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A User Programmed Cohesive Zone Finite Element for ANSYS Mechanical

E. Lindgaarda,∗, B.L.V. Baka, J.A. Gluda, J. Sjølunda, E.T. Christensena

aDepartment of Materials and Production, Aalborg University, Fibigerstræde 16, Aalborg DK-9220, Denmark

Abstract

A cohesive finite element implemented as a user programmablefeature (UPF) in ANSYS Mechanical is presented.
Non-standard post-processing capabilities compared to current available cohesive elements in commercial finite el-
ement software packages have been defined and implemented. Adescription of the element formulation and the
post-processing options are provided. Simulation studiesare presented which serves to verify the implementation and
compare the performance to ANSYS INTER205 cohesive element. The results show that the implemented element
performs better in terms of ability to converge to a solutionand requires fewer iterations to converge in the incremental
Newton-Raphson solution procedure used. Additionally, a sensitivity study about the typical remedy to obtain conver-
gent solutions having coarse meshes by lowering the onset traction is conducted. The study brings new insight to the
effect of lowering the onset traction and recommendations of practical usage in case of coarse meshes are outlined.

Keywords: Delamination, Cohesive zone models, Benchmark study, Userdefined finite element

1. Introduction

One of the common failure types of laminated long fibrous composite materials is delamination. Delaminations
can be regarded as cracks and are in many situations limited to propagate in the interface between the laminae. As
a consequence the potential crack extension path is known and the crack loading mode is often a combination of
the three basic modes I, II, and III. The topic of modelling and simulation of delamination propagation is vast and
have been treated both in a classical linear elastic fracture mechanical framework and a cohesive zone model (CZM)
framework. In order to limit the extent of the introduction only the main works leading to the state-of-the-art cohesive
zone model finite elements for 3D finite element models are presented here. The theory and models regarding crack
propagation were founded with the energy approach by [1] where an energy criterion for crack propagation was
formulated. Based on linear elastic solutions for displacements and stresses around a crack tip, [2] reformulated
the crack growth criterion to a stress based criterion via stress intensity factors which describes the intensity of the
stress singularity at the crack tip. [3] addressed the problems related to the interpretation of the stress singularity
by formulating a cohesive model, where tractions on the crack faces close to the crack tip leads to finite stresses at
the crack tip. At the same time [4] worked on cracks in steel sheets with yielding and formulated a mathematically
equivalent model with finite stress at the crack tip but with adifferent perspective on the physics leading to this result.
In the theory of cohesive zone models, crack propagation canbe viewed as a matter of overcoming the cohesive
forces, described by a traction-separation law, holding together the material. Hillerborg et al. [5] extended a cohesive
zone model with the assumption that the maximum traction of the cohesive law can be used as a strength criterion
for the formation of new cracks. Later Needleman [6] used a CZM in a 2D finite element analysis of interface cracks
and modelled the entire interface, not just the cohesive zone, with its own constitutive relation between tractions and
displacements (the cohesive law). The combination of the approaches of Hillerborg et al. and Needleman enables a
very automated analysis without the need to change the geometry or mesh during crack formation and propagation.
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Figure 1: Equivalent one dimensional cohesive law for mixedmode quasi-static delamination propagation simulation. Note that the cohesive law
is shown for a constant mode mixityβ [15, 18].

The finite element implementation of the CZM has been furtherdeveloped for 3D fracture analysis in [7–15]. The
element formulation used here is based on [15, 16]

The cohesive zone element described here is implemented in ANSYS Mechanical [17] as a user programmable
feature (UPF)1. The cohesive zone element is implemented as an UPF in ANSYS Mechanical for several reasons.
The first reason is to establish a framework for doing research in formulating cohesive zone models and finite element
formulations. The second reason is to have access to and control over the cohesive element formulation and options as
these heavily influence the results and convergence behaviour of the finite element model. The third reason is that by
implementing the cohesive element in a commercial FE code itis possible to do benchmarks of the different element
formulations using commercially available solvers as wellas facilitate easier collaboration with research partners.
Finally, implementing a cohesive zone element in ANSYS enables the possibility of defining non-standard element
result output. For the readily available cohesive zone elements in ANSYS it is only possible to read out and plot the
openings and tractions of the element in a more or less randomly defined local coordinate system defined by the node
numbering of the element.

The manuscript is organized as follows. Firstly, the cohesive element is described in Sec. 2. Then studies that
verify the implementation of the element and demonstrate the performance of the element are presented in Sec. 3.
This is followed by a study in Sec. 4 on the typical remedy to obtain convergent solutions in coarse meshes, which
involves an artificial reduction of the onset traction of thecohesive law. Finally, conclusions are provided in Sec. 5.

2. Cohesive element

The cohesive element is based on the quasi-static damage model from [15] and the element integration scheme
described in [16]. A short summary of the element formulation is presented in the following.

2.1. Kinematics and constitutive law

The traction-separation relation is formulated as an equivalent one-dimensional bilinear cohesive law, see Fig. 1.
The cohesive law relates the interface separation normλ and the equivalent one dimensional interface tractionµwhich
are defined as:

λ =
√

(δI )2 + (δs)2 where δI =
1
2

(δ3 + |δ3|) δs =
√

(δ1)2 + (δ2)2

µ = (1− Dk)Kλ
(1)

1A compiled version of the presented element implementationcan be granted upon e-mail request to the authors of this paper.
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whereδI is related to mode I crack opening andδs is a shear separation. The shape of the cohesive law is defined
by the initial stiffnessK, the equivalent one dimensional onset separationλo, and the equivalent one dimensional
critical separationλc which are functions of the mode mixityβ:

β =
δs

δI + δs
(2)

The onset separationλo and the critical separationλc are defined as:

λo =
µo

K
, λc =

2Gc

µo
(3)

The critical energy release rateGc and equivalent single mode onset tractionµo are in general mode dependent and
are therefore determined using a modified BK-criterion [15,19] expressed in the local opening displacement based
mode mixityβ.

Gc = GIc + (GIIc −GIc)Bη

µo =
√

(τIo)2 + [(τIIo)2 − (τIo)2]Bη

where B =
β2

2β2 − 2β + 1

(4)

where subscriptsI andII denote the pure modeI andII values, respectively, andη is an experimentally determined
mode interaction parameter. In 3D delamination problemsGIIc andτIIo in the modified BK-criterion are substituted
with Gsc andτso, respectively, implicitly assuming thatGsc = GIIc = GIIIc andτso = τIIo = τIIIo .

The damage criterion for quasi-static damage in incremental form is formulated such that the current damage at
any current timetc is given as:

Dk = min(max(0, st), 1) ∀ t ∈ [0, tc] where (5)

st =
λt

c(λ
t − λt

o)
λt(λt

c − λ
t
o)

(6)

Note, that the quantitiesλc andλo are dependent on the mode mixityβ. The opening displacement norm associated
with the current damageDk and mode mixityβ is defined as:

λD =
λoλc

λc − Dk(λc − λo)
(7)

The stiffness degrading damage variable is not meaningful for post-processing when evaluating the damage state in
the damage process zone which is defined as the area whereDk ∈]0, 1[. Instead an energy based damage variableDe

is used which is more meaningful in this regard. The energy based damage variableDe is defined as:

De =
Gc − wr

Gc
(8)

wherewr is the remaining ability to do non-conservative work per area of the interface and is given as:

wr =
1
2
λD(1− Dk)Kλc (9)

For crack propagation under constant mode mixityβ the energy based damage variableDe is proportional to the
energy dissipated per area interface. However, this is not the case for a variable crack loading mode situation. In such
situations the dissipated energy per areaEd is useful for post-processing:

Ed =

∫ λD

0
µdλ − Es (10)
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where the stored elastic energyEs is defined as:

Es =
1
2
µDλD (11)

The average mode mixity,βavg, and the average energy component mode-mixity given by theB−parameter in the
BK-criterion,Bavg, are defined as:

βavg =

∫ De

0
βdDe

De
, Bavg =

∫ De

0
BdDe

De
(12)

which proves to be useful measures in order to study in which mode the dominant part of the damage process at
each material point has taken place.

Both the dissipated energy per areaEd and the average mode mixities during the damage evolution,βavg andBavg,
are evaluated numerically using a 2-point Newton-Cotes integration rule.

2.2. Element formulation

The element is an 8-noded zero thickness brick element with linear interpolation of the separation of the upper
and lower surface on the middle surface where the natural coordinatesξ andη are defined, see Fig. 2. The numerical
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Figure 2: Cohesive element in undeformed and deformed configuration.

integration of the element internal force vector and the element tangent stiffness matrix is done according to the
adaptive integration scheme described in [16] which improves the accuracy of the response and ability to converge to
a solution. The adaptive integration scheme increases the number of integration points if an element is located in the
damage process zone (where areas of the elements are partly damagedDk ∈]0, 1[). This is illustrated in Fig. 3.
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Figure 3: Illustration of the adaptive integration scheme of [16] using a Gauss-Legendre quadrature rule.

2.3. Application and post processing capabilities

The cohesive zone element is implemented in ANSYS Mechanical [17] as a user programmable feature (UPF).
The finite element is coded in Fortran90 and compiled and linked with ANSYS using the Intel visual fortran compiler
[20]. The element can be accessed in ANSYS using the graphical interface during pre- and post-processing of the
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model. In order to create a mesh the automatic meshing feature for the element INTER205 is used as this element has
the same topology. As mentioned in the introduction it is only possible to read out and plot the openings and tractions
of the available cohesive zone elements in ANSYS. Furthermore, the ANSYS output is not coordinate transformed to
the element coordinate system meaning that the different mode openings are output more or less randomly according
to the node numbering of the individual elements. In the implementation presented here the element output has been
extended over the INTER205 element to also include:

• Element tractions and openings plotted in the element coordinate system (ξ, η)

• Stiffness damage parameterDk, cf. Eq. (5)

• Energy based damage parameterDe, cf. Eq. (8)

• Stored elastic energy per areaEs, cf. Eq. (11)

• Dissipated energy per areaEd, cf. Eq. (10)

• Mode mixityβ, cf. Eq. (2)

• Average mode mixities during the damage evolution,βavg andBavg, cf. Eq. (12)

The element output can be accessed through the post-processing GUI in ANSYS Mechanical to create contour
plots on the deformed and undeformed mesh.

3. Element verification and performance

The following studies have been conducted in order to verifythe element implementation and to quantify the
performance of the element relatively to the available ANSYS INTER205 element:

• Verify that the implementation can reproduce the applied mixed mode bilinear law in simulation.

• Verification of the implementation of the kinematics and thecoordinate transformations in rigid body translation
and rotation simulations.

• Verification of the bookkeeping of UPF elements when using automatic cohesive meshing facilities in ANSYS.

• Verification as well as a study on the influence of the nodal force and energy dissipation of the adaptive integra-
tion scheme in single element studies.

• Comparison of the implemented element and ANSYS INTER205 interms of the convergence rate and ability
to converge.

All studies are solved as a displacement controlled static analysis using the Newton-Raphson solver unless other-
wise specified.

3.1. Element implementation verification

In order to verify the element implementation several studies have been conducted on a single element model
shown in Fig. 4. Here the implementation of the kinematics, the coordinate transformations, and the constitutive
law of the cohesive zone element have been tested and verified. The model works in conjunction with a MATLAB
[21] script, that can generate nodal displacements for the element according to prescribed rigid body rotations and
rigid body translations, as shown in Fig. 4 (left). Opening displacements are always applied relative to the element
orientation so that the element should always provide the same results. In this way it can be verified whether the
formulation of the element kinematics has been implementedcorrectly. In order to also verify the implementation
of the constitutive law used as input, cf. Eqs. (1–4), complete sweeps of the (δ3,δs) opening displacement space
(normal, shear opening), i.e.δ3 ∈ [0, δ3c] andδs ∈ [0, δsc], are made by conducting a series of analyses at certain
directions in (δ3,δs) opening displacement space. The used material data for theelement verification test is shown in
Tab. 1. For each direction in (δ3,δs) opening displacement space an analysis is performed and data is recorded for
each substep in the Newton-Raphson solution. Using this procedure the entire (δ3,δs) opening displacement space
versus the traction normµ is simulated and collectively shown in Fig. 4 right, which within numerical roundoff errors
perfectly reproduces the theoretical mixed-mode constitutive law specified as input. These tests have been conducted
at several configurations of the element, i.e. at several combinations of rigid body rotations and translations.
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Table 1: Cohesive interface properties used in the verification studies of the element implementation.

GIc = 0.969 N/mm GIIc = 1.717 N/mm τIo = 4 MPa τso= 5 MPa K = 106 N/mm3
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Figure 4: (Left) Sketch of the one element model along with the element and global coordinate systems. (Right) The simulated relation between
the shear separationδs, positive normal separationδ3, and the traction normµ using the implemented element.

3.2. Element behavior - Mode I

The effect of the adaptive integration scheme for the cohesive element is easily illustrated by considering a simple
one element model loaded in pure mode I, see Fig. 5. The top andbottom surfaces of the element are considered rigid
and thus resemble a linear element. The node pair 1 and 5 and node pair 4 and 8 are loaded symmetrically with an
increasing mode I opening displacement,∆ = δ(1,5)

I = δ
(4,8)
I . The nodes 2, 6, 3, and 7 are hinged so that the cohesive

stress at locations between these node pairs are always zero. For simplicity the cohesive properties stated in Tab. 2
have been applied with a bilinear mode I cohesive law and an element length ofLe = 2 mm.

Table 2: Cohesive interface properties of the single element model used in the study of the implemented adaptive integration scheme.

GIc = 0.5 N/mm τIo = 10 MPa K = 107 N/mm3 δIc = 0.1 mm δIo = 10−6 mm Le = 2 mm

An analytical solution to the problem has been formulated and solved in Maple [22] . The analytical solution for
the reaction force per unit width,R, of the element at the edge having the prescribed displacement,∆, is given as

R=
∆KLe

3
∀ ∆ ∈ ]−∞, δIo] case 1 (13)

R=
δIoKLe(δIcδ2Io + 2∆3 − 3δIc∆2)

6∆2(δIo − δIc)
∀ ∆ ∈ [δIo, δIc] case 2 (14)

R=
δIoδIcKLe(δIo + δIc)

6∆2
∀ ∆ ∈ [δIc,+∞[ case 3 (15)

and reflect the three opening cases depicted in Fig. 5 which involves different states of damage within the cohesive
element.

In Fig. 6, the analytical solution for the reaction force perunit width, R, is shown as a function of the applied
opening displacement together with numerical solutions ofthe one element model having different quadrature rules.
In the legend the abbreviations NC and GL stand for Newton-Cotes quadrature and Gauss-Legendre quadrature,
respectively. The number is the number of integration points along each element in-plane coordinate.

All integration schemes predict the peak load quite accurately. However, the dissipated energy per unit width,
given by the area under the curve, depends significantly on the quadrature rule. Especially the 2 point Newton-Cotes

6



Postprint version, final version available at https://doi.org/10.1016/j.engfracmech.2017.05.026 E. LINDGAARD ET AL.

(5,8)

(1,4)

(6,7)

(2,3)

R

R

(5,8)

(1,4)

(6,7)

(2,3)

R

R

(5,8)

(1,4)

(6,7)

(2,3)

R

R

Case 1 Case 2 Case 3

Undamaged Partly damaged Fully damaged

PSfrag replacements ∆
≤
δ

Io

δ
Io
≤
∆
≤
δ

Ic

∆
≥
δ

Ic

δIoδIo δIc
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Figure 6: Reaction force per unit width along the element edge between node 1 and 4. The analytical solution is obtained with an element
formulation in Maple. The other curves are finite element solutions using different integration schemes. Note that the curves GL10-GL90 in the
graph are coincident with the analytical solution.

quadrature rule under predicts the energy dissipation by about 45%. The reason is due to premature failure when
the nodal integration points obtain full damage when reaching a prescribed displacement ofδIc = 0.1mmand thus
assume zero tractions throughout the element. In general the Gauss-Legendre quadrature rule performs better and
more accurately captures the dissipated energy. With a 10 point Gauss-Legendre quadrature rule an almost exact
solution is obtained with an error in dissipated energy below 0.5%. For this reason it is recommended to use at least a
10 point Gauss-Legendre quadrature rule within the adaptive integration scheme for the partly damaged elements in
the process zone. Remark, that similar attempts to derive analytical formulas for a single element model have been
done in [23] for a 4-noded 2D element. However, there seems tobe a misprint or error in the formulas reported in
[23] since the printed equations result in a discontinuous force-displacement curve.

3.3. Comparison with ANSYS INTER205

The following simulation results of a mixed-mode bending specimen serves to demonstrate that the element has
an improved convergence rate and ability to converge compared to ANSYS element INTER205 which has the same
element topology. INTER205 is based on the mixed mode constitutive law described in [13] which also uses a
bilinear law in the pure crack loading modes. The mixed-modebending specimen model is simulated by applying the
boundary conditions similar to the mixed-mode bending apparatus [24], see Fig. 7, with the dimensions and material

7



Postprint version, final version available at https://doi.org/10.1016/j.engfracmech.2017.05.026 E. LINDGAARD ET AL.

=
P> ?@

PSfrag replacements 0 1 2 3 4 5 6

Displacement w
1
 [mm]

0

50

100

150

200

250

300

350

400

450

500

550

Lo
ad

 P
LP

 [N
]

 =1/4

 =1

 =4

ANS
UPF
Camanho Max Load
LEFM
LEFM Propagation

PSfrag replacements

Figure 7: Finite element model of the mixed mode bending
specimen.

Figure 8: Simulation results of the MMB specimen. ANS: ANSYSINTER205
element. UPF: User programmed element. LEFM: Analytical solutions. Ca-
manho Max Load: Max loads as found in [14].

data reported in Tab. 3. The mixed-mode bending specimen is considered in three different mode mixitiesθ = GI/GII

= 1/4, 1, and 4 as defined in [14]. The dotted line in the model is a rigid load transferring element.

E11 E22 = E33 G12 = G13 G23 ν12 = ν13

122.7 GPa 10.1 GPa 5.5 GPa 3.7 GPa 0.25
ν23 GIc GIIc τIo τIIo
0.45 0.969 N/mm 1.717 N/mm 80 MPa 100 MPa
L h t K
102 mm 1.56 mm 25.4 mm 107 N/mm3

Table 3: Material data and dimensions for the mixed-mode bending specimen are taken from [14] and are for 24-ply unidirectional AS4/PEEK
(APC2) carbon fibre reinforced composite specimens. Pleasenote that the cohesize zone material properties not have been adjusted as suggested
in [25].

The FEA models using either the developed UPF element formulation or the ANSYS INTER205 (ANS) element,
respectively, use the same model setup, mesh size, and solution settings. The continuum of the mixed-mode bending
specimen is discretized with the 3D 8-noded ANSYS SOLID185 element using the enhanced strain formulation
having 1000 elements along the length, 1 element in the thickness, and 4 elements in the height of the specimen.
The element length of the cohesize elements is 0.128mm whichresulted in 10 elements in the cohesive zone for
mode-mixityθ = 4, 15-17 elements in the cohesive zone for mode-mixityθ = 1, and 22 elements in the cohesive
zone for mode-mixityθ = 1/4. The standard Newton-Raphson solution procedure with displacement control with
defaults settings and automatic time stepping has been applied. The maximum number of cumulative iterations until
convergence failure is set to 800. The results using the developed UPF element are shown in Fig. 8 and compared
to results using ANSYS INTER205 (ANS), Bernoulli-Euler beam based LEFM solutions, and the maximum load
predictions of [14].

The solutions from the UPF and ANS element in Fig. 8 for the initial linear part of the curves are almost identical
for all mode-mixities. Both solutions are more compliant than the LEFM solutions which are expected due to the used
assumption of rigid boundary conditions of the Bernoulli-Euler based LEFM solutions. The load for unstable crack
growth, see Tab. 4, predicted by the UPF and ANS element formulation are slightly different which might be due to
different mixed-mode interaction criterion employed in the formulations. From Fig. 8 it may also be noted that the
ANSYS INTER205 element formulation could not converge in the unstable propagation part for the different mixed-

8
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Table 4: Number of iterations used in the simulations until the maximum load and the predicted maximum load at which unstable crack propagation
occurs for three different mode mixitiesθ = GI /GI I = 1/4, 1, and 4. The abbreviation FTC stands for failed to converge in the entire solution range.

θ = GI/GII = 1/4 θ = GI/GII = 1 θ = GI/GII = 4
Method Load [N] Iterations Load [N] Iterations Load [N] Iterations

ANS 477.4 248 (FTC) 264.0 194 (FTC) 92.2 420 (FTC)
UPF 467.5 82 254.0 101 90.1 134
LEFM 513.5 - 277.5 - 97.3 -
Experimental [14] 518.7 - 275.4 - 108.1 -

mode configurations. Reaching the maximum load the Newton-Raphson procedure initiated successive cut-backs
until the maximum cumulative iteration number was reached.The UPF element formulation could obtain convergent
solutions in the entire solution range. In Tab. 4 the number of equilibrium iterations in the Newton-Raphson procedure
until reaching the maximum load is reported and it may be noted that the UPF element converges with much fewer
iterations compared to the ANSYS INTER205 element. The UPF element converges to the maximum load using
48%− 68% fewer iterations compared to the ANSYS INTER205 elementfor identical standard solution settings.

4. Study on onset traction

It is well-known that in order to obtain convergent solutions using cohesize zone elements requires a relatively
fine mesh. Typical recommendations suggest that the damage zone is discretized with a minimum of 3-10 elements,
see [26]. A typical remedy to obtain convergent solutions using coarser meshes is to artificially increase the length
of the damage zone by lowering the onset traction in the bilinear cohesive law keeping the critical energy release rate
fixed [26, 27]. In effect the finite element model may be discretized using larger elements and yet provide convergent
solutions and effectively reduce simulation time.

AB C

DE F

GH
a

L

Lstop

PSfrag replacements

Figure 9: Finite element model of the DCB specimen.

In the following the approach of lowering the onset tractionis investigated for different configurations of a DCB
specimen in order to provide new insight into the approach and outline recommendations of practical usage. Material
and geometric properties of the DCB specimens studied are based on [14] and are identical to those stated in Tab.
3. The DCB model, see Fig. 9, is discretized with the ANSYS SOLID185 element having 1000 elements along the
length, 1 element in the thickness and 2 elements along the height of each DCB arm. The numerical simulation is
conducted using the arc-length solver in ANSYS and the simulation is set to automatically stop when the crack has
grown a certain distance such that the crack tip lies in a distanceLstop from the clamped end, see Fig. 9. The crack
tip is defined as the point at which the normal opening displacement reachesδIc and thus provides full damage. The
DCB model is solved for different values of the onset traction as well as the initial crack length.

In Fig. 10 and 11, force-displacement simulation results ofthe DCB model with varying values of onset traction
are shown for an initial crack length of 32.9 mm and 0.1 mm, respectively. In the crack propagation part (region with
negative slope) all curves are coincident meaning that the global response is identical here. In the beginning and in
the end of the curves differences are apparent. In general, for lower values of onset traction the load for unstable crack
growth (peak load) is reduced and occurring at larger displacement. This is especially pronounced for the DCB model
with an initial short crack of 0.1 mm, cf. Fig. 11. The endpoints of the force-displacement curves are connected to
origo to make the endpoints visible. By inspecting the endpoints it is observed that the crack reaches its final length at
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Figure 10: Force-displacement simulation results of DCB model with
initial crack length of 32.9 mm with different values of onset traction.
Stop criterion for the analysis set toLstop= L/7.

Figure 11: Force-displacement simulation results of DCB model with
initial crack length of 0.1 mm with different values of onset traction.
Stop criterion for the analysis set toLstop= L/1.2.

larger displacement,w, at lower values of onset traction. Thus, lowering the onsettraction provides more compliant
response due to longer cohesive zones, whereas the value of onset traction is less important w.r.t. crack propagation.

To draw further conclusions from the results in Fig. 10 and 11a numerical experiment is conducted in which the
load for unstable crack growth is recorded for different combinations of initial crack length and onset traction. The
results from this parametric study are shown in Fig. 12 and concludes that the load for unstable crack growth is very
sensitive to the onset traction for short initial cracks whereas it is practically independent for large crack lengths.The
reason for this is due to different relative interaction with the structural response, i.e. lower onset traction will produce
longer cohesive zones and thus increase the compliance of the interface resulting in an apparent longer crack length.
For short initial cracks this slight decrease in complianceof the interface, which is equivalent to a slight increase in
crack length, will have strong structural interaction whereas it for relatively long cracks has no impact.

Thus, the study concludes that care must be taken if the approach of lowering the onset traction for obtaining
convergent solutions in relatively coarse meshes is followed in cases where crack initiation or crack propagation of
relative small cracks is to be examined using cohesive zone elements.
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Figure 12: Predicted maximum load for unstable crack growthas function of initial crack length and onset traction of a DCB specimen.

5. Conclusion

A state-of-the-art cohesive zone finite element has been formulated and implemented in ANSYS Mechanical as
a user programmable feature. The cohesive zone finite element is an 8-noded zero thickness brick element having
a mixed-mode bilinear constitutive law defined by the modified BK-criterion and an adaptive numerical integration
scheme is applied for improved accuracy and convergence behaviour of the elements. Additionally, non-standard
post-processing options have been defined and implemented to precisely analyse the type and amount of delamination
during simulation. The developed finite element has been verified on several examples and proves superior compared
to the commercially available cohesive zone finite element INTER205 in ANSYS.

The typical remedy to obtain convergent solutions having coarser meshes is to artificially increase the length of the
damage process zone by lowering the onset traction. A detailed study on DCB specimens showed that this approach
may severely change the structural response and thus the maximum load for unstable crack growth. It was found that
the effect on the structural response severely depends on the length of the initial crack. Thus special care must be
taken and the authors do not recommend to use the approach forstudies of crack initiation or crack propagation of
relatively short cracks.

The presented cohesive finite element implementation in ANSYS Mechanical provides a framework for further
research and development of cohesive zone models as well as making additional state-of-the-art simulation capabilities
readily accessible.
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