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A User Programmed Cohesive Zone Finite Element for ANSY Shdaccal

E. Lindgaar@*, B.L.V. Balé, J.A. Glud, J. Sjglund, E.T. Christenséeh

aDepartment of Materials and Production, Aalborg Univeyskibigerstreede 16, Aalborg DK-9220, Denmark

Abstract

A cohesive finite element implemented as a user programniedtiere (UPF) in ANSYS Mechanical is presented.
Non-standard post-processing capabilities comparednemuavailable cohesive elements in commercial finite el-
ement software packages have been defined and implementelgsakiption of the element formulation and the
post-processing options are provided. Simulation stualiepresented which serves to verify the implementation and
compare the performance to ANSYS INTER205 cohesive elenTdm results show that the implemented element
performs better in terms of ability to converge to a soluiod requires fewer iterations to converge in the incrententa
Newton-Raphson solution procedure used. Additionallgresgivity study about the typical remedy to obtain conver-
gent solutions having coarse meshes by lowering the orsseidn is conducted. The study brings new insight to the
effect of lowering the onset traction and recommendationsadtiral usage in case of coarse meshes are outlined.

Keywords: Delamination, Cohesive zone models, Benchmark study, tlsfamed finite element

1. Introduction

One of the common failure types of laminated long fibrous cositp materials is delamination. Delaminations
can be regarded as cracks and are in many situations linuitptbpagate in the interface between the laminae. As
a consequence the potential crack extension path is knodmhencrack loading mode is often a combination of
the three basic modes |, II, and 1ll. The topic of modellingl@mulation of delamination propagation is vast and
have been treated both in a classical linear elastic frachachanical framework and a cohesive zone model (CZM)
framework. In order to limit the extent of the introductiomlpthe main works leading to the state-of-the-art cohesive
zone model finite elements for 3D finite element models aregmed here. The theory and models regarding crack
propagation were founded with the energy approach by [1]revla® energy criterion for crack propagation was
formulated. Based on linear elastic solutions for displaeets and stresses around a crack tip, [2] reformulated
the crack growth criterion to a stress based criterion viesstintensity factors which describes the intensity of the
stress singularity at the crack tip. [3] addressed the problrelated to the interpretation of the stress singularity
by formulating a cohesive model, where tractions on thekcfaces close to the crack tip leads to finite stresses at
the crack tip. At the same time [4] worked on cracks in steekshwith yielding and formulated a mathematically
equivalent model with finite stress at the crack tip but withfferent perspective on the physics leading to this result.
In the theory of cohesive zone models, crack propagationbeaviewed as a matter of overcoming the cohesive
forces, described by a traction-separation law, holdiggtioer the material. Hillerborg et al. [5] extended a colhesi
zone model with the assumption that the maximum tractiomefdohesive law can be used as a strength criterion
for the formation of new cracks. Later Needleman [6] used M@Za 2D finite element analysis of interface cracks
and modelled the entire interface, not just the cohesive zaith its own constitutive relation between tractions and
displacements (the cohesive law). The combination of theagehes of Hillerborg et al. and Needleman enables a
very automated analysis without the need to change the geporemesh during crack formation and propagation.
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Figure 1: Equivalent one dimensional cohesive law for miremtie quasi-static delamination propagation simulatioateNhat the cohesive law
is shown for a constant mode mixjg[15, 18].

The finite element implementation of the CZM has been furtieseloped for 3D fracture analysis in [7-15]. The
element formulation used here is based on [15, 16]

The cohesive zone element described here is implementetl8YS Mechanical [17] as a user programmable
feature (UPF). The cohesive zone element is implemented as an UPF in ANS¥&ahical for several reasons.
The first reason is to establish a framework for doing reseiarformulating cohesive zone models and finite element
formulations. The second reason is to have access to anbowver the cohesive element formulation and options as
these heavily influence the results and convergence balrayiiche finite element model. The third reason is that by
implementing the cohesive element in a commercial FE codeibssible to do benchmarks of thefdrent element
formulations using commercially available solvers as vaslifacilitate easier collaboration with research partners
Finally, implementing a cohesive zone element in ANSYS é&mathe possibility of defining non-standard element
result output. For the readily available cohesive zone elgmin ANSYS it is only possible to read out and plot the
openings and tractions of the element in a more or less ralydtefined local coordinate system defined by the node
numbering of the element.

The manuscript is organized as follows. Firstly, the coreesiement is described in Sec. 2. Then studies that
verify the implementation of the element and demonstrageptrformance of the element are presented in Sec. 3.
This is followed by a study in Sec. 4 on the typical remedy ttaobconvergent solutions in coarse meshes, which
involves an artificial reduction of the onset traction of todesive law. Finally, conclusions are provided in Sec. 5.

2. Cohesive element

The cohesive element is based on the quasi-static damagel fnaeh [15] and the element integration scheme
described in [16]. A short summary of the element formulatgpresented in the following.

2.1. Kinematics and constitutive law

The traction-separation relation is formulated as an edeit one-dimensional bilinear cohesive law, see Fig. 1.
The cohesive law relates the interface separation noamd the equivalent one dimensional interface tragtiamich
are defined as:

1= VG GR  where 5= 3(s+bd)  ds= VEOOT+ 02
p=(1- DK

1)

1A compiled version of the presented element implementatombe granted upon e-mail request to the authors of thig.pape
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whered, is related to mode | crack opening afgis a shear separation. The shape of the cohesive law is defined
by the initial stithessk, the equivalent one dimensional onset separatigrand the equivalent one dimensional
critical separation. which are functions of the mode mixig;

Os
= 2
6| +6s ( )
The onset separatioly and the critical separatioh are defined as:
2G
/lo = %, /lc = _C (3)
Mo

The critical energy release ra@g and equivalent single mode onset tractigrare in general mode dependent and
are therefore determined using a modified BK-criterion [l1%], expressed in the local opening displacement based
mode mixityp.

Ge =Gy + (Giic — Gi¢)B”

Ho = \/(Tltjg)i +[(7110)? = (710)] BY (4)
Where B = m

where subscripts andll denote the pure modeandl! values, respectively, angis an experimentally determined
mode interaction parameter. In 3D delamination probl&@msandr), in the modified BK-criterion are substituted
with G¢c andrs,, respectively, implicitly assuming th&s. = Gy ic = Gyjic andrse = 7110 = Tii10 -

The damage criterion for quasi-static damage in increnhéorta is formulated such that the current damage at
any current time is given as:

DK = min(max(Qs),1) Vv te[0,t] where (5)
_ A - A)
AL - ) ©)

Note, that the quantities& andA, are dependent on the mode mixgty The opening displacement norm associated
with the current damagek and mode mixitys is defined as:

/lD _ /lo/lc

e — DK(Ac — o) @

The stiftness degrading damage variable is not meaningful for pagtegsing when evaluating the damage state in
the damage process zone which is defined as the area Bhed®, 1[. Instead an energy based damage variBile
is used which is more meaningful in this regard. The energgth@amage variabl®® is defined as:

Ge-w,
Df= —— 8
G (8)

wherew; is the remaining ability to do non-conservative work peiaaséthe interface and is given as:
1 k
Wr = E/lD(l_ D)KAc 9)
For crack propagation under constant mode migithe energy based damage variabfeis proportional to the

energy dissipated per area interface. However, this idreotase for a variable crack loading mode situation. In such
situations the dissipated energy per digas useful for post-processing:

Ap
Eq = f udA — Eg (10)
0

3
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where the stored elastic enerByis defined as:

1
Es= E#D/lD (11)

The average mode mixitgayg, and the average energy component mode-mixity given bBthmarameter in the
BK-criterion, Bayg, are defined as:

D¢ D¢
|, pdDe |, BdD?
ﬁavg = OT, Bavg = O? (12)

which proves to be useful measures in order to study in whioctenthe dominant part of the damage process at
each material point has taken place.

Both the dissipated energy per ai&gand the average mode mixities during the damage evol@igyandBayg,
are evaluated numerically using a 2-point Newton-Cotesgiration rule.

2.2. Element formulation

The element is an 8-noded zero thickness brick element wigal interpolation of the separation of the upper
and lower surface on the middle surface where the naturatiotatest andn are defined, see Fig. 2. The numerical

8 7

5 . 6 .
Undeformed: ® 4 6 3 Deformed: «—— yoo

iy
w

1 2

1 2

Figure 2: Cohesive element in undeformed and deformed aguafign.

integration of the element internal force vector and thenelet tangent dfiness matrix is done according to the
adaptive integration scheme described in [16] which impsdhe accuracy of the response and ability to converge to
a solution. The adaptive integration scheme increasesuimber of integration points if an element is located in the
damage process zone (where areas of the elements are panthgddDy €]0, 1[). This is illustrated in Fig. 3.

Illustration of delamination front Stages of constitutive behaviour through delamination front

Process zone
Undamaged

U T
Fully damaged Process zone Undamaged

Adaptive integration scheme

n n n

Figure 3: lllustration of the adaptive integration scherhfl6] using a Gauss-Legendre quadrature rule.

Fully damaged

2.3. Application and post processing capabilities

The cohesive zone element is implemented in ANSYS Mechbfiichas a user programmable feature (UPF).
The finite element is coded in Fortran90 and compiled anatnkith ANSYS using the Intel visual fortran compiler
[20]. The element can be accessed in ANSYS using the grdghtesface during pre- and post-processing of the

4
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model. In order to create a mesh the automatic meshing tesduthe element INTER205 is used as this element has
the same topology. As mentioned in the introduction it is/gridssible to read out and plot the openings and tractions
of the available cohesive zone elements in ANSYS. Furthezptbe ANSYS output is not coordinate transformed to
the element coordinate system meaning that tffergint mode openings are output more or less randomly aceprdi

to the node numbering of the individual elements. In the anm@ntation presented here the element output has been
extended over the INTER205 element to also include:

e Element tractions and openings plotted in the element doatel system, r7)

e Stiffness damage paramef, cf. Eq. (5)

e Energy based damage paramé&ycf. Eq. (8)

e Stored elastic energy per argg cf. Eq. (11)

¢ Dissipated energy per aré&g, cf. Eq. (10)

e Mode mixity g, cf. Eq. (2)

¢ Average mode mixities during the damage evolutggy andBayg, cf. Eq. (12)

The element output can be accessed through the post-praz€3dl in ANSYS Mechanical to create contour
plots on the deformed and undeformed mesh.

3. Element verification and performance

The following studies have been conducted in order to vehy element implementation and to quantify the
performance of the element relatively to the available AISSNTER205 element:

¢ Verify that the implementation can reproduce the appliexkaiimode bilinear law in simulation.

¢ Verification of the implementation of the kinematics and¢berdinate transformations in rigid body translation
and rotation simulations.

¢ Verification of the bookkeeping of UPF elements when usirtgmatic cohesive meshing facilities in ANSYS.

¢ Verification as well as a study on the influence of the nodald@nd energy dissipation of the adaptive integra-
tion scheme in single element studies.

e Comparison of the implemented element and ANSYS INTER2GBrims of the convergence rate and ability
to converge.

All studies are solved as a displacement controlled statityais using the Newton-Raphson solver unless other-
wise specified.

3.1. Element implementation verification

In order to verify the element implementation several stadiave been conducted on a single element model
shown in Fig. 4. Here the implementation of the kinematibs, ¢oordinate transformations, and the constitutive
law of the cohesive zone element have been tested and verifiredmodel works in conjunction with a MATLAB
[21] script, that can generate nodal displacements for ldrent according to prescribed rigid body rotations and
rigid body translations, as shown in Fig. 4 (left). Openiigpthcements are always applied relative to the element
orientation so that the element should always provide theesasults. In this way it can be verified whether the
formulation of the element kinematics has been implemeatetectly. In order to also verify the implementation
of the constitutive law used as input, cf. Eqgs. (1-4), coneptaveeps of thes§,5s) opening displacement space
(normal, shear opening), i.&3 € [0, d3c] andds € [0, dsd, are made by conducting a series of analyses at certain
directions in §3,0s) opening displacement space. The used material data feleéheent verification test is shown in
Tab. 1. For each direction ird{,6s) opening displacement space an analysis is performed aadsdeecorded for
each substep in the Newton-Raphson solution. Using thisegiure the entires§,és) opening displacement space
versus the traction normis simulated and collectively shown in Fig. 4 right, whichthif numerical round errors
perfectly reproduces the theoretical mixed-mode cortstitlaw specified as input. These tests have been conducted
at several configurations of the element, i.e. at severabamations of rigid body rotations and translations.

5



Postprint version, final version available at httfaki.org10.1016j.engfracmech.2017.05.026 E. LINDGAARD ET AL.

Table 1: Cohesive interface properties used in the veiificattudies of the element implementation.

Gic =0.969 Nmm Gjc =1.717Nmm 71,=4MPa 715=5MPa K =10° N/mm?
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Figure 4: (Left) Sketch of the one element model along withefement and global coordinate systems. (Right) The steil@lation between
the shear separatiafy, positive normal separatiafs, and the traction norm using the implemented element.

3.2. Element behavior - Mode |

The dfect of the adaptive integration scheme for the cohesiveaiéia easily illustrated by considering a simple
one element model loaded in pure mode I, see Fig. 5. The topa@itain surfaces of the element are considered rigid
and thus resemble a linear element. The node pair 1 and 5 aledpair 4 and 8 are loaded symmetrically with an
increasing mode | opening displacement: 6% = 6*%. The nodes 2, 6, 3, and 7 are hinged so that the cohesive
stress at locations between these node pairs are alwaysk@rsimplicity the cohesive properties stated in Tab. 2
have been applied with a bilinear mode | cohesive law andemet length of ¢ = 2 mm.

Table 2: Cohesive interface properties of the single elémmadel used in the study of the implemented adaptive integracheme.

Gic =0.5NmMm 71,0=10MPa K =10'N/mm® & =01mm 6, =10mm Le=2mm

An analytical solution to the problem has been formulatedisoived in Maple [22] . The analytical solution for
the reaction force per unit widtlR, of the element at the edge having the prescribed displatigeés given as

— AKL

R= 3 ° Vv A €]-,80] casel (13)

R= o v A €[6i0,01c] case?2 14
6A2(6|0 _(S|c) [ lo |C] ( )

— 01001 KLe(0 0

R = loflc GeA(2|o+ c) YV A €[dic,+oo[ case3 (15)

and reflect the three opening cases depicted in Fig. 5 whidhias diferent states of damage within the cohesive
element.

In Fig. 6, the analytical solution for the reaction force peit width, R, is shown as a function of the applied
opening displacement together with numerical solutionthefone element model havingidirent quadrature rules.
In the legend the abbreviations NC and GL stand for Newtote€quadrature and Gauss-Legendre quadrature,
respectively. The number is the number of integration goaifing each element in-plane coordinate.

All integration schemes predict the peak load quite acelyatHowever, the dissipated energy per unit width,
given by the area under the curve, depends significantly @quladrature rule. Especially the 2 point Newton-Cotes

6
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R Case 1l T Case 2 T(5 8) Case 3
(5,8)

T(5,8)
T (6,7)
>’2,3)

(1,4)

l (1,4)

R l

R

[JUndamaged [ Partly damaged [ Fully damaged

A <60
010 A <6

Figure 5: lllustration of the three damage cases for theyéinal solution of the one element model subjected to pureeridoading having a
bilinear cohesize law.

—o— GL20
GL50
—=— GL90 u
Analytical Solution

Reaction force per unit width R [N/mm]

0 L
0 0.05 01 015 02 025 03 035 04 045 05

Opening displacement, A [mm]

Figure 6: Reaction force per unit width along the elementeedgtween node 1 and 4. The analytical solution is obtaingd an element
formulation in Maple. The other curves are finite elementisohs using dferent integration schemes. Note that the curves GL10-Gh30e
graph are coincident with the analytical solution.

guadrature rule under predicts the energy dissipation byta#5%. The reason is due to premature failure when
the nodal integration points obtain full damage when reaglai prescribed displacement&f = 0.1mmand thus
assume zero tractions throughout the element. In genexdb#uss-Legendre quadrature rule performs better and
more accurately captures the dissipated energy. With a i @@uss-Legendre quadrature rule an almost exact
solution is obtained with an error in dissipated energyWwdl®b%. For this reason it is recommended to use at least a
10 point Gauss-Legendre quadrature rule within the adajiegration scheme for the partly damaged elements in
the process zone. Remark, that similar attempts to derialytieal formulas for a single element model have been
done in [23] for a 4-noded 2D element. However, there seerbg @ misprint or error in the formulas reported in
[23] since the printed equations result in a discontinuowsd-displacement curve.

3.3. Comparison with ANSYS INTER205

The following simulation results of a mixed-mode bending@men serves to demonstrate that the element has
an improved convergence rate and ability to converge coeaptar ANSYS element INTER205 which has the same
element topology. INTER205 is based on the mixed mode dotigé law described in [13] which also uses a
bilinear law in the pure crack loading modes. The mixed-nuateding specimen model is simulated by applying the
boundary conditions similar to the mixed-mode bending egipa [24], see Fig. 7, with the dimensions and material

7
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Figure 7: Finite element model of the mixed mode bending
specimen.

Figure 8: Simulation results of the MMB specimen. ANS: ANSKE ER205
element. UPF: User programmed element. LEFM: Analyticilitems. Ca-
manho Max Load: Max loads as found in [14].

data reported in Tab. 3. The mixed-mode bending specimamisidered in three @ierent mode mixities = G, /G,
=1/4, 1, and 4 as defined in [14]. The dotted line in the model igia ftbad transferring element.

E1x E2s = Ess3 G12 = G3 Gos V12 = V13
122.7 GPa| 10.1 GPa 5.5 GPa 3.7 GPa 0.25

V23 Gic Giic Tio Tilo

0.45 0.969 Nmm | 1.717 Nmm | 80 MPa 100 MPa
L h t K

102mm | 1.56 mm 25.4mm 10" N/mm?

Table 3: Material data and dimensions for the mixed-modelingnspecimen are taken from [14] and are for 24-ply unidioeal AS4PEEK
(APC2) carbon fibre reinforced composite specimens. Pleatethat the cohesize zone material properties not haveddjested as suggested
in [25].

The FEA models using either the developed UPF element fationl or the ANSYS INTER205 (ANS) element,
respectively, use the same model setup, mesh size, anébsdattings. The continuum of the mixed-mode bending
specimen is discretized with the 3D 8-noded ANSYS SOLID1ESnent using the enhanced strain formulation
having 1000 elements along the length, 1 element in the leisk and 4 elements in the height of the specimen.
The element length of the cohesize elements is 0.128mm whkglited in 10 elements in the cohesive zone for
mode-mixityd = 4, 15-17 elements in the cohesive zone for mode-miity 1, and 22 elements in the cohesive
zone for mode-mixityy = 1/4. The standard Newton-Raphson solution procedure wighlatisment control with
defaults settings and automatic time stepping has beefedpglhe maximum number of cumulative iterations until
convergence failure is set to 800. The results using thelolged UPF element are shown in Fig. 8 and compared
to results using ANSYS INTER205 (ANS), Bernoulli-Euler bedased LEFM solutions, and the maximum load
predictions of [14].

The solutions from the UPF and ANS element in Fig. 8 for thédhiinear part of the curves are almost identical
for all mode-mixities. Both solutions are more compliararitthe LEFM solutions which are expected due to the used
assumption of rigid boundary conditions of the Bernoullitét based LEFM solutions. The load for unstable crack
growth, see Tab. 4, predicted by the UPF and ANS element fiation are slightly diferent which might be due to
different mixed-mode interaction criterion employed in therfolations. From Fig. 8 it may also be noted that the
ANSYS INTER205 element formulation could not converge ia timstable propagation part for théfdrent mixed-

8
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Table 4: Number of iterations used in the simulations uhélmaximum load and the predicted maximum load at which blestaack propagation
occurs for three dierent mode mixitie® = G, /Gy, = 1/4, 1, and 4. The abbreviation FTC stands for failed to corvérdhe entire solution range.

0=G|/G, =1/4 0=G/G) =1 0=G|/G) =4
Method Load [N] Iterations Load[N] Iterations Load[N] I&ions
ANS 477.4 248 (FTC) 264.0 194 (FTC) 92.2 420 (FTC)
UPF 467.5 82 254.0 101 90.1 134
LEFM 513.5 - 277.5 - 97.3 -
Experimental [14] 518.7 - 275.4 - 108.1 -

mode configurations. Reaching the maximum load the NewtaphBon procedure initiated successive cut-backs
until the maximum cumulative iteration number was reacfiéwk UPF element formulation could obtain convergent

solutions in the entire solution range. In Tab. 4 the numbeqailibrium iterations in the Newton-Raphson procedure

until reaching the maximum load is reported and it may bedhttat the UPF element converges with much fewer
iterations compared to the ANSYS INTER205 element. The UlBFent converges to the maximum load using

48%— 68% fewer iterations compared to the ANSYS INTER205 elerfritientical standard solution settings.

4. Study on onset traction

It is well-known that in order to obtain convergent solugamsing cohesize zone elements requires a relatively
fine mesh. Typical recommendations suggest that the danmageiz discretized with a minimum of 3-10 elements,
see [26]. A typical remedy to obtain convergent solutioriagisoarser meshes is to artificially increase the length
of the damage zone by lowering the onset traction in theddalirtohesive law keeping the critical energy release rate
fixed [26, 27]. In gfect the finite element model may be discretized using lafdgenents and yet provide convergent
solutions and fectively reduce simulation time.

‘\P, w
e > - a
Lstop 2h
L
yP.w

Figure 9: Finite element model of the DCB specimen.

In the following the approach of lowering the onset tractidmvestigated for dferent configurations of a DCB
specimen in order to provide new insight into the approachautline recommendations of practical usage. Material
and geometric properties of the DCB specimens studied aredban [14] and are identical to those stated in Tab.
3. The DCB model, see Fig. 9, is discretized with the ANSYS 811185 element having 1000 elements along the
length, 1 element in the thickness and 2 elements along tighthef each DCB arm. The numerical simulation is
conducted using the arc-length solver in ANSYS and the sitiar is set to automatically stop when the crack has
grown a certain distance such that the crack tip lies in @@L s, from the clamped end, see Fig. 9. The crack
tip is defined as the point at which the normal opening disgtant reache. and thus provides full damage. The
DCB model is solved for dierent values of the onset traction as well as the initiallckaegth.

In Fig. 10 and 11, force-displacement simulation result$hefDCB model with varying values of onset traction
are shown for an initial crack length of 32.9 mm and 0.1 mnpeestvely. In the crack propagation part (region with
negative slope) all curves are coincident meaning that kiblgedjresponse is identical here. In the beginning and in
the end of the curvesfiierences are apparent. In general, for lower values of oreszidn the load for unstable crack
growth (peak load) is reduced and occurring at larger digpteent. This is especially pronounced for the DCB model
with an initial short crack of 0.1 mm, cf. Fig. 11. The endgseinf the force-displacement curves are connected to
origo to make the endpoints visible. By inspecting the efnipadt is observed that the crack reaches its final length at

9
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T
——Ti= 16.0MPa

T\o= 16.0 MP.
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T\o= 8.0 MPa ———To= 6.4 MPa
100+
————To= 6.4 MPa ——To= 5.3MPa
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Tio= 46 MPa
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Load, P [N]
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Figure 10: Force-displacement simulation results of DCRlehavith Figure 11: Force-displacement simulation results of DCBlehavith
initial crack length of 32.9 mm with dierent values of onset traction. initial crack length of 0.1 mm with dlierent values of onset traction.
Stop criterion for the analysis set k@op = L/7. Stop criterion for the analysis set kQiop = L/1.2.

larger displacementy, at lower values of onset traction. Thus, lowering the otrsetion provides more compliant
response due to longer cohesive zones, whereas the valuseifteaction is less important w.r.t. crack propagation.

To draw further conclusions from the results in Fig. 10 anéXumerical experiment is conducted in which the
load for unstable crack growth is recorded foffelient combinations of initial crack length and onset tactiThe
results from this parametric study are shown in Fig. 12 angtlemles that the load for unstable crack growth is very
sensitive to the onset traction for short initial cracks veae it is practically independent for large crack lengfiise
reason for this is due toflierent relative interaction with the structural response Jower onset traction will produce
longer cohesive zones and thus increase the compliance aft#rface resulting in an apparent longer crack length.
For short initial cracks this slight decrease in compliaotthe interface, which is equivalent to a slight increase in
crack length, will have strong structural interaction wéaes it for relatively long cracks has no impact.

Thus, the study concludes that care must be taken if the apbrof lowering the onset traction for obtaining
convergent solutions in relatively coarse meshes is falbin cases where crack initiation or crack propagation of
relative small cracks is to be examined using cohesive zlemeents.
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Figure 12: Predicted maximum load for unstable crack grastfunction of initial crack length and onset traction of aB>$pecimen.

5. Conclusion

A state-of-the-art cohesive zone finite element has beenuiated and implemented in ANSYS Mechanical as
a user programmable feature. The cohesive zone finite eteman 8-noded zero thickness brick element having
a mixed-mode bilinear constitutive law defined by the modif3K-criterion and an adaptive numerical integration
scheme is applied for improved accuracy and convergencavimir of the elements. Additionally, non-standard
post-processing options have been defined and implemenpedcisely analyse the type and amount of delamination
during simulation. The developed finite element has beeifie@ion several examples and proves superior compared
to the commercially available cohesive zone finite elem®iHR205 in ANSYS.

The typical remedy to obtain convergent solutions havirayser meshes is to artificially increase the length of the
damage process zone by lowering the onset traction. A ddtaildy on DCB specimens showed that this approach
may severely change the structural response and thus tHenoraxoad for unstable crack growth. It was found that
the dfect on the structural response severely depends on thénlehgite initial crack. Thus special care must be
taken and the authors do not recommend to use the approastuties of crack initiation or crack propagation of
relatively short cracks.

The presented cohesive finite element implementation in YWBI$lechanical provides a framework for further
research and development of cohesive zone models as wedllkisgradditional state-of-the-art simulation capalsti
readily accessible.
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