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Abstract

In many speech applications, the signal of interest is often corrupted by highly
correlated noise sources. An extreme example is when several speakers are talk-
ing at the same time, a phenomenon called cock-tail party problem. Separating
desired speaker signals from their mixture is one of the most challenging research
topics in speech signal processing. The problem is called single-channel speech
separation (SCSS) where the interfering signal is another speaker. Possible ap-
plications include speech coding, speech recognition, hearing aid and forensics
where a high quality separation algorithm is required as a pre-processing stage
to mitigate the effect of interfering signals.

In the introductory part of this thesis, we present the problem definition and
give an overview of its different applications in real life. We then move on pre-
senting the dominating previous SCSS methods and outline the problems they
face. As our contribution, we present novel strategies to improve the separation
performance in the form of proposing two SCSS systems, namely model-driven
SCSS in sinusoidal domain and joint speech separation and speaker identifica-
tion. We propose sinusoidal mixture estimator for speech separation. We gener-
alize mask methods for speech separation from short-time Fourier transform to
sinusoidal case. Experiments show that using sinusoidal masks improved the sep-
aration performance compared to the STFT counterpart. A separation system is
proposed based on sinusoidal parameters composed of sinusoidal mixture estima-
tor along with sinusoidal coders used as speaker models. To overcome the speaker
dependency problem known as a common problem in model-driven SCSS meth-
ods, we present a joint closed loop speaker identification and speech separation
considered as an attractive approach for speaker-independent SCSS. We also pro-
pose two contributions to identify speakers from single-channel speech mixture.
We propose a new approach for speaker identification for single-channel speech
mixture independent of the signal-to-signal ratio. We present a double-talk de-
tection method to determine the single-talk/double-talk regions in a mixture.
We also integrate a double-talk detector with a speaker identification module to
improve the speaker identification accuracy. Finally, a joint speech separation
and speaker identification system is proposed for separation challenge.
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Resumé

I mange taleapplikationer er interessesignalet ofte korrumperet af yderst korrel-
erede støjkilder. I ekstreme tilfælde er der adskillige talere, som konverserer sam-
tidigt. Dette fænomen kaldes cocktailparty problemet. At adskille det ønskede
talesignale fra denne blanding er et af de mest udfordrende forskningsemner in-
denfor talesignalbehandling. Problemet kaldes for enkeltkanals taleseparation
(p̊a engelsk forkortet SCSS), hvor det interfererende signal er en anden taler.
Mulige applikationer inkluderer talekodning, talegenkendelse, høreapparater og
kriminaltekniske teknikker, hvor separationsalgoritmer af høj kvalitet kræves
som præprocessor for at dæmpe effekten af interfererende signaler.

I den indledende del af denne afhandling definerer vi problemet, og giver
et overblik over dets forskellige reelle applikationer, hvorefter vi præsenterer de
hidtil dominerende SCSS metoder og skitserer deres problemestillinger. Som
vores bidrag præsenterer vi nye strategier i form af to SCSS systemer til at
forbedre separationsydelsen. Disse er modeldrevne SCSSer i sinusdomnet samt
fælles taleseparation og taleridentifikation. Vi foresl̊ar en blandingsestimator til
estimation af sinusser til brug i taleseparering og generaliserer maskeringsme-
toder til taleseparation fra korttids Fourier transformen (p̊a engelsk forkortet
STFT) til sinustilfældet. Eksperimenter viser, at n̊ar sinusmaskerne anvendes,
forbedres separationsydelsen sammenlignet med STFT. Vi foresl̊ar ydermere et
separationssystem baseret p̊a sinusparametre sammensat af en blandingsestima-
tor til sinusser og sinuskodere. For at undg̊a taleafhængighedsproblemet, der er
kendt som et typisk problem i modeldrevne SCSS metoder, præsenterer vi en
fælles lukketsløjfe taleridentificering og taleseparering, hvilket anses for at være
en attraktiv tilgang til en taleuafhængig SCSS. Derudover har vi to bidrag til at
identificere talere i en enkeltkanals taleblanding. Vi foresl̊ar en ny metode til at
identificere talere, der kan anvendes p̊a enkeltkanals taleblandinger uafhængigt
af signal-støj-forholdet. Vi præsenterer en dobbelttale detektionsmetode til at
kortlægge enkelttale/dobbelttale regioner i taleblandinger. Derudover integrerer
vi en dobbelttaledetektor i et taleridentificeringsmodul for at forbedre taleri-
dentificeringsprcisionen. Slutteligt foresl̊ar vi et fælles taleseparations- og taleri-
dentficeringssystem til separationsudfordringen.
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Introduction

Separating mixed signals has long been considered an important and funda-
mental issue with a wide variety of applications in telecommunications, audio
and speech signal processing, and medical signal processing. Audio and speech
separation systems find a variety of potential applications including automatic
speech recognition (ASR) under adverse noise conditions, and multimedia or
music analysis where signals are purposefully mixed from multiple sources.

This introductory overview is organized as follows. In Section 1, we first
present two speech separation scenarios, namely multi-channel and single-channel.
We define single-channel speech separation (SCSS) problem and its applications.
We also compare the separation problem with the so-called speech enhancement
problem. In this section, we also briefly present the differences between a ma-
chine and the human auditory system while separating a single-channel speech
mixture. Finally, we present the masking effect and its role in separating a
speech mixture. In Section 2, we provide a review of the previous methods
used for SCSS. More specifically, we describe the methodology for each method,
and its advantages and drawbacks. In Section 3, we describe the considerations
required for a practical SCSS system. We present how a speaker identification
module can be integrated to an SCSS module to solve SCSS problem when there
is no knowledge of the identities of the underlying speakers in the mixture. In
Section 4, we describe how different separation methods are being evaluated in
the literature. We also emphasize the importance of two measurements: speech
quality and speech intelligibility, known as the two most important issues when
quantifying the separation performance. In Section 5, we address our own contri-
butions where we propose two novel model-driven approaches for SCSS. Finally,
in Section 6, we sum up the conclusions of this work. As an appendix to this
introduction, Section 7 provides some conjectures on the future challenges that
await the SCSS community and elaborates on how some of the topics discussed
in this thesis could play a role in these challenges.
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2 INTRODUCTION

information

Fig. 1: Showing the system configuration for separating a single-channel recorded speech
mixture composed of signals uttered by two speakers, namely speaker A and B. The goal here
is to recover the underlying speakers signals according to their one observed mixture.

1 Background

1.1 Multi-Channel versus Single-Channel Speech Separa-

tion

In general, in terms of acoustical configuration and the number of microphones
and speakers, source separation methods are categorized into the following two
groups: over-determined where the number of microphones are more than or at
least equal to the number of unknown speakers, and under-determined where
the number of microphones are less than the number of unknowns.

Multi-channel speech separation scenario has been carefully studied and re-
markable results have already been reported [2, 8]. They use spatial information
for separating sources from mixtures either 1) by steering the main-lobe beam-
pattern towards a desired source and placing deep nulls towards the interferers,
or 2) by producing time-frequency masks to be applied on the given mixed sig-
nals to recover unknown sources [141].

In this thesis, we only focus on separating speech mixtures based on one
single observation recorded by one microphone. Figure 1 shows the configura-
tion of a single-channel speech separation problem. Assume that we have two
speakers A and B, speaking simultaneously, and their mixture is recorded by
a single microphone. The main objective of an ideal speech separation system
is to recover the unknown speaker signals (here speakers A and B) accurately,
according to only one observed mixture. As an everyday life experience, we all
know that humans can easily and accurately separate mixed signals. However,
such accurate separation can not be done easily by a machine.

In contrast to the multi-microphone separation scenario, no spatial phase
information is provided to solve the separation problem in a single-channel sce-
nario. Therefore, the problem results in an under-determined linear equation,
which is too ill-conditioned to be solvable by applying the so-called methods since
the mixing matrix is not invertible (equivalently, its condition number is infinity).
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Fig. 2: Block diagram showing how a single-channel speech separation module can be used
as a pre-processing stage to enhance the ultimate performance of a target application.

The problem is solved only by imposing a priori information, perhaps about the
unknown speakers’ models in the mixed signal [34, 52, 89, 107, 109, 111, 115, 116].

1.2 Applications for SCSS

In many practical applications like speech coding, speaker recognition, speech
recognition and hearing aids, a separation system is often required since the
input signals are rarely clean; they are mostly corrupted by some other unde-
sired signals. Consequently, a high quality speech separation system is often
required as a pre-processing stage in order to mitigate the effect of interfering
signals on the overall performance of different applications. A high quality sep-
aration system would play an integral role in offering robustness to the target
application. For example, the performance of a speech recognition system may
significantly degrade in an adverse noise condition since it is trained for clean
training-speech signals. Figure 2 shows a block diagram for an SCSS system,
used as a pre-processor for target applications including speech coding, ASR,
speaker identification and verification in adverse conditions. Another impor-
tant application is the hearing aid. It has been well documented that hear-
ing impaired listeners have great difficulty in perceiving speech corrupted with
background noise [84]. Although human listeners are often able to attend to
individual sources even in dense mixtures, this ability to separate sources from
mixtures degrades significantly for hearing impaired listeners [141]. In fact, one
of the primary complaints of hearing aid users relates to their poor separation
performance in cocktail party-like situations. As a consequence, SCSS methods
can potentially be used as tools to mitigate the background or interfering signals
that corrupt the desired speaker signal.
It is remarkable to note that the SCSS problem can be viewed as an extreme

case of the so-called speech enhancement problem. Therefore, it is intuitive to
consider the connection between speech enhancement and separation. In the
following section, we explain the differences between SCSS and speech enhance-
ment.
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1.3 Comparison to Speech Enhancement

Although there have been recent advances in many speech enhancement meth-
ods [37, 38, 46, 47, 59, 75, 120, 130–132], SCSS with high speech quality still
remains a challenge for many applications, especially when the interfering sig-
nal is another competing speaker signal. Therefore, a reliable speech separation
system is often considered as a pre-processor in order to improve the overall
perceived speech quality of a certain application in an adverse noise condition.

In case of highly non-stationary noise, the conventional speech enhancement
methods including spectral subtraction [14], Wiener filtering [36, 74, 82, 130]
and subspace methods [46, 47, 59] are suitable for de-noising a given speech
signal corrupted with noise. More advanced single-channel speech enhance-
ment methods are: minimum mean square error (MMSE) amplitude estima-
tor [38, 109, 120, 130, 131], and maximum a posteriori (MAP) amplitude esti-
mator [49, 77]. These methods are mostly based on the second order statistics
information of the noise signal to be estimated at some noise-only frames in the
noisy signal. Such decision-directed methods cannot be used when the interfer-
ing signal is another speaker signal because of its fast varying statistics and that
make it highly non-stationary [75]. More specifically, in case of a highly non-
stationary noise where the noise PSD varies rapidly, it is not possible to apply
the state-of-the-art noise estimation methods like minimum statistics [79, 81].

As important parts of speech enhancement methods, subspace-based meth-
ods are suggested in [46, 47, 59] where the goal is to find a projection by which
the noisy speech signals are de-noised. However, for speech-speech scenario, find-
ing such a projection is a difficult task since the bases of the underlying speakers
in the mixture follow a rather similar probability density function (pdf) mostly
super-Gaussian as reported in [49, 80]. This brings in the need of having a
high quality separation system when speech enhancement is not sufficient for
enhancing the desired signals.

1.4 Human Auditory System versus Machine

The human auditory system easily separates speech mixtures into the underly-
ing speaker signals. It is still unknown what cues play a key role in the human
ability to perceive different speakers in a speech mixture. However, scientists
tried to mimic the procedure followed by the human auditory system for sep-
arating mixtures using a machine. In 1990, Bregman presented the auditory
scene analysis (ASA) to describe this ability [15, 142] by suggesting strategies
similar to the human auditory system.

In chronological order, the first attempts made for solving this problem date
back many decades when Bregman [15] and Weintraub [146] used low level per-
ceptual cues for time-frequency segmentation and for finding regions of presence
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of one single source. Later, progress was made toward designing computational
auditory scene analysis (CASA)-based systems, machine listening systems that
aim to separate mixed signals by mimicking the same way as human listeners
do in everyday life. Cooke and Ellis gave a detailed review of CASA grouping
cues in [55]. In section 2.3, we will explain the CASA-based methods and their
pros and cons in detail while separating speech mixtures.

1.5 Masking Effect on Separating Speech Mixtures

Auditory masking refers to the perceptual effect that, roughly speaking, a louder
sound renders a weaker sound inaudible within a critical band [85]. In other
words, it indicates that under certain conditions a stronger signal can mask
a weaker one in some critical band (or blocking the target sound by acoustic
interference [144]). The masking phenomenon has been studied carefully in psy-
choacoustics and is known as a highly important factor in the overall separation
performance of the current SCSS systems at different signal-to-signal ratio (SSR)
levels. The SSR is defined as the average ratio of the target speaker gain to the
interfering signal gain. We define target signal as the desired signal in the speech
mixture while the masker signal refers to the interfering speaker in the mixed
signal. In single-channel speech separation, depending on the mixing level, each
speaker can be a target or masker speaker. Therefore, the role of the target
and the masker can interchange easily at different frequency bands. When two
speech signals mix together, two types of maskings contribute to the separation
performance [31]: 1) energetic masking, and 2) informational masking [29]. The
listener’s ability to hear a target speaker signal in the presence of other interfer-
ing sources is limited by both energetic and informational masking. Energetic
masking is said to take place when some portions of one or both speakers are
masked by another interfering speaker due to sharing their energy in the same
critical frequency band. The energies of the sources most likely collide at a
time-frequency cell [75, 85]. Energetic masking [132] makes the signal recovery
of the speakers rather difficult. It occurs when the target signal overlaps with
the interfering source at some time-frequency (T-F) cells. This makes some parts
of the target speaker inaudible. Basically, energetic masking is a phenomenon
where a weaker signal is dominated by a stronger speaker signal within a critical
frequency band [42] rendering the speech signals inaudible at the periphery [29].
On the other hand, informational masking refers to the situation where the lis-
tener is unable to distinguish between target and interference when both are
audible. In [132], informational masking was modeled as errors in target segre-
gation in a speech separation system. Higher-level informational masking occurs
when the target and masker signal are both audible, but the listener is unable to
distinguish the elements of the target signal from a similar-sounding distracter.

It is very important to study how different separation methods perform with
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the variations in SSR level in a mixed signal. This issue is arguable in case of
the two types of masking discussed earlier in this section. According to the re-
sults reported in [5, 18, 54], the separation quality degrades as energetic masking
takes place at some overlapping time-frequency cells.

2 Previous Methods

In general, previous SCSS methods can be categorized in the following groups:
independent component analysis (ICA), non-negative matrix factorization (NMF),
source-driven and model-driven methods. We now present the drawbacks and
merits of each method.

2.1 ICA and ISA

ICA is a computational method for separating a multivariate signal into additive
subcomponents assuming the mutual statistical independence of non-Gaussian
source signals. It is a special case of blind source separation. In multi-channel
processing, it is well known that under certain conditions, it is possible to com-
pletely separate the sources from their mixture using the ICA method [56]. The
requirements are

• The mixing matrix must be full-rank.

• The number of observations should be larger than or at least equal to the
number of unknown sources in the mixture.

• The independence assumption must be valid for the underlying sources in
the mixture.

• Must have pre-knowledge regarding the number of sources in the observed
mixture.

These factors serve as limiting restrictions for using ICA as an SCSS solution.
In [58], as an extension of blind source separation (BSS) to SCSS, a maximum
likelihood approach was used to propose a supervised ICA algorithm for sepa-
rating single-channel speech mixtures. The method worked well on mixtures of
speech and music sources, but led to poor performance for mixtures composed
of speech signals, especially mixtures composed of same genders [58]. This is
because the signal bases largely overlap in both time and frequency domains in
a speech mixture. In [95], the authors combined ICA with binary time-frequency
masking for separating speech mixtures by using two microphones. The method
assumes no prior knowledge on the number of source signals in the mixture and
separates up to six mixed speech signals under anechoic conditions. In [94, 96],
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the same authors also extended their solution to separate speech signals from a
convolutive mixture. They showed that their proposed method is applicable to
separate signals in the presence of reverberation.

As another variant of ICA, independent subspace analysis (ISA) simulates
an observation with the dimensionality increased from 1 to N . Performing ICA
on the transformed signal yields a set of N independent bases, which must then
be grouped together into subsets corresponding to the sources existing in the
mixture. Davies and James showed that ISA is appropriate when the underly-
ing sources have disjointed spectral supports, which guarantees that the bases
are linearly independent [25]. ISA is, in fact, an extension of the ICA use of
dynamic components to represent non-stationary signals. ISA extends ICA by
identifying independent multi-component source subspaces of an input vector for
separating over-complete convolutive mixtures [17]. ISA relaxes the usual ICA
requirement on having at least as many sensors as sources. According to [17, 41],
ISA is efficient when the underlying signals are stationary in pitch information,
like in a drum signal. In ISA, the amount of information required to allow sep-
aration of sound sources varies from one signal to another. To overcome this
indeterminacy and to improve the robustness of transcription, an extension of
ISA was proposed in [40] to include sub-band processing.

2.2 NMF

NMF for Single-Channel Speech Separation

This method is based on decomposing a non-negative matrix representation of
a mixed signal, i.e. the magnitude or power STFT, into the product of two
low rank, non-negative matrices: Y = HW where the columns of H are the
basis vectors which together define the spectral structure of the time-frequency
representation of the underlying signals in the mixture. Accordingly, the rows
of W, define the temporal structure and the weighings by which the underlying
sources are active in the mixture, Y.

The sparse NMF method separates a mixture by mapping a mixed feature
vector onto the joint subspaces of the sources and then computes the parts
which fall in each subspace [70]. In [69], an analysis was done to determine
the circumstances under which only a unique NMF of a matrix exists. Sev-
eral variants of NMF algorithms have been proposed for learning H and W
from Y, based on some temporal continuity constraints [138], or sparsity con-
straints [123, 138], to improve the separation quality. In [9], the authors sug-
gested a sparse non-negative decomposition algorithm to separate audio mixtures
recorded by a single microphone. The method generalized the Wiener filtering
with locally stationary to non-Gaussian parametric source models. In [121], re-
lying on Gaussian process priors, a general method was presented for employing
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Fig. 3: Sparse factorization of a spectrum using non-negative matrix factorization [122].

the prior knowledge for nonnegative matrix factorization. It was shown that by
selecting appropriate prior distributions, the proposed method in [121] achieved
better results compared to conventional NMF.

The only requirement in implementing NMF is to specify the number of
basis vectors to use. Similar to ISA methods in general, the NMF approach
fails to perform well for speech mixtures where the underlying sources have a
large amount of overlap. Fig. 3 shows how NMF factorizes a mixture spectrum
composed of two speakers into the underlying two-source spectra. As shown in
Fig. 3, the spectrum speakers’ basis vectors, (H1(t, f) and H2(t, f)), together
with their corresponding weights, (W1(t, f) and W2(t, f)), are found from the
mixture and then used to recover their time-domain representation using an in-
verse Fourier transform.

NMF can be applied to SCSS in two ways: supervised and unsupervised.
Unsupervised NMF directly decomposes the mixed signal into the underlying
signals spectra without any knowledge of the sources. On the other hand, su-
pervised NMF works by synthesizing sources from a learned set of bases of each
source in the mixture. Rennie et al. [110] proposed a separation framework that
combined ideas from sparse coding and NMF with the model-driven separation
approach. In [63], a method was proposed to solve the complication of choos-
ing an optimal number of bases in the training. In conventional NMF, phase
information is thrown away and the spectrogram matrix of the mixed signal is
factored into the sum of rank-one source spectrograms. In [92], the assump-
tion of excluding phase from factorization and its consequences on separation
was studied. More specifically, they proposed an improvement on NMF that fol-
lowed the true distribution of the spectrogram points of the mixture more closely
when the underlying source spectrograms were given a priori [92]. In practice,
individual recordings of sources are unavailable. To mitigate this, [68] proposed
an NMF algorithm for monaural blind source separation based on training the
source models using mixed audio recordings.
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Similarity between VQ and NMF

Both vector quantization (VQ) and NMF have been used for separating speech
mixture in single-channel scenario. It is remarkable to note that although the
two methods are different at first sight, the VQ approach to model-driven sepa-
ration is very similar to the supervised NMF separation approach (model-driven
SCSS methods are presented in the following subsections). Both methods em-
ploy source-specific constraints in their time-frequency representation as their
learned spectral patterns based on clean training data. In the VQ approach to
SCSS, the spectral patterns define a probability distribution on the underlying
sources in the mixture. However, the NMF is basically a linear decomposition
of mixture magnitude spectrum by describing it as a linear combination of the
underlying sources’ magnitude spectra. In this regard, NMF can be considered
as a structured VQ- a multiple stage vector quantizer (MSVQ) [60] or a shape-
gain vector quantizer (SGVQ) [118] widely used in speech coding literature.

One important concern while using NMF for separation is the model order of
NMF bases. This concern also exists for other statistical models like VQ while
being used for training speaker models in terms of the number of bits they use
for quantization. It is well-known that employing a sufficiently large number
of bases captures relatively complex source signals [147]. In this regard, the
authors in [34] studied the effect of using different codebook sizes for short-time
Fourier transform features and it was observed that even going towards large
model orders does not necessarily achieve a high fidelity.

2.3 Source-driven Methods

CASA

In source-driven methods, the speech signals of individual speakers are extracted
from the mixed signal without any a priori knowledge about the speakers [108].
CASA is known as the most representative method among the existing source-
driven methods [54, 71, 99, 125, 139, 142]. A CASA-based method seeks discrim-
inative features in the observed mixed signal to separate the underlying speech
signals. CASA relies on extracting psychoacoustic cues from the given mixed
signals. A CASA-based method works in two stages [15, 142]:

• Segmentation: The input mixed signal is decomposed into the time-frequency
cells which are dominated by either the target or the masker.

• Grouping: The perceptual cues, namely, common onset/offset, harmonic-
ity and periodicity found in segmentation stage, are grouped to find the
specified regions where only one speaker is dominant.
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Fig. 4: Block diagram showing different steps in CASA-based method for separating speech
mixture recorded by one microphone. The method relies on two steps: the segmentation stage
followed by the grouping stage.

Fig. 4 shows the procedure followed in a CASA-based method for SCSS. See
[5, 54, 71, 73, 125] for some examples of CASA or other source-driven methods.

Drawbacks

CASA-based methods have some limiting drawbacks as listed below:

• The grouping stage is based on periodicity; hence, it is applicable only to
the voiced frames of speech [141, 142]. The unvoiced speech lacks har-
monic structure and has weaker energy; therefore, it is more susceptible
to interference [53]. However, in [143], an extended version of the CASA
approach was proposed for separating speech mixture composed of both
voiced and unvoiced sounds.

• The separation rules employed in CASA methods are experimental and
heuristic. As a consequence, designing robust CASA-based methods work-
ing under different scenarios is often a difficult task. This is because the
rules found for one scenario might not necessarily agree with other noise
scenarios, and consequently, may lead to significant degradation in the
overall separation performance.
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• The most important cue used in CASA is the pitch information that is
required to be estimated directly from the mixed signal. The CASA-based
methods predominantly use the estimated pitch trajectories by applying
a multi-pitch estimator. Therefore, the separation performance obtained
by a CASA method is dominantly affected by the accuracy of the multi-
pitch estimates of the underlying speakers obtained from the mixed signal.
It is important to note that current multi-pitch trackers fail to assign
pitch contours to the corresponding speakers when the two pitch contours
cross each other, or they are unable to detect one of the pitch contours
if one speaker’s pitch frequency lies within a multiple integer of the other
[18, 48, 61, 93, 151]. Their limited multi-pitch estimation accuracy leads to
an inferior performance since the pitch estimation accuracy is relatively lost
by large gross errors, especially at low SSRs as was reported in [18, 101].

• The output signals produced by the CASA-based methods often lack per-
ceptual quality due to the severe cross-talk problem [54, 99, 108]. In gen-
eral, applying masks inevitably cause cross-talk and artifacts in the sep-
arated signals, as was reported in [54, 89, 107]. The studies in [54, 107]
measured the percentage of crosstalk of the CASA-based methods. Sim-
ilarly, [107] reported the amount of the cross-talk suppression for several
source-driven methods.

2.4 Classification Methods

Compared to the CASA methods, an alternative approach is to train a set of
classifiers to decide whether or not each time-frequency cell in the mixed sig-
nal belongs to a particular underlying source in the mixture. In [124], such
an approach was proposed to identify speech-dominated regions in a mixture
composed of speech and non-stationary noise. The idea can be used for sim-
ple separation tasks. An alternative classifier was proposed in [148], treating the
separation problem as a classification one by training a relevance vector machine
(RVM). It was demonstrated in [148] that RVM mask performs better than the
pitch tracking CASA approach. Although such classification-based source sepa-
ration approach is suitable for simple denoising tasks, it is important to note that
the classifiers are only applicable for separating mixtures composed of sources
similar to those on which they were trained. Accordingly, the separation quality
is poor if the underlying speaker signals are different from the training data.
As a consequence, the method is unable to separate speech mixtures unless the
training data consists of the same set of speakers as available in the mixture.
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2.5 Model-Driven Methods

A model-driven SCSS method completely relies on a priori knowledge about
the underlying speakers in the given mixture. The source-specific models are
incorporated to learn the constraints on the feature parameters of individual
speaker signals [33, 52, 71, 83, 149]. Model-driven methods are well-known
machine learning methods like VQ, Gaussian mixture models (GMM) and hidden
Markov models (HMM) that are used to learn the restrictive constraints for
modeling the speakers in the mixture.

So far, many model-driven separation systems have been introduced. Early
approaches to model-driven source separation focused on speech recognition in
the presence of noise [44, 136]. The authors in [136] suggested the use of two
hidden Markov models where both speech and noise sources are modeled using
a HMM. From a historical viewpoint, the pioneer in the model-driven group
is the work by Roweis [115, 116], called MAX-VQ. Roweis [115] presented the
refiltering approach for SCSS, which estimated the masks spectra based on the
VQ models of each of the speakers, independently trained on clean training data
from each speaker. The variety of selected feature parameters together with
different choices for speaker models lead to different model-driven techniques for
SCSS methods. See [34, 52, 83, 89, 107, 109, 111, 115, 116, 123, 137] for some
examples of model-driven speech separation methods.

Fig. 5 is an example showing how the magnitude STFT of a mixed signal
can be represented by the entries of the two speaker models of the speakers
in the mixture. Such speaker models are dictionaries represented in the form
of vector quantizer codebooks trained to capture the range of the short-time
spectral patterns of a particular voice. In the separation stage, at each time
step, a finite search is performed over all the entries from the two codebooks
to find the pair of entries (codevectors) that when combined, most likely match
the observed spectrum. In the example shown in Fig. 5, the first and second
speaker are represented by a codebook composed of three and four prototypes,
respectively. Inferred codebook indices are shown for both sources at the right-
bottom of Fig. 5, showing how a VQ-based approach can encode the possible
parts of the feature space from the observed mixture.

Fig. 6 shows the block diagram of a typical model-driven SCSS approach
based on source-specific models. We now explain the key parts of a model-driven
SCSS system, namely, feature selection, mixture estimator, speaker modeling
and reconstruction stage.

Feature Selection

In this stage, features are extracted from the signals. Common features already
used for SCSS are: time waveform [58], log-spectrum [106, 116], discrete cosine
transform (DCT) [7] and auto-regressive coefficients [12]. The conventionally
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Fig. 5: An example showing how two speaker codebooks of the underlying sources (shown on
the left) can define a given mixture [33].

used features in the CASA-based methods are divided into the following groups:
directly in time domain [133, 150], gammatone frequency cepstral coefficients
(GFCC) [71], and pitch information together with common onset and offset of
the speech signals [54, 71, 73, 133]. Independent of the separation scheme used,
the features used for SCSS are required to fulfill the following constraints:

• They are required to maintain a straightforward relationship between the
features of the mixed signal and those in the underlying sources.

• In the discussion on the curse of dimensionality in [30], it was shown that if
the goal is to optimize a function over a continuous product domain of a few
dozen variables by exhaustively searching a discrete search space, we are
faced with the problem of making millions of evaluations of the function.
Hence, the dimensionality of feature parameters should be kept low to
reduce computational complexity in the search process. More specifically,
it is important to find features with sparse nature so that the signals can be
represented with the minimum number of features without any noticeable
reduction in the perceived signal quality.

• The selected feature type along with the statistical model determines the
separation upper-bound performance of an SCSS system [36]. In [36], it
was concluded that the ultimate quality of a model-based speech enhance-
ment system is upper-bounded by the performance of the coder used. Sim-
ilarly, we define the upper-bound performance of an SCSS method as the
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Fig. 6: Block diagram for a typical model-driven speech separation system composed of four
stages: feature selection, speaker models, mixture estimator and re-synthesize stage.

highest achievable separation performance offered by a model-driven SCSS
method. The upper-bound performance is obtained by the quantizer used
when the mixture estimation in SCSS is ideal, i.e., without any error in
the mixture estimation stage. In order to reach this upper-bound separa-
tion performance, the selected feature for SCSS is required to give a high
quantization performance as reported in [34, 89]. Thus, both NMF and
VQ-based SCSS methods require employing high fidelity source-specific
models to achieve an acceptable high separation quality.

Speaker Models

Different machine learning methods have been employed for producing speaker
models. The methods include: VQ [34, 71, 89, 107, 115], GMM [10, 106, 109, 111]
and HMM [5, 52, 116, 149]. The speaker models are trained in the training stage
and then used in the test stage to separate the speaker signals from their mixture.
The trained models are used for estimating the best codewords in each of the
speaker models, which when combined, best describe the observed mixture frame
based on a certain optimization criterion. The estimated codevectors selected
from the speaker models are then sent to the reconstruction stage.

Mixture Estimator

In a model-driven speech separation approach, joint best codevectors, each se-
lected from one speaker model, need to be estimated, which when combined, best
fit the observed mixture spectrum according to a given error criterion. This is
accomplished by employing a mixture estimator that is arguably the key part
of a model-driven SCSS system. Previous mixture estimators were carried out
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using maximum likelihood [58], maximum a posteriori (MAP) [103, 104] and
MMSE [106, 109] estimators.

In SCSS problem the relationship between the mixture and the underlying
speech signals is given by

y(n) = x1(n) + x2(n), n ∈ [0, N − 1]. (1)

Taking the Fourier transform from both sides in (1), we have

|Y (k)|∠Y (k) = |X1(k)|∠X1(k) + |X2(k)|∠X2(k) + 2|X1(k)||X2(k)| cos θ(k), (2)

where k ∈ [1,K] indicates the kth frequency bin the spectrum representa-
tion, n is the time sample index, N is the window length in samples, and
θ(k) = φ1(k) − φ2(k) is the angle between the speaker signals spectra. The
goal in SCSS is to estimate both {x1(n)}N−1

n=0 and {x2(n)}N−1
n=0 based on the

mixture at each frame.
Previous separation methods used either the max-model [115] or the Algo-

nquin model [67] as their mixture estimator. The max-model suggests approx-
imating the mixture logarithm power spectrum by the element-wise maximum
of log-spectra of underlying speakers in the mixture. A high resolution signal
reconstruction method was proposed in [67] highlighting the advantage of statis-
tical model-driven separation method compared to other methods. The derived
estimator was called Algonquin. In [52], both Algonquin and max-models were
studied and compared. It was demonstrated in [52] that Algonquin performs
slightly better than max-model.

Reconstruction Stage

According to the schematic block diagram shown in Fig. 6, the last part of
a model-driven SCSS system is the reconstruction stage. The reconstruction
stage works based on the indices of the speaker models found in the mixture
estimation stage. Reconstruction of the separated signals can be done in two
ways, 1) by employing an overlap and add procedure [52, 89, 149], and 2) by
producing masks [71, 83]. We now present each method in detail.

The first group use overlap and add procedure for reconstructing the output
separated signals. In this group, the joint optimal codevectors found in the
mixture estimation stage are directly used to re-synthesize the separated speech
signals for each speaker in the output stage. Then, an overlap and add procedure
[98] is used to re-synthesize the separated signals after the correct states are
found in the separation stage. Examples for the signal reconstruction-based
SCSS methods are [52, 71, 83, 89, 149].

The second group reconstructing the separated signals use the mask methods
targeted to produce masks to refilter the mixed signal in order to recover the
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underlying speakers in the mixture. The mask methods produce masks based
on the joint states selected from the speaker models of each speaker. These
produced masks are then applied to the mixed signal to provide the separated
signals. The masks to be applied are either binary [54, 71, 107, 115] or Wiener
[10, 83, 106, 109].

Drawbacks of Model-Driven SCSS Methods

Model-driven methods have the following listed drawbacks:

• The computational complexity of MAX-VQ is high due to the factorial
search. For instance, in [116], a separate HMM was applied for each
speaker and a huge state space of 8,000 was required in order to care-
fully capture every possible transition between the codeword entries in
each speaker codebook. Though using HMM enables the modeling of cor-
related speaker signals [36], it leads to a significantly more complex mixture
estimation approach. In short, current model-driven methods are highly
computationally complex and still lag far behind in being implemented in
real-time.

• It is important to note that performance degradation in a model-driven
SCSS can also come from the errors introduced in the mixture estimation
stage that is targeted to find the two best codewords, which when com-
bined, best describe the given mixture frames (see Fig. 6). Difficulty arises
while mapping vectors of mixed signals onto states of speaker models.
Such decoding errors result in wrong association of the codevectors with
the max-model mixture estimator leading to the selection of poorly filtered
signal vectors [71, 107]. Selecting incorrect states from the speaker models
consequently degrades the perceptual quality of the separated signals.

• MAX-VQ tries to produce two masks based on the estimated VQ states.
According to the results reported in [107] and [71, 89], using such masks
provides re-synthesized signals often corrupted with undesirable cross-talk
caused by another interfering speaker in the mixture. Therefore, the
resulting signal-to-noise ratio (SNR) reported for the output signals are
low [107, 116].

• Depending on having a priori knowledge of the identities of the underly-
ing speakers in the mixture, a model-driven SCSS can be implemented in
two ways: speaker-dependent or speaker-independent. Fig. 8 shows the
two scenarios. It has been demonstrated that a speaker-dependent model-
driven SCSS provides good separation performance [116]. Real practical
scenarios, however, include separating speech mixtures when no a priori
information is available for speakers in the mixture. Therefore, current
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SCSS methods suffer from the impractical assumption of a priori knowl-
edge of speaker identities in the given mixture. In general, model-driven
separation systems mostly suffer from the disadvantage of being specific to
the sources present in the mixture. To overcome this difficulty, a speaker
identification stage was integrated as a pre-processor to the single-channel
separation module [52].

According to [127], the model-driven approach was expected to perform better
than the pitch-based methods indicating that using only the pitch information
showed limited discrimination for sequential grouping. This presents the idea
that the integration of pitch and spectral envelope in [107] may not be the most
efficient solution to recover both signals because multi-pitch estimation from a
mixture at low SSRs is difficult [5, 18, 20, 54]. This motivates us to present
pitch-independent separation methods in this thesis.

2.6 Binary Mask

Based on the masking phenomenon discussed earlier, the idea of binary mask was
proposed in [54] where a T-F unit was assigned 1 if the target energy exceeded
the interference energy and 0 otherwise. Binary masks have been widely used
in CASA literature as output representations to label the origins of the mixed
speech. In [71], binary masks were inferred according to the two speakers’ VQ
codebooks and then incorporated to produce binary masks to separate the signals
in a CASA-based framework.

It is important to note that the term masking often referred to in binary
masking literature is different from the one commonly used in psychoacoustics
where it means blocking the target speaker signal by an acoustic interfering
speaker. According to [144], in binary masking literature, a binary mask applies
a pattern of binary gains onto the mixed signal in order to recover the original
signals in the mixture. According to [144], such a binary pattern roughly reflects
the formant structure and encodes the outline of energy variation in the time-
frequency representation for the target speech relative to the interfering noise
(here, another speaker).

As a limitation, the mask methods are not yet able to perform well especially
at low SSR scenarios for recovering both target and masked speakers in the
mixture. In [105], it was demonstrated that as SSR increased above 6 dB, the
target speech signal was more easily recoverable since it masked the interference
signal. The authors in [105] also reported that the recovered interference signals
were not perceptually intelligible and consequently, the SCSS method in [105]
was not able to recover the interference speech signal at high SSR levels.
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Ideal Binary Mask

At each mixture frame, the ideal binary mask is defined as the mask produced
by keeping all time-frequency cells where the target speaker dominates the in-
terfering one and removing those where the target is masked by the interfering
speaker. Theoretically speaking, an ideal binary mask gives the ceiling perfor-
mance for all binary masks and is often considered as an important concept in
studying the performance of the SCSS systems. More specifically, it is shown
in [73] that the ideal binary mask leads to the optimal SNR performance when
employing orthogonal T-F decomposition and rectangular windowing. The sep-
aration performance offered by the ideal binary mask is often used as the ground
truth of target speech. In an ideal binary mask, it is assumed that we have a
priori knowledge on the spectra of the underlying sources in the observed mixed
signal [13, 16, 140, 144]. By considering this unrealistic assumption, it is pos-
sible to study the highest achievable separation performance for a binary mask
approach. Fig. 7 shows the result of a simple setup showing how an ideal binary
mask can separate the underlying signals from their mixture. In Fig. 7, time-
domain representations are shown on the left panels while the time-frequency
representations are shown on the right panels for original, mixture and separated
speaker signals respectively (from top panel to bottom panel).

The ideal binary mask has also been suggested as the ultimate goal of a
CASA-based separation method [16, 142]. It was shown that an ideal binary
mask brings substantial intelligibility gains in speech separation [16] and speech
perception [144]. In [91], authors studied the factors influencing the intelligi-
bility of ideal binary-masked speech. The authors in [65] measured the speech
intelligibility of ideal binary-masked noisy speech on a group of normal hearing
individuals across different masker types as well as different mixing levels. The
authors in [71] proposed a separation system that used the a priori masks to
re-synthesize the separated speaker signals [71]. According to [21], using the
ideal binary mask for ASR yields excellent recognition performance. More re-
cent studies proposed strategies to estimate the ideal binary mask. In [13], the
authors suggested a method for correcting errors in the estimated ideal binary
mask by employing an HMM to model the error-free target binary mask and
then using the Viterbi algorithm to find the most likely error-free binary mask
for the target signal. Their results show that the proposed error correction ap-
proach reduces the noise energy as well as corrects some errors in the binary
mask produced for the target signal.

2.7 Wiener Filtering

Wiener filtering is a classical speech enhancement method that relies on the
MMSE estimation to restore the underlying clean signals [36, 82]. Further, the
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Fig. 7: An example showing how ideal binary mask can be used for separating single-channel
speech mixture: the time signal for (a) speaker one original, (c) speaker two original, (e)
mixture, (g) separated first speaker signal using ideal binary mask, (i) separated second speaker
signal using ideal binary mask. The time-frequency representation for (b) speaker one original,
(d) speaker two original, (f) mixture, (h) separated first speaker signal using ideal binary mask,
(j) separated second speaker signal using ideal binary mask.
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Wiener filtering has been used for the reconstruction stage of the SCSS [9, 11, 83].
In [83], the authors used the most likely codevectors selected from the speakers’
codebooks to produce Wiener filters to segregate the speaker signals from the
mixture.

The estimated source spectrum using the Wiener filtering is given by

|X̂1(k)| =
Sx1

(k)

Sx1
(k) + Sx2

(k)
|Y (k)| (3)

|Y (k)| and |X̂1(k)| denote the amplitude spectrum for speech mixture and the
first speaker signal, respectively, at the kth frequency bin speech, Sz(k) denotes
the power spectrum of z ∈ {y, x1, x2}, denoting speaker one, two and mixture,
respectively. A similar expression is achieved for the estimated spectrum of the
second speaker, |X̂2(k)| by replacing Sx1

(k) with Sx2
(k). The classical Wiener

filter commonly used in speech enhancement can be interpreted as a T-F mask
(or equivalently, a T-F filter) where each T-F cell of the mask represents the
ratio of the target speaker energy to the energy of the given mixture calculated
in that specific T-F cell.

3 Considerations for Practical Separation Sys-

tems

In many model-driven SCSS methods, it is generally assumed that the speaker
identities as well as the mixing level (SSR) are known a priori. Such simplifying
assumptions are useful while studying a new SCSS method, but are very restric-
tive and impractical. In order to approach a more practical SCSS system, one
needs to tackle these issues, i.e., estimate the speaker identities and the SSR
level under which the underlying signals have been mixed together. Here, we
first explain how to deal with a speaker-independent scenario where the speaker
identities in the mixture are unknown. More specifically, we explain how to em-
ploy a speaker identification module as a pre-processor for SCSS to enable us to
separate speech mixtures in a speaker-independent scenario (see Fig.8.b). After
that we move on to the other practical issue called the gain estimation problem,
indicating that SCSS methods require information regarding the mixing level of
the underlying signals in the observed mixture.

3.1 Speaker Identification

Speaker identification is the task of recognizing the identity of a speaker based
on an observed speech signal which can possibly be corrupted by noise or other
interfering speakers [64]. A speaker identification or verification system helps
to characterize the speakers in many applications, namely, telephone banking,
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Fig. 8: (a) Using speaker-independent source model (SM), and (b) alternative approach: first
estimating speaker identities (ID) and then choose the speaker model to change the separation
problem from speaker-independent to speaker-dependent one.

voice dialing system, voice mail and security control. Fig. 9 shows the block
diagram of a speaker identification system. As shown in Fig. 9, in a speaker
recognition module, M speaker models work in parallel; the model achieving
the maximum likelihood score will be selected as winner and identify the correct
speaker identity. For recognizing an unknown speaker, the following steps are
required to be taken in an orderly manner:

• Extracting features from the speakers.

• Forming speaker models for the extracted features.

• Decision taking based on some criterion like maximum likelihood or MAP
to find the identity of the unknown speaker.

A GMM-based framework is often used in speaker recognition applications [113].
It is used as a reference for evaluating the effectiveness of a new algorithm
[119]. The ML criterion is commonly used for training GMMs. In state-of-the-
art systems, speaker-dependent GMMs are derived from a speaker-independent
universal background model (UBM) by adapting the UBM components with
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Fig. 9: Block diagram for a speaker recognition system.

maximum a posteriori (MAP) adaptation using the speakers personal training
data [112]. This method constructs a natural association between the UBM and
the speaker models. For each UBM Gaussian component there is a corresponding
adapted component in the speakers GMM. In the verification phase, each test
vector is scored against all UBM Gaussian components, and a small number of
the best-scoring components in the corresponding speaker-dependent adapted
GMM are chosen. The decision score is computed as the log-likelihood ratio
(LLR) of the speaker GMM and the UBM scores.

Typical speaker identification systems consist of a short-term spectral feature
extractor (front-end) and a pattern matching module (back-end). In traditional
SID, the basic assumption is that only one target speaker exists in the given
signal whereas in the co-channel SID, the task is to identify two speakers in
a mixture. Distinct from the so-called summed channel speaker recognition
task [135] where only one speaker is talking most of the time, in the co-channel
SID problem, both speakers talk simultaneously, which makes the problem much
more challenging. Although research on co-channel speaker identification has
been going on for more than a decade [86], the problem remains largely unsolved.

Difficulties in Multi-talker Speaker Recognition

A major drawback of the current speaker recognition systems is their significant
degradation in their performance under noisy conditions. This is mainly due to
the mismatch existing between the likelihood calculation in the training and the
test stages [113].

Several methods have been suggested for solving the problem of multi-talker
speaker recognition in adverse conditions. For instance, [32] proposed using
spectral subtraction to improve speaker recognition performance. However,
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the method was suitable only for stationary noise scenarios. RASTA filter-
ing [50] and cepstral mean normalization [43] have already been used to improve
the speaker recognition performance. Recently, [128] proposed to improve the
speaker recognition accuracy by employing CASA together with dynamic audi-
tory features. They showed that using such advanced auditory features results
in higher speaker identification accuracy compared to the conventional MFCC
features [128]. Auditory features’ uncertainties were used for robust speaker
identification [126] showing that such features offer higher speaker identification
accuracy compared to the conventionally used MFCC features. In [3], auxiliary
features, namely pitch frequency and voicing state together with a Bayesian net-
work were used showing a reduction in the influence of background noise as well
as in transmission channel distortion.

Joint speech enhancement and speaker identification was proposed in [78].
They employed a Bayesian approach where the speech features were modeled
using a mixture of Gaussians priors. A Gibbs sampler was used to estimate the
speech source and the identity of the speaker.

Using Speaker Identification for SCSS

Interaction between a speaker identification module and a speech separation
module can be implemented in two ways: 1) identification followed by separa-
tion, and 2) using separation module as a preprocessor for speaker identification.
The two possible ways of integrating a speaker identification and speech separa-
tion module are shown in Fig. 10. The former approach is suitable for separating
mixtures in a speaker-independent scenario as the SID module determines the
most likely speakers in a speech mixture. This valuable information changes the
speaker-independent separation problem to a speaker-dependent separation one,
which is obviously more accurate. The method, however, requires a relatively ac-
curate SID system since any possible error from the SID module propagates and
consequently, results in performance degradation in the separation stage. In the
latter approach, a separation system is employed as a pre-processing stage and
helps to narrow down the speaker candidates in the mixture to be estimated
by the SID module. However, due to imperfect separation, the SID perfor-
mance might severely degrade. Further, the initial part of this configuration
requires a separation to be implemented based on speaker-independent models
that are known to show a relatively lower separation performance compared to
the speaker-dependent one as was reported in [108]. If the separated signals are
good enough for the SID module, then in the close loop, correct identities are
given by the SID module and, consequently, the SCSS system changes into the
speaker-dependent module based on the speaker models selected according to
the estimated speaker identities. However, it is important to note that there is
a high risk of choosing incorrect speaker models due to the possible errors in the
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Fig. 10: Block diagram showing the two possible ways of integrating a speaker identification
and speech separation module.

SID module, which consequently leads to a poor separation performance and
poor SID estimates of the SID block. Based on these explanations, it is clear
that the first module (see Fig.10(top)) is capable of providing a more reliable
system.

Most of the current SCSS systems employ a model-based SID module,
known as Iroquois [52], to identify the speakers in a mixed signal. Recognition
accuracy as high as 98% on the speech separation corpus has been reported for
Iroquois [22], which makes it a viable choice for use in SCSS systems [149]. In
the Iroquois system, a short-list of the most likely speakers is produced based on
the frames of the mixed signal that are dominated by one speaker. This short-
list is then passed to a max-based EM algorithm to find the SSR and the two
speakers’ identities with an exhaustive search on codebooks created for speech
synthesis [52].

In [149], a single-channel source separation system was proposed based on the
speaker adaptation principle that worked on the adaptation of a generic speech
model to match each of the underlying speakers in the mixed signal. As another
example, the system proposed in [71] identified the speakers based on GMM and
employed a pitch-dependent method to re-synthesize the target speaker signal.
In [52], the Iroquois system was used for determining which frames belonged to
single-talk and mixture regions by choosing the most likely speakers based on
the frames dominated by a single speaker.

3.2 Gain Estimation

Most of the previous model-driven SCSS methods [7, 67, 109, 116, 123] assume
that the test speech files are recorded in conditions similar to that of the training
phase. This unrealistic assumption highly limits the effectiveness of these tech-
niques in real life since the observed speech files can be mixed at an energy ratio
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Fig. 11: Task grammar defined in the speech separation challenge [22]. Note that the letter
W is excluded. An example sentence would be lay white with G six please.

different from that of the training speech files. The authors in [103] proposed
a technique that estimated the gain associated with individual sources in the
mixed signal. Their proposed gain-adapted MMSE SSR estimation approach es-
timated sources under different SSRs and worked by searching the whole space
formed by the underlying speaker models, which is arguably too complicated.

4 Performance Evaluation for Separation Sys-

tems

Both objective and subjective measures can be used for evaluating the separa-
tion performance of an SCSS method. In the following, we explain the most
important factors that play a role while assessing the separation performance of
an SCSS system.

4.1 The Speech Separation Challenge

Database

For evaluating the separation performance of an SCSS method, it is common to
use the comprehensive database GRID corpus provided in [23], which consists of
simple sentences drawn from the grammar described in Fig. 11. The database
consists of 34 speakers (18 male and 16 female speakers), each containing 500
utterances. The single-microphone recoded speech signals are sampled at a sam-
pling rate of 25 kHz.

The database provided in [23] was targeted to measure the overall recogni-
tion performance of the separation systems submitted by participants for speech
separation challenge. The clean training data were used for training speaker
models. The test data was a mixture of the target and the masker speakers
mixed at six SSR levels of {-9,-6,-3,0,3,6} dB and a clean signal for the target
speaker in the mixture. For each six-test sets of two-talker signals, 600 utter-
ances were provided among which 200 were for the same gender, 179 for different
gender, and 221 for the same talker where the target and masker signals are from
the same speaker.
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The Task in Speech Separation Challenge

The recognition task is to identify the letter and number in the sentence spoken
by the talker who said “white”. The challenge contains two-talker speech recog-
nition task. The main task in the speech separation and recognition challenge
is to recognize the target speaker speech in the presence of another, masking
speaker using a single microphone [22, 52]. The clean signal for the target
speaker is available and is used to report the speech recognition baseline.

Participants in the Speech Separation Challenge

Table 1 lists all participants in the speech separation challenge in [22]. For each
method, a short description is also given.

Table 1: List of all participants in the 2006 Speech Separation Challenge.

Excerpt Descriptions
Human N/A

Deshmukh [27] Phase opponency
Every [39] Pitch tracking

Runquiang [117] CASA
Schmidt [123] Source models, NMF
Virtanen [137] Source models, factorial HMM (FHMM)

Ming [83] HMM & Wiener filtering
Barker [5] Combination of CASA & speech fragment decoder [6]

Kristjansson [52] Grammatical constrains, source models, FHMM
Srinivasan [125] CASA

Weiss [149] Eigen voice models [149], source models, FHMM

4.2 Speech Quality versus Speech Intelligibility

It is still an open issue to design an SCSS approach that can improve both the
quality and intelligibility of the separated signals. The problem refers back to
the question on what is the optimal criterion for solving the SCSS problem.
Equivalently, the fundamental question is how one can enhance both speech
quality and intelligibility. As stated earlier, [73] showed that an ideal binary
mask is optimal in terms of SNR but under some constraints. However, it is
clear that SNR measure (or in general a l2-norm optimality criterion) may not
reflect the exact statistical optimality. In addition, an ideal binary mask is only
achieved under crucial a priori assumption of having knowledge of the underlying
speakers’ spectra. Without such information, the estimated binary mask may
have errors due to incorrectly changing zeros to one or vice-versa, which will
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lead to considerable speech distortion in the separated output signal. Previous
studies have shown that an ideal binary mask largely contributes to enhancing
the intelligibility, but not the quality of the separated signals [142]. In fact,
binary masks degrade the perceived speech quality of the separated signals. On
the other hand, many speech enhancement methods [37, 38, 46, 47, 59, 75, 120,
130–132] have been proposed for enhancing the quality of the noise corrupted
signals. As a consequence, it is a reasonable question to ask in which terms an
SCSS method should be assessed and how well such a measure correlates with
the subjective listening experiments.

4.3 Objective and Subjective Measures

Table 2 shows a list of previous measures used for quality assessment of speech
enhancement, speech coding and single-channel speech separation applications.
The table also shows the correlation coefficient of each measure with the subjec-
tive listening results [75]. Most of the previous methods reported either SNR or,
at some points, segmental SNR (SSNR) measurements. As an example of the
limitation in the SNR measurement, according to the results reported in [102],
it was observed that the SNR results do not necessarily reflect the merits of
HMM over VQ, confirming that SNR is not the most appropriate criterion for
evaluating SCSS performance. This is in line with the conclusion in [72] that
the quality of separated speech is not directly related to its SNR.

The SNR-based measures are simple measures and have been widely used
due to their simplicity. They have only indirect relation to the perceived signal
quality. The weighted spectral slope (WSS) is mainly related to differences in
formant locations and provides a reliable measurement in assessing the signal re-
construction performance. Both LLR [97] and Itakura-Saito (IS) [97] have been
widely used to assess the performance of speech coding methods. As objective
measurements, speaker identification measures together with word error rate for
speech recognition were both used in [52] to quantify the overall performances
of different separation methods when being used for speech recognition task in
the speech separation challenge [22]. The authors in [72] suggested combining
CASA with objective quality assessment of speech. They showed that the pro-
posed approach achieved substantially good subjective perceived speech quality
of separated speech. Finally, [4] developed a standard for measuring the speech
intelligibility for noisy speech mixtures.

In recent studies [28, 152], it has been observed that SNR-based measures
are somehow illusive while evaluating speech enhancement methods. Moreover,
in [49, 152] the use of SNR measures was discouraged as it correlates poorly with
subjective rates and is very sensitive to both the experimental conditions and
also because of its very common artifacts in BSS-like fractional delays between
the signals to evaluate. As a result, the SNR-based measures (l2-norm mea-
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Table 2: List of quality measures used for speech enhancement, speech coding, and speech
separation. The table shows the correlation coefficient of each measure with the subjective
listening results [75].

Measure Category
SNR & SSNR [26, 45, 97](ρ=0.31) Speech separation and enhancement

CEP [45](ρ=0.56) Cepstral distance measure
WSS [66] (ρ=0.53) Speech enhancement and coding
LLR [97] (ρ=0.63) Speech enhancement and coding
IS [57, 97](ρ=0.45) Speech coding, separation and enhancement

PESQ [114] (ρ=0.65) Speech enhancement
cSII [62](ρ=0.94) Coherence SII best for additive-noise data
DAU [24](ρ=0.86) Best for additive-noise data

Composite [152](ρ=0.85) Speech separation and enhancement
Subjective tests [1] Speech coding, separation and enhancement

Speech intelligibility [4] Speech separation and enhancement

sures) are not the most appropriate criterion for evaluating SCSS performance.
Attempts have been made to find some reliable and efficient metrics to evaluate
the performance of a separation system [75].

Finding an effective measure to assess the crosstalk and separability of a
given speech separation approach, has historically been considered a difficult
task. The difficulty is mainly due to the differences in the testing methodology
and lack of information on how the human brain assesses the speech signal. On
the other hand, developing an objective speech quality measure that correlates
highly with subjective speech measures has been viewed with much importance
as subjective tests are generally expensive and time-consuming. In this aspect,
a good objective speech quality measure would be a valuable assessment tool
for developing new speech enhancement or separation algorithms, as the previ-
ous separation methods in a single-channel scenario have mostly reported their
results in terms of SNR or word error rate (WER) measures.

5 Summary of Contributions

The main contributions of this work include proposing new approaches for solv-
ing the SCSS problem and suggesting the use of speaker identification module
to solve speaker-dependency in model-driven SCSS systems. Additionally, we
also present a solution to improve the speaker identification performance when
applied to a speech mixture. Papers A through D deal with proposing new ap-
proaches in sinusoidal domain to improve the separation performance in SCSS.
In these papers, we suggest the separation of the input mixed signal by apply-
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ing a criterion based on sinusoidal parameters of the mixture along with those
selected from the underlying speakers’ codebooks (we use one sinusoidal coder
for modeling each speaker signal in the mixture). Paper A proposes a sinusoidal
mixture estimator based on unconstrained sinusoidal parameters estimated from
the mixture and selected from the codebooks trained for the speakers in the mix-
ture. Paper B derives sinusoidal binary mask and sinusoidal Wiener mask for
solving the SCSS problem. The separation results obtained by the sinusoidal
masks show improvement over the commonly used STFT-based masks like bi-
nary mask and Wiener filtering. Paper C presents a novel SCSS system where
unconstrained sinusoidal parameters of the signals act as features, and sinusoidal
coders act as speaker models suggesting the use of a sinusoidal mixture estimator
as its mixture estimation stage. Paper D proposes a joint speaker identification
and speech separation system in a closed loop, which successfully improves the
separation quality without a prior knowledge of the identities of the speakers
in the mixture. In Paper E, a novel speaker identification approach is proposed
which works independent of the signal-to-signal ratio under which the underlying
speakers are mixed together. In Paper F, we present a solution for double-talk
detection based on a single-channel recorded speech mixture composed of two
speaker signals. The proposed approach determines the number of speakers in a
mixture composed of two speakers. Paper G proposes to combine a double-talk
detection module as a pre-processing stage for speaker identification back-end.
Finally, in Paper H, we present a full system for the speech separation challenge.
The suggested system is composed of joint speaker identification, SSR estima-
tion and speech separation, and is targeted at separating single-channel mixed
signals into the underlying speakers. We will now go through the contributions
of the individual papers that constitute the main body of this thesis.

Paper A

In this paper, a novel mixture estimator has been proposed and derived based
on unconstrained sinusoidal parameters to improve the speech separation per-
formance. The method is independent of pitch estimates and offers a new ap-
proach for single-channel speech separation, where pitch estimation is sometimes
difficult because of the energetic masking that occurs in time-frequency cells
in the mixture at different SSR levels. The proposed mixture estimator finds
the optimal codevectors, one selected from each speaker codebook, which when
combined, best describe the observed mixed frame. A variation of the sinusoidal
coder proposed in [87] was used to model the underlying speakers in the mixture.
Through several experiments it was observed that the proposed method achieved
a higher score compared to the mask methods of MAX-VQ, Wiener filtering and
the STFT VQ-based separation systems especially at low SSR levels. As the SSR
increased, the proposed method asymptoted its separation upper bound perfor-



30 INTRODUCTION

mance where it was assumed that the optimal indices were available a priori. It
was also observed that the perceived speech quality of the proposed system was
the highest. Finally, listening tests showed that the proposed method achieved
lower cross-talk and was mostly preferred by the listeners.

Paper B

In this paper, we propose to use sinusoidal masks in lieu of the commonly used
STFT-based mask methods. We generalize both the mask methods, binary and
Wiener filtering in the STFT domain into the sinusoidal space. Instead of noise
distortion, we suggest a trade-off between minimizing the speech distortion of the
target signal and keeping the cross-talk of the other speaker below a given toler-
ance threshold. This is well-justified as in speech separation we are required to
have no trace of cross-talk from the other speaker. We show that in a separation
scenario, employing the new masks in sinusoidal space results in an improved
separation performance compared to the STFT-based masks. According to our
experiments, the masks defined in the sinusoidal domain, including both binary
and Wiener masks, improve the separation quality as compared to the STFT
masks. Finally, it was demonstrated that the proposed sinusoidal Wiener mask
coincides with the so-called Ephraim and Malah noise suppression rule [37].

Paper C

In this paper, we present a model-driven separation system based on sinusoidal
parameters. The proposed separation system employs sinusoidal coders as its
speaker models for modeling each of the underlying speakers in the mixture. We
suggest using a sinusoidal mixture estimator to find the optimal codevectors from
each speaker, which when combined, best fit the observed mixed signal. It is
shown that the proposed method results in an improved separation performance
compared to source-driven and STFT-based methods in both speaker-dependent
and speaker-independent scenarios. It was also shown that the proposed sep-
aration approach outperforms the source-driven and the fusion of both source
and model-driven approaches proposed in [108] for separating single-channel
mixtures. The proposed method cut down the computational complexity sig-
nificantly by replacing the high dimension STFT features with sinusoidal pa-
rameters. Furthermore, in the mixture estimation stage, minimization is only
calculated at the sinusoidal peaks of the mixture compared to the full-band cal-
culation in other methods.

To assess the perceived speech quality of the separated output signals ob-
tained by different methods, we conducted a subjective listening test using the
multi-stimulus test with hidden reference and anchors (MUSHRA test) as de-
scribed in ITU-R BS.1534-1 [1]. The MUSHRA test is a double blind test for
the subjective assessment of intermediate quality level benefits obtained from
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displaying all stimuli at the same time. This enables the subjects to carry
out simultaneous comparison between the methods. Both objective and subjec-
tive results showed that the proposed method consistently outperformed other
benchmark methods.

Paper D

In this paper, we propose to use the speaker-identification stage as a pre-processor
for identifying the underlying speakers in the mixture. The speaker identifica-
tion module is connected to the speech separation module in a closed loop. The
proposed joint approach solves the SCSS problem when the precise source char-
acteristics are not known a priori. We show that the proposed system success-
fully separates signals without a priori knowledge of the speaker identities. The
proposed joint system achieves a higher separation quality compared to the case
where speaker-independent source models were used, and achieves higher sepa-
ration performance compared to the quality directly obtained from the mixed
signal. From the experiments, it was observed that the results obtained by the
suggested method are very close to those obtained by the speaker-dependent
method where the correct speaker identities are known a priori.

Paper E

This paper introduces a novel speaker identification approach independent of
the signal-to-signal ratio under which the underlying speakers in the mixture are
mixed together in a single-channel scenario. The proposed method not only de-
tects the speaker identities but also produces the SSR estimate as a bi-product.
The proposed method uses a fusion of the adapted Gaussian mixture models
and Kullback-Leibler divergence calculated between models. The experimental
results show that the proposed speaker identification approach in this paper
achieved an accuracy of 97% and 93% when the two target speakers enlisted as
three and two most probable speakers respectively. The speaker identification
results reported are compared to those reported by [52] showing that the pro-
posed method achieves a close performance to the speaker identification results
reported in [52].

Paper F

The problem of detecting the number of speakers for a particular segment occurs
in many different speech applications. In single channel speech separation, for
example, this information is used to simplify the separation process as the signal
has to be treated differently depending on the number of speakers. In this
paper, we propose a double-talk detection method in order to determine the
single-talk/double-talk hypotheses in a mixed signal composed of two speakers.
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We pose the double-talk detection problem as a model selection problem and
derive a multiple hypotheses test for determining the number of speakers at a
frame level in a mixed signal based on the underlying parametric speaker models,
trained a priori. The experimental results indicate that the suggested method
improves the quality of the separated signals in an SCSS scenario at different
signal-to-signal ratio levels both for speaker-dependent and gender-dependent
scenarios.

Paper G

We integrate a double-talk detector (DTD) with a speaker identification mod-
ule for improving the speaker identification accuracy. This paper proposes a
novel approach to improve single-channel speaker identification performance for
a mixture composed of two speakers. The goal in this paper is to identify the
identities of both speakers in the mixture. The proposed approach in this pa-
per is to integrate a DTD as a pre-processing stage for speaker identification
back-end. We demonstrate that including the DTD improves the speaker iden-
tification accuracy; the average recognition accuracy improves from 96.53% to
97.43%. Overall speaker identification performance is close to the results of the
Iroquois system using computationally simple approach.

Paper H

In this paper, we present a joint speech separation and speaker identification
system for the speech separation challenge. The system is composed of double-
talk/single-talk detector, gain-estimation, speaker identification and sinusoidal
mask. We show that the proposed method leads to an improved separation
performance compared to base-line and other model-based separation systems
in the STFT domain. We start from a situation where we have prior information
of codebook index, speaker identities and SSR-level, and then, by relaxing these
prior assumptions one-by-one, we demonstrate the efficiency of the complete
system.

Contrary to previous studies mostly focused on speech recognition accuracy,
we concentrate on reporting the signal quality of the separated signals. To this
end, we report PESQ scores, objective speech intelligibility measure and cross-
talk measure as objective measures, and MUSHRA test and speech intelligibility
test as subjective measurements.

6 Conclusions

In this work, we have proposed several new approaches for solving the SCSS
problem and improving speaker identification for identifying speakers in a single-
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channel recorded speech mixture. We presented separation strategies that work
independent of pitch estimates allowing freedom from performance degradation
in source-driven methods due to the limited multi-pitch estimation accuracy. As
a result, the methods proposed here prove attractive for SCSS or similar speech
enhancement scenarios where pitch estimation methods show low accuracy due
to energetic masking. In fact, the sinusoidal parameter estimation method em-
ployed here leads to a high frequency resolution at low frequencies, reflecting the
pitch harmonic structure of each speaker signal and their mixture.

The methods proposed for single-channel speech separation were all in the
sinusoidal domain. Replacing the high dimension STFT features with sinusoidal
parameters cuts down the computational complexity of the separation stage
significantly. We have also concentrated on the mixture estimator part in a
model-driven SCSS method and derived a sinusoidal mixture estimator. The
minimization is only calculated at the sinusoidal peaks of the mixture compared
to the full-band calculation required in other methods, namely max-model and
Wiener filtering methods. It was observed that using the proposed sinusoidal
mixture estimator provides an improvement over other SCSS methods.

In the signal reconstruction stage, we generalized the STFT-based masks to
sinusoidal masks, namely, sinusoidal binary mask and sinusoidal Wiener filter.
We demonstrated that using the proposed sinusoidal masks lowers the undesir-
able cross-talk introduced by the interfering speaker while separating the target
speaker. Using sinusoidal masks also provided higher separation performance
compared to the conventional STFT masks.

To solve the speaker-dependency problem of the model-driven SCSS methods,
we proposed to use a speaker-identification module before a speech separation
module. It was demonstrated that the joint processor led to improvement in sep-
aration performance compared to a speaker-independent scenario and achieved
a separation performance close to that of the speaker-dependent scenario.

We also proposed approaches for improving the speaker identification results
on a speech mixture. To this end, we proposed a novel approach independent
of the SSR level of the observed mixture. The proposed method achieved high
speaker identification performance compared to the benchmark method. As an-
other approach, we suggested combining a double-talk detection module to pro-
vide information on the number of speakers available at each frame extracted
from the speech mixture. This information was sent to the speaker identification
module which enabled it to perform more efficiently on those frames detected
where only one speaker was active (single-talk frames). The results showed that
the proposed method improved the speaker identification performance in differ-
ent SSR levels and mixing scenarios.

We proposed a single-talk/double-talk detector to solve the problem of iden-
tifying the number of speakers in an observed speech mixture composed of two
speakers. Finally, we presented a full-system composed of a single-talk/double-
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talk detector, MMSE sinusoidal estimator, sinusoidal mask as its separation
engine and joint speaker identification and SSR estimation. It was shown that
the proposed full system achieved a high perceived speech quality as well as
speech intelligibility compared to other benchmark methods that participated
in the separation challenge [22].

7 Outlook

In the author’s opinion, the SCSS problem is largely still an open issue and the
methods proposed for solving it still require more improvements and studies.
The methods discussed in this thesis for separating the mixed signals recorded
by a single-channel still have some restrictions limiting their effectiveness in real
scenarios. Some of these limiting assumptions are listed below:

• The training set used to train the speakers is noise-free and we assumed
to have access to a large training material recorded from individual (non-
mixed) speaker signals.

• The evaluation corpus consists of only digitally added mixtures which are
synthetic. In practice, however, the underlying speakers in the mixture
can form the mixed signal at any possible signal-to-signal ratio.

• For simplicity, it is often assumed that we only have two speakers in the
mixture, however, the ultimate goal of a general separation problem is to
separate a mixture composed of an unknown number of sources.

• At a higher level, the environmental or background noise effects as well as
the reverberation problem are often neglected making the current separa-
tion methods likely to fail when being used under such practical scenarios.

The above mentioned restrictive assumptions are often made while trying to
solve the SCSS problem. These limiting conditions are used for simplifying
the separation problem, but are very impractical in a real separation scenario.
In practice, each one of these issues and their effect on the overall separation
performance should be carefully studied. Future work should address these
issues by studying how to relax these simplifying yet restrictive and impractical
presumptions.

In the following section, we give an overview of possible future ideas that can
help to solve the SCSS problem and use it in relevant topics.

7.1 Generalizing SCSS Methods for Speech Enhancement

It is important to note that the methods proposed for SCSS in this thesis can
also be generalized into speech enhancement in highly colored noise scenarios
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including babble or harmonic noise [37, 38, 75, 120, 130–132]. In such scenarios,
the noise corrupted signal includes fewer harmonics, which makes the separation
task rather difficult. As a future work, the proposed methods are expected to
be appropriately generalized to be applied to speech enhancement under highly
colored noise. In this thesis, the proposed method offers an attractive candidate
similar to the weighted codebook-mapping (WCBM) previously applied in [153],
as an effective tool for speech enhancement. The WCBM in [153], however, was
based on harmonic plus noise model (HNM) feature parameters that require
voicing estimation and pitch. In contrast, the proposed method in this research
works independently of the pitch estimates. It also benefits from the advantages
offered by using unconstrained sinusoidal feature parameters as selected features
for separation, by using sinusoidal coders as speaker models and finally, by using
a sinusoidal mixture estimator.

7.2 Employ Dynamic Constraints for Solving SCSS

It is the author’s opinion that using more constraints can lead to better results
in a model-driven SCSS approach since the redundancy in features creates inac-
curacies in speaker modeling and at mixture estimation stage. One possible idea
is to include a kind of penalty function to capture the dynamic information of
previous frames to preserve the continuity and spectral structure. Incorporat-
ing dynamic information into the separation problem builds a mechanism that
enables us to deal with the possible errors in the mixture estimation stage while
finding the most likely states of the speaker models.

7.3 Use SCSS with SID in a Closed Loop

In paper D, we demonstrated that a joint speaker identification and speech sepa-
ration system overcomes the main drawback of previous source-specific methods,
i.e., relying on a priori knowledge of the underlying speakers in the mixture. It
is the author’s opinion that a closed loop system comprising a speaker identifi-
cation module followed by a speech separation module can be further developed
to improve the overall separation performance. The idea we used in Paper D
was to use the information from the separated output signals as feedback for
correcting the speaker identities in a closed loop. Another idea is to employ an
analysis-synthesis procedure in the separation module to correct the errors that
occur in the mixture estimation stage. More specifically, employing information
from signal reconstruction errors for the speakers in the output stage enables
us to correct the errors in finding the optimal codevectors to be selected from
speaker codebooks.
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7.4 Minimize Distortion versus Cross-talk in Separated

Signals

Despite the attractive appeal of using mask methods in speech enhancement, in
a separation scenario, they introduce certain difficulties mainly attributed to the
energetic masking where one speaker signal dominates the other [132]. The mask
methods explicitly suggest filtering out one of the speakers as a jammer signal
causing inferior performance while recovering the weaker signal [107, 142]. This
decision taking in mask methods, in essence, results in producing musical noise
and artifacts caused by the interfering signal. Similarly, in speech enhancement,
using a mask method, in general, results in musical noise. Comparatively, in
speech separation, the artifacts appear in the form of cross-talks, defined as
parts of the interfering speaker still audible in the separated signals.

According to the above mentioned discussion, it is very crucial to analyze
the potential factors that can influence the intelligibility while separating speech
mixtures. More specifically, it is a very important future topic to analyze the
distortions introduced by speech separation techniques. Similarly, in [76], it was
hypothesized that if distortions introduced by a speech enhancement method
are properly controlled, then large gains in intelligibility can be achieved in the
enhanced signal.
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Abstract

We present a novel single-channel separation approach to improve the separa-
tion performance while recovering the signals from a mixture. The key idea in
this research is to employ a mixture estimator based on unconstrained modified
sinusoidal parameters. Compared to the mixmax (binary mask) and Wiener fil-
ter (softmask) approaches, the proposed approach works independently of pitch
estimates. Furthermore, it is observed that it can achieve acceptable percep-
tual speech quality with less cross-talk at different signal-to-signal ratios while
bringing down the complexity by replacing STFT with sinusoidal parameters.
Improvements made by the proposed approach are demonstrated by employing
PESQ as our objective measure and MUSHRA listening test as our subjective
evaluation.

1 Introduction

Although there have been recent advances in many speech enhancement meth-
ods [1], single-channel speech separation (SCSS) systems with high quality are
still of great importance and remain as an unsolved problem. Ideal separation
systems are targeted to provide accurate estimations for both sources from their
mixture. In this aspect having a high quality separation system would play an
integral part offering robustness to many practical applications including speech
recognition and speaker identification from mixtures of signals.

Previous single-channel speech separation systems are mainly divided into
two categories: source driven [2], [3] and model-based methods [4], [5]. Most
methods in either group are often required to estimate two masks at each frame
and applying them to the given mixture to recover the unknown sources [3], [6–8].
The mask to be applied could be either binary (hard decision) [3], [6], [7] or
soft mask [8] leading to MAX-VQ system (with log-max mixture approxima-
tion) [6], [7] and Wiener filter (soft masks) [8], respectively. Most of the pre-
vious separation systems led to rather satisfying performance for both sources
mostly at signal-to-signal ratio (SSR) around 0 dB [4–8]. However, it is often
expected that the SSR level vary from 0 dB since the underlying speakers in
the mixture often mask each other as time evolves. As a consequence, the SSR
level can vary in frames [1] making signal recovery of speakers difficult. One
reason for this problem is the fact that usually at a frame level one speaker sig-
nal dominates the other and the energies of sources collide at a time-frequency
cell. The mask-based methods explicitly suggest to filter out one of the speak-
ers to recover the target speaker. This would degrade the performance of the
signal recovery for the masked speaker. Further, using masks inevitably causes
cross-talk and artifacts in the separated signals as reported in [3]. From these
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aspects, there is a strong motivation in finding novel methods to recover both
signals at different SSR levels. According to the results in [3] the Computation-
ally Auditory Scene Analysis (CASA) often lacks enough perceptual quality due
to severe cross-talk problems in the separated output signals. The separation
performance of CASA-based methods are mainly determined by multi-pitch es-
timation accuracy. Further, according to the simulation results given in [9], the
pitch estimation shows large gross errors especially at low SSR levels because of
energetic masking. In this aspect, integration of pitch as proposed in [6] may not
be the best solution at low SSR levels, since extracting pitch frequencies from
a mixture is both challenging and difficult [9]. This, as a consequence, causes
errors in mixture estimation stage which is targeted to find the pair of states
of composite sources of the speakers that best fit the given mixture. These in-
dices are then sent to the reconstruction stage, therefore any mixture estimation
error would degrade the perceptual quality of the synthesized outputs. Com-
pared to the mask-based methods, a model-based system is able to achieve a
rather acceptable separation quality for known speakers at SSR of 0 dB. Model
based systems are mostly based on statistical models including vector quanti-
zation (VQ) [4–6], Gaussian mixture models (GMM) [8] and Hidden markov
models (HMM) [7]. As the most representative method of this group, the MAX-
VQ separation system tries to produce two masks based on the estimated VQ
states [2], [6], [7] and integrate them with the log-max approximation as its
mixture estimation. According to the results reported in [2], [5], [6] using these
estimated masks provides re-synthesis signals often corrupted with undesirable
cross-talk effects. Furthermore, based on the analysis recently given in [10], we
showed that log-max approximation in [6], [7] and Wiener filter [8] are both
biased mixture estimators.

The main purpose of this paper is to propose a novel mixture estimator and
apply it to modified unconstrained sinusoidal parameters. The separation result
of the proposed method is compared with MAX-VQ [7], Wiener filter [8] and
model-based VQ system by [4]. The paper is structured as follows: In the next
section, we introduce modified unconstrained sinusoidal parameters to be em-
ployed as feature parameters. Parameter estimation is presented and followed
by the proposed sinusoidal mixture estimator. We also explain the procedure
to produce split-VQ speaker models composed of sinusoidal parameters to be
used in our proposed method. In Section 3, we present the experimental results
with PESQ as an objective measure and MUSHRA test as a subjective measure.
Section 4 features the discussions and future work and Section 5 concludes on
the work.



2. PROPOSED SEPARATION METHOD 55

2 Proposed separation method

2.1 Sinusoidal model

Each speaker signals is denoted by sj(n) with j ∈ [1, 2] and their mixture is
shown by z(n) with n = 0, . . . , N − 1 as the time sample index where N is the
window length in samples. The sinusoidal model of speech in a fixed signal frame
is

s(n) =

M∑

i=1

ai cos(2πfin+ φi) + e(n) 0 ≤ n ≤ N − 1, (1)

where e(n) is the sinusoidal modeling error assumed as an additive noise, M
is model order and i ∈ [1,M ] is an index used to refer the ith sinusoidal com-
ponent characterized by fi, ai, and φi as the frequency, amplitude, and phase,
respectively. As a parametric feature vector we have Θ=[a, f , φ] of size M × 3.

2.2 Sinusoidal Modeling and Parameter Estimation

We consider two modifications on unconstrained sinusoidal model developed
in [11]. The modifications we made are described as follow; 1) the spectral
coefficients are translated to Mel scale to take into account the logarithmic sen-
sitivity of human auditory system, and 2) at each Mel band, the spectral peak
with the highest amplitude is selected. By employing these two foundations as
our sinusoidal parameter estimation rule, we find one peak per band and end up
with three M × 1 vectors of amplitude, frequency and phase for each speaker
signal or their mixture. We define vi = [1 ej2πfi . . . ej2πfi(N−1)]T with
i ∈ [1,M ] as the sinusoidal frequency vector of dimension N × 1 and fi is the
selected peak at the ith band. All estimated sinusoidal frequency vectors for
each speaker signal are represented in a matrix format as

V = [v1 v2 . . . vM ]T i ∈ [1,M ] , (2)

where V is an M × N Vandermonde matrix whose rows are vi. Then signal
representation in terms of sinusoids is an N × 1 vector given by ŝ = VT a where
a = [a1 . . . aM ]T and ŝ the reconstructed signal by the sinusoidal peaks
in (2). Defining the complex amplitude for each sinusoid as ai = Aie

jφi , the
objective of the parameter estimation stage is to find peaks characterized by an
amplitude frequency pair given byAi = |Si(fi)| and fi = arg maxf∈Fi

log |Si(f)|,
respectively where Fi denotes a set composed of all the frequencies within the
frequency spectrum in the ith subband denoted by Si(f).
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2.3 Sinusoidal Mixture Estimator

According to previous Section, we model the mixed signal as z = VT
z az where

Vz is a Vandermonde matrix composed of M frequency vectors of N × 1 as
vz,i = [1 ejωz,i . . . ejωz,i(N−1)]T related to {ωz,i} as the set of sinusoidal
frequency peaks retained for the mixture at the ith band. We derive mixture
estimator based on unconstrained sinusoidal parameters of the underlying speak-
ers and their mixture. The key idea is to project the mixture to its sinusoidal
subspace spanned by the columns of Θz and attempt to find a cost function to
be minimized in mixture estimation stage. Based on the model in (1), for each
speaker the power spectrum at the ith band is

P (ejω) = σ2
i +A2

i [δ(ω − ωi) + δ(ω + ωi)] , (3)

where we can replace ωi with underlying speakers signals frequency sets given by
{ω1,i} and {ω2,i} or the mixture denoted by {ωz,i} to define the related power
spectrum. A cost function is defined as the squared error between the power
spectra of the given and estimated mixture to be sampled only at sinusoidal
peaks defined by set {ωz,i}. Sampling at sinusoidal frequencies of the mixed
signal {ωz,i} is not necessarily synchronous with {ω1,i} and {ω2,i}, bringing the
requirement of using an appropriate window denoted by W (ejω) to reduce the
spectral leakage. The expected value for the periodogram for each signal spec-
trum is given by E{P̂ (ejω)} = P (ejω) ∗W (ejω) where E{·} denotes expectation
operator. The expected value for the mixture approximation error at the ith
band is

E{ǫi(ejω)} = E{P̂z(e
jω) − P̂1(e

jω) − P̂2(e
jω)} (4)

= σ2
ǫ,i +A2

z,i[W (ej(ω−ωz,i)) +W (ej(ω+ωz,i))]

−
2∑

k=1

A2
k,i[W (ej(ω−ωk,i)) +W (ej(ω+ωk,i))], (5)

where we define σ2
ǫ,i = σ2

z,i − σ2
1,i − σ2

2,i as the variance of the error. The key
idea is to sample the expected mixture estimation error in (5) at sinusoidal
frequencies of the mixture per ith band defined by set {ωz,i}. Replacing ω by
ωz,i in (5) we get

ǫi = A2
z,i −A2

1,iW (ej(ωz,i−ω1,i)) −A2
2,iW (ej(ωz,i−ω2,i)), (6)

which addresses the mixture approximation error defined between the original
and estimated spectra at the ith subband. A1,i,A2,i and Az,i indicate the first,
second and the mixture sinusoidal amplitude selected at the ith band. Accord-
ing to (1), the mixture approximation error energy converges to zero when the
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underlying speaker spectra are highly harmonic. Then the mixture estimation
error energy termed as d at a given frames is d =

∑M
i=1 |ǫi|2. Finally, the si-

nusoidal mixture estimation is accomplished by searching for the optimal states
of the composite sources denoted by {q∗, t∗} obtained by solving the following
minimization problem at each frame

{q∗, t∗} = arg min
q,t

dq,t , (7)

where q, t can be any possible state in the speaker models and dq,t is a 2D
cost function defined based on the mixture approximation error in (6). At each
frame, by in-place minimization of dq,t in (7), we achieve two states of the speaker
models that when combined best fit the mixture. The selected codebook indices
are then sent to a weighted overlap-add (OLA) to reconstruct two separated
signals.

2.4 Split-VQ Speaker Codebooks

Recently, we reported improvements by applying perceptually weighted subband
on the short-time Fourier transform (STFT) features especially at low SSR [5].
It was observed that the selected feature type along with the statistical model
determine the upper bound of separation performance. Therefore, to achieve
the upper bound separation quality, the selected feature for SCSS is required
to perform a high quantization performance which is in agreement with the re-
sults reported in [4], [5], [12]. This is in accordance with the conclusion in [13]
stating that the ultimate quality of the model-based speech enhancement sys-
tem is upper bounded by the performance of the coder used. In this respect
it was shown in [12] that by applying the split-VQ codebooks on sinusoidal
parameters, it is possible to achieve a better quantization performance com-
pared to the conventionally used STFT features. Due to this, we use split-VQ
codebooks on sinusoidal amplitude and frequencies of the underlying signals
as our speaker codebooks. Sinusoidal parameters from the training dataset of
each speaker in the mixture are extracted and results in matrices whose en-
tries are comprised of two distinctive parts; amplitude and frequency each of
dimension 1 × M . Similar to [12], we apply two different distance measures
to produce codebooks of amplitude and frequency. For the amplitude part we
apply da(a, â) = 1

‖a‖
∑M

i=1 (ai − âi)
2 where da(·) denotes the distance measure

applied to the amplitude part, M is the number of sinusoids used, and ^ denotes
the coded parameters. Let Ma be the codebook size for the amplitude part
of our split-VQ codebook. After establishing Ma amplitude reference vectors,
we select the most appropriate frequency vectors for each amplitude codeword.
Another VQ of a lower size is performed on the frequency candidates for am-
plitude codeword. A VQ with frequency codebook size of 1, 2 or 4 bits was
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found as an appropriate choice [12]. To produce frequency codevectors, we ap-
ply a distance measure defined between the frequency part of the trained data
matrix (defined by V in (2)) and their related codevectors denoted by V̂ as

dw(V, V̂) =
∑M

i=1 wi(vi − v̂i)
2 where dw(·) is defined as a weighted square error

measure with wi = ai

‖a‖ as the energy normalized amplitude vector used as a dy-

namic weighting to weight the Euclidean distance measure proportional to the
sinusoidal amplitude at the peak frequencies indicated by Vi. Concatenating
the coded amplitude and frequency vectors denoted by v̂ and â, respectively, we
achieve coded vectors in split-VQ of each speaker model.

3 Experimental Results

3.1 Dataset used and Separation Scenario

To evaluate the proposed separation algorithm, we selected four speakers includ-
ing two male (speakers 9 and 19) and two female speakers (4 and 23) from the
database [14]. Ten minutes of the speech signals of each speaker was used to
produce split-VQ [12] and STFT codebooks similarly to [4], [5], [7], all with a
codebook size of 2048 (for practical reasons 11 bits are used for amplitude and
3 bits for frequency part in split-VQ codebooks). As our separation scenario,
we select two speaker signals, and mixed them together at a certain SSR rang-
ing within [−18, 18]. The sampling frequency was decreased to 8 kHz from the
original 25 kHz. A Hanning window of duration 32 ms is used with a frame rate
of 8 ms. The benchmark methods used in our simulations are the mask based
methods both binary mask (log-max) [6], [7] and Wiener filter (soft mask) [8].
Since most separation systems predominantly employ STFT or its logarithm
as their signal representation [4], [6–8], we include the results obtained by the
model-based VQ in [4], [5], [7].

3.2 Objective and Subjective Results

As a proof of concept, we evaluate the separation performance of the proposed
method in a speaker dependent scenario. The core of the separation scenario
is composed of two trained codebooks. Simulation results are conducted to as-
sess the separation performance of the proposed method and compared them to
those obtained by other separation methods. As our testing phase, fifteen pairs
of utterances of each speaker (not used in the training set) were randomly se-
lected to make mixtures. The separation results are quantified using PESQ [15].
The results for the separated signals were averaged at each SSR level over all
pairs of test signals. Fig. 1 illustrates the separation results obtained by dif-
ferent methods for each speaker output. We also include the upper bound for
the separation performance where it is assumed that the optimal indices are
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known a priori. From Fig. 1 it is observed that the proposed method consis-
tently achieves the highest PESQ score compared to the mask-based approaches
of MAX-VQ in [2], [6], [7] and Wiener filter in [8]. The mask-based methods
introduce significant mixture estimation error especially at low or high SSR lev-
els. Further, compared to the STFT-based VQ system in [4], [5] denoted by
STFT-CB in Fig. 1(a) and (b), the proposed separation approach outperforms
the STFT upper bound performance [5]. From curves shown in Fig. 1 it is ob-
served that the proposed mixture estimator asymptotically reaches to the upper
bound performance achieved by the split-VQ codebooks [12] while there is on
average a large gap between the separation upper bound and those obtained by
the mask-based methods [6], [7] and the model-based VQ in [4], [5]. However, all
methods exhibit their best performance as SSR increases for the target speaker.
The test and the processed signals used in our MUSHRA test are presented on
our webpage1.

As our second experiment we set up a MUlti-Stimulus test with Hidden Ref-
erence and Anchors (MUSHRA) listening test as described in ITU-R BS.1534-
1 [16] in order to assess the perceived speech quality of the separated signals.
Eight listeners participated in the test (the authors not included) and the items
used in our listening test are the separated signals produced by different methods
at certain SSRs. Fig. 2 depicts the mean opinion score (MOS) obtained from
different speech separation methods averaged over all listeners. The excerpts
used are shown in Table 1. All of the played signals were monophonic sampled
at 8 kHz of duration 2 sec. For each excerpt the listeners were asked to rank
eight different separated signals relative to a known reference on a score from
0 to 100. The excerpts are composed of the hidden reference (denoted by HR),
an anchor low-pass filtered at 2 kHz (denoted by Anchor 1). The remaining six
excerpts are the separated signals defined in Table 1.

In our listening test, the separated signals produced by binary mask (MAX-
VQ) in [6], [7] and the STFT-based VQ system [4], [5] were included. Two
extreme cases of SSR level as 0 and -18 dB are included. It is observed that
the proposed sinusoidal mixture estimator scores about twenty points higher
on average than the mask-based method, and more than 25 points higher than
STFT-based method. According to Fig. 2, no overlap exists between the pro-
posed method and the benchmark methods. Hence, it can be concluded that
the proposed method can achieve statistically significant improvement compared
to other methods and consistently improves the performance of the synthesized
speech for both target and interference separated signals. Compared to the
mask-based approach, the proposed method shows improvements in the per-
ceived signal quality. As indicated by the listening experiments, the separated
output for the MAX-VQ method was found to suffer from severe crosstalk. Tests

1http://kom.aau.dk/∼pmb/IEEE ICASSP.htm
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Table A.1: Labels of the excerpts used in MUSHRA test.

Excerpt Separation method and SSR scenario
BMssr0 Binary mask at SSR=0 dB
BMssr-18 Binary mask at SSR= −18 dB
SINssr0 Proposed method at SSR= 0 dB
SINssr-18 Proposed method at SSR= −18 dB
FFTssr0 STFT-based VQ at SSR=0 dB
FFTssr-18 STFT-based VQ at SSR= −18 dB

also revealed that the separation performance of the mask-based methods (es-
pecially at SSR=0 dB where their separation performance is often reported) do
not necessarily produce the highest perceived quality for the separated signals.
This is observed by comparing the MOS in Fig. 2 for the BMssr0 and SINssr0.

4 Discussion and Future work

The results obtained in our simulations are in agreement with [3] stating that the
separation quality degrades as the energetic masking takes place at some over-
lapping time-frequency cells. The sinusoidal features used in this work lead to a
high frequency resolution peak picking, reflecting the pitch harmonic structure
of single speaker signals and their mixture. In this aspect, the idea is concep-
tually similar to the motivations behind the use of GF in CASA [2], [3]. By
selecting the peak with the highest amplitude we simply exclude peaks mainly
caused by windowing effect or modulation of low frequency components while
still preserving high perceptual quality.

Comparing the upper bound separation performance in Fig. 1 confirms our
recent findings in [5] stating that transforming full-band STFT features into per-
ceptually weighted subbands can significantly provide improvements especially
at low SSR levels. Correspondingly, the results in this paper show that by using
split-VQ codebooks it is possible to achieve a higher separation upper bound
compared to the conventionally used STFT features. The results presented here
were in agreement with our recent findings in [5], [12], where the upper bound
performance in SCSS was evaluated as the performance of the coder when the
optimal codebook indices are known a priori (ideal separation).

In this paper, we only considered SCSS. Future work should consider the gen-
eralization of the proposed estimator for speech enhancement in non-stationary
noise (babble or harmonic) where many researchers show growing interest in this
field.
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Fig. 1: Evaluation results for different separation methods in terms of PESQ for (a) speaker
one (b) speaker two versus SSR.

5 Conclusion

In this paper, a novel mixture estimator has been proposed and derived based on
a modified unconstrained sinusoidal parameters to improve the speech separa-
tion performance. The method is independent of pitch estimates and offer a new
approach for single-channel speech separation, where pitch estimation is some-
times difficult because of energetic masking occurred at time-frequency cells in a
mixture at different SSR. Through several experiments it was observed that the
proposed method achieved a higher score compared to mask-based methods of
MAX-VQ, Wiener filter and the STFT VQ-based separation system especially
at low SSR levels. As SSR increases, the proposed method asymptote its sep-
aration upper bound performance where it is assumed that the optimal indices
are a priori available. According to the MUSHRA listening test, it was observed
that the perceived speech quality of the proposed system was the highest. Fur-
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Fig. 2: MOS scores for different separation methods over all excerpts and all listeners. The
error bars indicate the 95% confident intervals.

ther, compared to the benchmark methods, the proposed method achieved lower
cross-talk and was mostly preferred by the listeners.
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Abstract

In this paper we present a new approach for binary and soft masks used in single-
channel speech separation. We present a novel approach called the sinusoidal
mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis
is presented for the proposed method, and we show that the proposed method is
able to minimize the target speech distortion while suppressing the crosstalk to a
predetermined threshold. It is observed that compared to the STFT-based masks,
the proposed sinusoidal masks improve the separation performance in terms of
objective measures (SSNR and PESQ) and are mostly preferred by listeners.

1 Introduction

Speech signal processing in adverse environments has widely been studied during
recent years. Many solutions have been proposed to improve the performance
of speech enhancement systems under highly colored noise scenarios [1, 2]. In
general, when the interfering noise is non-stationary, the overall performance
of the enhanced signal is corrupted by undesired artifacts, speech distortion or
residual noise in the background called musical noise [2]. In this regard, there is
a crucial need to develop an efficient speech enhancement approach to minimize
the residual noise while keeping the quality of the enhanced speech unchanged.
We here focus on single-channel speech separation (SCSS).

Mask-based methods have predominantly been applied in many speech en-
hancement [2] and separation [3]. The key idea behind any mask method is
to estimate two masks and apply them to the mixture spectrogram to recover
the speaker signals. The mask-based methods are generally categorized into
two groups: binary [3–5], and Wiener filter [6], [7]. Binary mask was applied
as MAX-VQ [5]) which employs log-max mixture estimator [1] to find two bi-
nary masks extracted from the speaker codebooks and then apply them on the
mixture. In [8] the MAX-VQ system was applied as a model-based where the
codewords are provided by taking the mean value among the vectors trained by
a clean speech dataset. According to [8], the separation stage leads to errors
while estimating masks for the underlying speakers and the re-synthesis speech
quality was reported relatively low because of crosstalk caused by the interfering
signal [8].

The greatest asset of mask-based methods lies in its simplicity and the fact
that all that is required, is an estimate of the masks time-frequency pattern.
Although the use of a mask-based approach is often recommended in speech
enhancement [2], it is not yet optimal for SCSS paradigm. The performance of
the mask-based methods is influenced by the non-stationarity behavior of speech
segments. It is of high interest to incorporate a model of non-stationary speech
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into the binary mask or Wiener filtering frameworks. The main concern in mask-
based method is attributed to the energetic masking occurring at frames where
one speaker signal dominates the other. In such a case, the speaker signals
energies collide at mixture time-frequency cells and make the signal recovery
rather difficult. The mask-based methods explicitly suggest to filter out one of
the speaker as a jammer signal which contradicts with the objective of an ideal
separation system targeted to recover both signals.

In this paper, we present a new mask-based method for speech enhance-
ment in general and in particular for SCSS. The proposed sinusoidal mask are
constructed by using sinusoidal parameters extracted from the speaker models.
It balances a tradeoff between the crosstalk suppression and the target speech
distortion. Extensive simulation results are conducted to evaluate the speech
separation performance for the proposed sinusoidal masks and compare them
with those obtained by predominantly used STFT masks and VQ-based methods
with STFT feature. The results show that the proposed masks could achieve a
higher performance in terms of Perceptual Evaluation of Speech Quality (PESQ)
as objective measure and are mostly preferred according to the informal listen-
ing experiments. The rest of the paper is organized as follows. In Section II
the problem formulation for the mask-based SCSS is reviewed. The proposed
method is presented in Section III. Section IV describes the separation algo-
rithm. Section V presents the simulation results. Section VI concludes on the
work.

2 Mask-based Speech Separation

We now briefly review the key idea behind mask-based methods for SCSS. The
main objective here is to design two masks, either binary or Wiener filter based,
to be applied to the mixture spectrogram. The filtered time-frequency represen-
tations are then used to recover the individual speaker signals. Note that the
binary mask aims at retaining the dominant time-frequency cells in a mixture
spectrogram. This is implemented by removing the interference-dominant units.
Such masking approaches are mostly unable to recover both target and masked
signals at the same time [4], [5]. On the other hand, the Wiener filter weights
each time-frequency cell of the mixture spectrum by taking a soft-decision ac-
cording the a priori SNR [2]. There are two deficiencies for STFT masks; 1)
some portions of the weaker speaker signal (often of high importance) is rela-
tively masked by the other speaker (causing speech distortion in target signal),
and 2) in some parts of the recovered speech signal (target) some portion of
the interfering speaker signal is still audible (called cross-talk). This is similar
to musical noise in speech enhancement but introduces a more severe effect for
the listeners. Furthermore, the Wiener filter in the STFT domain is not able to
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recover both speaker signals with a high quality (especially when one of them is
dominant). Hence, we aim at generalizing the STFT-based masks to sinusoidal
space to improve the separation performance.

3 Proposed Sinusoidal Masks

In this section, we present the sinusoidal masks aimed at recovering the under-
lying speaker signals s1 and s2 according to the mixture z = α1s1 + α2s2 where
α1 and α2 are the gains.

3.1 Sinusoidal Feature Parameters

According to the sinusoidal model of speech signals, each frame of the signal can
be represented as a N × 1 time vector as

s = VT a , (1)

where V = [v1 . . .vM ]T is a Vandermonde matrix of M × N whose rows are
vk = [1 ejωk . . . ejωk(N−1)]T with k ∈ [1,M ] as the sinusoidal frequency
vector of dimension N × 1, ωk indicates the frequency of the kth selected peak,
N is the time window length in samples, M is the order, and a = [a1 . . . aM ]T is
a M × 1 complex sinusoidal amplitude vector whose components are defined as
ak = Ake

jφk . The sinusoidal model used here is [9]; however sinusoidal parame-
ter estimation is a bit different which is described in [10], [11]. We simply select
the peak of the highest amplitude per Mel scale band and is characterized with
triple M × 1 vectors of amplitude, frequency and phase of the selected peaks.
The decision rule of taking the highest peak per band is similar to maximum ap-
proximation used as a minimum mean square error (MMSE) mixture estimator
for log amplitude spectra [1].

3.2 Sinusoidal Binary Mask

We now consider the SCSS problem in a frame and define k as the frequency
bin index. We incorporate the selected sinusoidal peaks within the bands to
establish a sinusoidal binary mask defined as

H1(ωk) =

{
1 if A1,k ≥ A2,k

0 if A1,k < A2,k
, (2)

where ωk denotes the kth frequency component. The hard decision making in
(2) can be summarized as an on-off keying (OOK) between two states C1 the
class of A1(k) and C2 in favor of A2(k). A similar definition goes for H2(ωk)
as complement of H1(ωk). The decision rule is similar to the ideal binary mask
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which compares the gain ratio of each time-frequency cell to the 0 dB local
SNR [3].

3.3 Sinusoidal Wiener Filter as a Constrained Optimiza-

tion

Speech enhancement with negligible perceived distortion is of high interest. In
order to achieve an ideal separation performance we need to satisfy two require-
ments [2]; 1) it is required to guarantee minimal speech distortion of the target
signal, and 2) the separated signals are required to have no portions of the other
speaker signal. Without loss of generality, we assume in the following that s1 is
the target and the other speaker is the interfering signal. We aim to find the kth
frequency bin of the sinusoidal gain function as g1(ωk) that solves a constrained
minimization problem by keeping the cross-talk of the other speaker below a
predefined threshold and minimizing the target speech distortion. We define
ε(ωk) as the separation error for the target signal in the kth frequency bin as

ε(ωk) = (g1(ωk) − 1)S1(ωk)
︸ ︷︷ ︸

εs1
(ωk)

+ g1(ωk)S2(ωk)
︸ ︷︷ ︸

εs2
(ωk)

, (3)

where εs1
(ωk) is the speech distortion term for target speaker while εs2

(ωk)
is the the crosstalk term of the interfering speaker. We define Si as a N × 1
vector containing the spectral components of the ith underlying speakers defined
as Si = F{si} = [Si(ω1) · · ·Si(ωK)]T where K is the number of frequency
points used in calculating the DFT. The speech distortion energy for the target
signal is calculated as ε2s1

= E{εH
s1

(ω)εs1
(ω)} and the cross-talk energy of the

other speaker is ε2s2
= E{εH

s2
(ω)εs2

(ω)}. We consider an optimization problem
addressed as below

min
g1,µ

ε2s1
s.t. ε2s2

≤ δ . (4)

We define G1 as a N ×N diagonal matrix with entries of g1(ωk) on its diagonal.
The periodogram estimation of the PSD for the ith speaker is denoted by Psisi

defined as the Fourier transform of the autocorrelation function, Rsisi
which is

Toeplitz. Then, the power spectrum components are the diagonal elements of
FHRsisi

F where F is the N -point Fourier transform matrix [2] and Psisi
=

diag(Psisi
(ω1), · · · , Psisi

(ωK)). By using the Lagrangian multiplier method, we
are required to solve the following constrained optimization in sinusoidal domain
as

L = (G1 − I)P1(G1 − I) + µG1P2G1 , (5)
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Fig. 1: SCSS system based on sinusoidal masks. The speaker signals are recovered by multi-
plying the mixture spectrum using a mask.

where L is a diagonal matrix whose (k, k)th element is given by the lagrangian
of L(g1(ωk), µ) calculated at the kth frequency bin, and µ is the Lagrange multi-
plier as a parameter to trade off crosstalk suppression against speech distortion.
Setting ∂L

∂g1
= 0 with 0 as a N × 1 zero vector, we obtain

(g1(ωk) − 1)Ps1s1
(ωk) + µg1(ωk)Ps2s2

(ωk) = 0 . (6)

The kth component of the sinusoidal Wiener gain is

g1(ωk) =
Ps1s1

(ωk)

Ps1s1
(ωk) + µPs2s2

(ωk)
. (7)

Since we have no access to speakers’ PSD, we replace them by the squared
spectral vectors in discrete frequency domain and we obtain

g1(ωk) =
ξk

ξk + µ
, (8)

where we define ξk =
Ps1s1

(ωk)

Ps2s2
(ωk) as the a priori SSR computed at sinusoidal

frequency peaks. The idea is to make the noise imperceptible by a proper choice
of µ. In this paper we assume that the SSR level is known a priori and we set
µ = (α2

α1
)2 which is agreement with the relevant discussion in chapter 6 of [2]

where µ was such chosen to minimize the speech distortion in speech dominated
frames while reducing the residual noise in noise dominated frames. Replacing
µ into (8) and taking square root from (8) we have

g1(ωk) =
α1S1(ωk)

√

α1S2
1(ωk) + α2S2

2(ωk)
, (9)

which is similar to parametric Wiener filter in [2] and we call it sinusoidal Wiener
mask. The proposed masks: sinusoidal binary in (2) and Wiener mask in (8)
are used to recover the signals.
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4 Separation Algorithm

The key part of a separation algorithm is to find the optimal states of the source
models of the speakers in the mixture. In this section we present the idea on
how to find these states. These states refer to a codeword each composed of
sinusoidal amplitude and frequency vectors denoted by a = [a1 . . . aM ]T and f =
[f1 . . . fM ]T , respectively. These codewords found by mixture estimation will be
used to produce the sinusoidal masks. The codebooks are designed by using split-
VQ of the sinusoidal parameters [10]. In the separation stage, two estimators
are used. As our first estimator we use the optimum mixture estimation in [12].
In [12], it was demonstrated that under the uniformity assumption of mixture
phase, the optimal estimator for SCSS, Sz,opt(k) in the MMSE sense is

Sz,opt(ωk) = (S1(ωk) + S2(ωk))
E(γk)

π
, (10)

with γk = 4S1(ωk)S2(ωk)
S2

1(ωk)+S2
2(ωk)

and E(·) is the complete Elliptic integral of the second

kind given by

E(γk) = π

[

1 − γ2
k

4
−
(

1 × 3

2 × 4

)2(
γ4

k

3

)

− . . .

]

. (11)

As our second method, according to the optimum mixture estimator in (10) we
replace the sinusoidal masks in (9) and we obtain

Sz,m(ωk) =
1

π
Sw(ωk)(g1(ωk) + g2(ωk))E(γk), (12)

where Sz,m(ωk) denotes the mask-based estimated mixture at the kth frequency

bin and we define Sw(ωk) =
√

S2
1(ωk) + S2

2(ωk) as the Wiener filter mixture
estimation. To include SSR levels other than 0 dB in (12), we can consider
the gain values α1 and α2. The sinusoidal mixture estimation is accomplished
by searching for the optimal states of the composite sources by minimizing
∑M

k=1 |Sz(ωk) − Ŝz(ωk)|2, where Ŝz(ωk) can be replaced by either Sz,opt(ωk)
in (10) or Sz,m(ωk) in (12). The solution of this minimization problem gives
two states in the split-VQ codebooks to be used produce the masks in (9). To
re-synthesize the separated outputs the mixture phase φz is used. Using the
sinusoidal binary mask the kth frequency bin of the refiltered spectrum is

Si(ωk) = Sz(ωk)gi(ωk) i ∈ {1, 2} , (13)

where Sz(ωk) is the mixture power spectrum, Si(ωk) is the recovered spectrum
for the ith speaker signal and gi(ωk) is either sinusoidal binary mask or sinusoidal
Wiener mask given by (2) and (8), respectively. By using IDFT along with the
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mixture phase we get recovered time signals of each speaker. Fig. 1 shows
the block diagram describing the SCSS based on the sinusoidal mask. In Fig. 1,
{k1, . . . , kM} indicate the frequency bins of sinusoidal peaks defined in Section II
and M is the sinusoidal model order.

According to the suppression rule of Ephraim and Malah in [13], the proposed
sinusoidal Wiener filter can be expressed as

g1(ωk) =

√

ξk
ξk + 1

S2
1(ωk) + S2

2(ωk)

S2
z (ωk)

=

√

ξk
ξk + 1

(
1 + νk

ζk

)

(14)

Similar to [13], we define ζk =
S2

z(ωk)

S2
2(ωk)

as the a posteriori SSR and νk = ζk
ξk

ξk+1

as the instantaneous SSR. Then the proposed mask given by (14) is similar to
Ephraim and Malah suppression rule already given in [13].

5 Simulation Results

To assess the separation performance, we use the comprehensive database in [14]
consisting of 34 speakers each containing 500 utterances. The sampling rate is
decreased to 8 kHz from the original 25 kHz. Ten minutes of the speech signals
of each speaker was used to produce the split-VQ and STFT codebooks with a
codebook size of 2048. Twenty utterances are chosen from speakers 9 and 23 as
test signals to evaluate the separation algorithms in a speaker-dependent sce-
nario. The mixed signal is generated by adding the signals at different SSR. The
separation performance for each method is reported in terms of PESQ [15] and
segmental SNR (SSNR) [2]. The methods included in our simulations are the
sinusoidal binary mask, sinusoidal Wiener filter and their STFT counterparts.
As our benchmark methods, we applied algorithms similar to [4], [6], [16]. We
also include the upper-bound performance for both STFT [17] and split-VQ [10]
determining the highest performance obtainable by using the same source model
if no mixture estimation error occurs. We used window length of 32 ms along
with a frame shift of 8 ms. The codebook size for STFT and split-VQ was 2048.
The number of sinusoidals used in our simulations is 50 and the number of DFT
points in the STFT-based methods is 1024.

Fig. 2 shows the averaged PESQ scores for the separated signals obtained
from their mixture1. From Fig. 2(a) it is observed that the optimal mixture
estimator in sinusoidal space given in (10) is very close to the sinusoidal masks
approximation in (12). Furthermore, by increasing the SSR level, both curves
asymptotically attain the same performance, which is determined by the split-
VQ upper-bound quantization performance [10]. Fig. 2(a) illustrates the PESQ

1The mixed and separated signals of different methods are downloadable from webpage at
http://kom.aau.dk/∼pmb/IEEE ICASSP2.htm
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curves obtained by masking approaches in STFT and sinusoidal domain. It is
observed that applying the sinusoidal Wiener mask to the mixture improves,
the separation performance compared to the STFT-based methods. This is
also validated by listening to the separated signals at different SSRs for differ-
ent genders. The improvement introduced by sinusoidal wiener filter over the
STFT-based mask is rather significant at low SSR. Fig. 2(b) shows the sepa-
ration performance for the second speaker signal in terms of SSNR in dB, and
it is observed that employing the proposed sinusoidal masks, either binary or
Wiener filter, cause improvements in the separation performance compared to
the STFT binary mask [3–5] or Wiener masks in [3], [6]. This improvement is
significant at low SSRs. The curves in Fig. 2(b) show that the performance ob-
tained by the optimal mixture estimator in (10) is very close to the operational
upper-bound determined by the STFT VQ. It is also observed that the proposed
sinusoidal masks outperform the results obtained by both optimal estimator in
STFT domain and the STFT-based masks. The listening tests revealed that
the re-synthesized signal quality is significantly improved compared to those
obtained by the STFT based methods. From curves shown in Fig. 2(b) we ob-
serve that by employing the optimal estimator in (10) we reach to the operational
upper-bound performance (where we assumed that the correct indices are known
a priori). The results presented here are in accordance with our recent results
in [17] where we showed that the model-based speech separation in transform
domain results in improvements over the mask-based methods especially at low
SSR.

According to the listening results, as SSR level decreases the STFT-based
masks mostly lead to inferior performance. In contrast, the proposed sinusoidal
masks achieve a superior performance and introduce significant improvement
especially at low SSRs. This could be explained by the fact that the proposed
sinusoidal mask minimizes the mixture estimation error at sinusoidal peaks of
the mixture making a tradeoff between less crosstalk and small speech distortion.
The proposed masks retain the highest peaks per bands and exclude other peaks
mostly caused by main-lobe windowing or low-frequency modulation effect. This
strategy would exclude those peaks vulnerable to be masked by the other speaker
signal. Therefore the method is expected to result in lower crosstalk compared
to the STFT masks.

6 Conclusion

In this paper, we proposed a new sinusoidal version for both binary mask and
Wiener filter and compared their performance with their STFT counterparts.
It was observed that the proposed sinusoidal masks could result in a significant
improvement in the re-synthesized speech quality for both the recovered signals.
We presented a framework to minimize the signal distortion while keeping the
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Fig. 2: Comparing the PESQ scores of the sinusoidal masks with the STFT masks and
VQ-STFT versus SSR∈ [−18, 18].

crosstalk below a predefined threshold. It was demonstrated that by the pro-
posed approach, it is possible to reach the optimal performance for SCSS in
a MMSE sense. From the simulation results, It was observed that, compared
to the STFT masks, sinusoidal masks improved the separation performance in
terms of SSNR and PESQ and were mostly preferred by informal listening tests.

We focused on speech separation scenario. As a future work, it is highly
desirable to evaluate the proposed masks in other noisy environments including
babble noise, car noise and other noise types. It is expected that the proposed
method results in improvements compared to the STFT masks.



76 PAPER B

References

[1] D. Burshtein and S. Gannot, “Speech enhancement using a mixture-
maximum model,” IEEE Trans. Audio, Speech, and Lang. Process., vol. 10,
no. 6, pp. 341–351, Sep. 2002.

[2] P. Loizou, Speech Enhancement: Theory and Practice. Boca Raton: CRC
Press, 2007.

[3] D. Wang and G. J. Brown, Computational Auditory Scene Analysis: Prin-
ciples, Algorithms, and Applications. Wiley-IEEE Press, 2006.

[4] M. H. Radfar, R. M. Dansereau, and A. Sayadiyan, “A maximum likeli-
hood estimation of vocal-tract-related filter characteristics for single chan-
nel speech separation,” EURASIP Journal on Audio, Speech, and Music
Processing, pp. 84–186, March. 2007.

[5] S. Roweis, “Factorial models and refiltering for speech separation and de-
noising,” European Conference on Speech Communication and Technology,
pp. 1009–1012, 2003.

[6] A. M. Reddy and B. Raj, “Soft mask methods for single-channel speaker
separation,” IEEE Trans. Audio, Speech, and Lang. Process., vol. 15, no. 6,
pp. 1766–1776, Aug. 2007.

[7] M. H. Radfar and R. M. Dansereau, “Single-channel speech separation using
soft mask filtering,” IEEE Trans. Audio, Speech, and Lang. Process., vol. 15,
no. 8, pp. 2299–2310, Nov. 2007.

[8] P. Li, Y. Guan, S. Wang, B. Xu, and W. Liu, “Monaural speech separation
based on MAXVQ and CASA for robust speech recognition,” Computer
Speech and Language, vol. 24, no. 1, pp. 30–44, Jan. 2010.

[9] R. McAulay and T. Quatieri, “Speech analysis/synthesis based on a si-
nusoidal representation,” IEEE Trans. Audio, Speech, and Lang. Process.,
vol. 34, no. 4, pp. 744–754, Aug. 1986.

[10] P. Mowlaee and Sayadiyan, “Model-based monaural sound separation by
split-VQ of sinusoidal parameters,” in European Signal Processing Confer-
ence, Aug. 2008.

[11] P. Mowlaee, A. Sayadiyan, and H. Sheikhzadeh, “FDMSM robust signal
representation for speech mixtures and noise corrupted audio signals,” IE-
ICE Electronics Express, vol. 6, no. 15, pp. 1077–1083, 2009.



REFERENCES 77

[12] P. Mowlaee, A. Sayadiyan, and M. Sheikhan, “Optimum mixture estimator
for single-channel speech separation,” IEEE International Symposium on
Telecommunications (IST), pp. 543–547, Aug. 2008.

[13] Y. Ephraim, “Statistical-model-based speech enhancement systems,” Pro-
ceedings of the IEEE, vol. 80, no. 10, pp. 1526–1555, Oct. 1992.

[14] M. P. Cooke, J. Barker, S. P. Cunningham, and X. Shao, “An audio-visual
corpus for speech perception and automatic speech recognition,” The Jour-
nal of the Acoustical Society of America, vol. 120, no. 5, pp. 2421–2424,
2006.

[15] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Percep-
tual evaluation of speech quality (PESQ)-a new method for speech quality
assessment of telephone networks and codecs,” IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, vol. 2, pp. 749–752, Aug.
2001.

[16] D. P. W. Ellis and R. J. Weiss, “Model-based monaural source separation us-
ing a vector-quantized phase-vocoder representation,” IEEE International
Conference on Acoustics, Speech and Signal Processing, vol. 5, pp. 957–960,
May 2006.

[17] P. Mowlaee, A. Sayadiyan, and H. Sheikhzadeh, “Evaluating single-channel
separation performance in transform domain,” jzus, vol. 11, no. 3, Jan.
2010.



78 PAPER B



Paper C

New Results on Single-Channel Speech
Separation Using Sinusoidal Modeling

Pejman Mowlaee, Mads Græsbøll Christensen,
and Søren Holdt Jensen

This paper has been published in
IEEE Transactions on Audio, Speech, and Language Processing,

vol. 19, no. 8, pp. 1265–1277, 2011.



80 PAPER C

c© 2010 IEEE
The layout has been revised.



1. INTRODUCTION 81

Abstract

We present new results on single-channel speech separation and suggest a new
separation approach to improve the speech quality of separated signals from an
observed mixture. The key idea is to derive a mixture estimator based on si-
nusoidal parameters. The proposed estimator is aimed at finding sinusoidal pa-
rameters in the form of codevectors from vector quantization (VQ) codebooks
pre-trained for speakers that, when combined, best fit the observed mixed sig-
nal. The selected codevectors are then used to reconstruct the recovered signals
for the speakers in the mixture. Compared to the log-max mixture estimator
used in binary masks and the Wiener filtering approach, it is observed that the
proposed method achieves an acceptable perceptual speech quality with less cross-
talk at different signal-to-signal ratios. Moreover, the method is independent
of pitch estimates and reduces the computational complexity of the separation
by replacing the short-time Fourier transform (STFT) feature vectors of high
dimensionality with sinusoidal feature vectors. We report separation results for
the proposed method and compare them with respect to other benchmark methods.
The improvements made by applying the proposed method over other methods are
confirmed by employing perceptual evaluation of speech quality (PESQ) as an ob-
jective measure and a MUSHRA listening test as a subjective evaluation for both
speaker-dependent and gender-dependent scenarios.

1 Introduction

There are many speech and audio applications where the signal of interest is
corrupted by highly correlated noise sources. Separating such signals from their
mixture has often been considered as one of the most challenging research top-
ics in the area of speech enhancement. An extreme case of speech enhance-
ment, single-channel speech separation (SCSS), is often considered as one of the
most difficult scenarios where a speaker signal is corrupted with other interfering
speaker signals. Although there have been recent advances in speech enhance-
ment methods [1–10], SCSS with high speech quality still remains as a challenge.
High quality separation systems could play an integral role in offering robust-
ness in many practical applications including speech coding, speech recognition,
speaker recognition in adverse mixture scenarios, and hearing aids [11].

The main objective for an ideal speech separation system is to recover the un-
known speaker signals accurately, based on their observed mixed signal recorded
by one microphone. The SCSS problem is ill-conditioned since the mixing ma-
trix is non-invertible. The problem is in principle solvable by imposing a priori
information e.g. about the speaker models [12–19]. Previous state-of-the-art
SCSS systems can be divided into two groups; (i) source-driven or computation-
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ally auditory scene analysis (CASA)-based method [20–25], and (ii) model-based
method [12–19].

The main objective in the first group is to produce the binary masks required
to separate the unknown speaker signals from their mixture. The methods pre-
dominantly use estimated pitch trajectories by applying a multi-pitch estima-
tor. According to the results reported in [22, 26, 27], the separation quality
degrades as energetic masking takes place at some overlapping time-frequency
cells. Therefore, the overall separation performance is limited by the accuracy
of the multi-pitch estimator especially when the relative amplitude levels of the
signals differ substantially (the signal-to-signal ratio (SSR) gets either low or
high). At these SSR levels, the pitch estimation accuracy is relatively lost by
large gross errors [26, 28]. In addition, according to [20], the CASA-based meth-
ods are mostly able to segregate the voiced frames of the mixture and often lack
perceptual quality due to a severe cross-talk problem.

The second group, model-based separation systems is based on statistical
models including VQ [15–18], Gaussian mixture models (GMM) [13, 19, 29, 30],
and Hidden Markov models (HMM) [12, 14, 27]. In [14], a separate HMM was
applied for each speaker and a huge state space of 8,000 was required in order
to carefully capture every possible signal transition state. Though using HMMs
enables the modeling of correlated speaker signals, according to [31], it leads to a
significantly more complex mixture estimation approach. MAX-VQ attempts to
find two masks based on the estimated VQ codewords. According to the results
reported in [17, 22, 23, 32], using such masks inevitably causes cross-talk and
artifacts in the re-synthesized signals.

From a synthesis viewpoint, the methods in the second group are divided into
two classes: overlap-add procedure and mask methods. The masks to be applied
are either the binary [15, 16, 22, 23] or the Wiener filter masks [13, 29, 30, 33]
leading to the separation approaches of the log-max estimator [12–15, 34] and
the Wiener filtering [13, 29], respectively. Despite the attractive appeal of using
masks in speech enhancement or separation, they have problems in dealing with
the energetic masking [2]. These methods suggest filtering out one of the speak-
ers as a jammer signal thereby causing inferior performance while recovering the
masked speaker signal [16, 20].

In model-based methods, difficulties arise while mapping vectors of mixed sig-
nals onto states of speaker models resulting in wrong association of the codevec-
tors with the log-max estimator leading to the selection of poorly filtered signal
vectors [16, 23]. Selecting incorrect states from the speaker models could degrade
the perceptual quality of the separated signals. According to [35], the model-
based approach was expected to perform better than the pitch-based methods
indicating that using only the pitch information shows limited discrimination for
sequential grouping. This brings forward the idea that integration of pitch and
spectral envelope in [16] may not be the most efficient solution to recover both



2. PROPOSED SEPARATION METHOD 83

signals because accurate multi-pitch estimation from a mixture at low SSRs is
still a problem [22, 26, 27, 36].

It is important to note that most of the previous separation systems achieve
a rather acceptable separation quality for the underlying sources in the mixture
by assuming speaker signals to have nearly the same long-term energy level,
i.e., when SSR level is around 0 dB. In practice, however, a nonzero SSR level
is expected since at each frame, one speaker signal often dominates others and
the energies of the sources most likely collide [1, 37], a phenomenon called ener-
getic masking [2] that makes the signal recovery of the speakers rather difficult.
Therefore, studying novel methods to improve the separation quality at different
SSRs is very important.

In this paper, we present new results for SCSS by proposing a mixture es-
timator based on sinusoidal parameters provided by codebooks for underlying
speakers in the observed speech mixture. We consider a speech mixture com-
posed of two speakers. The proposed model-based separation method aims to
find optimal sinusoidal codevectors, one from each speaker model, that when
combined best describe the observed mixture segment. The speaker models pre-
trained for speakers are VQ codebooks composed of sinusoidal amplitude and
frequency vectors. In this paper, we focus on speaker-dependent scenario and
then we relax this assumption by using gender-dependent codebooks as an inter-
mediate scenario. Through extensive simulations and subjective evaluations, we
assess the separation performance of the proposed method at different SSR lev-
els. The separation results show that the performance of the proposed method
outperforms those obtained by other previous SCSS methods.

The rest of the paper is structured as follows: In the next section, we review
previous sinusoidal methods for separation. In Section III, we introduce modi-
fied unconstrained sinusoidal parameters to be employed as feature parameters.
The parameter estimation procedure is presented and followed by the proposed
sinusoidal mixture estimator. In Section IV, we present the experimental re-
sults to compare the separation performance of the proposed method with that
of other methods. Section V presents subjective evaluations and results of our
MUSHRA test to assess the perceived quality obtained by different methods.
Section VI features the discussions and Section VII concludes the work.

2 Proposed Separation Method

We will now proceed to describe the proposed separation approach using sinu-
soidal modeling. Fig. 1 shows the block diagram of the proposed separation
approach. The system is composed of the following blocks: sinusoidal param-
eter estimation, two trained speaker models, sinusoidal mixture estimator and
overlap-add for signal reconstruction. In the following, we present our separation
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Fig. 1: Block diagram for the proposed speech separation method using sinusoidal modeling
(ŝ1 and ŝ2 are separated signals).

approach.

2.1 Sinusoidal Modeling

Before presenting the sinusoidal modeling, we will introduce some basic notation.
Assume that we have a mixed signal, {z(n)}N−1

n=0 =
∑K

k=1 {sk(n)}N−1
n=0 composed

of K speakers where k is the speaker index and the kth speaker signal is denoted
by {sk(n)}N−1

n=0 with k ∈ [1,K], n is the time sample index and N is the window
length in the samples. At each frame, we represent the kth speaker signal in
additive noise ek(n) as

sk(n) =
L∑

i=1

Ak,i cos(nωk,i + φk,i) + ek(n) 0 ≤ n ≤ N − 1 (1)

where i is an index used to refer to the ith sinusoidal component characterized
by the amplitude Ak,i, frequency ωk,i and phase φk,i, respectively. We define a
parameter vector as [α,ω,φ] of size L × 3 with α = {Ak,i}L

i=1, ω = {ωk,i}L
i=1

and φ = {φk,i}L
i=1 denoting the the k speaker’s amplitude, frequency and phase

vectors, respectively, and L being the sinusoidal model order. The signal model
in (1) is also used for representing observed mixed signal, z(n). For the sake
of simplicity and tractability, here, we focus on separating speech mixture com-
posed of two speakers, i.e. K = 2 and k ∈ [1, 2].

2.2 Sinusoidal Parameter Estimation

We make two modifications to the unconstrained sinusoidal parameter estimator
developed in [38] described as follows: i) the spectral coefficients are translated
to the Mel scale to take into account the logarithmic sensitivity of the human
auditory system, and ii) at each band the spectral peak with the highest am-
plitude is selected [39]. These changes allow us to select the most perceptually
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relevant peak per band. The N -point Discrete Fourier Transform (DFT) vector
for the ith frequency band of the kth speaker is represented by

vk,i = [1 ejωk,i . . . ejωk,i(N−1)]T i ∈ [1, L], (2)

where ωk,i denotes the selected peak at the ith band for the kth speaker. We
define

Vk = [vk,1 v∗
k,1 vk,2 v∗

k,2 . . . vk,L v∗
k,L]T , (3)

where (·)∗ is the complex conjugate operator and Vk is a 2L×N Vandermonde
matrix whose rows are vk,i defined in (2). The signal representation for the kth
speaker in terms of sinusoids is given by an N × 1 vector, ŝk = VT

k ak, where

a = [Ak,1e
jφk,1 Ak,1e

−jφk,1 . . . Ak,Le
jφk,L Ak,Le

−jφk,L ]T . (4)

We define Sk(ω) as the complex spectrum for the kth speaker. The objective of
the sinusoidal parameter estimation is to find peaks with the constraint [39]

ωk,i = arg max
ω∈Ωk,i

|Sk(ω)| , and ak,i = Sk(ωk,i) (5)

where Ωk,i is a set composed of all continuous frequencies for the kth speaker
within the ith band and arg max(·) returns the argument where |Sk(ω)| attains
its maximum value.

2.3 Proposed Sinusoidal Mixture Estimator

In this section, we propose a mixture estimator based on the sinusoidal para-
metric vectors in our model-based separation approach shown in Fig. 1. Each
speaker codebook is composed of a number of codevectors. The goal of a mixture
estimator is to search the possible codevectors of the speaker models to find two
optimal codevectors, one from each speaker model, such that when mixed, they
satisfy a minimum estimation error criterion comparable to the mixed signal.
These two best codevectors are denoted by {ropt, qopt} in Fig. 1.

By applying the sinusoidal parameter estimator in (1) to the mixed signal, we
obtain z = VT

z az where Vz is a Vandermonde matrix composed of 2L frequency
vectors of size N × 1 as vz,i = [1 ejωz,i . . . ejωz,i(N−1)]T defined by {ωz,i}L

i=1,
which is the set of sinusoidal frequencies obtained for the mixture at the ith
band. We define αz = {Az,i}L

i=1, ωz = {ωz,i}L
i=1and φz = {φz,i}L

i=1 denoting,
respectively, the amplitude, frequency, and phase of the ith component for the
mixed signal. We derive a mixture estimator based on the sinusoidal parameters
of the underlying speakers and their mixture. The key idea is to project the
mixture onto its sinusoidal subspace spanned by the columns of the parametric
vector [αz,ωz,φz] and to find a cost function to be minimized in the mixture
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estimation stage. Based on (1), we define Pk(ejω) as the power spectrum for the
kth speaker at the ith band as [40]

Pk(ejω) = σ2
k,i +A2

k,i [δ(ω − ωk,i) + δ(ω + ωk,i)] , (6)

where we assumed that ek(n) is white at each ith frequency band and σ2
k,i denotes

its corresponding variance, {ωk,i}L
i=1 is the frequency set for the peaks retained

for the kth speaker signal. A similar definition holds for the mixed signal, and we
define the mixture power spectrum as Pz(e

jω). The frequencies in {ωz,i}L
i=1 are

formed by applying (1) on the mixed signals. Considering an appropriate window
denoted by W (ejω) to reduce the spectral leakage, the expected value for the
periodogram for each signal spectrum is E{P̂k(ejω)} = Pk(ejω) ∗W (ejω) where
P̂k(ejω) is the periodogram for the kth speaker, E{·} denotes the expectation
operator and ∗ is the convolution operator. We define a cost function as the
squared error between the power spectra of the mixed signal and its estimate to
be sampled only at sinusoidal peaks given by {ωz,i}L

i=1. The expected value for
the mixture estimation error at the ith band is

E{ǫi(ejω)} = E{P̂z(e
jω) − P̂1(e

jω) − P̂2(e
jω)} (7)

= σ2
ǫ,i +A2

z,i[W (ej(ω−ωz,i)) +W (ej(ω+ωz,i))]

−
2∑

k=1

A2
k,i[W (ej(ω−ωk,i)) +W (ej(ω+ωk,i))] (8)

We define σ2
ǫ,i = σ2

z,i − σ2
1,i − σ2

2,i as the variance of the error. The expected
mixture estimation error in (8) is sampled at mixture sinusoidal frequencies per
ith band defined by the set {ωz,i}L

i=1. Replacing ω by ωz,i in (8) and ignoring
the negative part of the spectrum for real speech signals, we get

ǫi = A2
z,i −A2

1,iW (ej(ωz,i−ω1,i)) −A2
2,iW (ej(ωz,i−ω2,i)) (9)

where ǫi captures the mixture estimation error defined between the original
and the estimated mixture spectra at the ith band. A1,i, A2,i and Az,i are
the sinusoidal amplitude selected at the ith band for the first, the second and
the mixed signals, respectively. The mixture approximation error gets close to
zero when the underlying speaker spectra are highly harmonic. The mixture
estimation error termed as d at a given frame is d =

∑L
i=1 |ǫi|. The distortion

function in (9) only calculates the mixture estimation error at the sinusoidal
peaks obtained from the mixture. The proposed mixture estimation is targeted
to find the optimal indices by searching the possible codevectors in speaker
one codebook (C1) and speaker two codebook, C2) by solving the following
minimization problem at each frame [41]

{ropt, qopt} = arg min
C1×C2

d({Az,i, Â
r
1,i, Â

q
2,i, v̂

r
1,i, v̂

q
2,i}L

i=1) (10)



2. PROPOSED SEPARATION METHOD 87

where r and q are the codebook indices for speaker codebook one and two, re-
spectively, and we define C1×C2 = {r ∈ C1}×{q ∈ C2} as the space formed
by the union of the spaces defined by C1 and C2. In the minimization formula
given by (3), {ropt, qopt} addresses {Âropt

1,i , v̂
ropt

1,i , Â
qopt

2,i , v̂
qopt

2,i }L
i=1 which are the

optimal sinusoidal codevectors selected from codebooks C1 and C2, and d(·) is
the 2D cost function based on the mixture approximation error in (9). The set
{r, q} ∈ [1,M ] can be any possible states in the speaker models with M as the
codebook size. At each frame, by minimizing dr,q in (3), we obtain two code-
vectors of the speaker models, which when combined, satisfy the minimization
criterion in (3). The selected codebook indices are then used to reconstruct the
two separated signals by means of a weighted overlap-add (OLA) procedure as
shown in Fig. 1.

It is important to note that, in this paper, we use a full search to consider all
possible states during minimization of the distortion function in (3). However,
it is also possible to apply some cyclic minimizer or expectation maximization
(EM)-like algorithms as an approximation to solve the minimization problem
more computationally efficient, which is generally sub-optimal.

Our goal here is to find the set of unknowns denoted as {Â1,i, Â2,i, v̂1,i, v̂2,i}L
i=1

by solving the following minimization problem per band

arg min
Âr

1,i
,Â

q

2,i
,v̂r

1,i
,v̂

q

2,i

L∑

i=1

‖(Az,ivz,i − Âr
1,iv̂

r
1,i − Âq

2,iv̂
q
2,i)‖2

2 (11)

where Âr
1,i and v̂r

1,i are referred to the rth codevector selected from codebook

C1, Â
q
2,i and v̂q

2,i are referred to the qth codevector selected from codebook C2.
By taking the Fourier transformation of the expression in (11), we get the mix-
ture estimation in (9).

Assume that the modeling error in (9) is a zero-mean white, i.i.d. (inde-
pendent and identically distributed over observations) with Gaussian noise with
constant variance σ2

i 6= 0 at each frequency band i. Using an l2-norm and ap-
plying band decomposition, one can show that the log-likelihood of all bands
is

P = K − 1

2

L∑

i=1

‖zi − µẑi
‖2
2

σ2
i

, (12)

where µẑi
is the estimated mixed signal formed by combining the selected code-

words of the speakers for the ith band and K = −L
2 log(2π) − ∑L

i=1 log σi.
Minimizing the likelihood of all bands using the sinusoidal estimator approxi-
mates the exact likelihood of all bands in (5). The minimization results in two
sinusoids (one for each speaker) per band.
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2.4 Training Split-VQ codebooks on sinusoidal parameters

We use split-VQ codebooks composed of sinusoidal amplitude and frequency
vectors as speaker models. Here, we briefly explain the split-VQ codebook gen-
eration used in our proposed separation method. The extracted sinusoidal pa-
rameters: amplitude and frequency, each of dimension L are entered to the
training stage. Following [42], we apply different distance measures to produce
codebooks of amplitude and frequency, respectively. For the amplitude part of
the kth speaker, we apply distance measure

dA =

L∑

i=1

(

Ak,i

‖αk‖2
2

− Âk,i

‖α̂k‖2
2

)2

, (13)

where ‖.‖2
2 is the l2-norm and α̂k = {Âk,i}L

i=1 is the coded amplitude codevector,

with Âk,i as the coded amplitude for the sinusoidal peak selected at the ith band
for the kth speaker. Let MA be the codebook size for the amplitude part of our
split-VQ codebook. After establishing MA amplitude codevectors, we select
frequency vectors that are closest in terms of their related amplitude vectors.
Another VQ of a lower size is performed on these frequency candidates for each
amplitude codeword. To produce frequency codevectors for the kth speaker, we
apply the following distance measure

dw(Vk, V̂k) =

L∑

i=1

wk,i‖vk,i − v̂k,i‖2
2, (14)

where wk,i =
Ak,i

‖αk‖2
2

is the energy normalized amplitude vector used for dynamic

weighting of the Euclidean distance measure to make it proportional to the
sinusoidal amplitude at the peak frequencies.

3 Experimental Results

3.1 Separation Scenario and Database

As a proof of concept, we evaluate the performance of the proposed method in
SCSS and compare it with other benchmark methods. In our implementations
we first focus on speaker-dependent scenario. Then, we relax this assumption
by using gender-dependent codebooks as an intermediate scenario. The SSR
is defined as the averaged ratio of the target speaker gain to the gain of the
interfering signal. In our experiments, we swept the SSR level within the range
[-18,18] dB. Then, the separation results are averaged at each SSR level over all
pairs of test signals and quantified using PESQ [43] as objective measure and
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MUSHRA [44] listening test as subjective evaluation. As benchmark methods,
the separation result of the proposed method is compared with other conven-
tionally used methods: MAX-VQ [15, 23, 32], the Wiener filtering [13, 30], and
STFT-VQ [17, 18]. We also compare the separation results of the proposed
method with those obtained by HMS [24, 25] and fusion method [16].

To evaluate the proposed separation algorithm, we used the database pro-
vided for SCSS in [45] consisting of 34 speakers each uttering 500 sentences. For
our speaker-dependent scenario, we selected four speakers including two male
(speakers 9 and 19) and two female speakers (4 and 23) from the database. We
used 10 minutes of speech signals from each of the four speakers to train the
speaker models. The sampling frequency was decreased from the original 25 kHz
to 8 kHz. We analyzed the performance of the proposed mixture estimator for
many mixture pairs to find the best values of these parameters. According to
our results, throughout all experiments presented here, we used 50 sinusoidal
peaks and a von Hann window of duration 32 ms with a frame-shift of 8 ms.
For practical reasons, throughout the simulations presented here, the desired
frequency range was set to [60,3850] Hz at a sampling frequency of 8 kHz.

For practical reasons and according to findings reported in [42], we have
opted for 11 bits for amplitude and 3 bits for frequency. For a fair compari-
son and consistent with the results in [17], the same codebook size was chosen
for the STFT codebooks. In the experiments, we assumed that the double-talk
regions in the mixture are known a priori. We only focus on separating the
mixed regions to report the performance of different mixture estimators, which
are arguably also the most difficult part. We also assumed a priori knowledge
of speaker identities and SSR level in the observed speech mixture.

3.2 Ideal Separation Scenario

To assess the performance of our proposed mixture estimator, we consider the
ideal separation scenario as was done in [32]. In an ideal separation scenario, we
assume that we have access to the original underlying speakers, and from their
spectral vectors, we find the optimal codevectors based on their corresponding
trained speaker codebook. We select two utterances of one male and one female
and add them together at SSR= 0 dB to form a mixture. Fig. 2 depicts how
the proposed mixture estimator works by minimizing the error at the sinusoidal
peaks estimated from the mixture. The sinusoidal peaks in magnitude spectrum
are shown for the original and estimated mixture in Fig. 2(a), as well as for each
of the underlying single speaker signals in Fig. 2(b) and (c). From the mixture
estimation error shown in Fig. 2(d), it is observed that the estimation error is
reasonably low especially at sinusoidal frequencies of the mixture, explaining the
high accuracy of the proposed mixture estimator.
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Fig. 2: Showing the magnitude spectrum for: (a) the original and estimated mixture, (b)
speaker one, (c) speaker two and (d) mixture estimation error power in dB.
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3.3 Evaluating Performance for Speaker-Dependent Case

We report the separation performance of the proposed method and compare it
with respect to other benchmark methods. First, we consider speaker-dependent
scenario where we assume that we have a priori knowledge of speaker identi-
ties. To this end, we randomly selected ten sentences from the test data of each
speaker in order to forming the speech mixtures. The training and test sets were
disjoint. Fig. 3 shows the PESQ scores of different separation methods versus
SSR. To carefully assess the gap between methods, we also included the upper-
bound for the separation performance achieved by the STFT [17] and split-VQ
on the sinusoidals in [42]. The performance of the proposed method was com-
pared to previous speaker-dependent methods. The methods we included in
our simulations are binary mask, the Wiener filtering, and the STFT-based VQ
methods. Each curve depicted in Fig. 3 is labeled with the related reference.
Several results are inferred from Fig. 4: 1) according to the curves, the proposed
method achieves a higher PESQ score compared to MAX-VQ and the Wiener
filtering especially at low SSR levels, 2) it is observed that the proposed method
achieves about 1 point improvement in PESQ score over the mask methods. The
inferior performance of the mask methods can be further explained by the ener-
getic masking effect of the dominant speaker at time-frequency cells [2, 27, 45].
The mixture estimation error observed in the mask methods is due to the fact
that they originally filter out the competing speaker to recover a target signal
and consequently lead to decoding errors while mapping vectors of the mixed
signal into the codevectors in the codebooks of the underlying speaker in the
mixture. Hence, using a log-max mixture estimator in a mask approach could
result in the selection of wrong codevectors from the speaker models, and con-
sequently, it leads to poorly filtered separated signals as reported in [23], 3)
according to Fig. 3(a) and (b), the proposed method outperforms the STFT-
based approach and its upper-bound separation performance. The significant
degradation in performance caused by the STFT codebook-based method (de-
noted by STFT-CB), as compared to the proposed approach can be observed
from the gap between the PESQ curves shown in Fig. 3(a) and (b). This agrees
with the recent results reported in [17] stating that compared to mask meth-
ods, performing subband transformation on the STFT features could result in
improvements in the perceived speech quality of the separated signals especially
at low SSR levels, and 4) according to the curves shown in Fig. 3, the proposed
method asymptotically reaches the upper-bound performance achieved by the
split-VQ codebooks in [42].
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Fig. 3: Showing the separation results for speaker-dependent scenario for different methods
in terms of PESQ score versus SSR levels for (a) speaker one and (b) speaker two [41].
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Table C.1: Speaker labels used for training the gender-dependent models for male and female
speakers.

Male 3 5 6 9 10 12 13 14 17 19
Female 4 7 8 11 15 16 21 22 23 24

3.4 Separation Results for gender-dependent Scenario

To relax the assumption of a priori knowledge of speaker identities, here, we
study the separation results for gender-dependent scenario. As gender-dependent
models, we selected 10 female and 10 male speakers each producing 35 s of speech
signal. We trained a male speaker model using utterance from ten speakers and a
female speaker model trained on ten female speakers. These two speaker models
are gender-dependent considered as an intermediate scenario between speaker-
dependent and speaker-independent. The speaker labels used for training our
gender-dependent models are shown in Table F.1. To evaluate the separation
performance we formed mixtures using fifteen utterances of speakers 29, 34 as
female and 30, 32 as male speakers selected as our test speakers. The separation
results were then averaged over the mixture pairs at different SSR levels and
speakers. Fig. 4 illustrates the separation results obtained by different methods
for gender-dependent scenario. Curves demonstrate the separation performance
for each speaker in terms of SNR versus SSR. To assess the gap between differ-
ent methods, we also included the upper-bound separation performance. From
Fig. 4, it is concluded that compared to other methods, the proposed method
shows a significant improvement for both speaker signals, especially at extreme
SSR levels (both low and high).

It is important to note that the results shown in Figs. 3 and 4 can best
be interpreted separately. According to the definition of SSR, high SSR means
that speaker one is dominant in the mixture while a similar interpretation goes
for the second speaker but for negative values of SSR. From Figs. 3 and 4, at
high SSR levels, soft mask achieves a slightly higher PESQ score compared to
our method. This can be explained because of the use of masks in soft-mask
method which employs information directly from the mixed signal. Since at
high SSR levels, target speaker (let speaker one) is more intelligible, then mask
method achieves a higher PESQ score for this speaker compared to a model-
based method since the latter employs no information directly coming from the
mixture, but uses pre-trained speaker spectra for signal reconstruction. This
observation can be further explained by noting the fundamental difference be-
tween mask and reconstruction-based methods while synthesizing the separated
signals.
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terms of PESQ score versus SSR levels for (a) speaker one, and (b) speaker two.
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Fig. 5: Comparing the SNR results of the proposed method with MAX-VQ [15, 16, 32],
Wiener filtering [13], STFT-VQ [18], source-driven [24, 25] and harmonic methods in [16] for
speaker-dependent scenario.

3.5 Comparing the Separation Results with Harmonic Meth-

ods

We compare the separation performance of the proposed method in terms of
SNR measure with source-driven in [24, 25] and fusion methods in [16] both
based on pitch estimates of the underlying speakers in the observed speech mix-
ture. These two methods serve as examples for source-driven and harmonic
methods, respectively. To have a fair comparison, we used the same mixtures
as described in Tables in [16] all formed at SSR=0 dB. Figures 5 and 6 show
the SNR results measured in dB per mixture described on x-axis for speaker-
dependent and speaker-independent scenarios, respectively. According to the
results, it is observed that the proposed approach mostly achieves a higher score
compared to source-driven and fusion methods in [16]. The improvement for
speaker-independent scenario is lower but the proposed method still mostly out-
performs other approaches including: Log-max, Wiener filtering, source-driven
and fusion.

4 Subjective Evaluation

4.1 MUSHRA Test Setup

To assess the perceived speech quality of the separated output signals obtained
by different methods, we conduct a subjective listening test by using the multi-
stimulus test with hidden reference and anchors (MUSHRA test) as described
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Fig. 6: Comparing the SNR results of the proposed method with MAX-VQ [15, 16, 32],
Wiener filtering [13], STFT-VQ [18], source-driven [24, 25] and harmonic methods in [16] for
speaker-independent scenario.

Table C.2: Labels of the methods used in MUSHRA test.

Excerpt Separation method and SSR scenario
BMMSSR=0dB Binary mask at SSR=0dB
BMMSSR=-18dB Binary mask at SSR=-18dB
SINSSR=0dB Proposed method at SSR=0dB
SINSSR=-18dB Proposed method at SSR=-18dB
FFTSSR=0dB STFT-based VQ at SSR=0dB
FFTSSR=-18dB STFT-based VQ at SSR=-18dB

in ITU-R BS.1534-1 [44]. The MUSHRA test is a double blind test for the
subjective assessment of intermediate quality level benefits obtained from dis-
playing all stimuli at the same time. This enables the subjects to carry out
simultaneous comparison between the methods directly. Seven untrained listen-
ers participated in the test (the authors not included). The excerpts used in our
listening test are shown in Table C.2, each indicating a separated signal at a
specific SSR level. The experiments are conducted for both speaker-dependent
and gender-dependent scenarios. Both MAX-VQ and STFT-based VQ methods
were included as benchmarks for separation methods. All the played signals
were monophonic of length 2 s and sampled at 8 kHz. Many more excerpts were
used in our development phase, but the excerpts shown in Table C.2 are the ones
that have been tested in our listening test. The excerpts consisted of the hidden
reference denoted by HR and an anchor low-pass filtered at 2 kHz denoted by
Anchor. The remaining six excerpts are the separated signals at different SSRs
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shown in Table C.2. The hidden reference shows the known quality on the scale
and is used to check the consistency of the responses of a subject during the
listening test. A high score is expected at this point. The anchor point is in-
cluded to enable comparisons between the different listening tests since it forms
a simple but well-defined modification on the reference signal. Excerpts listed
in Table C.2 were chosen and played for each subject. The listeners were asked
to rank eight separated signals relative to a known reference on a scale of 0 to
100. By including different SSR levels, it is possible to assess any improvement
observed in the synthesized speech quality of the proposed method compared to
other methods. Further, the separation performance is evaluated for two SSRs.

4.2 Listening Test Results for Speaker-Dependent Scenario

We conducted the listening experiments on subjects in a silent room and a good
sound quality audio, firewire interface, was used for digital to analog conversion.
Moreover, we used a high quality headphone: AKG K240 MKII. The scores
obtained from different methods were averaged over all listeners and excerpts.
Fig. 7 depicts the mean opinion score (MOS) for the speaker-dependent sce-
nario. Furthermore, the performance of individual excerpts can be observed by
the numbers in the first row of Table C.3, which shows the results obtained by
each clip1. For each entry, the first number is the averaged value over the scores
obtained by seven listeners and the second number determines the confidence
interval.

The results shown in Table C.3 are divided into two categories i.e. target
and masker speakers. Odd columns show the results for the masked signal in
the mixture explaining the low scores at SSR=-18 dB while the even columns
show the results for the target speaker in the mixture. From Fig. 7, it is ob-
served that the proposed method scores, on average, about 20 points higher
than MAX-VQ, and more than 25 points higher than the STFT-based method.
According to Fig. 7, no overlap exists between the confidence intervals of the pro-
posed method and the other methods. Therefore, it can be concluded that the
proposed method achieves statistically significant improvement by consistently
enhancing the performance of the perceived speech quality for both target and
interference separated signals especially at low SSRs. The proposed method
achieves a slightly lower quality compared to those obtained by MAX-VQ and
Wiener filtering. However, as indicated by the listening experiments, some of
the separated outputs achieved by MAX-VQ were found suffering from severe
crosstalk. Furthermore, listeners observed that in some cases the separated sig-
nals obtained by MAX-VQ were relatively poor compared to the reference signal.
They observed that these methods suffer from the cross-talk phenomenon, mostly

1The mixed and separated wave files for different methods are downloadable from our
webpage: http://kom.aau.dk/∼pmb/IEEE Trans.htm
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Fig. 7: Results of the MUSHRA listening test for the speaker-dependent scenario [41]. MOS
scores for different separation methods over all excerpts and all listeners. Error bars indicate
95% confidence intervals.

while recovering masked signal, in which a portion of the other speaker signal
exists in the separated output signal. This is mainly because a mask method
applies a gain function to the mixed spectrum rather than finding a candidate
from the codebooks. On the other hand, the proposed method produced arti-
facts in the separated signals often encountered in sinusoidal speech modeling
especially in fricatives and sudden attacks [38]. However, the proposed method
still outperforms the others by achieving, on average, 23 to 28 points, higher than
the STFT-based method and 17 to 21 points higher than MAX-VQ. According
to the listeners observations, the improvements brought about by the proposed
method are perceived both as an increase in terms of speech signal quality and
lower cross-talk. The tests also revealed that the separation performance of the
mask methods (especially at 0 dB of SSR where their separation performance
is often reported) does not necessarily produce the highest perceived quality for
the separated signals. This can be observed by comparing the MOS results in
Fig. 7 for BMMSSR=0 and SINSSR=0 stating that the proposed method shows
an advantage of 10 points in the resulting MOS compared to MAX-VQ. We
also considered results shown in Table C.4 as the MOS results obtained by each
listener averaged over eight clips defined in Table C.2. In gender-dependent sce-
nario we only considered masked speaker output for subjective measurement at
SSR=-18 dB while for speaker-dependent scenario we included both separated
target speaker and masker speaker signals at SSR=-18 dB. By inspecting the
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MOS results shown in Fig. 7 along with the results of the listening experiments
in Table C.4, subjects often indicated that the signals related to the proposed
method were close to the reference signal and showed a significant preference
over other separated signals.

Table C.3: Results of the MUSHRA listening test for the speaker-dependent scenario. The
MOS results obtained for each clip averaged over seven listeners are shown for different meth-
ods. For each case, the confidence interval is also included.

Excerpt\Clip 1 2 3 4 5 6 7 8
BMMSSR=0dB 47.85±15.56 39.43±13.63 26.28±12.35 34.28±17.18 35.86±11.67 30.00±12.97 45.86±16.71 23.00±12.86

BMMSSR=-18dB 3.85±2.68 61.57±15.31 2.43±1.47 62.86±13.04 1.71±0.65 57.71±24.03 2.00±0.69 70.57±18.31
SINSSR=0dB 81.14±13.39 50.86±22.82 51.00±14.87 47.43±15.69 41.43±14.08 36.57±7.16 47.14±16.46 55.28±12.54

SINSSR=-18dB 69.28±11.66 50.57±18.48 53.14±17.58 62.71±14.76 44.86±7.37 36.28±14.31 58.00±6.07 53.14±15.55
FFTSSR=0dB 28.14±21.19 23.00±15.01 14.43±7.79 39.57±18.14 17.86±11.32 24.28±12.41 17.14±5.64 18.28±13.63

FFTSSR=-18dB 6.85±3.75 51.00±10.75 4.71±2.51 60.86±16.61 4.28±2.60 48.28±9.99 2.86±1.35 67.00±13.63
HR 99.14±1.59 99.14±1.94 98.28±3.88 99.86±0.32 99.86±0.32 98.71±2.02 100.00±0.00 99.57±0.97

Anchor 2 kHz 76.14±13.45 63.86±18.85 78.57±8.84 68.86±18.09 82.14±5.84 77.14±11.89 80.28±10.19 83.28±5.93

Table C.4: Results of the MUSHRA listening test for the speaker-dependent scenario. The
MOS results obtained by each listener averaged over eight clips are shown for different methods.
For each case, the confidence interval is also included.

Excerpt\Listener 1 2 3 4 5 6 7
BMMSSR=0dB 51.00±9.09 33.37±13.07 39.87±9.86 24.37±10.95 26.62±11.46 48.62±17.53 23.37±6.19

BMMSSR=-18dB 39.12±31.37 33.87±26.06 40.12±32.88 19.12±16.12 31.87±24.85 43.12±34.77 22.62±18.23
SINSSR=0dB 66.12±10.71 47.50±16.92 58.25±15.82 47.00±21.93 34.87±10.48 55.12±16.81 50.62±12.31

SINSSR=-18dB 64.00±10.08 48.12±17.71 59.75±12.49 50.50±15.58 39.00±8.43 68.50±8.96 44.62±9.79
FFTSSR=0dB 31.50±5.53 21.12±12.09 14.37±9.16 21.62±16.18 10.12±3.99 44.87±15.72 16.25±5.59

FFTSSR=-18dB 34.12±26.97 32.12±23.87 34.37±28.56 25.37±17.48 31±20.40 31.75±26.07 27±20.09
HR 100.00±0.00 100.00±0.00 99.87±0.00 99.12±1.64 100±0.00 96.25±3.12 100±0.00

Anchor 2 kHz 72.00±7.26 73.12±7.16 96.00±2.74 66.25±14.21 79±5.94 68.75±18.02 80±2.39

4.3 Listening Test Results for Gender-dependent Scenario

Relaxing the a priori knowledge of speaker identities, we report the MOS results
for the MUSHRA listening test in a gender-dependent scenario shown in Fig. 8.
According to the results depicted in Fig. 8, since no overlap exists between the
proposed method and the benchmark methods, it can be concluded that the
proposed method can achieve statistically significant improvement compared to
other methods and consistently enhances the performance of the synthesized
speech quality for both target and interference separated signals. It is observed
that at 0 dB of SSR the proposed method achieves greater improvement com-
pared to other methods. From Fig. 8, it is observed that in extreme cases
(low/high SSRs), the proposed method improves the perceived speech quality
of the separated signals. The numbers in the first row of Table C.5 show the
results obtained by each clip for the gender-dependent scenario. We also con-
sidered results shown in Table C.6 as the MOS results obtained by each listener



100 PAPER C

averaged over eight clips for gender-dependent scenario. It is observed that, for
the gender-dependent scenario, the proposed method consistently outperforms
the others in most of the cases.

By comparing the MOS results shown in Figs. 7 and 8 along with Ta-
bles C.3-C.6, we observe that the proposed method achieves a higher score both
in speaker-dependent and gender-dependent scenarios. The MOS results for
gender-dependent scenario are lower than those obtained for speaker-dependent
scenarios. At low SSR levels, both mask and STFT-based methods show in-
ferior performance especially in gender-dependent scenario. In contrast, the
proposed method shows a shorter confidence interval both in speaker-dependent
and gender-dependent scenario. By comparing the MOS results depicted in
Figs. 7 and 8, it is observed that the relative difference between the methods in
speaker-dependent and gender-dependent scenarios shows a remarkably similar
pattern of overall performance.

Table C.5: Results of the MUSHRA listening test for gender-dependent scenario. The MOS
results obtained for each clip averaged over seven listeners are shown for different methods.
For each case, the confidence interval is also included.

Excerpt\Clip 1 2 3 4 5 6 7 8
BMMSSR=0dB 32.57±8.99 29.71±8.56 29.14±18.10 18.86±10.03 24.86±7.25 25.43±9.78 22.86±12.00 28.14±11.79

BMMSSR=-18dB 8.00±6.61 6.00±6.21 4.57±3.59 3.00±1.98 4.28±2.69 3.43±2.75 6.86±4.41 20.71±6.07
SINSSR=0dB 52.00±12.49 36.43±9.06 33.71±6.09 24.28±11.27 35.00±15.14 28.57±6.15 38.71±11.63 34.14±13.92

SINSSR=-18dB 35.57±13.85 33.86±13.05 32.00±5.61 17.00±6.09 41.00±12.33 28.71±7.36 38.14±10.83 33.86±10.16
FFTSSR=0dB 34.86±8.11 28.86±13.07 28.14±9.37 16.57±3.24 32.00±13.96 27.57±9.77 29.71±10.14 19.71±11.76

FFTSSR=-18dB 20.57±13.01 40.14±9.72 13.00±8.42 7.00±2.61 14.71±8.24 10.28±4.24 13.71±4.68 5.86±4.46
HR 97.28±3.98 97.28±3.98 97.28±3.48 97.71±3.48 97.71±4.92 97.00±3.49 99.14±1.94 99.14±1.94

Anchor 2 kHz 63.43±9.27 61.28±9.98 67.71±14.47 66.86±11.04 66.71±7.00 69.14±11.57 67.71±11.85 69.71±10.23

Table C.6: Results of the MUSHRA listening test for the gender-dependent scenario. The
MOS results obtained by each listener averaged over eight clips are shown for different methods.
For each case, the confidence interval is also included.

Excerpt\Listener 1 2 3 4 5 6 7
BMMSSR=0dB 19.88±6.14 26.63±5.24 42.13±10.91 18.50±7.02 18.88±4.95 21.00±7.36 38.13±9.56

BMMSSR=-18dB 4.75±5.89 4.50±3.39 14.38±6.03 4.25±2.49 4.38±5.72 4.38±3.55 13.13±6.59
SINSSR=0dB 36.13±6.94 32.63±10.11 47.38±11.93 19.75±9.52 31.38±8.62 33.38±7.99 46.88±9.56

SINSSR=-18dB 32.63±7.35 29.88±8.68 43.88±11.41 22.00±4.20 24.63±8.44 31.50±7.58 43.13±11.82
FFTSSR=0dB 21.25±6.95 18.75±7.57 37.13±7.93 20.75±8.11 27.25±10.36 25.88±8.38 37.50±10.86

FFTSSR=-18dB 11.37±7.68 10.38±5.82 26.38±12.39 11.63±8.77 13.00±7.12 12.88±11.27 24.00±12.73
HR 93.25±1.09 100.00±0 100.00±0 100.00±0 100.00±0 100.00±0 91.88±4.15

Anchor 2 kHz 71.50±3.49 53.13±3.70 85.88±6.67 62.75±3.15 52.13±3.77 70.00±5.07 70.63±3.26

5 Discussion

In previous separation methods based on either harmonic modeling [16, 24, 25,
32, 46–48] or CASA [20–22], the speech perceived quality for separated signals
was directly determined by the accuracy of the multi-pitch estimator. However,
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Fig. 8: Results of the MUSHRA listening test for the gender-dependent scenario. MOS scores
for different separation methods over all excerpts and all listeners. Error bars indicate 95%
confidence intervals.

due to energetic masking [2], the pitch detection accuracy of most of the ex-
isting pitch estimators, degrades significantly, especially at low SSRs [26, 28].
Hence, the proposed method offers an attractive candidate for SCSS or simi-
lar enhancement scenarios where pitch estimation with high accuracy is either
rather erroneous [26, 28] or difficult because of the energetic masking [2, 27]. In
addition, it was shown in [46] that a pitch-based method is not capable of attain-
ing the same level of enhancement compared to a system based on sinusoidal
frequencies. We confirmed this by comparing the separation performance of
the proposed method with source-driven in [24, 25] and fusion methods in [16].
These motivate us to present a separation strategy independent of pitch esti-
mates, in this paper. The sinusoidal parameter estimation taken in this work
leads to a high frequency resolution at low frequencies, reflecting the pitch har-
monic structure of each speaker signal and their mixture.

The proposed approach, like other well-known sinusoidal modeling methods
in [46–48], has a major limitation in the failure to deal with unvoiced segments in
a consistent manner. The methods in [46–48] were all suggested and limited by
utterances composed of vocalic mixtures. Additionally, the sinusoidal modeling
we used in this work is originally like the one described in [38] proposing that if
we sample the spectrum of unvoiced speech with rate equal to 100 Hz, no per-
ceivable degradation are observed in the synthesized speech signal at least from
perceptually point of view. As a future work, it is possible to consider a more
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complex modeling of speech and jointly estimating sinusoidal model parameters
and voicing states of the two underlying signals.

The study in [46] reported the problems related to the frequency resolu-
tion of the discrete Fourier transform especially when two sinusoids related to
different fundamental frequencies are arbitrary close to each other. As shown
in [46, 47], the solution leads to singular ill-conditioned matrix as the frequency
of one speaker close to the frequency of the other speaker and the problem is
only solvable if two pitch frequencies and their integer multiples are not overlap-
ping and are well separated; a condition which is often not met when two speech
sources exist in the scene. This problem is equal to extracting two unknowns
(two frequencies) from single observation (mixture frequency). In order to deal
with such ambiguity, [46] suggested monitoring the spacing between neighboring
frequencies and using a multi-frame interpolation procedure. However, in this
work, we suggest testing all possible combinations of codevectors selected from
underlying speakers’ codebooks. This solution guarantees leading into the min-
imal error in the non-linear cost function. The work in [46, 48] only considered
enhancing the target speech while current work addresses the more challenging
problem of separating both speaker signals from their observed mixture. More
specifically, in [46] the interference was suppressed while changing the interfer-
ence speech to noise.

The present sinusoidal mixture estimator ignores the cross term components
and phase differences which, in some situations, play a critical role and can
change the position of peaks completely. This happens when the sinusoidal
peaks of the underlying speakers get closer than 25 Hz. In such situations, the
accuracy of the sinusoidal mixture estimator is limited but still finds the two
states of the two speaker models (sinusoidal coders), which when combined, will
best describe the mixture spectrum at certain frequencies (estimated from the
mixture spectrum per bands).

The proposed technique uses pre-trained frequency codevectors based on
peaks which makes the system more speaker-dependent. According to our simu-
lations, the proposed method also led to good results for gender-dependent sce-
nario which addresses an intermediate scenario. The more interesting speaker-
independent scenario, most likely can be addressed by combining a speaker iden-
tification module with current separation system as reported in [49].

The present work considers the mixture scenario composed of two speaker
signals. For mixtures with more than two speakers, it is possible to employ an
EM-like algorithm in which for each speaker we update the signal parameters of
one speaker at a time and then use these parameters in another searching scheme
required for finding the optimal states of other two speakers’ states. Separating
mixtures of more than two speakers is an open problem and we have considered
that as a potential future work.

The separation approach presented in this work neglected room reverber-
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ation and echoes as well as background noise which exist in a real recording
scenario. A deverberation approach [50, 51] together with a noise-suppression
module can be integrated to each other, in order to mitigate the reverberation
and background noise problem for achieving a robust speech separation system
in a practical scenario. As an example, [51] proposed to suppresses noise com-
ponents by spectral subtraction method, followed by a deverberation module
applied to the noise-suppressed signal. In this way, it is possible to dereverber-
ate the received echoic signal as well as to reduce background noise from the
corrupted signal recorded by one microphone, and then apply our separation
approach to the enhanced mixed signal.

By assuming a priori knowledge of double-talk regions in a given mixed sig-
nal, we apply the 2D search only to mixed frames to find the optimal states
of the underlying speaker models (codebooks). For the single-talk regions, we
simply re-synthesize the single-talk speaker signals according to the correspond-
ing speaker codebooks. It should be noted that, the quantitative performance
reported in our experiments are for the entire utterances.

The proposed approach cuts the computational cost in separation by substi-
tuting STFT feature vectors with sinusoidal peaks. We conducted simulations to
quantify the computational complexity of the proposed method for ten 2-second
mixtures. We observed that the STFT-VQ approach, used as our benchmark,
took in average 26.71 s for separating each frame while the proposed one re-
quired 5.55 s. Hence, the proposed approach leads to approximately 5 times less
computation time.

The upper-bound separation results presented here confirmed recent findings
in [42], where it was demonstrated that by applying the split-VQ codebooks
composed of sinusoidal parameters, it is possible to achieve a better quantiza-
tion performance in terms of the re-synthesized speech quality compared to the
conventionally used STFT or its logarithm as the selected feature vectors. This
agrees with the conclusion in [31] stating that the ultimate quality of model-
based speech enhancement system is upper-bounded by the performance of the
coder used. Similarly in SCSS, the selected feature type along with the sta-
tistical model determines the separation upper-bound performance. Therefore,
to achieve an acceptable separation upper-bound, the selected feature type for
SCSS is required to perform a high quantization performance that is in agree-
ment with the results reported in [17, 18, 42]. It was shown in [17] that by
applying a subband perceptually weighted transform on the STFT vectors, it is
possible to achieve improvements in the perceptual quality of the recovered sig-
nals especially at low SSRs. Similarly, in this work we observed that by changing
STFT features with sinusoidal parameters, it is possible to achieve improvements
in the separation performance.

We note that the method can also be generalized into speech enhancement
in highly colored noise scenarios including babble or harmonic noise [1–7]. In
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such scenarios, the mixed signal includes less harmonics which makes the sepa-
ration task rather difficult. As a future work, the proposed method is expected
to be appropriately applied to speech enhancement scenarios with highly col-
ored noise. The proposed method in this paper offers an attractive candidate
similar to the weighted codebook-mapping (WCBM) in [52], as an effective tool
for speech enhancement. The WCBM in [52], however, was based on harmonic
plus noise model (HNM) feature parameters that require voicing estimation and
pitch. In contrast, the proposed method in this research is independent of pitch
estimates and benefits from the advantages inherited from modified sinusoidal
features, split-VQ codebooks and sinusoidal mixture estimator presented in this
work.

6 Conclusions

In this paper, we presented new results on single-channel speech separation and
also proposed a new method based on sinusoidal parameters. In our proposed
method, we suggested to use a mixture estimator in the sinusoidal domain tar-
geted to find the optimal sinusoidal codevectors selected from speaker codebooks
that, when combined, best describe the observed mixed signal in each frame.
The key idea in the proposed method is to separate the signals by mapping
their mixture frames onto the joint subspaces of the sources and then compute
the parts that fall in each subspace. We studied the performance of the pro-
posed method and compared its results with those obtained by previous SCSS
methods. Through extensive simulations, and by comparison to other methods,
it was observed that the proposed method leads to rather good re-synthesized
speech quality as well as lower undesirable cross-talk for both target and interfer-
ence signals. It was also concluded that minimization at sinusoidal frequencies
of the mixed signal, used in the proposed mixture estimator, makes significant
improvement compared to both mask approach (log-max and Wiener filtering)
and STFT-based VQ approaches. To assess the improvements made by the
proposed method, we used PESQ as objective measure and MUSHRA listening
tests as subjective evaluation for both speaker-dependent and gender-dependent
scenarios. It was observed that the proposed method achieved a higher score
compared to other separation methods. In addition, it was observed that by in-
creasing the signal-to-signal ratio, the proposed method asymptotically reaches
the upper-bound separation performance (ideal separation scenario). According
to the MUSHRA listening tests, the perceived speech quality of the proposed
method was the highest both in speaker-dependent and gender-dependent sce-
narios. Finally, compared to other methods, the proposed method achieved lower
cross-talk and was mostly preferred by the listeners.
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Abstract

In this paper, we propose a closed loop system to improve the performance of
single-channel speech separation in a speaker independent scenario. The system
is composed of two interconnected blocks: a separation block and a speaker iden-
tification block. The improvement is accomplished by incorporating the speaker
identities found by the speaker identification block as additional information for
the separation block, which converts the speaker-independent separation problem
to a speaker-dependent one where the speaker codebooks are known. Simulation
results show that the closed loop system enhances the quality of the separated
output signals. To assess the improvements, the results are reported in terms of
PESQ for both target and masked signals.

1 Introduction

A reliable and efficient speech separation system is desirable for many audio
or speech applications where the best performance of the applications is only
achieved when the signals are clean. Single-channel speech separation (SCSS)
has been introduced as an ill-conditioned problem where we are required to
estimate two unknown signals from one given mixture. Various statistical mod-
els have been adopted to solve the SCSS problem [1–3] where good results are
only obtained under certain conditions like having a priori knowledge of speaker
identities in the given mixture. This unrealistic but effective assumption is made
to ease the SCSS problem. In practice, however, the speaker identities in the
mixture are not known a priori. As a consequence, it is desired to design a
model-based speaker independent SCSS system.

In [4], a system was proposed to capture speaker identities for enabling
speaker dependent separation based on a Computationally Auditory Scene Anal-
ysis (CASA) framework on a given mixture of unknown speakers. Their system
identifies the speakers identities based on Gaussian mixture models (GMM) and
employed a pitch dependent method to re-synthesize the target speaker signal.
In [5], the separation system used max approximation based on log-spectra of
the underlying speaker signals along with Algonquin as the separation engine.
In both systems reported in [4], [5], the speaker identification performance was
successful almost in all trials, and system performance was assessed in terms
of speech recognition word error rate. Most of previously proposed methods in
speech separation literature were focused on speech recognition accuracy and not
on re-synthesized speech quality of the separated speaker signals themselves.

In this paper, we consider a novel way of joining a speech separation sys-
tem and a speaker identification system. The key idea is to put these systems
(blocks) into a closed loop and send feedbacks from each system to another to
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add more information to solve the SCSS problem. Each block could be viewed
as a preprocessor for the other. The proposed approach benefits from the high
separability of model-based speaker dependent separation methods and is also
able to separate the speaker signals, without knowing their identities (i.e. gen-
erality). To assess the quality of the separated signals we report the separation
results in terms of Perceptual Evaluation of Speech Quality (PESQ) [6] as our
objective measure. We evaluate the performance of the system using a database
consisting of 100 mixed speech signals with signal to signal ratio (SSR) ranging
from -9 dB to +9 dB. The results show that the proposed approach significantly
outperforms the technique that applies a single trained model for each gender
(speaker independent case).

The paper is organized as follows. In Section 2 we explain the speech separa-
tion block and Section 3 presents the speaker identification block. In Section 4
we present the proposed joint speech separation speaker identification system.
In Section 5 we present the simulation results and finally Section 6 concludes on
the work.

2 Single-channel Separation System

The separation system transforms speaker signals from the DFT domain into
modified sinusoidal features composed of amplitude, frequency and phase vec-
tors. Each frame is modeled by using the sinusoidal model similar to [7] and
we have s = VT a where V = [v1 . . .vM ]T is an M × N Vandermonde matrix
whose rows are vi defined as vi = [1 ejωi . . . ejωi(N−1)]T with i ∈ [1,M ]
as the sinusoidal frequency vector of dimension N × 1, and ωi is the frequency
of the selected peak at the ith band, s is the time frame of the speaker signal by
using the sinusoidal model, and a = [a1 . . . aM ]T is a M × 1 complex sinusoidal
amplitude vector found at a frame. The estimation process for obtaining the
sinusoidal parameters is already described in [8]. We select only one peak with
the largest amplitude per Mel scale subband.

In the core of the separation system we use a sinusoidal mixture estimator to
find the most likely states of the composite sources of the underlying speakers.
The performance of the proposed sinusoidal estimator is studied in [9]. In the
following we explain how the separation system works. The mixed signal can be
represented as z = VT

z az where Vz is a Vandermonde matrix composed of M
frequency vectors of N × 1 with vz,i = [1 ejωz,i . . . ejωz,i(N−1)]T composed
of set of sinusoidal frequency peaks for the mixture at the ith band denoted
by ωz,i. The sinusoidal mixture estimator minimizes a cost function defined in
the sinusoidal space in order to find the best indices from the speakers source
models. We define the power spectrum for the selected sinusoid at at the ith
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band as

P (ejω) = σ2
i +A2

i [δ(ω − ωi) + δ(ω + ωi)] , (1)

where we define ωi as the frequency of the selected sinusoid peak at the ith
band which can be substituted with ωk,i where k = 1, 2 indicates speaker one
and two. Similarly to (1), we define Pz(e

jωz ) as the mixture power spectrum.
We consider the squared error between the power spectra of the estimated and
given mixture as our cost function for sinusoidal mixture estimator. This cost
function is only sampled at sinusoidal peaks indicated by ωz. The expected value
for the periodogram for each signal spectrum is then given by E{P̂ (ejω)} =
P (ejω) ∗W (ejω) with E{.} as the expectation operator. At the ith band, the
expected value of the mixture approximation error is given by

E{ǫi(ejω)} = E{P̂z(e
jω) − P̂1(e

jω) − P̂2(e
jω)} (2)

= σ2
ǫ,i +A2

z,i[W (ej(ω−ωz,i)) +W (ej(ω+ωz,i))]

−
2∑

k=1

A2
k,i[W (ej(ω−ωk,i)) +W (ej(ω+ωk,i))], (3)

with σ2
ǫ,i = σ2

z,i −σ2
1,i −σ2

2,i as the variance of the error. We replace ω by ωz,i to
only sample this cost function at sinusoidal peaks of the mixture and we obtain

|ǫ|2i =
∣
∣
∣A2

z,i −A2
1,iW (ej(ωz,i−ω1,i)) −A2

2,iW (ej(ωz,i−ω2,i))
∣
∣
∣

2

, (4)

where A1,i,A2,i and Az,i are the first, second and the mixture sinusoidal ampli-
tude selected at the ith band. The mixture estimation error indicated by d is

d =
∑M̂

i=1 ǫ
2
i . To find the most likely indices, it is required to search for among all

possible states of the composite sources denoted by {q∗, t∗}. This index finding
can be considered as the following minimization problem

{q∗, t∗} = arg min
q,t

dq,t , (5)

where q, t can be any possible state included in the composite source models and
dq,t the cost function. At each frame, by solving this minimization problem we
find two states of the speaker models (here split-VQ codebooks) that when com-
bined best fit the given mixed signal. The source models used in our separation
system are split-VQ on sinusoidal parameters as proposed in [8]. The source
models are divided into amplitude and frequency part in a tree-like structure.
Each entry of such source model is composed of a sinusoidal amplitude vector
and several sinusoidal frequency vectors as its candidates. The selected code-
book indices are then sent to a weighted overlap-add (OLA) block to reconstruct
the separated signals.
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3 Speaker Identification System

A GMM based framework is a common baseline system in speaker recognition
applications [10]. Such a system is normally used as a reference when one needs
to evaluate the effectiveness of novel algorithms or modeling approaches [11].
The GMM is a statistical approach for text-independent speaker recognition
with a high computational load during the test phase. A popular method for
training GMMs is based on the maximum-likelihood (ML) criterion, which has
been shown to outperform several other existing techniques. In state-of-the-
art systems, speaker-dependent GMMs are derived from a speaker-independent
universal background model (UBM) by adapting the UBM components with
maximum a posteriori (MAP) adaptation using speakers personal training data
[12]. This method constructs a natural association between the UBM and the
speaker models. For each UBM Gaussian component there is a corresponding
adapted component in the speakers GMM. In the verification phase each test
vector is scored against all UBM Gaussian components, and a small number of
the best-scoring components in the corresponding speaker dependent adapted
GMM are chosen. The decision score is computed as the Log Likelihood Ratio
(LLR) of the speaker GMM and the UBM scores. Under the assumption of
independent feature vectors, the log likelihood of a model λ for a sequence of T
feature vectors, X = {xt}T

t=1 is computed as follows

L(λ) =
1

T

T∑

i=1

log[p(xt|λ)] , (6)

where the mixture density used for the likelihood function is [12]

p(xt|λ) =
M̂∑

i=1

wipi(xt) (7)

The density is a weighted linear combination of M̂ unimodal Gaussian densities
pi(xt), each parameterized by a D × 1 mean vector µi and a D ×D covariance
matrix Σi where D refers to the dimensionality of feature vector. Here pi(xt) is
defined as

pi(xt) =
1

(2π)
D
2 |Σi|

1
2

exp

[

− (xt − µi)
T Σ−1

i (xt − µi)

2

]

(8)

The mixture weights wi further satisfy the constraint
∑M̂

i=1 wi = 1.
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Fig. 1: Joint speaker identification and speech separation block diagram.

4 Joint Speaker Separation-Identification

Fig. 1 shows the block diagram of the proposed joint processor. The speech
mixture is input to the speaker identification block where two identities for the
underlying speakers are found. These speaker identities are then used to select
the related speaker models and are applied in the speech separation block. The
speech separation based on the speaker models, results in two separated signals.
We then apply a filtering on each separated signal to enhance it. The filtering
blocks are denoted by H1 and H2 shown in Fig. 1. The enhanced signals are
fedback to the speaker identification block in order to achieve a more accurate
speaker identity in one closed loop. The filtering method used here is similar to
the binary mask approach with a hard decision but in sinusoidal domain. We
call this filtering sinusoidal binary masks as proposed in [13]. Define k as the
frequency bin index. At each frequency band we use the sinusoidal peaks of the
underlying speaker signals to establish a sinusoidal binary mask defined as

H1(ωk) =

{
1 if A1,k ≥ A2,k

0 if A1,k < A2,k
, (9)

where ωk denotes the kth frequency component. We also define H2(ωk) =
1 − H1(ωk). Such binary masks in sinusoidal domain is very similar to the
conventional binary masks in STFT or Gammatone filter bank in [14], except
that here we compare the gain ratio of each band to the SSR level. Using the
produced sinusoidal binary mask and applying it to the spectrogram of the given
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mixture we then re-synthesize the separated output for each speaker as

ŝi(n) = F−1
D (Sz(ω)Hi(ω)∠FD(z(n))) i = 1, 2, (10)

where F−1
D denotes the inverse Fourier transform, ∠FD(z(n)) is the phase of

the Fourier transform of the mixture and Sz(ω) is the power spectral densities
for the mixture, and ŝi(n) is the recovered time signal for the ith speaker in
the mixture. Since we have no access to the PSDs, we replace Sz(ω) with the
approximation |FD(z(n))|2. These reconstructed speaker signals are then sent
to the speaker identification block to get more accurate speaker identities.

In [4] SSR based speaker models are introduced for speaker identification
purposes indicating that the number of GMM computations is a multiple of
SSR level. Reference [5] introduces a more complex system that is composed of
Expectation Maximization (EM) algorithm to find speaker combination in the
mixed signal. Although the speech separation challenge could be considered as
offline, here we consider much more on application potential. Our approach for
speaker identification is not very accurate compared to those used in [4, 5], but
its complexity is rather low. In GMM-UBM framework, only M̂+C Gaussian
mixtures evaluated per feature vector, where C is the number of top scoring
Gaussians in UBM to be evaluated in speaker model.

5 Simulation Results

5.1 System Setup and Database

To evaluate the proposed separation algorithm in real world scenario, we used a
comprehensive database provided by [15]. The database consists of 34 speakers
each containing 500 utterances. The sampling rate is decreased to 8 kHz from
the original 25 kHz. The mixed signal is generated by adding the signals ac-
cording to the SSR level ranging in [−9, 9] dB. The speaker signals to be mixed
were selected from those used in the test setup of [15]. To put the performance
of our proposed method into perspective, we report the separation performance
for each method in terms of its PESQ score proposed by [6]. The proposed
separation system is compared to a model-based system with correct speaker
identities, speaker independent system and the speech quality obtained from the
given mixture. The configurations for our separation setup are described as fol-
lows. We used window length of 32 msec along with a frame shift of 8 msec. The
codebook size for STFT and Split-VQ was M=2048 and the sinusoidal model
order was set to M = 50 in the Split-VQ. For speaker identification, a UBM
with model order of M̂ = 512 was trained based on the two-talker development
set [15]. Speaker GMMs are adapted accordingly based on 500 training data
from individual talkers [12]. A 30 msec sliding Hamming window with a 15
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msec shift was used to obtain a sequence of frames for extracting 12 dimensional
mel-frequency cepstral coefficients (MFCCs), where 12 ∆-MFCCs and 12 ∆-∆-
MFCCs were concatenated to form a feature vector. Cepstral mean subtraction
and RASTA filtering were also employed. Diagonal covariance matrices were
employed and top-C scoring Gaussian mixtures were set to 5.

In the separation block, we first model the DFT spectral shape of each
speaker using a split-VQ of modified sinusoidal model mixture. In order to show
the superiority of multiple database approach over speaker-dependent separa-
tion modeling, we also fit a VQ to the training data of each gender for speaker-
independent scenario. We quantify the degree of the separability by computing
PESQ between the separated and original signals.

5.2 Results

We conducted evaluations for three scenarios: same gender (SG), different gen-
der (DG) and same talker (ST). For each scenario we included five sentence of
each speaker and combined them at nine SSR levels SSR={−9,−6,−3, 0, 3, 6, 9}
dB. The PESQ curves obtained by the proposed method is shown in Fig. 2 along
with the results obtained by speaker-dependent method with correct identities
indicated by SD. For each speaker, the closed loop in the joint processor results
in improvements compared to the signal quality of the related speaker in the
mixture (shown with dotted line). Furthermore, as the SSR increases the PESQ
scores of the proposed method reaches the separation upper-bound determined
by the correct speaker dependent models. The gap at low SSR levels between
the proposed method and correct speaker dependent approach is large for dif-
ferent gender scenario (see Fig. 2(b)). This can be caused by high masking
of male female combination since their time-frequency pattern is quite differ-
ent compared to the same talker or same gender. In the same gender scenario,
it is observed that the gap between the PESQ scores of the proposed method
and speaker dependent approach is small even at low SSR levels (see Fig. 2(a)).
In the same talker scenario, the speaker identification could find the identities
most accurately and this explains why two PESQ curves (shown in Fig. 2(c)) are
very close to each other. Fig. 3(a),(b) shows the improvement made by using
the proposed method and compares its performance with speaker dependent,
speaker independent and speech quality obtained from the mixture. The curves
are shown for different SSR levels for same talker scenario. It is observed that
the results obtained by the proposed method, are very close to the one obtained
by the speaker dependent method where the correct speaker identities are known
a priori. In the separation block, we first model the DFT spectral space of each
speaker using a split-VQ of modified sinusoidal model mixture. In order to show
the superiority of multiple database approach over speaker-dependent separation
modeling, we also fit a VQ to the training data for each gender. We quantify
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Fig. 2: Comparing the proposed approach with known identities, the mixture PESQ scores
for each speaker at different SSRs for (a) same gender (SG), (b) different gender (DG), and
(c) same talker (ST).

the degree of the separability by computing PESQ between the separated and
original signals in the time domain. We also include the separation upper bound
performance obtained by the correct speaker models where the optimal indices
are a priori available.

6 Conclusion

In this paper, a novel approach has been proposed to combine speech separa-
tion with speaker identification in single-channel scenario. The system is imple-
mented in a closed loop with the idea to improve the separation performance
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Fig. 3: Comparing the proposed approach for same gender (SG) scenario with correct speaker
dependent (correct SD), speaker independent (SI) and mixture PESQ scores for (a) speaker
one and (b) speaker two for different SSR levels.

by getting speaker identities from the mixture by using speaker identification.
The separation result is fedback to speaker identification to achieve correct iden-
tities. The separation method is independent on pitch estimates and is based
on sinusoidal feature parameters which have low feature dimension. Experi-
mental results showed that the proposed method achieved a high score close to
the separation performance with the correct identities and a higher performance
compared to the speaker independent case. All methods asymptotically reached
the operation upper bound performance determined by the VQ source models
of the speaker in the mixture. As the SSR increases, the proposed method
asymptote its separation upper bound performance, where it is assumed that
the optimal indices are a priori available. According to the informal listening
tests, it was observed that the perceived speech quality of the proposed system
was improved after the identification stage in one closed loop.
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Abstract

In this paper, we consider speaker identification for the co-channel scenario in
which speech mixture from speakers is recorded by one microphone only. The
goal is to identify both of the speakers from their mixed signal. High recognition
accuracies have already been reported when an accurately estimated signal-to-
signal ratio (SSR) is available. In this paper, we approach the problem without
estimating SSR. We show that a simple method based on fusion of adapted Gaus-
sian mixture models and Kullback-Leibler divergence calculated between models,
achieves an accuracy of 97% and 93% when the two target speakers enlisted as
three and two most probable speakers, respectively.

1 Introduction

Speaker identification (SID) is the task of recognizing one’s identity based on
observed speech signal [1]. Typical speaker identification systems consist of
short-term spectral feature extractor (front-end) and a pattern matching mod-
ule (back-end). In traditional SID, the basic assumption is that only one target
speaker exists in the given signal whereas in co-channel SID, the task is to
identify two target speakers in one given mixture. Distinct from the so-called
summed channel speaker recognition task [2], where only one speaker is talking
most of the time, in the co-channel SID problem, both speakers talk simulta-
neously. Research on co-channel speaker identification has been done for more
than one decade [3], yet the problem remains largely unsolved.

Most of the current single-channel speech separation (SCSS) systems use a
model-based SID module, known as Iroquois [4] to identify the speakers in a
mixed signal. The goal of an SCSS system is to estimate the unknown speaker
signals according to their observed mixture. Interaction of the SID and speech
separation modules can be managed in a closed loop to increase the overall per-
formance [5]. Recognition accuracy as high as 98% has been reported for Iroquois
in [6] which makes it as a first choice to be included in SCSS systems [7]. The
database in [6] is provided for speech separation challenge and consists of 2
seconds of small vocabulary speech for 34 speakers. In the Iroquois system, a
short list of the most likely speakers are produced based on the frames of the
mixed signal that are dominated by one speaker. This short-list is then passed
to a max-based EM algorithm to find the signal-to-signal ratio (SSR) and two
speakers identity with an exhaustive search on codebooks created for speech
synthesis [4].

The SSR estimation in Iroquois system is based on finding the most likely
combination of speakers codebooks to produce the current speech frame, where
in text-independent case gets more challenging compared to the database in [6].
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Although the SSR can be continuous and time-varying over a recording in re-
alistic conditions, in database presented in [6] and in this study the discrete
SSR levels of {−9,−6,−3, 0, 3, 6} dB are considered. Furthermore, in real-time
applications of SCSS and in forensic applications it is necessary to have a fast
and accurate system to identify the underlying sources in mixed signal without
SSR estimation required.

To this end, in this paper, we propose an SSR-independent SID module for
co-channel speech. More specifically, we examine different frame-level likelihood
scores and model level distances to solve the problem and propose a combination
of the most successful ones to compare the accuracy with respect to Iroquois.
Since the proposed system is SSR-independent and tuned on 8 kHz speech, it is
believed that it could be an alternative approach for the SID in SCSS and useful
for telephony data found, for instance, in forensic applications.

2 Speaker Recognition Approach

We use two main approaches for speaker recognition: frame-level log-likelihood
calculation for a given mixed signal against a speaker GMM and between-models
distance of a GMM model trained on mixed signal to speaker GMMs.

2.1 Frame-Level Likelihood Scores

From the frame-level likelihood estimation originally defined for the Iroquois sys-
tem in [4, 8] and which aims at determining the frames where only one speaker
exists, we derive three different scores defined at the end of this section. A max-
imum likelihood (ML) trained GMM has been used in [4]; however, maximum
a posteriori (MAP) derived GMMs [9] are more accurate in speaker verification
and we follow this latter approach. Let λ denote speaker GMM. The likelihood
function is defined as,

ℓ(x) = p(x|λ) =

M∑

m=1

wmpm(x). (1)

The density is a weighted linear combination of M unimodal Gaussian densi-
ties pm(x), where pm(x) ∼ N (x;µm,Σm) and the mixture weights wm further

satisfy the constraints
∑M

m=1 wm = 1 and wm ≥ 0. Speaker-dependent GMMs
are adapted from universal background model (UBM) [9]. The UBM is a GMM
trained on a pool of feature vectors extracted from as many speakers as possible
to serve as a priori information for feature distribution. GMM means are the
only parameters updated and weights and covariances are copied directly from
UBM to GMMs.
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2.2 Model Distance Scores

We define λig as the SSR-dependent model for ith speaker at SSR level g. An-
other approach to measure similarity of a speech segment with a speaker model
(λi) is to make a model from the test utterance with MAP adaptation (λe) and
calculate the distance between λe and the speaker model. We use the Kullback-
Leibler divergence (KLD) as a distance measure between the two probability
distributions. Since this distance cannot be directly evaluated for GMMs, we
use the upper bound of KLD which has successfully been applied to speaker
verification [10]:

KLDi =
1

2

G∑

g=1

M∑

m=1

wm(µme − µmig)
T Σ−1

m

(µme − µmig).

(2)

Here G ranges in a set of SSR levels, µme is the mth mean vector in λe and
µmig is the mth mean vector in λig, whereas wm and Σm are the weights and the
covariances of the UBM, respectively. An alternative approach to measure the
distortion between GMMs is approximate cross entropy (ACE) [11]. As shown
in [11], assuming infinite number of test utterance feature vectors, log-likelihood
for a given λi equals to negative cross entropy between λe and λi. It can be
approximated as follows:

ACEi =

G∑

g=1

M∑

m=1

wm max
n

[

logwn

− 1

2
(µme − µnig)

T Σm
−1(µme − µnig)

− 1

2
log |Σn| −

D

2
(1 + log 2π +

1

Twm + r
)

]

,

(3)

where T is the total number of frames for training λe, D is features dimension
and r is a relevance factor that controls compromise between UBM statistics
and adaptation data in GMM adaptation [9]. The value r =0 corresponds to
barely standing on adaptation data.

2.3 Proposed Method

In this work, we train the UBM (λUBM ) using digitally mixed speech signals at
different SSR levels formed by different speakers. Moreover, we train each target
speaker i, the set of gain-dependent models λig that are adapted from the UBM
based on ith speaker speech files corrupted by other speakers signal at SSR level
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g. Using SSR-based speaker models, the system captures speaker-dependent
information when it is contaminated by other speakers data. This is similar to
the idea of having an SSR-based bias in GMM parameters in [4], however, it has
the major difference that we build separate GMMs for each SSR level based on
the UBM. It enables the system to function independent of the SSR level.

For a feature vector extracted from a speech segment at time instance t, and
denoted by xt, frame level score for speaker i is defined as,

sit =
1

G

G∑

g=1

log[p(xt|λig)] − log[p(xt|λUBM )], (4)

We average over all SSR levels to be independent of the underlying SSR in
the given signal and normalize all speakers scores at time instance t with the
corresponding UBM score. To emphasize dominant speaker score in a frame, the
score in (4) is further normalized by s′it = sit/σt, where σt is standard deviation
of all speakers scores for the frame t. To sum up, we consider five different scores
for a speaker:

NWF: number of winning frames, where speaker i is the most probable speaker
in that frame, NWF i =

∑

t ϕ(s′it) where ϕ(s′it) = 1 for i = arg max
j

s′jt

and 0 otherwise.

NCF: number of confident frames for speaker i where s′it is above threshold α:
NCFi =

∑

t ψ(s′it) where ψ(s′it) = 1 for s′it > α and 0 otherwise.

LL: Log-likelihood mean for which s′it is above threshold α:
LLi = (1/NCFi)

∑

t ψ(s′it)s
′
it .

KLD: Kullback-Leibler divergence between λe and a set of models λig, com-
puted using (2).

ACE: approximate cross entropy between λe and a set of models λig, computed
using (3).

As it is common in speaker recognition, to enable using benefits from different
recognizers, we considered the fusion of the scores. We used an approximate
brute-force search to find the optimal weights for score fusion. It should be
mentioned that we normalized (and reverted for KLD) the range of scores from
different recognizers before fusion. A block diagram of proposed system is pre-
sented in Fig. 1.

3 Experimental Setup

We evaluate the proposed SID module using the speech separation challenge cor-
pus provided in [6]. The corpus is composed of 34 speakers (18 male, 16 female),
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Fig. 1: Proposed SID module is a combination of frame level likelihood score and model level
distance: FUS = 0.54NWF + 0.46KLD.

with a total number of 34,000 utterances, each following a command-like struc-
ture, and all having a unique grammatical structure. Each sentence is formed by
different syntaxes of command, color, letter, number and code, for instance ”bin
white by A 3 please”. The test data in the corpus is composed of 500 laboratory-
quality signals for each of the 34 target speakers, as well as test set consisting
of mixed signals at six signal-to-signal ratio levels of {−9,−6,−3, 0, 3, 6} dB.
For each of these six test sets for two-talker signal, 600 utterances are provided,
from which 221 are for same talker (ST), 200 for same gender (SG), and 179 for
different gender (DG). The utterances were originally sampled at 25 kHz with a
duration of 2 second.

Since we are interested in telephone-quality speech bandwidth, we downsam-
ple the signals from 25 kHz to 8 kHz. We extract features from 30 msec frames
multiplied by a Hamming window. A 27-channel mel-frequency filterbank is ap-
plied on discrete Fourier transform (DFT) spectrum to extract 12-dimensional
mel-frequency cepstral coefficients (MFCCs), followed by appending ∆ and ∆2

coefficients, and using an energy-based voice activity detector (VAD) for ex-
tracting the feature vectors. We digitally add the signals with an average frame-
level SSR to construct the UBM and the target speakers GMMs. For each
of 34 speakers, 50 random files from each speaker were mixed at SSRs levels
{−9,−6,−3, 0, 3, 6} dB with 50 random files from other speakers which gives us
about 180 hour of speech for training UBM. The number of Gaussians, M , is
set to 2048.

Speakers SSR-dependent GMMs, λig , trained by mixing 100 random files
from each speaker with 100 random files from other speakers yielding about 1.8
hours data for each SSR. Relevance factor was set to 16 for training speaker
models, λig, where its value was set to 0 in training test model, λe, because of
availability of only 2 seconds of data for adaptation. We set the threshold α to
1 in frame-level scores calculation. The accuracies defined here are to identify
both of the speakers existing in mixed signal as the two most probable speakers.
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4 Experimental Results

We first analyze the performance of speaker identification system using each of
the 5 scores individually. The results shown in Table E.1 indicate that NWF
and KLD have the best average performance compared to the other methods.
To the best of our knowledge, SID accuracy for Iroquois is not reported without
SSR estimation included. Compared to LL score, our proposed method, NWF,
is more accurate. It is observed that, the number of frames above the confidence
level, NCF is more important than their mean value, LL. On the other hand,
the model based approach, ACE, works equally well as the frame-level method
but it is more complex and has slightly worse accuracy than KLD.

Table E.1: Speaker Identification accuracy for different systems (percentage of utterances
with both speakers in the 2-best list output). FUS is proposed system composed of 0.54NWF+
0.46KLD and IRO stands for Iroquois

SSR (dB) -9 -6 -3 0 3 6 Ave
NWF 81 90 94 95 92 88 90
NCF 75 88 93 94 92 86 89
LL 74 84 90 91 87 82 85

KLD 79 89 92 93 91 87 88
ACE 79 87 92 92 89 84 87
FUS 92 93 96 97 93 87 93

IRO [4] 96 98 98 99 99 98 98

Score fusion was then done by using two most successful methods: FUSi =
0.54NWFi + 0.46KLDi. The fusion weights were optimized on development
set consisting of 300 mixed signals for each SSR level. We found that, for
the fusion system, in all of the experiments, one of the speakers in the mixed
signal is always identified. The accuracy of the proposed system (FUS) for
listing two target speakers in 3-best list is shown in Table E.2. This accuracy
suggests to use proposed SID module as a concise ”short-list” generator for the
SSR estimation in Iroquois to reduce complexity. To understand the system
performance better, we look for combinations of speakers that are identified
in any given SSR. Surprisingly, in 68% of cases both speakers are correctly
identified in the mixed signal at all SSR levels, and in 80% of experiments
possibly only for one SSR we cannot identify both speakers but one of them.
From the results, it is observed that mixed signals with different genders (DG)
are more problematic than the same gender, which there are almost no significant
difference in identification accuracy between males and females.
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5 Conclusion

A new method for speaker identification in co-channel scenario was introduced
based on the existing approaches in speaker verification and compared the ac-
curacy to Iroquois approach. From the simulation results conducted on speech
separation challenge database, we observed that the proposed simple SID mod-
ule performs well in listing two target speakers as three most probable speakers
without any requirement on the estimates of the SSR level. As a future work,
since we already got satisfactory results on 8 KHz speech, we plan to exam-
ine the proposed algorithm on telephony quality spontaneous speech and more
realistically when signals are not synthetically mixed.

Table E.2: Speaker Identification accuracy for proposed FUS system (percentage of utter-
ances with both speakers in the 3-best list output) ST, Same Talker, SG, Same Gender and
DG, Different Gender).

SSR ST SG DG Ave
-9 dB 100 93 83 92
-6 dB 100 97 94 97
-3 dB 100 100 98 99
0 dB 100 98 99 99
3 dB 100 97 93 97
6 dB 100 94 91 95
Ave 100 97 93 97
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Abstract

The problem of detecting the number of speakers for a particular segment occurs
in many different speech applications. In single channel speech separation, for
example, this information is often used to simplify the separation process, as the
signal has to be treated differently depending on the number of speakers. Inspired
by the asymptotic maximum a posteriori rule proposed for model selection, we
pose the problem as a model selection problem. More specifically, we derive a
multiple hypotheses test for determining the number of speakers at a frame level
in an observed signal based on underlying parametric speaker models, trained a
priori. The experimental results indicate that the suggested method improves the
quality of the separated signals in a single-channel speech separation scenario at
different signal-to-signal ratio levels.

1 Introduction

An open problem in speech processing is the detection of the number of speak-
ers present in a given segment of a signal. A special case of this problem is the
classification of speech segments into what is often referred to as single-talk (one
speaker), double-talk (speech mixture), and noise-only regions, with the result-
ing detector commonly referred to as a double-talk detector. Knowledge of such
regions is useful since in many speech applications, it is required to process the
underlying signals differently depending on the type. In this regard, a detector
solving this problem can be effectively used as a pre-processor for improving the
performance.

Double-talk detection has been used for a number of applications, two ex-
amples being acoustic echo cancellation and single-channel speech separation
(SCSS). In acoustic echo cancellation, the double-talk detector is used to freeze
the adaptation of an adaptive filter during double-talk regions (when both far-
end and near-end speech is present) in order to avoid divergence of the adaptive
filter, and, as a consequence, avoid the cancellation of the desired speech sig-
nal [1]. However, in SCSS, it is used to classify an observed speech mixture into
single-talk, double-talk, and noise only regions, regions that have to be processed
differently.

In the context of SCSS, a few separation methods implicitly detect double-
talk regions in various contexts, e.g., [2–4]. In [2], a state-based hypothesis test
was proposed in order to determine the reliability of each time-frequency cell
in a given noise-corrupted speech signal. It was observed that the method led
to a significant improvement in speech recognition performance in presence of
other competing speaker signals. Similarly, in [4], a silence state was added to
the speaker codebooks in order to deal with frames where only one speaker is
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active.
A few participants in the speech separation challenge [5], made use of a

model-based speaker identification (SID) module, called Iroquois [3] to identify
speakers existing in the mixture. Iroquois works based on excluding silence and
mixture segments from its parameter update procedure. Instead, it selects seg-
ments where only one speaker is dominated which are known as discriminating
features for speaker recognition purpose. This decision-taking helped narrowing
down what speakers are present in the mixture, hence, leading to an improve-
ment in speaker recognition performance [3]. This required the calculation of
speaker posteriors for different trained models of speakers present in the whole
dataset (e.g. 34 speakers in [5]). Iroquois used a fixed threshold for calculating
the uncertainty in speaker identification, and, as a consequence, could result
in errors while determining which frame belongs to single-talk and double-talk
regions.

Source-driven approaches, mostly known as computationally auditory scene
analysis (CASA) [6], suggest to combine time-frequency segments of the mixed
signal that are likely to arise from the same source and then concatenate them
into a single stream. As a consequence, CASA-based methods implicitly de-
tect the number of speakers in the speech mixture independently of a priori
knowledge of any speaker model [6]. However, the methods predominantly use
estimated pitch trajectories by applying a multi-pitch estimator. For the masked
signal, as a consequence, the overall accuracy for CASA-based method is limited
by the accuracy of the multi-pitch estimator.

To solve the problem of detecting the number of speakers in a speech mixture,
we take a different approach. We integrate the maximum a posteriori (MAP)
criterion proposed in [7] into SCSS to solve the model selection problem. We
derive multiple hypothesis tests to determine double-talk/single-talk regions in
segments of the mixed signal. We present the results of signal classification by
applying the proposed method to speech mixtures composed of two speakers at
different signal-to-signal ratio (SSR) levels. In addition, to put the idea into per-
spective, we demonstrate how using the proposed detector will affect the quality
of the separated output signals. More specifically, by finding single-talk regions
thanks to a double-talk detector, the remaining problem to be solved in SCSS is
only to separate the mixture segments. For single-speaker frames, the observed
signal is directly re-synthesized according to the corresponding speaker models.

The paper is structured as follows: In the next section, we introduce basic
notation, definitions and the model-selection problem. In Section 3, we derive
multiple-hypothesis rules required for detecting single-talk and double-talk re-
gions in a segment of mixture. In Section 4, we present the experimental results
with showing the accuracy of the proposed method. We also present the results
showing the improvements achieved by employing the proposed double-talk de-
tector in a SCSS scenario. Section 5 concludes on the work.



2. MODEL SELECTION FOR DETECTING THE NUMBER OF
SPEAKERS 139

Fig. 1: The schematic block diagram for the proposed method for detecting the number of
speakers in mixture and showing how it can be used in the SCSS problem. The decision lies
in one of the following three models: M0, M1, and M2 showing, noise-only, single-talk, and
double-talk classes, respectively. The separated output signals are shown as y1 and y2 for
speaker one and two, respectively.

2 Model Selection for Detecting the Number of

Speakers

We will now proceed to introduce some basic notation and definitions. Consider
a mixed signal with N samples y ∈ R

N composed of up to J speaker signals as
y =

∑J
j=1 s(ψj) + e, where the superscript T represents the matrix transpose,

j ∈ [1, J ] the number of signals in the mixed signal, s(ψj) ∈ R
N the jth signal

characterized by parameter vector ψj and e ∈ R
N the noise signal incorporated

in the model. For simplicity in the ensuing derivations and simulations, we focus
on J = 2, that is, a mixture of two speakers and noise. As our signal model,
we use sinusoidal modeling as described in [8]. More specifically, we model the
jth speaker signal in the mixture as a parametric feature vector ψj , composed
of sinusoidal parameters: amplitude, frequency and phase vectors. We here use
K = 3 candidate models each denoted by Mk, for describing the mixed signal,
y, namely: M0, M1, and M2 to indicate noise-only, single-talk, and double-talk,
respectively. Each of these models is described by parameter vector θk with Lk

sinusoids. A block diagram of the proposed method for detecting the number
of speakers in mixture is shown in Fig. 1. The proposed approach addresses the
following problem: given the mixed signal, select the model which is the most
likely. We consider three models for y as:

M0: y = e,

M1: y = s(ψj) + e for j ∈ [1, 2],



140 PAPER F

M2: y = s(ψ1) + s(ψ2) + e,

where s(ψ1)+s(ψ2) represents an estimate for the mixed signal, and s(ψj) with
j ∈ [1, 2] indicates the jth signal modeled by the parameter set ψj .

Following the model selection approach in [7], we adopt a MAP criterion
for multiple-hypothesis tests to determine double-talk/single-talk regions in seg-
ments of a mixed signal. To this end, we need to evaluate the posterior prob-
abilities of Mk with k ∈ ZK = {0, 1, 2}. The MAP estimate of the most likely

hypothesis is denoted by M̂k, and is obtained as

M̂k = arg max
Mk:k∈ZK

{∫

θk

p(y|θk,Mk)p(θk|Mk)dθk

}

. (1)

The problem in (2) is a complicated nonlinear maximization problem due to
the used models. As proposed in [7], instead of numerical integration for the
evaluation of marginal density in (2), we employ the asymptotic MAP criterion,
which under certain conditions can be shown to be

M̂k = arg min
Mk:k∈ZK

{

− ln p(y|θ̂k,Mk) + pc

}

, (2)

with pc being the model-dependent penalty of the MAP criterion, θ̂k an esti-
mate of θk for the kth model Mk, and − ln p(y|θ̂k,Mk) the log-likelihood term
obtained from an approximation of (2).

3 Multiple-hypothesis Algorithm

The problem is now to determine − ln p(y|θ̂k,Mk) for each of the three under-
lying candidate models Mk with k ∈ ZK = {0, 1, 2}. Here, we use sinusoidal

modeling in [8] to model the speaker signals in the mixture. Let si(ψ̂j) be the
jth speaker signal with j ∈ [1, 2] for the ith frequency band modeled by the

parametric vector ψ̂j . Here we assume that the signal modeling error, e has a
Gaussian distribution and the modeling error subband signal, ei is white in each
ith frequency band. Then from the subband decomposition and the independece
assumption for all frequency bands, assuming that ei is independent from one
band to another, one can show that the likelihood function for all bands for each
class Mk is given by

p(e|σ2) =
∏Q

i=1
p(ei|σ2

i )

=
1

(2π)
N
2
∏Q

i=1 σi

exp

(

−1

2

Q
∑

i=1

eT
i ei

σ2
i

)

, (3)
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where Q is the total number of frequency bands, σi denotes the variance due to
the modeling error signal in the ith band, ei.

For single speaker class, M1, the modeling error at the ith frequency band,
is given by êi = yi−si(ψ̂j). For the mixed class, M2, let us define the estimated

error as êi = yi − si(ψ̂1) − si(ψ̂2) as the noise estimated for the ith frequency
band as a colored noise not fitted by M2. The MAP criterion [7] for sinusoids
composed of unknown amplitudes and frequencies reduces to

M̂k = arg min
Mk∈ZK

{
N

2

Q
∑

i=1

ln σ̂2
i +

5Lk

2
lnN

}

. (4)

where we define σ̂2
i = 1

N
êT

i êi as the estimated variance for the ith frequency
band and we remind the reader that Lk is the number of sinusoids. In the
mixture class M2, we require a mixture estimate to replace s(ψ̂1) + s(ψ̂2) in

order to find the best pair of {ψ̂1, ψ̂2} from the speaker models of the underlying
speakers. Here, we use the minimum mean square error (MMSE) estimator for
the mixture magnitude spectrum in [9], in order to find the the joint best states in
the speaker models which when combined best describe the magnitude spectrum
for the observed mixture, y.

We include the noise model, M0 as one of the examined models by setting
y = ê and setting the number of sinusoids equal to zero (Lk = 0). The estimated
noise variance is given by σ̂2

i = 1
N

yT
i yi.

Finally, using the estimated value for σi depending on each possible class
of Mk with k ∈ ZK = {0, 1, 2}, the best model, as a result, is the one which
yields high log-likelihood and low model order, which is achieved in (6). The
proposed method for detecting the number of speakers in the speech mixture
can be summarized in the following three steps:

(1) Find the variance of noise, σ̂i at each ith band.

(2) Compute the MAP criterion for each class: {M0,M1,M2}.
(3) Select the model with largest log-likelihood.

4 Simulation Results

4.1 System Setup and Database

To evaluate the proposed approach, we used the database in [5] with a sampling
rate of 8 kHz. The speaker models are obtained by the split-VQ (vector quan-
tization) [8] composed of sinusoidal amplitude and frequencies trained based on
10 minutes of speech signals for each speaker. For training the speaker models
we used 2048 codevectors for amplitude and 8 codevectors for frequency part.
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Table F.1: Speaker labels used for training the gender-dependent models for male and female
speakers.

Male 3 5 6 9 10 12 13 14 17 19
Female 4 7 8 11 15 16 21 22 23 24

Throughout the experiments, a Hamming window of length 32 ms with frame-
shift equal to 8 ms was used to segment the speech files both in the training
and test phase. As our test data, we used the mixture of target and masker
speakers in the test setup of [5] mixed at six SSR levels of {-9,-6,-3,0,3,6} dB.
To relax the speaker-dependent assumption, we used gender-dependent models
and we trained a male speaker model using utterance from ten speakers and a
female speaker model trained on ten female speakers. The speaker labels used
for training our gender-dependent models are shown in Table F.1.

4.2 Experiment 1: Detection Accuracy

Figure 2, shows the clean signal (prior to mixing) for speaker one and two to-
gether with their mixture. In Fig. 2, the detection results of the number of
speakers in speech mixture are shown for gender-dependent scenario. The hy-
potheses for single-talk and double-talk regions are also shown as ground truth.
It is observed that, the double-talk detector effectively finds the regions of the
non-speech and mixture segments and determines at each frame that which
speaker(s), if any, are active. Comparing with the ground-truth, it is observed
that the accuracy of the proposed double-talk detector is high. In our experi-
ments, the models Mk with k ∈ ZK are considered as either speaker-dependent
or gender-dependent. It is important to note that, in the speaker-dependent sce-
nario, the proposed method solves a four class problem, namely noise, speaker
one, speaker two, and mixture classes. However, using gender-dependent speaker
models, the proposed double-talk detector solves a three-class problem for same
gender or same talker scenario, since the estimated error signal, given by single-
talk classes, will be the same.

4.3 Experiment 2: Speech Separation

In another experiment, we aim to study the effectiveness of employing the pro-
posed double-talk detector in a SCSS system. More specifically, as a proof
of concept, we report the signal quality of the separated signals obtained by
using a model-based separation system with and without double-talk detec-
tor proposed in this work. Figure 3 shows the perceptual evaluation of speech
quality (PESQ) [10] scores averaged over 50 mixtures The results are reported
for both speaker-dependent and gender-dependent scenarios. From the PESQ
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Fig. 2: Showing the performance for detecting the number of speakers in a mixture of a male
and a female speaker mixed at 3 dB SSR. The mixed signal is composed of a male (speaker
12) uttering “Lay white with e 8 again” with female (speaker 11) uttering “Set green with v

3 soon”. Decisions are -1 for no speech, 1 for speaker one, 2 for speaker two and 0 for mixed
signal regions.

curves shown in Fig. 3, it is observed that integrating double-talk detector into
a model-based SCSS improves the speech quality of the re-synthesized signals.
It is also observed that the PESQ scores obtained in the gender-dependent sce-
nario were slightly lower than those obtained in speaker-dependent scenario.
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However, as the SSR increases the performance of gender-dependent scenario
aysmptotates to the one offered by speaker-dependent scenario. From informal
listening test, it was observed that, the improvement obtained by employing the
proposed detector is noticeable.
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Fig. 3: Showing the PESQ scores obtained for speech separation in speaker-dependent and
gender-dependent scenarios for two cases: with and without using the proposed method for
detecting the number of speakers in a given speech mixture: (top panel) the PESQ scores
for the first speaker and (bottom panel) for the second speaker in terms of the SSR level in
decibels.
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5 Conclusion

To conclude on our work, we have presented a solution to detecting the number of
speakers in an observed segment of mixed speech signal. To solve the problem, we
applied the MAP criterion already proposed for model selection and derived the
multiple-hypothesis test algorithm to determine double-talk/single-talk regions
for a particular segment in a given mixed signal in SCSS framework. We showed
that, such information can be used to narrow down the separation problem only
for mixed frames. Experiments showed that the proposed method successfully
determines the single-talk and double-talk regions in both speaker-dependent
and gender-dependent scenarios. The proposed detector approach also led to
improvement in the signal quality of the separated signals compared to the
scenario where no detector was used.
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Abstract

This paper describes a novel approach to improve monoaural speaker identifica-
tion where two speakers are present in a single-microphone recording. The goal
is to identify both of the underlying speakers in the given mixture. The proposed
approach is composed of a double-talk detector (DTD) as a pre-processor and
speaker identification back-end. We demonstrate that including the double-talk
detector improves the speaker identification accuracy. Experiments on GRID
corpus show that including the DTD improves average recognition accuracy from
96.53% to 97.43%.
Index Terms: speaker identification, double-talk detection, single-channel,
Gaussian mixture models.

1 Introduction

Speaker recognition systems have evolved to reach high accuracy on clean speech
signals [1]. However, speaker recognition under adverse conditions remains a
challenging problem. Depending on the noise type and the way that it affects
the speech signal, the more complicated methods are required to handle speaker
recognition task. One of the most challenging cases are speech signals mixed
with other speech signals known as monaural speech. This happens in such
applications as single-channel speech separation [2] where accurate speaker iden-
tification is crucial for the entire system. Here we consider the task of identifying
both of the speakers’ identity in a given speech mixture of two speakers. Current
approaches for handling this task are combined with speech separation where
we cannot say exactly there is a stand-alone speaker identification system for
monaural speech [3]. We have recently independently proposed methods for
both speaker identification (SID) [4] and speaker-dependent double-talk detec-
tion (DTD) [5] for speech signals mixture. Our proposed method [4] does not
depend on speech separation but it works directly on monaural signal without
any prior information about mixing scenario of the two speech signals. In this
work we improve the SID accuracy by introducing external information of mixed
frames and single-talk frames provided by enhanced version of proposed DTD
module in [5]. A block diagram of the proposed system is shown in Fig. 1.

Majority of the current single-channel speech separation systems use a pri-
ori knowledge of speaker identities [6] which is both impractical and restrictive
regarding real applications. A joint system composed of speaker identification
and speech separation blocks was proposed in [7] for relaxing the need for a pri-
ori speaker identities. The proposed system [7] improved the overall perceived
speech quality of the separated output signals compared to speaker-independent
and the observed speech mixture. To make speaker identification system more
efficient, in this work, we introduce gender-dependent DTD and apply it to
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Fig. 1: The proposed method is composed of a double-talk detector followed by SSR-

independent speaker identification.

monaural SID.
State-of-the-art single channel speech separation (SCSS) systems use a model-

based SID module known as Iroquois [3] to identify the speakers in monaural
speech. Recognition accuracies as high as 98% and 99% were reported on GRID
corpus for Iroquois in [2, 8] for locating the target speakers in short-lists of top-2
and top-3 most probable speakers respectively. In the Iroquois system, a short-
list of the most likely speakers is produced based on frames dominated by one
speaker. This short-list is then passed to a max-based EM algorithm for estimat-
ing both the signal-to-signal ratio (SSR) and the identities of the two speakers
using exhaustive search on codebooks created for speech synthesis [3]. Based on
the sizes of the short-list and code-books, this search can be time consuming.
It is important to notice that if we wish to apply Iroquois system on a conver-
sational mixed speech, it also requires a reliable speech separation system to
produce meaningful results. Independent performance of our proposed method
could be considered as a bonus in this situation. In view of this problem, the
proposed system could also be used as a pre-processor for Iroquois system to
reduce the search time.
The new contributions in this study are summarized as follows. We include a
sophisticated MAP-based double talk detector (DTD) to our recent recognition
system [4]. The double-talk detector was earlier introduced for monaural speech
assuming known speaker identities [5]. In this paper, we adopt the method to
monaural speaker identification, by using gender-dependent models to enable
speaker-independent processing. The DTD module is utilized in the identifi-
cation system so that the mixed-signal recognition score is enhanced by using
“bonus” scores obtained from the more reliable single-talk regions of the mixed
signal.
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2 Double-Talk Detection System

In [9], a method for detecting single-talk and double-talk regions from a given
speech mixture was proposed. The method was based on multiple hypothe-
sis testing and was speaker-dependent. In this work, we briefly describe the
method and generalize the idea to gender-dependent scenario which is more
practical in real environments. Consider monaural speech signal with N samples
y = [y(0), . . . , y(N−1)] composed of J speaker signals as y = s1+s2+· · ·+sj+e,
where j ∈ [1, J ] indicates the number of signals in the mixed signal, sj =
[sj(0), · · · , sj(N − 1)] is the jth signal and e is the noise signal incorporated
in the model. In the following, we focus on J = 2, that is, a mixture of two
speakers.

Assume that we have K candidate models denoted by Mk, for describing
y. The double-talk detection addresses the following problem: given the mixed
signal, select the model which has the the maximum a posteriori (MAP) prob-
ability. We consider four models for y as: M0: y = e, M1:y = ŝ1({θ1}),
M2:y = ŝ2({θ2}), M3:y = ŝ(J)({θ1,θ2}). Here ŝi({θi}) indicates the ith signal

modeled by the parameter set {θi} and ŝ(J)({θ1,θ2}) =
∑J

j=1 ŝj({θj}) is the
estimated mixed signal by model M3. Let gk(y, e,θk) be a generic form for
class Mk where k ∈ ZK = {0, 1, 2, 3}. Here, θk is a vector composed of model
parameters in a parameter space θk ∈ R

mk and mk is the length of the param-
eter vector θk. Let θ1 and θ2 be the vectors for model parameters for speaker
one and two, respectively. Following the model selection approach in [10], we
here adopt a MAP criterion for multiple-hypothesis testing to determine double-
talk/single-talk regions in segments of a mixed signal. To this end, we need to
evaluate the posterior probabilities of Mk with k ∈ ZK . The MAP estimate of
the most likely hypothesis is,

M̂k = arg max
Mk:k∈ZK

{
p(y|Mk)p(Mk)

p(y)

}

, (1)

where p(y) denotes the marginal density of the observed signal and p(Mk) is the
a priori probability of the model Mk. Assuming that the underlying models are
equiprobable, P (Mk) = 1

K
, dropping K and p(y) since they are independent of

Mk, the model selection rule becomes

M̂k = arg max
Mk:k∈ZK

{∫

θk

p(y|θk,Mk)p(θk|Mk)dθk

}

(2)

where M̂k is the best model which achieves the MAP probability and the argu-
ment in (2) is basically p(y|Mk). The integral in (2) is a complicated nonlinear
minimization problem which can be solved by, for instance, Laplaces method for
integration. According to [10], instead of numerical integration for the evaluation
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of marginal density in (2), we employ asymptotically MAP criterion as

M̂k = arg min
Mk:k∈ZK

{

−L(θ̂k) + pc

}

, (3)

where pc is the penalty of the MAP criterion and −L(θ̂k) is log-likelihood term,

given Mk. Let θ̂k be our feature parameters for the kth model, Mk. As our
signal modeling, to find θ̂k, we use sinusoidal modeling described in [7] which is
based on selecting one peak per frequency band. Let ei be the residual signal due
to the sinusoidal modeling error in the ith band indicated by ei = yi − s1,i(θ1),
where σi denotes the variance of the error signal in the ith band, ei, due to the
modeling error and θ1 is the parameter vector of length 3×L for the first speaker
composed of sinusoidal parameters, L being the model order of sinusoids. Given
the independence assumption in the frequency bands in subband decomposition,
the likelihood function for all Q bands is

p(e|σ2) =
1

(2π)
N
2
∏Q

i=1 σi

exp

(

−1

2

Q
∑

i=1

eie
T
i

2σ2
i

)

, (4)

where (·)H represents the Hermitian operator. A similar expression goes for the
second speaker class, M2 just by replacing ei = yi − s2,i(θ2) in (4), where θ2 is
the parametric vector for the second speaker.

We also include the noise model as one of the examined models by setting
g(y, e,θ) = e and setting the number of sinusoids equal to zero (L = 0). We
define p(e|σ2

0) as the probability density function, with e considered as zero mean
Gaussian noise whose noise variance is estimated by σ̂2

0 = 1
N

yyT and likelihood
function given by (4).

As our last hypothesis, we are required to include the mixture model, M3

where the residual signal for the ith band is considered as a colored noise not
fitted by M3 denoted by ei = y − ŝ(J)({θ1,θ2}). The negative log-likelihood
function for mixture model M3 is

− ln p(y|{θ1,θ2}, σ̂2
i ,M3) =

N

2

Q
∑

i=1

ln (2πσ̂2
i ) +

1

2

Q
∑

i=1

eie
T
i

σ̂2
i

. (5)

In order to form the MAP criterion in (3), we employ the MAP criterion [10] for

sinusoids composed of amplitude and unknown frequencies and M̂k is obtained
as

M̂k = arg min
Mk∈ZK

{
N

2

Q
∑

i=1

ln σ̂2
i +

5L

2
lnN

}

, (6)

where σ̂i is the estimated variance for the modeling error defined for each model.
For mixed class, M̂3, as our mix model denoted by ŝ(J)({θ1,θ2}), we use the
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minimum mean square error (MMSE) mixture estimate presented recently in
[11]. According to (6), the best model, as a result, is the one which yields high
log-likelihood and low model order, which is achieved according to (6) [5].

Figure 2 shows the clean signal for two speakers together with their mixture.
It is observed that, the double-talk detector effectively finds the boundaries of
single-talk regions. Comparing with the ground-truth, it accurately determines
for each frame that which speaker(s), if any, is active. It is important to note
that, for same gender or same talker scenarios DTD module degenerates into a
three-class problem since it only employs one speaker model for these scenarios.
Then, the double-talk detector cannot distinguish between M1 and M2, since
the residual signals of these classes, are the same. The double-talk detector,
however, can still identify single/double-talk regions and pass this information
to the SID module.

3 Speaker Identification System

The speaker identification module is based on maximum a posteriori (MAP)
adapted Gaussian mixture models (GMM) [12]. A speaker GMM is a weighted
linear combination of M unimodal Gaussian densities where, letting λ denote a
model of single speaker, the likelihood function is defined as,

ℓ(x) = p(x|λ) =

M∑

m=1

wmpm(x), (7)

where pm(x) = N (x;µm,Σm) and the mixture weights wm further satisfy the

constraints
∑M

m=1 wm = 1 and wm ≥ 0. Speaker-dependent GMMs are adapted
from a so called universal background model (UBM) [12]. The UBM is a GMM
trained on a pool of feature vectors extracted from as many speakers as possible
and it serves as a priori information for feature distribution. By defining λig

as the signal-to-signal ratio dependent model for the ith speaker at SSR level
g, we use frame-level likelihood and model-level approximate Kullback-Leibler
divergence (KLD) as the similarity and distance measures respectively. For a
feature vector xt extracted from a speech segment at time instance t, frame level
score for speaker i is defined as sit = 1

G

∑G
g=1 sigt, where

sigt = log[p(xt|λig)] − log[p(xt|λUBM )]. (8)

For speaker identification, we average over all SSR levels to make the system
less dependent on the SSR level [4]. Meanwhile we normalize all speakers scores
at time instance t with the corresponding UBM score. Another approach to
measure similarity of a speech segment with a speaker model (λi) is to make a
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Fig. 2: Double-talk detection results for a speech mixture of a male and a female speaker

mixed at 3 dB SSR. The mixed signal is composed of a male speaker 12 uttering ”Lay white

with e 8 again” with female speaker 11 uttering ”Set green with v 3 soon”. Decisions are -1

for no speech, 1 for speaker 1, 2 for speaker 2 and 0 for mixed signal regions.

model from the test utterance with MAP adaptation (λe) and calculate the dis-
tance between λe and the speaker model. Since KLD distance cannot be directly
evaluated for GMMs, we use the upper bound of KLD which has successfully
been applied to speaker verification [13]:

KLDig = 1
2

∑M
m=1 wm(µme − µmig)

TΣ−1
m

(µme − µmig). (9)

Here g ranges over a discrete set of SSR levels, µme is the mth mean vector
in λe and µmig is the mth mean vector in λig, whereas wm and Σm are the
weights and the covariances of the UBM, respectively. To sum up, we consider
two different scores for a speaker:
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FLL: Frame level likelihood, where we are considering number of winning frames
that speaker i is the most probable speaker in that frame for speaker
identification.

KLD: Kullback-Leibler divergence between λe and a set of models λig, computed
using (9). We form an N ×G distance matrix and average over SSR levels
to raise the speaker with minimum average distance.

As commonly done in speaker recognition, to enable using benefits from different
recognizers, we considered the fusion of the scores with equal weights. Similar
to [4], each speaker’s decision score is computed as 0.5 × FLL + 0.5 × KLD.
The frames detected by DTD module to belong to a single speaker only (1 or
2) are collected accordingly and passed to KLD score computation. Since we
believe that these frames belong to only one speaker, for the speaker that gets
the minimum KLD, we add a bonus score to it’s decision score as score[idx] =
score[idx] + αT1/T (or αT2/T ) where idx is the identified speaker from single-
talk frames. The bonus is made relative to the number of single-talk frames
identified to belong to speaker 1 or 2 (T1 or T2) respect to total number of
frames in a given test signal (T ). The stressing factor α is a control parameter.
Details of the SID algorithm presented as a pseudocode in Algorithm 3.1.

4 Experimental Results

We evaluate the proposed system on the speech separation database known as
GRID corpus [2] composed of 34,000 different utterances. The sentences were
originally sampled at 25 kHz with a duration of 2 seconds each. As we usually
deal with 8 kHz speech in most of speech applications, we decreased the sampling
rate down to 8 kHz. The speaker models used for DTD module are split-VQ
codebooks [7] composed of sinusoidal amplitude and frequencies. For training
the speaker models, we used 11 bits for amplitude and 3 bits for frequency part.
To train gender-dependent models, we selected 10 female and 10 male speakers
each producing 35 s of speech signal. Throughout the experiments, a Hamming
window of length 32 ms with frame-shift equal to 8 ms is used to segment the
speech files both in the training and test phases. As our test data, we used the
mixture of target and masker speakers in the test setup of [3] mixed at six SSR
levels of {−9,−6,−3, 0, 3, 6} dB. The codebook size for split-VQ was M=2048
and the sinusoidal model order was set to 50.

For speaker identification, we extract features from 30 ms frames multi-
plied by a Hamming window. A 27-channel mel-frequency filterbank is applied
on DFT spectrum to extract 12-dimensional mel-frequency cepstral coefficients
(MFCCs), followed by appending ∆ and ∆2 coefficients, and using an energy-
based voice activity detector (VAD) for extracting the feature vectors. We digi-
tally add the signals with an average frame-level SSR to construct the UBM and
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Table G.1: Speaker identification accuracy (% correct) where both speakers are correctly
found in the top-3 list. Yes/No indicates whether the proposed DTD method is included. For
the ST scenario both of the systems provide 100 % accuracy.

SG DG Average
DTD No Yes No Yes No Yes
SSR
-9 dB 92.74 93.30 82.50 86.97 92.00 94.68
-6 dB 96.65 96.65 94.00 95.00 97.00 97.71
-3 dB 99.44 99.44 97.50 98.00 99.00 99.39
0 dB 98.32 98.32 99.00 98.00 99.17 99.39
3 dB 97.21 97.77 93.50 95.00 97.00 98.11
6 dB 93.85 94.41 90.50 89.50 95.00 95.63

Average 96.36 96.65 92.83 93.83 96.53 97.43

the target speakers GMMs. For each of 34 speakers, 50 random files from each
speaker were mixed at SSRs levels {−9,−6,−3, 0, 3, 6} dB with 50 random files
from other speakers which gives us about 180 hour of speech for training UBM.
The model order of the GMM is set to 2048.

The speakers’ SSR-dependent GMMs, λig , trained by mixing 100 random
files from each speaker with 100 random files from other speakers yielding about
1.8 hours data for each SSR. Relevance factor was set to 16 for training speaker
models, λig, where its value was set to 0 in training test model, λe, because of
availability of only 2 seconds of data for adaptation. For each six test sets of
two-talker signal, 600 utterances were provided among which 200 were for same
gender (SG), 179 for different gender (DG), and 221 for same talker (ST) where
the target and masker signals are from the same speaker. To incorporate the
bonus for single-talk detected frames, we used α = 5.

Speaker identification results for the combined system presented in table 1.
Compared to the previous results without DTD [4], embedding the DTD module
enhances performance. The improvement is higher on the different gender (DG)
case where the gender-dependent DTD module distinguishes between single-talk
areas for two speakers accordingly. Compared to the reported accuracy of 99 %
for the Iroquois system for detecting target speakers among three most probable
cases [2], the proposed system achieves a comparable rate of 97.43%. Given
its relatively low complexity, our proposed system could be considered as an
alternative or a pre-processing block for Iroquois system.

5 Conclusions

We introduced gender-dependent double talk detector for monaural speech and
applied it in speaker identification task for. Speaker identification results on
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GRID corpus demonstrated the improvement over the system without DTD.
Overall speaker identification performance is close to the results of the Iroquois
system using computationally simple approach.
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Abstract

In this paper, we present a system for joint speaker identification, signal-to-
signal ratio (SSR) estimation and speech separation. For speaker identification
and SSR estimation, a novel single-channel speaker identification algorithm is
proposed and adopted for SSR estimation. For the separation part, we propose a
double-talk/single-talk detector followed by a minimum mean square error esti-
mator of sinusoidal parameters aimed at finding optimal codevectors from each
pre-trained speaker codebook. We start from a situation where we have prior
information of codebook index, speaker identities and SSR-level, and then, by
relaxing these assumptions one by one, we demonstrate the efficiency of the pro-
posed full system. Compared to previous studies that mostly focused on speech
recognition accuracy, here, we report the perceived signal quality and intelli-
gibility of the separated signals. To this end, we report perceptual evaluation
of speech quality scores, objective speech intelligibility measure and cross-talk
measure as objective measures and MUltiple Stimuli with Hidden Reference and
Anchor (MUSHRA) and intelligibility tests as subjective measurements. The
proposed method achieves on average, 41.2 points in MUSHRA and 85.9% in
speech intelligibility.

1 Introduction

Human beings have the amazing capability of perceiving multiple speech sources
from their mixtures. For machines, however, separating speech mixtures recorded
by single microphone is still a rather difficult task. Designing reliable and robust
speech processing systems for adverse conditions is a challenging problem since
the observed signal is often corrupted by other interfering signals, making the
performance significantly lower to that of clean conditions. In extremely noisy
environments, a high-quality speech separation algorithm is required as a pre-
processing stage before the target application, such as hearing aids, automatic
speech recognition, speaker/language recognition and speech coding (see Fig. 1).
Being able to separate the desired sources from the interfering ones in the mix-
ture, one would expect a better performance in all these applications.

A single-channel speech separation (SCSS) system aims at recovering the
underlying speaker signals from a mixed signal. At first look, SCSS is similar to
speech enhancement but the goal in SCSS is to recover all the underlying signals
rather than enhancing the desired speech signal by filtering out others. In speech
separation, the stronger signal can shift its role to a weaker one at some time-
frequency regions, and, further, at different signal-to-signal ratios (SSRs) either
one of the signals may dominate the other one [1]. It is arguable that one would
be interested in separating either of the source signals from their single-channel
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Fig. 1: Block diagram showing how a single-channel speech separation module can be used
as a pre-processing stage to enhance the ultimate performance of a target application.

recorded mixture in certain applications, including signal recovery at low signal-
to-noise ratios (SNRs), surveillance and tele-conferencing. Another application
is speech watermarking where the goal is opposite of separating mixtures, i.e.,
designing a mixed signal such that the hidden data satisfies high capacity, high
perceptual fidelity and robustness against channel attacks [2]. In summary, in
all the applications discussed above, it is important to recover all the speaker
signals in the mixture.

Conventional speech enhancement methods including spectral subtrac-
tion [3] and Wiener filter [4] cannot effectively denoise the mixed signal. More
advanced speech enhancement methods e.g. [5–7] are mostly based on second
order statistics of the noise signal estimated from preceding noise-only frames.
As a consequence, they cannot be used when the interfering signal is another
speech signal due to its fast varying statistics [8, ch. 9]. As another classical
enhancement approach, subspace-based methods [9–11] aims at estimating the
unknown speech signal by decomposing the observed noisy signal into signal
and noise subspaces. This decomposition is possible under the assumption of
an uncorrelated additive noise interference. However, for the mixture of speech
signals, finding such decomposition is difficult since the signal bases of the speak-
ers in the mixture follow similar probability density function, which is mostly
super-gaussian [12, 13]. As a variant of subspace method for basis decompo-
sition, non-negative matrix factorization (NMF) has been applied to SCSS. It
decomposes short-time Fourier transform (STFT) power of a mixed signal into a
product of two low-rank matrices, namely basis vectors and their corresponding
weights. According to [14], NMF cannot always separate speech mixtures when
the sources largely overlap or when the speakers are of same gender.

Due to these limitations in applying classic speech enhancement methods for
separating speech mixtures, dedicated methods to tackle the SCSS problem are
needed. The current approaches are divided into two groups, computational au-
ditory scene analysis (CASA) [15–17] and model-driven methods [18–23]. CASA
methods use multi-pitch estimation methods [24] to extract pitch estimates of
the speakers directly from the mixture. The separation performance of CASA-
based methods, as a consequence, is predominantly affected by the accuracy
of the multi-pitch estimator, especially when the pitch of one of the speak-
ers is masked by the other [25]. To compensate for the inherent problems of



1. INTRODUCTION 165

Fig. 2: Block diagram of the proposed joint speaker identification and speech separation
system.

multi-pitch estimation methods, an adaptive comb filter was proposed in [26].
It suggested to enhance harmonic signals via eliminating harmonic interference
from the noisy observation. More recently, [27] proposed signal-adaptive optimal
filters aimed at separating single-channel mixtures of periodic signals.

The second group, model-driven methods, uses pre-trained speaker models as
a priori information to constrain the solution of the ill-conditioned SCSS prob-
lem. In particular, source-specific speaker models are incorporated to capture
specific characteristics of individual speakers at each frame. The model-driven
methods require mixture estimation stage which aims at finding the most likely
codevectors in the speaker models. These found codevectors are then passed
to a reconstruction stage which produces the separated signals (see Fig. 2). In
terms of how to reconstruct the separated signals, separation methods can be
divided into reconstruction-based [20–23] and mask methods [18, 19, 28]. In
the former approach, the codevectors found in the mixture estimation stage are
directly used for reconstructing the separated signals. The mask methods, as
the name suggests, produce a mask based on the codevectors selected from the
speaker models. These masks are then applied to mixture to provide separated
speaker signals.

Model-based SCSS approaches are, by definition, speaker-dependent. Speaker-
dependency can be avoided by integrating a speaker identification (SID) module
to identify the speakers in the mixed signal. In [18], Gaussian mixture models
(GMMs) and pitch-dependent method were used for speaker identification and
speech re-synthesis, respectively. In [29], interaction of the speaker identification
(SID) and speech separation modules was managed in a closed loop to increase
the overall performance. The separation system in [21] used max-model and
Algonquin as their mixture models. Max-model approximates the mixture log-
arithm power spectrum by the maximum element-wise logarithm of the speaker
spectra while Algonquin models the combination of log-spectrum models as a
sum in the power spectrum. In [21], Iroquois system was used for determining
the identities of the speakers present in the mixture. The Iroquois system uses
minimum mean square error (MMSE) estimator reconstruction of the speakers’
features, under factorial hidden markov model (HMM), for modeling the mix-
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ture frame, using speaker-dependent models, estimated SSR and maximum a
posteriori (MAP) joint grammar state sequence of the speakers [21, 30].

The contribution of the current study, as illustrated in Fig. 2, is to pro-
pose a novel joint speaker identification and speech separation system which is
composed of double-talk/single-talk detector followed by MMSE mixture estima-
tor in sinusoidal domain, speaker identification and SSR estimation. First, the
mixed signal is input to a joint speaker identification and gain-estimation module
(Section II). The estimated identities are then passed to a double-talk/single-
talk detector which outputs one of the three possible hypotheses: non-speech,
single speaker and mixture (Section III-A). The next block, mixture estimator,
aims at finding the magnitude spectra of the underlying two speakers, by utiliz-
ing the codebooks of the speakers (Section III-C). The estimated codevectors,
provided by the mixture estimator, are then used for generating masks, one for
each speaker, to reconstruct the separated signals (Section III-E).

The proposed system is evaluated on the speech separation challenge corpus
provided in [31]. Our main focus in this work is to assess the speech quality
and intelligibility of the separated signals offered by different separation meth-
ods. For evaluation purposes, in contrast to previous studies focusing on speech
recognition accuracy, in Section IV, we further employ perceptual evaluation of
speech quality (PESQ) [32] and the short-time objective intelligibility measure
in [33] as objective measures. This alternative evaluation methodology has the
benefit that the results are expected to carry on to other applications beyond
ASR, as indicated in Fig. 1. In Section V, we employ MUltiple Stimuli with
Hidden Reference and Anchor (MUSHRA) [34] and intelligibility test [35] as
subjective measurements. Further, the separation results are compared with
two well-known benchmark methods, IBM’s super-human speech recognition
system [21] and speaker-dependent full system [20]. We also assess the speaker
identification and SSR estimation accuracy for different mixing scenarios. Sec-
tion VI features the discussion and Section VII concludes the work.

2 Speaker Identification and Gain Estimation

Speaker identification (SID) is the task of recognizing speaker identity based on
observed speech signal [36]. Typical speaker identification systems consist of
short-term spectral feature extractor (front-end) and a pattern matching mod-
ule (back-end). In traditional SID, the basic assumption is that only one target
speaker exists in the given signal whereas in co-channel SID, the task is to
identify two target speakers in a given mixture. Distinct from the so-called
summed channel speaker recognition task [37], where only one speaker is talking
most of the time, in the co-channel SID problem, both speakers talk simultane-
ously which makes the problem much more challenging. Research on co-channel
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speaker identification has been done for more than one decade [38], yet the prob-
lem remains largely unsolved.

Most of the current SCSS systems use model-driven Iroquois system [21] to
identify the speakers in a mixed signal. Recognition accuracy as high as 98%
on the speech separation corpus [31] has been reported for Iroquois [21], which
makes it as a viable choice to be used in SCSS systems [20]. In the Iroquois
system, a short-list of the most likely speakers are produced based on the frames
of the mixed signal that are dominated by one speaker. This short-list is then
passed to a max-based EM algorithm to find the SSR and the two speakers’ iden-
tities with an exhaustive search on codebooks created for speech synthesis [21].

As an alternative approach, we propose an SID module for co-channel speech
which also produces SSR estimate (assuming constant SSR level when mixing
two utterances), as a by-product [39]. Based on the preliminary results re-
ported in [39], we believe that our alternative solution provides faster approach
compared to Iroquois. We use two complementary methods for speaker recogni-
tion: (1) frame-level log-likelihood calculation for a given mixed signal against
a speakers’ GMM and (2) between-model distance of GMMs.

2.1 Recognition Approach

The frame-level likelihood estimation used here is inspired by the method used
in the Iroquois system [18, 21] which aims at finding the frames where only a
single speaker is present. Maximum likelihood (ML) trained GMMs were used
in [21]; however, maximum a posteriori (MAP) derived GMMs [40] are much
more accurate in speaker verification and we follow this latter approach. Let λ
denote a GMM of one speaker. The probability density function is

p(x|λ) =

M∑

m=1

wmpm(x). (1)

The GMM density function is a weighted linear combination of M Gaussian
densities pm(x), where pm(x) ∼ N (x;µm,Σm). Here Σm is diagonal covariance

matrix and the mixture weights wm further satisfy the constraints
∑M

m=1 wm = 1
and wm ≥ 0. The speaker-dependent GMMs are adapted from a universal
background model (UBM) [40]. The UBM is a GMM trained on a pool of
feature vectors, extracted from as many speakers as possible, to serve as a priori
information for the acoustic feature distribution. When adapting the speaker-
dependent GMMs, usually only mean vectors are adapted while weights and
covariances are shared between all speakers [40]. Considering xt as the tth
training vector out of T vectors for speaker i and µUBM

m as the mth mean vector
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for UBM, MAP-adapted mean vector for speaker i is calculated as [40]

µmi =
βµUBM

m +
∑T

t=1 Pr(m|xt)xt

β +
∑T

t=1 Pr(m|xt)
, (2)

where β is a fixed relevance factor that controls relative contributions of UBM
statistics and training data in GMM adaptation and Pr(m|xt) is probabilistic
alignment defined as,

Pr(m|xt) =
wmN (xt;µ

UBM
m ,Σm)

∑M
m=1 wmN (xt;µUBM

m ,Σm)
. (3)

Another approach to measure the similarity of speaker models, {λi}, is to train a
model of the test utterance, λe, with MAP adaptation and calculate the distance
between λe and the speaker model. We define λig as the SSR-dependent model
for the ith speaker at SSR level g and use the Kullback-Leibler divergence (KLD)
as a distance measure between the two probability distributions [41]. Since this
distance cannot be evaluated in closed form for GMMs, we use the upper bound
which has successfully been applied to speaker verification [42]:

KLDig =
1

2

M∑

m=1

wm(µme − µmig)
T Σ−1

m (µme − µmig). (4)

Here g ranges in a discrete set of pre-defined SSR levels, µme is the mth mean
vector in λe and µmig is the mth mean vector in λig, whereas wm and Σm are
the weights and the covariances of the UBM, respectively.

2.2 Joint Speaker Identification and SSR Estimation

In traditional speaker recognition, the UBM is trained from a pool of data from
different speakers. To characterize mixed speech, in this study we propose to
train the UBM (λUBM) from mixed utterance pairs at different SSR levels. For
the ith speaker, the gain-dependent models are adapted from the UBM using
ith speaker speech files corrupted by other speakers signal at SSR level g. Using
SSR-dependent speaker models, the system captures speaker-specific informa-
tion when it is contaminated by other speakers. Our method is similar to hav-
ing an SSR-dependent bias in the GMM parameters [21], but we build separate
GMMs for each SSR level to utilize the advantages of GMM-UBM system [40].

For a feature vector xt extracted from frame t, we define the log-likelihood
ratio score for speaker i as sit = maxg{sigt},

sigt = log p(xt|λig) − log p(xt|λUBM). (5)
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Given a test utterance, we are interested in the model λig which gives the smallest
KLD distance (4) and the highest frame likelihood (5). To sum up, we consider
two different scores for each speaker:

FLL: Frame level likelihood, where we consider the number of winning
frames where speaker i is the most probable speaker. For the frames iden-
tified as belonging to speaker i, we look for the most probable SSR level
by finding λig which maximizes the likelihood score in (5).

KLD: Kullback-Leibler divergence between λe and a set of models λig cal-
culated using (4). Considering N as the number of speakers, we form an
N ×G distance matrix and find the minimum over all SSR levels to detect
the speaker with the smallest distance. We find the most probable SSR
levels for each speaker by sorting the KLD scores in an ascending order.

To enable using benefits from different recognizers, we combine the two scores
with equal weights summation. Although non-equal weights can be estimated
from development data [39], we found that using equal weights yields similar
accuracy. Note that we normalize the range of scores from two recognizers
before fusion. The implementation details of the proposed system is presented
in Algorithm.

2.3 Selecting the optimal SID and SSR pair

The joint speaker identification and separation module produces short-lists of
speaker identities and the SSR candidates. In our preliminary speaker identifi-
cation experiments, we found that the dominant speaker was always correctly
identified and the second speaker also ends up most of the time in the top-3
list. Thus, rather than selecting the top-scoring speaker or the most likely SSR
level, we propose the following procedure to refine speaker identification and
SSR estimation results.

Let SID1 denote the estimated identity for the first speaker. Assume that the

estimated top-2 identities for the second speaker are SID2 = {SID
(1)
2 ,SID

(2)
2 }.

Additionally, we define SSR = {SSR
(i)
1 ,SSR

(i)
2 ,SSR

(i)
3 } as the short-list for SSR

candidates consisting of three most likely SSR levels for combination of speak-

ers SID1 and SID
(i)
2 with i ∈ {1, 2}. The search space is shown graphically in

Fig. 3. The speaker identity and SSR candidates in the reduced search space
are further passed to the separation module which attempts to reconstruct the
mixed signal as combinations of both the two top-scoring speakers and the three
SSR candidates. The details of the reconstruction error computation are given
in Section III-E.
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Fig. 3: Demonstration of the reduced search space for speaker-SSR combination. There are
N(N − 1)/2 × G possible combination for N speakers and G SSR levels, which is reduced to
2×3 combinations by the proposed joint speaker identification and gain estimation algorithm.

3 Single-channel Speech Separation System

Let sz(n) denote the nth sample of the observed mixed signal with N ′ samples
composed of B additive source signals as

sz(n) =
B∑

b=1

gbsb(n), n = 0, . . . , N ′ − 1. (6)

Here, sb(n) is the bth speaker signal in the mixture, and gb is its gain. Note
that the speaker gains are assumed to be fixed over the entire utterance. This
assumption, although somewhat unrealistic, is made in most current speech
separation systems [31]. For the sake of simplicity and tractability, we consider
the case B = 2, a mixture of two speakers. The goal of a SCSS system is to
estimate the unknown speaker signals based on the observed mixture in (6).

3.1 Double-talk Detection

A mixed speech signal can be classified into single-talk (one speaker), double-
talk (speech mixture), and noise-only regions. This information can be used
to simplify the computationally expensive separation task since we only need
to process the mixed frames with the separation system. To detect double-talk
regions with two speakers present, we employ a MAP detector proposed recently
in [43]. The proposed method is based on multiple hypothesis test and can be
implemented in both speaker-dependent and speaker-independent scenarios. We
consider here the speaker-dependent scenario since the information for speaker
identities are given by SID module (Section II). We use three candidate models
for describing the mixed signal, namely,

M0: None of the speakers are active (non-speech)

M1: One of the speakers is active (single-talk)

M2: Both of the speakers are active (double-talk)

Following the model selection approach in [44], we adopt a MAP criterion for
multiple-hypothesis test to determine the double-talk and single-talk regions in
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segments of a mixed signal. The double-talk detection approach is summarized
in the following steps [43]:

(1) Find the noise variance of each frame.

(2) Assess the log-likelihood of the three models M0, M1 and M2.

(3) Find the MAP estimate among the underlying candidate models.

We use the decision making among M0, M1, and M2 to narrow down the
separation problem only for the mixed frames. For the single-speaker frames,
the observed signal is directly re-synthesized according to the corresponding
speaker models. For more details of the method, refer to [43].

3.2 Sinusoidal Signal Modeling

The selected feature for separation needs to meet at least two requirements: (i)
high re-synthesized signal quality, and (ii) low number of features for compu-
tational and statistical reasons (curse of dimensionality [45]). A vast majority
of the previous separation methods are based on short-time Fourier transform
(STFT) features which poorly match the logarithmic frequency sensitivity of
auditory system [46]. In this paper, we choose sinusoidal parameters which sat-
isfy both of the aforementioned requirements as well as it leads to an improved
signal quality compared to the STFT approaches in terms of both objective and
subjective measures [23]. Furthermore, in [47], it was shown that applying a
sinusoidal coder as speaker model results in a better quantization performance
compared to STFT features, in having less outliers.

The proposed separation system transforms the underlying speaker signals
into a parametric feature set composed of amplitude, frequency and phase vec-
tors of sinusoidals. After translating the spectral coefficients to the mel-frequency
scale, at each frequency band, we select sinusoidal amplitude and frequency cor-
responding to the peak with the highest amplitude [23]. Taking the highest
peak of the amplitude spectrum is, in fact, equivalent to choosing the maximum
likelihood estimate for frequency of single sinusoid in white Gaussian noise per
band [48, ch. 13].

3.3 MMSE Mixture Estimator

In model-driven speech separation we estimate the codevectors in the speaker
models whose combination best matches the mixed signal. This is accom-
plished by employing a mixture estimator. In the following, we present the
MMSE mixture estimator for the SCSS problem. Assume that

∑K
k=1 S

2
1(ωk) =

∑K
k=1 S

2
2(ωk) = 1 where K is the number of DFT bins. Beginning from the re-

lationship between the mixed signal and the underlying signals in time-domain
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given in (6), we have

gzSz(ωk) =
√

g2
1S

2
1(ωk) + g2

2S
2
2(ωk) + 2g1g2S1(ωk)S2(ωk) cos θ(ωk), (7)

where S1(ωk), S2(ωk) and Sz(ωk) are the kth components of the magnitude spec-
trum for the first speaker, the second speaker and the mixed signal, respectively
and k ∈ [1,K]. We also define θ(ωk) = φ1(ωk) − φ2(ωk) as the phase difference
between the kth frequency bin of the underlying spectra. Dividing both sides of
(7) by g2

1S
2
1(ωk) 6= 0, we arrive at

g2
zS

2
z (ωk)

g2
1S

2
1(ωk)

= 1 +
g2
2S

2
2(ωk)

g2
1S

2
1(ωk)

+
2g1g2S2(ωk)S1(ωk)

g2
1S

2
1(ωk)

cos θ(ωk). (8)

By defining S̃z(ωk) , lnS2
z (ωk) and S̃i(ωk) , lnS2

i (ωk) for i = {1, 2}, using (8)
we get

S̃z(ωk) = S̃1(ωk) + ln
(

1 +G−1
priore

S̃2(ωk)−S̃1(ωk)
)

+ lnGpriorG
−1
post + ln

(

1 + cos θ(ωk)

cosh (
S̃2(ωk)−S̃1(ωk)

2Gprior
)

)

, (9)

where we define Gprior , g2
1/g

2
2 and Gpost , g2

z/g
2
2 as the a priori and the a

posteriori gains similar to a priori and a posteriori SNRs in speech enhancement
[5]. A similar expression can be derived by dividing both sides of (7) to S2

2(ωk) 6=
0, which gives

S̃z(ωk) = S̃2(ωk) + ln
(

1 +G−1
priore

S̃2(ωk)−S̃1(ωk)
)

− lnGpost + ln

(

1 + cos θ(ωk)

cosh (
S̃1(ωk)−S̃2(ωk)

2Gprior
)

)

. (10)

The derivation presented here is similar to [49], for representing the relationship
among the log-spectra of the noisy signal for speech enhancement, but adopted
here for speech mixture of two speakers. In the following, we derive a closed-
form solution to the minimum mean square error (MMSE) mixture estimation
problem. Let Ŝz(ωk) be the MMSE estimate for mixture magnitude spectrum
averaging out θ(ωk). The signal spectra of the underlying speakers, S1(ωk)
and S2(ωk), are considered to be given but in the experiments, we relax this
assumption by choosing the estimates of S1(ωk) and S2(ωk) from the pre-trained
codebooks C1 and C2 of the two speakers.

Given the speaker’s signal spectra, S1(ωk) and S2(ωk), and modeling the
mixture phase with uniform distribution [50], the MMSE estimate for the mixed
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magnitude spectrum Sz(ωk) is

Ŝz(ωk) =
1

2π

∫ π

−π

gzSz(ωk)dθ(ωk). (11)

Following a similar approach as in [51], (11) simplifies to

Ŝz(ωk) =
1

π

(√

Gprior

Gpost
S1(ωk) +

1
√
Gpost

S2(ωk)

)

E(γ(ωk)), (12)

where γ(ωk) = 4(
√

SSRprior + 1√
SSRprior

)−2, SSRprior , ξk = g1S1(ωk)/g2S2(ωk)

and E(·) is the complete Elliptic integral of the second kind. This integral can
be approximated by selecting some terms of the following series:

E(α) = π

{

1 −
∞∑

m=1

[
m∏

v=1

(
2v − 1

2v

)2
]

α2m

(2m− 1)

}

. (13)

The Elliptic series denoted by E(·) can also be written as

E(γ(ωk)) =
π

2
2F1(−0.5, 0.5; 1; γ2(ωk)), (14)

where 2F1(a, b; c; t) is Gauss’ hypergeometric function with α as an argument
replaced by γ2(ωk). Provided that |α| ≤ 1, E(γ(ωk)) will converge absolutely,
and since γ(ωk) ≤ 1, convergence is indeed guaranteed. Note that the values of

2F1(·) can be found from a look-up table since it depends on a single variable,
γ(ωk). This helps keeping the complexity of the mixture estimator low.

3.4 Relation to Existing mixture Estimators

It is important to note that previous separation systems used either max-model
[28] or Algonquin model [52, 53] as their mixture estimator. A simplified version
of the max-model, MAX-vector quantization (MAX-VQ) was used in [18, 20, 28].
In [21], both the Algonquin and the max-model were studied and compared, and
Algonquin was found to perform slightly better. Wiener filter has also been em-
ployed as MMSE estimator in power-spectrum domain [19, 54]. Comparing to
the log-max and Wiener filter, in the MMSE estimator proposed here, we con-
sider the phase term as a random variable and derive the MMSE estimate for
the magnitude mixture spectrum. This results in a more general and accurate
estimator for mixture magnitude spectrum compared to previous estimators.
Furthermore, according to [30], specifying the mixture estimation stage in the
log spectral domain is convenient because speech states can be represented ef-
ficiently as a mixture of Gaussians in the log-spectrum. For reconstruction
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purposes, then, they use anti-logarithmic transformation. However, in this pa-
per, here, we solve the problem directly in spectrum amplitude domain without
logarithmic mapping.

Under specific conditions, the MMSE mixture estimator reduces to previous
mixture estimators: log-max and Wiener filter, also known as the MMSE esti-
mates for log and power-spectrum domain, respectively. Consider the case when
one speaker dominates the other, i.e. S̃1(ωk)≫S̃2(ωk) or S̃2(ωk)≫S̃1(ωk). Then
(9) reduces to log-max mixture approximation; this is because the logarithmic
terms in (9) will be zero. Another important case is when S̃1(ωk) and S̃2(ωk)
are orthogonal, i.e., cos θ(ωk) = 0. Then (9) reduces to the Wiener filter mixture
estimate; this is because the last logarithmic term will be equal to zero. The
derivation presented here was obtained by considering g1 6= 1 and g2 6= 1, which
are to be estimated by the SSR estimation module presented in Section II.

3.5 MMSE Mixture Estimator in Sinusoidals

Here, we explain how to find Ŝz(ωk), the estimated mixture magnitude spec-
trum, at the kth frequency bin. To implement the mixture estimator in (12), we
need the magnitude spectra of the two speakers, S1(ωk) and S2(ωk). The esti-
mates for S1(ωk) and S2(ωk) are obtained from the codebooks of the two speak-

ers, C1 = {c(1)
1 , c

(1)
2 , . . . , c

(1)
r , . . . , c

(1)
M } and C2 = {c(2)

1 , c
(2)
2 , . . . , c

(2)
q , . . . , c

(2)
M },

respectively, where c
(1)
r and c

(2)
q refer to the rth and qth codevector in the code-

books C1 and C2, respectively, and M is the model order of sinusoidal speaker
models [47]. The mixture estimation is carried out by searching for the optimal
codevectors of the codebooks by minimizing the mixture estimation error,

Jr,q =

L∑

l=1

|Sz(ωl) − Ŝr,q
z (ωl)|2, (15)

where ωl is the peak selected from the speech mixture at the lth band with l ∈
[1, L] and ωl ∈ {ωk}K

k=1. Here, Ŝr,q
z (ωl) denotes the estimated mixture produced

by the codevectors r and q. In (15), r and q are the codebook indices selected
from C1 and C2, respectively. To minimize (15), we are required to do search
on pairs of codevectors to determine the optimal pair for signal reconstruction
that is,

{r∗, q∗} = arg min
{r,q}

Jr,q. (16)

Note that, even after knowing the estimated SSR level and identities of the
speakers, exhaustive search of (16) requires O(M2) evaluations of the cost func-
tion (15) for all frames, which is impractical. Considerable time saving, still
retaining high separation quality, can be obtained by using an EM-like search as
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follows: We start with random r, and keep it fixed while optimizing with respect
to q, then switching the roles. This requires a total number of O(M × I) eval-
uations of (15), where we typically use I = 3 iterations. This leads to practical
speed-up factors of 700:1 for a codebook size M = 2048.

3.6 Signal Reconstruction using Sinusoidal Wiener Mask

Wiener filter is a classical speech enhancement method that relies on the MMSE
estimation to restore the underlying clean signal [55]. Previous studies utilizing
the Wiener filter [8] operate in the STFT domain. Here we propose to use a
similar constrained optimization problem already studied in speech enhancement
[8, ch. 6]. Instead of noise distortion, we balance a trade-off between minimizing
the speech distortion of the target signal and keeping cross-talk of the other
speaker below a given tolerance threshold. This is well-justified, as in speech
separation we are required to have no trace of cross-talk from the other speaker.
Indeed, according to our preliminary experiments in [56], the masks defined in
the sinusoidal domain, including both the binary and Wiener masks, improve
the separation quality as compared to their STFT counterparts. The sinusoidal
Wiener mask in [56] is only manipulated in sinusoidal frequencies estimated
from the speaker signal. The sinusoidal Wiener mask is similar to the so-called
parametric Wiener filter [8, p. 158], which is a general case of other Wiener
filters like square-root Wiener filter. Differently from [8], where a Gaussian
assumption was used in modeling the noisy signal, here, we have a mixture of
two speakers rather than a mixture of speech and noise. For synthesizing the
separated signals, we use the sinusoidal Wiener mask to recover the unknown
signals in the given mixture. Like other separation methods reported in [31], we
employ the mixture phase for re-synthesizing the separated outputs.

It can be shown that the sinusoidal Wiener mask is similar to the well-
known Ephraim and Malah noise suppression rule used in speech enhancement
[57]. To this end, from sinusoidal Wiener mask for the first speaker and using
cos θ(ωk) = 0, we have

G1(ωk) =

√

ξk
ξk + 1

S2
1(ωk) + S2

2(ωk)

S2
z (ωk)

=

√

ξk
ξk + 1

(
1 + νk

ζk

)

(17)

Similarly to [57, 58] let νk = SSRpost
ξk

ξk+1 be the instantaneous SSR. We further

define SSRpost , ζk = gzSz(ωk)/g2S2(ωk). From (20) and using the fact that at



176 PAPER H

every ωk we have G1(ωk) +G2(ωk) = 1, we obtain:

G1(ωk) =
1

2

√

ξk
ζk

2F1(−0.5, 0.5; 1; γ2(ωk)), (18)

G2(ωk) =
1

2
√
ζk

2F1(−0.5, 0.5; 1; γ2(ωk)). (19)

These expressions are similar to the classical Ephraim and Malah rule given
by [57],

G1(ωk) = Γ(1.5)

√
ν′k
γ′k

M(−0.5; 1;−ν′k), (20)

where ν′k and γ′k are the instantaneous and a posteriori SNRs as defined in [57],

Γ(·) is the Gamma function with Γ(1.5) =
√

π

2 and M(a; c;x) = 1F1(a; c;x) is
the confluent hyper-geometric function which is a limiting case of the more gen-
eral hypergeometric function as [59, p. 158]: M(a, c, h) = lim

d→∞ 2F1(a, b; c;h/d).

Replacing h/d with γ2(ωk), the condition γ2(ωk) → 0 indicates the situation
when we have only one speaker (i.e. S1(ωk) = 0 or S2(ωk) = 0).

4 Objective Evaluations

4.1 Dataset and System Setup

The proposed speech separation system is evaluated on the speech separation
corpus provided in [31]. This corpus consists of 34,000 distinct utterances from
34 speakers (18 males and 16 females). The sentences follow a command-like
structure with a unique grammatical structure as six word commands such as
“bin white at p nine soon” and “set blue at z five please”. Each sentence in the
database is composed of verb, color, preposition, letter, digit and coda. The key-
words emphasized for speech intelligibility or recognition task in challenge are
the items in position 2, 4, and 5 referring to color, letter and digit, respectively.
The possible choices for color are green, blue, red, and white. The possible letters
are 25 English alphabet letters and finally the digits are selected from 0 to 9.

For each speaker, 500 clean utterances are provided for training purposes.
The test data is a mixture of target and masker speakers mixed at six SSR lev-
els ranging from -9 dB to 6 dB. For each of the six test sets, 600 utterances are
provided of which 200 are for same gender, 179 for different gender, and 221 for
same talker. The sentences were originally sampled at 25 kHz. We decrease the
sampling rate to 16 kHz (Some additional experiments are also carried on at
8 kHz). The results presented here are averaged over all the utterances in the
dataset.
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For speaker identification, we extract features from 30 ms Hamming-windowed
frames using a frame shift of 15 ms. A 27-channel mel-frequency filterbank is
applied on DFT spectrum to extract 12-dimensional mel-frequency cepstral co-
efficients (MFCCs), followed by appending ∆ and ∆2 coefficients, and using an
energy-based voice activity detector for extracting the feature vectors. We add
the signals with an average frame-level SSR to construct the universal back-
ground model (UBM) and the target speaker GMMs. For each of the 34 target
speakers, 50 randomly chosen files from each speaker are mixed at SSR levels
g ∈ {−9,−6,−3, 0, 3, 6} dB with 50 random files from all other speakers, which
gives us about 180 hours of speech for UBM training. The number of Gaussians
is set to M=2048.

Each SSR-dependent GMM, λig, is trained by mixing 100 random files from
the ith speaker with 100 random files from all other speakers which gives about
1.8 hours data for training. The relevance factors in MAP adaptation were set
to β=16 for the training of speaker models and β=0 for the training of the test
utterance models, respectively. The choice of β=0 for the test utterance was
done due to short length of data for adaptation. For SID and SSR estimation,
the fusion of the FLL and KLD was done by employing equal weights. Table H.1
shows the accuracy of the proposed speaker identification module for listing two
target speakers in the 3-best list where one of the speakers in the mixed signal
is always identified. An average accuracy of 97% is achieved using the proposed
SID module.

For separation, we extract features by employing a Hann window of length
32 ms and shift of 8 ms. We use split-VQ based on sinusoidal parameters. The
source models are divided into magnitude spectrum and frequency parts where
each entry is composed of a sinusoidal amplitude vector and several sinusoidal
frequency vectors as its candidates. According to previous experiments, we set
the sinusoidal model order to L=100 for 16 kHz and L=50 for 8 kHz [23]. For
speaker modeling, we use 11 bits for amplitude and 3 bits for frequency part in
the sinusoidal coder. The pre-trained speaker codebooks are then used in the
test phase to guide the speech separation. The codebooks are used for both
mixture estimator and double-talk detection blocks (Fig. 2). For the mixture
estimator given in (12), we used the first 5 terms of the Elliptic series in (13).

4.2 Mixture Estimation Results

To evaluate the effectiveness of the MMSE estimator, we compare it to the
log-max [28], Wiener filter [54] and sinusoidal mixture estimators [23]. We use
the mixture estimation MSE in (15) to evaluate the separation performance of
each mixture estimator. For each experiment, the mixture estimation error is
calculated at each frame and averaged over 250 utterances selected from the
test corpus. The resulting MSE scores obtained by each method and its 95%
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Table H.1: Speaker identification accuracy (% correct) where both speakers are correctly
found in the top-3 SID list.

SSR (dB) -9 -6 -3 0 3 6 Average
Same Talker 100 100 100 100 100 100 100
Same Gender 93 97 100 100 97 94 96

Different Gender 83 94 98 99 94 91 93
Average 92 97 99 100 97 95 97

Same GenderDifferent Gender Same Talker Average
−50
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−20

−10
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MMSE sinusoidal estimator
Sinusoidal estimator [23]
Wiener filter (STFT)
Log−max (STFT)

Fig. 4: The MSE results for mixture magnitude spectrum estimation measured in dB averaged
over different SSRs for different mixing scenarios (same gender, different gender, same talker
and their average.)

confidence interval are shown in Fig. 4. The sinusoidal MMSE mixture estima-
tor achieves the lowest MSE values. It outperforms log-max and Wiener filter
mixture estimators in the STFT domain by a wide margin. We remark that
the confidence intervals for the MSE results of sinusoidal and MMSE sinusoidal
estimators are close but they do not overlap. The MMSE sinusoidal estimator
leads to a slightly better statistical result compared to the sinusoidal mixture
estimator in [23].

4.3 Separation System Set-up and Benchmark Methods

To study the performance of the proposed speech separation system, we consider
six different setups, covering the situations from all parameters known to all
parameters estimated. These six setups are shown in the legend of Fig. 5 as
scenarios 1, 2 and 3 with their corresponding upper bounds (which we call known
codebook index ). Parameters that we consider include codebook index, speaker
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identities and SSR level. The scenarios are defined as:

• Scenario 1: known SID and SSR,

• Scenario 2: estimated SID and known SSR,

• Scenario 3: estimated SID and SSR.

Estimated codebook index refers to the situation where r and q are jointly esti-
mated from the mixed signal using (16). In turn, if we estimate r and q from
the original spectra, S1(ω) and S2(ω), using

r∗ = arg min
c
(1)
r ∈C1

‖S1(ωl) − Ŝr
1(ωl)‖2

2, (21)

q∗ = arg min
c
(2)
q ∈C2

‖S2(ωl) − Ŝq
2(ωl)‖2

2, (22)

we call the set-up known codebook index. In (21), {Ŝr
1(ωl)}L

l=1 = c
(1)
r and

{Ŝq
2(ωl)}L

l=1 = c
(2)
q are the estimated magnitude spectra of speaker one and

two selected from C1 and C2, respectively. Known codebook index is the best
possible performance obtainable by the model-driven speech separation approach
[60]. Similar to known/estimated codebook indices, we also consider degradations
caused by erroneous speaker identities and SSR estimation.

We include both objective and subjective measures to assess separation qual-
ity. For objective measurement, we use PESQ [32], and speech intelligibility [33]
since they correlate well with subjective listening scores [32, 61]. For subjective
measurements, we conduct MUltiple Stimuli with Hidden Reference and Anchor
(MUSHRA) listening test as described in [34] to assess the perceived quality
obtained by different separation methods. Furthermore, we conduct speech in-
telligibility test according to the routine suggested in [35].

As our benchmark methods, we use two systems in [20, 21]. We report the
separation results obtained by the super-human multi-talker speech recognition
system [21] as one of the top-performing separation systems in the single-channel
speech separation challenge (SSC), and outperforming even human listeners in
some of the speech recognition tasks [31]. We also use “speaker-dependent full
system” proposed in [20] (see Table II in [20]) as another benchmark method
where Iroquois [21] system was used for estimating the speaker identity and the
SSR level.

4.4 Separation Results on PESQ and Intelligibility Scores

Figure 5 shows the separation results in terms of PESQ and intelligibility score
obtained for different scenarios. The results obtained from mixture and PESQ
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scores calculated for the separated wave files of [20] are also shown for compara-
tive purposes. Figure 5 suggests that the proposed method improves the quality
of the separated signals compared to the mixture. According to the masking
theorem [62], at low SSR levels, energetic masking occurs and the separation
system successfully performs in compensating this effect by separating the un-
derlying speakers for each frame.

At high SSR levels, informational masking is more dominant and the mixed
signal itself is more intelligible than the separated signals obtained by separation
module. The mixed signal itself achieves higher intelligibility score compared to
the separated target signal since the target speaker becomes more dominant. At
high SSR levels, the proposed method asymptotically reaches the best possible
performance with known codebook index.

The proposed method outperforms the method in [20] in terms of PESQ at
all SSR levels. It also improves the intelligibility of the target speaker signif-
icantly at low SSR levels (lower than -3 dB). However, the speaker-dependent
full system in [20] achieves slightly higher intelligibility scores which is not easily
audible by listening to the resulting separated signals. By comparing the results
of the known and the estimated speaker identities, the results are generally close
to each other. The same conclusion holds also for the known and estimated SSR
levels. This confirms that the SID and SSR estimates were relatively accurate
as suggested by Table H.1.

Studying different scenarios, the proposed system performs better for dif-
ferent gender compared to the same gender. A similar observation was reported
in [20]. This can be explained by the different time-frequency masking pat-
terns and physiological differences in the vocal characteristics of male and female
speakers. Thus, the underlying sources are less overlapped compared to other
scenarios.

4.5 Comparing the Results with Benchmark Methods

An ideal separation system would filter out any trace of the interfering speaker
signal in the mixture. As a proof of concept, we use the amount of cross-
talk remaining in the separated output signal for comparing different separation
methods. For measuring the cross-talk, we employ the method first proposed
in [63] and afterwards used in [64]. The method produces ideal binary masks
constructed from the separated output signals, since ideal binary mask theoret-
ically excludes all the cross-talk from the interfering speaker. We compare the
proposed method to those proposed in [20, 21] in Fig. 6. The selected clips from
test dataset are composed of same gender, different gender and two same talker
scenarios at -3, 0, -6 and 0 SSR levels, respectively. The proposed SCSS method
often introduces less cross-talk compared to [20]. Compared to the super-human
speech recognition system [21], the proposed method leads to relatively less or
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Upper−bound quantizer (Scenario 2)
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Fig. 5: (Top) PESQ, and (Bottom) intelligibility scores for target and masker. According
to [32], for normal subjective test material the PESQ values lie between 1.0 (bad) and 4.5
(no distortion). According to [33], the intelligibility score lies between 0 (bad) and 100 (no
distortion). All the results are reported on the speech separation challenge test data provided
in [31].
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Fig. 6: Comparing the cross-talk results of the proposed method to Hershey et. al. [21] and
those of Weiss et. al. [20] for test dataset.
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Fig. 7: Comparison of the PESQ values of the proposed method with [20, 21].

comparable amount of cross-talk in most of the cases.
We also report the PESQ values for different methods in Fig. 7. The pro-

posed system yields comparable and improved results over the methods in [21]
and [20], respectively.

5 Subjective Evaluation

To assess the perceived speech quality of the separated output signals, we con-
duct subjective test using the so-called MUSHRA test [34]. The MUSHRA test
is a double blind test for the subjective assessment of intermediate quality level
benefits obtained by different methods (via displaying all stimuli at the same
time). The MUSHRA test enables simultaneous comparison of different separa-
tion methods directly.

We conducted the listening experiments in a silent room using high quality
audio device with firewire interface for digital-to-analog conversion and AKG
K240 MKII headphones. To ease the test procedure, we prepared a graphical
user interface (GUI) in MATLABTM. Seven untrained listeners participated in
the test (none of the authors were included). The excerpts consisted of the hid-
den reference (HR) showing the known quality on the scale; it is used to check
the consistency of the responses of a subject. A high score is expected for HR.
We also include the mixed signal (without any separation) as an anchor point
to enable comparison of separated signal and mixture qualities. This reflects
how hard it was to perceive the reference signal when listening to the mixture.
The remaining four excerpts are the separated signals obtained by super-human
speech recognition system [21], speaker-dependent full system [20], and our pro-
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Fig. 8: Results of the MUSHRA listening test for different separation methods averaged over
all excerpts and listeners. Error bars indicate 95% confidence intervals.

posed methods configured for both 8 kHz and 16 kHz sampling frequencies. The
excerpts were randomly chosen and played for each subject1. The listeners were
asked to rank eight separated signals relative to a known reference on a scale of
0 to 100.

Figure 8 shows the mean opinion score (MOS) for comparing the separa-
tion results obtained by different separation methods discussed in this paper.
We observe that the maximum and minimum scores were obtained at hidden
reference and speech mixture, respectively, as expected. Further, the proposed
method at 16 kHz achieves the best performance compared to the other two
separation methods. The proposed method at 8 kHz also achieves comparable
result with [21] and is better than the one reported in [20].

Following the principle and standard described in [35], here, we conduct a
speech intelligibility test to assess speech intelligibility of the separated signals
obtained by different methods. We chose seven listeners and eight segments to
be played for each listener. We asked the listeners to identify color, alphabet let-
ter, and digit number spoken during each of the played segments. The listeners
were required to enter their results using a GUI in MATLABTM, which enabled
listeners to enter their results both accurately and comfortably. On average, it
took 15 minutes per listener to complete the test.

Figure 9 shows the results of the intelligibility test averaged over all excerpts
and listeners. We observe that the proposed method at 16 kHz achieves higher
speech intelligibility compared to the methods in [21] and [20]. The mixed signal

1The excerpts used in our subjective tests are downloadable from our webpage: http:

//kom.aau.dk/~pmb/JointIdentificationAndSeparationpaper.htm
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Fig. 9: Speech intelligibility test results. The calculated percentage of correct keywords is
averaged over all excerpts and all listeners. Error bars indicate 95% confidence intervals.

also has the lowest score while the hidden reference signal achieves the highest
intelligibility score.

6 Discussion

Both the objective and subjective results show that fairly good separation qual-
ity was achieved, in comparison to other methods in the field. In particular, the
subjective measurements indicated that the proposed method improves both
quality and intelligibility of the signal and achieves a performance comparable
to the super-human system of [21] and better than [20]. Our proposed sep-
aration system separates the mixed signal frame-by-frame and is appropriate
for low-delay applications, such as speech coding. Considering N speakers, M
Gaussians and G SSR-levels, the number of Gaussian pdf evaluations for speaker
recognition system are O(NMN ) for the Iroquois system in [21] and O(NGM)
for the proposed approach. Therefore, the proposed SID module is much faster
in operation in exchange of slightly reduced accuracy.

The proposed system, like other current separation systems, still has some
limitations. The training samples used to train the speaker models are noise-free
and relatively large and the evaluation corpus consists of only digitally added
mixtures. Additionally, the gains of the underlying speakers in the mixture are
assumed to be constant and that we have only a mixture of two speakers. We
also neglected the environmental or background noise effects, as well as the re-
verberation problem. In practice, each one of these issues and their effect on the
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overall separation performance should be carefully studied. Future work should
systematically address how these simplifying yet restrictive and impractical pre-
assumptions could be relaxed. As an example, recently in [65], a new corpus
was provided for noise-robust speech processing research where the goal was to
prepare realistic and natural reverberant environments using many simultaneous
sound sources.

The improvement gain using the MMSE sinusoidal mixture estimator over
our previous sinusoidal mixture estimator [23] can be elaborated as follows. The
sinusoidal estimator ignores the cross term components between the underly-
ing speakers’ spectra at each frame, as well as the phase differences which, in
some situations, plays a critical role and can change the position of spectral
peaks completely [23]. The MMSE mixture estimator considers the cross terms
and integrates out the phase difference based on uniformity assumption of the
speech phase. This explains why the proposed MMSE sinusoidal mixture estima-
tor presented here achieves improved MSE compared to the sinusoidal mixture
estimator of [23].

The presented system showed high separated perceived signal quality and
intelligibility. The results obtained in the speech intelligibility test can be
interpreted as the speech recognition results offered by the separated signals.
In our preliminary experiment, we configured an automatic speech recognition
system using mean subtraction, variance normalization, and ARMA filtering
(MVA) [66], which gave an overall recognition accuracy of 52.3%. Compar-
ing the result with those reported by other participants in the separation chal-
lenge [31, Table. 1], we observed that our system is on the range of median over
all methods. There are two possible reasons why the ASR results are in disagree-
ment with our signal quality scores. Firstly, the metric used in ASR does not
correlate with those used for assessing the signal quality. Secondly, evaluating
the separation performance using ASR systems depends on the speech recognizer
configuration, features, training of acoustic and language models. It is not triv-
ial to configure an ASR-system optimized for STFT-like features, to work well
on sinusoidally coded speech. Therefore, improvement of the automatic speech
recognition performance of the proposed system is left as a future work.

7 Conclusion

We presented a joint speaker identification and speech separation system as
a novel approach to solve single-channel speech separation problem. For the
separation part, we proposed a double-talk/single-talk detector followed by a
minimum mean square error mixture estimator for mixture magnitude spectrum
operating in the sinusoidal domain. The proposed method does not require pitch
estimates and is based on sinusoidal parameters. We relaxed the a priori knowl-



186 PAPER H

edge of speaker identities and the underlying signal-to-signal ratio (SSR) levels
in the mixture by proposing a novel speaker identification and SSR estimation
method. The proposed system was evaluated on the test dataset provided in
speech separation challenge. Compared to previous studies that report speech
recognition accuracy, we focused on reporting the signal quality performance
obtained by different separation methods. To this end, we used PESQ and intel-
ligibility scores as objective measures and MUSHRA and intelligibility tests as
subjective measures. From the experimental results, we conclude that the pro-
posed method improves the signal quality of the underlying speakers compared
to the mixed signals. It also provides somewhat better signal quality compared
to two well-known benchmark methods. Finally, in many cases, the method
offered separated signals with less cross-talk and higher intelligibility compared
to the benchmark methods.
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Jensen, “Joint single-channel speech separation and speaker identification,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, March 2010,
pp. 4430–4433.

[30] S. Rennie, J. Hershey, and P. Olsen, “Single-channel multitalker speech
recognition,” Signal Processing Magazine, IEEE, vol. 27, no. 6, pp. 66 –80,
nov. 2010.

[31] M. Cooke, J. Hershey, and S. Rennie, “Monaural speech separation and
recognition challenge,” Elsevier Computer Speech and Language, vol. 24,
no. 1, pp. 1–15, 2010.

[32] A. Rix, J. Beerends, M. Hollier, and A. Hekstra, “Perceptual evaluation
of speech quality (PESQ)-a new method for speech quality assessment of
telephone networks and codecs,” Elsevier speech communication, vol. 2, pp.
749–752, Aug. 2001.

[33] C. Taal, R. Hendriks, R. Heusdens, and J. Jensen, “A short-time objective
intelligibility measure for time-frequency weighted noisy speech,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing, March 2010, pp. 4214–
4218.



190 PAPER H

[34] “Method for the subjective assessment of intermediate quality level of cod-
ing systems.” iTU-R BS.1534-1, 2003.

[35] J. Barker and M. Cooke, “Modelling speaker intelligibility in noise,” Speech
Commun., vol. 49, no. 5, pp. 402–417, 2007.

[36] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker identifi-
cation using Gaussian mixture speaker models,” Speech and Audio Process-
ing, IEEE Transactions on, vol. 3, no. 1, pp. 72–83, Jan 1995.

[37] D. A. van Leeuwen, A. F. Martin, M. A. Przybocki, and J. S. Bouten,
“NIST and NFI-TNO evaluations of automatic speaker recognition,” Else-
vier Computer Speech and Language, vol. 20, no. 3, pp. 128–158, 2006.

[38] D. P. Morgan, E. B. George, L. T. Lee, and S. M. Kay, “Co-channel speaker
separation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,
1995, pp. 828–831.

[39] R. Saeidi, P. Mowlaee, T. Kinnunen, Z.-H. Tan, M. Christensen, P. Fränti,
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