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ARTICLE INFO ABSTRACT

An semi-analytical solution is derived for the optimal control of the power take-off of a single-degree of freedom

Keywords:

Wave energy

Heave point absorber
Optimal power take-off
Displacement constraints

heave point absorber with constraints on the displacement. At first the control force is derived during states,
where the displacement constraint is active. This results in an open-loop control law dependent on the exter-
nal wave load on the absorber. Next, the analytical solution for the optimal control in the unconstrained state
is indicated, which turns out to be of the closed loop type with feedback from the present displacement and

acceleration and from future velocities. The derived control law contains an undetermined constant, which is
calibrated at the interface to the previous constrained state. The approach requires the estimation of the wave
load during the constrained states, and the prediction of the future velocity response during unconstrained states.
An algorithm has been devised in the paper for handling these problems. The theory has been validated against
numerical solutions obtained by nonlinear programming.

1. Introduction

A wave energy point absorber has horizontal dimensions signifi-
cantly smaller than the dominating wave length. Especially, a heave
point absorber is constrained by a mooring system or otherwise to en-
force a motion merely in the vertical direction, and hence can be mod-
eled as a single-degree-of-freedom oscillator.

In reality constraints are present on the displacement of the ab-
sorber, because the actuator has a limited stroke. Displacement con-
straints may also be imposed to prevent the absorber from hitting the
sea-bottom or jumping out of the water, which may lead to damaging
impact loadings on the outer shell of the absorber. Similarly, constraints
are present on the control force due to saturation in the actuator system.

In this paper only displacement constraints of the absorber is con-
sidered. Displacement constraints are difficult to deal with since the
constraint does not depend explicitly on the control force and the state
variables can only be controlled indirectly through the equation of the
motion of the system. Hartl et al. [1] presented a survey of maximum
principles for optimal control problems with state constraints. In the
so-called the direct adjoining approach, also known as the penalty func-
tion method [2], the state constraints are introduced into the Hamilton-
ian via adding Lagrange multipliers. The indirect adjoining approach,
also known as the slack variable method, is based on the differentia-

+ Corresponding author.

tion of the state constraints which explicitly depends on the control
force and is adjoined to the Hamiltonian. Jacobson and Lee [3] trans-
formed an optimal control problem with a state inequality constraint
into an unconstrained problem of higher dimension by slack variable
method where the slack variable becomes the new control variable.
The necessary conditions of optimality is presented based on Pontryag-
in's maximum principle and is solved by conjugate gradient method
[4]. However, numerical difficulties may occur due to the increase di-
mension of the state vector. Eidsmoen [5] utilized an end-stop de-
vice modeled by a friction force to restrict the oscillating amplitude
for a floating wave energy converter and determined an optimal con-
trol strategy based on variations of a Lagrange functional, subsequently
solved by numerical method. Further, the unconstrained case and con-
strained case in regular an irregular sea-states are compared. Perez
and Garcia [6] presented a state constrained optimal control strategy
applied for monitoring supervisory control in hybrid electric vehicles.
The solution with constraints on both the control force and state vec-
tor is derived based on Pontryagin's maximum principle. However, it
is difficult to use the method straightforwardly, since the future in-
stants of time at which these switching occur are unknown. Further,
the co-state vector is also unknown. Instead, a nonlinear programming
approached based on projected augmented Lagrangian algorithm was
used to solve this constrained optimization problem. This is only ap-
plicable if the external loading is known throughout the control hori-
zon. Hals et al. [7] studied optimal constrained motion of wave-energy
converters based on a heaving, semi-submerged sphere. They formu-
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Fig. 1. Loads on heave absorber. (a) Static equilibrium state. (b) Dynamic state.

Table 1
Heave absorber and wave excitation parameters.

Parameter Value Unit Parameter Value Unit
H 7.00 m my, 0.44 x 10° kg
D 14.00 m k 1.51 x 10° N/m
h 30.00 m H; 3.00 m
m 1.84 x 10° kg T, 7.42 s

lated the dynamic programming problem with the maximum absorbed
power considering the constraints on the heave excursion and the ma-
chinery force. Again, the future wave loading is required. It shows how
amplitude constraint affects the amount of absorbed power. Sichani et
al. [8] studied the optimal control law of a non-linear wave energy point
absorber under the displacement and the control force constraints. Fur-
ther, the displacement constraints were considered in terms of increas-
ing control stiffness as the absorber approaches the boundary. Wang et
al. [9] investigated the optimal control of a WEC with the constrained
PTO force and the constrained motions of the converter in term of trun-
cated Fourier series in time domain, where the problem is converted to a
optimization problem with a convex quadratic objective functional and
nonlinear constraints.

The present paper presents a semi-analytical solution for the opti-
mal control of a heave point absorber with constraints on the displace-
ment. The suggested solution is optimal between the intervals, where
the displacement constraints are not active. During the intervals with
active displacement constraints, an approximate feedforward control is
applied. Because the time intervals with active constraints diminish as
the level of the constraints is increased, the suggested solution will ap-
proach the optimal solution asymptotically at high displacement con-
straints. The optimal solution to the control problem may be achieved
by nonlinear programming. However, this requires the full length of the
time series of the surface elevation to be known. For irregular sea states
this can only be predicted at most one peak period ahead of the time
where any control strategy is applied. As a consequence, any realizable
control strategy is necessary. The nonlinear programming solution is ap-
plied as a benchmark for the validation of the suggested control. The
paper is organized as follows. In Section 2.1 the basic motion equation
of point absorber is presented. In Section 2.2 the optimal control law
for a point absorber with constraints on the displacement is derived and
the obtained solution is benchmarked against a numerical solution from
nonlinear programming. The obtained control law has feedback from
further velocities and depends on the further wave load. The quantities
need to be predicted at the time the control is applied, which is dealt
with in Section 2.3. Finally, in Section 3 a numerical example is pro-
vided to investigate the quality of the theory.

2. Methodology
2.1. Equation of motion of point absorber

The heave absorber to be analyzed is shown in Fig. 1. An (x, y, 2)-co-
ordinate system is introduced with the origin O placed in the mean wa-
ter level (MWL) at the centerline of the point absorber. The horizon-
tal x-axis is orientated in the direction of the wave propagation, and
the vertical z-axis is orientated in the upward direction. Only two-di-
mensional (plane) irregular waves are considered. The motion v(#) of
the body in the z-direction is measured from the static equilibrium state
with no wave motion, where the static buoyancy force f; , balances the
gravity force mg and a possible static pre-stressing force from the moor-
ing system f, . g is the acceleration of gravity, and m indicates the struc-
tural mass including ballast.

In the dynamic state caused by the surface elevation 5(t) the indi-
cated static forces disappear from the dynamic equation of motion. As-
suming linear wave theory, v(?) is given by the following linear inte-
gro-differential equation [10]:

t
M’\}(t)+r(v(t))+/h,‘-,(t—r)\'/(r) dr = f,() = £.() , tE [t 1] o
fo
% (to) =vy V (to) =7
f.(t) is the wave excitation force on the absorber, and f,(t) is the reaction
force from the power take-off system, which is used to control the mo-
tion of the absorber. The signs of f,(t) and f.(t) are defined in Fig. 1.
r(v(#) is the quasi-static restoring force due to the buoyancy and
the mooring system, caused by displacements from the static equilib-
rium state. Assuming small vertical vibrations, 7(v(f)) may be linearized
around the static equilibrium state as:

fo(&) = —kv(©®), k=1 (0) ®)

In the numerical results below the linearized relation in Eq. (7) has been
assumed with the value of k given in Table 1.

M = m + my, where m, indicates the added water mass at infinite
high frequencies. vy and Vo are given initial conditions at the time ;. t;
is the terminal time of the control.

The impulse response function /() in the convolution integral is
causal, i.e. A,+(?) = 0, t<0, The related frequency response function be-
comes [11]:

H,(0) = / e b, (6) dt 3)
0

Fig. 2 shows the impulse response function #,;(?) and the frequency
response function ,(®) for the radiation force, based on the data
of the absorber indicated in Table 1 in the numerical example be-
low. In Fig. 2a the time has been normalized with respect to the

peak period T, As seen, () effec-
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hri(t) [kN/m]

b)

Re(Hr (w)) [kN/(m/s)]

Fig. 2. Radiation force. (a) Impulse response function, /(). (b) Real part Re(#,(®)) of frequency response function. (¢) Imagina;

n) = (2, 3).

Fig. 3. Impulse response functions for wave excitation force. (a) he,(8). (b) hg,,(t).

tively vanishes for Ty, T; = T, Below, it is shown that 7; indicates
the prediction horizon of future velocities affecting the optimal con-
trol force in the unconstrained case. The angular frequency o in Fig.
2b and c has been normalized with respect to the peak angular fre-

o
quency ®p = 7, Since the real part is an even function of w, and

the imaginary part an odd function of @, only re-

“ === r--¥ --1---r--Aam--Tro -

[ S PR TP T PR PR T N S

Im(Hy (w)) [kN/(m/s)]

art Im(H,(®)) of frequency response func-

. Numerical determined target.

. Rational approximation of order (m,

sults for positive values of the angular frequencies have been indi-
cated. Further, the frequency response function H,+(®) is approximated
by a rational function of the order (m, n), where m and n indicate
the order of the numerator and the denominator polynomials, respec-
tively. The details of the approach can
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Fig. 4. Realizations of the surface elevation process 7(t), H; =3.00 m, T, =7.42 s.
@y=10®y=5.

be found in Appendix B. The rational approximation to ,;(®) of order
(m, n) = (2, 3) has been illustrated in Fig. 2b and c.

The wave excitation force f,(t) may be expressed in terms of the fol-
lowing convolution integral of the sea-surface elevation #(t) [12]:

a8

6
%10
1

fe(t) N]

t/T,
5 /Ty

—

fo(t) [N/s]

t/T,

0 10 20 30 40
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() = [ oohgﬂ(t— 7) n(z) dr o))

The sea-surface elevation #(t) is assumed to be observed at a sufficient
distant position from the absorber, where the measurement is not dis-
turbed by the radiation wave.

The time derivative of the wave excitation force, f,(?), is given as:

Lt = /_ hep(t = 7) 1(7) dr 5)

0

Alternatively, f,(f) may be obtained by numerical differentiation of the
realizations of £,(£). f,(¢) is later used in the devised prediction algorithm
for the wave excitation force.

The impulse response function he,,(t) in Eq. (5) may be calculated
from the following Fourier transform [11]:

; 1%
hop(®) = ﬁ/_we " iw H,, () dow 6)

where H,, () indicates the frequency response function for the wave
force, which can be calculated numerically by a boundary element
method. In the present paper, the WAMIT program [13] has been ap-
plied.

c) %10°
2 F
z
s 0
2
2ok " L "
0 10 20 30 40
t/T,
d)

2 2 2 2
0 10 20 30 40

t/Tp

Fig. 5. Realizations of the wave excitation force process f,(t) and its derivative JAON H;=3.00m, T, = 7.42s.(a,b) y = 1. (¢, d) y = 5.
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Fig. 7. Constrained displacement response. Definition of parameters.

Fig. 3 shows the impulse response function h,,(t) and he,,(t) for the
considered point absorber. As seen, both impulse response functions
effectively vanishes for [1>T, Ty, ~0.7T), Ty, indicates the prediction
horizon for the wave excitation force.

0 10 20 30
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Fig. 4a and b show simulated realizations of the Gaussian surface el-
evation process 7(t) defined by the double-sided JONSWAP auto-spec-
tral density function given by Eq. (29) with the the indicated values
of the significant wave height H; and the peak period T, and with the
bandwidth parameters y = 1 and y = 5, respectively. y = 1 specifies the
sea-state in open sea with unlimited fetch, whereas y = 5 applies to a
relatively small fetch.

Fig. 5a and c show realizations of the wave excitation force process
f.) for y =1 and y = 5, respectively, as calculated by Eq. (4) based
on the corresponding realizations of the surface elevation process #;(t)
shown in Fig. 4. Fig. 5b and d show the corresponding realization of the
time derivative £,(¢). As seen, the realizations of £,(f) and f,(?) are signifi-
cantly more narrow-banded than the underlying surface elevations real-
izations. The double-sided auto-spectral density functions of the surface
elevation 7(t), the wave load f,(t) and its time derivative fe(t) have been
shown in Fig. 6a and b for the wave spectrum bandwidth parameters
y = 1 and y = 5 indicating broadbanded and narrowbanded sea-states,
respectively. As seen, the wave spectrum S, (w) is significantly more
broadbanded than 57,7 (@) and Si7,(@) for both cases of y. This obser-
vation will be used in the estimation algorithm of the wave excitation
force f,(t) presented in Section 2.3.1.

C) %108

0 10 20 30 40

e(t) [rad]

Fig. 8. Time-series of amplitude process a,(t) and phase process ¢,(t), H; = 3.00 m, T, = 7.42s. (3, b) y = 1. (¢, d) y = 5.

a) x10°

Z of
Z et
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26 265 27 275
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C) 2 %108
Z.of
= v
“8 27 ==’
-4 :
14 145 15 155
t/T,
d)
5 x10°
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=
< 0
-1
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t/T,
by=1. (c, d)y=>5.
Nonlinear programming solution.

: Predicted wave load.
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o

v(t) [m], 9(t) [m/s]
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Fig. 12. Time-series of v(?), (), ¥(#), control force f.(t) and instantaneous absorbed power P(f) at optimal control, H, = 3.00 m, T, = 7.42 s. (a=¢) y = 1, Vmax = ~Vmin = 0.8 m

V().

(o).

W), (b, e)
Nonlinear programming solution.
HAGE
Af (0.
: D;. (c, f)
Nonlinear programming solution.
: P(t).

a) ) i . . . . ] i 2.2. Optimal control problem

The control problem for maximizing the absorbed power during the
interval 1t,, t;] with constraints on the absorber displacement may be
defined as:

o(t) [m/s]

'
maxJ[v,f.] = /lfc(‘[)f/(‘l,')d‘t

0
b) subjecttothepathconstraintgivenbyEq.(1), )
andtothedisplacementconstraint :
E Vmin < V(t) < Vmax
4 Let v, ; denote either vy OF Viyip, and let [t,; t,;] indicate the ith
[ ) ) ) ) ) ) ) interval where the constrain vy, ; is activated, see Fig. 7.
0 1 2 3 4 5 7 8 Since () = ¥(#) = 0 in the constraint intervals, the integro-differen-
t/Tp tial equation (1) provides the following relation for the control force for
Fig. 10. Time-series of ¥(), H, = 3.00 m, T, = 7.42 s, Vmax = —Vmin =2M. (@) y = 1. tE [ty bl
b)y=5. . .
®r L0 = £ + G ®)

where C; is a constant given as:
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(t) [m/s]

¥(t) [m/s]

t/Tp
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Nonlinear programming solution.

: Predicted velocity.
" L . L
286 28 3 3.2 3.4 36 3B 4
t/Tp
13. Prediction L . Vinax = —Vinin = 0.8m, ®y=5, Vmax = ~Vmin = 1M,
Nonlinear programming.

: Predicted control force.

a)
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v(t) [m], #(t) [m/s?]

ol
o

P(t) [W]
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Fig. 14. Time-series of v(9), ¥(?) and instantaneous absorbed power P(¢) at optimal control, y = 5, H; = 3.00 m, T, =7.428, Vmax = ~Vmin = 4m, (a, b) Az = 0.05s. (¢, d) Az = 0.01s.
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lai
C = —/ h(ty; — )W) dr — (v, ;) 9

l

Assume that ¥(?) is observed continuously in the interval [ty, t,;[. Then,
C; can be calculated by Eq. (9).

Eq. (8) indicates that the optimal control law is of the open loop
type, whenever the displacement constraint is active. Hence, the wave
excitation force f,(t) needs to be estimated in these intervals.

The corresponding optimal control problem in the interval ]t
toi+1[, where no constraint is active, has previously been solved by the
authors [14]. The solution may be given as:

Je&) = feolt) + D; (10)
where:
Ul
Jeo®) = — M0 + / h(z =) W(7)dr — r(W(1)) an
t

D; is a constant, which can be calibrated at the interface to the previous
constrained interval. From Egs. (8) and (10) follows:

Jetp) = folty)) + G = feolty) + D; 12)

Similarly, we have for the previous unconstrained interval at the
boundary at t = t, ;:

Jelta) = folta)) + G = feolta)) + Diy 13)

Since, f; o(t,) = fo(ty,) it follows from Egs. (12) and (13):

Dy = Dy + folty) = fetp),  i=1,2,... (14)

fe@® = f.o(t) during the first unconstrained interval [t,, t,,1, so Dy = 0.
Hence, Eq. (14) provides a recursive relation for the determination of
the constants D;, if the wave excitation force at the boundaries of the
constrained intervals can be determined.

Due to accumulated estimation errors of the wave excitation forces,
Eq. (14) becomes increasingly inaccurate. To remedy this, D; should oc-
casionally be calculated directly from Eq. (12) leading to:

i
D; = f.(tp)) + C; — / hyy (T =ty ) V() dT + 17(v,, ;) (15)
Iy

where it has been used that V() = 0 in the expression for f, ,(t; ) given
by Eq. (11). Eq. (15) requires a prediction of (7). 7 € [# ;.1 + T, 1.

2.3. Estimation and prediction problems

The solution for the optimal control law f,(t) as given by Egs.
(8)-(12) requires that the wave excitation force f,(t) can be estimated
during the constrained time intervals, cf. Eq. (8). In the unconstrained
intervals the evaluation

of the function f, ,(t) given by Eq. (11) requires that the velocity ¥(z)
ahead of the present time t to be predicted. Because the support of the
impulse response function #,;(?) is effectively confined to the interval [0,
T,], the prediction horizon is limited to 7y = 7}, cf. Fig. 2a.

The estimation and prediction procedures described below presume
that the surface elevation #(t) and the vertical acceleration ¥(?) of the
absorber are continuously measured. The displacement ¥(¢) and velocity
V(#) are obtained by online integration of the acceleration signal.

2.3.1. Estimation of wave excitation force
The wave excitation force and its derivative at the time t — Ty, may
be written as, cf. Egs. (4) and (6):

‘
fo(t— T/‘é) ~ /_?ohen(t— 7_"/-6 —7)n(r)dr

. . (16)
ft=Tp) = / hey(t =Ty, — T) n(7) dr
Eq. (16) is based on the fact that he,(=T},) = /e, (=T;) =0, cf. Fig.
3a and b, so surface elevations beyond the time ¢ will not affect the
left-hand sides of Eq. (16). Further, the surface elevation 5(z) is avail-
able up to and including the time t.

£.(®) and f,() may be represented by a van der Pol transformation
defined as, [15]:

f® =

f a,(t) cos(@,t + @, (1)
flt) = -w,

a,(t) sin(w,? + @, (1) a7

where the amplitude process a,(t) and the phase process ¢,(t) are given
as:

) 2
ao()) = 20 + (%?)

. (18)
@, (1) = arctan <—wfj(p2t)> — wyt

Because f,(t) and fe(t) are narrow-banded stochastic processes, a,(t) and
the ¢,(t) become slowly varying functions with time. Alternatively, the

Jeo
@p
Hilbert transform j‘e(t) [16,17]. Actually, these alternatives are equiva-
lent for harmonic varying signals.
Fig. 8 shows the realizations of a,(t) and ¢,(t) for y =1 and y = 5,
respectively, based on the realizations of £,(t) and £.() shown in Fig. 5.
Define the following quantities:

ay =al=T=iT)\ o
b = t=T;, =jT))

Hilbert-Huang transform may be used, where is replaced by the

19)
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Next, the values of a,(r) and ¢, (r) for 7 €11 =Tl are estimated
by extrapolation from 7 = t— T by means of 2nd order Lagrange poly-
nomials calibrated by the function values at t - Ty, t — Ty, — T}, and

t — Ty, — 2T}, given as:

a, (1) = a +% (3a0 —4da_, +a_2) u +% (ao —2a_, +a_2) u?
I I
0™ =@ +5 (Beo—do_ 1 +es)u +35 (00—20 +e,) i
where
T—t+ 1y
U= — 1)
T,

P
Then, f,(z) in the interval It-T;.1 s predicted from:
Jo(r) = a(t) cos(w,T + @ (1)) (22)

Fig. 9 illustrates prediction results for the wave excitation force f,(t)
one prediction period Ty, = 0.7T}, ahead. Fig. 9a and b show predictions
for y = 1 at the instants of time t = 6.2T, and t = 25.9T,, on the time-se-
ries shown in Fig. 5a. Fig. 9c and d show similar results for y = 5 pre-
dicted at the instants of time t = 14.2T, and t = 23.4T, on the time-se-
ries shown in Fig. 5c. The predictions are more accurate for y = 5, due
to the enhanced narrow-bandedness of the time-series in this case.

2.3.2. Prediction of future velocities

The velocity response in the vicinity to the constrained interval is
significantly influenced by the initial values ¥(?5;) = 0. This initial values
needs to be taken into consideration at the prediction of (D), t>1p,;,

As seen from Fig. 12a and b, ¥(?) is approximately skew-symmetric
before and after the constrained interval [t,;, t,;] corresponding to the
relation:

V) = =Vttt =0, LE [0+ T (23)
The right hand side of Eq. (23) is available from previous measurements
of the velocity response. Hence, Eq. (23) may be used to evaluate f ,(t)
for ¢ €14ty + T;]. Further, the constant D; given by Eq. (15) may be
approximated as:
1y i+Ty
D; = f(t) + G — / he(t = 1) UT) dT + 1(Vy)
ip.
las (24)
= fy) + G + / hyy(ty; — D)W dr + (v, ;)
ta.=Ty

v

Around one prediction interval 7 away from the constraints, corre-
sponding to the time interval [%; + Ti» %441 — T3], the response processes
v(f) and V() become stationary and narrow-banded for both y = 1 and
y =5, see Fig. 10. v(?) is at an absolute extremum, when the displace-
ment constraints are active, and may have one or more local maxima
or minima between these states. At any of these extremes the velocity
() = 0. As seen from Fig. 10, ¥(?) have exactly one local maximum or
local minimum between the zeros, which is characterizing a narrow-
banded response [11].

Then, velocities W(7), T €11, + T;] ahead of the present time t may be
predicted by based on a van der Pol transformation similar to the one
used for predictions of future wave excitation forces defined by Egs. (17)
and (18):

V(1) = a,(t) cos(w,t + @, (1) }

W) = —w, a,) sin(@, + @) (25)

where the slowly varying amplitude process ¢,(?) and the phase process
@,(D) given as:

. 2
ad) = 1/v20 + <@>

K 26)

_ __v® _
@, ) = arctan( @, V(t)> w,t
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At a certain instant of time t is checked whether the predicted displace-
ment exceeds the boundaries during the prediction interval [t, t + Tp].
If so, the time t,;,; is estimated from the prediction, and a cubic inter-
polation is applied for v(?) in the interval [t, t,;, ], given as:

W(T) = () + V(T = 1 141)

Fat =ty )+ b =1, 27)
where
a= ﬁ (3 (Vpir1 = v@O) +20 @) (541 — 1))
ai+]1—*0
b= ;3 (_2 (Vm,z'+l - v(’)) + V() (ta‘lq_] - t)) (28)
(ta,iﬂ_to)

a and b are determined so Y(Z4i+1) = Vmi+1 and Wy 41) = 0.

Finally, the predicted velocity in the interval [Z4i+1 = T4 fi+1] can be
obtained by the derivative of the displacement indicated in Eq. (27).
Combination with the skew-symmetric property of the velocity indi-
cated in Eq. (23), the predicted velocity at least one period ahead can
be obtained. Fig. 11 shows the predicted velocities for y = 1 and y = 5,
separately.

3. Numerical example

A point heave wave energy converter indicated in Fig. 1 is consid-
ered in the numerical simulation. The relevant data of the absorber and
the wave excitation parameters have been indicated in Table 1.

S,,() is taken as the double-sided JONSWAP auto spectral density
function given as [18]:

H o]\ 5 -
Sn,,(w)=507py”<w—p> exp _Z<wﬂp> (29)

where

5 0.0312

T 0.230+0.0336 y— logf;,

2
o)
po=exp (-% <—mp”> > (30)
{0.07, lo| <o

D

7 7009, jol >,

2
T, is the peak period, ®p = Tj; is the related angular peak frequency and

H; is the significant wave height. y is the so-called peak enhancement
parameter which controls the bandwidth of the spectrum.

The validity of the theoretical optimal control solution given by Egs.
(8)-(12) has been verified by comparison to a numerical solution ob-
tained by the nonlinear programming algorithm described in Appendix
A.

Fig. 12a and d show the trajectories of V(¢), ¥(?), ¥(t) with the dis-
placement constraints Vmax = —Vmin = 0.8m and Vmax = —Vmin = 1.0m
at optimal control determined by the nonlinear programming algorithm
for y = 1 and y = 5, respectively. The nonlinear programming solutions

are merely available at discrete points separated at the distance Ar = ﬁ

Because, the first and second derivative of the displacement response
and the first derivative of the velocity response vanish in the constrain
intervals [t,; t,;], these responses are flat at the boundaries of these in-
tervals. Hence, neither of these responses are suitable for identifying the
times t,; and t,;, which are essential to the devised control algorithm.
Instead, t,; and t,; should be determined from the observed time series
of the acceleration response which has an early detected discontinuous
change of slope at the entrance and exit of the constrained interval as
shown in Fig. 7a and d. Further, the velocity response between the con-
strained intervals turns out to be significantly narrow-banded. This ob-
servation will be used in the estimation algorithm of the unconstrained
control force f, ((t) given by Eq. (11).
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Fig. 12b and e show the variation with time of the optimal control
force f,(¢) and the theoretical solution given by Egs. (8)—(12) fory =1
and y = 5, respectively, using the optimal response trajectories shown
in Fig. 7a and d in the theoretical solution. Also shown in the figure
is the difference Af,(t) = f.(t) — f o(t) between the constrained intervals.
According to Eq. (11) this difference is given by the constant D;. The
small deviation between these is assumed to be caused by uncertainty
in the determination of the boundaries to, and t,; of the constrained in-
terval from the available discrete time specification of ¥(¢). As seen, the
estimate of D; is valid up to and including the time t,;,,, although this
constant has been calibrated at the time t,; at the end of the previous
constrained interval.

Fig. 12c and f show the variation with time of the instantaneous ab-
sorbed power P(t) =/f.()¥() at optimal control for y =1 and y = 5, re-
spectively. The deviation is quite insignificant.

Summing up, the devised control algorithm for optimal power
take-off requires the sequence of constants C; and D; to be determined,
along with estimation of the wave load f,(t) and the unconstrained con-
trol force f, o(t). C; is obtained from Eq. (9) and D; from Eq. (14) or Eq.
(15). The instants of time for entrance and exit of the constrained inter-
vals is most reliable obtained from observation of the acceleration sig-
nal.

Based on Egs. (10) and (24) the control force for unconstrained parts
can be obtained. The constrained parts can be determined from the con-
tinuous measurement of the responses of the absorber. Fig. 13 shows the
predicted control forces for y = 1 and y = 5. As seen, a good agreement
is shown in Fig. 13.

Here the influence of the deviation of the predicted control force on
the trajectory will not be considered. It assumed that the acceleration of
the absorber can be measured continuously. Correspondingly, the times
t,;and t,; can be determined in real time.

4. Conclusions

The paper presents a semi-analytical solution for the optimal power
take-off of a heave point wave energy converter with the constrained
displacements. The solution requires that the wave excitation force can
be estimated during active displacement constraints, and that the veloc-
ity response between constrained states can be predicted at least one
wave period ahead. To handle these problems physical based estimation
and prediction algorithms have been devised, which make use of the
narrow-banded character of the wave excitation force and the uncon-
strained velocity response. The obtained control law has been verified
against numerical solutions based on nonlinear programming for rela-
tively broad-banded and narrow-banded sea states. In both cases a good
agreement is obtained.
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Appendix A. Nonlinear programming algorithm

The optimal control problem in Eq. (7) is reformulated as a nonlin-
ear programming problem by discretizing the objective functional and
the state vector in time:

max  J(X(7y)) = x,.3(7y)
subjecttothepathandinequalityconstraints :
cX(r) = 0
v(‘rj) —Vinax
—v(7)  +HVmin
s(rj) > 0

(31)

h(X(z)) = [ ] - s(t) =0

where =t +jArj=0,1,.., M

s(t) indicates a vector function of slack variables. The time step
in the discretization of the interval 1t,, t;] is given as Az = t‘% The
vector X(t) of dimension 2n + 6 and the path constrain vector ¢(X(t))
of dimension n+3 are de-
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fined as:

d

T
X0 = [y 90, 70 %30, 0, S0, ST, Lx, 0] @2)

o(X(®)
Dty — wioy
M50 + p, 2,00 + r00) — L0 + /0 33)
D0ty — Az, ) = b, 0)
) = £ ¥00)

z(t) is a state vector, A, is a quadratic matrix, and b, and p, are column
and row vectors related to the convolution integral in Eq. (1), all de-
fined in Appendix B.

The inherent approximation in the indicated nonlinear programming
formulation concerns the discretization of the time continuous problem
into M + 1 discrete instants of time for optimization, and the use of the
rational approximation in Eq. (38) for the force f. o(t).

The formulation applies to both displacement constraints and con-
trol force constraints. In case, merely control force constraints are pre-
scribed the algorithm is applied by using large values of v, and small
values of Viin.

The applied algorithm for solving the indicated nonlinear program-
ming problem is described in El-Bakry et al. [19].

It should be noted that the optimal solution obtained by the non-
linear programming depends qualitatively and quantitatively on the ap-
plied time step Ar. Fig. 14a and c¢ show the obtained time series of dis-
placement v(#) and the acceleration ¥(?) for vy = — Vnin = 4m with
the constraints checked the intervals Az = 0.05s and Az = 0.01s, respec-
tively. In Fig. 14a, the acceleration is not zero when the displacement
reaches the boundary, which means that the displacement constraint is
not active in a finite time interval, and v(?) is merely tangential to the
constraint. In contrast, in Fig. 14c the constraint is everywhere active in
a finite time interval, as assumed in the theory.

Fig. 14b and d indicate the instantaneous absorbed power P(t) as
predicted by the nonlinear programming algorithm during a control in-
terval [0, 8T,] for the two time steps. The absorbed energy E = [P(z)dr
during the interval becomes E = 29.87MJ for Az = 0.05s and
E = 30.61MJ for Az = 0.01s. Actually, E turns out to be monotonously
decreasing function of Az, as shown in Fig. 15. The theoretical solution
given by Egs. (8) and (10) checks the constraints throughout the control
interval [t,, t;]. Hence, it is expected that the nonlinear programming
solutions approach the theoretical solution in the limit Az — 0.

Appendix B. State vector formulation of equation of motion

The nonlinear programming algorithm presumes a state vector de-
scription of the integro-differential equation of motion (1). To achieve
this the frequency response function #,;(®) given by Eq. (3) is approxi-
mated by a rational function:

ITIN(aJ) = %, s = iw 34
P(s) =pos" + -+ Py S + Pu
0) =s"+q5" "+ +¢q,y5+qg, (35)

= (s=5)) - (=5,_1)6E—s,)

where m < n. py, ..., pn and qy, ..., g, are real constants determined,
so H,,(w) approximates the target frequency function H,(®) at best in
some normed sense, and so the poles (roots of the denominator polyno-
mial) 5;, j = 1, ..., n all have negative real part, Re(s;) < 0. The latter
condition is the necessary and sufficient condition for causality and as-
ymptotic stability of the filter defined by Eq. (34). A rational approxima-
tion of the order (m, n) = (2, 3) has been shown with a dashed signature
in Fig. 2b and c, and was used in the nonlinear programming analysis.
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Consider the convolution integral:

t
Jeo®) = / hy(t = 7) W(z) dr 36)

l

Then, f, o(t) may be obtained as output to the following system of linear,
ordinary filter differential equations driven by the velocity v(¢):

d"x¢ d"'xa dx(t
Fro@® = po T2 + py TR+ puny B+ Py x©) -
d"x¢ d"'xa dx(t .
di;() + q dtnicl() + o+ gy );(‘) + qnx(t) = ()

where x(t) is an auxiliary response process without any physical inter-

pretation.
Eq. (37) may be represented on the state vector form:
Jro® = p,z.()
azr(t) = A, z(t) + b, (1), €l 1] (38)
z,(t)) =0

The initial value z(t;) = 0 follows because f, ((t;) = 0.
The state vector z,(t), the column vector b,, the system matrix A, and
the row vector p, are given as:

x(1) o
d
ax(f) 0
0 =| . b.=]:
Wx(t) 0
dn—l 1
G x() (39)
0 e 0 0
0 0 e 0 0
A= : - :
0 0 e 0 1
~n  —9n-1 —q2 —q
prz[pm Pm-1 """ P1 Po 0---0]

Then, Eq. (1) may be represented by the state vector differential equa-
tion:

Do) = g@d.f0.0. 1€t.1,]

z(ty)) = 1z, (40)

The state vector z(t), the initial value vector z; and the right hand side
of the state vector equation g(z(t), f.(t), t) are given as:
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V(D) v(to)
V) [, 2o = [ W)
z,(0) 0

() = (41)

8(2(0.£,(0. )
(b
= | 37220 = r(®) +£,(0) = £(0)
A,z,(H) + b,(2)

(42)
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