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English summary

Myoelectric control of upper limb prostheses has been an active area of research for many
years. To date, surface electromyography (SEMG) is the main control signal employed in
commercial systems. However, it has been suggested that signals obtained from implantable
electrodes, such as intramuscular EMG, may be a better source to provide independent sources
for control. From the control schemes point of view, pattern recognition (PR) has been
extensively researched as means to enable a more robust, intuitive, effective and simultaneous
control of a large number of degrees-of-freedom (DoF) as offered by current advanced
prosthetic limbs. However, how to achieve robustness over time with different PR schemes
has received less attention in the literature. In the current thesis, the essential objective was
therefore to investigate the behaviour of EMG based PR myoelectric control over time. Three
specific research questions (SRQ) were formulated to address this aim: 1) To what extent
threshold values affect the time domain features and their combinations in surface and
intramuscular recordings? This question was addressed in study I, where the threshold values
of each feature were compared for the range of different values. This range was (R = 0:0.02:6)
times the average root mean square of the baseline. For each threshold value, classification
error was quantified using two classifiers first for each individual feature and then combined.
Results have demonstrated that using appropriate threshold value is very important to assure
acceptable performance. 2) What is the correlation between the performance of PR based
myoelectric control schemes and time? This question was addressed in study Il and Il using
surface and intramuscular EMG concurrently recorded from 10 able-bodied subjects and six
trans-radial amputees for seven consecutive days. A standard linear regression analysis was
carried out in study Il on each EMG type for the identification of time effect (days) on
classification accuracies. Study Il showed that performance is significantly dependent on the
time elapsed between training and test. In study Ill, Artificial neural network outperformed
all other tested classifiers in terms of mitigating the effect of time on classification. 3) How do
PR training strategies influence real-time performance over time? This question was addressed
in Study 1V, an experimental protocol was designed to determine the effect of training
strategies on real-time PR control over time using a Fitts’ law approach. The outcome of the
studies indicate that increasing the amount of training set over time (by concatenation) can be
useful to assure robust output of the system over time. Moreover, classification error can be
mitigated as the time lag between training and testing increase.



Dansk resume

Myoelektrisk kontrol af overekstremproteser har veret et aktivt forskningsomrade i mange ar.
Hidtil er overfladeelektromyografi (SEMG) det primzre styresignal, der anvendes i
kommercielle systemer. Det er imidlertid blevet foreslaet, at signaler opnaet fra implanterbare
elektroder, sasom intramuskuleer EMG, kan veere bedre til at tilvejebringe uafhengige mader
til kontrol. Mgnstergenkendelse (PR) er blevet undersggt som middel til at muliggere en mere
robust, intuitiv og effektiv styring af frihedsgrader (DoF) i forhold til nuveerende avancerede
proteser. Opnaelsen af robusthed over tid med forskellige PR-ordninger har dog faet mindre
opmarksomhed i litteraturen. 1 den nuverende afhandling var hovedformalet derfor at
undersgge EMG-baseret PR myoelektrisk kontrol over tid. Tre specifikke spargsmal (SRQ)
blev derfor formuleret: 1) | hvilket omfang pavirker terskelveerdier tidsdomanefunktionerne
og deres overflade- og intramuskulere kombinationer? Dette spargsmal blev behandlet i
undersggelse I, hvor tersklen for hver funktion blev beregnet som en faktor (R = 0: 0,02: 6)
gange gennemsnittet af middelveerdien af basislinjen. For hver teaerskelverdi blev
klassifikationsfejl kvantificeret ved anvendelse af to faktorer - farst for hver enkelt funktion
og derefter kombineret. Resultaterne har vist, at brug af passende terskelveerdi er meget vigtig
for at sikre acceptabel ydeevne. 2) Hvad er sammenhzngen mellem PR-baserede
myoelektriske kontrolordninger og tid? Dette spargsmal blev behandlet i undersggelser 11 og
111 ved anvendelse af overflade- og intramuskuleer EMG, der samtidig blev registreret fra 10
raske personer og seks transradiale amputerede i 7 pa hinanden falgende dage. | studie 1l blev
en standard linear regressionsanalyse udfert pa hver EMG-type til identifikation af tidseffekt
(dage) pa klassifikationsngjagtigheder. Studie 11 viste, at ydeevnen er veesentligt afheengig af
tiden mellem traening og test. | studie 11l overgik det kunstige neurale netveerk alle andre
testede faktorer med hensyn til at mildne effekten af tid pa klassificering. 3) Hvordan pavirker
PR-treeningsstrategier realtidsprastationer over tid? Dette spgrgsmal blev behandlet i studie
IV, hvor en eksperimentel protokol blev designet til at bestemme effekten af treeningsstrategier
pa realtids PR-kontrol over tid ved hjelp af Fitts Lov. Resultater tyder pa, at en forggelse af
treening over tid (ved sammenkobling) kan vere gavnlig for at sikre en robust systemydelse
over tid. Desuden bliver fejl formindsket, da tiden mellem treening og test formindskes.



Acknowledgements

First of all, I would like to thank my supervisor Dr Ernest Nlandu Kamavuako for his support
and guidance during my time as a PhD student. He always remained helpful and forgiving over
my mistakes. His critique acted as the catalyst to refine and improve the quality of my research.
I would also like to thank Professor Winnie Jensen for her relevant and useful input on this
project. She was always available to help and guide me in the project. In addition, | appreciate
the input from Professor Kevin Englehart on all my studies.

I would also like to thank the Aalborg University in general and Departement of Health and
Technology in particular for giving this opportunity to complete my PhD project. | would also
like to thank the Higher Education Commission of Pakistan and the National University of
Sciences and Technology for giving me financial support during my stay in Denmark.

Lastly, I would like to thank my family, wife, friends, and colleagues at the Institute for making
it some memorable years.



TABLE OF CONTENTS

THEIE ettt bttt b et b e 01
O RS SS R RRR 03
PIEIACE .ottt et nb et nre e 04
ENGHSN SUMMATY ...ttt e e se et e nre s 07
Dansk RESUME SUMMIATY .......ccviieieiiisiesiese e e et te e sre e s e esae e ste e sresrasnaessesaesseseesnens 08
ACKNOWIBAGEMENTS ...ttt bbbt e e b e 09
Table OF CONTENTS......iieii e bbbttt e e e e e 10
LIST OF FIQUIES ..ottt ettt 12
LISt OF TADIES ..o e et 14
List Of ADDIevIationS ........ccoooiiiiii e 15
L 4L R A1 = g - S 16
Chapter 1: INTrOdUCTION .......ooiiiiiie e 19
1.1 Upper imD ProSthesiS. ... ..o 19
1.2. Origin, nature and noise in the EMG signal..........ccocoooiiiiiiiiiiiieeee, 21
1.3, SUITACE EMG ..ottt 22
1.4. Intramuscular EMG recordings EMG .........ccccovviiiiiinicice e 23
Chapter 2: State-of-the-art myoelectric control............cccccovveveievic s, 24
2.1 Direct control and its liMItationS ...........ccooiiiiiiiiie e 24
2.2 Pattern reCOGNITION .....ovciieiieiiitieet bbb e 24
2.3 SeqUENTIAI CONTIOL ....o..iviiiiiic e 27
2.4 SIMUILANEOUS CONTIOL .....cviiiiiiiice e e 27
2.5 User adaption over time as a factor affecting pr-based myoelectric control ......... 29
2.6 SUMMATY Of ChAPTEE ..o e 30
Chapter 3: THesSiS ODJECTIVES .......cviiiiiiiiiise e 32
Chapter 4: IMETNOUS .......coueieiiie bbb 34
4.1 EXPerimental data.........coooiiiiiiiiieieee e 34
4.1 Data set 4: Used in study IV part I ..o 34
4.2 DAtA ANAIYSIS......cviiiiieie et e re et a e re e 38
Chapter 5: Main fiNAINGS ......coeiiiiie e 39

10



5L STUAY Lo eeeeeeeeeeeeeesseseeeesee s eessseeeeese e eessss e 39

5.1.1 Single feature eVAlUALION ..........c.cooiiiiieee e e 39
5.1.2 Adding MAYV to each single feature ..........ccocvvviviieieicie e 41
5.1.3 Best combination of fRAtUIES. ..o 42
B2 STUAY T oottt 42
5.2.1 Within-day classifiCation ............ccocoiiiiiiiiii s 42
5.2.2 Between-day ClassifiCation......... ..o s 45
LTI 11T |V 1 1 ST SOR ST 45
5.3.1 Within-day COMPATISON .........ccccviiiieieriie e se et sre e 45
5.3.2 BEtWeen day COMPATISON .......cceiviiriieieieeiesiestesiesteerasaesteseesseseesressesseeseeseensessessesees 49
5.4 Study 1V (part I) real-time tests With SEMG...........ccccovveieieii e 50
5.4.1 OFfling PEITOrMEANCE. ...ttt 50
5.4.2 ONlINE PEITOIMEANCE ......oiviiiiiiie e 51
5.5 Study 1V (part I1) real-time tests With IEMG ... 53
5.5.1 ONliNE PEITOIMANCE .....ecvieieicce et st re e e e sreneas 54
(O gT=T o) (=T g STl D T TSt oT U 1 (o] o S 55
6.1 Effect of optimum threshold values of features..........ccccecevevevive s 55
6.2 PerformancCe OVEF TIME .......cuoiiii ittt st s 55
6.3 Robust optimal pattern recognition teChNIQUES ..........cccoceieiieneinieneceseee e 57
6.4 Patient-SpecifiC StrAtEgIBS .......ccoirviiiiriiirere e 58
6.5 Real-time effect of training schemes oVer tiMe...........ccccvviieveece e 58
6.6 Combined sEMG and iEMG based myoelectric control ............cccoccevveviievveieennnn, 59
6.7 LIMITATIONS. ...ttt bbb bbbttt nee e 59
6.8 FULUIE PEISPECTIVES ... .c.eiviitiieiiiteeett ettt 59
Chapter 7: CONCIUSION ......c..ciiiiiie e 61

11



List of figures

Figure 1.1 Untargeted intramuscular EMG signal acquisition from forearm flexor muscles.

Figure 2.1: Block diagram of different steps involved in PR based myoelectric control including EMG
signal acquisition, feature extraction, and classification.

Figure 4.1: Experimental setup including the position of the electrodes, insertion points and movements
included in the study.

Figure 4-2: Scheme of an experiment in Study IV part I1.

Figure 5.1: Classification performance of all features for both A. SEMG and B. iIEMG with respect to
threshold values R.

Figure 5.2: Classification performance of MAV feature combined with each feature with respect to
threshold values for both SEMG (dashed line) and iEMG (plain line) using LDA and KNN.

Figure 5.3. Best performing features (in the group of one, two, three and four features) after comparing
all features for both EMG (surface and intramuscular) in LDA and KNN.

Figure 5.4 Fixed lines are representing the linear regression model for surface (SEMG), intramuscular
(iIEMG) and combined (cEMG) for seven days in amputees with SD.

Figure 5.5: Regression line representing the relationship between classification performance and the size
of the residual limb.

Figure 5.6: BCE for SEMG, iIEMG and cEMG for amputees (right) and able-bodied on the (left)
representing polynomial fit for Df=0 to 6.

Figure 5.7: Scatter plot of SEMG features representing two principal components for three classes
Pronation ‘0’, Supination ‘0° and Fine Grip ‘*’ in an amputee.

Figure 5.8: WCE for all classifiers for all types SEMG, iEMG and cEMG averaged across all subjects.
Figure 5.9: Averaged performance of each classifier across all days.
Figure 5.10: Changes in BCE for all tested classifiers and EMG types (SEMG, iEMG and cEMG).

Figure 5.11: Offline Classification performance comparison between WCE, BCE, and CCE over a week.
Star (*) the indicate the case where there is a significant difference.

12



Figure 5.12: Comparison of all three train-test strategies with respect to all Performance metrics (A.
Completion Rate (%), B. Overshoot (%), C. Path Efficiency (%), D. Throughput (bits/s))averaged across
all days. Stars (*) indicate the case where there is a significant difference.

Figure 5.13: Performance metrics (A. Completion Rate (%), B. Overshoot (%), C. Path Efficiency (%),
D. Throughput (bits/s)) averaged across all days in CDT, WDT, and BDT.

13



LIST OF TABLES

Table 4.1: Description of performance metrics.

Table 5.1: Average completion time and index of difficulty for BDT, WDT, and CDT.

Table 5.2 Session wise comparison of all performance metrics in all train test strategies (WDT, BDT and
CDT). A significant difference in each session of performance metric was presented in star (*) in Table
5.2.

Table 5.3: WDT, BDT, and CDT session wise comparison of performance metrics.

Table 5.4: Session wise comparison of all performance metrics in all train test strategies (WDT, BDT
and CDT) for iEMG.

14



LIST OF ABBREVIATIONS

EMG
SEMG
iEMG
PR
SRQ
ADL
DOF
RMS

15

Electromyography

Surface Electromyography
Intramuscular Electromyography
Pattern Recognition

Specific research questions
Activities of daily life

Degrees of freedom

Root Mean Square

Time domain

Zero Crossings

Willison Amplitude

Myopulse

Cardinality

Linear Discriminant Analysis
Targeted Muscle Reinnervation
Negative matrix factorization
K- Nearest Neighbor

No Motion

Analysis of Variance
Classification Error

Mean Absolute Value
Within-day Classification Error
Combined Electromyography
Between-day Classification Error
Principal Component Analysis
Artificial Neural Networks

Decision Tree



NB Naive Bayes

ID Index of Difficulty

TP Throughput

PE Path Efficiency

OS Overshoot

CR Completion Rate

CCE Intramuscular Electromyography
BDT e, Between Day Testing

CDT Combined Day Testing

16



THESIS AT A GLANCE

OBJECTIVES

METHODOLOGY

FINDINGS

Identify the optimum
threshold values for
features in SEMG and
iIEMG. recordings.

Quantify the effect of
time on PR based
myoelectric control for
SEMG and iEMG
recording

Compare most widely
used classifiers in PR
based myoelectric control

9 healthy participants. 4
surface channels and 02
intramuscular, EMG
channels, 8 hand
motions.

10 healthy and 6
Amputees, 6 surfaces
and 6 intramuscular
EMG channels, 7 hand
motion timed to the
visual cue.

10 healthy and 6
Amputees, 6 surfaces
and 6 intramuscular
EMG channels, 7 hand

17

Optimum threshold values
for features were identified.
It was found that threshold
values affect the time
domain features and their
combination in surface and
intramuscular EMG
recordings as some features
need to incorporate
threshold value so to add in
class separability.

a. It was found that the
within-day performance of
myoelectric control can be
improved over time, but the
performance of the system
regularly reduces as the time
difference between training
and testing day increases.
Performance improved with
daily training but not
significantly, though seven
days of experiment might
not be long enough to
capture a meaningful
outcome.

It was found that the
performance of classifiers
varies within-day and
between days. For within
day classification error



vV

over days for SEMG and
iIEMG recordings.

Quantify the effect of
multiple train-test
strategies on SEMG and
iIEMG over days with
real-time testing’s

motion timed to the
visual cue.

10 healthy participants
for SEMG and 5 healthy
subjects for iIEMG for
real-time testing. 08
surface and 03
intramuscular channels.
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(WCE), Artificial neural
network (ANN) performed
significantly (P<0.05) better
than all other tested
classifiers.

a. Different train-test
strategies affected the real-
time performance for
surface EMG.

b. Different train-test
strategies affected the real-
time performance for
intramuscular EMG.



CHAPTER 1: INTRODUCTION

Being an essential part of the body, the human hand performs complex and delicate
motions. Muscle groups activate in a coordinated manner to accomplish fine tasks.
Muscles, which are acting as actuators in the human body are activated by the electric
signals transmitted through peripheral nerves from the brain. Each muscle in the upper
limb activates in an appropriate and regulated manner to contribute to an adept
movement.

Amputation is the surgical removal of a limb due to trauma or a medical ailment.
Trans-radial or trans-humeral amputation severely limit an individual to perform
activities of daily life (ADL). The accurate number of amputees across the world is
hard to calculate since most countries do not keep track of people with major
amputation. In addition to this, the reasons for amputation also differ between
countries. In developing countries, the eminent reason for an amputation is trauma
whereas, in developed countries, vascular complications of diabetes is the leading
cause (Esquenazi, 2004). In countries like the USA, Japan, and Denmark, 68% of
amputations per annum are caused by disease (Esquenazi, 2004).

In Denmark, arm amputations constitute 3% of all amputations (Kejlaa, 1992).
According to the national centre of health statistics, nearly 2.1 million people in the
United States suffer limb loss. (Amputee coalition, 2014, Ziegler-Graham et al.,
2008). Almost 185,000 people suffer from amputation every year where 57% are
trans-radial amputations (Amputee coalition, 2014, Ziegler-Graham et al, 2008;
Esquenazi et al, 1996; Merrill et al, 2011).

In the year 2009, estimated costs related to amputations were totalled 8.3 billion USD
(HCUP Nationwide Inpatient Sample (NIS), 2009). After complete recovery and
healing, some of the lost functionalities and appearance of the amputated limb can be
replaced by an artificial limb.

1.1. Upper limb prosthesis

Artificial device to replace a missing body part is called a prosthesis. In this thesis,
‘prosthesis’ refers to an upper limb prosthesis only.

Three types of prostheses are commercially available; 1) cosmetic, 2) body-powered
and 3) electrically-powered. Cosmetic prostheses are used when the natural
appearance is the priority for the amputee. A wide range of cosmetic prostheses is
available with different designs, colour, and materials. Body-powered prostheses are
most commonly used and are actuated by a harness fused with a cable (Huinink et al.,
2016, Popov et al., 2008, Kuba et al 1992, Pfeiffer 1996, Lee and Shimoyama 1999,
Schulz et al 2001, Beck et al 2003). It constitutes a triceps cuff, a socket, suspension,
and a cable system with flexible or rigid hinges. This type of prosthesis utilizes the
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body’s motions to control the distal device (i.e. a hand or a hook). It is connected to
the body via cables and a harness. This enables control of the hand or hooks to open.
Because of the simple control and design, these prostheses are easy to use with high
durability and may be used to accomplish potentially adverse tasks involving
environmental factors like water or dust. The advantage of these prostheses is that
they are proprioceptive which is why numerous patients report a boost in precision
and control. Proprioception is the ability to sense the orientation, location, position,
as well as movement of the limb relative to the rest of the body. Body-powered devices
are low cost and durable but several other factors such as limited degrees of freedom
(DOF), unattractive appearance, the control harness restriction, pain and discomfort
during wearing have kept their rejection rate up to 58% (Biddiss et al., 2007, Biddiss
et al., 2007, McFarland et al., 2010, Dudkiewicz et al., 2004).

Electrically-powered prosthetic devices typically controlled by superficial
electromyography (EMG) signals from the muscles left in the amputated limb and
provide natural restoration of some functions for trans-radial amputees. EMG signals
are taken from physiologically suitable muscles to operate a prosthetic hand or wrist.
Electrically-powered prosthetic devices can be divided into two types depending upon
their control schemes; 1) conventional myoelectric control strategies, or 2) pattern
recognition (PR) based myoelectric control (Li et al., 2010, Hargrove et al., 2011,
Smith et al., 2011, Hargrove et al., 2007, Chu et al., 2006). Conventional control
strategies employs a simpler approach. The EMG signals are measured at one or more
sites. The amplitude of these signals is encoded to activate one or more functions of
the prosthesis. (Sears et al. 1991, Fougner et al., 2012, Hoover et al., 2013, Jiang et al.,
2014, Ferris et al., 2009, Tang et al., 2014, Pistohl et al., 2013, Parker et al., 2006).
Pattern recognition (PR) based myoelectric control (Li et al., 2010, Hargrove et al.,
2011, Smithetal., 2011, Hargrove et al., 2007, Chu et al., 2006) has found widespread
commercial application. When a restricted number of muscles are accessible in the
residual limb, single-site controlled myoelectric control scheme is used. This system
uses one electrode to control motions of paired prosthetic activity. In clinics, however,
dual-site controlled myoelectric devices are used for trans-radial amputees. Such
devices utilize two separate electrodes for paired activity from antagonistic muscles
(i.e. wrist flexor and wrist extensor). In case of more than two degrees of freedom,
mode and sequential switches are used to monitor a second DOF via the same pair of
electrodes. Since multiple DOFs are to be controlled by the same electrodes, it affects
their functionality since switching requires a nonintuitive impulse such as muscle co-
contraction (Alley et al., 2004).

In the past few decades, PR-based control strategies have been extensively studied.
The assumption underlying these techniques is that a specific muscle generates a
repeatable EMG signal. These repeatable patterns may be depicted by a set of features
differing from one movement to another (Hargrove et al., 2008, Tkach et al., 2010).
If, over a period of time, these patterns change, or the control accuracy of the
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prosthetic limb regresses then new calibration data must be provided to update the PR
model.

Due to advancement in high-speed embedded controllers and signal processing
techniques, significant improvement in these PR algorithms has been made since then.
Not only are these systems more user-friendly, but they can also control multiple
DOFs as well. This has improved the performance of the system while keeping the
number of electrodes to a bare minimum. Even with these advancements in
technology, PR-based myoelectric control strategies are challenged by many issues
including user adaptation over time, inter-electrode distances, muscle fatigue, limb
position, and electrode shift. Apart from these factors, conditions such as overall
impedance changes, movement strategy, and psychological factors largely affect the
performance of the system pertaining to controllability and classification. (Scheme et
al., 2010, Hargrove et al., 2006, Young et al., 2011, Young et al., 2012, Tkach et al.,
2010, Fougner et al., 2011). One of the main advantages of these systems is they do
not require independent channels, which can be challenging to obtain if the residual
stump is small.

It is important to understand how these changes overall impact the nervous system in
general and neuromuscular system in particular. Despite the low number of studies
investigating these adaptive neuromuscular changes in myoelectric control over time,
it can be concluded that using surface EMG, day-to-day performance affected
adaptation, but that the need of daily training to assure acceptable classification
accuracy is an open question

1.2. Origin, nature and noise in the EMG signal

Electromyography (EMG) is the technique to detect and record the electric activity
produced during neuromuscular activation. EMG is more often than not referred to as
myoelectric activity. This myoelectric activity or EMG signal is based upon action
potentials resulting from depolarization and repolarization at the surface at the muscle
fibre membrane.

EMG signals are commonly recorded on the surface of the skin and are effective in
specifying and expressing the intent of movement for external device control. In upper
limb prosthesis, EMG signals are the main control sources in the field of neural
rehabilitation.

The raw electromyogram (EMG) is a broadly Gaussian random signal that needs
integrating/filtering/processing to extract the root mean square (RMS) value for use
in amplitude-based EMG control (Childress et al., 2004, Parker et al., 1985).
Therefore, analyzing and classifying EMG signals can be challenging due to the
complicated EMG patterns impacted by the physiology and anatomy of the muscles.
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Apart from the inherent EMG signal characteristics, noise from different sources and
the environment can also influence the quality of the EMG signals. Such as noise
originating from electronic equipment, that may generate frequency components
ranging from 0 Hz to thousands of Hz (Riaz et al., 2006). This noise may significantly
be reduced by carefully designing the circuit and using high-quality components.
Power line interferences arising from 60 Hz or (50Hz) radiations of power sources
affects EMG signal. Carefully grounding the devices can help in reducing this noise.
Heart activity can also severely affect EMG signal especially recording from the upper
trunk and shoulder muscles. Placing ground electrode at a different position and good
skin preparations can reduce the level of this noise. Different denoising algorithms are
being developed to remove these ECG bursts without disturbing the content of EMG
signals. Local EMG signal can also be contaminated by the crosstalk which can cause
an incorrect interpretation of signal (Chowdary et al., 2013). Targeted muscle
recordings can reduce cross talk considerably.

1.3. Surface EMG

Many studies have proposed various techniques in detecting muscle activity using
surface EMG. Surface EMG is still being used as a major neural control source for all
commercially available powered upper limb prosthesis. This is mainly because
surface EMG signals are non-invasive in nature and easy to record.

Surface EMG recordings have been extensively used by researchers to implement
more advanced PR based myoelectric control. Long term consistency of surface EMG
signals is important as it can influence the performance of PR based myoelectric
control (Ortiz-Catalan et al., 2012). However, the EMG signal from the surface can
be dramatically affected by environmental conditions due to precipitation,
temperature etc. The exact placement of electrodes can be an issue since surface
electrodes cannot be placed indefinitely. If the electrodes are misplaced, the retraining
of the PR algorithm is required. If the electrodes are placed improperly, it could lead
to muscle imbalance which would further result in patterns generated differently than
earlier ones. Eventually, this will cause signals acquired from the larger muscles to
mask those acquired from small muscles. Muscle imbalance may also lead to
prosthesis socket instability (Lake et al., 2003).

The surface area required on an amputated limb should be wide enough to place a
requisite number of surface electrode, which in some comes cases may be difficult
because of a small stump size. Similarly, in some cases, only scar tissue is available
for placing surface electrodes on the amputated limb. In that case, low to nil neural
activity can be recorded from surface electrodes. Artifacts can be another issue for
surface recordings due to limb movements and electrode liftoff. Since all these factors
affect the long-term use of surface EMG in myoelectric control, more robust detection
schemes are required to implement.
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1.4. Intramuscular EMG recordings EMG

Implantable electrodes are the key to resolve the practical obstacles which are at
present hindering the sustainable solution for an advanced prosthetic control based on
surface EMG over a long period of time. With recent developments in the field, these
electrodes are coming into age. The difference between sEMG and int iEMG detection
is the volume conductor that separates the muscle fibres from detection electrodes. In
Intramuscular EMG effect of the volume, the conductor is limited and the action
potential of individual motor units can easily be identified from the interference signal
as shown in Figure 1.1. In the case of surface electrodes, this effect is diminished
owing to the severe low pass filtering and diffusion due to the presence of a volume
conductor. This effect significantly reduces the upper-frequency limit of surface EMG
to 500 Hz from 2.5 KHz of intramuscular EMG.

In contrast to SEMG, iIEMG can detect signals from small as well as deep muscles
thus providing localized information. Hence, it increases the information to control a
prosthetic device (McDonnall et al., 2012, McDonnall et al., 2017). Furthermore,
implanted intramuscular EMG electrodes may provide high inter-day repeatability,
multiple and independent channels, a stable and robust signal source that has limited
influence by factors such as electrode shifts, skin impedance and precipitation (Merrill
et al., 2011, Basmjian et al., 1985). In our studies, iIEMG signals recorded by not
targeting any specific muscle.

3 T

Intramuscular EMG signal

Amplitude in mV

Time

Figure 1.1 Untargeted intramuscular EMG signal acquisition from forearm flexor muscles.
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CHAPTER 2: STATE-OF-THE-ART
MYOELECTRIC CONTROL

In the passages below growth in the area of myoelectric control are explained in detail.

2.1 Direct control and its limitations

Three distinct generations in myoelectric control can be formed keeping in view the
technological advancements over the years. The first generation comprised of
ON/OFF control scheme with a constant speed or actuation rate. This technique is
referred to as crisp control, bang-bang or binary control (Reiter, 1948). The second
generation offered a threshold regulation on a large-scale, state machine, signal
amplification, proportional control, and the adjustment of muscle contraction rate.
This system takes out the control information from the entire EMG signal based on a
calculated estimate of the amplitude (Dorcas et al., 1966) or the rate of change
(Childress et al., 1970) of the EMG signals.

The current clinical standard for upper-limb EMG based prosthetic control is based
upon amplitude-based dual site control. Dual-site control is commonly used for
patients with trans-radial limb loss. In this system, separate electrodes are used for
paired activity from antagonistic muscles (i.e. wrist flexor and wrist extensor). When
more than two degrees of freedom (DOF) are involved, a mode switch is used. This
switch allows the same electrode pair to be used to control numerous functions.
Switching in mode is performed by a brief co-contraction of the muscle or by a switch
to toggle between different functions of a prosthesis (Parket et al., 1985, Williams,
1990). Even though these control systems, based on thresholds or direct control, have
been a clinically and commercially viable option for EMG prosthetic devices, they do
not provide intuitive and reliable device control for multiple DOFs (Micera et al.,
2010).

More natural control of a prosthetic device is required. Ideally, taking independent
EMG signals from several sites should resolve this issue but it does not. Taking
independent EMG signals is hard because of phenomena such as EMG crosstalk and
the difficulty in activating an individual muscle by the user. Due to these drawbacks,
computational models are required to extract sufficient discriminative information
between tasks.

To the author’s best knowledge, all leading industrial developers of myoelectric hands
Ottobock (Germany), Shanghai Kesheng (China), LTI (USA), Motion Control (USA),
RSL-Steeper (U.K.), and Touch Bionics (USA) use proportional control as an option
although this is not confirmed through scientific literature. However, surveys on the
use of these prostheses uncover that 30%-50% (Atkins et al., 1996, Biddiss et al.,
2007) of amputees do not use their prosthetic limb regularly, due to its low
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functionality, poor cosmetic appearance, lack of sensory feedback, and low
controllability.

2.2 Pattern recognition

The third generation includes programmable microprocessors granting an infinite
range of adjustable myoelectric parameters (Oskoei et al., 2007). Microprocessor
based applications in myoelectric control are growing rapidly which not only benefits
functionality but is cost-effective as well. It also employs advanced techniques of
signal processing hence allowing complex signal filtering. This results in increased
responsiveness. More importantly, it accommodates PR-based control schemes
thereby increasing the variety of control functions and improve robustness. These
techniques assume that a specific muscle generates repeatable EMG signals.
Following are the steps involve in any PR technique shown in Figure 2-1.

2.2.1 Pre-Processing

Pre-processing of EMG signals is the first step in a PR in which signals are filtered
after being recorded from the selected muscles. The power spectrum of signals can be
utilized to set the band limits. As it is generally admitted that, spectra of surface and
intramuscular EMG signals are scattered within a range of 20-500 Hz and 100 -1500
Hz respectively (Merletti, 1999, Phinyomark et al., 2012, Boostani et al., 2003).
Different filter types (Butterworth, Chebyshev etc) with low and high pass cut off
frequencies are generally used in this step.

2.2.2 Segmentation

Segmentation of the EMG signal is the second step after filtering of the raw signals
with analogue and digital filters. EMG signals are segmented into a set of overlapping
windows. It is an important step as signal stationarity varies depending upon the
window size and contraction type (static or dynamic) (Thongpanjal et al., 2013). If
the assumption is of having 80% stationary signal, then the window size of 250 ms or
lesser is considered suitable for static contractions. A window size of 250ms or lesser
is considered suitable for static contractions (Thongpanjal et al., 2013).

2.2.3 Feature extraction

In this part, information about signals is extracted from the overlapping windows.
Generally, numerous sets of features are extracted in time, frequency, and time-
frequency domains to scrutinize the information of the myoelectric signals. Time
domain (TD) features are the most commonly used in EMG control due to their
simplicity of computation and because they are relatively easy to implement and do
not require signal transformations. Combining a relatively stable and robust time
domain parameters may significantly improve the classification performance without
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raising computational complexity (Zardoshti-Kermani et al., 1995). Features such as
Zero Crossings (ZC), Slope Sign Change (SSC), Willison Amplitude (WAMP) and
Myopulse (MYOP) and Cardinality (CARD) are commonly computed via a threshold
value to reduce the impact of background noise. Selection propriety in representative
features has been investigated in several studies. However, only a few have examined
the impact of optimum threshold on classification accuracies. It was seen in most
studies that threshold values for features were ignored or fixed values were used.
Kamavuako et al., 2015 in a study evaluated threshold effect of ZC and SSC on feature
space and classification accuracies for surface recording and it was found that
performance of a PR based system can be improved by using optimum threshold
values for each feature. Some researchers may include feature reduction or feature
selection step between extraction and classification, depending on the number of
features extracted.

2.2.4 Classification

In the classification step, a set of features that are extracted in the feature extraction
step are used for characterization of multiple classes (Hargrove et al. 2008). Variety
of PR techniques have been used in a variety of industrial research applications.
However, despite the long tradition of PR techniques, there is no consensus on a
technique which is most suitable for all scenarios. In the field of myoelectric
prosthesis control, LDA is the most widely used classifier as its application with both
offline and online control has been demonstrated by numerous studies (Bellingegni et
al., 2017, Simon et al., 2011, Young et al., 2014).
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Figure 2.1: Block diagram of different steps involved in PR based myoelectric control including
EMG signal acquisition, feature extraction, and classification.

2.3 Sequential control

Sequential control based on either Proportional or PR based techniques can drive only
one DOF at a time. Multiple DOFs are sequentially controlled via direct control,
requiring a cumbersome process of mode switching initiated by co-contractions.
Plenty of research has been devoted to direct control of many DOFs via classification-
based approaches (Scheme et al., 2011). The reported accuracy in these studies was
high and the factors affecting the control schemes over time under real-world
conditions were highlighted (Fougner et al, 2011, Hahne et al., 2012). Yet, most PR-
based methods can manage only one task at a time, preventing natural control of hand
motions. This also initiates additional cognitive load in planning the preconceived
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motions on amputees. Recently some studies showed, using the technique of
classification based on parallel classifiers for multi-DOF control could provide
intuitive control to amputees compared to the use of one classifier (Geng et al., 2013,
Young et al., 2013). However, higher real-time combined classification error was
reported.

In literature, pattern matching techniques demonstrated the ability to steer multiple
DOFs intuitively than conventional direct control (Kuiken et al. 2016, Wurth et al.,
2014). Although pattern matching schemes have reported higher accuracies (> 95%)
in the literature but these schemes were confronted by many issues such as position
of the electrodes, stability of the electrodes, adaptation over time and muscle fatigue
(Hargrove et al., 2006, Scheme et al., 2010, Young et al., 2011). Similarly, a stable
set of features reduces the impact of electrode location shift and varying effort level
on classification by 16% (Tkach et al., 2010). Fougner et al., 2011 studied the impact
of same hand motions in space at different angles on EMG pattern recognition. Results
depicted strong dependence of EMG classification accuracy with limb position. It was
recommended to develop a training strategy accounting for multi-position use. Other
than that, the performance of this approach has also been affected in terms of
controllability by environmental conditions (temperature, skin electrode impedance
such as changes in electrode-skin impedance, inter-electrode distance and
psychological factors (Hargrove et al., 2006, Scheme et al., 2010, Young et al., 2011,
Young et al.,, 2012, Tkach et al., 2010, Fougner et al., 2011). Because of these
constraints, only one solution based on this approach has been available commercially
(COAPT complete control ® system).

2.4 Simultaneous control

As compared to other approaches, a limited number of studies has been done on
extending pattern recognition control with respect to direct control of multiple DOFs.
Following two methods were investigated in these studies.

2.4.1 Simultaneous control based on PR

Classification-based schemes divide movement intent into a definite set of “motion
classes,” involving single DOF activity, multiple simultaneous DOFs, or no DOFs (a
rest state). Statistical PR methods have been performed to concurrently and
independently regulate control of two DOFs. However, this resulted in seamless
transition velocity mappings between single-DOF- and multi-DOF movements
(Wurth and Hargrove, 2014). This approach has provided the ability to isolate single
DOFs with path efficiencies like sequential control methods.

Targeted muscle reinnervation (TMR) surgery is another technique to re-establish

independent control sites for amputee having Tans humeral, forequarter and shoulder
disarticulations. (Kuiken et al., 2009). The surgical technique redirects residual nerves
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to the residual muscles having no biomechanical function after amputation. After
typical surgeries for transhumeral (Dumanian et al., 2009) or shoulder disarticulation
(Kuiken et al., 2004) amputees, up to four at least four independent myoelectric
control sites were utilized to provide simultaneous control of 2 DOF (Kuiken et al.,
2004, Miller et al., 2008). Mode switching is not required after TMR with the benefit
of reduced crosstalk. Although TMR is growing in popularity, only a few amputees
have had TMR surgery.

At present, direct control is implemented for simultaneous activation of several DOFs
with only amputees having TMR surgery. Recently (Hargrove et al., 2017) compared
pattern recognition and direct control in a first home-based trial for trans-radial
amputees who had TMR in a balanced randomized cross-over study. The outcome of
the investigation shown that pattern recognition is a durable option and has functional
advantages over direct control. Several other research studies have investigated the
same prospect of providing simultaneous control to subject without going TMR
surgery (Muceli et al., 2012, Cipriani et al., 2011, Baker et al. 2019). Average
classification accuracies were 46% including individual and combined motions.

2.4.2 Simultaneous control based on regression

Regression techniques have been studied recently to investigate independent
proportional and simultaneous control. The major difference to non-linear
classification-based approach is that a regression model does not determine a definite
class but alternatively, a continual output value is approximated for each DOF. This
scheme provides simultaneous and proportional control independently and can
dispense intuitive control. Researchers have studied both linear (Hahne et al., 2014,
Jiang et al., 2014b, Smith et al., 2015a) and nonlinear (Jiang et al., 2012, Hahne et al.,
2014, Kamavuako et al., 2012, Ameri et al., 2014, Ngeo et al., 2014, Muceli and
Farina, 2012) means of mapping EMG recordings. Real-time analysis of these has
though focused on linear methods and is mostly motivated by the motor control
concept of muscle synergies (Jiang et al., 2009, d'Avella et al., 2006). (Jiang et al.,
20144, Jiang et al., 2014b, Smith et al., 2015a) has successfully demonstrated this
method of simultaneously controlling different motions in real-time tests. (Jiang et al.,
2014a) non-negative matrix factorization (NMF) which was used to extract low-
dimensional neural signals. These signals were translated by the user into a kinematic
variable. The comparison was also drawn between offline and online scenarios using
above-mentioned control strategy with two conventionally used control algorithms. It
was shown that although offline performance showed the difference between
classifiers but in real-time, the subject was able to execute goal-oriented tasks
similarly by using all three algorithms. Control. (Smith et al., 2015) compared linear
regression simultaneous control with direct control using intramuscular wires. Motion
specific training was also compared with the training of all movements, where all
motions were used as inputs into regression model in which recordings not
corresponding to the model’s motion type were labelled as 0% speed. It was also
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found in an offline analysis that all-motion training had significantly better prediction
accuracy than (R2, p < 0.001) one motion accuracy.

2.5 User adaption over time as a factor affecting PR-based
myoelectric control

One of the main issues in the usage and design of myoelectric prostheses is that despite
the significant improvement in technology, many amputees not adopt them as a
durable solution. (Atkin et al., 1996, Biddiss et al., 2007). Three major issues were
identified in the surveys-based studies (Atkin et al., 1996, Biddiss et al., 2007, Pons
et al., 2005): “lack of robust intuitive control, insufficient feedback, and
functionality”. Only prostheses available in the market and their usage by amputees
were investigated in these survey-based studies.

Recently, it has been shown that surface EMG recording on the day is relatively
different from the recordings acquired from another day for the same subject under
same experimental conditions, resulting in substantially low accuracies over time (He
et al., 2015). Importantly, high classification error of up to 40% was reported when
testing and training data was from different days. Results indicated that changes in
EMG signal characteristics over the course of 11 days became gradually smaller (He
at al., 2015).

While many studies focus on other challenges mentioned above related to PR control,
only a few studies have investigated time as robustness factor and its effect on intuitive
control. Firstly, it is important as calibration of PR based myoelectric prosthesis is an
important step before it can be used by an amputee, the question of whether training
with respect to time could result in improve the performance or deteriorate with
respect to time. Secondly, it is already discussed in the introduction that adaptive
variations can occur in the neural functions in response to training. Question is
whether these adaptive changes in neural function has some effect on the performance
of PR control. Studies performed in the PhD project will help us to answer this
question and tell us more about optimum techniques with optimum thresholds for each
type of surface and intramuscular based PR control.

2.6 Summary of the chapter

In this chapter, we have reported factors that affect PR based myoelectric control
schemes. We discussed optimal signal processing techniques with a best-suited range
of band filter for both SEMG and iEMG, the optimal window size for segmentation
and most importantly feature extraction. These features extracted from SEMG or
iIEMG signals provide the basis for separability between classes. For high separability,
selected features have to be represented as distant as possible and with minimum
interclass variability. To obtain the best out of these features, (Hudgins et al., 1993)
suggested that threshold values must be contained in the computation of two-time
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domain features (ZC and SSC). Similarly, in any PR based control strategy, reliability
and efficacy of pattern matching algorithms are of extreme importance as the
electronic module of the prosthesis is implemented on low performance embedded
systems. So, it is important to consider optimum classification techniques before
implementing it in real-time especially if considering for long term solution. LDA is
the most extensively employed classifier in the studies associated with PR based
myoelectric due to its simplicity and low computational load.

All the studies referred in Section 2.2 have investigated factors which are affecting
PR based myoelectric control in offline settings. There is a lot of debate on the
evaluation of PR based control strategies in offline or online settings. Although
offline evaluation is a useful performance metric, studies have shown that it is not a
good representative of usability (Bellingegni et al., 2017, Ortiz-Catalan et al., 2013).
It has recently also been reported that results from offline and online evaluations are
only loosely correlated (Lock et al., 2005, Hargrove et al., 2007 ). Researchers have
worked also on various approaches in real-time settings to demonstrate the usability
of myoelectric control but in acute settings only. (Choi et al., 2009, Rosenberg et al.,
1988, Kuiken et al., 2014, Matrone et al., 2012, Smith et al., 2014, Kamavuako et al.,
2014). Therefore, it has not been established how real-time performance will be
affected by different train-test strategies and their performance over time. Secondly,
any training model based on the data from short duration may not be representative of
better clinical usability.
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CHAPTER 3: THESIS OBJECTIVES

In a PR based myoelectric control, feature extraction is an important step. To the best
of my knowledge, most of the methods which utilized TD features require threshold
values were being extracted without reporting their threshold value. So, the question
is 1) To what extent threshold values affect the time domain features and their
combinations in surface and intramuscular recordings? This question was answered
in study I, by finding the effect of a threshold on each feature and combined the effect
of different features with an optimal threshold in SEMG and iEMG recordings.

Although in the literature it has been demonstrated that few pattern matching
algorithms have a recognizable edge over others based on their performance and
computational load in offline and online settings. Almost, all these studies focused on
the effectiveness of features sets extracted from the time domain, frequency domain
or time-frequency domain representations. But the performance of classifiers based
on time as the robustness factor was not investigated in the literature. Selection of an
efficient and reliable classifier for implementing them in a low performance
embedded system can be crucial especially if considering for long term solution. In
addition to this, from an academic point of view, the most significant drawback of the
current state of the art is that only very little studies have been conducted in a setup
close to clinical practice and most of the studies are limited to one or two sessions
only. Similarly, studies have shown that adaptive changes over time can occur in the
neural functions (maximum neural firing rates, increased excitability, down-
regulation of inhibitory pathways etc) apart from the morphological changes in the
muscles that will occur as other training effects in response to training (Aagaard et al.,
2001, Aagaard et al., 2002, Aagaard et al., 2003, Custem et al., 1998).

So, in a pretext question arises, 2) What is the correlation between the performances
of PR based myoelectric control schemes and time? To investigate this second study
was performed with more trans-radial amputees and the concept of non-stationarity
of SEMG and iEMG signals of PR control were studied over days with respect to
training effect on amputees and able-bodied subjects. We investigated the optimum
classification technique in a separate study in which multiday analysis was performed
on both SEMG and iEMG recordings. We compared the performance of most widely
used PR techniques over days and as well as across days.

As many studies have investigated the offline and online evaluation of PR control, it
can be concluded that both evaluation techniques are loosely correlated. So, in the
backdrop of our previous studies question arises, 3) How do PR training strategies
influence real-time performance over time? In the fourth study, the real-time outcome
of multiple train-test schemes for the classifier over time was evaluated.

Each designed study was aimed to reach specific objectives, which are provided
below.
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1. Identify the optimum threshold values for features in SEMG and iEMG recordings.

2. Quantify the effect of time on PR based myoelectric control for SEMG and iIEMG
recording.

3. Compare most widely used classifiers in PR based myoelectric control over days
for SEMG and iEMG recordings.

4. Quantify the effect of multiple train-test strategies on SEMG and iEMG over days
with real-time testings.

Study I: To identify the best threshold values for the calculated features. Best
performing threshold values were selected from the set of applied range (R = 0:0.02:6)
times the average root mean square of the baseline. Classification performance was
compared for using LDA and KNN as classifiers.

Study II: To estimate the time effect on classification performance of function
motions of hand with different train-test strategies in, SEMG, iIEMG and their
combination (cEMG) using standard linear regression analysis. Correlation between
data types was found by comparing their classification performance over time.

Study I11: Six most widely used classifier were selected and compared longitudinally
for sEMG and iEMG recordings separately. With-in day and between day
classification performance were used as a performance measure.

Study IV: To investigate the real-time performance of hand motions with different
train-test strategies over time with classifier being considered best in the previous
study for both surface and intramuscular detections separately. Effect of each train-
test strategy will explain the usability of both surface and intramuscular detection
techniques.

33



CHAPTER 4: METHODS

During the PhD project, four data sets were used in the PhD project. Each data set was
recorded in accordance with the declaration Helsinki and approved by the local ethical
committee (approval no: N-20160021). Pre-recorded data set was used in study I.
Separate data sets were recorded and used for each study I, V(1) and IV(II). Data set
2 was for study Il and Ill. For detail methodology for each study, papers that are
published in relation to these studies can be referred to.

4.1 Data set 4: Used in study IV part Il

Participants: In total five able-bodied subjects took part in the experiment. None of
the subjects had any medical condition related to muscles Average age of the subject
participated in the experiment were 25.4 years. Written consent was taken from all the
subjects participated in the study. The protocol of the experiments was in accordance
with the Declaration of Helsinki and approved by the local ethical committee of the
region of Northern Jutland (approval no: N-20160021).

Data Acquisition: AnEMG12 amplifier by OT Bioellectronica was used to record
iIEMG signals which were then passed through a bandpass filter (100 — 900 Hz). These
filtered analogue signals were converted into digital signals using 16 bits via NI-DAQ
PCI-6221, sampled at 2kHz, and amplified with gain 5000. A band electrode was
placed on the wrist contralateral to the dominant one as a reference. Figure 4-1 shows
the setup for this experiment. Using three pairs of wire electrodes, iEMG was recorded
from three different muscles, namely: Extensor Digitorum on Channel 1, Extensor
Carpi Radialis Longus on Channel 2 and Flexor Digitorum Superficialis on Channel
3. These in-vivo wire electrodes were made from 50 um diameter Teflon-coated
stainless steel. A 25-gauge sterilized needle was inserted in each muscle for each
electrode. Precautionary measures against the risk of infection were thoroughly
observed. Each subject’s skin was disinfected with 70% isopropyl alcohol before
needle insertion. Sterile electrodes and gloves were used while handling the subjects.
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Figure 4-1 Experimental setup including the position of the electrodes, insertion
points and movements included in the study.

The needle was inserted 10-15 mm below the muscle fascia and removed once the
electrodes had been fixed inside the muscle. The insulated wires were unsheathed
from the tip by about 3 mm to maximize the pickup area (Kamavuako et al., 2014).
These pair of wires were to stay in each subject’s arms for five days.

After the electrodes were inserted, a sterile bandage was taped on the wires leaving
leeway for in vivo wire motion during extension and flexion and to allow connection
to amplifiers. After each session, another bandage was placed to completely cover the
wires before each subject left the room. This bandage served as a precautionary
measure against electrode displacement. It was removed once the subject re-entered
the room for further sessions. The bottom bandage was only removed upon the
subject’s wish to withdraw or after all the sessions had been successfully completed.

Experimental Procedure: The experiment had two main steps: firstly, data was
collected to train a classifier and then the models trained on different sets of collected
data were tested online. For the first step, subjects were required to produce a medium
level contraction (to emulate routinely chores) from rest to motion. They were
prompted by an image of a specific motion randomly generated by a customized
MATLAB-based Graphical User Interface. For each motion, data were collected four
times, six seconds each time. Between each sustained contraction, six seconds break
was given. Data for four active motions (Wrist extension, Wrist Flexion, Hand open,
Hand close) and one rest (no motion) were collected. After each set of five motions,
a break of twelve seconds was given.
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For the second step, a cursor at the centre of the screen was to be controlled by the
hand. There were two axes on the screen: XX’ and YY’. The top YY’ represented
Hand Closed while the bottom Y'Y’ represented Hand Opened. Similarly, left XX’
represented Hand Flexion and right XX* represented Hand Extension. These four
targets were measured by Distance (D) and Width (W). To be considered a successful
movement, the cursor had to hit the target and remain at it for one second. The entire
experiment spanned at five days. On each day, three types of online tests were carried
out as shown in Figure 4-2. Firstly, within day training and testing of Artificial Neural
Network (ANN) was denoted by WDT row in the table. BDT represents the online
test in which the training data of the previous day was used to test the data of the
present day. Lastly, the training data of all the previous days was used to test the
present-day data in CDT. Three sessions of testings were performed per day. In which
each motion was tested 18 times in all three sessions and 6 times per session. 24. Thus,
24 targets for four different motions were to be reached per session.

Extensor Carpi Extensor lexor digitorum
Ulnaris digitorum superficialis

Cch1 Ch2 Cch3

Data

WDT BDT CcDT
Day 1 Train1: Testl
Day 2 Train2: Test2 Train1: Test2 Train1-2: Test2
Day 3 Train3: Test3 Train2: Test3 Train1-2-3: Test3
Day 4 Traind: Testd Train3: Testd Train1-2-3-4: Testd
Day 5 Train5: Test5 Traind: Test5 Train1-2-3-4-5: Test5

Throughput

Completion rate

Path efficiency

Overshoot

Figure 4-2 Scheme of an experiment in Study IV part I1.
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4.2 Data analysis

A 200ms overlapping window with an increment of 50ms was used to segment the
steady-state part of four seconds of the data from every six seconds recorded signal.
Six features were examined, namely: Mean Absolute Value, Cardinality, Waveform
Length, Zero Crossings, Willison Amplitude and Slope Sign Changes. ANN was used
as an offline and online training and testing classifier. The offline configuration was
simulated in GUI such that it had a fixed number of neurons in the hidden layer. A
profile specific to each subject was created in which the subject’s calibrated signals
were stored. The trained ANN was subjected to Fitts” law to classify the cursor-
controlled hand gestures.

During the implementation of Fitts” law, participants were asked to move the cursor
from rest position (origin of the axes) to a random target at a distance (D) and width
(W) from the origin. Upward movement of the cursor represented an open hand, the
downward movement represented a closed hand, left represented wrist flexion while
the right movement represented wrist extension. Based on the distance D and width
W from the origin, each target’s index of difficulty (ID) was calculated. Various
combinations of target distances and widths calculated by Equation (1) are tabulated
in Table 2. While testing in real-time, subjects were required to remain at a target for
a dwell time of one second for the movement. Motion considered unsuccessful if the
cursor remained in the target for less than one second [Gusman et al., 2017, Wruth et
al., 201425-26]. Similarly, if the subject was unable to hit a target after 15 seconds of
the cue, the motion was considered unsuccessful and the cursor was moved back to
the origin. To evaluate real-time system performance: path efficiency (PE), overshoot
(OE), throughput (TP), and completion rate (CR) were examined as four performance
parameters.

ID =log, (2 +1) 1)

Table 4-1: Description of performance metrics.

Performance | Description

metric

Throughput Throughput (TP) is the ratio between the index of difficulty (ID) and

the time taken (in seconds) to reach the target

T, = ID/M, (Fitts’, 1954)
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Path Path Efficiency (PE) is calculated by the distribution of the straight-
Efficiency line distance over the travelled distance It defines the quality of the

control system.

Pz = SD/AD (William et al., 2008)

Over Shoot Overshoot is defined as the ability to remain on the target. It is
calculated by dividing the number of events where the subject
reaches the target but fails to remain at it for the dwell time of 1

second divided by the total number of targets. (William et al., 2008)

Completion Completion Rate computes the percentage of successfully completed
Rate tasks within the time limit. (Simon et al., 2011)

Offline classification performance parameters were computed using the attained data.
The training strategies were like the ones applied for online classification. Error ij was
calculated by dividing the number of times the system failed to classify or
misclassified the target with the total number of classifications. Between-day
classification error (BCE) was computed by using the training data of the previous
day and the testing data of the present day. Error; was calculated by day i training
data and day j testing data. Within-day classification error (WCE) was computed by
using training and testing data of the present day. Errorj was computed by
implementing two-fold validation. Combined-day classification error (CCE) was
calculated using training data attained on all former days and present-day testing data.

Results were descriptively compared to assess the overall performance of the offline
system based on classification error. The relationship between the index of difficulty
and completion time was assessed to examine the feasibility of Fitts’ law for online
testing. The attained data was fit into the computer-based linear model. To examine
how well it fits the data, R? coefficient of linear model was used. Based on training
strategies, performance metrics for the online system were computed and compared.
Results were calculated and demonstrated as mean + standard deviation.
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CHAPTER 5: MAIN FINDINGS

5.1 Study |

5.1.1 Single feature evaluation

Results showed that classification error (CE) obtained from SEMG and iIEMG were
not significantly different (P=0.99). Significant difference (P=0.006) was found
between features, with WAMP (0.153 + 0.063) and CARD (0.161 + 0.066)
performing significantly better than SSC (0.21 £ 0.078. On average it was found that
KNN (0.154 + 0.063) performed significantly (P<0.001) better than LDA. Figure 5.1
showing the interaction between types of EMG and classifiers ((P = 0.047) and also
between classifiers and features(P = 0.043). It was found that classifiers and features
depend on the type of EMG signals.
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5.1.2 Adding MAV to each single feature

The performance of the two features was investigated in the second step of the study
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increasing the value of the threshold for each feature combined with MAV is
represented in Figure 5.2. Both classifiers showed that all features are threshold
dependent. The result showed that for SEMG low threshold value is required for
WAMP, CARD and MYOP while no threshold is required for ZC and SCC. A similar
trend is observed for iEMG when using LDA as a classifier. Low threshold values
may improve the performance of SSC and ZC when KNN is used as a classifier.

5.1.3 Best combination of features

This part of the study depicted the combination of best-performing features depending
on their threshold values. Figure 5.3 shows the best performing combination for each
EMG type and classifier when employing one to four features in the clockwise
direction. Results suggest that for both SEMG and iEMG best performing features are
different.
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Figure 5-3. Best performing features (in the group of one, two, three and four features) after
comparing all features for both EMG (surface and intramuscular) in LDA and KNN
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5.2 Study Il
5.2.1 Within-day classification

WCE for amputees and able-bodied with seven functional motions are shown
represented in Figure 5.4. In amputees across days, combined EMG (7.8 + 4.5%) was
not significantly different from surface EMG (12.7.0 + 6.2%, P = 0.5) and
Intramuscular EMG (17.2 + 11.3 %, P = 0.6). For both EMG types, on average WCE
was 16.5 + 8.2% (SEMG) and 20.2+ 9.3% (iEMG) on first day, which reduced to 10.0
+5.6% (SEMG) and 15.9 + 12.3% (iEMG) respectively. Combined WCE was 10.5 +
5.5% on the first day which reduced to 7.7 + 4.4% on the seventh day. No interaction
was found between EMG types and Days (P=0.2). In able-bodied, results exhibited
that IEMG (8.3 + 1.6 %) was significantly different (P < 0.001) from sEMG (3.5 +
0.96 %) and cEMG (2.2 * 0.3 %) across days.
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Figure 5.4 Fixed lines are representing the linear regression model for surface (SEMG),
intramuscular (iIEMG) and cEMG along the course of seven days in amputees with SD.

5.2.2 Correlation between residual limb and performance

A close correlation was found between the length of residual limbs and WCE. In
iIEMG regression slope was significant F (1,5) =58.71, P = 0.001, R? (iIEMG) = 0.94,
95% CI [-1.74, -0.82] indicating improved performance in amputees have bigger
stump Figure 5.5. A weak correlation was found for SEMG.
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Figure 5.5: Regression line representing the relationship between classification performance
and the size of the residual limb.

5.1.2 Between-day classification

“BCE was computed from Df = 0 (training and testing of the classifier on the same
day) to Df=6 (training on day one and testing on day 7) i.e. the difference between
training and testing day was increased from O days to 6 days. Figure 5.6 shows the
regression fit between BCE and Df (0-6) for EMG (surface and intramuscular) in
amputee and able-bodied. The slopes with amputees were 3.6, 95% CI [0.42, 1.04]
and 4.6, 95% CI [0.69, 1.16] for SEMG and iIEMG respectively. The slopes for able-
bodied were 1.55, 95% CI [-0.02, 0.64] and 4.3, 95% CI [0.26, 1.45] for SEMG and
iIEMG respectively. The slopes for cEMG were 1.91, 95% CI [-0.06, 0.82] and 1.59,
95% CI [0.14, 0.48] for amputees and able-bodied respectively. Results indicated that
performance continuously degraded as the time difference between training and
testing day increased” (Waris et al., 2018).
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Figure 5.6: BCE for sSEMG, iEMG and cEMG for amputees (right) and able-bodied on the
(left) representing polynomial fit for Df= 0 to 6.

5.3 Study 1l

“Figure 5.7 showed the geometrical changes in feature space for first two principal
components of three classes (Pronation, Supination, and Fine Grip) on day one, three,
five and seven in one amputee subject. Three classes were used to exhibit changes in
the genetic distance between populations in 2-dimensional embedding over time. PCA
transformation ensures horizontal axis PC1 has the most variation, vertical axis PC2
the second most. Factor scores for both components improved over time distinctly for
all classes till days seven. On the first, a cloud of data (Pronation, Supination and Fine
Grip) could be seen. Genetic distances between populations also increased by day
seven as three classes could be seen as an individual class showing adaptation of
subject over time.
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Figure 5.7: Surface EMG feature space representing two principal components for three
classes Pronation ‘0’, Supination 0" and Fine Grip “*’in an amputee.

5.3.1 Within-day comparison

Three-way repeated ANOVA test showed significant difference (P<0.001) between
EMG types (surface, intramuscular and combined), Days (1-7), classifiers (TREE,
LDA, SVM, NB, KNN, ANN) and their interactions ([Days * classifier],
[Days*Type], [Type*Classifiers].

Classifiers: No significant difference (95% of ClI [-0.39 0,64], P = 0.97) was found
between NB and SVM. The remaining classifiers were significantly different from
each other. ANN was best and TREE was the worst on (95% of CI [17.20 18.24], P <
0.01). Days: Day 7 was significantly better P<0.01 than the rest of the days, Day five,
six and seven were significantly different from all other days. Dayl and Day3 found
no significance between each other (95% of CI [-0.38 0.77], P = 0.94) and so as Day
2 and Day 4 (95% of CI [-0.28 0.88], P = 0.70). Interactions between each factor
(type*days), (type*classifiers) and (days*classifiers) found that type (combined
ANN), day (seven) and classifier (ANN) was statistically better than any other type,
day and classifier.
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The results of WCE across all subjects: SEMG, iIEMG and cEMG are summarized in
Figure 5.8. Each group represents the performance of all classifiers on each day for
seven consecutive days.
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Figure 5.8: WCE for all classifiers for all types SEMG, iEMG and cEMG averaged across all
subjects.
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On average, for all the classifiers, WCE reduced consistently for seven consecutive
days. Multiple comparisons revealed all classifiers were significantly (P<0.05) better
than Decision trees (WCE 26.43 + 13.12% on the first day, 24.03 + 11.48 % on the
seventh day). LDA and ANN outperformed (P<0.05) rest of the classifiers with error
decreased consistently until day seven to 12.13 +8.98 % and 7.92 + 6.16 % for LDA
and ANN respectively. Classification accuracy improved over time as day six and
seven were significantly better than day one to four.

In iEMG, ANN outperformed (P<0.05) all other classifiers with WCE 10.27 + 7.04%
on the seventh day. Overall LDA and ANN showed a change of 6.3 % and 2.9 %
respectively till seventh. Day seven was significantly (P<0.05) better than the rest of
the days, implying learning and stabilization of the implanted electrodes.

In combined EMG, attributes from the surface and intramuscular EMG were
combined to analyse the overall change in the performance of different classifiers
(Figure 5.8). By combining the attributes, significant improvement in WCE
performance was seen in all classifiers with respect to the surface and intramuscular.
All the classifiers were significantly different from each other for combined EMG
expect KNN (10.75 + 7.03%) and SVM (11.75 £ 7.03%, P=0.97). ANN in combined
EMG outperformed all the classifiers implemented (P<0.05) with the lowest
classification error 4.96 + 6.34% for ANN until the seventh day. WCE for day five,
six and seven were significantly (P<0.05) better than day one, two and three. Figure
5.9 represents the average WCE for able-bodied and amputees”(Waris et al., 2018).
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Figure 5.9 Averaged performance of each classifier across all days.

5.3.2 Between day comparison

ANOVA with factor EMG types (SEMG, iIEMG and cEMG) and classifiers (TREE,
NB, KNN, SVM, LDA and ANN) revealed that combined EMG was significantly
(P<0.001) better than SEMG and iIEMG. It was also found that ANN performed
significantly better (P<0.001) than other classifiers Figure 5.10.

Surface EMG: Comparison of BCE between all classifiers for surface EMG was
lowest (21.8 £2.1%) in ANN and it was significantly better than (P<0.05) all other
classifiers. LDA as a classifier performed significantly better (P<0.05) than the KNN,
NB, and TREE but not significantly different from SVM (95% CI [-0.64 7.1], P =
0.14). TREE classifier was found to be least effective in classifying motions with
BCE (45.82 + 3.72%).

Intramuscular EMG: It was found that classification accuracies of iIEMG were
lower than cEMG and cEMG averaged across all days. ANN was significantly better
than other classifiers. BCE of LDA outperformed both TREE and NB significantly
(P<0.001). Performance of LDA, KNN and SVM was statistically similar.

Combined EMG: In cEMG, improved performance was observed in all classifiers in
comparison to SEMG and iEMG. ANN on average (14.37 +1.43 %) was significantly
better (P<0.05) than the rest with lowest BCE. cEMG had improved BCE effect on
LDA turned out to be second best in term of classification performance as it was
significantly better (P<0.05) than the rest of the classifiers. KNN was significantly
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better (P<0.05) than TREE but not different from NB (95% of CI [-3.80 5.83], P =
0.98) and SVM ((95% of CI [-0.89 8.74], P = 0.16).
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Figure 5.10: Changes in BCE for all tested classifiers and EMG types (SEMG, iEMG and
CEMG).

5.4 Study IV (part I) real-time tests with sEMG
5.4.1 Offline performance

Results of the offline analysis revealed that training schemes were significantly (P <
0.01) different and performance varied over days (P < 0.01). Multiple comparison
showed no significance (P = 0.55) between average WCE (0.98 + 0.57 %) and BCE
(1.55 £ 1.25%). Averaged WCE and BCE were significantly (P < 0.01) lower than
CCE (4.99 £ 1.63%). Classification performance of CCE improved over time but no
significance. WCE remained statistically the same over days Figure 5.11.

49



BWCE =BCE =CCE

16

14
12 [

10

Classification Error %
(o]

4 11 [ B

2

ok miE AE mED
Dayl Day2 Day3 Day4 Day7

Figure 5.11: Offline Classification performance comparison between WCE, BCE, and CCE
over a week. Star (*) indicate the case where there is a significant difference.

5.4.2 Online performance

It was found that completion time increased with the increase of index of difficulty
for all train-test strategies (coefficient of determination R? > 0.91) representing a
strong linear relationship between two parameters. This phenomenon indicates the
efficacy of Fitts law. Table 5.1 shows the completion time with respect to I1Ds

Table 5.1: Average completion time with respect to the index of difficulty for BDT, WDT and
CDT.

ID BDT WDT CDT
1.81 5.5+1.3 5.1+0.7 4.9+0.2
2.58 8.3:2.7 8.219+2.7 7.8£1.7
3.46 8.6+2.8 8.5+2.5 8.3t15
4.39 | 11.5%1.2 11.3%15 10.9+1.3

A summary of all performance metrics per session across all days is provided in Table
5.2. Table 5.2 represents the performance of all metrics per session averaged across
all days. It was shown that CR decreased over sessions for both CDT and BDT. For
WNDT it remained statistically similar.

Table 5.2: Session wise comparison of all performance metrics in all train test strategies (WDT,

BDT and CDT). A significant difference in each session of performance metric was presented
in star (*) in Table 5.2.
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Within-Day Testing (WDT)

Session 1 Session 2 Session 3
CR 94.42+4.09 93.17+3.64 95.08+3.35
(O] 14.86+4.14 (*) 11.84+6.01 11.3545.25
PE 86.86+1.75 87.50+2.70 86.69+2.51
TP 0.41+0.02(*) 0.39.71+0.02 0.38+0.02

Between Day Testing (BDT)

Sessionl Session 2 Session 3
CR 89.06+5.45(%) 86.56+5.53 83.13+6.50
(O] 14.26+4.27(%) 11.06+4.73 10.39+4.60
PE 85.55+2.37 86.78+4.61 86.18+4.89
TP 0.39+0.01(*) 0.39+0.01 0.36+0.02

Combined Day Testing (CDT)

Session 1 Session 2 Session 3
CR 99.79+0.29(*) 98.85+1.22 96.45+3.69
(O] 14.75+4.31(%) 10.61+4.45 10.38+4.79
PE 87.03+£1.31 86.93+1.01 88.55+5.03
TP 0.41£0.01(*%) 0.40+0.01 0.38%0.02

Figure 5.12 represents the average performance of each train-test strategy and the
overall comparison between all performance metrics. It was found that CR of CDT
(98.37 £ 1.47 %) outperformed significantly (P<0.01) than BDT (86.25 £ 3.46 %)
and WDT (94.22 = 2.74 %). No significant difference (P>0.3) was found between PE
and OS. Throughput (0.40 % 0.03 bits/s) of CDT was significantly better (P=0.001)
than BDT (38.07+0.03 bits/s).
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Figure 5.12: Comparison of all three train-test strategies with respect to all Performance
metrics (A. Completion Rate (%), B. Overshoot (%), C. Path Efficiency (%), D. Throughput
(bits/s))averaged across all days. Stars (*) indicate the case where there is a significant
difference.

5.5 Study IV (part Il) real-time tests with iIEMG
5.5.1 Online performance

Intramuscular EMG based real-time test exhibited that completion time increased with
the increase of index of difficulty for all train-test strategies (coefficient of
determination R? > 0.90) representing a strong linear relationship between two
parameters. These phenomena indicate the efficacy of Fitts law. Table 5.3 shows the
completion time with respect to ID.

Table 5.3: Average completion time with respect to the index of difficulty for BDT, WDT and
CDT.

ID BDT WDT CDT

1.81 5.4+1.4 5.3+0.8 4.8+0.5

2.58 8.4+2.6 8.2+2.7 8.0+2.4
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3.46 8.6+2.7 8.6+2.5 8.4+2.4

4.39 11.7+1.3 11.27+0.7 10.9+1.3

Table 5.4. Session wise comparison of all performance metric averaged across all days.
WITHIN DAY TESTING (WDT)

Session 1 Session 2 Session 3
CR | 90.3t£10.5 88,5+10.2 88.7+11
(OF] 15.648.5 14.548.6 15.249.1
PE 83.4+3.2 84.4+3.3 82.7+3.6
TP 38.1+1.8 37.7+2.6 37.6+2.4

BETWEEN DAY TESTING (BDT)

Session 1 Session 2 Session 3
CR | 77.9114.0 72.3+15.9 71.9+17.6
OS | 33.2+10.8 33.5+11.2 28.5+5.8
PE 88.9+16.9 83.149.1 81.1+7,9
TP 35.8+3.2 36.1+3.2 35.1+3,5

COMBINED DAY TESTING (CDT)

Session 1 Session 2 Session 3
CR | 94.046.7 91.5+9.5 89.4+10.3
(OX] 14.1+11.0 13.0+£10.7 14.3+11.6
PE 85.63.1 86.7+3.6 84.1+3.1
TP 39.2+2.4 38.5+2.9 38.0+3.3

Figure 5.13 represent the comparison between training-testing strategies based on the
data concatenated for different days. Completion rate (91.6 + 3.6 %) of CDT was on
average higher than BDT (74.0 + 5.8 %) and WDT (88.2 + 3.6 %). Difference
between Path efficiency, Throughput, and Overshoot on average was low between
strategies.
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Figure 5.13: Comparison of all three train-test strategies with respect to all Performance
metrics (A. Completion Rate (%), B. Overshoot (%), C. Path Efficiency (%), D. Throughput

(bits/s))averaged across all days.

54

C. Path Effeciency

CDT I——i
wDT I
BDT Il

80 85 90
D. Throughput

CDT I
WDT i
BDT EEE—

0.3 0.35 0.4

95

0.45



CHAPTER 6: DISCUSSION

In the start of this thesis, the nature of SEMG and iEMG recordings were presented in
the context of multifunctional prostheses control. State of the art and challenges to
were discussed as compliance of these devices are low for any type of myoelectric
control. Lack of robustness and intuitiveness in previous methods were identified.
Therefore, in this thesis, four studies were designed with a focus on PR based
myoelectric control to investigate the robustness of these systems in a multiday
analysis. With the aim to advance the state of the art in PR based myoelectric control.

6.1 Effect of optimum threshold values of features

Among various available combinations of feature sets, TD features (ZC, MAV,
RMS, SSC, WAMP, MYOP and CARD etc ) are commonly used. Some features
require threshold values to lower the influence of the background noise (Zardoshti-
Kermani et al., 1995). Most of the studies using these didn’t report threshold values
or applied predetermined threshold values which may have been too high resulting in
degradation of the discriminative power of the threshold based features. In the first
study, these features (ZC, SSC, WAMP, MYOP, and CARD) were studied
individually for the range of threshold values, in combination and performance
comparison was drawn between SEMG and iEMG.

Each feature investigated individually. As it was shown that MAV value provides the
most discriminative information of signal for classification (Phiyomark et al., 2013).
This statement didn’t prove right in our study as other features performed better than
MAV (Figure 5.1) when the threshold is optimized. It was also seen that each
participant in the experiment has a global minimum supporting the initial suggestion
made by (Hugdgin et al., 1993). Interestingly SEMG and iEMG recordings in
comparison showed different features which performed optimally when the threshold
was optimized. When compared in pairs, for SEMG it was found that WAMP and
MYOP were the feature pair with the lowest error. For iEMG, WL and SSC showed
the optimum performance. This showed that in the real case, both SEMG and EMG
can be combined to excerpt more discriminative information from the signal. LDA as
a classifier showed the outcome of each feature with respect to the threshold value is
similar between the surface and intramuscular. The improved performance was seen
in for low threshold values when tested to iEMG with KNN, this represents that KNN
or other non-parametric classifiers can dominate LDA when the boundary is highly
non-linear. So, the selection of an optimal classifier whose performance remained
robust for both surface and intramuscular EMG is essential.

6.2 Performance over time

Recent studies have shown that the performance of PR control deteriorates
significantly over time when the classifier is trained once for sSEMG(He et al., 2015,
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Chen et al., 2013, Amsuss et al., 2014). However, it was still not known that the
classifier can retain its performance if it is calibrated on daily basis or not and can its
performance be improved over time if the classifier is trained on combined data from
all previous days. Secondly, how the performance of these training schemes will affect
iIEMG recordings. So, in the second study, the performance of EMG pattern
recognition was quantified by comparing classification accuracies over seven days to
assess the learning characteristics of users with SEMG and iEMG.

Results from trans-radial amputees exhibited learning during the experiment which
helped them to produce discriminative contractions. This learning augmented on
succeeding days of training and testing. The performance of SEMG and iEMG were
statistically similar. When both types of EMG were combined, the average WCE was
improved by 6.9% till the seventh day for 11 classes. Results indicate significant slope
between WCE and days for SEMG, the average over all subjects indicates otherwise.
This suggests that with daily calibration, daily performance remains the same. We
anticipate that this adaptation process could improve further if the length of the
experiment was increased.

In Study I, we analyzed the changes in performance continuously for seven days as
robust PR control is one of the main challenges for long term use. Although in case
of amputees results of BCE were indeed poor when the classifier was trained on the
first day tested on rest of the days, the error rate reduced continuously until last day
indicating more and more coherence in signal characteristics over time due to
learning. In amputees for combined EMG, the BCE between days 1 and 2 was 19.8%
which reduced to 10.0% when training on the sixth day and testing on the seventh day.
“This observation has an important implication on real-world myoelectric based on
pattern recognition, which provides the possibility of reducing the level of system
recalibration for prostheses training. Similar variations in BCE were observed in able-
bodied subjects but with a much lower level of error rate. The relatively large change
in performance with amputees as compared to normally-limbed individuals may be
attributed to a more substantial learning effect, as the level of training to perform
required motions, most of whom were performing the targeted contractions for the
first time since amputation. Consistent improvement in the performance was observed
due to the neuromotor adaptation of the amputees in the form of learning. Therefore,
it is implied that changes in signal characteristics and performance were mainly due
to the improved ability of the subjects to produce consistent EMG patterns for each
movement” (Waris et al., 2018).

6.3 Robust optimal pattern recognition techniques

LDA is the most widely used classifier in studies related to PR based myoelectric
control. It is believed to be most robust classifier when not being trained recurrently
(Kaufmann et al.,2010) while other techniques are popular for benchmarks like high
performance within a day, more stable to complex motion etc. It is difficult to
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generalize as multiple studies have explored different aspects of PR based techniques.
Type of amputation, stump size(Li et al., 2010, Li et al., 2017), feature selection
(Rechy-Ramirez et al., 2017, Ahmad et al., 2009, Phinyomark et al., 2014) feature
extraction (Phiyomark et al., 2014, Ahsan et al., 2011, Tkach et al., 2010)
classification parameters (Chen et al., 2013, Chu et al., 2007, Boschmann et al 2009,
Phinyomark et al., 2013, Englhart et al., 2005) and number of recruited subjects (Chen
etal., 2013, Chu et al., 2007, Boschmann et al 2009) are some of the factors that can
affect the overall outcome of a technique. But one factor which was missing in these
studies was their performance over time, especially under variable real-world
conditions. It was shown in study Il that while many classifiers may exhibit similar
classification accuracies over time, but their underlying confidence profile may be
substantially different. It was suggested that how these classifiers behave over time
may lead to the selection of a control scheme with characteristics that are more
suitable for robust control.

Results have indicated in amputees for WCE, NN performed significantly (P<0.05)
better than all other adopted classifiers and its performance improved over time as a
significant difference was found in performance between Dayl and Day 7 (P=0.014)
for the surface, intramuscular and combine EMG. Performance of surface and
intramuscular EMG in amputees found no significance for all classifiers (LDA
P=0.54, KNN P=0.75, SVM P=0.54, TREE P=0.54, NB P=0.12, NN P=0.54) but in
contrast, combined EMG acquisitions were significantly better(P<0.05) than the
surface and intramuscular EMG for all classifiers. This implied that if myoelectric
control system could interface both surface and intramuscular EMG signal, to date
which has not been practical to use invasive electrodes for prosthetic control, can
provide more robust and stable control with cross talk free signals providing very local
information.

Results indicated that combining the two EMG modalities had a positive effect on
performance as it not only improves the information but also provides the local or
global outlook to the attributes.

.6.4 Patient-specific strategies

Study Il and 111 have shown that selecting an optimum set of motions may improve
performance; such as significant improvements were seen in functional motions of
hand such as the opening of the hand, wrist flexion and wrist extension and little to
no improvement in performance was seen in grip motions. This class performance
may vary with time allowing quantification of the degree of motion preference that is
patient specific. Results showed that the degree of motion preference depends on the
patient and that some motions are not preferred. This is clinically relevant to the
patient’s specific adaptive systems.
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6.5 Real-time effect of training schemes over time

Historically researchers have quantified EMG PR performance by comparing
classification accuracies of different pattern recognition algorithms in offline or in
online settings. Most of these studies had used only short-term scenarios under one
train-test scheme. However, the one-time train-test scheme is not a reliable measure
to estimate real-time behaviour as it provides an ideal condition for reporting
performance and can produce unrealistically repeatable contractions. In study IV (Part
I and 1), multiple train-test schemes were assessed over seven days in the context of
real-time usability test using Fitts’ Law as it is well defined and well documented
metric for the evaluation of motor control schemes. For the overall performance based
on throughput and completion rate, two-way ANOVA revealed a significant
difference between combined day testing (CDT), within day testing (WDT) and
between day testing (BDT) in both parts of study IV.

Overall out of three sessions performed per day, for all train-test combinations
reduction in all performance metrics were observed until the third session. The
outcome of the different methods over sessions within a day implies that EMG
characteristics change, and the same motions may become uncorrelated over time
leading to the need to recalibrate or retrain the classifier. So, in all train-test schemes
classifier was trained on each day, which resulted in improved performance for all
train-test schemes as no significant difference was found between days.

6.6 Combined sEMG and iEMG based myoelectric control

“Limitation of surface EMG suggests that combining a new control strategy by
combining multiple channels from the surface and intramuscular EMG can increase
the amount of information harvested from the body (Kamavuako et al., 2013). The
combined effect of surface and intramuscular EMG could improve the performance
of selected classifiers. IEMG recordings can provide independent control this can
enable amputees to control multiple DOFs simultaneously. In case of SEMG, the
downside of this simultaneous and proportional control is past pointing, isolating 1
DOF targets and ballistic nature of movements during positioning (Smith et al., 2015,
Smith et al., 2016). Since both acquisition types (surface and intramuscular) and their
control schemes (sequential and simultaneous) have limitations, a control scheme
based on both surface (isolate single DOF) and intramuscular (provide simultaneous
and proportional control of multiple DOF’s) could be devised for providing faster,
intuitive and natural control.

6.7 Limitations

One major factor about the performance of intramuscular is related to the use of wire
electrodes and their loose connections to the muscles. This is a limitation that may
signify to generalize with care our results to all implantable systems. First, this
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configuration caused wires to be pulled out and second, displacements in the
implanted depth may have changed due to the pulling force of connecting cables.
Therefore, we cannot guarantee that the implanted electrodes were measuring from
the same area throughout the seven days of the experiments. This is a limitation that
is worth mentioning because the results of future studies could be different. An
efficient way of testing such a system would be to use wireless implantable sensors,
but to date, they are not commercially available. Considering the specificity of the
intramuscular channels, the reduction in the number of channels can result in poor
classification performance for certain classes. These certain classes were affected due
to the absence of electrodes in that anatomical location. However, it should also be
useful to note that the removal of the surface EMG channels that correspond to the
failed intramuscular EMG channels causes a correlated decrease in performance on
the same classes”.

6.8 Future perspectives

Long term stability of techniques used for myoelectric control is a major issue. As of
today, PR based algorithms and hardware for real-time control are available. It was
found in our results that, ANN was the best performing classier for all EMG types
(surface, intramuscular and combined). “The comparison of BCE and WCE for the
optimum classifier (ANN) revealed that increasing the amount of training data can
significantly reduce BCE and might converge to WCE, however, this may require the
use of deep networks s such as convolutional neural networks (CNN)”. Such an
approach can be tested on amputees for real-time tests in the future with an expectation
that training of such a deep network on the big data from many days will enable the
possibilities to capture the EMG natural variabilities of each motion and thereby limit
the necessity for system recalibration. Secondly, such a network can be tested on raw
data without the steps of filtering, data segmentation, and feature extraction.

The concept of PR based approach is more appealing than other approaches because
of patterns are actual natural representative of muscle behaviours before amputation.
So, the use of these patterns is intuitive to the amputee and have the ability to control
multiple DOF. But a PR based system is susceptible to more issues (electrode shift,
doffing and donning) than a DC control. In a real case where amputee wants to put
the prosthesis and go home and don’t want to have an extended and repeated session
of training. A system can be devised, where both sequential control-based algorithms
such as LDA, ANN and simultaneous and proportional control based on the regression
model can be combined. As both controls have strengths and weaknesses. For robust
and accurate positioning in single DOF targets, sequential control is a suitable choice.
In case of multi DOF gross positioning and intuitive control simultaneous and
proportional control is most suitable. Combination of both these controls for variable
DOFs can be an interesting study in the future.

59



The noise-free and stable signal is strongly related to the recording method and source.
The origin of the signal source impacts on how easy it is for the patient to yield the
information needed for the given movement. PR based techniques or control can be
designed to be more robust and noise free but still dependent on consistent and stable
input. So, recording EMG signals intramuscularly can provide physiological
appropriate locations for natural and stable control. Implantable electrodes
(MyoNode, Ripple) can solve the problems of signals stability affecting PR based
control. As results of both offline and online studies indicate that intramuscular can
be used as an alternative to SEMG. These electrodes can be placed superficially, deep
and in small innervated muscles to investigate the performance of PR control for an
elongated period of time and to find the solutions of problems associated with surface
electrodes.
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CHAPTER 7: CONCLUSION

Currently available myoelectric prosthesis lack intuitive and robust control over time
mainly because these devices have limited DOF and independent controls sites
making compliance of these devices low (Shenoy et al., 2008). PR based myoelectric
has potential to have more robust multi-functional control. In the PhD project, three
important questions related to PR control were answered. 1) To what extent threshold
values affect the time domain features and their combinations in surface and
intramuscular recordings? 2) What is the correlation between the performances of PR
based myoelectric control schemes and time? 3) How do PR training strategies
influence real-time performance over time? were answered. Following were the
conclusion of each study.

1. Instudy I, it was found that threshold values affect the time domain features and
their combination in SEMG and iEMG recordings. For both types (SEMG and iIEMG),
best performing features vary.

2. In study IlI, it was found that trans-radial amputees learned to produce
discriminative motions over days. Performance of SEMG and iEMG over days remain
statistically the same. Between days performance degrades over days leading to
system recalibration.

3. Instudy I, it was found that ANN was the most robust and stable classifier over
days for both SEMG and iEMG recordings.

4. In study IV, for both real-time test of SEMG and iEMG using Fitt’s law, it was
found from BDT and CDT, that difference between both train-test schemes was
reducing indicating an adaptation of subject. This implies that if the classifier is used
with an increased amount of data the performance of both schemes will be the same.
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