
Aalborg Universitet

Stochastic Optimal Control of a Heave Point Wave Energy Converter Based on a
Modified LQG Approach

Sun, Tao; Nielsen, Søren R. K.

Published in:
Ocean Engineering

DOI (link to publication from Publisher):
10.1016/j.oceaneng.2018.02.021

Publication date:
2018

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Sun, T., & Nielsen, S. R. K. (2018). Stochastic Optimal Control of a Heave Point Wave Energy Converter Based
on a Modified LQG Approach. Ocean Engineering, 154, 357-366.
https://doi.org/10.1016/j.oceaneng.2018.02.021

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1016/j.oceaneng.2018.02.021
https://vbn.aau.dk/en/publications/3b35583b-078f-493e-8473-d0e42006ac3a
https://doi.org/10.1016/j.oceaneng.2018.02.021


Downloaded from vbn.aau.dk on: June 18, 2025



Stochastic optimal control of a heave point wave energy

converter based on a modified LQG approach
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Abstract

The optimal control constrain problem of a wave energy point absorber is con-

strained due to limited stroke and saturation of the control force actuator. The

basic idea of this paper is to control the motion of the absorber by a modified

LQG control where the constraints on the displacement and actuator force are

approximately considered by counteracting the absorbed power in the objective

quadratic functional. Based on rational approximations to the radiation force

and the wave load, the integrated dynamic system can be reformulated as a lin-

ear stochastic differential equation which is driven by a unit intensity Gaussian

white noise. The optimal LQG control force becomes a linear function of the

state vector of the integrated system, which can only be partially observed. In

order to remedy this problem, the control is combined with a Kalman filter ob-

server. The obtained sub-optimal solution has been compared to the numerical

optimal solution obtained by nonlinear programming. With suitable calculated

gain parameters, the LQG controller can provide approximately the amount of

the averaged absorbed power as that of the numerical optimum.
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1. Introduction

A wave energy converter (WEC) extracts the mechanical energy in the wave

motion and converts it into electric energy. Different kinds of WEC devices

have been developed such as the oscillating water column plant (Ozkop et al.,

2017), overtopping types like the Wave Dragon (Wavedragon, 2005), the Pelamis5

(Pelamis Wave, 2012), ArchimedesWave Swing (Archimedes Wave Swing, 2004),

and the Wave Star Energy plant (Wave Star Energy, 2003).

A wave energy point absorber is a wave energy converter (WEC) with hori-

zontal dimensions significantly smaller than the dominating wave length, which

is capable of absorbing energy from waves propagating in arbitrary directions.10

Especially, a heave absorber is constrained by a mooring system or otherwise to

move merely in the vertical direction.

Significant increase of the power take-off (PTO) of a heave absorber may be

achieved by using an active vibration control of the vertical motion (Ringwood et al.,

2014). In this connection many control strategies typical of the proportion-15

al derivative (PD) type have been suggested in the literatures. Nielsen et al.

(2013) derived the optimal control law in irregular sea-states for a heave point

absorber with non-linear buoyancy in case of no constraints on the displace-

ments and the control force. The optimal control force turns out to make the

absorber maximal flexible by eliminating the inertial load and the buoyancy20

stiffness totally. Further, the control law has feed-back from the present dis-

placement and acceleration of the absorber and a non-causal feedback from the

future velocities. Hence, for practical applications the indicated control law re-

quires a prediction of future velocities. The predictor introduces uncertainty in

the problem and makes the control sub-optimal.25

Generally, there are constraints on the motion of the absorber due to the

limited stroke of the actuator of the control system. Similarly, the available con-

trol force will be constrained between certain limits due to saturation. Based on

the optimal control for the unconstrained case, Sichani et al. (2014) proposed

an extension to the unconstrained case, where the displacement were achieved30

2



by adding the nonlinear artificial springs to the buoyancy, which were achieved

close to the boundaries. Using predictive PD control, Wang et al. (2015) an-

alyzed the motions of a point absorber. Based on truncated Fourier series of

the control force and the velocity, the problem is converted to a optimization

problem with a convex quadratic objective functional and nonlinear constraints.35

Cretel et al. (2011) proposed a control scheme to maximize the absorbed energy

by a wave energy point absorber based on model predictive control. As a result

of the introduction of triangle-hold discretisation approach where the control

force and the wave load need to be continuous piecewise linear, the objective

functional is reformulated as a convex quadratic function of the increment of the40

control force. Constraints on the displacement of the absorber and the control

force can be enforced to the system by affine inequality constraints on the input

increment control force. However, the control law may give rise to feasibility

issues for the hard constraints on the control force and may cause large amounts

of energy flowing in and out of the system. Especially, it turns out that the in-45

stantaneous absorbed power may undergo large negative excursions which is not

the care for the optimal control. Li et al. (2012) analyzed the nearly optimal

control of wave energy converter with the state and control input constraints

based on Pontryagins Minimum Principle. Further, the interior penalty term

included in the cost functional replace the state constraints, preventing the op-50

timal state trajectory from approaching the boundary of the permitted region.

The nearly optimal control approximated using discretization and dynamic pro-

gramming turns out to be bang-bang control on the condition that the portions

of the singular arc assuming that the times in which this happens are negligible

are ignored, without rigorous proof for that. Zou et al. (2017) demonstrated55

that the singular arc part of the optimal control cannot be neglected and sig-

nificant portions of time may become on singular arcs depending on the initial

conditions and on the maximum control level. Hartl et al. (1995) presented the

Pontryagins maximum principle for optimal control problems with both pure s-

tate and mixed variables inequality constraints. Further, the mixed constraints60

are the constraints on control variables that may depend on the state variables
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and the time.

As the optimal control turns out to be noncausal, i.e. the control law depends

on the future motion of the absorber or wave load, prediction of the motion of

the absorber or wave load should be considered. To remedy this question, a65

causal closed-loop controller with the feedback information is proposed. In case

of infinite control horizon this problem can be circumvented by LQG control.

Lattanzio and Scruggs (2011) derived the optimal causal controller for wave

energy converter and the determination of the optimal causal controller distills

to a nonstandard LQG optimal control problem, which can be solved easily.70

Scruggs et al. (2013)formulated the LQG control problem for wave energy con-

verter and compared the results with the optimal noncausal control through

choosing proper weights. Kassem et al. (2015) maximized the take-off power

from a two-body point absorber with a mooring wave energy converter based

on LQG approach and demonstrated the feasibility and effectiveness of the LQG75

control. In the present paper the basic idea is to deal with stochastic optimal

control of a heave point wave absorber with constraints on the displacement

and the control force, and with noisy observation on the displacement and the

velocity. The radiation force and the wave load are reformulated as output of

rational approximate filters. The integrated dynamic system may be given by80

a linear stochastic state vector differential equation driven by a Gaussian white

noise. The idea of the paper is to take the constraints on the displacement and

the control force into consideration by introducing negative penalty terms of

the two parameters in the Lagrangian of a LQG approach, where the weights

are calibrated against a nonlinear programming solution to provide the same85

mean power take-off. This does not guarantee a local observation of the indi-

cated constraints, but merely that these are fulfilled in average. Further, the

controller is combined with a Kalman filter, for which the reason is merely that

the displacement and the velocity can be observed. The obtained sub-optimal

results from assumed full state observation and partial state observation will90

be discussed and compared to numerical optimal controller from nonlinear pro-

gramming. From the performance integral of the optimization problem it is
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shown in the paper that the displacement constraints cannot be active during

a finite time interval. The stochasticity of the control problem origins partially

from the nonobservable wave load and the noise related to the measured dis-95

placements and velocities. Hence, the indicated quantities need to be modelled

by stochastic process.

2. Equation of motion of point absorber
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Figure 1: Loads on heave absorber. a) Static equilibrium state. b) Dynamic state.

Although, only the heave absorber shown in Fig. 1 will be analyzed, al-

l results, including the equation of motion and control laws, may easily be100

carried over to other single-degree-of-freedom systems by slight modifications.

The (x, y, z)-coordinate system is introduced as shown in Fig. 1. The origi-

nal O is placed in the mean water level (MWL) at the centerline of the point

absorber. The x-axis is the horizonal orientation in the direction of the wave

propagation, and the z-axis is vertical orientation in the upward direction. Only105

two-dimensional (plane) regular or irregular waves are considered. The motion

v(t) of the body in the vertical z direction is defined relative to the static equi-

librium state, where the static buoyancy force balances the gravity force and a

possible static pre-stressing force from the generator.
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In the dynamic state caused by the surface elevation η(t) the WEC is excited

by dynamic hydrodynamic force, fh(t), in addition to the static buoyancy force,

and by an additional control force, fc(t) from an external hydraulic or electric

force generator as the PTO system, which is used to control the motion of

the absorber and to achieve maximal wave energy absorption. In theoretical

research, it’s assumed that the PTO system can provide the reactive power. In

applications, the cylinder can operate as a pump, producing a bi-directional flow,

which drives a hydraulic motor. The motor adapts to the flow and rectifies the

flow into a unidirectional turning of the generator. Further, The PTO system

will absorb a positive power from the absorber if the control force fc(t) and the

velocity v̇(t) are in counter phase. In opposite case, the PTO system acts as a

motor and supplies energy to the absorber. Next, the mechanical energy stored

in the absorber is converted into electrical energy via an generator. Henceforth,

fc(t) considered positive in the opposite direction of v(t) will be referred to as

the control force. Then, the equation of motion becomes:

mv̈(t) = fh(t)− fc(t) (1)

Assuming linear wave theory fh(t) may be written as a superposition of the

following contributions:

fh(t) = fb(t) + fr(t) + fe(t) (2)

where fb(t) is the quasi-static increment of the buoyancy force, fr(t) is the

radiation force generated by the motion of the absorber in still water, and fe(t)

is the wave excitation force caused by the wave action, when the absorber is

fixed in the static equilibrium state. The term fr(t) removes mechanical energy

by generating a wave train propagating away from the absorber, whereas fe(t)

supplies energy to the absorber. fb(t) is given as:

fb(t) = ρ
(

D
(

v(t)
)

−D(0)
)

g = −r
(

v(t)
)

(3)

where ρ is the mass density of water, and D
(

v(t)
)

denotes the displaced water

volume at the displacement v(t). The nonlinear buoyancy function r
(

v(t)
)

is
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limited between the value r1 corresponding to a fully submerged absorber, and

the value r0 = −fb,0, when the absorber is jumping out of the water. Assuming

small vertical vibrations, Eq. (3) may be linearized around the static equilibrium

state as (Newman, 1977):

fb(t) = −k v(t) , k = r′(0) = ρD′(0) g =
1

4
πD2ρg (4)

The radiation force fr(t) may be written in terms of the following differential-

integro relation (Cummins, 1962; Faltinsen, 1990):

fr(t) = −mhv̈(t)− fr,0(t) (5)

fr,0(t) =

∫ t

−∞

hrv̇(t− τ)v̇(τ) dτ (6)

The term mh is the added water mass at infinite high frequencies, and hrv̇(t)110

is a causal impulse response function for the radiation force brought forward by

the absorber velocity v̇(τ).

Insertion of Eqs. (3), (5) and (6) in Eq. (1) provides the following integro-

differential equation for v(t) driven by fe(t) and fc(t):

(

m+mh

)

v̈(t) + r
(

v(t)
)

+

∫ t

t0

hrv̇(t− τ)v̇(τ) dτ = fe(t)− fc(t) , t > t0

v(t0) = v0 , v̇(t0) = v̇0















(7)

where v0 and v̇0 are given initial conditions at the time t0.

Due to the causality of the impulse response function, the related frequency

response function becomes:

Hrv̇(ω) =

∫

∞

0

e−iωthrv̇(t) dt (8)

Mh(ω) and Ch(ω) denote the hydrodynamic added mass and the hydro-

dynamic radiation damping coefficient during monochromatic wave excitation.

These are related to the imaginary and real parts of Hrv̇(ω) by the following
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sine and cosine transforms (Nielsen et al., 2013):

Mh(ω) = mh +
1

ω
Im

(

Hrv̇(ω)
)

= mh −
1

ω

∫

∞

0

sin(ωt)hrv̇(t) dt

Ch(ω) = Re
(

Hrv̇(ω)
)

=

∫

∞

0

cos(ωt)hrv̇(t) dt



















(9)

The wave excitation force fe(t) may be expressed in terms of the following

convolution integral of the sea-surface elevation η(t) (Falnes, 2002):

fe(t) =

∫

∞

−∞

heη(t− τ)η(τ)dτ (10)

the sea-surface elevation η(t) is assumed to be observed at a sufficient distant

position where the measurement is not disturbed by the radiation wave, and

heη(t) is a non-causal impulse response function. The related frequency response

function becomes:

Heη(ω) =

∫

∞

−∞

e−iωtheη(t)dt (11)

For the indicated heave absorber located in the sea with water depth h =

30m, it consists of a cylindrical volume with a diameter D = 14m and a hemi-115

sphere with the same diameter as the cylinder. The structural mass m of the

absorber is 1.84 × 106kg. The relative physical parameters of the considered

point absorber have been defined in the numerical example at the end of the

paper. Based on these parameters, the hydrodynamic parameters, i.e. k, mh,

Hrv̇(ω), Heη(ω) can be calculated numerically. In the present case, the pro-120

gram WAMIT has been used, which is based on the boundary element method

(WAMIT, 2011). Further, the impulse response functions, hrv̇(t) and heη(t),

are obtained by inverse Fourier transform of Eqs. (8) and (11) respectively.

Fig. 2 shows the obtained impulse response function hrv̇(t). The time has

been normalized with respect to the peak period Tp. Fig. 3 shows the hydrody-125

namic added mass. Mh(ω) = Mh(−ω) is a an even function of ω, cf. Eq. (9),

for which reason only results for positive angular frequencies have been shown.

As seen, the asymptotic value mh is achieved for ω ≥ 3ωp. Fig. 4 shows the real

and imaginary parts of the frequency response function Hrv̇(ω). The real part

is a symmetric function and the imaginary part is a show-symmetric function130
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Figure 2: Impulse response function for the

radiation force, hrv̇(t).
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Figure 3: Hydrodynamic added mass, Mh(ω).

of ω, for which reason only results for positive angular frequencies have been

shown. The impulse response function heη(t) for the wave excitation is shown in
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a) b)

Figure 4: Frequency response function for the radiation force. a) Re(Hrv̇(ω)). b) Im(Hrv̇(ω)).

Fig. 5. The real and imaginary parts of the related frequency response function

which will be used in later section for modeling the waves are shown in Figs.

6a) and 6b).135

For practical reasons the displacement v(t) will be limited to a finite interval

[vmin, vmax], either in order to prevent the absorber form hitting the bottom

of the sea or jumping out of the water, or because the actuator has a finite

stroke. Similarly, the control force fc(t) will be constrained to a finite interval
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Figure 5: Impulse response function for the wave excitation force, heη(t).

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400

1600

ω/ωp

R
e(
H

eη
(ω

))
[k
N
/
m
]

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

ω/ωp

Im
(H

eη
(ω

))
[k
N
/
m
]

a) b)

Figure 6: Frequency response function for the wave excitation force. a) Re(Heη(ω)). b)

Im(Heη(ω)).
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[fc,min, fc,max] due to saturation in the hydraulic actuator system. Then, based

on Eq. (7), the optimal control force which maximizes the absorbed energy

during the control interval [t0, t1] is obtained as the solution to the following

constrained optimization problem:

max J [fc(t), v̇(t)] =

∫ t1

t0

fc(τ)v̇(τ) dτ

s.t.










































(m+mh)v̈(t) + r(v(t)) +

∫ t

t0

hrv̇(t− τ)v̇(τ) dτ = fe(t)− fc(t)

v(t0) = v0 , v̇(t0) = v̇0

vmin ≤ v(t) ≤ vmax

fc,min ≤ fc(t) ≤ fc,max

(12)

Below, merely an infinite control horizon is considered corresponding to t0 =

−∞ and t1 = ∞. Further, a linear buoyancy restoring force is assumed as

indicated in Eq. (4).

3. Rational approximations to the radiation force and the external

wave load140

For the application in time-domain simulation, control and optimization

problem, the integral part of the radiation force, i.e. fr,0(t) in Eq. (6) is

replaced by an equivalent system of coupled first-order differential equations.

This is equivalent to replacing the frequency response function Hrv̇(ω) by an

approximating rational function:145

Hrv̇(ω) ≃ H̃rv̇(ω) =
P (z)

Q(z)
, z = iω (13)

P (z) = p0z
m + p1z

m−1 + · · ·+ pm−1z + pm

Q(z) = zn + q1z
n−1 + · · ·+ qn−1z + qn







(14)
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where the parameters p0, p1, · · · , pm and q1, q2, · · · , qn are all real. The denom-

inator polynomial may be given on the form:

Q(z) = (z − z1)(z − z2) · · · (z − zn) (15)

In order to ensure the stability and strict causality, the order of the filter given

by the pair (m,n) should satisfy the condition that m < n and the poles of the

denominator zj must fulfill Re(zj) < 0. The solution can be obtained by the

MATLAB control toolbox (Mathworks, 2011). In Fig. 7 the obtained rational

approximation of the order (m,n) = (2, 3) to Hrv̇(ω) is compared with the150

target frequency response function.
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Figure 7: The accuracy of the rational approximation to Hrv̇(ω) . a) Re(Hrv̇(ω)). b)

Im(Hrv̇(ω)). : Numerical determined target frequency function. : Rational ap-

proximation, (m, n) = (2, 3).

Then, the relation between fr,0(t) and v̇(t) can be expressed by the differ-

ential equations:

fr,0(t) = p0
dmy(t)

dtm
+ p1

dm−1y(t)

dtm−1
+ · · ·+ pm−1

dy(t)

dt
+ pmy(t)

dny(t)

dtn
+ q1

dn−1y(t)

dtn−1
+ · · ·+ qn−1

dy(t)

dt
+ qny(t) = v̇(t)















(16)

where y(t) is an auxiliary function. A harmonic varying input v̇(t) = Re(V̇ eiωt)

to the 2nd equation produces a harmonic varying force fr,0(t) = Re(Fr,0 e
iωt), Fr,0

= H̃rv̇(ω)V̇ , of the 1st equation, where H̃rv̇(ω) is given by Eqs. (13) and (14).
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Eq. (16) can be written on the following state vector form:

d

dt
zr(t) = Arzr(t) + br v̇(t) (17)

fr,0(t) = przr(t) (18)

where zr(t), Ar, br and pr can be found in detail in the reference (Nielsen et al.,

2013).

In applications the stochastic wave load fe(t) can be modelled as a zero-

mean, stationary Gaussian stochastic process, obtained as the output process

of a unit intensity Gaussian white noise process w1(t), with the frequency re-

sponse function Hew1
(ω), passed through a time-invariant physically realizable

rational filter. The mean value and auto-covariance function of w1(t) is given

as (Nielsen and Zhang, 2017):

E[w1(t)] = 0

E[w1(t1)w1(t2)] = δ(t2 − t1)







(19)

where E[·] is the expectation operator and δ(·) indicates the Dirac’s delta func-

tion.155

Furthermore, the auto-spectral density function for wave load can be ex-

pressed as (Nielsen and Zhang, 2017):

Sfefe(ω) = |Heη(ω)|
2Sηη(ω) = |Hew1

(ω)|2Sw1w1
(20)

where Sfefe(ω) is double-sided auto spectral density function of wave excita-

tion, and Sw1w1
= 1

2π is the double-sided auto spectral density function of unit

intensity Gaussian white noise w1(t). Heη(ω) and Hew1
(ω) are impulse response

functions for the wave excitation force caused by wave height and white noise,

respectively. Sηη(ω) is the double-sided JONSWAP auto spectral density func-

tion given as (Hasselmann et al., 1973):

Sηη(ω) = α
H2

s

ωp
γβ

( |ω|

ωp

)

−5

exp
(

−
5

4

( ω

ωp

)

−4)

(21)
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where

α =
0.0312

0.230 + 0.0336γ − 0.185
1.9+γ

β = exp
(

−
1

2

( |ω| − ωp

σωp

)2)

σ =







0.07 , |ω| ≤ ωp

0.09 , |ω| > ωp















































(22)

Tp is the peak period, ωp = 2π
Tp

is the related angular peak frequency and Hs

is the significant wave height. γ is the so-called peak enhancement parameter

which controls the bandwidth of the spectrum. Small and large values of γ

represents broad-and narrow-bandedness of the surface elevation spectrum.

Fig. 8 shows the one-sided auto spectral density function of the surface160

elevation process Sη(ω) and the wave excitation process Sfe(ω). Both spectrums

have been normalized with respect to the angular peak frequency ωp. As seen

Sfe(ω) ≃ 0 for ω < 0.5ωp and ω > 1.5ωp. In contrast, the surface elevation

process is vanishing for ω ≥ 3.0ωp.
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Figure 8: One-sided normalized auto-spectral density functions. a) Surface elevation process.

b) Wave excitation process.

In analogy to Eq. (13), the frequency response function Hew1
(ω) of the filter

is approximated by a casual rational function:

Hew1
(ω) =

P (z)

Q(z)
=

p0z
r + p1z

r−1 + · · ·+ pr−1z + pr

zs + q1zs−1 + · · ·+ qs−1z + qs
, z = iω (23)
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The filter coefficients are obtained by solving the following optimization problem

(Nielsen and Zhang, 2017):

min
p0,...,pr

q1,...,qs

∫

∞

−∞

(

Sfefe(ω)−
1

2π

P (iω)P (−iω)

Q(iω)Q(−iω)

)2

dω (24)

s.t.

1

2π

P (iωp)P (−iωp)

Q(iωp)Q(−iωp)
= Sfefe(ωp)

Re(zj) < 0, j = 1, 2, · · · , s











(25)

where zj , j = 1, 2, · · · , s indicates the poles of the denominator polynomialQ(z),165

cf. Eq. (15).
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Figure 9: Rational approximation to the one-sided auto-spectral density function of the wave

load.

: Numerical determined target auto-spectral density function. : Rational

approximation, (r, s) = (2, 4).

The constraint on zj in Eq. (25) ensures that the filter becomes causal, in

contrast to the underlying non-causal filter problem. Nevertheless, the obtained

load process will be a zero-mean Gaussian process with the same covariance

structure as the original process within the accuracy approximation of the ra-170

tional auto-spectral density function to the target spectrum. Hence, these pro-

cesses will be equivalent with probability 1. Fig. 9 illustrates the accuracy of
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the rational auto-spectral density function for (r, s) = (2, 4) in comparison to

the target auto-spectral density function.

Next, the wave load fe(t) is obtained from the following state vector equa-

tions:

d

dt
ze(t) = Aeze(t) + bew1(t) (26)

ze(t) =







































y(t)

d
dt
y(t)

d2

dt2
y(t)

...

ds−2

dtn−2 y(t)

ds−1

dtn−1 y(t)







































, be =





























0

0

0
...

0

a1





























(27)

Ae =























0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

−qs −qn−1 −qs−2 · · · −q2 −q1























(28)

fe(t) = peze(t) (29)

where:

pe =
[

pr pr−1 · · · p1 p0 0 · · · 0
]

(30)

a1 notifies the intensity of the white noise process .175

The equation for the integrated dynamic system made up of the displacement

v(t) and the velocity v̇(t) of the point absorber, and the state vector zr(t) and

ze(t) of the rational approximations of the radiation force and the wave load

may be formulated as:

ż(t) = Az(t) + bfcfc(t) + b1w1(t) (31)
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where:

z(t) =























v(t)

v̇(t)

zr(t)

ze(t)























,bfc =























0

− 1
m0

0

0























,b1 =

















0

0

0

be

















,A =























0 1 0 0

− k
m0

0 −
pr
m0

pe
m0

0 br Ar 0

0 0 0 Ae























(32)

where m0 = m+mh. The dimension of the state vector z(t) is N = 2 + n+ s.

4. Modified linear quadratic Gaussian control

In order to obtain the optimal control force, which maximizes the absorbed

energy during the control interval [t0, t1] and simultaneously reduces the varia-

tion of the displacement and control force, the following modified performance

functional is applied:

max J1[fc(t), v̇(t), v(t)] =
1

2

∫

∞

−∞

(

− qv2(t) + 2v(t)fc(t)− rf2
c (t)

)

dt

=
1

2

∫

∞

−∞

(

− z(t)TQz(t) + 2z(t)Tpfc(t)− rf2
c (t)

)

dt

(33)

where Q and p are given as:

Q =

















q 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

















, p =
[

0 1 · · · 0
]T

(34)

Traditional LQG optimization merely considers the 1st and 3rd terms in the

objective functional. In the present case the 2nd term has been introduced to

optimize the energy absorbtion, keeping the displacement and the control force180

as small as possible.

17



In order to solve the control problem, the variational approach will be adopt-

ed. The Hamiltonian of the control problem is defined as:

H(z(t), fc(t),λ(t), t) =
1

2

(

−z(t)TQz(t) + 2z(t)Tpfc(t)− rf2
c (t)

)

+ λ
T (t)g(z(t), fc(t), t)

(35)

where λ(t) = [λv(t), λv̇(t),λr(t),λe(t)]
T is the co-state vector (Lagrange multi-

plier). g(z(t), fc(t), t) is given as:

g(z(t), fc(t), t) = Az(t) + bfcfc(t) + b1w1(t) (36)

The Euler-Lagrange equations for optimal control become (Meirovitch, 1990):

Co-state vector equation:

λ̇(t) = −
∂H

∂z
(37)

Stationarity condition on the control force:

∂H

∂fc
= 0 (38)

Due to the infinite control horizon the transversality condition λ(∞) = 0 can

be ignored.

Eq. (37) yields the following differential equation for the co-state vector:

λ̇(t) = −AT
λ(t) +Qz(t)− pfc(t) (39)

Eq. (38) provides the following solution for the optimal control force:

fc(t) =
1

r

(

bT
fcλ(t) + pT z(t)

)

(40)

In agreement with the conventional LQG procedure the following solution is

assumed for the co-state vector at optimal control:

λ(t) = −S(t)z(t) (41)

leading to the following control law:

fc(t) = −
1

r

(

bT
fcS(t)− pT

)

z(t) = −G(t)z(t) (42)
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where G(t) is the control gain matrix given by:

G(t) =
1

r

(

bT
fcS(t)− pT

)

(43)

Substitution of Eqs. (41) and (42) into Eq. (39) provides the following

matrix differential equation for S(t):

−Ṡ(t)z(t) − S(t)
(

Az(t) + bfcfc(t) + b1w1(t)
)

= ATS(t)z(t) +Qz(t)− pfc(t)

(44)

fc(t) in Eq. (44) is eliminated by Eq. (42). Then, in the stationary state

corresponding to infinite control horizon, the matrix S is obtained from the

following Lyapunov equation:

SA+ATS−
1

r

(

Sbfc −P
)(

bT
fcS− pT

)

+Q = 0 (45)

Eq. (45) represents a generalization to the stationary Riccati equation related

to standard LQG control. Normally, the information about the future system185

matrices is required when the Ricatti equation is solved in order to synthesize

the optimal control gain at the present time instant (Basu and Staino, 2016).

In this paper, assuming the stationary state for the Riccati equation (44), cor-

responding to infinite control horizon, the control problem becomes causal.

5. State observation based on Kalman filtration190

The control law in Eq. (42) represents that the full state state vector z(t)

can be observed. In reality merely the components v(t) and v̇(t) are available.

For this reason the control law in Eq. (42) is combined with a Kalman filter

state observer. The following observer equation is assumed:

y(t) = Cz(t) +w(t) (46)

where:

y(t) =





v(t)

v̇(t)



 , C =





1 0 0 0

0 1 0 0



 , w(t) =





a2 0

0 a3









w2(t)

w3(t)



 (47)
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w2(t) and w3(t) are mutual independent unit intensity Gaussian white noise

processes, cf, Eq. (19). a2 and a3 are corresponding intensities indicating the

level of the noise.

Let e(t) be the observer error vector, defined as:

e(t) = z(t)− ẑ(t) (48)

The observer equation becomes (Meirovitch, 1990):

ˆ̇z(t) = (A−KC)ẑ(t) + bfcfc(t) +Ky(t) (49)

where ẑ(t) is the estimated state vector. The estimated control force f̂c(t) is

given as:

f̂c(t) = −Gẑ(t) (50)

and the Kalman gain matrix K is expressed as:

K = DCTW−1 (51)

where D is the steady-state variance matrix of e(t) satisfying the Lyapunov

equation:

AD+DAT +V −DCTW−1CD = 0 (52)

where V and W are the intensities of the process w1(t) and w(t), which can be

expressed as:

V = a21b1b
T
1 , W =





a22 0

0 a23



 (53)

6. Numerical example

A point heave wave energy converter is considered in the numerical simu-195

lation. The relevant data of the absorber and the wave excitation parameters

have been indicated in Table 1.

In the following the accuracy of the theory will be tested against numerical

results obtained by nonlinear programming. The nonlinear programming formu-

lation of the optimal control problem is related to two approximations related to200
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Table 1: Heave absorber and wave excitation parameters

Parameter Value Unit Parameter Value Unit

H 7.00 m vmax 0.50 m

D 14.00 m vmin -0.50 m

h 30.00 m fc,max 4.0×105 N

m 1.84×106 kg fc,min -4.0×105 N

mh 0.44×106 kg q 9.00×105 N/(ms)

Hs 3.00 m r 3.00×10−7 m/(Ns)

Tp 7.42 s a2 0.50 ms1/2

γ 5 a3 0.50 ms−1/2

the state vector representation in Eqs. (17) and (18) of the convolution integral

for the radiation force, and to a discretization of the performance functional iat

instants of time separated by the interval ∆τ .

In order to check the accuracy in the nonlinear programming algorithm,

it has been checked against the theoretical solution for optimal control of the

unconstrained heave absorber due to Nielsen et al. (2013), given as:

fc(t) = −(m+mh)v̈(t)− kv(t) +

∫

∞

t

hrv̇(τ − t)v̇(τ) dτ (54)

Fig. 10 shows the results for a time step ∆τ =
Tp

150
in the discretization of the

control interval, and a rational approximation of the order (m,n) = (2, 3) for the205

convolution integral. The nonlinear programming solution at optimal control

for v(t), v̇(t) and v̈(t) were used at calculation of the theoretical solution.

Figs. 11a and 11b show the displacement and velocity of the absorber under

LQG control for full and partial state observation, corresponding to Eqs. (42)

and (50), with the indicated parameters, and the comparison with nonlinear210

programming as formulated in appendix.

Fig. 11c indicates the corresponding control force. Fig. 11d and Table 2

indicate the instantaneous power and mean power based on LQG control. As

seen, the partial observation merely reduce the mean absorbed power due to the
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Figure 10: Unconstrained case. The trajectories, control force and instantaneous absorbed

power at optimal control. a) v(t). b) v̇(t). c) fc,0(t). d) Popt,0(t). : Nonlinear program-

ming solution. : Unconstrained analytical solution (Nielsen et al, 2013).
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Figure 11: The trajectories of v(t) and v̇(t), control force fc(t) and instantaneous absorbed

power P (t) at optimal control. Hs = 3m, Tp = 7.42s and γ = 5. fc,max = −fc,min = 4×105N

and vmax = −vmin = 0.5m. a) v(t). b) v̇(t). c) fc(t). d) P (t). : Nonlinear programming

solution. : LQG, full state observation. : LQG, partial state observation.

22



9

Table 2: Mean absorbed power under different wave conditions

γ = 5 γ = 1

Nonlinear programming 78.1005 kW 84.3520 kW

LQG, full state observation 77.0597 kW 83.3994 kW

LQG, partial state observation with

(a2, a3)=(0.05ms1/2, 0,05ms−1/2)
73.4893 kW 80.4685 kW

LQG, partial state observation with

(a2, a3)=(0.5ms1/2, 0,5ms−1/2)
61.3112 kW 76.2606 kW

limited state observation. In order to evaluate the effect of a2 and a3 on the215

absorbed power, two pairs (a2, a3) are compared.

In Table 2, the absorber power with (a2, a3) = (0.50ms1/2, 0.50ms−1/2) is

larger than the absorbed power with (a2, a3) = (1.00ms1/2, 1.00ms−1/2). It

can be known that the measurement parameters a2 and a3 would reduce the

absorbed power generally. At the same time, the obtained sub-optimal solution220

base on LQG, full state observation is compared to the optimal solution obtained

by nonlinear programming. The details of the nonlinear programming algorithm

has been given in an appendix.

In order to investigate the broad-banded wave, the wave condition with

Hs = 3m, Tp = 7.42s and γ = 1 has also been considered. Fig. 12 shows225

the trajectories of v(t) and v̇(t), control force fc(t) and instantaneous absorbed

power P (t) at optimal control. The mean absorbed power is also shown in Table

2. As seen, The same analysis results are applied to the extreme broad-banded

wave.

Given a sea-state defined by the parameters Hs, Tp, and γ a sufficient long230

realization of fe(t) is generated from Eqs. (26) and (29) using a so-called broken

line equivalent white noise process for w1(t) (Nielsen and Zhang, 2017). Next,

the load realization applied in LQG control is used for the nonlinear program-

ming solution for the optimal solution. Finally, q and r are determined so the
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Figure 12: The trajectories of v(t) and v̇(t), control force fc(t) and instantaneous absorbed

power P (t) at optimal control. Hs = 3m, Tp = 7.42s and γ = 1. fc,max = −fc,min = 4×105N

and vmax = −vmin = 0.5m. a) v(t). b) v̇(t). c) fc(t). d) P (t). : Nonlinear programming

solution. : LQG, full state observation. : LQG, partial state observation.
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standard deviations σv and σfe are identical for the nonlinear programming235

solution and the LQG solution with full state observation. When nonlinear

programming is applied, the computational cost grows exponentially with the

length of the control horizon. For this reason stable solutions for the parame-

ters q and r can’t be achieved by merely using a single realization of the wave

stationary load process fe(t) of limited length. Instead a finite number N of240

independent time series of the wave load of limited length should be generated,

which from samples of q and r are generated based on nonlinear programming.

Next, stable estimates of q and r may be obtained as ensemble averages of the

indicated sample values. Then, the calculation time of the approach merely

growth linearly with N . Assuming that all involved stochastic processes are245

ergodic it doesn’t matter which realization of w1(t) (and hence of fe(t)) is used.

The indicated standard deviations are determined by time-averages of N = 6

independent time series of v(t) and fc(t) in the interval [0, 100s] where the

time step ∆τ is
Tp

150
. Further, according to the Pontryagin’s maximum princi-

ple (Pontryagin et al., 1962), the optimal control is obtained for the maximum250

value of the Hamiltonian as given by Eq. (35). Then, an increase or decrease of

the weights q and r implies a decrease or increase of v(t) and fc(t) at optimal

control. In the present model it follows that q and r are negative correlated to

the magnitude of the constraints on the displacement and control force.

In Fig. 11d, at optimal control P (t) may have negative loops. Actually, an255

imposed constrain fc(t) ≡ 0, corresponding to P (t) ≡ 0 during a time interval

with negative power absorption in the optimal control, will produce a non-

optimal velocity trajectory v̇(t) out-side the said time interval via the impact on

the equation motion Eq. (12), resulting in a reduced average absorbed power

during a longer control horizon. The same observation was made by Falnes260

(Falnes, 2002).

25



7. Conclusions

In this paper, a control law based on the LQG approach is used to maximize

the absorbed energy of a wave energy point absorber system. As a result of

rational approximations to the radiation force and the wave load, the integrat-265

ed dynamic system is reformulated as a linear stochastic differential equation

which is driven by a unit intensity Gaussian white noise. Further, the Kalman

filter technique is employed to estimate the combined state vector based on noise

observation of v(t) and v̇(t). The proposed LQG control successfully demon-

strated the ability to extract and maximize the absorbed power while keeping270

the absorber motion and control force small. Based on a specific calibration

technique of the parameters q and r entering the performance functional of the

LQG solution close to optimal control force solutions are generated in cased of

low signal to noise ratios of the observed state variables. For higher noise level

a certain reduction appears in the absorbed power.275
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Appendix: Nonlinear programming algorithm

The optimal control problem in Eq. (12) is reformulated as a nonlinear

programming problem by discretizing the objective functional and the state
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vector in time:

max J
(

X(τM )
)

= xn+3(τM )

subject to the path and inequality constraints :

c
(

X(τj)
)

= 0

h
(

X(τj)
)

=

















v(τj) − vmax

− v(τj) + vmin

fc(τj)− fc,max

− fc(τj) + fc,min

















− s(τj) = 0

s(τj) ≥ 0































































(55)

where τj = t0 + j∆τ , j = 0, 1, . . . ,M .280

s(t) indicates a vector function of slack variables. The time step in the

discretization of the interval ]t0, t1] is given as ∆τ = t1−t0
M . The vector X(t) of

dimension 2n+6 and the path constrain vector c
(

X(t)
)

of dimension n+3 are

defined as:

X(t) =

[

v(t) , v̇(t) , zTr (t) , xn+3(t) ,
d

dt
v(t) ,

d

dt
v̇(t) ,

d

dt
zTr (t) ,

d

dt
xn+3(t)

]T

(56)

c
(

X(t)
)

=





















d
dtv(t) − v̇(t)

M d
dt v̇(t) + pr zr(t) + r

(

v(t)
)

− fe(t) + fc(t)

d
dtzr(t) − Ar zr(t) − br v̇(t)

d
dtxn+3(t) − fc(t) v̇(t)





















(57)

The inherent approximation in the indicated nonlinear programming formula-

tion concerns the discretization of the time continuous problem into M + 1

discrete instants of time for optimization, and the use of the rational approxi-

mation in Eq. (18) for the force fr,0(t).

The formulation applies to both displacement constraints and control force285

constraints. In case, merely control force constraints are prescribed the algo-
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rithm is applied by using large values of vmax and small values of vmin.

The applied algorithm for solving the indicated nonlinear programming prob-

lem is described in (El-Bakry et al., 1996).
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