLAP to an-
alyze SW data is considered in several approaches.
Kämpgen et al. propose an extended model [23] on
top of the RDF Data Cube Vocabulary (QB) [6] for
interacting with statistical linked data via OLAP op-
erations directly in SPARQL. However, it has the
inherent limitations of QB and thus cannot support
OLAP dimensions with hierarchies and levels, and
built-in aggregate functions. Etcheverry et al. intro-
duce QB4OLAP [11] as an extended vocabulary based
on QB, with a full MD metamodel, supporting OLAP
operations directly over RDF data with SPARQL
queries. Nath et al. considers creating an Extract–
Transform–Load (ETL) framework for semantic data
warehouses [8]. Varga et al. presents a comprehensive
methodology for dimensional enrichment of statisti-
cal LOD by using QB4OLAP and provide a SW-based
OLAP engine for traditional DW users [38]. However,
these approaches and vocabularies support neither spa-
tial DWs nor provide SOLAP operators for the SW.

Spatial DW and OLAP. The constraint representa-
tion of spatial data has been the focus in many fields
from databases to AI [32]. Extending OLAP with spa-
tial features has also attracted the attention of the data
warehousing community. Bédard et al. first introduced
the term SOLAP [4] in 1997. SOLAP systems [33,9]
since then, have significantly been improved. Respec-
tively, various papers improve the spatial aggregation
functions and techniques [29,26,7,15].

Several conceptual models are proposed for rep-
resenting spatial data in data warehouses. Stefanovic
et al. [19] considers constructing and materializing
spatial cubes in their proposed model. The Multi-
Dim conceptual model, introduced by Malinowski and
Zimányi [27], copes with spatial features and is ex-
tended in [37], to include complex geometric features
(continuous fields), with a set of operations and an
MD calculus supporting spatial data types. Gómez et
al. [14] propose an algebra and a general framework
for OLAP cube analysis on discrete and continuous
spatial data. Even though spatial data warehousing is
thus widely studied, those studies are limited to tradi-

tional non-semantic spatial data warehouses and SO-
LAP techniques. The work above neither considered
semantic web data nor spatial analytical querying in
SPARQL.

Geospatial Semantic Web. The Open Geospatial
Consortium (OGC) has proposed GeoSPARQL [3] as
a vocabulary to represent and query spatial data in
RDF using an extension to SPARQL. Kyzirakos et al.
present a comprehensive survey of data models and
query languages for linked geospatial data in [25], and
propose a semantic geospatial data store called Stra-
bon in [24]. Strabon has an extensive query language
called stSPARQL , which is however limited to the
specific environment. LinkedGeoData is a significant
contribution on interactive transformation of Open-
StreetMap5 data to RDF data [36]. GeoKnow [34] is
a more recent project with focus on linking geospa-
tial data from heterogeneous sources. Andersen et al.
considers publishing/converting open spatial data as
Linked Open Data [2]. However, none of these works
consider the MD aspects of geospatial data or allow
querying with SOLAP on the SW, unlike QB4SOLAP.
The QB4SOLAP vocabulary is validated with both
the running example use case, the GeoNorthwind data
cube, as well as a substantial real-world use case,
the GeoFarmHerdState data cube [16]. GeoFarmHerd-
State is a spatial data cube about livestock holdings
in Denmark, which integrates environmental and ge-
ographical open data from several sources, thus en-
abling a range of interesting SOLAP queries.

In summary, none of the related work, which is
surveyed in the fields of “DW/OLAP and the SW",
“Spatial DW and OLAP", and “Geospatial Semantic
Web" provides a substantial foundation for modeling
and querying spatial data warehouses on the Semantic
Web, unlike the QB4SOLAP vocabulary, SOLAP op-
erators, and SPARQL generation algorithms presented
in this paper.

3. Preliminary concepts

In this section, we describe the spatial objects and
the spatial operations that manipulate them. Then, we
introduce the data cubes and spatial enhancement on
them as spatial data cubes. Finally, we show the tradi-
tional OLAP operations, which manipulate data cubes,
and explain the Spatial OLAP (SOLAP) operators,
which manipulate spatial data cubes.

5http://www.openstreetmap.org

4 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

21 10 18 35

27 14 11 30

26 12 35 32

14 20 47 31

24 18 28 14
33 25 23 25
12 20 24 33
21 10 18 35

35
33
25
14

30
14
23
18

32
12
20
17

31
10
33
18

Q1

Q2

Q3

Q4

Bremen

Aarhus
Hamburg

Odense

Beverages
SeafoodCereals

Condiments
Product (Category)

T
im

e
 (

Q
u

a
rt

e
r)

Cu
st

om
er

 (
Ci

ty
)

dimensions

measure
values

Fig. 2. A three-dimensional cube for Sales data

33 30 42 68

39 26 41 44

30 22 46 44

25 29 49 41

57 43 51 39
33 30 42 68

68
39

44
41

44
37

41
51T

im
e
 (

Q
u

a
rt

e
r)

Q1

Q2

Q3

Q4

Germany
DenmarkCu

st
om

er

(C
ou

nt
ry

)

Beverages
Cereals Seafood

Condiments
Product (Category)

Fig. 3. Roll-up to the Country level

3.1. Spatial objects

A spatial object represents a real-world object
whose geographic features are important for an appli-
cation. These geographic features are encoded using
the geometry data type. Point, Line, and Polygon are
the basic instantiable types of the geometry data type.
Coordinates for geometry data type are generally given
in 2-dimensions with X , Y values. Geometries are as-
sociated with a spatial reference system (SRS), which
describes the coordinate space in which the geometry
is defined. There are several SRSs and each of them
are identified with a spatial reference system identi-
fier (SRID). The World Geodetic System (WGS) is the
most well-known SRS and the latest version is called
WGS84, which is also used in our use case.

3.2. Spatial operations

There is a set of spatial operations that can be ap-
plied on spatial data. We grouped these operations into
classes, based on the common functionality of the op-
erators. These classes are defined next.

Definition 1. (Spatial aggregation) The operators in
the spatial aggregation class Sagg aggregate two or
more spatial objects and return a new spatial ob-
ject. Union, Intersection, ConvexHull, and Minimum-
BoundingRectangle (MBR) are example operators of
this class. Some spatial functions such as Convex-
Hull or MBR can also be interpreted as unary spa-
tial functions with a single parameter, but here we
only consider the aggregate versions of the functions.
In order to make this clear, the aggregate versions of
those functions are given with a prefix “Aggr" in the
QB4SOLAP vocabulary (Fig. 6). For our purpose, it is

enough to group all spatial aggregate functions into a
single group, although more fine-grained classification
proposals for spatial aggregate functions exist [7].

Definition 2. (Topological relations) The operators in
the topological relation class Trel are commonly ex-
pressed in the RCC86 and DE-9DIM7 models [31,10].
Topological relations are Boolean predicates that spec-
ify how two spatial objects are related to each other.
Examples of topological relations are Intersects, Dis-
joint, Equals, Overlaps, Contains, Within, Touches,
Covers, CoveredBy, and Crosses.

Definition 3. (Numeric operations) The operators in
the numeric operation class Nop take one or more
spatial objects and return a numeric value. Perime-
ter, Area, NoOfInteriorRings, Distance, HaversineDis-
tance, and NoOfGeometries are example operators of
this class.

3.3. Data cubes

Data warehouses store large volumes of data for
decision support. They are based on the multidimen-
sional model, which views data in an n-dimensional
space, usually called a data cube. The cells of the cube
represent the observation facts for analysis with a set of
attributes called measures (e.g., a sales fact cube with
measures product quantity and price). Facts are linked
to dimensions, which provide perspectives to analyze

6RCC8 (Region Connection Calculus) describes regions in Eu-
clidean space or in a topological space by their possible relations to
each other.

7DE-9DIM (Dimensionally Extended Nine-Intersection Model) is
a topological model that describes spatial relations of two geome-
tries in two dimensions.

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 5

Product

Category

All

(a) Categories hierarchy in
the Product dimension

Time

Month

Quarter

Year

All

(b) Calendar hierarchy
in the Time dimension

Customer

State

Country

All

Supplier

City

(c) Spatial Geography hierarchies in the
Customer and Supplier dimensions

Customer

CityClosest
Supplier

State

Country

All

(d) Dynamic spatial Geography hi-
erarchy in the Customer dimension

Fig. 4. Dimension hierarchies

data (e.g., sales date, product, and customer location).
Dimensions are organized into hierarchies, which al-
low users to aggregate measures at various levels of
detail. Hierarchies are composed of levels and there is
always a unique top level All with just one member all.
Levels have a set of attributes that describe the charac-
teristics of the level members.

An example of a data cube with three dimen-
sions (Customer, Time, and Product) and one measure
(Quantity) is given in Fig. 2. Each cell in the cube is an
observation fact, which is characterized by dimension
and measure values. The hierarchies of this cube are
given in Fig. 4a–c. Thus, in the cube shown in Fig. 2,
the Product dimension is given at the Category level,
the Time dimension at the Quarter level, and the Cus-
tomer dimension at the City level. Measure values rep-
resent the measure Quantity of the sold products.

3.4. Spatial data cubes

A spatial data cube contains both conventional and
spatial dimensions. A spatial dimension is a dimen-
sion, which includes at least one spatial level in which
the application should store the spatial characteristics
of the members. Similarly, a hierarchy is a spatial hi-
erarchy if it has at least one spatial level. Spatial char-
acteristics of the levels are captured by their geome-
tries and can be recorded in the spatial attributes of the
level. A spatial fact is a fact that relates several dimen-
sions in which, two or more are spatial.

For example, consider a Sales spatial fact, which
has spatial dimensions Customer and Supplier, each

with a spatial hierarchy Geography composed of spa-
tial levels City → State → Country → All (Fig. 4c).
These spatial levels record the spatial characteristics
of its members with spatial attributes: Customer, Sup-
plier, and City using a point spatial data type, whereas
State and Country with a multi-polygon spatial data
type.

Following the philosophy of spatially extended Mul-
tiDim conceptual model [37], MD concepts such as
levels are considered to be spatial, only if they record
the spatial characteristics of the concepts as geome-
tries. For instance, “continent" might be considered
as a spatial object, in theory or in other vocabularies.
However, if there is no information about the geome-
try of the continents in the schema and in the instance
data, continent does not become a spatial level (Ext. 7),
although continent might still be a traditional level
(Def. 7) of the spatial hierarchy Geography with al-
phanumeric attributes (i.e., continent name, code, and
etc.).

Spatial data cubes typically have spatial measures,
which are also represented by a spatial data type. An
example is a SalesPoint measure that stores the lo-
cation of sales. Fig. 7 shows the multidimensional
schema of the GeoNorthwind data warehouse, which
is used as running example in the paper.

3.5. OLAP operators

OLAP operators are used for expressing queries
over data cubes. The traditional OLAP operators are
given next.

6 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

The slice operator removes a dimension from a cube
by selecting one instance in a dimension level. An ex-
ample is “slice on City is equal to Odense”.

The dice operator selects the cells in a cube that sat-
isfy a Boolean condition. An example is “dice on the
first and last quarter of the year”.

The roll-up operator aggregates measures along a
hierarchy to obtain data at a coarser granularity. An
example is “roll-up to the Country level” (Fig. 3).

Finally, the drill-down operator disaggregates mea-
sures along a hierarchy to obtain data at a finer gran-
ularity. It is the inverse operation of roll-up. Starting
from the cube in Fig. 3, an example is “drill-down to
the City level”.

3.6. Spatial OLAP operators

Spatial OLAP (SOLAP) operates on spatial data
cubes. SOLAP increases the analytical capabilities of
OLAP by taking into account the spatial information
in the cube. SOLAP operators involve spatial condi-
tions or spatial functions by using the spatial operators
defined in Sect. 3.1. Spatial conditions specify con-
straints on the geometries associated to cube members
or measures, while spatial functions derive new data
from the cube, which can be used, e.g., to derive dy-
namic spatial hierarchies or levels, as explained in the
following example. Spatial extensions of the common
OLAP operators are formally defined in Sect. 5.

Table 1
Sample (instance) data for the Sales cube

Customer City Supplier Total
SalesCustomer s1 s2 s3

Düsseldorf
c1 8 – 3 11
c2 10 – – 10

Dortmund
c3 7 4 – 11
c4 – 20 3 23

Münster c5 – – 30 30

Table 2
Roll-up of the Sales cube

Customer
City Sales

Düsseldorf 21
Dortmund 34
Münster 30

Table 3
S-Roll-up of the Sales cube

CityClosest
Supplier Sales

Düsseldorf 25
Dortmund 20
Münster 33

Table 4
Customer to Supplier distance

Supplier City
Supplier

Customer City Düsseldorf Dortmund Münster
Customer s1 s2 s3

Düsseldorf
c1 15 km 45 km 30 km
c2 15 km 60 km 60 km

Dortmund
c3 15 km 30 km 45 km
c4 45 km 15 km 15 km

Münster c5 60 km 45 km 15 km

Fig. 5. Example map of Sales (instance) data

Example 1. Consider the summarized data for the
Sales cube given in Table 1, where a ‘–’ is used if
there are no sales to customers from the correspond-
ing suppliers. The data in Table 1 is shown on the map
in Fig. 5, where the arrows on the map between the
supplier and customer locations represent the distance.
The quantities of sold products are shown along these
arrows.

The hierarchies in Fig. 4a–c can be used to perform
classical roll-up operations, where measures are aggre-
gated from a child to a parent level. An example of
such a roll-up operator is expressed by the query “total
sales to customers by city”, whose results is given in
Table 2.

On the other hand, as shown in Table 4 and Fig. 5,
some customers may be closer to suppliers from other
cities. For example, customer c3 is related to its city
Dortmund by using traditional Geography hierarchy,
but the customer is closer to the city Düsseldorf of sup-
plier s1. Similarly, customer c4 in city Dortmund is
closer to the city Münster of supplier s3. Fig. 4d shows

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 7

a new dynamic spatial hierarchy that can be obtained
with a spatial roll-up (s-roll-up) operator that expresses
the query “total sales to customers by city of the clos-
est supplier”. Such queries are not possible to express
on conventional hierarchies with traditional OLAP.

The hierarchy in Fig. 4d is created on the fly with the
help of a spatial function computing the distance be-
tween customer and supplier locations. Therefore, us-
ing the s-roll-up operator, sales to customers are aggre-
gated by city of the closest suppliers, where Dortmund
has a significant drop off in the quantity of the sales
from 34 (Table 2) to 20 (Table 3).

4. The QB4SOLAP vocabulary

In this section, we formally define how to represent
(spatial) data cubes in RDF. We use as running exam-
ple the GeoNorthwind data warehouse whose concep-
tual schema is given in Fig. 7.

The QB4OLAP [11] vocabulary allows to define
cube schemas and cube instances as RDF triples.
QB4OLAP is an extension of the RDF Data Cube
Vocabulary (QB) [6] with multidimensional concepts
in order to be able to support OLAP operations di-
rectly over RDF data with SPARQL queries. We ex-
tended QB4OLAP (v1.2)8 with spatial concepts to
give QB4SOLAP [17]. We based our extension on
GeoSPARQL [30], a standard from the Open Geospa-
tial Consortium (OGC) for representing and querying
geospatial linked data for the Semantic Web. Since our
base vocabulary QB4OLAP uses the MultiDim con-
ceptual model to describe the multidimensional con-
cepts, we base our definitions on a spatially extended
version of MultiDim conceptual model [37] for spa-
tial extension of the MD concepts. Fig. 6 shows the
QB4SOLAP vocabulary for representing a spatial cube
schema and spatial cube members as RDF triples. A
cube schema defines the structure of the cube in terms
of dimension levels, measures, aggregation functions
(e.g., SUM, AVG, COUNT) on measures, spatial ag-
gregation functions (Sagg in Def. 1) on spatial mea-
sures, dimensions hierarchies, and parent–child rela-
tionships between levels (including their cardinality
and topological relationships for spatial levels). These
schema level metadata are used to define multidimen-
sional datasets in RDF. Cube members are the in-
stances of a cube schema that represent level mem-

8QB4OLAP v1.2: https://github.com/lorenae/
qb4olap/blob/master/rdf/qb4olap.1.2.ttl

bers, facts, and measure values. As we will show in
Sect. 6, we use the schema level metadata to produce
SPARQL queries that implement SOLAP operators on
cube members.

Terms with capitalized initials and non-italic font
in Fig. 6 represent RDF classes, terms with capital-
ized initials and italic font represent RDF instances,
and terms with non-capitalized initials represent RDF
properties. Classes in external vocabularies are de-
picted in light gray background and font. RDF Cube
(QB), QB4OLAP, and QB4SOLAP classes are shown,
respectively, with white, light gray, dark gray back-
grounds. Original QB terms are prefixed with qb:9.
QB4OLAP and QB4SOLAP terms are prefixed, re-
spectively, with qb4o:10 and qb4so:11. Spatial
classes and properties are prefixed with geo:12.

In what follows, we first define formally RDF
triples, and then discuss how to describe (spatial) mul-
tidimensional data using QB4OLAP and QB4SOLAP.

Definition 4. (RDF triple) An RDF triple t = (s, p, o)
consists of three components: s is the subject, p is the
predicate, and o is the object. RDF triples are defined
over

T = (I ∪ B)× I × (I ∪ B ∪ L)

where I is the set of IRIs, B is the set of blank nodes,
and L is the set of literals.

A set of RDF triples is referred to as a graph. We
denote a QB4SOLAP graph by G, where G ⊂ T .The
cube schema and cube instances are subsets of this
graph and are denoted, respectively, by GS and GI ,
where GS ⊂ G and GI ⊂ G.

Given an MD element x ∈ (I ∪ B) in a schema
graph or instance graph G, we define by Gx the sub-
graph of G for x, where Gx ⊂ G. We define the func-
tion id(x) : G → I, that given a MD element x returns
its identifier I from the graph G. We use superscript
notation to indicate the type of the identifier from the
cube schema graph (GS) and cube instance graph (GI),
e.g., idS(x) for a cube schema identifier and idI(x) for
a cube instance identifier.

9RDF cube: http://purl.org/linked-data/cube#
10QB4OLAP: http://purl.org/qb4olap/cubes#
11QB4SOLAP: http://w3id.org/qb4solap#
12GeoSPARQL:http://www.opengis.net/ont/

geosparql#

8 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

Fig. 6. The QB4SOLAP vocabulary

4.1. Defining spatial data cube schemas with
QB4SOLAP

An n-dimensional cube schema CS is a tuple CS =
(D,M,F), with a set of dimensions D, a set of mea-
sures M , and a fact F . A dimension d ∈ D has a set
of hierarchies H(d). Each hierarchy h ∈ H(d) is or-
ganized into a set of levels L(h). Each level l ∈ L(h)
has a set of attributes A(l). Each attribute a ∈ A(l) is
defined over a domain. Each measure m ∈ M is also
defined over a domain.

We define next how to represent a cube schema CS
in RDF using QB4SOLAP. We denote the RDF graph
of the cube schema GS . In the examples we prefix the
elements of GS with gnw:. We follow a similar nam-
ing convention for schema elements as in QB4OLAP.
If there is a possibility of confusion for different MD
concepts with same schema name, i.e., customer di-
mension and customer level, we suffix the dimensions
with Dim (e.g., gnw:customerDim for dimension,

and gnw:customer for level). The subgraph of GS

that refers to a specific schema element x is denoted by
GSx and the unique identifier of x is denoted by idS(x).

Definition 5. (Dimensions) An n-dimensional cube
schema CS has a set of dimensions D = {d1, . . . , dn}
and each dimension di has a set of hierarchies H(di)

(Def. 6). Each dimension di ∈ D is defined in the cube
schema graph GS with qb:DimensionProperty.
Each hierarchy h ∈ H(di) is linked to its dimension di
with the qb4o:hasHierarchy property. The RDF
graph formulation of the dimensions D is represented
as

GSD =
n⋃

i=1

GSdi

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 9

where

GSdi =

{(idS(di) rdf:type qb:DimensionProperty)}∪⋃
h∈H(di)

{(idS(di) qb4o:hasHierarchy idS(h))}

Extension 5. (Spatial dimensions) A dimension is
spatial if it has at least one spatial level. A spatial di-
mension dis belongs to the set of spatial dimensions
Ds, which is a subset of the set of dimensions D, such
that dis ∈ Ds ⊆ D.

Example 2. The triples below show how some of the
dimensions of the GeoNorthwind DW (Fig. 7) are rep-
resented in RDF using Def. 5 and Ext. 5. As we will
see below, the Customer and Supplier dimensions are
spatial as they both have a spatial hierarchy Geogra-
phy.

Dimensions
gnw:customerDim rdf:type qb:DimensionProperty ;

qb4o:hasHierarchy gnw:customerGeography .
gnw:supplierDim rdf:type qb:DimensionProperty ;

qb4o:hasHierarchy gnw:supplierGeography .
gnw:productDim rdf:type qb:DimensionProperty ;

qb4o:hasHierarchy gnw:categories .
gnw:employeeDim rdf:type qb:DimensionProperty .

Definition 6. (Hierarchies) A dimension d has a set of
hierarchies H(d) = {h1, . . . , hm}, where each hierar-
chy hi has a set of levels L(hi) (Def. 7). Each hierar-
chy hi ∈ H(d) is defined in the cube schema graph GS
with the qb4o:Hierarchy predicate and is linked
with its dimension d by the qb4o:inDimension
property. Each level l ∈ L(hi) that belongs to a hierar-
chy hi is defined with the qb4o:hasLevel property.
The RDF graph formulation of the hierarchies H(d) is
represented as

GSH(d) =

m⋃
i=1

GShi

where

GShi
= {(idS(hi) rdf:type qb4o:Hierarchy)} ∪

{(idS(hi)qb4o:inDimension idS(d))}∪⋃
l∈L(hi)

{(idS(hi) qb4o:hasLevel idS(l))}

Extension 6. (Spatial hierarchies) A hierarchy is spa-
tial if it contains at least one spatial level. A spatial
hierarchy his belongs to the set of spatial hierarchies
Hs(d), which is a subset of the set of hierarchiesH(d),
such that his ∈ Hs(d) ⊆ H(d).
Example 3. The triples below show how some of the
hierarchies of the GeoNorthwind DW (Fig. 7) are rep-
resented in RDF using Def. 6 and Ext. 6. As we will see
below, the Geography hierarchies in the Customer and
Supplier dimensions are spatial since they have spatial
levels (City, State, etc.)
Hierarchies
gnw:customerGeography rdf:type qb4o:Hierarchy ;

qb4o:inDimension gnw:customerDim ;
qb4o:hasLevel gnw:customer, gnw:city,

gnw:state, gnw:country .
gnw:supplierGeography rdf:type qb4o:Hierarchy ;

qb4o:inDimension gnw:supplierDim ;
qb4o:hasLevel gnw:supplier, gnw:city,

gnw:state, gnw:country .
gnw:categories rdf:type qb4o:Hierarchy ;

qb4o:inDimension gnw:productDim ;
qb4o:hasLevel gnw:product, gnw:category .

Definition 7. (Levels) A hierarchy h has a set of
levels L(h) = {l1, . . . , lk} and each level li has
a set of attributes A(li) (Def. 8). Each level li ∈
L(h) is defined in the cube schema graph GS with
the qb4o:LevelProperty predicate. Each at-
tribute a ∈ A(li) is linked to its level li with the
qb4o:hasAttribute property. The RDF graph
formulation of the levels L(h) is represented as

GSL(h) =

k⋃
i=1

GSli

where

GSli = {(id
S(li) rdf:type qb4o:LevelProperty)} ∪⋃

a∈A(li)

{(idS(li) qb4o:hasAttribute idS(a))}

Extension 7. (Spatial levels) A level is spatial if it
has an associated geometry. A spatial level lis belongs
to the set of spatial levels Ls(h), which is a subset
of the set of levels L(h), such that lis ∈ Ls(h) ⊆
L(h). The geometry of a spatial level is defined in the
cube schema graph GS with the geo:hasGeometry
property The RDF graph formulation of the spatial lev-
els Ls(h) is represented as

GSLs(h) =

k⋃
i=1

GSlis

10 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

Product

ProductID

ProductName

QuantityPerUnit

UnitPrice

Discontinued

Supplier

SupplierID

SupplierName

Address

PostalCode

Category

CategoryID

CategoryName

Description

Customer

CustomerID

CustomerName

Address

PostalCode

Employee

EmployeeID

FirstName

LastName

Title

BirthDate

HireDate

City

CityName

C
a

te
g

o
ri
e

s

G
e

o
g

ra
p

h
y

Country

CountryName

CountryCode

CountryCapital

CapitalGeo

Population

Subdivision

State

StateName

EnglishStateName

StateType

StateCode

StateCapital

CapitalGeo

Time

Date

DayNoWeek

DayNameWeek

DayNoMonth

DayNoYear

WeekNoYear

Calendar

Month

MonthNo

MonthName

Quarter

QuarterNo

Year

YearNo

DueDate

Order
Date

G
e

o
g

ra
p

h
y

Quantity

UnitPrice: Avg +!

Discount: Avg +!

SalesAmount

Freight

SalesPoint

Sales

Fig. 7. Conceptual multidimensional schema of the GeoNorthwind data warehouse

where

GSlis = {(idS(lis) rdf:type qb4o:LevelProperty)} ∪

{(idS(lis) geo:hasGeometry geo:Geometry)} ∪⋃
a∈A(lis)

{(idS(lis) qb4o:hasAttribute idS(a))}

Example 4. The triples below show how some of the
levels of the GeoNorthwind DW (Fig. 7) are repre-
sented in RDF using Def. 7 and Ext. 7. Note that the
Customer and City levels are spatial as they have a ge-
ometry that is specified at the level definition.

Levels
gnw:customer rdf:type qb4o:LevelProperty ;

qb4o:hasAttribute gnw:customerID ;
qb4o:hasAttribute gnw:customerName ;
qb4o:hasAttribute gnw:address ;
qb4o:hasAttribute gnw:postalCode ;
geo:hasGeometry gnw:customerGeometry .

gnw:city rdf:type qb4o:LevelProperty ;
qb4o:hasAttribute gnw:cityName ;
geo:hasGeometry gnw:cityGeometry .

Definition 8. (Attributes) A level l has a set of at-
tributes A(l) = {a1, . . . , ap}, which defines the char-
acteristics of the level members. One among these
attribute, denoted as aID, specifies a surrogate key
for the level, i.e., the value of aID uniquely iden-
tifies the members of the level. For simplicity, we
assume that it is the first attribute in the set of at-
tributes A(l), i.e., a1 = aID. Each attribute ai ∈
A(l) is defined in the cube schema graph GS with the
qb4o:LevelAttribute predicate and is linked to
its level l with the qb4o:inLevel property. Each at-
tribute ai is defined as ranging over XSD literals L us-
ing the rdfs:range property. The RDF graph for-
mulation of the attributes A(l) is represented as

GSA(l) =

p⋃
i=1

GSai

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 11

where

GSai
=

{(idS(ai) rdf:type qb4o:LevelAttribute)}∪

{(idS(ai) qb4o:inLevel idS(l))} ∪

{(idS(ai) rdfs:range L)}

Extension 8. (Spatial attributes) An attribute is spa-
tial if it is defined over a spatial domain. A spatial at-
tribute ais belongs to the set of spatial attributesAs(l),
which is a subset of the set of attributes A(l), such
that ais ∈ As(l) ⊆ A(l). The RDF graph formulation
of the spatial attributes is similar as in Def. 8. However,
the attribute must range over spatial literals Ls i.e., a
well-known text literal (WKT) from OGC schemas.
Further, the domain of the attribute should be speci-
fied with the rdfs:domain property, which must be
a geometry. Finally, the attribute must be specified as
spatial object with the rdfs:subclassOf property.
The RDF graph formulation of the spatial attributes
As(l) is represented as

GSAs(l) =

p⋃
i=1

GSais

where

GSais
=

{(idS(ais) rdf:type qb4o:LevelAttribute)}∪

{(idS(ais) qb4o:inLevel idS(l))} ∪

{(idS(ais) rdfs:range Ls)} ∪

{(idS(ais) rdfs:subPropertyOf geo:Geometry)}∪

{(idS(ais) rdfs:subClassOf geo:SpatialObject)}

Example 5. The triples below show how some of the
attributes of the GeoNorthwind DW (Fig. 7) are repre-
sented in RDF using Def. 8 and Ext. 8. Note that the
Customer level has a spatial attribute (Customer geom-
etry). It is represented as a WKT literal that defines a
Point type from the Geometry class, which is a sub-
class of Spatial Object.

Attributes
gnw:customerID rdf:type qb4o:LevelAttribute ;

qb4o:inLevel gnw:customer;
rdfs:range xsd:Integer .

gnw:customerName rdf:type qb4o:LevelAttribute ;
qb4o:inLevel gnw:customer;
rdfs:range xsd:String .

gnw:address rdf:type qb4o:LevelAttribute ;
qb4o:inLevel gnw:customer;
rdfs:range xsd:String .

gnw:postalCode rdf:type qb4o:LevelAttribute ;
qb4o:inLevel gnw:customer;
rdfs:range xsd:String .

gnw:customerGeometry rdf:type
qb4o:LevelAttribute ;

rdfs:subPropertyOf geo:Geometry ;
qb4o:inLevel gnw:customer ;
rdfs:range geo:wktLiteral;
rdfs:domain geo:Point ;
rdfs:subClassOf geo:SpatialObject .

Definition 9. (Hierarchy steps) A hierarchy h has
a set of hierarchy steps HS(h) = {hs1, . . . , hsq},
which define the structure of the hierarchy in rela-
tion with its corresponding levels. A hierarchy step
hsi = (lc, lp, card) ∈ HS(h) entails a roll-up rela-
tion between a lower (child) level lc to an upper (par-
ent) level lp with a cardinality card. The cardinality
card ∈ {1-1, 1-n, n-1, n-n} describes the number of
members in one level that can be related to a member
in the other level for both the child and the parent lev-
els.

Each hierarchy step hsi is defined in the cube
schema graph GS as a blank node _:hsi ∈ B
with the qb4o:HierarchyStep predicate. Each
hierarchy step is linked to its hierarchy with the
qb4o:inHierarchy property. The child and par-
ent levels are linked in a hierarchy step with the
qb4o:childLevel and qb4o:parentLevel
properties, respectively. The cardinality card of a hier-
archy step is defined by the qb4o:pcCardinality
property. The RDF graph formulation of the hierarchy
steps HS(h) is represented as

GSHS(h) =

q⋃
i=1

GShsi

where

GShsi =

{(_:hsi rdf:type qb4o:HierarchyStep)} ∪

{(_:hsi qb4o:inHierarchy idS(h))} ∪

{(_:hsi qb4o:parentLevel idS(lp))} ∪

{(_:hsi qb4o:childLevel idS(lc))} ∪

{(_:hsi qb4o:pcCardinality idS(card))}

12 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

Extension 9. (Spatial hierarchy steps) A hierarchy
step is spatial if it relates a spatial child level lcs
and a spatial parent level lps , in which case it entails
a topological relationships between these spatial lev-
els. A spatial hierarchy step is then a tuple hsis =
(lcs , lps , card, topoRel) where the topological relation
topoRel belongs to the Trel class (Def. 2). The topo-
logical relation between parent-child levels of a spatial
hierarchy step is defined by the qb4so:pcTopoRel
property. The RDF graph formulation of the spatial hi-
erarchy steps HSs(h) (w.r.t. Def. 9) is represented as

GSHSs(h) =

q⋃
i=1

GShsis

where

GShsis = GShsi∪

{(_:hsi qb4so:pcTopoRel idS(topoRel))}

Example 6. The triples below show how the hierarchy
steps of the Geography spatial hierarchy in the Cus-
tomer dimension of the GeoNorthwind DW (Fig. 7) are
represented in RDF using Def. 9 and Ext. 9. Note that
all hierarchy steps are spatial and have an associated
topological relation.

Hierarchy steps
_:customerGeography_hs1 a qb4o:HierarchyStep ;

qb4o:inHierarchy gnw:customerGeography ;
qb4o:childLevel gnw:customer ;
qb4o:parentLevel gnw:city ;
qb4o:pcCardinality qb4o:ManyToOne ;
qb4so:pcTopoRel qb4so:Within .

_:customerGeography_hs2 a qb4o:HierarchyStep ;
qb4o:inHierarchy gnw:customerGeography ;
qb4o:childLevel gnw:city ;
qb4o:parentLevel gnw:state ;
qb4o:pcCardinality qb4o:ManyToOne ;
qb4so:pcTopoRel qb4so:Within .

_:customerGeography_hs3 a qb4o:HierarchyStep ;
qb4o:inHierarchy gnw:customerGeography ;
qb4o:childLevel gnw:state ;
qb4o:parentLevel gnw:country ;
qb4o:pcCardinality qb4o:ManyToOne ;
qb4so:pcTopoRel qb4so:Within .

Definition 10. (Partial order on levels) The hierarchy
steps HS(h) of a hierarchy h define a partial order on
the levels l ∈ L(h). The reflexive and transitive closure
of the partial order is denoted as v, with a unique base

level (lb) and a unique top level (All), where all levels
l are such that lb v l, and l v All.

Definition 11. (Measures) An n-dimensional cube
schema has a set of measures M = {m1, . . . ,mr},
which record the values of a phenomena being ob-
served. Each measure mi ∈ M is defined in the cube
schema graph GS with the qb:MeasureProperty
predicate. Similarly to attributes, each measure mi

is defined as ranging over XSD literals L with the
rdfs:range property. The RDF graph formulation
of the measures M is represented as

GSM =

r⋃
i=1

GSmi

where

GSmi
=

{(idS(mi) rdf:type qb:MeasureProperty)}∪

{(idS(mi) rdfs:range L)}

Extension 11. (Spatial measures) A measure is spa-
tial if it is defined over a spatial domain as in spatial
attributes (Ext. 8). A spatial measure mis belongs to
the set of spatial measures Ms, which is a subset of
the set of measures M , such that mis ∈ Ms ⊆ M .
The RDF formulation of the spatial measures is similar
as in Def. 11. However, the domain should range over
spatial literals Ls. The RDF graph formulation of the
spatial measures Ms (w.r.t. Def. 11) is represented as

GSMs
=

r⋃
i=1

GSmis

where

GSmis
=

{(idS(mis) rdf:type qb:MeasureProperty)}∪

{(idS(mis) rdfs:range Ls)} ∪ {(idS(mis)

rdfs:subClassOf geo:SpatialObject)}

Example 7. The triples below show how the measures
of the GeoNorthwind DW (Fig. 7) are represented in
RDF using Def. 11 and Ext. 11. Note that SalesPoint
is a spatial measure, which records the location of the

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 13

stores in which the sales occurred. It is defined over
Geometry domain as a Point type with WKT literal.

Measures
gnw:quantity rdf:type qb:MeasureProperty ;

rdfs:range xsd:integer .
gnw:unitPrice rdf:type qb:MeasureProperty ;

rdfs:range xsd:decimal .
gnw:discount rdf:type qb:MeasureProperty ;

rdfs:range xsd:decimal .
gnw:salesAmount rdf:type qb:MeasureProperty ;

rdfs:range xsd:decimal .
gnw:freight rdf:type qb:MeasureProperty ;

rdfs:range xsd:decimal .
gnw:salesPoint rdf:type qb:MeasureProperty ;

rdfs:domain geo:Point;
rdfs:range geo:wktLiteral ;
rdfs:subClassOf geo:SpatialObject .

Definition 12. (Fact) In an n-dimensional cube schema
CS = (D,M,F), the fact F defines the structure of a
cube with the qb:DataStructureDefinition
property. The dimensions are given as components
of the fact and are defined with the qb4o:level
property. We assume that the fact F links the di-
mensions at the lowest granularity level, therefore
qb4o:level links the lowest (base) level lb of
each dimension di, which is denoted as lb(di). The
cardinality card of the relationship between a di-
mension level and a fact is represented with the
qb4o:cardinality property. Similarly, the mea-
sures are given as components of the fact and are
defined with the qb:measure property. The aggre-
gate function aggr associated to each measure is repre-
sented with the qb4o:aggregateFunction prop-
erty. The RDF graph formulation of the fact F is given
in the following equation.

GSF = {(idS(F)

rdf:type qb:DataStructureDefinition)}∪⋃
di∈D

{(idS(F) qb:component

[qb4o:level idS(lb(di));

qb4o:cardinality idS(card)])}∪⋃
mi∈M

{(idS(F) qb:component

[qb:measure idS(mi);

qb4o:aggregateFunction idS(aggr)])}

Extension 12. (Spatial fact) A fact is spatial if it re-
lates several levels, where two or more are spatial.

A spatial fact may also have a topological relation
topoRel that must be satisfied by the related spatial
levels, which is represented with qb4so:topologi-
calRelation. This object property allows to spec-
ify a topological relation in fact-level relationship of
spatial facts. The RDF graph formulation of such a fact
is simply by adding the property of fact-level topolog-
ical relation consecutively to the cardinality property
as given in the following equation.

GSFs
= {(idS(Fs)

rdf:type qb:DataStructureDefinition)}∪⋃
di∈D

{(idS(Fs) qb:component

[qb4o:level idS(lb(di));

qb4o:cardinality idS(card);

qb4so:topologicalRelation idS(topoRel)]}∪⋃
mi∈M

{(idS(F) qb:component

[qb:measure idS(mi);

qb4o:aggregateFunction idS(aggr)])}

Example 8. The triples below show how the fact of
the GeoNorthwind DW (Fig. 7) is represented in RDF
using Def. 12. Sales fact does not impose any topolog-
ical relation between its spatial dimensions Supplier
and Customer. SalesPoint is a spatial measure, which
has a spatial aggregate function (AggrConvexHull).
Cube definition
gnw:GeoNorthwind rdf:type
qb:DataStructureDefinition ;

Lowest level for each dimension
qb:component [qb4o:level gnw:customer ;
qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level gnw:supplier ;
qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level gnw:product ;
qb4o:cardinality qb4o:ManyToOne] ;
...
Cube measures
qb:component [qb:measure gnw:quantity ;

qb4o:aggregateFunction qb4o:Sum] ;
qb:component [qb:measure gnw:unitPrice ;

qb4o:aggregateFunction qb4o:Avg] ;
qb:component [qb:measure gnw:discount ;

qb4o:aggregateFunction qb4o:Avg] ;
...
qb:component [qb:measure gnw:salesPoint ;

qb4o:aggregateFunction qb4so:AggrConvexHull] .

14 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

4.2. Defining spatial data cube members with
QB4SOLAP

We have explained in Sect. 4.1 how a data cube
schema can be represented in RDF with QB4SOLAP.
We show next how to use this schema to represent the
instances of the GeoNorthwind DW (Fig. 7) in RDF.
We denote by GI the RDF graph of the data cube in-
stances. In the examples, we prefix the elements of GI
with gnwi:. The subgraph of GI that refers to a spe-
cific cube instance x is denoted by GIx and the unique
identifier of x is denoted by idI(x).

Definition 13. (Level members) A level l has a set
of level members LM(l) = {lm1, . . . , lmy}. Each
level member lmi has a unique IRI idI(lmi) ∈ I,
which is linked in the cube instance graph GI with
the qb4o:LevelMember predicate. A level member
is related to its level by the qb4o:memberOf prop-
erty. The RDF graph formulation of the level members
LM(l) is represented as

GILM(l) =

y⋃
i=1

GIlmi

where

GIlmi
=

{(idI(lmi) rdf:type qb4o:LevelMember)}∪

{(idI(lmi) qb4o:memberOf idS(l))}

Definition 14. (Attributes of level members) A level
member lm has a set of attributesA(lm) = {a1, . . . , ap},
which are used to describe the characteristics of the
level member (Def. 8). Each attribute ai is linked to the
level member with the identifier idS(ai). We denote by
lm vai the value vai that a level member lm asso-
ciates to attribute ai. This value is given as a literal L
such that vai ∈ L. The RDF graph formulation of the
attributes A(lm) is represented as

GIA(lm) =

p⋃
i=1

GIai

where

GIai
= {(idI(lm) idS(ai) vai) | lm vai}

Definition 15. (Partial order on level members) A hi-
erarchy step hs = (lc, lp, card) between a child level
lc and a parent level lp defines a set of roll-up relations
RU(hs) = {r1, . . . , rk} where each ri = lmci v
lmpi relates a child level member lmci ∈ LM(lc) to
a parent level member lmpi ∈ LM(lp). These roll-
up relations define a partial order between level mem-
bers with regard to Def. 10 and are expressed using the
property skos:broader. The RDF graph formula-
tion of the roll-up relations RU(hs) is represented as

GIRU(hs) =

k⋃
i=1

GIri

where

GIri = {(id
I(lmc) skos:broader idI(lmp)) |

ri = lmci v lmpi}

Example 9. The triples below show how some level
members of the GeoNorthwind DW (Fig. 7) are repre-
sented in RDF using Defs. 13–14.

gnwi:customer_1 rdf:type qb4o:LevelMember ;
qb4o:memberOf gnw:customer ;
gnw:customerID 1 ;
gnw:customerName "Alfreds Futterkiste" ;
gnw:address "Obere Str. 57" ;
gnw:postalCode "12209" ;
gnw:customerGeo
"POINT(13.099 52.401)"ˆˆgeo:wktLiteral ;
skos:broader gnwi:city_6 .

gnwi:city_6 rdf:type qb4o:LevelMember ;
qb4o:memberOf gnw:city ;
gnw:cityName "Berlin" ;
gnw:cityGeo
"POINT(13.4060 52.519)"ˆˆgeo:wktLiteral ;
skos:broader gnwi:state_224 .

Definition 16. (Fact members) A fact F has a set of
fact members FM(F) = {f1, . . . , ft}, which are the
instances of the data cube. Each fact fi ∈ FM has a
unique IRI idI(fi) ∈ I, which is linked in the cube
instance graph GI with the qb:Observation pred-
icate.

A fact member fi is related to a set of dimension
levels L(fi) = {l1, . . . , lr} and has a set of measures
M(fi) = {m1, . . . ,ms}. Each dimension level lj is
linked to the level member with the identifier idS(lj)
and each measure mk is linked to the level member
with the identifier idS(mk). We denote by f vlj
and f vmk

, respectively, the dimension values and

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 15

measure values associated with a fact f . The value
vlj ∈ I is the identifier of a level member in LM(lj).
Further, the value vmk

for every measure mk is a lit-
eral such that vmk

∈ L. The RDF graph formulation
of the fact members FM(F) is represented as

GIFM(F) =

t⋃
i=1

GIfi

where

GIfi = {(id
I(fi) rdf:type qb:Observation)}∪⋃

lj∈L(fi)

{(idI(fi) idS(lj) idI(vlj) | fi vlj)}∪

⋃
mk∈M(fi)

{(idI(fi) idS(mk) idI(vmk) | fi vmk)}

Example 10. The triples below show how a fact mem-
ber of the GeoNorthwind DW (Fig. 7) is represented
in RDF using Defs. 12–16. Note that the fact member
and corresponding level members relating to dimen-
sions are given with the prefix gnwi:. idS(aID) is the
surrogate key (Def. 8) that links the fact member to the
corresponding dimensions’ base level members.

gnwi:sale_10613_1 rdf:type qb:Observation ;
gnw:customer gnwi:customer_1 ;
gnw:supplier gnwi:supplier_6 ;
gnw:product gnwi:product_13 ;
...
gnw:quantity 8 ;
gnw:unitPrice "6,00"ˆˆxsd:decimal ;
gnw:discount "0,10"ˆˆxsd:decimal ;
gnw:salesPoint
"POINT(23.08 42.34)"ˆˆgeo:wktLiteral.

5. Semantics of SOLAP operators

This section defines a formal algebra for SOLAP op-
erators. Examples of the operators are provided after
their definitions. The complete SPARQL query exam-
ples are given at our website13 and can be tested at our
public endpoint14. The query runtimes for each SO-
LAP operator are given in Appendix A1, Table 5 for
the use case dataset GeoNorthwind (Sect. 4.1, Fig. 7).
These operators can be applied on spatially enhanced

13http://extbi.cs.aau.dk/SOLAP4SW/queries
14http://extbi.lab.aau.dk/sparql

multidimensional data cubes (Sect. 3.3). The presen-
tation defines the semantics of a SOLAP operator by
logically specifying the typical OLAP operators with
spatial functions and conditions. Spatial functions and
conditions can be selected from a range of operation
classes, which can be applied on spatial data types
(Sect. 3.1). Let S be the set of any spatial operators
where S = (Sagg ∪ Trel ∪ Nop), used to represent a
spatial predicate φS ∈ S or a spatial function fS ∈ S,
which is in a SOLAP operator. The following SOLAP
operators are defined with a spatial extension to the
well-known OLAP operators, which are given in the
remarks.

Remark 17. (Slice) The slice operator removes a di-
mension from a cube C by selecting one instance in
a dimension level. For example, the query “slice on
customers in the city of Odense” is a slice operation.
(Cube is the sales, dimension is the customer, level in
dimension is the city and the value is Odense, which is
sliced out from the cube).

Definition 17. (S-Slice) The s-slice operator removes
a dimension from a cube C by choosing a single spatial
attribute value vs ∈ Ls (Ext. 8) in a spatial level ls
(Ext. 7).

As for the semantics, s-slice takes an n-dimensional
cube C as an argument. We assume that the cube has
the cube schema CS = (D,M,F), with the fact mem-
bers f ∈ FM as given in Def. 16. As parameters, s-
slice takes a spatial literal value vs, the base level lb
and the target (spatial) level ls of a dimension di. The
base level lb specifies the dimension di (Def. 16). The
target spatial level ls is the level, that the spatial literal
value vs is related.

The operator is defined as: SS(C)[lb, ls, vs] = C′,
which returns a cube C′ with n− 1 dimensions and the
schema CS = (D′,M ′, F ′), where D′ = D \ {di} ,
M ′ = M , and F ′ = F . The measures M and the fact
type F remains the same though the new cube C′ has
one dimension less.

The s-slice operator selects a subset FM ′ from the
set of fact members FM (FM ′ ⊆ FM), with respect
to the given parameter vs. Assuming that the granular-
ity of the fact members are at the (lowest) base level
of the dimension lb ∈ L(di) in the given cube, a par-
tial order exists among the levels, from bottom level to
the target spatial level ls such that lb v ls. The given
parameter vs is related to a level member of the level
ls. We say that the fact members are characterized by
dimension values, which is written as f vdi where
vdi ≡ vlb(di) (Def. 16). In other words, dimensions

16 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

are associated to the fact members by the values of the
dimensions’ base level members vlb(di) . When the di-
mension di is clear in the context, we will use base
level vlb for simplicity reasons.

To sum up, the subset FM ′ of facts is selected with
regards to the partial order on levels from base level
lb to the target level ls. The value vls in the target
level ls is specified with respect to the given spatial
literal value vs. The value of vs might be equal to a
spatial attribute value in the target level ls, thus vls is
characterized by the attribute value vs and written as
vls vs (Ex. 11). Or, vs is an arbitrary spatial literal
that entails a topological relation Trel (i.e., within) in
a value of the target spatial level vls , which is written
as ∃vls : φS(vs) where φS is a spatial Boolean predi-
cate that represents a topological relation (Ex. 12). Af-
ter applying the s-slice operator on cube C, the new
(sub)set of fact members is defined for both cases re-
spectively as follows; FM ′ = {f ∈ FM | ∃ vlb ∈
LM(lb), vls ∈ LM(ls) : f vlb ∧ vlb v vls ∧ vls
vs}, FM ′ = {f ∈ FM | ∃ vlb ∈ LM(lb), vls ∈
LM(ls) : f vlb ∧ vlb v vls : φS(vs)}.

Example 11. With regards to the traditional slice
query “slice on customers in the city of Odense”,
in s-slice, the user could specify a geometry extent
(e.g., polygon coordinates of the city of Odense) as
spatial literal for slicing instead of giving a text lit-
eral (e.g., “Odense”). So the s-slice query would
be; “slice on customers of the city, which has the
geometry "POLYGON((10.43951 55.47006,
10.439472 55.470036, 10.439240(...))"”.
More intuitively, instead of the specified spatial literal
vs ∈ Ls, the user can pass a function call as parameter
to s-slice, e.g., by querying “slice on customers in the
largest city of (southern) Denmark by land area”. The
function call should calculate the area of the cities by
their geometries where the largest city is selected as
a requirement of the s-slice operator. Both cases are
given in the following.

1. The following SPARQL query shows an s-slice
operator, which filters with the given spatial lit-
eral by the user.

SELECT ?obs WHERE {
?obs rdf:type qb:Observation ;

gnw:customerID ?cust .
?cust qb4o:memberOf gnw:customer ;

skos:broader ?city .
?city gnw:cityGeo ?cityGeo .

FILTER (?cityGeo = "POLYGON((10.439517 55.470064,
10.4394729 55.4700361, 10.4392403 (...))") }

2. The following SPARQL query shows the s-slice
operator, which filters with the function call
(largest city) returned from inner select. Given
the current limitations of SPARQL, there is not
an area calculation function from the geometries
of the spatial objects during query run time, how-
ever we give the query with a notional built-in
bif:st_area function.

SELECT ?obs WHERE {
?obs rdf:type qb:Observation ;

gnw:customerID ?cust .
?cust qb4o:memberOf gnw:customer ;

skos:broader ?city .
?city gnw:cityGeo ?cityGeo .

Inner select for finding the largest city
{SELECT ?x (MAX(?area) as ?maxArea)
WHERE {

?obs rdf:type qb:Observation ;
gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;
skos:broader ?city .

?city gnw:cityGeo ?x .
BIND(bif:st_area(?x) as ?area)}

FILTER (?cityGeo = ?x) }

Example 12. With regards to the traditional slice
query “slice on customers in the city of Odense”, in
this example of s-slice, the user gives a point geom-
etry (i.e., X,Y coordinates of a point as spatial lit-
eral) and filter at the given level (i.e., City level) that
the given point is within. So the s-slice query would
be; “slice on customers of the city, in which the given
"POINT(10.43951 55.47006)" is within”.

The following SPARQL query shows an s-slice op-
erator, which filters at the specified level with the given
spatial literal by the user.

SELECT ?obs WHERE {
?obs rdf:type qb:Observation ;

gnw:customerID ?cust .
?cust qb4o:memberOf gnw:customer ;

skos:broader ?city .
?city gnw:cityGeo ?cityGeo .

FILTER (bif:st_within("POINT(10.43951 55.47006)",
?cityGeo)) }

Note that the s-slice can be operated in different
ways based on the geometry given to the query. In both
Ex.s 11 and 12, slice level is given as City, however in
Ex. 12 a random X,Y point is given that is falling into
the target city. Therefore we need to use within from
topological relationships (Trel) class in order to verify
and filter that city.

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 17

Remark 18. (Dice) The traditional dice operator takes
a cube and a Boolean condition φ, which returns a new
cube containing only the cells that satisfy the Boolean
condition φ. Dice operation is analogous to relational
algebra, R selection; σφ(R), but the argument is a cube
not a relation. For example, the query “sales to cus-
tomers of type LLC (Limited Liability Company)” is
a dice operation. (Cube is the sales, dimension is the
customer, and Boolean condition is the customer type
if they are LLC).

Definition 18. (S-Dice) Similarly, the s-dice operator
takes an n-dimensional cube C as an argument, which
has the cube schema CS = (D,M,F) with the fact
members f ∈ FM as given in Def. 16. As a parameter
s-dice takes a spatial Boolean predicate, which is de-
noted by φS . The s-dice operator keeps the cells of the
cube C that satisfies the spatial predicate over spatial
dimension levels ls, attributes as, and measures m.

The semantics of the operator is defined as:
SD(C)[φS] = C′ where spatial predicate φS can be
applied on spatial level member values φS(vls), spa-
tial attribute values φS(vas), measure values φS(vm)
and/or a combination of these.
SD operator returns a sub cube C′ ⊆ C, which has

the schema CS = (D′,M ′, F ′) whereD′ = D ,M ′ =
M , and F ′ = F . Unlike the s-slice operator, s-dice
keeps all the dimensions D in the output cube C′. The
set of measuresM and the fact type F also remains the
same, though the new cube C′ is a subset of the original
cube C with filtered fact members f ∈ FM ′, which is
explained in the following.

The s-dice operator selects a subset FM ′ of the fact
members’ set FM ′ ⊆ FM with respect to the spatial
predicate φS on level members as follows;

1. Spatial predicate on level values: FM ′ = {f ∈
FM | ∃ vlb ∈ LM(lb), vls ∈ LM(ls) : f
vlb ∧ vlb v vls ∧ φS(vls)}.

2. Spatial predicate on level attribute values:
FM ′ = {f ∈ FM | ∃ vlb ∈ LM(lb), vls ∈ LM(ls)∧
vls vas : f vlb ∧ vlb v vls ∧ vls vas ∧
φS(vas)}.
Note that the filtering the facts through level members
can be done by vls (level values) or attribute values vas
by applying the spatial predicate φS . Finally filtering
of the facts is on associated measure values is defined
in the following;

3. Spatial predicate on measure values of ms: FM ′ =
{f ∈ FM | ∃ vms

∈ Codomain(ms) : f vms
∧

φS(vms)}.

For complex cases, i.e., combining these three types;
the result set is also followed by combining the basic
result sets.

Example 13. The s-dice operator can be implemented
on level and attribute values by filtering level members
in the cube or on measures by filtering the facts in the
cube. In both cases the spatial predicate φS is used.

The query for the s-dice operator could be “sales to
customers, which are located within 5 km distance from
their city center” where the s-dice is on level members
by filtering the customer level. The spatial predicate
φS can be interpreted in two different ways (See Ap-
pendix A1 for comparison of their query run times).

1. First method is assuming a buffer area of 5 km
from the coordinates of city center and check-
ing customers’ locations by within operator from
topological relations φS ∈ Trel if it meets the
condition. The following SPARQL query shows
the implementation of this method on level mem-
bers.

SELECT ?obs WHERE {
?obs rdf:type qb:Observation ;

gnw:customerID ?cust .
?cust qb4o:memberOf gnw:customer ;

skos:broader ?city ;
gnw:customerGeo ?custGeo .

?city gnw:cityGeo ?cityCentGeo .
FILTER (bif:st_within (?custGeo, ?cityCentGeo,
5))}

2. Second method is checking if the distance from a
customer location to the corresponding city cen-
ter is less than 5 km, by using distance function
from numeric operations fS ∈ Nop. In this case
the spatial predicate φS is a combination of a spa-
tial function fS and a regular Boolean predicate
φ. Spatial function is distance from numeric op-
erations and the predicate is less than (<). The
following SPARQL query shows the implementa-
tion of this method for s-dice on level members.

SELECT ?obs WHERE {
?obs rdf:type qb:Observation ;

gnw:customerID ?cust .
?cust qb4o:memberOf gnw:customer ;

skos:broader ?city ;
gnw:customerGeo ?custGeo .

?city gnw:cityGeo ?cityCentGeo .
BIND (bif:st_distance (?custGeo, ?cityCentGeo)
AS ?distance) FILTER (?distance < 5) }

Remark 19. (Roll-up) The traditional roll-up opera-
tor aggregates measures according to a dimension hi-

18 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

erarchy (by using an aggregate function), in order to
obtain measures at a coarser granularity for a given di-
mension. For example, the query “total amount of sales
to customers by city” is a classical roll-up operation.
(Cube is the sales, dimension is the customer, level in
dimension to roll-up is the city such that customer v
city, measure is the sales amount and aggregate func-
tion is the sum in order to calculate the total sales.)

Definition 19. (S-Roll-up) Similarly to roll-up opera-
tor, s-roll-up aggregates measures m ∈ M of a given
cube C, by using an aggregate function and a spatial
function fS ∈ S (Sect. 3.1) along a spatial dimension’s
hierarchy hs (Ext. 6), which should have spatial levels
ls (Ext. 7). However, in s-roll-up the dimension hier-
archy is created dynamically on levels by the spatial
function fS . We call this hierarchy a dynamic spatial
hierarchy, conceptually from a base level lb to the dy-
namically created target level l′s such that lb vd l′s. The
instances of the target level l′s are obtained by the spa-
tial function fS(ls) that is applied on spatial dimension
levels.

As for the semantics, s-roll-up takes an n-dimensional
cube C as an argument, which has the cube schema
CS = (D,M,F) with the fact members f ∈ FM
as given in Def. 16. As a parameter s-roll-up takes a
spatial function fS ∈ S to operate on levels L(di)
and an aggregate function agg to calculate a measure
m at the higher target level. For simplicity of expla-
nation and without loss of generality, we initially as-
sume that there is only one measure m. The exten-
sion of the operator on several measures m ∈ M is
explained in the last paragraph. S-Roll-up operator is
formulated as; SRU(C)[fS(L(di)), agg(m)] = C′,
which returns a cube C′ with n-dimensions and has the
schema CS = (D′,M ′, F ′) where F ′ = F , M ′ =M ,
and D′ = {di ∈ D | {d1, . . . , d′i, . . . , dn} ∧ L′(d′i) =
L(di) \ (lb vd . . . <d ls) ∪ {l′s}}. After the s-roll-
up operation, number of dimensions in D remains the
same, although the base levels and levels below the
target level (lb vd . . . <d ls) of the corresponding
dimension di are left out and a new target level l′s is
added to the set of dimension levels L′(d′i) of d′i.

The set of level members of the level l′s is se-
lected with respect to the spatial function on base level
members of a spatial dimension such that LM(l′s) =
{fS(vlb) | vlb ∈ LM(lb)} where lb vd l′s ⇐⇒
fS(vlb) = vl′s , which means that the base level lb rolls
up along the spatial dynamic hierarchy (vd) to the tar-
get new spatial level l′s if and only if spatial function
on base level fS(vlb) = vl′s produces the new spa-

tial level members vl′s . Even though the set of mea-
sures M remains the same, the s-roll-up operator ob-
tains the measure values associated with fact members
f ′ at a coarser granularity l′s, which alters the set of
facts FM ′ * FM . In order to create the new set of
facts FM ′ at the new granularity level l′s, the Group
operator [28] is used to group the facts characterized
by the same level members vl′s ∈ LM(l′s) such that
Group(vl′s) = {f ∈ FM | ∃ vlb ∈ LM(lb) :
f vlb ∧ vlb vd vl′s}. The output of the Group
operator on level members is a new fact instance f ′.
In order to aggregate the measure values vm, which
are associated with the fact members f we use an ag-
gregate function agg such that agg({f1, . . . , fk}) =
agg(vm1 , . . . , vmk

) where fi vmi , i = 1, . . . , k.
Finally, the set of the new facts f ′ ∈ FM ′ is con-
structed, that is given with the associated new level
members and aggregated measure values as; FM ′ =
{f ′ = Group(vl′s) | ∃ vl′s ∈ LM(l′s) : f ′
vl′s ∧ f

′ agg(Group(vl′s))}.
The extension to multiple measures is similar, which

is done by providing and using a separate aggregate
function for each measure m ∈M .

Example 14. The following SPARQL query shows
the s-roll-up operator, which is exemplified in Sect. 3.6.
The query is “total amount of sales to customers by
city of the closest suppliers”. Note that the measures
are aggregated up to a new city from customer level
of the customer dimension, which is specified as the
Closest City. The hierarchy step from customer to city
is defined dynamically by a spatial function fS (dis-
tance from numeric operations Nop ⊂ S), which is
then used in a wrapper function to find the closest
distance of the suppliers and customers. The levels
and level members (of customer), which are below the
newly defined level (Closest City) are left out in the
result.

SELECT ?city (SUM(?sales) AS ?totalSales)
WHERE { ?obs rdf:type qb:Observation ;

gnw:customerID ?cust ;
gnw:supplierID ?sup;gnw:salesAmount ?sales .

?cust qb4o:memberOf gnw:customer ;
gnw:customerGeo ?custGeo ;
gnw:customerName ?custName ;
skos:broader ?city .

?city qb4o:memberOf gnw:city .
?sup gnw:supplierGeo ?supGeo .
Inner Select for the total sales to
the closest supplier of the customer

{ SELECT ?cust1 (MIN(?distance) AS
?minDistance) WHERE
{ ?obs rdf:type qb:Observation ;

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 19

gnw:customerID ?cust1 ;
gnw:supplierID ?sup1 .

?sup1 gnw:supplierGeo ?sup1Geo .
?cust1 gnw:customerGeo ?cust1Geo .
BIND (bif:st_distance(?cust1Geo, ?sup1Geo)
AS ?distance)}
GROUP BY ?cust1 }
FILTER (?cust = ?cust1 && bif:st_distance
(?custGeo, ?supGeo) = ?minDistance)}

GROUP BY ?city

Remark 20. (Drill-down) Drill-down is the inverse
operator of roll-up, which disaggregates previously
summarized data to a child level in order to obtain
measures at a finer granularity of a given dimension.
For example, the roll-up query given in Remark 19
(“total amount of sales to customers by city”) aggre-
gates sales by summing up the sales amount, from cus-
tomer level to city level along a hierarchy. As drill-
down operator performs the operation opposite to the
roll-up an example would be; “average amount of sales
of each supplier, drilled down from the city level to the
supplier level”. (Cube is the same as sales, and the hier-
archy is the same but the dimension is the supplier, so
child level in dimension to drill-down from city level
is the supplier such that City w Supplier). Concep-
tually, a drill-down to level li on a cube C corresponds
to a roll-up to the same level li on the base cube of C,
that is denoted as BaseCube(C).

Definition 20. (S-Drill-down) Analogously to drill-
down operator, s-drill-down disaggregates measures
m ∈M of a given cube C, by using an aggregate func-
tion and a spatial function fS (Sect. 3.1) along a spatial
dimension’s hierarchy hs (Ext. 6), which should have
spatial levels (i.e., ls) (Ext. 7).

Conceptually, in s-drill-down, the dimension hier-
archy is created dynamically on levels by the spatial
function fS as in s-roll-up. This is similar to the dy-
namic spatial hierarchy defined in Def. 19, that is from
a spatial parent level lps to a dynamically created spa-
tial child level l′cs such that lps wd l′cs . The target spa-
tial child level l′cs is the output of the spatial function
fS on spatial levels lis ∈ L(di) of the spatial dimen-
sion. Applying s-drill-down to child level l′cs from a
parent level lps on a cube C corresponds to applying
s-roll-up to the same level l′cs from the base level lb on
the base cube of C. Therefore, the semantics of the s-
drill-down is described same as s-roll-up and the oper-
ator is formulated as SDD(C)[fS(L(di)), agg(m)] =
SRU(BaseCube(C))[fS(L(di)), agg(m)].

Example 15. In order to exemplify an s-drill-down,
starting from the result cube graph of Ex. 14 (“total

amount of sales to customers by city of the closest sup-
plier”), which is at the granularity of City level, we
drill down to child level Supplier with the query “av-
erage amount of sales of furthest suppliers to their city
center, drilled down the from City level to Supplier
level”. The following SPARQL query shows the given
example.

SELECT ?sup (AVG(?sales) AS ?averageSales)
(MAX(?distance) AS ?maxDistance)

WHERE { ?obs rdf:type qb:Observation ;
gnw:supplierID ?sup ;
gnw:salesAmount ?sales .

?sup qb4o:memberOf gnw:supplier ;
gnw:supplierGeo ?supGeo ;
gnw:supplierName ?supName ;
skos:broader ?city .

?city qb4o:memberOf gnw:city ;
gnw:cityGeo ?cityCentGeo .

BIND (bif:st_distance(?supGeo, ?cityCentGeo)
AS ?distance)}

FILTER (?distance = ?maxDistance)}
GROUP BY ?sup

In this paper, we focus on direct querying of single
data cubes with main SOLAP operators in SPARQL.
The integration of several cubes through s-drill-across
or set-oriented operations such as union, intersection,
and difference [5] is out of scope and remained as fu-
ture work.

6. Generating SOLAP queries in SPARQL via
QB4SOLAP

After having defined the high-level SOLAP oper-
ators in Sect. 5, this section first describes how to
generate SPARQL queries for each of these operators
by using the QB4SOLAP metamodel (Sect. 4). After-
wards, this section describes how to create more com-
plex SPARQL queries for nested SOLAP operations.

6.1. Generation algorithms

The generated SPARQL queries Q are of the form
“Q = SELECT R WHERE GP ", where GP is a graph
pattern containing triple patterns and R is the (set
of) variable(s) that are returned in the result of the
query. Triple patterns are based on triples of the form
(s, p, o) (Def. 4), where triple components are replaced
by variables. A set of triple patterns defines a graph
pattern GP . Given an RDF graph G, a graph pattern
GP is used to search for subgraphs G(R) ⊆ G match-
ing the pattern. In our algorithm, the graph pattern is

20 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

initially empty, GP = ∅, and the triple patterns are
added incrementally to the body of the WHERE clause:
GP = GP ∪ (s p o).

RDF datasets published with the QB4SOLAP vo-
cabulary use the skos:broader property to define
the roll-up relation from child level to parent level
(Defs. 13 and 15). As this is the case for all hierar-
chy levels in a dimension, every OLAP query contains
such roll-up paths that we need to consider as part of
GP in the WHERE clause.

Thus, we define a helper function RUPath (Algo-
rithm 1) that we can use in the SOLAP query genera-
tion algorithms.

Algorithm 1: RUPath(GS(C), lb, ls, aID, ?as, ?f)
:GP

Input: GS(C), lb, ls, aID,?as, ?f
Output: GP

1 begin
2 GP = (?f rdf:type qb:Observation)
3 GP = GP ∪ (?f idS(aID) ?lb ∧ ?lb

qb4o:memberOf idS(lb))
4 foreach (idS(lc), id

S(lp)) ∈ GS(C) | lp v ls do
5 GP = GP ∪ (?lb skos:broader ?lp ∧

?lp skos:broader ?ls)

6 let GP = GP ∪ (?ls idS(as) ?as)

7 return GP

Build roll-up path (RUPath). The helper func-
tion RUPath returns a graph pattern that we can
use in the body of the WHERE clause. The roll-
up path pattern is created as a path-shaped join of
triples with partial order (v , skos:broader)
(Def.s 10 and 15). The triple pattern is of the form
{(s1 p1 o1), (o1 p2 o2), (o2 p2 o3), . . . (on−1 p2 on)}
where s1 is the root of the graph pattern and cor-
responds to fact members f from the QB4SOLAP
schema (Def. 16), p1 is the predicate idS(aID) that
associates facts with level members vli (f vli ,
Def. 16), o1 is the variable for the first level member
that rolls up to its parent level o2 such that o1 v o2
and so on, and the p2 predicate corresponds to the
skos:broader property. The last variable in the
path on corresponds to the target level ls in order
to represent the level member variables at the target
level. The roll-up path starts at the fact instances f
(Def. 16). Afterwards, the partial order on level mem-
bers (Def. 15) from base level lb to target level ls is

applied. Algorithm 1 sketches the helper function for
building the roll-up path for dimensions; from facts
to dimension levels with predicates and cube member
IRIs defined in the cube schema.

In order to represent such varying parameters at the
instance level such as fact members, level members,
or parameter values given by the user, and to distin-
guish these parameters from other parameters in the al-
gorithm, we represent such parameters using variable
names with question marks.

We use a FILTER expression to restrict the out-
put data by using a (spatial) Boolean predicate φS .
A FILTER expression is part of the WHERE clause
in a SPARQL query. Therefore, it is added to the
body of the WHERE clause in the graph pattern GP
as GP = GP ∪ (FILTER φS). In the cases where
there is a spatial function fS(x) in the SOLAP oper-
ator, it is given in the BIND clause, which is techni-
cally a part of the WHERE clause and therefore added
to the body of the WHERE clause in a graph patternGP
as GP = GP ∪ (BIND fS(x)). SPARQL 1.1 defines
aggregate expressions15, such as SUM, MIN, MAX,
AVG, etc.

We apply them on measure values or use them as
wrappers in spatial functions. In the following, we of-
ten write AGG to represent them.

In the following, we present the SPARQL query
generation algorithms for the SOLAP operators de-
fined in Sect. 5. The algorithms take the input parame-
ters and arguments of the SOLAP operator and return
the a SPARQL query Q that can be executed.

S-Slice generator. To generate a SPARQL query for
the s-slice operator SS(C)[lb, ls, vs] (Def. 17), we use
Algorithm 2. Parameter vs is a spatial literal value vs ∈
Ls (i.e., POINT or POLYGON) that should be related to
a spatial level ls (Ext. 7). This means that vs is defined
as a polygon geometry that corresponds to a spatial
attribute value in the target level ls (Ex. 11) or vs is
defined as a point geometry that is spatially contained
in a spatial attribute value of the target level ls (Ex. 12).
Note that in Ex. 11.1, the given spatial literal has the
geometry data type polygon, which corresponds to a
spatial level attribute as (Ext. 8) at a spatial level ls.
Similarly, the spatial function call fS(x) in Ex. 11.2
returns a polygon that corresponds to a spatial level
attribute as.

15https://www.w3.org/TR/sparql11-query/#aggregates

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 21

Algorithm 2: S−SliceGenerator (GI(C), vs, lb, ls)
: Q

Input: GI(C), vs, lb, ls
Output: Q

1 begin
2 Q = ∅; GP =

RUPath(GS(C), lb, ls, aID,?as,?f)
3 if vs is a POINT then
4 GP = GP∪ (FILTER(st_within vs,

?as))
5 else if vs = fS(x) then
6 Q′=∅;

GP ′=RUPath(GS(C), lb, ls, aID,?as,?f)
7 GP ′ = GP ′∪ (BIND fS(x) AS ?vx)
8 Q′ = SELECT ?x AGG(?vx) WHERE GP ′

9 GP = GP ∪Q′ ∪ (FILTER ?x = ?as)

10 else
11 GP = GP ∪ (FILTER vs = ?as)

12 return Q = SELECT ?f WHERE GP

On the other hand the given spatial literal in Ex. 12
has the geometry data type point, which corresponds
to the spatial level ls via topological relations (Trel).
We consider all these possibilities in the s-slice gen-
erator algorithm. We explained these in the following,
where the steps are referencing the line numbers in Al-
gorithm 2.

Line 2. Get the path for dimension ds (e.g., Customer)
from the observation facts f to the base level lb,
and build path-shaped triple pattern paths from
the dimension’s base level lb to the target spa-
tial level ls (e.g., City level). Finally, get level at-
tribute IRIs and variables for the spatial attributes
as (e.g., City geometry). All this is done by the
RUPath function (Algorithm 1) that is used by
the s-slice generator. The following shows an ex-
ample result of this step that is added to GP :

{?obs rdf:type qb:Observation ;
gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;
skos:broader ?city .

?city gnw:cityGeo ?cityGeo .

Line 3. Check if the spatial literal vs is a point geom-
etry type. If true, create a FILTER statement with
a spatial Boolean predicate (Line 4) and go to the
result (Line 12).

Line 4. Build the FILTER statement based on the spa-
tial literal vs and the spatial attribute as (Ex. 12).
As a result the following lines might be added to
the GP :

FILTER (bif:st_within("POINT(10.43951
55.47006)", ?cityGeo))}

Line 5. Check if vs is a function call fS(x). If true
(Ex. 11.2), construct an inner select query to com-
pute the spatial function fS(x), then go to the re-
sult (Line 12).

Line 6. Call the RUPath function in order to link as
variables with the fact instances (this time for in-
ner select queryQ′). This step creates a graph pat-
tern GP ′ for inner select query Q′, for example:

{?obs rdf:type qb:Observation ;
gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;
skos:broader ?city .

?city gnw:cityGeo ?x .

Line 7. Build a bind statement on as variables for cal-
culating spatial functions (e.g., compute areas).
For example, the following lines might be added
to graph pattern GP ′:

BIND (bif:st_area(?x) as ?area) }

Line 8. Generate the inner select query Q′ based on
GP ′ generated in Lines 6 and 7. For example (Q′

finds the geometry of the largest city):

Q‘ = {SELECT ?x (MAX(?area) as ?maxArea)
WHERE {?obs rdf:type qb:Observation ;

gnw:customerID ?cust .
?cust qb4o:memberOf gnw:customer ;

skos:broader ?city .
?city gnw:cityGeo ?x .
BIND (bif:st_area(?x) as ?area) }

Line 9. Build the filter statement with the output of
the spatial function fS(x), construct GP (in-
cludes Q′) for the outer query, and go to the re-
sult (Line 12). At this stage GP is constructed in
Lines 2 and 8. The following for the filter state-
ment is added to the GP :

FILTER (?cityGeo = ?x) }

Line 11. If a spatial literal vs ∈ L is given as the
parameter instead, build a filter statement that
checks if vs is equal to the spatial attribute as val-
ues, and go to the result (Line 12). For example,
the following filter condition might be added to
graph pattern GP :

22 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

FILTER (?cityGeo = "POLYGON((10.43951
55.47006, 10.439472 55.470036,
10.439240 (...))")}

Line 12. Finally, the algorithm generates query Q,
which can be executed over the fact members
FM ′. In our running examples we obtain the fol-
lowing cases for the generated s-slice query Q.

S-Slice operator with a given spatial value as point
data type: The following listing corresponds to the
SPARQL output of the running example where the spa-
tial value is given as POINT data type (Ex. 12) and fil-
ters the level attributes with a spatial predicate within
a given level. The graph pattern GP for the query is
created in Lines 2 to 7.

1 Q = SELECT ?obs WHERE
2 {?obs rdf:type qb:Observation ;
3 gnw:customerID ?cust .
4 ?cust qb4o:memberOf gnw:customer ;
5 skos:broader ?city .
6 ?city gnw:cityGeo ?cityGeo .
7 FILTER (bif:st_within("POINT(10.43951
55.47006)", ?cityGeo)) }

S-Slice operator with a spatial function call: The fol-
lowing listing corresponds to the SPARQL output of
the running example where the spatial value is returned
from a function call (Ex. 11.2). The graph pattern GP ′

for the spatial function call is created in Lines 8 to 13.
The graph pattern GP for the whole query is created
in Lines 2 to 12.

1 Q = SELECT ?obs WHERE
2 { ?obs rdf:type qb:Observation ;
3 gnw:customerID ?cust .
4 ?cust qb4o:memberOf gnw:customer ;
5 skos:broader ?city .
6 ?city gnw:cityGeo ?cityGeo .
When there is spatial function call we apply
inner select for finding the largest city

7 {SELECT ?x (MAX(?area) as ?maxArea) WHERE
8 { ?obs rdf:type qb:Observation ;
9 gnw:customerID ?cust .

10 ?cust qb4o:memberOf gnw:customer ;
11 skos:broader ?city .
12 ?city gnw:cityGeo ?x .
13 BIND(bif:st_area(?x) as ?area)}

Then we apply the filter on the output
coming from the spatial function

14 FILTER (?cityGeo = ?x) }

S-Slice operator with a given spatial value as poly-
gon data type: The following listing corresponds to the
SPARQL output of the running example where the spa-
tial value is given as a POLYGON data type (Ex. 11.1)
corresponding to a level attribute. The graph pattern
GP for the query is created in Lines 2 to 7.

1 Q = SELECT ?obs WHERE
2 {?obs rdf:type qb:Observation ;
3 gnw:customerID ?cust .
4 ?cust qb4o:memberOf gnw:customer ;
5 skos:broader ?city .
6 ?city gnw:cityGeo ?cityGeo .
7 FILTER (?cityGeo = "POLYGON((10.43951
55.47006, 10.43947 55.47003, 10.43924 (...))")}

S-Dice generator. To generate a SPARQL query for
the s-dice operator, SD(C)[φS] (Def. 18 – parameter
φS represents a spatial predicate), we follow the steps
sketched in Algorithm 3. The algorithm takes param-
eter φS as input, which corresponds to a spatial pred-
icate that could represent a topological relation from
the Trel set or a combination of a spatial function (a nu-
meric operation from the Nop set) and a regular predi-
cate φ. For illustration, we use the example query that
we have introduced in Sect. 5 for s-dice (Ex. 13):

“sales to customers, which are located 5 km distance
from their city center". In the following, we discuss the
main steps of Algorithm 3 with the running example,
where the steps are referencing the line numbers in Al-
gorithm 3.

Line 3. The algorithm runs through the levels from
base level lb to the target spatial level ls, which
are both given in the spatial Boolean predicate φS

Line 4. Build the roll-up path for those levels using
the helper function RUPath. Note that, when we
apply the roll-up path to the target level, we can
also link the level attributes for the target (spatial)
level – as, for example, in the last line of the fol-
lowing listing. The output of function RUPath is
added to graph pattern GP :
{?obs rdf:type qb:Observation ;

gnw:customerID ?cust .
?cust qb4o:memberOf gnw:customer ;

skos:broader ?city ;
gnw:customerGeo ?custGeo .

?city gnw:cityGeo ?cityCentGeo .

Line 5. Check if φS is to be implemented as a spatial
predicate from topological relations Trel as inter-
preted in Ex. 13.1.

Line 6. Create a filter statement with a spatial pred-
icate and the spatial level attribute as, which is
referenced in the roll-up path (Line 4). For our
running example, the filter statement is applied
on customers that are located within a buffer area
of 5 km from their city centers. The spatial pred-
icate st_within is used from the topological
relations. The following lines are added to graph
pattern GP :

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 23

FILTER (bif:st_within(?custGeo,
?cityCentGeo, 5))}

Line 7. Check if φS is to be implemented as a com-
bination of a spatial function fS(x) and a regular
predicate φ as interpreted in Ex. 13.2.

Algorithm 3: S−DiceGenerator (GI(C), φ
S) : Q

Input: GI(C), φ
S

Output: Q
1 begin
2 Q = ∅ ; GP = ∅
3 for lb, ls ∈ φS do
4 GP = GP ∪

RUPath(GS(C), lb, ls, aID,?as,?f)

5 if φS is a spatial predicate then
6 GP = GP ∪ (FILTER φS (?as))

7 else if φS uses a spatial function fS(x) and a
regular Boolean predicate φ then

8 GP = GP ∪ (BIND fS(x) AS ?vx)
9 GP = GP ∪ (FILTER φ(?vx))

10 return Q = SELECT ?f WHERE GP

Lines 8, 9. Create a bind statement based on a spatial
function (i.e., calculate st_distance between
customers and city center) and a filter statement
based on the assigned values with a regular predi-
cate (i.e., less than 5 km). The following lines are
added to graph pattern GP :

BIND (bif:st_distance (?custGeo, ?cityCentGeo)
AS ?distance) FILTER (?distance < 5)}

Line 10. Generate query Q for selecting the facts f ∈
FM ′ matching the incrementally created graph
pattern GP in the previous steps. In our running
examples we obtain the following cases for the
generated s-dice query Q.

S-Dice operator with φS : The following listing is the
SPARQL query generated for the running example
(Ex. 13.1), where the spatial predicate is interpreted as
a topological relation. The graph pattern GP for the
query is created in Lines 2 to 8.

1 Q = SELECT ?obs WHERE
2 { ?obs rdf:type qb:Observation ;
3 gnw:customerID ?cust .
4 ?cust qb4o:memberOf gnw:customer ;
5 skos:broader ?city ;

6 gnw:customerGeo ?custGeo .
7 ?city gnw:cityGeo ?cityCentGeo .
8 FILTER (bif:st_within (?cityCentGeo, ?custGeo, 5))}

S-Dice operator with fS(x) and a regular Boolean
predicate φ: The following listing is the SPARQL
query generated for the running example (Ex. 13.2),
where the spatial predicate is interpreted as a combina-
tion of a spatial function and a regular predicate. The
graph pattern GP for the query is created in Lines 2 to
9.

1 Q = SELECT ?obs WHERE
2 { ?obs rdf:type qb:Observation ;
3 gnw:customerID ?cust .
4 ?cust qb4o:memberOf gnw:customer ;
5 skos:broader ?city ;
6 gnw:customerGeo ?custGeo .
7 ?city gnw:cityGeo ?cityCentGeo .
8 BIND (bif:st_distance (?custGeo, ?cityCentGeo) AS
9 ?distance) FILTER (?distance < 5) }

S-Roll-up Generator. To generate a SPARQL query
for the s-roll-up operator from a high-level SOLAP
expression, SRU(C)[fS(L(di)), agg(m)] (Def. 19),
where parameter fS(L(di)) denotes a spatial function
on spatial level members and agg(m) is an aggre-
gate function on measures. For illustration, we use the
query example for s-roll-up given in Sect. 5 for s-roll-
up (Ex. 14): “total amount of sales to customers by
city of the closest suppliers". We follow the main steps
sketched in Algorithm 4 in the following.

Lines 2, 3. Build the roll-up path using helper func-
tion RUPath. In addition to the variables given
in the RUPath function, we also need to con-
sider measures and measure value variables (Line
3) since we aggregate the measures. A measure
is specified in the following listing of the running
example as gnw:salesAmount. The following
lines are added to the graph pattern GP :

{?obs rdf:type qb:Observation ;
gnw:customerID ?cust ;
gnw:supplierID ?sup ;
gnw:salesAmount ?sales .

?cust qb4o:memberOf gnw:customer ;
gnw:customerGeo ?custGeo ;
skos:broader ?city .

?sup qb4o:memberOf gnw:supplier ;
gnw:supplierGeo ?supGeo ;
skos:broader ?city .

?city qb4o:memberOf gnw:city .

Line 4. Build inner select subquery to apply the spa-
tial function fS on the spatial level members
L(di) (i.e., Customer, Supplier). In the example,

24 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

we will use this information to create a dynamic
spatial hierarchy from the Customer to the City
level.

Algorithm 4: SRUGenerator(GI(C),f
S(L(ds)),

agg(m)) :Q

Input: GI(C), f
S(L(di)), agg(m)

Output: Q
1 begin
2 Q = ∅ ; GP =

RUPath(GS(C), lb, ls, aID,?as,?f)
3 GP = GP ∪ (?f idS(m) ?m)
4 for fS(L(ds)) do
5 GP ′ = RUPath(GS(C), lb, ls, aID,?as,?f);

Q′ = ∅
6 GP ′ = GP ′ ∪ (BIND fS(x) AS ?vx)
7 Q′ = SELECT ?x (AGG(?vx) AS ?vy)

WHERE GP ′ GROUP BY ?x
8 GP = GP ∪ Q′ ∪ (FILTER ?x = ?as

&& fS(x) = ?vy)
9 let ls = l′s

10 return Q = SELECT ?f ?l’s AGG(?m) WHERE GP
GROUP BY ?f ?l’s

Line 5. Call RUPath for the inner select subquery to
link the geometry attributes of base level mem-
bers with different variables and create a graph
pattern GP ′ for the inner select. The following
lines are added to the graph pattern GP ′:

{?obs rdf:type qb:Observation ;
gnw:customerID ?cust1 ;
gnw:supplierID ?sup1 .

?sup1 gnw:supplierGeo ?sup1Geo .
?cust1 gnw:customerGeo ?cust1Geo .

Line 6. Build the bind statement in order to calculate
the spatial function fS(L(ds)) on spatial level
members. For the running example the spatial
function is st_distance. The following lines
are added to the graph pattern GP ′:

BIND (bif:st_distance(?cust1Geo, ?sup1Geo)
AS ?distance)}

Line 7. Generate the inner select query Q′ using
graph pattern GP ′ (Lines 5 and 6). Select the
corresponding level members (Customer level for
the running example) and group them in a group
by statement on the selected level members. Note

that this is where the spatial function fS(L(di))
is called with a wrapper expression (e.g., MIN,
MAX, etc.) to find the closest distance. The fol-
lowing lines illustrate the inner select query Q′:

Q‘ = {SELECT ?cust1 (MIN(?distance) AS
?minDistance) WHERE GP‘

GROUP BY ?cust1}

Lines 8, 9. Build the filter statement for the whole
query based on the output of the spatial function,
which is calculated in the inner select subquery.
Then, add the filter and inner select subquery to
the main graph pattern GP ′ (Line 8). The filter
statement for the running example is :

FILTER (?cust = ?cust1 && bif:st_distance
(?custGeo, ?supGeo) = ?minDistance)}

Note that in Line 9, the spatial target level ls
(City) is altered to a dynamic spatial level l′s since
applying the spatial function creates a dynamic
hierarchy.

Line 10. Generate queryQ for computing the facts f ∈
FM ′ based on graph pattern GP created in the
previous steps. The measures are also aggregated
at the spatial target level (closest City, which is
dynamically selected). The group by statement
is applied on the fact members and target level
members. In our running example we obtain the
following case for the generated s-roll-up query
Q.

S-Roll-up operator: The following listing shows the
generated SPARQL query. Graph pattern GP ′ for the
inner select subquery is created in Lines 15 to 22 and
the graph pattern GP for the whole query is created in
Lines 3 to 24.

1 Q = SELECT ?obs ?city (SUM(?sales) AS
2 ?totalSales) WHERE
3 { ?obs rdf:type qb:Observation ;
4 gnw:customerID ?cust ;
5 gnw:supplierID ?sup ;
6 gnw:salesAmount ?sales .
7 ?cust qb4o:memberOf gnw:customer ;
8 gnw:customerGeo ?custGeo ;
9 gnw:customerName ?custName ;

10 skos:broader ?city .
11 ?city qb4o:memberOf gnw:city .
12 ?sup gnw:supplierGeo ?supGeo .

Inner Select for the distance function
13 { SELECT ?cust1 (MIN(?distance) AS
14 ?minDistance) WHERE
15 { ?obs rdf:type qb:Observation ;
16 gnw:customerID ?cust1 ;

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 25

17 gnw:supplierID ?sup1 .
18 ?sup1 gnw:supplierGeo ?sup1Geo .
19 ?cust1 gnw:customerGeo ?cust1Geo .
20 BIND (bif:st_distance(?cust1Geo, ?sup1Geo)
21 AS ?distance)}
22 GROUP BY ?cust1 }
23 FILTER (?cust = ?cust1 && bif:st_distance
24 (?custGeo, ?supGeo) = ?minDistance)}
25 GROUP BY ?city ?obs

S-Drill-down Generator. The semantics of the s-drill-
down operator are defined in the same way as for
the s-roll-up operator with the condition that the in-
put cube C for s-roll-up is obtained using a function
BaseCube such that SDD(C)[fS(L(di)), agg(m)] =
SRU(BaseCube(C))[fS(L(di)), agg(m)] (Def. 20).
Therefore, no generator algorithm and steps are spec-
ified since an s-drill-down operator corresponds to
a rewriting of an s-roll-up operator, which is ob-
tained with a Base function that calls the base cube
graph in SRUGenerator as; SDDGenerator =
SRUGenerator (Base(GI(C)), f

S(L(di)), agg(m)).

6.2. Nested SOLAP operations to SPARQL

We now show how a SPARQL query can be gen-
erated for a nested SOLAP expression. In general, a
nested set of SOLAP operators can be rewritten into
an expression with an additional s-dice, on top of a
series of s-roll-ups, on top of one or more s-slices,
on top of an s-dice, i.e., (s-dice2(s-roll-up1(. . . s-roll-
upk(s-slice1(. . . s-slicen(s-dice1(C))))))).

Let us begin with a simpler nested form that shows
the most typical pattern, namely (s-roll-up (s-slice (s-
dice(C)))), where initially a subcube graph is selected
by s-dice. Afterwards, an s-slice is performed on a
higher level of a dimension. Then, an s-roll-up is ap-
plied, which aggregates the measures in the sliced cube
from a lower level to a higher level. Finally, we could
also perform another s-dice for filtering the measures.
There may be several s-slices and s-roll-ups in be-
tween.

We formulate the nested SOLAP query as 3(s-roll-
up 2(s-slice 1(s-dice(C)))) and apply our running ex-
amples such that the enumeration of operators can be
interpreted as follows: 1Get the subcube graph of cus-
tomers that are located within a 5 km distance from
their city center, 2slice on the customers of the largest
country, (which drops the dimension and leaves out
all the other countries) and 3get the total amount of
sales for customers by the city of their closest suppliers
(aggregates the measure Sales amount from Customer

to Closest City level). Finally, we may also perform
another (s-)dice on measures, e.g., filtering the total
amount of sales greater than 10500. To perform nested
SOLAP operators, we identify a set of principles to be
considered by the algorithm.

Principle 1: Perform s-dice in the beginning or at
the end.
Principle 2: If there are several s-roll-up or s-slice
operations call their generator algorithms repeat-
edly.
Principle 3: Always separate FILTER clauses
when a SOLAP generator algorithm is used. Enu-
merate separated FILTER clauses. If a SOLAP
operator is the final function added to the graph
pattern, do not separate the FILTER clause.
Principle 4: Build the final graph pattern with the
separated and enumerated FILTER clauses with
respect to Principle 3.
Principle 5: Drop the main SELECT clause from
each SOLAP generator algorithms and build only
one SELECT that is added to the query at the end.
Principle 6: Separate the GROUP BY clause and
AGG functions from the s-roll-up generator algo-
rithms (and enumerate them), and build add them
to the main (outer) SELECT clause at the end.

Algorithm 5: WriteSPARQL((SRU(C)[fS(L(di)),
agg (m)] (SS(C)[lb, ls, vas](SD(C)[φS])))) :Q

Input: (SRU(C)[fS(L(ds)), agg(m)](SS(C)[lb, ls,
vas](SD(C)[φS])))

Output: Q
1 begin
2 Q = ∅ ; GP =

RUPath(GS(C), lb, ls, aID,?as,?f)
3 GP = GP ∪ (?f idS(m) ?m)
4 GP 1 = S-DiceGenerator(GI(C), φ

S)

\FILTER1 \ SELECT
5 GP = GP ∪GP 1

6 GP 2 = S-SliceGenerator(GI(C), vs, lb, ls)
\FILTER2 \ SELECT

7 GP = GP ∪GP 2

8 GP = GP ∪ FILTER1 ∪ FILTER2 ∪
9 SRUGenerator(GI(C), f

S(L(ds)), agg(m))\
SELECT \ GROUP BY1 \ AGG1

10 return Q = SELECT ?l’s AGG1(?m) WHERE GP
GROUP BY1 ?l’s

26 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

To separate the FILTER clauses, we call SOLAP
generator algorithms without their FILTER clause and
enumerate each FILTER clause for each SOLAP gen-
erator algorithm that is used, i.e., S-SliceGenerator
(GI(C), φ

S) \ FILTER1 (Algorithm 5, Line 4). Then,
we build the final graph pattern with these separated
FILTER clauses i.e., GP = GP ∪ FILTER1 ∪
FILTER2 (Line 8). When the last SOLAP generator
algorithm is called, the output is directly added to the
graph pattern without separating its FILTER clause
(Line 9). Throughout the algorithm, all the SELECT
clauses are omitted and combined into one SELECT
in the output on Line 10. According to Principle 6, if
there are any GROUP BY clauses and AGG functions
(on measures) in inner selects, we eliminate them with
" \ " from the inner selects (Line 9) and finally build
the main (outer) select query with (Line 10). Note that
in the algorithm, the general graph pattern GP is ini-
tially created by the RUPath function (Line 2) and
incremented with triple patterns for selected measures
(Line 3).

Example 16. ((3s-roll-up (2s-slice (1s-dice(C))))):
1Get the subcube graph of customer that are located
within a 5 km distance from their city center, 2slice
on the customers of the largest country, (which drops
the dimension and leave out all the other countries)
and 3get the total amount of sales of customers by the
city of their closest suppliers (aggregates the measure
Sales amount from Customer to Closest City level).
The query is written starting from the innermost oper-
ator s-dice to the outermost operator s-roll-up.

1 SELECT ?city (SUM(?sales) AS ?totalSales)
2 WHERE {
3 ?obs rdf:type qb:Observation ;
4 gnw:customerID ?cust ;
5 gnw:supplierID ?sup ;
6 gnw:salesAmount ?sales .
7 ?cust qb4o:memberOf gnw:customer ;
8 gnw:customerGeo ?custGeo ;
9 skos:broader ?city .

10 ?sup qb4o:memberOf gnw:supplier ;
11 gnw:supplierGeo ?supGeo ;
12 skos:broader ?city .
13 ?city qb4o:memberOf gnw:city ;
14 gnw:cityGeo ?cityCentGeo ;
15 skos:broader ?country .
16 ?country qb4o:memberOf gnw:country ;
17 gnw:countryGeo ?countGeo .
18 ?city gnw:cityGeo ?cityGeo .

1.Inner select for (S-SLICE)
Find the largest country

19 {SELECT ?x (MAX(?area) as ?maxArea)
20 WHERE {

21 ?obs rdf:type qb:Observation ;
22 gnw:customerID ?cust .
23 ?cust qb4o:memberOf gnw:customer ;
24 skos:broader ?city .
25 ?city skos:broader ?country .
26 ?country gnw:countryGeo ?x .
27 BIND(bif:st_area(?x) as ?area)}}

2.Inner select for (S-ROLL-UP)
Find the closest suppliers to customers

28 { SELECT ?cust1 (MIN(?distance) AS
29 ?minDistance) WHERE {
30 ?obs rdf:type qb:Observation ;
31 gnw:customerID ?cust1 ;
32 gnw:supplierID ?sup1 .
33 ?sup1 gnw:supplierGeo ?sup1Geo .
34 ?cust1 gnw:customerGeo ?cust1Geo .
35 BIND (bif:st_distance(?cust1Geo, ?sup1Geo)

AS ?distance)}
36 GROUP BY ?cust1 }

FILTER for S-DICE, to get a subcube
37 FILTER (bif:st_within (?custGeo, ?cityCentGeo, 5))

FILTER for S-SLICE, the 1st inner SELECT
38 FILTER (?countGeo = ?x)

FILTER for S-ROLL-UP, the 2nd inner SELECT
39 FILTER (?cust = ?cust1 && bif:st_distance

(?custGeo, ?supGeo) = ?minDistance)}
40 GROUP BY ?city

The graph pattern GP is initially created with
the RUPath function for the corresponding levels
and level attributes (Lines 3 to 18 of the generated
SPARQL query in the listing above). The first opera-
tor is called by function S-DiceGenerator, where
the first FILTER clause of the outer selected is added
to the query (Line 37). The second operator is called
by the S-SliceGenerator function excluding its
FILTER clause (Lines 19 to 27), which is followed
by the SRUGenerator function without GROUP BY
and AGG statements (Lines 28 to 36). Note that in
Line 36, GROUP BY is applied on the lower level Cus-
tomer, and the actual GROUP BY for the target City
level is applied in the last line (Line 40). Separated
FILTER clauses for the S-DiceGenerator and
S-SliceGenerator functions are later added to
the graph pattern (Algorithm 5, Line 8) corresponding
to Lines 37 and 38 in the above example. The main
outer select query is defined in the first line by speci-
fying the target level (City) and aggregate function on
measures (sum of the total Sales).

7. Conclusions and future work

Motivated by the need for a formal foundation for
spatial data warehouses on the Semantic Web, this pa-

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 27

per made a number of contributions. First, it proposed
the QB4SOLAP vocabulary (metamodel), which sup-
ports spatially enhanced multidimensional (MD) data
cubes over RDF data. This allows users to publish MD
spatial data in RDF format. Second, the paper defines a
number of spatial OLAP (SOLAP) operators over the
defined QB4SOLAP cubes, allowing spatial analytical
queries over RDF data, and gives their formal seman-
tics. Third, the paper provides algorithms for gener-
ating spatially extended SPARQL queries from indi-
vidual and nested SOLAP operators, allowing users to
write their spatial analytical queries in our high-level
SOLAP language instead of the lower-level and more
complex SPARQL. Fourth, the vocabulary, operators,
and query generation algorithms are validated by ap-
plying them to a realistic use case.

RDF2SOLAP
module

External
Geo-

vocabularies

SOLAP

User Spatial RDF Data Warehouses

GeoSemOLAP

SOLAP to SPARQL

QB4SOLAP

Spatial RDF
Endpoints

Fig. 8. Our future vision of SOLAP on the SW

Fig. 8 presents our future vision of SOLAP on the
Semantic Web with regards to the current state of the
art and ongoing work. In order to verify the algo-
rithms, which are defined in this paper, we developed
GeoSemOLAP [18], a SPARQL query generation tool.
GeoSemOLAP allows users to perform SOLAP op-
erations and generate SPARQL queries interactively
through a GUI. We refer to our screencast16 for a de-
tailed demonstration of GeoSemOLAP.

Publishing spatial DWs on the SW allows users
to also exploit the existing external geo-vocabularies
(e.g., GeoNames, etc.)17 by defining spatial levels
and hierarchies from external open data sources. Our
main ongoing work thus focuses on developing an

16https://youtu.be/Pc3RBPPgBhA
17GeoNames: http://www.geonames.org/

Global Administrative Areas: http://gadm.geovocab.org/
NUTS – EU’s Nomenclature of Territorial Units for Statistics:
http://nuts.geovocab.org/

RDF2SOLAP enrichment module that performs the
multidimensional annotation of existing spatial RDF
datasets with QB4SOLAP in a (semi-)automatic fash-
ion.

Additional interesting aspects of future work would
be, for instance, extending the formal techniques and
algorithms for generating SOLAP queries in SPARQL
to work over multiple RDF cubes, i.e., to support
s-drill-across, and supporting spatial aggregation (s-
aggregation) with user-defined functions over spatial
measures. It would be also interesting to increase ef-
ficiency by extending our spatial data warehouse with
techniques that been developed in the context of RDF
data cubes and SPARQL analytical queries in general,
e.g., materialization and optimizing the physical lay-
out [13,21,22], and to enable efficient support of a
broad range of external sources by considering aspects
such as federated processing of analytical queries [20]
and schema heterogeneity [35]. We will also consider
more efficient representations of the data, e.g., by re-
moving redundancies. Furthermore, it would be inter-
esting to extend QB4SOLAP and GeoSemOLAP [18]
to handle highly dynamic spatio-temporal data and
queries, as for instance, found in large-scale transport
analytics [12].

Acknowledgment. This research is partially funded by the Euro-

pean Commission through the Erasmus Mundus Joint Doctorate In-

formation Technologies for Business Intelligence (EM IT4BI-DC)

and the Danish Council for Independent Research (DFF) under grant

agreement no. DFF-4093-00301.

References

[1] A. Abelló, O. Romero, T. Pedersen, R. Berlanga Llavori,
V. Nebot, M. Aramburu, and A. Simitsis. Using Semantic
Web Technologies for Exploratory OLAP: A Survey. IEEE
Transactions on Knowledge and Data Engineering (TKDE),
27(2):571–588, 2014. https://doi.org/10.1109/
TKDE.2014.2330822.

[2] A. B. Andersen, N. Gür, K. Hose, K. A. Jakobsen, and T. B.
Pedersen. Publishing Danish Agricultural Government Data as
Semantic Web Data. In Semantic Technology: 4th Joint Inter-
national Semantic Technology Conference (JIST’14), volume
8943, pages 178–186. Springer, 2014. https://dx.doi.
org/10.1007/978-3-319-15615-6_13.

[3] R. Battle and D. Kolas. Enabling the Geospatial Semantic
Web with Parliament and GeoSPARQL. Semantic Web Journal
(SWJ), 3(4):355–370, 2012. https://dx.doi.org/10.
3233/SW-2012-0065.

[4] Y. Bédard, E. Bernier, S. Larrivée, M. Nadeau, M. Proulx, and
S. Rivest. Spatial OLAP. In Forum annuel sur la RD, Géoma-
tique VI: Un monde accessible, pages 13–14, 1997.

28 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

[5] C. Ciferri, L. Gómez, M. Schneider, A. Vaisman, and
E. Zimányi. Cube algebra: A Generic User-centric Model and
Query Language for OLAP Cubes. International Journal of
Data Warehousing and Mining (IJDWM), 9(2):39–65, 2013.
http://dx.doi.org/10.4018/jdwm.2013040103.

[6] R. Cyganiak, D. Reynolds, and J. Tennison. The RDF Data
Cube Vocabulary. W3C Recommendation, 2014. https://
www.w3.org/TR/vocab-data-cube/.

[7] J. da Silva, V. C. Times, A. C. Salgado, C. Souza, R. d. N. Fi-
dalgo, and A. G. de Oliveira. A set of aggregation functions
for spatial measures. In Proceedings of the 11th International
Workshop on Data Warehousing and OLAP (DOLAP’08),
pages 25–32. ACM, 2008. https://doi.acm.org/10.
1145/1458432.1458438.

[8] R. P. Deb Nath, K. Hose, and T. B. Pedersen. Towards
a Programmable Semantic Extract-Transform-Load Frame-
work for Semantic Data Warehouses. In Proceedings of the
18th International Workshop on Data Warehousing and OLAP
(DOLAP’15), pages 15–24. ACM, 2015. https://doi.
org/10.1145/2811222.2811229.

[9] E. Edoh-Alove, S. Bimonte, and F. Pinet. An UML Profile
and SOLAP Datacubes Multidimensional Schemas Transfor-
mation Process for Datacubes Risk-Aware Design. Interna-
tional Journal of Data Warehousing and Mining (IJDWM),
11(4):64–83, 2015. https://dx.doi.org/10.4018/
ijdwm.2015100104.

[10] M. J. Egenhofer and J. Herring. A mathematical framework
for the definition of topological relationships. In Fourth inter-
national symposium on spatial data handling, pages 803–813.
Zurich, Switzerland, 1990.

[11] L. Etcheverry, A. Vaisman, and E. Zimányi. Model-
ing and Querying Data Warehouses on the Semantic Web
using QB4OLAP. In Data Warehousing and Knowl-
edge Discovery (DaWaK’14), volume 8646, pages 45–
56. Springer, 2014. https://dx.doi.org/10.1007/
978-3-319-10160-6_5.

[12] G. Gidofalvi, T. B. Pedersen, T. Risch, and E. Zeitler. Highly
scalable trip grouping for large-scale collective transportation
systems. In Proceedings of the 11th International Conference
on Extending Database Technology (EDBT’08), pages 678–
689. ACM, 2008. https://doi.acm.org/10.1145/
1353343.1353425.

[13] F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu. View
Selection in Semantic Web Databases. VLDB Endowment,
5(2):97–108, 2011. https://dx.doi.org/10.14778/
2078324.2078326.

[14] L. I. Gómez, S. A. Gómez, and A. A. Vaisman. A Generic Data
Model and Query Language for Spatiotemporal OLAP Cube
Analysis. In Proceedings of the 15th International Conference
on Extending Database Technology (EDBT’12), pages 300–
311. ACM, 2012. https://doi.acm.org/10.1145/
2247596.2247632.

[15] L. I. Gómez, S. Haesevoets, B. Kuijpers, and A. A. Vaisman.
Spatial aggregation: Data model and implementation. Infor-
mation Systems (IS), 34(6):551–576, 2009. https://dx.
doi.org/10.1016/j.is.2009.03.002.

[16] N. Gür, K. Hose, T. B. Pedersen, and E. Zimányi. Enabling
Spatial OLAP over Environmental and Farming Data with
QB4SOLAP. In Semantic Technology: 6th Joint International
Semantic Technology Conference (JIST’16), volume 10055,
pages 287–304. Springer, 2016. https://dx.doi.org/

10.1007/978-3-319-50112-3_22.
[17] N. Gür, K. Hose, E. Zimányi, and T. B. Pedersen. Model-

ing and Querying Spatial Data Warehouses on the Semantic
Web. In Semantic Technology: 5th Joint International Seman-
tic Technology Conference (JIST’15), volume 9544, pages 1–
20. Springer, 2015. https://dx.doi.org/10.1007/
978-3-319-31676-5_1.

[18] N. Gür, J. Nielsen, K. Hose, and T. B. Pedersen. GeoSemO-
LAP: SOLAP on the Semantic Web Made Easy. In Proceed-
ings of the 26th International Conference Companion on World
Wide Web (WWW’17). ACM, 2017. https://dx.doi.
org/10.1145/3041021.3054731.

[19] J. Han, N. Stefanovic, and K. Koperski. Selective Ma-
terialization: An Efficient Method for Spatial Data Cube
Construction. In Research and Development in Knowl-
edge Discovery and Data Mining (PAKDD’98), pages 144–
158. Springer, 1998. https://dx.doi.org/10.1007/
3-540-64383-4_13.

[20] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi.
Processing Aggregate Queries in a Federation of SPARQL
Endpoints. In The Semantic Web: 12th European Se-
mantic Web Conference (ESWC’15), pages 269–285.
Springer, 2015. https://dx.doi.org/10.1007/
978-3-319-18818-8_17.

[21] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi.
Optimizing Aggregate SPARQL Queries Using Material-
ized RDF Views. In The Semantic Web: 15th Interna-
tional Semantic Web Conference (ISWC’16), pages 341–
359. Springer, 2016. https://dx.doi.org/10.1007/
978-3-319-46523-4_21.

[22] K. A. Jakobsen, A. B. Andersen, K. Hose, and T. B. Pedersen.
Optimizing RDF Data Cubes for Efficient Processing of Ana-
lytical Queries. In Proceedings of the 6th International Work-
shop on Consuming Linked Data (COLD’15), 2015. http:
//ceur-ws.org/Vol-1426/paper-02.pdf.

[23] B. Kämpgen, S. O’Riain, and A. Harth. Interacting with Sta-
tistical Linked Data via OLAP Operations. In The Semantic
Web: ESWC 2012 Satellite Events, volume 7540, pages 87–
101. Springer, 2012. https://dx.doi.org/10.1007/
978-3-662-46641-4_7.

[24] M. Koubarakis, M. Karpathiotakis, K. Kyzirakos, C. Niko-
laou, and M. Sioutis. Data Models and Query Languages
for Linked Geospatial Data. In Reasoning Web. Seman-
tic Technologies for Advanced Query Answering, pages 290–
328. Springer, 2012. https://dx.doi.org/10.1007/
978-3-642-33158-9_8.

[25] K. Kyzirakos, M. Karpathiotakis, and M. Koubarakis. Strabon:
A Semantic Geospatial DBMS. In The Semantic Web: 11th In-
ternational Semantic Web Conference (ISWC’12), pages 295–
311. Springer, 2012. https://dx.doi.org/10.1007/
978-3-642-35176-1_19.

[26] I. V. Lopez, R. T. Snodgrass, and B. Moon. Spatiotemporal ag-
gregate computation: A survey. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), 17(2):271–286, 2005.
https://doi.org/10.1109/TKDE.2005.34.

[27] E. Malinowski and E. Zimányi. Advanced Data Ware-
house Design: From Conventional to Spatial and Tempo-
ral Applications. Data-Centric Systems and Applications.
Springer, 2008. https://dx.doi.org/10.1007/
978-3-540-74405-4.

[28] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. A Foundation

N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web 29

for Capturing and Querying Complex Multidimensional Data.
Information Systems (IS), 26(5):383–423, 2001. http://
dx.doi.org/10.1016/S0306-4379(01)00023-0.

[29] T. B. Pedersen and N. Tryfona. Pre-aggregation in Spatial
Data Warehouses. In Proceedings of the 7th International
Symposium on Advances in Spatial and Temporal Databases
(SSTD’01), pages 460–478. Springer, 2001. http://dx.
doi.org/10.1007/3-540-47724-1_24.

[30] M. Perry and J. Herring. GeoSPARQL: A Geographic Query
Language for RDF Data. OGC Implementation Standard,
2012.

[31] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based
on regions and connection. In Principles of Knowledge Repre-
sentation and Reasoning, volume 92, pages 165–176, 1992.

[32] P. Revesz. Introduction to Databases: From Biological to
Spatio-Temporal. Springer, 2009.

[33] S. Rivest, Y. Bédard, and P. Marchand. Toward better sup-
port for spatial decision making: defining the characteristics of
spatial on-line analytical processing (SOLAP). GEOMATICA,
55(4):539–555, 2001. Canadian Institute of Geomatics.

[34] G. Rojas, G. Giannopoulos, and J. J. L. Daniel Hladky. Man-
aging Geospatial Linked Data in the GeoKnow Project. In The
Semantic Web in Earth and Space Science. Current Status and
Future Directions, volume 20, page 51. IOS Press, 2015.

[35] J. Rouces, G. de Melo, and K. Hose. FrameBase: Represent-
ing N-Ary Relations Using Semantic Frames. In The Seman-
tic Web: 12th European Semantic Web Conference (ESWC’15),
pages 505–521. Springer, 2015. https://dx.doi.org/
10.1007/978-3-319-18818-8_31.

[36] C. Stadler, J. Lehmann, K. Höffner, and S. Auer. LinkedGeo-
Data: A Core for a Web of Spatial Open Data. Semantic Web
Journal (SWJ), 3:333–354, 2012. https://dx.doi.org/
10.3233/SW-2011-0052.

[37] A. Vaisman and E. Zimányi. A Multidimensional Model
Representing Continuous Fields in Spatial Data Warehouses.
In Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems
(GIS’09), pages 168–177. ACM, 2009. https://doi.
acm.org/10.1145/1653771.1653797.

[38] J. Varga, A. A. Vaisman, O. Romero, L. Etcheverry, T. B. Ped-
ersen, and C. Thomsen. Dimensional enrichment of statisti-
cal linked open data. Web Semantics: Science, Services and
Agents on the World Wide Web, 40:22–51, 2016. https:
//dx.doi.org/10.1016/j.websem.2016.07.003.

Appendix

A1. Query Run Times

Table 5 presents the query runtimes for the SOLAP
operator examples (Ex. 12, Ex. 13.1, Ex. 13.2, Ex. 14,
and Ex. 15) given in Sect. 5 and a nested SOLAP op-
erator example (Ex. 16) given in Sect. 6.2. The SO-
LAP queries are tested against an instance of the use
case dataset (GeoNorthwind) that we have discussed
in Sect. 4. In total, 48677 triples are obtained from
the GeoNorthwind dataset. The published RDF graph

instance is denoted as C in Table 5. We used Virtu-
oso Open Source Edition (Column Store and multi
threaded) Version 7.2.5 on an Ubuntu 14.04 server
with 2.30GHz CPU and 16 GB RAM to publish the
triples at the SPARQL endpoint http://lod.cs.
aau.dk:8890/sparql. The actual queries used
in the paper are available at http://extbi.cs.
aau.dk/SOLAP4SW/queries.

Table 5
Runtimes in seconds

SOLAP Operators Query Runtime
Ex. 12 (s-slice(C)) 0.07
Ex. 13.1 (s-dice(C)) 0.09
Ex. 13.2 (s-dice(C)) 1.01
Ex. 14 (s-roll-up(C)) 2.03

Ex. 15 (s-drill-down(C) 1.86

Ex. 16 (s-roll-up (s-slice (s-dice(C)))) 3.04

The query runtime of the s-slice query in Ex 12 is
measured as 0.07 seconds, which is an efficient SO-
LAP operator to execute, since filtering the given spa-
tial literal is done only for the records of the specified
level instances.

The query runtimes of the s-dice queries in Ex. 13.1
and Ex. 13.2 are measured as 0.09 and 1.01 seconds re-
spectively, for the two alternative ways of implement-
ing s-dice in SPARQL. It is clear that the first use of
the s-dice operator is more efficient compared to the
second, even though both return the same results. The
first one performs s-dice by filtering the instances of
the customers through their geometries that are within
a buffer area of a circle with 5 km radius and the city
center geometry as the center point of the circle. The
second one performs s-dice by measuring the distances
between each customer’s location and their city cen-
ter, and then applies a filter of those measurements to
find the ones that are less than 5 km. This is a more
expensive approach due to measuring the distances be-
tween each customer and city instances with a spatial
distance function.

The query runtime of the s-roll-up query in Ex. 14
is measured as 2.03 seconds. The s-roll-up operator
has a longer response time than the other operators
as it combines a spatial distance function with aggre-
gate operators. Due to its complexity, s-roll-up requires
an inner select where it binds the distances of spec-
ified spatial level attributes (e.g., customer and sup-
plier geometry), which is calculated with a spatial dis-
tance function. Those distance measurements are then

30 N. Gür et al. / A Foundation for Spatial Data Warehouses on the Semantic Web

filtered in the outer select with respect to the aggregate
function.

The query runtime of the s-drill-down query in
Ex. 15 is measured as 1.86 seconds. S-drill-down op-
erates in a very similar manner as s-roll-up. Theoret-
ically, s-drill-down operates on an already spatially
rolled up data cube, whilst it is implemented in prac-
tice as an s-roll-up on the base cube. The RDF data
is at the lowest granularity, which is equal to the def-
inition of the base cube. The SPARQL query of the
s-drill-down operator is very similar the s-roll-up op-
erator. The difference of the query runtime between
Ex. 14 and Ex. 15 is directly related to the number of
instances of the specified levels and the complexity of
the spatial functions.

The query runtime for the nested SOLAP query in
Ex. 16 is measured as 3.04 seconds. The nesting in the
query is the main reason why it has a longer response
time. Moreover, the nested query has more triple pat-
terns and clauses that need to be evaluated during
query execution. Hence, it takes longer than evaluating
a single SOLAP operator.

A2. Table of Contents

Table 6 summarizes a list of all the definitions, ex-
tensions, remarks, and algorithms. Definitions are enu-
merated starting from "1". Extensions are enumerated
starting from "5" to be consistent with the base def-
inition of the extension, e.g., Def. 5 (Dimensions) is
followed by Ext. 5 (Spatial dimensions). Remarks are
enumerated starting from "17" for OLAP operators,
which are given before the definitions of the corre-
sponding SOLAP operator, e.g., Remark 17 (Slice) is
followed by Def. 17 (S-Slice). Algorithms are enumer-
ated starting from "1".

Table 6
Table of Contents

Type No. Topic Sect. Page
Definition 1 Spatial aggregation 3.2 4
Definition 2 Topological relations 3.2 4
Definition 3 Numeric operations 3.2 4
Definition 4 RDF triple 4 7
Definition 5 Dimensions 4.1 8-9
Extension 5 Spatial dimensions 4.1 9
Definition 6 Hierarchies 4.1 9
Extension 6 Spatial hierarchies 4.1 9
Definition 7 Levels 4.1 9
Extension 7 Spatial levels 4.1 9-10
Definition 8 Attributes 4.1 10-11
Extension 8 Spatial attributes 4.1 11
Definition 9 Hierarchy steps 4.1 11
Extension 9 Spatial hierarchy steps 4.1 12
Definition 10 Partial order on levels 4.1 12
Definition 11 Measures 4.1 12
Extension 11 Spatial measures 4.1 12
Definition 12 Fact 4.1 13
Extension 12 Spatial fact 4.1 13
Definition 13 Level members 4.2 14
Definition 14 Attributes of level members 4.2 14
Definition 15 Partial order on level members 4.2 14
Definition 16 Fact members 4.2 14-15
Remark 17 Slice 5 15
Definition 17 S-Slice 5 15-16
Remark 18 Dice 5 17
Definition 18 S-Dice 5 17
Remark 19 Roll-up 5 17-18
Definition 19 S-Roll-up 5 18
Remark 20 Drill-down 5 19
Definition 20 S-Drill-down 5 19
Algorithm 1 RUPath 6.1 20
Algorithm 2 S-SliceGenerator 6.1 21
Algorithm 3 S-DiceGenerator 6.1 23
Algorithm 4 SRUGenerator 6.1 24
Algorithm 5 WriteSPARQL 6.2 25

