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Summary 

  Denmark is the only country in the world which almost exclusively gets its drinking water 
from aquifers that are located relatively close to the terrain. There has been a large focus on 
the quality of drinking water in the last years. Denmark and Greenland Geological Survey 
(GEUS) has for many years collected data on water chemistry from groundwater wells 
throughout the country. Based on these data it has been found that the levels of pesticides 
and their degradation products have been exceeded in many cases. The content of pesticides 
and degradation products can be the results of leaky boreholes which in some cases can act 
as direct openings down to aquifers. The reasons for this may include bad or missing 
seal. In this context, Schmidt (1999) concluded that there is no proven way to make a clay 
seal with the desired tightness. This thesis deals primarily with the properties of bentonite 
pellets as sealing material in groundwater wells. 

  The way and the pattern, in which bentonite pellets are deposited, have been shown to 
have an effect on the swelling pressure of the bentonite seal. During the transport phase of 
pellets from the terrain to a given sedimentation depth, a sorting process takes place, which 
obviously has an influence on the deposition characteristics. Smaller pellets is pack more 
closely than the larger pellets, gives a greater bulk density. Tests of swelling pressure have 
been performed and it appears to be clear that two things have a significant influence on the 
maximum swelling pressure; i) the bulk density of the sample, and ii) whether the sample is 
sorted or unsorted. 

  CT scans (Computed Tomography) have been used to evaluate certain properties of 
bentonite seals in a limited volume. In this context, a set of algorithms to convert CT 
numbers (HU unit) into densities for clay/water systems has been developed. This method 
has successfully been used to evaluate e.g., macroporosity, homogenization of the bentonite 
seal during the hydration of water, hydraulic conductivity and the creation of channels in 
the bentonite seals. 

  Based on the results obtained in this Ph.D. thesis, a number of recommendations has been 
offered; i) a change regarding the production of pellets and ii) how sealing material must be 
treated in the actual construction of groundwater wells.
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Summary in Danish 

  Danmark er det eneste land i verden der næsten udelukkende får drikkevand fra 

grundvandsmagasinerne der er beliggende relativt terræn nært. Der har af den grund været 

stor fokus på drikkevandets kvalitet. Danmarks og Grønlands Geologisk Undersøgelse 

(GEUS) har gennem en lang årrække indsamlet data for vandkemien fra grundvands- 

boringer i hele landet. På baggrund af disse data har man fundet ud af at grænseværdierne 

for bl.a. pesticider samt disses nedbrydningsprodukter er overskredet i en lang række 

tilfælde. Indholdet af pesticider og nedbrydningsprodukter tilskrives bl.a. utætte boringer 

der i visse tilfælde kan fungere som direkte åbninger ned til grundvandsmagasinerne. 

Grunden hertil kan bl.a. være dårlig eller manglende forsegling. I den forbindelse har 

Schmidt (1999) konkluderet at der ikke er nogen dokumenteret måde at lave lerforsegling 

med den ønskede tæthed. Denne afhandling omhandler primært egenskaberne for bentonit 

pellets som forseglings materiale i grundvandsboringer.  

  Måden hvorpå, samt det mønster hvormed bentonit pellets aflejre sig på har vist sig at 

have en effekt på det svelletryk, man kan forvente at se i en given aflejring. Under 

transportfasen af pellets fra terræn og til en given aflejringsdybde sker der en sortering efter 

størrelse, hvilket selvfølgelig har en indflydelse på aflejringens beskaffenhed. De mindre 

pellets pakker sig tættere end de store, hvilket giver en større bulk densitet. Der har været 

udført svelletryksforsøg og det viser sig klart at to ting har en markant indflydelse på det 

maksimale svelletryk; i) bulk densiteten af prøven, og ii) om prøven er sorteret eller 

usorteret. 

  CT scanninger (Computed Tomography) er blevet benyttet til at evaluere visse egenskaber 

for bentonit forseglinger i et afgrænset volumen. I den forbindelse er der blevet udviklet et 

sæt algoritmer til at omregne CT tal (HU enhed) til densiteter i for ler/vand-systemer. 

Denne metode er følgende blevet brugt med succes til at evaluerer bl.a. makroporøsitet, 

homogenisering i forbindelse med optagelse af vand samt hydraulisk konduktivitet og 

kanaldannelse i forseglinger. 

  På baggrund af de opnåede resultater gives en række anbefalinger til ændring vedr. 

produktionen af pellets samt hvordan forseglingsmaterialet skal behandles i forbindelse 

med konstruktionen af grundvandsboringer. 
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Chapter 1 

Introduction 

1.1. Presentation of the Problem 

  Denmark is the only country in the world where drinking water almost exclusively is extracted 

from groundwater aquifers. It is therefore important that the groundwater is monitored and 

examined closely. All existing data related to groundwater are recorded by GEUS (The Geological 

Survey of Denmark and Greenland). During the last 6-7 years, the annual consumption of 

groundwater in Denmark has been between 600 and 700 million m3. In 2005, the amount of 

groundwater extracted from waterworks was estimated to be 65% of the total groundwater supply. 

Field irrigation and aquaculture accounted for 26% (Thorling, 2007).  

  As part of the national groundwater monitoring program, GEUS has, in 2007, issued a report 

which dealt with the status and the development of the groundwater. The report is based on data 

collected by the counties in the period 1989 to 2006 and data from the waterworks and self-

monitoring data from other groundwater studies. The groundwater monitoring program includes 74 

survey areas with a total of approx. 1,400 wells (Thorling, 2007). The extent of the monitoring 

program set out, is outlined in the report "NOVANA � the national monitoring program concerning 

Water Environment and Nature�, DMU (2005). The report concludes that the discovery of 

pesticides and their degradation products increases. Also the finds which exceed the quality limit in 

drinking water at 0.1 µg/l have increased continuously. The reason for this is that, since 2004, 

groundwater samples has only been analyzed for pesticides and degradation products in wells which 

are screened in relatively high-lying aquifers. This means that groundwater is 

relatively young (Thorling, 2007). The same conclusion was reached by Brusch (2004) who 

concluded that the levels of banned pesticides that exceed the threshold values were seen in more 

than 30% of the cases studied. 
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  From 1991 to 2003 there was found evidence of pesticides and degradation products in up to 35% 

of the waterworks (including abandoned wells), and in 12% of the cases the limit was exceeded 

(Brusch, 2004 and Brusch et al., 2004). Thorling (2007) concludes that the incidence of discovery 

of the pesticides and degradation products in waterworks has declined steadily from 2003. There is 

still found pesticides or degradation products in 25% of the waterworks wells. This downward trend 

in the amount of pesticides or degradation products does not give a true picture of the current 

pollution situation in areas surrounding the waterworks wells. It should only be seen as a result of 

closing down wells in which contamination is already present.   

  Contaminants are able to move down through the soil column by two different routes; natural- and 

anthropogenic routes.  

1.1.1. Natural transportation routes  

  The transport of water and pesticides from the surface to the groundwater reservoir is highly 

dependent on the geology of the area. In areas where the sediments in the unsaturated zone are 

mainly composed of fluvial meltwater sand, the surface water and the pesticides can move freely 

and unhindered down through the formations due to the high porosity and permeability. In areas 

consisting mainly of till deposits, the movement of water and pesticides is markedly slower. It is 

known from studies in Denmark and abroad that the clayey till contains large cavities in the form of 

cracks and holes made of worms and roots (called makropores), which affects the transport 

conditions. In Denmark there is contamination found in moraine clay containing cracks which reach 

more than 9 meters below the ground surface (Gravesen et al., 2000).  

1.1.2. Anthropogenic transportation routes (pathways associated with leaking wells) 

  In general, the groundwater in Denmark is placed in reservoirs which consist of sandy deposits. In 

many cases those water bearing sand layers are sealed on top by impermeable clay deposits, which 

protects the groundwater reservoir against contamination seeping down from the surface. When 

groundwater is extracted it is necessary to drill through those protecting clay layers after which the

clean groundwater is exposed to a potential contamination risk.   

  

 A leaky well can be defined as a well which is contaminated by direct down seeping or down 

seeping of surface water or by water from the surface near the groundwater reservoirs (Jacobsen, 

1999). There are several different scenarios which have to be taking into account regarding leaky 

wells. Schmidt (1999) has described three kind of possible pathways for contamination which are 

all in connection with conditional failures of the construction of the well:  

  

1. leakage regarding the construction of the well closing, 

2. leakage in the pipe coupling, 

3. leakage caused by insufficient or missing sealing materials.  

(Figure 1.1 shows a sketch which illustrates the three mentioned pathways) 
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  The sealing is normally used in intervals 

which consist of an impermeable layer, in 

order to i) separate water bearing layers and 

ii) prevent contamination to reach the 

groundwater reservoir through the well. 

In 1978 the law regarding water supply was 

taking into action and in 1980 the well 

drilling notice was made. In this notice, a 

series of instructions and requirements for 

construction and equipping groundwater 

wells and raw water stations was mentioned. 

According to the Danish Standards (DS 442) 

the cavity between the geological formation 

and well screen, in an impermeable clay 

interval, should be filled with 1 meter of 

watertight material to avoid seepage outside 

of the well screen.  

  The well drilling notice has since been revised and in July 2007 the latest revision was made. It 

states that "the space between the screen and the surrounding soil layers must be sealed by 

backfilling with material of such a nature that groundwater is not contaminated by seepage along 

the screen and so that unwanted water exchange between the various magazines does not occure" 

(Miljøstyrelsen, 2007).   

  Regarding item 3, Schmidt (1999) concluded that there has been no documented ways to make 

clay sealings with a sufficient tightness. This consideration is supported by Jacobsen (1999) who 

also mentions insufficient sealing as a possible pathway for contamination. Andreasen (1999), 

Lorentzen (1999), Skovgård et al. (2001), Thorling og Jensen (2002) and Laier (2002) also mention 

that possibility. At present time no serious attempt to evaluate the properties of bentonite seals in 

gronudwater wells has been made. 

1.2. State of the Art 

  In the following, a review will be given of some of the methods, which have been proposed in the 

literature for the analysis of the different properties of bentonite clay. The review has been 

subdivided into different classes of solution techniques. 

1.2.1. Transport, sorting and depositional pattern 

  There has been done a lot work on how particles with different sizes and shapes move down 

through a column of water. When a particle is falling through any given liquid in an unconfined 

environment, its terminal velocity is reached when the gravitational force is exactly equal to the 

resistance force which includes buoyancy and drag. The drag force depends on determination of the 

drag coefficient. Many correlations have been developed and presented in the literature relating the 

           

Figure 1.1: Examples of contamination pathways caused 
by failure of the construction of the well (modified after 
Schmidt, 1999).  
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drag coefficient (Cd) to the Reynolds Number (Re) for particles of spherical shape falling at their

terminal velocity. See Gibatto and Tsouris (2008) for references. Numerous of correlations have 

been made on non-spherical particles. Among all the correlations of drag coefficients, Chabra et al. 

(1999), selected four promising methods that predict drag coefficients and terminal velocities of 

settling non-spherical particles (Haider and Levenspiel, 1989; Ganser, 1993; Hartman et al., 1994; 

and Swamee and Ojha, 1991. All these methods entail the use of the equal volume sphere diameter 

as the characteristic linear dimension. Furthermore the first four methods employ the widely used 

sphericity to quantify the extent of departure from spherical shape; Swamee and Ojha (1991) 

preferred the so-called Corey�s shape factor. Both sphericity and Corey�s shape factor have merits 

and demerits. First of all it is difficult to evaluate sphericity for irregularly shaped particles. When

deciding the drag coefficient for cylindrically shaped particles it is necessary to identify which type 

of motion the particle is in.  The mode of motion is determined by the aspect ratio. This 

phenomenon has previously been described by Isaacs and Thodos (1967). The same authors also 

described a correlation of drag coefficient which only depend on aspect ratio (L/d) and density ratio 

(ρs/ρf).    

  In addition to the authors mentioned above, the following authors have worked with drag and 

should be mentioned as well;  Nitin and Chhabra (2006) have worked with the drag on circular 

disks in power law fluids and Rajitha et al. (2006) have worked with drag on non-spherical particles 

in non-Newtonian media. 

  To test the velocity of a single pellet in a water medium, the wall effect should be taken into 

account. It is customary to introduce a wall factor, f, to quantify the extent of wall effects on the 

steady-settling motion of a particle (Chakraborty et al., 2004.; Chhabra, 1995 and 1996.; Song and 

Gupta, 2009). One of the simplest definitions of the wall factor, f, is the ratio of the terminal 

velocity, V, of a particle in a bounded medium to that in an unbounded medium, V0: 

f=V/V0     (1.1)

  The following authors have also worked with wall effect and should be mentioned as well; Lali et 

al., (1989), Chhabra et al., (2003), and Kaiser et al., (2004). It should be mentioned that this is only 

a small fraction of all the literature produced which concern the drag coefficients and wall effect on

moving particles during transport.

1.2.2. Microstructural evolution of the bentonite clay during hydration 

  By using a microfocus x-ray computed tomography (µCT, x-ray microscope), Kozaki et al. (1999 

and 2001) and Tomioka et al. (2008) have shown a heterogenic hydration pattern in multiple 

bentonite grains. In both cases Kunipia-F bentonit was used which is commercially available from 

Kunimine Industries, Japan. The bentonite was an Na+-type bentonite which contained more than 

95 wt.% montmorillonite. The montmorillonite was purified into homoionic Na+-type 

montmorillonite, ground by mortar and pestle, and then sieved to obtain a grain size of 75�150 µm, 

as described elsewhere. The purified montmorillonite samples were then compacted to a dry density 

of 1.000 kg/ m3.
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  By comparing grains in water-saturated 

samples with grains from a dry sample it 

were found that the water saturated samples 

was smaller than those in the dry sample. 

To compare them quantitatively, the mean 

diameter distribution of the water-saturated 

montmorillonite grains was analyzed with a 

computer code together with that of the dry 

sample (Tomioka et al., 2008). Realizing 

that the grain sizes could be overestimated 

in the image of the water-saturated sample, 

it is obvious that the grain sizes decreased 

with the water saturation. Furthermore it 

was showed, by using x-ray diffraction, that 

the montmorillonite samples have a dense 

fragment even after water saturation. It was 

also showed that the aspect ratio of the dry 

grains did not change significantly after 

water saturation. Then, except the region of 

the open grain boundaries, it can be 

supposed that the outer montmorillonite 

sheets of grains swelled and formed a gel, 

whereas the inner sheets did not change 

significantly in the water-saturation process, 

as illustrated in Figure 1.2.  

  This general result is supported by Pusch 

(1999). He worked with MX-80 clay, which 

is a Na+-type bentonite. Monte et al. (2003) 

showed that this bentonite type contained 

70,6±2,7 % montmorillonite. The diameter 

of the big grain was 0.35 mm and 0,1 mm 

for the small grains. Each grain contains 

tens of hundreds of millions or even billions 

of stacks of montmorillonite lamellae. The 

grains were compacted to a dry density of ca. 1,200 kg/m3 which corresponds to a density of 1,800 

kg/m3 in saturated form. The stress conditions in the grains and in the contact zone between the 

grains are shown in Figure 1.3. for a section through the centres. It can be seen that the stress is 

highest at the inner sheet with decreasing values towards the surface of the grain (outer sheet). In 

the inner shell (zone with high stress) water will be totally expelled from the interlamellar space. 

The outermost parts of the grain, which are stress-free, absorb water from the inner part of the grain

and the surrounding (Pusch, 1997). The densest parts of the grains have highest hydration potential 

and become wetted quickly if the cell is free to expand, but hydration is resisted if there is an 

Figure 1.2: Schematic of the structures of montmorillonite: 
(a) in dry state, (b) in water saturated state (modified after 
Tomioka et al., 2008) 

Figure 1.3: Stress distribution in the grain.  
Note that the stress increases towards the center of the grain 
and in the contact zone between the grains. The section is 
through the center of the grains (modified after Pusch, 1999). 
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external pressure or confinement. The rate of water uptake is controlled by the capacity of the 

surrounding clay matrix to provide water, which means that its hydraulic conductivity is a 

controlling factor of the wetting and expansion process.   

  During the hydration process, Pusch (1999) concluded that the expansion of the bentonite grains 

has two forms, primarily growth in thickness of dense aligned aggregates of stacks by ca. 30 %, and 

the formation of very soft clay gels by coagulation of clay particles that are exfoliated from the 

dense aggregates. This suggests that the voids between the expanding grains will be occupied by 

soft clay gels with varying density and degree of filling. 

  Kawaragi et al. (2009) used X-ray CT technology to observe the bentonite�quartz sand mixtures. It 

was shown that �vacant pores� and �bentonite�water complexes� of the bentonite samples after 

water permeation are distinguishable in X-ray CT images. The micro-structural differences are 

closely relating to the sample permeability, and depend on the mixing and saturation conditions. 

Permeability tests and X-ray CT observations of the bentonite samples show that the permeability 

and the microstructure are independent to the sedimentary texture developed within the ore samples. 

In addition, it is characteristic that the bentonite samples with micro-cracks show low hydraulic 

conductivity, comparable to the compacted powder bentonite, implying that cracks in the sample 

are filled with �bentonite�water complexes� formed after permeation.

  In addition to the authors mentioned in the examples above, the following authors should be 

mentioned as well; Bohloli and Pater (2006), made an experimental study on hydraulic fracturing of 

unconsolidated rocks focusing on mechanisms of fracture initiation and propagation using different 

injection fluids at various confining stresses. Pusch and Weston (2003) have worked with the 

microstructural stability that controls the hydraulic conductivity of smectitic buffer clay. Pusch and 

Schomburg (1999) have worked with the impact of microstructure on the hydraulic conductivity of 

undisturbed and artificially prepared smectitic clay. Tang et al. (2008) have worked with the 

influencing factors of geometrical structure of surface shrinkage cracks in clayey soils, and Vogel et

al. (2005 I and II) have studied the crack dynamics in clayey soil. 

1.2.3. Macrostructural evolution of bentonite clay during hydration 

  Van Geet et al. (2005) described the nature of hydration of a mixture of FoCa- clay powder and 

pellets based on microfocus X-ray computed tomography (µCT, x-ray microscope). The FoCa-clay 

is from the Paris Basin, extracted in the Vexin region. The major component (i.e. 80% of the clay 

fraction) is an interstratified clay of 50% calcium beidellite and 50% kaolinite. It contains also 

kaolinite, quartz, goethite, hematite, calcite and gypsum (Coulon, 1987; Lajudie et al., 1994). The 

pellets are produced by compacting the FoCa powder. Different shapes and sizes of pellets have 

been tried, in order to obtain a high dry density. The best result was obtained with pellets of 

approximately 25x25x15 mm3 of size. 

  A plexiglass, cylindrical cell (88 mm outer and 38 mm inner diameter) was designed with quick 

connectors at the bottom for water injection and gas escape routes at the top (Figure 1.4). The cell 

was filled with a mixture of 50% of pellets and 50% of powder and compacted to a dry density of 

1.36 g/cm3. 56.77 g of pellets and 57.69 g of powder were used. Within the powder surrounding the 

pellets, a lot of macroporosity, was observed. It was showed that the distribution of the porosity was

not homogeneous, which was related to the sample preparation. Indeed, during the filling of the 
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cylinder with mixture of FoCa-clay powder and 

pellets, the largest particles tumbled in first, 

causing more macroporosity at the bottom of the 

sample. It is therefore concluded that the 

depositional pattern of the pellets plays an 

important role when the properties of the final 

sealing is evaluated. 

  In order to simulate real condition, water was 

first injected at very low pressure, so suction of 

the water by the clay was the dominant process. 

This was maintained for six weeks. Hereafter, the 

sample was injected with water at 5 bars during 4 

month (22 weeks). Finally, a permeability test at 

6 bars was performed during two months (30 

weeks). After two weeks of hydration at very low 

pressure (suction was the dominant process), a 

distinction between the pellets and the powder 

could still be made. At this point, there is a clear 

difference of the powder surrounding the pellets 

in the top and in the bottom. The mean density of the powder at the bottom has increased from 

about 1 g/cm3 to 1.6 g/cm3. The mean density of the powder at the top of the sample has not 

changed and is still around 1.3 g/cm3. After 1 month at low pressure, the pellet can still be 

distinguished. The mean density of the pellet has not changed, but the mean density of the powder 

surrounding the pellet at the bottom, has increased from 1.6 g/cm3 to 1.7 g/cm3 and the powder at 

the top has increased from 1.3 g/cm3 to 1.4 g/cm3. After 1 month at high pressure (5 bars) the whole

sample has obtained a mean density of 1.8 g/cm3 and 1.63 g/cm3 in corners. However, 

homogenisation is not complete, as the bottom of the sample fractures within the mixture can be 

observed. After 4 month at high pressure (5 bars) the observations has not changed. At the bottom 

of the sample the fracture outline are still present. After the permeability test at 6 bars, no structural 

changes have been noticed. The sample now has a mean density of 1.9 g/cm3. The bottom corners 

of the sample are still somewhat lower in density, however the fractures were no longer observed. 

The question rose whether these fractures are related to the original position of a pellet? It was 

concluded that the previously mentioned fractures occurred at the pellet/powder interface. It was 

also concluded that the pellet/powder mixture seems to have a memory of the original position of 

the pellets and the outline of the pellet is a weak point within the mixture along which fractures are

more easily developed. When finishing permeability test at 6 bars, the sample was dismantled and 

dried. A water content of ca. 38% was measured. After drying, the sample was broken in two half 

cylinders and showed several fractures. The distribution of the fracture pattern was compared with 

the original position of the pellets. However all fracture seemed to be orientated randomly and no 

correlation with the original pellet position was found by visual inspection. The overall conclusion 

is that a homogenisation between pellets and powder only occurs after an injection of water at 5 

bars. This means that hydration at very low pressure, where suction was the dominant process, is 

Figure 1.4: Schematic view of the plexiglass cell. The 
orientation of the pellets is illustrated. The grey colour 
corresponds with the position of powder and pellets
mixture of FoCa-clay (modified after Van Geet et al., 
2005).    
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not sufficient for a complete homogenisation to take place. By suction alone a heterogenic 

distribution of densities throughout the sample should be expected. By examining another type of 

clay (Boom Clay, Belgian), Van Geet et al. (2007 and 2008), concluded that the location of the 

fractures throughout the whole volume of the sample is limited to the low density zone. This result 

was indirectly supported by Oscarson et al. (1996). Here the general conclusion was that the 

hydraulic conductivity in bentonite samples decreases when the dry density increases.  

  In addition to the authors mentioned in the examples above, the following authors all worked with 

bentonite pellet mixtures; García-Gutiérrez et al. (2004) have made diffusion experiments with 

compacted FoCa powder/pellets clay mixtures and Maugis and Imbert (2007) have made 

experiential and numerical modeling on confined wetting, also with FoCa powder/pellets clay 

mixtures. Hoffman et al. (2007) and Imbert &Villar (2006) have examined the hydro-mechanical 

behavior of a bentonite mixture and a bentonite/powder mixture respectively. Pusch et al. (2003) 

have studied the performance of strongly compacted MX-80 pellets under repository-like 

conditions. Suziki et al. (2005) have shown that the fraction of macropores among bentonite 

pellets/aggregates increases with NaCl concentration under highly saline conditions. 

1.2.4. Swelling behavior of different expanding clay mixtures 

  Up until today a lot of work has been done regarding quantification of the swelling pressure for 

several bentonite types. One common thing is that we are dealing with homogenous samples with 

no macroscopic pore space.  

  Langrodi and Yasrobi (2009), have worked with swelling behaviour of unsaturated expansive soils 

(homogeneous samples). No mathematical model to describe the evolution of swelling pressure was 

presented. Thus, it was concluded that the structure of compacted clay play an important role in the 

mechanical behaviour, e.g. swelling pressure. This is supported by Sivakumar et al. (2006).   

Agus and Schanz (2006) presented an approach for predicting the swelling pressure of 

bentonite/sand mixtures based on thermodynamic relationships between swelling pressure and 

suction. Not surprisingly the sorption curve of the bentonite is found to follow a straight line on the

semi-logarithmic plot of water content versus suction for a quite wide range of suction, indicating 

that the water content of the bentonite is logarithmically related to suction. No mathematical model 

to describe the evolution of swelling pressure was presented. 

  Lloret and Villar (2007) have worked with the thermo-hydro-mechanical (THM) behaviour of 

heavily compacted ��FEBEX�� bentonite. The main focus was to establish the influence of 

temperature and water salinity on the THM behaviour of the bentonite.  A simple model to describe 

the evolution of swelling pressure was proposed. A regression curve was derived for the swelling 

pressure of the FEBEX bentonite at laboratory temperature as a function of dry density. This is 

expressed by the following equation: 

Ps =exp(6.77ρd - 9.07)    (1.2) 

where Ps is the swelling pressure (MPa), and ρd is the dry density, in g/cm3. The deviation of the 

experimental values with respect to this fitting may be as high as 25%.  
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  Komine and Ogate have made a lot of work regarding swelling characteristic on different types of 

bentonites and bentonite/sand mixtures. Komine and Ogate (1994) made a experiential study on 

swelling characteristics of compacted bentonite. The tested material was a commercially produced 

bentonite from Tsukinuno Mine in Japan. This sodium bentonite contains about 48% 

montmorillonite. Regarding the swelling pressure, the following conclusions were drawn: The 

maximum swelling pressure increases exponentially with increasing initial dry density, whereas the 

maximum swelling pressure is almost independent of the initial water content; furthermore, the 

maximum swelling pressure of compacted bentonite was found to be strongly dependent on the 

montmorillonite content and the compaction pressure when the sample is produced. 

  Komine and Ogate (1999), made an experimential study on swelling characteristics of sand-

bentonite mixture.  The tested bentonite material was the same as previously mentioned (48% 

montmorillonite), but this time it was mixed with Mikawa silica sand. Five tests were made. The 

bentonite content of the mixtures was 5%, 10%, 20%,

30%, and 50%. The results are seen in Table 1.1. 

Basically the same conclusion were drawn in this paper 

as in previous papers from Komine and Ogate. No 

mathematical model to describe the evolution of swelling 

pressure was presented. 

  In this study they also propose a simplified evaluation of 
the swelling characteristics of sand-bentonite mixtures 
using the parameter �swelling volumetric strain of 
montmorillonite�. The parameter is defined as; ε*

sv  is the 
percentage volume increase of swelling deformation of 
montmorillonite. It is expressed by the following 
equation:  

ε
*

sv  = ((Vv+Vsv)/Vm) x 100 (%)    (1.3) 

where Vm is the volume of montmorillonite in the sand-bentonite mixture, Vv is the volume of voids, 
and Vsv is the maximum swelling deformation of the mixture at constant vertical pressure (Vsv ≥ 0,
Vsv = 0 in the swelling pressure test).  
  Made by the same authors, the attention should also be made on the following papers, which all 
concerns the study on swelling characteristics of different kinds of bentonites and sand-bentonite 
mixtures; Komine and Ogata (1996a, 1996b, 1997, 2003, 2004).
  Komine (2004) studied the swelling pressure for four types of bentonites, all with a different 

content of montmorillonite.  Again it was concluded that the maximum swelling pressure is strongly 

influenced by the montmorillonite content. No mathematical model to describe the evolution of 

swelling pressure was offered.

1.2.5. Hydraulic conductivity of bentonite clay 

  Hasenpatt et al. (1989) discussed the two transport mechanisms which can be distinguished in 

clay: (1) diffusion, for which the propelling force is the concentration gradient of the diffusing ions; 

and (2) flow, for which the propelling force is the water pressure gradient. The material of interest 

Table 1.1: Show the bentonite content 
versus the maximum swelling pressure 

Bentonite 
content 

Montmorillonite 
content (48%) 

Swelling 
pressure 

(kPa) 
5% 2.4% 30.9 

10% 4.8% 42.9 

20% 9.6% 98.2 

30% 14.4% 170.5 

50% 24% 270.0 
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was a calcium-bentonite. The hydraulic conductivity was found to be in the range of 2.8*10-9 to 

1.5*10-6 m/s. 

  Oscarson et al. (1996) was working with mass transport through defected bentonite plugs. The 

Avonlea bentonite used in the buffer is from the Bearpaw Formation of Upper Cretaceous age in 

southern Saskatchewan. The clay contains approximately 80 wt% smectite (montmorillonite), 10% 

illite, 5% quartz and minor amounts of gypsum, feldspar and carbonate (Oscarson and Dixon, 

1989). The Avonlea bentonite is a component of the buffer material  - a 1:1 mix by dry mass of 

bentonite and silica sand compacted to a dry density, ρb, of 1.67 Mg/m 3. In this work they also 

worked with diffusion and flow as the propelling forces. The main conclusion was that the diffusion 

processes dominate mass transport through earthen materials when K is less than about 10-l0 to 10-9

m/s. This was also supported by Rowe (1987) and Gillham and Cherry (1982). 

  Villar and Rivas (1994), have worked with the hydraulic properties of montmorillonite-quartz and 

saponite-quartz mixtures. The work presented is part of a project of characterization of Spanish 

clays to be used as backfill and sealing materials in high-level radioactive waste repositories. The 

hydraulic conductivity of the studied Spanish clays is lower than 10-12 m/s for clay dry densities 

higher than 1.45 g/cm3 for montmorillonite. The addition of quartz could reach percentages of 40% 

without changing these properties. 

  Pusch and Schomburg (1999) have worked with the impact of microstructure on the hydraulic 

conductivity of undisturbed and artificially prepared smectitic clay. They found that the 

microstructure, controls most physical properties of clays. This is obvious when comparing natural 

smectitic clay and clay prepared by drying, grinding and compression of air-dry powder. The 

hydraulic conductivity of the artificially prepared clay was found to be higher than that of the 

undisturbed, natural clay. If the latter clay is percolated with distilled water and Ca-rich water, the 

difference in conductivity is obvious, while percolation of the natural clay with these solutions does 

not yield a very dramatic change. This is because the microstructure of the natural clay is very 

homogeneous, while the artificially prepared clay preserves the high density of the powder grains 

while the gels in the voids between the grains are soft. 

  Villa et al. (2008) have worked on how to modify of hydraulic properties of bentonite by thermo-

hydraulic gradients. The test has been performed with a bentonite from the Cortijo de Archidona 

deposits (Almeria, Spain). The bentonite has a content of dioctahedic smectite of the 

montmorillonite type higher than 90% as determined by x-ray diffraction. The main conclusion 

from this work was that the measurement of saturated hydraulic conductivity performed after the 

thermo-hydraulic (TH) treatment revealed even an increase of saturated permeability with respect to 

untreated samples and a strong dependence on dry density.  

  Komine (2008) have purposed theoretical equations on hydraulic conductivities of bentonite-based 

buffer and backfill for underground disposal of radioactive wastes. The study proposes a predicting 

method for hydraulic conductivity of two montmorillonite parallel-plate layers. The method allows 

for the influence of Na+, Ca2+, K+, and Mg2+, the main exchangeable cations of bentonite. Results 

demonstrate that the theoretical equations proposed in this study can predict hydraulic 

conductivities of sodium bentonite-based buffer and backfill materials at various dry densities and 

bentonite contents of 20% or more with high accuracy. 
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  Komine (2010) predicted the hydraulic conductivity of sand�bentonite mixture backfill before and 

after swelling deformation for underground disposal of radioactive wastes for samples with 

different bentonite content. The model which was purposed in 2008 by the same auhtor was 

confirmed in this paper.  

1.2.6. The use of computed tomography (CT) in soil science 

  Anderson et al. (1990) have worked with the evaluation of constructed and natural soil macropores 

using x-ray computed tomography. Among other things they refer to Petrovich et al. (1982) who 

claim that the mean bulk density in a soil core is linearly related to the mean x-ray attenuation 

coefficient of the core. The test material were taken in October 1988 from the A horizon of a 

Menfro silt loam (fine-silty, mixed, mesic Typic Hapludalf) soil near Rocheport, Missouri. Using 

the air-dried soil, three soil cores were each packed to bulk densities of 1.3, 1.4 and 1.5 g/cm3. The 

soil was packed into 76.2-mm internal diameter. by 76.2-mm high plexiglas rings using a hydraulic 

press. These packed soil cores were used to calibrate the CT scanner for bulk density determination 

as indicated by Anderson et al. (1988). Pires et al. (2002) have used gamma-ray computed 

tomography to characterize soil surface sealing. Variation in gray levels correspond to differences 

in the attenuation coefficients and consequently, to differences in soil density at each point. Soil 

samples were collected in cylinders of 3 and 5 cm height at the soil surface. The calibration of the 

tomograph was obtained through the correlation between linear attenuation coefficients (m) of 

different materials using the gamma ray transmission method, and the respective tomographic units 

(TU) (Naime, 2001; Cássaro, 1994). Pires et al. (2005) γ-ray computed tomography to analysis of 

soil structure before density evaluations. In this work the conclusion regarding dry density was the 

same.  

  Wildenschild et al. (2002) start to work with systems, resolutions, and limitations of x-ray 

computed tomography in hydrology. A combination of advances in experimental techniques and 

mathematical analysis has made it possible to characterize phase distribution and pore geometry and 

to delineate air�water interfacial contacts in porous media using non-destructive x-ray computed 

tomography (CT). Later Ketham et al. (2005) used x-ray computed tomography and digital image 

analysis (DIA) to improve methods for quantitative analysis of three-dimensional porhyroblastic 

textures.

  Van Geet et al. (2005) have worked with the use of microfocus X-ray computed tomography in 

characterising the hydration of a clay pellet/powder mixture. This study aimed to visualise and 

characterise the hydration of a mixture of FoCa-clay pellets and powder. The FoCa-clay is a 

sedimentary clay from the Paris Basin, extracted in the Vexin region. The major component (i.e. 

80% of the clay fraction) is an interstratified clay of 50% calcium beidellite and 50% kaolinite. It 

contains also kaolinite, quartz, goethite, hematite, calcite and gypsum (Coulon, 1987; Lajudie et al., 

1994). The pellets are produced by compacting the FoCa powder. Different shapes and sizes of 

pellets have been tried, in order to obtain a high dry density. For a quantitative analysis of the 

images, real density images would be much easier to interpret. For this purpose, a good calibration 

has to be set up to convert the measured linear attenuation coefficients into density values (Mees et 

al., 2003 and references therein). The measured linear attenuation coefficient depends on the density 

(q) and atomic number (Z) of the object and on the used X-ray energy (E) as: 
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with a and b representing instrument dependent parameters (Rutherford et al., 1976a,b; Avrin et al., 

1978; Pullan et al., 1981; Lehmann et al., 1981; Stonestrom et al., 1981; Curry et al., 1990; Gingold 

and Hasegawa, 1992).

  In addition to the above mentioned authors, the following should be mentioned as well. Iassonov 

et al. (2009) have used segmentation of X-ray computed tomography images for characterization 

and quantitative analysis of pore structures and Martínez et al. (2010) have worked with multifractal 

analysis of discretized X-ray CT images for the characterization of soil macropore structures.

1.3. Objectives  

  As can be seen in section 1.2. a lot of work has been done so far regarding e.g. transport and 

sorting of particles, micro- and macrostructural evolution of bentonite clay during hydration, 

swelling characteristic, hydraulic conductivity, and the use of CT technology in soil science. Never 

the less, non of the above mentioned works has focused on bentonite pellets as a sealing material in 

groundwater wells. In this work the focus will be on how bentonite pellets is transported and 

deposited in a confined space and how swelling- and hydration characteristic is influenced by the a 

given depositional pattern. To examine that, a new set of algorithme is developed in orter to 

concerte CT numbers into real densities. This methode is also used to evaluate the hydraulic 

conductivity of a bantonite sealing. 

  This dissertation addresses factors controlling the properties of sealing materials in the 

groundwater wells. The content of the dissertation is based on results presented in Paper I-IV. The 

following chapters describe and discuss: 

(i) Prediction of depositional pattern based on the nature of sorting during transport 

(ii) Swelling pressure based on the degree of sorting of bentonite pellets  

(iii) Computed tomogrephy (CT) as a tool for evaluating clay/water systems 

(iv) Prediction of the physical properties of a sealing plug based on CT technology 

(v) Creation of channels in the sealing plug. 
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Part 1 

Swelling behavior 
as a function of size 
distribution 

The main focus in this part will be on 
the swelling pressure of a bentonite 
seal. 

It has been showed that the higher the 
bulk density in the bentonite plug, the 
higher the swelling pressure of the 
sealing material will be (Komine, 2004; 
Castellanos et al., 2008). Sealing 
material (in the form of bentonite 
pellets) show a large degree of size 
variations. When multiple pellets are 
dropped into waterfilled bore holes the 
pellets will be sorted according to their 
size which again will affect the 
depositional pattern. Small pellets will 
be packed more closely than larger 
pellets. A closely packed interval will 
have a higher bulk density than 
intervals which are not so closely 
packed. 

Chapter 2: Particle segregation and 
sorting during transport 

Chapter 3: Swelling pressure as a 
function of bulk density 



�
���������

�
� �



�
���������

�
� �

Chapter 2 

Particle segregation and sorting during 
transport 

2.1. Introduction 

  Industrially produced bentonite pellets show a large degree of heterogeneity in size, which means 

that the velocities of a bundle of bentonite pellets show a great deal of variation. Because of that, a 

particle segregation of bentonite pellets which travel in a bundle will take place during the transport 

phase (Schalla and Walters, 1990; Escudié et al., 2006). The bentonite pellets are segregated 

according to their size which has an important impact on the final depositional pattern. Smaller 

particles will be packed more densely than larger particles. A densely packed interval in the sealing 

plug will have a higher bulk density than intervals

which are closely packed (Figure 2.1). It has been 

shown that the higher the bulk density in a 

bentonite clay, the higher the swelling pressure 

will be (Komine, 2004; Castellanos et al., 2008). 

It has also been shown that if the bulk density 

increases, the hydraulic conductivity of the 

bentonite clay will decrease (Cuevas et al. 2002; 

Villar & Rivas, 1994). The behavior of multiple 

sized bentonite pellets during transport is 

therefore of great interest with regard to the 

depositional pattern.  

  The main objective in this chapter is to 

investigate how the nature of sorting of multi-

sized pellets is affected when particle segregation

during the transport phase takes place and what 

effect the sorting has on the final depositional 

Figure 2.1: View of a principal depositional pattern of 
bentonite pellets. The left figure shows an interval 
with small and densely packed pellets and the right
figure shows an interval with bigger and loosely 
packed pellets. By comparing the two figures it is 
obvious that the bulk density is highly affected by the 
type of deposition.
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pattern. It is to be expected that the variation in size of the bentonite pellets affect the depositional 

pattern in a way which can be predicted. 

  In order to recover a model which describes the depositional pattern for non-spherical bentonite 

pellets with a heterogeneous size distribution, it is necessary to test the degree of sorting of 

bentonite pellets during the transport phase. Basically two sets of test were performed. The first set

is to determine the differences in falling velocity for single pellet in an unconfined environment. 

The second test was to see how a bundle of pellets interacted with each other during the transport 

phase. In order to see how this interaction affects the depositional patterns, the velocity pattern of

the pellets from each test are compared.  

2.2. Velocity tests for single pellets  

2.2.1. Methodology

  The pellets used as sealing material in groundwater wells represent a great variation of grain sizes

and shapes. The grain size distribution has been determined. The method is described in Appendix 

III, page 2-4. The results are summarized in Table 2.1. 

   

To test the velocity of a single pellet, two 

things was considered. The first thing was 

to find a method which was able to account 

for the wall effect from the fall tube during 

the test, so that pellets with the biggest 

Feret diameter were not slowed down 

relative to the pellets with a smaller Feret 

diameter. The pellets were subdivided into 

seven size intervals according to Table 2.1. 

Twenty seven pellets were picked within 

each size interval. An appropriated fall 

tube was chosen and water was loaded into 

it. The bentonite pellets were introduced 

below the surface of the liquid and as close 

to the centre as possible. The terminal velocity of each particle was measured by timing its descent 

using a stopwatch reading up to 10 ms. Using the fall times, the terminal velocity, V, of each 

particle was calculated as a function of the length of the fall tube. 

   

It is customary to introduce a wall factor,f, to quantify the extent of wall effects on the steady-

settling motion of a particle (Chakraborty et al., 2004; Chhabra, 1995 and 1996; Song and Gupta, 

2009). One of the simplest definitions of the wall factor, f, is the ratio of the terminal velocity, V, of 

a particle in a bounded medium to that in an unbounded medium, V0: 

f=V/V0     (2.1) 

Table 2.1: Size distribution with respect to mass. 

Size interval (cm) Mass [%] 

0.2 < dF ≤ 0.4 1.39 
0.4 < dF ≤ 0.6 2.85 
0.6 < dF ≤ 1.0 8.5 
1.0 < dF ≤ 1.5 34.74 
1.5 < dF ≤ 1.8 27.56 
1.8 < dF ≤ 2.0 15.81 
2.0 < dF ≤ 2.5 9.15 
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  To design a system for simulating the effect 

of a confined system it was decided to use 

cylinders as test bodies because this shape is 

visually the nearest approximated shape 

which describes the shape of bentonite pellets 

which is of interest in this study.  The data of 

the test cylinders is summarized in Table 2.2.  

In order to cover a wide range of particle-to-

tube diameter ratios and to explain its role in 

relation to wall effects, the terminal settling 

velocity of each particle is measured in six 

cylindrical fall tubes with different inner 

diameters: 26, 34, 51, 72, 99 and 139 mm. 

Each fall tube is at least 1.25 m long with one 

end sealed by a rubber bung. Water was used 

as test liquid (density, ρ=1000 kg/m3; 

viscosity, µ=0.0013 Pa·s).  

  Dimensional considerations suggest the wall 

factor, f, to be a function of the particle-to-tube diameter ratio, λ = dF/D, where dF is the Feret 

diameter of the particle and D is the inner diameter of the fall tube. The falling velocities are then 

measured from all the test tubes and the wall factor is determined for each tube diameter, D. Five 

sets of test has been conducted for each test tube diameter and the average velocity has been 

calculated. It was shown that a test tube with an inner diameter of 99 mm was sufficient in order to 

avoid any wall effects during the actual velocity test (Figure 2.2.). It was in this case that the value 

of V was approximately equal to the value of V0. The results can be described as a linera function

and is expressed in the following way; 

f = 1-0.0764λ              (2.2) 

2.2.2.  Results  

  To account for the difference in shapes a 

total number of 27 pellets within each size 

interval was picked. Figure 2.3 shows the 

size interval with respect to Feret diameter 

versus falling velocity. The black curve 

shape shows the velocity, V0, without 

considering the wall effect, f. By applying 

Eq. 2, to the velocity results the wall effect is 

considered (black curve on Figure 2.3.). The 

gap between the red and the black curve 

Table 2.2: Material used in settling studies 
Material Density ρ

(g/cm3) 
Cylinder 
Diameter 
(mm) 

Feret diameter 
(cm) 

Aluminium 2.65 8 3.1,  2.87, 2.66,  
2.42, 2.18,  1.96, 
1.72,  1.49, 1.32, 
1.14,  0.95 

PTFE 2.27 10 3.32,  2.97, 2.71,  
2.50, 2.29, 2.04,  
1.83, 1.63,  1.44, 
1.28, 1.16 

POM 1.39 10 3.20,  2.94, 2.70,  
2.42, 2.25, 2.02, 
1.83,  1.61,  
1.44,  1.25, 1.12 

Plexiglas 1.2 10 3.16, 2.69, 2.24, 
1.80, 1.41, 1.12 

Figure 2.2: Particle-to-tube diameter ratio λ = dF/D versus 
the wall factor, f. Six test tubes were used, all with different 
inner diameter. Four different materials were used.  
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increasing with pellet size (Feret diameter, dF), which mean that the effect of confining walls 

increase with pellet size.  

  A simplified model for the velocity of the 

pellets is determined. When the size of the pellet 

is above 1.25 cm there is a linear relationship 

between the velocity of the pellet and the Feret 

diameter, dF, of the pellet. This relationship can 

be expressed: 

V = -0.0017 dF + 0.37   (2.3)

In the interval where dF is smaller than or equal 

to 1.25 cm and bigger than 0.3 on the curve 

shape can be showed as a logarithmic function, 

which can be expressed: 

V = 0.1323Ln(dF) + 0.3394 (2.4)

  Figure 2.4. show the models expressed in Eq. (2.3) and (2.4) visually. The overall trend of the 

curve which describes the velocity of single pellet with a Feret diameter above 1.25 cm, shows that 

velocities decreases very little when the Feret diameters increase.  On the other hand it must be 

noticed that the difference in velocities within this size range is almost negligable.  

  The intersection between the two curves which is seen at a Feret diameter equal to 1.25 cm, 

represents the boundary between two types of motion regimes. The change in motion appears when 

the aspect ratio L/D is approximately 1.2. During the velocity tests mentioned previously, the nature 

of motion for each pellet down through the test tube was studied visually. Six size intervals with 

respect to the Feret diameter were considered. 

Within each interval at least 27 observations 

were made. It was decided to make a rough 

distinction between two types of motions. The 

distinction was set whether or not the pellets 

were turned around themselves (tumbling) 

during the downward vertical motion. A high 

degree of oscillation was allowed. 

  Going from large Feret diameters and down to 

a Feret diameter close to 1.25 cm, the oscillation 

of the particles increases until the particle starts 

to tumble and rotate in an unpredictable pattern. 

When the Feret diameter lies in the interval 

between approximately 0.3 cm and 1.25 cm it is 

observed that the particle has no preferred 

orientation and the motion has an unstable 

Figure 2.4: Show the models which describs the 
velocity above and belove a Feret diameter of 1.25cm. 
Belove that value the velocity cen be expressed as a 
logaritmic function. Amove that value the velocity cen 
be expressed as a lineary function. 

y = 0,1323ln(x) + 0,3394

y = -0,0017x + 0,3732
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Figure 2.3: Feret diameter versus the velocity of 
pellets when falling through a test tube with water. 
The black curve shows the velocity of pellets in a 
confined environment (D=99mm). The red curve 
represent the estimated velocity when there has not
been accounted for wall effect. 
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nature. Due to the tumbling motion, the pellet 

does not fall vertically. It appears to travelling 

obliquely across the test tube and follows a path 

consistent with the direction of tumbling. The 

ratio between the amount of tumbling particles 

and the total amount of observations was made. 

The results are summarized in Figure 2.5.  

  As can be seen the ratio of tumbling particles 

compared with the total amount of observations 

increases dramatically when the Feret diameter 

dF decreases below 1.25 cm. For comparison 

the velocity curve mentioned previously is also 

showed in Figure 2.5. It is obvious that the type 

of motion has a pronounced effect on the 

terminal velocity of the pellet. In general it can 

be showed that the velocity of a pellet moving downward in a rotating and unpredictable pattern can 

be expressed as a logarithmic function, of Eq. (2.4). In the case where the pellet is moving 

downward in a stable predictable manner (thus with a high degree of horizontal oscillations), the 

velocity can be expressed as a linear function. 

2.3. Interaction of Multiple Pellets 

2.3.1. Methodology

  In the second test the interaction between 

multiple pellets doing the transport phase is 

observed, and the depositional characteristic is 

monitored closely. One fall tube is used with an 

inner diameter of 110 mm and a height of 3.8 m. 

One sample of approximately two kg and one 

samples of approximately one kg of randomly 

picked pellets were prepared. The pellets are 

subdivided into four size intervals with respect to

the Feret diameter, dF. Each interval was given its 

own colour and all pellets within each size 

interval were painted according to this colour 

code (Table 2.3).  

  After painting the pellets they were mixed completely in a bowl. A high resolution video camera 

was placed at the bottom of the fall tube to film the deposition of pellets after having travelled 3.8 m 

in a bundle of other pellets. Test liquid was loaded into the cylindrical fall tubes. The mixed sample

of pellets was dropped into the fall tube instantaneously and the depositional pattern was 

photographed.  

Figure 2.5: Show the Feret diameter versus the ration of 
tumbling motion of pellets (in %). 
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Table 2.3: Show the four size intervals. Each interval 
is assigned its own color. 

Size interval (cm) Colour code 

0.2 < df ≤ 1.0 Blue 

1.0 < df ≤ 1.5 Red 

1.5 < df ≤ 2.0 Green 

2.0 < df ≤ 2.5 Yellow 
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2.3.2.   Results

  Before the test started, each sample was mixed completely. During the transport down through the 

test tube, the pellets interacted with each other in a way which caused a certain degree of 

segregation. This fact will be accounted for in the following section. Four images were produced: 

One for each colour. Due to the DIA technique (described in Appendix III) it was possible to 

calculate the area which was occupied by each colour in the final deposition (Figure 2.6).   

             

             

Figure 2.6: Results of the DIA analysis. The first image in each row shows an image of the 
whole deposit. The four following images, each represent a given size fraction which is denoted 
by its own color. The upper row represents a sample of approximately 2 kg and the lower row 
represents a sample of approximately 1 kg. 

                  
Figure 2.7: The four size intervals of Feret diameter versus the relative height of the center of 
mass. 
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  The ratio between the area occupied by the pellets and the total area (the raw image of the whole 

deposition of the bentonite pellets) was then found. The result of the DIA analysis of the two 

samples is summarized in Figure 2.6. On the top row the results of the two kg sample are showed 

and the one kg sample is showed below. Starting from left to right; the first image shows the raw 

image of the final deposition of bentonite pellets. The next four images show the four separated 

colours, one for each size interval. Above each image, the size interval with respect to the Feret 

diameter is written, and below is the area percentage shown.  

  Using the DIA technique it is also possible to find the centre of mass in both x and y direction. In

this study, only the vertical y component is of interest. On Figure 2.7, the relative height of the 

vertical y component of the centre of mass is shown. As can be seen there is a clear tendency that 

the smallest size fraction (0.0 < dF ≤ 1.0) is deposited at the top, and the largest size fraction (2.0 < 

dF ≤ 2.5) is deposited at the bottom. On the other hand there is only a small distinction between the 

two size fractions in the middle (1.0 < dF ≤ 1.5 and 1.5 < dF ≤ 2.0). It is also seen that the overall 

trend of the graphs follows almost the same path. This observation indicates clearly that it is 

possibly to predict the depositional pattern of a given sealing plug. 

2.4. Concluding Remarks  

  Two sets of tests have been performed. The first set showed how single pellets behaved when 

falling through a liquid in an unconfined environment. The second set showed the depositional 

pattern of multiple pellets when settling through a test tube with a length of approximately 3.8 m 

and an inner diameter of 11 cm. 

  When testing the settling behaviour of multiple pellets it was seen that the pellets with a Feret 

diameter below 1 cm (blue colour code) have a clear tendency to settle with a low velocity relative 

to pellets with a Feret diameter above 1 cm (red, green and yellow colour code), which cause the 

blue pellet to settle last and on top of the deposits. This result corresponds very well with the results 

obtained from the velocity test of single pellets which clearly indicate that velocities of pellets in the 

small fractions can be expressed by a logarithmic function, Eq. (2.4). Not surprisingly this marked 

decrease in velocity can be explained by the tumbling way of movement which has been accounted 

for previously (Figure 2.5). From Eq. (2.3), which was derived from the velocity test of single 

pellets, it is obvious that pellets from the interval 1.0 < dF ≤ 1.5 and bigger with respect to Feret 

diameter travel with almost the same velocity, thus with a small decrease in velocity when the Feret 

diameter increases. Based on that, it should be expected that the yellow pellets will reach the bottom 

after the green and red pellets, which is the case for single pellets. When multiple pellets are mixed

and dropped instantaneously, it is shown that the opposite pattern is the case (Figure 2.6. and 2.7.).  

  The question is what mechanisms acts on the pellets during the transport phase which cause this 

opposite velocity pattern to dominate. A possible suggestion to this opposite velocity pattern is 

given in Paper I. The suggestion is based on the simple fact that the degree of oscillations increases

when the Feret diameter of pellets decreases. This is valid in the interval where the velocity can be 

expressed as a linear function Eq. (2.3). The increase of oscillations when the Feret diameter 

decreases, has two important impacts on the nature of movements of pellets when they are 
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travelling in a swarm of multiple pellets. The first one is a marked increase in mobility in three 

dimensions and the second a greater variation in the projected area perpendicular to the direction of 

motion. An increase in mobility means that a given pellet has a higher possibility to fit into open 

spaces (mobile pore spaces) which means a higher ability to move around inside the swarm of 

multiple pellets. A high mobility also leads to 

a greater variation in the projected area 

perpendicular to the direction of motion 

(Figure 2.8). When a given pellet is orientated 

with its central axis in a vertical position then 

the projected area must be assumed to occupy 

a minimum of area. On the basis of that it is 

obvious to assume that its ability to slip 

through mobile cavities in the pellet swarm in 

the vertical direction is bigger than if  its 

central axis is orientated horizontally (Figure 

2.8). If the discrepancy in size between large 

and small particles is great, and because 

buoyancies have a relatively bigger effect on 

smaller particles than on bigger ones, the small 

particles will be sieved up through the pore 

spaces between larger grains. When a pellet of 

a given size with respect to the Feret diameter 

is traveling downward in a bundle with 

multiple pellets with a larger Feret diameter, it 

will tend to be replaced upward in the bundle 

relative to the surrounding pellets.  

  Due to the constant and larger projected area of large pellets they will not have the same ability to 

move upward relative in the bundle in the same way as smaller pellets because mask size of the free 

pore space which acts as a sieve. 

  The main objective in this chapter was to investigate how the nature of sorting of multi-sized 

pellets was affected when particle segregation during the transport phase takes place and what effect 

the sorting had on the final depositional pattern. The overall conclusion of this work is be that the 

variation in size of the bentonite pellets affects the depositional pattern in a way which can be 

predicted. The different size fractions of the bentonite pellets will be deposited according to the 

pattern described in figure 2.6 and 2.7. 

  

Figure 2.8: Show a diagram of the nature of motion and 
the projected area as a function of mobility. 
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Chapter 3 

Swelling pressure as a function of bulk 
density 

3.1. Introduction 

  The main concern in this chapter is to envestigate the swelling behaviour og bentonite pellets in 
groundwater wells as a function of the degree of sorting. For this porpuse a swelling-pressure 
apparatus with an inner diameter of 70 mm was used.

  As stated in the previous chapter, a typical sample of bentonite pellets contains a large range of 

particle sizes. During the transport and settling phases of the pellets, the huge size difference plays

an important role regarding the final depositional pattern. The pellets will be sorted during the 

transport phase and deposited according to their size. The degree of sorting of the pellets plays an 

important role regarding the bulk density of the deposits. It has been shown that the higher the bulk 

density in the bentonite sample, the higher the swelling pressure will be (Komine, 2004; Castellanos 

et al., 2008; Mesri et al., 1994; Sridharan et al., 1986). Even for compacted bentonite-sand mixtures,

the magnitude of swelling pressure is a function of bentonite dry density in the mixtures (Agus and 

Sreepada, 2005; and Sitz, 1997), It has also been shown that if the density increases, the 

permeability of the bentonite clay will decrease (Cuevas et al. 2002; Villar & Rivas, 1994). 

  Up until the present time, only the swelling pressure for relatively small, homogeneous bentonite 

samples has been investigated.  No attempt has been done to investigated the swelling pressure for 

loosely packed bentonite pellets, and no consideration regarding how the degree of sorting of the 

pellets affects the swelling pressure has been done. Two types of samples will be investigated: 

sorted samples and unsorted samples. The main focus is to investigate how the degree of sorting 

affects the swelling pressure of the sample.  
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3.2. Methodology 

3.2.1. Apparatus 

  Figure 3.1 shows the swelling-pressure test 

apparatus for the pressure swelling experiment, 

which can measure the swelling pressure of 

bentonite pellets in the vertical direction. During 

each experiment the volume of the inner cell 

chamber is kept constant by the confining 

stainless ring and the pistons. The inner diameter 

of the cell chamber is 70 mm. The preparation of 

specimens is described in the following section. 

After the specimen has been mounted in the 

apparatus, distilled water from the tank was added 

from the bottom of the specimen. The vertical 

swelling pressure was measured by the load 

transducer which was connected to a logging 

device and a computer. The logging was started 

the moment water came out at the top of the 

sample. It took a few minutes to fill the acryl cell 

completely with water up to the same level which 

was seen in the water tank. In this period, a 

constant water flow through the sample was 

expected. When the water level inside the acryl 

cell had reached the same level which was in the 

water tank, the flow through the sample stopped 

and the only water which was entering the 

specimen was the water which was sucked into it 

by the force of the pellets. When the value of 

swelling pressure reached steady-state condition 

the test was terminated. In this study test periods

vary from approximately 4320 to 17280 minutes. 

3.2.2. Sample preparation 

  The samples are prepared as: i) unsorted samples 

and ii) sorted samples.   

  The grain size distribution of the unsorted samples is described in Appendix III. Samples 

wereprepared and packed into the confined cell chamber. The mass of each bentonite sample was 

noted. The pore space between the individual pellets was filled with water. Based on that, the bulk 

density for the whole pellet/water system was calculated. The way the samples were packed plays 

an important role. In some of the cases the confined cell chamber was filled with water before 

adding the sample. The pellets were then dropped down into the cell chamber. The transport 

Figure 3.1: Schematic drawing of swelling-pressure 
apparatus 
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through the water column resulted in a more 

loosely packed depositional pattern of the 

bentonite pellets. Those samples also show the 

lowest bulk densities. In the other cases, 

bentonite pellets was dropped and purred 

around in the cell chamber in order to get 

closely packed samples with higher bulk 

densities than the previously mentioned.  

  A schematic composition of the sample is 

shown in Figure 3.2. It is important to note that 

the overall ratio of montmorillonite (swelling 

clay minerals) in the final sample is 

remarkably lower than in the pellets described 

previously.  

  In the second set of tests the samples were sorted according to the intervals described in Table 3.1. 

It is seen that there is a general relationship between pellet sizes (with respect to Feret diameter, dF) 

and the bulk density of the sample. The tightest packing is seen in samples which consist of pellets 

from the smallest size fraction. This packing 

also shows the highest bulk densities. The 

process of packing the bentonite pellets into the 

cell chamber is similar to that of the unsorted 

samples.  

  There is a clear tendency that the unsorted 

samples show higher bulk densities than the 

sorted samples. This is not surprising because 

all the smallest pellets and debris which is found and unsorted sample will fill up a bigger ratio of 

the voids between the bigger pellets then in a sorted sample.  

3.3. Results 

3.3.1.  Theoretical considerations 

  From all the data points obtained during the tests, it can be seen that the increase in swelling 

pressure is very fast the first 10 minutes which is approximately the time in which it take to fill up

the acryl cylinder to the top of the sample. The curves describing the swelling pressure (kPa) versus 

the time (minutes) for the samples can be approximated by a hyperbola in Eq. (3.1). 

���� � ����
���������     (3.1) 

where t is the time (min) from the start of the experiment, t0 is the time it takes to fill up the acryl 

cylinder (t0 = 10 minuts), σ(t) is the swelling pressure at time t whereas a and b are fitting constants 

Figure 3.2: Example of the schematic composition of a 
sample. The values mentioned in the figure, varies from 
sample to samples.  

Table 3.1: Show the size distribution with respect to 
mass. 

Size interval (cm) Mass [%] 
0.0 < dF ≤ 1.0 12.75 
1.0 < dF ≤ 1.5 34.74 
1.5 < dF ≤ 2.0 43.37 
2.0 < dF ≤ 2.5 9.15 
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(see Paper II). It can be seen that the curve and equation fits very well with the experimental 

swelling data. Figures 3.3-3.10 show the approximations for four different samples, all with a 

different initial bulk density. The model used to fit the swelling pressure vs. time, is well correlated 

with the experimental data since the regression coefficients (r) estimated in each test are close to 1. 

The maximum swelling pressure is estimated from the equation of the hyperbola and is expressed in 

the following way: 

���	 �  lim�
∞
���� �  lim�
∞
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  Komine and Ogata (1994, 1996a, 1999) have used the same approximation, but only for swelling 

strain. In this article it is shown that with small modifications, the same approximation is applicable 

in determination of the swelling pressure of sealing materials.  

3.3.2.  Swelling pressure for unsorted samples 

  Within the test series of unsorted samples, seven tests have been executed. The values of the bulk 

densities are within the range of 1.437 g/cm3 to 1.556 g/cm3. Figures 3.3-3.6. show the relationship 

between swelling pressure and time for four representative unsorted samples with different initial 

bulk densities. 

Figure 3.3: Curve of swelling pressure vs. time 
for unsorted sample with initial bulk density of 
1.437 g/cm3
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Figure 3.4: Curve of swelling pressure vs. time 
for unsorted sample with initial bulk density of 
1.466 g/cm3. 
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Figure 3.5: Curve of swelling pressure vs. time 
for unsorted sample with initial bulk density of 
1.525g/cm3. 
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Figure 3.6: Curve of swelling pressure vs. time 
for unsorted sample with initial bulk density of 
1.556 g/cm3. 
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3.3.3.  Swelling pressure for sorted samples 

  Within the test series of unsorted samples, seven tests have been executed. The values of the bulk 

densities are within the range of 1.432 g/cm3 to 1.577 g/cm3. Figures 3.7-3.10 show the 

relationship between swelling pressure and time for four representative unsorted samples with 

different initial bulk densities.

3.3.4.  Maximum swelling pressure

  Figure 3.11 shows the relationship between the maximum swelling pressure and the initial bulk 

density of the sample. In the cases where the swelling pressure of the unsorted and sorted samples 

were tested, it was found that the maximum swelling pressure depends on the initial bulk density of 

the sample and the amount of montmorillonite.  

Figure 3.7: Curve of swelling pressure vs. time 
for sorted sample with initial bulk density of 
1.432 g/cm3.  
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Figure 3.8: Curve of swelling pressure vs. time 
for sorted sample with initial bulk density of 
1.487 g/cm3.  
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Figure 3.9:  Curve of swelling pressure vs. time 
for sorted sample with initial bulk density of 1.53
g/cm3.  
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Figure 3.10: Curve of swelling pressure vs. time 
for sorted sample with initial bulk density of 
1.577 g/cm3.  
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  The same trend is seen for both the unsorted 

samples and the sorted samples. The maximum 

swelling pressure increases with increasing 

bulk density and montmorillonite content of the 

samples. Both the unsorted samples and the 

sorted samples can be expressed as power 

functions.

  This relationship can be described in the 

following way: 

�
��	 � �� � 
 
��
�


�� 
�
��

     (3.3) 

where SPmax is the maximal swelling pressure, Ss is the maximal obtainable swelling pressure at 

the maximum clay density (the value has been shown in (Komine and Ogata, 2003), Dw is the 

density of water, Db is the density of homogeneous bentonite (2.06 g/cm3), Ds is the bulk density of 

sample, and a is the exponent which changes in value from the sorted to the unsorted samples (see 

Table 3.2). 

  The models which are used to fit the maximum swelling pressure vs. time for the sorted and the 

unsorted samples are well correlated with the experimental data, since the regression coefficients (r) 

estimated in each test are close to 1. Those results support the assumption that the data from the 

unsorted and the sorted sample in fact can be divided into two groups.

  Many researchers have performed similar test and 

obtained the same trend on the maximum swelling 

pressure vs. bulk density curve (Agus and Schanz, 2008; 

Komine et al. 2009; Komine and Ogata, 1994, 1996, 

2003, 2004) as in this paper. There seems to be a general 

agreement that the value of maximum swelling pressure 

is closely related to the montmorillonite content in the 

sample.  

3.4. Concluding Remarks  

  From the data points (Figures 3.3-3.10) it can be seen that the increase in pressure is very fast 

within the first 10 minutes which approximate the time it takes to fill up the acryl cylinder to the top 

of the sample (Figure 3.1). In this period, water is flowing through the sample relatively fast and 

increases the pressure in the sample. When the water level in the acryl cell has increased above the 

top of the cylinder, a counter pressure will build up and hinder the same water flow through the 

sample. When the water level in the acryl cylinder has reached the same level as in the water supply 

tank, the flow through the sample will stop completely. At this point the only water which enters the 

Table 3.2: show how the exponent a 

changes from the sorted to the unsorted 
samples 

Samples a 

Sorted 5.8 
Unsorted 6.3 

Figure 3.11: Exponential relationship between initial 
bulk density and the maximum swelling pressure for 
sorted- and unsorted samples.
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sample is the water which is dragged or sucked into the 

cell by the osmotic forces from the clay itself. 

  The trend on the density vs. swelling pressure curve 

(Figure 3.11), which is applicable for both the sorted 

samples and the unsorted samples, is easily explained. 

As can be seen, the pressure increases accelerate with 

increasing bulk densities. In the cases with relatively 

low bulk density samples, it must be expected that the 

ratio of cavities is larger. The swelling potential will 

first reach its maximum in the moment where the gaps 

have been filled out (Figure 3.12). Because of the 

relatively larger ratio of cavities in the relatively low 

bulk density samples, a larger proportion of the 

swelling potential will be lost by filling out the cavities. 

In the samples with relatively high bulk densities, the opposite is the case. Here we have a relatively 

small ratio of voids which means that a larger amount of the swelling potential will actually 

contribute to the overall swelling pressure.  

  As can be seen from Figure 3.11, the maximum swelling pressure for sorted samples is higher than 

the maximum swelling pressure for unsorted samples. Two things are of great importance in this 

matter: Firstly the depositional pattern, or the arrangement of the pellets; secondly the permeability

of the sample. 

  In a sorted sample it must be expected that the overall pore space between the pellets show a great 

deal of homogeneity regarding volume and shape. Each pellet will be part of the lattice which 

contributes to the overall pressure increase within the swelling process.

  The first column in Figure 3.13 shows an ideal 2-D 

arrangement of a sorted sample. The argumentation is 

believed to be applicable for a 3-D arrangement as well. 

At t=0 the force by which the pellets act on each other at 

their contact points is shown. It is clear that this force is 

relatively small before the swelling starts. At this stage 

the contact forces are only due to the weight of the 

pellets, i.e. gravity. When the pellets get into contact with 

water and the swelling starts, the forces at the contact 

points increase successively with time (t=1 in Figure 

3.13). In this arrangement, all the pellets play an active 

part in the swelling pressure. The volume and the shape of 

the pore space in an unsorted sample are less 

homogeneous. Due to the great variation in grain size, 

smaller grains may be arranged in a way, between larger 

pellets, so that they only have very few contact points 

with the surrounding pellets. The second column in 

Figure 3.16 shows this arrangement. The small pellets 

Figure 3.12: Bentonite/void ratio for samples 
with relative low initial bulk density (1), and 
for samples with relative high initial bulk 
density (2).

Figure 3.13. Ideal 2-D arrangement of 
sorted- and unsorted samples.  
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that are in this way not initially part of the main structure will not play any active part in the 

contribution to the overall swelling pressure. Another thing which has to be considered is the 

amount of water available for the swelling process. Consider two samples, one sorted and one 

unsorted, but with the same initial bulk density. The two samples have the exact same initial amount 

of water available, before swelling starts. In the case of the unsorted sample (Figure 3.13), a large 

proportion of the water available in the pore space will be absorbed by the small fragments/pellets 

which do not contribute to the overall swelling pressure. This means that the amount of water 

available for the pellets which actually contribute to the swelling pressure is relatively limited 

compared to the sorted samples. 

  In order to increase the swelling pressure, water must be dragged or sucked into the sample. By 

looking at Figure 3.16, it is intuitively obvious that the permeability is higher in the sorted samples. 

This fact is well documented and reported by Okagbue (1995). This means that a larger amount of 

water can be transported into the middle part of the sample. The unsorted samples contain a lot of 

small fragments which mean that they have a much larger surface area compared to the sorted 

sample. The absorption of water will happen much faster in the unsorted samples as long water is 

available. In the middle part of the sample, the only water available is the water in the voids 

between the pellets/fragments.  

  In the case of unsorted samples it can be expected that the areas around the water inlet will expand

relatively fast and thereby hinder the transport of water into the middle part of the sample. Based on

that, a much more homogenous water distribution can be expected in the sorted sample. As 

mentioned previously, there seems to be a general agreement among many researchers that the 

value of maximum swelling pressure is closely related to the montmorillonite content in the sample. 

This is only true for the homogeneous samples. In the case of heterogeneous samples (clay, water 

systems) we have showed that the nature of grain distribution and the depositional pattern plays a 

much more important role than expected.

  The following conclusions were drawn from this experimental study: 

• It was showed that the approximation developed by Komine and Ogata (1994), to estimate 

swelling strain is also applicable in the determination of the swelling pressure of sealing 

materials.  

• A mathematical model has been derived to calculate the maximum swelling pressure based 

on the initial bulk density of a sample. The maximum swelling pressure increases as a power 

function with increasing initial dry density for both sorted and unsorted samples. The shape 

of the curve is explained by the pellet/void ratio which increases toward increasing bulk 

densities. 

• There is clear evidence that the swelling pressure of the sorted samples is approximately 10-

12 % higher than the unsorted samples. By comparing the sorted samples and the unsorted 

samples it was possible to demonstrate that the amount of montmorillonite has a minor 

impact on the swelling pressure compared to the layering pattern of the pellets/fragments. 

• It was shown that the sorted samples have a more effective layering which has a pronounced 

effect regarding swelling pressure.  



�
���������

�
� �

                              

  

Part 2 

Evaluation of 
computed 
tomography as a 
tool in soil science 

In soil science CT scanning 

technihques have previously been 

used to evaluate the density in soil 

volumes. Anderson et al. (1990 and 

1988), Petrovich et al. (1982), Pires et 

al. (2002) and Van Geet et al. (2005) 

In this part the main focus will be on 
how to modify existing methods. 

Chapter 3: Improved methods for 
qualitative analysis of bulk density with 
the use of computed tomography (CT) 
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Chapter 4 

Improved methods for qualitative analysis 
of bulk density with the use of CT   

4.1. Introduction 

  To evaluate the properties of bentonite plugs, x-ray computed tomography (CT) will be used. A 

new set of algorithms is developed to convert CT numbers (Hounsfield�s Units, HU) into reliable 

densities.   

  As stated previously Anderson et al. (1990, 1988) have worked with the evaluation of constructed 

and natural soil macropores using X-ray computed tomography. Among other things they refer to 

Petrovich et al. (1982) who claim that the mean bulk density in a soil core is linearly related to the

mean X-ray attenuation coefficient of the core. To calibrate the CT scanner for bulk density 

determination they have used packed soil cores with a known density. Pires et al. (2002) have used 

gamma-ray computed tomography to characterize soil surface sealing. In this paper it is also 

claimed that the differences in the attenuation coefficients correspond directly to the differences in

soil density at each point. The calibration of the tomograph was obtained through the correlation 

between linear attenuation coefficients (m) of different materials with known densities.  

  Van Geet et al. (2005) have worked with the use of microfocus X-ray computed tomography in 

characterising the hydration of a clay pellet/powder mixture. For a quantitative analysis of the 

images, real density images would be much easier to interpret. To transform the CT values into real 

densities they go a step further. The measured linear attenuation coefficient depends on the density 

(q) and atomic number (Z) of the object and on the used X-ray energy (E) as: 

� � � 
� � � ��.�

��.�
�      (4.1) 
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with a and b instrument dependent parameters (Rutherford et al., 1976a,b; Avrin et al., 1978; Pullan 

et al., 1981; Lehmann et al., 1981; Stonestrom et al., 1981; Curry et al., 1990; Gingold and 

Hasegawa, 1992). 

  In the following a new method to find the average bulk density of a small area on a CT image is 

proposed. This method is applicable for clay/water systems in the density range from 1.0 to 2.1 

g/cm3.  

4.2. Methodology 

4.2.1. Preparation of samples

  A cylindrical PVC pipe (55 mm inner diameter and 250 mm height) with perforated seal at both 

ends is used. The density of PVC is 1.39 g/cm3. The first step was to fill approximately 25 mm 

well-sorted gravel into the bottom of the cell in order to achieve a good hydraulic contact with the 

inner part of the cell. Unsorted pellets are then dropped into the middle part of the cell. The grain 

size distribution was described in more detail in appendix III. Finally, well sorted gravel is filled 

into the top 25 mm of the cylinder. Figure 4.1. show a CT-scan of the a sample. The sample has 

been prepared so that the bulk density in the middle part of the sample is approximately 1.5 g/cm3

when the experiment starts.  In 

this calculation it is assumed that 

the average density of the pellets 

is very close to 2.0 g/cm3 and 

that the voids between the pellets 

are filled with water. The 

porosity of the sample before 

water is added is approximately 

48 %.  

  To simulate the real conditions in a borehole the pellets are only exposed to water from the ends of

the cylinder and the water available in the pore space. The swelling of the pellet is confined in the 

sense that they can only expand into the water-filled pore space between the pellets. Water is free to

move into the sample from both ends and not from the sides.  

4.2.2. Computed tomography and scanning system 

  To examine the hydration characteristics of bentonite pellets in a confined space and with a limited

amount of water available, the samples are scanned with a high-resolution X-ray CT system. 

X-ray CT is based on the interaction process that occurs when this type of radiation penetrates 

different materials (Wang et al., 1975). When an X-ray beam passes a homogeneous material of 

thickness x (cm), the photons are transmitted according to the Beer�Lambert law: 

I  =  I0 exp(-µx) = I0 exp(-µ*
ρx)    (4.2) 

Figure 4.1:  CT-scan of a sample. Course grained gravel enclose the 
bentonite sample in the ends. A high permeability of the gravel 
ensures a sufficient water supply from the ends.  
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where I0 and I are, respectively, the rates of the incident and the emerging photon beams, µ (cm-1) is 

the linear attenuation coefficient that measures the photon absorption or scatter probability per unit

length while interacting within the sample, (µ*
= µ/ρ) (cm2 g-1) is the mass attenuation coefficient, 

and ρ (g cm-3) is the density of the material penetrated. 

  Each voxel in the reconstructed image corresponds to a point in the field of view, and the pixel 

value directly reflects the linear attenuation coefficient µ (cm-1) in that point. In order to compensate 

for variation in photon energy spectra between various CT scanners, the voxel values are usually 

normalized in Hounsfield units and reported as CT numbers H: 

H = 1000 (µ -  µwater)/ µwater     (4.3) 

  Variation in H correspond to differences in the attenuation coefficients and, consequently, to 

differences in soil density. It is therefore possible to obtain images that present the density 

distribution of the sample within the volume investigated (Bushberg et al. 2001; Pires et al. 2002). 

  The CT number associated with each point of 

the soil matrix is associated with a grey level 

and visualized. Usually white regions 

correspond to regions with higher CT numbers 

and dark regions to lower values. Variation in 

gray levels correspond to differences in the 

attenuation coefficients and consequently, to 

differences in soil density at each point. 

The scanner used for this study is a clinical 

Biograph Truepoint 64 manufactured by 

Siemens. The scans are acquired as spiral CT at 

120 kV tube voltage and an exposure of 300 

mAs. The data are reconstructed using filtered 

back projection on a 512 x 512 matrix with 0.39 

mm pixel size and a slice thickness of 0.6 mm 

(see Photo 4.1). 

4.3. Density calibration 

  For the quantitative analysis of the images, real density images would be much easier to interpret. 

It is therefore of great importance to recalculate the CT numbers which are retrieved from the image 

into reliable densities. For this purpose, however, an additional assumption is needed, since a single 

CT scan does not in general allow determining the density and elemental composition 

independently. 

Photo 4.1. The scanner used for this study is a clinical 
Biograph Truepoint 64 manufactured by Siemens  
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  Hydration of the bentonite samples are assumed to take place in a confined environment where the 

only expansion possible for the bentonite pellet is into the water filled pore space. An unlimited 

water supply is available from the ends of the sample.  

  As mentioned in Appendix III, the dry density of the pellet, ρpellet, has been measured to 2.06 

g/cm3. When packed into a test tube with a fixed volume and an air filled pore space, the bulk 

density, ρdry, has been measured to 1.06 g/cm3. During hydration, the air in the pore space is 

replaced by water which increases the bulk density, ρwet, of the sample to 1.5 g/cm3. At this stage 

the relative weights of the water, wwater, and the pellets, wpellets, are 0.314 and 0.686 respectively. 

During the hydration process these numbers will change as a function of water supply over time.  

To express the change in bulk density as a function of water supply, the following equation is used: 

���� �  ���� �1 � ��	
��

�
��
�     (4.4) 

In order to find the relative weight of the dry part of the sample, wdry, which consists of bentonite 

pellets (clay), the following expression is used: 

���� � ���� �
�
����� ���� � 
�

������� �������   (4.5) 

The first step is to substitute eq. (4.3) into eq. (4.4).   

���� �  ���� �1 � ��	
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����� ����  �  
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������� �������    (4.6) 

  In the second step, the expression wwater + wdry = 1 is rearranged into wwater = 1 - wdry and then 

substituted into Eq. (4.6). The following expression then appears:  

���� �  ���� �1 � ���
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�
������� �1 � ������    (4.7) 

By rearranging Eq. (4.7) through the following steps: 
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      (4.8) 

  

  The linear attenuation coefficient µwet of the sample is derived from rearranging Eq. (4.3) to the 

following expression:  

���� �  ������ 
 #
�$$$ � 1�     (4.9) 

  By substituting Eq. (4.8) into Eq. (4.9) and using wdry in Eq. (4.4), a direct method is obtained to 

convert CT numbers into densities. 

  One condition for performing this calculation, however, is that the effective energy of the x-ray 

beam is known, since all attenuation coefficients are energy dependent. For this purpose dry 

bentonite pellets are CT scanned and the CT number for massive bentonite was determined to be 

1540. Assuming a number of different energies in the range 60-80 keV, this CT number is 

converted to linear attenuation coefficients that are compared to mass attenuation coefficients found 

for dry bentonite using mineral composition (Snyde & Bish) and tabulated attenuation data (NIST 

X-ray attenuation database). An effective energy of 76 keV is found and used subsequently for 

determining the density of the hydrogenated samples. 

4.4. Further work 

  In this work bulk densities for whole samples have been determined from single CT images. This 

method is based on the assumption that hydration takes place in a confined volume, thereby 

allowing to setup a relationship between bulk density and water content. This relationship is 

necessary, since measurements of attenuation coefficients alone is not sufficient for independent 

determination of density and elemental composition. A natural development of the method would 

be to use dual energy CT, where the sample is CT scanned at two different tube voltages. This 

approach makes it possible to determine the density and relative water content independently at any 

position in the sample. 
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Part 3 

Homogenization 
and hydraulic 
conductivity in a 
bentonite seal 

There are two focus points in this part. 
The first is how the hydration of a 
bentonite seal affects the evolution of 
macroporosity and homogenization 
process. The second is how the 
change in pressure gradient through a 
bentonite plug affects the hydraulic 
conductivity  

Chapter 4: Evaluation of macro- 
porosity and homogenization of a 
bentonite seal 

Chapter 5: Evaluation of hydraulic 
conductivity and the creation of 
channel systems 
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Chapter 5 

Evaluation of macroporosity and 
homogenization of a bentonite seal  

5.1. Introduction  

  When the bentonite pellets are deposited in the right place and get into contact with water or 

drilling mud, the swelling process starts. The pellets are confined in the horizontal directions by the 

filter tube and the geological formation and in the vertical direction by filter sand/gravel or other 

bentonite pellets. The bentonite pellets have only a limited possibility to expand into the pore space

between the pellets which was created during settling. At this point the density variation throughout 

the seal is very high.  

  To evaluate the change in macroporosity and the development of the density contrast over time 

within a bentonite seal, x-ray computed tomography (CT) will be used. The model to convert CT 

numbers into bulk densities, which was purposed in chapter 3, is used to evaluate the 

homogenization process. 

  Two things will be addressed in this chapter. The first thing is to evaluate the change in 

macroporosity as a function of hydration over time. The second thing is to investigate how the 

hydration process affects the homogenization of a pellet/water system over time. In addition to this, 

the overall density change over time will be investigated. The methodology has been discussed in 

the previous chapter and will not be further treated here. 
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5.2. Macroporosity 

5.2.1. Hydration scheme 

  The hydration of the sample is performed by 

submerging each cylinder into a pool of water. 

The cylinder is flipped around several times in 

order to let all the air in the voids be replaced by 

water. The water is not forced into the sample so 

the only force which has an influence of the 

hydration (water going into the sample) is the 

suction force of the bentonite clay itself.  

  The ten samples are submerged for different 

amounts of time (Table 5.1.). After 27765 minutes 

(which corresponds to approximately 20 days) all 

the ten samples are scanned at approximately the 

same time.  

5.2.2. Digital Image Processing (DIA) and analysis 

  The samples where then CT scanned according to 

the method described in Chapter 3. One scan was 

made for each of the ten samples mentioned 

previously.  

  In order to make a quantitative evaluation of the

porosity of the samples, ten slices from each 

sample are analysed. In the CT data set, the slice 

thickness is 0.6 mm. It is only every fifth slice 

which is picked out for further investigation. This

means that there is 3 mm between each analysed 

section. The total height of the analysed part of the 

sample is 27 mm.  

  In order to simulate a real bentonite plug in a 

borehole, the middle part of the sample is analysed

(Figure 5.1.) so that the water intake from the ends

only has a minor influence on the analysed part. A 

total number of 100 slices is analysed using digital 

image analysis (DIA). Figure 5.2 shows the single 

steps during the image processing using a 

representative 2-D grey scale image of bentonite 

pellets during the hydration process. Macropores 

are clearly visible (black spots). The second step in 

the image processing procedure (2) is to mark the 

Table 5.1: Duration of exposure to water for 
each sample before CT scanning. 

Sample no. Time (min) 

1 27765 

2 24898 

3 19105 

4 14773 

5 9042 

6 4672 

7 2925 

8 1175 

9 535 

10 210 

      

Figure 5.1:  Position and orientation of slices 
within the sample. Note the different scale in 
the vertical and horizontal direction. 
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region of interest (ROI) and clear the area outside

the ROI. In image 3, a simple brightness/contrast 

adjustment is performed. The colour mode which 

is used is a greyscale (0-255). The lower value is 

set to 0 and the upper value is set to 25. The next

step was to make an 8-bit binarization (4) followed

by an area analysis. Both the amount of pores, pore

size and the total size of the area was measured. 

Image processing, analysis and measurement are 

carried out using the free software, ImageJ ver. 

1.43s. 

  Each slice will be approximated to a cylindrical 

body with a given volume. The area of ROI is in 

all the image analyses 3849 mm2. With a thickness 

of each slice of 0.6 mm, the volume is 2309 mm3. 

The total area of voids was found by using DIA. It 

will be assumed that this area is the same through 

the slice (0.6 mm). The volume of voids can then 

be calculated and from this result it is a trivial task 

to find the porosity by using the following 

equation: 

Porosity (%) = (Volumevoids/Volumetotal)*100  (5.1) 

This approach is used for each of the ten analysed slices in every sample, and an average value is 

found.

5.2.3. Results 

  Table 5.2. shows the results of the digital 

image analysis of the ten scanned samples. As 

can be seen from the table, three parameters are 

listed: 1) average number of macropores per 

slice; 2) average size of macropores; 3) total 

area covered by macro pores. Each value in the 

table represents an average value of the ten 

slices mentioned previously.  

  First of all it should be noted that there is no 

significant relationship between the amount of 

pores and time. On the other hand, it is seen 

that there is a very clear relationship between 

Figure 5.2: Steps in image processing and 
analysis process: 1) 2-D greyscale image of 
bentonite pellets; 2) identification of the 
region of interest; 3) brightness/contrast 
adjustment; 4) 8-bit binarization followed by 
area analysis. 

Table 5.2:  Characterization of macropores. 

Sample 
no. 

Time 
(min) 

Average 
number of 

macropores 
per slice 

Average 
size of 

macropores   
(mm2)

Total area 
(mm2) 

1 27765 22.2 1.27 27.69 
2 24898 25.9 1.22 31.29 
3 19105 27.5 1.03 28.25 
4 14773 26.2 1.46 36.13 
5 9042 24.7 1.02 24.77 
6 4672 26.4 2.42 59.01 
7 2925 25.3 2.12 52.42 
8 1175 29.5 2.86 83.44 
9 535 31.3 3.43 106.32 
10 210 27.5 5.34 140.76 
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the size of pores and time. The less time the 

sample has been exposed to water the bigger 

the average size of macropores. This means 

that the pore pressure increases with time. 

The total area covered by macro pores shows 

the same trend. It is important to note that 

the total area decreases in size until 

approximately 9000 min. After this point, 

the values show relativly constant values. 

The average porosity of the samples 1-10 is 

calculated based on the description given in 

subsection 4.2.3.  

  Figure 5.3 shows a clear relationship 

between the time where the sample is 

exposed to water and the porosity. A 

mathematical model which describes this 

relationship is found and can be represented 

by:  

���� �  �$ · 
����
�� ���

    (5.2) 

where t is the time (min), t0 is the initial time (in this case t0 = 0.115 minuts), n(t) is the 

macroporosity at time t, n0 is the macroporosity before swelling occur, b is a fitting constants (in 

this case it has been approximated to 0.345). The mathematical model used to fit the time vs. 

porosity, is well correlated with the experimental data with a regression coefficient (r) 0.997.  

  The macroporosity before the pellets start to swell, n0 (at t = 0) has been estimated to 

approximately 50%. After a period of 210 minutes, the porosity has decreased significantly to less 

than 4%. This pattern lasts the first two days after which the slope of the curve becomes gentler and 

after approximately one week it has reached a level of approximately 1%. Based on the CT values 

of the macro porosity in the middle part of the sample, it can be seen that the pore space is air filled. 

This indicates that a limited amount of air is present at the surface area of the pellets during 

settlement.  

  During the swelling process, the air bubbles gather in the water-filled pore space. During this 

period, the amount of macropores does not change significantly (Table 5.2.). Only the size of the 

pores decreases, which means that the air captured in the macropores experience a significant 

pressure increase. 

      

       

Figure 5.3: Relationship between macroporosity and the time 
over which the sample has been exposed to water. 
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5.3. Homogenization  

5.3.1. Methodology 

See Subsection 4.2.2 and section 4.3 

5.3.2. Quantitative visualization

  Figure 5.4. illustrates the changes in the degree of hydration over time by the visualization of a 

vertical slice through the center of the cylinder. The black spots are macropores. Based on the CT 

values it can be seen that these macropores are air filled and no water is present.  

  The sizes of the pores decrease over time. The colour code is directly related to density. The dark 

purple colour indicates densities of approximately 2.0 g/cm3 which is the dry density of bentonite 

pellets.  The orange/red color (density around 1.1 g/cm3) indicates clay gel. The white regions 

indicate gravel which has a significantly higher density than hydrated bentonite clay.   

                         

Figure 5.4: Recomputed vertical slices through the center of samples at four different stages. The figure illustrates the 
change in hydration and homogenization over time. On top of each vertical slice, the time by which the specific 
sample has been exposed to water is written. The black regions indicate air filled macro pores and the white regions 
indicate gravel which has a significantly higher density than hydrated bentonite clay.  
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  By comparing the four stages in Figure 5.4, it is clearly shown that all the pellets have a decreased 

density as a consequence of swelling. In the dry stage, the mean densities of the pellets are 

approximately 2.0 g/cm3 (the geochemical analysis indicates a wide range of components, all with 

different densities). After the first stage of hydration (after 210 min) the pellets are clearly outlined. 

However, a beginning gradation in color within the outline of each pellet is seen, which means that 

the pellet has started to hydrate leading to a decrease in density. As mentioned previously, the 

porosity of a sample (with different degree of compaction) before water has interacted with the clay 

mineral, varies from approximately 45% to 55%.  

  By inspection of Figure 5.3, it can be seen that the porosity after 210 min has decreased to 3.7%. 

At this stage, much of the pore space is occupied with clay gel. In general a great variation in 

densities throughout the sample is seen. After almost 1 day (1175 min) the variation in densities has 

decreased and a larger degree of homogenization is seen. The porosity has decreased to 2%. After 

almost 7 days (9042 min) it is still possible to recognize the overall outline of the pellets. However, 

the border is much more diffuse compared with the sample which has only been exposed to water 

for a short period of time.  

  One very important thing to note is the degree 

of homogenization in the sample which has been 

exposed to water more than 9000 min.  It is seen 

that there is almost no density contrast in the 

sample very close to the water inlet. On the 

contrary, a larger density contrast is seen in the 

middle of the sample. This could indicate that the 

water supply into the middle of the sample has 

not been sufficient.  

5.3.3. Quantitative density variations 

  The degree of homogenization of the middle 

part of the sample can be expressed as a function 

of standard deviation of the density contrast 

through a profile versus the time. A profile from 

the centre of one pellet to the centre of another 

pellet is made. Figure 5.5 illustrates how the 

density variation through the centre of two pellets

is expressed (profile A � A´). The greyscale 

value which is extracted from this profile is 

converted into density values according to the 

method described in Section 3.5. In this example 

the CT image has been chosen from a sample 

which only has been exposed to water for a 

period of 210 minutes.  

Figure 5.5: Example of a density profile (A � A´) 
between two pellets which has been exposed to water
for a period of 210 minutes. The light grey area 
indicates relatively high densities and darker grey areas 
indicate relatively low densities. From the graph it is 
clearly seen how the densities vary within the sample. 
At the center of the pellets, the density is still close to 
2.0 g/cm3.    
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  The light grey area indicates relatively 

high densities and darker grey areas 

indicate relatively low densities. From the 

graph it is clearly seen how the densities 

vary without the sample. At this stage the 

density at the centre of the pellets has 

decreased from 2.06 g/cm3 (dry density) to 

approximately 1.85 g/cm3. The pore space 

between the pellets (dark grey regions), 

which was filled with water before the 

swelling started, has increased its density 

from 1.0 g/cm3 to approximately 1.1 

g/cm3.  

  Density profiles have been constructed in 

this way for each of the samples 1-10. 

Each profile contains approximately 50 

data points and based on that the standard 

deviation has been calculated.  From 

Figure 5.6 it is evident that the biggest part 

of the homogenization takes place during 

the first day. The reason for that is that the 

density contrast between the pellet and the 

surrounding water is greatest in the 

beginning. Over time this contrast 

decreases in size, which leads to a drop in 

the velocity of the process of 

homogenization.  

5.3.4. Bulk densities 

  The change in the overall bulk density of the sealing plug has been investigated. All the pixel 

values (in HU units) have been investigated in a volume of approximately 115.470 mm3. With a 

pixel size of 0.39 mm it gives a total amount of data points of approximately 2*106 pixels. 

Histograms have been constructed based on the densities. Based on Eq. (3.5), (3.9) and (3.10) 

which were derived in Section 3.5, the HU units have been converted into bulk densities.  Figure 

5.7 shows the histograms for the same four samples that were shown in Figure 4.4. By examining 

the histograms more closely, it is obvious that the diversity in densities is much bigger when 

samples only have been exposed to water for a short period of time. Over time the width of the 

histogram becomes more narrow, which indicates a higher degree of homogenization. This also 

means an absence of the high-density area. This observation is supported by a closer visual 

inspection of Figure 5.4. Here it is clear to see the absence of the high-density area when the sample

has been exposed to water for a period of 1175 minutes.   

Figure 5.6: Variation in density within the sample expressed 
as standard deviation in pixel values in a profile through the 
sample. A marked decrease in values in the first day is seen, 
which means a high degree of homogenization is happening 
in this time window.  
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  Histograms for all the ten samples have been evaluated in details and it can be seen that despite the 

absence of high density areas, the overall bulk density of the samples increase over time. An 

average bulk density versus time for all the 10 samples is shown on Figure 5.8. There is a clear 

relationship between the time and the increase of bulk density for the bentonite seal. A 

mathematical model which describes this 

relationship is found and can be represented 

by:  

���� �  �%&' � ��%&' � �$� · 
(����)
�� ���

 (5.3) 

where t is the time (min), t0 is the initial time 

(in this case t0 = 0.11 min), b(t) is the bulk 

density at time t. binf is the bulk density at 

infinit time, b0 is the initial bulk density of the 

water/clays system, a is a fitting constants (in 

this case it has been approximated to 0.0051). 

The mathematical model used to fit the time 

vs. bulk density is well correlated with the 

experimental with a regression coefficient (r) 

of 0.998. 

Figure 5.7: Histograms for the same four samples that were shown in Figure 4.4. 
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Figure 5.8:  Average bulk density versus time for all the 10 
samples. 
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5.4. Conclusion 

  In this work, bulk densities for whole samples have been determined from single CT images. This 

method is based on the assumption that hydration takes place in a confined volume, thereby 

allowing to setup a relationship between bulk density and water content. This relationship is 

necessary, since measurements of attenuation coefficients alone is not sufficient for independent 

determination of density and elemental composition. A natural development of the method would 

be to use dual energy CT, where the sample is CT scanned at two different tube voltages. This 

approach makes it possible to determine the density and relative water content independently at any 

position in the sample. 
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Chapter 6 

Evaluation of hydraulic conductivity and 
channel systems  

6.1. Introduction 

  When bentonite pellets are deposited during natural settlement, the bulk porosity is approximately 

50% before the swelling process goes into action. In this case, the hydraulic conductivity through 

the bentonite seal must be expected to be very high. Due to the osmotic force, the hydration process 

of the bentonite pellets gets more pronounced over time, which means that the bentonite pellets will 

expand into the cavities. During this process two things can happen: i) If the waterflow, Q, through 

the bentonite plug is very limited, the expanding clay particles will occupy the free porespace, 

which means that the ratio of free porespace will decrease and consequently the hydraulic 

conductivity will decrease as well; ii) if the waterflow through the bentonite plug is sufficiently 

high, the small clay particles which are 

loosened and liberated from the surface of the 

bentonite pellet, during the hydration process, 

will be carried away and will not contribute to 

overall expansion. Consequently an erosion of 

the pellets will take place, which means that the 

porespace will remain open. 

  To cause this situatiation two potential 

scenarios are shown in Figure 6.1. During 

construction of the groundwater well, it is 

common practice to pump up water from the 

groundwater reservoir in order to clean up the 

filter section before the bentonite seal is fully 

evolved.  

  This means that the water colomn (drilling 

fluid) which is standing in the well is forced Figure 6.1: Show the two scenarious.  
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down and through the bentonite seal because there is no counterpressure in the upward direction 

from the groundwater reservoir.  

  Another potential scenario which could cause an upward pressure gradient is when  a high 

pressure difference is seen between the primary and secondary groundwater reservoir. In this paper 

the hydraulic conductivity, k, of the most commonly used bentonite sealing in Denmark is studied. 

  The main focus is to determine the hydraulic conductivity, k for sealing intervals exposed to 

different gradients. In addition to that, the development of channel systems will be addressed. 

Finally the self sealing potential of a low pressure sample will be discussed. To make a quantitative 

evaluation of the development of channel systems in a bentonite seal, x-ray computed tomography 

(CT) will be used. The model to convert CT numbers into bulk densities, which was purposed in 

chapter 3, is used to evaluate the homogenization process. Further information about the 

methodology is given in subsection 3.2.1. and 4.2.2. 

6.2. Hydraulic Conductivity 

6.2.1. Theoretical considerations

  In this study, the hydraulic conductivity, k, through a bentonite seal has been estimated by using 

the law of Darcy. 

! � *
+ " ��∆- ∆./ #    (6.1) 

where ∆h
/∆l is the hydraulic gradient. ∆h is the 

difference in hydraulic head measured in mm water 

column just above and below the sample.  By 

looking at Figure 4 this is illustrated by  h1 and h2

respectively. ∆l is the distande between the outlet 

of h1 and h2. In this study this distance is 

equvivalent to the hight of the bentonite sample. Q

is the waterflow through the sample and A is the 

cross sectional area of the inner part of the 

plexiglass cylinder. Seven tests have been 

performed, all with different heights of the test 

cylinder, ranging from 1.25 m to 7.32 m. 

6.2.2. Apparatus 

  Figure 6.2 illustrates the setup which is used in 

this study to measure the hydraulic conductivity, k. 

A Plexiglas cylinders with a inner diameter of 99 

mm and with different heights for the different tests 

have been constructed. Water is loaded continously Figure 6.2: Experimental setup. 
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into the cylinder from the top and drained out from the bottom.  Sufficient water is loaded into the 

cylinder, so that the hydraulic head is constant over time. Around the water outlet at the bottom of 

the cylinder, coarse grained gravel with high permeability has been placed. On top of that, the 

bentonite sample has been placed. The sample consists of bentonite pellets as described in details in 

Appendix III. In each test approximately 50 cm of sample has been used. In order to keep the 

volume of the bentonite sample constant when it starts to swell, another layer of coase grained 

gravel has been placed on top of the sample. Water is then transported downward through the 

sample. The only propelling force is the pressure gradient from the water itself.  

6.2.3. Results

  The hydraulic conductivity, k (cm/s), versus time, t (min) has been plotted in ae diagram (Figure 

6.3). Seven experiments have been conducted, each with different heights of the water column. 

Note the logarithmic scale on the y-axis. The height has been measured from the water outlet to the 

top of the test tube (Figure 6.2).  

  As can be seen from Figure 6.3, the results can be divided into two main groups. The bentonite 

samples which have only been subjected to a water pressure equivalent to maximum 2.25 metres of 

water column, have a relatively smooth and decreasing shape over time. In the following those 

samples will be denoted �low pressure samples�. Over time it must be expected that the sealing 

Figure 6.3: Results of the hydraulic conductivity test. Note the logarithmic scale on the y-axis.  
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potential increase further, which means that the hydraulic conductivity, k, will reach values which 

are very close to 0.  

  Samples which have been subjected to a water pressure above 4.35 metres of water column, has a 

marked different shape. A general trend of the curves is seen. Within the first 1440 minutes (24 h) a 

marked decrease in the hydraulic conductivity, k, is seen, which is followed by a gentle increase in 

values over time. In the following, those samples will be denoted �high pressure samples�. The 

relatively low hydraulic conductivity, k, within the first 1440 minutes in the high-pressure samples 

is probably due to the nature of swelling of the bentonite pellets. When the surface of the bentonite 

pellets is exposed to water it will start to swell, which means that a lot of small clay fragments or 

debris will be liberated from the surface of the pellet. The amount of liberated debris is relatively 

large at the beginning of the swelling process, which means that the water flow, Q, through the 

sample is not sufficient to remove the liberated debris completely out of the sample. After a period 

of maximum 1440 minutes, the water flow exceeds the amount of debris liberated from the surface 

of the pellets, which mean that the water flow is capable to transport the liberated fragments out of 

the system. The hydraulic conductivity, k, starts to increase again. From this point on, the increase 

of erosion of the pellets will be more pronounced. If the pressure conditions remain constant over 

time it must be expected that the bentonite sample will disintegrate and be removed completely. 

One bentonite sample which has been subjected to a water pressure equivalent to 3.35 metres of 

water column indicates the transition zone between the two regimes which have been discussed 

above.

6.3. Channel Systems 

  During the hydraulic conductivity tests it was observed that the water flow, Q, through the samples 

tends to use a specific set of preferred pathways at the rim of the sample. Some of the initial cavities 

or pathways, in which the water flow for some reason have been small, tend to close completely. 

The preferred pathways of the water flow must be expected to be those in which a high initial water 

flow through the sample is seen.  

  This effect is expected to be self-perpetuating to the point where only very few, high-potential 

channel systems are left. Figures 6.4 and 6.5 show the development of such channel systems in a 

low pressure sample and a high pressure sample, respectively.  

  In the low-pressure sample it can visually be observed that the channelsystem tends to be more 

narrow over time. In this case the sample has been subjected to a water pressure equivalent to 2.25 

metres of water column. This observation is in very good agreement with the data presented in 

Figure 6.3 for h=2.25 m. Here it is seen that the hydraulic conductivity, k, is going towards 0 over 

time. In Figure 8 the channel system for a high-pressure sample is seen. This sample has been 

subjected to a water pressure equivalent to 6.35 metres of water column. As can be observed, the 

channel-system tends to broaden its path way over time. In this case as well, this observation is in a

good agreement with the data presented in Figure 6.3 for h=6.35 m. 
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6.3.1. Density variation of high-pressure sample

  To examine the internal structure of a high-pressure sample, a CT scan was made. Figure 6.6 

shows a slice through a high pressure sample perpendicular to direction of flow. The sample has 

been exposed to a water pressure equivalent to maximum 5.35 metres of water column for more 

Figure 6.4: A low-pressure sample which has been 
subjected to a water pressure equivalent to 2.25 
metres of water column. As can been seen, a preferred 
pathway has been created after less the 48 hours. 
From visual inspection of the tree photos, it can be 
seen that the pathway becomes more narrow over 
time. 

Figure 6.5: A high-pressure sample which has been 
subjected to a water pressure equivalent to 6.35 
metres of water column. As can been seen, a preferred 
pathway has been created after less the 24 hours. 
From visual inspection of the tree photos, it can be 
seen that the pathway becomes wider over time.  

Figure 6.6: CT scan of a high pressure sample 

perpendicular to the flow direction. Profile A-A´ 

show how the density changes and become higher 

away from the channel. This is shown on figure 5.7.

Figure 6.7: Density profile A-A´ from Figure 5.6. 
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than 48 hours. The black areas indicate channel systems. The colour code is directly related to 

density. Dark purple colours indicate densities of approximately 2.0 g/cm3 which is the dry density 

of bentonite pellets. The orange/red colour indicates clay gel.  

  As can be seen, two channel systems are present in this sample. The channel system in the bottom 

of the figure has a very large surface area, which means that the velocity of the water flow through 

this part of the sample is very high compared to the small channel system at the upper right part of 

the sample. The higher velocity in the larger channel system also means that the erosional potential 

is bigger here. This fact has a great impact on the density variation throughout the sample. The 

densities of the bentonite near the large channel system are much lower compared to the rest of the 

sample. This is also illustrated in Figure 6.7 where a profile A-A� has been drawn through the 

sample. From the graph it is seen how the densities vary throughout the sample. It is clearly seen 

how the densities gradually increases in values away from the channel system. Near the channel 

system the densities are approximately 1.15 g/cm3, and in the other end of the profile values near 

1.6 g/cm3 can be seen. In this part of the sample, much larger density variations is seen. This is due 

to absence of water which means that the bentonite pellets cannot use its full swelling potential. 

Near the channel system a more homogeneous density variation is seen. 

6.3.2. Internal pathways and self-sealing potential

  To investigate how the internal structure of a low pressure sample which has only been subjected 

to water pressure for a short period of time, a CT scan was used. After approximately 24 hours, the 

test was terminated and the sample was scanned. Figure 6.8 (1a and 1b) show an example of a 

randomly picked slice within the sample, immediately after the test has been terminated and the 

water has been drained out. 1a show the actual CT image and 1b show the same image after digital 

image analysis (DIA) has been performed. In this image the internal pathways and cavities, which 

are seen as black areas, are isolated.    

  In order to investigate the effectiveness of the self-sealing potential of the bentonite clay, the 

sample was scanned once more after an additional 24 hours. After the first CT scan the sample was 

filled with water once more, but this time there was no flow through the sample.  

  In this second step, water was added in the top of the sample. The water was then using the already 

existing pathways during the downward transport to the point in which all open pathways were 

completely filled with water. This means that no water entered the enclosed cavities of the sample. 

After the additional 24 hours, the sample was drained once more before the scanning was 

performed. Figure 6.8 (2a and 2b) shows the same slice after the self sealing has taken place.  

A visual inspection of the figure indicates that the total number of holes has decreased and the sizes

of the holes left have diminished significantly. 

  In order to perform a more quantitative analysis, ten slices before and after the second scan has 

been analysed in detail by using DIA. The results are shown in Table 6.1. Three things have been 

investigated with the use of DIA: number of holes, the total area of holes and the sizes of holes. In 

addition to that, there has been made a distinguishing between; if the holes were located at the rim 

of the sample (direct contact with the plexiglas tube) or in the middle of the sample.   
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  By looking at the number of holes, it can be 

seen that the majorities of holes is located in 

the middle of the sample. This is the case both 

before and after the second scan. Thus the 

biggest changes (decrease in values) is seen at 

the rim of the sample. The same pattern is seen 

when looking at the total area of holes and the 

sizes of holes. This fact is indicating that water 

flow is more pronounced in this area and that 

the absence of water in the middle part of the 

sample means that cavities will not evolve 

further.  

  It can be concluded that when a bentonite seal 

is subjected to a pressure gradient it can be 

subdivide into two zones regarding 

macroporosity: One zone near the rim of the 

seal where the cavities are actually connected 

with each other, so that a net transport of water 

can take place, and a middle zone where the 

cavities are isolated from each other. 

Figure 6.8: Show how the internal channel system 
evolves over a time period of 24 hours. 

Table 6.1. Show the total number of holes, the total area 
which is occupied by the holes and the sizes of holes. 
The total number in the divided into the fraction at the 
middle and the fraction which is in contact with the 
border. 

Number of holes 

  Before  After Decrease (%) 

total 81.86 63.43 22.51 

middle 59.57 47.14 20.87 

border 22.29 16.29 26.92 

Total area of holes 

  Before  After Decrease (%) 

total 445.49 189.01 57.57 

middle 228.94 116.06 49.31 

border 216.55 72.95 66.31 

Sizes of holes 

  Before  After Decrease (%) 

total 5.46 2.97 45.60 

middle 3.86 2.46 36.27 

border 9.72 4.48 53.91 
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Chapter 7 

 Recommendations 

  Based on the results obtained in this Ph.D. thesis, the following two main recommendations 

must be offered.  

1.   Bentonite pellets which are produced with the purpose for sealing off grondwater well, 

should be produced in such a way that they obtain a uniform size and with a Feret diameter 

dF of approximately 10 mm.  

  As stated in Section 2.1, a typical sample of bentonite pellets contains a wide range of 

particle sizes. During the transport phase down through the bore hole, a particle segregation 

of pellets travelling in a bundle will take place. In this way, the pellets are deposited 

according to their size and in a predictable pattern. This has been accounted for in Section 

2.3.2. Small pellets will be packed more densely than larger pellets, which will lead to a 

higher bulk density. Basically it is agreed that the higher the bulk density in a bentonite clay, 

the higher the swelling pressure will be. It is also agreed that there is a clear connection 

between the bulk density and the hydraulic conductivity. The higher bulk density the lower 

hydraulic conductivity. The present research indicates that this assumption is only partly 

right when it comes to bentonite clay in the form of pellets.  

  By the work presented in this thesis, it is shown that a sorted sample with the exact same 

bulk density as in an unsorted sample will obtain a much higher swelling pressure (Figure 

3.11).  An explanation to why this is the case is offered in Section 3.4. To obtain a 

maximum sealing potential in the furture, it is therefore important that bentonite pellets  will 

be procuced in such a way that they obtain a uniform size and with a Feret diameter dF of 

approximately 10 mm.     
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2.   Immediately after construction of a groundwater well, the macroporosity of the clay 

deposition is in the order of approximately 48%. It is common but not good practic to start 

pumping in order to clean the filter section for debris and other kinds of impurities at this 

point. The recommentations in this area say that the pumping should not be started  within 

the first 24 hours. Four argumentations will be offered in this Ph.D. thesis in favour of the 

existing recommendation.    

  In Chapter 6 it was explained what could happen if a high waterflow through a bentonite 

sealing was present during the first phase of expansion of the pellets (in Section 6.2.4 the 

results of the hydraulic conductivity test are presented). During the hydration, small clay 

particles are loosened and liberated from the surface of the bentonite pellets and if the 

waterflow is sufficently high, those particles will be carried away and in this way will not 

contribute to the overall expansion. Two possible scenarios which could cause this situation 

are explained in Section 6.2 (Figure 6.1). 

  As explained preveously, the macroporosity of the clay deposit is in the order of 

approximately 48% immediately after the deposition has taken place. From Figure 5.3. it can 

be seen that after 24 hours (1440 min), the macroporosity has dropped to approximately 2%. 

Computed tomography (CT) has been used to evaluate the degree of homogenization (for 

further explination see section 5.3.3.). In this work the degree of homogenization is 

expressed as a function of standard deviation of the density contrast through a profile versus 

time (Figure 5.5.). The result is seen in Figure 5.6. A marked decrease in standard deviation 

is seen within the first 24 hours. In other words: The degree og homogenization will increase 

very fast within the firste 24 hours. This mean that no weak or low density zones are present 

after 24 hours.    

  Because of the suction of water into the sample, a marked increase in the overall bulk 

density is also seen within the first 24 hours (as stated previously there is a clear connection 

between the bulk density and the hydraulic conductivity). The higher bulk density the lower 

hydraulic conductivity. The increase in bulk density of the samples will of couse lead to an 

increase in the swelling pressure. 

By looking at the swelling pressure for both unsorted and sorted samples (Subsection 3.3.2 

and 3.3.3) it can be seen that approximately 72% of the average swelling potential is reached 

after 24 hours. 

  Based on those four arguments it is most unlikely that a waterflow will be able to penetrate 

a bentonite seal after a periode of 24 hours with neutral water gradient. The existing 

recommendation is therefore supported strongly with those new arguments.  
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1. Bentonite  

  The rock term �bentonite� is commonly used for smectite minerals and was defined by Ross 

and Shannon (1926) as a clay material altered from a glassy igneous material, usually 

volcanic ash. Grim and Goven (1978) used the term bentonite for any clay which was 

dominantly comprised of a smectite mineral within regards to its origin. In the Glossary of 

Geology Bates and Jackson (1997), bentonite is described as �a soft plastic, rock composed 

essentially of clay minerals of the montmorillonite (smectite group) plus colloidal silica, and 

produced by devitrification and accompanying chemical alteration of a glassy igneous 

material, usually a tuff or volcanic ash. The rock is greasy and soap-like to the touch (without 

gritty feeling), and commonly has the ability to absorb large quantities of water accompanied 

by an increase in volume of about 8 times�. 

  Smectite minerals are composed of two silica tetrahedral sheets with a central octahedral 

sheet and are designated as a 2:1 layer mineral (Figure 1). Water molecules and cations 

occupy the space between the 2:1 layers (Murray, 2007). The octahedral sheet in the smectite 

mineral is comprised of closely packed oxygens and hydroxyls in which aluminium, iron, and 

magnesium atoms are arranged in octahedral coordination. When aluminium with a positive 

valence of three is the cation present in the octahedral sheets, only two-thirds of the possible 

positions are filled in order to balance the charge. When only two-thirds of the positions are 

filled, the mineral is termed dioctahedral. When magnesium with a positive charge of two is 

present, all three positions are filled to balance the structure and the mineral are termed 

trioctahedral. 

                                

               
              Figure 1. Diagrammed sketch of the structure of smectite. 
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  The second structure unit in the smectite mineral is the silica tetrahedral layer in which the 

silicon atom is equidistant from four oxygen atoms or possible hydroxyls arranged in the 

form of tetrahedron with the silicon atom in the center. These tetrahedrons are arranged to 

form a hexagonal network repeated infinitely in two horizontal directions to form what is 

called the silica tetrahedral sheet (Murray, 2007). The silica tetrahedral sheet and the 

octahedral sheet are joined by sharing the apical oxygens or hydroxyls (Figure 1). When the 

octahedral sheet and the tetrahedral sheet are electrically neutral then they are held together 

by Van der Waals Bonds. Those forces are electrical in nature and results from the attraction 

of charges of opposite sign. 

  Both the octahedral and tetrahedral sheets can have substitutions, which creates a charge 

imbalance in the 2:1 layer. Alumina substitutes for silica in the tetrahedral sheet and iron and 

magnesium substitute for aluminum in the octahedral sheet. Grim (1962) reported that many 

analyses have shown that the charge imbalance in smectite is about 0.66 per unit cell. This 

net positive charge deficiency is balanced by exchangeable cations absorbed between the unit 

layers (interlayers).  

  The smectite group of clay minerals consists of several clay minerals, but the two most 

important industrially are sodium montmorillonite and calcium montmorillonite. The basal 

spacing of the calcium montmorillonite is 14.2 Å. Sodium montmorillonite occurs when the 

charge deficiency is balanced by sodium ions and water and the basal spacing is 12.2 Å 

(Murray, 1991). Calcium montmorillonite have two water layers in the interlayer position and 

sodium montmorillonite have one water layer.  The water molecules that occur between the 

layers in smectite are called low temperature water which can be driven off by heating from 

100°C to 150°C (Grim. 1968). The thickness of these water molecules between the 

montmorillonite layers is related to the exchangeable cation present. When sodium is the 

exchangeable cation, the water layer is about 2.5Å, which is one water layer and when 

calcium or magnesium is the exchangeable cation, then the layer is about 4.2-4.5 Å thick, 

which is two water layers.   

2. Product of interest 

  The pellet which is of interest in this study 

is a commercially produced pellet 

(DantoPlug Super) which is used by many 

drilling companies in Denmark. The raw 

bentonite is mined on Tåsinge in Denmark 

and the pellets are produced by Dantonit. 

The pellet is cylindrical in its design, with 

an average diameter of 8 mm. The ends are 

irregular fractured surfaces. The color is 

dark brown to dark olivine green   (Photo 1). 

Photo 1: View of the design of typical 
DantoPlug Super pellet with 8 mm diameter. 
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3. Tåsinge Bentonite 

  The most important bentonite deposit in Denmark is located near Bjerreby on Tåsinge. 

Tåsinge is a small island in the southern part of Denmark (Figure 2). On the location the 

following deposits have been recognised (see Figure 3.1), starting from top:  

• Glacial deposits, Quaternary  

• Marine clay (Ølst Fm.), Early Eocene (55.5-54 mio. years) 

• Marine clay (Holmehus Fm.), Late Paleocene (59-57.5 mio. years) 

  The clay deposits found at Bjerreby on the island of Tåsinge is late Paleocene to early 

Eocene of age. In time, this corresponds approximately to 59-50 million years. It should be 

noted that between two formations a distinct time gap (hiatus) is present (Figure 3.2.). A time 

gap can indicate two things. Either no depositions have occurred or the deposits have been 

eroded away. Either way it must be expected that the sedimentary succession described above 

and on Figure 3 does not show a continuous lithology change when crossing the boundaries� 

between two formations.  Figure 3.2., show the natural succession of the different formations 

found in the well at Bjerreby. As can be seen, a sequence which contain Holmehus Fm. and 

Ølst Fm. is repeated 4 time. Neo-techtonic or Glacio-techtonic can explain this repetition. 

Each sequence has been forced up upon each other by the movement of ice. The deposits 

have been described in details by Torp and Larsen (1997) and Larsen (1998). 

Figure 2: Location of Tåsinge in Denmark. 

      

Figure 3.1 and 3.2: The chronological distribution of 
Tåsinge Bentonite at Bjerreby. 
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4. Depositional Environment 

  In early Mid-Paleocene (c. 61 Ma), extrusion of flood basalts started almost simultaneously 

in a wide area extending from the British Isles, over the Faroe Islands, East and West 

Greenland to Baffin Island forming first phase of the opening of the North Atlantic (Saunders 

et al., 1997). At the same time, a profound change to the marine clay-regime took place in the 

Danish area after nearly 40 million years of chalk-deposition. The cause for this shift is 

probably a combination of increased clay input from erosion of the uplifted Shetland 

Platform and the new basalt covered areas and severed connections between the North Sea 

Basin and the warm oceans to the south (Ziegler, 1990 and 1992; Clemmensen & Thomsen, 

2005). Iilies (1949) and Spjeldnæs (1975) suggested that the remarkable absence of any 

coarse clastic particles in deposits so close to the Scandinavian Shield may have resulted 

from the presence of a thick vegetation cover on a landmass of low relief with only a 

moderate run-off directed to this area (Figure 4). 

  During the Middle and Late 

Paleocene, progressively deeper 

water and more offshore marine 

environments are represented by 

successive formations, including 

in Denmark the Kerteminde Marl, 

Æbelø Formation and culminating 

in the Upper Paleocene Holmehus 

Formation (Heilmann-Clausen et 

al., 1985, and Schmitz et al., 

1996). The Holmehus Clay 

Formation represents the first 

phase of very fine grained clay 

sedimentation in the Danish area. 

The regional deepening may be 

due to subsidence during reduced 

activity from the Proto-Icelandic 

hotspot (Knox, 1996). 

  The Paleocene � Eocene (P/E) 

boundary (c. 55.8 Ma) coincides 

with the beginning of a thermal 

maximum, the PETM, an extreme 

global warming event lasting c. 

200.000 years. The second phase 

of the opening of the North Atlantic peaked at about the same time along the final line of 

opening of the NE Atlantic extruding >5 km of flood basalts in E Greenland and >2 km in the 

Faroe Islands. Thus during the PETM the Danish area was reduced to a stagnant, lake-like 

water body (Knox & Harland, 1979). The major sea-level fall was probably caused by a new 

updoming of the entire NE Atlantic region in connection with the second phase of increased 

hotspot activity (Knox, 1996; Jones & White, 2003). This event is properly responsible for 

     

Figure  4: Paleogeography in the Late Paleocene and lower 
Eocene  
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the time gap which is seen on the location on Tåsinge, between the Holmehus Clay Fm. and 

Ølst Clay Fm. The boundary between the Holmehus Formation and the overlying Ølst 

Formation is sharp and the difference in the lithology show a marked change in the 

depositional environment. Numerous basaltic ash beds occur in the overlying succession all 

over the North Atlantic�NW European region (Danish area) as far away as 1900 km from the 

assumed source within the North Atlantic rift zone (Egger & Bruckl, 2006). This ash series, 

the 'positive series' of Bøggild (1918) is best known from NW Denmark where it is well 

exposed in a 60 m thick diatomite, the Fur Formation (Heilmann-Clausen, 2006).  

  The Ølst Clay Fm. which is seen on Tåsinge is deposit at the same time as Fur Fm. The 

extremely violent volcanism suggests that the volcanic edifices were located in shallow water 

(Waagstein & Heilmann-Clausen, 1995; Larsen et al., 2003). The thickest of the ash layers 

are among the largest basaltic ash-falls known in geological history, and they may have 

contributed to the global cooling after the PETM (Egger & Brückl, 2006).  

  The presence of glauconite indicates that the boundary probably coincides with a period of 

submarine non-deposition. The oldest part of the Ølst Formation, a thick laminated clay 

sequence devoid of evidence for benthonic life, was deposited over a long period when 

anoxic conditions prevailed in the bottom waters. The laminae indicate water depths just 

below wave base (relatively shallow). An increased amount of clastic silt particles in the 

oldest part of the Ølst Formation seems to reflect the regressive conditions which occurred at 

that time in northwestern Europe. Duing the Early Eocene (Ypresian) the sea level rose 

gradually. The existence of thick and abundant ash layers in the upper part of the Ølst and Fur 

Formations shows that the most intensive volcanism in the Danish area must have taken place 

during the deposition of these units. The large amount of smectite in the Late Paleocene and 

Eocene sediments is believed to be derived mainly from weathering of pyroclastic rocks, 

resulting from this volcanism. The smectites in the Cenozoic North Sea sediments are 

generally believed to originate from transformation of volcanic ash from eruptions during the 

late Paleocene and early Eocene, related to the opening of the north Atlantic Ocean between 

Norway and Greenland. The proportion of smectite generally decreases upwards from the 

Lower Eocene sediments (Nielsen, 1994). 

5. Lithology 

  In the following, a general short description of the lithology and distribution of the deposits 

mentioned above will be given, starting with the oldest deposits. 

Holmehus Fm.

  Non-calcareous, greenish, brownish and dark reddish, very fine-grained clay. The clay is 

almost exclusively composed of smectite, and the very minor sand fraction consists mainly of 

diagenetic products. The maximum known thickness is approximately 12 m in the LB 38 

borehole at northern Lillebælt and in the Viborg 1 borehole in central Jutland (Heilmann-

Clausen et al., 1985). The Holmehus Fm. is widely distributed in the Upper Paleocene of 

Denmark, as is evident from borehole material specified in Gry (1935) and Dinesen et al. 

(1977). 
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Ølst Fm.

  A sequence of clays interbedded with beds and laminae of volcanic ash, partly argillized. 

The clays are sandy, silty and non-calcareous. The colour is mainly dark grey. The clay is 

finely laminated in the lower part, while in the upper part both laminated and structureless 

intervals are present (Heilmann-Clausen et al., 1985). The volcanic ash beds are graded sandy 

and clayey silts of blackish or grey colour. The ash beds, numbered from -1-1 to -H20 

(Andersen 1937a), are closely spaced and their total thickness is approximately equal to the 

thickness of the clay in between, while the layers below are usually widely spaced and 

inconspicuous. The Ølst Formation is known throughout the distribution area of the Danish 

Paleocene. The thickness varies between 29 m and 9.3 m. In the western Limfjord area the 

Ølst Formation, is replaced by the Fur Formation (Heilmann-Clausen et al., 1985). 

6. Mineralogical and geochemical characterisation  

  Mineralogy and geochemical analyses has been performed by the British Geological Survey 

(Kemp et al., 2008). The full rapport is found in Appendix 2.  

  Both the raw Tåsinge bentonite and the final bentonite product have been analysed. To 

determine the mineralogy, X-ray diffraction (XRD) analysis were used while geochemistry

was to be determined using of major element X-ray fluorescence spectroscopy (XRFS). The 

results of whole-rock XRD analysis (mineralogy) are summarized in Table 1 and discussed 

below.  

XRD analysis of the samples indicates that they have a similar mineralogy and are 

predominantly composed of a smectite-group mineral (mean c.60%) together with minor 

quartz (mean c.14%), albite (mean c.7%), K-feldspar (mean c.6%) and undifferentiated mica 

(mean c.10%) and traces of chlorite (mean c.1%), clinoptilolite (mean c.2%) and calcite 

(mean <0.5%). A d(060) spacing of c.1.50 Å suggests that the smectite-group mineral in the 

samples is dioctahedral and likely to be montmorillonite. A d(001) spacing of c.12.2Å 

suggests that the interlayer cations of the montmorillonite are dominated by monovalent 

species such as Na+. The results of major element geochemical analysis of the samples by X-

ray fluorescence spectrometry (XRFS) can be seen in Appendix 2. 

Table 1. Mineralogy 

   Raw Tåsinge bentonite Bentonite pellets 

albite 6.7 6.4 
calcite <0.5 <0.5 
chlorite 1.8 1.0 
clinoptilolite 2.1 1.8 
dolomite nd nd 
gypsum 1.2 nd 
K-feldspar 5.8 5.0 
'mica' 10.0 10.6 
pyrite nd nd 
quartz 14.0 13.6 
montmorillonite 58.0 61.2 
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The most important result in this analysis is the relative high concentration of Fe2O3

(approximately 9%). Since XRD analysis (Table 1) did not identify any major Fe-bearing 

minerals in the samples, the relatively high Fe2O3 concentration in these samples suggests 

that the smectite-group mineral is a Fe-rich species. 
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1 Introduction 

This report presents the results of mineralogical and geochemical characterisation of a suite of 
five bentonite samples submitted for analysis by Hasse Clemmensen, Dantonit, Denmark.  The 
client specifically requested montmorillonite (smectite) content be assessed using X-ray 
diffraction (XRD) analysis while geochemistry was to be determined using a combination of 
major element X-ray fluorescence spectroscopy (XRFS) and carbon and sulphur analyses. 

The samples were submitted in various forms from raw lump form to crushed material.  Full 
sample details and the analyses undertaken are listed in Table 1.  Although XRFS analysis was 
only requested for 3 of the samples, BGS were able to complete XRFS on all 5 samples due to 
the imposition of a minimum charge. 

Table 1. Summary of samples and analyses undertaken 

Analyses undertaken Incoming code BGS MPL code 

XRD XRFS C and S 

Sample No 1 raw bentonite MPLN332 X" X" X"

Sample No 2 activated bentonite MPLN333 X" X" W"

Sample No 3 dried activated bentonite MPLN334 X" X" W"

Sample No 4 crushed bentonite 0-1mm MPLN335 X" X" X"

Sample No 5 reference bentonite MPLN336 X" X" X"

2 Laboratory methods 

2.1 GENERAL SAMPLE PREPARATION 

The samples were prepared in the BGS Sample Preparation Facility.  They were firstly dried at 
55°C overnight and then tema-milled to <125 µm. 

2.2 X-RAY DIFFRACTION ANALYSIS 

2.2.1 Preparation 

In order to achieve a finer and uniform particle-size for whole-rock XRD analysis, 
approximately 3 g portions of the tema-milled material was micronised under acetone for 
5 minutes and dried at 55°C.  The dried material was then disaggregated in a pestle and mortar 
and back-loaded into standard stainless steel sample holders for analysis. 

2.2.2 Analysis 

Whole-rock XRD analysis was carried out using a PANalytical X�Pert Pro series diffractometer 
equipped with a cobalt-target tube, X�Celerator detector and operated at 45kV and 40mA.  The 
micronised samples were scanned from 4.5-85°2s"at 2.76°2s/minute.  Diffraction data were 
initially analysed using PANalytical X�Pert Highscore Plus version 2.2a software coupled to the 
latest version of the International Centre for Diffraction Data (ICDD) database. 
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Following identification of the mineral species present in the sample, mineral quantification was 
achieved using the Rietveld refinement technique (e.g. Snyder & Bish, 1989) using PANalytical 
Highscore Plus software.  This method avoids the need to produce synthetic mixtures and 
involves the least squares fitting of measured to calculated XRD profiles using a crystal structure 
databank.  Errors for the quoted mineral concentrations are typically ±2.5% for concentrations 
>60 wt%, ±5% for concentrations between 60 and 30 wt%, ±10% for concentrations between 30 
and 10 wt%, ±20% for concentrations between 10 and 3 wt% and ±40% for concentrations <3 
wt% (Hillier et al., 2001).  Where a phase was detected but its concentration was indicated to be 
below 0.5%, it is assigned a value of <0.5%, since the error associated with quantification at 
such low levels becomes too large. 

2.3 X-RAY FLUORESCENCE SPECTROMETRY 

2.3.1 Preparation 

The samples were dried overnight at 105°C before LOI and fusion.  Fused beads for major 
element analysis were prepared by fusing 0.9 g sample plus 9.0 g flux (66/34 Li2B4O7 and 
LiBO2) at 1200flC.  Loss on ignition (LOI) was determined on c.1 g sample heated at 1050flC for 
one hour.   

2.3.2 Analysis 

XRFS analysis was carried out using a sequential, fully automatic Philips PW2440 MagiX PRO 
wavelength-dispersive spectrometer, fitted with a 66 kV generator and a 4 kW rhodium end�
window X-ray tube and controlled via PCs running PANalytical SuperQ (version 4.0D) XRF 
application software. 

The work on determination of major and minor elements by XRFS by fused bead and loss on 
ignition (LOI) is covered under UKAS accreditation.  The laboratory is a United Kingdom 
Accreditation Service (UKAS) accredited testing laboratory, No. 1816. 

2.4 CARBON ANALYSIS 

A known mass of sample was burnt in oxygen in an Exeter Analytical CE440 elemental analyser.  
The combustion gases were passed over suitable reagents to assure complete oxidation and 
removal of undesirable by-products such as sulphur, phosphorus and halogen gases.  The oxides of 
nitrogen were converted to molecular nitrogen and residual oxygen was removed in the reduction 
tube.  The concentrations of carbon dioxide, water vapour and nitrogen gas were measured by 
thermal conductivity cells.  The instrument uses the concentration of these gases together with the 
sample weight to give a direct readout of the percentages of carbon, hydrogen and nitrogen. 

2.5 SULPHUR ANALYSIS 

A known mass of sample was incinerated at 1350ºC in an oxygen- enriched atmosphere in an Eltra 
Helios Sulphur Analyser.  The sulphur in the sample was converted to sulphur dioxide and was 
measured by an infrared cell.  The measured quantity was then converted into a percentage 

 

2 



Report CR/08/074 Version 1  Last modified: 30/06/2008 

3 Results 

3.1 MINERALOGY 

The results of whole-rock XRD analysis are summarised in Table 2 and labelled XRD traces are 
shown in the Appendix.   

XRD analysis of samples 1-4 indicates that they have a similar mineralogy and are 
predominantly composed of a smectite-group mineral (mean c.60%) together with minor quartz 
(mean c.14%), albite (mean c.7%), K-feldspar (mean c.6%) and undifferentiated mica (mean 
c.10%) and traces of chlorite (mean c.1%), clinoptilolite (mean c.2%) and calcite (mean <0.5%).  
A d(060) spacing of c.1.50 Å suggests that the smectite-group mineral in samples 1-4 is 
dioctahedral and likely to be montmorillonite.  A d(001) spacing of c.12.2Å suggests that the 
interlayer cations of the montmorillonite are dominated by monovalent species such as Na+. 

XRD analysis of the reference bentonite (sample 5) indicates a greater smectite-group mineral 
(c.73%) content together with minor albite (c.9%), quartz (c.6%), K-feldspar (c.4%) and 
undifferentiated mica (c.4%) and traces of chlorite (<0.5%), dolomite (<0.5%) and pyrite 
(<0.5%).  A d(060) spacing of c.1.50 Å and a d(001) spacing of c.12Å suggests that the smectite-
group mineral is also a montmorillonite whose interlayer cations are also dominated by 
monovalent species such as Na+. 

Note that the identification of clay mineral species in the samples is not definitive.  Definitive 
identification would require isolation of a fine (typically <2 µm) fraction, the preparation of 
oriented mounts and the running of a diagnostic XRD testing program. 

3.2 GEOCHEMISTRY 

The results of major element geochemical analysis of the five samples by X-ray fluorescence 
spectrometry (XRFS) are summarised in Table 3.  Fe2O3t represents total iron expressed as 
Fe2O3.  SO3 represents sulphur retained in the fused bead after fusion at 1200°C. 

Because of limitations with the current software used for reporting data, the number of 
significant figures quoted in the attached table may not be representative of the actual 
uncertainty.  Data should be considered accurate to no more than three significant figures. 

XRFS analysis indicate very similar major element concentrations and loss on ignition (LOI) 
figures for samples 1-4, suggesting similar compositions.  Samples 1-4 appear to be SiO2, Fe2O3t, 
K2O -rich and Al2O3, CaO, MgO, Na2O �poor compared to the reference bentonite.   

Since XRD analysis did not identify any major Fe-bearing minerals in samples 1-4, the relatively 
high Fe2O3t concentrations in these samples suggests that the smectite-group mineral is an Fe-
rich species. 

Total carbon for samples 1 and 4 (0.29 and 0.40%) are low compared with 2.10% for the 
reference bentonite (Table 4)  Total sulphur values (Table 4)of 0.12% (sample 1) and 0.07% 
(sample 4) are also lower than the value obtained for the reference bentonite (0.18%). 
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4 

4 Conclusions 

Mineralogical and geochemical analyses have been completed on a suite of 5 bentonites. 

‚ XRD analyses reveal approximately similar mineralogies for samples 1-4 with smectite 
contents of c.60% together with minor quartz, albite, K-feldspar and undifferentiated 
mica and traces of chlorite, clinoptilolite and calcite.   

‚ XRD analysis of the reference bentonite (sample 5) indicates a higher smectite content of 
c.73% with minor quartz, albite, K-feldspar, calcite and undifferentiated mica and traces 
of chlorite, dolomite and pyrite.   

‚ XRFS analyses and LOI figures indicate similar geochemistries for samples 1-4. 

‚ XRFS analysis indicate that samples 1-4 are SiO2, Fe2O3t, K2O -rich and Al2O3, CaO, 
MgO, Na2O �poor compared to the reference bentonite.. 

‚ Total carbon and sulphur values are lower than those obtained for the reference bentonite. 
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Table 2. Summary of quantitative whole-rock XRD analyses 

mineral (%) 

Incoming sample name BGS MPL 
code 
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Sample No 1 raw bentonite MPLN332 6.7 <0.5 1.8 2.1 nd 1.2 5.8 10.0 nd 14.0 58.0 

Sample No 2 activated bentonite MPLN333 6.4 <0.5 1.0 1.8 nd nd 5.0 10.6 nd 13.6 61.2 

Sample No 3 dried activated bentonite MPLN334 6.6 <0.5 1.3 1.4 nd nd 5.5 10.3 nd 14.2 60.5 

Sample No 4 crushed bentonite 0-1mm MPLN335 6.9 <0.5 1.8 1.6 nd nd 6.2 10.5 nd 14.4 58.2 

Sample No 5 reference bentonite MPLN336 9.2 3.0 <0.5 nd <0.5 nd 4.4 3.8 <0.5 6.3 72.9 

 
KEY to Table 2 

nd = not detected 
*Note � clay mineral identifications are not definitive. 
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Table 3. Summary of XRF geochemical analysis 

Incoming 
sample no. 

BGS MPL 
code SiO2 TiO2 Al2O3 Fe2O3t Mn3O4 MgO CaO Na2O K2O P2O5 SO3 Cr2O3 SrO ZrO2 BaO NiO CuO ZnO PbO LOI Total 

  % 

1 MPLN332 59.64 0.87 16.13 9.06 0.15 3.14 1.04 1.17 2.78 0.14 0.3 0.02 0.04 <0.02 0.06 0.02 <0.01 0.02 <0.01 6.07 100.65

2 MPLN333 58.84 0.82 15.98 9.08 0.24 3.17 1.00 2.12 2.76 0.16 0.4 0.02 0.04 <0.02 0.07 0.01 <0.01 0.02 <0.01 6.18 100.91

3 MPLN334 58.90 0.82 15.92 8.99 0.22 3.15 1.01 2.11 2.75 0.17 0.2 0.02 0.04 <0.02 0.06 0.01 <0.01 0.02 <0.01 6.09 100.48

4 MPLN335 58.95 0.82 15.98 9.02 0.13 3.17 1.07 2.11 2.76 0.19 0.2 0.02 0.05 <0.02 0.07 0.01 <0.01 0.02 <0.01 6.08 100.65

5 MPLN336 56.34 0.73 17.65 5.64 0.06 3.49 3.16 3.05 0.70 0.15 0.3 <0.01 0.02 <0.02 0.10 <0.01 <0.01 0.01 <0.01 9.37 100.77

 
 
KEY to Table3 

Fe2O3t represents total iron expressed as Fe2O3. 
SO3 represents sulphur retained in the fused bead after fusion at 1200°C. 

 

Table 4.  Summary of carbon and sulphur analyses 

Incoming sample name BGS MPL code Total sulphur Total carbon

  % % 

Sample No 1 raw bentonite MPLN332 0.12 0.29 

Sample No 4 crushed bentonite 0-1mm MPLN335 0.07 0.40 

Sample No 5 reference bentonite MPLN336 0.18 2.10 
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Appendix: X-RAY DIFFRACTION TRACES: 

KEY 

 

 

 

The upper figure on each page shows the sample diffraction trace.  The lower figure shows stick 
pattern data for the extracted sample peaks (orange) and the identified mineral standard data.  
Vertical axis � intensity (counts), horizontal axis - °2s Co-Kc0 
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Sample No 1 raw bentonite 

Position [°2Theta] (Cobalt (Co))

10 20 30 40 50 60 70 80

Counts

0

5000

10000

15000
Sample No 1 raw bentonite

 Peak List

 01-087-2096; Quartz low, syn; Si O2

 00-006-0263; Muscovite-2M1; K Al2 ( Si3 Al ) O10 ( O H , F )2

 01-080-1094; Albite, low; Na ( Al Si3 O8 )

 00-019-0932; Microcline, intermediate; K Al Si3 O8

 00-046-1323; Clinochlore-1MIIb; ( Mg , Al , Fe )6 ( Si , Al )4 O10 ( O H )8

 04-009-3817; gypsum; Ca ( S O4 ) ( H2 O )2

 00-012-0204; Montmorillonite; Nax ( Al , Mg )2 Si4 O10 ( O H )2 ·z H2 O

 04-008-0198; calcite; Ca ( C O3 )

 01-089-7539; Clinoptilolite-K; ( Na0.52 K2.44 Ca1.48 ) ( Al6.59 Si29.41 O72 ) ( H2 O )28.64
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Sample No 2 activated bentonite 

Position [°2Theta] (Cobalt (Co))

10 20 30 40 50 60 70 80

Counts

0

5000

10000

Sample No 2 activated bentonite

 Peak List

 01-087-2096; Quartz low, syn; Si O2

 00-012-0204; Montmorillonite; Nax ( Al , Mg )2 Si4 O10 ( O H )2 ·z H2 O

 04-007-5009; Albite; Na Al Si3 O8

 00-019-0932; Microcline, intermediate; K Al Si3 O8

 00-007-0042; Muscovite-3T; ( K , Na ) ( Al , Mg , Fe )2 ( Si3.1 Al0.9 ) O10 ( O H )2

 00-046-1323; Clinochlore-1MIIb; ( Mg , Al , Fe )6 ( Si , Al )4 O10 ( O H )8

 04-008-0198; calcite; Ca ( C O3 )

 01-089-7539; Clinoptilolite-K; ( Na0.52 K2.44 Ca1.48 ) ( Al6.59 Si29.41 O72 ) ( H2 O )28.64
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Sample No 3 dried activated bentonite 

Position [°2Theta] (Cobalt (Co))

10 20 30 40 50 60 70 80

Counts

0

5000

10000

Sample  No 3 dried activated bentonite

 Peak List

 01-087-2096; Quartz low, syn; Si O2

 01-080-0742; Muscovite-2M1; ( K0.82 Na0.18 ) ( Fe0.03 Al1.97 ) ( Al Si3 ) O10 ( O H )2

 00-012-0204; Montmorillonite; Nax ( Al , Mg )2 Si4 O10 ( O H )2 ·z H2 O

 00-046-1323; Clinochlore-1MIIb; ( Mg , Al , Fe )6 ( Si , Al )4 O10 ( O H )8

 01-080-1094; Albite, low; Na ( Al Si3 O8 )

 00-019-0932; Microcline, intermediate; K Al Si3 O8

 04-008-0198; calcite; Ca ( C O3 )

 01-089-7539; Clinoptilolite-K; ( Na0.52 K2.44 Ca1.48 ) ( Al6.59 Si29.41 O72 ) ( H2 O )28.64
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Sample No 4 crushed bentonite 0-1mm 

Position [°2Theta] (Cobalt (Co))

10 20 30 40 50 60 70 80

Counts

0

5000

10000

Sample No 4 crushed bentonite 0-1mm

 Peak List

 01-087-2096; Quartz low, syn; Si O2

 01-080-0742; Muscovite-2M1; ( K0.82 Na0.18 ) ( Fe0.03 Al1.97 ) ( Al Si3 ) O10 ( O H )2

 00-012-0204; Montmorillonite; Nax ( Al , Mg )2 Si4 O10 ( O H )2 ·z H2 O

 00-046-1323; Clinochlore-1MIIb; ( Mg , Al , Fe )6 ( Si , Al )4 O10 ( O H )8

 04-008-0198; calcite; Ca ( C O3 )

 04-007-5092; Albite; Na Al Si3 O8

 00-019-0932; Microcline, intermediate; K Al Si3 O8

 01-089-7539; Clinoptilolite-K; ( Na0.52 K2.44 Ca1.48 ) ( Al6.59 Si29.41 O72 ) ( H2 O )28.64

 

12 



Report CR/08/074 Version 1  Last modified: 30/06/2008 

13 

Sample No 5 reference bentonite 

Position [°2Theta] (Cobalt (Co))

10 20 30 40 50 60 70 80

Counts

0

5000

10000

Sample No 5 reference bentonite

 Peak List

 01-070-3755; Quartz; Si O2

 01-083-0578; Calcite; Ca ( C O3 )

 00-012-0204; Montmorillonite; Nax ( Al , Mg )2 Si4 O10 ( O H )2 ·z H2 O

 00-046-1323; Clinochlore-1MIIb; ( Mg , Al , Fe )6 ( Si , Al )4 O10 ( O H )8

 00-006-0263; Muscovite-2M1; K Al2 ( Si3 Al ) O10 ( O H , F )2

 00-011-0078; Dolomite; Ca Mg ( C O3 )2

 04-007-5008; Albite; Na Al Si3 O8

 00-019-0932; Microcline, intermediate; K Al Si3 O8

 00-006-0710; Pyrite, syn; Fe S2
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Appendix 3 

Initial tests 
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1. Water content 

  The water molecules that occur between the layers in clay are called low temperature water 

which can be driven off by heating from 100°C to 150°C (Grim. 1968). It is defined as the 

ratio of the weight of water to the weight of the dry clay in the clay mass. The 

standard method of determining the moisture content is by over drying at 105-110 

degrees Celsius over 24 hours. The low temperature water content of several samples 

(bentonite pellets) has been determined and they show an average water content of 

25.44%.

  The clay lattice also contains water which is tied very closely to the clay particles. It can 

only be driven off by heating to above 950°C. In this work, two samples have been subjected 

to increasing temperatures over time. The methods are basically the same as mentioned above 

(low temperature water). The weight 

of the sample has been measured 

continuously throughout the test 

period which lasted for 7 hours. The 

results are showed on figure 1. 

The y-axis show the loss of mass in 

% and the x-axis show the 

temperature in °C. From 20°C to 

150°C the loss in mass is 

approximately 25-26%, which 

corresponds very well with the 

results obtained from the low 

temperature water. From 150°C to 

950°C an additionally decrease in 

loss of mass of 8.5% is seen. No loss 

in mass is seen in temperature above 

950°C. The conclusion is that the 

final bentonite product contains 

approximately 25.44% low 

temperature water and approximately 

8.5% high temperature water which 

is a total of 34 % water.

2. Stoichiometric composition of pellets 

  By summarizing section 1 (water content) and section 6 in Appendix 1, the following 

stoichiometric composition of pellets can be made.  In section 6, it was found that the 

bentonite pellets contained 61.2% montmorillonite. This result was obtained after all the low 

temperature water has been driven off. In section 1, it was found that the bentonite pellets 

contained 25.44% low temperature water. If this number is added into the equation then the 

total amount of montmorillonite is only 45.6% and the amount of non-swelling components is 

28.96%. 

                         

   
Figure 1: Show the results from the two test. 25.44 % of the 

water is driven off at temperatures around 100°C to 150°C. In 

addition to that 8.5 % of the water is driven off at 

temperatures between approximately 400°C to 950°C. 
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  In addition to that, the high temperature water was 

found to comprise approximately 8.5% of the 

sample. By looking at the mineralogy (Tabel 1) it is 

obvious that the only place the high temperature 

water can be stored is in the montmorillonite. By 

subtracting 8.5% high temperature water from the 

45.6% montmorillonite + high temperature water, 

we end up with a total amount of montmorillonite 

of 37.1% in a bentonite pellet. 

3. Density of material 

  The average density of the pellets has been determined in two different ways. The masses 

(m) of twenty randomly picked samples (bentonite pellets) were measured. Each sample was 

dropped into a test tube with water and the volume increase (V) was noted. The density (ρ) 

was calculated in the following way ρ=m/V. The mean value has been calculated to 2.02 

g/cm
3
 with a standard deviation of 0.07 g/cm

3
.  Based on geochemical data and the atomic 

mass of each component in the sample, it is possible to find the volume of that specific 

component. The density found in this way is 2.06 g/cm
3
.  In both cases it is assumed that the 

pellets contain 25.0 % interlamellar bounded water and approximately 4.6 % extralamellar 

bounded water.

4. Grain size distribution 

  The pellets used as sealing material in groundwater 

wells represent a great variation of grain sizes. The grain 

size distribution is of great importance when evaluating 

depositional pattern and swelling pressure.  

  The bentonite pellets will be sorted according to their 

maximal Feret diameter, dF by using Digital Image 

Analysis (DIA). In general the Feret diameter is defined 

as the perpendicular distance between parallel tangents 

touching opposite sides of a given object (Figure 3). 

Methods 

  The grain size distribution has been performed using DIA. A high resolution Canon 

EOS450D camera with 12.2 megapixels was used for DIA. The photo image of the test 

section occupied about 2256*1504 pixels, and in all measurements the same gray level scale 

range 0-255, was considered. The camera was directly connected to- and controlled from a 

computer via a USB cable. Image processing, analysis and measurement were carried out 

using the free softwear, ImageJ ver. 1.43s. The aim of image processing is to obtain a binary 

image containing individual particle silhouettes from the original raw image. 

   

Figure 2: Schematic drawing of the 

composition of bentonite pellets 

                

Figure. 3: Greatest Feret’s Diameter 

(dF), Feret’s Length: The greatest 

distance between two parallel lines 

that do not intersect the image. 
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  A basic procedure of image processing 

includes filtering, overlapping particle 

segmentation, border killing, hole filling and 

debris removal. Digital Image Analysis 

consists of isolating an area of interest with 

ImageJ software. In this study the area of 

interest is always Bentonite pellets. Generally 

the images have a sufficient density contrast to 

isolate the area of interest by applying a simple 

gray level threshold (Figure 4A). After that, a 

binarization of the image was performed, in 

order to isolate the solid body of interest 

(Figure 4B). In addition each analysis was 

visually controlled. At Figure 4C the analyzed 

area has been outlined. In this process multiple 

parameters is registered of each particle in the 

image. In this study only the Feret diameter is 

of interest.  

Results 

  The masses of fourty randomly picked pellets were measured and the pellets were 

photographed. By using, Digital Image Analysis (DIA) on each of the fourty images it is 

possible to measure the Feret diameter with great accuracy.       

  Figure 5 show the Feret diameter, dF, of the pellet versus the mass, m in the interval 8.62 

mm ≤ dF ≤ 24.6 mm.  

Figure 4: Digital image analysis methodology 

(DIA): (A) photo image, 2256x1504 pixels; (B) 

image binarization and isolation of the solid body 

of interest; (C) analyzed area has been outlined; 

(D) image reconstruction. 

        

                      

Figure 5: The Feret diameter versus the mass of the pellets. It can be seen that the 

relationship between the two can be expressed as a linear function.
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A clear linear relationship is seen. This relationship can be represented by:  

m = -0.58+1.13dF   (1) 

  The linear model used to fit the Feret diameter vs. mass, is well correlated with the 

experimental data since the regression coefficient (r) estimated is close to 1. This expression 

must be assumed to be valid for dF values above 24.6 mm. For dF values below 8.62 mm and 

going towards 0 mm, the relationship can be expressed as a second order polynomial (dotted 

line on Figure 5).  

  Ten samples of randomly picked 

pellets was spread out on a sheet of 

white paper and within a square of 

25x25 cm and then photographed and 

the images was analysed according to 

the above mentioned technique.  Each 

sample was approximately 170g of 

weight. The pellets were subdivided 

into seven size intervals and the mass 

of each interval was calculated using 

Eq. (1). The grain size distribution is 

summarized in Table 1. 

5. Bulk porosity based on grain size  

  A simple set of tests was made in order to examine the bulk porosity of pellets within the 

same size interval with respect to the feret diameter. Pellets were sorted into three groups. 

The first group had a maximum feret diameter of 1 cm, the second group was in the interval 

between 1 and 2 cm and the third group had minimum feret diameter above 2 cm.  Test tubes 

with a known volume were then filled with pellets from each size interval. Not surprisingly 

the pellets from the group with a Feret diameter below 1 cm had a tendency to be packed 

more closely than the pellets from the groups with a larger Feret diameter which mean that 

more mass of material was found here. By simple calculations it was then possible to estimate 

the bulk porosity for the whole volume. It was found that the bulk porosity for the samples 

which only contained small pellets was found to be approximately 45%.  The bulk porosity 

for the middle and large size interval was found to be approximately 50% and 58% 

respectively.  

Table 1: Show the size distribution with respect to mass. 

Size interval (cm) Mass [%] 

0.2 < dF ≤ 0.4 1.39 

0.4 < dF ≤ 0.6 2.85 

0.6 < dF ≤ 1.0 8.5 

1.0 < dF ≤ 1.5 34.74 

1.5 < dF ≤ 1.8 27.56 

1.8 < dF ≤ 2.0 15.81 

2.0 < dF ≤ 2.5 9.15 
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