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On compliance and buckling objective functions in topologyoptimization
of snap-through problems

Esben Lindgaard - Jonas Dahl

Abstract This paper deals with topology optimization of Keywords Topology optimization Buckling - Structural

static geometrically nonlinear structures experiencimaps  stability - Critical load- Geometrically nonlinear Design

through behaviour. Different compliance and buckling cri-sensitivity analysis

terion functions are studied and applied for topology opti-

mization of a point loaded curved beam problem with the

aim of maximizing the snap-through buckling load. The re-

sponse of the optimized structures obtained using the con- Introduction

sidered objective functions are evaluated and comparegl. Du

to the intrinsic nonlinear nature of the problem, the loadsince the introduction of the topology optimization method

level at which the objective function is evaluated has a &em in the seminal paper Bendsge and Kikuchi (1988), this method

dous effect on the resulting optimized design. has been used to optimize a wide range of mechanical and
A well-known issue in buckling topology optimization is non-mechanical problems. The reader is referred to the mono

artificial buckling modes in low density regions. The typica graph Bendsge and Sigmund (2003) for an excellent overview

remedy applied for linear buckling does not have a naturadf this field. An important failure mode in structural ele-

extension to nonlinear problems, and we propose an alternasents is stability (buckling). Stability is especially tazal

tive approach. Some possible negative implications ofgusinfor topology optimal designs that often are characterized b

symmetry to reduce the model size are highlighted and ihaving a thin frame-like structure that inherently is prome

is demonstrated how an initial symmetric buckling responséuckling. Only few topology optimization papers deal with

may change to an asymmetric buckling response during thstability and most of these are restricted to linear elastic

optimization process. This problem may partly be avoidedtructural responses. Furthermore, stability is oftersibn

by not exploiting symmetry, however special requirementsred as a constraint in a stiffest design problem or an objec-

are needed of the analysis method and optimization formutive in a reinforcement problem. The focus of the present pa-

lation. We apply a nonlinear path tracing algorithm capableer is maximization of structural buckling load using diffe

of detecting different types of stability points and an epti ent compliance and buckling objective functions and com-

mization formulation that handles possible mode switchingparison of the responses of the obtained designs. As geo-

This is an extension into the topology optimization realmmetrically nonlinear (GNL) modeling is applied, the load

of a method developed, and used for, fiber angle optimizaevel at which the design sensitivities are evaluated is sig

tion in laminated composite structures. We finally discussnificant. Therefore, the compliance and buckling objective

and pinpoint some of the issues related to buckling topolog§unctions are evaluated at different load levels and the re-

optimization that remains unsolved and demands further results of optimization are compared. A curved beam problem

search. that exhibits snap-through behavior is used as an example of
a generic buckling problem. We discuss some of the prob-
Esben Lindgaard) - Jonas Dahl _ o lems pertaining to optimization of buckling problems such
ggfgrténsmvc:rg/i';?E?;ggsipaimaggacw”ng Engineering, as artificial local buckling modes and slow optimizationcon
DK-9220 Aalborg East, Denmark vergence when using buckling load as the objective function
E-mail: elo@m-tech.aau.dk instead of using buckling load as a constraint. Furthermore

some possible negative implications of exploiting symmetr
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in the modeling of buckling problems for topology optimiza- ometrically nonlinear analysis. To further examine this we
tion, such as undetected mode switching, are demonstratebdenchmark different linear and nonlinear stiffness cater
To the authors’s knowledge the first work on optimiza-against the nonlinear buckling formulation with the aim of
tion of buckling problems was Khot et al (1976) and Olhoffimproving the buckling resistance.
and Rasmussen (1977) where a linear modeling approach A known problem in topology optimization of buckling
was employed for sizing of space truss structures and shapgoblems is that local artificial buckling modes may emerge
optimization of columns, respectively. This work was fur- in low-density regions during the optimization procesg se
ther developed and extended to topology problems in Nevedeves et al (1995, 2002). The standard solution for linear
et al (1995), Min and Kikuchi (1997), and ManickarajahaProblemsis to use different penalization schemes for the li
et al (2000). The topology optimization approach was ex£ar stiffness and the stress stiffness matrices. In segtioa
tended into the geometrically nonlinear realm in Buhl et aishow that this approach does not have a natural extension to
(2000) where structures undergoing large displacemermes wé@onlinear buckling problems due to inconsistencies within
optimized for stiffness. This work continued with optimiza the equilibrium problem and within the design sensitivity
tion of nonlinear snap-through structures in Bruns et ad@0 analysis and we discuss alternative approaches.
and Bruns and Sigmund (2004). Geometrically nonlinear ~The structure of the present paper is as follows: In sec-
modeling was introduced in optimization bfickling prob-  tion 2we describe the used computational approach focstati
lems in Sekimoto and Noguchi (2001) and Kemmler et agnd buckling analysis for the geometrically linear and non-
(2005). In the former article, structures are optimizecdie f  linear case. In section 3, we give a brief overview of the
low a certain load-displacement path, whereas in the lattdPpology optimization method as it is used in this paper. In
article the compliance of the structures is minimized withsections 4 and 5 we introduce the different compliance and
a constraint on the lowest buckling load using an extendefuckling based objective functions and associated opéimiz

system of equations where the critical points are calcdlatetion formulations that are compared in the numerical stidie
directly. in section 6. The paper concludes with a discussion of the

In this paper we employ an alternative method originally™ain findings in the numerical studies.

introduced in Lindgaard and Lund (2010) and Lindgaard
et al (_2010) for non!mear limit load buckl!ng thlmlzanon 2 Static and buckling analysis
of laminate composite shell structures using fiber angles as

continuous design variables, and lately extended to handighg finjte element method is used for determining the buck-
both bifurcation and limit point instability in Lindgaarahd ling load of the structure, thus the derivations are givea in

Lund (2011). Optimization w.rt. stability is accomplishe iyite element context. The applied finite element is a stan-

by including the nonlinear response in the optimization for 45, displacement based eight node isoparametric plasstr
mulation using a path tracing analysis. The nonlinear pat,iq element.

tracing analysis is stopped when a stability point is eneoun
tered and the critical buckling load is approximated at a pre
critical load step according to the “one-point” approach, i 2.1 Linear static and buckling analysis
the stiffness information is extrapolated frame precrit-
ical equilibrium point until a singular tangent stiffness i Linear buckling analysis is a classical engineering method
obtained. Design sensitivities of the critical bucklingudb for determining the buckling load of structures. The method
factors are obtained semi-analytically by the direct diffe gives numerical inexpensive predictions of buckling with
entiation approach on the approximate eigenvalue problemstability point, i.e. singular tangent stiffness. Linearck-
described by discretized finite element matrix equations. Aing analysis is based upon linear static analysis where the
number of the lowest buckling load factors are considerestatic equilibrium equation for the structure may be wnitte
in the optimization formulation in order to avoid problems as
related to “mode switching”, i.e. the order of the eigenealu
in the buckling problem may change.

Simple stiffness criteria have also been studied in the atdereD is the global displacement vectd£,, is the global
tempt to improve the buckling load. Lee and Hinton (2000)initial stiffness matrix, and® the global load vector.
studied linear strain energy minimization of shells with-si Based on the displacement field, obtained by the solu-
ing and shape variables considering the improvementin nortion to (1), the element stresses can be computed, whereby
linear buckling limit load. They found for some examples anthe stress stiffening effects due to mechanical loading can
improvementin the nonlinear buckling load and for others &e evaluated by computing the initial stress stiffness imatr
decrease and argued for the importance of accurately check:, . By assuming the structure to be perfect with no geomet-
ing the stability limit of optimized shell structures by ge- ric imperfections, stresses are proportional to the loaels,

K,D = R (1)
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stress stiffness depends linearly on the load, displacesmen

at the critical/buckling configuration are small, and thado x- * .

is independent of the displacements, the linear buckliogpr e . T ..
lem can be established as S
(Ko + N Koy =0, j=1,2,....7 2 ®,€>\

where the eigenvalues are ordered by magnitude, such thatg ',' ’\.

A1 is the lowest eigenvalue, i.e. buckling load factor, and 3 ! N,

¢1 is the corresponding eigenvector, i.e. buckling mode. In . \\

general the eigenvalue problem in (2) can be difficult to ,"

solve, due to the size of the matrices involved and large ;. | ---- Fundamental equilibrium path
gaps between the distinct eigenvalues. For efficient and ro- S — - — Unstable bifurcation path
bust solutions, equation (2) is solved by a subspace method J > Load limit point

with automatic shifting strategy, Gram-Schmidt orthogena X Srect”tt')lcalbﬂo'm i int
ization, and the sub-problem is solved by the Jacobi itera- N g P:esc?ncz ;);rrff on poin
tions method, see Wilson and Itoh (1983). ! S

Displacement -

Fig. 1 Detection of stability point in step 2 and chosen precritszui-
2.2 Geometrically nonlinear static and buckling analysis librium point for the nonlinear buckling problem in case ofstable
bifurcation and limit point instability.

Better predictions of structural buckling with stabilitgipts Total Lagrangian formulation is written as (see .g. Brénde
than that available by linear buckling analysis may be actde . e
y g y y and Ramm (1980); Hinton (1992))

by nonlinear buckling analysis. The method incorporates ge
ometrically nonlinear analyses and applies for both bifUrKT(Dn,,yn) sD = R*! _ Fn 3)
cation and limit point instability. The proposed procedure n o m 0 om " m
for nonlinear buckling analysis is schematically shown inKT(D 7") = Ko + Kp(D",7") + Ko (D",7") - (4)
Fig. 1 and consists of the steps stated in Algorithm 1. DurKT = Ko + Kt + Kg (5)
ing a geometrically nonlinear analysis the fundamental st
bility point is detected if it exists. Two stability situatis are
depicted in Fig. 1: an unstable bifurcation point and a loa
limit point. In both cases the stability point is detected by
the procedures described in Sect. 2.2.1.

%HeresD is the incremental global displacement vecior,
églobal internal force vector, anR"*! global applied load
vector. The global tangent stiffneKs;. consists of the global
initial stiffnessK, the global stress stiffneds?”., and the
global displacement stiffneds}. The applied load vector
R™ is controlled by the stage control parameter (load fac-
Algorithm 1 Pseudo code for the nonlinear buckling analy-tor) v according to an applied reference load vedtor
sis
1: Geometrically nonlinear (GNL) analysis by arc-lengthtineel R"=+"R (6)
2: Monitor and detect stability point during GNL analysis
3: Re-set all state variables to configuration at load stepjefore ~ The incremental equilibrium equation (3) is solved by the
stability point - a precritical point arc-length method, Crisfield (1981). During the nonlinear
4: Perform eigeanc_:kling_analysis on deformed configunasitload path tracing analysis we can at some converged load step
step before stability point . . . L . . o
estimate an upcoming critical point, i.e. bifurcation onit
point, by utilizing tangent information. At a critical pdithe

We consider geometrically nonlinear behaviour of struc@ngentoperatoris singular

tures made of Iinear_elast_ic materials. We adopt thg thal LaKT(DC, ); =0 @)
grangian approach, i.e. displacements refer to the iitial

figuration, for the description of geometric nonlinearityda where the superscriptdenotes the critical point angl; the

use the nonlinear Green-Lagrange strain measure togethauckling mode. To avoid a direct singularity check of the
with the work consistent second Piola-Kirchhoff stress. Antangent stiffness, it is convenient to utilize tangent infa-
incremental formulation is suitable for nonlinear probtem tion at some converged load ste@and extrapolate it to the
and itis assumed that the equilibrium at load stépknown  critical point. The one-point approach only utilizes infaa-

and that the equilibrium at load step+ 1 is desired. Fur- tion at the current step and extrapolates by only one point,
thermore, it is assumed that the current load is independesee Brendel and Ramm (1980) and Borri and Hufendiek
on deformation. The incremental equilibrium equation & th (1985). The stress stiffness part of the tangent stiffnetbea
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critical point is approximated by extrapolating the noalin 3 Topology optimization approach
stress stiffness from the current deformed configuratica as

linear function of the load factoy. The goal of a structural topology problemis to determine the
optimal material distribution layout, i.e. the optimal mat
K, (D¢ ~¢) =~ MK, (D", 7") = AKL (8)  rial density distributiorp within a given design domain that

minimizes a given objective function subject to prescribed
It is assumed that the part of the tangent stiffness consiseonstraint functions. Here, the design domain is defined by a
ing of K andK does not change with additional loading, continuum discretized by finite elements, thus reducing the
which holds if the additional displacements relative to thetopology problem to determination of the densities within
current deformed configuration are small. The tangent stiffeach finite elemeng.. The density variable may take the

ness at the critical point is approximated as values from zero to one, i.e. void to solid material. The ma-
terial model of the finite element is related to the density
K1 (D% ~v°) ~ Ko + K + AK, (9) variables through weight functions. also known as mate-

rial interpolation schemes

and by inserting into (7) we obtain a generalized eigenvalue .
problem El=w.E (12)

Ve = w, V, (13)

K K7 = - \NK" 0, 10
(Ko + K1) &; Ko (10) whereE is a reference constitutive matrix of the bulk ma-

where the eigenvalues are assumed ordered by magnituE?é'aI and_Ve IS the ele_ment volume_. A selec_tlon of differ-
such that\, is the lowest eigenvalue an# the correspond- ent material interpolation schemes is stated in Table 1. The

ing eigenvector. The solution to (10) yields the estimate fo

the critical load factor at load stepas Table 1 Material interpolation schemes;.. The density variable.
may take the values < pe < pe < 1, wherep is a minimum den-

,YJQ _ >\j’y" (11) sity \_/alue, typicallyp = 0.001, to avoid a singular structural stiffness
matrix.

If A1 < 1 the first critical point has been passed by the path Scheme #| Weight function,we

tracing analysis and ik; > 1 the critical point is upcom- 1 o= pe

ing. The one-point procedure works well for both bifurca-

tion and limit points. The closer the current load step gets 2 o= pB

to the critical point, the better the approximation becomes

and it converges to the exact result in the limit of the caitic 3 We= pmin + (1 — pmin )"

load.

4 uje: Op if Pe < Peutoff
2.2.1 Stop criteriain GNL analysis wezpe 1 pe 2 paor

Several different stop criteria are applied for the GNL anal

yses from which an equilibrium point is determined for themost simple material model would be a linear scaling (scheme
design sensitivity analysis during the optimization. e th 1) of the stiffness and volume according to the density vari-
case of buckling with a stability point in the form of a limit able p.. This approach leads to optimal designs containing
point, a limit point detector criterion may be used. The timi many grey areas which are unwanted. In order to obtain in-
load is simply detected by monitoring the load factor in theteger 0-1 solutions that may be manufactured with bulk ma-
GNL analysis, see (3). When the load factor from two sucterial, i.e. solutions containing only void and solid, pena
cessive load steps decreases the previous converged loadzation of the objective function for intermediate deresti
defined as the limit load. A bifurcation point detector, as de can be introduced. The very popular SIMP-approach (Solid
scribed in Lindgaard and Lund (2011), may be applied insotropic Material with Penalization) (scheme 2), see Bend
case of bifurcation buckling. For bifurcation pointdetent  sge (1989); Rozvany et al (1992); Bendsge and Sigmund
nonlinear buckling analysis by (10) is performed at précrit (1999, 2003), is applied only to the stiffness interpolatio
cal stages during GNL analysis as a singularity check on thim (12) and penalizes the objective function implicitly whe
tangent stiffness. Finally the GNL analysis may be stoppethe penalization parametgr > 1. In this work we apply

at a prescribed load level. This stop criterion is applied t&SIMP (scheme 2) for all stiffest structural design problems
investigate the effect of evaluating the design sendiiit Artificial modes may appear in low density regions when
close or far away from the buckling point. the stress stiffnes¥{,,, becomes high compared to the ini-
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tial stiffness,Kg, thus producing localized artificial buck- The success of the approach in the case of the linear
ling modes. For linear buckling topology optimization one buckling problem is due to the fact that the linear statidpro
of two approaches is normally applied in order to circum-lem in (1) and the linear buckling problem in (2) are weakly
vent problems with artificial buckling modes in low density coupled, i.e. the nonlinear stress stiffness is assumed-to b
regions. Both approaches apply different material interpo have linearly with respect to the applied loading and not
tion schemes on different stiffness terms in the static probinfluence the deformation configuration of the static prob-
lem and in the buckling problem. The approach proposetem. For the nonlinear buckling problem there is a strong
by Neves et al (1995) is simply to ignore the stress stiffnessoupling between the tangent stiffness terms and the defor-
contribution of low density elements by applying schememation configuration, and thus a strong coupling between
2 for initial stiffnessKqo and scheme 4 for stress stiffnessthe static problem in (3) and the buckling problem in (10),
K., wherepguoif defines a cufoff value on the element den-which makes the above approach unsuitable.
sities. Since this approach may give rather abrupt changes g ayoid artificial buckling modes and to ensure consis-
in the values of the objective and design sensitivities a”%ncy in the geometrically nonlinear static problem, in the
thereby cause oscillations of the optimization, Bends@e an:ase of nonlinear buckling topology optimization, we pro-
Sigmund (2003) proposed a differentiable version of the aPpose to apply material interpolation scheme 3atbtan-
proach by introducing a slightly different smooth intemol  gent stiffness terms as well as to the residual. This seems
tion of the initial stiffness term as, to eliminate problems with artificial buckling modes such
that (10) produceeeal structural buckling modes, while re-
taining consistency in the static problem and design Sensit
ForK,: E¢f :136 E = [p2]E ity analysis. Furthermore, we have not observed any conver-

(14)  gence difficulties in the geometrically nonlinear statiokpr

lem due to low density regions. It does, however, result in a

where scheme 2 is applied for stress stiffness and scher’gﬁghﬂy overly stiff structure due to the remaining stis
3 is applied for initial stiffness. The,,, is set such that ¢ |ow density elements. Singg,., in scheme 3 is set very
problems with artificial modes are avoided when the elemeqbwi typically the same as the lower bound dengifythis

densities. are around their lower bound valpeHowever,  oes not seem to influence the results significantly.
a too largep,,,;, results in unrealistic high stiffness of the

supposedly void elements. In this work we apply the inter-
polation schemes in (14) in order to avoid artificial bucglin
modes in the linear buckling problem.
In the case of nonlinear buckling, see (10), it is temptingFiltering and continuation approach
to use a similar approach by stating that

For KO : Egﬁ :uzje E= [pmzn + (1 - pmzn)pg] E

The well-known problems with checker boarding due to the

3 .
ForKo: E&"=w.E = [pmin + (1 — pmin)pP] E use of low order elements which are prone to shear lock-
For K, : E%ﬁ 2136 E = [pmin + (1 = pmin) 0P ] E ing have _bee_n avoide(_j by the use of quadra_tic 9Iem_ents and
ForK,: E :156 E = [?|E thus no filtering techniques have been applied in this work.

This means that the obtained designs are mesh-dependent.
This is, however, not considered a problem since the finite
This will however lead to inconsistencies between the residelement mesh is kept fixed in all numerical studies and the
ual, Q, and the tangent stiffnesk, which can result in scope of the present work is to compare different perfor-
slow convergence or even non-convergence of the static prgpance criteria used in topology optimization.

lem, since Itis well-known that the resulting topologies to some ex-
tent depend on choices of optimization parameters and star-

(15)

n . n+l _ n — _

70D =R F Q (16) ing guessing. In order to counteract this problem we apply a
2Q =Ki =Ko+ K} + K~ (17) continuation approach, see Buhl et al (2000); Bendsge and
D Sigmund (2003), for the control of the penalty parameter

The inconsistencies arise due to the fact that the inneeforc in Table 1. The penalty parameter is initially setpto= 1
contained in the residual are based upon the element stressand gradually increased to a valuepof= 3 during the op-
which are not uniquely defined when using the aforementimization process. Fop = 1 it resembles the so-called
tioned interpolation scheme. Similar inconsistencieseari variable-thickness-sheet problem having many grey areas,
in the design sensitivity analysis of the nonlinear buaklin i.e. elements with intermediate densities, which at least f
problem in (10) when using different material interpolatio the linear compliance problem is known to be a convex prob-
schemes for the different tangent stiffness terms. lem.
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4 Objective functions 4.4 Nonlinear buckling

A range of different objective functions are investigatada The nonlinear buckling load is determined at a precritical
considered for maximization of the lowest buckling load.load level using the one-point approach by solving the eigen
The objective functions are described in the following andvalue problem in (10) and estimating the buckling load by
comments about the design sensitivity analysis of the diflinear extrapolation in (11). Better predictions of the kbuc
ferent objective functions are given. The equations for thding load are generally obtained by nonlinear buckling anal
design sensitivity analysis are stated in Appendix A. ysis compared to the traditional linear buckling analysis.
Conversely, nonlinear buckling analysis is more compdidat
and numerical expensive than linear buckling analysisesinc
it requires geometrically nonlinear analysis to trace tig-e
4.1 Linear compliance librium path. The nonlinear buckling load is formulated as
an objective function by the procedures originally progbse
Linear compliance’;, is defined as the work done by the in Lindgaard and Lund (2010) and Lindgaard et al (2010).
applied loads at the equilibrium state expressed in terms dfhe expressions for the design sensitivities are as for the

the linear static equilibrium equation stated in (1). other objective functions described in Appendix A. In this
work only simple eigenvalues have been considered since
C.(D)=R'D (18)  multiple eigenvalues have not been encountered in the nu-

merical studies. In case of multiple eigenvalues the sgnsit

ities may be computed and handled by the methodologies

proposed by Seyranian et al (1994); Neves et al (1995); Du
4.2 Nonlinear end compliance and Olhoff (2007).

Nonlinear end complianc€ sy, is defined as the work S _
done by the applied loads at the equilibrium state at the findt Optimization problem formulations

load stepn expressed in terms of the nonlinear incremental
equilibrium equation stated in (3). Two types of optimization formulations are applied in this

study in the attempt to improve the buckling resistancegusin
topology optimization. The design variables in the numeri-
cal studies are the element topology density variabletn
case of compliance objective the problem is formulated as a
The expression for the nonlinear end compliance in (19) i$imple minimization problem based on either linear or geo-
in general dependent on both the displacemddtsand the  metrically nonlinear analysis.

external loadR™ at the final load step. Considering design

changes, the nonlinear end compliance criterion applied in ~ Objective: mpin C

this study is only considered dependent upon the displace-

Conz (D™, R") = (R")T D" (19)

mentsD" at the chosen load step whereas the applied Subject to: State equation (1) or (3)
load R" is considered independent upon design changes, N,

i.e. Canr(D™(p), R™) where the design variables, e = Z 0V <V

1,..., N, are collected inp. = -

0<&§p€§17 6:15"'7]\]6

wherep. andV,, respectively, denote the density variable
4.3 Linear buckling and volume of element, V' is the maximum allowable vol-

ume, andp. is lower bound density valug{ = 0.001) to
The linear buckling load is obtained as the lowest eigervaluavoid a singular structural stiffness matrix.
of (2). Traditionally, the linear buckling load is considdr In case of buckling objective the optimization problem
as objective when the task is to improve the buckling reis formulated as a max-min problem. The direct formula-
sistance of structures and therefore applied in the study d®n of the optimization problem in the case of the max-min
a frame of reference. However, for topology optimizationproblem can give problems related to differentiability and
problems, linear buckling is typically applied as a conistra fluctuations during the optimization process due to “mode
in a stiffness design problem or as objective in a reinforceswitching”, i.e. the order of the eigenvalues in the budklin
ment problem. Thus, studies with linear buckling as objecproblem may change, e.g. the second lowest eigenvalue can
tive in general topology optimization problems are limited become the lowest. An elegant solution to this problemis to
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make use of the so-called bound formulation, see Bendsgestabilities are not present for the initial design. Tliere,

et al (1983), Taylor and Bendsge (1984), and Olhoff (1989)symmetry is applicable to reduce the model size for the ini-
A new artificial variableg is introduced as a new objec- tial design. In the optimization studies two configurations
tive function. An equivalent problem is formulated, whereof the beam are considered; a symmetric model and a full
the previous non-differentiable objective function isnsa  model. In the symmetric model only a half beam is analysed
formed into a set of constraints. In the case of either lineaby applying symmetry boundary conditions along the sym-
or nonlinear buckling objective, the mathematical programmetry line (marked with a hatched line in Fig. 2). The full
ming problem is formulated as model is utilized to investigate whether asymmetric efect

Objective: max 3 are introduced during optimizaton of the symmetric model.

P, B

Subjectto: 7§ > 3, j=1,...,Ny 6.1 Optimization of symmetric model

State equation (1), (2) or (3),(10)
For the symmetric model a range of different optimization

NE! . . . B . .
Zp V. <V formulations based upon different objective functionshwit
pat co the aim of maximizing the lowest buckling load is bench-
pe < pe<Pe, e=1,...,N, marked. These include linear compliance, nonlinear end com

Bliance, and nonlinear buckling load. In order to study the
influence of the chosen load level for the compliance mini-
mization, three optimizations have been performed

The mathematical programming problems are solved by th
Method of Moving Asymptotes (MMA) by Svanberg (1987).
The closed loop of analysis, design sensitivity analysi an
optimization is repeated until convergence of the desigih va 1: Linear compliance

ables or until the maximum number of allowable iterations 2: Nonlinear end compliance at limit point

has been reached. 3: Nonlinear end compliance at postbuckling load< 30)

. Optimum topologies and their final equilibrium curves from
6 Generic 2D curved beam problem the topology optimization studies on the symmetric model

) _ are shown in Fig. 3. The optimum topologies for optimiza-
A generic plane stress buckling problem of a curved beam;q,g 1-3, which all have compliance type objective func-

see Fig. 2, is applied in this study. 2040 standard 2D 8-nodegh s are very different from each other and so are their

structural performance. Optimization 2, which minimizes
nonlinear end compliance at the limit load, has a higher
buckling load than optimization 1 which minimizes linear
compliance. Optimization 3 minimizes nonlinear end com-
pliance in the postbuckling regime at a load factorof
30. Here the displacement configuration of the structure is
f completely different since its shape is fully inverted amereby
nearly perfectly loaded in a tension membrane fashion. The
r = 5.05m h =0.1m obtained topology design by this optimization is completel
t = 10mm a =0.1993rad  different from those from optimization 1 and 2 and has a
g: ;;’SGPG fi éo?f“N much lower snap-through buckling load but a much higher
' postbuckling stiffness. This clearly demonstrates theamp
Fig. 2 Geometry, loads, boundary conditions, and material ptser tgnce of geometrically nonlinear effects and that speeiad ¢
for the 2D curved beam problem. should be devoted to choosing a proper load level for the
stiffness optimization. This is due to the fact that the load
quadratic isoparametric displacement based finite elesnenlevel dictates the displacement configuration and that the
are used to model the entire beam. The volume constraint f@ompliance minimization thereby maximises the stiffness
the topology optimization is set &% of the initial design. according to that displacement configuration.
The structural response of the initial grey topology design  Finally, the limit point buckling load has been optimized
with all element densities set o = 0.5 and a penalty pa- directly by the nonlinear buckling load criterion in optirar
rameter ofp = 1 is shown in Fig. 3. The stability of the tion 4. The topological design and structural performasce i
initial design is governed by a snap-through limit point in-very similar to optimization 2, thus minimum end compli-
stability with a symmetric buckling mode behaviour. Asym-ance at the limit load seems to be a good criterion for im-
metric buckling responses in the form of bifurcation-typeprovement of the buckling performance.

Concentrated Load?
Center displacement,
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Fig. 3 Load-deflection curves for optimum designs of symmetric ehathtained by geometrically nonlinear analysis.

To validate the designs, full models are generated bgince a path tracing algorithm in a geometrically nonlinear
mirroring the topological designs and complete geometrianalysis typically just traces the fundamental equilibriu
cally nonlinear assessments are carried out. Surprisiitigly path, which corresponds to a symmetric response, without
turns out that new stability points of the bifurcation typethe capability to detect critical points. Therefore, datkad
have been introduced during the optimization for optimizaimethods which incorporate special features in the analysis
tion 1-4. The consequence of this is that the bifurcatiorkbuc method and optimization formulation are required in order
ling load for optimization 4 is less than half of the limit poi  to reliably deal with this problem. Such a method is de-
buckling load. The loading point, secondary path, and buckscribed and applied in the following for topology optimiza-
ling mode for the bifurcation point are shown in Fig. 3 andtion of a full model of the curved beam.

4, respectively. For the sake of clarity, the secondary path
and buckling mode are only shown for optimization 4. The
bifurcation buckling load factors for optimizatidi; 2; 3;4] 6.2 Optimization of full model

arevyy;; = [4.25;4.45;0.76; 4.55], and are all well below
the limit point buckling load factors of the designs. The full model is now considered for nonlinear buckling

topology optimization and referred to as optimization SréHe
the nonlinear buckling load criterion is applied as objexti
and set up to handle both bifurcation and/or limit point buck
ling. The numerical procedure in optimization 5 is as fol-
lows: First, a nonlinear buckling analysis is performed by
the procedure described in Algorithm 1 taking geometnjcall
nonlinear prebuckling deformations into account. The non-
linear buckling problem in (10) is solved at the deformed
This clearly demonstrates that special care should beonfiguration just before the critical point, i.e. limit poior
taken when applying symmetry even though the initial de-bifurcation point, and the design sensitivities are evalda
sign has a completely symmetric structural response. $his for a specific number of buckling loads, thus taking care of
due to the fact that the validity of the symmetry conditionspossible mode switching during the optimization proceas vi
may be altered during the optimization process. This alsthe use of the bound formulation. Finally, the MMA opti-
means that the obtained designs by compliance minimizanizer makes a design update and the procedure is repeated
tion cannot be trusted when there is the risk that new stauntil convergence.
bility points may be introduced during optimization. Ttss i During optimization 5 it has been verified that the funda-
also the case when minimizing compliance of a full modelmental critical buckling mode changes during the optimiza-

Fig. 4 Asymmetric bifurcation buckling mode of optimal designrfro
optimization 4 on symmetric model.
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Fig. 5 Structural responses of two successive designs from tlwagyp optimization of the full model of the curved beam usthg nonlinear
buckling optimization formulation (optimization 5). It igerified that mode switching takes place during the optitioreprocess. Note that the
drop in buckling load and structural stiffness is due to amease in the penalty paramegeused in the material interpolation scheme.

tion process as suggested by the studies of the symmetric The final optimized topology design from optimization
model. This is clearly illustrated in Fig. 5 where the struc-5 is shown in Fig. 6 together with its equilibrium curve and
tural responses from complete geometrically nonlinear asstructural response characteristics. This design is cetelyl
sessments are depicted from two successive designs duridgferent from those from optimization 1-4 by that it is fyll
the optimization process of optimization 5. At first, the fun reinforced along the top and bottom edge of the beam which
damental buckling mode is governed by a limit point insta-gives it high bending stiffness. The buckling load of this de
bility which has a symmetric response. After reaching thissign isy¢ = 10.49 and over twice as high (actualiy31%

limit point a bifurcation point appears on the unstable patthigher) as the best designs from optimization 1-4 which have
of the equilibrium curve. In the next design iteration thie-cr  bifurcation buckling load factors of;; ; < 4.55.

ical points have changed position such that the bifurcation . o .
point related to an asymmetric mode now has become the From the deformation modes shown in Fig. 6, which match

fundamental one. Note that the reason for the decrease i€ depicted equilibrium configurations, it is observed tha
overall buckling load and stiffness of the structure betwee the beam initially deforms symmetrically. When the limit
the two design iterations is due to an increase in the penalfjQint is reached the structure starts to deform asymmetri-
parameter used in the material interpolation scheme. @urincally and continues to do so throughout the entire unstable
the remainder of optimization 5 a number of incidents withPart of the equilibrium curve. Finally, the structural sbap
mode switching have been observed. This however did ndplly inverted (concave, rather than the convex undeformed
result in any oscillating behaviour of the objective fupati  Shape) and the structural response again becomes symmet-
since mode switching effectively is dealt with by the use offic on the postbuckling stable part of the equilibrium curve
the bound formulation. From this it is clear that the applica NOte that during global buckling of the beam a couple of
tion of symmetry will give misleading optimization results '0cal struts within the beam buckle locally. It may be ob-
and that an advanced method that is capable of dealing wifff"ved that the design is not fully symmetric indicating tha

both types of instabilities and possible mode switching i€hiS is not the global optimal solution. The authors expect
needed. the global optimum design to be symmetric since the fun-

damental buckling response is a symmetric point of bifurca-
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Fig. 6 Determined optimum topology from optimization 5 on the folam model together with its equilibrium curve and struatuesponse
characteristics.

tion associated with asymmetric deformation responses Thi7 Conclusions
means that the structure ideally should have same reséstanc

against positive and negative asymmetric deflections.-Solu i ) _ ) _
tion of this problem was very hard and required many itera—The chus of this work_ IS to |pve_st|gate arange of d|ff_er§nt
tions in order to get a nearly black and white design Whichf:ompllance z;nd buc_kllng objective functions for maximiz-
partly can be explained by switching buckling modes durin ng the buckling resistance of a snap-through beam struc-

the optimization process and that the optimal solution see ure. It was demonstrated that due to the intrinsic nontinea

to be a design where several parts of the structure buckles ga?ure. ofthe pr.obI(-am the load level, atwhich the compliance
multaneously. objective function is evaluated, has a tremendous effect on

the resulting optimized design and thus its structuralqyerf
Linear buckling optimization of the full model of the mance. The chosen load level for the compliance objective
curved beam has also been performed though with quitepecifies a certain displacement configuration such that the
poor results, since it resulted in degenerated optimized destructure stiffness is maximized for that particular dise-
signs with many grey areas and a disconnected structurment configuration. This means that special care should be
In order to obtain physical structural designs, a compkanctaken when choosing a load level, and thus a displacement
constraint can be added to the linear buckling problem, whicconfiguration, for the compliance optimization, as demon-
ensures a connected structure, i.e. a load path between tsigated by optimization 1-3 in the numerical studies. More
applied loading and boundary conditions. However, theestruimportantly, if the displacement configuration for the ob-
tural design then becomes a compromise between two critgective evaluation changes during the optimization, éng. t
ria, and the needed compliance threshold is model depeend load becomes larger than a limit point load, as studied
dent. From our findings, a strict compliance constraint iy optimization 3, there is a likelihood that the final struc-
needed to drive the optimization problem towards a validure will be unstable and thus a stiffer and stable structure
physical design when using this approach. may exist, which has a completely different displacement

10
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configuration, for the same load level. This problem is esby considering the fact that the design sensitivities in the

pecially evident when changing the penalization parametdsuckling problem can attain both negative and positive val-

p in a continuation approach as observed in the numericales. Thus, it may be advantageous to remove material which

studies. also means that higher penalization may in fact increase the
During topology optimization critical points, i.e. bifur- buckling load. We believe that in order to obtain better con-

cation and limit points, may be introduced and a pure end€rgence properties when using buckling as objective, spe-

compliance objective at a fixed load may be insufficient ifcialized material interpolation schemes that implicitig-p

such points are not captured and dealt with. An overlooke@lalize the buckling problem in regions of intermediate den-

bifurcation point may results in stiffness maximizationeof sities are needed. This is an important subject that demands

non-physical displacement configuration while a limit goin further research.

may result in stiffness maximization of a postbuckling dis-
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A Design sensitivity analysis

A.1 Sensitivity of linear displacements

The displacement sensmvm% are computed by direct differentia-
tion of the static equilibrium equation, (1), w.r.t. a desigriablep.,

e=1,...,Ne.
dD dK dR

Ko 0 . e=1,...,N. (20)
dpe dpe dpe

The displacement sensmvng2 can be evaluated by backsubstitution
of the factored global initial stlffness matrix in (20). Timdtial stiffness
matrix has already been factored when solving the statiglenoin (1)
and can here be reused, whereby only the new terms on thehagtt
side of (20), called the pseudo load vector, need to be @bl Note
that the force vector derivativejp%, is zero for design independent

loads. The global initial stiffness matrix derivati\%f—" only involve
the derivative of the current local element stiffness maglgﬁ which is

12

n,
Q" (D"(p),p) =F" —R" = (21)
whereQ" (D" (p), p) is the so-called residual or force unbalaneg,

is the global internal force vector, aml™ is the global applied load
vector. Taking the total derivative of this equilibrium edjon with re-
spect to any of the design variables e = 1, ..., N., we obtain

Q" _0Q"  9Q" dD" _

= = (22)
dpe Ope D™ dpe
n Fn n
where oQ = oF" _OR (23)
oDn obn  9D™
n F?’L n
and oQ" _ oF" _OR (24)
Ope Ope Ope

We note that (23) reduces to the tangent stiffness matriceSit is
assumed that the current load is independent of deforma#igg =
0, we obtain

OF™
oDn™

n
T

(25)

By inserting the tangent stiffness and (24) into (22), weaobthe dis-
placement sensﬂwntue# as

OR™
Ope

,, dD™

B OF™
T dpe =

Ope

(26)

The partial derivative of the load vectcﬁ”alf’;—:, can explicitly be ex-
pressed by two terms by taking the partial derivative of (6)

OR™
Ope

» OR
Y
Jpe

oy"
Jpe

@7)

For design independent Ioa(%p% = 0 and for a fixed load level

%‘p% = 0. The pseudo load vector, i.e. the right hand side of (26),
is determined at the element level by central difference@pmations
and assembled to global vector derivatives. Again, thegbaierivative
only involves the element which is associated with the curdesign
variable.

A.3 Linear compliance

The design sensitivity of linear compliance is obtained ey adjoint
approach, see e.g. Bendsge and Sigmund (2003); Lund anu&irg
(2005). The sensitivity with respect to any design varighlee
1,...,Neis

aCr
dpe

_pT dKo
dpe

D (28)
The global initial stiffness matrix denvatlvég‘— are determined semi-

analytically at the element level by central dlfference ragpnations
and assembled to global matrix derivatives.
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A.4 Nonlinear end compliance

The design sensitivity of nonlinear end compliance at a eayed load
stepn with respect to any design variable,,e = 1,..., N, is ob-
tained by the adjoint approach, see e.g. Bendsge and Sigf{2008)

dCayi _ ,70Q" _ v <8F” B 8R">
dpe Ope Ope  Ope

(29)

Assuming the end load fixed and independent of design chamges
have thatf’a% = 0. The adjoint vecton, which is not to be confused
with the eigenvector, is obtained as the solution to theiatigmuation

KEA=-R" (30)
The partial derivatives in the right hand side of (29) areedained at

the element level by central difference approximations assembled
to global vector derivatives.

A.5 Linear buckling

The linear buckling load factor sensitivities are deterxliby

i (dKo dK & )
=T (222 4\, 222 ) ¢, 31
dpe ¢J dpe J dpe oy (31)

where the eigenvalue problem in (2) has been differentiatiidl re-
spect to any design variablg.,e = 1,..., N, assuming thai;
is simple, see e.g. Courant and Hilbert (1953); Wittrick§g2P The
global matrix derivatives dK o andK » are determined semi-analytically
at the element level by central difference approximatiaoms assem-
bled to global matrix derivatives. The stress stiffnessrixag an im-
plicit function of the displacement field, i.&,(D(p), p), and thus
depends on all elements within the model. Both displacefigdtand
design variables need to be perturbed in the element celiffieience
approximation. The displacement field is perturbed via tleutated
displacement sensitivities in (20) such tksD ~ %Ape.

A.6 Nonlinear buckling

The nonlinear buckling load factor sensitivities at loagpsi are de-
termined by

: Ko = dK} K2
dA’:%T(d S A ")dy (32)

dpe dpe dpe J dpe

and

&y d);

_J 77 ~™ (33)
dpe dpe

where the eigenvalue problem in (11) has been differentiafi¢h re-
spect to any design variablg.,e = 1,..., N, assuming thad; is
simple, see Lindgaard and Lund (2010). It is assumed thafinhé
load level is fixed and that the nonlinear buckling load haanbdeter-
mined at load step by evaluation of (10) and (11). The global matrix
derivatives ofKo, K7, andK7 are determined in the same manner
as for the linear buckling load sensitivities, i.e. semagtical cen-
tral difference approximations at the element level ancdragdy to
global matrix derivatives. The displacement field is pdrtar via the
calculated sensitivities of the nonlinear displacemem{26) such that
AD™ ~ %:Ape.
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