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Spurious forecasts?

Berenice Martı́nez-Rivera∗ Daniel Ventosa-Santaulària†

J. Eduardo Vera-Valdés‡

This version: May 1, 2010

Abstract

P.C.B. Phillips (1998) showed that deterministic trends are a valid representa-
tion of an otherwise stochastic trending mechanism; he remained however sceptic
about the predictive power of such representations. In this paper we prove that
forecasts built upon spurious regression may perform (asymptotically) as well as
those issued from a correctly specified regression. We derive the order in probabil-
ity of several in-sample and out-of-sample predictability criteria (F test, Root Mean
Square Error, Theil’s inequality tests and R2) using forecasts based upon a least
squares-estimated regression between independent variables generated by a variety
of empirically-relevant data generating processes. It is shown that, when the vari-
ables are mean stationary or trend stationary, the order in probability of these criteria
is the same whether the regression is spurious or not. Simulation experiments con-
firm our asymptotic results.

1 Introduction
Forecasting can be considered as an activity inherent to almost any decision-making pro-
cess. In economics, forecasts are commonly built upon econometric models frequently
estimated by Least Squares (LS). That said, macroeconomics forecasts involve a special
difficulty; many macro variables collected as time series observations appear to be non-
stationary; statistical inference in models using such variables could then be misleading,
∗Universidad de Guanajuato. e-mail: bbmrivera@gmail.com
†Corresponding author. Universidad de Guanajuato; Address: Departamento de Economı́a y Finanzas,
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because of the well-known spurious regression phenomenon (Yule 1926, Granger and
Newbold 1974). Spurious regression has been well documented in econometrics since
Phillips’s (1986) provided the asymptotic arguments that explain it. It occurs whether the
variables are—independently—generated as driftless unit roots (Phillips 1986), unit roots
with drift (Entorf 1997), integrated of higher order processes (Marmol 1995, Marmol
1996), long-memory processes (Cappuccio and Lubian 1997, Marmol 1998) or (broken)-
trend stationary processes (Hassler 2000, Noriega and Ventosa-Santaulària 2006, Noriega
and Ventosa-Santaulària 2007).1

Notwithstanding the foregoing evidence, Phillips (1998) showed that deterministic trends
are a valid representation of an otherwise stochastic trending mechanism; he remains how-
ever sceptic about the predictive power of such representations. In this paper we prove,
by means of an extension of Noriega and Ventosa-Santaulària’s (2007) asymptotic results,
that forecasts built upon spurious regression may share (asymptotically) the properties of
those issued from a correctly specified regression. This we do by proving that many of
the most popular in-sample and out-of-sample predictability criteria (PrCr, hereinafter)
behave asymptotically in the same manner whether the inference is spurious or not.

2 Spurious forecasts?
In words of Phillips (1998,p.1300): “In a prototypical spurious regression, the estimated
parameters are statistically significant when there is no true statistical relationship be-
tween the dependent variable and the regressors.” This phenomenon occurs whether the
trending mechanism of the variables is deterministic or stochastic.
We characterize the asymptotic behavior of five classical PrCr (R2, F statistic, RMSE
and two versions of Theil’s inequality test,2 U1 and U2). Our results somehow support
Phillips’s (1998) conjecture: we can not correctly forecast using spurious regressions
when dealing with integrated processes; nonetheless, we can do it when the series have a
deterministic component .
Our study focuses in estimating a simple linear specification:

yt = α + βxt + εt (1)
1See Ventosa-Santaulària (2009) for a more complete review of the literature concerning spurious re-

gression.
2Theil (1961) proposed an error measure usually referred as“U” statistic and later ammended it

(Clements and Hendry 1998, p. 63). To avoid confusion we will refer to each one with a different sub-
script.
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Table (1) summarizes the data generating processes (DGPs) considered in this study for
both the dependent and the explanatory variable:

Case Acronym Model
1 MS zt = µz + uzt
2 I (1) zt = zt−1 + uzt
3 I (1) + dr zt = Z0 + zt−1 + uzt
4 TS zt = µz + βzt+ uzt
5 BTS zt = µz + βzt+ γzDTzt + uzt
6 Rel∗ yt = µy + βyxt + uyt

Table 1: The DGP’s for zt = yt, xt. ∗: Rel accounts for “Related variables”

In table (1) we assume that uxt and uyt have the following properties: E (uz) = 0 and
E (uzu

′
z) = σ2I where u′z = (uz1, uz2, . . . uzT ); z = x, y. DTzt is a dummy variable

allowing changes in the trend’s slope, that is, DTzt = (t− Tbz) 1 (t > Tbz) , where 1 (•)
is the indicator function, and Tbz is the unknown date of the break in z. We denote the
break fraction as λz = (Tbz/T ) ∈ (0, 1) where T is the sample size.
The five in-sample/out-of-sample PrCr are enumerated below. In order to encompass both

types (in and out-of sample) of PrCr, we define κ =

{
t+ 1 for out− of sample forecasts

1 for in− sample forecasts .

1. The Root Mean Squared Error (RMSE): the RMSE is the square root of the mean of
squared deviations where yt represents the observed variable while ŷt represents its
corresponding prediction (see equation 2). In particular, for the in-sample version,
the RMSE is just the standard deviation of the estimated residuals.

RMSE =

√√√√1

h

h∑
i=κ

(yi − ŷi)2 (2)

2. U Statistic U1: Originally proposed by Theil(1958):

U1 =

√
1
h

∑h
i=κ (yi − ŷi)2√

1
h

∑h
i=κ ŷ

2
i +

√
1
h

∑h
i=κ y

2
i

(3)
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3. U Statistic U66: Theil modified his own proposal; the second version of Theil’s
criterion, we label U66, appears below:

U66 =

√
1
h

∑h
i=κ (yi − ŷi)2√
1
h

∑h
i=κ y

2
i

(4)

Note that Theil proposed two different formulae at different times both labelled
“Coefficient of Inequality”. Nowadays the U1 is conceived as a measure of forecast
accuracy whilst U66 is seen as a measure of forecast quality. Both measures (U1 and
U66) are bounded between 0 (the case of perfect forecasting) and 1 (the supposedly
worst case). Further details can be found in Bliemel (1973).

4. The F-tests and the R2 are frequently used in the comparison of statistical models
as criteria to identify which model fits better. They can be considered as exclusively
in-sample PrCr.

F =

∑T
t=1 (ŷt − ȳ)2 /(K − 1)∑T
t=1 (yt − ȳ)2 /(T −K)

(5)

R2 = 1−
∑T

t=1 (yt − ŷt)2∑T
t=1 (yt − y)2

(6)

PrCr can be therefore conducted based on (i) the in-sample fit of a model; (ii) the out-
of-sample fit obtained from a sequence of recursive or rolling regressions. Inoue and
Kilian (2004) overturn the conventional wisdom that out-of-sample PrCr results are more
reliable than in-sample PrCr by showing that, in many cases, in-sample PrCr have higher
power than out-of-sample PrCr even in the presence of parameter instability. Any out-of-
sample analysis based on sample-splitting involves a loss of information and hence lower
power in small samples. As a result, an out-of-sample test may fail to detect predictability
that exists in the data, whereas the in-sample PrCr will correctly detect it. The previous
argument lead us to also focus on in-sample PrCr.

3 Asymptotic Results
In this section we study the properties of the PrCr under a set of trending mechanisms in
the data. We focus on the asymptotic behavior of the PrCr of both, in and out-of-sample
forecasts.
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3.1 In-Sample Forecasts
We start our study with a lemma that will prove useful along the rest of this work; it
states the order in convergence of the residuals sum of squares (RSS) and the total sum
of squares (TSS)3 of equation 1’s LS estimates for different trending mechanisms in the
series.

Lemma 1 Let xt be generated by DGP i = 1, . . . , 5 of table 1, let yt be generated by
DGP j = i, 6 and use them to estimate by LS specification (1). The order in probability
of the RSS and the TSS are as follows:

DGPs RSS TSS
HHH

HHHyt

xt MS I(1) I(1) + dr TS BTS MS I(1) I(1) + dr TS BTS

Rel Op (T ) Op (T ) Op (T ) Op (T ) Op (T ) Op (T ) Op (T 2) Op (T 2) Op (T 3) Op (T 3)

SDGP ∗ Op (T ) Op (T 2) Op (T 2) Op (T ) Op (T 3) Op (T ) Op (T 2) Op (T 2) Op (T 3) Op (T 3)

Table 2: RSS and TSS orders in convergence. *.- SDGP stands for same independent
DGP as xt.

Proof: see the appendix.
On the one side, as the above table shows, the asymptotic results for the regressions
using variables generated by DGPs 1 and 4 (that is, MS and TS) are qualitatively the
same whether the dependent variable is related to xt or has been independently generated
by the same DGP of xt. On the other side, the orders in probability are considerably
different between regressions estimated with independent variables and those estimated
with related ones when the trending mechanism is stochastic. The PrCr are particularly
affected by these differences, as states proposition 1.

Proposition 1 Let xt and yt be generated by DGP i = 1, . . . , 5 and by DGP j = i, 6
of table 1 respectively, and use them to estimate by LS specification (1). The order in
probability of the in-sample PrCr: RMSE, U1, U66, F and R2, defined in (2), (3), (4),
(5) and (6), respectively, are the following:

3RSS =
∑T

i=1 (yt+i − ŷt+i)
2; TSS =

∑T
t=1 (yt − y)

2.
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xt yt RMSE U1, U66 F 1−R2

MS
Rel Op (1) Op (1) Op (T ) Op (1)

SDGP Op (1) Op (1) Op (1) Op (1)

I(1)
Rel Op (1) Op

(
T−1/2

)
Op (T 2) Op (T−1)

SDGP Op

(
T 1/2

)
Op (1) Op

(
T 3/2

)
Op (1)

I(1) + dr
Rel Op (1) Op

(
T−1/2

)
Op (T 2) Op (T−1)

SDGP Op

(
T 1/2

)
Op (1) Op

(
T 3/2

)
Op (1)

TS
Rel Op (1) Op (T−1) Op (T 3) Op (T−2)

SDGP Op (1) Op (T−1) Op (T 3) Op (T−2)

BTS
Rel Op (1) Op (T−1) Op (T 3) Op (T−2)

SDGP Op (T ) Op (1) Op (T ) Op (1)

Proof: see the appendix.
Proposition 1 shows that, when xt and yt are either mean stationary or trend stationary,
the order in probability of the three in-sample PrCr (RMSE, U1 and U66) are the same
whether the variables are independent or not. Furthermore, we should take a more careful
approach when we are analysing integrated processes; Proposition 1 proves that the order
in probability of the statistics are different between related variables and between inde-
pendent ones; forecasts based on the former variables are more accurate than those based
on the latter variables. This in line with the conjecture made by Phillips (1998). In words
of Phillips (1998,p.1300): “It is important to recognize that such representations [That
is, a spurious regression] (. . . ) do not take the place of temporal predictive models.”
Furthermore, results in lemma 1 and proposition 1 are consistent with the idea that, when
dealing with processes governed by a deterministic trend (as long as there are no struc-
tural breaks), the PrCr have the same order in probability whether the variables are related
or not. However, in the presence of structural breaks, the spurious regression losses its
prediction capability. The issue of structural breaks is not a minor one. To quote Pesaran,
Pettenuzzo, and Timmermann (2006): “Structural changes or “breaks” appear to affect
models for the evolution in key economic and financial time series such as output growth,
inflation, exchange rates, interest rates and stock returns. This could reflect legislative,
institutional or technological changes, shifts in economic policy, or could even be due to
large macroeconomic shocks such as the doubling or quadrupling of oil prices experi-
enced over the past decades. . . ”. We further study the presence of structural breaks in the
DGP. In proposition 2 we present the order in probability of the PrCr when the nonsense
regression correctly specifies the structural break; this specification is represented in eq.
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7.4

yt = α + βxt + γDTyt + εt (7)

Proposition 2 Let xt and yt be generated by DGP 4 and 5 of table 1, respectively; use
both to estimate by LS equation (7). Hence, the orders in probability of the PrCr: RSS,
TSS, RMSE, U1 and U66, F and R2, are the following:

RSS TSS RMSE U1, U66 F 1−R2

Op(T ) Op(T
3) Op(1) Op(T

−1) Op(T
3) Op(T

−2)

Proof: see the appendix.
A comparison between the results of proposition 2 with those of proposition 1 and lemma
1 reveals striking similarities. The asymptotic behaviour of the PrCr is the same, whether
the variables are related or not, as long as the structural break has been correctly modelled.
Our results might help to better understand the properties of a spurious regression. The
commonality of a deterministic trending mechanism between two otherwise independent
variables allows for a suitable linear combination of both variables capable of providing
an useful tool in the forecasting of the long term evolution of one of the variables. That
said, the later statement certainly does not entail any causal link between the variables.
In other words, although the variables could clearly be economically linked, we could also
explain the long horizon predictability capacities of the regressor in terms of a common
type of trend. Nevertheless, further investigation should be done concerning which data
generating processes are more appropriate in the variables’s forecasting. This would al-
low us to determined under which circumstances the attractive properties of the spurious
forecasts hold. Yet, when a deterministic trending mechanism is preferred by statistical
evidence, then one should consider the possibility that whether the specification is “spuri-
ous” or not, forecasts do have similar properties. Moreover, if there is a structural break in
the dependent variable but the spurious specification includes it, the forecasting capacity
of such spurious regression are maintained.

3.2 Out-of-Sample Forecasts
We turn now our attention to out-of-sample forecasts. The main difference between an
in-sample and an out-of-sample forecast lies in the amount of information they use. An

4It is assumed that the structural break DTyt corresponds to the one defined in case 5 (see Table 1).
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in-sample forecast employs all of the available information as do the parameter estimates
whilst an out-of-sample forecast only uses a fraction of the sample to estimate the pa-
rameters. To obtain the asymptotics of out-of-sample PrCr we are thus forced to split the
sample size. The procedure to build q out-of-sample forecasts (where q is an integer larger
than 0) in this work can be described as follows: (i) we first estimate the regression using
the whole sample size (T ) and obtain α̂ and β̂; (ii) we then use the parameter estimates to
build q forecasts of the variable yt: ŷt+i = α̂ + β̂xt+i where i = 1, 2, . . . , q (note that we
assume that xt+i is known); (iii) thirdly, we use the true DGP of yt to obtain the real future
values, yt+i, and; (iv) finally, prediction errors can then be obtained simply by calculating
the forecast error: ût+i = yt+i − (α̂ + β̂xt+i).
We focus on the MS and the TS processes. This accounts for the fact that they both have
a deterministic trending mechanism attached to them5 so once we estimate it, we can cor-
rectly forecast the future values of the series. The main finding is that on both regressions
(the one that uses independent variables as well as the one that uses related variables), we
obtain the same order in probability for the PrCr. This is proved in Proposition 3.

Proposition 3 Let xt and yt be generated by DGPs 1, 4 and 1, 2 and 6 of table 1, respec-
tively, and use them to estimate by LS specification (1) and (7). The asymptotics of the
estimated parameters α̂, β̂ and γ̂ are as shown on table 3 below.

DGPs α̂ β̂ γ̂
H
HHH

HHxt

yt MS TS Rel BTS∗ MS TS Rel BTS∗ Rel BTS∗

MS µy – µy – 0 – βy – – –

TS – −βyµx+βxµy
βx

µy µy – βy
βx

βy βy γy γy

Table 3: Asymptotic parameters
* for the TS-BTS combination the specification (7) is employed.

Proof: see the appendix.
Results in the previous proposition allows us to obtain the asymptotic behavior of the
regression’s residuals (see table 4):

5In the first case, MS, the trend is zero.
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DGPs ûq
HH

HHHHxt

yt MS TS Rel BTS∗

MS uyq – uyq –

TS – −βy
βx
uxq + uyq uyq −βy

βx
uxq + uyq

Table 4: Asymptotic parameters
*The TS-BTS combination uses specification (7)

The results from proposition 3 show that the prediction errors yielded by a regression
that uses independent variables are much in line with those obtained when the variables
are related. Moreover, it can also be seen that all the PrCr analyzed in this work have
the same asymptotic behavior whether they are in-sample or out-of-sample. Yet, a small
difference should be noted when the variables are generated as DGP 4: the forecasts have
a larger variance if the variables are independent (the difference accounts for the term
uxq). Nonetheless the forecast-error mean remains zero.
Finally, when working with DGP 5 (a BTS process), the PrCr have the same asymptotic
behavior as in the previous section, as long as the structural break is correctly modelled.

4 Finite-sample evidence
We compute the value of the RMSE, U1 and U66 PrCr, using simulated data, for various
sample sizes and DGPs combinations. Our results appear in tables 5 and 6.

Sample Combinations of cases (DGPs) in table 1
T MS −MS Rel −MS TS − TS Rel − TS I(1)− I(1) Rel − I(1) BTS −BTS Rel −BTS I(1)− TS
50 0.994 0.996 1.403 0.994 1.892 0.995 3.478 0.994 3.158
100 0.997 0.995 1.409 0.997 2.630 0.996 6.300 0.997 5.423
250 0.999 0.998 1.413 0.999 4.175 0.999 15.14 0.999 12.42
500 0.999 0.999 1.413 0.999 5.844 0.999 30.02 0.999 24.15
1000 0.999 0.999 1.413 0.999 8.247 0.999 59.84 0.999 47.79

Table 5: Average of RMSE statistic for 10, 000 simulations

From table 5, it is straightforward to see, on the one hand, that, when the variable is either
TS or MS, the RMSE behaves in the same manner whether the variables are related or
not. On the other hand the values of columns 6,8,10 increase as the sample size grows,
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so the RMSE is capable of detecting a spurious regression when the variables are a unit
root with drift or a broken trend stationary. In table 6 we compute the U1 statistic using

Figure 1: In-sample forecasts: In figures (a) and (b) the pointed line represents the forecast accuracy
achieved by a spurious (correctly specified) regression where xt and yt are both generated by a TS DGP (xt

is generated by a TS DGP while yt is generated by the true DGP) while the continuous line accounts for
the actual value. Time is represented in the X axis whilst the Y axis indicates the value of yt. In figures (c)
and (d) the line is the in-sample forecasts for each value of the variable xt; the scatter plot is also shown.
The X and Y axes represent, the value of xt and yt, respectively. In figures (e) and (f) histograms for the
RMSE in-sample forecast statistic are presented.

simulated data (results for the U66 are available upon request). It can also be seen that the
value of this PrCr is close to zero when the variable is trend stationary. This indicates an
acceptable forecasting whether the regression is spurious or not, even for an small value
of T . In the case of a mean stationary variable the U1 statistic value is not quite close to
zero, but either way the statistic is not capable of detecting an incorrect specification. In
figure 1 it can be seen that, when the variables are generated by a TS process, the accuracy
achieved by LS forecasts is similar, whether the variables used in the LS regression are

10



Sample Combinations of cases (DGPs) in table 1
T MS −MS Rel −MS TS − TS Rel − TS I(1)− I(1) Rel − I(1) BTS −BTS Rel −BTS I(1)− TS
50 0.207 0.207 0.015 0.005 0.032 0.002 0.030 0.004 0.025
100 0.207 0.207 0.008 0.002 0.022 0.001 0.028 0.002 0.022
250 0.207 0.207 0.003 0.001 0.014 0.000 0.027 0.001 0.020
500 0.208 0.207 0.001 0.000 0.010 0.000 0.027 0.000 0.019
1000 0.208 0.208 0.000 0.000 0.007 0.000 0.027 0.000 0.019

Table 6: Average of U1 statistic for 10, 000 simulations

independent or not. Figure 1 illustrates the asymptotic results; note that the histograms
for the in-sample RMSE are also alike, whether the regression is spurious or not.
Finally, in figure 2 we plot the residual sum of squares of both, the spurious regression
and the correctly specified one for the TS-DGP case. We allow for different values of
the variance of the processes as well as a small covariance between their innovations. As
the figure shows (in accordance to proposition 3 results), as the quotient of the param-
eters increases (βy

βx
) so does our errors on the forecasts. Nonetheless, the PrCr on both

regressions behave asymptotically the same.

Figure 2: RSS statistic on a spurious (darker blanket) and a correctly specified regression
(lighter one) as the size of the sample increases.
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5 Forecasting the GDP of UK
We illustrate our previous results using real data of the United Kingdom GDP. The dataset
ranges from the first quarter of 1981 to the fourth quarter of 2007.6

We use the dataset to estimate,
by LS, a regression where the log
of the UK GDP is the dependent
variable whilst the regressor is a
simulated variable. This we do
to ensure the independence be-
tween the variables. According to
our previous results, the spurious
forecasts do have desirable prop-
erties when the regressor, as well
as the regressand have been generated as TS or BTS process. In the case of the simulated
variable, xt has been simulated according to the following TS DGP:

xt = 12 + 0.01 · t+ ut (8)

Where ut ∼ N
(
0, (1/400)2

)
and t = 1, 2, . . . , 108.

As for the dependent variable, we typify the trending mechanism of the series using Per-
ron’s (1997) (P97, hereinafter) test. We employed P97’s second auxiliary regression,
which corresponds to the Changing Growth model (Perron 1989). The resulting statistic
yielded a value of −6.2646 and thus provided enough evidence to reject the null hy-
pothesis (using the critical value at a 1% level) of a unit root process in favor of a trend
stationary process. The P97 test also detected a break in the second quarter of 1990. This
informations allows us to fully specify the “spurious regression” as in eq. 7. Note that,
in order to compute out-of-sample forecasts, we can only use a subsample of the entire
dataset. The LS regression has been therefore estimated using only observations from the
first quarter of 1981 to the third quarter of 2001:

log(GDPUK)t = α + βxt + γ1DUt + γ2DTt + εt (9)
1.41 0.87 − 0.07 − 0.002

(5.16) (39.04) (−11.36) (−6.54)

6Source: OCDE statistics, available at the Mexican Statistics Office (INEGI) website: www.inegi.
gob.mx The GDP is at constant prices of 2003 and has been seasonally adjusted.
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Where DUt accounts for the change in level and DTt, for the change in trend. Note that
theR2 is quite high (0.9918) and the classicalF statistic (26.4489) rejects the null hypoth-
esis of β = γ1 = γ2 = 0 which is in line with what is known about spurious regression be-
tween BTS processes (see Noriega and Ventosa-Santaulària, 2007). We next forecast the
UK GDP series using the estimates of the spurious regression 9. As previously pointed,
we only employed the first 84 observations and built upon them out-of-sample forecasts
with the resulting horizon κ = 24. Figure 5 shows the real and the predicted values of
the series. The forecasts based upon a “spurious regression” are quite accurate, which
is in line with our previous results concerning deterministically-trended data. Note that
Theil’s inequality PrCrs support this statement: the computed U1 and U2 PrCr yielded the
following statistics values: 0.0002 and 0.0003, respectively.

Figure 3: Real and simulated data for the UK GDP

The previous statistical exercise should prove useful in the prediction of the UK real GDP,
as long, of course, as there are not any other undetected structural break in the near future
(such as the one that had may occurred in 2008-2009).
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6 Concluding remarks
This paper proves that, when two independent variables share the same type of deter-
ministic trending mechanism, several widely employed in-sample and out-of-sample pre-
dictability criteria behave asymptotically in the same manner. In particular, we showed
that, when the variables are stationary, either around a constant or a trend, the behaviour
of in-sample and out-of-sample PrCr is similar whether the relation between the variables
exists or the variables are independent from each other. It is also shown that even a spu-
rious regression with a correctly modelled structural break provides adequate forecasts.
Our results also support Phillips’s conjecture since they show that forecasts based upon
independent integrated variables compare poorly to the ones obtained from an estimated
cointegrated regression.

A Proof of Lemma 1 and Propositions 1, 2 and 3
We present a guide as to how to obtain the order in probability of the five predictability
statistics appearing in Proposition 2 in the estimation of regression (7) by LS where the
variables y and x are generated by DGP 5 and DGP 4 respectively (all other combinations
follow the same steps. Proof of such was provided with the aid of Mathematica 4.1
software). We use the classical LS formulas:

β̂LS = (X ′X)
−1
X ′Y

where

X ′X =

 T
∑
xt

∑
DTyt∑

xt
∑
x2t

∑
xtDTyt∑

DTyt
∑
xtDTyt

∑
DT 2

yt


X ′Y =

 ∑
yt∑
xtyt∑
DTytyt


Unless otherwise indicated all sums run from t = 1 to T∑

xt = µxT + βx
∑

t+
∑

uxt︸ ︷︷ ︸
Op

(
T

1
2

)
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∑
yt = µyT + βy

∑
t+ γy

∑
DTyt +

∑
uyt︸ ︷︷ ︸

Op

(
T

1
2

)

∑
x2t = µ2

xT + β2
x

∑
t2 +

∑
u2xt︸ ︷︷ ︸

Op(T )

+2µxβx
∑

t+ 2µx
∑

uxt︸ ︷︷ ︸
Op

(
T

1
2

)
+2βx

∑
tuxt︸ ︷︷ ︸

Op

(
T

3
2

)

∑
y2t = µ2

yT + β2
y

∑
t2 + γ2y

∑
DT 2

yt +
∑

u2yt︸ ︷︷ ︸
Op(T )

+2µyβy
∑

t

+2µyγy
∑

DTyt + 2µy
∑

uyt︸ ︷︷ ︸
Op

(
T

1
2

)
+2βyγy

∑
tDTyt

+2βy
∑

tuyt︸ ︷︷ ︸
Op

(
T

3
2

)
+2γy

∑
DTytuyt︸ ︷︷ ︸

Op

(
T

3
2

)

∑
ytxt = µxµyT + µxβy

∑
t+ µxγy

∑
DTyt + µx

∑
uyt︸ ︷︷ ︸

Op(T 1
2)

+βxµy
∑

t+ βxβy
∑

t2 + βxγy
∑

tDTyt + βx
∑

tuyt︸ ︷︷ ︸
Op

(
T

3
2

)
+µy

∑
uxt︸ ︷︷ ︸

Op

(
T

1
2

)
+βy

∑
tuxt︸ ︷︷ ︸

Op

(
T

3
2

)
+γy

∑
DTytuxt︸ ︷︷ ︸

Op

(
T

3
2

)
+
∑

uytuxt︸ ︷︷ ︸
Op

(
T

1
2

)
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∑
xtDTyt = µx

∑
DTyt + βx

∑
tDTyt +

∑
DTytuxt︸ ︷︷ ︸

Op

(
T

3
2

)

∑
ytDTyt = µy

∑
DTyt + βy

∑
tDTyt + γy

∑
DT 2

yt +
∑

DTytuyt︸ ︷︷ ︸
Op

(
T

3
2

)

where,∑
t = 1

2
(T 2 + T )∑

t2 = 1
6

(2T 3 + 3T 2 + T )∑
DTwt = 1

2
[T 2(1− λw)2 + T (1− λw)]∑

DT 2
wt = 1

6
[2T 3(1− λw)3 + 3T 2(1− λw)2 + T (1− λw)]∑

tDTwt = λwT
∑
DTwt +

∑
DT 2

wt

The orders in convergence of the underbraced expressions can be found in Hamilton
(1994) pp.505-506. and in Noriega and Ventosa-Santaularia (2007). We can fill the
previously-cited matrices and then compute the LS parameters estimates and theRMSE,
U58, U58, F and R2 associated.
All programs in their true format and extension are available to the reader upon request.

B Simulation Parameters
Parameters used for the simulations:
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