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Calibration of Stochastic Radio Propagation Models
Using Machine Learning

Ramoni Adeogun

Abstract—This letter proposes a machine learning based
method for the calibration of stochastic radio propagation mod-
els. Model calibration is cast as a regression problem involving
mapping of the channel transfer function or impulse response
to the model parameters. A multilayer perceptron is trained
with summary statistics computed from synthetically generated
channel realizations using the model. To calibrate the model, the
trained network is used to estimate the model parameters from
channel statistics obtained from measurements. The performance
of the proposed method is evaluated with propagation graph and
Saleh-Valenzuela models using both simulated data and in-room
channel measurements. Results show accurate estimation of the
parameters of both models.

Index Terms—Calibration, machine learning, propagation
graph, measurements, neural networks, Saleh Valenzuela model

I. INTRODUCTION

There are several applications in wireless communications
where radio channel modelling is important. Channel models
are used for tasks such as design and optimization of commu-
nication systems and evaluation of system performance via
simulations. To this end, several models for characterizing
wireless propagation channels have been developed over the
last several years (see e.g., [1]–[6] and the references therein).
These models can be broadly classified into deterministic, ge-
ometry based stochastic model (GSCM) and non-geometrical
stochastic models (e.g., Turin [7], Saleh-Valenzuela [8] and
Zwick model [9]).

For these models to be useful, they must be calibrated using
real world measurements. Calibration involves estimation of
the underlying parameters of the model. Historically, calibra-
tion of channel models is performed using a two stage method-
ology involving extraction of multipath parameters followed
by model parameter estimation. While these methods have
been used extensively in channel modelling literatures (see
e.g., [8]–[12]), the performance is affected by the resolution
and/or accuracy of the often complex multipath parameter
estimation procedure such as SAGE, ESPRIT, and MUSIC.

Recently, a framework for estimating parameters of stochas-
tic radio channel models without the intermediate multipath
extraction step was introduced in [13], [14]. The authors
proposed a method of moment (MoM) estimator for the Turin
model and validate their proposal using both simulated and
measured channel transfer functions. A MoM estimator was
also developed in [15] for calibrating stochastic polarized
propagation graph models [4]. Compared to the classical two

The author is with Wireless Communication and Networks (WCN) Section,
Aalborg University, Denmark. E-mail:[ra]@es.aau.dk.

stage approach, these methods appear to be more attrac-
tive since the intermediate multipath parameter extraction is
completely eliminated. However, applicability of the MoM
is severely limited by the need to derive new expressions
for each model. This derivation could become intractable if
not impossible for more complex models. These limitations
can potentially be eliminated by using methods which do
not involve explicit derivations of analytic expressions. An
Approximate Bayesian Computation (ABC) based method is
proposed in [16] for calibrating the Saleh Valenzuela model.

Machine learning paradigm provide useful tools for func-
tion approximation. For example, multilayer perceptrons (i.e.,
neural networks) have been proven to be capable of universal
function approximation, i.e., they can be used to obtain rea-
sonable approximations of any continuous real valued function
on a bounded set in RN [17].

In this letter, we propose a method for calibration of stochas-
tic radio channel models based on a neural network (NN). To
the best knowledge of the author, this is the first contribution
on using machine learning tools for calibration of propagation
models. The method involves synthetically generating channel
realizations from the model and compressing the data into
summary statistics which are used for training a NN. Parame-
ters of the model are estimated by applying the trained network
on summary statistics computed from measurements. Unlike
existing methods, this method does not involve multipath
parameter estimation and is applicable to any type of model.
We perform experiments to evaluate the performance of the
method using both synthetic data generated from the stochastic
propagation graph (PG) [5] and the Saleh-Valenzuela (SV) [8]
models as well as indoor channel measurements.

II. NEURAL NETWORK BASED MODEL CALIBRATION

In this section, we present a fully data-driven calibration
method for radio propagation models based on feed-forward
NN with single hidden layer.

A. Neural Network Architecture

We consider a feed-forward NN with single hidden layer.
The network describes the input-output mapping f : s ∈
RMi×1 7→ θ ∈ RMo×1 and can be represented as [18]

θ = ρo(bo + Wov)

v = ρh(bh + Whs), (1)

where s ∈ RMi×1 and θ ∈ RMo×1 are the input and output
vectors, respectively. The matrix, Wh ∈ RMh×Mi contains the
weight of connections between the Mi input nodes and the Mh
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hidden nodes. Similarly, the weight of connections between
the hidden nodes and the Mo output nodes are contained in
Wo ∈ RMo×Mh . The bias of all hidden and output nodes are
contained in bh ∈ RMh×1 and bo ∈ RMo×1, respectively.
ρh and ρo are element-wise activation functions applied to
the weighted sum of the inputs of each hidden and output
node, respectively. In (1), v ∈ corresponds to the output of
the hidden layer which is fed to the output layer.

We consider a linear activation function, ρo(x) = x for the
output layer and the non-linear sigmoid function, ρh(x) =
1/(1 + e−x) for the hidden layer.

B. Model Calibration Procedure

Consider a radio propagation model which defines the chan-
nel transfer function, H(f);, where f denotes the frequency
points, in terms of a set of Mo real valued parameters,
θ = [θ1, θ2, · · · , θMo

]T ∈ RMo×1. Given measurements of
H(f), calibration involves finding estimates of the model
parameters, θ̂. The proposed ML based method for estimating
the parameters is illustrated in Fig. 1. The method involves:

1) Data Generation: We generate K sets of the model
parameters between a lower bound and an upper bound.
It is straightforward to set these limits since model
parameters are bounded in practice. For instance, an an-
gular parameter can only take values between 0 and 2π.
For each set of parameters, we generate Z realizations
of CTFs. Denoting the number of frequency points in
the CTF as Ns , the generated CTFs are collected into a
data matrix, D ∈ CK×Z×Ns with corresponding N×K
parameter matrix θ = [θ1, · · · ,θK ].

2) Data processing: While it is possible to train a net-
work with the generated CTF matrix, the number of
input nodes and hence, network complexity can be
significantly reduced by summarizing the CTFs into
suitable summary statistics1. Motivated by the works in
[13], we propose summarizing the data into mean and
covariances of the first three temporal moments. For the
kth parameter set, the mean, m̄i

k and covariance, c̄ijk of
temporal moments is estimated using

m̄i
k =

1

Z

Z∑
z=1

mi
k,z; i = 0, 1, 2

c̄ijk =
1

Z

Z∑
z=1

(mi
k,z − m̄i

k)(mj
k,z − m̄

j
k); i = 0, 1, 2

(2)

where mi
k,z is the ith temporal moment of the zth

channel realization for the kth parameter set which is
defined as

mi
k,z =

tmax∫
0

ti|hk,z(t)|2. (3)

1For example, using the CTFs in D requires a network with ZNs input
nodes which can be considerably large depending on the bandwidth and
sampling frequency. With the measurements in Section III-C for which
Ns = 801, the number of input nodes, Mi = 801Z;Z ≥ 1.

Fig. 1: Machine learning based model calibration procedure.
TABLE I: Bounds on model parameters for simulations.

Model Parameters Minimum Maximum

PG g 0.50 0.75
Ns 5 30
Pvis 0.4 1

SV

Λ[/ns] 0.01 0.40
λ[/ns] 0.50 3.00

Γ 1 14
γ 1 14

Here, hk,z(t) is the impulse response of the zth channel
realization with the kth parameter set and | · | denotes
absolute value of the associated complex number.

3) Network selection and training: The computed
statistics and parameters are collected into
K input-target pairs; {sk,θk}Kk=1, where
sk = [m̄1

k, m̄
2
k, m̄

3
k, c̄

11
k , c̄

12
k , c̄

13
k , c̄

22
k , c̄

23
k , c̄

33
k ]T . The K

examples are then used to train a NN with Mi = 9
input, Mh hidden and Mo output nodes. While, Mo is
determined by the number of model parameters, Mh

is a design parameter that needs to be set to ensure
reasonable performance of the model. A procedure
involving comparison of network performance with
different number of hidden nodes is used to set Mh in
this work.

4) Model calibration: The trained network is used to es-
timate parameters of the model from the calibration
set, scal, which consists of statistics computed from
measurements.

C. Training Process

Based on an input vector, sk, the feed-forward NN
yields a prediction, θ̂k of the model parameters. The train-
ing process involves estimating the network parameters,
{Wh,Wo,bh,bo} such that the cost function,

L(θ̂,θ) =

K∑
k=1

(θ − θ̂k)(θ − θ̂k)T , (4)

is minimized. Several training procedures including
Levenberg-Marquardt (LM), Bayesian Regularization (BR),
and Gradient Descent (GD) [18] have been developed for
NNs. Each of these methods has its benefits and limitations,
and their usefulness is often application dependent. For
example, LM provides fast computation speed at the expense
of increased memory requirement. On the other hand, BR
is typically slower but provides better generalization for
problems with small or noisy datasets [19]. Since training
data is synthetically generated in the proposed method, the
amount of data is limited. Hence, BR is applied for network
training in this paper.
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TABLE II: Estimated parameters of PG model and RMSE.

Exp.
Parameters RMSE

Parameter True Estimates
Best Mean Var. (×10−4) Min. (×10−5) Mean Var. (×10−5)

I g 0.44 0.45 0.47 1.67 8.75 0.02 8.64
Ns 20 20 20 0 0 0 0
Pvis 0.75 0.75 0.72 1.03 5.64 0.02 8.91

II g 0.46 0.46 0.47 1.63 4.73 0.01 5.22
Ns 12 12 12 0 0 0 0
Pvis 0.51 0.56 0.55 2.05 31.8 0.03 16.4

III g 0.59 0.57 0.58 1.31 33.6 0.01 3.41
Ns 12 12 12 0 0 0 0
Pvis 0.78 0.77 0.77 1.78 31.6 0.01 4.69

IV g 0.60 0.60 0.59 7.02 3.26 0.008 2.14
Ns 21 22 22 196 19161 0.78 1055
Pvis 0.80 0.79 0.77 1.10 19.80 0.02 9.47

TABLE III: Estimated parameters of the SV model and RMSE.

Exp.
Parameters RMSE

Parameter True Estimates
Best Mean Var. (×10−3) Min. (×10−4) Mean Var. (×10−3)

I

Λ[1/ns] 0.101 0.118 0.111 0.281 6.712 0.164 5.296
λ[1/ns] 2.459 2.343 2.243 7.092 0.108 0.031 0.834

Γ 7.395 7.270 7.198 23.512 6.485 0.037 1.570
γ 7.886 7.824 7.892 36.689 3.052 0.029 1.784

II

Λ[1/ns] 0.355 0.347 0.330 0.166 0.169 0.073 0.644
λ[1/ns] 2.285 2.339 2.385 2.998 20.809 0.045 0.695

Γ 8.916 8.955 8.929 14.641 2.962 0.011 0.181
γ 8.253 8.299 8.443 15.809 2.019 0.023 0.557

III. PERFORMANCE EVALUATION

We present results of application of the proposed calibration
method to two stochastic channel models: PG [5] and SV
models [8]. These models have been used extensively for vari-
ous applications. While the SV model is commonly calibrated
using the classical approach involving multipath extraction,
studies on calibration of the PG model have been limited. The
moments based calibration method for the PG in [15] suffers
from an identifiability problem.

A. Considered Channel Models

1) Propagation Graph Model: The PG [5] models the
environments as a simple directed graph G = (V, E), where
vertex set V = Vt ∪Vs ∪Vr is a union of three disjoint sets: a
set of Nt transmitters, Vt, a set of Ns scatterers, Vs and a set
of Nr receivers, Vr. Wave propagation between the vertices
is modelled by edges in E . Wave propagation in the PG is
defined by the actions of the scatterers and edges and the
channel transfer function is given as [5]

H(f) = D(f) + R(f)[I−B(f)]−1T(f), (5)

where D(f), T(f), R(f) and B(f) contain transfer functions
of direct, transmitter to scatterers, scatterers to receivers and
scatterers to scatterers edges, respectively. The edge transfer
functions are defined for the stochastic PG as

Ae(f) =

{
ge(f) exp(j2πfτe + φe); e ∈ E

0; e /∈ E ,
(6)

where ge(f) and τe denote the edge gain and delay, respec-
tively. φe is the random initial phase of the edge. A procedure
for stochastically generating transfer functions and impulse
response from the PG is presented in [5]. This stochastic

implementation requires three parameters to describe an envi-
ronment: the reflection gain, g, the number of scatterers, Ns,
and the probability of visibility, Pvis. Thus, calibration of the
PG requires estimation of the parameter set θ = [g,Ns, Pvis]
from measurements.

2) Saleh Valenzuela (SV) Model: The SV model was orig-
inally proposed [8] to model indoor propagation with account
for the inherent clustering phenomenon. The underlying prin-
ciple of the model emanates from observations from indoor
measurements that multipath components arrive in clusters
and that arrival of the clusters as well as the rays within
each cluster follow Poisson processes with different rates. The
impulse response of the channel is expressed as [8]

h(t) =

∞∑
k=0

∞∑
z=0

βk,ze
jϑk,zδ(t− Tk − τk,z) (7)

where Tk and τk,z are the arrival time of the first ray in the
kth cluster and delay of the zth ray relative to Tk, respectively.
βk,z and ϑk,z are the gain and uniformly distributed phase of
the zth ray in the kth cluster. The mean square value of βk,z
is given by

β2
k,z = β2

00e
−Tk/Γe−τk,z/γ , (8)

where β2
00 is the average power gain of the ray in the first

cluster, and Γ and γ are exponential power-decay constants
for the clusters and rays, respectively. The inter-arrival times
of clusters and ray are exponential with probability distribution
functions defined as

p(Tk|Tk−1) = Λ exp[−Λ(Tk − Tk−1)], k > 0 (9)

and

p(τk,z|τk−1,z) = λ exp[−λ(τk,z − τk−1,z)], z > 0, (10)

respectively. Here, Λ(λ) is the cluster(ray) arrival rate. In
order to describe a propagation environment, the S-V model
requires four parameters viz: the cluster arrival rate, Λ; the
ray arrival rate, λ, the cluster decay constant, Γ and the ray
decay constant, γ. Thus, calibration of the S-V model involves
estimation of the parameter set θ = [Γ, γ,Λ, λ].

B. Results on Simulated Data

For each channel model, we generated 2000 parameter sets
from a uniform distribution on the range shown in Tab. I.
Model parameter bounds for the simulation were set for the SV
and PG model based on values extracted from measurements in
[20] and [15], respectively. A total of 500 channel realizations
were generated for each parameter set. The generated CTFs
are then summarized following the procedure in Section II-B.

A calibration set comprising of 4 statistics - model param-
eter pairs was selected prior to training. The remaining data-
set was randomly divided into training and test sets in the
ratio 4:1. The random partitioning and stochastic nature of the
training procedure often result in variations in trained models
and hence, parameter estimates. To quantify this variation,
the model calibration procedure was repeated 200 times with
the same data-sets in our simulations. Following heuristic
evaluation of NN with 5 to 30 hidden nodes, a value of
Mh = 20 was chosen for our simulations.
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Fig. 2: Estimates of PG model parameters using a 3 - inputs network
with 20 hidden nodes.

As shown in Fig. 2 and Fig. 3, estimated parameters are
concentrated around the true values for the PG and SV models,
respectively. For all model parameters, the best (estimates
from the network with least error performance) and mean
(average of 200 estimates) are close to the true parameter
values resulting in very small root mean square error (RMSE)
as shown in Tab. II and Tab. III for the PG and SV models,
respectively.

C. Application to Measured Data

We now evaluate the applicability of the proposed method
by testing it on an indoor channel measurement [1]. The
measurement was obtained using a VNA at 60 GHz in a
3×4×3 m3 room. The data set comprises of 625 measurements
from a 25× 25 virtual planar array.

The trained NN in Section III-B is applied to statistics
computed from the measurements to obtain estimates of the
model parameters. As shown in Fig. 4, the power level and
tail decay of the measured averaged power delay profile (PDP)
agree closely with those of the power delay spectrum predicted
by the PG and SV model with the estimated parameters. This
shows that the NN based method is able to accurately extract
model parameters from real measurements. Although, exact
prediction of all features of the measured instantaneous PDP
is not expected from stochastic models, we also show plots
of single realizations of the PG and measurements in Fig. 4.
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Fig. 3: Estimates of Saleh Valenzuela model parameters using a 9 -
inputs network with 20 hidden nodes.
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Fig. 4: Averaged (left) and instantaneous (right) PDP computed from
measurements and estimated PDP from the models. Estimated model
parameters are: PG (g = 0.65, Ns = 31, Pvis = 0.93) and SV
(Γ = 15.6, γ = 14, Λ = 0.55, λ = 2.9).

The figure shows that the measured instantaneous PDP is well
predicted by the model. Similar results were obtained from the
SV model. These are not shown here due to space constraints.

IV. CONCLUSION

We proposed a machine learning based method for cali-
brating stochastic radio channel models. A neural network is
trained using channel impulse response simulated from the
model to be calibrated. Once training is completed, the trained
network is applied to extract parameters of the model from
calibration data (i.e., measurements). Results show accurate
estimation of model parameters for both synthetic and mea-
sured data.
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