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Nonlinear Buckling Optimization of Composite Structures

Esben Lindgaard∗, Erik Lund∗

Department of Mechanical Engineering, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, Denmark

Abstract

The paper presents an approach to nonlinear buckling fiber angle optimization of laminated composite shell structures.The ap-
proach accounts for the geometrically nonlinear behaviourof the structure by utilizing response analysis up until thecritical point.
Sensitivity information is obtained efficiently by an estimated critical load factor at a precritical state. In the optimization formu-
lation, which is formulated as a mathematical programming problem and solved using gradient-based techniques, a number of the
lowest buckling factors is included such that the risk of “mode switching” during optimization is avoided. The presented optimiza-
tion formulation is compared to the traditional linear buckling formulation and two numerical examples, including a large laminated
composite wind turbine main spar, clearly illustrate the pitfalls of the traditional formulation and the advantage andpotential of the
presented approach.

Keywords: Composite laminate optimization, Buckling, Design sensitivity analysis, Geometrically nonlinear, Composite
structures

1. Introduction

The use of fibre-reinforced polymers has gained an ever-
increasing popularity due to their superior mechanical proper-
ties. Designing structures made out of composite material rep-
resents a challenging task, since both thicknesses, numberof
plies in the laminate and their relative orientation must bese-
lected. The best use of the capabilities of the material can only
be gained through a careful selection of the layup. This workfo-
cuses on optimal design of laminated composite shell structures
i.e. the optimal fiber orientations within the laminate which is a
complicated problem. One of the most significant advances of
optimal design of laminate composites is the ability of tailoring
the material to meet particular structural requirements with lit-
tle waste of material capability. Perfect tailoring of a composite
material yields only the stiffness and strength required in each
direction. A survey of optimal design of laminated plates and
shells can be found in [1].

Stability is one of the most important objectives/constraints
in structural optimization and this also holds for many lami-
nated composite structures, e.g. a wind turbine blade. Tra-
ditionally in optimization, stability is regarded as the linear
buckling load, but for structures exhibiting a nonlinear response
when loaded the traditional approach can lead to unreliablede-
sign results, see e.g. [2]. In stability analysis the buckling
load is often approximated by linearized eigenvalue analysis at
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an initial prebuckling point (linear buckling analysis) and the
buckling load is generally overestimated. In the case where
nonlinear effects cannot be ignored nonlinear path tracing anal-
ysis is necessary. For limit point instability, several standard fi-
nite element procedures allow the nonlinear equilibrium path to
be traced until a point just before the limit point. The traditional
Newton like methods will probably fail in the vicinity of the
limit point and the post-critical path cannot be traced. More so-
phisticated techniques, as the arc-length methods suggested by
[3] and subsequently modified by [4] and [5] are among some
of the techniques available today for path tracing analysisin the
post-buckling regime.

A more accurate estimate of the buckling load, than that ob-
tainable with linear buckling, can be obtained by performing a
geometrically nonlinear response analysis and approximate the
buckling load by an eigenvalue analysis on the deformed con-
figuration. Various eigenvalue problems have been suggested
for the stability analysis of nonlinear structures. [6] and[7]
formulated linear eigenvalue problems with information atone
load step on the nonlinear prebuckling path. This formulation is
referred as the “one-point” approach, where stiffness informa-
tion is extrapolated until a singular tangent stiffness is obtained.
[8] formulated a linear eigenvalue problem utilizing tangent in-
formation at two successive load steps on the nonlinear pre-
buckling path, and are referred as the “two-point” approach.

Optimization with stability constraints has been studied ex-
tensively in the past. [9] and [10] described an optimality cri-
terion method for determining the minimum weight design of
linear space truss structures subjected to stability constraints.
They solved linear stability analysis problems to obtain the crit-
ical load and obtained sensitivities by differentiating the dis-
cretized matrix eigenvalue problem with respect to design vari-
ables. Later methods for obtaining optimum designs of truss
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structures with stability constraints while considering geomet-
ric nonlinearities were presented by [11] by using a relation
based on equal strain energy density in all members.

[12] presented design sensitivities of the buckling load for
nonlinear structures by taking derivatives of discretizedmatrix
equations with respect to design variables. The method only
works for limit points and the critical point needs to be pre-
cisely determined for evaluation of sensitivities. [13] presented
a variation of the formula that would not only work for limit
points but also for bifurcation points.

[14] presented a formulation of continuum design sensitiv-
ity analysis of the critical load based on the “one-point” and
“two-point” linearized eigenvalue problem. Their expressions
would work at any prebuckling point on the nonlinear equilib-
rium path. They noted that the design sensitivities did not con-
verge to those of the exact critical load when approximated in
the near vicinity of the critical point due to divergence in the
derivatives of the displacements.

[15] approximated the exact design sensitivities derived by
[12] by applying the concept from nonlinear stability analysis,
either by “one-point” or “two-point” approach. It was noted
that the approximated design sensitivities converged to those by
[12] when the approximation point approaches the exact critical
point. [16] adopted the method by [15] and included imperfec-
tions for avoidance of bifurcation points.

Research on the subject of structural optimization of compos-
ite structures considering stability has been reported by many
investigators. The first work to appear concerned simple com-
posite laminated plates and circular cylindrical shells where
stability was determined by solution of buckling differential
equations, see [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Later,
buckling optimization of composite structures was considered
in a finite element framework where the buckling load was
determined by the solution to the linearized discretized ma-
trix eigenvalue problem at an initial prebuckling point. Op-
timization of laminated composite plates has been studied by
[27, 28, 29, 30, 31, 32], while others considered more complex
composite structures as curved shell panels and circular cylin-
drical shells, see [33, 34, 35, 36, 37, 38, 39, 40]. However,
applications of optimization methods to stability analysis and
design of a general type of complex laminated composite shell
structures have been very limited. To the best knowledge of
the authors only one paper reports on nonlinear gradient based
buckling optimization of composite laminated plates and shells,
namely the paper by [41], where limit load optimization is con-
sidered.

Another important topic in structural stability is the study of
the influence of initial imperfections. Imperfections are devia-
tions from the perfect structure, i.e. the analysis model, and can
in general be geometrical, structural, material or load related.
Despite initial imperfections may be important in terms of the
stability load of a structure it is not considered in the present
paper.

This paper presents an integrated and reliable method for do-
ing optimization of composite structures w.r.t. stabilityby in-
cluding the nonlinear response by a path tracing analysis, here
by the arc-length method, in the optimization formulation us-

ing the Total Lagrangian formulation. The nonlinear path trac-
ing analysis is stopped when a limit point is encountered and
the critical load is approximated at a precritical load stepac-
cording to the “one-point” approach. Design sensitivitiesof the
critical load factor are obtained semi-analytically by thedirect
differentiation approach on the approximate eigenvalue prob-
lem described by discretized finite element matrix equations.
A number of the lowest buckling load factors are considered
in the optimization formulation in order to avoid problems re-
lated to “mode switching” well-knowing that issues may be en-
countered due to divergence of the displacement sensitivities.
The proposed method is benchmarked against a formulation
based on linear buckling analysis on two engineering examples
of laminated composite structures. This will help clarify the
importance of the nonlinearity in structural design optimization
w.r.t. stability.

In this work only Continuous Fiber Angle Optimization
(CFAO) is considered thus fiber orientations in laminate layers
with preselected thickness and material are chosen as design
variables in the laminate optimization.

The “traditional” linear formulation for buckling analysis,
sensitivity analysis and optimization formulation is outlined in
Section 2 and 3. In Section 4 the proposed procedure regard-
ing nonlinear buckling analysis is stated. Derivations of design
sensitivities, using the direct differentiation approach, of the
nonlinear buckling load are presented along with the nonlin-
ear buckling optimization formulation in Section 5. Both meth-
ods are benchmarked upon engineering examples of laminated
composite structures. In Section 6 a laminated composite U-
profile is studied while a much more complicated structure of
a generic main spar of a wind turbine blade is studied in Sec-
tion 7. Conclusions are outlined in Section 8.

2. Linear Buckling Analysis of Laminated Composite Shell
Structures

The finite element method is used for determining the linear
buckling load factor of the laminated composite structure,thus
the derivations are given in a finite element context.

A laminated composite is typically composed of multiple
materials and multiple layers, and the shell structures canin
general be curved or doubly-curved. The materials used in this
work are fiber reinforced polymers, e.g. Glass or Carbon Fiber
Reinforced Polymers (GFRP/CFRP), oriented at a given angle
θk for thekth layer or softer isotropic core material. All mate-
rials are assumed to behave linearly elastic and the structural
behaviour of the laminate is described using an equivalent sin-
gle layer theory where the layers are assumed to be perfectly
bonded together such that displacements and strains will be
continuous across the thickness.

The solid shell elements used for all the examples in this pa-
per are derived using a continuum mechanics approach so the
laminate is modelled with a geometric thickness in three di-
mensions, see [42]. The element used is an eight node isopara-
metric element where shear locking and trapezoidal lockingare
avoided by using the concepts of assumed natural strains (ANS)
for, respectively, out-of-plane shear interpolation, see[43], and
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through-the-thickness interpolation, see [44]. Membraneand
thickness locking is avoided by using the concepts of enhanced
assumed strains (EAS) for the interpolation of the membrane
and thickness strains, respectively, see [45, 44]. The EAS in-
terpolation is used to enhance the compatible strain tensorwith
an independent incompatible strain tensor, and the solid shell
element used has seven internal degrees of freedom for the rep-
resentation of the enhanced strains. This is the lowest number
of internal degrees of freedom to introduce for the enhanced
strains if the element should pass the in-plane membrane and
out-of-plane bending patch tests, see [46] for details.

The static equilibrium equation for the structure may be writ-
ten as

K0D = R (1)

HereD is the global displacement vector,K0 is the global initial
stiffness matrix, andR the global load vector.

Based on the displacement field, obtained by the solution to
(1), the element layer stresses can be computed, whereby the
stress stiffening effects due to mechanical loading can be eval-
uated by computing the initial stress stiffness matrixKσ. By
assuming the structure to be perfect with no geometric imper-
fections, stresses are proportional to the loads, i.e. stress stiff-
ness depends linearly on the load, displacements at the criti-
cal/buckling configuration are small, and the load is indepen-
dent of the displacements, the linear buckling problem can be
established as

(

K0 + λ j Kσ
)

φ j = 0, j = 1, 2, . . . , J (2)

where the eigenvalues are ordered by magnitude, such thatλ1

is the lowest eigenvalue, i.e. buckling load factor, andφ1 is the
corresponding eigenvector i.e. buckling mode. In general,for
engineering shell structures, the eigenvalue problem in (2) can
be difficult to solve, due to the size of the matrices involved
and large gaps between the distinct eigenvalues. For efficient
and robust solutions, (2) is solved by a subspace method with
automatic shifting strategy, Gram-Schmidt orthogonalization,
and the sub-problem is solved by the Jacobi iterations method,
see [47].

Most often in engineering classical linear buckling analysis
is used as a generalized stability predictor for shell structures as
described in [48]. For some cases, despite whether the critical
point is a bifurcation or limit point, the classical theory yields
a satisfactory prediction of the collapse load while it in other
cases gives results of little or no value. Despite that it before-
hand is unknown whether the classical theory gives satisfactory
predictions of the collapse load of a general shell structure it
is often used. Since the structures analyzed with linear buck-
ling analysis are perfect with no imperfections of any kind to-
gether with the assumptions involved in the theory, the predic-
tion will typically be an upper limit for the real collapse load,
and the method is therefore in literature often stated as non-
conservative in an engineering context, see e.g. [49].

3. Design Sensitivity Analysis and Optimization of the Lin-
ear Buckling Problem

The objective of the work is, by use of gradient-based tech-
niques, to maximize the lowest buckling load factors, and thus
the buckling load factor sensitivities should be computed in
an efficient way. Only derivations upon structural finite ele-
ment discretized simple eigenvalues are presented in this pa-
per. In case of non-unique eigenvalues, i.e. multiple eigen-
values, the sensitivity analysis is more complicated due tothe
non-differentiability of the eigenvalues. In such situations the
sensitivity analysis described in [50] may be used.

3.1. Design sensitivity analysis of simple eigenvalues

The eigenvalue problem considered in (2) is a generalized
eigenvalue problem of the form

K φ j = λ j M φ j , j = 1, 2, . . . , J (3)

It is assumed that the eigenvectors areM -orthonormalized, i.e.
φT

j M φ j = 1. This means thatφT
j (−Kσ)φ j = 1. In order

to obtain the eigenvalue sensitivities, (2) is differentiated with
respect to any design variable,ai, i = 1, . . . , I , assuming thatλ j

is simple.

dλ j

dai
(−Kσ)φ j =

(

dK0

dai
− λ j

d (−Kσ)
dai

)

φ j+
(

K0 − λ j (−Kσ)
) dφ j

dai
(4)

By premultiplying byφT
j , make use of theM -orthonormality of

the eigenvectors, (2), and noting that the system matrices are
symmetric, the following expression is obtained for the eigen-
value sensitivity.

dλ j

dai
= φT

j

(

dK0

dai
+ λ j

dKσ
dai

)

φ j (5)

In order to determine the linear buckling sensitivitydλ j

dai
for any

of the design variablesai , i = 1, . . . , I , the derivative of the el-
ement initial stiffness matrix and the derivative of the element
stress stiffness matrix have to be derived. These derivatives are
determined semi-analytically at the element level by finitedif-
ference approximations and assembled to global matrix deriva-
tives.

dk0

dai
≈

k0(ai + ∆ai) − k0(ai − ∆ai)
2∆ai

(6)

dK0

dai
=

Nas
e

∑

n=1

dk0

dai
, i = 1, . . . , I (7)

k0 is the element initial stiffness matrix,∆ai is the design pertur-
bation, andNas

e is the number of elements in the finite element
model associated to the design variableai .

The stress stiffness matrix is an implicit function of the dis-
placement field, i.e.Kσ = Kσ (D(a), a), which must be consid-
ered

dKσ
dai
=
∂Kσ
∂ai
+
∂Kσ
∂D

dD
dai

(8)

3



Postprint version, final version available at https://doi.org/10.1016/j.cma.2010.02.005 E. LINDGAARD ET AL.

The displacement sensitivitiesdD
dai

must be computed, which is
done by direct differentiation of the static equilibrium equation,
see (1), w.r.t. a design variableai , i = 1, . . . , I .

K0
dD
dai
= −

dK0

dai
D +

dR
dai
, i = 1, . . . , I (9)

The displacement sensitivitydD
dai

can be evaluated by backsub-
stitution of the factored global initial stiffness matrix in (9). The
initial stiffness matrix has already been factored when solving
the static problem in (1) and can here be reused, whereby only
the new terms on the right hand side of (9), called the pseudo
load vector, need to be calculated. Note that the force vector
derivatives,dR

dai
, are zero for design independent loads as in the

case for CFAO. The global initial stiffness matrix derivativedK0
dai

were determined in (7).
The stress stiffness sensitivitydKσ

dai
is not evaluated by (8) since

it requires partial derivatives of the stress stiffness matrix with
respect to displacements,∂Kσ

∂D , which is not trivial. Instead it is
computed by central difference approximations at the element
level for all elements for each design variableai, i = 1, . . . , I .

dkσ
dai
≈

kσ(ai + ∆ai ,D + ∆D) − kσ(ai − ∆ai ,D − ∆D)
2∆ai

(10)

The displacement increment is estimated as∆D ≈
dD
dai
∆ai ,

where the displacement sensitivity,dD
dai

, is obtained by solving
(9).

3.2. The mathematical programming problem

The optimization problem is in essence a max-min problem
where the objective is to maximize the lowest buckling load fac-
tor. A direct formulation of the optimization problem can give
problems related to differentiability and fluctuations during the
optimization process due to “mode switching” (crossing eigen-
values). These problems are circumvented by the use of the
socalled bound formulation, see [51] and [52].

Objective : max
a, β

β

Subject to : λ j ≥ β, j = 1, . . . ,Nλ
(

K0 + λ j Kσ
)

φ j = 0

ai ≤ ai ≤ ai , i = 1, . . . , I

whereai denote the design variables in terms of fiber angles.
The boundβ is introduced, both as a new artificial variable and
objective function. The previous non-differentiable objective
function, for the max-min problem, is, via the bound formula-
tion, transformed into a set ofNλ constraints.

The mathematical programming problem is solved by the
Method of Moving Asymptotes (MMA) by [53]. The closed
loop of analysis, design sensitivity analysis and optimization is
repeated until convergence in the design variables or untilthe
maximum number of allowable iterations has been reached.

4. Nonlinear Buckling Analysis of Laminated Composite
Shell Structures

In order to perform structural stability optimization it iscru-
cial to have a robust and precise objective function at its dis-
posal. Thus, it is desired to determine a more precise objec-
tive in terms of instability from which design sensitivities for
employment in design optimization can be derived. Structural
stability/buckling is now estimated in terms of geometrically
nonlinear analyses and restricted to limit point instability, de-
spite that the presented formulas also works well for bifurcation
points. In addition, bifurcation instability are in many cases
transformed into limit point instability with the introduction
of small disturbances/imperfections to the system. The pro-
posed procedure for nonlinear buckling analysis, considering
limit points, is schematically shown in Fig. 1 and consists of
the steps stated in Algorithm 1.

Algorithm 1 Pseudo code for the nonlinear buckling analysis
1: Geometrically nonlinear (GNL) analysis by arc-length

method
2: Monitor and detect limit point during GNL analysis
3: Re-set all state variables to configuration at load step just

before limit point
4: Perform eigenbuckling analysis on deformed configuration

at load step before limit point
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analysis on deformed geometry

Figure 1: Detection of limit load in step 2.

The limit load in step 2 is simply defined by monitoring the
load factor in the GNL analysis. When the load factor from
two successive load steps decreases the previous convergedload
factor is defined as the limit load, see Fig. 1.

Let us consider geometrically nonlinear behaviour of struc-
tures made of linear elastic materials. We adopt the Total La-
grangian approach, i.e. displacements refer to the initialconfig-
uration, for the description of geometric nonlinearity. Anincre-
mental formulation is more suitable for nonlinear problemsand
it is assumed that the equilibrium at load stepn is known and
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it is desired at load stepn+ 1. Furthermore, it is assumed that
the current load is independent on deformation. The incremen-
tal equilibrium equation in the Total Lagrangian formulation is
written as (see e.g. [6, 54])

KT(Dn, γn) δD = Rn+1
− Fn (11)

where KT(Dn, γn) = K0 + KL (Dn, γn) + Kσ(Dn, γn) (12)

i.e. Kn
T = K0 + Kn

L + Kn
σ (13)

Here δD is the incremental global displacement vector,Fn

global internal force vector, andRn+1 global applied load vec-
tor. The global tangent stiffnessKn

T consists of the global ini-
tial stiffnessK0, the global stress stiffnessKn

σ, and the global
displacement stiffnessKn

L . The applied load vectorRn is con-
trolled by the stage control parameter (load factor)γn according
to an applied reference load vectorR

Rn = γn R (14)

The incremental equilibrium equation (11) is solved by the arc-
length method after [5]. During the nonlinear path tracing anal-
ysis we can at some converged load step estimate an upcoming
critical point, i.e. bifurcation or limit point, by utilizing tangent
information. At a critical point the tangent operator is singular

KT(Dc, γc)φ j = 0 (15)

where the superscriptc denotes the critical point andφ j the
buckling mode. To avoid a direct singularity check of the tan-
gent stiffness matrix, it is easier to utilize tangent information
at some converged load stepn and extrapolate it to the criti-
cal point. The one-point approach only utilizes information at
the current step and extrapolates by only one point. The stress
stiffness part of the tangent stiffness at the critical point is ap-
proximated by extrapolating the nonlinear stress stiffness from
the current configuration as a linear function of the load factor
γ.

Kσ(Dc, γc) ≈ λKσ(Dn, γn) = λKn
σ (16)

It is assumed that the part of the tangent stiffness consisting
of Kn

L andK0 does not change with additional loading, which
holds if the additional displacements are small. The tangent
stiffness at the critical point is approximated as

KT(Dc, γc) ≈ K0 + Kn
L + λKn

σ (17)

and by inserting into (15) we obtain a generalized eigenvalue
problem

(

K0 + Kn
L

)

φ j = −λ j Kn
σ φ j (18)

where the eigenvalues are assumed ordered by magnitude such
thatλ1 is the lowest eigenvalue andφ1 the corresponding eigen-
vector. The solution to (18) yields the estimate for the critical
load factor at load stepn as

γc
j = λ j γ

n (19)

If λ1 < 1 the first critical point has been passed and in contrary
λ1 > 1 the critical point is upcoming. The one-point procedure
works well for both bifurcation and limit points. The closer
the current load step gets to the critical point, the better the
approximation becomes, and it converges to the exact resultin
the limit of the critical load.

5. Design Sensitivity Analysis and Optimization of the Non-
linear Buckling Problem

To accomplish gradient-based optimization of the nonlinear
buckling load factors, the nonlinear buckling load factor sensi-
tivities must be derived. Only simple eigenvalues of conserva-
tive load systems are considered.

5.1. Design sensitivity analysis of simple eigenvalues

The eigenvalue problem in (18) is a generalized eigenvalue
problem of the form shown in (3) where it is assumed that the
eigenvectors areM -orthonormalized, i.e.φT

j M φ j = 1. This
means thatφT

j

(

−Kn
σ

)

φ j = 1. By direct differentiation, with re-
spect to any design variable,ai , i = 1, . . . , I , pre-multiplication
of φT

j , making use of (18) and theM -orthonormality of the
eigenvectors, noting that the system matrices are symmetric,
and assuming thatλ j is simple we obtain the eigenvalue sensi-
tivities as

dλ j

dai
= φT

j

(

dK0

dai
+

dKn
L

dai
+ λ j

dKn
σ

dai

)

φ j (20)

In order to determine the eigenvalue sensitivitydλ j

dai
for any of

the design variablesai , i = 1, . . . , I , the derivatives of the el-
ement initial stiffness matrix, element displacement stiffness
matrix, and the element stress stiffness matrix have to be de-
rived, respectively. These derivatives are determined semi-
analytically at the element level by finite difference approxima-
tions and assembled to global matrix derivatives. The element
initial stiffness matrix derivative is determined as in (6) and (7).
Both the stress stiffness matrix and the displacement stiffness
matrix are implicit functions of the displacements, i.e.Kn

σ =

Kσ (Dn(a), a) andKn
L = KL (Dn(a), a), which must be consid-

ered. In order to evaluate design sensitivities of
dKn

L
dai

and dKn
σ

dai

semi-analytically by finite difference approximations on the el-
ement level, see (10), the displacement sensitivities mustbe
computed. At the converged load stepn, we can write the equi-
librium equation as

Qn(Dn(a), a) = Fn
− Rn = 0 (21)

whereQn(Dn(a), a) is the socalled residual or force unbalance.
Taking the total derivative of this equilibrium equation with re-
spect to any of the design variablesai , i = 1, . . . , I , we obtain

dQn

dai
=
∂Qn

∂ai
+
∂Qn

∂Dn

dDn

dai
= 0 (22)

where
∂Qn

∂Dn
=
∂Fn

∂Dn
−
∂Rn

∂Dn
(23)

and
∂Qn

∂ai
=
∂Fn

∂ai
−
∂Rn

∂ai
(24)

We note that (23) reduces to the tangent stiffness matrix. Since
it was assumed that the current load is independent on deforma-
tion, ∂R

n

∂Dn = 0, we obtain

∂Fn

∂Dn
= Kn

T (25)
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By inserting the tangent stiffness and (24) into (22), we obtain
the displacement sensitivitiesdDn

dai
as

Kn
T

dDn

dai
=
∂Rn

∂ai
−
∂Fn

∂ai
(26)

For design independent loads, the term∂R
n

∂ai
= 0.

Thus, all terms have been derived for the evaluation of the
eigenvalue sensitivities in (20) and the estimate for the nonlin-
ear buckling load factor sensitivity at load stepn is

dγc
j

dai
=

dλ j

dai
γn (27)

5.2. The mathematical programming problem

The optimization problem of maximizing the lowest of the
nonlinear buckling load factors,γc

j , is as for the linear case for-
mulated using a bound formulation, see [51], as

Objective : max
a, β

β

Subject to : γc
j ≥ β, j = 1, . . . ,Nλ

(

K0 + Kn
L + λ j Kn

σ

)

φ j = 0

γc
j = λ j γ

n

ai ≤ ai ≤ ai, i = 1, . . . , I

Again, the mathematical programming problem is solved us-
ing the Method of Moving Asymptotes by [53]. By utilizing
the procedure described in Section 4, the estimation point for
the nonlinear buckling analysis and design sensitivity analysis
is updated at each optimization iteration, whereby a good ap-
proximation of the nonlinear buckling load and sensitivities are
obtained since the estimation point always is in the neighbour-
hood of the real buckling load. As for the linear case, the closed
loop of analysis, design sensitivity analysis, and optimization is
repeated until convergence in the design variables or untilthe
maximum number of allowable iterations is reached.

6. Numerical Example: Laminated Composite U-Profile

In order to illustrate the importance and the potential of the
nonlinear buckling formulation, described in Section 4 and5,
and the pitfalls of the traditional linear buckling formulation,
see Section 2 and 3, a laminated composite U-profile is con-
sidered. The laminated composite U-profile is an example of a
real structural engineering element, e.g. the companyFiberline
Composites A/Sproduces such structural elements by a process
called pultrusion, see Fig. 2.

Geometry, loading, and boundary conditions are identical to
a model analyzed by [45]. The U-profile is clamped at one
end and point loaded in an upper corner node at the other end
with a forceR = 250kN. A total of 432 equivalent single layer
solid shell finite elements and 962 nodes are used in the nu-
merical model. This model thus has 2808 compatible degrees
of freedom and 3024 incompatible degrees of freedom. This

(Courtesy of Fiberline Composites A/S)

Figure 2: Examples of laminated composite profiles manufactured by pultru-
sion process by the company Fiberline Composites A/S.
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Figure 3: Geometry, loads, boundary conditions, and element coordinate sys-
tems for numerical model of the U-profile.

mesh size has been determined through mesh convergence stud-
ies and found sufficient for predicting the buckling mode and
buckling load. For details about the mesh convergence study
see [55]. The laminate layup consists of 4 uni-directional E-
glass/epoxy fiber layers each of equal thickness, see properties
of the processed material in Table 1.

Table 1: Processed material properties for U-profile.

E-glass/epoxy
Ex 30.6 GPa Ey 8.7 GPa
Ez 8.7 GPa νxy 0.29
νxz 0.3 νyz 0.3
Gxy 3.24 GPa Gxz 3.24 GPa
Gyz 2.9 GPa ρ 1686 kg/m3

The fiber orientation is related to the element coordinate sys-
tem, (xe, ye, ze), in each finite element. The fiber orientation is
measured counterclockwise from thex-axis in thexy-plane of
the element coordinate system. The element coordinate system
for the finite elements, in respectively the web and each flange,
is depicted in Fig. 3. The fiber orientation at each layer in the
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web and each flange is considered constant and the layer stack-
ing is done from inside out. Three layup definitions are defined
for the U-profile and will be the starting points for the laminate
optimization, see Table 2.

Table 2: Layup definitions for the U-profile, which are the starting point for
the laminate optimization. Each layer in the laminate layups has a thickness of
12.5mm.

Layup 1

Top Flange (−90◦ ,−45◦ , 0◦ , 45◦)
Web (0◦ ,45◦ , 90◦ ,135◦)
Bottom Flange (−45◦ , 0◦ , 45◦ , 90◦)

Layup 2

Top Flange (45◦ , 0◦ ,−45◦ ,−90◦)
Web (135◦ , 90◦ ,45◦ , 0◦)
Bottom Flange (90◦ , 45◦ , 0◦ ,−45◦)

Layup 3

Top Flange (0◦ ,45◦ ,−90◦ ,−45◦)
Web (90◦ , 135◦ ,0◦ , 45◦)
Bottom Flange (45◦ , 90◦ ,−45◦ , 0◦)

The representation of the lamina layers for the U-profile is
not entirely realistic since the layers preferably should be con-
tinuous across the top flange, web, and bottom flange for man-
ufacturing purposes. Alternatively, a continuous lamina layer
could be added as the outermost outer layers and act as a
binder between the different sections. This issue is not fur-
ther addressed since the purpose of the numerical example is
to demonstrate the different methodologies and not design of a
structure ready for manufacturing.

6.1. Structural behaviour of U-profile

Initial analysis is carried out on the U-profile before ad-
vanced optimization is proceeded in order to determine the
structural behaviour. Only layup 1 in Table 2 is considered.
Instability is predicted with linear buckling analysis andgeo-
metrically nonlinear path tracing analysis, respectively. Con-
sidering geometrically nonlinear analysis as the “exact” predic-
tion, the buckling load predicted by linear buckling analysis is
overestimated by 27%, see Fig. 4.

The geometrically nonlinear analysis predicts buckling due
to a limit point instability where the structure buckles in the
top flange near the fixed support, see Fig. 5. In contrary, linear
buckling analysis predicts bifurcation buckling due to collapse
in the web section at the free end. Not only does linear buck-
ling overestimate the buckling load, it also fails to predict the
buckling shape at the critical point.

6.2. Linear buckling optimization

The laminated composite U-profile is optimized with respect
to linear buckling. The fiber angles in the laminate layup defi-
nition, see Table 2, are chosen as design variables giving a total
of 12 design variables. Since fiber angle optimization is associ-
ated with a non-convex design space with many local minima,
three different layups/starting points in the design space have
been selected for the optimization, see Table 2.
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Figure 4: Linear buckling load and load displacement curve from geometrically
nonlinear analysis of U-profile with layup 1.
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steps during the geometrically nonlinear analysis. Note that the displacement
fields correspond to the marked load steps on the load displacement curve in
Fig. 4.

The linear buckling optimization histories are shown in Fig. 6
for the three starting points and are named LinBuckOpt. Lin-
BuckOpt1 and LinBuckOpt2 converge to the same buckling
load while the LinBuckOpt3 converges to a slightly lower linear
buckling load.

The optimum fiber angle results from optimization run Lin-
BuckOpt2 is schematically illustrated in Fig. 7. The fiber an-
gles in the flanges are mainly oriented in the length of the U-
profile whereas the fiber angles for the web are oriented in the
transverse direction in order to suppress the lowest linearbuck-
ling mode. Similar fiber angle results in the web are obtained
in LinBuckOpt1 and LinBuckOpt3.

In order to validate the results from the linear buckling opti-
mization and to check the effect on the “real” critical load, ge-
ometrically nonlinear analyses are carried out for the laminate
designs obtained at every 10th iteration during the linear buck-
ling optimization process. The critical load detected at these
designs are plotted in Fig. 6. As expected the linear buckling
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Figure 6: Optimization histories for linear buckling optimization (LinBuck-
Opt), and detected GNL limit point from re-runned analyses (LinBuckOpt -
GNL Limit Point).
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Figure 7: Fiber angle results in all four layers of the U-profile from the linear
buckling optimization run LinBuckOpt2.

analysis overestimates the critical load which also was observed
in the initial analysis in Section 6.1. But important to notice is
that no correlation can be observed between the tendency of the
linear buckling load and the real critical load during the opti-
mization. Despite high improvement in the linear buckling load
during the optimization only minor gain is achieved in the real
critical load. The linear buckling optimization fails to improve
the critical load and only the overestimate by linear buckling
analysis is maximized.

6.3. Nonlinear buckling optimization

Applying the nonlinear optimization formulation, described
in Section 4 and Section 5, the nonlinear buckling load of the
composite U-profile is optimized. The same parametrization
and starting points as in the linear buckling optimization in Sec-
tion 6.2 are used. The nonlinear buckling optimization histo-
ries are plotted in Fig. 8 and named GNLBuckOpt. Note that
the buckling load plotted is the detected limit point duringthe

geometrically nonlinear analysis in the nonlinear buckling opti-
mization procedure, and can therefore be considered as the real
critical load.

The nonlinear buckling optimizations, GNLBuckOpt1 and
GNLBuckOpt2, attain almost the same buckling load at the fi-
nal designs. GNLBuckOpt3 gets to a better design with a higher
buckling load which demonstrates the risk of ending up in a lo-
cal minima when using continuous fiber angles as design vari-
ables.
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Figure 8: Optimization histories for nonlinear buckling optimization (GNL-
BuckOpt), linear buckling optimization (LinBuckOpt), anddetected GNL limit
points from re-runned analyses (LinBuckOpt - GNL Limit Point).

The linear buckling optimization did only yield a limited
improvement with respect to the buckling resistance, whereas
the nonlinear buckling optimal designs have a considerableim-
provement in the buckling resistance.
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PSfrag replacements

RR

RR

Figure 9: Fiber angle results in all four layers of the U-profile from the nonlin-
ear buckling optimization run GNLBuckOpt3.

The optimal fiber orientation for GNLBuckOpt3 is schemat-
ically shown in Fig. 9. Recall that the U-profile buckles near
the fixed end in the top flange. At all layers in the top flange
the fibers are transversely oriented and closely oriented towards

8
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45◦/-45◦ in order to give resistance against the local buckling
mode development. The orientation of the fibers is a tradeoff

between global bending stiffness, local suppression of the buck-
ling mode in the top flange, flange width, and a varying moment
along the length and width of the top flange which results in
large shear near the clamped support. This pinpoints that the
use of rational design methods is very beneficial for design of
such complicated structures with highly nonlinear behaviour.
At the web and the bottom flange the fibers are in most lay-
ers oriented in the longitudinal direction for maximum global
bending stiffness.

6.4. Comparison

In order to investigate the poor performance of the linear
buckling optimized structures w.r.t. the real critical load, see
Fig. 8, the linear and nonlinear buckling mode shapes are com-
pared to the post-buckling deformation field from a geometri-
cally nonlinear analysis in Fig. 10. The linear buckling anal-
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Figure 10: Comparison of buckling mode shapes and displacement field. A: 1st

linear buckling mode shape. B: 1st nonlinear buckling mode shape. C: Post-
buckling displacement field from geometrically nonlinear analysis.

ysis predicts instability in the free end of the web while the
U-profile as observed through geometrically nonlinear analysis
looses its stiffness due to buckling in the top flange near the
fixed support. The nonlinear buckling analysis performed at
the deformed configuration near the instability point captures
this behaviour. The buckling mode shape is very important in
the calculation of accurate design sensitivities since it appears
directly in the equations, see (5) and (20). Furthermore, the
matrices involved in the buckling problem for both analysisand
design sensitivity analysis are more accurate at the updated con-
figuration and the nonlinear buckling optimization formulation
proves to be reliable in buckling problems involving large dis-
placements and near limit points.

The linear buckling formulation should be used with cau-
tion and not as a general tool to design buckling resistant struc-
tures. As depicted in Fig. 8, the real buckling load from the lin-
ear buckling optimization runs does not increase monotonously
in the first 40 optimization iterations despite the optimization
algorithm applied is gradient-based. This indicates a lackof
connection between the linear buckling load and the real buck-
ling load. Linear buckling optimization may therefore in some
cases not improve the buckling load and maybe even reduce
it. Despite misleading high improvement in the linear buckling
load during optimization the real buckling load may remain un-
changed which for engineering design purposes can be fatal.In
case of bifurcation buckling where nonlinear effects cannot be

disregarded the nonlinear buckling formulation can still be ap-
plied by either introducing imperfections into the structure in
order to convert the bifurcation point into a limit point, orby
stopping the GNL analysis prior reaching the first bifurcation
point. In the latter, the nonlinear buckling analysis and DSA
has to be performed at the deformed configuration near the first
bifurcation point.

7. Numerical Example: Generic Wind Turbine Main Spar

In order to demonstrate the proposed approach on a more
complex structure a generic model of a main spar of a wind
turbine blade is studied. The main spar is one of the main
carrying components in some designs of wind turbine blades
as illustrated in Fig. 11. These designs of wind turbine blades
basically consist of two structural components, the main spar
and the aerodynamic shell. The main spar is the main carrying
structural component for flapwise bending loads whereas the
aerodynamic shell carries most of the edgewise bending loads.PSfrag replacements

Pressure
side shell
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Suction side shell

Assembly
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Edgewise
bending Flapwise
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Figure 11: The two main structural components in a typical wind turbine blade
design, [56].

In this study the main spar is subjected to the most critical
static load case, which is the flapwise bending load that arises
when the turbine has been brought to a standstill due to the
high wind and the blade is hit by the 50 year extreme wind.
With such extreme bending loads the main spar will typically
collapse due to local buckling on the compressive side of the
blade. According to [57], the ultimate strength of a wind turbine
in flapwise bending is characterized by a sequence of failure
events where the first is delamination triggered by local buck-
ling and subsequently compressive fibre failure in the main spar.

For the design study of the generic main spar only 14 meter
of a 25 meter blade is modelled, see Fig. 12. The finite element
model consists of 1856 equivalent single layer solid shell finite
elements and 3776 nodes. This model thus has 11136 com-
patible degrees of freedom and 12992 incompatible degrees of
freedom. This mesh size has through mesh convergence stud-
ies been found sufficient for analyzing buckling. The resulting
flapwise bending load ofR = 164.7kN is distributed as a sur-
face load in the tip section (not follower force). The tip section
is used for load introduction and the generic main spar model
is clamped at the root section. The initial laminate layup ofthe
generic main spar is shown in Fig. 13 and the processed mate-
rial properties are stated in Table 3.

The root section is a stiff monolithic laminate layup with
orientations -10◦/10◦/10◦/-10◦ and the webs which mainly are
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Figure 12: Definition of the generic wind turbine main spar with geometric
measures in [m]. It is a generic model without twist of the spar and with a total
length of 14 meter. The root section has a length of 3 meter andthe mid section
which is the design area in the laminate optimization has a length of 9 meter. A
linear interpolation between the three cross sections shown is used while the tip
section, which is used for load introduction, has a constantcross section. All
elements have their element coordinate system, (xe, ye, ze), located such that the
xe-axis is pointing in the longitudinal direction of the main spar and theze-axis
is pointing outwards.

loaded in shear are made as a sandwich structure with a light
foam core material and unidirectional E-glass/epoxy face sheets
oriented 45◦/-45◦. The flanges mainly consist of 0◦ packs,
which involve many 0◦ layers stacked together for maximum
bending stiffness and some 45◦/-45◦ layers for local buckling
resistance.

Figure 13: Initial layup definitions for respectively, flanges and webs in the
generic main spar model. The layer stacking is done from inside out, i.e. the
inner surface of the main spar is at zero thickness.

For real applications the transition between the root layup
and the mid section layup, see Fig. 13, will preferable be
smooth and not abrupt in order to obtain a smooth stiffness
transition and thereby lower the interlaminar effects which may
lead to delamination and eventually failure of the blade. Only
buckling is considered in this study and the transition did not in-
fluence the buckling performance and characteristics whereby
the presented layup is considered sufficient in the design study.

7.1. Preliminary analysis of generic main spar

Structural analysis is performed before optimization is pro-
ceeded in order to characterize the structural behaviour ofthe
main spar. Both linear buckling analysis and geometrically

Table 3: Processed material properties for the generic mainspar.

Material property E-glass/epoxy Foam
(UD) Rohacell (PMI)

Ex 39.8 GPa 150 MPa
Ey 6.98 GPa -
Ez 6.98 GPa -
νxy 0.298 0.298
νyz 0.3 -
νxz 0.298 -
Gxy 2.6 GPa -
Gxz 2.6 GPa -
Gyz 2.59 GPa -
ρ 1900 kg/m3 110 kg/m3

nonlinear analysis are utilized to predict the collapse load of
the structure. The GNL analysis predicts collapse at a load of
107.2kN in terms of a limit point while linear buckling analysis
predicts collapse at a load of 134.7kN. Considering the predic-
tion from GNL analysis as the correct prediction linear buckling
analysis overestimates the collapse load by 25.6%. Both anal-
yses predict collapse due to local buckling on the compressive
side of the main spar, see Fig. 14.
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Figure 14: Top: 1st buckling mode shape from linear buckling analysis at a
linear buckling load factor ofλ1 = 0.8177. Bottom: Post-buckled deformation
shape from GNL analysis. Critical load factor at the limit point from GNL
analysis isγc = 0.6510.

Both analyses with respect to the collapse characteristic of
the main spar are in good agreement, i.e. the location of the
local buckling is similar, despite the difference in the prediction
of the collapse load.

7.2. CFAO of generic main spar
Continuous fiber angle optimization of the generic main spar

model is considered where the objective is to maximize the col-
lapse load. Only the biax fiber layers, i.e. the 45◦ and -45◦
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layers, are chosen as design variables since these layers are
included in the layup of the main spar for improved buckling
resistance. The 0◦ pack layers are excluded in the design opti-
mization whereby the bending stiffness is unaffected by the de-
sign changes and a compliance constraint is unnecessary. Only
the mid section biax layers for both flanges and webs are con-
sidered in the optimization. Patches, covering larger areas of
the structure, are introduced. Within a patch containing a set of
finite elements only one fiber angle design variable controlsthe
orientation of the given fiber layer in the finite element set.This
is a valid approach for practical design problems since lami-
nates are typically made using fiber mats covering larger areas.
In the mid section, 1 patch per meter is utilized for both flanges
and webs giving a total of 180 fiber angle design variables.

Linear buckling optimization and nonlinear buckling opti-
mization are performed and the optimization histories are col-
lected in Fig. 15. The optimization problems of the generic
main spar have been solved on a hybrid Linux cluster “Fyrkat”
at Aalborg, Denmark. The programming code which is writ-
ten in Fortran 95 has been implemented in parallel such that
element routines have been parallelized through the use of
OpenMP directives, factorization of the global system, (1)and
(11), are done in parallel through the Pardiso solver in the Intel
Math Kernel Library (MKL), and a Message Passing Interface
(MPI) has been incorporated for doing the design sensitivity
analysis in parallel.
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Figure 15: Optimization histories for nonlinear buckling optimization (GNL-
BuckOpt), linear buckling optimization (LinBuckOpt), anddetected GNL limit
points from re-runned analyses (LinBuckOpt - GNL Limit Point) of the generic
main spar.

The optimization history of the linear buckling load shows
considerable improvement while the improvement in the real
collapse load in terms of the GNL limit point is limited. The
collapse load of the linear buckling optimized design is only
2.8% larger than the collapse load of the initial design. This
behaviour was also observed for the U-profile example in Sec-
tion 6. The nonlinear buckling optimization successfully im-
proves the collapse load of the generic main spar by 13.4%,
which in this context is a large improvement considering that
only a few biax layers are changed and that the initial layup

from an engineering viewpoint is reasonable. The fiber angle
results from the nonlinear buckling optimization is depicted in
Fig. 16. The fiber angle results from the nonlinear buckling
optimization are depicted in Fig. 16. The fiber angles in the
area of instability are changed from being 45◦/-45◦ to be more
transversely oriented and closely to 90◦ in order to suppress the
local buckling mode and thereby raise the collapse load. Only
a few biax layers are selected as design layers and the fixed
fiber layers are oriented in the length direction. This choice of
parametrization, together with the small effective width com-
pared to the length of the spar, explains the orientation of the
design layers in the area of instability. Despite many patchdi-
visions in the parametrization of the problem the fiber angle
results are quite continuous across patches which makes manu-
facturing easier.

Within the optimization of the generic main spar the number
of arc-length steps in the vicinity of the limit point has been
increased for a better resolution and thereby better limit point
detection and easier convergence. This is accomplished by the
introduction of a re-initialization feature of the arc-length solver
such that the arc-length step is reduced when the load factoris
larger than 90% of the detected limit load from the previous
optimization iteration. Some small fluctuations are present in
the nonlinear buckling optimization history in Fig. 15 which is
due to the nonlinearity and non-convexity of the optimization
problem. These fluctuations may be avoided by reducing the
maximum move limit though increasing the risk of convergence
to a local minima.

Many optimization iterations are needed for convergence, see
Fig. 15. A convergence criteria based on the relative changeof
the objective would have resulted in only 20− 40 optimization
iterations, but for completeness a very strict convergencecrite-
ria based on the relative design change has been applied.

Despite the linear buckling mode shape and the GNL post-
buckling displacement field are quite similar, see Fig. 14, the
linear buckling optimization formulation yields very poorre-
sults. The is due to the nonlinearity of the problem whereby
the design sensitivities for the linear formulation becomes in-
accurate since the stress stiffness is not linear together with the
missing contribution from the displacement stiffness. The lin-
ear formulation is unreliable despite it in the analysis is able to
predict the mode of instability and the collapse load withina
margin of 25.6% which makes it dangerous for engineering de-
sign purposes. Especially in cases where only linear buckling
analysis is performed and not even the final result is verified
by GNL analysis, the danger of the linear buckling formulation
is substantial since the linear buckling optimization shows mis-
leading high improvement of the collapse load while the real
collapse load almost remains unchanged.

8. Conclusion

Buckling behaviour of arbitrary composite structures can re-
liably be improved by the proposed optimization method. The
method includes accurate nonlinear path tracing analysis and
the buckling load is estimated at a precritical point on the de-
formed configuration whereby a more precise estimate is ob-
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Figure 16: Fiber angle results from nonlinear buckling optimization for half of the generic main spar. Numbering the layer stacking from inside out, design layer 1
contains the first layer for respectively flanges and webs that are chosen as design variables.

tained than that obtainable by classical linear buckling anal-
ysis. General sensitivity formulas for the nonlinear buckling
load, described by discretized finite element matrix equations,
have been derived and the design sensitivities are approximated
at the precritical point, thus no exact and troublesome determi-
nation of the critical point is necessary.

The current approach is at present limited to a limit point type
of instability. It is possible to expand the method to include bi-
furcation type of instability by modifying the limit point detec-
tion in the optimization procedure to a critical point detection
that includes both limit points and bifurcation points. During
geometrically nonlinear analysis, eigenbuckling analysis could
be preformed at some load steps in order to estimate an up-
coming critical point, and thereby determine the precritical es-
timation point for design and design sensitivity analysis of the

buckling load.

The method has been applied successfully in the buckling
optimization of two composite structures using fiber angle
parametrization. The examples demonstrated the importance of
the nonlinear buckling formulation and that application ofthe
classical linear buckling formulation may not improve the crit-
ical load during the optimization process and as a consequence
lead to unreliable design results. Linear buckling analysis is
often used to predict instability and to optimize structures for
maximum buckling performance without considering nonlin-
ear effects or type of instability. Precautions should be taken
before applying the classical linear formulation, especially in
cases with nonlinear prebuckling path and in cases with limit
point instability. In such cases the nonlinear buckling formu-
lation proves to yield much better results and especially when
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the approximation point is close to the critical point. During
the benchmarks of the nonlinear formulation good convergence
properties was observed and no problems related to divergence
of the displacement derivatives could be traced since the esti-
mation point for design sensitivities is located at a precritical
state.

Imperfection sensitivity is not considered in the paper but
may prove to be important in order to obtain practical esti-
mates of the buckling load. As long as buckling load is used
as the objective function, the authors do not expect the effect of
imperfection sensitivity to change the optimum designs. This
statement is currently being investigated by the authors. On the
other hand, if buckling requirements are considered in the form
of constraints a detailed analysis of imperfection sensitivity or
the use of “engineering” knock-down factors should be used.

Using the developed approach structures can reliably be op-
timized with respect to a general type stability, i.e. either bi-
furcation or limit point stability, and especially in caseswhere
geometrically nonlinear effects cannot be ignored. This allows
the material utilization of buckling critical laminated structures
to be pushed to the limit in an efficient way yet allowing lighter
and stronger structures.
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