
Aalborg Universitet

Multi-schema-version data management

data independence in the twenty-first century

Herrmann, Kai; Voigt, Hannes; Pedersen, Torben Bach; Lehner, Wolfgang

Published in:
V L D B Journal

DOI (link to publication from Publisher):
10.1007/s00778-018-0508-7

Creative Commons License
Unspecified

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Herrmann, K., Voigt, H., Pedersen, T. B., & Lehner, W. (2018). Multi-schema-version data management: data
independence in the twenty-first century. V L D B Journal, 27(4), 547-571. https://doi.org/10.1007/s00778-018-
0508-7

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.1007/s00778-018-0508-7
https://vbn.aau.dk/en/publications/98eb40db-f391-42b8-a050-7d82d30fa21e
https://doi.org/10.1007/s00778-018-0508-7
https://doi.org/10.1007/s00778-018-0508-7

Aalborg Universitet

Multi-schema-version data management

data independence in the twenty-first century

Herrmann, Kai; Voigt, Hannes; Pedersen, Torben Bach; Lehner, Wolfgang

Published in:
V L D B Journal

DOI (link to publication from Publisher):
10.1007/s00778-018-0508-7

Creative Commons License
Unspecified

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Herrmann, K., Voigt, H., Pedersen, T. B., & Lehner, W. (2018). Multi-schema-version data management: data
independence in the twenty-first century. V L D B Journal, 27(4), 547-571. https://doi.org/10.1007/s00778-018-
0508-7

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: september 09, 2019

https://doi.org/10.1007/s00778-018-0508-7
http://vbn.aau.dk/en/publications/multischemaversion-data-management(98eb40db-f391-42b8-a050-7d82d30fa21e).html

Noname manuscript No.
(will be inserted by the editor)

Multi-Schema-Version Data Management
Data Independence in the 21st Century

Kai Herrmann · Hannes Voigt · Torben Bach Pedersen ·
Wolfgang Lehner

Received: date / Accepted: date

Abstract Agile software development allows us to con-
tinuously evolve and run a software system. However,
this is not possible in databases, as established methods
are very expensive, error-prone, and far from agile. We
present InVerDa, a Multi-Schema-Version Database
Management System (MSVDB) for agile database de-
velopment. MSVDBs realize co-existing schema versions
within one database, where each schema version be-
haves like a regular single-schema database and write
operations are propagated between schema versions. De-
velopers use a relationally complete and bidirectional
database evolution language (BiDEL) to easily evolve
existing schema versions to new ones. BiDEL scripts
are more robust, orders of magnitude shorter, and cause
only a small performance overhead compared to hand-
written SQL scripts. We formally guarantee data in-
dependence: no matter how the data of the co-existing
schema versions is physically materialized, each schema
version is guaranteed to behave like a regular database.
Since, the chosen physical materialization significantly
determines the overall performance, we equip database
administrators with an advisor that proposes an opti-
mized materialization for the current workload, which
can improve the performance by orders of magnitude
compared to naïve solutions. To our best knowledge,
we are the first to facilitate agile evolution of produc-
tion databases with full support of co-existing schema
versions and formally guaranteed data independence.

Keywords Database · Evolution · Data independence

Kai Herrmann · Hannes Voigt · Wolfgang Lehner
Technische Universität Dresden, Germany
E-mail: <firstname>.<lastname>@tu-dresden.de

Torben Bach Pedersen
Aalborg Universitet, Denmark
E-mail: tbp@cs.aau.dk

1 Introduction

Modern database management systems (DBMSes) lack
proper support for co-existing schema versions within
the same database. With today’s realities in informa-
tion systems—specifically agile development methods,
code refactoring, stepwise deployment, short release cy-
cles, varying update adoption time, legacy system sup-
port, etc.—such support becomes increasingly desir-
able. Development tools such as GIT, SVN, and Maven
make it feasible to maintain multiple versions of an ap-
plication and deploy and run several of these versions
concurrently. The same is hard to do for a database
though [6]. In enterprise information systems, databases
feed hundreds of subsystems, connecting decades-old
legacy systems with innovative analytics pipelines or
brand new web front ends. All of these subsystems are
typically run by different stakeholders with different
development cycles and different upgrade constraints.
Applying changes to a database schema will stretch
out over time, hence the database schema versions of
these subsystems have to be kept fully functional on the
database side. Co-existing schema versions in a database
are a reality and developers have to cope with it.

Unfortunately, current DBMSes do not support easy
evolution with co-existing schema versions and essen-
tially force developers to migrate a database completely
at one go to a new schema version. Keeping old schema
versions up and running for all database clients regard-
less of their adoption time is costly. Before and after
a migration, manually written and maintained delta
code is required. The term delta code refers to any im-
plementation of propagation logic necessary to run an
application with a schema version different to the ver-
sion used by the database, e.g., view and trigger def-
initions within the database, propagation code in the

This is a post-peer-review, pre-copyedit version of an article published in VLDB Journal. The final authenticated version is available
online at: http://dx.doi.org/10.1007/s00778-018-0508-7

2 Kai Herrmann et al.

application’s database access layer, or ETL jobs for up-
date propagation in a database replicated in different
schema versions. We can automatically select views to
be materialized to speed up a given workload [1] and we
can maintain them efficiently [12]. However, this does
not allow to migrate a database completely to a new
version. In fact, co-existing schema versions require con-
siderable development resources as data migration ac-
counted for 31 % of IT project budgets in 2011 [17].

We introduce Multi-Schema-Version Database
Management Systems (MSVDBs) to support agile
database evolution, particularly the creation, manage-
ment, and deployment of different schema versions to
keep pace with agile software development. All schema
versions co-exist in the MSVDB and applications can
read and write data in any version concurrently; writes
in one version are reflected in all other versions with
best effort but each schema version acts like a regu-
lar single-schema database. The envisioned MSVDBs
have full data independence: the database administra-
tor (DBA) can easily configure the physical material-
ization of the co-existing schema versions to gain signif-
icant speedups without affecting the availability of any
schema version. We specify the envisioned MSVDBs
(Section 1.1), highlight our contributions (Section 1.2),
and illustrate them with a user scenario (Section 1.3).

1.1 Multi-Schema-Version Database Systems

MSVDBs facilitate multi-schema-version data manage-
ment. They manage multiple co-existing schema ver-
sions within the same database to support continuous
database evolution as shown in Figure 1. New schema
versions are evolved from existing ones using a sim-
ple Database Evolution Language (DEL). DELs
provide Schema Modification Operations (SMOs)
that evolve both the schema and the data in intuitive
and consistent steps, such as adding a column or par-
titioning a table. SMOs in an MSVDB are bidirec-
tional to propagate data both forwards and backwards
between schema versions. Each schema version consists
of a set of table versions, which behave like regular ta-
bles but are part of the evolution history. Table versions
in one schema version are evolved by SMOs to new ta-
ble versions in the new schema version and MSVDBs
store this evolution explicitly in the database catalog.
A schema version is a subset of all table versions in
this catalog—table versions that do not evolve between
schema versions are shared among schema versions.

MSVDBs expose the data through multiple schema
versions, while each schema version can be accessed
by applications like a regular single-schema database.

Schema Version 2Schema Version 1 Schema Version 3

Physical
Schema

DEL DEL

Auxiliary tables

Co-existing

Bidirectional
Propagation

Data
Independence

Schema
Versions

Table
Versions

Independent
Materialization

Agile Evolution

Version 2Version 1 Version 3

DEL DEL

Auxiliary tables

Co-existing

Bidirectional
propagation

Guaranteed data
independence

Schema
Versions

Table
Versions

Physical
Mat.

Agile evolution

Regular single
schema database

Fig. 1: Envisioned MSVDB.

MSVDBs ensure transaction and consistency guaran-
tees for each single schema version. After developers
create a new schema version, it becomes immediately
available and co-exists with all other schema versions.
Data written in any schema version is correctly visible
when reading the same schema version again. To prop-
agate data between schema versions both forwards and
backwards, the DEL’s SMOs need to be bidirectional.

Having multiple schema versions upon one data set
naturally raises the challenge to find a good physical
materialization that serves all schema versions with the
best overall performance. This requires the freedom to
easily adjust the physical materialization to a changing
workload without affecting the logical schema versions,
a.k.a data independence. Multiple logical schema ver-
sions represent the same conceptual data set (logical
data independence) and the physical materialization of
this data can be freely changed (physical data indepen-
dence) without limiting accessibility of any schema ver-
sion. Since most SMOs are not information-preserving,
MSVDBs also identify and persist the otherwise lost in-
formation; this auxiliary information is persisted in
auxiliary tables. MSVDBs guarantee that the auxiliary
tables cover the whole conceptual data set and no data
is lost. We can also retire old schema versions and re-
move them from the MSVDB—then, no additional data
is managed for those versions any longer.

MSVDBs need only a subset of the table versions to
be materialized. Generally, read operations are fastest
when the accessed table versions are materialized. The
further away the next materialized table version, the
higher the overhead. Naïvely materializing every single
table version implies a high overhead for writing and
may hit memory limits, hence the envisioned MSVDBs
also equip the DBA with an advisor that proposes an
optimized materialization for the current workload.

In a word, the envisioned MSVDBs provide multiple
co-existing schema versions upon one shared conceptual
data set with an independent materialization. The en-
visioned DBMS-integrated database evolution support
completely eliminates the need to write a single line of
delta code and thereby makes database evolution and
migration just as agile as application development but
also as robust as traditional database development.

Multi-Schema-Version Data Management 3

1.2 Contributions

In this article, we present the concepts of InVerDa
(Integrated Versioning of Databases), a system that
realizes the envisioned MSVDB. InVerDa lets devel-
opers create multiple schema versions within the same
database using our DEL called BiDEL (Bidirectional
DEL). BiDEL’s distinguishing features are its relational
completeness and its bidirectionality, which facilitate
fast and easy creation of co-existing schema versions
and robust data access propagation between them. We
formally guarantee data independence, so developers
can safely create and use new schema versions while the
DBA can freely change the physical materialization—
nobody needs to fear any data loss and can focus on
the actual tasks. In detail, our contributions are:

Architectural blueprint We show how to inte-
grate InVerDa into an existing DBMS to reuse es-
tablished database functionality. To our best knowl-
edge, we are the first to implement end-to-end sup-
port for MSVDBs. (Section 2)
Bidirectional and relationally complete DEL
BiDEL is shown to be relationally complete and it
enables bidirectional propagation of data accesses
both forwards and backwards. Further, BiDEL re-
quires orders of magnitude less code than evolutions
and migrations manually written in SQL. (Section 3)
Co-existing schema versions We automatically
generate delta code from BiDEL-specified schema
evolutions to allow reading and writing on all co-
existing schema versions, each providing an individ-
ual view on the same shared data set. Delta code
generation is fast (<1 s) and its performance is com-
parable to handwritten delta code. (Section 4 and 6)
Data independence We formally guarantee that
each schema version behaves like a regular single-
schema database independently of the physical ma-
terialization. With a single-line command, DBAs can
trigger the physical data movement and adapt all
delta code, which improves the runtime performance
and productivity by orders of magnitude. (Section 5)
Advisor for materialization The space of possi-
ble materializations can grow exponentially with the
number of table versions and is hard to explore for a
DBA. To this end, InVerDa comes with an advisor
for the best materialization for the current workload
under given space constraints. (Section 7)

The formal contributions are already published in con-
ference papers [14,15] and in a detailed PhD thesis [13].
The contribution of this article is to apply the formal
results in an MSVDB to make them exploitable for both
researchers and practitioners. We present the big pic-
ture and complete it with the new advisor.

1.3 User Story – The TasKy Example

We use the running example of a task management soft-
ware called TasKy (Figure 2) to illustrate InVerDa.
TasKy is a desktop application backed by one central
database. It allows users to create new tasks as well as
to list, update, and delete them. Each task has an au-
thor and a priority between 1 and 3 with 1 being the
most urgent. In the first release TasKy, we store all tasks
in a single table Task(author,task,prio). The physical
schema matches the logical schema without any delta
code and users begin to feed the database with tasks.

Creating new schema versions: After some weeks, we
incorporate a third-party phone app called Do! for mo-
bile access to the most urgent tasks. Do! uses a different
database schema than TasKy: table Todo(author,task)
contains only tasks of priority 1. Obviously, the initial
schema version needs to stay alive for TasKy, which is
broadly installed. Traditionally, we would implement a
view to create an external schema fitting Do! and trig-
gers to propagate new tasks from Do! to TasKy. This is
highly error-prone and expensive, since we would have
to manage the auxiliary information manually to not
lose any data. InVerDa greatly simplifies the job as
developers merely have to write this BiDEL script:
1: CREATE VERSION Do! FROM TasKy WITH
2: PARTITION TABLE Task INTO Todo

WITH ’prio=1’;
3: DROP COLUMN prio FROM Todo DEFAULT ’1’;

InVerDa automatically generates all delta code to pro-
vide the new schema version Do!. Do! contains a hori-
zontal partition of Task with prio=1 and the priority col-
umn being dropped. When a user inserts a new entry
into Todo, this will automatically insert a corresponding
task with priority 1 to Task in TasKy. Updates and dele-
tions are propagated back to the TasKy schema in the
same way. The TasKy data is immediately available to
be read and written through the new Do! app by simply
executing the BiDEL script. At this point, InVerDa
has already simplified the developers’ jobs significantly.

Rolling upgrade: We continuously refine TasKy and for
the next release TasKy2 we normalize the table Task to
separate the authors in Author. For a stepwise roll-out of
TasKy2, the old schema of TasKy has to remain accessible
until all clients are updated. Again, InVerDa does the
job when the developers run this BiDEL script:
1: CREATE VERSION TasKy2 FROM TasKy WITH
2: DECOMPOSE TABLE Task INTO

Task(task,prio), Author(author) ON FK fk_author;
3: RENAME COLUMN author IN Task TO name;

InVerDa creates the new schema version TasKy2 and
decomposes the table version Task to separate the tasks

4 Kai Herrmann et al.

TasKy2

TasKy
TasKy2Do!

Task author task prio

1 Ann Organize party 3

2 Ben Learn for exam 2

3 Ann Write paper 1

4 Ben Clean room 1

ToDo author task

3 Ann Write paper

4 Ben Clean room

Task task prio fk_author

1 Organize party 3 5

2 Learn for exam 2 6

3 Write paper 1 5

4 Clean room 1 6

Author name

5 Ann

6 Ben

7 Ben Organize Party

7 Ben Organize Party 1
7 Organize Party 1 6

TasKyDo! Task author task prio

1 Ann Organize party 3

2 Ben Learn for exam 2

3 Ann Write paper 1

4 Ben Clean room 1

ToDo author task

3 Ann Write paper

4 Ben Clean room

Task task prio fk_author

1 Organize party 3 5

2 Learn for exam 2 6

3 Write paper 1 5

4 Clean room 1 6

Author name

5 Ann

6 Ben

7 Ben Organize Party 7 Ben Organize Party 1 7 Organize Party 1 6

8 Zoe Visit Ben 2 8 Visit Ben 2 9

9 Zoe

Fig. 2: The exemplary evolution of TasKy.

from their authors while creating a foreign key, called
fk_author, to maintain the dependency. Additionally,
the column author is renamed to name. InVerDa gener-
ates delta code to make the TasKy2 schema immediately
available. Now, write operations to any of the three
schema versions are propagated to all other schema ver-
sions. Figure 2 shows two examples: First, Ben uses the
mobile Do! app to note that he will organize a party,
which is also visible in the two desktop versions with the
priority 1. Second, Zoe uses the initial TasKy application
to note down that she will visit Ben. When she moves
to the new TasKy2 application this entry will be visible
as well; Zoe is created as a new author and linked to the
added task using the foreign key fk_author. Further, as-
sume Ann has already upgraded to TasKy2 and changes
the priority of Organize party to 1, then this task will
immediately occur in the Do! app on her phone. After
the party, Ann deletes this entry using Do!, which also
removes this task from the other schema versions. Com-
mon SQL would require to implement this propagation
and the management of the auxiliary information man-
ually. BiDEL’s SMOs carry enough information to gen-
erate all the required delta code automatically without
any further interaction of the developer.

After the successful roll-out, all users are now using
either the new desktop application TasKy2 or the mo-
bile application Do!, so we can simply drop the former
schema version TasKy with a single line of code:
1: DROP VERSION TasKy;

As a result, the schema version TasKy cannot be accessed
or evolved any longer but both Do! and TasKy2 are still
accessible like any other single-schema database.

Physical data migration: We have not migrated any
data so far, hence it is still stored according to the ini-
tial TasKy schema. The delta code for accessing Do! and
TasKy causes a significant performance overhead. The
TasKy version has already been dropped and most users
use TasKy2—the Do! version is still accessed but merely
by a minority of users. Therefore, it seems appropri-
ate to migrate data physically to the table versions of
the TasKy2 schema, now. Traditionally, developers would
have to write a migration script, which moves the data

and implements new delta code for all schema versions
that have to stay accessible. All that can accumulate
to some hundred or thousand lines of code, which need
to be tested intensively in order to prevent them from
messing up our data. With InVerDa, this takes merely
a single line of code:
1: MATERIALIZE TasKy2;

Upon this statement, InVerDa transparently runs the
physical data migration to schema TasKy2, while main-
taining transaction guarantees and updating the in-
volved delta code of all schema versions. No developers
need to be involved. All schema versions stay available;
read and write operations are merely propagated to a
different set of physical tables, now. InVerDa can also
materialize any subset of all table versions, which opens
up a huge search space and significant optimization po-
tential, but is hard to understand and utilize for DBAs.
So, InVerDa includes an advisor that proposes an op-
timized set of physically materialized table versions for
the current workload mix. With the click of a button,
the DBA migrates the database accordingly.

Summary & Outline: InVerDa allows applica-
tions to continuously access all schema versions, it al-
lows the developer to continuously develop the applica-
tions, and it allows the DBA to independently adapt the
physical materialization to the current workload or even
let InVerDa do this job. In Section 2, we present the
general architecture of MSVDBs, such as InVerDa. In
Section 3, we detail the user interfaces that allow us to
create and manage schema versions in the schema ver-
sions catalog. The latter will be presented in Section 4.
Having all managed schema versions in the catalog, we
discuss their physical design in Section 5 with special
focus on the formal guarantee of full data indepen-
dence. This ensures that the DBA can freely move the
data along the schema version history while all schema
versions stay fully alive and behave like regular single-
schema databases. Subsequently, we present the auto-
matic delta code generation for the co-existing schema
version on the chosen physical design in Section 6. In
Section 7, we present a workload-dependent advisor for
the physical materialization. We discuss related work
in Section 9 and conclude the article in Section 10.

Multi-Schema-Version Data Management 5

Database Applications

Physical
Schema

Query
Engine

Schema
Versions

DQL DML

𝑣1 𝑣2 𝑣𝑛

CONNECT TO DB db VERSION n
Developer

…

Logical
Version
Mngt.

Sect. 3.1

Physical
Version
Mngt.

Sect. 3.2

BiDEL

DBA

Interfaces InVerDa Components

Delta Code
Generation

Sect. 6

Schema
Versions
Catalog
Sect. 4

Database Applications

Physical
Schema

Query
Engine

Database
Schema

DQL DML

Developer

DBA

triggers

triggers

(a) Current architecture

Database Applications

Physical
Schema

Query
Engine

Schema
Versions

DQL DML

𝑣1 𝑣2 𝑣𝑛

CONNECT TO DB db VERSION n
Developer

…

Logical
Version
Mngt.

Sect. 3.1

Physical
Version
Mngt.

Sect. 3.2

BiDEL

DBA

Interfaces InVerDa Components

Delta Code
Generation

Sect. 6

Schema
Versions
Catalog
Sect. 4

Database Applications

Physical
Schema

Query
Engine

Database
Schema

DQL DML

Developer

DBA

triggers

triggers

(b) Envisioned architecture

Fig. 3: Architecture of current and envisioned DBMS.

2 Architecture of MSVDBs

Starting with an analysis of current DBMSes, we will
now propose an architectural blueprint for MSVDBs. In
traditional DBMSes, as shown in Figure 3(a), develop-
ers use SQL-DDL statements to define the database’s
schema. When applications access data in the created
schema, the schema catalog maps the given statements
to the actual physical storage and the query execution
engine determines an efficient access plan for executing
the query on the physical tables in order to respond fast
and correctly. Developers use SQL-DDL to evolve the
database schema and SQL-DML to evolve the currently
existing data accordingly. Analogously, DBAs use SQL-
DDL and SQL-DML to change the physical schema in-
cluding data migration. This traditional approach sepa-
rates the evolution of the schema (SQL-DDL) from the
evolution of the data (SQL-DML); the intention of the
developers or of the DBA is lost between the lines and
whenever one of them evolves the database, the work
of the respective other one most likely gets corrupted
or invalidated. In summary, creating and managing co-
existing schema versions is an error-prone and expen-
sive challenge, since current DBMSes do not provide a
good separation of developer and DBA concerns when
it comes to fast evolution and multiple schema versions.

MSVDBs, such as InVerDa, let the database de-
velopers and the DBA work independently on their re-
spective tasks and provide robust database evolution
support for all of them. The database developers cre-
ate and manage table versions in logical schema ver-
sions, while the DBA can independently migrate the
database physically to a set of potentially redundant
table versions with the click of a button. This is not
supported by current DBMSes, as their architecture is
typically restricted to one schema version, which is di-
rectly mapped to physical tables in the storage.

Therefore, MSVDBs add support for fast evolution
and for management of co-existing schema versions on

a common relational DBMS. Figure 3(b) shows the ar-
chitecture of our MSVDB InVerDa. InVerDa follows
a three layered architecture with the logical schema ver-
sions at the upper layer, the physically materialized
tables at the lower layer and a catalog in between to
connect those layers. InVerDa’s functionality is ex-
posed via two interfaces: (1) the logical version manage-
ment allows developers to create and manage multiple
schema versions and (2) the physical version manage-
ment allows the DBA to physically manage the materi-
alization for all co-existing schema versions within the
database. Further, InVerDa adds two components to
facilitate multi-schema-version data management: (1)
The schema versions catalog maintains the genealogy
of schema versions and is the central knowledge base
for all schema versions and the evolution between them.
(2) The delta code generation creates the schema ver-
sions based on the current physical materialization and
also migrates the data. Delta code generation is either
triggered by developers creating a new schema version
or by the DBA changing the physical materialization.

In our prototypical implementation of InVerDa1,
the generated delta code for the co-existing schema ver-
sions are views and triggers in a common relational
DBMS. InVerDa interacts merely over common DDL
and DML statements, data is stored in regular tables,
and database applications use the standard query en-
gine of the DBMS. To process data accesses of database
applications, only the generated views and triggers are
used and no InVerDa components are involved. The
employed triggers can lead to a cascaded execution,
but in a controlled manner as there are no cycles in
the version history. InVerDa’s components are only
active during database development and migrations.
Thanks to this architecture, InVerDa easily utilizes
existing DBMS components such as physical data stor-
age, indexing, transaction handling, query processing,
etc. without reinventing the wheel.

1 Online demo available at www.inverda.de

6 Kai Herrmann et al.

Syntax: CREATE TABLE R (c1,...,cn)

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝑎𝑚𝑒𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑏𝑙𝑒

Undefined

<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Undefined

∅

∅

DROP TABLE R

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝑎𝑚𝑒𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑏𝑙𝑒

Undefined
<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Undefined

∅

∅
Semantics: Add(R, πc1,...,cn (∅)); Del(R);

Syntax: RENAME TABLE R INTO R′

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝑎𝑚𝑒𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑏𝑙𝑒

Undefined

<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Undefined

∅

∅

RENAME COLUMN c IN Ri TO c′

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝑎𝑚𝑒𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑏𝑙𝑒

Undefined

<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Undefined

∅

∅

Semantics: Add
(
R′, R

)
; Del(R); Add

(
Ri+1, ρc′/c (Ri)

)
; Del(Ri);

Syntax: ADD COLUMN c AS f(c1,...,cn) INTO Ri

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝑎𝑚𝑒𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑏𝑙𝑒

Undefined

<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Undefined

∅

∅

Semantics: Add
(
Ri+1, πRi.C∪{c←f(c1,...,cn)} (Ri)

)
; Del(Ri);

Syntax: DROP COLUMN c FROM Ri DEFAULT f(c1,...,cn)

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝑎𝑚𝑒𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑏𝑙𝑒

Undefined

<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Undefined

∅

∅

Semantics: Add
(
Ri+1, πRi.C\{c} (Ri)

)
; Del(Ri);

Syntax: DECOMPOSE TABLE R INTO S (s1,...,sn) [, T (t1,...,tm) ON (PK | FK fk | cond)]

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝑎𝑚𝑒𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑏𝑙𝑒

Undefined

<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Undefined

∅

∅

Semantics: Add(S, πs1,...,sn (R)); [Add (T, πt1,...,tm (R))]; Del(R);

Syntax: [OUTER] JOIN TABLE R, S INTO T ON (PK | FK fk | cond)

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝑎𝑚𝑒𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑏𝑙𝑒

Undefined

<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Undefined

∅

∅

Semantics: if [OUTER] then Add(T,R 1 cond S) else Add(T,R ./cond S); Del(R); Del(S);

Syntax: PARTITION TABLE R INTO S WITH condS [, T WITH condT]

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝑎𝑚𝑒𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑏𝑙𝑒

Undefined

<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Undefined

∅

∅

Semantics: Add(S, σcondS
(R)); [Add (T, σcondT

(R))]; Del(R);

Syntax: MERGE TABLE R (condR) , S (condS) INTO T

𝐷𝑒𝑙𝐶𝑜𝑙𝑢𝑚𝑛

𝐴𝑑𝑑𝐶𝑜𝑙𝑢𝑚𝑛

𝑈𝑛𝑖𝑡𝑒𝑅𝑜𝑤

𝑆𝑝𝑙𝑖𝑡𝑅𝑜𝑤

𝑈𝑛𝑖𝑡𝑒𝐶𝑜𝑙𝑢𝑚𝑛

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑙𝑢𝑚𝑛

Column Row

Add

Delete

Split

Unite

Rename 𝑅𝑒𝑛𝑎𝑚𝑒𝐶𝑜𝑙𝑢𝑚𝑛

Table

𝐷𝑒𝑙𝑇𝑎𝑏𝑙𝑒

𝐴𝑑𝑑𝑇𝑎𝑏𝑙𝑒

∅

𝑅𝑒𝑛𝑎𝑚𝑒𝑇𝑎𝑏𝑙𝑒

Undefined

<
𝒔
𝒎
𝒐
>

< 𝒔𝒄𝒐𝒑𝒆 >

Undefined

Undefined

∅

∅

Semantics: Add
(
T, πR.C∪{ω→ai|ai∈S.C\R.C} (R) ∪ πS.C∪{ω→ai|ai∈R.C\S.C} (S)

)
; Del(R); Del(S);

Table 1: Syntax and semantics of BiDEL operations.

Summary: We add interfaces for logical and physi-
cal management of schema versions that are represented
in a schema versions catalog. From there, we generate
delta code in a common DBMS to reuse all the estab-
lished features of relational DBMSes.

3 Interfaces of MSVDBs

We now detail the interfaces for logical (Section 3.1)
and physical (Section 3.2) management of MSVDBs.

3.1 Logical Version Management

Developers can create, evolve, and drop logical schema
versions in the MSVDB. The latter is achieved by exe-
cuting the following statement:
1: DROP VERSION nameold

This removes schema version nameold but maintains
the table versions if their data is still needed in other
versions. A new schema version namenew is created
from scratch or as an evolution from nameold with:
1: CREATE VERSION namenew

[FROM nameold] WITH SMO1; . . . SMOn;
The new schema version becomes immediately avail-
able and co-exists with all other schema versions—the
data remains physically in its current state and the new
schema version is merely created virtually. Write oper-
ations in any schema version are immediately reflected
in the other schema versions as well. Applications sim-
ply request one schema version when connecting to the
MSVDB and can then use it like any regular database.

The statement to create and evolve schema versions
takes a sequence of Schema Modification Opera-
tions, already introduced as SMOs, to describe the
schema and the data evolution between the versions
both forwards and backwards. BiDEL provides a com-
prehensive set of bidirectional SMOs that evolve up to
two source table versions to up to two target table ver-
sions. Each table version is created by exactly one in-
coming SMO and can be further evolved by any number
of outgoing SMOs. Table 1 summarizes BiDEL’s SMOs.
The SMOs allow us to create, drop, or rename both
tables and columns following the generally known se-
mantics from standard SQL-DDL. Further, we can split
and merge tables both vertically and horizontally. The
DECOMPOSE SMO vertically splits a source table version
by distributing its columns into two new target table
versions—columns can also occur in both or in no tar-
get table version. To preserve the link between split tu-
ples, the DECOMPOSE SMO can also generate a new foreign
key between the two resulting tables. Its inverse SMO
is the JOIN SMO as known from standard SQL-DQL.
Further, the PARTITION SMO distributes tuples from the
source table version to two new table versions accord-
ing to specified selection criteria—the criteria may also
overlap and do not necessarily cover all tuples of the
source table. Its inverse SMO is the MERGE SMO, which
unites the tuples of two source table versions into one
new target table version.

We formally define a DEL L to be a set of SMOs
with parameters to be instantiated. For instance, the
SMO to drop a column requires the name of the table
and the name of the column and—for bidirectionality—
a function calculating the values for the dropped col-

Multi-Schema-Version Data Management 7

umn in the source version when tuples are inserted in
the target version. Let inst (L) be the set of all op-
eration instances of L with valid parameters. Then, a
relational database D = {R1, . . . , Rn} with tables Ri

can be evolved to another relational database D′ =
{R′1, . . . , R′m} at the target side (trg) using the map-
ping function γs

trg of an SMO s ∈ inst (L), which is de-
noted as D′ = γs

trg(D). Given a sequence of SMOs S ∈
inst (L)+ with S = (s1, s2, ...sn), a given database D is
evolved to another databaseD′ = γs1

trg(γs2
trg(...γsn

trg(D))).
In the opposite direction, the mapping γsrc is the back-
ward propagation of data to the source side (src).

BiDEL is both practically and relationally com-
plete, so we ensure that developers can intuitively spec-
ify any intended evolution without the need to fall back
on traditional SQL, which would render the MSVDB in-
applicable. Given the evolution history of existing appli-
cations, a DEL is practically complete when we can
model the same evolution exclusively with the given set
of SMOs. We validated BiDEL’s practical completeness
with a benchmark provided by Curino et al. [9] using
the evolution history of 171 versions of Wikimedia—
the backend of Wikipedia [13,14]. Practical complete-
ness evaluates the completeness of a DEL after the fact
with respect to known evolutions; there is no guarantee
that prevents developers from hitting limitations of the
DEL for uncommon evolution scenarios.

Therefore, relational completeness formally guar-
antees that any evolution expressible with relational
algebra expressions can be expressed with the DEL’s
SMOs as well. A minimal DEL providing relational
completeness is Lmin = {Add (·, ·) , Del (·)} with

Add (R′, ε)→ D ∪ {R′ = ε (R1, . . . , Rn)}
Del (R)→ D \ {R}

The Add(·, ·) operation creates a tableR′ in the database
D based on the given relational algebra expression ε

that works on the relations of D. The Del(·) operation
removes the specified table R from D. A database D
can be evolved to any other database D′ with a se-
quence S ∈ inst (Lmin)+, where the tables in D′ are
computed from D with relational algebra expressions
ε in the Add(·, ·) operation. Thus, Lmin is relationally
complete. However, Lmin is not very appealing from
a practical standpoint, because it is rather unintuitive
and not bidirectional. However, any other DEL that is
as expressive as Lmin is relationally complete as well.

We have formally shown the relational complete-
ness of BiDEL [14]. We only sketch the idea here—the
important takeaway message is that BiDEL is a fea-
sible DEL for MSVDBs. We defined the semantics of
BiDEL’s SMOs with relational algebra expressions. Af-
terwards, we considered every single operation from the

relational algebra operations, plus outer joins and the
extended projection, and showed that we can provide
a semantically equivalent sequence of BiDEL SMOs.
While this is trivial for operations such as selection
and projection, for instance the cross product requires
to temporarily add columns with identical default val-
ues and to perform an equality join on those columns.
However, BiDEL proved to cover all relational algebra
operations. The evolution of further artifacts, such as
constraints, is promising future work [7].

BiDEL’s bidirectionality is another unique fea-
ture and essential for co-existing schema versions in
MSVDBs. The arguments of each BiDEL SMO gather
enough information to facilitate the automatic genera-
tion of delta code for the full propagation of reads and
writes between schema versions in both directions. For
instance, DROP COLUMN requires a function f that com-
putes the value for the dropped column if a tuple, in-
serted in the new schema version, is propagated back to
an old schema version, where the dropped column still
exists. All BiDEL SMOs are designed that way so that
developers always specify beforehand how to propagate
data both forwards and backwards between schema ver-
sions. Table 1 shows the forward semantics with Lmin.
The inverse SMO then shows the backward semantics;
arguments added for bidirectionality are highlighted.

3.2 Physical Version Management

The physical version management interface facilitates
easy changes to the physical data representation of the
co-existing schema versions. Thanks to the guaranteed
data independence, the DBA can freely choose to
materialize a set of schema versions or a set of table
versions. Alternatively, the DBA can ask InVerDa’s
advisor to propose an optimized materialization and
migrate the database accordingly with the click of a
button but without any interaction of the developers.

From the view point of a single SMO, the data can
be primarily stored in the source, in the target, or in
both versions. Initially, data is always materialized in
the source schema version. Considering the instantia-
tion of a PARTITION SMO, the data is initially stored
unpartitioned—the SMO is called virtualized. With a
migration command, the physical materialization of this
SMO can be changed so that the data is physically
partitioned—the SMO is then materialized. InVerDa
also allows redundant materialization with data being
stored both unpartitioned at the source side and parti-
tioned at the target side—the SMO is called redundant.

Since not all evolutions are information-preserving,
InVerDa uses auxiliary tables that store the otherwise
lost information if the SMO is not redundantly materi-

8 Kai Herrmann et al.

TasKyDo! TasKy2Task author task prio
1 Ann Organize party 3
2 Ben Learn for exam 2
3 Ann Write paper 1
4 Ben Clean room 1

ToDo author task
3 Ann Write paper
4 Ben Clean room

Task task prio author
1 Organize party 3 5
2 Learn for exam 2 6
3 Write paper 1 5
4 Clean room 1 6

Author name
5 Ann
6 Ben

Initial Physical Materialization

Task author task prio
1 Ann Organize party 3
2 Ben Learn for exam 2
3 Ann Write paper 1
4 Ben Clean room 1

ToDo-1 ToDo-0 Task-0 Author-0 Author-1
Task-1

Drop
Column Partition Decompose

Rename
Column

Auxiliary Tables
…

Alternative Physical Materialization

ToDo author task
3 Ann Write paper
4 Ben Clean room Materialize ‘Do!’;

Fig. 4: InVerDa architecture with the TasKy example.

alized. These auxiliary tables are initially empty but fed
with information when needed to not lose any data—
e.g. the values of a dropped column. We exemplarily
discuss the auxiliary tables for the PARTITION SMO in
Section 5.2. With these auxiliary tables, we ensure that
InVerDa can store the data merely in a subset of all
table versions without losing any data. Data is prop-
agated through the SMOs from the materialized table
versions to the accessed table versions. The generated
delta code propagates data accesses either forwards or
backwards through the bidirectional SMOs to the clos-
est materialized table versions.

Summary: Developers create and manage logical
schema versions while the DBA independently changes
their materialization: data independence in MSVDBs.

4 Schema Versions Catalog

The discussed interfaces facilitate the creation and man-
agement of schema versions in MSVDBs. The genealogy
of all the schema versions and information about their
physical materialization are represented in the schema
versions catalog. In fact, the catalog is a directed acyclic
hypergraph (T V, E), where each vertex t ∈ T V repre-
sents a table version and each hyperedge e ∈ E repre-
sents one SMO instance. An SMO instance e = (S, T)
evolves a set of source table versions S ∈ T V into a
set of target table versions T ∈ T V. Additionally, the
schema versions catalog stores for every SMO instance
the SMO type (decompose, merge, etc.), the param-
eter set, and its state of materialization. The schema
versions catalog maintains references to tables in the
physical storage that hold the payload data and to
auxiliary tables that hold otherwise lost information of
the not necessarily information-preserving SMOs. Each
schema version is a subset of all table versions. At evo-
lution time, InVerDa uses this information to generate
delta code that makes all schema versions accessible. At
query time, the delta code is executed by the DBMS’s
query engine—outside InVerDa’s components.

Summary & TasKy example: Figure 4 sums up
InVerDa’s three-layered architecture with the TasKy
example. On the upper logical layer, we have all the
three schema versions TasKy, TasKy2, and Do!. InVerDa
creates a separate schema for each version containing
fully updatable views that act like tables in a standard
database. On the lower physical layer, a subset of the
table versions is physically stored as standard tables in
the database. Finally, the schema versions catalog inter-
connects the materialized table versions and the table
versions in the logical schema versions with SMOs. All
schema versions can co-exist in the MSVDB and read-
/write operations in any schema version are propagated
through the bidirectional SMOs to the materialized ta-
bles plus auxiliary tables. Written data is immediately
visible in all other schema versions as well.

Initially, the Task-0 table is exclusively materialized,
which makes any access to the TasKy schema version
trivial. In contrast, accessing the Do! schema version
requires to propagate both read and write operations
through the DROP COLUMN and the PARTITION
SMOs back to the physical table, which implies an over-
head. Assuming 99% of the users use Do!, we can easily
increase the overall performance by moving the phys-
ical materialization to the Do! schema version with a
single-line migration statement. Now, any data access
in the Do! schema version can be directly mapped to the
materialized tables which significantly speeds up query
processing for this schema version (4 times faster in our
evaluation). The price is that the few remaining users of
TasKy and especially TasKy2 now face a higher overhead
for the additional data propagation.

The bidirectional semantics of BiDEL’s SMOs also
allow redundant materializations, so we could for in-
stance materialize both schema version Do! and TasKy2
to obtain a high read performance in both schema ver-
sions. InVerDa guarantees data independence and the
ACID properties on every single schema version, so de-
velopers can safely work on one schema version of the
MSVDB just as on a regular single-schema database.

Multi-Schema-Version Data Management 9

5 Guaranteed Data Independence in MSVDBs

MSVDBs, such as InVerDa, guarantee data indepen-
dence: all schema versions that developers create and
manage in the catalog behave like regular single-schema
databases no matter how the DBA changes the physi-
cal materialization. Co-existing schema versions on one
conceptual data set that all behave like regular single-
schema databases raise new challenges for the physical
design of MSVDBs, as we discuss in Section 5.1. In
order to facilitate and safely use the physical design
options, we extend the semantics of BiDEL’s SMOs
to be materialization-independent in Section 5.2. The
full formal evaluation is published in a PhD thesis [13];
here, we focus on the conceptual contribution.

5.1 Physical Design

Naïvely, we could materialize each table version. This
fully redundant approach is the easiest to implement
and provides the fastest read access but has the high-
est space requirements and significant write overhead.
The opposite possibility is to materialize merely a non-
redundant subset of the table versions; data accesses
to non-materialized table versions need to be propa-
gated through the SMOs to the materialized table ver-
sions. Since not all SMOs are information-preserving,
data accesses are also propagated to the auxiliary tables
that store the otherwise lost information. Therefore, we
extend the bidirectional SMOs to a materialization-
independent mapping semantics that additionally
covers the persistence of auxiliary information in case
the respective table versions are not materialized. The
materialization-independent mapping semantics easily
facilitate any degree of partially redundant materializa-
tions for an MSVDB where each schema version is guar-
anteed to behave like a regular single-schema database.
In this section, we focus on the non-redundant material-
ization and show how to formally guarantee the data in-
dependence. Non-redundant materialization is the most
difficult; with additionally materialized table versions in
partially or fully redundant materializations, we merely
leave out the management of the auxiliary information
and directly access the materialized tables.

Let us consider a single SMO, first. For a sin-
gle SMO, the envisioned data independence means
that both the source and the target side of an SMO
can be read and written as any common single-schema
database. Data written in one schema version should
be readable without any changes in the same schema
version again, even if the respective schema version is
not physically materialized. Figure 5 zooms into the
PARTITION SMO. Data can be materialized at the source

TargetSource

T
S

R

𝑇𝐷

Partition

𝑅− 𝑅∗

𝑆+ 𝑆− 𝑆∗ 𝑇′

𝑅𝐷 𝑆𝐷

𝜸𝒕𝒓𝒈𝜸𝒔𝒓𝒄

alternative
materializations

schema versions
catalog

views
&

trigger

data
tables

auxiliary
tables

Ta
b

le
ve

rs
io

n
s

P
h

ys
ic

al
 S

to
ra

ge

T x y

1 T1 1

2 T2 2

3 T3 3

views

Sc
h

em
a

ve
rs

io
n

s

R x y

2 T2 2

3 T3 3

S x y

3 T3 3

PARTITION TABLE R
INTO R (y>1), S(y>2);

Fig. 5: Mapping functions of single PARTITION SMO.

side, at the target side, or at both sides. Processing read
and write operations at the materialized side is trivial
as data is directly accessed without any schema trans-
formation. To read and write data at the unmaterial-
ized side, the bidirectional SMO semantics comes into
play. Let us start with target-side materialization: The
data Dsrc at the source side is mapped by the mapping
function γtrg to the data tables and auxiliary tables at
the target side (write) and mapped back by the map-
ping function γsrc to the data tables on the source side
(read) without any loss or gain visible in the data tables
at the source side. Similar conditions have already been
defined for symmetric relational lenses [16,18]—given
data at the source side, storing it at the target side,
and mapping it back to the source side should return
the identical data. For source-side materialization, the
same conditions should hold vice versa for target-side
data. The data tables that are visible to the user need
to survive one round trip—we will use the notation γdat

to project away auxiliary tables. Formally, the following
conditions ensure data independence of an SMO:

Dsrc= γdat
src (γtrg(Dsrc)) (1)

Dtrg= γdat
trg (γsrc(Dtrg)) (2)

The auxiliary tables would be always empty except for
SMOs that calculate new values during reads and ma-
terialize these values to ensure repeatable reads, e.g.,
when adding a column, we store the newly calculated
values when reading them. We published the formal
evaluation of these criteria for BiDEL’s SMOs in a PhD
thesis [13]. It is safe to say that no data is lost at any
side of an SMO, no matter which side is materialize.

The materialized side of an SMO does not necessar-
ily exist physically in its whole; while the auxiliary ta-
bles need to be stored physically, the data tables can be
provided virtually by another SMO in the same spirit.
This concept facilitates sequences of SMOs—a.k.a.
evolutions—where the data is stored non-redundantly
according to the table versions of one specific slice of the

10 Kai Herrmann et al.

evolution history. All other table versions are provided
virtually using the bidirectional and materialization-
independent semantics of our BiDEL SMOs. Using re-
sults from symmetric relational lenses [16], we extend
the guaranteed data independence to chains of SMOs:

Dsrc= γdat
1,src(. . . γn,src(γn,trg(. . . γ1,trg(Dsrc)))) (3)

Dtrg= γdat
n,trg(. . . γ1,trg(γ1,src(. . . γn,src(Dtrg)))) (4)

Hence, the data is materialized anywhere in the schema
evolution history and each schema version is guaran-
teed to behave like a regular single-schema database.
BiDEL, which satisfies the data independence crite-
ria, guarantees developers that they can safely create
and use new schema versions and the DBA can safely
change the materialization without any risk of losing
data. We guarantee that users can use a single schema
version just like a regular database and changes are
propagated to other versions with a best-effort strat-
egy; if users use multiple versions, we need to carefully
design the application to not confuse the users.

5.2 Materialization-Independent Mapping Semantics

We utilize BiDEL’s bidirectionality to propagate data
both forwards and backwards between table versions—
not all of them are necessarily materialized. The map-
ping semantics needs to be materialization-independent
o not lose any information. We exemplarily discuss the
PARTITION SMO. The remaining SMOs are covered in [13,
15]. In Figure 5, a source table T is horizontally parti-
tioned into two target tables R and S based on the
incomplete and overlapping conditions cR:(y>1) and
cS :(y>2). If all the table versions are materialized, then
reads and writes on both schema versions can be simply
delegated to the corresponding data tables TD, RD, and
SD, respectively. However, we aim for a non-redundant
materialization at one side of the SMO instance, only.

The semantics of each SMO is defined by the two
functions γtrg and γsrc that precisely describe the map-
ping from the source side to the target side and vice
versa. With target-side materialization, all reads on T
are mapped by γsrc to reads on RD and SD; and writes
on T are mapped by γtrg to writes on RD and SD. The
payload data of R, S, and T is stored in the physical
tables RD, SD, and TD. The auxiliary tables R−, S+,
S−, R∗, S∗, and T ′ store all otherwise lost information.
E.g., T ′ stores all tuples that do not match any of the
partition criteria—we detail on all auxiliary tables later
in this section. There are different ways of defining γtrg

and γsrc; our proposal systematically covers all poten-
tial inconsistencies and guarantees data independence.
We aim at a non-redundant materialization, which also

includes that the auxiliary tables merely store the min-
imal set of required auxiliary information. There are
many possible structures for the auxiliary information,
but at the end of the day they all have to store the same
minimal set of information.

To define γtrg and γsrc, we use Datalog—a com-
pact and solid formalism that facilitates both a formal
evaluation of data independence and easy delta code
generation. Precisely, we use Datalog rule templates in-
stantiated with the parameters of an SMO instance.
For brevity of presentation, we use some extensions to
the standard Datalog syntax: For variables, small let-
ters represent single attributes and capital letters lists
of attributes. For equality predicates on attribute lists,
both lists need to have the same length and same con-
tent, i.e., for A = (a1, . . . , an) and B = (b1, . . . , bm),
A = B holds if n = m ∧ a1 = b1 ∧ . . . ∧ an = bn.
All tables have an attribute p, which is an InVerDa-
managed identifier to uniquely identify tuples across
versions. Thus, the predicates T (p,_) and ¬T (p,_) are
always unambiguous and the multiset semantics of a re-
lational database fits with the set semantics of Datalog,
as the unique key p prevents equal tuples in a relation.

We start with the γtrg mapping of a materialized
PARTITION SMO that horizontally splits a table T into
two tables R and S on conditions cR and cS (Figure 5):

R(p,A)← T (p,A), cR(A) (5)
S(p,A)← T (p,A), cS(A) (6)

This is not sufficient for the desired materialization-
independent semantics, as T may contain tuples neither
captured by cR nor by cS . To avoid information loss,
we store the uncovered tuples with cS(A) ∨ cR(A) =⊥
in the auxiliary table T ′ on the target side:

T ′(p,A)← T (p,A),¬cR(A),¬cS(A) (7)

When we materialize the PARTITION SMO, we only store
R and S as well as the auxiliary table T ′ but not T .

Let us now consider the γsrc mapping function for
reconstructing T from the target side, which is essen-
tially a union of R, S, and T ′. Since cR and cS are
not necessarily disjoint, there are tuples with cS(A) ∧
cR(A) = >. Source tuples that occur as two equal but
independent instances in R and S are called twins. In-
dependently updated twins result in separated twins. To
resolve this ambiguity and ensure data independence,
we consider the first twin in R to be the preferred twin
and define γsrc of PARTITION to return all tuples in R as
well as those tuples in S that are not contained in R:

T (p,A)← R(p,A) (8)
T (p,A)← S(p,A),¬R(p,_) (9)
T (p,A)← T ′(p,A) (10)

Multi-Schema-Version Data Management 11

The Rules 5–10 define sufficient semantics for PARTITION
as long as the target side is materialized.

Now, consider the PARTITION SMO to be virtual-
ized. R and S can still contain separated twins. Ac-
cording to Rule 9, T contains the separated twin from
R. To avoid losing the other twin, it is stored in the
auxiliary table S+:

S+(p,A)← S(p,A), R(p,A′), A 6= A′ (11)

Accordingly, γtrg reconstructs the separated twin in S
from S+ instead of T (concerns Rule 6). Twins can also
be deleted independently resulting in a lost twin. A lost
twin would be directly recreated from its other twin via
T . To avoid this information gain and keep lost twins
lost, γsrc keeps the keys of lost twins from R and S in
auxiliary tables R− and S−:

R−(p)← S(p,A),¬R(p,_), cR(A) (12)
S−(p)← R(p,A),¬S(p,_), cS(A) (13)

Then, γtrg uses this information to explicitly exclude
those tuples (concerns Rules 5 and 6): When tuples are
updated in R or S and do not meet the conditions cR

or cS any longer, auxiliary tables R∗ and S∗ are em-
ployed for identifying those tuples to include them in
γtrg (concerns Rules 5 and 6).

S∗(p)← S(p,A),¬cS(A) (14)
R∗(p)← R(p,A),¬cR(A) (15)

The full rule sets of γtrg respectively γsrc are now bidi-
rectional and ensure data independence:

γtrg :
R(p,A)← T (p,A), cR(A),¬R−(p) (16)
R(p,A)← T (p,A), R∗(p) (17)
S(p,A)← T (p,A), cS(A),¬S−(p),¬S+(p,_) (18)
S(p,A)← S+(p,A) (19)
S(p,A)← T (p,A), S∗(p),¬S+(p,_) (20)
T ′(p,A)← T (p,A),¬cR(A),¬cS(A),¬R∗(p),¬S∗(p)

(21)
γsrc :

T (p,A)← R(p,A) (22)
T (p,A)← S(p,A),¬R(p,_) (23)
T (p,A)← T ′(p,A) (24)
R−(p)← S(p,A),¬R(p,_), cR(A) (25)
R∗(p)← R(p,A),¬cR(A) (26)

S+(p,A)← S(p,A), R(p,A′), A 6= A′ (27)
S−(p)← R(p,A),¬S(p,_), cS(A) (28)
S∗(p)← S(p,A),¬cS(A) (29)

In sum, these bidirectional mapping semantics of the
PARTITION SMO allow us to propagate data both for-
wards and backwards through the SMO and to store
auxiliary information if required to correctly persist the
data of a non-materialized table version. The seman-
tics of all other BiDEL SMOs is defined in a similar
way—we formally guarantee data independence (Con-
ditions 1 and 2) for all those BiDEL SMOs [15,13]. To
this end, we calculated and reduced the semantics for
subsequently applying γsrc and γtrg, which should re-
sult in an identity mapping. Thus, data from one side of
an SMO that is persisted at the other side of the SMO
can always be read again at the initial side without any
information loss.

TasKy example: We now apply the materialization-
independent semantics in our TasKy example. When we
create the partition Todo from the initial table Task, we
essentially set cR = ctodo : (prio = 1) and cS :⊥. As
a result, the literals cS and S(p,A) will never be satis-
fied, which allows us to ignore the second partition and
reduce the rule set:

γtrg :
Todo(p,A)← Task(p,A), ctodo(A) (30)
Todo(p,A)← Task(p,A), Todo∗(p) (31)

Task′(p,A)← Task(p,A),¬ctodo(A),¬Todo∗(p) (32)
γsrc :

Task(p,A)← Todo(p,A) (33)
Task(p,A)← Task′(p,A) (34)

Todo∗(p)← Todo(p,A),¬ctodo(A) (35)

Intuitively speaking, the target side table version Todo
contains all the tuples that satisfy the condition ctodo

(Rule 30) while the auxiliary table Task′ contains all
remaining tuples (Rule 32). Then, the source-side table
version Task is essentially the union of these two tables
(Rules 33 and 34). For source-side materialization, the
auxiliary table Todo∗ stores the identifiers of all tasks
that should occur in Todo at the target side but that
have been updated and do not meet the condition ctodo

any longer (Rule 35). We use this auxiliary table in the
γtrg mapping to add those tuples to Todo that have their
identifier in Todo∗ (Rule 31) and consequently exclude
those tasks from the auxiliary table Task’ (Rule 32).

To show the whole power of the PARTITION SMO,
consider the partition criteria cR = ctodo : (prio = 1)
and additionally cS = cshould_do : (prio <= 2) for the
second partition should_do. The tasks with prio = 2 oc-
cur in both partitions, while the tasks with prio = 3
are not represented at all. We do need the other auxil-
iary tables to persist data at the unpartitioned source
side, now. Namely, should_do∗(p) keeps the identifiers

12 Kai Herrmann et al.

of all tasks that belong to should_do even though they
are updated to not meet the condition any longer. Fur-
ther, those tuples with prio = 2 are twins that occur
in both partitions. If the twins are updated indepen-
dently in Todo and should_do, then the auxiliary table
should_do+(p,A) holds the second twin (from should_do)
while the first (from Todo) is stored in Task. If one tuple
is deleted in one twin but remains in the other twin,
then the auxiliary tables Todo−(p) and should_do−(p)
hold the respective identifiers to make sure that the
tuples are not added again at the target side.

Summary: We ensure data independence for any
evolution with sequences of SMOs. No matter which
table versions we materialize, InVerDa manages aux-
iliary information to guarantee that any schema ver-
sion in the MSVDB behaves like a regular single-schema
database. To our best knowledge, BiDEL is the first set
of powerful SMOs with validated data independence.

6 Delta Code Generation

InVerDa realizes data independence in MSVDBs by
generating delta code for all table versions that are not
physically materialized. We translate the γsrc and γtrg

mappings of those SMOs that connect unmaterialized
table versions with the materialized ones into SQL view
and trigger definitions—details can be found in [15].
The delta code for a specific table version depends on
the materialization state of the table’s adjacent SMOs,
i.e., on where the data is physically stored.

If both the source and the target side of an SMO are
materialized (SMO is redundant), the delta code gen-
eration is trivial since no auxiliary tables are needed.
Specifically, we remove all rules that have an auxiliary
table as head or contain auxiliary tables as positive lit-
erals; in all other rules, we remove literals of negated
auxiliary tables, which basically leaves us with the regu-
lar bidirectional mapping semantics of BiDEL’s SMOs
for redundant materialization.

To determine the right rule sets for delta code gener-
ation for non-redundant materializations, consider the
exemplary evolution in Figure 6. Schema version Ti is
materialized, hence the SMO instance i stores its data
at the target side and is materialized. The SMO in-
stance i−1 is also materialized, as we use the auxiliary
tables to persist data at the target side—however, the
data tables Ti−1 do not exist physically but are virtu-
ally provided by SMO i. Thanks to the guaranteed data
independence of BiDEL’s SMOs the data access propa-
gation can be safely cascaded like this. Analogously, the
two subsequent SMO instances, i+1 and i+2 are set to
source-side materialization (virtualized). Without loss
of generality, three cases for delta code generation can

𝑇𝑖

𝐷𝑖

𝑆𝑀𝑂𝑖−1

𝐴𝑖 𝐴𝑖+1

views
&

trigger

data
tables

auxiliary
tables

ta
b

le
 v

er
si

o
n

s
p

h
ys

ic
al

 s
to

ra
ge

𝑇𝑖−1

𝐷𝑖

𝐴𝑖 𝐴𝑖+1

𝑆𝑀𝑂𝑖

materialized

𝑇𝑖𝑇𝑖

𝑆𝑀𝑂𝑖+1

materialized

𝑇𝑖𝑇𝑖+1

𝑆𝑀𝑂𝑖+2

virtualized virtualized

𝐴𝑖+1𝐴𝑖+2

Case 2 Case 1 Case 3

Fig. 6: Three different cases in delta code generation.

be distinguished, depending on the direction a specific
table version needs to go to reach the materialized data.

Case 1 – local: The incoming SMO is material-
ized; all outgoing SMOs are virtualized. The data
Ti is directly stored and accessed in data table Di.
Case 2 – forwards: The incoming SMO and one
outgoing SMO are materialized. The data of Ti−1
is stored in newer table versions, so data access is
propagated with γsrc (read) and γtrg (write) of SMOi.
Case 3 – backwards: The incoming SMO and all
outgoing SMOs are virtualized. The data of Ti+1 is
stored in older table versions, so data access is prop-
agated with γtrg (read) and γsrc (write) of SMOi+1.
In Case 1, delta code generation is trivial. In Case 2

and 3, InVerDa translates the Datalog rules into views
for reading and instead-of triggers on those views for
writing. For physical migrating, InVerDa generates
queries for all required data and auxiliary tables to ma-
terialize them and updates the delta code of all affected
table versions. Datalog’s expressiveness is a subset of
SQL and the translation is straightforward [13,15].

TasKy example: Assume the alternative material-
ization as shown in Figure 4 where the Do! schema
version is physically materialized. Then both the DROP
COLUMN and the PARTITION SMO are materialized while
the DECOMPOSE and the RENAME COLUMN SMO are virtual-
ized. Hence, InVerDa creates the table Todo-1 physi-
cally and generates delta code for all other table ver-
sions. There is a view for the table version Todo-0 that
joins the values for the dropped column from an auxil-
iary table—this view is made updatable with a trigger
that updates both the data table Todo-1 and the auxil-
iary table with the dropped column. The view for the
initial Task-0 table version then merges the data from
the view Todo-0 with an auxiliary table that holds all
eliminated tasks. Again, this view is made updatable
with a trigger that updates data in the auxiliary table or
propagates it further to view Todo-0. In the same spirit,
InVerDa generates updatable views for the remaining
table versions to make all three schema versions Do!,
TasKy, and TasKy2 fully accessible.

Multi-Schema-Version Data Management 13

Workload Analysis

Workload
𝑊𝐿(𝑐, 𝑜𝑝)

InVerDa’s Adviser

Migration

Initial DBMS Analysis

Cost model
𝐶(𝑐,𝑀, 𝑜𝑝)

Space threshold
𝑇

Materialization Iteration (Search Space)

𝐷𝑖+1𝐷𝑖

Database
developer

BiDEL
script

Optimization

Proposed Materialization
returns

triggers

sets

DBA

On initial setup of InVerDa

Fig. 7: Workflow of InVerDa’s advisor.

Summary: The bidirectional mapping semantics
specified as sets of Datalog rules can be directly used
to generate delta code for the propagation of both read
and write operations along the schema version history
to the materialized table versions. Data accesses are
propagated step-by-step with standard database ob-
jects (views/triggers), which keeps the delta code sim-
ple and preserves performance and transaction guaran-
tees of common database systems also for MSVDBs.

7 Physical Design Advisor for MSVDBs

Co-existing schema versions in an MSVDB are different
representations of the same conceptual data set. Thanks
to the data independence of BiDEL’s SMOs, there is no
need to materialize each and every schema version to let
them co-exist, but the DBA can freely choose a subset
of all table versions to materialize, which opens up new
physical design opportunities. The search space of
possible materializations can grow exponentially with
the number of table versions and is hard to explore,
hence we equip the DBA with an advisor. Therefore,
we discuss its objective in Section 7.1. The advisor is
based on a cost model that we introduce in Section 7.2.
We define the search space in Section 7.3 and present
the optimization algorithm in Section 7.4.

7.1 Objective

The advisor covers the whole search space from non-
redundant over partially redundant to fully redundant
materializations. In a non-redundant materialization,
only one preferred schema version is materialized; ac-
cesses to all other versions are propagated to this pre-
ferred version and to the auxiliary tables. In contrast, a
fully redundant materialization physically stores every
single table version requiring way more storage space.
However, no auxiliary tables are needed, which speeds
up query processing in turn. Partially redundant mate-
rializations strike a balance between the two extremes
by materializing a subset of the table versions.

InVerDa’s advisor follows the workflow shown in
Figure 7. Triggered by the DBA, it determines the set

of materialized table versions that provides the best
overall performance for the current workload under a
given space threshold. The advisor is cost model-based
and uses an evolutionary optimization algorithm. When
the DBA confirms the proposal, InVerDa migrates the
data and all schema versions continuously work, but
now provide in total a higher performance.

We will discuss all artifacts of InVerDa’s advi-
sor workflow to precisely specify the actual optimiza-
tion problem. To this end, we introduce a formal no-
tation: Let SV be the set of all schema versions in the
MSVDB. Then T V(s) is the set of table versions in
schema s ∈ SV, and T V is the set of all table versions in
the MSVDB. Let O = {select, insert, update, delete}
be the set of operations to be executed on any table
version t ∈ T V. Let MAT S ⊆ {M|M ⊆ T V} be
the set of all valid materialization states that materi-
alize enough table versions to enable accesses to any
table version. Then, M is a set of table versions that
is physically materialized, S(M) is its size in bytes,
andMAT S(T) is the subset ofMAT S that meets the
space constraint T . The function E(t) returns the set of
all directed hyper edges (SMOs) that are connected to
the given table version t ∈ T V. Finally, N (e, t) returns
the set of all table versions that are at the opposite end
of the directed hyper edge e (SMO) of the given table
version t ∈ T V.

Workload description: The workload is defined
as a function WL(t, op), which returns the percentage
of a given operation op ∈ O on a given table version
t ∈ T V w.r.t. the whole workload:

WL : T V × O → [0; 1] (36)

All table versions t 6∈ {t|t ∈ T V(v), v ∈ SV} that are
not part of any schema version are never explicitly ac-
cessed, hence their workload share is zero. The sum of
all operations on all table versions is 100%.

Learned cost model: Propagating read and write
accesses through SMOs naturally causes costs that need
to be minimized by InVerDa’s advisor. Temporarily
changing the materialization to actually measure the
costs can easily take several minutes to multiple days
in realistic scenarios. Instead, the advisor uses a cost
model to quickly estimate the costs. We define the cost
model with the function C(t,M, op), which takes a set
of materialized table versionsM∈MAT S and returns
the costs for performing the given operation op ∈ O on
the given table version t ∈ T V:

C : T V ×MAT S ×O → R+ (37)

Since the used hardware and DBMS influence the ac-
tual costs for access propagating, the cost function is
individually learned when setting up InVerDa.

14 Kai Herrmann et al.

0
50

10
0

15
0

Read

Number of Tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

Read

0 50k 100k

● ● ● ● ●
● ● ●

●
●

● ●

● ●
● ●

● ●
●

●

● ● ● ● ● ● ●
● ● ● ●

● ●
●

● ●

● ● ●

●

● ● ● ● ● ● ● ●
●

● ● ● ●
●

● ● ●
● ●

●

0
2

4
6

8
10

Insert

Number of Tuples
Q

ue
ry

 e
xe

cu
tio

n
tim

e
[m

s]

Insert

0 50k 100k

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
2

4
6

8
10

12

Update

Number of Tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

Access 1st, Virtualized
Access 1st, Redundant
Access 1st, Materialized
Access 2nd, Virtualized
Access 2nd, Redundant
Access 2nd, Materialized

●

●

●

Update

0 50k 100k

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●
●

● ● ●
●

● ●
●

● ● ● ● ● ● ●
●

● ● ●

0
2

4
6

8
10

Delete

Number of Tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

Delete

0 50k 100k

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
50

10
0

15
0

Read

Number of Tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

Read

0 50k 100k

● ● ● ● ●
● ● ●

●
●

● ●

● ●
● ●

● ●
●

●

● ● ● ● ● ● ●
● ● ● ●

● ●
●

● ●

● ● ●

●

● ● ● ● ● ● ● ●
●

● ● ● ●
●

● ● ●
● ●

●

0
2

4
6

8
10

Insert

Number of Tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

Insert

0 50k 100k

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
2

4
6

8
10

12

Update

Number of Tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

Access 1st, Virtualized
Access 1st, Redundant
Access 1st, Materialized
Access 2nd, Virtualized
Access 2nd, Redundant
Access 2nd, Materialized

●

●

●

Update

0 50k 100k

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●
●

● ● ●
●

● ●
●

● ● ● ● ● ● ●
●

● ● ●

0
2

4
6

8
10

Delete

Number of Tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

Delete

0 50k 100k

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Fig. 8: Accesses propagation through ADD COLUMN SMO.

Optimization objective: Putting everything to-
gether, the optimization objective of InVerDa’s advi-
sor is to find a set of materialized table versions M ∈
MAT S with its size being within the threshold S(M)
that provides the minimal costs for accessing the data.
The costs are calculated as the sum of all operations
op on all table versions t, weighted with their share of
the overall workload. The overall objective is to find the
materializationMbest ∈MAT S(T) with:

arg min
M∈MAT S(T)

∑
t∈T V

∑
op∈O

WL(t, op) · C(t,M, op)

 (38)

Intuitively, we minimize the expected execution time
for the workload.

7.2 Cost Model

The costs depend on the generated delta code, the used
DBMS, the used hardware, and so on. Hence, we learn
the specific cost function for each system individually
by running sample workloads on sample data. In the
following, we analyze simple scenarios to learn the gen-
eral characteristics that make up the cost model with
parameters to be trained for a specific MSVDB.

Performance of single SMOs: Most SMOs have
an asymmetric overhead w.r.t. the materialization,
which means that the propagation in one direction is
more expensive than in the other direction. For each op-
eration op ∈ O on each SMO, we consider six different
scenarios: The workload accesses either the source (Ac-
cess 1st) or the target versions (Access 2nd), while we
materialize either the source table version (virtualized
SMO), or both the source and the target table version
(redundant SMO), or only the target table version (ma-
terialized SMO). Figure 8 shows the query execution for

a very simple scenario: A table with 2 columns and a
growing number of tuples is evolved to a new table ver-
sion with an additional column. The experiments have
been conducted on a PostgreSQL 9.4 database on a
Core i7 machine with 2.4GHz and 8GB memory. When-
ever we access the target side of the virtualized SMO,
we face a significantly higher overhead than in all other
cases, because the data is primarily stored without the
added column, hence reading or writing the new ver-
sion requires to join with or write to the auxiliary ta-
ble that persists the new column. Reading data in the
opposite direction is done by merely projecting away
the new column, explaining the significant asymmetry
of the ADD COLUMN SMO. So, the asymmetry of the ADD
COLUMN SMO suggests to materialize or replicate it, as
long as space constraints and neighboring SMOs do al-
low this. Further, the costs for accessing data locally are
always identical no matter whether the respective other
side of the SMO is materialized as well or not. Due to
this observation, we define the cost model along the two
dimensions: (1) access either at target or at source side
and (2) access either locally or remotely with auxiliary
tables. Hence, we need to learn cost function for only
four different scenarios.

Finally, we see that read accesses scale linearly with
the number of tuples, while writing requires almost con-
stant time. As a consequence, we can use functions of
the form ax+b with x being the source tables’ size to de-
scribe the cost function for access propagation through
single SMOs. For writing through an ADD COLUMN SMO, a
constant function would be enough, however, this does
not apply to all SMOs, which motivates using linear
functions for writing as well. For instance, propagat-
ing an insert operation through a JOIN SMO requires to
scan the whole other table for potential join partners—
hence, the costs grow with the size of the existing tables.
Our measurements did not indicate the need for higher
order approximations, although the presented concepts
easily support the extension to higher order polynomi-
als or logarithmic functions if needed.

We used the ADD COLUMN SMO without loss of gen-
erality. The measurements for the remaining SMOs are
published in the PhD thesis [13] and show similar char-
acteristics. The different asymmetries of the different
SMOs are not intuitively obvious for DBAs, as DBAs
are not necessarily aware of the managed auxiliary ta-
bles and the delta code generation that significantly af-
fect the actual overhead. Our cost model-based advisor
hides all the complexity and releases DBAs from the
need to understand the asymmetries in the first place.

Performance of SMO sequences: For the access
propagation through multiple SMOs, the overheads of
the single SMOs combine linearly. We conduct a mi-

Multi-Schema-Version Data Management 15

0
50

10
0

20
0

30
0

ADD_COLUMN and ADD_COLUMN

Number of tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0 50k 100k

●

●

1st SMO
v2 localy
2nd SMO
v3 locally
both SMOs
calculated

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●

●

●
●

●

●

●
● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ●

●

●

●

0
50

10
0

15
0

20
0

DROP_COLUMN and ADD_COLUMN

Number of tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0 50k 100k

●

●

1st SMO
v2 localy
2nd SMO
v3 locally
both SMOs
calculated

●

●
●

●
●

●
●

●
●

●

● ●

●
●

●
●

●

●

●

●

●
●

●
●

● ●
● ●

● ●

●
● ●

●
●

●
●

● ●

●

0
50

10
0

15
0

20
0

25
0

JOIN and ADD_COLUMN

Number of tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0 50k 100k

●

●

1st SMO
v2 localy
2nd SMO
v3 locally
both SMOs
calculated

●

●
●

●
●

●
●

●

●
● ●

● ●

●
●

●

●

● ●
●

●
● ● ● ● ● ●

● ● ●

●

●
● ●

● ● ● ● ●

●

0
50

10
0

15
0

20
0

25
0

DECOMPOSE and ADD_COLUMN

Number of tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0 50k 100k

●

●

1st SMO
v2 localy
2nd SMO
v3 locally
both SMOs
calculated

●

●
●

●
●

●
●

●
●

●

● ●

● ●

● ●

● ● ●

●

●
● ● ● ● ●

● ● ● ● ● ● ●

●
●

●

●

● ● ●

0
50

10
0

20
0

30
0

MERGE and ADD_COLUMN

Number of tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0 50k 100k

●

●

1st SMO
v2 localy
2nd SMO
v3 locally
both SMOs
calculated

●
●

●
●

●
●

●
●

●
●

●

●
● ●

●

●

●
●

●

●

●
● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ●

●
●

0
20

40
60

80
10

0
12

0

PARTITION and ADD_COLUMN

Number of tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0 50k 100k

●

●

1st SMO
v2 localy
2nd SMO
v3 locally
both SMOs
calculated

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

●

●

●
●

●
●

(a) Read operation.
0

5
10

15
20

25
30

35

Insert in v1

Number of tuples
Q

ue
ry

 e
xe

cu
tio

n
tim

e
[m

s]

●

●

v1 materialized
v1, v2 materialized
v1, v2, v3 materialized
v1, v3 materialized
v3 materialized
v2, v3 materialized
v2 materialized

Insert in v1

0 50k 100k

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
5

10
15

20
25

30
35

Insert in v2

Number of tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

Insert in v2

0 50k 100k

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
5

10
15

20
25

30
35

Insert in v3

Number of tuples

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

Insert in v3

0 50k 100k

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

(b) Write operations.

Fig. 9: Scaling behavior for access propagation through two subsequent ADD COLUMN SMOs.

cro benchmark on all possible evolutions with two sub-
sequent SMOs and three resulting schema versions: first
version v1 – first SMO s1 – second version v2 – second
SMO s2 – third version v3. The second version v2 al-
ways contains a table R(a, b, c); the number of gener-
ated tuples in this table is varied. Again, we focus on
two subsequent ADD COLUMN SMOs and point the inter-
ested reader to [13] for the remaining combinations.

For reading, the expected performance for the se-
quential combination of both SMOs is calculated as the
sum of propagating the data access through each SMO
individually minus reading data locally at the second
schema version. This is reasonable, because the source
data for the second SMO is already in memory after
executing the first one. Figure 9(a) shows that the mea-
sured time for propagating the data through two SMOs
is always in the same range as the calculated linear
combination of the two SMOs, so we show that there
is great optimization potential for all combinations
of those SMOs and we can safely use it without fearing
additional overhead when combining SMOs.

Conducting the same analysis for writing reveals
that the overhead also combines linearly which facili-
tates stable estimations of the actual costs. Figure 9(b)
shows the execution time of insert operations in three
exemplary schema versions that are connected by two
ADD COLUMN SMOs. We see the same pattern as before:
data accesses become more expensive if and only if we
propagate data backwards—from the evolved version
with the added column back to the version without the
added column—and the data is exclusively material-
ized in the old table version. The values of the two
added columns are stored in auxiliary tables, which
increases the required time. For writing at the third
schema version with only the first version being ma-
terialized, we face this overhead twice; once for each
add column SMO, which explains the doubled over-
head. The slight difference in the actual overhead is
caused by the different table sizes, since the third ta-
ble version has one column more than the second table
version and two columns more than the first one.

Not materialized

Materialized

Virtualized

Materialized

Redundant
(No auxiliary tables)

SMOs:

Table versions:

Schema
Version 𝑁

Schema
Version 𝑁 + 1

SMO1
Schema

Version 𝑁 + 2
SMO1

1:

2:

3:

4:

5a:

5b:

6:

7:

Legend:

Fig. 10: Materialization states of two subsequent SMOs.

We conducted the same measurements for all com-
binations of SMOs and empirically confirmed that the
execution time of read and write operations through se-
quences of SMOs is easily computable [13]. It is the
linear combination of the respective execution times
of the propagation through single SMOs. So, we build
a stable cost model for evolutions based on cost models
for single SMOs. Reading along SMOs usually requires
joins with auxiliary tables and writing requires a stored
procedure call. Both things are independent from other
SMOs and explain the linear combination of the costs.
In the evaluation, we show that this assumption is sta-
ble enough to obtain very precise estimations.

Data access patterns: Figure 10 shows all pos-
sible materialization states for two subsequent SMOs:
each schema version can be materialized or not—at
least one schema version must be materialized in or-
der to not lose all the data. The set of materialized
table versions determines the materialization state of
the SMOs, which in turn determine the required auxil-
iary tables and the delta code generation as discussed in
Section 6. There is one ambiguity: In Lines 5a and 5b,
both the first and the last schema version are mate-
rialized so that read operations on the middle schema
version are either propagated to the first one (Line 5a)
or to the last one (Line 5b). Since read operations are
propagated exclusively to one side, there is no need to
maintain auxiliary tables for both SMOs. In a specific
scenario the decision depends on the cost model itself.

16 Kai Herrmann et al.

Ta
b

le
 v

er
si

o
n

 s
ta

te
s

SM
O

 s
ta

te
s

Source TargetSMO

Table
Versions

Auxiliary

Table
Versions

Legend: Access source Access target

read

write

𝛾𝑠𝑟𝑐
𝛾𝑡𝑟𝑔 𝛾𝑠𝑟𝑐

𝛾𝑡𝑟𝑔

Table
Versions

Table
Versions

Table
Versions

Table
Versions

Auxiliary

R
e

d
u

n
d

an
t

V
ir

tu
al

iz
e

d
M

at
e

ri
al

iz
ed

Table
Version

Data

Table
Version

M
at

e
ri

al
iz

e
d

(a) Table version states.

Ta
b

le
 v

er
si

o
n

 s
ta

te
s

SM
O

 s
ta

te
s

Source TargetSMO

Table
Versions

Auxiliary

Table
Versions

Legend: Access source Access target

read

write

𝛾𝑠𝑟𝑐
𝛾𝑡𝑟𝑔 𝛾𝑠𝑟𝑐

𝛾𝑡𝑟𝑔

Table
Versions

Table
Versions

Table
Versions

Table
Versions

Auxiliary

R
e

d
u

n
d

an
t

V
ir

tu
al

iz
e

d
M

at
e

ri
al

iz
ed

Table
Version

Data

Table
Version

M
at

e
ri

al
iz

e
d

(b) SMO states.

Schema Version 𝑁 Schema Version 𝑁 + 1

W
it

h
o

u
t

A
u

xi
lia

ry
W

it
h

A
u

xi
lia

ry

A
cc

e
ss

 p
at

te
rn

Access to …

𝑎𝑥 + 𝑏

𝑎𝑥 + 𝑏

𝑎𝑥 + 𝑏

𝑎𝑥 + 𝑏

w
rite

re
ad

W
it

h
o

u
t

A
u

xi
lia

ry
W

it
h

A
u

xi
lia

ry

Access
pattern

Access to …

𝑎𝑥 + 𝑏

𝑎𝑥 + 𝑏

𝑎𝑥 + 𝑏

𝑎𝑥 + 𝑏

Source Target

read
write

(c) Cost model for access patterns.

Fig. 11: Access patterns for different materialization states.

In Figure 11, we analyze the different possible ac-
cess patterns determined by the materialization states
of the table versions. Figure 11(a) shows that a single
table version can be either materialized or not. The ma-
terialization states of the table versions determine the
materialization states of the SMOs, as shown in Fig-
ure 11(b). If both the source and the target table version
are materialized, the SMO is called redundant and no
auxiliary tables are needed—no information will be lost
anyhow. Merely write operations need to be propagated
through redundant SMOs to ensure global consistency
among all table versions. If the data is stored only at the
source side, the SMO is called virtualized. Then, read-
/write operations on the target side are answered by
accessing both the source table versions and the auxil-
iary tables. Read operations on the source side are never
propagated through the virtualized SMO. Merely write
operations are propagated to the target side as well,
however, they will not affect the auxiliary tables of the
SMO. Please note that the source table versions are
not necessarily materialized, but could be provided vir-
tually by another neighboring SMO. For a materialized
SMO, the same patterns apply vice versa.

Learned cost model: The analysis showed that
the costs for subsequent SMOs are the linear combi-
nation of the single SMOs—the query execution time
grows monotonously in chains of SMOs and scales lin-
early with the number of tuples. We now condense this
knowledge into a cost model to estimate the costs for
executing a given operation on a given table version
with a given materialization schema. These costs are
mainly determined by the data access pattern and the
involved auxiliary tables. Summarizing the possible ac-
cess patterns from Figure 11(b), we see that there are
four different cases as shown in Figure 11(c): (1) for-
wards without auxiliary tables, (2) backwards without
auxiliary tables, (3) forwards with auxiliary tables, and
(4) backwards with auxiliary tables. For each case, we

learn a function of the form aSMO
op x + bSMO

op for each
combination of an SMO and an operation, with x be-
ing the size of the table in bytes. In order to learn the
cost model’s parameters, we create exemplary scenar-
ios with one SMO respectively and a growing number of
synthetic tuples as in the previous measurements. We
then measure the propagation overhead and use linear
regression to learn the parameters a and b. Further, we
learn a linear cost model for reading and writing any
materialized table version locally in the same manner.

The cost function C(t,M, op) returns the estimated
costs for executing the operation op on the table ver-
sion t with a given set of materialized table versionsM.
We estimate the costs in two steps. First, we derive the
SMOs’ materialization states from the given set of ma-
terialized table versionsM. This step contains a nested
optimization problem: for each table version, we deter-
mine the cost-wise closest materialized table versions.
Since the cost function is monotone w.r.t. the length
of the propagation path, we can use the Dijkstra Al-
gorithm to find the cheapest data access path for each
single table version, so there is no cyclic dependency
between the shortest path search and the overall cost
estimation. Second, we estimate and sum up the costs
for each operation op on each table version t weighted
according to the workload WL(t, op). Read operations
are directed to materialized table versions on the cheap-
est path. To prevent information loss, write operations
are propagated through the whole schema versions cat-
alog since auxiliary tables might be affected anywhere.

In summary, we used the detailed analysis of the
data access propagation to define a cost model that
precisely estimates the costs for accessing data with a
given materialization with an error of less than 10 %
for short evolutions, as we will show in the evaluation
(Section 8.4). Most importantly, the learned cost model
estimates the costs orders of magnitude faster than an
actual measurement on a physically migrated database.

Multi-Schema-Version Data Management 17

7.3 Search Space

To find the best materialization, we have to know the
whole search space in the first place. Intuitively, ev-
ery single table version in the evolution history can be
either materialized or not, which yields 2|T V| possible
materializations—however, not all of these materializa-
tions are valid. When, e.g., not a single table version is
materialized, then the data will be lost.

A valid materialization ensures that each and ev-
ery table version t ∈ T V can propagate its data access
to materialized table versions. The respective table ver-
sion t is called covered then. A table version t ∈ T V
is covered by a materializationM, so cov(t,M) holds,
when there exists a hyper path through the schema ver-
sions catalog that ends at materialized table versions.
It can be a hyper path, because SMOs with two source
or two target tables may distribute the data to both of
them, so they both need to be covered.

cov(t,M) ≡ t ∈M∨

 ∨
e∈E(t)

 ∧
t′∈N (e,t)

cov(t′)

 (39)

This ensures that the data of t is stored at least once.
A materialization M is valid when all table versions
are covered. The set of all valid materialization states
is defined as:

MAT S ≡ {M|M ⊆ T V ∧ ∀t∈T V cov(t,M)} (40)

The advisor may only choose those materializations
that meet the given space threshold T :

MAT S(T) ≡ {M|M ∈MAT S ∧ S(M) ≤ T } (41)

This resulting search space can grow exponentially
with the number of table versions, which is determined
by the catalog’s graph structure. In an MSVDB with N
created table versions, which are never evolved, there is
only one valid materialization with all tables. If all N
table versions are evolved with one SMO, we have N
independent evolutions and |T V| = 2N table versions.
For each of the N independent evolutions, the data can
be persisted in the source, or in the target, or in both
table versions, which allows 3N materializations in to-
tal. Further, a long evolution with M SMOs that e.g.
add columns to one table, facilitate 2M+1 − 1 possible
materializations, as any non-empty subset of all table
versions can be materialized. Hence, both multiple in-
dependent evolutions as well as sequences of dependent
evolutions cause an exponential search space size. To
provide a generally applicable advisor, we tailor the
optimization algorithm to a potentially exponentially
large search space in the next subsection.

7.4 Optimization Algorithm

Following the definition ofMAT S, there are 59 possi-
ble materializations for the six table versions in TasKy,
and there are up to 1× 1061 possibilities for the 203
table versions in the Wikimedia Benchmark [9]. This
makes it impracticable to enumerate the whole search
space. Instead, we approximate a good solution. Unfor-
tunately, there is no reliable way to use the presented
cost function as a heuristic to decide whether a specific
table version should be materialized or not. The cost
function is only defined globally for a complete mate-
rialization and cannot assign local costs for materializ-
ing one specific table version. Since read operations are
propagated to the cost-wise closest materialized table
version, the cost function contains a nested optimiza-
tion problem of finding the best propagation path for
each table version.

Let the costs for not materializing a specific ta-
ble version t be very high because data is propagated
through an expensive neighboring SMO. These costs
may be reduced to almost zero if we merely material-
ize another table version t′ that was, e.g., created by
renaming a column in table version t, so the costs for
locally materializing single table versions are not inde-
pendent from each other. Therefore, the optimizer’s ob-
jective is to solve a bi-level optimization problem with
a local optimization of the shortest access paths and a
global minimization of the aggregated local costs [11].

Further, when enumerating the search space by step-
wise extensions of the materialization with newly ma-
terialized table versions, the results of the cost function
are not monotone. LetM1 andM2 be two different
materializations fromMAT S. We can neither assume
that C(t,M1, op) ≤ C(t,M1∪M2, op) holds nor can we
assume C(t,M1, op) ≥ C(t,M1∪M2, op). As the work-
load mixes read and write operations, any additionally
materialized table version can either increase the over-
all costs as writes become more expensive or costs can
be reduced as reading requires less propagation.

In summary, the global cost function and the non-
monotone behavior of extending materializations pro-
hibit to divide the optimization problem into smaller
subproblems. Hence, dynamic programming algorithms
are not an option. Also, greedy algorithms return solu-
tions that are far from optimal as we will see in the
evaluation. Evolutionary optimization algorithms
are currently the best approach for such problems [11].
They maintain a population of the currently best solu-
tions and randomly evolve them by small manipulations
but also by more significant mutations [4]. Following
Darwin’s Law, only the best solutions survive and are
evolved further to continuously improve the solutions.

18 Kai Herrmann et al.

The evolutionary optimization algorithm creates an
initial population with non-redundant materializa-
tion of the youngest and oldest table versions, partly re-
dundant materializations with greedily chosen schema
versions, as well as a fully redundant materialization.
As evolution steps, we use fine-grained fuzzy modifi-
cations that move, copy, or merge the materialization
of a table version through a neighboring SMO to/with
the next table versions. As coarse-grained mutations,
we randomly select table versions and change their ma-
terialization state. Our cost function efficiently esti-
mates the costs for a given materialization; the evolu-
tionary optimization algorithm removes those material-
izations with the highest estimated costs from our pop-
ulation and continues the optimization until it reaches a
given maximum number of considered materializations
or does not see any improvement for a certain time.

Summary: InVerDa’s advisor optimizes the ma-
terialization using an evolutionary algorithm to handle
the non-monotone cost function. It relies on an individ-
ually learned cost function to quickly evaluate potential
materializations. In the evaluation, we will show that
this evolutionary algorithm finds the optimal solution
for small examples such as our TasKy example and that
it achieves significant improvements for long evolution
histories such as the evolution of Wikimedia.

8 Evaluation

InVerDa allows applications to continuously access all
co-existing schema versions, while developers can fo-
cus on the continuous implementation of the software
without caring about former versions. The DBA can
change the materialization with the click of a button
and especially without restricting the availability of the
co-existing schema versions or invalidating the develop-
ers’ code. We have formally shown that all schema ver-
sions in an MSVDB behave like regular single-schema
databases and developers and DBAs can safely use the
provided features without risking inconsistencies or in-
formation loss. Now, we evaluate our prototypical im-
plementation. InVerDa automatically generates the
delta code based on the discussed Datalog rules; we an-
alyze the gain in simplicity and robustness of database
development (Section 8.1) and measure the overhead
of InVerDa’s delta code (Section 8.2) in comparison
to a handwritten SQL implementation of co-existing
schema versions. Further, we evaluate the optimization
potential of InVerDa’s flexible materialization (Sec-
tion 8.3) and empirically analyze InVerDa’s advisor
focusing both on the cost model (Section 8.4) and on
the actual optimization algorithm (Section 8.5).

InVerDa Initially Evolution Migration

LOC 1 3 1
Stmts 1 3 1
Chars 54 152 19

SQL (Ratio)
LOC 1 (×1.00) 359 (×119.67) 182 (×182.00)
Stmts 1 (×1.00) 148 (×49.33) 79 (×79.00)
Chars 54 (×1.00) 9477 (×62.35) 4229 (×222.58)

Table 2: Ratios between SQL and InVerDa delta code.

Setup: We evaluate two different scenarios: (1) our
small and comprehensive TasKy example and (2) 171
versions of Wikimedia [9] as a real-world scenario. We
measure single thread performance in a PostgreSQL 9.4
database on a Core i7 machine with 2,4GHz and 8GB.
We load Wikimedia with Akan Wiki in the 109th ver-
sion v16524 with 14 359 pages and 536 283 links.

8.1 Simplicity

TasKy: BiDEL releases developers from the expensive
and error-prone manual implementation of delta code.
We implement the evolution from TasKy to TasKy2 with
handwritten and hand-optimized SQL and compare this
code to the semantically equivalent BiDEL statements.
We manually implement (1) creating the initial TasKy
schema, (2) creating the new co-existing schema ver-
sion TasKy2 with the respective views and triggers, and
(3) migrating the physical materialization to TasKy2 and
adapting all existing delta code. This handwritten SQL
code is much longer and much more complex than doing
the same with BiDEL. Table 2 shows the lines of code
(LOC) required with SQL and BiDEL, respectively, as
well as the ratio between these values. For comparison,
we include the number of statements and number of
characters (consecutive white-space characters counted
as one) to get an objective picture. Obviously, creating
the initial schema in the database is equally complex
for both approaches. However, evolving it to the new
schema version TasKy2 and migrating the data accord-
ingly requires 359 and 182 lines of SQL code, respec-
tively. We can express the same with 3 and 1 lines with
BiDEL, respectively. Moreover, the SQL code is also
more complex, as indicated by the average number of
characters per statement. BiDEL is working exclusively
on the visible schema versions. It is literally impossible
to corrupt the data with BiDEL, since we guarantee
that existing schema versions are not affected by evolu-
tions. With handwritten SQL, developers also have to
manage auxiliary tables, triggers, etc.—manually work-
ing on multiple technical levels also increases the code’s
complexity and is error-prone and expensive.

Multi-Schema-Version Data Management 19

SMO Nof SMO Nof
CREATE TABLE 42 ADD COLUMN 93
DROP TABLE 10 DROP COLUMN 20
RENAME TABLE 1 RENAME COLUMN 37
JOIN 0 DECOMPOSE 4
MERGE 2 PARTITION 0

Table 3: SMOs of Wikimedia schema evolution.

Wikimedia: Curino et al. defined a database evo-
lution benchmark with 171 schema versions of Wiki-
media [9]. A practically complete DEL should allow us
to model this evolution history of Wikimedia only with
the given SMOs. In fact, BiDEL is capable of doing
this with 209 SMOs. Table 3 shows the number of occur-
rences of each SMO (Nof) in this evolution. We account
the dominance of simple SMOs like adding and remov-
ing both columns and tables mainly to the restricted
database evolution support current DBMSes provide.
Still, there are more complex evolutions requiring the
other SMOs, which confirms the need for more sophisti-
cated database evolution support. In general, the evolu-
tion with BiDEL is very similar to the same evolution
modeled with PRISM as used in the original bench-
mark [9]—however, the sets of SMOs differ slightly. For
instance, the evolution from version v06696 to v06710
takes 31 BiDEL SMOs instead of 92 PRISM SMOs due
BiDEL’s powerful DECOMPOSE SMO. In sum, BiDEL is
relationally and practically complete and it is orders of
magnitude shorter and more robust than common SQL.

8.2 Overhead of Generated Delta Code

We rely on the database optimizer to find a fast ex-
ecution plan for InVerDa-generated delta code. We
will now show that the overhead compared to hand-
optimized SQL is reasonably small.

TasKy: As before, we use the handwritten SQL for
the evolution from TasKy to TasKy2 and compare its
performance to the semantically equivalent evolution
with BiDEL. Both TasKy and TasKy2 co-exist and the
physical materialization will be migrated from TasKy to
TasKy2 eventually. The automated delta code genera-
tion does not only eliminate the error-prone and expen-
sive manual implementation, but it is also reasonably
fast. Creating the initial schema version and making
it available as a new schema version for applications
took 154 ms. The evolution to TasKy2 with two SMOs
requires 230 ms for both the generation and execution
of the evolution script. The same took 177 ms for Do!.

In Figure 12, we feed the TasKy and TasKy2 schema
versions with 100 000 tasks and compare the perfor-
mance of the generated delta code to the handwrit-

read
 on TasKy

read
 on TasKy2

100 writes
 on TasKy

100 writes
 on TasKy2

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0
50

0
10

00
15

00

SQL, initial materialization
BiDEL, initial materialization
SQL, evolved materialization
BiDEL, evolved materialization

Fig. 12: Overhead of generated code.

workload mix over time: Do! / TasKy2

ac
um

m
ul

at
ed

 o
ve

rh
ea

d
in

 s
ec

0
10

0
30

0
50

0

100%/0% 50%/50% 0%/100%

SQL, Do! mat.
SQL, TasKy mat.
SQL, TasKy2 mat.
BiDEL, flexible mat.

Fig. 13: Benefit of flexible materialization.

ten one. The charts show the query execution time
(1) for reading the TasKy schema, (2) for reading the
TasKy2 schema, (3) for inserting 100 tuples to TasKy,
and (4) for inserting 100 tuples to TasKy2. We evaluate
both the initial materialization according to TasKy and
the evolved materialization according to TasKy2. The
generated delta code causes very little overhead (up
to 4 %). Keeping in mind the difference in length and
complexity of the code (182 x LOC for the migration),
an overhead of 4 % on average is more than reason-
able for most users. Further, the materialization sig-
nificantly influences the actual performance. Reading
the data in the materialized version is up to twice as
fast as accessing it from the respective other version
in this scenario. For inserting new tasks, the overhead
is just as small—interestingly, the evolved materializa-
tion is always faster for writing because the initial ma-
terialization requires an additional auxiliary table for
the foreign key relationship. In sum, the price for agile
database evolution with automated delta code genera-
tion is only a quite small overhead.

8.3 Benefit of Flexible Materialization

Although InVerDa introduces a slight overhead, the
data independence provides large performance benefits.
Adapting the physical materialization to the current

20 Kai Herrmann et al.

[P,DC] [P] [] [D] [D,RC]

Do!
TasKy
TasKy2

Materialization

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0
20

00
40

00
60

00
80

00

=Do! =TasKy =TasKy2

(a) Materializations for TasKy mix.

[P,DC] [P] [] [D] [D,RC]

Do!
TasKy
TasKy2

Materialization

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0
20

00
40

00
60

00

=Do! =TasKy =TasKy2

(b) Materializations for TasKy read.

[P,DC] [P] [] [D] [D,RC]

Do!
TasKy
TasKy2

Materialization

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0
10

00
20

00
30

00
40

00

=Do! =TasKy =TasKy2

(c) Materializations for TasKy write.

Fig. 14: Different workloads on all non-redundant materialization of TasKy.

workload is hard with handwritten SQL, but almost for
free with InVerDa (1 LOC instead of 182 in our TasKy
example). Let us assume a development team spares
the effort for rewriting delta code and works with a
fixed materialization. Then, InVerDa easily increases
the overall performance, as we will show using the TasKy
example and the Wikimedia scenario.

TasKy (macro benchmark): We use the TasKy ex-
ample with 100 000 tasks. Figure 13 shows the accumu-
lated propagation overhead for handwritten SQL with
three different but fixed materializations (according to
TasKy, TasKy2, and Do!) and for InVerDa with an adap-
tive materialization. Assume, over time the workload
changes from 100 % accesses to Do! (and 0 % to TasKy2)
until finally all users access exclusively TasKy2 following
the Technology Adoption Life Cycle. We split the adop-
tion into 1000 time slices; within each we run 1000 state-
ments. The workload mixes 50 % reads, 20 % inserts,
20 % updates, and 10 % deletes. In such a scenario,
InVerDa’s flexible materialization naturally starts at
Do!, but changes to TasKy after several users started us-
ing TasKy2, and finally to TasKy2 when the majority of
users also did so. As soon as an evolved materializa-
tion serves the current workload better, we instruct In-
VerDa to change the materialization. As can be seen,
InVerDa facilitates significantly better performance—
including migration cost—than a fixed materialization.

TasKy (micro benchmark): The DBA can easily
choose between multiple materializations—Figure 14
shows the data access performance on the three schema
versions for each of the five non-redundant materializa-
tions of our TasKy example. The materialization schemas
are represented as the lists of SMOs that are mate-
rialized, which we abbreviate: DC (DROP COLUMN), RC
(RENAME COLUMN), D (DECOMPOSE), and P (PARTITION), so
[D,RC] corresponds to schema version TasKy2. The ini-
tial materialization is in the middle, while the materi-
alization according to Do! is on the very left. The work-
load mixes 50 % reads, 20 % inserts, 20 % updates, 10 %
deletes in Figure 14(a), 100 % reads in Figure 14(b), and
100 % inserts in Figure 14(c) on the respective schema

version. Again, the measurements show that accesses to
each schema version are fastest when its table versions
are materialized, i.e., when the physical materialization
fits the accessed schema version. For instance, writing
to TasKy2 is 49 times faster when the physical materi-
alization matches TasKy2 instead of Do!. However, there
are differences in the actual overhead, so the globally
optimal materialization depends on the workload dis-
tribution among the schema version.

Wikimedia:We nowmeasure the read performance
in Wikimedia for the template queries from [9] both
in schema version v04619 (28th version) and v25635
(171th version). The chosen materializations match ver-
sion v01284 (1st), v16524 (109th), and v25635 (171th)
respectively. In Figure 15, a large performance differ-
ence of up to two orders of magnitude is visible, so
there is a huge optimization potential. We attribute
the asymmetry to the dominance of ADD COLUMN SMOs,
which need an expensive join with an auxiliary table to
propagate data forwards, but only a comparable cheap
projection to propagate data backwards.

8.4 Cost Model

We evaluate all evolutions with two SMOs as well as
the TasKy example to analyze the learned cost model.

Evolutions with two SMOs:We consider all evo-
lutions with two subsequent SMOs. Thereby, the first
SMO always creates a table version R(a, b, c), which
is further evolved by the second SMO, so we end up

v01284 v16524 v25636

Queries on v04619

Materialized Version

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0.
0

1.
0

2.
0

v01284 v16524 v25636

Queries on v25635

Materialized Version

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

0
20

0
40

0
60

0

2.4

Fig. 15: Optimization potential for Wikimedia.

Multi-Schema-Version Data Management 21

●
●

●●●●
AC DC RC J D M P

−
40

−
20

0
20

40

Read on ADD_COLUMN

E
rr

or
 [%

]

Read

●

●

●

●

●●
●

AC DC RC J D M P
−

40
−

20
0

20
40

Insert on ADD_COLUMN

E
rr

or
 [%

]

Insert

●

●●

●

●
●

●

●
●

●

●

AC DC RC J D M P

−
40

−
20

0
20

40

Update on ADD_COLUMN

E
rr

or
 [%

]

Update

●

●
●

●● ●
●

●
●

AC DC RC J D M P

−
40

−
20

0
20

40

Delete on ADD_COLUMN

E
rr

or
 [%

]

Delete

AC DC RC J D M P

−
40

−
20

0
20

40

Read on DROP_COLUMN

E
rr

or
 [%

]

Read

●

●●

●

●

AC DC RC J D M P

−
40

−
20

0
20

40

Insert on DROP_COLUMN

E
rr

or
 [%

]

Insert

●

●●

●

●●

●

●●

●
● ●

AC DC RC J D M P

−
40

−
20

0
20

40

Update on DROP_COLUMN

E
rr

or
 [%

]

Update

●●
●
●

●

●

●

●

●

AC DC RC J D M P

−
40

−
20

0
20

40

Delete on DROP_COLUMN

E
rr

or
 [%

]

Delete

●●●●

●
●●

●
●●

●●●
●

●●

●

AC DC RC J D M P

−
40

−
20

0
20

40

Read on RENAME_COLUMN

E
rr

or
 [%

]

Read

●

●

●

●

●
●●

●

●

●

●

AC DC RC J D M P

−
40

−
20

0
20

40

Insert on RENAME_COLUMN

E
rr

or
 [%

]

Insert

●

●

●

●

●●
●
● ●●

●

●

●

●

●

●

AC DC RC J D M P

−
40

−
20

0
20

40

Update on RENAME_COLUMN

E
rr

or
 [%

]

Update

●

●

●

●

●● ●●
●
●

●

●

●

●

●

AC DC RC J D M P

−
40

−
20

0
20

40

Delete on RENAME_COLUMN

E
rr

or
 [%

]

Delete

●
●

AC DC RC J D M P

−
40

−
20

0
20

40

Read on JOIN

E
rr

or
 [%

]

Read

●

●
●●
●

●●
●
●
●

●

● ●

AC DC RC J D M P

−
40

−
20

0
20

40

Insert on JOIN

E
rr

or
 [%

]

Insert

●

●

●

●

●

AC DC RC J D M P

−
40

−
20

0
20

40

Update on JOIN

E
rr

or
 [%

]

Update

●
●

●

●

●
●

●
●

●

●
●

●●

●

AC DC RC J D M P

−
40

−
20

0
20

40

Delete on JOIN

E
rr

or
 [%

]

Delete

Fig. 16: Error of the cost estimation for two subsequent SMOs, with the second being an ADD COLUMN SMO.

with three schema versions. We measure the costs for
accessing the third schema version with the first being
materialized and compare this to the estimated costs.
Figure 16 shows the estimation error, which expresses
the percentage of misestimation compared to the ac-
tually measured costs. We exemplarily show the esti-
mation error for all scenarios that have an ADD COLUMN
as second SMO; the first SMO is shown at the x-axis.
The deviation covers 50 different table sizes from 5000
to 100 000 tuples. As can be seen, the mean error is
very low—in the range of 5 %—which is a great ba-
sis for the optimizer. The deviation is close to zero for
writing and roughly 10 % for reading, which is still rea-
sonably precise. As comparison, typical estimation er-
rors of common query optimizers are two to ten times
higher and still allow finding good plans [27]. The esti-
mation error for the remaining combinations is in the
same range [13], which allows the advisor to safely rely
on the cost model providing estimates in no time.

TasKy: The TasKy scenario allows 59 non-, partially,
and fully redundant materializations. In Figure 17(a)
we see the estimated and the measured costs for reading
the Do! schema versions for all materializations, sorted
by the measured costs. The cost model estimated the
actual costs for reading the Do! schema version with a
mean estimation error of 14 % and the order of the es-
timated costs is equal to the order of their actual costs,
which allows the advisor to make very precise decisions.
Figure 17(b) confirms these finding for a workload that
mixes read and write operations on all three schema
versions. The deviation is 24.2 % but the general order
of the materializations is still estimated well. Thus, a
materialization chosen with the help of the cost model,
is very likely to perform well in practice.

Since the optimization algorithm covers a very large
search space, the time for calculating the costs of each
specific materialization must be as short as possible.
We measure the time required for the cost model-based
estimation in comparison to physically migrating the
database to a new materialization and measuring the
actual costs for the given workload and the given ma-
terialization. We assume the TasKy version with 100 000

entries to be materialized. To get the costs with Do! be-
ing materialized, we need 8.21 s to change the material-
ization and another 33.32 s to measure the mean execu-
tion time for a read/write workload mix with 12 state-
ments (read, insert, update, delete on all three schema
versions respectively) each being executed five times on
all schema versions. This sums up to 41.53 s for the
whole example. In contrast, the cost model returns the
estimated costs after 132.56 µs, which is a speedup of
factor 2.5× 105. This speedup further increases with
growing table sizes, since the physical migration and
analysis can easily last hours or days, while our cost
model is independent from the table sizes. The cost
model merely requires an initial effort to learn the pa-
rameters for the actual system. For this purpose, we cre-
ate exemplary tables with a growing number of tuples—
the cost model used in the evaluation was trained with
1000 to 100 000 tuples in 50 steps, which took less than
ten minutes. In conclusion, the cost model proved to
be sufficiently precise and fast to allow the advisor to
make informed decisions.

8.5 Optimizer

The objective of the optimizer is to find the best pos-
sible materialization for a given workload on a given
system. We run the advisor both in the TasKy scenario
and in the Wikimedia scenario to evaluate its feasibility.

0 10 20 30 40 50 60

0
10

30
50

70

Materializations

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●

●●
●

●

Measured costs
Estimated costs

(a) Error of reading in Do!.

0 10 20 30 40 50 60

0
20

60
10

0

Materializations

Q
ue

ry
 e

xe
cu

tio
n

tim
e

[m
s]

●●●●●●●●
●●●●●

●
●
●
●
●
●●●

●
●
●
●

●●

●
●

●
●
●
●

●●

●

●
●●

●

●

●●●

●●●

●

●●

●

●

●

●●
●

●

●

●

●

Measured costs
Estimated costs

(b) Error of workload mix.

Fig. 17: Estimation errors in the TasKy example.

22 Kai Herrmann et al.

Do! TasKy TasKy2 Read Only Mix Write Only
Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

79
.6

 m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

80
 m

s
Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

11
7

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

32
8

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

24
9

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

18
3

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

43
5

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

34
5

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

27
8

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

34
5

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

28
5

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

24
1

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

43
6

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

36
3

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

33
0

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

73
1

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

53
4

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

39
5

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0
74

8
m

s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

57
0

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

45
4

m
s

Worst materialization

Best materialization

Best non-redundant
InVerDa’s advisor

Runtime for executing workload

ToDo-1 ToDo-0 Author-0

Author-1
Task-1Task-0

Preferred materializations

Must be materialized

One of them should be materialized

Should not be materialized

Best non-redundant
materialization

ToDo-1 ToDo-0 Author-0

Author-1Task-1Task-0

Fig. 18: advisor results for TasKy.

TasKy: The example is small enough to provide in-
sights into the whole search space and a detailed anal-
ysis of the materializations. Figure 18 shows the results
for running InVerDa’s advisor for 21 different work-
loads structured in two dimensions: first, users access
any non-empty subset of the schema versions (rows)
and second, the workload comprises (1) only reading,
(2) a 50:50 mix of reading and writing, or (3) only
writing (columns). For each workload, we depict the
best possible materialization (first bar) that should be
found by the advisor. Since the advisor relies on the
learned cost model, it might happen that the proposed
materialization (second bar) may have slightly higher
costs than the optimum. We further include the best
non-redundant materialization (third bar) to analyze
the benefits of partial redundancy as well as the worst
possible materialization (fourth bar) for comparison.
We deep dive into the best non- and partial redun-
dant materialization and highlight the table versions
that should be materialized, as explained in the key of
Figure 18.

The measurements show that there is a significant
optimization potential, since the worst materializa-
tion is always way more expensive than the optimum.
For read operations the optimization potential is up to
a factor of 5; for write operations the worst material-
ization can be up to 30 times more expensive than the
best one. Fortunately, InVerDa’s advisor always pro-
poses a materialization that is almost as fast as the best
materialization—it is never more than 10 % off, hence
the cost model works for the given scenarios. The
cost model-based optimization covers orders of mag-
nitude more materializations in the same time, which
compensates for the deviation in most scenarios.

Further, the best non-redundant materialization is
up to a factor of 10 more expensive than the proposed
partially redundant materializations. Contradicting a
DBAs intuition, write operations can benefit from par-
tial redundancy as well, since the number of auxiliary
tables that need to be updated is reduced. This under-
lines that simply using the naïve materialization is
often significantly more expensive than a partially
redundant materialization proposed by the advisor.

Multi-Schema-Version Data Management 23

Let us analyze the best materializations in detail
starting with workloads on single schema versions (first
three rows of Figure 18). When reading, we obviously
materialize the accessed table versions to answer all
queries locally. There is no need for redundancy since
other table versions are not accessed either way. For
writing, the best materializations are not that obvi-
ous, which supports the need for an automated ad-
visor. The best non-redundant materialization always
materializes the initial TasKy table version. The rea-
son becomes clearer, when zooming into the involved
SMOs. The propagation of write operations from the
Do! schema is cheap since the virtualized PARTITION SMO
requires less auxiliary tables than the materialized one—
and the virtualized ADD COLUMN SMO even works with-
out any auxiliary table. Therefore, less write operations
on auxiliary tables need to be computed and executed.
The same applies to the propagation of write operations
from the TasKy2 schema version. The best partially re-
dundant materializations reduce the number of write
operations on data and auxiliary tables even further.

For the workloads on multiple schema versions (last
four rows of Figure 18), we see similar patterns. Read
accesses perform best when all the accessed table ver-
sions are materialized. When space is bound to a non-
redundant materialization, read accesses perform best,
when the data is materialized according to the TasKy2
schema version—at least when TasKy2 is accessed, oth-
erwise the initial TasKy schema is materialized. This in-
dicates that the propagation of read operations from
TasKy to Do! and from TasKy2 to TasKy is more expensive
than in the opposite directions. Those non-redundant
materializations that perform best for writing always
materialize the initial Task-0 table version, since the
virtualized DROP COLUMN, PARTITION, and DECOMPOSE SMOs
require the update of less auxiliary tables. The partially
redundant materializations always contain the initial
Task-0 table version as well; however, they also materi-
alize the Author-0 table version, which simplifies updat-
ing auxiliary tables. Especially the partially redundant
materializations for the mixed workloads include other
tables as well, which are often not intuitively obvious
since the underlying access propagation is not visible
from a developer perspective. The proposed partially
redundant materializations are significantly better than
the naïve non-redundant materializations. This again
emphasizes the need for an advisor. In summary, we
confirmed that InVerDa’s advisor can achieve signif-
icant performance improvements that would be hard
to achieve by a human DBA, since the performance of
partially redundant materializations is usually hard to
estimate manually.

0 31 67 108 154 200 246 292 338 384

Steps of evolutionary optimization

E
st

im
at

ed
 c

os
ts

 [s
ec

]

0.
0

1.
0

2.
0 ++++++

+
++
+
++++++++++++++++++++++

+
+++++++++++++++++++

+

++++

++++++

+

+

+

+++++

+

+

+

+

+++++++++++++++++
++
++++

+

++

+

+

+++
+
+
++
+
++++++++++++++

+
+++++++++++++++

+
++++++++++++++++++++++++++++

+
+++

+

|

New member
Best member
Measured costs

Fig. 19: Advisor for Wikimedia.

Wikimedia: We confirm our findings using the re-
alistic scenario of Wikimedia. The 203 table versions
allow a total of 1× 1061 materializations. Figure 19
shows a run of InVerDa’s advisor: After 828 ms with
429 evolved members in the population, there was no
significant improvement over the last 30 steps, so the
advisor returned the so far best materialization. The
figure depicts the estimated costs of the currently best
materialization as well as the most recently added ma-
terialization in the population for each step. Further,
it shows the measured costs for both the best initial
materialization and the finally proposed one, which im-
proved from 2.35 s to 0.26 s. The workload mixes read
and write operations on schema version v04619 (28th
version) and v25635 (171th version).

We do not know the global optimum, but we can
safely say that InVerDa’s advisor achieved an esti-
mated speedup of a factor of 10 compared to the naïve
initial materializations. We confirmed this speedup by
physically applying the advisor’s proposal. Besides sev-
eral small improvements, there are few steps that signif-
icantly improved the overall performance by introduc-
ing redundancy to initially non-redundant members of
the population. In other scenarios, it might be promis-
ing to search longer—however, the Wikimedia evolu-
tion mainly uses ADD COLUMN SMOs, which are material-
ized already by the most promising initial population
members. The actual optimization potential is merely
to create partial redundancy along the evolution espe-
cially at those few SMOs that restructure existing table
versions or drop columns.

Summary: We have shown that BiDEL supports
robust and agile database evolution and InVerDa gen-
erates delta code with a reasonable overhead. The guar-
anteed data independence facilitates performance im-
provements that can be easily exploited by the advisor.
The cost model estimates the costs for a given workload
very fast and feasibly well to allow the advisor informed
decisions and to release DBAs from diving into the char-
acteristics of data access propagation in MSVDBs.

24 Kai Herrmann et al.

9 Related Work

BiDEL and InVerDa are not the first attempts to
support schema evolution. For practitioners, valuable
tools such as Liquibase (www.liquibase.org), Rails Mi-
grations (guides.rubyonrails.org/migrations.html), and
DBmaestro Teamwork (www.dbmaestro.com) help to
manage schema versions outside the DBMS and gener-
ate SQL scripts for migrating to a new version. They
mitigate data migration costs, but focus on schema evo-
lution with very limited support for co-existing schemas.

Both the database evolution [24,21] and co-existing
schema versions [23] are well recognized in database re-
search. Table 4 classifies related work and highlights the
contributions of BiDEL and InVerDa. For database
evolution, existing approaches increase comfort and ef-
ficiency, for instance by defining a schema evolution
aware query language [22] or by providing a general
framework to describe database evolution in the con-
text of evolving applications [10]. Meta Model Man-
agement helps handling multiple schema versions “after
the fact” by allowing to match, diff, and merge existing
schemas to derive mappings between these schemas [5].
The derived mappings are expressed with relational al-
gebra and can be used to rewrite old queries or to mi-
grate data forwards—not backwards, though. In con-
trast, the inspiring works PRISM [8] and PRISM++ [7]
propose to let the developer specify the evolution with
SMOs “before the fact” to a derived new schema ver-
sion. PRISM/PRISM++ are intuitive and declarative
DELs that implicitly allow migrating data forwards and
rewriting queries from old to new schema versions. As
an extension, PRIMA [20] takes a first step towards
co-existing schema versions by propagating write opera-
tions forwards and read operations backwards along the
schema version history, but not vice versa. InVerDa
also covers write operations on those former schema
versions. BiDEL slightly extends the PRISM DEL to
be relationally complete [14] and to be bidirectional
at the same time [15]. According to our evaluation in
Section 8.1, BiDEL SMOs are as compact as PRISM
SMOs and orders of magnitude shorter than SQL.

These works provide a great basis for database evo-
lution and InVerDa builds upon them to add data
independence and MSVDB support, which basi-
cally requires bidirectional transformations [25]. Par-
ticularly, symmetric relational lenses facilitate read and
write accesses along a bidirectional mapping [16], while
auxiliary tables persist the complements to not lose any
data [18]. For InVerDa, we adapt this idea to bidirec-
tional SMOs. There are multiple systems also taking
this step, however, the DELs are usually rather lim-
ited or work on different meta models like data ware-

X supported
7 not supported

SQ
L

M
od

el
M

ng
t

P
R

IS
M

P
R

IM
A

Sc
aD

aV
er

Sy
m

.
L

en
se

s

M
at

.
V

ie
w

s

B
iD

E
L

Database evolution language 7 7 X X X 7 7 X
Relationally complete X X 7 7 7 7 X X
Co-existing schema versions 7 7 7 X 7 X X X
- Forward query rewriting 7 X X X X X 7 X
- Backward query rewriting 7 7 7 7 7 X X X
- Forward migration 7 X X X X X X X
- Backward migration 7 7 7 7 7 X 7 X
Guaranteed data independence 7 7 7 7 7 X 7 X

Table 4: Contribution w.r.t. related work.

houses [3]. The ScaDaVer system [26] allows additive
and subtractive SMOs on the relational model, which
simplifies bidirectionality and hence it is a great start-
ing point towards more powerful DELs. BiDEL also
covers restructuring SMOs and is based on established
DELs [7,14]. To our best knowledge, BiDEL is the first
DEL with SMOs intentionally designed and formally
guaranteed to fulfill the symmetric lens conditions.

The optimization of the physical materialization is
closely related to materialized view selection. Mistry et
al. realize materialized view selection based on multi-
query optimization techniques [19], and Agrawal et al.
tuned a cost model-based approach to be robust and to
scale [1], so it was incorporated into Microsoft’s SQL
server 2000 [2]. While InVerDa’s advisor is inspired
by those systems, its optimization problem has a differ-
ent flavor: in MSVDBs there are no always-materialized
base tables, but auxiliary tables depending on the cho-
sen materialization that determine the performance.
Further, there are efficient algorithms to update ma-
terialized views [12]—InVerDa applies similar tech-
niques to propagate write operations to materialized
table versions incrementally. In a word, there are many
approaches tackling different aspects of MSVDBs as
shown in Table 4. To our best knowledge, InVerDa’s
concepts are the first to facilitate MSVDBs end-to-end.

10 Conclusion

We started out with the goal to make database devel-
opment just as agile as software development. Evolv-
ing a production database without compromising the
data’s correctness is a tough challenge in practice that
accounts for significant costs in software projects. Often
different stakeholders and different subsystems have dif-
ferent evolution speeds, which requires parts of a soft-
ware system to exist in multiple versions at the same
time. DBMSes do not provide co-existing schema ver-
sions these days, so developers end up writing delta
code by hand, which is very expensive and error-prone.

Multi-Schema-Version Data Management 25

To this end, we presented InVerDa, an MSVDB
that facilitates co-existing schema versions in a single
database. New schema versions can be easily created
with our Bidirectional Database Evolution Lan-
guage BiDEL that couples the evolution of both the
schema and the data in intuitive and compact SMOs.
BiDEL is relationally complete, so there is no need
to fall back on SQL. Further, BiDEL is bidirectional
with a materialization-independent mapping semantics,
which allows us to generate delta code in an MSVDB
automatically—according to our evaluation, developers
write orders of magnitude less code with BiDEL com-
pared to traditional SQL. MSVDBs provide full data
independence, hence the DBA can freely move or
replicate the materialization along the schema versions
history. We formally guarantee that each single schema
version behaves like a regular database irrespective of
the chosen materialization.

This opens up a huge space of possible materializa-
tions that can speed up read and write operations by
orders of magnitude. Therefore, we equip DBAs with
a cost model-based advisor to optimize the mate-
rialization for the current workload. The cost model is
individually learned and proved to be precise enough to
gain significant performance improvements.

With MSVDBs, we speed up database development
to the pace of modern agile software development. Plus,
there are even more scenarios where the presented con-
cepts come in handy, e.g., in software product line en-
gineering, in multitenancy application development, in
production-test scenarios, as well as for third-party com-
ponent co-evolution. These scenarios are already fully
realizable with InVerDa or require merely minor ex-
tensions [13]. Further, there are promising future re-
search questions such as zero-downtime migration, ex-
tending BiDEL’s expressiveness, or speeding up data
access propagation by fine-tuning the management of
auxiliary information and by combining and reducing
the data access propagation through chains of SMOs.

Acknowledgements This work is partly funded by the Ger-
man Research Foundation (DFG) within the RoSI RTG.

References

1. Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya.
Automated Selection of Materialized Views and Indexes in
SQL Databases. In VLDB, 2000.

2. Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya.
Materialized view and index selection tool for Microsoft
SQL server 2000. ACM SIGMOD Record, 30(2):608, 2001.

3. Meenakshi Arora and Anjana Gosain. Schema Evolution
for Data Warehouse: A Survey. IJCA, 22(5):6–14, 2011.

4. Peter Bentley and David Corne. Creative evolutionary sys-
tems. Morgan Kaufmann, 2002.

5. Philip A. Bernstein and Sergey Melnik. Model management
2.0: manipulating richer mappings. In SIGMOD, 2007.

6. Michael L. Brodie and Jason T. Liu. Keynote: The Power
and Limits of Relational Technology In the Age of Infor-
mation Ecosystems. In OTM, 2010.

7. Carlo Curino, Hyun J. Moon, Alin Deutsch, and Carlo Zan-
iolo. Automating the database schema evolution process.
VLDB Journal, 22(1):73–98, 2013.

8. Carlo Curino, Hyun J. Moon, and Carlo Zaniolo. Grace-
ful database schema evolution: the PRISM workbench.
PVLDB, 1(1):761–772, 2008.

9. Carlo Curino, Letizia Tanca, Hyun J. Moon, and Carlo
Zaniolo. Schema evolution in wikipedia: toward a web in-
formation system benchmark. In ICEIS, 2008.

10. Eladio Domínguez, Jorge Lloret, Ángel L. Rubio, and
María A. Zapata. MeDEA: A database evolution archi-
tecture with traceability. DKE, 65(3):419–441, 2008.

11. C. A. Floudas, P. M. Pardalos, C. Adjiman, W. R. Esposito,
Z. H. Gümüs, S. T. Harding, J. L. Klepeis, C. A. Meyer,
and C. A. Schweiger. Handbook of Test Problems in Local
and Global Optimization. Nonconvex Optimization and Its
Applications. Springer, 2013.

12. Ashish Gupta and Inderpal Singh. Mumick. Materialized
views: techniques, implementations, and applications. MIT
Press, 1999.

13. Kai Herrmann. Multi-Schema-Version Data Management.
Ph.d. thesis, http://nbn-resolving.de/urn:nbn:de:bsz:14-
qucosa-231946, Technische Universität Dresden, 2017.

14. Kai Herrmann, Hannes Voigt, Andreas Behrend, and Wolf-
gang Lehner. CoDEL – A Relationally Complete Language
for Database Evolution. In ADBIS, 2015.

15. Kai Herrmann, Hannes Voigt, Andreas Behrend, Jonas
Rausch, and Wolfgang Lehner. Living in Parallel Real-
ities: Co-Existing Schema Versions with a Bidirectional
Database Evolution Language. In SIGMOD, 2017.

16. Martin Hofmann, Benjamin Pierce, and Daniel Wagner.
Symmetric lenses. In POPL, 2011.

17. Philip Howard. Data Migration Report, Bloor, 2011.
18. James McKinna. Complements Witness Consistency. In

Bx, 2016.
19. Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ra-

mamritham. Materialized view selection and maintenance
using multi-query optimization. In SIGMOD, 2001.

20. Hyun J. Moon, Carlo Curino, Myungwon Ham, and Carlo
Zaniolo. PRIMA – archiving and querying historical data
with evolving schemas. In SIGMOD, 2009.

21. Erhard Rahm and Philip A. Bernstein. An online bibliogra-
phy on schema evolution. ACM SIGMOD Record, 35(4):30–
31, 2006.

22. John F. Roddick. SQL/SE - A Query Language Extension
for Databases Supporting Schema Evolution. ACM SIG-
MOD Record, 21(2):10–16, 1992.

23. John F. Roddick. A survey of schema versioning issues for
database systems. Information and Software Technology,
37(7):383–393, 1995.

24. Ioannis Skoulis, Panos Vassiliadis, and Apostolos Zarras.
Open-source databases: Within, outside, or beyond
Lehman’s laws of software evolution? In CAiSE, 2014.

25. James F. Terwilliger, Anthony Cleve, and Carlo Curino.
How Clean Is Your Sandbox? In ICMT, 2012.

26. Bob Wall and Rafal Angryk. Minimal data sets vs. synchro-
nized data copies in a schema and data versioning system.
In PIKM, 2011.

27. Wentao Wu, Yun Chi, Hakan Hacígümüş, and Jeffrey F.
Naughton. Towards predicting query execution time for
concurrent and dynamic database workloads. PVLDB,
6(10):925–936, 2013.

