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Abstract 

Nowadays in the context of Industry 4.0, manufacturing companies are faced by increasing global competition and challenges, 
which requires them to become more flexible and able to adapt fast to rapid market changes. Advanced robot system is an enabler 
for achieving greater flexibility and adaptability, however, programming such systems also become increasingly more complex. 
Thus, new methods for programming robot systems and enabling self-learning capabilities to accommodate the natural variation 
exhibited in real-world tasks are needed. In this paper, we propose a Reinforcement Learning (RL) enabled robot system, which 
learns task trajectories from human workers. The presented work demonstrates that with minimal human effort, we can transfer 
manual manipulation tasks in certain domains to a robot system without the requirement for a complicated hardware system model 
or tedious and complex programming. Furthermore, the robot is able to build upon the learned concepts from the human expert and 
improve its performance over time. Initially, Q-learning is applied, which has shown very promising results. Preliminary 
experiments, from a use case in slaughterhouses, demonstrate the viability of the proposed approach. We conclude that the 
feasibility and applicability of RL for industrial robots and industrial processes, holds and unseen potential, especially for tasks 
where natural variation is exhibited in either the product or process. 
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1. Introduction

The current trend and challenge in the emerging era of Industry 4.0 is the absence of the human worker during the
digital transformation of the smart factories. This is especially true when it comes to introducing new robot systems. 
Additionally, when building advanced robotic systems, the process knowledge possessed by the human worker is 
often paramount for the efficiency of the process and the product’s quality. However, the transfer of this, often tacit, 
knowledge to the robot remains a difficult problem. 

Industrial robots are commonly programmed in an inflexible way. Setting up the motions for simple pick-and-place 
operations often require many adjustments and does not generalize well to new situations. Small variations in the 
process setup will often result in task failure. The current state-of-the-art in flexible robot programming either entails 
using robot skills concepts [1,2] or kinesthetic teaching combined with robot skills [2]. However, these approaches 
still suffer from the ability to take new and small variations in the process into account. The general problem of current 
robot programming points to the question: can a robot more easily and naturally learn from the (near-) optimal 
trajectories carried out by a human expert worker and be able to adapt to future small variations? 

In this paper, an industrial robot setup with self-learning capabilities using Reinforcement Learning (RL) is 
proposed in order to demonstrate how human workers can transfer their task behavior to the robot without any 
programming requirements. The use case takes place in meat processing in slaughterhouses, which are often 
characterized by heavy pick and place manipulations. The research is a three-step development consisting of: 

1. Acquire human motions and behaviors through recordings in virtual reality (VR)
2. Train the RL model from the recorded trajectories
3. Evaluate the final policy on the real robot system

2. Related work

Reinforcement Learning has previously proved to be successful in different environments such as board games [3]
and computer games such as Atari [4,5]. The sensory input varies in different applications of RL, and in recent years 
many demonstrations in game environments have applied visual sensory input such as raw pixel data applying a Deep 
Convolutional Neural Network (CNN) as part of the function approximator [4]. 

Exploration in environments with a sparse reward has been a persistent problem in Reinforcement Learning, which 
is often true in many robot applications as well [6]. Usually, the reward is triggered at the very end of an episode when 
the agent reaches its goal. This means that most of the experiences do not yield any reward, which makes it challenging 
and time-consuming to train the robot agent. 

There are studies where training data is obtained from a Virtual Reality (VR) system simulating the real 
environment [7]. This can in many cases help accelerate the training due to the availability of more data in the 
simulation environment vs. the real-world environment. 

In other work such as [8], an RL  agent learns how to control a robot to complete a wire loop game†. Our presented 
work builds on top of some of the same ideas and takes the human-factor and training data into account, by recording 
trajectories from human workers in VR, training the RL agent, and finally evaluating the optimal policy on a real robot 
system. 

2.1. Background 

Reinforcement Learning 
Reinforcement Learning (RL) [9] is a category of machine learning where the actions an agent must take are based on 
a reward function, and the agent must explore an environment in order to learn how to behave and maximize the 
performance. The main difference with other machine learning techniques, such as unsupervised and supervised 

†https://en.wikipedia.org/wiki/Wire_loop_game 
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learning, is that no external labelled data is introduced, and the agent is responsible for exploring the unknown 
environment. 

As shown in Fig. 1, the agent learns from a direct interaction with its environment. It selects an action at, e.g. move 
forward, and this action affects the environment and a state change takes place. From the environment, the agent 
observes the new state st+1, and the reward rt+1, after the action is taken. The goal of the learning process is to find the 
optimal policy, which maximizes the cumulative reward Rt as seen in Eq. 1: 

𝑅" = 𝑟" + 𝛾'𝑟"(' +⋯+ 𝛾*+"𝑟* (1) 

where γ in (0,1) is the discount factor. 
While learning, the agent needs to explore the environment e.g. by taking random actions, but also exploit the 

partially learned policy to move to good states that yield a high reward. One of the challenges is to keep a balance 
between exploration and exploitation. A common policy is an ϵ-greedy policy. The ϵ-greedy policy defines the 
exploration-exploitation rate and how it changes over time, going from a high exploration (ϵ = 0.9) behavior to an 
exploitation one (ϵ = 0.1).  

Q-learning
Q-learning is an off-policy RL method that enables the agent to select the optimal action, by following the optimal

policy for a given Markov Decision Process (MDP) [10]. A stochastic process has the Markov property if the 
conditional probability distribution of the future states of the process only depends on the present state. A set of 
actions, states and rewards can be described as an MDP episode with eMDP as seen in Eq. 2: 

𝑒-./ = {𝑠2, 𝑎2	, 𝑟2, 𝑠6, 𝑎6, 𝑟6, … , 𝑠*+6, 𝑎*+6, 𝑟*+6	}  (2) 

Q-learning is based on the idea that for each state-action tuple there is an associated Q-value: 𝑄:;,<; = 𝑚𝑎𝑥[𝑟"(6].
Assuming that the optimal policy π(s) is known, the best action for each state. 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥<𝑄(𝑠, 𝑎)	can be 
selected. As the policy is unknown, one need to compute the 𝑄:;,<;values iteratively using the Bellman equation [10]. 
In each of the states, the agent is located with the Bellman equation, defined in Eq. 3, the Q-value of the current state 
is retrieved, considering the reward rt+1 received from transitioning from the current state to the next state st+1, and the 
max discounted Q-value of the next state 𝛾𝑚𝑎𝑥<𝑄:;EF,<;EF. 

𝑄:;,<; = 𝑟"(6 + 	𝛾𝑚𝑎𝑥<𝑄:;EF,<;EF (3) 

In noisy environments, the robustness of the learning process can be increased by considering a part of the new 
knowledge, avoiding the portion corresponding to the noise. This is done by introducing the learning rate α in the 
Bellman equation, Eq. 4, where α (0,1). Low α values are commonly used in noisy environments.  

𝑄:;,<; = 𝑄:;,<; + 𝛼H𝑟"(6 + 	𝛾𝑚𝑎𝑥<𝑄:;EF,<;EF − 𝑄:;,<;J (4) 

Fig. 1. The Reinforcement Learning environment. 
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3. Use case

Meat processing industry and slaughterhouses, in particular, are often identified as one of the harshest work
environments for humans. Handling of unique items, flexibility, and food safety are only some of the reasons why 
human hands and minds are still required for competitive production lines in the food industry. Even though novel 
automation solutions and robotic technologies have slowly been integrated into production lines, a native human-robot 
collaborative environment is still non-applicable. The natural variation of the products, the machines' inability to be 
altered and the current high cost of the robot solutions lead to solutions, which usually underperform, are inflexible to 
quick changes, and unintuitive to use by the operators. 

Today, one of the many repetitive tasks found in slaughterhouses, concern hanging heavy pieces of meat onto 
hooks on what is commonly known in the industry as a Christmas tree, see Fig. 2 left. A Christmas tree consists of 
several hooks e.g. 20 hooks. Christmas trees are e.g. used for transportation and are standardized for slaughterhouses 
around Europe. Currently, 1-2 workers handle large pieces of meat, which generally weigh up to 20 kilos each. The 
workers have to lift and position the objects accurately onto the hooks on the Christmas tree. Such a sequence of 
movements creates many challenges on the production line. Initially, the high number of heavy, repetitive lifts cause 
severe stress to the back and arms of the workers. Consequently, they have to stop working every 45 min. in order to 
regain their strength. A Christmas tree has to be filled within a specific time frame, so the allowed time for detecting 
the correct pose of the object and choosing the appropriate placement point at the hook is significantly small. Such a 
small error margin creates an additional mental load to inexperienced workers who often make mistakes that lead to 
delays in the production and reduced quality. 

The vision is to automate the processing of those large pieces of meat as it involves heavy and repetitive lifting. 
This way, the worker avoids such a stressful task (both physically and mentally). The first step is to have the robot 
system learn how to handle the pieces of meat and transfer them from a conveyor or table onto a designated hook on 
the Christmas tree. In the following section, the method and RL architecture applied in this research are explained. 

4. Method

The RL architecture used in this research is a two-step training-testing algorithm described in [8]. This algorithm
is a modified version of the Q-learning ϵ-greedy exploration and considers a safe exploration space where the robot 
can learn without any risk of colliding with the physical environment. 

There are six discrete actions corresponding to three Cartesian axes (x-, x+), (y-, y+) and (z-, z+). The step value used 
in each direction is 1mm. To obtain a more accurate path this value can be decreased, but the smaller the step value 
is, the larger the Q-table becomes, and the time needed for the learning process. 

The state-space is defined by the current end-effector Cartesian position 𝐸/ = 𝑥, 𝑦, 𝑧 and the final goal Cartesian 
position 𝐺/ = 𝑥O, 𝑦O, 𝑧O. The tuple composed by those two positions 𝑆 = (𝐸/, 𝐺/) is transformed in a unique identifier 
𝑖𝑑 = 𝑓(𝑠) and recorded in the Q-table. More information can be included, e.g. rotations, but the Q-table easily become 

Fig. 2.  (a) Christmas tree commonly seen in slaughter houses around 
Europe. The Christmas tree contains 20 hooks. (b) Meat is hanged onto the 
hooks for curing and transportation.
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unmanageable. In this particular case, the Q-table can easily contain 154,000 states. It is well-known that the Q-
learning approach suffers from large state-space dimensions. To overcome this problem, neural network-based 
approaches, such as DQN, are suggested [5]. 

The reward function is a linear combination of three weights and distances as seen in Eq. 5. It considers the 
Euclidean distance change between the actual position EP and the goal GP (d1) and a reward r for achieving the goal 
(d2). Moreover, an additional reward function has been tested, where the third parameter (d3) considers the distance 
from EP to the table. We hypothesize that those trajectories that carry the meat by sliding the objects across the table 
(hence minimizing overall payload), are ergonomically more adequate for the human. For this experiment, the weights 
of the reward function have iteratively been adjusted. In the example shown in this paper, the following weights are 
used: w1=2, w2=1.0 and w3=0.1. 

𝑟 = 𝑤6𝑑6 +	𝑤'𝑑' +	𝑤U𝑑U   (5) 

In the presented experiment, the following hyperparameters are applied; The discount factor gamma was set to γ = 
0.9 and the learning rate α = 0.5. The ϵ-epsilon was initialized to ϵ = 0.9 and the minimum ϵ = 0.1. Those values are 
the outcome of several simulations. The distance between the initial and final position is around 0.9m. The ϵ decreases 
following the next equation 𝜖 = 𝜖 − 1/𝑁Z (Algorithm 1). Boundary conditions for safety purpose are added where 
the robot is not allowed to explore further than a predefined space.  

5. System implementation

The system architecture used in this work is shown in Fig. 3. It contains three nodes: (i) VR data acquisition, (ii)
RL learning and (iii) robot control. 

The first node (i) tracks and records the user movements by means of the VR system. It is composed of two satellites 
and a controller. The controller trigger is used to define the starting and ending points of the path, allowing the user 
to create as many paths as needed. Each path is afterwards transformed into the robot coordinate system. 

Algorithm 1. Two-phase RL algorithm based on [8]. 

 

…
 

…
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The second node (ii) receives the path and launches the RL algorithm described in the previous section. This node 
learns the policy to track the human behavior. The position information is sent by means of a shared file or a socket 
communication to the robot. The coding structure of the simulation environment (blue box) uses the same set of 
functions (reset, step) and values observation, reward and done as does the OpenAI-Gym framework [11]. The RL 
node sends the reset and step functions (which are in charge of setting up the robot to the initial position and sending 
the actions to take) to the simulation environment and receive some variables that provide information about the agent 
such as; the current state, the reward obtained, and if the goal is reached or not. The third node (iii) controls the robot. 
The MoveIt planner included in ROS distribution is in charge of receiving the Cartesian points and applying the 
inverse kinematics to translate them into joint movements. 

Table 1 lists the primary hardware elements utilized in the experiments. The standard deviation for static pose value 
obtained by the VR system at 1-2 m distance is 0.417 mm [12] and a sampling speed of 60 Hz. The software 
dependencies used are also indicated, where the computer system is in Ubuntu 16.04 LTS with ROS Kinetic installed. 

Table 1: Hardware and software overview. 

Robot manipulator VR-system Computer Software 

UR5 HTC VIVE Quad Core i7 Ubuntu 16.04 

Payload: 5 kg 2 trackers 16 GB RAM ROS Kinetic 

Working radius of 850 mm σposition: 0.417 mm Nvidia RTX 2048 8 GB Python 2.7 

Repeatability +/-0.1 mm Sampling speed: 60 Hz Gazebo 7 

6. Experimental results

6.1. Training 

The robot is learning around a zone starting from the initial position Tp. The learning zone is a 3D space with a 
radius size defined in the hyperparameters. In Fig. 4(a), a trajectory (in green) is obtained by the VR system in the 
robot’s end-effector coordinate system. At the initial point (in black), the robot tries to learn how to go through the 
trajectory. The robot observes the VR trajectory from what is referred to as a safe TCP coordinate system. A TCP is 
considered to be safe when the robot learns to move forward to a new position belonging to the VR trajectory. In Fig. 
4(b) the trajectory from the initial TCP position and from a second TCP position is shown after moving forward. 
Finally, in Fig. 4(c), all the intermediate safe positions until the final goal GP are shown. 

Fig. 3. Software and hardware architecture. Left: (i) Acquisition of VR data. Middle: (ii) Reinforcement Learning block. Right: (iii) Robot control 
either for Gazebo or the real robot.
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6.2. Evaluation 

The work is tested in an experimental scenario shown in Fig. 5. In this scenario, an object is picked up from a table 
and hanged on the hook on the Christmas tree, while the VR system is tracking the human behavior. Since the meat 
on the process is presently not considered, a lightweight soft object was used. 

The VR system tracks the human movement with high precision. It was observed that even the trajectory of the 
hooking action is clearly tracked. However, it was recognized that the VR system does not behave correctly if any 
shiny surfaces are present in the scene, which may impose tracking errors. The VR controller used is moved by hand. 
This is not practical for real scenarios, but other wearable trackers can be used instead in order to track the human 
worker while manipulating real meat in the slaughterhouse. 

After the learning process using the VR information, the robot can go from the initial position TP to the goal GP. 
The learning time can significantly change from 86.39 minutes for a 1 mm robot step and 50 mm radius size of the 
learning zone to 1.15 minutes for a 5 mm robot step and 50 mm radius size of the learning zone. In order to simplify 
the problem, picking and placing action are not considered in this work. 

7. Discussion

It was observed that a simple task such as placing a piece of meat on a hook is composed of several skills: (i)
picking up a piece of meat, (ii) its displacement, and finally, (iii) the placement of the meat on a hook. The present 
work takes its outset from the second skill, i.e. the displacement of a piece of meat. By use of Reinforcement Learning, 
the robot was enabled to imitate the trajectory made by the human, captured by a VR system, through a trial and error 
strategy. Training time varied and was very dependent on the radius of the search and differential movements distance 
of the robot. In our tests, the training time was between a few minutes to an hour. The reason behind this is due to the 

Fig. 4. (a) First learning step (first sub trajectory). (b) Trajectory seen from initial position and second position in the training sequence. (c) All 
learning points across the trajectory.

(a) (c) (b) 

Fig. 5. (a) VR-system sensing the working environment. (b) Initial coordinate TP (table) and goal coordinate GP (Christmas tree hook). (c) Robot 
moving towards the final position GP along the trained trajectory.

HOOKING 

MOVEMENT 

PICKING 

Initial State Initial State 

2nd Safe State 
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number of states generated in each configuration varies significantly, ranging from approximately 30,000 to 154,000. 
Regardless, this should be considered a fast learning process compared with other alternatives that use a Gazebo 
simulator or real robots, where the robot is able to perform only 2-4 movements per second. The Q-learning technique 
is characterized by its simplicity, but also by its limitation when it comes to increasing the number of variables, which 
defines the state-space of the system. Currently, we are working with strategies within more recent developments in 
the Reinforcement Learning domain such as Deep Q-Networks (DQN) and Deep Deterministic Policy Gradient 
(DDPG), given that these techniques allow for increasing the number of input features and actions. 

8. Conclusion

In this paper, a concept for an industrial self-learning robot agent was presented to strive for an optimal policy
when moving heavy non-rigid objects in the food industry by use of Reinforcement Learning and Q-learning. The 
work aims to study the use of machine learning techniques to facilitate the programming of robots by non-experts in 
real manufacturing use case scenarios. The use case selected consists of transferring manipulation knowledge from a 
human worker to the robot i.e. the behavior of moving and hooking meat onto hooks in a slaughterhouse. The presented 
method was applied, which enabled the agent to learn and control a six-axis industrial robot purely from recordings 
of human behaviors. The training time achieved in this work is practical for industrial use, considering that the learning 
is performed without any human need. 

The presented approach can be generalized to other use cases that share similarities in movement and execution 
e.g. painting, welding, polishing. This work has the potential to extend beyond the manufacturing industry into e.g.
health care. For all these kind of use cases, time is the crucial factor when programming advanced robot systems. With
stronger techniques and innovative applications of Reinforcement Learning, it is the first step, which allows us to gain
new unseen possibilities in real-world robotics in the future for the greater good of companies and human workers.

Additional future work includes learning picking and hooking skills. We consider that the information of the force 
(payload) should also be part of the state representation as this can potentially affect the system dynamics drastically. 
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