A Wavetrap-Based Decoupling Technique for 45°-Polarized MIMO Antenna Arrays

Zhang, Yiming; Zhang, Shuai; Li, Jia-Lin; Pedersen, Gert Frølund

Published in:
IEEE Transactions on Antennas and Propagation

DOI (link to publication from Publisher):
10.1109/TAP.2019.2948531

Creative Commons License
Unspecified

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
A Wavetrap-Based Decoupling Technique for 45°-Polarized MIMO Antenna Arrays

Yi-Ming Zhang, Member, IEEE, Shuai Zhang, Senior Member, IEEE, Jia-Lin Li, and Gert Frølund Pedersen, Senior Member, IEEE

Abstract—A decoupling method using wavetrap technique for large-scale multiple-input multiple-output (MIMO) antenna arrays consisting of 45°-polarized patch antennas is presented and studied in this paper. To achieve high isolation responses among the array elements, simple wavetrap structures are proposed and positioned around every single patch element. With the presented decoupling scheme, the strong mutual coupling between both adjacent and non-adjacent patch elements are suppressed to a low level. Theoretical and numerical studies are carried out to verify the decoupling performance of the proposed architecture. For demonstration purposes, two practical examples of 1×8 and 4×2 45°-polarized arrays centered at 4.9 GHz are developed, fabricated and measured. Results indicate that all mutual couplings among the arrays are significantly suppressed to almost less than –25 dB from 4.8 to 5.0 GHz, with a small insertion loss of around 0.7 dB, making the proposed decoupling scheme attractive and valuable for phased array and massive MIMO systems.

Index Terms—Multiple-input and multiple-output (MIMO), phased array, wavetrap, massive MIMO, wideband decoupling.

I. INTRODUCTION

M ASSIVE multiple-input multiple-output (MIMO) technology is considered as a key architecture for future wireless communications to improve data throughput and energy efficiency [1], [2]. In massive MIMO systems, antenna arrays with a larger number of elements are essential as the base station antennas for serving multi-users. A small center distance between adjacent antenna elements, generally half of the free space wavelength, is required for realizing wide-angle scanning with no visible grating lobes [3]. On this occasion, strong mutual coupling between both adjacent and nonadjacent antenna elements might be generated. For a MIMO antenna array, the isolation of 17 dB between antenna elements would satisfy the requirements of error rate and MIMO capacity, as reviewed in [4]. However, such an isolation level cannot maintain the stability of massive MIMO arrays (or large-scale phased arrays) in practice [5]-[9]. The worst active VSWR, for instance, would be higher than six if the mutual coupling is around –15 dB and still over two with the coupling of –20 dB [5], [6], leading to the degradation on the maximum scanning angle or scanning accuracy. If the mutual coupling can be suppressed to less than –25 dB, the active impedance matching performance would be highly improved and the influence of the mutual coupling can be negligible. Moreover, recently, it is very popular to place a power amplifier (PA) between a phase shifter and an antenna in each RF chain of a massive MIMO transmitter. In this architecture, the loss introduced by phase shifters is much smaller, but the mutual coupling among antenna elements may result in severe distortion of PA performance. In industry, the isolation between antennas is preferred to be over 25 dB to minimize this distortion in a massive MIMO array. Therefore, a caution is given that the strong mutual coupling among antenna elements should be suppressed to a very small level, i.e., less than –25 dB or even lower.

To date, many efforts have been devoted to suppressing the mutual coupling between the antenna elements in MIMO arrays. Using electromagnetic-bandgap structures [10], [11] or resonators [12] is a common method to suppress the surface current between antennas, leading to improved isolation at the cost of bulky systems. On the other hand, LC-based [13]-[15] and transmission-line-based [16], [17] decoupling networks have been widely studied since the decoupling networks are independent of the antenna types, with the drawbacks of high insertion losses and/or narrow decoupling bandwidths. Recently, self-decoupled methods for two-element arrays were reported in [18] and [19]. By employing the additional structures directly connected to the antennas, the coupling among the two-element arrays can be suppressed. However, the aforementioned decoupling networks and self-decoupled methods mainly focused on two-element arrays, and did not provide effective approaches for massive MIMO arrays.

More recently, some decoupling schemes have been presented for large-scale antenna arrays [6], [20], [21]. In [6], an architecture called antenna decoupling surface was proposed and studied for massive MIMO arrays, where the isolation between adjacent antenna elements can be enhanced to higher than 25 dB at the center frequency of 2.45 GHz. Since the additional decoupling surface was normally positioned quarter-wavelength away from the antenna array, the array system was bulky. A near-field decoupling resonator was
presented for linear antenna arrays in [20]. The isolation between adjacent antenna elements in a 1x8 patch antenna array was improved from 12 dB to 22 dB. Due to the near-field coupling effect, the resonance of the antenna elements was departed from 2.37 GHz to 2.24 GHz, with the operation band (S11 ≤ −10 dB) of 2.237-2.246 GHz after decoupling. In [21], a transmission-line-based decoupling network was studied for dual-polarized large-scale arrays, where the realized isolation bandwidth featured a narrow response.

In this paper, a wavetrap-based decoupling method is proposed for 45°-polarized large-scale patch antenna arrays. Three groups of wavetraps are loaded around each patch element, leading to high-isolation responses within the antenna arrays consisting of the proposed wavetraps and the 45°-polarized patches. Compared with the previously reported literature, the main contributions and novelties of this paper are as follows:

1. Multi-resonance decoupling responses are realized to improve the isolation bandwidth;
2. The mutual couplings between adjacent and non-adjacent antenna elements are all well suppressed;
3. The proposed decoupling method is with simple realization and low profile, and has nearly no effect on radiation patterns with small insertion losses.

This paper is organized as follows. Section II provides the network-based analysis of the proposed decoupling wavetrap structures. A numerical study of a 1x2 array with the proposed decoupling method is performed in Section III. In Section IV, two decoupled demonstrators of 1x8 and 4x2 arrays are developed and measured. The conclusion is stated in Section V.

II. ANALYSIS OF THE PROPOSED DECOUPLING TECHNIQUE

Fig. 1 shows a 45°-polarized patch antenna with the proposed wavetrap-based decoupling structure. Two stacked substrates are employed. The patch is printed on the top of substrate 1, and the ground plane is inserted between substrate 1 and substrate 2. Twelve wavetraps are positioned around the radiation patch along the boundary of a square, and separated into three groups (marked as groups D1, D2, and D3). Wavetraps belonged to group D2 are distributed at the four corners of the square, and the ones belonging to groups D1 and D3 are positioned under rotational symmetry. As illustrated in Fig. 1, a single wavetrap consists of a small metal pad printed on the top of substrate 1, a shorted stub placed on the bottom of substrate 2, and a probe through the two substrates as the connection between the pad and the stub. The shorted stubs allocated in the same group are with the same characteristic impedance and electrical length, which are Zl and θi, Z2 and θ2, Z3 and θ3 for groups D1, D2, and D3, correspondingly. Moreover, for compactness purposes, the wavetraps should not be positioned among a large area. On the other hand, adjacent wavetraps should be with certain distances to keep the independence of each wavetrap structure. Therefore, the side length of the square is set as L1 = 0.5λ0, and the distance between the ones belonging to D1 and D3 at the same side of the square is optimized to L2 = 0.28λ0, where λ0 is the free-space wavelength. For the arrays composed of the proposed structure shown in Fig. 1, the mutual coupling among the antenna elements can be well suppressed by selecting the parameters of the shorted stubs.

Fig. 2(a) shows a 1x2 array composed of the proposed configuration plotted in Fig. 1. Based on the three groups of the wavetraps, the array is simplified to three different cases as shown in Figs. 2(b), 2(c), and 2(d). Each group of the wavetraps would feature a decoupling function at the desired frequency, which is determined by the parameter values of the shorted stubs. Taking case B given in Fig. 2(b) as the study case, the following discussion will explain the decoupling theory and give a network-based study for determining the values of parameters Zl and θi, where i = 1, 2, 3. Since the isolation between ports 1 and 2 should be mainly determined by the wavetraps positioned in the area between the two radiation patches, a further-simplified configuration for case B is provided as described in Fig. 3(a). Three wavetraps are marked as D1A, D1B, and D1C. Fig. 3(b) depicts the equivalent circuit of the two-port structure given in Fig. 3(a). Herein, RLC resonators (RLCP) represent the radiation patches. In addition to the original coupling path, three decoupling paths are generated owing to the employed wavetraps. Therefore, there are totally four transmission paths between ports 1 and 2, and the simplified network model is shown in Fig. 3(c) describing...
Determining the decoupling principle, three additional ports (defined as ports 3, 4, and 5) are introduced for further study, as marked in Fig. 3(a). The terminal planes of the three ports are set at the ends of the probes correspondingly. Subsequently, a five-port network of the five-port array plotted in Fig. 3(a) is constructed for the sake of analysis, as illustrated in Fig. 4(a). On the $n$th port, the equivalent voltage and current are marked as $V_n$ and $I_n$, respectively. The impedance matrix $Z$ of the five-port network then relates the mentioned voltages and currents, expressed as

$$
\begin{bmatrix}
V_1 \\
V_2 \\
V_3 \\
V_4 \\
V_5
\end{bmatrix} =
\begin{bmatrix}
Z_{11} & Z_{12} & Z_{13} & Z_{14} & Z_{15} \\
Z_{21} & Z_{22} & Z_{23} & Z_{24} & Z_{25} \\
Z_{31} & Z_{32} & Z_{33} & Z_{34} & Z_{35} \\
Z_{41} & Z_{42} & Z_{43} & Z_{44} & Z_{45} \\
Z_{51} & Z_{52} & Z_{53} & Z_{54} & Z_{55}
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
I_3 \\
I_4 \\
I_5
\end{bmatrix}
$$

Seeing that ports 3, 4, and 5 will be terminated by the shorted stubs as illustrated in Fig. 1, the five-port network can be further simplified to a two-port network as plotted in Fig. 4(b), where

$$
Z_L = jZ_1 \tan \theta_1
$$

According to the two-port network and (4), we have

$$
\begin{align*}
V_1 &= -Z_L I_3 + Z_3 I_3 \\
V_2 &= -Z_L I_4 + Z_3 I_3 + Z_4 I_3 \\
V_3 &= -Z_L I_5 + Z_3 I_3 + Z_4 I_3 + Z_5 I_3 \\
V_4 &= -Z_L I_5 + Z_3 I_3 + Z_4 I_3 + Z_5 I_3 + Z_6 I_5
\end{align*}
$$

Substituting (4) into (6), the numerical expressions of currents $I_3, I_4,$ and $I_5$ can be obtained based on currents $I_1$ and $I_2$, briefly given as

$$
\begin{align*}
I_3 &= h_3 (I_1, I_2) \\
I_4 &= h_4 (I_1, I_2) \\
I_5 &= h_5 (I_1, I_2)
\end{align*}
$$

where $h_3, h_4,$ and $h_5$ are the functions with the variables of $I_1$ and $I_2$. On the other hand, the impedance matrix $Z'$ of the two-port network relates the voltages $V_1$ and $V_2$, and currents $I_1$ and $I_2$, expressed as

$$
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix} =
\begin{bmatrix}
Y_1 & Y_2 \\
Y_2 & Y_1
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
$$

Based on this and (2), the mutual admittance $Y_0$ from port 1 to port 2 can be expressed as

$$
Y_0 = \frac{1}{b_1} - \frac{1}{b_0} \frac{1}{b_1} - \frac{1}{b_3}
$$

According to the architecture shown in Fig. 1, all the parameters of the equivalent circuit constructed in Fig. 3, except $Z_1$ and $\theta_1$, are constant for a given patch array with fixed substrates. As a result, the mutual admittance $Y_0$ is entirely determined by the shorted stubs. By properly selecting the values of $Z_1$ and $\theta_1$ to achieve the condition of $Y_0 = 0$, the original coupling between the two patches can be canceled, leading to a theoretically perfect decoupling between ports 1 and 2. The above discussion presents the decoupling principle of the proposed wavetraps through an equivalent circuit. Next, a network study is proposed for determining the parameters $Z_1$ and $\theta_1$. Here, three additional coupling paths.
\[
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix} =
\begin{bmatrix}
Z_{11}' & Z_{12}' \\
Z_{21}' & Z_{22}'
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
\] (8)

Then, we have
\[
V_1 = Z_{11}' I_1 + Z_{12}' I_2
\] (9)

Besides, we see from (4) that \( V_1 \) can be found as
\[
V_1 = Z_{11} I_1 + Z_{12} I_2 + Z_{13} I_3 + Z_{14} I_4 + Z_{15} I_5
\] (10)

Substituting (7) and (10) into (9), \( Z_{11}' \) can be determined as
\[
Z_{11}' = Z_{11} - \frac{(Z_{11} + Z_{12} P_3 + Z_{14} P_4 + Z_{15} P_5) / Q}{Z_{11}'}
\] (11)

where
\[
P_3 = Z_{31} (Z_{41} Z_{52} - Z_{42} Z_{51}) + Z_{35} (Z_{45} Z_{54} - Z_{44} Z_{55}) + Z_{32} (Z_{42} + Z_{52} + Z_{41} Z_{51} - Z_{45} Z_{54} - Z_{44} Z_{55}) + Z_{33} (Z_{43} + Z_{53} - Z_{45} Z_{54} - Z_{44} Z_{55}) + Z_{34} (Z_{44} + Z_{54} - Z_{45} Z_{54} - Z_{44} Z_{55}) + Z_{35} (Z_{45} + Z_{55} - Z_{45} Z_{54} - Z_{44} Z_{55})
\]

\[
P_4 = Z_{41} (Z_{52} Z_{31} - Z_{51} Z_{32}) + Z_{42} (Z_{52} Z_{35} - Z_{55} Z_{32}) + Z_{43} (Z_{53} + Z_{33} - Z_{55} Z_{32} - Z_{55} Z_{35}) + Z_{44} (Z_{54} + Z_{34} - Z_{55} Z_{32} - Z_{55} Z_{34}) + Z_{45} (Z_{55} + Z_{35} - Z_{55} Z_{32} - Z_{55} Z_{35})
\]

\[
P_5 = Z_{51} (Z_{42} Z_{31} - Z_{41} Z_{32}) + Z_{52} (Z_{42} Z_{35} - Z_{45} Z_{32}) + Z_{53} (Z_{43} + Z_{33} - Z_{45} Z_{32} - Z_{45} Z_{35}) + Z_{54} (Z_{44} + Z_{34} - Z_{45} Z_{32} - Z_{45} Z_{34}) + Z_{55} (Z_{45} + Z_{35} - Z_{45} Z_{32} - Z_{45} Z_{35})
\]

\[
Q = \left( jZ_1 \tan \theta_1 + Z_{33} \right) \left( jZ_2 \tan \theta_1 + Z_{43} \right) \left( jZ_1 \tan \theta_1 + Z_{53} \right) - \left( jZ_1 \tan \theta_1 + Z_{33} \right) Z_{45}^2 - \left( jZ_1 \tan \theta_1 + Z_{44} \right) Z_{53}^2 - \left( jZ_1 \tan \theta_1 + Z_{55} \right) Z_{43}^2
\]

Based on the microwave network theory, the transmission coefficient between ports 1 and 2 can be derived [22]

\[
S_{21} = S_{12} = \frac{2Z_{21}' \sqrt{R_{01} R_{02}}}{(Z_{11}' + Z_{01})(Z_{22}' + Z_{02}) - Z_{11}' Z_{21}'}
\] (13)

where \( Z_{01} \) and \( Z_{02} \) are the equivalent source loads at port 1 and port 2, respectively; \( R_{01} \) and \( R_{02} \) are the real parts of \( Z_{01} \) and \( Z_{02} \), correspondingly. It is clearly seen that there would be a transmission zero between port 1 and port 2 on the basis of

\[
Z_{11}' = Z_{21}' = 0
\] (14)

It is found from (11) that for the given array with fixed positions of the wavetraps, the impedance matrix \( Z \) of the five-port network is constant. By selecting a group of the parameters \( Z_1 \) and \( \theta_1 \) to satisfy (14), the leakage between ports 1 and 2 in case B can be well suppressed, leading to an improved isolation response at the desired frequency. Similarly, following the aforementioned discussions, the values of \( Z_2, Z_3, \theta_2, \) and \( \theta_3 \) can be determined, which are not detailed for brevity. Finally, for case A, after allocating the decoupling frequencies of the three groups of the wavetraps to three different but close values \( f_1, f_2, \) and \( f_3 \) correspondingly, decoupling bandwidth would be enhanced.

Case A represents the decoupling between two horizontal positioned antenna elements. For the vertical positioned 2×1 antenna array (marked as case E) shown in Fig. 5(a), it can be easily verified that the decoupling method is still effective, making the wavetraps valuable and effective for large-scale arrays. Referring to the graphical studies of Fig. 2, case E is simplified into three different cases corresponding to the three groups of the wavetraps, as illustrated in Figs. 5(b), 5(c), and 5(d). It is found that the configurations of case B and case F are mirror symmetrical. This denotes that ports 3 and 4 in case F would be decoupled on condition that ports 1 and 2 are decoupled in case B. Same symmetry is observed between cases C and G, cases D and H. In view of the symmetry, it can be concluded that the 45º-polarized configuration features a simpler mutual coupling response compared to those configurations with other polarized directions. For example, the couplings through the horizontal pair plotted in Fig. 2(a) and the vertical pair plotted in Fig. 5(a) would be generally different if the antenna elements are vertical or horizontal polarized. This implies that the wave traps are required, leading to a more complicated decoupling approach. According to the discussions, the 45º-polarized configuration is more attractive in this case for large-scale array applications. Therefore, we select the 45º-polarized patch antenna as the study case and utilize the proposed wavetraps to achieve the decoupling purpose.

III. NUMERICAL STUDY OF THE 1×2 ARRAY

In this section, a series of numerical studies are carried out to give further investigations on the decoupling performance of a 1×2 patch array. Fig. 6 depicts the configuration of the array. Please note that the stacked substrates, i.e., substrate 1 and substrate 2, are utilized to obtain a wideband patch antenna,
which has no specified contribution to the proposed decoupling method. As for substrate 3, it is served as the support of the feeding lines and the shorted stubs, whose dielectric constant is properly selected to make sure that all the microstrip lines can be fabricated with compact sizes. Prior to operating the analysis, full-wave simulator Computer Simulation Technology (CST) is used to get the required impedance matrices. Here, the 22-port model shown in Fig. 2(a) is utilized for the full-wave simulations, and the desired impedance matrices are derived on condition that other non-related ports are terminated with matched loads. For example, to get the impedance matrix of case B, the other 17 ports in case A are terminated, and the five-port network is constructed. Once the desired impedance matrices are obtained, the transmission responses between port 1 and port 2 in cases B, C, and D can be calculated accordingly, based on (13) for the given values of $\theta_i$ and $\theta_j$. Here, all electrical lengths are referred at the center frequency, which is 4.9 GHz in this study.

Fig. 7 illustrates the calculated transmission responses between ports 1 and 2 in case B versus different $Z_1$ and $\theta_1$. It is observed from Fig. 7(a) that for the given characteristic impedance of $Z_1 = 50 \Omega$, a transmission zero can be realized at certain frequencies with specified $\theta_1$. The calculated isolation is improved from around 18 dB to higher than 30 dB at the desired frequency, compared to the one without decoupling. Similar results can be observed for cases C and D, and some calculated responses are depicted in Fig. 8, which are not detailed for brevity. It is revealed from Fig. 8(a) that the decoupling levels contributed from case C are not as high as those from cases B and D. The probable reason is that the distances between the wavetraps belonging to group D2 and the radiation patch are larger than those in other cases, leading to a lower decoupling level. The graphical studies provided in Figs. 7 and 8 describe the decoupling performance of the proposed wavetraps separately, corresponding to the separated cases B, C and D. Next, the coupling response of case A where all wavetraps are integrated is further studied.

For case A, the three transmission zeros contributed from the three groups of wavetraps are allocated at three frequencies as $f_1 = 4.8$ GHz, $f_2 = 4.9$ GHz, and $f_3 = 5.0$ GHz. The parameters of the transmission lines are determined based on the graphical studies plotted in Fig. 7 and Fig. 8. Illustrated in Fig. 9 are the calculated transmission responses of the 1x2 array with all three groups of the decoupling wavetraps. The full-wave simulated $S_{11}$ and $S_{21}$ without decoupling are also depicted in
Fig. 10. (a) Physical sizes of the network layer, including the feeding line and the wavetraps, where $d_1 = 4.5, d_2 = 4.45, d_3 = 4.25, d_4 = 2.0, w_1 = 1.0, w_2 = 0.4$ (Units: mm). (b) Full-wave simulated S-parameters of the 1×2 antenna array with the proposed decoupling method and the transformer for impedance matching. 

Fig. 9. It is seen that three transmission zeros of $S_{21}$ are observed at the desired frequencies after decoupling, resulting in the significantly enhanced isolation performance, from 18 dB to better than 28.5 dB within the band of 4.8-5.0 GHz. Fig. 9 also verifies that the decoupling performance of the three groups of the wavetraps are independent, making the design and the realization to be very simple and effective. Since the return-loss levels are influenced on both two ports, a simple impedance transformer is employed for each port to improve the impedance matching, which will be mentioned later. 

Fig. 10(a) describes the physical dimensions of the feeding network layer including decoupling wavetraps. The transmission-line-based transformer marked in the green dash block is utilized for impedance matching. Fig. 10(b) depicts the full-wave simulated results of the 1×2 array based on the layout shown in Fig. 10(a). It is observed that the isolation performance is consistent with the calculated one plotted in Fig. 9. Seeing that an additional but simple transformer is employed at each antenna port, the impedance responses are enhanced compared to those without the transformer. Furthermore, a comparison of surface current distributions between the arrays without and with the proposed wavetraps is given in Fig. 11. It is found that before decoupling, obvious currents are induced on the right patch when the left patch is excited, denoting a strong mutual coupling. After employing the wavetraps, the induced current has been significantly suppressed. Besides, the result implies that only a very small amount of 135°-directed electric field is excited on the right patch, resulting in a high isolation level between the two ports since the patches are 45° polarized.

To clarify the realization of the proposed decoupling wavetrap structures for the 1×2 antenna array more clearly, a design procedure involving four steps is summarized, given as

- Step 1) Separating the wavetraps into three groups $D_1$, $D_2$, and $D_3$ as plotted in Fig. 2, and obtaining the required impedance matrices through full-wave simulations;
- Step 2) Constructing the corresponding network models as shown in Fig. 4, and selecting the three frequencies $f_1$, $f_2$, and $f_3$, where transmission zeros would be generated; determining the numerical values of the parameters $Z_1$, $Z_2$, $Z_3$, $\theta_1$, $\theta_2$, and $\theta_3$ by following the derivations of (4)-(14);
- Step 3) Integrating all numerically-determined wavetrap together into case A, and determining the transformer for further impedance matching by investigating the input impedance response at the interfaces of antenna ports;
- Step 4) Transforming all numerical parameters into physical sizes, and determining the final layout of the proposed decoupling wavetraps by using full-wave simulations for finely tuning.

Next, two 45°-polarized antenna arrays integrated with the proposed decoupling wavetrap are developed and measured. The full-wave simulated and measured results will be provided in Section IV.

IV. MEASUREMENTS OF TWO DEMONSTRATORS

To demonstrate the performance of the proposed decoupling method for practical array applications, two examples are conducted in this section. The first case is a 1×8 45°-polarized antenna array, and the second one is a 4×2 45°-polarized antenna array. The configurations plotted in Figs. 6 and 10 are utilized as the practical array element and the wavetrap, and identical physical dimensions are employed for both cases.
A. 1×8 antenna array

Fig. 12 shows the photos of the developed 1×8 antenna array with the proposed decoupling wavetaps. The overall size is 280×60×4.016 mm³. The demonstrator is fully measured. The S parameters and the radiation performance are tested by utilizing the Agilent 85309N network analyzer and the SATIMO SG24L spherical near-field scanner, respectively.

Fig. 13 depicts the measured and simulated S parameters of some representative ports, with and without using the decoupling wavetaps. It is seen that the impedance bandwidths are slightly expanded after decoupling for both simulated and measured results. For the frequency band from 4.8 to 5.0 GHz, the coupling levels between two adjacent antenna elements, e.g., S21 and S34, are reduced from −18.0 dB to lower than −26.0 dB. Moreover, the couplings between non-adjacent elements, e.g., S31 and S64, are also suppressed to less than −28.0 dB. Notice that since the S parameters are measured in lab environment, there are some fluctuations for the measurements due to the reflections as well as some uncertain influence in practice such as fabrication/assembly errors.

The far-field radiation patterns of ports 1 and 4 are illustrated in Fig. 14. Good consistency between the simulated and measured results for both with and without the proposed decoupling wavetaps is observed. This is the same for other unmentioned ports, which are not given for brevity. The total efficiencies are also provided, as shown in Fig. 15. It is found that within the frequency band of 4.8 to 5.0 GHz, the proposed decoupling wavetaps lead to some deteriorations on the total efficiencies, from 89%-90% to 75%-80% due to the conductive loss at wavetaps. The worst degradation of the total efficiency
Based on the above discussions, the developed 1×8 antenna array features well-designed decoupling performance, where both adjacent and non-adjacent elements are decoupled.

is approximately 15%, indicating an insertion loss of 0.7 dB.

is fully tested. Here, the results related to port 2 is chosen as the representative port for analysis. Fig. 17 provides the impedance and isolation responses of the developed demonstrator. The impedance performance is similar to those of the 1×8 antenna array, featuring wideband responses. The couplings between adjacent elements, e.g., S_{12} and S_{21}, are reduced from −18.0 dB to lower than −25.0 dB among the bandwidth of 4.8–5.0 GHz. The leakages between the non-adjacent elements are also degraded. Moreover, the isolation between diagonal pairs are not influenced or even improved, although the decoupling between these pairs of elements are not considered during the analysis. For instance, S_{32} is still kept at a low level of less than −23.5 dB, and S_{22} is reduced to less than −30.0 dB from 4.82 to 5.3 GHz.

The measured radiation patterns and total efficiencies of the 4×2 antenna array are illustrated in Fig. 18 and Fig. 19, respectively. For the radiation patterns, good consistency between the simulated and measured results for both with and
without the decoupling wavetraps are obtained. Similar to the 1×8 array, some deteriorations on the total efficiency are found here. The measured total efficiency of port 4 is with the worst degradation of 14% within the band from 4.8 to 5.0 GHz, corresponding to an insertion loss of around 0.65 dB.

For performance comparison, Table I summarized some recently published decoupling methods as well as the proposed wavetrap-based technique. Different from the published methods with bulky system [6], complicated decoupling network [17], narrow band [21] or significant influence on operation frequency [20], the proposed scheme is simple with low insertion loss, and features simplicity in implementation and applicability to large-scale arrays including massive MIMO and phased arrays for communications and radar applications.

<table>
<thead>
<tr>
<th>Decoupling method</th>
<th>Antenna type</th>
<th>Array configuration &amp; center frequency</th>
<th>Center distance among adjacent elements</th>
<th>Profile (Thickness)</th>
<th>Impedance bandwidth</th>
<th>Isolation between adjacent elements</th>
<th>Decoupling between non-adjacent elements</th>
<th>Isolation between non-adjacent elements</th>
<th>Total efficiency among decoupled bandwidth</th>
<th>Insertion loss caused by decoupling</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decoupling surface</td>
<td>Microstrip patch</td>
<td>1×8: 2.45 GHz, 2×2: 3.5 GHz</td>
<td>1×8: 0.45λ, 2×2: 0.52λ-0.7λ</td>
<td>1×8: 0.29λ</td>
<td>1×8: 2.243-2.252 GHz, 1×2: 2.38-2.53 GHz</td>
<td>1×8: ≥ 20.0 dB, (2.237-2.246 GHz)</td>
<td>No</td>
<td>1×8: ≥ 24.0 dB</td>
<td>Not given</td>
<td>Not given</td>
<td>[6][7][8][9][10][11][12]</td>
</tr>
<tr>
<td>Transmission line</td>
<td>Microstrip patch</td>
<td>1×16: 7.7 GHz</td>
<td>0.5λ</td>
<td>1×8: 0.07λ</td>
<td>1×2: 2.238-2.527 GHz, 4×2: 4.8-5.0 GHz</td>
<td>1×2: ≥ 25.0 dB</td>
<td>No</td>
<td>1×8: ≥ 4.65-5.3 GHz</td>
<td>Not given</td>
<td>Not given</td>
<td>[6][7][8][9][10][11][12]</td>
</tr>
<tr>
<td>Near-field resonator</td>
<td>Microstrip patch</td>
<td>1×8: 2.37 GHz, 1×2: 2.45 GHz</td>
<td>1×8: 0.47λ, 1×2: 0.58λ</td>
<td>1×8: 0.05λ</td>
<td>1×2: 2.045λ, 4×2: 0.12λ</td>
<td>1×2: ≥ 2.38-2.47 GHz</td>
<td>No</td>
<td>1×8: ≥ 4.65-5.3 GHz</td>
<td>Not given</td>
<td>Not given</td>
<td>[6][7][8][9][10][11][12]</td>
</tr>
<tr>
<td>Transmission line</td>
<td>Microstrip patch</td>
<td>1×8: 2.45 GHz</td>
<td>1×8: 0.5λ</td>
<td>1×8: 0.07λ</td>
<td>1×2: 2.045λ, 4×2: 0.12λ</td>
<td>1×2: ≥ 2.38-2.47 GHz</td>
<td>No</td>
<td>1×8: ≥ 4.65-5.3 GHz</td>
<td>Not given</td>
<td>Not given</td>
<td>[6][7][8][9][10][11][12]</td>
</tr>
<tr>
<td>Wavetrap structure</td>
<td>Microstrip patch</td>
<td>1×8: 4.9 GHz, 4×2: 4.9 GHz</td>
<td>1×8: 0.5λ</td>
<td>1×8: 0.07λ</td>
<td>1×2: 2.045λ, 4×2: 0.12λ</td>
<td>1×2: ≥ 2.38-2.47 GHz</td>
<td>No</td>
<td>1×8: ≥ 4.65-5.3 GHz</td>
<td>Not given</td>
<td>Not given</td>
<td>[6][7][8][9][10][11][12]</td>
</tr>
</tbody>
</table>

TABLE I

**PERFORMANCE COMPARISONS AMONG SOME RECENTLY PUBLISHED AND THE PROPOSED DECOUPLING METHODS**

The proposed wavetrap structure is compact, simple, and can be readily realized, making it valuable for large-scale antenna arrays such as massive MIMO antennas and phased arrays. Furthermore, two design examples centered at 4.9 GHz are provided and tested. The full-wave simulated and measured results denote that the proposed scheme features low profile with low insertion loss and nearly no effect on radiation patterns.

**REFERENCES**


**Yi-Ming Zhang** (S’17-M’19) received the B.S. degree from Central China Normal University in 2008, the M.S. and Ph.D. degrees from University of Electronic Science and Technology of China in 2014 and 2019, respectively. From 2018 to 2019, he was a guest researcher with the Antenna, Propagation and Millimeter-wave Systems (APMS) Section, Aalborg University, Denmark, where he currently works as a Post Doctor. His current research interests include massive MIMO antenna decoupling, single-channel full-duplex antennas, and passive RF and microwave components.

**Shuai Zhang** (SM’18) received the B.E. degree from the University of Electronic Science and Technology of China, Chengdu, China, in 2007 and the Ph.D. degree in electromagnetic engineering from the Royal Institute of Technology (KTH), Stockholm, Sweden, in 2013. After his Ph.D. studies, he was a Research Fellow at KTH. In April 2014, he joined Aalborg University, Denmark, where he currently works as Associate Professor. In 2010 and 2011, he was a Visiting Researcher at Lund University, Sweden and at Sony Mobile Communications AB, Sweden, respectively. He was also an external antenna specialist at Bang & Olufsen, Denmark from 2016-2017. He has coauthored over 50 articles in well-reputed international journals and over 15 (US or WO) patents. His current research interests include mobile terminal mmwave antennas, biological effects, CubeSat antennas, Massive MIMO antenna arrays, UWB wind turbine blade deflection sensing, and RFID antennas.