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Calibration of Stochastic Channel Models
using Approximate Bayesian Computation
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Wireless Communication Networks Section, Aalborg University, Aalborg, Denmark

E-mail: [ayb, troels]@es.aau.dk

Abstract—Calibration of stochastic radio channel models
is the process of fitting the parameters of a model such
that it generates synthetic data similar to the measure-
ments. The traditional calibration approach involves, first,
extracting the multipath components, then, grouping them
into clusters, and finally, estimating the model parameters.
In this paper, we propose to use approximate Bayesian
computation (ABC) to calibrate stochastic channel models
so as to bypass the need for multipath extraction and
clustering. We apply the ABC method to calibrate the well-
known Saleh-Valenzuela model and show its performance
in simulations and using measured data. We find that the
Saleh-Valenzuela model can be calibrated directly without
the need for multipath extraction or clustering.

I. INTRODUCTION

Stochastic multipath models are indispensable tools
for characterizing the radio channel and analysing the
performance of communication systems. Typically, the
models are generative, so synthetic data can be generated
and used in simulation studies. Such models are partic-
ularly useful if calibrated with measurement data. Cal-
ibrating a model means estimating its parameters such
that the model fits to the measurements in some metric.
Traditionally, calibration problems are solved by maxi-
mizing a likelihood function, or by finding the posterior
distribution of the parameters (in a Bayesian approach).
In either case, access to the likelihood function is re-
quired. Unfortunately, the likelihood is intractable here
as marginalization with respect to the hidden multipath
components is not possible.

Instead of relying on inference frameworks, typically
we resort to splitting the inference problem into sub-
problems and solve these independently. For example,
calibration is typically done in three steps. First, multi-
path parameters such as delays, gains, etc., of each mul-
tipath component is extracted from the channel impulse
response measurements. High-resolution algorithms such
as SAGE and CLEAN, among others, are used for
this step. Then, the extracted multipath components are
grouped together into clusters, either manually or using
automated clustering algorithms, e.g. [1]. The third step
then involves fitting the extracted and clustered multipath
components to the model and estimating the parameters.
Such multi-step procedures involve complex algorithms
that can be cumbersome to use and prone to errors such
as estimation artifacts and censoring effects. Moreover, a

number of arbitrary choices need to be made in order to
implement these algorithms. The estimation accuracy of
the parameters then relies on each of the intermediate
steps, and therefore the overall performance of these
methods is difficult to investigate.

Recently, calibration methods have been proposed in
[2], [3] for the Turin model [4] (with constant arrival
rate) that bypasses the multipath extraction step. They
summarise the channel measurements into temporal
moments and estimate the model parameters directly.
While [2] assumes a multivariate Gaussian model for the
temporal moments and samples from the approximate
posterior of the parameters, [3] fits the expressions of
means and covariances of the temporal moments to
the parameters using a method of moments approach.
However, in cases where the Gaussian assumption fails
or when the model is too complicated to derive the
theoretical expressions, these methods cannot be utilised.
Hence, there is a need for methods to calibrate complex
models that involve clustering of multipath components.

The problem of calibrating generative models with
unavailable likelihoods appears in many other sciences.
A potential solution is approximate Bayesian compu-
tation (ABC) [5], [6], which was first introduced in
population genetics, and further developed and used in
other fields. ABC relies on comparing summary statistics
of simulated and measured data in some distance metric.
A potential solution to calibrating stochastic multipath
models could be to use ABC methods combined with
informative summary statistics such as those studied in
[2], [3]. To the best of our knowledge, ABC methods
have not been used in radio channel characterization.

In this paper, we propose an ABC algorithm based on
population Monte Carlo [7] and regression adjustment
[8] for calibration of stochastic channel models. As an
example, we develop summary statistics for calibrating
the well-known Saleh-Valenzuela [9] model using ABC.
Performance evaluation of this calibration method is
carried out via a simulation experiment as well as using
measurement data.

II. ESTIMATION PROBLEM FORMULATION

Consider single-input, single-output (SISO) frequency
domain measurement where the received signal sampled



at K equidistant frequency points within the bandwidth
B reads

Yk = Hk +Wk, k = 0, 1, . . . , (K − 1), (1)

where Hk is the transfer function, and Wk is indepen-
dent and identically distributed circular Gaussian mea-
surement noise with variance σ2

W . Discrete-frequency,
continuous-time inverse Fourier transform gives the time
domain signal,

y(t) =
1

K

K−1∑
k=0

Yk exp (j2πk∆ft) . (2)

The frequency separation, ∆f , is related to the period
of the time domain signal as

tmax =
1

∆f
=
K − 1

B
. (3)

A measurement campaign where Nobs observations of
the channel transfer function are recorded, results in the
data matrix Yobs ∈ CNobs×K .

A general multipath model of the transfer function
may read

Hk =
∑
l

αl exp (−j2π∆fkτl) , (4)

where τl and αl are the time delay and complex
gain of the lth multipath component. The delays and
their corresponding gains form a marked point process,
X = {(τl, αl)}. A stochastic channel model driven by
parameters θ is a mechanism that outputs such a marked
point process, i.e. X ∼ M(θ), where M(·) is the
generative model. The model is calibrated by estimating
θ from the measurements, Yobs.

Typically, stochastic multipath models are proposed
with the purpose of simulation, i.e. they are generative
in nature. However, in the general case of unknown,
potentially infinite, number of multipath components, the
likelihood p(X|θ), and consequently, p(Y|θ), are analyt-
ically and numerically intractable. Therefore, standard
inference and sampling techniques methods which rely
on the likelihood (or posterior) cannot be applied.

III. APPROXIMATE BAYESIAN COMPUTATION

ABC can be used to sample from an approximate
posterior when the likelihood is numerically unavailable.
Based on these samples, we can approximate the stan-
dard point estimates, e.g. the minimum mean squared
error (MMSE) estimate.

ABC relies on sampling parameter values from the
prior distribution, p(θ), and simulating datasets, Y, from
the model, M(·). Summary statistics of Y and Yobs
are computed using a function, S(·). Let the vector of
simulated and observed summary statistics be s = S(Y)
and sobs = S(Yobs), respectively. The summaries are
compared in some “distance” measure, ρ(·, ·). The basic
accept-reject ABC method involves accepting values of

θ for which ρ(s, sobs) < ε, where ε is some pre-defined
tolerance threshold. Thus, samples from p̃(θ|sobs) can
be obtained, which is an approximation of the desired
posterior, p(θ|Yobs). The approximation arising here due
to the substitution of Yobs with sobs and the use of ε.

Implementation of an ABC algorithm requires the
specification of three quantities: the distance measure
ρ(·, ·), the summary statistics s, and the threshold ε. In
this paper, we will use the Euclidean distance as our
distance function, therefore ρ(·, ·) = || · ||. Moreover,
we consider ε in terms of percentile and specify the
number of accepted samples, Mε instead. That is, for
M samples of θ from the prior, ε = Mε/M . Note that,
an ε in terms of the distance measure can be used, but it
leads to unpredictable run times for a certain number of
accepted samples. The selection of appropriate summary
statistics, however, relies heavily on the application (and
model) at hand, and will be addressed later with regards
to an example channel model.

There exists more advanced ABC methods in the
literature than the accept-reject algorithm [5], [6], and
in principle, any of them could be used for calibrating
stochastic channel models. We propose to use the pop-
ulation Monte Carlo (PMC) ABC [7] with regression
adjustment [8].

A. Proposed ABC method

The accept-reject ABC algorithm weights each of the
accepted samples equally without taking into account
the distance from the observed summary statistics. In
this paper, we use the method proposed in [8] which
improves the approximation of the posterior by weight-
ing the accepted parameter samples, θj , according to
||sobs − sj || and adjusting θj by using linear regression
model applied locally in the vicinity of sobs. Specifically,
the optimisation problem being solved is [8]

argmin
a,b

Mε∑
j=1

[
θj − a− (sobs − sj)

T
b
]2
Kε (||sobs − sj ||)

(5)
Here, Kε(·) is the Epanechnikov kernel. The samples,
θ̃j , are then adjusted as

θ̃j = θj − (sobs − sj)
T
b̂. (6)

This regression-ABC algorithm is described in Alg. 1.
For details regarding the solution of (5), see [8]. The
estimate of the intercept, â, gives the estimate of the
posterior mean, E[θ|sobs].

After the regression adjustment, some samples of θ̃
may go beyond the prior range. For example, getting
a negative value after adjustment of a strictly positive
parameter does not make sense. To avoid this problem,
samples of θ outside its prior range are replaced by the
extreme points (entrywise).

We combine the regression-ABC with the population
Monte Carlo (PMC)-ABC method of [7]. PMC-ABC



Algorithm 1 Regression ABC algorithm
Input: Parameter values (θ1, . . . , θM ) and corresponding sim-
ulated statistics (s1, . . . , sM ), observed statistics sobs, number
of accepted samples Mε,

1: Accept (θ∗1 , . . . , θ
∗
Mε

) ∼ {θi}Mi=1 with the smallest
‖sobs − si‖, i = 1, . . . ,M

2: Solve optimisation problem (5) with
{
θ∗j
}Mε

j=1
and corre-

sponding
{
s∗j
}Mε

j=1
to get b̂

3: Adjust accepted samples
{
θ∗j
}Mε

j=1
using (6) to get{

θ̃j
}Mε

j=1
in the prior range

Output: Samples (θ̃1, . . . , θ̃Mε) from approximate posterior

Algorithm 2 PMC-ABC with regression adjustment
Input: Prior p(θ), model M(θ), observed statistics sobs, Mε,
M , T

1: At iteration t = 1,
2: Sample M samples of θ from the prior, i.e.

(θ1, . . . , θM ) ∼ p(θ)
3: Generate si ∼M(θi), i = 1, . . . ,M
4: Perform Algorithm 1 on (θ1, . . . , θM ) and

(s1, . . . , sM ) to generate (θ
(1)
1 , . . . , θ

(1)
Mε

)

5: Set w(1)
i = 1/Mε for i = 1, . . . ,Mε and take σ(1) to

be twice the sample variance of (θ(1)1 , . . . , θ
(1)
Mε

)
6: for t = 2, . . . , T
7: for j = 1, . . . ,M
8: Sample θ∗j ∼ (θ

(t−1)
1 , . . . , θ

(t−1)
Mε

) with probability
(w

(t−1)
1 , . . . , w

(t−1)
Mε

)

9: Perturb θ∗j by sampling θ∗∗j |θ∗j ∼ Ñ
(
θ∗j , σ

(t−1)
)

10: Generate sj ∼M(θ∗∗j )
11: end
12: Perform Algorithm 1 on (θ∗∗1 , . . . , θ∗∗M ) and

(s1, . . . , sM ) to generate (θ
(t)
1 , . . . , θ

(t)
Mε

)

13: Set w(t)
i ∝ p(θ

(t)
i )/

∑Mε
j=1 w

(t−1)
j q

(
θ
(t−1)
j |θ(t)i , σ(t−1)

)
,

and take σ(t) to be twice the sample variance of
(θ

(t)
1 , . . . , θ

(t)
Mε

)
14: end
Output: Samples (θ

(T )
1 , . . . , θ

(T )
Mε

) from the approximate pos-
terior p̃(θ|sobs)

is a sequential Monte Carlo method that works with a
population of θ values instead of one sample at a time.
At each iteration, M samples of θ are generated from
the Mε accepted samples after performing regression-
ABC. The overall algorithm is given in Alg. 2, where
θ is assumed univariate. In the general case of θ being
a vector of parameters, the same algorithm applies on
each entry of θ independently. Note that Ñ (·, ·) denotes
a Gaussian truncated to be in the prior range of θ, and
q(·, ·) is a Gaussian kernel. The overall computational
time of Alg. 2 depends on how many observations of
the channel, say Nsim, are simulated to compute s from
each value of θ.

IV. APPLICATION TO SALEH-VALENZUELA MODEL

The seminal model proposed by Saleh-Valenzuela
[9] has been the basis of standardized models such

as IEEE 802.15.3a and IEEE 802.15.4a. It has been
extended further to include the spatial properties of
the channel and also been applied in millimetre wave
scenarios using a MIMO system. Calibration methods for
this model commonly rely on multipath extraction and
clustering. For this reason, we demonstrate the utility of
the proposed ABC method by applying it to the Saleh-
Valenzuela model.

A. Estimation problem

The Saleh-Valenzuela model can be formulated in the
frequency domain as

Hk =
∑
l

∑
p

βpl exp (−j2π∆fk(Tl + τpl)) , (7)

where Tl is the delay of the lth cluster, while τpl and βpl
are the delay and complex gain of the pth ray within the
lth cluster, respectively. By definition in [9], T0 = 0 and
τ0l = 0, l ∈ {0, 1, . . . }. The arrival time of the clusters
and that of the rays within the clusters are modelled as
one-dimensional homogeneous Poisson point processes,
i.e., Tl ∼ PPP(R+,Λ) and τkl ∼ PPP(R+, λ) with
parameters Λ, λ > 0. The gains βkl, conditioned on Tl
and τkl, are modelled as iid zero-mean complex Gaussian
random variables with conditional variance

E
[
|βkl|2|Tl, τkl

]
= Q exp(−Tl/Γ) exp(−τkl/γ), (8)

where Q denotes the average power of the first arriving
multipath component, and Γ, γ > 0 are the cluster and
ray decay constants, respectively. The expression for the
power delay spectrum is given in [10]. To calibrate this
model, the parameter vector, θ = [Q,Λ, λ,Γ, γ]T ,
should be estimated based on Yobs.

B. Development of summary statistics

In order to use the ABC method to infer on θ,
informative summary statistics of Y are needed about
the five model parameters. The selection of summaries
determines the degree to which we approximate the
posterior distribution by replacing Y with s.

Temporal moments are widely used statistics that have
been recently used to estimate the parameters of the
Turin model [4] without multipath extraction in [2], [3].
We define the generalised ith temporal moment as

m
(n)
i =

∫ tmax

0

ti|y(t)|ndt, i = 0, 1, 2, . . . . (9)

Most commonly, only temopral moments with n = 2 are
considered. The temporal moments are random variables
that summarise each channel realisation into one instance
for a particular n and i. So, Nobs realisations would lead
to a vector of temporal moments, m(n)

i for each choice
of i and n. We use the first three temporal moments, i.e.
D(n) = [m

(n)
0 ,m

(n)
1 ,m

(n)
2 ]. We further summarise the

nth order temporal moments by computing the sample
mean vector, µ(n)

D , and covariance matrix, Σ
(n)
D . This



Fig. 1. Data flow from measurements to proposed summary statistics.

results in nine distinct summary statistics for each n.
Since the kurtosis of channel measurements is known to
be informative about the arrival rate [11], [12], we also
include µ(4)

D and Σ
(4)
D as summaries.

We observed through simulation (not shown due to
space limitations) that the temporal moments alone were
not as informative about the cluster parameters (Λ, Γ).
For this reason, we include two additional summaries,
%max and %var, to measure the “unorderedness” of the av-
eraged power delay profile (APDP). Sorting the discrete-
time APDP with index sequence v = [1, . . . ,K] in
descending order leads to a permutation of indices, say
v′. Then the two summaries are computed as

%max = max (v − v′) , and (10)

%var = var
(
v+
)
, (11)

where v+ contains all positive entries of (v − v′).
The resulting collection of summaries yields a twenty

dimensional vector, s, as outlined in Fig. 1. The choice
of summary statistics is not limited to the ones discussed
here. In principle, other summaries could also be used, as
long as they are informative about the model parameters.

C. Setting priors for parameters

The priors are used to sample θ values. Here we use
flat priors for all the parameters as a way limit the search
space in the first iteration of Alg. 2. The range should
be wide enough to capture all the plausible values of
the parameter, but not so wide that the computational
time of the algorithm becomes excessive. The specific
ranges of the priors, given in Table I, are obtained by
the following reasoning.

The prior for Q is easily set from the PDP of measure-
ments. Here, we set it to be ±10 dB around the power of
the first observed component. For Λ, on an average we
expect to see a minimum of one cluster in the data. This

gives the lower bound of the prior as 1/tmax. We limit
our search to at most 20 clusters arriving on an average,
giving the upper bound as 20/tmax. Similar argument
is applied for λ, where the minimum and maximum
number of rays arriving on an average range from one to
K. The decay constants are positive parameters, so their
lower bound is set to zero. The upper bound is limited
to a number that will lead to a 100 dB drop in the power
over half the observation window, i.e. 0.5tmax/100.

V. PERFORMANCE EVALUATION

A. Simulation experiment

We first test the proposed algorithm by applying it to
simulated data. A synthetic data set is drawn from the
Saleh-Valenzuela model with “true” parameters (denoted
as θtrue) given in Table I, and summarised as per Fig. 1.
The results obtained by applying the PMC-ABC with
regression adjustment to this data are reported in Fig. 2.
The approximate MMSE estimate, defined as

θ̂ =
1

Mε

Mε∑
j=1

θ̃
(T )
j , (12)

is also reported in Table I, along with the standard
deviation of the posterior after T iterations, θsd.

It appears that the (approximate) posterior converges
for all the parameters. However, the marginal posterior
for Λ converges more slowly than for the other four
parameters. The accepted samples are around the true
value of the parameter, indicating that the method is able
to estimate the parameters.

B. Application to measured data

We now apply the proposed method to a set of in-
room transfer function measurements obtained using a
vector network analyser and described in [13]. The set-
up is SISO, with a virtual planar array of 25 × 25,
giving Nobs = 625. The dimensions of the room was
3 × 4 × 3 m3. The signal was measured at K = 801
frequency points in the range 58 GHz to 62 GHz. Thus,
B = 4 GHz, ∆f = 5 MHz, and tmax = 200 ns. The
results are shown in Fig. 3. The convergence behaviour
of the approximate posterior for measurements is similar
to that observed in simulations. The posteriors for all the
parameters but Λ are concentrated in a small region of
the prior range.

C. Refining the posterior for Λ

One method to speed up the convergence of p̃(Λ|sobs)
is to limit the parameter search space by fixing a subset
of the parameters to particular values, and only sampling
from the remaining variables. Here, we fix all but Λ to
their MMSE estimate, θ̂, and sample only from p(Λ|sobs)
by applying Alg. 2 with T = 1. Fig. 4 shows the
approximate posterior obtained with and without the
regression adjustment.
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Fig. 2. Density estimate of approximate posteriors of the parameters obtained after first (top panel) and seventh (middle panel) iteration of
Alg. 2 on simulated data. The bottom panel shows boxplot of accepted samples as a function of iterations. The black dots denote the outliers.
The parameter axes are in their prior range. Simulation settings: Nsim = 50, B = 4 GHz, K = 801, M = 2000, Mε = 100, T = 7.

TABLE I
PARAMETER SETTINGS AND ESTIMATES.

θ
Prior
range

Simulated Measured

θtrue θ̂ θsd θ̂ θsd

Q (10−9, 10−7) 5 × 10−8 4.4 × 10−8 5.5 × 10−9 9.6 × 10−9 1.4 × 10−9

Λ[ s−1] (5 × 106, 108) 107 5.5 × 107 4.7 × 107 2.0 × 107 1.4 × 107

λ[ s−1] (5 × 106, 4 × 109) 109 1.2 × 109 2.8 × 108 7.2 × 108 3.0 × 108

Γ (0, 10−7) 10−8 8.4 × 10−9 5.7 × 10−10 2.8 × 10−8 4.2 × 10−9

γ (0, 10−7) 10−9 4.5 × 10−9 1.2 × 10−9 1.2 × 10−8 4.4 × 10−9

For the simulated data, the posterior obtained without
regression adjustment is much narrower compared to
Fig. 2, and the MMSE estimate agrees well with the true
value. Regression adjustment narrows the posterior even
further. Similar behaviour is observed in the measure-
ments. We also observe Λ̂ to be very small in the mea-
surements. This is particularly true when the regression
adjustment is applied, which shifts the posterior below
the prior range. This indicates that clusters are rare in
the measured data. The rarity of clusters is confirmed via
visual inspection of the PDP of the data. Consequently,
the lower bound of p(Λ) could be chosen even smaller.

VI. CONCLUSIONS

We proposed the PMC-ABC with regression adjust-
ment method for calibrating stochastic channel models
with intractable likelihoods. The method is effective in
calibrating the Saleh-Valenzuela model from measure-
ment data without the need for multipath extraction and
clustering. The temporal moments, combined with the

proposed cluster statistics, are found to be informative
about the model parameters. The summaries are ob-
served to be less responsive to the cluster arrival rate
than the other parameters. As a result, the marginal
posterior of cluster arrival rate converges slower than
others. However, its estimate has been shown to improve
using an additional round of the ABC method. Simi-
lar convergence behaviour is observed on applying the
method to measurement data. From the measurements,
it seems that the cluster arrival rate is outside the prior
range, suggesting the absence of clusters in this data.
Non-clustered models might be a better fit for this data.
In any case, a smaller lower bound for the prior of this
parameter should be chosen for future studies.

Despite the fact that the method is developed without
considering the measurement noise, it performs well
on the noisy measurements. We conjecture that the
method can be improved by including the noise variance
as a parameter in the method, which may require an
additional summary. This method can also be extended to
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Fig. 3. Density estimate of approximate posteriors of parameters obtained after first (top panel) and seventh (middle panel) iteration of Alg. 2
on measured data. The bottom panel shows boxplot of accepted samples as a function of iterations. Simulation settings as in Fig. 2.
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Fig. 4. Approximate posterior of Λ with and without the regression
adjustment for simulated and measured data.

calibrate spatial models, provided appropriate summaries
are available. As the current calibration methods involve
selection and implementation of multipath extracting as
well as clustering algorithms, both of which have a num-
ber of arbitrary choices, a straightforward comparison
with the proposed method is not feasible.
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