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Abstract—This paper presents a modified dq impedance model
of the three-phase voltage source grid-connected inverter (GCI)-
grid system considering coupling effect between GCI part and
grid part for small-signal stability analysis. Steady-state terminal
voltage and current information of the GCI part which are
necessary in conventional dq impedance modelling methods are
calculated based on grid parameters, i.e., grid voltage and grid
impedance, and current references of current-controlled GCI or
power references of power-controlled GCI. In addition, effects
of dynamics of grid voltage and phase-locked loop (PLL) on
dq impedance characteristics of grid part are also investigated,
which enables the modified dq impedance model of grid part to
relate with that of GCI part. The modified dq impedance model
of the GCI part which takes the effects of grid voltage and grid
impedance into account need not know steady-state terminal
voltage and current information. In addition, the modified dq
impedance model of grid part may provide accurate stability
analysis during grid voltage changes. The insight of instability
mechanism of the GCI-grid coupling system may be facilitated
using the modified dq impedance models. Simulation results are
given to validate correctness of the proposed dq impedance model
of the GCI-grid system, and effectiveness of the dq impedance
model for stability analysis.

Index Terms—Coupling effect, dq impedance model, grid-
connected inverter, grid dynamics, stability analysis, terminal
voltage.

I. INTRODUCTION

Recently, renewable energies, such as wind power and
solar power, have been increasingly penetrating into existing
utility grid. Voltage source grid-connected inverters (GCIs), as
important interfaces, are widely used to transmit the generated
electricity into utility grid [1]. However, instability phenomena
can be triggered in various frequency ranges when undesired
impedance interaction between GCIs and weak grid happens
[2]–[4]. Impedance-based stability analysis methods for three-
phase AC systems have been proposed to investigate the
oscillation mechanism [5], where the key step is to establish
efficient impedance models of GCI part and grid part [6].

This work was supported by the ForskEL and EUDP project “Voltage
Control and Protection for a Grid towards 100% Power Electronics and Cable
Network (COPE)” (Project No.: 880063).

As for the impedance modelling of GCI part, phasor-
domain, sequence-domain and dq-domain impedance mod-
els have recently been developed [3], [7]–[14]. Frequency
coupling and non-linearity phenomena cannot be captured
by phasor-domain impedance model [4], [7]. In addition,
modelling procedure of sequence impedance model is rela-
tively complicated [11], [12]. On the contrary, non-linearity
of the GCI, e.g., power control loop and phase-locked loop
(PLL), can be captured by dq impedance model, and its
derivation procedure is relatively simple [3]. It’s also found
that the sequence-domain impedance model can be obtained
by applying simple matrix transformation on the dq-domain
impedance model [15]–[17]. Therefore, dq-domain impedance
model is superior to the other two impedance models from the
perspective of accuracy and complicity, and has been widely
used for stability assessment of power electronics-dominated
power systems [3], [13], [14], [18].

The dq impedance model of a GCI which consists of outer
power control loop, inner current control loop and PLL is
derived in [3]. It’s found that the dq impedance model is
influenced by operation points, e.g., duty cycle, dq axles
currents and terminal voltage magnitude. At steady state, duty
cycle and dq axles currents of the power-controlled GCI are
dependent on terminal voltage which is usually obtained by
running power flow [19]. However, only when the power
system is stable, simulation results of the power flow are
accurate. In addition, the procedure is time consuming [19].
On the other hand, terminal voltage of the GCI is dependent
on grid parameters, i.e., grid voltage and grid impedance
[20]–[23]. It means that the dq impedance model of the GCI
may be represented by grid parameters, and power flow can
be avoided. In addition, the grid parameters-dependent dq
impedance model of the GCI may facilitate understanding
and reveling the instability mechanism of GCI-grid coupling
system. Recently, the sequence-domain impedance model
of the GCI considering the effects of grid impedance and
frequency coupling is presented in [24], which shows that
the modified sequence-domain impedance is able to provide
accurate stability analysis compared with the conventional



impedance models which ignore the effects of grid impedance
and frequency coupling. Similarly, a single-frequency output
impedance model of the single-phase GCI which is derived
based on the multi-frequency principle is developed in [25],
which is able to capture the effects of grid impedance and
frequency coupling of the PLL. However, the effects of GCI
part on grid part impedance are not investigated in [24], [25].

As for impedance modelling of grid part, conventional
impedance modelling method assumes that its small-signal
model is not affected by GCI part and grid voltage dynamics
[3]. The dq impedance model can easily be calculated by
performing basic circuit series and parallel operations on grid
components, i.e., grid resistance, inductance and capacitance
[3]. However, in [22], it’s shown that the small-signal model
of grid part is affected by PLL parameters and operating point.
The control model of wind power plants and transmission line
electromagnetic dynamics are combined in a linear model. And
system stability is assessed by the open loop transfer function
of the linear system model [22]. The small-signal modelling
method of grid part paves a path to establish the dq impedance
model of grid part considering PLL dynamics and operating
point.

In this paper, the modified dq impedance models of GCI-
grid coupling system under both power control mode and
current control mode are presented. As for GCI part, terminal
voltage and current of the GCI are calculated based on
grid parameters, i.e., grid voltage and grid impedance, and
current/power references. Therefore, calculation of operating
point is not needed. In addition, grid dynamics can be reflected
in the modified GCI impedance model, which is able to
better understand how grid parameters influence dq impedance
characteristics of the GCI. As for grid part, an operation
point and grid voltage-dependent dq impedance model is
established, which can be more accurate than the conventional
grid impedance modelling method.

The rest of this paper is organized as follows. In Section II,
the small-signal model of the GCI part is established, based
on which the modified dq impedance model of GCI part is
derived. The small-signal model of the grid part is established,
based on which the modified dq impedance model of grid
part is presented in Section III. In Section IV, simulation
verification is performed. Finally, conclusions are drawn in
Section V.

II. MODIFIED DQ IMPEDANCE MODEL OF GCI PART

In this section, existing dq impedance models of the GCI
part are first reviewed, followed by explanation of the modified
dq impedance models.

A. Existing DQ Impedance Model of GCI Part

Fig. 1 shows the equivalent circuit model of single GCI
connected with weak grid. The GCI is under vector control in
dq reference frame, where d axis is aligned with the voltage
vector at point of common coupling (PCC), as shown in Fig.
2(a). The control system commonly consists of outer power
control loop, inner current control loop and PLL, of which
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Fig. 1. Equivalent circuit model of single GCI connected with weak grid.
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Fig. 2. (a) Control block diagram of the GCI in Fig. 1. (b) Small-signal model
of the GCI-grid coupling system.

the small-signal model of the GCI part has been derived
in [3], shown as the gray part in Fig. 2(b), where detailed
expression of each symbol can be found in [3]. The existing
dq impedance models without and with considering power
control loop have also been derived in [3], shown as (1) and
(2). Specifically, Gv

PLL and Gi
PQ are dependent on

−→
V s

PCC .
Gi

PLL and Gv
PQ are dependent on

−→
I s

g . Gd
PLL is dependent

on
−→
Ds. It can be seen that the dq impedance models of the

GCI vary with operating points
−→
V s

PCC ,
−→
I s

g and
−→
Ds (The

superscript s indicates that the symbol is represented in the
system reference frame whose d axis is aligned with voltage
vector at PCC.).

B. Modified DQ Impedance Model of GCI Part

According to Fig. 1,
−→
I s

g = Isg,d+jIsg,q and
−→
Ds = Ds

d+jDs
q

at steady state can be related by applying the Ohms’s law on
the filter inductance Lf and resistance Rf , shown as follows
[22].

1
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Vdc
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f
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Fig. 3. Phasor diagrams of the L filter.

For the GCI under current control mode, Ds
d and Ds

q can
be calculated based on (3), shown as follows.

Ds
d =

VPCC

0.5Vdc
+
Irefg,d Rf − Irefg,q Xf

0.5Vdc

Ds
q =

Irefg,d Xf + Irefg,q Rf

0.5Vdc
(4)

It can be seen from (4) that when Irefg,d and Irefg,q are given,
Ds

d and Ds
q are only dependent on VPCC and filter parameters,

i.e., Rf and Xf .
For the GCI under power control mode, Pref and Qref can

be calculated as follows.

Pref = V s
PCC,dI

s
g,d + V s

PCC,qI
s
g,q = VPCCI

s
g,d

Qref = V s
PCC,dI

s
g,q − V s

PCC,qI
s
g,d = VPCCI

s
g,q (5)

Isg,d and Isg,q can then be calculated as follows.

Isg,d =
Pref

VPCC

Isg,q =
Qref

VPCC
(6)

On the other hand, by substituting (6) into (4), Ds
d and Ds

q

can be calculated as follows.

Ds
d =

VPCC

0.5Vdc
+
PrefRf −QrefXf

0.5VdcVPCC

Ds
q =

PrefXf +QrefRf

0.5VdcVPCC
(7)

By applying the Ohms’ law on grid impedance Rg and Lg ,
voltage vector at PCC ~vsPCC can be calculated as follows.

~vsPCC = ~vsg +
−→
Z s

g
~isg =

−→
T ∆sg~v

g
g +
−→
Z s

f
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Fig. 4. Phasor diagrams of grid part.

cos(∆sg)− j sin(∆sg),
−→
T ∆sc = cos(∆sc)− j sin(∆sc). The

superscripts g and c indicate that the symbols are presented in
grid reference frame whose d axis is aligned with grid voltage
vector and controller reference frame whose d axis is aligned
with detected PCC voltage vector by PLL. The phasor diagram
of grid dynamics is shown in Fig. 4.

For the GCI under current control mode, at steady state, (8)
can be rewritten as follows.

V s
PCC,d = VPCC = Vg cos(∆sg) +RgI

ref
g,d −XgI

ref
g,q

V s
PCC,q = 0 = −Vg sin(∆sg) +RgI

ref
g,q +XgI

ref
g,d (9)

Solving (9), we have

∆sg = cos−1

√
V 2
g − (RgI

ref
g,q +XgI

ref
g,d )

2

Vg

VPCC = RgI
ref
g,d −XgI

ref
g,q +

√
V 2
g − (RgI

ref
g,q +XgI

ref
g,d )

2

0 = RgI
ref
g,q +XgI

ref
g,d −

√
V 2
g − (VPCC −RgI

ref
g,d +XgI

ref
g,q )

2
(10)

It can be seen from (4) and (10) that the two unknown
parameters VPCC and

−→
Ds are expressed by

−→
I ref

g and grid
parameters, i.e., Rg , Lg and Vg . By substituting (4) and
(10) into (1), the dq impedance model of the GCI under
current control mode is independent on VPCC and

−→
Ds, and is

explicitly expressed by
−→
I ref

g and grid parameters.
On the other hand, for the GCI under power control mode,

at steady state, (8) can be rewritten as follows.

V s
PCC,d = VPCC = Vg cos(∆sg) +Rg

Pref

VPCC
−Xg

Qref

VPCC

V s
PCC,q = 0 = −Vg sin(∆sg) +Rg

Qref

VPCC
+Xg

Pref

VPCC
(11)



It can be derived from (11) that

V 4
PCC + (2XgQref − 2RgPref − V 2

g )V 2
PCC ...

+(R2
g +X2

g )(P 2
ref +Q2

ref ) = 0 (12)

Solving (12), VPCC can be expressed by Pref , Qref and
grid parameters, shown as (13) at the top of the next page.
It can be seen from (6), (7) and (12) that the unknown three
parameters VPCC ,

−→
I s

g and
−→
Ds are expressed by Pref , Qref

and grid parameters. By substituting (6), (7) and (12) into
(2), the dq impedance model of the GCI under power control
mode is independent on VPCC ,

−→
I s

g and
−→
Ds, and is explicitly

expressed by Pref , Qref and grid parameters.

III. MODIFIED DQ IMPEDANCE MODEL OF GRID PART

In this section, the small-signal models of grid part under
different simplifications are first established, based on which
its different dq impedance models are derived.

A. Dynamics of Grid Voltage and PLL Ignored

In this case, ~vsg =
−→
0 and

−→
T ∆sc = 1. (8) can be rewritten

as follows.

~vsPCC =
−→
Z s

g
~isg (14)

(14) can then be linearized as follows.

∆vsPCC,d1 = Rg∆isg,d −Xg∆isg,q

∆vsPCC,q1 = Rg∆isg,q +Xg∆isg,d (15)

(15) can be represented in matrix form, shown as follows.[
∆isg,d
∆isg,q

]
= Z−1

g

[
∆vsPCC,d1

∆vsPCC,q1

]
(16)

where

Zg =

[
Rg + sLg −Xg

Xg Rg + sLg

]
(17)

It can be seen from (16) that the small signal relationship
between terminal voltage and terminal current of grid part is
only dependent on grid impedance.

B. Grid Voltage Dynamics Considered, and PLL Dynamics
Ignored

In this case, ~vsg 6=
−→
0 and

−→
T ∆sc = 1. For the GCI under

current control mode, (8) can be rewritten as (18).

vsPCC,d = Vg cos(∆sg) +Rgi
s
g,d + Lg

disg,d
dt
− ω1Lgi

s
g,q

vsPCC,q = −Vg sin(∆sg) + ω1Lgi
s
g,d +Rgi

s
g,q + Lg

disg,q
dt

(18)

The steady-state solution of (18) is shown as (10) which
can be perturbed and linearized as follows.

∆vsPCC,d2 = Rg∆isg,d −Xg∆isg,q −
(Xg∆isg,d +Rg∆isg,q)

A

∆vsPCC,q2 = Rg∆isg,q +Xg∆isg,d +
Xg∆isg,q −Rg∆isg,d

B
(19)

where

A =

√
(

Vg
Xgisg,d +Rgisg,q

)
2

− 1

B =

√
(

Vg
VPCC −Rgisg,d +Xgisg,q

)
2

− 1 (20)

By comparing (15) and (19), it can be seen that when
grid voltage dynamic is further considered, additional one
component is added to ∆vsPCC,d and ∆vsPCC,q , respectively.
Note that when Vg = 0, (15) and (19) can be related by

∆vsPCC,d2 = ∆vsPCC,d1 + j∆vsPCC,q1

∆vsPCC,q2 = ∆vsPCC,q1 + j∆vsPCC,d1 (21)

i.e., [
∆vsPCC,d2

∆vsPCC,q2

]
=

[
1 j
j 1

] [
∆vsPCC,d1

∆vsPCC,q1

]
(22)

(19) can be represented in matrix form, shown as follows.[
∆vsPCC,d2

∆vsPCC,q2

]
=

[
1 − 1

A
− 1

B 1

]
Zg

[
∆isg,d
∆isg,q

]
(23)

Then, (23) can be rewritten as follows.[
∆isg,d
∆isg,q

]
= Z−1g Gi

grid

[
∆vsPCC,d2

∆vsPCC,q2

]
(24)

where Gi
grid is defined as follows.

Gi
grid =

1

AB − 1

[
AB B
A AB

]
(25)

It can be seen from (16) and (24) that additional transfer
function matrix Gi

grid is added when grid voltage dynamic
is further considered. Therefore, Gi

grid can depict the effect
of grid voltage dynamics on small-signal relationship between
∆~vsPCC and ∆~isg . Note that the dq impedance model of the
grid part is not symmetrical anymore when further considering
grid voltage dynamics (A 2×2 matrix is symmetrical if the two
diagonal components are the same, and the two off-diagonal
components are opposite.).

The small-signal model of grid part in Fig. 1 can then be
established, as shown in the red dotted box in Fig. 2(b).

C. Dynamics of Grid Voltage and PLL Considered

In this case, vsg 6=
−→
0 and

−→
T ∆sc 6= 1. In addition, all

parameters are represented in grid reference frame. (8) is
rewritten as follows.

~vgPCC = ~vsPCCe
j∆gs = Vg + (Rg + jXg)(icg,d + jicg,q)ej∆gc (26)

Except Vg and Xg , all other components in (26) are regarded
as variables. Therefore, (26) can be linearized as follows.

∆vsPCC,d3 + j∆vsPCC,q3 + jvsPCC,d3∆2gs =

ej∆sc(Rg + jXg)(∆icg,d + j∆icg,q + j(icg,d + jicg,q)∆2gc) (27)



VPCC =

√√√√
RgPref −XgQref −

√
V 4
g + 4(RgPref −XgQref )V 2

g − 4(XgPref +QrefRg)
2

2
+
V 2
g

2
(13)

∆sc can be ignored. By comparing the real parts and imag-
inary parts of both sides of (27), ∆vsPCC,d3 and ∆vsPCC,q3

can be obtained as follows.

∆vsPCC,d3 = Rg∆icg,d −Xg∆icg,q − (Rgi
c
g,q +Xgi

c
g,d)∆2gc

∆vsPCC,q3 = Rg∆icg,q +Xg∆icg,d + (Rgi
c
g,d −Xgi

c
g,q)∆2gc

−VPCC∆2gs (28)

On the other hand, ∆2gc can be represented as follows [22].

∆2gc =
GPLL(Xg∆icg,d +Rg∆icg,q)

VPCC + (Xgicg,q −Rgicg,d)GPLL
(29)

where

GPLL =
KpPLLs+KiPLL

s2 +KpPLLs+KiPLL
(30)

where KpPLL and KiPLL are the proportional and integral
coefficients of the PLL controller. GPLL is actually the
transfer function from ∆2gs to ∆2gc [22], i.e.,

∆2gs =
∆2gc

GPLL
(31)

Then, it can be seen from (19) and (28) that by ignoring
PLL dynamics, i.e., GPLL = 1 and ∆~isg = ∆~icg , ∆vsPCC,d2

is the same as ∆vsPCC,d3. Similar with (24), (28) can also be
expressed in matrix form by substituting (29) and (31) into
(28).

To further illustrate the coupling relationship between the
GCI part and the grid part, coupling paths are shown in Fig.
5(a). The current or power generated by the GCI part enforces
the terminal voltage to change due to the dynamics of the
grid part. The changed terminal voltage further influences
the dq impedance characteristics of the GCI part via PLL or
power control loop. On the other hand, as shown in Section
III-C, the dq impedance model of the grid part is affected by
terminal voltage variation due to the PLL and grid voltage
characteristics.

Based on the established small-signal model of the
whole system in Fig. 2, system impedance model in dq-
domain can be established, as shown in Fig. 5(b), where
Zs modi(Vg, Rg, Lg) indicates that the dq impedance model
of the GCI part is dependent on grid parameters. Zg modi(Vg)
indicates that the dq impedance model of the grid part is
dependent on grid voltage Vg .

IV. SIMULATION VERIFICATION

In this section, the correctness of the established dq
impedance models of GCI part and grid part is verified
by simulation results in Matlab/Simulink. Furthermore, the
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(Power output)
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Fig. 5. (a) Coupling path between the GCI part and grid part. (b) Established
dq impedance model of the GCI-grid system in Fig. 1.

effectiveness of the established dq impedance models for
stability analysis is also shown.

A. Verification of Correctness of the Modified DQ Impedance
Model of GCI Part

1) Impacts of Xg , Irefg,d (Pref ), Irefg,q (Qref ) on VPCC: Table
I shows the circuit and controller parameters of the GCI in
Fig. 2(a). To simplify the verification procedure, only the GCI
under current control mode is considered here, whereas the
theoretical analysis of the GCI under power control mode can
also be performed in a similar way.

TABLE I
CIRCUIT AND CONTROLLER PARAMETERS OF THE GCI IN FIG. 1

Parameter Value

DC-link voltage Vdc 1150 V
Grid fundamental frequency f1 50 Hz
Filter inductance Lf 263 µH
Filter resistance Rf 0
Switching frequency fswit 2.5 kHz
Sampling frequency fsamp 2.5 kHz
Grid Vrms (phase-to-phase) Vg 575 V
Proportional gain of power controller kpPQ 0.0000549
Integral gain of power controller kiPQ 0.03294
Proportional gain of current controller kpi 0.000549
Integral gain of current controller kii 0.3294
Proportional gain of PLL KpPLL 8
Integral gain of PLL KiPLL 32
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Fig. 6. Impacts of Xg on VPCC and ∆sg. (a) Impact of Xg on VPCC . (b)
Impact of Xg on ∆sg.

Fig. 6 shows the simulation results of VPCC and ∆sg
with Lg varying from 0 to 14 mH with step size 1 mH,
i.e., Xg = ω1Lg varies from 0 to 4.396 Ω, when Rg = 0,
Irefg,d = 100 A and Irefg,q = 0. In addition, the theoretical
VPCC and ∆sg can be calculated by (10), i.e., VPCC =√
V 2
g − (XgI

ref
g,d )

2
=
√

469.492 − (31400Lg)
2 and ∆sg =

cos−1

√
469.492−(31400Lg)2

469.49 , which are also plotted in Figs.
6(a), (b). It can be seen that the simulation results highly agree
with the theoretical analysis results when Lg is smaller than
9 mH, which validates the correctness of theoretical analysis
results in (10). The counter-intuitive phenomenon that VPCC

decreases and ∆sg increases as Xg increases actually results
from the PCC voltage-based vector control [23]. If the GCI is
under grid voltage-based vector control, the increment of Xg

should lead to an increment of VPCC . Note that the simulation
results are not accurate when Lg is larger than 8 mH, since the
system becomes unstable under weak grid condition. It means
that steady-state point acquirement method based on power
flow simulation is not applicable when the grid is weak.

Fig. 7 shows the simulation results of VPCC and ∆sg with
Irefg,d varying from 100 A to 800 A with step size 100 A
when Rg = 0, Lg = 2 mH and Irefg,q = 0. In addition, the
theoretical VPCC and ∆sg can be calculated by (10), i.e.,

VPCC =

√
V 2
g − (XgI

ref
g,d )

2
=

√
469.492 − (0.628Irefg,d )

2

and ∆sg = cos−1

√
469.492−(0.628Iref

g,d )
2

469.49 , which are also plotted
in Figs. 7(a), (b). It can be seen that the simulation results
highly agree with the theoretical analysis results, which val-
idates the correctness of theoretical analysis results in (10).
It can also be seen that VPCC decreases and ∆sg increases
as Irefg,d increases. Similar with Fig. 6, the counter-intuitive
phenomenon also results from the PCC voltage-based vector
control. In addition, high active power level makes the system
unstable, and simulation results are not accurate anymore.

Fig. 8 shows the simulation results of VPCC with Irefg,q

varying from -400 A to 400 A when Rg = 0, Lg = 2 mH
and Irefg,d = 100 A. In addition, the theoretical VPCC can

be calculated by (10), i.e., VPCC =

√
V 2
g − (XgI

ref
g,d )

2
=√

469.492 − (31400Lg)
2, which also plotted in Figs. 8(a), (b).

It can be seen that the simulation results highly agree with the
theoretical analysis results, which validates the correctness of
theoretical analysis results in (10). Note that when under cur-
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Fig. 7. Impacts of Irefg,d on VPCC and ∆sg. (a) Impact of Irefg,d on VPCC .
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Fig. 8. Impacts of Irefg,q on VPCC and ∆sg. (a) Impact of Irefg,q on VPCC .
(b) Impact of Irefg,q on ∆sg.

rent control mode, reactive power injection does not influence
system stability, whereas the system stability will be influenced
under power control mode [14].

2) Impact of Xg on Zs dq: Since Zqq of the dq impedance
model plays an important role in low-frequency stability
assessment, Fig. 9 shows the Bode diagram of Zqq component
with Lg varying from 0 mH to 14 mH with step size 2 mH
when Rg = 0, Irefg,d = 100 A and Irefg,q = 0. It can be seen
that low-frequency impedance characteristic is influenced by
grid impedance. Specifically, Fig. 9(b) shows that phase angle
in low-frequency range increases as Lg increases.

B. Influence of GCI Part on the Modified DQ Impedance
Model of Grid Part

Fig. 10 shows the calculation results of 1
A and 1

B with
Lg varying from 0 to 20 mH with step size 1 mH when
Rg = 0, Irefg,d = 100 A and Irefg,q = 0 using (20), i.e.,
1
A = 1√

( 469.49
31400Lg

)2−1
and 1

B = 1√
( 469.49√

469.492−(31400Lg)2
)2−1

. It

can be seen that 1
A and 1

B are zero when Lg exceeds a certain
threshold value. We can derive from (16) and (23) that under
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Fig. 9. Impacts of Lg on Zqq of the dq impedance model of GCI part. (a)
Impact of Lg on Zqq . (b) Zoomed figure of phase angle diagram.
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weak grid condition, the modified dq impedance model of the
grid part can be simplified as the conventional dq impedance
model.

Fig. 11 shows the calculation results of 1
A and 1

B with Irefg,d

varying from 0 to 800 A when Rg = 0, Lg = 2 mH and
Irefg,q = 0 using (20), i.e., 1

A = 1√
( 469.49

0.628I
ref
g,d

)2−1
and 1

B =

1√
( 469.49√

469.492−(0.628I
ref
g,d

)
2

)2−1
. It can be seen that 1

A increases as

Irefg,d increases from 0 A to 750 A, and decreases as Irefg,d

increases from 750 A to 800 A. In addition, 1
B decreases to

zero quickly as Irefg,d increases. No that both 1
A and 1

B are zero
when enough high active current is injected.

Similarly, Fig. 12 shows the calculation results of 1
A and 1

B
with Irefg,q varying from -400 A to 400 A when Rg = 0, Lg = 2

mH and Irefg,d = 100 A using (20), i.e., 1
A = 1√

( 469.49
62.8 )2−1

and
1
B = 1√

( 469.49√
469.492−(62.8)2

)2−1
. It can be seen that both 1

A and

1
B are constant.
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Fig. 13. Bode diagrams of dq impedance frequency responses of GCI part and
grid part obtained by proposed dq impedance models and frequency scanning.
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Fig. 14. Time-domain simulation results and FFT of grid current when Lg = 2
mH and Cg = 60µF. (a) Time-domain simulation results. (b) FFT result.

C. Verification of Effectiveness of the Modified DQ Impedance
Model of the GCI-Grid Coupling System for Stability Analysis

Fig. 13 shows the Bode plots of the theoretically-derived
dq impedance models of GCI part using the proposed
model Zs modi and measured impedance frequency responses
Zmea

s modi. It can be seen that the Zmea
s modi highly agrees with

Zs modi. In addition, Bode diagrams of the theoretically-
derived dq impedance models of grid part using the proposed
model and measured impedance frequency responses of three
grid conditions, i.e., case 1: Lg = 2 mH and Cg = 60µF,
case 2: Lg = 5 mH and Cg = 150µF, and case 3: Lg = 13
mH and Cg = 390µF, are also plotted in Fig. 13. It can be
seen that high-frequency oscillation happens at 472 Hz (572-
100=472 Hz) under case 1. System is stable under case 2. Low-
frequency oscillation happens at 68 Hz and 32 Hz (50+18=68
Hz and 50-18=32 Hz) under case 1.

Figs. 14-16 show time-domain simulation results of grid
current and corresponding frequency spectrum under the three
grid conditions, which agree with the Bode plots in Fig.
13. The simulation results verifies the effectiveness of the
proposed dq impedance modelling method of the GCI-grid
coupling system for stability analysis.

V. CONCLUSION

This paper presents novel dq impedance models of GCI part
and grid part for stability analysis. As for the dq impedance
model of GCI part, steady-state operation point, e.g., duty
cycle, dq axles currents and terminal voltage is not required.
Instead, grid parameters, i.e., grid impedance and grid voltage



Fig. 15. Time-domain simulation results of grid current when Lg = 5 mH
and Cg = 150µF.
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Fig. 16. Time-domain simulation results and FFT of grid current when Lg =
13 mH and Cg = 390µF. (a) Time-domain simulation results. (b) FFT result.

are included in the modified dq impedance model of the GCI
part. The proposed dq impedance modelling method of GCI
need not run power flow to obtain steady-state operating point,
which may be not practical for unstable system. As for the
impedance model of grid part, conventional dq impedance
model is modified to consider the effects of dynamics of
grid voltage and PLL. Measured dq impedance models using
frequency scanning method highly agree with the modified
dq impedance models of GCI part and grid part, indicating
the correctness of the proposed impedance modelling method.
In addition, system stability characteristics can be predicted
by the modified system dq impedance model. The proposed
dq impedance model of the whole system may provide more
insights to reveal the oscillation mechanism than the conven-
tional dq impedance model where GCI part and grid part are
modelled independently.
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