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Abstract 

Background. Middle ear physiology includes both sound pressure transmission and homeostasis of 

its static air pressure. Pressure gradients are continuously created by gas exchange over the middle 

ear mucosa as well as by ambient pressure variations. Gas exchange models require actual values 

for regional mucosa thickness, blood vessel density, and diffusion distance. Such quantitative data 

have been scarce and limited to few histological samples from the tympanic cavity (TC) and the 

antrum. However, a detailed regional description of the morphological differences of the TC and 

mastoid air cell system (MACS) mucosa has not been available. The aim of the present study was to 

provide such parameters. 

Methods. The study included sets of three histological H&E-slides from 15 archived healthy 

temporal bones. We performed a comparison of the mucosa morphology among the following 

regions: (1) anterior TC; (2) inferior TC; (3) posterior TC; (4) superior TC; (5) MACS antrum; (6) 

superior MACS; (7) central MACS; (8) inferior MACS. 

Results. Regions (1) - (3), situated below the inter-attico-tympanic diaphragm, had the largest 

proportion of high respiratory epithelium, cilia and loose lamina propria within the mucosa, as well 

as the thickest mucosa and the largest diffusion distance. Regions (6) - (8), situated above the 

diaphragm, had the thinnest mucosa, the shortest distance to the blood vessels, together with the 

largest proportion of flat epithelium and very few cilia. Regions (4) - (5), still supradiaphragmatic, 

had intermediary values for these parameters, but generally closer to regions (6) - (8). The blood 

vessel density and the proportion of active mucosa were not significantly different among the 

regions. 

Conclusion. Mucosa of regions (1), (2) and (3) represented a predominantly clearance-specific 

morphology, whereas in regions (4) - (8) it seemed adapted to gas exchange. However, the lack of 

statistically significant differences in blood vessel density and proportion of active mucosa 

indicated that all regions could be involved in gas exchange with the highest adaptation in the 

superior MACS. This pattern divides the middle ear functionally along the inter-attico-tympanic 

diaphragm rather than the anatomical division into TC and MACS. 
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1. Introduction 25 

In the normal middle ear (ME) a pressure equilibrium with the ambient pressure must be maintained 26 

in order to ensure an optimal sound transfer and normal hearing. This equilibrium is influenced by 27 

several factors. One factor is the continuous bidirectional diffusion of gases between the ME cavity 28 

and the mucosal blood vessels. This gas exchange normally leads to a net absorption of gas from the 29 

ME cavity, which is counterbalanced by a gas supply from intermittent Eustachian tube openings 30 

(Doyle, 2017; Gaihede et al., 2013; Sadé and Ar, 1997). Another factor is the displacement of the 31 

tympanic membrane, which can counterbalance moderate pressure changes from either the ambient 32 

atmosphere or from physiological effects with moderate inward and outward movements (Padurariu 33 

et al., 2016; Sadé and Luntz, 1989). Finally, more studies have suggested that changes in the 34 

volume of ME mucosa also can counterbalance changes in the ME pressure. Thus, small changes in 35 

mucosal thickness over the large surface area of the mastoid air cell system (MACS) may have a 36 

high impact on the ME pressure (Andréasson et al., 1976; Cros et al., 2016; Gaihede et al., 2010; 37 

Magnuson, 2003). 38 

Histo-morphological differences have been found between the mucosa of the tympanic cavity (TC) 39 

and that of the MACS, which have pointed to functional differences between the two compartments 40 

that are relevant for the understanding of the ME physiology including its overall pressure 41 

regulation. Thus, compared to the TC, the mucosa of the MACS has been observed with a shorter 42 

epithelium, which can be flat (Ars et al., 1997; Lim, 1979; Tos, 1984), cuboidal (Ars et al., 1997), 43 

or a mixture of both (Hentzer, 1970). The mucosa of the MACS has also been found to have a 44 

significantly shorter distance between the blood vessels and the epithelial basal membrane, as well 45 

as a higher density of blood vessels compared to the antero-inferior part of the TC. Together with 46 

the large surface area relative to the volume of the MACS, these features have been suggested to 47 

represent an adaptation to an efficient gas exchange compared to the TC (Ars et al., 1997). 48 

However, other authors have stated that the MACS only represents a passive buffer merely by 49 

virtue of its larger volume compared to the TC (Alper et al., 2011; Sadé and Ar, 1997).  50 

The TC mucosa has more types of epithelium, from stratified columnar with cilia to mono-layered 51 

cuboidal and flat, but always with taller cells in the antero-inferior part, and shorter cells in the 52 

postero-superior part (Ars et al., 1997; Hentzer, 1970; Palva et al., 1985; Sadé & Facs, 1966; Tos, 53 

1984). Besides cilia, the TC mucosa may also contain secretory cells consistent with an immune 54 
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defense and clearance of effusion including cellular debris (Ars et al., 1997; Hentzer, 1984; Sadé 55 

and Facs, 1966; Shimada and Lim, 1972).  56 

Based on these histological differences, Ars et al. (1997) proposed a functional 57 

compartmentalization of the ME cavity at the inter-attico-tympanic diaphragm, which is a plane 58 

through the TC extending between the level of the tensor tympani tendon and the posterior incudal 59 

ligament (Ars, 1998; Palva et al., 2001; Proctor, 1964). Thus, it has been suggested that the ME can 60 

be divided into a postero-superior compartment consisting of the attic, the antrum, and the MACS, 61 

which seems adapted to gas exchange, and the antero-inferior compartment of the TC, which may 62 

contribute primarily to clearance function and immune defense (Ars et al., 1997). 63 

The overall regulation of the ME pressure is of immense importance in clinical otology, where the 64 

development of under-atmospheric pressure challenges the normal auditory function as well as the 65 

surgical reconstruction of the ME; however, our basic understanding of these conditions is still 66 

limited. Mathematical and experimental modelling have been employed to investigate the pressure 67 

regulation, but they require anatomical and physiological input variables, which have not been 68 

directly available. For instance, models of gas exchange have often used the traditional ME 69 

compartments of TC and MACS, while assuming a uniform histo-morphology (Ar et al., 2007; 70 

Doyle, 2017; Fink et al., 2003; Kania et al., 2004; Kanick et al., 2005; Swarts et al., 2010) and 71 

approximating the ME diffusion distance to the thickness of the promontory mucosa (Ar et al., 72 

2007; Kanick et al., 2005; Yoon et al., 1990). In constructing such models, we need to know more 73 

about regional variations in the blood vessel density, diffusion distance, mucosa thickness, density 74 

of the lamina propria, and the surface area of active mucosa (Alper et al., 2017; Doyle, 2017; 75 

Marcusohn et al., 2010; Swarts et al., 2010). 76 

Based on the limited understanding of the functional properties of the ME mucosa and the requests 77 

for detailed histo-morphometric parameters of the mucosa, we set out to investigate its regional 78 

histological properties in archival histological sections from human temporal bones. Such structural 79 

properties may be closely related to the ME physiology, and thus, the overall pressure regulation of 80 

the ME.  81 
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2. Materials and methods 82 

2.1 Material 83 

The study material consisted of an anonymized archive of autopsy material from the Laboratory for 84 

Temporal Bone Histology, Department of Otorhinolaryngology, Head and Neck Surgery, Zürich 85 

University Hospital, Switzerland. It was represented by 15 horizontally sectioned normal temporal 86 

bones of 4 female and 11 male cadavers, with a median age at death of 44 years (age range 21 to 89; 87 

4 right and 11 left ears). The inclusion criteria were good tissue preservation and normal 88 

pneumatization of the MACS. For each temporal bone a series of between 10 and 40 histological 89 

slides were available. All these slides included areas from both the TC and the MACS along with 90 

the inner ear. However, the MACS material was most variable among cases and always restricted to 91 

sections through the lower level of the TC and above, and thus, the mastoid tip was not available for 92 

analysis (Figure 1a).  93 

The slides had been prepared according to routine pathology procedures, which consisted of 94 

formalin fixation, decalcification in nitric acid (HNO3), celloidine embedding, serial sectioning at 95 

20 µm thickness, and finally staining with haematoxylin and eosin (H&E) of every 10th or 20th 96 

section (Merchant, 2010).  97 

2.2 Sampling of mucosa 98 

The best preserved slides from each of the 15 cases were scanned by a NanoZoomer robotic 99 

scanning microscope (Hamamatsu, software version 2.5.88) with a source lens of 20 times and a 100 

further digital zoom of 2 times (resolution 0,227 µm/pixel). Whole slides were digitally archived as 101 

‘.ndpi’ files equivalent to a JPEG compression (Figure 1b). All samples were analyzed in 102 

Nanozoomer Viewer version 2.5.88 (Hamamatsu Photonics K.K.) at 40 times mode.  On each slide 103 

the TC and MACS regions were identified; the length of each varied up to respectively 5 and 15 104 

mm. In order to standardize the different samples, it was decided to include four sampling regions 105 

from each TC and MACS. These regions consisted of respectively (1) anterior, (2) inferior, (3) 106 

posterior, and (4) superior TC, (5) antrum, as well as (6) superior, (7) central and (8) inferior 107 

MACS. They could be harvested on respectively (1) the most superior available slide through the 108 

TC containing the incudo-malleolar joint and antrum (including regions 6, 5 and 4); (2) the first 109 

available slide through the TC under the inter-attico-tympanic diaphragm (including regions 7, 3, 110 
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and 1), and (3) the most inferior available slide through the TC (including regions 8 and 2) (Figure 111 

1a). Thus, a total of 120 regions, 8 from each of 15 temporal bones, were selected. 112 

In each of the above mentioned regions, a cross-sectional mucosa sample completely attached to the 113 

underlying bone was selected corresponding to a 1920 x 1016 pixels image (435 µm sample length) 114 

(Figure 1c). Further, each sample was selected such that the tissue was intact without local 115 

inflammatory changes. The clarity of the digital image at the sampling site because of the lens focus 116 

at scanning was an additional selection factor narrowing down the sample eligibility within the 117 

regions. 118 

 119 

Please insert Figure 1 around here. 120 

 121 

2.3 Histo-morphometric investigations 122 

A preliminary assessment of the mucosa morphology included observations of the type of the 123 

superficial epithelium and the presence or absence of cilia (Figure 2, zones 2 and 8 vs. the others). 124 

The columnar and the cuboidal types were noted as high epithelium, whereas the flat (squamous) 125 

epithelium was noted as low. Moreover, the evaluation referred to the underlying lamina propria, 126 

which contain the blood vessels as well as connective tissue fibers and cells (fibrocytes). This 127 

included the degree of its organization, classified as either tight or loose; thus, it was tight when the 128 

connective tissue fibers and fibrocytes nuclei had a parallel orientation without spacing in between, 129 

and when the staining intensity was relatively close to that of the underlying bone (Figure 2, zones 130 

4, 5). By contrast, the loose mucosa was characterized by less organized or irregular connective 131 

tissue fibers, an aerated appearance of lamina propria and a lighter staining (Figure 2,zones 1-3, 6-132 

8). The occurrence of these three features was expressed as samples counts out of total number per 133 

region. As the archival slides often presented differences in staining intensity and sectioning, all the 134 

analyses were performed dynamically under different digital magnification lenses in order to 135 

minimize interpretation errors. 136 

 137 

A quantitative analysis was carried out by using digital image analysis. The H&E mucosa sample 138 

and the contained blood vessels were manually segmented to overcome the challenges of automatic 139 

segmentation due to differences in staining and sectioning. The blood vessels were defined by their 140 
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endothelial cells and the presence of erythrocytes. Afterwards, the following morphological 141 

measurements were performed (Figure 1c): 142 

1) the mucosa thickness, for which there were made minimum eight measurements per sample, 143 

both through the centers of the blood vessel sections and in between the blood vessel sections 144 

(µm); the two types of measurements were annotated as two different categories and further 145 

compared;  146 

2) the blood vessel density, which was quantified by the density of the blood vessel sections 147 

within the mucosa cross-section; this was determined by the ratio of the summed area of the 148 

blood vessel sections related to the total mucosa cross-sectional area (%); 149 

3) the diffusion distance, which was measured by the shortest distance between the surface 150 

epithelial cells and the center of the major axis of the blood vessel sections (µm); 151 

4) the ratio of active mucosa, representing the proportion of surface mucosa crossed by underlying 152 

blood vessels, was calculated by the sum of the horizontal projections of the blood vessel 153 

sections, normalized to the sample length of 435 µm; 154 

5) the diffusion distance-to-thickness ratio, was calculated to investigate whether there was any 155 

region with a preferentially superficial expression of the blood vessels relative to their thickness. 156 

All the measurements were performed by the same observer (SP). 157 

2.4 Statistical analysis 158 

Measurements were exported from Nanozoomer Viewer as comma-separated-values (.csv) files for 159 

analysis. The data of the five variables were first checked for normal distribution by Shapiro-Wilk 160 

test. Two variables failed to prove normal distribution (mucosa thickness and diffusion distance); 161 

however, their distributions (negatively skewed) were similar in shape.  Variable transformations 162 

such as log-transformation were avoided due to difficulties in data interpretation. The five variables 163 

were tested for the assumption for homogeneity of variances by Leneve’s test and analyzed by one-164 

way ANOVA. A series of inter - regional comparisons was performed by post-hoc tests as follows: 165 

Tukey HSD test was applied to the variables meeting the assumption of equality of variance by 166 

Levene’s test (blood vessel density and length of active mucosa), whereas Games-Howell test was 167 

used for the remaining variables failing to prove equality of variances. 168 

A paired t-test was also performed to compare the mucosa thickness across sections with underlying 169 

blood vessel versus sections with no blood vessels.  170 
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Linear correlation analyses by Pearson test were applied to investigate correlations between any 171 

variable and age, between thickness subgroups, and between thickness and diffusion distance 172 

respectively. 173 

Intra-observer reliability was calculated based on repeated measurements of 11 samples included in 174 

the study belonging to 5 different cases and including 323 repeated measurements by the same 175 

observer and over several months. The analysis was performed by a Chronbach’s Alpha intraclass 176 

correlation with a two-way mixed model and a consistency definition. 177 

All statistical analyses were performed in IBM SPSS Statistics 24. 178 

3. Results  179 

There was a large variation in the histo-morphological appearance of the mucosa sampled from the 180 

different regions of the ME with respect to its thickness and vascularization pattern, type of 181 

epithelium and the density of the lamina propria as illustrated in Figure 2.  182 

The epithelial layer of the mucosa varied from high i.e. columnar and cuboidal, to flat, as well as 183 

from pseudo- or multi-layered to simple. High epithelium was encountered in 11 – 12 out of 15 184 

samples in each of the TC regions 1 and 2, in 3 – 6 out of 15 in the TC regions 3 and 4 and in 185 

MACS region 5, as well as in 1 – 3 samples out of 15 in each of the MACS regions 6, 7 and 8 186 

(Figure 3a). In all the other samples, the epithelium was simple flat.  187 

Cilia were encountered in all regions except 7; there were 4 to 5 samples out of 15 in each of TC 188 

regions 1 and 2, 2 to 3 samples out of 15 in TC regions 3 and 4, and up to 1 sample out of 15 per 189 

MACS region (Figure 3a). Goblet cells were only seen occasionally. 190 

The lamina propria of the mucosa was loose in 8 samples out of 15 in each of the TC regions 1 - 3, 191 

in 4 to 5 samples out of 15 in each of TC region 4 and MACS regions 5 and 6, and only in 2 to 3 192 

samples out of 15 in the remaining MACS regions (Figure 3a). 193 

 194 

Please insert Figure 2 around here. 195 

The means and standard deviations of the raw anatomical measurements are listed in Table 1.   196 

Mucosa thickness of all samples varied generally between 5 and 212 µm (detailed values in Table 197 

1 and Figure 3b) having decreasing values from region 1 in TC through regions 6 – 8 in MACS, 198 
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though with the lowest peak in region 6. Regions below the inter-attico-tympanic diaphragm i.e. 199 

regions 1, 2 and 3 presented a significantly thicker mucosa compared to all the other regions (p ≤ 200 

0.033 in all paired comparisons), except region 3, which had values very close to regions 4 and 5. 201 

However, regions 3 – 5 still had significantly thicker mucosa compared to MACS regions 6 – 8 (p ≤ 202 

0.035), which had values close to each other. 203 

 204 

 Please insert Table 1 around here. 205 

 206 

The thickness varied also for individual samples with the presence or absence of blood vessels. The 207 

means of the mucosa thickness over blood vessel sections was higher than the means of the mucosa 208 

thickness measured in the places not crossing over blood vessel sections with an average difference 209 

of 4 µm  (SD 10) (paired t-test, N = 107, p < 0.001). There was though a strong correlation between 210 

the two types of thickness measurements (Pearson ρ = 0.94, p < 0.001). 211 

 212 

The blood vessel density generally ranged between 2 and 44 %, but failed to show any statistically 213 

significant difference by paired comparisons by regions (p > 0.05) (Table 1 and Figure 3c). 214 

 215 

 216 

Please insert Figure 3 around here. 217 

 218 

The diffusion distance showed a large variability on the range from 1 to 188 µm. The regions 219 

below the inter-attico-tympanic diaphragm presented significantly longer diffusion distances (with p 220 

≤ 0.013) than the above-regions, except that region 3 did not differ from regions 4, 5 and 8. In fact, 221 

MACS regions 5 – 8 had very close value to the TC region 4.  Moreover, there was a significant 222 

correlation between the diffusion distance and the thickness of the mucosa layer (Pearson’s ρ = 223 

0.789, p < 0.001) (Table 1 and Figure 3d). 224 

 225 

The proportion of the active mucosa ranged between 56 to 100 % without any statistically 226 

significant differences between regions. 227 

 228 

The thickness-relative diffusion distance varied between 8 and 97 % across all regions, and there 229 

was a tendency of region 6 to express blood vessels closer to the mucosa top compared to the other 230 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

regions, although the differences were significant only between region 6 and respectively regions 2 231 

and 8 (p ≤ 0.038).  232 

The intra-observer reliability of measurements was of 0.992 for single measures and of 0.996 for 233 

average measures (p < 0.001).  234 

Correlation analysis between ages and any of the measured parameters yielded no statistically 235 

significant results (p > 0.05 for any parameter). 236 

4. Discussion 237 

The current study compared morphometric parameters of the ME mucosa in eight different regions 238 

of the ME, and found few statistically significant differences between the regions above and below 239 

the inter-attico-tympanic diaphragm related to the mucosa thickness and the diffusion distance. 240 

Thus, our more extensive sampling of the MACS region provided results consistent with those of 241 

Ars et al. (1997). However, the means of the diffusion distance with values between 12 and 48 µm 242 

in any of the 8 sampled regions including the epithelium were generally lower than the averages of 243 

40 µm and 71 µm for respectively postero-superior and antero-inferior compartments excluding the 244 

epithelium reported by Ars et al (1997). This difference may primarily reside in the fact that mucosa 245 

investigated in the present study was anchored to the bone that prevented it from curling and 246 

becoming thicker. Another possible factor may be a different degree of tissue shrinkage due to 247 

longer time of histological processing of the full mount archive materials used in the present study.  248 

In a histo-morphological study on 100-µm length promontory mucosa from normal ME’s, Yoon et 249 

al. (1990) found an average thickness of 37.5 µm excluding the epithelial layer. This is in good 250 

agreement with the mean of 55 (SD 34) µm including the epithelial layer for region 2, which may 251 

be the closest sampled regions in the present study. Moreover, they reported an average blood 252 

vessel density of 12.8 %, which was also in quite good agreement with the mean of 15 % for the 253 

same region in the current study.  254 

Overall, the current results showing that the mucosa of regions above the inter-attico-tympanic 255 

diaphragm, having typically a one-layered flat epithelium and normally lacking cilia, seems to 256 

correspond to the neural crest origin described by Thompson & Tucker (2013) in the mammalian 257 

attic. Together with a shorter diffusion distance, this part of the ME seems specialized in facilitating 258 

the gas exchange. By contrast, the parts below the inter-attico-tympanic diaphragm, described as of 259 
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endodermal origin, is characterized by a better clearance and defense functionality (Thompson and 260 

Tucker, 2013; Tucker et al., 2018). 261 

4.1 Trans-mucosal gas exchange  262 

The MACS regions presented a remarkably thinner mucosa and shorter diffusion distance compared 263 

with the remaining regions. The ratio between the two parameters also indicated that the blood 264 

vessel sections were situated most superficially in region 6. Together with the mostly flat 265 

epithelium and a relatively loose lamina propria, this region looked like the ideal site for gas 266 

exchange.  267 

There was no evident correlation between the diffusion distance and the blood vessel density. The 268 

latter suggested the highest blood supply in the central MACS (region 7), where the lamina propria 269 

was predominantly dense. Moreover, it was noticed that the looser appearance of the lamina propria 270 

associated negatively with the blood vessel density (Pearson’s ρ = -0.71; p = 0.05), so that the 271 

looser the appearance of the lamina propria, the lower the density of the blood vessels.  272 

Generally, the regions situated under the inter-attico-tympanic diaphragm (regions 1, 2, and 3) 273 

presented a looser lamina propria, as well as a thicker mucosa, and a higher ciliated epithelium, 274 

compared with the regions above the diaphragm, in agreement with the previous studies (Ars et al., 275 

1997; Hentzer, 1984; Sadé and Facs, 1966; Shimada and Lim, 1972). Moreover, despite the thicker 276 

mucosa and deeper blood supply in the sub-diaphragmatic compartment, the ratio between the 277 

diffusion distance and the respective mucosa thickness as well as the proportion of active mucosa 278 

and the cross-sectional density of the blood vessels are comparable among all the ME regions. 279 

Thus, the sub-diaphragmatic compartment altogether appears also to be adapted to an efficient 280 

trans-mucosal gas exchange. However, the muco-ciliary function in this region also involves 281 

secretion of mucus; this forms a mucous blanket on the top of the epithelium, which may constrain 282 

the gas exchange by acting as a relative barrier for the gas molecules. 283 

Overall, the mucosa had a moderate vascularization. However, it was interspersed with segments of 284 

more intense vascularization, where the blood vessels were more congested, the mucosa was 285 

thicker, and the epithelium was higher with cilia. This has been noticed in both the TC and the 286 

MACS, and it suggested either a localized defense reaction and/or sequelae of earlier episodes of 287 

inflammation.  288 

4.2 Mucosal congestion  289 
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The same structural properties of the mucosa that may enhance the physiological gas exchange –290 

vascularization, connective tissue that might change between loose and dense, together with a large 291 

mucosal surface area of the MACS – may also point to another role of the mastoid mucosa in the 292 

overall ME pressure regulation. Thus, it has been suggested that physiological changes in the 293 

mucosal volume or thickness may influence or counter-balance changes in ME pressure effected by 294 

changes in its congestion (Gaihede et al., 2010; Magnuson, 2003). This is almost similar to the 295 

mechanism found in the nasal mucosa that controls the airflow through the nose by changes in the 296 

mucosal congestion, which is efficiently managed by specialized venules or sinusoids 297 

(Widdicombe, 1997). Such specialized venules have not been demonstrated in the ME, but 298 

increasing its vascular congestion may still be likely to increase the mucosal thickness, and 299 

ultimately the ME pressure (Figure 4). It follows that this mechanism would work in either 300 

direction, so that increasing or decreasing the mucosal congestion would result in increasing or 301 

decreasing the ME pressure.  302 

 303 

Please insert Figure 4 around here. 304 

It has been estimated that for normal sized ME’s, a change in mucosal thickness of only 6 µm is 305 

enough to induce a pressure change of 1 kPa (Magnuson, 2003). In our samples, we found a mean 306 

difference of 4 µm (SD 10) between paired mucosa measurements (N = 107 pairs) in the presence 307 

versus absence of blood vessel sections. Since venules often are found collapsed in tissue samples, 308 

the difference between the presence and absence of venules may more likely represent the 309 

difference, whether the venules are blood-filled and visible, or collapsed and invisible. Thus, the 310 

difference in mucosal thickness of 4 µm found here may simply reflect changes in congestion, 311 

which are in the same order of magnitude (6 µm) as suggested for physiological pressure changes 312 

by Magnuson (2003). 313 

In diseased ME mucosa, which is relatively thicker, an apparently new blood vessel formation has 314 

been observed (Ar et al., 2007; Matanda et al., 2006). In addition, the lamina propria seems to 315 

become less organized with a looser appearance when the blood vessels become more prominent or 316 

congested. Figure 4 illustrates such a situation with rich blood filled venules and an expanded 317 

mucosa, where the looser appearance of the lamina propria may result from the expansion of the 318 

connective tissue. Thus, these changes may result from a response to counter-balance under-319 

atmospheric pressure related to inflammatory conditions, and it may also be attributed merely to the 320 
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fact that venules largely collapsed in normal tissue preparations become expanded. This becomes 321 

evident at immunostaining of the mucosal blood vessels with CD31 staining, where a very high 322 

density of mucosa blood vessels are visible including many collapsed vessels (Figure 5).  323 

 324 

Please insert Figure 5 around here.  325 

 326 

4.3. Cilia and metaplasia 327 

The cilia distribution in the present samples generally agreed with earlier systematic studies, since 328 

they were noticed to be most numerous in the inferior and anterior TC, and less frequent in superior 329 

and posterior TC (Sadé and Facs, 1966; Shimada & Lim, 1972). However, in one case numerous 330 

cilia were found in the antrum and MACS (Figure 6), which is in agreement with few of the 331 

previous studies (Hentzer, 1970; Shimada & Lim, 1972). The presence of numerous cilia in the 332 

lateral MACS in one of the best-preserved cases suggested that metaplasia might have occurred as 333 

result of earlier ME pathology (Shimada & Lim, 1972). 334 

 335 

Please insert Figure 6 around here. 336 

The currently used material underwent prolonged fixation and decalcification, which could 337 

disintegrate cilia, thus, their frequency might be underestimated (Sadé & Facs, 1966). However, 338 

cilia were also occasionally found in peri-antral MACS of more subjects of the present material 339 

outside the samples used in our analysis. This may also suggest that antrum and the peri-antral 340 

MACS can be a transition site between the clearance and gas exchange functions. Altogether, cilia 341 

distribution and clearance may be dynamic and include the MACS probably in response to local 342 

inflammatory factors (Sadé & Facs, 1966).  343 

4.4 Strengths and limitations of the study 344 

There are unique advantages of using this archival material such as the larger availability of whole 345 

samples and serial sections; moreover the mucosa is much better protected against shrinkage and 346 

curling due to its firm attachment onto the bone compared to separate mucosa pieces harvested 347 

during the surgery. However, due to the anonymity of the material, we had no information about 348 
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specific ME disorders, and the judgement of normality was subjective and only based on a normal 349 

appearance of the mucosa and the MACS pneumatization.  350 

One specific aspect of archive materials is that they are usually only available in H&E staining and 351 

embedded often in celloidine. While the latter offers a very good morphological preservation, the 352 

H&E staining gives a good overview on the tissue composition. However, it makes the blood vessel 353 

identification more challenging, especially if they are collapsed and emptied of blood. A special 354 

marker for endothelial cells would highlight them and this would be an advantage for an automatic 355 

segmentation of the digital images (Figure 5), whereas a safe quantitative analysis of the H&E 356 

samples requires a time-consuming analysis slide-by-slide by a pathologist.  357 

Another limitation is that the inferior-most sections of the mastoid are missing in this analysis, 358 

providing an incomplete image. This may become the object of further studies, where the whole 359 

mastoid will be harvested and prepared histologically. 360 

The study is also limited by the manual method, which was not favorable to a quantitative 361 

measurement of the parameters in all the mucosa available, but rather to a sample-based design. A 362 

systematic study on the effect of changing samples was not performed. However, it could 363 

occasionally be noticed that by replacing a sample within a region did not affect the levels of 364 

significance. This might be assumed to the relatively low rate of statistically significant differences 365 

of the measured parameters among the regions.  366 

A known issue of morphological analyses is the possible bias induced by preparation-related 367 

shrinkage. The current study was performed in a comparative manner, so an eventual shrinkage bias 368 

should be relatively the same in all the sample groups. However, if the results should be used in a 369 

mathematical model, correction would be necessary considering that the underlying bone might 370 

shrink about 6 %, and the mucosa may also follow this phenomenon (Buytaert et al., 2014). 371 

The present study has been limited by the planimetric design of the sampling, which may 372 

correspond to screenshots through the mastoid mucosa. In vivo, mucosa is subject to dynamic 373 

behavior regulated by chemical mediators with effects on blood flow and blood vessel permeability, 374 

which may allow for large adaptive variations. Moreover, the longitudinal blood vessel sections and 375 

the diffusion distances cannot be considered absolute values, but rather relative values dependent on 376 

the angle of sectioning at its time. The blood vessel sections may represent a cut through the most 377 

central section or just through the endothelial wall. Thus, when the blood vessels are just identified 378 
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by their endothelial cells, they may represent only the wall of a blood-filled vessel or a collapsed 379 

blood vessel. A clear judgment was not possible due to the large cutting steps to the next available 380 

section, which was often 200 µm or more, clearly larger than the capillary or venule cross-diameter. 381 

Future studies with systematic application of immuno-histochemical staining would offer a more 382 

detailed investigation of the mucosa samples including the vascular density by CD31 as specific 383 

marker of the endothelial cells (Figure 5); however, this demands paraffin-embedded tissue 384 

specimens. We have attempted this in a series of cases, but a longer decalcification process also 385 

lead to problems with the quality of the subsequent staining of the tissue samples. Improved 386 

techniques are needed, where for instance smooth muscle fibers within the lamina propria of the 387 

blood vessels as well as neural fiber components may be detected by immuno-staining. This may 388 

further elucidate the functional properties of the mucosa with regard to the possibility of a neural 389 

control of changes in its perfusion and congestion. Such findings may point to an overall active role 390 

of the mucosa in the ME physiology and pressure regulation, and should be aimed for in future 391 

studies. 392 

Conclusion 393 

The histomorphometric variables provided useful measures for detailed ME modeling including the 394 

mucosa thickness, the diffusion distance, and the active mucosal surface area. Since the assessment 395 

of the mucosal perfusion is impossible to obtain with current techniques, the density of the blood 396 

vessels may serve as an indirect measure of the mucosal blood supply. 397 

Regions of antero-inferior TC presented significantly thicker mucosa and longer diffusion distances 398 

from blood vessels to surface than the than the regions of the remaining TC and MACS, whose 399 

shorter diffusion distances and much larger mucosa surface area should facilitate gas exchange.   400 

However, the relatively uniform blood vessel density and proportion of active mucosa suggest that 401 

all ME regions may be involved in gas exchange. Moreover, a potential role in pressure regulation 402 

by changes in mucosa congestion is also suggested based on a significant difference in mucosa 403 

thickness depending on the presence or absence of underlying blood vessels. Thus, the size of the 404 

MACS surface area contributes to its efficacy in gas exchange and pressure regulation via changes 405 

in congestion and mucosal thickness. 406 

In many respects, the TC and MACS compartments might be treated as a unity in normal 407 

conditions. However, in inflammatory conditions with changes in mucosa thickness, blood vessel 408 
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density, and blockage of the inter-attico-tympanic diaphragm including dysfunction of the 409 

Eustachian tube, the two compartments may become totally isolated gas pockets, which may reach 410 

neither a balance with each other, nor with the ambient pressure, and thus, throwing the ME in the 411 

vicious circle of underpressure. 412 
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Figure captions: 511 

Figure 1. (a) Sagittal representation of the middle ear, where the sampling planes and regions are 512 

represented. TC = tympanic cavity; MACS = mastoid air cells system. The sampled regions are: (1) 513 

anterior TC; (2) inferior TC; (3) posterior TC; (4) superior TC; (5) MACS antrum; (6) superior 514 

MACS; (7) central MACS; (8)  inferior MACS; (b) Example of a horizontal slide including three 515 

regions of mucosal sampling (slide 2; digital lens 0.36; scale bar = 5 mm). (c) Example of histo-516 

morphometric measurements in a mucosa (M) sample, oriented upwards, whereas the bone (B) is at 517 

the bottom of the image. The green lines are thickness measurements, the black line represents the 518 

diffusion distance, and the dark blue ellipse represents a blood vessel section. Sample region 5; 519 

H&E, magnification lens 40x; scale bare = 25 µm. 520 

Figure 2. Samples of mucosa from respectively each of the eight regions defined in Figure 1. All 521 

samples belong to the same ear (case 5, H&E) and at the same magnification (digital lens 80x). 522 

Mucosa is oriented with the air interface upwards, and attached to the underneath bone (B). Notice 523 

much thicker mucosa in zones 1 and 2 compared to the others regions. Mucosa elements referred in 524 

the study are emphasized as follows: the epithelium of each sample is marked with black arrows, 525 

the lamina propria (lp) is marked with braces, the blood vessels are marked with stars, and cilia µm 526 

are marked with blue arrows. In the illustrated case, the epithelium of regions 1, 4, 6, and 8 was 527 

considered low, whereas in the other regions it was considered high; mucosa of regions 4, 5 and 8 528 

was considered tight, whereas in the other regions it was considered loose. Scale bars = 25. 529 

Figure 3. Summary of main morphological and morphometric analyses of the mucosa in 8 regions 530 

of 15 normal ME’s. Panel (a) represents the proportion of samples per region presenting each 531 

mentioned feature. The three boxplot panels represent the middle 50% of the morphological 532 

measurements. The horizontal lines within are the medians, and the whiskers represent the 95% 533 

confidence intervals. The small circles represent the outliers within 1.5 interquartile range, whereas 534 

the stars indicate the outliers beyond this limit. 535 

Figure 4. Mastoid air cell with expanded/looser mucosa and many distended venules. The sampling 536 

site is marked within a black box on the slide map to the right (case 6, magnification lens 5x; scale 537 

bar = 500 µm). 538 

Figure 5. MACS mucosa stained with CD31 marking endothelial cells of blood vessels in brown. 539 

Notice the contour of several blood vessels with the lumen almost collapsed. These blood vessels 540 

may be concealed in H&E stained preparations (magnification lens 20x; scale bar = 100 µm). 541 

Figure 6. Cilia within lateral MACS represented with arrows (Case 8, magnification lens 80x). The 542 

sampling site is marked within a black box on the overview map to the right. Scale bare = 25 µm. 543 
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Tabel 1. Distributions of raw morphometric parameters in eight sampled regions of the middle ear mucosa 
(N = 15). Results are expressed as rounded mean (standard deviation). The last column presents the level of 
significance for oneway ANOVA test for differences among regions with respect to each parameter 

 

 

 Middle ear region ANOVA  

 1 2 3 4 5 6 7 8 p-value 

Mucosa thickness 

(µm) 

84 (55) 55 (34) 44 (28) 35 (29) 36 (21) 26 (23) 27 (15) 27 (16)       < 0.001 

Blood vessel density 

(%) 

15 (8) 15 (7) 18 (10) 16 (9) 18 (8) 16 (9) 21 (8) 18 (8)     0.518 

Diffusion distance 

(µm) 

48 (40) 29 (23) 20 (17) 17 (15) 18 (13) 12 (12) 14 (8) 15 (10)  < 0.001 

Active mucosa (%) 66 (26) 59 (19) 61 (23) 55 (19) 61 (24) 49 (25) 58 (19) 53 (22)     0.481 

Diffusion distance/ 

thickness (%) 

50 (23) 51 (20) 44 (20) 48 (18) 48 (20) 43 (16) 49 (14) 51 (16)    0.036 
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Highlights 

• Mucosa morphology differs between antero-inferior and postero-superior middle ear 

• Mucosa morphology is divided by the inter-attico-tympanic diaphragm 

• The postero-superior mucosa is thinner with shorter diffusion distances for gases 

• The blood vessel density is approximately uniform across the middle ear regions 

• Mucosa structure of the main middle ear regions seems efficient for gas diffusion 


