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Time-Contrastive Learning Based Deep Bottleneck

Features for Text-Dependent Speaker Verification

Achintya kr. Sarkar, Zheng-Hua Tan, Senior Member, IEEE, Hao Tang, Suwon Shon and

James Glass, Fellow, IEEE

Abstract—There are a number of studies about extraction of
bottleneck (BN) features from deep neural networks (DNNs)
trained to discriminate speakers, pass-phrases and triphone
states for improving the performance of text-dependent speaker
verification (TD-SV). However, a moderate success has been
achieved. A recent study [1] presented a time contrastive learning
(TCL) concept to explore the non-stationarity of brain signals for
classification of brain states. Speech signals have similar non-
stationarity property, and TCL further has the advantage of
having no need for labeled data. We therefore present a TCL
based BN feature extraction method. The method uniformly
partitions each speech utterance in a training dataset into a
predefined number of multi-frame segments. Each segment in
an utterance corresponds to one class, and class labels are
shared across utterances. DNNs are then trained to discriminate
all speech frames among the classes to exploit the temporal
structure of speech. In addition, we propose a segment-based
unsupervised clustering algorithm to re-assign class labels to the
segments. TD-SV experiments were conducted on the RedDots
challenge database. The TCL-DNNs were trained using speech
data of fixed pass-phrases that were excluded from the TD-SV
evaluation set, so the learned features can be considered phrase-
independent. We compare the performance of the proposed TCL
bottleneck (BN) feature with those of short-time cepstral features
and BN features extracted from DNNs discriminating speakers,
pass-phrases, speaker+pass-phrase, as well as monophones whose
labels and boundaries are generated by three different automatic
speech recognition (ASR) systems. Experimental results show
that the proposed TCL-BN outperforms cepstral features and
speaker+pass-phrase discriminant BN features, and its perfor-
mance is on par with those of ASR derived BN features.
Moreover, the clustering method improves the TD-SV perfor-
mance of TCL-BN and ASR derived BN features with respect
to their standalone counterparts. We further study the TD-SV
performance of fusing cepstral and BN features.

Index Terms—DNNs, time-contrastive learning, bottleneck fea-
ture, GMM-UBM, speaker verification

I. INTRODUCTION

Due to the quasi-periodic nature of speech, short-time

acoustic cepstral features are widely used in speech and
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speaker recognition. Recent development of deep neural net-

works (DNNs) [2] has ignited a great interest in using bottle-

neck (BN) features [3], [4], [5], [6], [7], [8], [9] for speech

classification tasks including speaker verification (SV). The

goal of SV is to verify a person using their voice [10], [11].

SV methods can be broadly divided into text-dependent (TD)

and text-independent (TI) ones [12]. In TD-SV, speakers are

constrained to speak the same pass-phrase or sentence during

both enrolment and test phases. In TI-SV, speakers can speak

any sentence during enrolment and test phases, i.e. there is

no constraint on what sentences to be uttered. Since TD-SV

makes use of a matched phonetic content during enrolment

and test phases, it typically outperforms TI-SV.

A classical speaker verification system in general involves

discriminative feature extraction, universal background mod-

elling, and training of Gaussian mixture model-universal back-

ground model (GMM-UBM) or i-vector, which is a fixed-

and low-dimensional representation of a speech utterance [13].

DNNs are applied to SV in all these three parts: 1) extracting

discriminative bottleneck features [5], 2) replacing GMM-

UBM for i-vector extraction [14], and 3) directly replacing

i-vectors with speaker embeddings [15], in addition to works

aiming to improve SV robustness against noise [16], [17]

and domain variation [18]. When used for replacing UBM,

a DNN that is trained as an acoustic model of automatic

speech recognition (ASR) replaces the traditional GMM-UBM

by predicting posteriors of senones (e.g., tied-triphone states).

This allows to incorporate phonetic knowledge into i-vectors.

DNNs are also used to directly replace i-vectors for speaker

characterization with trained speaker embeddings, which are

the outputs of one or more DNN hidden layers. In [19],

the embeddings are also called d-vector. Instead of equally

weighting and averaging all frames as e.g. in the d-vector

approach, paper [20] uses an attention mechanism to fuse

phonetic and speaker representations so as to generate an

utterance-level speaker representation. When used for feature

extraction, a DNN is trained to discriminate speakers, pass-

phrases, senones or a combination of them. Then the outputs

of one or more DNN hidden layers are projected onto a low

dimensional space called BN features. Previous studies [5],

[6], [7], [21], [22], [23] have demonstrated that BN features are

useful either for obtaining a better performance than cepstral

features or for providing complementary information when

cepstral and BN features are fused. However, training DNNs to

extract these BN features requires manual labels (e.g., speakers

and pass-phrases), or phonetic transcriptions based on ASR.

Obtaining these labels are time-consuming and expensive, and

Copyright (c) 2019 IEEE. This article is the accepted version of IEEE/ACM-TASLP. DOI:10.1109/TASLP.2019.2915322.
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building ASR systems requires large amounts of training data

and expert knowledge [24]. Beyond SV, some other works

extract phonetic annotation based BN features for speech

recognition [25], [26] and spoken language recognition [25],

[27], [28].

Unsupervised representation learning is one of the biggest

challenges in machine learning and at the same time has a

great potential of leveraging the vast amount of often unlabeled

data. The primary approach to unsupervised deep learning

is probabilistic generative modeling, due to optimal learning

objectives that probabilistic theory is able to provide [1], [29].

Successful examples are variational autoencoders (VAEs) [30]

and generative adversarial networks (GANs) [31]. The study

in [1] presents a time contrastive learning (TCL) concept, a

type of unsupervised feature learning method, which explores

the temporal non-stantionarity of time series data. The learned

features aim to discriminate data from different time segments.

It is shown that what the TCL feature extractor computes is

the log-probability density function of the data points in each

segment, and thus TCL has a nice probabilistic interpretation

[1]. The TCL method is used for classifying a small number

of different brain states that generally evolve over the time and

can be measured by magnetoencephalography (MEG) signals.

Specifically, TCL trains a neural network to discriminate each

segment by using the segment indices as labels. The output of

the last hidden layer is the feature for classifying brain states

[1].

Exploiting underlying structure of temporal data for unsu-

pervised feature learning has also been studied for video data.

In [32], features are learned in an unsupervised fashion by

assuming that data points being neighbors in the temporal

space are likely to be neighbors in the latent space as well.

Similarly, the work in [33] exploits the structure of video data

based on two facts: (1) there is a temporal coherence in two

successive frames, namely they contain similar contents and

represent the same concept class, and (2) there are differences

or changes among neighbouring frames due to, e.g., translation

and rotation. Therefore, learning features by exploiting this

structure will be able to generate representations that are both

meaningful and invariant to theses changes [33].

Since speech is a non-stationary time series signal, there

is a contrast across speech segments. At the same time,

neighbouring frames likely represent the same concept class.

Furthermore, since in the TD-SV setting, same pass-phrases

are uttered by speakers multiple times in the training set,

there are certain structures in the data, e.g. matched contents

across utterances. Across the entire training dataset, segments

assigned with the same classes are of course most likely

heterogeneous. In [34], however, it is shown that deep neural

networks trained by stochastic gradient descent methods can

fit well the training image data with random labels and this

phenomenon happens even if the true images are replaced

by unstructured random noise. Therefore, we hypothesize that

training of networks with random labels assigned by the TCL

approach will converge and if we choose bottleneck features

from the proper hidden layer, a useful feature can be extracted.

All these motivate us to propose the TCL method for TD-

SV. Speech and MEG signals, however, are quite different in

nature, namely speech signals contain much richer information

for which the tasks in hand often involve classification of much

more classes. Furthermore, the amount of available speech

data including labelled data is significantly larger than MEG

data, leading to more alternative methods for speech feature

learning. Therefore, extensive study is required to explore the

potential of TCL for speech signals.

In [35] we proposed a TCL based BN feature for TD-SV.

The main strategy is to uniformly partition each utterance into

a predefined number of segments, e.g. N , regardless of speak-

ers and contents. The first segment in an utterance is labelled

as Class 1, the second as Class 2, and so on. Each segment is

assumed to contain a single content belonging to a class. The

speech frames within the n

th

segment, n 2 {1, 2, ..., N}, are

assigned to Class n. A DNN is then trained to discriminate

each speech frame among the different classes. The core idea

of TCL learning is to exploit temporally varying characteristics

inherent in speech signals. It has been shown in [35] that

without using any label information for DNN training, TCL-

BN gives better TD-SV performance than the Mel-frequency

cepstral coefficient (MFCC) feature and existing BN features

extracted from DNNs trained to discriminate speakers or both

speakers and pass-phrases where manual labels are exploited.

While no need for labelled data is an advantage, segmen-

tation and labelling in TCL are arbitrary and the labels do

not carry any particular meaning. In this work, we therefore

propose a segment-based statistical clustering method to it-

eratively regroup the segments in an unsupervised manner

with the goal to maximize likelihood. The clustering method

groups together segments with similar phonetic content to

form clusters, and each cluster is considered a class. It is

expected that the clustering process will lead to improved class

labels for the segments, which are then used to train DNNs,

leading to improved BN features.

As the TCL method trains DNNs to discriminate phonetic

content, one natural question to ask is how it compares with

segmentation and labelling obtained by a speech recognizer.

While senones or triphone states have been used as the target

classes for training DNNs to extract features, BN feature

extraction based on discriminating phones is relatively unex-

plored in the context of TD-SV. The motivation of investigat-

ing the use of phones is that the time granularity or resolution

for defining the classes is significantly smaller than that of

using triphone states (e.g. 3001 in [5]) and much closer to

that of TCL learning (e.g. tens in [35]). In [5], triphone states

have been used as the frame labels for training DNNs from

which BN features are extracted. It is shown that BN features

extracted from DNNs discriminating both speakers and phones

performs similarly to BN features based on discrimination of

either speakers only or both speakers and phrases. In [14],

bottleneck features are extracted from DNNs trained to predict

senone posteriors. Experimental results show that the senone-

discriminant BN feature does not even outperform MFCCs,

although being complementary to MFCCs. The reason why

using senones as training targets does not improve the MFCC

baseline might be because the large number of senones re-

quires to use a large amount of data to train a large neural net-

work in order to perform well. Instead of using tied tri-phone
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states/senones as the DNN training targets as in [5], [14], this

paper investigates two speech recognition settings, one where

a phoneme recognizer is used to decode the phone sequences,

for which two different recognizers are investigated, and the

other where the forced alignments are used to obtain the phone

sequences. The generated phone sequences and boundaries are

used for training phone-discriminant BN (PHN-BN) features.

We compare their performance against each other and that of

TCL. To our knowledge, the performance of using PHN-BN

features for TD-SV has not been reported in the literature.

Context-independent monophone states have been used as

DNN training targets to extract BN features for language iden-

tification in [36], where it is experimentally shown that phone-

state-discriminant BN performs significantly better than the

triphone-state-discriminant BN. However, monophone states

rather than phones themselves are used and the application is

language identification rather than SV [36].

We conducted our TD-SV experiments on the RedDots

Challenge 2016 database [37], [38]. We show that TCL-BN

gives better performance than MFCC features and BN features

discriminating speakers or both speakers and pass-phrases,

while being on par with using the phone sequences produced

by an ASR system. Clustering improves the performance

especially for TCL-BN, and TCL-BN with clustering performs

the best among all features. The TCL approach further has the

flexibility in choosing the number of target classes for DNN

training.

The contributions of this paper are multi-fold. First, it

proposes a segment-based statistical clustering method to re-

assign class labels to the segments generated by TCL or

speech recognizers. Second, the paper extends the study of

our previous work on TCL-BN [35], to analyse the learned

features through scatter plots using the T-SNE method [39]

and to conduct more extensive experiments such as extracting

BN features from different DNN hidden layers with different

numbers of DNN training target classes. Third, the paper

studies BN features that are extracted from DNNs trained to

discriminate phones, which are again based on segmentation

and labeling generated by different ASR systems, in contrast

to training DNNs to discriminate triphone states or senones

as done in the literature. Fourth, the performance of a wide

range of BN features are compared under the GMM-UBM

and i-vector frameworks on the RedDots database. Finally, the

fusion of MFCCs and various BN features at both score and

feature levels is studied.

The rest of the paper is organized as follows. In Section II

we describe bottleneck features. The segment-based clustering

method is presented in Section III. Sections IV and V present

two TD-SV methods and experimental set-ups, respectively.

Results and discussions are given in Section VI. The paper

concludes in Section VII.

II. BOTTLENECK FEATURES

Bottleneck features are features extracted from the hidden

layers of BN-DNNs (i.e. DNNs for BN feature extraction). In

this section, we present three phone-discriminant BN features,

which differ from the often used senone-discriminant BN

features, and two time-contrastive learning based BN features,

in addition to the commonly used speaker- and pass-phase-

discriminant BN features.

All BN-DNNs in this work use Mel-frequency cepstral

coefficients [40] as the input. MFCCs are the most com-

monly used features for speaker verification. In this work, we

use 57 dimensional MFCCs including C1-C19, � and ��

coefficients with RASTA filtering [41], which are extracted

from speech signals with a 20 ms Hamming window and a

10 ms frame shift. An energy based voice activity detection

is applied to select high energy frames for MFCC feature

extraction and further processing, while low energy frames are

discarded. This work does not consider noisy speech signals

and otherwise, it will be essential to use a noise robust voice

activity detection method. Finally, the high energy frames are

normalized to fit zero mean and unit variance at utterance

level.

A. Speaker- and pass-phrase-discriminant BN features
Two BN features are chosen as state-of-the-art baseline

methods in this work. The first one is speaker-discriminant

BN (SPK-BN) [5], in which DNNs are trained to discriminate

speakers using the cross-entropy loss. Another feature is

speaker+pass-phrase discriminant BN (SPK+phrase-BN) [5],

in which DNNs are trained to discriminate both speakers and

pass-phrases simultaneously. This involves two loss functions:

one for discriminating speakers and the other for discriminat-

ing pass-phrases. The average of the two losses is used as the

final criterion in the DNN multi-task learning procedure. We

use the CNTK toolkit [42] for all BN-DNN training.

B. Phone-discriminant BN features
In the literature, triphone states or senones have been used

as the BN-DNN target classes [14], [5]. This gives a large

number of output neurons, e.g. 3001 tied-triphone-states in [5]

and the performance is not promising. In this work, instead,

we investigate the use of phones as the training target classes,

which gives significantly lower class granularity. Specifically,

DNNs are trained to discriminate phones and the number

of nodes in the DNN output layer is equal to the number

of phones as shown in Fig. 1. We consider three different

speech recognizers for generating phone labels as detailed in

the following.

For PHN-BN1, the phoneme recognizer based on [43]

is used to generate phoneme alignments for the RSR2015

database [44]. 39 English phonemes are considered. The

recognizer consists of three artificial neural network (ANNs)

and each ANN has a single hidden layer with 500 neurons. A

total of 23 coefficients are extracted as Mel-scale filter bank

energies and the context of 31 frames are concatenated for

long temporal analysis. This context is split into left and right

blocks (with one frame overlap) [43]. Two front-end ANNs

produce phoneme posterior probabilities for the two blocks

separately, and the third back-end ANN merges the posterior

probabilities from the two context ANNs.

PHN-BN2 is based on an end-to-end segmental phoneme

recognizer [45]. We use 40-dimensional log-Mel feature vec-

tors as the input to the segmental model. The segmental model
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Fig. 1: Bottleneck feature extraction from a DNN trained to
discriminate phones.

consists of a 3-layer bidirectional long short-term memory

(LSTM) with 256 cell units for each direction. The segmental

features are a combination of averaging over the hidden

vectors of different parts of the segments and the length of the

segment (termed FCB in [46]). The segmental model is trained

on the TIMIT training set [47] with the standard phone set

including 47 phones and one label for silence. The maximum

phone duration is cap to 30 frames. Marginal log loss [48]

is optimized with Stochastic gradient descent (SGD) for 20

epochs with step size 0.1, gradient clipping of norm 5, and a

batch size of one utterance. The best model is chosen based

on phone error rates from the first 20 epochs, and is trained

for another 10 epochs in the same way except with the step

size 0.75 decayed by 0.75 after each epoch. We then decode

using the best segmental model to obtain phone sequences for

the utterances in the RSR2015 database [44].

PHN-BN3 is based on forced alignments generated from the

end-to-end segmental model [45]. Though trained end-to-end,

the segmental model is able to produce excellent alignments

without using any manual segmentation [48], [46].

It is noted that in the ASR based approaches, ’sil’ or ’pause’

is included in the phoneme list for speech recognition or

generating phone sequences. However, they are excluded from

subsequently training DNNs that are used for BN feature

extraction. In other words, a ’sil’ or ’pause’ model has the

function of detecting the less energized or silence frames and

then removing these frames from BN-DNN training. Table I

lists the phones available in different ASR systems, excluding

’sil’ and ’pause’.

TABLE I: Lists of phones generated from different
speech/phone recognition systems and used for training BN-
DNNs.

System Phones

PHN-BN1 aa ae ah aw ay b ch d dh dx eh er ey

f g hh ih iy jh k l m n ng ow oy

p r s sh t th uh uw v w y z

PHN-BN2 aa ae ah ao aw ax ay b ch cl d dh dx

eh el en epi er ey f g hh ih ix iy jh

k l m n ng ow oy p r s sh t th

uh uw v vcl w y z zh

PHN-BN3 aa ae ah ao aw ay b ch d dh eh er ey

f g hh ih iy jh k l m n ng ow oy

p r s sh t th uh uw v w y z zh

C. Time-contrastive learning based BN features
We recently proposed to apply TCL to extract BN features

for TD-SV [35]. There are two ways to implement the TCL

method. One is utterance-wise TCL (uTCL), in which each

utterance for training DNNs is uniformly divided into N

segments. The number of segments N is equal to the number

of classes N in TCL, i.e., the number of output nodes in

DNNs. Speech frames within a particular segment are assigned

a class label as follows:

(x1, ..., xM )
| {z }

Class 1

, . . . , (x(n�1)M+1, ..., xnM )
| {z }

Class n

, . . . , (x(N�1)M+1, ..., xNM )
| {z }

Class N

(1)

where n and M indicate the segment index (as well as

the class ID) and the number of frames within a segment,

respectively. Afterwards, DNNs are trained to discriminate the

frames among the classes. We vary the value of N in order

to study the effect of different numbers of classes in TCL on

TD-SV. Fig.2 illustrates the segmentation of speech utterances

for BN feature extraction in uTCL.

2

3

3

2

c
la

s
s
 1

c
la

s
s
 2

c
la

s
s
 3

1

c
la

s
s
 n

Utterance 1 (pass−phrase A)

1

To train DNN

Utterance 2 (pass−phrase D)

length 1

length 2n

n

# of segments/TCL classes n

”A huge power outage rarely occurs”

”No return address whatsover”

Fig. 2: Segmentation of speech utterances for BN feature
extraction in uTCL.

The other way of realizing TCL for speech is called stream-

wise TCL (sTCL) [35]. It is similarly to uTCL, with the

only difference being that training data of the DNNs are first

randomly concatenated into a single speech stream. The single

speech stream is then partitioned into segments of 6 frames

each (chunk). While uTCL attempts to capture the structures

in a speech corpus, e.g. repeating sentences, sTCL constructs

DNN training in much higher degree of randomness.

To obtain BN features in the respective systems, the output

of a DNN hidden layer at frame-level is projected onto a lower
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dimensional space by using principle component analysis

(PCA).

III. SEGMENT-BASED CLUSTERING

As segment classes in TCL are defined or assigned by

uniformly segmenting speech signals in unsupervised manner,

segment contents in each class are inevitably heterogeneous.

This motivates us to devise a clustering algorithm to group

similar speech segments together and form new groups/classes.

This is expected to be beneficial for DNN training, thus

leading to improved BN features. In this section, we propose

a segment-based clustering method, which re-assigns labels to

segments, as follows.

Step1: Pool together all speech segments belonging to

a particular class c

n

and derive the class specific GMM,

�

n

, from the GMM-UBM (trained on the TIMIT dataset)

through maximum a posteriori (MAP) adaptation.

Step2: Classify each speech segment using newly-derived

class-specific GMMs based on the maximum likelihood

approach,

ˆ

i = arg max

1iN

p(S

j

|�
i

) (2)

where S

j

denotes the set of feature vectors in the j

th

speech segment.

Step3: Check whether the stop criteria are met. If yes,

go to next step. Otherwise, go to Step 1 and repeat the

process.

Step 4: Output the new class labels for speech segments

(for training the BN-DNN)

Fig. 3 illustrates the clustering method. In this work, the

method is used in combination with TCL-BN and PHN-BN.

In the experiment of this work, the stop criterion is that Step1
and Step2 are repeated 5 iterations, which is found to give a

stable set of clusters, i.e. the clusters do not change much. This

choice is for simplicity and computational time efficiency.

GMM−UBM Adaptation
(MAP)

Classification

Label: c1

�1

argmax1iN

p(S

j

|�
i

)

{{S1, ..., Sj

, ..., S

m

}, ..., {S
k

, ..., S

l

}}

c

N

�

N

Fig. 3: Illustration of segment-based clustering for speech data
with N classes.

While the proposed algorithm is for clustering, it differs

from the conventional K-means algorithm [49] by being based

on probability than Euclidean distance. It also differs from

the expectation-maximization (EM) algorithm for training

GMMs [50]. First, it is for clustering than density estimation.

Secondly, it is based on segments rather than single frames.

Thirdly, cluster-specific GMMs are updated from the GMM-

UBM (a priori distribution) through MAP adaptation in con-

trast to the maximization step in the EM algorithm where

cluster-specific Gaussian models are directly calculated on the

data belonging to each cluster.

The way the proposed clustering method iteratively in-

creases the likelihood of segments shares some similarity

to the generation of forced alignment in ASR training [51]

where triphone segments are gradually refined through an

align-realign process. There are also a number of differences

between them as follows: 1) forced alignment is generated by

using a given text transcription (without time stamps) while

the segment clustering method does not use any transcription,

2) the forced alignment sequence is fixed by the text while

segments have no fixed ordering in the segment clustering,

3) segment durations of forced alignment change during the

iterative process while they are fixed for the segment cluster-

ing, and 4) hidden Markov models or hybrid models are used

for forced alignment while GMMs are used for the segment

clustering method.

IV. SPEAKER VERIFICATION METHODS

We consider two best-known methods for speaker verifica-

tion: GMM-UBM and i-vector.

A. The GMM-UBM method
As per [10], a target speaker model is derived from GMM-

UBM with MAP adaptation using the training data of the target

speaker during the enrolment phase as illustrated in Fig.4.

Test phase:

Feature
extraction

GMM−UBM

Adaptation
Training data 
for speaker

extraction
Test data Decision Accept/

Reject

Speaker enrollment phase:

Feature
Scoring

Speaker model

Speaker model

Speaker model

r

r ✏ [1, . . . , R]

r

r ✏ [1, . . . , R]

1

R

Fig. 4: GMM-UBM based speaker verification.

During the test phase, the feature vectors of a test utterance

Y = {y1, y2, . . . , yT } is scored against the claimant model

(i.e. the target speaker model) �

r

and GMM-UBM �

ubm

.

Finally, the log likelihood ratio (LLR) value is calculated using

the scores between the two models

LLR(Y ) =

1

T

TX

t=1

{log p(y

t

|�
r

)� log p(y

t

|�
ubm

)} (3)

It is well established [5], [52] that GMM-UBM performs

better than i-vector for speaker verification using short speech

utterances.
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B. The i-vector method
In this framework, a speech utterance is represented by

a vector called i-vector [13]. The i-vector w is obtained by

projecting the speech utterance onto a subspace T (called total

variability space or T-matrix) of a GMM-UBM super-vector,

where speaker and channel information is dense. It is generally

expressed as,

M = m+ Tw (4)

where w is an i-vector, M and m denote the utterance

dependent GMM super-vector, the speaker-independent GMM

super-vector obtained by concatenating the mean vectors from

the GMM-UBM, respectively, and T the total variability space.

For more details refer to [13].

During the enrolment, each target is represented by an

average i-vector computed over his/her training utterance-wise

(or speech session-wise) i-vectors. In the test phase, the score

between the i-vector of a test utterance and the claimant

specific i-vector (obtained during enrolment) is calculated

using probability linear discriminate analysis (PLDA). Fig.5

illustrates the speaker enrolment and test phases of i-vector

based speaker verification.

Feature
extraction

Feature
extraction

Training data 
for speaker

Speaker enrollment phase:

i−vector for speakeri−vector

GMM−UBM,

Test phase:

i−vector for speaker

i−vector for speaker

i−vector
Accept/
Reject

Decision
Pre−processing

PLDA & score

extraction

Test data 
i−vector
extraction

T−matrix

r

r

r ✏[1, . . . , R]

r ✏[1, . . . , R]

1

R

Fig. 5: Illustration of i-vector based speaker verification.

PLDA represents an i-vector in the joint factor analysis

(JFA) framework as

w = µ

w

+ �y + �z + ✏ (5)

where � and � are matrices denoting the eigen voice and eigen
channel subspaces, respectively. y and z are the speaker and

channel factors, respectively, with a priori normal distribution.

✏ represents the residual noise. �, � and ✏ are iteratively

updated during the training process by pooling together a

numbers of i-vectors per speaker class from many speakers.

During test, the score between two i-vectors (w1, w2) is

calculated as:

score(w1, w2) = log

p(w1, w2|✓tar)
p(w1, w1|✓non)

(6)

where hypothesis ✓

tar

states that w1 and w2 come from the

same speaker, and hypothesis ✓

non

states that they are from

different speakers. For more details about the PLDA based

scoring see [53], [54], [55]. Before scoring, i-vectors are

conditioned to reduce the session variability with two iterations

of spherical normalization (sph) as in [53].

V. EXPERIMENTAL SET-UPS

Experiments were conducted on the ’m-part-01’ task

(male speakers) of the RedDots database as per protocol

[38]. There are 320 pass-phrase dependent target models for

training. Each target has three speech files for training. Each

utterance is very short in duration (approximately 2-3s in

duration). Three types of non-target trials are available for

the evaluation of text dependent speaker verification system.

Table II presents the number of different trial available in

evaluation.

True-trials: when a target speaker claims by pronouncing

the same pass-phrase as enrolment in the testing phase.

Target-wrong (TW): when a target speaker claims by

pronouncing a different pass-phrase in the testing phase.

Imposter-correct (IC): when an imposter speaker claims

by speaking the same pass-phrase as target in the enrolment

phase.

Imposter-wrong (IW): when an imposter speaker claims by

speaking a wrong pass-phrase.

TABLE II: Numbers of different trials available for the TD-SV
evaluation on the RedDots database.

# of # of non-target trials

True Target Imposter Imposter

trials -wrong -correct -wrong

3242 29178 120086 1080774

For BN feature extraction, DNNs are trained using data

from the RSR2015 [44] database, from which the pass-phrases
that also appear in the TD-SV evaluation set in the RedDots
database are removed. Therefore, there are no pass-phrase

overlap between data for training BN-DNNs and data for TD-

SV evaluation. It gives ⇡ 72764 utterances over 27 pass-

phrases (recorded in 9 sessions) from 300 non-target speakers

(157 male, 143 female). All DNN consists of 7 layer feed-

forward networks and use the same learning rate and the same

number of epochs in training. Each hidden layer consists of

1024 sigmoid units. The input layer is of 627 dimensions,

based on 57 dimensional MFCC features with a context

window of 11 frames (i.e. 5 frames left, current frame, 5

frames right).

For speaker-discriminant DNN (SPK-BN), the number of

output nodes is equal to the number of speakers, i.e. 300.

Whereas, the speaker+pass-phrase (SPK+phrases-BN) dis-

criminant DNN consists of 327 output nodes (300 speakers

+ 27 pass-phrases). To obtain the final BN feature, the output

from a hidden layer, a 1024 dimensional deep feature, is pro-

jected onto a 57 dimensional space to align with the dimension

of the MFCC feature for a fair comparison. Allowing a higher

dimension for BN can potentially boost the performance as

observed in [4]. Deep features are normalized to zero mean

and unit variance at utterance level before using principle

component analysis (PCA) for dimension reduction.

A gender-independent GMM-UBM with 512 Gaussian com-

ponents having a diagonal covariance matrix is trained using

the 6300 utterances from 630 non-target speakers (438 male,
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TABLE III: TD-SV results of MFCCs and BN features on the m-part-01 task of the RedDots database using the GMM-UBM
method. Gray-colored text shows the results of BN features extracted from a non-default hidden layer to provide further insights
about the behavior of the corresponding BN extraction methods, while those features will not be used in real systems.

Feature DNN # of Clustering Non-target type [%EER/(minDCF⇥ 100)] Average

Lyr. classes without: ⇥ Target- Impostor- Impostor- (EER

with: X wrong correct wrong /minDCF)

MFCC - 5.12/2.17 3.33/1.40 1.14/0.47 3.19/1.35

SPK-BN L2 300 - 4.81/1.66 3.28/1.39 1.29/0.43 3.13/1.16

L4 - 4.59/1.65 3.05/1.35 1.11/0.38 2.91/1.13

SPK+phrase-BN L2 327 - 4.79/1.66 3.20/1.40 1.30/0.42 3.10/1.16

L4 - 4.53/1.64 3.07/1.34 1.17/0.38 2.92/1.12

PHN-BN1 L2 38 ⇥ 2.31/0.71 3.14/1.29 0.61/0.20 2.02/0.73
L4 ⇥ 7.77/4.07 6.53/3.41 3.14/1.47 5.81/2.98

L2 X 2.32/0.74 2.96/1.22 0.64/0.18 1.97/0.72
L4 X 3.67/1.65 5.24/2.56 1.32/0.48 3.41/1.58

PHN-BN2 L2 47 ⇥ 2.25/0.78 2.89/1.30 0.61/0.22 1.92/0.77
L4 ⇥ 2.29/0.86 4.99/2.33 0.80/0.33 2.69/1.17

L2 X 2.14/0.79 2.68/1.21 0.61/0.22 1.81/0.74
L4 X 2.71/1.13 4.04/1.82 0.95/0.34 2.57/1.10

PHN-BN3 L2 39 ⇥ 1.79/0.72 3.08/1.41 0.55/0.15 1.81/0.76
(ASR force-alignment) L4 ⇥ 1.70/0.65 4.75/2.46 0.74/0.21 2.39/1.11

L2 X 2.08/0.70 2.83/1.18 0.55/0.18 1.82/0.69
L4 X 2.89/1.18 4.56/2.18 1.17/0.42 2.89/1.26

sTCL-BN L2 10 ⇥ 4.42/1.61 3.08/1.32 1.12/0.38 2.88/1.10
L4 ⇥ 4.68/1.68 3.23/1.39 1.23/0.40 3.05/1.16

L2 X 2.83/1.03 2.86/1.34 0.98/0.26 2.23/0.87
L4 X 9.57/6.26 7.80/4.06 3.89/2.37 7.09/4.23

uTCL-BN L2 10 ⇥ 1.88/0.65 3.14/1.44 0.64/0.19 1.89/0.76

L4 ⇥ 19.63/9.95 18.51/8.93 11.69/6.89 16.61/8.59

L2 X 1.91/0.60 2.77/1.17 0.70/0.18 1.79/0.65
L4 X 5.98/3.61 7.44/3.91 2.52/1.35 5.31/2.96

192 female) of the TIMIT database [47]. Same GMM-UBM

training data are used for the PCA. In MAP adaptation, three

iterations are followed with value of relevance factor 10.

For the i-vector method, the data for training BN-DNNs are

also used for training a gender independent total variability

space and for training PLDA and sph. In PLDA, utterances of

the same pass-phrase from a particular speaker are treated as

an individual speaker. It gives 8100 classes (4239 male and

3861 female) in PLDA. Speaker and channel factors are kept

full in PLDA, i.e. equal to the dimension of i-vector (400) for

all systems.

System performance is evaluated in terms of equal error rate

(EER) and minimum detection cost function (minDCF) [56].

VI. RESULTS AND DISCUSSIONS

This section presents the TD-SV results for different fea-

tures, followed by discussions.

A. Comparison of TD-SV performance for a number of BN
features and MFCCs under the GMM-UBM framework

In this section, we present TD-SV results of sTCL and

uTCL with or without clustering, using 10 TCL classes and

extracting features from BN-DNN hidden layers L2 and L4,

as well as TD-SV results of phone-discriminant BN features.

We compare these results to those of speaker-discriminant BN

features and MFCCs.

Table III shows the TD-SV results of different BN features

and MFCCs. It is noticed that all BN features (except for

PHN-BN1-L4, sTCL-L4 and uTCL-L4, but L2 should be used

for these methods as the training targets are phonetic content-

related) give lower average EERs and MinDCF than those of

MFCCs, confirming the effectiveness of BN features for the

TD-SV. The behavior of sTCL-L4 and uTCL-L4 is analyzed

and discussed in the next subsection. Concerning the hidden

layer from which features are extracted, L4 is be tter than

L2 for SPK-BN and SPK+phrase-BN, while the opposite is

observed for the rest, including sTCL-BN, uTCL-BN, PHN-

BN1, PHN-BN2 and PHN-BN3. This can be well explained

by the fact that the training target classes include speaker

identities for SPK-BN and SPK+phrase-BN and thus using

later hidden layer as output is favourable.

Among all features without clustering, PHN-BN3 gives the

lowest average EER followed by uTCL-BN. Among PHN-

BN features, the ranking in TD-SV performance is PHN-BN3,

PHN-BN2 and PHN-BN1, in a descending order. This is also

in line with their speech recognition performance as PHN-

BN3 uses the forced-alignment decoding approach and thus

provides the most accurate phonetic transcriptions for training

DNNs.
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TABLE IV: TD-SV results of TCL-BN features with/without clustering on the m-part-01 task of the RedDots database using

the GMM-UBM method. The average percentage of EER and MinDCF ⇥ 100 for MFCC are 3.19 and 1.35, respectively.

(a) sTCL

Feature DNN TCL Non-target type [%EER/(MinDCF⇥ 100)]

Lyr. classes Target- Impostor- Impostor- Average

(N ) wrong correct wrong EER/MinDCF

sTCL L2 2 4.50/1.69 3.12/1.39 1.01/0.39 2.88/1.16

3 4.60/1.67 3.13/1.40 1.20/0.40 2.98/1.16

4 4.57/1.65 3.14/1.38 1.17/0.40 2.96/1.14

5 4.53/1.65 3.16/1.39 1.06/0.40 2.91/1.15

6 4.38/1.64 3.14/1.37 1.07/0.39 2.86/1.13

7 4.62/1.69 3.10/1.34 1.29/0.41 3.00/1.15

8 4.44/1.63 3.17/1.39 1.11/0.40 2.90/1.14

10 4.42/1.61 3.08/1.32 1.12/0.38 2.88/1.10
12 4.50/1.66 3.14/1.41 1.14/0.41 2.93/1.16

15 4.33/1.66 3.02/1.38 1.14/0.39 2.83/1.14

20 4.35/1.66 3.10/1.38 1.14/0.39 2.86/1.14

40 4.38/1.65 3.17/1.38 1.15/0.39 2.90/1.14

L4 2 4.48/1.58 3.20/1.32 1.17/0.40 2.95/1.10

3 4.44/1.64 3.36/1.38 1.29/0.42 3.03/1.15

4 4.65/1.65 3.23/1.38 1.17/0.40 3.02/1.14

5 4.52/1.67 3.08/1.40 1.23/0.39 2.94/1.15

6 4.50/1.63 3.23/1.36 1.24/0.40 2.99/1.13

7 4.45/1.67 3.02/1.33 1.11/0.39 2.90/1.13

8 4.65/1.66 3.20/1.38 1.04/0.40 2.97/1.15

10 4.68/1.68 3.23/1.39 1.23/0.40 3.05/1.16

12 4.50/1.65 3.14/1.38 1.26/0.38 2.97/1.14

15 4.44/1.73 3.11/1.38 1.20/0.39 2.92/1.17

20 4.47/1.67 3.20/1.38 1.13/0.40 2.93/1.15

40 4.59/1.72 3.17/1.40 1.23/0.41 3.00/1.17

+clustering L2 2 2.99/0.99 3.08/1.40 0.99/0.25 2.35/0.88

3 2.80/0.97 3.00/1.43 0.83/0.27 2.21/0.89

4 4.34/1.66 3.17/1.39 1.32/0.39 2.95/1.15

5 3.39/1.16 3.36/1.44 1.07/0.32 2.61/0.97

6 3.32/1.14 3.23/1.46 1.05/0.31 2.53/0.97

7 4.44/1.67 3.17/1.27 1.41/0.39 3.01/1.14

8 3.14/1.17 3.05/1.40 0.95/0.33 2.38/0.97

10 2.83/1.03 2.86/1.34 0.98/0.26 2.23/0.87
12 3.14/1.10 3.11/1.41 1.02/0.31 2.43/0.94

15 3.33/1.07 3.20/1.37 0.98/0.31 2.50/0.92

20 3.05/1.13 2.93/1.36 0.92/0.30 2.30/0.93

40 4.25/1.58 3.17/1.37 1.07/0.36 2.83/1.11

L4 2 11.25/5.72 12.02/5.89 7.18/3.10 10.15/4.90

3 18.07/9.92 17.98/8.34 12.46/6.21 16.15/8.16

4 4.38/1.69 3.10/1.36 1.20/0.42 2.89/1.16

5 18.53/9.34 17.76/7.64 14.15/5.50 16.82/7.50

6 15.39/9.33 14.12/6.55 9.74/4.65 13.08/6.84

7 4.59/1.67 3.08/1.26 1.41/0.42 3.03/1.12

8 11.53/7.33 10.05/5.06 5.71/2.87 9.10/5.09

10 9.57/6.26 7.80/4.06 3.89/2.37 7.09/4.23

12 7.75/4.05 6.72/3.29 2.81/1.53 5.76/2.96

15 7.74/4.50 6.05/3.15 2.84/1.64 5.54/3.10

20 6.90/3.62 6.14/2.92 2.93/1.39 5.32/2.64

40 4.82/1.79 3.57/1.45 1.29/0.46 3.23/1.23

(b) uTCL

Feature DNN TCL Non-target type [%EER/(MinDCF⇥ 100)]

Lyr. classes Target- Impostor- Impostor- Average

(N ) wrong correct wrong EER/MinDCF

uTCL L2 2 2.12/0.71 3.28/1.48 0.70/0.22 2.03/0.80

3 2.00/0.73 3.43/1.50 0.77/0.21 2.07/0.81

4 2.06/0.73 3.20/1.51 0.78/0.21 2.02/0.81

5 2.05/0.64 3.30/1.51 0.58/0.21 1.98/0.79

6 2.39/0.88 3.39/1.54 0.74/0.28 2.17/0.90

7 4.75/1.66 3.33/1.38 1.43/0.43 3.17/1.16

8 2.59/1.02 3.60/1.63 0.92/0.35 2.37/1.00

10 1.88/0.65 3.14/1.44 0.64/0.19 1.89/0.76
12 1.88/0.64 3.39/1.54 0.80/0.211 2.02/0.80

15 4.47/1.62 3.14/1.38 1.26/0.37 2.96/1.13

20 4.38/1.59 3.13/1.33 1.35/0.38 2.95/1.10

40 4.56/1.67 3.11/1.38 1/32/0.41 3.00/1.15

L4 2 13.73/8.33 13.64/6.60 8.06/4.23 11.81/6.39

3 19.82/9.96 17.63/9.93 11.25/8.01 16.23/9.30

4 22.29/9.99 19.74/9.97 13.97/9.83 18.66/9.93

5 15.79/9.98 13.69/8.73 8.18/6.61 12.55/8.44

6 11.66/7.90 10.71/5.67 5.53/3.33 9.30/5.63

7 4.62/1.63 3.14/1.36 1.07/0.41 2.95/1.13

8 10.17/7.40 9.50/5.40 4.44/2.88 8.04/5.22

10 19.63/9.95 18.51/8.93 11.69/6.89 16.61/8.59

12 16.77/9.96 15.94/8.52 8.90/6.08 13.87/8.19

15 4.43/1.62 3.17/1.32 1.14/0.38 2.91/1.11

20 4.62/1.63 3.10/1.34 1.29/0.39 3.00/1.12

40 4.41/1.65 3.11/1.37 1.13/0.38 2.88/1.13

+clustering L2 2 2.37/0.73 3.07/1.31 0.69/0.24 2.04/0.76

3 4.50/1.62 3.11/1.35 1.20/0.36 2.94/1.11

4 4.41/1.62 3.05/1.36 1.41/0.39 2.96/1.12

5 2.06/0.69 2.94/1.30 0.70/0.20 1.90/0.73

6 2.25/0.72 2.99/1.32 0.82/0.24 2.02/0.76

7 2.12/0.74 2.89/1.28 0.74/0.23 1.92/0.75

8 1.99/0.65 2.74/1.26 0.61/0.19 1.78/0.70

10 1.91/0.60 2.77/1.17 0.70/0.18 1.79/0.65
12 1.94/0.63 2.74/1.19 0.58/0.17 1.75/0.66

15 1.88/0.59 2.81/1.23 0.67/0.16 1.79/0.66

20 2.25/0.75 2.74/1.25 0.64/0.19 1.88/0.73

40 2.73/0.93 2.83/1.31 0.89/0.25 2.15/0.83

L4 2 9.21/5.20 11.45/5.46 4.91/2.52 8.52/4.39

3 4.46/1.61 2.96/1.31 1.07/0.34 2.83/1.09

4 4.34/1.57 2.99/1.33 1.14/0.35 2.82/1.08

5 12.27/9.66 11.25/6.20 5.89/3.87 9.80/6.58

6 16.20/9.90 16.13/8.32 9.70/6.00 14.01/8.07

7 15.88/9.85 15.49/8.27 8.91/5.91 13.43/8.01

8 11.60/9.07 10.13/5.88 4.96/3.68 8.90/6.21

10 5.98/3.61 7.44/3.91 2.52/1.35 5.31/2.96

12 5.15/2.59 7.00/3.37 2.02/1.00 4.72/2.32

15 4.44/2.39 5.89/2.93 1.91/0.79 4.08/2.04

20 4.00/2.00 5.52/2.71 1.57/0.68 3.70/1.80

40 4.28/1.98 4.87/2.39 1.51/0.65 3.55/1.67

The clustering method is able to reduce the the average

EER and MinDCF of PHN-BN1 and PHN-BN2 with respect

to their standalone systems. However, it is unable to improve

the performance of PHN-BN3. This is because the already

accurate transcriptions provided by the forced-alignment de-

coding approach.

Among all the feature extraction methods, uTCL-BN with

clustering gives the lowest average EER and minDCF, fol-

lowed by PHN-BN3 with a minor margin.

B. TD-SV performance of TCL-BN features with different
configurations under the GMM-UBM framework

Table IV presents TD-SV results of sTCL and uTCL with

or without clustering, using different numbers of TCL classes

and extracting features from different BN-DNN hidden layers

with the purpose of providing insights about the behaviour of

TCL with different configurations.

We first compare the performance of extracting features

from different hidden layers for sTCL and uTCL. L2 clearly

outperforms L4. This can be explained by the fact that the TCL

training target classes are related more to phonetic content than

to speaker identity, so that the earlier output layer is preferred

for speaker verification. The differences between L2 and L4

for sTCL are marginal, while the differences for uTCL are

very significant. The performances of sTCL do not change

much across different numbers of training target classes and

different layers (L2 or L4), and they are all better than the

MFCC baseline. This stable performance of sTCL is primarily

due to the fact that sTCL randomly assigns labels to segments.

On the other hand, the performance of uTCL varies much. An

overall explanation to these observations is that the training
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targets for uTCL are much more meaningful and consistent

than those for sTCL.

Concerning the number of TCL classes, N = 15 and

N = 10, give the lowest average EERs for sTCL and uTCL,

respectively. The performance of sTCL does not vary much

for different numbers of classes, which is due to the nature

of sTCL randomly generating segments and assigning class

labels. On the other hand, uTCL is rather sensitive to varying

the value N . Different from sTCL, uTCL exploits the data

structure of text-dependent pass-phrases, which is the reason

why it is sensitive to the number of classes.

The behaviour of uTCL deserves extra attention. When the

number of classes N equals to 10, uTCL-L2 achieves the

lowest EER (1.89%) and MinDCF (0.76/100) while uTCL-

L4 gives the second highest EER (16.61%) and the third

highest MinDCF (8.59/100), among all configurations without

clustering, and the differences are large. On the other hand,

N = 7 gives the worst performance (still slightly better than

the MFCC baseline) among uTCL-L2 while the third best

among uTCL-L4. The exactly opposite performance between

L2 and L4 is an interesting observation. To provide an insight

about this behaviour, we scatter-plot the uTCL-BN features

for the L2 and L4 layers for N = 10 using the T-SNE toolkit

[39], as shown in Fig.6. From the Fig. 6, it can be seen that

uTCL-L4 BN features all mixed together and does not show

any discrimination structure or pattern in the feature space. On

the other hand, uTCL-L2 features form clusters for different

speakers. This reflects on their performance of TD-SV.

Similar behaviour to that of N = 10 is observed for N = 5.

This is likely because N = 5 and 10 match the underline

linguistic structure of utterances in the RSR2015 database so

that L4 strongly represents the linguistic information and the

network learns good feature representation for speech signal in

general at L2. Analysis shows that the minimal, maximal and

average number of words per sentence in the database are 4, 8

and 6.3. Average number of frames per utterance is 205, and

average number of frames per word is 32.5. Table IV shows

that N = 7 and N = 15 behave in an opposite way to that of

N = 5 and N = 10, which deserves further investigation.

For larger values of N , e.g. 20 and 40, Table IV shows

that the differences in TD-SV performance among sTCL-L2,

sTCL-L4, uTCL-L2 and uTCL-L4 are rather small, with EER

ranging from 2.86% to 3.00%, which are rather consistent

but higher than that (1.89%) of uTCL-L2 for N = 10.

This is because small segments resulted from large N values

increase the mismatch among segments with the same label.

When N = 40, the average number of frames per segment is

around 5, so it is more likely segments in the same class have

different phonetic contents, leading to less-well trained BN-

DNN as compared with smaller values of N , e.g. N = 10,

as well as leading to similar performances between sTCL and

uTCL for L2 and L4. On the other hand, clustering helps

improve the performance of uTCL-L2 much, by giving decent

performances (1.79%, 1.88% and 2.15% for N = 10, 20, and

40 respectively).

The clustering method steadily improves the performance of

both sTCL and uTCL for L2. This indicates that the proposed

clustering method is able to assign similar speech segments to

Fig. 6: Scatter plots of uTCL-BN-features for the L2 and L4
DNN layers. The plots are extracted for three target speakers
using the utterances available in the training set (using the T-
SNE toolkit [39] with same parameters). All features use the
same utterances of the three speaker for a better comparison.

the same class in an unsupervised manner. In other words,

DNNs get better labelled data and thus reduce intra-class

variabilities for DNN training, leading to better BN features

for TD-SV. It is worth to note that after applying the clustering

method, uTCL-L2 provides both stable and good performance

across the different numbers of classes ranging from 5 to 20,

which largely improves the applicability of uTCL.

It is observed that uTCL-L2 with clustering performs

steadily well when the number of training target class is equal

to or larger than the average number of words in utterances and

it performs the best at around two times the average number

of words.

It should be noted that in all experiments in this work, the

pass-phrases in the DNN training data are different from the

TD-SV evaluation set, i.e. the learned feature is not phrase-

specific.

C. Scatter plots of BN features and MFCCs
To obtain insights about the different features, we use T-

SNE toolkits [39] to scatter-plot the different features for 3

target speakers (to limit the number for better visualization) us-

ing the utterances available in the training set as in Fig.7. It can

been seen that MFCC features are more compact and mixed

together with each other. SPK-BN is slightly better, but not

significantly. On the contrary, PHN-BN3 and uTCL+clustering

BN features are much more spread and demonstrate clear

structures in the data, indicating the superior discrimination

and representation ability. It is further noticed that clustering

helps make the TCL features more spread and structured. It

is encouraging to see that the level of spread and structure of

features is well in-line with their corresponding performance
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Fig. 7: Scatter plots of MFCCs and BN-features extracted for three target speakers using the utterances available in the training
set (using T-SNE toolkits [39] with same parameters). All features use the same utterances of the three speaker for a better
comparison.

TABLE V: TD-SV results of MFCCs and BN features on the m-part-01 task of the RedDots database using the i-vector method

Feature DNN # of Clustering Non-target type [%EER/(minDCF⇥ 100)] Average

Lyr. classes without: ⇥ Target- Impostor- Impostor- (EER

with: X wrong correct wrong /minDCF)

MFCC - - - 6.96/3.23 4.82/2.03 1.63/0.61 4.47/1.96

SPK-BN L4 300 - 7.19/3.02 5.76/2.29 2.33/0.81 5.10/2.04

SPK+phrase-BN L4 327 - 7.27/3.01 6.07/2.34 2.11/0.85 5.15/2.02

PHN-BN1 L2 38 ⇥ 2.68/1.04 4.57/1.94 0.89/0.26 2.71/1.08

X 2.76/1.31 4.13/1.79 0.67/0.25 2.52/1.12

PHN-BN2 L2 47 ⇥ 2.87/1.15 4.71/1.86 0.89/0.30 2.83/1.10

X 2.37/1.03 3.93/1.79 0.89/0.25 2.40/1.02

PHN-BN3 (ASR force-alignment) L2 39 ⇥ 2.25/0.83 4.65/1.90 0.89/0.26 2.59/1.00

X 2.89/1.16 4.16/1.82 0.92/0.31 2.66/1.10

sTCL-BN L2 10 ⇥ 6.60/2.97 5.51/2.25 1.80/0.74 4.63/1.99

X 3.92/1.67 4.31/1.82 1.07/0.38 3.10/1.29

uTCL-BN L2 10 ⇥ 2.74/0.97 5.27/2.08 0.95/0.32 2.991.12

X 2.73/1.11 4.19/1.86 0.92/0.27 2.61/1.08

in TD-SV. This indicates that the scatter plot generated by

using T-SNE is a good means for choosing features and thus

the configurations to generate the features.

D. Comparison of TD-SV performance for a number of BN
features and MFCCs under the i-vector framework

Table V compares the TD-SV performance of several fea-

tures under the i-vector framework [13] on the m-part-01 task

of the RedDots database. For simplicity, we only consider the

DNN layer for BN feature extraction, which gives the lowest

average EERs in Table III. It can be seen from the Table V

that average EER or MinDCF values of the TD-SV for most of

BN features are lower than those of MFCCs except for SPK-

BN and SPK+phrase-BN. This again confirms the usefulness

of BN features for TD-SV. Among all features, PHN-BN2

with clustering performs the best, followed by PHN-BN1 with

clustering. PHN2-BN and uTCL-BN with clustering come

after with small margins. It is interesting to notice that it is not

the one with most accurate transcriptions gives the best TD-SV

performance under the i-vector framework, even though the

margins are small. Compared to the GMM-UBM framework

with results shown in Table III, the i-vector method gives much

higher EER and minDCF values. This is due to the use of short

utterances for speaker verification [5], [52], [44].

E. Fusion of MFCCs with BN features
In this section, we study the fusion of MFCCs and BN

features at both score and feature levels under the GMM-UBM
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TABLE VI: TD-SV results for the score-level fusion of MFCCs and BN features on the m-part-01 task of the RedDots database

using the GMM-UBM method

Score fusion Non-target type [%EER/(MinDCF⇥ 100)] Average Without fusion

(#no.ofclasses) Target-wrong Impostor-correct Impostor-wrong EER/MinDCF Avg.EER/MinDCF

MFCC 5.12/2.17 3.33/1.40 1.14/0.47 3.19/1.35 3.19/1.35

MFCC & SPK-BN(300) 4.59/1.72 2.74/1.19 0.89/0.33 2.74/1.08 2.91/1.13

MFCC & SPK(300)+phrase(27)-BN 4.62/1.70 2.77/1.20 0.86/0.33 2.74/1.08 2.92/1.12

MFCC & PHN-BN1 (38) + clustering 2.56/0.85 2.69/1.15 0.57/0.17 1.94/0.72 1.97/0.72

MFCC & PHN-BN2 (47) + clustering 2.34/0.86 2.43/1.13 0.61/0.21 1.80/0.73 1.81/0.74

MFCC & PHN-BN3 (39) + clustering 2.25/0.79 2.49/1.11 0.56/0.16 1.77/0.69 1.82/0.69

MFCC & sTCL-BN(N = 10) + clustering 3.14/1.21 2.56/1.20 0.77/0.25 2.15/0.89 2.23/0.87

MFCC & uTCL-BN (N = 10) + clustering 2.06/0.71 2.54/1.10 0.59/0.17 1.73/0.66 1.79/0.65

framework. Only the GMM-UBM framework and BN features

with clustering are considered due to their good performance.

1) Score-level fusion: Table VI presents the TD-SV results

when scores of the MFCC based system are fused with the

scores of the respective BN feature based systems. Scores of

the different systems are combined with weights as follows.

First, the inverse of the mean EER value (m

i

eer

) of each

system i is calculated. Second, inverse values are scaled so

that the summation of the weights (w

i

for the i

th

system)

become unity. Finally the fusion score is the weighted sum

of component system scores. The steps are detailed in the

following equations.

y

i

=

1

m

i

eer

(7)

w

i

=

y

iP
l

i=1 yi

(8)

fused

score

=

lX

i=1

w

i

⇤ score
sysi (9)

From Table VI, it is noticed that all fusion systems perform

better than MFCCs alone. When combined with MFCCs,

all BN features obtain better performance compared to their

standalone counterparts. This shows that BN features carry

information complementary to MFCCs when used for TD-

SV. uTCL-BN with clustering still gives the best performance

followed by PHN-BN3.

2) Feature-level fusion: Fig.8 shows the TD-SV perfor-

mance (average EER over target-wrong, imposter-correct and

imposter-wrong cases) for various dimension of PCA projected

augmented feature (MFCC+BN) of different systems on the m-

part-01 task of the RedDots database using the GMM-UBM. It

is shown in [7] that simply augmenting features may degrade

the performance due to the redundancy between the features.

PCA is implemented as per [7]. From Fig. 8, it can be observed

that augmented feature +PCA gives slight reduction of average

EER except for the SPK-BN(300) with respect to the system

without PCA.

VII. CONCLUSIONS

In this paper, we presented a time-contrastive learning

(TCL) based bottleneck (BN) feature extraction method for the

text-dependent speaker verification (TD-SV). Specifically, a

speech utterance/signal is uniformly partitioned into a number

of segments of multiple frames (each corresponding to a class)

1.5

2

2.5

3

3.5

4

4.5

30 35 40 45 50 55 60 65 70 75 80 85 90 114

(%
) A

vg
. E

ER

PCA projected dim.

MFCC+SPK-BN(300) MFCC+PHN-BN1
MFCC+PHN-BN2 MFCC+PHN-BN3
MFCC+uTCL-BN MFCC+sTCL-BN

w/o
PCA

Fig. 8: The TD-SV performance for various dimensions of PCA
projected augmented feature (MFCC+BN) of different systems
on the m-part-01 task of the RedDots database using GMM-
UBM.

without using any label information and then a deep neural net-

work (DNN) is trained to discriminate speech frames among

the classes to exploit the temporal structure in the speech

signal. In addition, we proposed a segment-based clustering

method that iteratively regroups speech segments to maximize

the likelihood of all speech segments. It was experimentally

shown that the proposed TCL-BN feature with clustering

gives better TD-SV performance than Mel-frequency cepstral

coefficients (MFCCs) and existing BN feature extracted by

discriminating speakers or speakers and pass-phrases and it

is further better than or on par with phone-discriminant BN

(PHN-BN) features that we investigated in this work. The

clustering method is able to improve the TD-SV performance

for both TCL-BN and PHN-BN, except for the type of PHN-

BN that relies on forced-alignment to generate transcriptions.

All BN features are shown to be complementary to MFCCs

when score-level fusion is applied. Overall, the work has

shown the effectiveness of TCL approach for feature learning

in the context of TD-SV and the usefulness of PHN-BN.

Future work includes the investigation of using TCL for text-

independent speaker verification.
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