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English summary 

Myoelectric control of upper limb prostheses has been an active area of research for many 
years. To date, surface electromyography (sEMG) is the main control signal employed in 
commercial systems. However, it has been suggested that signals obtained from implantable 
electrodes, such as intramuscular EMG, may be a better source to provide independent sources 
for control. From the control schemes point of view, pattern recognition (PR) has been 
extensively researched as means to enable a more robust, intuitive, effective and simultaneous 
control of a large number of degrees-of-freedom (DoF) as offered by current advanced 
prosthetic limbs. However, how to achieve robustness over time with different PR schemes 
has received less attention in the literature. In the current thesis, the essential objective was 
therefore to investigate the behaviour of EMG based PR myoelectric control over time. Three 
specific research questions (SRQ) were formulated to address this aim: 1) To what extent 
threshold values affect the time domain features and their combinations in surface and 
intramuscular recordings? This question was addressed in study I, where the threshold values 
of each feature were compared for the range of different values. This range was (R = 0:0.02:6) 
times the average root mean square of the baseline. For each threshold value, classification 
error was quantified using two classifiers first for each individual feature and then combined. 
Results have demonstrated that using appropriate threshold value is very important to assure 
acceptable performance. 2) What is the correlation between the performance of PR based 
myoelectric control schemes and time? This question was addressed in study II and III using 
surface and intramuscular EMG concurrently recorded from 10 able-bodied subjects and six 
trans-radial amputees for seven consecutive days. A standard linear regression analysis was 
carried out in study II on each EMG type for the identification of time effect (days) on 
classification accuracies. Study II showed that performance is significantly dependent on the 
time elapsed between training and test.  In study III, Artificial neural network outperformed 
all other tested classifiers in terms of mitigating the effect of time on classification. 3) How do 
PR training strategies influence real-time performance over time? This question was addressed 
in Study IV, an experimental protocol was designed to determine the effect of training 
strategies on real-time PR control over time using a Fitts’ law approach. The outcome of the 
studies indicate that increasing the amount of training set over time (by concatenation) can be 
useful to assure robust output of the system over time. Moreover, classification error can be 
mitigated as the time lag between training and testing increase. 
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Dansk resume 

Myoelektrisk kontrol af overekstremproteser har været et aktivt forskningsområde i mange år. 
Hidtil er overfladeelektromyografi (sEMG) det primære styresignal, der anvendes i 
kommercielle systemer. Det er imidlertid blevet foreslået, at signaler opnået fra implanterbare 
elektroder, såsom intramuskulær EMG, kan være bedre til at tilvejebringe uafhængige måder 
til kontrol. Mønstergenkendelse (PR) er blevet  undersøgt som middel til at muliggøre en mere 
robust, intuitiv og effektiv styring af frihedsgrader (DoF) i forhold til nuværende avancerede 
proteser. Opnåelsen af robusthed over tid med forskellige PR-ordninger har dog fået mindre 
opmærksomhed i litteraturen. I den nuværende afhandling var hovedformålet derfor at 
undersøge EMG-baseret PR myoelektrisk kontrol over tid. Tre specifikke spørgsmål (SRQ) 
blev derfor formuleret: 1) I hvilket omfang påvirker tærskelværdier tidsdomænefunktionerne 
og deres overflade- og intramuskulære kombinationer? Dette spørgsmål blev behandlet i 
undersøgelse I, hvor tærsklen for hver funktion blev beregnet som en faktor (R = 0: 0,02: 6) 
gange gennemsnittet af middelværdien af basislinjen. For hver tærskelværdi blev 
klassifikationsfejl kvantificeret ved anvendelse af to faktorer - først for hver enkelt funktion 
og derefter kombineret. Resultaterne har vist, at brug af passende tærskelværdi er meget vigtig 
for at sikre acceptabel ydeevne. 2) Hvad er sammenhængen mellem PR-baserede 
myoelektriske kontrolordninger og tid? Dette spørgsmål blev behandlet i undersøgelser II og 
III ved anvendelse af overflade- og intramuskulær EMG, der samtidig blev registreret fra 10 
raske personer og seks transradiale amputerede i 7 på hinanden følgende dage. I studie II blev 
en standard lineær regressionsanalyse udført på hver EMG-type til identifikation af tidseffekt 
(dage) på klassifikationsnøjagtigheder. Studie II viste, at ydeevnen er væsentligt afhængig af 
tiden mellem træning og test. I studie III overgik det kunstige neurale netværk alle andre 
testede faktorer med hensyn til at mildne effekten af tid på klassificering. 3) Hvordan påvirker 
PR-træningsstrategier realtidspræstationer over tid? Dette spørgsmål blev behandlet i studie 
IV, hvor en eksperimentel protokol blev designet til at bestemme effekten af træningsstrategier 
på realtids PR-kontrol over tid ved hjælp af Fitts Lov. Resultater tyder på, at en forøgelse af 
træning over tid (ved sammenkobling) kan være gavnlig for at sikre en robust systemydelse 
over tid. Desuden bliver fejl formindsket, da tiden mellem træning og test formindskes. 
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THESIS AT A GLANCE 

 OBJECTIVES METHODOLOGY FINDINGS 

 
 
 
 

I 

Identify the optimum 
threshold values for 
features in sEMG and 
iEMG. recordings. 

 

9 healthy participants. 4 
surface channels and 02 
intramuscular, EMG 
channels, 8 hand 
motions. 

Optimum threshold values 
for features were identified. 
It was found that threshold 
values affect the time 
domain features and their 
combination in surface and 
intramuscular EMG 
recordings as some features 
need to incorporate 
threshold value so to add in 
class separability. 

 
 
 
 

II 

Quantify the effect of 
time on PR based 
myoelectric control for 
sEMG and iEMG 
recording  

10 healthy and 6 
Amputees, 6 surfaces 
and 6 intramuscular 
EMG channels, 7 hand 
motion timed to the 
visual cue. 

a. It was found that the 
within-day performance of 
myoelectric control can be 
improved over time, but the 
performance of the system 
regularly reduces as the time 
difference between training 
and testing day increases. 
Performance improved with 
daily training but not 
significantly, though seven 
days of experiment might 
not be long enough to 
capture a meaningful 
outcome. 

 

 

Compare most widely 
used classifiers in PR 
based myoelectric control 

10 healthy and 6 
Amputees, 6 surfaces 
and 6 intramuscular 
EMG channels, 7 hand 

It was found that the 
performance of classifiers 
varies within-day and 
between days. For within 
day classification error 
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III 
over days for sEMG and 
iEMG recordings. 

motion timed to the 
visual cue. 

(WCE), Artificial neural 
network (ANN) performed 
significantly (P<0.05) better 
than all other tested 
classifiers. 

 
 
 
IV 

Quantify the effect of 
multiple train-test 
strategies on sEMG and 
iEMG over days with 
real-time testing’s 
 

10 healthy participants 
for sEMG and 5 healthy 
subjects for iEMG for 
real-time testing.  08 
surface and 03 
intramuscular channels. 

a. Different train-test 
strategies affected the real-
time performance for 
surface EMG. 
b. Different train-test 
strategies affected the real-
time performance for 
intramuscular EMG. 
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CHAPTER 1: INTRODUCTION 
Being an essential part of the body, the human hand performs complex and delicate 
motions. Muscle groups activate in a coordinated manner to accomplish fine tasks. 
Muscles, which are acting as actuators in the human body are activated by the electric 
signals transmitted through peripheral nerves from the brain. Each muscle in the upper 
limb activates in an appropriate and regulated manner to contribute to an adept 
movement. 

Amputation is the surgical removal of a limb due to trauma or a medical ailment. 
Trans-radial or trans-humeral amputation severely limit an individual to perform 
activities of daily life (ADL). The accurate number of amputees across the world is 
hard to calculate since most countries do not keep track of people with major 
amputation. In addition to this, the reasons for amputation also differ between 
countries. In developing countries, the eminent reason for an amputation is trauma 
whereas, in developed countries, vascular complications of diabetes is the leading 
cause (Esquenazi, 2004). In countries like the USA, Japan, and Denmark, 68% of 
amputations per annum are caused by disease (Esquenazi, 2004).  

In Denmark, arm amputations constitute 3% of all amputations (Kejlaa, 1992). 
According to the national centre of health statistics, nearly 2.1 million people in the 
United States suffer limb loss. (Amputee coalition, 2014, Ziegler‐Graham et al., 
2008). Almost 185,000 people suffer from amputation every year where 57% are 
trans-radial amputations (Amputee coalition, 2014, Ziegler-Graham et al, 2008; 
Esquenazi et al, 1996; Merrill et al, 2011).  

In the year 2009, estimated costs related to amputations were totalled 8.3 billion USD 
(HCUP Nationwide Inpatient Sample (NIS), 2009). After complete recovery and 
healing, some of the lost functionalities and appearance of the amputated limb can be 
replaced by an artificial limb. 

1.1. Upper limb prosthesis 

Artificial device to replace a missing body part is called a prosthesis. In this thesis, 
‘prosthesis’ refers to an upper limb prosthesis only.  

Three types of prostheses are commercially available; 1) cosmetic, 2) body-powered 
and 3) electrically-powered. Cosmetic prostheses are used when the natural 
appearance is the priority for the amputee. A wide range of cosmetic prostheses is 
available with different designs, colour, and materials. Body-powered prostheses are 
most commonly used and are actuated by a harness fused with a cable (Huinink et al., 
2016, Popov et al., 2008, Kuba et al 1992, Pfeiffer 1996, Lee and Shimoyama 1999, 
Schulz et al 2001, Beck et al 2003). It constitutes a triceps cuff, a socket, suspension, 
and a cable system with flexible or rigid hinges. This type of prosthesis utilizes the 
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body’s motions to control the distal device (i.e. a hand or a hook). It is connected to 
the body via cables and a harness. This enables control of the hand or hooks to open. 
Because of the simple control and design, these prostheses are easy to use with high 
durability and may be used to accomplish potentially adverse tasks involving 
environmental factors like water or dust. The advantage of these prostheses is that 
they are proprioceptive which is why numerous patients report a boost in precision 
and control. Proprioception is the ability to sense the orientation, location, position, 
as well as movement of the limb relative to the rest of the body. Body-powered devices 
are low cost and durable but several other factors such as limited degrees of freedom 
(DOF), unattractive appearance, the control harness restriction, pain and discomfort 
during wearing have kept their rejection rate up to 58% (Biddiss et al., 2007, Biddiss 
et al., 2007, McFarland et al., 2010, Dudkiewicz et al., 2004).  

Electrically-powered prosthetic devices typically controlled by superficial 
electromyography (EMG) signals from the muscles left in the amputated limb and 
provide natural restoration of some functions for trans-radial amputees.  EMG signals 
are taken from physiologically suitable muscles to operate a prosthetic hand or wrist.  
Electrically-powered prosthetic devices can be divided into two types depending upon 
their control schemes; 1) conventional myoelectric control strategies, or 2) pattern 
recognition (PR) based myoelectric control (Li et al., 2010, Hargrove et al., 2011, 
Smith et al., 2011, Hargrove et al., 2007, Chu et al., 2006). Conventional control 
strategies employs a simpler approach. The EMG signals are measured at one or more 
sites. The amplitude of these signals is encoded to activate one or more functions of 
the prosthesis. (Sears et al. l991, Fougner et al., 2012, Hoover et al., 2013, Jiang et al., 
2014, Ferris et al., 2009, Tang et al., 2014, Pistohl et al., 2013, Parker et al., 2006).  
Pattern recognition (PR) based myoelectric control (Li et al., 2010, Hargrove et al., 
2011, Smith et al., 2011, Hargrove et al., 2007, Chu et al., 2006) has found widespread 
commercial application. When a restricted number of muscles are accessible in the 
residual limb, single-site controlled myoelectric control scheme is used. This system 
uses one electrode to control motions of paired prosthetic activity. In clinics, however, 
dual-site controlled myoelectric devices are used for trans-radial amputees. Such 
devices utilize two separate electrodes for paired activity from antagonistic muscles 
(i.e. wrist flexor and wrist extensor). In case of more than two degrees of freedom, 
mode and sequential switches are used to monitor a second DOF via the same pair of 
electrodes. Since multiple DOFs are to be controlled by the same electrodes, it affects 
their functionality since switching requires a nonintuitive impulse such as muscle co-
contraction (Alley et al., 2004). 

In the past few decades, PR-based control strategies have been extensively studied. 
The assumption underlying these techniques is that a specific muscle generates a 
repeatable EMG signal. These repeatable patterns may be depicted by a set of features 
differing from one movement to another (Hargrove et al., 2008, Tkach et al., 2010). 
If, over a period of time, these patterns change, or the control accuracy of the 
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prosthetic limb regresses then new calibration data must be provided to update the PR 
model.  

Due to advancement in high-speed embedded controllers and signal processing 
techniques, significant improvement in these PR algorithms has been made since then. 
Not only are these systems more user-friendly, but they can also control multiple 
DOFs as well. This has improved the performance of the system while keeping the 
number of electrodes to a bare minimum. Even with these advancements in 
technology, PR-based myoelectric control strategies are challenged by many issues 
including user adaptation over time, inter-electrode distances, muscle fatigue, limb 
position, and electrode shift. Apart from these factors, conditions such as overall 
impedance changes, movement strategy, and psychological factors largely affect the 
performance of the system pertaining to controllability and classification. (Scheme et 
al., 2010, Hargrove et al., 2006, Young et al., 2011, Young et al., 2012, Tkach et al., 
2010, Fougner et al., 2011). One of the main advantages of these systems is they do 
not require independent channels, which can be challenging to obtain if the residual 
stump is small.  

It is important to understand how these changes overall impact the nervous system in 
general and neuromuscular system in particular. Despite the low number of studies 
investigating these adaptive neuromuscular changes in myoelectric control over time, 
it can be concluded that using surface EMG, day-to-day performance affected 
adaptation, but that the need of daily training to assure acceptable classification 
accuracy is an open question      

1.2. Origin, nature and noise in the EMG signal 

Electromyography (EMG) is the technique to detect and record the electric activity 
produced during neuromuscular activation. EMG is more often than not referred to as 
myoelectric activity. This myoelectric activity or EMG signal is based upon action 
potentials resulting from depolarization and repolarization at the surface at the muscle 
fibre membrane.  

EMG signals are commonly recorded on the surface of the skin and are effective in 
specifying and expressing the intent of movement for external device control. In upper 
limb prosthesis, EMG signals are the main control sources in the field of neural 
rehabilitation. 

The raw electromyogram (EMG) is a broadly Gaussian random signal that needs 
integrating/filtering/processing to extract the root mean square (RMS) value for use 
in amplitude-based EMG control (Childress et al., 2004, Parker et al., 1985). 
Therefore, analyzing and classifying EMG signals can be challenging due to the 
complicated EMG patterns impacted by the physiology and anatomy of the muscles. 
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Apart from the inherent EMG signal characteristics, noise from different sources and 
the environment can also influence the quality of the EMG signals. Such as noise 
originating from electronic equipment, that may generate frequency components 
ranging from 0 Hz to thousands of Hz (Riaz et al., 2006). This noise may significantly 
be reduced by carefully designing the circuit and using high-quality components. 
Power line interferences arising from 60 Hz or (50Hz) radiations of power sources 
affects EMG signal. Carefully grounding the devices can help in reducing this noise. 
Heart activity can also severely affect EMG signal especially recording from the upper 
trunk and shoulder muscles. Placing ground electrode at a different position and good 
skin preparations can reduce the level of this noise. Different denoising algorithms are 
being developed to remove these ECG bursts without disturbing the content of EMG 
signals. Local EMG signal can also be contaminated by the crosstalk which can cause 
an incorrect interpretation of signal (Chowdary et al., 2013). Targeted muscle 
recordings can reduce cross talk considerably. 

1.3. Surface EMG 

Many studies have proposed various techniques in detecting muscle activity using 
surface EMG. Surface EMG is still being used as a major neural control source for all 
commercially available powered upper limb prosthesis. This is mainly because 
surface EMG signals are non-invasive in nature and easy to record. 

Surface EMG recordings have been extensively used by researchers to implement 
more advanced PR based myoelectric control. Long term consistency of surface EMG 
signals is important as it can influence the performance of PR based myoelectric 
control (Ortiz-Catalan et al., 2012). However, the EMG signal from the surface can 
be dramatically affected by environmental conditions due to precipitation, 
temperature etc. The exact placement of electrodes can be an issue since surface 
electrodes cannot be placed indefinitely. If the electrodes are misplaced, the retraining 
of the PR algorithm is required. If the electrodes are placed improperly, it could lead 
to muscle imbalance which would further result in patterns generated differently than 
earlier ones. Eventually, this will cause signals acquired from the larger muscles to 
mask those acquired from small muscles. Muscle imbalance may also lead to 
prosthesis socket instability (Lake et al., 2003).  

The surface area required on an amputated limb should be wide enough to place a 
requisite number of surface electrode, which in some comes cases may be difficult 
because of a small stump size. Similarly, in some cases, only scar tissue is available 
for placing surface electrodes on the amputated limb. In that case, low to nil neural 
activity can be recorded from surface electrodes. Artifacts can be another issue for 
surface recordings due to limb movements and electrode liftoff. Since all these factors 
affect the long-term use of surface EMG in myoelectric control, more robust detection 
schemes are required to implement. 
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1.4.  Intramuscular EMG recordings EMG 

Implantable electrodes are the key to resolve the practical obstacles which are at 
present hindering the sustainable solution for an advanced prosthetic control based on 
surface EMG over a long period of time. With recent developments in the field, these 
electrodes are coming into age. The difference between sEMG and int iEMG detection 
is the volume conductor that separates the muscle fibres from detection electrodes. In 
Intramuscular EMG effect of the volume, the conductor is limited and the action 
potential of individual motor units can easily be identified from the interference signal 
as shown in Figure 1.1. In the case of surface electrodes, this effect is diminished 
owing to the severe low pass filtering and diffusion due to the presence of a volume 
conductor. This effect significantly reduces the upper-frequency limit of surface EMG 
to 500 Hz from 2.5 KHz of intramuscular EMG.   

In contrast to sEMG, iEMG can detect signals from small as well as deep muscles 
thus providing localized information. Hence, it increases the information to control a 
prosthetic device (McDonnall et al.,  2012, McDonnall et al., 2017). Furthermore, 
implanted intramuscular EMG electrodes may provide high inter-day repeatability, 
multiple and independent channels, a stable and robust signal source that has limited 
influence by factors such as electrode shifts, skin impedance and precipitation (Merrill 
et al., 2011, Basmjian et al., 1985). In our studies, iEMG signals recorded by not 
targeting any specific muscle. 

 

Figure 1.1 Untargeted intramuscular EMG signal acquisition from forearm flexor muscles. 
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CHAPTER 2: STATE-OF-THE-ART 
MYOELECTRIC CONTROL 
In the passages below growth in the area of myoelectric control are explained in detail.  

2.1 Direct control and its limitations 

Three distinct generations in myoelectric control can be formed keeping in view the 
technological advancements over the years. The first generation comprised of 
ON/OFF control scheme with a constant speed or actuation rate. This technique is 
referred to as crisp control, bang-bang or binary control (Reiter, 1948). The second 
generation offered a threshold regulation on a large-scale, state machine, signal 
amplification, proportional control, and the adjustment of muscle contraction rate. 
This system takes out the control information from the entire EMG signal based on a 
calculated estimate of the amplitude (Dorcas et al., 1966) or the rate of change 
(Childress et al., 1970) of the EMG signals. 

The current clinical standard for upper-limb EMG based prosthetic control is based 
upon amplitude-based dual site control. Dual-site control is commonly used for 
patients with trans-radial limb loss. In this system, separate electrodes are used for 
paired activity from antagonistic muscles (i.e. wrist flexor and wrist extensor). When 
more than two degrees of freedom (DOF) are involved, a mode switch is used. This 
switch allows the same electrode pair to be used to control numerous functions. 
Switching in mode is performed by a brief co-contraction of the muscle or by a switch 
to toggle between different functions of a prosthesis (Parket et al.,1985, Williams, 
1990). Even though these control systems, based on thresholds or direct control, have 
been a clinically and commercially viable option for EMG prosthetic devices, they do 
not provide intuitive and reliable device control for multiple DOFs (Micera et al., 
2010). 

More natural control of a prosthetic device is required. Ideally, taking independent 
EMG signals from several sites should resolve this issue but it does not. Taking 
independent EMG signals is hard because of phenomena such as EMG crosstalk and 
the difficulty in activating an individual muscle by the user. Due to these drawbacks, 
computational models are required to extract sufficient discriminative information 
between tasks. 

To the author’s best knowledge, all leading industrial developers of myoelectric hands 
Ottobock (Germany), Shanghai Kesheng (China), LTI (USA), Motion Control (USA), 
RSL-Steeper (U.K.), and Touch Bionics (USA) use proportional control as an option 
although this is not confirmed through scientific literature. However, surveys on the 
use of these prostheses uncover that 30%–50% (Atkins et al., 1996, Biddiss et al., 
2007) of amputees do not use their prosthetic limb regularly, due to its low 
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functionality, poor cosmetic appearance, lack of sensory feedback, and low 
controllability. 

2.2 Pattern recognition  

The third generation includes programmable microprocessors granting an infinite 
range of adjustable myoelectric parameters (Oskoei et al., 2007). Microprocessor 
based applications in myoelectric control are growing rapidly which not only benefits 
functionality but is cost-effective as well. It also employs advanced techniques of 
signal processing hence allowing complex signal filtering. This results in increased 
responsiveness. More importantly, it accommodates PR-based control schemes 
thereby increasing the variety of control functions and improve robustness. These 
techniques assume that a specific muscle generates repeatable EMG signals. 
Following are the steps involve in any PR technique shown in Figure 2-1. 

2.2.1 Pre-Processing  

Pre-processing of EMG signals is the first step in a PR in which signals are filtered 
after being recorded from the selected muscles. The power spectrum of signals can be 
utilized to set the band limits. As it is generally admitted that, spectra of surface and 
intramuscular EMG signals are scattered within a range of 20–500 Hz and 100 -1500 
Hz respectively (Merletti, 1999, Phinyomark et al., 2012, Boostani et al., 2003). 
Different filter types (Butterworth, Chebyshev etc) with low and high pass cut off 
frequencies are generally used in this step. 

2.2.2 Segmentation 

Segmentation of the EMG signal is the second step after filtering of the raw signals 
with analogue and digital filters. EMG signals are segmented into a set of overlapping 
windows. It is an important step as signal stationarity varies depending upon the 
window size and contraction type (static or dynamic) (Thongpanja1 et al., 2013). If 
the assumption is of having 80% stationary signal, then the window size of 250 ms or 
lesser is considered suitable for static contractions. A window size of 250ms or lesser 
is considered suitable for static contractions (Thongpanja1 et al., 2013).  

2.2.3 Feature extraction 

In this part, information about signals is extracted from the overlapping windows. 
Generally, numerous sets of features are extracted in time, frequency, and time-
frequency domains to scrutinize the information of the myoelectric signals. Time 
domain (TD) features are the most commonly used in EMG control due to their 
simplicity of computation and because they are relatively easy to implement and do 
not require signal transformations. Combining a relatively stable and robust time 
domain parameters may significantly improve the classification performance without 
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raising computational complexity (Zardoshti-Kermani et al., 1995).  Features such as 
Zero Crossings (ZC), Slope Sign Change (SSC), Willison Amplitude (WAMP) and 
Myopulse (MYOP) and Cardinality (CARD) are commonly computed via a threshold 
value to reduce the impact of background noise. Selection propriety in representative 
features has been investigated in several studies. However, only a few have examined 
the impact of optimum threshold on classification accuracies. It was seen in most 
studies that threshold values for features were ignored or fixed values were used. 
Kamavuako et al., 2015 in a study evaluated threshold effect of ZC and SSC on feature 
space and classification accuracies for surface recording and it was found that 
performance of a PR based system can be improved by using optimum threshold 
values for each feature. Some researchers may include feature reduction or feature 
selection step between extraction and classification, depending on the number of 
features extracted. 

2.2.4 Classification 

In the classification step, a set of features that are extracted in the feature extraction 
step are used for characterization of multiple classes (Hargrove et al. 2008). Variety 
of PR techniques have been used in a variety of industrial research applications. 
However, despite the long tradition of PR techniques, there is no consensus on a 
technique which is most suitable for all scenarios. In the field of myoelectric 
prosthesis control, LDA is the most widely used classifier as its application with both 
offline and online control has been demonstrated by numerous studies (Bellingegni et 
al., 2017, Simon et al., 2011, Young et al., 2014). 
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Figure 2.1: Block diagram of different steps involved in PR based myoelectric control including 
EMG signal acquisition, feature extraction, and classification. 

2.3 Sequential control 

Sequential control based on either Proportional or PR based techniques can drive only 
one DOF at a time. Multiple DOFs are sequentially controlled via direct control, 
requiring a cumbersome process of mode switching initiated by co-contractions. 
Plenty of research has been devoted to direct control of many DOFs via classification-
based approaches (Scheme et al., 2011). The reported accuracy in these studies was 
high and the factors affecting the control schemes over time under real-world 
conditions were highlighted (Fougner et al, 2011, Hahne et al., 2012). Yet, most PR- 
based methods can manage only one task at a time, preventing natural control of hand 
motions. This also initiates additional cognitive load in planning the preconceived 
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motions on amputees. Recently some studies showed, using the technique of 
classification based on parallel classifiers for multi-DOF control could provide 
intuitive control to amputees compared to the use of one classifier (Geng et al., 2013, 
Young et al., 2013). However, higher real-time combined classification error was 
reported. 

In literature, pattern matching techniques demonstrated the ability to steer multiple 
DOFs intuitively than conventional direct control (Kuiken et al.  2016, Wurth et al., 
2014).  Although pattern matching schemes have reported higher accuracies (> 95%) 
in the literature but these schemes were confronted by many issues such as position 
of the electrodes, stability of the electrodes, adaptation over time and muscle fatigue 
(Hargrove et al., 2006, Scheme et al., 2010, Young et al., 2011). Similarly, a stable 
set of features reduces the impact of electrode location shift and varying effort level 
on classification by 16% (Tkach et al., 2010). Fougner et al., 2011 studied the impact 
of same hand motions in space at different angles on EMG pattern recognition. Results 
depicted strong dependence of EMG classification accuracy with limb position. It was 
recommended to develop a training strategy accounting for multi-position use. Other 
than that, the performance of this approach has also been affected in terms of 
controllability by environmental conditions (temperature, skin electrode impedance 
such as changes in electrode-skin impedance, inter-electrode distance and 
psychological factors (Hargrove et al., 2006, Scheme et al., 2010, Young et al., 2011, 
Young et al., 2012, Tkach et al., 2010, Fougner et al., 2011). Because of these 
constraints, only one solution based on this approach has been available commercially 
(COAPT complete control ® system). 

2.4 Simultaneous control 

As compared to other approaches, a limited number of studies has been done on 
extending pattern recognition control with respect to direct control of multiple DOFs. 
Following two methods were investigated in these studies.  

2.4.1 Simultaneous control based on PR 

Classification-based schemes divide movement intent into a definite set of “motion 
classes,” involving single DOF activity, multiple simultaneous DOFs, or no DOFs (a 
rest state). Statistical PR methods have been performed to concurrently and 
independently regulate control of two DOFs. However, this resulted in seamless 
transition velocity mappings between single-DOF- and multi-DOF movements 
(Wurth and Hargrove, 2014). This approach has provided the ability to isolate single 
DOFs with path efficiencies like sequential control methods. 

Targeted muscle reinnervation (TMR) surgery is another technique to re-establish 
independent control sites for amputee having Tans humeral, forequarter and shoulder 
disarticulations. (Kuiken et al., 2009). The surgical technique redirects residual nerves 
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to the residual muscles having no biomechanical function after amputation. After 
typical surgeries for transhumeral (Dumanian et al., 2009) or shoulder disarticulation 
(Kuiken et al., 2004) amputees, up to four at least four independent myoelectric 
control sites were utilized to provide simultaneous control of 2 DOF (Kuiken et al., 
2004, Miller et al., 2008). Mode switching is not required after TMR with the benefit 
of reduced crosstalk. Although TMR is growing in popularity, only a few amputees 
have had TMR surgery.  

At present, direct control is implemented for simultaneous activation of several DOFs 
with only amputees having TMR surgery. Recently (Hargrove et al., 2017) compared 
pattern recognition and direct control in a first home-based trial for trans-radial 
amputees who had TMR in a balanced randomized cross-over study. The outcome of 
the investigation shown that pattern recognition is a durable option and has functional 
advantages over direct control. Several other research studies have investigated the 
same prospect of providing simultaneous control to subject without going TMR 
surgery (Muceli et al., 2012, Cipriani et al., 2011, Baker et al. 2019). Average 
classification accuracies were 46% including individual and combined motions. 

2.4.2 Simultaneous control based on regression 

Regression techniques have been studied recently to investigate independent 
proportional and simultaneous control. The major difference to non-linear 
classification-based approach is that a regression model does not determine a  definite 
class but alternatively, a continual output value is approximated for each DOF. This 
scheme provides simultaneous and proportional control independently and can 
dispense intuitive control. Researchers have studied both linear (Hahne et al., 2014, 
Jiang et al., 2014b, Smith et al., 2015a) and nonlinear (Jiang et al., 2012, Hahne et al., 
2014, Kamavuako et al., 2012, Ameri et al., 2014, Ngeo et al., 2014, Muceli and 
Farina, 2012) means of mapping EMG recordings. Real-time analysis of these has 
though focused on linear methods and is mostly motivated by the motor control 
concept of muscle synergies (Jiang et al., 2009, d'Avella et al., 2006). (Jiang et al., 
2014a, Jiang et al., 2014b, Smith et al., 2015a) has successfully demonstrated this 
method of simultaneously controlling different motions in real-time tests. (Jiang et al., 
2014a) non-negative matrix factorization (NMF) which was used to extract low-
dimensional neural signals. These signals were translated by the user into a kinematic 
variable. The comparison was also drawn between offline and online scenarios using 
above-mentioned control strategy with two conventionally used control algorithms. It 
was shown that although offline performance showed the difference between 
classifiers but in real-time, the subject was able to execute goal-oriented tasks 
similarly by using all three algorithms. Control. (Smith et al., 2015) compared linear 
regression simultaneous control with direct control using intramuscular wires. Motion 
specific training was also compared with the training of all movements, where all 
motions were used as inputs into regression model in which recordings not 
corresponding to the model’s motion type were labelled as 0% speed. It was also 
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found in an offline analysis that all-motion training had significantly better prediction 
accuracy than (R2, p < 0.001) one motion accuracy. 

2.5  User adaption over time as a factor affecting PR-based 
myoelectric control 

One of the main issues in the usage and design of myoelectric prostheses is that despite 
the significant improvement in technology, many amputees not adopt them as a 
durable solution. (Atkin et al., 1996, Biddiss et al., 2007). Three major issues were 
identified in the surveys-based studies (Atkin et al., 1996, Biddiss et al., 2007, Pons 
et al., 2005): “lack of robust intuitive control, insufficient feedback, and 
functionality”. Only prostheses available in the market and their usage by amputees 
were investigated in these survey-based studies. 

Recently, it has been shown that surface EMG recording on the day is relatively 
different from the recordings acquired from another day for the same subject under 
same experimental conditions, resulting in substantially low accuracies over time (He 
et al., 2015). Importantly, high classification error of up to 40% was reported when 
testing and training data was from different days. Results indicated that changes in 
EMG signal characteristics over the course of 11 days became gradually smaller (He 
at al., 2015). 

While many studies focus on other challenges mentioned above related to PR control, 
only a few studies have investigated time as robustness factor and its effect on intuitive 
control. Firstly, it is important as calibration of PR based myoelectric prosthesis is an 
important step before it can be used by an amputee, the question of whether training 
with respect to time could result in improve the performance or deteriorate with 
respect to time. Secondly, it is already discussed in the introduction that adaptive 
variations can occur in the neural functions in response to training. Question is 
whether these adaptive changes in neural function has some effect on the performance 
of PR control. Studies performed in the PhD project will help us to answer this 
question and tell us more about optimum techniques with optimum thresholds for each 
type of surface and intramuscular based PR control.   

2.6 Summary of the chapter 

In this chapter, we have reported factors that affect PR based myoelectric control 
schemes. We discussed optimal signal processing techniques with a best-suited range 
of band filter for both sEMG and iEMG, the optimal window size for segmentation 
and most importantly feature extraction. These features extracted from sEMG or 
iEMG signals provide the basis for separability between classes. For high separability, 
selected features have to be represented as distant as possible and with minimum 
interclass variability. To obtain the best out of these features, (Hudgins et al., 1993) 
suggested that threshold values must be contained in the computation of two-time 
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domain features (ZC and SSC). Similarly, in any PR based control strategy, reliability 
and efficacy of pattern matching algorithms are of extreme importance as the 
electronic module of the prosthesis is implemented on low performance embedded 
systems. So, it is important to consider optimum classification techniques before 
implementing it in real-time especially if considering for long term solution. LDA is 
the most extensively employed classifier in the studies associated with PR based 
myoelectric due to its simplicity and low computational load. 

All the studies referred in  Section 2.2 have investigated factors which are affecting 
PR based myoelectric control in offline settings. There is a lot of debate on the 
evaluation of  PR based control strategies in offline or online settings. Although 
offline evaluation is a useful performance metric, studies have shown that it is not a 
good representative of usability (Bellingegni et al., 2017, Ortiz-Catalan et al., 2013). 
It has recently also been reported that results from offline and online evaluations are 
only loosely correlated (Lock et al., 2005, Hargrove et al., 2007 ).  Researchers have 
worked also on various approaches in real-time settings to demonstrate the usability 
of myoelectric control but in acute settings only. (Choi et al., 2009, Rosenberg et al., 
1988, Kuiken et al., 2014, Matrone et al., 2012, Smith et al., 2014, Kamavuako et al., 
2014). Therefore, it has not been established how real-time performance will be 
affected by different train-test strategies and their performance over time. Secondly, 
any training model based on the data from short duration may not be representative of 
better clinical usability. 
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CHAPTER 3: THESIS OBJECTIVES 
In a PR based myoelectric control, feature extraction is an important step. To the best 
of my knowledge, most of the methods which utilized TD features require threshold 
values were being extracted without reporting their threshold value. So, the question 
is 1) To what extent threshold values affect the time domain features and their 
combinations in surface and intramuscular recordings?  This question was answered 
in study I, by finding the effect of a threshold on each feature and combined the effect 
of different features with an optimal threshold in sEMG and iEMG recordings.  

Although in the literature it has been demonstrated that few pattern matching 
algorithms have a recognizable edge over others based on their performance and 
computational load in offline and online settings. Almost, all these studies focused on 
the effectiveness of features sets extracted from the time domain, frequency domain 
or time-frequency domain representations. But the performance of classifiers based 
on time as the robustness factor was not investigated in the literature. Selection of an 
efficient and reliable classifier for implementing them in a low performance 
embedded system can be crucial especially if considering for long term solution. In 
addition to this, from an academic point of view, the most significant drawback of the 
current state of the art is that only very little studies have been conducted in a setup 
close to clinical practice and most of the studies are limited to one or two sessions 
only. Similarly, studies have shown that adaptive changes over time can occur in the 
neural functions (maximum neural firing rates, increased excitability, down-
regulation of inhibitory pathways etc) apart from the morphological changes in the 
muscles that will occur as other training effects in response to training (Aagaard et al., 
2001, Aagaard et al., 2002, Aagaard et al., 2003, Custem et al., 1998). 

So, in a pretext question arises, 2) What is the correlation between the performances 
of PR based myoelectric control schemes and time? To investigate this second study 
was performed with more trans-radial amputees and the concept of non-stationarity 
of sEMG and iEMG signals of PR control were studied over days with respect to 
training effect on amputees and able-bodied subjects. We investigated the optimum 
classification technique in a separate study in which multiday analysis was performed 
on both sEMG and iEMG recordings. We compared the performance of most widely 
used PR techniques over days and as well as across days. 

As many studies have investigated the offline and online evaluation of PR control, it 
can be concluded that both evaluation techniques are loosely correlated. So, in the 
backdrop of our previous studies question arises, 3) How do PR training strategies 
influence real-time performance over time? In the fourth study, the real-time outcome 
of multiple train-test schemes for the classifier over time was evaluated. 

Each designed study was aimed to reach specific objectives, which are provided 
below. 
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1. Identify the optimum threshold values for features in sEMG and iEMG recordings. 

2. Quantify the effect of time on PR based myoelectric control for sEMG and iEMG 
recording. 

3. Compare most widely used classifiers in PR based myoelectric control over days 
for sEMG and iEMG recordings. 

4. Quantify the effect of multiple train-test strategies on sEMG and iEMG over days 
with real-time testings. 

Study I: To identify the best threshold values for the calculated features.  Best 
performing threshold values were selected from the set of applied range (R = 0:0.02:6) 
times the average root mean square of the baseline. Classification performance was 
compared for using LDA and KNN as classifiers. 

Study II:  To estimate the time effect on classification performance of function 
motions of hand with different train-test strategies in, sEMG, iEMG and their 
combination (cEMG) using standard linear regression analysis. Correlation between 
data types was found by comparing their classification performance over time. 

Study III:  Six most widely used classifier were selected and compared longitudinally 
for sEMG and iEMG recordings separately. With-in day and between day 
classification performance were used as a performance measure.  

Study IV: To investigate the real-time performance of hand motions with different 
train-test strategies over time with classifier being considered best in the previous 
study for both surface and intramuscular detections separately. Effect of each train-
test strategy will explain the usability of both surface and intramuscular detection 
techniques. 
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CHAPTER 4: METHODS 
During the PhD project, four data sets were used in the PhD project. Each data set was 
recorded in accordance with the declaration Helsinki and approved by the local ethical 
committee (approval no: N-20160021). Pre-recorded data set was used in study I. 
Separate data sets were recorded and used for each study II, IV(I) and IV(II). Data set 
2 was for study II and III.  For detail methodology for each study, papers that are 
published in relation to these studies can be referred to.  

4.1 Data set 4: Used in study IV part II 

Participants: In total five able-bodied subjects took part in the experiment. None of 
the subjects had any medical condition related to muscles Average age of the subject 
participated in the experiment were 25.4 years. Written consent was taken from all the 
subjects participated in the study. The protocol of the experiments was in accordance 
with the Declaration of Helsinki and approved by the local ethical committee of the 
region of Northern Jutland (approval no: N-20160021). 

Data Acquisition: AnEMG12 amplifier by OT Bioellectronica was used to record 
iEMG signals which were then passed through a bandpass filter (100 – 900 Hz). These 
filtered analogue signals were converted into digital signals using 16 bits via NI-DAQ 
PCI-6221, sampled at 2kHz, and amplified with gain 5000. A band electrode was 
placed on the wrist contralateral to the dominant one as a reference. Figure 4-1 shows 
the setup for this experiment. Using three pairs of wire electrodes, iEMG was recorded 
from three different muscles, namely: Extensor Digitorum on Channel 1, Extensor 
Carpi Radialis Longus on Channel 2 and Flexor Digitorum Superficialis on Channel 
3. These in-vivo wire electrodes were made from 50 µm diameter Teflon-coated 
stainless steel. A 25-gauge sterilized needle was inserted in each muscle for each 
electrode. Precautionary measures against the risk of infection were thoroughly 
observed. Each subject’s skin was disinfected with 70% isopropyl alcohol before 
needle insertion. Sterile electrodes and gloves were used while handling the subjects. 
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Figure 4-1 Experimental setup including the position of the electrodes, insertion 
points and movements included in the study.  

The needle was inserted 10-15 mm below the muscle fascia and removed once the 
electrodes had been fixed inside the muscle. The insulated wires were unsheathed 
from the tip by about 3 mm to maximize the pickup area (Kamavuako et al., 2014). 
These pair of wires were to stay in each subject’s arms for five days.  

After the electrodes were inserted, a sterile bandage was taped on the wires leaving 
leeway for in vivo wire motion during extension and flexion and to allow connection 
to amplifiers. After each session, another bandage was placed to completely cover the 
wires before each subject left the room. This bandage served as a precautionary 
measure against electrode displacement. It was removed once the subject re-entered 
the room for further sessions. The bottom bandage was only removed upon the 
subject’s wish to withdraw or after all the sessions had been successfully completed. 

Experimental Procedure: The experiment had two main steps: firstly, data was 
collected to train a classifier and then the models trained on different sets of collected 
data were tested online. For the first step, subjects were required to produce a medium 
level contraction (to emulate routinely chores) from rest to motion. They were 
prompted by an image of a specific motion randomly generated by a customized 
MATLAB-based Graphical User Interface. For each motion, data were collected four 
times, six seconds each time. Between each sustained contraction, six seconds break 
was given. Data for four active motions (Wrist extension, Wrist Flexion, Hand open, 
Hand close) and one rest (no motion) were collected. After each set of five motions, 
a break of twelve seconds was given.  
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For the second step, a cursor at the centre of the screen was to be controlled by the 
hand. There were two axes on the screen: XX’ and YY’. The top YY’ represented 
Hand Closed while the bottom YY’ represented Hand Opened. Similarly, left XX’ 
represented Hand Flexion and right XX’ represented Hand Extension. These four 
targets were measured by Distance (D) and Width (W). To be considered a successful 
movement, the cursor had to hit the target and remain at it for one second. The entire 
experiment spanned at five days. On each day, three types of online tests were carried 
out as shown in Figure 4-2. Firstly, within day training and testing of Artificial Neural 
Network (ANN) was denoted by WDT row in the table. BDT represents the online 
test in which the training data of the previous day was used to test the data of the 
present day. Lastly, the training data of all the previous days was used to test the 
present-day data in CDT. Three sessions of testings were performed per day. In which 
each motion was tested 18 times in all three sessions and 6 times per session. 24. Thus, 
24 targets for four different motions were to be reached per session. 

  

Figure 4-2 Scheme of an experiment in Study IV part II. 
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4.2 Data analysis 

 A 200ms overlapping window with an increment of 50ms was used to segment the 
steady-state part of four seconds of the data from every six seconds recorded signal. 
Six features were examined, namely: Mean Absolute Value, Cardinality, Waveform 
Length, Zero Crossings, Willison Amplitude and Slope Sign Changes. ANN was used 
as an offline and online training and testing classifier. The offline configuration was 
simulated in GUI such that it had a fixed number of neurons in the hidden layer. A 
profile specific to each subject was created in which the subject’s calibrated signals 
were stored. The trained ANN was subjected to Fitts’ law to classify the cursor-
controlled hand gestures.    

During the implementation of Fitts’ law, participants were asked to move the cursor 
from rest position (origin of the axes) to a random target at a distance (D) and width 
(W) from the origin. Upward movement of the cursor represented an open hand, the 
downward movement represented a closed hand, left represented wrist flexion while 
the right movement represented wrist extension. Based on the distance D and width 
W from the origin, each target’s index of difficulty (ID) was calculated. Various 
combinations of target distances and widths calculated by Equation (1) are tabulated 
in Table 2. While testing in real-time, subjects were required to remain at a target for 
a dwell time of one second for the movement. Motion considered unsuccessful if the 
cursor remained in the target for less than one second [Gusman et al., 2017, Wruth et 
al., 201425-26]. Similarly, if the subject was unable to hit a target after 15 seconds of 
the cue, the motion was considered unsuccessful and the cursor was moved back to 
the origin. To evaluate real-time system performance: path efficiency (PE), overshoot 
(OE), throughput (TP), and completion rate (CR) were examined as four performance 
parameters. 

𝐼𝐼𝐼𝐼 = log2 �
𝐷𝐷
𝑊𝑊

+ 1� (1) 

Table 4-1: Description of  performance metrics. 

Performance 

metric 

Description 

Throughput  Throughput (TP) is the ratio between the index of difficulty (ID) and 

the time taken (in seconds) to reach the target 

𝑇𝑇𝑝𝑝 = 𝐼𝐼𝐼𝐼/𝑀𝑀𝑡𝑡  (Fitts’, 1954) 
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Path 

Efficiency  

Path Efficiency (PE) is calculated by the distribution of the straight-

line distance over the travelled distance It defines the quality of the 

control system.  

 𝑃𝑃𝐸𝐸 = 𝑆𝑆𝐼𝐼/𝐴𝐴𝐼𝐼 (William et al., 2008) 

Over Shoot Overshoot is defined as the ability to remain on the target. It is 

calculated by dividing the number of events where the subject 

reaches the target but fails to remain at it for the dwell time of 1 

second divided by the total number of targets.  (William et al., 2008) 

Completion 

Rate 

Completion Rate computes the percentage of successfully completed 

tasks within the time limit. (Simon et al., 2011) 

Offline classification performance parameters were computed using the attained data. 
The training strategies were like the ones applied for online classification. Error ij was 
calculated by dividing the number of times the system failed to classify or 
misclassified the target with the total number of classifications.  Between-day 
classification error (BCE) was computed by using the training data of the previous 
day and the testing data of the present day. Errorij was calculated by day i training 
data and day j testing data. Within-day classification error (WCE) was computed by 
using training and testing data of the present day. Errorij was computed by 
implementing two-fold validation. Combined-day classification error (CCE) was 
calculated using training data attained on all former days and present-day testing data. 

Results were descriptively compared to assess the overall performance of the offline 
system based on classification error. The relationship between the index of difficulty 
and completion time was assessed to examine the feasibility of Fitts’ law for online 
testing. The attained data was fit into the computer-based linear model. To examine 
how well it fits the data, R2 coefficient of linear model was used. Based on training 
strategies, performance metrics for the online system were computed and compared. 
Results were calculated and demonstrated as mean ± standard deviation.  
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CHAPTER 5: MAIN FINDINGS  
5.1 Study I 

5.1.1 Single feature evaluation 

Results showed that classification error (CE) obtained from sEMG and iEMG were 
not significantly different (P=0.99). Significant difference (P=0.006) was found 
between features, with WAMP (0.153 ± 0.063) and CARD (0.161 ± 0.066) 
performing significantly better than SSC (0.21 ± 0.078. On average it was found that 
KNN (0.154 ± 0.063) performed significantly (P<0.001) better than LDA. Figure 5.1 
showing the interaction between types of EMG and classifiers ((P = 0.047) and also 
between classifiers and features(P = 0.043). It was found that classifiers and features 
depend on the type of EMG signals.  

 

Figure 5-1: Classification performance of all features for both A. sEMG and B. iEMG with 
respect to threshold values R.  



 

40 
 

5.1.2 Adding MAV to each single feature 

The performance of the two features was investigated in the second step of the study 

The effect of Figure 5-2: Classification performance of MAV feature combined with each 
feature with respect to threshold values for both sEMG (dashed line) and iEMG (plain line) 
using LDA and KNN. 
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increasing the value of the threshold for each feature combined with MAV is 
represented in Figure 5.2. Both classifiers showed that all features are threshold 
dependent. The result showed that for sEMG low threshold value is required for 
WAMP, CARD and MYOP while no threshold is required for ZC and SCC. A similar 
trend is observed for iEMG when using LDA as a classifier. Low threshold values 
may improve the performance of SSC and ZC when KNN is used as a classifier. 

5.1.3  Best combination of features 

This part of the study depicted the combination of best-performing features depending 
on their threshold values. Figure 5.3 shows the best performing combination for each 
EMG type and classifier when employing one to four features in the clockwise 
direction. Results suggest that for both sEMG and iEMG best performing features are 
different. 

 

 
Figure 5-3. Best performing features (in the group of one, two, three and four features) after 
comparing all features for both  EMG (surface and intramuscular) in LDA and KNN 
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5.2 Study II 

5.2.1 Within-day classification 

WCE for amputees and able-bodied with seven functional motions are shown 
represented in Figure 5.4. In amputees across days, combined EMG (7.8 ± 4.5%) was 
not significantly different from surface EMG (12.7.0 ± 6.2%, P = 0.5) and 
Intramuscular EMG (17.2 ± 11.3 %, P = 0.6). For both EMG types, on average WCE 
was 16.5 ± 8.2% (sEMG) and 20.2± 9.3% (iEMG) on first day, which reduced to 10.0 
± 5.6% (sEMG) and 15.9 ± 12.3% (iEMG) respectively. Combined WCE was 10.5 ± 
5.5% on the first day which reduced to 7.7 ± 4.4% on the seventh day. No interaction 
was found between EMG types and Days (P=0.2). In able-bodied, results exhibited 
that iEMG (8.3 ± 1.6 %) was significantly different  (P < 0.001) from sEMG (3.5 ± 
0.96 %) and cEMG (2.2 ± 0.3 %) across days.  
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Figure 5.4 Fixed lines are representing the linear regression model for surface (sEMG), 
intramuscular (iEMG) and cEMG along the course of seven days in amputees with SD. 

5.2.2 Correlation between residual limb and performance 

A close correlation was found between the length of residual limbs and WCE. In 
iEMG regression slope was significant F (1 ,5) = 58.71, P = 0.001, R2 (iEMG) = 0.94, 
95% CI [-1.74, -0.82] indicating improved performance in amputees have bigger 
stump Figure 5.5. A weak correlation was found for sEMG. 

 

Figure 5.5: Regression line representing the relationship between classification performance 
and the size of the residual limb. 

5.1.2 Between-day classification  

“BCE was computed from Df = 0 (training and testing of the classifier on the same 
day) to Df=6 (training on day one and testing on day 7) i.e. the difference between 
training and testing day was increased from 0 days to 6 days. Figure 5.6 shows the 
regression fit between BCE and Df (0-6) for EMG (surface and intramuscular) in 
amputee and able-bodied. The slopes with amputees were 3.6, 95% CI [0.42, 1.04] 
and 4.6, 95% CI [0.69, 1.16] for sEMG and iEMG respectively. The slopes for able-
bodied were 1.55, 95% CI [-0.02, 0.64] and 4.3, 95% CI [0.26, 1.45] for sEMG and 
iEMG respectively. The slopes for cEMG were 1.91, 95% CI [-0.06, 0.82] and 1.59, 
95% CI [0.14, 0.48] for amputees and able-bodied respectively.  Results indicated that 
performance continuously degraded as the time difference between training and 
testing day increased” (Waris et al., 2018). 
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Figure 5.6: BCE  for sEMG, iEMG and cEMG for amputees (right) and able-bodied on the 
(left) representing polynomial fit for Df= 0 to 6. 

5.3 Study III 

“Figure 5.7 showed the geometrical changes in feature space for first two principal 
components of three classes (Pronation, Supination, and Fine Grip) on day one, three, 
five and seven in one amputee subject. Three classes were used to exhibit changes in 
the genetic distance between populations in 2-dimensional embedding over time. PCA 
transformation ensures horizontal axis PC1 has the most variation, vertical axis PC2 
the second most. Factor scores for both components improved over time distinctly for 
all classes till days seven. On the first, a cloud of data (Pronation, Supination and Fine 
Grip) could be seen. Genetic distances between populations also increased by day 
seven as three classes could be seen as an individual class showing adaptation of 
subject over time. 
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Figure 5.7:  Surface EMG feature space representing two principal components for three 
classes Pronation ‘□’, Supination ‘◊’ and Fine Grip ‘*’ in an amputee. 

5.3.1 Within-day comparison 

Three-way repeated ANOVA test showed significant difference (P<0.001) between 
EMG types (surface, intramuscular and combined), Days (1-7), classifiers (TREE, 
LDA, SVM, NB, KNN, ANN) and their interactions ([Days * classifier], 
[Days*Type], [Type*Classifiers].  

Classifiers: No significant difference (95% of CI [-0.39 0,64], P = 0.97) was found 
between NB and SVM. The remaining classifiers were significantly different from 
each other. ANN was best and TREE was the worst on (95% of CI [17.20 18.24], P < 
0.01). Days: Day 7 was significantly better P<0.01 than the rest of the days, Day five, 
six and seven were significantly different from all other days. Day1 and Day3 found 
no significance between each other (95% of CI [-0.38 0.77], P = 0.94) and so as Day 
2 and Day 4 (95% of CI [-0.28 0.88], P = 0.70). Interactions between each factor 
(type*days), (type*classifiers) and (days*classifiers) found that type (combined 
ANN), day (seven) and classifier (ANN) was statistically better than any other type, 
day and classifier. 
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The results of WCE across all subjects: sEMG, iEMG and cEMG are summarized in 
Figure 5.8. Each group represents the performance of all classifiers on each day for 
seven consecutive days. 

 

Figure 5.8: WCE for all classifiers for all types sEMG, iEMG and cEMG averaged across all 
subjects. 
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On average, for all the classifiers, WCE reduced consistently for seven consecutive 
days. Multiple comparisons revealed all classifiers were significantly (P<0.05) better 
than Decision trees (WCE 26.43 ± 13.12% on the first day, 24.03 ± 11.48 % on the 
seventh day).   LDA and ANN outperformed (P<0.05) rest of the classifiers with error 
decreased consistently until day seven to 12.13 ± 8.98 % and 7.92 ± 6.16 % for LDA 
and ANN respectively. Classification accuracy improved over time as day six and 
seven were significantly better than day one to four. 

In iEMG, ANN outperformed (P<0.05) all other classifiers with WCE 10.27 ± 7.04% 
on the seventh day. Overall LDA and ANN showed a change of 6.3 % and 2.9 % 
respectively till seventh. Day seven was significantly (P<0.05) better than the rest of 
the days, implying learning and stabilization of the implanted electrodes. 

In combined EMG, attributes from the surface and intramuscular EMG were 
combined to analyse the overall change in the performance of different classifiers 
(Figure 5.8). By combining the attributes, significant improvement in WCE 
performance was seen in all classifiers with respect to the surface and intramuscular. 
All the classifiers were significantly different from each other for combined EMG 
expect KNN (10.75 ± 7.03%) and SVM (11.75 ± 7.03%, P=0.97). ANN in combined 
EMG outperformed all the classifiers implemented (P<0.05) with the lowest 
classification error 4.96 ± 6.34% for ANN until the seventh day. WCE for day five, 
six and seven were significantly (P<0.05) better than day one, two and three. Figure  
5.9 represents the average WCE for able-bodied and amputees”(Waris et al., 2018). 
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Figure 5.9 Averaged performance of each classifier across all days. 

5.3.2 Between day comparison 

ANOVA with factor  EMG types (sEMG, iEMG and cEMG) and classifiers (TREE, 
NB, KNN, SVM, LDA and ANN) revealed that combined EMG was significantly 
(P<0.001) better than sEMG and iEMG.  It was also found that  ANN performed 
significantly better (P<0.001)  than other classifiers Figure 5.10. 

Surface EMG: Comparison of BCE between all classifiers for surface EMG was 
lowest (21.8 ±2.1%) in ANN and it was significantly better than (P<0.05) all other 
classifiers. LDA as a classifier performed significantly better (P<0.05) than the KNN, 
NB, and TREE but not significantly different from SVM (95% CI [-0.64 7.1], P = 
0.14).  TREE classifier was found to be least effective in classifying motions with 
BCE (45.82 ± 3.72%). 

Intramuscular EMG:  It was found that classification accuracies of iEMG were 
lower than cEMG and cEMG averaged across all days.  ANN was significantly better 
than other classifiers. BCE of  LDA outperformed both TREE and NB significantly 
(P<0.001). Performance of LDA, KNN and SVM was statistically similar.  

Combined EMG: In cEMG, improved performance was observed in all classifiers in 
comparison to sEMG and iEMG. ANN on average  (14.37 ± 1.43 %) was significantly 
better (P<0.05) than the rest with lowest BCE.  cEMG had improved BCE effect on 
LDA  turned out to be second best in term of classification performance as it was 
significantly better (P<0.05) than the rest of the classifiers.  KNN was significantly 
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better (P<0.05) than TREE but not different from NB (95% of CI [-3.80 5.83], P = 
0.98) and SVM ((95% of CI [-0.89 8.74], P = 0.16). 

 

Figure 5.10:  Changes in BCE for all tested classifiers and EMG types (sEMG, iEMG and 
cEMG).  

5.4 Study IV (part I) real-time tests with sEMG 

5.4.1 Offline performance 

Results of the offline analysis revealed that training schemes were significantly  (P ≤ 
0.01) different and performance varied over days (P ≤ 0.01). Multiple comparison 
showed no significance (P = 0.55) between average WCE (0.98 ± 0.57 %) and BCE 
(1.55 ± 1.25%). Averaged WCE and BCE were significantly (P ≤ 0.01) lower than 
CCE (4.99 ± 1.63%). Classification performance of CCE improved over time but no 
significance.  WCE remained statistically the same over days Figure 5.11.  
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Figure 5.11: Offline Classification performance comparison between WCE, BCE, and CCE 
over a week. Star (*) indicate the case where there is a significant difference. 

5.4.2 Online performance 

It was found that completion time increased with the increase of index of difficulty 
for all train-test strategies (coefficient of determination R2 ≥ 0.91) representing a 
strong linear relationship between two parameters. This phenomenon indicates the 
efficacy of Fitts law. Table 5.1 shows the completion time with respect to IDs 

Table 5.1: Average completion time with respect to the index of difficulty for BDT, WDT and 
CDT. 

ID BDT WDT CDT 
1.81 5.5±1.3 5.1±0.7 4.9±0.2 
2.58 8.3±2.7 8.219±2.7 7.8±1.7 
3.46 8.6±2.8 8.5±2.5 8.3±1.5 
4.39 11.5±1.2 11.3±1.5 10.9±1.3 

A summary of all performance metrics per session across all days is provided in Table 
5.2. Table 5.2 represents the performance of all metrics per session averaged across 
all days. It was shown that CR decreased over sessions for both CDT and BDT. For 
WDT it remained statistically similar. 

Table 5.2: Session wise comparison of all performance metrics in all train test strategies (WDT, 
BDT and CDT). A significant difference in each session of performance metric was presented 
in star (*) in Table 5.2. 
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Within-Day Testing (WDT) 

 Session 1 Session 2 Session 3 
CR 94.42±4.09 93.17±3.64 95.08±3.35 
OS 14.86±4.14 (*) 11.84±6.01 11.35±5.25 
PE 86.86±1.75 87.50±2.70 86.69±2.51 
TP 0.41±0.02(*) 0.39.71±0.02 0.38±0.02 

Between Day Testing (BDT) 
 Session1 Session 2 Session 3 
CR 89.06±5.45(*) 86.56±5.53 83.13±6.50 
OS 14.26±4.27(*) 11.06±4.73 10.39±4.60 
PE 85.55±2.37 86.78±4.61 86.18±4.89 
TP 0.39±0.01(*) 0.39±0.01 0.36±0.02 

Combined Day Testing (CDT) 
 Session 1 Session 2 Session 3 
CR 99.79±0.29(*) 98.85±1.22 96.45±3.69 
OS 14.75±4.31(*) 10.61±4.45 10.38±4.79 
PE 87.03±1.31 86.93±1.01 88.55±5.03 
TP 0.41±0.01(*) 0.40±0.01 0.38±0.02 

 

Figure 5.12 represents the average performance of each train-test strategy and the 
overall comparison between all performance metrics. It was found that CR of CDT 
(98.37 ± 1.47 %)  outperformed significantly (P<0.01) than BDT (86.25 ± 3.46 %) 
and WDT (94.22 ± 2.74 %). No significant difference (P>0.3) was found between PE 
and OS. Throughput (0.40 ± 0.03 bits/s) of CDT was significantly better (P=0.001) 
than BDT (38.07±0.03 bits/s).  
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Figure 5.12: Comparison of all three train-test strategies with respect to all Performance 
metrics (A. Completion Rate (%), B. Overshoot (%), C.  Path Efficiency (%), D. Throughput 
(bits/s))averaged across all days. Stars (*) indicate the case where there is a significant 
difference. 

5.5 Study IV (part II) real-time tests with iEMG 

5.5.1 Online performance 

Intramuscular EMG based real-time test exhibited that completion time increased with 
the increase of index of difficulty for all train-test strategies (coefficient of 
determination R2 ≥ 0.90) representing a strong linear relationship between two 
parameters. These phenomena indicate the efficacy of Fitts law. Table 5.3 shows the 
completion time with respect to ID. 

Table 5.3: Average completion time with respect to the index of difficulty for BDT, WDT and 
CDT. 

ID BDT WDT CDT 

1.81 5.4±1.4 5.3±0.8 4.8±0.5 

2.58 8.4±2.6 8.2±2.7 8.0±2.4 
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3.46 8.6±2.7 8.6±2.5 8.4±2.4 

4.39 11.7±1.3 11.27±0.7 10.9±1.3 

 
Table 5.4. Session wise comparison of all performance metric averaged across all days. 

WITHIN DAY TESTING (WDT) 

 Session 1 Session 2 Session 3 

CR 90.3±10.5 88,5±10.2 88.7±11 

OS 15.6±8.5 14.5±8.6 15.2±9.1 

PE 83.4±3.2 84.4±3.3 82.7±3.6 

TP 38.1±1.8 37.7±2.6 37.6±2.4 

BETWEEN DAY TESTING (BDT) 

 Session 1 Session 2 Session 3 

CR 77.9±14.0 72.3±15.9 71.9±17.6 

OS 33.2±10.8 33.5±11.2 28.5±5.8 

PE 88.9±16.9 83.1±9.1 81.1±7,9 

TP 35.8±3.2 36.1±3.2 35.1±3,5 

COMBINED DAY TESTING (CDT) 

 Session 1 Session 2 Session 3 

CR 94.0±6.7 91.5±9.5 89.4±10.3 

OS 14.1±11.0 13.0±10.7 14.3±11.6 

PE 85.6±3.1 86.7±3.6 84.1±3.1 

TP 39.2±2.4 38.5±2.9 38.0±3.3 

 

Figure 5.13 represent the comparison between training-testing strategies based on the 
data concatenated for different days. Completion rate (91.6 ± 3.6 %) of CDT was on 
average higher than BDT (74.0 ± 5.8 %) and WDT (88.2 ± 3.6 %).  Difference 
between Path efficiency, Throughput, and Overshoot on average was low between 
strategies. 
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Figure 5.13: Comparison of all three train-test strategies with respect to all Performance 
metrics (A. Completion Rate (%), B. Overshoot (%), C.  Path Efficiency (%), D. Throughput 
(bits/s))averaged across all days.  
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CHAPTER 6: DISCUSSION 
In the start of this thesis, the nature of sEMG and iEMG recordings were presented in 
the context of multifunctional prostheses control. State of the art and challenges to 
were discussed as compliance of these devices are low for any type of myoelectric 
control. Lack of robustness and intuitiveness in previous methods were identified. 
Therefore, in this thesis, four studies were designed with a focus on PR based 
myoelectric control to investigate the robustness of these systems in a multiday 
analysis.  With the aim to advance the state of the art in PR based myoelectric control. 

6.1 Effect of optimum threshold values of features 

Among various available combinations of feature sets, TD   features (ZC, MAV, 
RMS, SSC, WAMP, MYOP and CARD etc ) are commonly used. Some features 
require threshold values to lower the influence of the background noise (Zardoshti-
Kermani et al., 1995). Most of the studies using these didn’t report threshold values 
or applied predetermined threshold values which may have been too high resulting in 
degradation of the discriminative power of the threshold based features. In the first 
study, these features (ZC, SSC, WAMP, MYOP, and CARD) were studied 
individually for the range of threshold values, in combination and performance 
comparison was drawn between sEMG and iEMG. 

Each feature investigated individually. As it was shown that MAV value provides the 
most discriminative information of signal for classification (Phiyomark et al., 2013). 
This statement didn’t prove right in our study as other features performed better than 
MAV (Figure 5.1) when the threshold is optimized. It was also seen that each 
participant in the experiment has a global minimum supporting the initial suggestion 
made by (Hugdgin et al., 1993). Interestingly sEMG and iEMG recordings in 
comparison showed different features which performed optimally when the threshold 
was optimized. When compared in pairs, for sEMG it was found that WAMP and 
MYOP were the feature pair with the lowest error. For iEMG, WL and SSC showed 
the optimum performance.  This showed that in the real case, both sEMG and EMG 
can be combined to excerpt more discriminative information from the signal. LDA as 
a classifier showed the outcome of each feature with respect to the threshold value is 
similar between the surface and intramuscular. The improved performance was seen 
in for low threshold values when tested to iEMG with KNN, this represents that KNN 
or other non-parametric classifiers can dominate LDA when the boundary is highly 
non-linear. So, the selection of an optimal classifier whose performance remained 
robust for both surface and intramuscular EMG is essential. 

6.2 Performance over time 

Recent studies have shown that the performance of PR control deteriorates 
significantly over time when the classifier is trained once for sEMG(He et al., 2015, 
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Chen et al., 2013, Amsuss et al., 2014). However, it was still not known that the 
classifier can retain its performance if it is calibrated on daily basis or not and can its 
performance be improved over time if the classifier is trained on combined data from 
all previous days. Secondly, how the performance of these training schemes will affect 
iEMG recordings. So, in the second study, the performance of EMG pattern 
recognition was quantified by comparing classification accuracies over seven days to 
assess the learning characteristics of users with sEMG and iEMG. 

Results from trans-radial amputees exhibited learning during the experiment which 
helped them to produce discriminative contractions. This learning augmented on 
succeeding days of training and testing. The performance of sEMG and iEMG were 
statistically similar.  When both types of EMG were combined, the average WCE was 
improved by 6.9% till the seventh day for 11 classes. Results indicate significant slope 
between WCE and days for sEMG, the average over all subjects indicates otherwise. 
This suggests that with daily calibration, daily performance remains the same. We 
anticipate that this adaptation process could improve further if the length of the 
experiment was increased.   

In Study I, we analyzed the changes in performance continuously for seven days as 
robust PR control is one of the main challenges for long term use. Although in case 
of amputees results of BCE were indeed poor when the classifier was trained on the 
first day tested on rest of the days, the error rate reduced continuously until last day 
indicating more and more coherence in signal characteristics over time due to 
learning. In amputees for combined EMG, the BCE between days 1 and 2 was 19.8% 
which reduced to 10.0% when training on the sixth day and testing on the seventh day.  
“This observation has an important implication on real-world myoelectric based on 
pattern recognition, which provides the possibility of reducing the level of system 
recalibration for prostheses training. Similar variations in BCE were observed in able-
bodied subjects but with a much lower level of error rate. The relatively large change 
in performance with amputees as compared to normally-limbed individuals may be 
attributed to a more substantial learning effect, as the level of training to perform 
required motions, most of whom were performing the targeted contractions for the 
first time since amputation. Consistent improvement in the performance was observed 
due to the neuromotor adaptation of the amputees in the form of learning.  Therefore, 
it is implied that changes in signal characteristics and performance were mainly due 
to the improved ability of the subjects to produce consistent EMG patterns for each 
movement” (Waris et al., 2018). 

6.3 Robust optimal pattern recognition techniques  

LDA is the most widely used classifier in studies related to PR based myoelectric 
control. It is believed to be most robust classifier when not being trained recurrently 
(Kaufmann et al.,2010) while other techniques are popular for benchmarks like high 
performance within a day, more stable to complex motion etc. It is difficult to 
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generalize as multiple studies have explored different aspects of PR based techniques. 
Type of amputation, stump size(Li et al., 2010, Li et al., 2017), feature selection 
(Rechy-Ramirez et al., 2017, Ahmad et al., 2009, Phinyomark et al., 2014) feature 
extraction (Phiyomark et al., 2014, Ahsan et al., 2011, Tkach et al., 2010) 
classification parameters (Chen et al., 2013, Chu et al., 2007, Boschmann et al 2009, 
Phinyomark et al., 2013, Englhart et al., 2005) and number of recruited subjects (Chen 
et al., 2013, Chu et al., 2007, Boschmann et al 2009) are some of the factors that can 
affect the overall outcome of a technique. But one factor which was missing in these 
studies was their performance over time, especially under variable real-world 
conditions. It was shown in study III that while many classifiers may exhibit similar 
classification accuracies over time, but their underlying confidence profile may be 
substantially different. It was suggested that how these classifiers behave over time 
may lead to the selection of a control scheme with characteristics that are more 
suitable for robust control. 

Results have indicated in amputees for WCE, NN performed significantly (P<0.05) 
better than all other adopted classifiers and its performance improved over time as a 
significant difference was found in performance between Day1 and Day 7 (P=0.014) 
for the surface, intramuscular and combine EMG. Performance of surface and 
intramuscular EMG in amputees found no significance for all classifiers (LDA 
P=0.54, KNN P=0.75, SVM P=0.54, TREE P=0.54, NB P=0.12, NN P=0.54) but in 
contrast, combined EMG acquisitions were significantly better(P<0.05) than the 
surface and intramuscular EMG for all classifiers. This implied that if myoelectric 
control system could interface both surface and intramuscular EMG signal, to date 
which has not been practical to use invasive electrodes for prosthetic control, can 
provide more robust and stable control with cross talk free signals providing very local 
information.  

Results indicated that combining the two EMG modalities had a positive effect on 
performance as it not only improves the information but also provides the local or 
global outlook to the attributes. 

.6.4 Patient-specific strategies 

Study II and III have shown that selecting an optimum set of motions may improve 
performance; such as significant improvements were seen in functional motions of 
hand such as the opening of the hand, wrist flexion and wrist extension and little to 
no improvement in performance was seen in grip motions. This class performance 
may vary with time allowing quantification of the degree of motion preference that is 
patient specific. Results showed that the degree of motion preference depends on the 
patient and that some motions are not preferred. This is clinically relevant to the 
patient’s specific adaptive systems. 
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6.5 Real-time effect of training schemes over time  

Historically researchers have quantified EMG PR performance by comparing 
classification accuracies of different pattern recognition algorithms in offline or in 
online settings. Most of these studies had used only short-term scenarios under one 
train-test scheme. However, the one-time train-test scheme is not a reliable measure 
to estimate real-time behaviour as it provides an ideal condition for reporting 
performance and can produce unrealistically repeatable contractions. In study IV (Part 
I and II), multiple train-test schemes were assessed over seven days in the context of 
real-time usability test using Fitts’ Law as it is well defined and well documented 
metric for the evaluation of motor control schemes. For the overall performance based 
on throughput and completion rate, two-way ANOVA revealed a significant 
difference between combined day testing (CDT), within day testing (WDT) and 
between day testing (BDT) in both parts of study IV. 

Overall out of three sessions performed per day, for all train-test combinations 
reduction in all performance metrics were observed until the third session. The 
outcome of the different methods over sessions within a day implies that EMG 
characteristics change, and the same motions may become uncorrelated over time 
leading to the need to recalibrate or retrain the classifier. So, in all train-test schemes 
classifier was trained on each day, which resulted in improved performance for all 
train-test schemes as no significant difference was found between days. 

6.6 Combined sEMG and iEMG based myoelectric control 

“Limitation of surface EMG suggests that combining a new control strategy by 
combining multiple channels from the surface and intramuscular EMG can increase 
the amount of information harvested from the body (Kamavuako et al., 2013). The 
combined effect of surface and intramuscular EMG could improve the performance 
of selected classifiers. iEMG recordings can provide independent control this can 
enable amputees to control multiple DOFs simultaneously. In case of sEMG, the 
downside of this simultaneous and proportional control is past pointing, isolating 1 
DOF targets and ballistic nature of movements during positioning (Smith et al., 2015, 
Smith et al., 2016). Since both acquisition types (surface and intramuscular) and their 
control schemes (sequential and simultaneous) have limitations, a control scheme 
based on both surface (isolate single DOF) and intramuscular  (provide simultaneous 
and proportional control of multiple DOF’s) could be devised for providing faster, 
intuitive and natural control. 

6.7 Limitations  

One major factor about the performance of intramuscular is related to the use of wire 
electrodes and their loose connections to the muscles. This is a limitation that may 
signify to generalize with care our results to all implantable systems. First, this 



 

59 
 

configuration caused wires to be pulled out and second, displacements in the 
implanted depth may have changed due to the pulling force of connecting cables. 
Therefore, we cannot guarantee that the implanted electrodes were measuring from 
the same area throughout the seven days of the experiments. This is a limitation that 
is worth mentioning because the results of future studies could be different. An 
efficient way of testing such a system would be to use wireless implantable sensors, 
but to date, they are not commercially available. Considering the specificity of the 
intramuscular channels, the reduction in the number of channels can result in poor 
classification performance for certain classes. These certain classes were affected due 
to the absence of electrodes in that anatomical location. However, it should also be 
useful to note that the removal of the surface EMG channels that correspond to the 
failed intramuscular EMG channels causes a correlated decrease in performance on 
the same classes”. 

6.8 Future perspectives 

Long term stability of techniques used for myoelectric control is a major issue. As of 
today, PR based algorithms and hardware for real-time control are available.  It was 
found in our results that, ANN was the best performing classier for all EMG types 
(surface, intramuscular and combined). “The comparison of BCE and WCE for the 
optimum classifier (ANN) revealed that increasing the amount of training data can 
significantly reduce BCE and might converge to WCE, however, this may require the 
use of deep networks s such as convolutional neural networks (CNN)”.  Such an 
approach can be tested on amputees for real-time tests in the future with an expectation 
that training of such a deep network on the big data from many days will enable the 
possibilities to capture the EMG natural variabilities of each motion and thereby limit 
the necessity for system recalibration. Secondly, such a network can be tested on raw 
data without the steps of filtering, data segmentation, and feature extraction.   

The concept of PR based approach is more appealing than other approaches because 
of patterns are actual natural representative of muscle behaviours before amputation. 
So, the use of these patterns is intuitive to the amputee and have the ability to control 
multiple DOF. But a PR based system is susceptible to more issues (electrode shift, 
doffing and donning) than a DC control. In a real case where amputee wants to put 
the prosthesis and go home and don’t want to have an extended and repeated session 
of training. A system can be devised, where both sequential control-based algorithms 
such as LDA, ANN and simultaneous and proportional control based on the regression 
model can be combined. As both controls have strengths and weaknesses. For robust 
and accurate positioning in single DOF targets, sequential control is a suitable choice. 
In case of multi DOF gross positioning and intuitive control simultaneous and 
proportional control is most suitable. Combination of both these controls for variable 
DOFs can be an interesting study in the future. 
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The noise-free and stable signal is strongly related to the recording method and source. 
The origin of the signal source impacts on how easy it is for the patient to yield the 
information needed for the given movement. PR based techniques or control can be 
designed to be more robust and noise free but still dependent on consistent and stable 
input. So, recording EMG signals intramuscularly can provide physiological 
appropriate locations for natural and stable control. Implantable electrodes 
(MyoNode, Ripple) can solve the problems of signals stability affecting PR based 
control. As results of both offline and online studies indicate that intramuscular can 
be used as an alternative to sEMG. These electrodes can be placed superficially, deep 
and in small innervated muscles to investigate the performance of PR control for an 
elongated period of time and to find the solutions of problems associated with surface 
electrodes. 
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CHAPTER 7: CONCLUSION 
Currently available myoelectric prosthesis lack intuitive and robust control over time 
mainly because these devices have limited DOF and independent controls sites 
making compliance of these devices low (Shenoy et al., 2008). PR based myoelectric 
has potential to have more robust multi-functional control.   In the PhD project, three 
important questions related to PR control were answered.  1) To what extent threshold 
values affect the time domain features and their combinations in surface and 
intramuscular recordings?  2) What is the correlation between the performances of PR 
based myoelectric control schemes and time? 3) How do PR training strategies 
influence real-time performance over time? were answered. Following were the 
conclusion of each study. 

1.    In study I, it was found that threshold values affect the time domain features and 
their combination in sEMG and iEMG recordings. For both types (sEMG and iEMG), 
best performing features vary. 

2.  In study II, it was found that trans-radial amputees learned to produce 
discriminative motions over days. Performance of sEMG and iEMG over days remain 
statistically the same. Between days performance degrades over days leading to 
system recalibration. 

3.    In study III, it was found that ANN was the most robust and stable classifier over 
days for both sEMG and iEMG recordings. 

4.    In study IV, for both real-time test of sEMG and iEMG using Fitt’s law, it was 
found from BDT and CDT, that difference between both train-test schemes was 
reducing indicating an adaptation of subject. This implies that if the classifier is used 
with an increased amount of data the performance of both schemes will be the same. 
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