Hemoglobin variants found in relation to HbA1c testing

high occurrence of Hb Athens-Georgia in the Northern Jutland, Denmark

Nybo, Jan; Hansen, Anette Tarp; Petersen, Jesper Brix; Brock, Axel

Published in:
Clinical Chemistry and Laboratory Medicine

DOI (link to publication from Publisher):
10.1515/cclm-2018-0902

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Letter to the Editor

Jan Nybo*, Anette Tarp Hansen, Jesper Brix Petersen and Axel Brock

Hemoglobin variants found in relation to HbA\textsubscript{1c} testing: high occurrence of Hb Athens-Georgia in the Northern Jutland, Denmark

https://doi.org/10.1515/cclm-2018-0902
Received June 14, 2018; accepted September 10, 2018; previously published online October 8, 2018

Keywords: capillary; electrophoresis; glycated hemoglobin A; Hb Athens-Georgia; hemoglobinopathies.

To the Editor,

Hemoglobinopathies are usually divided into those caused by an impaired synthesis of one or more hemoglobin chains (α-, β- and γ-thalassemia) and those caused by inherited structural alteration of one of the globin chains (hemoglobin variants). Heterozygotes of a mutation related to the hemoglobin synthesis in most cases will be asymptomatic, whereas homozygosity – especially for α-thalassemia, β-thalassemia, and certain hemoglobin variants – will result in serious clinical conditions. Mutations related to the hemoglobin synthesis are very common. Some mutations are endemic in certain geographic regions (i.e. Hb E and α-thalassemia in the Southeastern Asia, Hb S and Hb C in Central and Western Africa, and β-thalassemia in the Eastern Mediterranean countries), whereas the more uncommon mutations are found all over the world [1]. More than 450 mutations causing α- or β-thalassemia and more than 1300 mutations causing hemoglobin variants have so far been reported in the Database of Human Hemoglobin Variants and Thalassemias [2]. Probably, around 270 million people carry variant β-globin genes [1]. Nevertheless, hemoglobinopathies have been considered rare in Caucasians.

Depending on the method used for HbA\textsubscript{1c} testing, the presence of a hemoglobin variant may cause analytical interference [3–5] leading to a misinterpretation of the diabetes status of the patient concerned. Moreover, hemoglobin variants cause an increased erythrocyte turn over which by itself will result in a low HbA\textsubscript{1c} value [5]. Capillary electrophoresis provides a good separation of the different hemoglobin fractions in normal blood samples [6]. It also provides a good separation in blood samples from individuals being heterozygous for HbS, HbC, HbD and HbE, with analytically valid HbA\textsubscript{1c} results as a consequence [4]. Furthermore, capillary electrophoresis enables the detection of a great number of other hemoglobinopathies, including persistent HbF [7].

During an 18-month period (February 2016–July 2017) 139,000 individuals in Northern Jutland, Denmark, were routine tested by capillary electrophoresis using a Capillarys 3 Tera and the CAPI 3 HbA1c kit (Sebia, France) according to the protocol provided by the manufacturer. Curves with a profile indicating the presence of a hemoglobin variant were registered in 163 of the 139,000 tested individuals of these, a complementary test for hemoglobinopathy was performed in 91 randomly selected cases (56% corresponding to a background population of 77,600). The procedure for detecting hemoglobinopathy included fractionation by ultra-performance liquid chromatography on a Waters Acquity ultra-performance liquid chromatography system (Waters Corporation, Milford, MA, USA) using a PolyCAT A column (3 μm, 1500 Å) (PolyLC Inc., Columbia, MD, USA). When either fractionation (HbA\textsubscript{1c} or UPLC) was suspect for a variant hemoglobin, sequencing of the β (HBB) and/or α globin genes (HBA1 and HBA2) were performed on a 3500 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) using BigDye v. 3.1 sequencing chemistry (Applied Biosystems). Table 1 shows the results obtained.

In total, we identified 22 different hemoglobin variants, including persistent Hb F and Hb H disease. Only 33 of the 91 individuals carried the variants Hb E, Hb S, or Hb C. In the remaining 58 cases, we identified 19 different hemoglobin variants. Thirty-three of these, all with Danish names, carried the globally uncommon variant

*Corresponding author: Jan Nybo, MD, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark, Phone: +45 23 99 41 12, E-mail: j.nybo@rm.dk
Anette Tarp Hansen and Axel Brock: Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
Jesper Brix Petersen: Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
Nybo et al.: Hemoglobin variants found in relation to HbA1c testing

Table 1: Hemoglobin variants accidentally found in relation to routine HbA1c testing.

<table>
<thead>
<tr>
<th>Chain cluster</th>
<th>Variant Description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>α Chain cluster</td>
<td>Hb H (α-thalassemia, deletion)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Unnamed (Thr 67 Ile; HBA1:c.203C>T)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Unnamed (Val 93 Leu; HBA1:c.280G>T)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hb Cibeles (Gly 25 Asp; HBA2:c.77G>A)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hb St. Tuiden (Asn 68 His; HBA2:c.205A>C)</td>
<td>1</td>
</tr>
<tr>
<td>β Chain cluster</td>
<td>Hb Lepore (α-β thalassemia, deletion)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hb F (HPFH; deletion)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Hb Doha (Val 1 Glu; HBB:c.57T>A)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hb C (Glu 6 Lys; HBB:c.19G>A)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Hb S (Glu 6 Val; HBB:c.20A>T)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Hb J-Lens (Ala 13 Asp; HBB:c.41C>A)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hb E (Glu 26 Lys; HBB:c.79G>A)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Hb Doha (Val 1 Glu; HBB:c.57T>A)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hb Athens-GA (Arg 40 Ser; HBB:c.122G>A)</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Hb Niteroi (del CD43/45; HBB:c.130_138delGAGTCCTT)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hb Aalborg (Gly 74 Arg; HBB:c.223G>C)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Hb Cibeles (Gly 25 Asp; HBA2:c.77G>A)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hb St. Tuiden (Asn 68 His; HBA2:c.205A>C)</td>
<td>1</td>
</tr>
</tbody>
</table>
| | Hb Athens-Georgia (Figure 1). Three of the detected variants (α1-chain: Thr 67 Ile, Val 93 Leu; β-chain: Leu 105 Val) were not registered in the Database of Human Hemoglobin Variants and Thalassemias [2]. Hb Athens-Georgia is considered a rare variant found in a few Caucasian families in the south-eastern USA and Belgium [2, 8], but in 1988 the variant was also found in a Danish family [9]. Hb Athens-Georgia is not detected by cation-exchange high-performance liquid chromatography, nor by boronate affinity chromatography, which are commonly used techniques for measuring HbA1c [8]. The variant is clinically silent [2]. The high occurrence of Hb Athens-Georgia in Northern Jutland, corresponding to an estimated prevalence of 43:100,000 (equivalent to 33/77,600), is unexplained. The high occurrence may be due to a local founder effect or to a general underreporting due to the asymptomatic phenotype and the widespread use of cation-exchange high-performance liquid chromatography or boronate affinity chromatography for HbA1c testing. The occurrence of Hb Athens-Georgia in other parts of Denmark is unknown. Our findings confirm that the prevalence of clinically silent Hb-variants may be higher than expected so far [10]. HbA1c is defined as the fraction of HbA carrying a covalently bound glucose molecule to the N-terminal valine of the β-chains. Depending on the method used, some of the hemoglobin variants do not interfere with the actual measurement of HbA1c [4, 7], but some of them will, i.e. due to an increased erythrocyte turn over, interfere with the interpretation of the result obtained.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References