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Abstract

Network Coding (NC) is a technique that can provide benefits in many types
of networks, some examples from wireless networks are: In relay networks,
either the physical or the data link layer, to reduce the number of transmis-
sions. In reliable multicast, to reduce the amount of signaling and enable co-
operation among receivers. In meshed networks, to simplify routing schemes
and to increase robustness toward node failures.

This thesis deals with implementation issues of one NC technique namely
Random Linear Network Coding (RLNC) which can be described as a highly
decentralized non-deterministic intra-flow coding technique. One of the key
challenges of this technique is its inherent computational complexity which
can lead to high computational load and energy consumption in particular
on the mobile platforms that are the target platform in this work.

To increase the coding throughput several simplifications have been con-
sidered, such as decreasing field size, density, and coding systematically. In
order to increase the benefits of these simplifications we considered different
decoding algorithms. From a practical point of view we identified the conflict
between recoding and a compact coding vector representation. This problem
is relevant as the total overhead due to RLNC stems from the probability of
linear dependent symbols but also from including the coding vector of the
transmitted coded symbol. Finally, we present an approach that mitigates
these problems and enable a significantly higher coding throughput. The
approach is based on random but non-uniform combination of symbols in a
generation. Unlike approaches that adapts the ideas from Fountain codes
the presented proposal is not based on a degree distribution. The efforts and
experience stemming from this work have been incorporated in the Kodo
library and will be available for researchers and students in the future.

Chapter 1 introduces motivating examples and the state of art when this
work commenced. In Chapter 2 selected publications are presented and how
their content is related. Chapter 3 presents the main outcome of the work and
briefly new important progresses in the state of the art. The final conclusions
are drawn in Chapter 4.
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Resumé

Network Coding (NC) er en teknik der kan give fordele i mange typer net-
værk, for tr̊adløs netværk kan følgende eksempler nævnes: I relay networks
enten p̊a det fysiske eller datalink laget for at reducere antallet af transmissio-
ner. I reliable multicast for at reducere mængden af signalering og muliggøre
samarbejde mellem modtagere. I meshed networks for at forsimple routing
systemet og for at højne robustheden mod driftsvigt af knuder.

Denne afhandling omhandler implementeringsudfordringer for en specifik
NC teknik kaldet Random Linear Network Coding (RLNC) der kan beskrives
som en decentraliseret ikke deterministisk intra-flow kodningsteknik. En af
de primære udfordringer ved brug af denne teknik er dens beregningsmæssige
kompleksitet, der kan resultere i en højt beregningsmæssige byrde og et højt
energiforbrug, særligt p̊a mobile platforme som dette arbejde er tilsigtet.

For at forøge kodningshastigheden er flere forsimplinger blevet overvejet
f.eks. at reducere feltstørrelsen, reducere tætheden og at kode systematisk.
For at øge fordelen af disse forsimplinger overvejede vi forskellige dekod-
ningsalgoritmer. Fra et praktisk synspunkt identificerede vi konflikten mel-
lem rekodning og en kompakt kodningsvektorrepræsentation. Dette problem
er relevant da det totale overhead p.g.a. RLNC stammer fra sandsynligheden
for lineært afhængige symboler, men ogs̊a fra den inkluderede kodningsvek-
tor. Endelig præsenterer vi en fremgangsmåde der reducerer disse problemer
og muliggører en betydelig højere kodningshastighed. Fremgangsmåden er
baseret p̊a en tilfældig, men ikke uniform kombinering af symboler in en ge-
neration. I modsætning til fremgangsmåder der tilpasser ideer fra Fountain
koder, er den præsenterede idé ikke baseret p̊a degree distributioner. Indsat-
sen og erfaringerne fra dette arbejde er blevet inkorporeret i Kodo software
biblioteket og vil være tilgængelige for forskere og studerende i fremtiden.

Kapitel 1 introducerer motiverende eksempler og den nyeste viden in-
denfor omr̊adet da dette arbejde blev p̊abegyndte. I Kapitel 2 præsenteres
udvalgte publikationer og hvordan deres indhold er relateret. Kapitel 3 præ-
senterer de vigtigste resultater af arbejdet og kort vigtige nye udviklinger i
videnen p̊a omr̊adet. Den endelige konklusion drages i Kapitel 4.
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Chapter 1

Introduction

1.1 Breaking with Store-and-forward Networks

Network Coding (NC) [40, 41] is a technology that have been demonstrated
to provide benefits in many scenarios in both wireless and wire line networks.
Perhaps more importantly it has changed the understanding of data distri-
bution in computer networks. A famous NC example called the butterfly,
elegantly demonstrates how NC can be used to solve a problem where the
existing store-and-forward or routing approach is not optimal.

s

r1 r2

r3

r4

t1 t2

a b

a

a

b

bb

b

(a) Routing #1

s

r1 r2

r3

r4

t1 t2

a b

a

a

b

ba

a

(b) Routing #2

s

r1 r2

r3

r4

t1 t2

a b

a

a

b

ba⊕b

a⊕b

(c) Network Coding

Figure 1.1: The butterfly network with and without NC. A source s holds packets,
a and b, both of which sinks t1 and t2 want to retrieve. All links in the example has
unit capacity. Using routing one of the sinks can receive both packets, colored green,
while the other sink only receive one, colored orange. With NC r3 can combine two
packets and both sinks can retrieve both packets as (a⊕b)⊕a = b and (a⊕b)⊕b = a.

1



Introduction

The importance of this example network becomes clear when the Max-
Flow Min-Cut theorem is applied. This theorem has stood as a cornerstone
in information theory for half a decade [42] and fundamentally states that
the maximum flow in such a network is defined by its bottleneck. For the
butterfly network the min-cut from the source to each of the sinks is two
hence, we would expect that both sinks can receive both packets. However,
until NC was introduced no solution for this network had been found. NC
breaks with the basic premise in store-and-forward networks where packets
are treated as atomic units that can only be forwarded or discarded. Instead,
flows of information can be mixed at any location in the network. Since its
introduction, NC has been suggested as a means to improve performance on
all layers in the Open Systems Interconnect (OSI) model [43–48] and some
ideas have already been tested by researchers [44, 49–52].

Coding in communication systems is not new. Information to be sent from
a source to a sink is represented in a way that is suitable for transportation
over a network. In most cases the information is compressed in order to
reduce the resources necessary to transport it, denoted source coding. As
the data is sent from one node to another it traverses the communication
channel that is established between the nodes, denoted a link. When the
data is transmitted over such a link errors can occur. In order to detect
and correct these errors another type of coding, channel coding, is employed.
Network coding adds a layer of coding in between these two existing layers.
This space is partly occupied by Fountain codes [53], noticeable LT and
Raptor codes [54, 55].

Source Coding

Fountain Coding Network Coding

Channel Coding

Figure 1.2: The hierarchy of coding, with NC inserted alongside Fountain Coding.

Intriguing theoretical properties and potential gains are reasons to con-
sider NC. But the ideas must also be implemented in practical system which
is the challenge faced by engineers. Ultimately the benefit of deploying NC
must outweigh its cost, both from a technical and business point of view. But
before considering such challenges we introduce some motivating examples
that show why NC could become an important technology in future networks.
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1.2 Device Centric Mobile Networks and Network Coding

1.2 Device Centric Mobile Networks and Net-

work Coding

The way users access information and use computers have changed signif-
icantly over the last couple of decades. The Internet has moved from a
research project to forming one of the worlds most important pieces of in-
frastructure. In the last decade social services where users share content
publically or privately have become increasingly popular. Also streaming
of video and audio have become much more widespread. Traditional asyn-
chronous one-to-one services such as email and web pages are still popular
and important, but constitute a decreasing percentage of the total traffic [56].
The devices in use have also changed from desktops literally tethered to the
wall, towards portable laptops and the highly mobile smartphones which are
becoming the dominant platforms. In particular the rise of the smartphone
has allowed users to access information anywhere and anytime.

Internet

Cloud #1
Cloud #2

Operator #1 Operator #2

BS BS

BS

BS

t1

t2 t3 t4 t5 t6 t7

Figure 1.3: An overview of the network architecture that supports current cloud
services that users can access via mobile phones and similar.

The cellular networks that fuel these devices have become faster and
coverage has improved. However, they are still based on the very same
premise as previous cellular networks, this is, users communicate with a Base
Station (BS) that provide access to the Internet as illustrated in Figure 1.3.
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Introduction

This approach can be considered as a direct adoption of the topology
form wire line phone networks, where the users are connected via a wire to
a central station. This fits nicely with use cases where the data needed by
the node is located on some centralized entity, a server. However, it does not
permit nodes to communicate directly. Furthermore, the nature of wireless
network offers possibilities that are currently not exploited since broadcasting
is not supported neither at a BS nor from a user. In wireless networks the
medium is shared between the users who transmit signals which propagate
through the surrounding environment and can be overheard by others than
the intended receiver. Broadcast could in some scenarios be utilized to make
up for some of the challenges that wireless networks posses such as lower
reliability and more dynamic link quality.

The architecture of the Internet is also predominantly centralized and
highly regulated. In the cloud, information is stored at a single central au-
thority as illustrated on Figure 1.3. Thus, if a user sends a message to another
user right next to him/her, e.g. an email, the data would traverse the wireless
link to the BS, the operators network, the Internet, to finally arrive at some
central authority, for then to take a similar journey back to the other user.
If the users could communicate directly the data could simply be send from
one device to the other. In the case of text messages this will introduce a
short delay but most likely not be noticed by the user. But if the user instead
share a video, capacity will be needlessly wasted in the backbone network.
This problem becomes even more apparent if one consider the case where
a user want to send the video to multiple other users nearby. In this case
the wasted bandwidth both at the source and in the backbone will increase
proportionally with the number of sinks. If we consider the users t3 and t4
in Figure 1.3, they might be close in terms of location, but far apart from
a network point of view. Furthermore, if the cloud is used to facilitate the
data transfer, the network distance is likely to increase. This illustrates the
fundamental trade-off between storage and bandwidth in computer systems.
If you could store all of the Internet on your phone, you would not need an
Internet connection, at least until your version got out of sync.

Fortunately the current systems have allowed for a multitude of services,
many of which was not envisioned when the Internet was first developed
and built. This shows the flexibility of the current solutions. The flexibility
can partly be attributed to the simplicity of the Internet where almost all
communication between end nodes is based on Transmission Control Protocol
(TCP) or User Datagram Protocol (UDP). On top of these two protocols
a host of application layer protocols serving a vast range of purposes have
been and is being built. The challenge is thus to efficiently support new uses
without breaking or complicating the existing networks.
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1.2 Device Centric Mobile Networks and Network Coding

An example of such a network topology is cooperative networks [57]. In
cooperative networks some of the burden of distributing content is moved
from the source unto the the sinks. A simple example is that of reliable
multicast in a local wireless network. Here a single source hold some data or
stream that multiple sinks want to retrieve. Traditionally the sink can either
unicast to each of sinks to ensure reliability or broadcast to everyone simul-
taneously and hope that the content is received correctly. With cooperation
the sinks can exchange received data and hence increase the reliability of the
distribution without increasing the burden of transmission at the source.

s t2

t1

t3

Figure 1.4: A simple cooperative network where the source s wishes to transmit some
data reliably to the sinks t1 through t3. When the source broadcasts packets, the
sinks will receive different subsets of the information due to packet erasures. Without
cooperation the source must repair these erasures in order to ensure reliability. But if
the sinks instead could cooperate and exchange packets that some of them are missing
the load on the source can be reduce, also spectrum and energy usage at the sinks can
be reduced. However, it is not trivial for the sinks to cooperate as they must determine
who has lost which packets. With NC the requirement of obtaining this information
can be removed which makes it much simpler to implement such a cooperative system.

In this scenario NC can be used to reduce the complexity of the coop-
eration. With traditional broadcast based cooperation the sinks would have
to exchange information about what pieces of the data they have received
in order for other sinks to be able to transmit missing pieces. If the number
of nodes is low this is doable but if the number of sinks become high the
amount of signaling will increase. Additionally, when sinks are helping each
other out they will have to send data that some of the other sinks have al-
ready received, and thus their transmission will only be helpful for some of
the other sinks. With NC the sinks can combine the data they have received
and transmit the combination to other sinks without knowledge of what the
other sinks have received. Thus, the signaling complexity is greatly reduced,
and at the same time a sink can send data that is useful for more of the other
sinks.
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Distributing files or streaming data such as audio and video can be costly
due to the upkeep of data centers and consumed outgoing bandwidth. To
mitigate this problem a decentralized approach to content distribution have
been in widespread use for some years. These systems are known as Peer
to Peer (P2P) and allow a user to take part in the distribution of content,
typically big files [58]. This concept have also been adopted for mobile devices,
not surprisingly called mobile P2P [59].

Internets

p2

p1

p3

Figure 1.5: A P2P network where peers form an overlay distribution network in order
to offload the user that originally introduced the content. The peers query other users
for parts of the data they miss and in term respond to queries by others. In order
to maintain a set of suitable source peers all peers periodically sends queries to new
potential source peers.

Originally, P2Ps systems were intended for distribution of large files to
Personal Computers (PCs) using a relatively stable Internet connection. For
other use cases the ideas used in such systems might not be directly appli-
cable. For example, in the case of P2P live video streaming between mobile
phones. In this case there is a strict delay requirement, if information arrives
to late it will be unusable for the sink. Additionally, the links of the sinks can
be much more dynamic as the users are on wireless connection. Therefore,
this use case is much more dynamic and the system must be able to adapt
much faster.

With NC the solutions can become simpler, instead of requesting specific
chunks of data the sinks simply ask for some symbols from a series of other
sinks. Importantly, end-to-end codes cannot be used in this way, as they do
not support recoding. Hence, a sink would have to decode the information
completely before it can start contributing to other nodes which can introduce
an unacceptable delay.
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1.2 Device Centric Mobile Networks and Network Coding

A final example where NC can be applied is meshed networks which
can be used to create a wireless infrastructure to allow Internet access in a
city, or formed between mobile sensors. To enable the nodes in the network
to access the Internet some of the nodes will have a wireless connection
and act as gateways through which the nodes traffic will be routed [60].
Similarly, for sensor networks where the task of the gateways are to collect
measurement data and forward it via a global link, or alternatively store it
until some external entity passes by and collects it. Mobile Ad hoc NETworks
(MANETs) [61] are similar but has highly dynamic topologies that are often
considered for Car to Car (C2C) communication called Vehicular Ad-hoc
NETworks (VANETs) or military purposes such as connecting a large number
of combat units, infantry, tanks, artillery, airplanes etc., on the battlefield
in order to share information in real time. Such networks posses additional
challenges in terms of quickly changing network typologies which introduces
the need for robust routing schemes.

G1n1

n2

n3

n4

n5

n6

n7

n8

n9

G2

Figure 1.6: Multiple nodes generate, consume or both, data that must be forwarded
to or received from a gateway. The topology of the network may change slowly or fast
which means that the routes packets traverse to or from the gateway must sometimes
be updated. If the nodes are battery driven the routing approach must avoid high load
on single nodes as this may cause fast battery depletion and create dead spots in the
network.

In such a system NC can be used to create simpler routing schemes and/or
to efficiently spread the information in the network, so it does not become
unavailable should a particular node stop operating. This makes it simpler
to create robust multipath or corridor based routing protocols.
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The provided examples are all less centralized and more loosely organized
networks when compared to the cellular networks used today and the Inter-
net in general. Thus, it seems logical that new ideas and approaches could
be beneficial in these topologies and other networks that does not adhere
to the strictly centralized architecture. Specifically if the networks become
more localization aware and allow users to exploit co-location by cooperation,
they could perform better in scenarios such as those described. This could
also offload centralized servers and backbone networks which could reduce
the cost of the service providers or allow users to create independent ser-
vices. This sounds enthralling, unfortunately the consequence can be much
more complex networks. If the role of authority is no longer well defined, it
becomes difficult to guarantee things such as security, authentication, and
reliability. This work does not consider all of these problems but instead
focus on the challenges of efficient communication in computer networks in
terms of spectrum and energy.

One approach is to base such systems on Random Linear Network Cod-
ing (RLNC) as it presents a completely decentralized approach to data dis-
tribution. With RLNC nodes can encode and recode data with only minimal
information about the state of the rest of the system. Thus nodes can ex-
change data without introducing a high level of signaling. As a consequence
RLNC can be used to implement cooperation in networks where the added
overhead of non-coding cooperative systems would be prohibitively high. Ad-
ditionally, the reduced amount of signaling makes it particular suitable for
highly dynamic networks, which is a typical property of mobile networks.
Unfortunately RLNC is computational demanding which can be a significant
challenge when it is utilized in practical systems.

For successful deployment on mobile devices RLNC must be adapted to
preserve computational and energy resources, as the nodes in these networks
traditionally have low computational capabilities and are battery driven. The
good news is that the computational capabilities of mobile phones have in-
creased rapidly during the last years which can be observed from the increas-
ing highest clock frequency available which was 200 MHz in 2005, 600 MHz
in 2007, 1 GHz in 2009, 1 GHz dual-core in 2011, and currently 1.5 quad-
core in 2012 [62–67]. This is an increase of 30 times, where as the battery
capacity has only doubled during the same time. This shows that today and
in the future the problem of energy is becoming more important. However
utilizing this computational power still comes with a cost in terms of energy
and therefore it is still relevant to aim for low computational demanding
solutions.
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1.3 Random Linear Network Coding for Practical Systems

1.3 Random Linear Network Coding for Prac-

tical Systems

In 2009 when this project started RLNC had been proposed as an theoretical
efficient approach of performing NC [68]. Coding is performed over a Finite
Field (FF) which makes the code linear [69] as all valid symbols can be
combined to form new valid symbols. The approach is random and encoding
and recoding can be performed completely decentralized at nodes in the
network. The basic approach in RLNC is to divide the original data into k
symbols and combine these chunks at random. Each symbol is multiplied
with a scalar drawn at random from a FF, and all the results are added to
obtain a coded symbol of the same size as the original symbols. In order for
a node to decode the original data it must collect slightly more independent
coded symbols as there are original symbols (1 + ε)k, where ε is the overhead
per symbol.

This slight overhead arises as the scalars are drawn at random and hence
there is a non-zero probability that a received symbol is linear dependent
on already received symbols. The overhead can be made arbitrarily small
provided that the used FF is sufficiently large. To make RLNC practical
for any size of data it was suggested to divide the original symbols into
generations M [70]. This increases the overhead as enough symbols must be
collected for each generation and can add additional signaling [71].

m0 m1 m2 m3 m4 m5 . . . mg−1

x0 x1 x2 . . . . . . . . . xi . . .

M

Figure 1.7: Coded symbols are created from the original data M that is divided into
symbols, denoted mi. Each coded symbol xi is a combination of some or all of these
original symbols. The benefit over non-coding approaches is that the original data
can be recovered from any sufficiently large set of coded symbols. Without coding, all
unique original symbols are needed in order to recover the original data [72].

To obtain a low overhead, coding has been performed at random over a
large field typically a binary extension field of size 28 or 216. Under such
settings it is not trivial to obtain an acceptable level of coding throughput
which was also demonstrated by the first attempt [73]. The problem was
especially apparent when RLNC was first deployed on mobile phones of the
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Introduction

time [6]. Thus, the complexity of RLNC had been mentioned as a challenge
with a significant impact on the coding throughput. However, reducing this
complexity had not attracted much attention and all presented solutions
where based on an approach to RLNC that was proposed in a theoretical
context [68, 74].

Nevertheless, several P2P like systems for large scale content distribution
had been implemented and tested. In the similar [75, 76] the file distribution
system Avalanche was presented, however very little information about the
throughput of the coding was conveyed. In [51] which presents a P2P system
for live video streaming this problem was thoroughly presented. In order
to achieve an acceptable throughput the authors used low generation sizes
and very large blocks, in practice this reduces the usefulness of the coding
considerably. None of these considered mobile platforms and to reduce the
computational load they operated RLNC at settings where the coding com-
plexity became less important. However, doing so may incur to high cost
in terms of overhead for some use cases and may not be feasible on some
platforms with low computational capabilities.

In order to increase the coding throughput some efforts had focused on
utilizing Graphical Processing Units (GPUs) or parallelism [77, 78]. It had
been demonstrated that both approaches could significantly increase the cod-
ing throughput when the powerful peaces of hardware were commandeered
to perform the coding. However, these efforts targeted PCs and had little
prospect of ever benefiting mobile devices. At the time multiple core Central
Processing Units (CPUs) for mobile devices was still in the horizon and even
though phones with a GPU had become available some years prior [63, 64],
there was no easy way to utilize this processing power for general purposes,
especially not if multiple platforms and devices are to be supported.

Particularly a high decoding throughput is important as in several pro-
posed use cases the distribution is one-to-many and hence more nodes are
decoding compared to encoding. Additionally the decoding node is often
slower than the encoding node, e.g. in the case where a video is streamed
from a server to some users on phones or laptops. Finally, the decoding nodes
are typically also performing other tasks, e.g. playing back video.

As mobile devices of the time had much more modest computationally
capabilities compared to PCs the challenge were even bigger on such devices.
Additionally, on battery driven devices there were the consideration of en-
ergy consumption. Generally, when the utilization of the nodes processing
capabilities increases so does the energy consumed. As a consequence, we
identified coding complexity and practical solutions as areas where improve-
ments were possible and necessary.
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1.4 Thesis Motivation and Aims

1.4 Thesis Motivation and Aims

The work in this thesis were motivated by making RLNC practical, with
mobile devices as the platform of particular interest. Illustrating the prac-
tical feasibility of RLNC would be an important step towards its utiliza-
tion in practical systems, and by demonstrating this on a platform with low
computational capabilities other powerful platforms would automatically be
included. By unlocking the power of RLNC, it would become available as
a tool for solving practical problems of implementing future services and
applications, such as cooperative systems and localization aware services.

The main goals of this thesis can be summarized as follows:

• Propose modifications to RLNC to reduce the coding complexity and
increase the coding throughput.

• Propose, implement and test algorithms for promising low complexity
variants of RLNC.

• Identify practical system problems when deploying RLNC and identify
suitable system settings when used on mobile devices.
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Chapter 2

Selected Contributions

The selected contributions in this section are all part of the effort to reduce
the coding complexity of RLNC in order to increase the coding throughput
and ensure that it can be used in practical systems. Figure 2.1 provides
an overview of the selected publications and how they relate in order to
communicate the chronology of the work in this thesis.

The work done in [25] has formed the foundation of the remaining papers.
In this paper we considered a low complexity variant of RLNC by using the
binary field and coding systematically.

To reduce the decoding complexity further in [15] we proposed to utilize
the coding vector to communicate information about the state of the decoding
matrix. This information was used to encode packets that are much less
computational demanding to recode.

In [19] we investigated the reduction in decoding complexity when sparsely
coded symbols are received. We considered modifications to the decoding al-
gorithms to increase the coding throughput and observed the problem of
fill-in.

Motivated by our investigation of sparse RLNC we performed a more
thorough analysis of the coding overhead due to linear dependency in [17].
An important insight was that the overhead due to the representation of the
coding vector contributes significantly in cases where recoded are used.

Finally, in [1] based on the insight from our previous work we proposed
a new approach to perform RLNC. The proposed approach is binary, sparse
and non-uniform, and it mitigates the problem of fill-in during decoding as
well as the overhead due to the coding vector.
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Selected Contributions

Paper 1 [25]

Network Coding
for Mobile De-
vices - Systematic
Binary Random
Rateless Codes

Paper 2 [15]

Reducing Compu-
tational Overhead
of Network Cod-
ing with Intrinsic
Information Con-
veying

Paper 3 [19]

Decoding Algo-
rithms for Ran-
dom Linear Net-
work Codes

Paper 4 [17]

On Code Param-
eters and Coding
Vector Represen-
tation for Practi-
cal RLNC

Paper 5 [1]

Perpetual Codes
for Network Cod-
ing

Figure 2.1: The dependency between the selected contributions.
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2.1 Paper 1

2.1 Paper 1

[25] Janus Heide, Morten V. Pedersen, Frank H.P. Fitzek, and Torben
Larsen. “Network Coding for Mobile Devices - Systematic Binary Ran-
dom Rateless Codes”. In: IEEE International Conference on Commu-
nications (ICC) - Workshop on Cooperative Mobile Networks. Dresden,
Germany, June 14–18, 2009.

Motivation

The number of necessary transmissions in wireless reliable multicast scenarios
can be dramatically reduced if the broadcast nature of the wireless medium
is exploited. One technique that can be used to ensure reliability is RLNC,
which can be used for both non-cooperative and cooperative systems. The
control system of such a solution can be significantly simpler compared to
solutions that do not employ coding, and at the same time the signaling over-
head can be significantly reduced. However, the computational complexity
added by RLNC is a drawback which must be addressed in particular when
it is deployed on mobile devices such as mobile phones and tablets.

Content

This paper investigates how to perform reliable multicast from a single source
using various methods for erasure correction. The overhead in terms of re-
transmissions from the source is analyzed for unicast, broadcast, and RLNC
schemes all based on idealized feedback. For RLNC various generation and
field sizes are considered along with both a non-systematic and systematic
approach. The binary field and a systematic approach are considered in order
to increase the coding throughput and thus decrease the energy consump-
tion. The encoding and decoding algorithms used in the implementation are
presented. The implementation is tested both on high end mobile device, a
laptop, and on a low end mobile device, a mobile phone.

Main results

The overhead in terms of retransmissions from the source is evaluated for
unicast, broadcast, and RLNC, for an increasing number of sinks. As the
number of sinks grow the gain of using the RLNC approaches increases over
broadcast. The performance of different field sizes and generation sizes is
also compared, and the results demonstrate that it is unnecessary to use field
sizes larger than 256 in the considered scenario. The encoding and decoding
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Selected Contributions

throughput are tested with the presented implementation for varying field
sizes with and without systematic approach. Both the encoding and decoding
throughput are approximately doubled for all tested settings and the coding
throughput decreases as the generation increases.

Own Related Publications

In [5, 26] we presented an application that utilizes the approach presented in
this paper to distribute pictures to a group of nearby users. In [8] we reported
on link measurements in order to test the assumption of independent erasures
at the users. In [13, 35] we considered a modified scenario where the BS
transmits to the users over Multimedia Broadcast Multicast Service (MBMS)
and the users cooperate using a local Wireless Local Area Network (WLAN).

[5] Morten V. Pedersen, Janus Heide, Frank H.P. Fitzek, and Torben
Larsen. “A Mobile Application Prototype using Network Coding”. In:
European Transactions on Telecommunications (ETT) 21.8 (8 2010),
738–749.

[8] Janus Heide, Péter Vingelmann, Morten V. Pedersen, Qi Zhang, and
Frank H.P. Fitzek. “The Impact of Packet Loss Behavior in 802.11
b/g on the Cooperation Gain in Reliable Multicast”. In: IEEE Vehic-
ular Technology Conference (VTC) - Wireless networks Symposium.
accepted. Québec, Canada, Sept. 3–6, 2012.

[13] Qi Zhang, Janus Heide, Morten V. Pedersen, and Frank H.P. Fitzek.
“User Cooperation with Network Coding for MBMS”. In: IEEE GLOBal
COMmunication conference, exhibition & industry forrum (GLOBE-
COM) - Communication Software, Services, and Multimedia Applica-
tions Symposium. Houston, Texas, USA, Dec. 5–9, 2011.

[26] Morten V. Pedersen, Janus Heide, Frank H.P. Fitzek, and Torben
Larsen. “PictureViewer - A Mobile Application using Network Cod-
ing”. In: European Wireless Conference (EW). Aalborg, Denmark, May 17–
20, 2009.

[35] Qi Zhang, Janus Heide, Morten V. Pedersen, Frank H.P. Fitzek, Jorma
Lilleberg, and Kari Rikkinen. “Network Coding and User Cooperation
for Streaming and Download Services in LTE Networks”. In: Network
Coding: Fundamentals and Applications. Ed. by Muriel Medard and
Alex Sprintson. Academic Press, Oct. 17, 2011. Chap. 5, pp. 115–140.
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2.2 Paper 2

2.2 Paper 2

[15] Janus Heide, Qi Zhang, Morten V. Pedersen, and Frank H.P. Fitzek.
“Reducing Computational Overhead of Network Coding with Intrinsic
Information Conveying”. In: IEEE Vehicular Technology Conference
(VTC) - Transmission Technologies Track. San Francisco, CA, USA,
Sept. 5–8, 2011.

Motivation

The computational complexity at decoding sinks can be significantly lowered
if the coded symbols received by the sink are sparse. Unfortunately this also
increases the probability that such coded symbols are linearly dependent
on previously received symbols, which increases the overhead in terms of
retransmissions. However, if the encoding node knows a set of symbols to
either include or exclude it can create sparse coded symbols with the same
or higher probability of being linearly independent. However, conveying such
information from one or more sink to the nodes that encode or recode entails
an overhead in form of signaling which is unwanted.

Content

In this paper we proposed an approach where a FF was divided into sub
fields where each field denotes some state information available at the coding
node. Thus, this information is embedded into the coding vector whenever
a node encodes or recodes a symbol and can be extracted at all receiving
nodes before the symbol is decoded. We proposed to use this information
for reducing the decoding complexity among a set of cooperative sinks that
all perform recoding, by embedding information about the decoding matrix,
and described an approach that enable this. This allow other nodes to create
sparse coded symbols which requires less computational effort to decode.

Main results

In the considered cooperative scenario a group of nodes cooperatively down-
load some content using their cellular links and cooperate by exchanging
coded symbols over an orthogonal local network. At the evaluated settings
with a generation size of 128 and four cooperating nodes the complexity of
decoding was reduced with 82% when each of the nodes started with 75% of
the content.
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Own Related Publications

In [39] we described the core idea of embedding information into the coding
vector and proposed a possible approach to implementing it.

[39] Janus Heide, Morten V. Pedersen, Frank H.P. Fitzek, and Qi Zhang.
“Intrinsic Information Conveying in Network Coding”. Pat. 800.0406.U1
(US), pending. Mar. 19, 2010.
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2.3 Paper 3

2.3 Paper 3

[19] Janus Heide, Morten V. Pedersen, and Frank H.P. Fitzek. “Decoding
Algorithms for Random Linear Network Codes”. In: IFIP International
Conferences on Networking - Workshop on Network Coding Applica-
tions and Protocols (NC-Pro). Vol. 6827. Lecture Notes in Computer
Science. Valencia, Spain, May 12, 2011, pp. 129–137.

Motivation

When decoding sparse coded symbols using standard RLNC decoding algo-
rithms an effect sometimes called fill-in can be observed. Basically the sparse
coded symbols are combined with other sparse symbols which together form
less sparse symbols. As decoding progresses the symbols in the decoding ma-
trix will become less sparse which means that the desired effect of reduced
decoding complexity is lost. Therefore it is necessary to adapt the decoding
algorithms in order to ensure a low computational load on the decoding node.

Content

In this paper we proposed, implemented and evaluated a series of simple
optimizations to the on-the-fly version of Gaussian elimination that we use
for decoding in our RLNC implementations. We tested each optimization on
its own and also some of them combined in order to determine when they
provided the biggest benefits.

Main results

The proposed optimizations were tested by measuring the number of row
operations performed during decoding of a generation. A field size of two
was used, and the generation sizes were varied from 16 to 512. Additionally,
both traditional RLNC and a sparse variant were tested. In both cases the
results showed that it was possible to reduce the operations performed on
the coding vector to approximate half. For the dense case a reduction in row
operations on the coded symbols of up to 10% was observed. For the sparse
case a reduction of up to 20% in row operations on the coded symbols was
observed.
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Own Related Publications

In [20] we introduced the Kodo network coding library in which the algo-
rithms were implemented.

[20] Morten V. Pedersen, Janus Heide, and Frank H.P. Fitzek. “Kodo: An
Open and Research Oriented Network Coding Library”. In: IFIP In-
ternational Conferences on Networking - Workshop on Network Coding
Applications and Protocols (NC-Pro). Vol. 6827. Lecture Notes in Com-
puter Science. Valencia, Spain, May 12, 2011, pp. 145–153.
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2.4 Paper 4

2.4 Paper 4

[17] Janus Heide, Morten V. Pedersen, Frank H.P. Fitzek, and Muriel Médard.
“On Code Parameters and Coding Vector Representation for Practical
RLNC”. In: IEEE International Conference on Communications (ICC)
- Communication Theory Symposium. Kyoto, Japan, June 5–9, 2011.

Motivation

When analysis, simulation or practical system that is based on RLNC is
presented, the generation size, field size and sometimes also the density are
important parameters that describe how coding is performed. These param-
eters influence both the coding throughput and the overhead due to linear
dependency, and should be chosen with care as improper values can result
in a system that is practically unfeasible. Furthermore, we wish to direct
attention towards the fact that using a pseudo random function to compress
the coding vector makes recording impossible. Conversely, the overhead from
the coding vector must be included when the total overhead is evaluated.

Content

In this paper we analyze the influence of the parameters generation size,
field size, and density of the probability of linearly dependency. We explain
why the commonly used assumption: that coding vectors can be represented
with a seed if a pseudo random function is used at the coding nodes, is
not applicable in cases where recoding is used. We introduce several new
approaches to represent the coding vectors and present their respectively
overhead. Finally we analyze the total overhead from both linear dependency
and the coding vector representation. Based on this we discuss suitable
choices of the parameters for different types of applications.

Main results

The provided analysis enables calculation of the overhead due to linear de-
pendency from RLNC and sparse RLNC variants, as well as the overhead
from the resulting coding vectors. The generation size should be specified
based on the delay requirements of the considered application. Based on this
the remaining parameters can be chosen in order to minimize the overhead.
The results show that for generation sizes below 256 a field size of 28 pro-
vides the lowest total overhead, for generation sizes above 256 a field size of
2 provides the lowest total overhead.
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2.5 Paper 5

[1] Janus Heide, Morten V. Pedersen, Frank H.P. Fitzek, and Muriel Médard.
“Perpetual Codes for Network Coding”. In: IEEE Transaction on Mo-
bile Computing (2012). submitted.

Motivation

Sparse variants of RLNC does not necessarily reduce the computationally of
decoding. Therefore, we seek a new approach to perform the coding that
is sparse, but allow decoding to be performed in a way where fill-in during
decoding is avoided or reduced. Furthermore, the approach should not make
it unpractical to combine coded symbols as this would prohibit recoding.
Finally, it should be possible to represent the coding vectors in a compact
way in order to reduce their contribution to the total overhead.

Content

In this paper a binary code is introduced where all symbols are not com-
bined at random. Instead only neighboring symbols are combined at ran-
dom. We describe how encoding, decoding and recoding can be performed,
provide suitable algorithms for all operations, and propose optimizations to
the coding procedures. We provide analytically upper and lower bounds on
the coding complexity and overhead due to linear dependency. Finally, we
provide access to our C++ implementation of the proposed approach. We
report on measured coding throughputs obtained with the implementation
and compare the results with our own similar implementation of traditional
RLNC.

Main results

The results show that the proposed approach to performing RLNC can deliver
an overhead due to linear dependency arbitrarily close to that of RLNC but at
a significantly reduced coding complexity. The gain in the coding throughput
grows with the generation size and is approximately one order of magnitude
higher for the largest tested generation size of 2048. We also provide a new
view on how recoding can be performed which is particular relevant for the
proposed approach.
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Chapter 3

Main Outcome

This chapter outlines the primary outcomes stemming from the work con-
ducted during this Ph.D. study. The contribution has been centered around
different efforts which are listed below.

1. Practical problems in mobile systems

2. Reduced coding complexity

3. The Kodo library

4. Steinwurf

5. The ENOC/NOCE project

6. The NBC demonstrator

The primary contributions to the state of the art are within implemen-
tation of RLNC for mobile devices. During this work several practical issues
here identified and possible solutions put forward. In particular the focus
was on reducing the complexity of RLNC in order to increase the coding
throughput. Some of the insights has contributed to the development of the
Kodo software library.

Commercially oriented activities have been the founding of the company
Steinwurf, and projects conducted in cooperation with Nokia, Renesas, MIT,
and NBC.
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Main Outcome

3.1 Practical Problems in Mobile Systems

When implementing ideas that appear straight forward in theory it is not
uncommon that a series of unanswered questions and problems arise. Some
can be trivial while others can expose fundamental problems, regardless they
must be addressed before the concept can be utilized in practical systems.

Background

When this worked started some experience with practical systems based on
RLNC was reported in the literature. However, the focus was primarily
on designing distribution systems and protocols and therefore it appeared
that several problems were ignored. As a consequence some of the ideas
from theory were adopted unmodified [74] with unsatisfactory results [6, 73].
When and how recoding should be performed in practice were not clearly
understood. An interesting recent example is [79] where recoding is not
used, and thus the single most prominent feature of NC is forfeited, this
example is not unique. Discarding the use of recoding degenerates the code
to an end-to-end Forward Error Correction (FEC) code and removes most of
the properties that makes NC codes useful in cooperative networks.

Contribution

In [25] we presented the first implementation of RLNC that utilized the
binary field and took advantage of systematic coding, which demonstrated
for the first time that RLNC is feasible on mobile devices. The binary field
is directly supported by modern CPUs which simplifies implementation and
makes RLNC practical on storage constraint devices such as sensor boards.
We also presented an on-the-fly decoding algorithm which reduces the final
decoding delay and distributes the decoding workload over time.

In [17] we explained why a pseudo random function cannot be used when
recoding is supported and that it is therefore necessary to always include the
coding vector. We showed that when the overhead due to the coding vector
is included in the total overhead, it has a profound impact on the choice of
suitable coding parameters. This enabled us to provide practical guidelines
for the choice of coding parameters, based on the type of content.

In [1] we proposed a coding approach that mitigates the problem of repre-
senting the coding vector while preserving the possibility to recode. Further-
more, it is trivial to represent the resulting coding vectors in a near optimal
way, from a compression point of view.
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3.2 Reduced Coding Complexity

3.2 Reduced Coding Complexity

The coding complexity of RLNC defines the platforms on which the technique
can be utilized. In particular, this is relevant for battery-driven devices as
increased computational load leads to increased energy consumption.

Background

In the initial phase of this project, multiple implementations of RLNC had
were presented [77, 78, 80–83] which focused on optimizing the underlying
FFs, by parallelization or acceleration via GPUs. One likely reason was the
predominate assumption that the size of the used field should be large to
reduce the overhead due to linear dependency. Particular noteworthy efforts
are those of [84] who focused on parallelization the coding both on CPUs and
GPUs, and [85] who continued this work in addition to deployment on mobile
phones. The problem of cross compatible use of GPUs remain, in particular
on mobile platforms, but with the adoption of OpenCL [86] this could change
in the future. Backed by Intel, Advanced Micro Devices, Nvidia, and ARM
Holdings, OpenCL has been adopted by all relevant manufacturers in the PC
and mobile spaces, and thus has the potential to become an unified solution
on platforms from High Performance Computing (HPC) to mobile [87]. Re-
cently new low complexity coding approaches have been proposed, e.g. [88]
where degree distributions similar to those of Fountain codes are applied,
or the modification of convolutional codes to [89]. These efforts are so far
mostly theoretical whereas our work is conducted with a close coupling to
implementation challenges. Additionally, our approach is different as it is
based on non-uniform coding without a degree distribution.

Contribution

In [25] we introduced binary and systematic versions of RLNC. Binary codes
are generally applicable at a slight cost in linear dependency, while systematic
codes are only useful in typologies with up to two hops. The measured coding
throughput was significantly higher than any previous implementation.

In [19] we presented several decoding algorithms intended for faster de-
coding of sparsely coded symbols. The problem of fill-in was observed.

In [1] we proposed an approach to coding that significantly increased the
coding throughput, particularly at high generation sizes, which is where the
performance of RLNC becomes problematic. This is achieved by coding non-
uniformly over the original symbols which makes it possible to decode in a
way that reduces the effect of fill-in significantly.
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3.3 Dissemination

The Kodo Library

Work on the Kodo library, which implements NC algorithms and the un-
derlying FFs started during the M.Sc. studies of Morten V. Pedersen and
myself [90, 91]. During our Ph.D studies we have continued to contribute to
Kodo by using it to test multiple ideas for improving the speed of RLNC and
supporting various new features.

To enable others to experiment with RLNC we have made Kodo avail-
able under a license that permits the use of Kodo for research and teaching
purposes. By doing so we hope that others will use Kodo and potentially con-
tribute optimizations or ideas back in the future. Additionally it allow other
researchers to verify the measurements we conduct with Kodo, and ensure
maximum transparency. Kodo has been used in multiple student projects at
Aalborg University. Additionally it is currently used by research groups in
Hong Kong, Portugal and Hungary, but as it is freely available it could be in
more widespread use [92].

Steinwurf ApS

In 2011 Morten V. Pedersen, Frank H.P. Fitzek, Muriel Medard and my-
self founded Steinwurf. Steinwurf conducts the continued development of
Kodo and the effort to commercialize the software. In addition, Steinwurf
is developing a series of software libraries, e.g. for cross-platform deploy-
ment, network integration and reliability protocols. These components are
necessary in order to utilize RLNC efficiently in a real world application,
and to face the many practical challenges that arises outside of purpose built
networks constructed in the laboratory.

Steinwurf also develops mobile phone applications, primarily inspired by
our early work with local content distribution and local cooperation [26].
Local sharing of pictures to multiple sinks, and streaming of audio and video
to multiple sinks. These applications are intended to showcase the potential
of NC technology and the capability of the Kodo library and related software.

ENOC and NOCE projects

The Evolved Network COding (ENOC) project in cooperation with Nokia
started shortly after the COoperation and NEtwork coding (CONE) project
where this work was carried out. It later continued as the Network COding
Evolved (NOCE) project in cooperation with Renesas. The aim of the project
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3.3 Dissemination

was to investigate the use of NC in wireless systems and create demonstrators
of the proposed systems. Some of the outcome was published in the following
papers.

[2] Peter Vingelmann, Janus Heide, Morten V. Pedersen, Qi Zhang, and
Frank H. P. Fitzek. “Decentralized Data Dissemination with Network
Coding in High-Mobility MANETs”. In: IEEE Transaction on Mobile
Computing (2012). submitted.

[4] Peter Vingelmann, Frank H.P. Fitzek, Morten V. Pedersen, Janus Heide,
and Hassan Charaf. “Synchronized Multimedia Streaming on the iPhone
Platform with Network Coding”. In: IEEE Communications Maga-
zine - Consumer Communications and Networking Series 49.6 (2011),
pp. 126–132.

[12] Péter Vingelmann, Morten V. Pedersen Janus Heide, Qi Zhang, and
Frank H.P. Fitzek. “Data Dissemination in the Wild: A Testbed for
High-Mobility MANETs”. In: IEEE International Conference on Com-
munications (ICC) - Wireless Networking Symposium. Ottawa, Canda,
June 10–15, 2012.

[14] Péter Vingelmann, Morten V. Pedersen, Frank H.P. Fitzek, and Janus
Heide. “On-the-fly Packet Error Recovery in a Cooperative Cluster of
Mobile Devices”. In: IEEE GLOBal COMmunication conference, exhi-
bition & industry forrum (GLOBECOM) - Next Generation Network-
ing Symposium. Houston, Texas, USA, Dec. 5–9, 2011.

[21] Peter Vingelmann, Frank H.P. Fitzek, Morten V. Pedersen, Janus Heide,
and Hassan Charaf. “Synchronized Multimedia Streaming on the iPhone
Platform with Network Coding.” In: IEEE Consumer Communications
and Networking Conference (CCNC) - Multimedia & Entertainment
Networking and Services Track. Best student paper award. Las Ve-
gas, NV, USA, Jan. 9–12, 2011.

[22] Morten V. Pedersen, Janus Heide, Peter Vingelmann, Laszlo Blazovics,
and Frank H.P. Fitzek. “Multimedia Cross–Platform Content Distri-
bution for Mobile Peer–to–Peer Networks using Network Coding”. In:
ACM Multimedia - Multimedia Applications Track Short Paper. Firenze,
Italy, Oct. 25–29, 2010.

[23] Peter Vingelmann, Morten V. Pedersen, Frank H.P. Fitzek, and Janus
Heide. “Multimedia Distribution using Network Coding on the iPhone
Platform”. In: ACM Multimedia - ACM Workshop on Mobile Cloud
Media Computing. Firenze, Italy, Oct. 29, 2010.
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NBC project

In cooperation with the group of Muriel Medard we developed a demonstra-
tor, that showed the possibility of distributing live video streams in a P2P
fashion. The developed testbed was demonstrated at a meeting at NBC’s
headquarters in New York, US. This provided unique feedback on an im-
portant business players perspective on the technology and the future of
distribution networks.
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Chapter 4

Conclusion

The work in this thesis has addressed problems related to deploying RLNC
on mobile devices such as mobile phones and tablets. The aim was to enable
practical systems for mobile devices based on RLNC to be built. The work
has been targeted toward mobile devices as the popularity of such devices is
quickly rising and they may become the dominant platform in the near future.
This class of devices also pose additional challenges in terms of computational
capability and energy compared to other more powerful computer devices.

To increase the coding throughput and decrease the energy consump-
tion we proposed to simplify RLNC by decreasing the field size and coding
systematically. A small field can be used in many networks and unless the
generation is very small this approach introduces a modest overhead as a
consequence of higher probability of linearly dependent symbols. Systematic
codes are not as generally applicable as they are only useful on the first hop
from the source and therefore less interesting in multihop scenarios.

To be able to signal information about the state of the decoding we pro-
posed to embed information into the coding vector. This information can be
used to signal information about the state of the decoding and thus enable
encoding nodes to code in a way such that decoding becomes simpler. We
enabled this by observing that operations performed in the binary field are
also valid operations in any binary extension field and thus information can
be embedded by drawing random elements from a specific field. However, we
have not pursued this further as it requires that a big field is used.

We considered using a sparse variant of RLNC in order to increase the
coding throughput. To understand the implications of doing so we analyzed
the resulting overhead. We found that if the density is chosen correctly an
overhead arbitrarily close to that of dense RLNC can be obtained. As the
generation size grows the good choice of density decreases, which makes such
an approach most useful for applications with relaxed delay requirements.
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When decoding sparse symbols we found that the throughput did not
increase significantly when existing RLNC algorithms were used. The reason
was the effect of fill-in and we considered several new decoding approaches
and algorithms, designed to decrease the number of operations performed
when decoding sparsely coded symbols. When testing these algorithms we
found that they generally provided a slightly lower decoding complexity, also
when decoding dense symbols. However, the reduction in complexity was
not sufficient to increase the coding throughput significantly.

We also showed that a conflict exists between using the commonly as-
sumed practice of compressing coding vectors using a pseudo random func-
tion and supporting recoding. This became apparent as we investigated
sparse codes where the combinations of a set of sparse symbols with high
probability is less sparse than the individual combined symbols. This insight
has the implication that another representation of the coding vector must be
used. In the case of dense codes using a high field size this is non-trivial or
impossible as the entropy of the coding vector is high. This underlines that
in many cases the choice of suitable coding parameters does not degenerates
to the biggest field and generation size that can be supported.

Finally, we proposed an approach that addresses the introduced issues.
Instead of combining all symbols at random only neighboring symbols are
combined. This makes it possible to perform decoding efficiently without the
effect of fill-in and without using overly complicated decoding algorithms. At
the same time it makes it trivial to create compact representations of the cod-
ing vector. It also enables an overhead due to linearly dependent symbols
arbitrarily close to that of RLNC. Importantly, this approach makes it possi-
ble to perform recoding and we have introduced several new approaches to do
so. To verify the gain of this approach in terms of coding throughput it was
implemented in C++ and compared to a similar standard RLNC implemen-
tation. For the largest generation tested, which was 2048, the gain in terms
of both encoding and decoding was approximately an order of magnitude.

The knowledge obtained through this project has contributed to the de-
velopment and improvement of the Kodo software library. I have also been
involved in several projects where the demonstrators and publications were
produced. Additionally, the company Steinwurf was founded to continue the
development and commercializing of Kodo.

As a closing remark we note that computer networks are bound to go
through a paradigm shift some time in the future, it has happened before
and it will happen again. If this occur in the near future NC could become
an import part of the solution. If so this thesis will hopefully add a small
contribution to the field of RLNC implementation and help propel RLNC
towards real world adoption and deployment.
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Abstract—In this work we consider the implementation of
Random Linear Network Coding (RLNC) on battery constrained
mobile devices with low computational capabilities such as;
sensors, mobile phones and Personal Digital Assistants (PDAs).
It is non-trivial to create an efficient implementation of RLNC
which is needed to ensure high throughput, low computational
requirements and energy consumption. As a consequence there
does not, to the best of our knowledge, exist any such implemen-
tation for mobile device that allow for throughput close to what
can be achieved in e.g. Wireless Local Area Network (WLAN).

In this paper we propose to base RLNC on the binary
Galois field and to use a systematic code. We have implemented
this approach in C++ and Symbian C++ and achieve synthetic
encoding/decoding throughput of up to 40/30 MB/s on a Nokia
N95-8GB mobile phone and 1.5/1.0 GB/s on a high end laptop.

Index Terms—Mobile devices, Network coding, Reliable Mul-
ticast.

I. INTRODUCTION

A large body of existing literature [1] treats the theoretical
benefits of Network Coding (NC). However, the costs of
implementing NC in terms computational overhead, memory
consumption or network usage is often not considered. In this
work we consider the implementation of RLNC on mobile bat-
tery constrained devices with low computational capabilities,
such as sensors, mobile phones or PDAs. The computations
performed using RLNC is based on finite fields arithmetic also
known as Galois fields. From a coding perspective the field
size, q, used should be large to ensure that coded packets are
linearly independent, additionally increasing the size of the
field elements is advantageous as this reduces the number of
operations needed to code a certain amount of data [2]. How-
ever as the field size grows it becomes difficult to construct an
efficient implementation of the necessary operations. Although
the attention towards practical implementation of NC has been
increased [3], [4], [5], some issues remains to be solved in
order to pave the way for successful deployment of NC.

In [6], [7] implementation problems are investigated with
focus on the computational complexity of coding operations.
An implementation using log and anti-log tables is constructed
and evaluated. Throughput up to 11 MB/s is measured on a
3.6 GHz dual core Intel P4 Central Processing Unit (CPU),
but performance decreases rapidly as the number of pack-
ets that are coded together increases. Different optimization
techniques are described and incorporated. Generated network

overhead as a consequence of utilizing NC is commented
and sought to be minimized. Furthermore the concepts of
aggressiveness and density and its impact of performance are
presented. In [8] a coding throughput of 44Mb/s is measured
using an implementation based on a simple full-size look-up
table. This is achieved on an 800 MHz Intel Celeron CPU
when 32 packets, g=32, of 1500 B are coded together. The
observed throughput is approximately 10 times higher than
that reported in [6] at similar settings. The authors conclude
that deployment is not a problem, however it is mentioned
that throughput for g=32 is the best case, unfortunately no
performance for g>32 is presented. In [9] tables are not used
for Galois field multiplication, instead the authors implement a
loop based approach. In combination with Single Instruction,
Multiple Data (SIMD) instructions this approach provides
a performance increase of over 500% compared to a base-
line implementation. The implementation is further optimized
through parallelization and encoding speeds up to 43 MB/s is
measured on a 2.8 GHz quad core Intel P4 CPU. Although
these results show promising coding throughputs most were
achieved at maximum CPU utilization, which is not acceptable
on non-dedicated machines. Additionally these results are not
in general valid for mobile phones or wireless sensors, as the
hardware resources available on such devices are considerably
lower than those of the desktop computers used to obtain these
results. In [2] we present the results of a basic log and anti-log
table implementation running on a Nokia N95 with a 332 MHz
ARM 11 CPU. We achieved the maximum coding throughput
of 117 KB/s for a GF(216), which indicates that before NC
can be deployed on mobile devices, more efficient algorithms
or hardware acceleration is needed.

In this work we propose to use the binary field to re-
duce the computational complexity of RLNC and to use a
systematic [10] approach to reduce the amount of coding
needed. Furthermore we provide an analysis of this approach
for different generation sizes and compare its performance to
network coding with a higher field size.

This work is organized in the following sections. Section III
describes the scenario under investigation. Section II presents
an analysis of the proposed network coding approach. In
Section IV we introduce our implementation using GF(2) and
coding throughputs obtained with this implementation. The
final conclusions are drawn in Section V.



II. SCENARIO & SOLUTION

We consider a scenario where a source s wants to reli-
ably transmit the same data to one or more nearby sinks
t1, t2, . . . , tN via a wireless link. This basic scenario is given
in Figure 1.

X1

X2

X1

X2

X
1

X
2

1 2 N

Fig. 1: One source s transmitting data to N receivers
t1, t2, . . . , tN .

As all receivers are requesting the same data, broadcast
provides an efficient utilization of the wireless channel, as all
packets are delivered to all nodes simultaneously. To ensure
that the links are reliable some form of retransmission is
required, to correct packet losses at the individual nodes.
In current networks this is done by letting the individual
nodes acknowledged received packets. Thus retransmissions
of multiple different packet sets are required unless all nodes
lose exactly the same packets.

To ensure reliability with a low overhead we will instead use
RLNC to correct packet errors. This is done by transmitting
the data in two stages, in the first stage the source, s, transmits
all packets uncoded. This makes sense as all packets received
by the individual nodes will contain useful new information.
In the second stage we wish to correct packet losses which
have occurred during the first stage. Due to the uncorrelated
nature of packet losses the nodes will now hold disjoint
sets of packets. Therefore to maximize the number of nodes
for which a packet is useful, the source will create and
send random linearly combinations of the original data. By
using this approach one coded packet carries information
which can potentially correct different errors at different nodes
simultaneously. To retrieve the full data set a node now has
to receive as many linear independent coded packets as it lost
during the first stage.

III. ANALYSIS

In this section we analyze single-source multiple-sinks
reliable transmission using Markov chains. The main objective
is to determine the expected number of transmissions E[tx]
needed for transmitting a packet from a source s to N sinks
t1, t2, . . . tN . We assume an i.i.d. Packet Error Probability
(PEP) p and consider unicast, broadcast, pure and systematic

network coding. We note that the analysis also holds for
unicast and RLNC when the channels are not independent, but
that broadcast will perform better if the erasures are correlated.
Unicast is not designed for this type of transmission however
it is interesting as a reference.

The state machine of a single sink that receive one packet is
illustrated on Figure 2. Either the node has received the packet
and is in state zero, or it has not received the packet and is in
state one. The number of the state thus indicates the number
of erroneous or missing packets.

0

1

1
1-p

p

Fig. 2: Markov chain for a single node receiving a single
packet

In the transmission matrix state zero corresponds to column
zero and state one to column one. When s transmits the packet
t1 will receive it with probability 1 − p and not receive it
with probability p. This yields the transition matrix T. When
transmission commences the node have not received the packet
and thus is in state one. It is convenient to define a matrix that
indicates the starting probabilities, S.

T =
[

1 0
1− p p

]
S =

[
0 0
0 1

]

A. Unicast
The probability distribution of a sink after i transmissions

from s is given by the last row in Pi, in this case row one
denoted by Pi

(1,:), where.

Pi = S × Ti (1)

The probability that the sink has received the packet after
i transmissions is Pi

(1,0) which is the index row one, column
zero in Pi. Thus the probability that the sink has not received
the packet is 1 − Pi

(1,0). In unicast transmission is performed
serially and thus we multiply with the number of sinks N .

E[tx] = N ·
∞∑

i=0

1 − Pi
(1,0) (2)

B. Broadcast
In broadcast the probability distribution for one node is the

same as for unicast but all nodes receive packets in parallel.
Thus the probability that all sinks have received the packet
after i transmissions is the probability that one node have
received the packet to the power of the number of sinks,
(Pi

(1,0))
N .

E[tx] =

∞∑

i=0

1 −
(

Pi
(1,0)

)N

(3)



C. Pure Network Coding

In network coding data to be transferred from the source to
the sinks is divided into packets of length m. The number of
original packets over which encoding is performed is typically
refereed to as the batch size or generation size and denoted g.
Thus the g original data packets of length m are arranged in
the matrix M = [m1m2 . . . mg], where mi is a column vector.

In pure network coding to generate one coded data packet
x, M is multiplied with a randomly generated vector g of
length g, x = M × g. In this way we can construct X =
[x1x2 . . . xg+r] that consists of g + r coded data packets and
G = [g1g2 . . . gg+r] that contains g + r randomly generated
encoding vectors, where r is redundant packets. In order for
a sink to successfully recreate the original data packets, it
must receive g linear independent coded packets and encoding
vectors. All received coded packets are placed in the matrix
X̂ = [x̂1x̂2 . . . x̂g] and all encoding vectors are placed in the
matrix Ĝ = [ĝ1ĝ2 . . . ĝg]. The original data M can then be

decoded as M̂ = X̂ × Ĝ
−1

.
All operation are performed over a Galois field of size

q. Thus the probability that the source generates a linear
dependant combination becomes an important factor. This
probability depends on q and g′ = g−g̃, where g̃ is the number
of linear independent packets received by the sink and g′ thus
is the number of needed packets at the sink. The following
bound for linear independence is assumed in an alternative
form in [11], [12] and is said to hold when q is high .

P ≤ 1 − 1

qg′ (4)

We provide the following intuitive interpretation, where G̃
is a matrix of dimension g̃×g that contains all received linear
independent encoding vectors at the sink. The problem of
drawing an encoding vector gi that is linear independent of
all other g̃ linear independent rows in G̃ is equal to drawing a
linear independent combination of length g′. This is because
the degrees of freedoms of any gi can be reduced to at most g′,
alternatively at most g′ indices of any gi are non zero when all
pivot elements in G̃ is subtracted from gi. For the remaining
sequence of length g′ to be dependent it must consist of all
zeros which have the probability 1

qg′ .
However we consider cases where q is low and thus we need

to estimate to what extend the bound holds for low values of
q. To achieve this we have generated a large number, 100.000,
square matrices of dimension g consisting of Galois elements
with GF (2) and GF (28) and tested how many of these was
linear independent. For given q and g the probability that a
generated combination is linear dependent can be written as:

1 −
g∏

i=1

(
1 − 1

qi

)
(5)

Although the results in Table Ib does not necessarily guar-
antee equality the empirically obtained values is very close

g calculated empirical
2 62.5 62.6
4 69.2 69.3
8 71.0 70.9
16 71.1 71.2
32 71.1 71.0
64 71.1 71.1

(a) GF (2)

g calculated empirical
2 3.92E-3 3.99E-3
4 3.92E-3 3.67E-3
8 3.92E-3 3.87E-3
16 3.92E-3 3.78E-3
32 3.92E-3 3.84E-3
64 3.92E-3 3.88E-3

(b) GF (28)

TABLE I: Calculated and empirical determined probability of
generating a linear dependent matrix of size g.

to the calculated and therefore this approximation, if any, is
acceptable in the following analysis.

The state machine of a single sink receiving g packets has
g+1 states depicted in Figure 3.

0 1 2 g

p00 p11 p22 pgg

p10 p21 p32 pgg−1

Fig. 3: Markov Chain for a single node that receives g packets.

The probability that a packet is useful at a sink is the
probability it is received multiplied with the probability that
it is independent

Pi→(i−1) = (1 − p)

(
1 − 1

qi

)

The probability that it is not useful is therefore the proba-
bility that it was not received plus the probability that it was
received but was dependent.

Pi→i =1 − (1 − p)

(
1 − 1

qi

)
= 1 − 1 +

1

qi
+ p − p

1

qi

=p + (1 − p)
1

qi

These probabilities form the transition matrix C.

C =


1 0 · · · 0

(1− p)(1− 1
q1 ) p+ (1− p) 1

q1

...
...

. . .
. . . 0

0 · · · (1− p)(1− 1
qg ) p+ (1− p) 1

qg




TABLE II: Transmission matrix for coding.

Qi = S × Ci (6)

Thus the expected number of transmissions for one packet
of the total g packets can be found by:

E[tx] =
1

g

∞∑

i=0

1 −
(

Qi
(g,0)

)N

(7)



D. Systematic Network Coding

Systematic RLNC consists of two phases. In the first phase
all packets g in the generation are broadcasted uncoded. In the
second phase coded packets are broadcasted and thus each
node can be in g + 1 one states, where state zero indicates
that no packets are missing and state g that all packets in the
generation are missing. Uncoded packets can be perceived as
coded packets with a trivial encoding vector where a single
element in the encoding vector gi is one and all other, g − 1,
elements is zero. Thus we can generate an uncoded packet
y from its trivial encoding vector h, y = M × h. In this
way we can construct Y = [y1y2 . . . yg] that consists of g
uncoded data packets and H = [h1h2 . . . hg] that contains
the g independent trivial encoding vectors. Furthermore we
construct X = [x1x2 . . . xr] that consists of r coded data packet
and G = [g1g2 . . . gr] that contains r randomly generated en-
coding vectors. For a sink to successfully recreate the original
data packets, it must receive g linear independent packets and
encoding vectors. Thus g received uncoded and coded packets
are placed in the matrix [ŶX̂] = [ŷ1ŷ2 . . . x̂(g−i) x̂1x̂2 . . . x̂i]
and the g corresponding encoding vectors are placed in the
matrix [ĤĜ] = [ĥ1ĥ2 . . . ĥ(g−i) ĝ1ĝ2 . . . ĝi]. The original data
M can then be decoded as M̂ = [ŶX̂] × [ĤĜ]−1.

In phase one the transition matrix for a single sink is
identical to that of broadcast, however here we consider the
transmission of g packets instead of one packet, thus the
transition matrix have g + 1 states:

T =




1 0 · · · 0

(1− p) p
...

...
. . .

. . . 0
0 · · · (1− p) p




TABLE III: Transmission matrix for broadcasting.

The probability distribution of the first phase is the input
to the transition matrix of the second phase and thus the
probabilities in any of the two phases can be calculated as:

Ri =

{
S × Ti for 0 ≤ i ≤ g

S × Tg × Ci for g < i
(8)

Thus the expected number of transmissions can be found
by:

E[tx] =
1

g

∞∑

i=0

1 −
(

Ri
(g,0)

)N

(9)

We note that the performance of systematic network coding
is equal or better than that of pure network coding. For the
trivial coded packets in systematic coding the probability of
linear dependencies is zero, for pure network coding the prob-
ability is non-zero but very small, see Equation 5. For the non-
trivially coded packets the probability of linear independence
is identically for systematic and pure network coding.

E. Results

Here we compare the performance of RLNC with unicast
and broadcast. We assume p=0.3 as we have previously
observed such p [13]. In Figure 4 the performance of unicast,
broadcast and network coding at different settings is plotted
for an increasing number of sinks.
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Fig. 4: Expected number of transmission per packet, p = 0.3.

Unicast is not designed to perform this type of transmission
and therefore it is not surprising that it performs the worst.
Broadcast performs better, however, as the number of sinks
increases it suffers from the fact that all sinks must receive all
original packets and thus retransmissions of packets become
necessary. For RLNC this is not the case, instead all sinks only
have to receive a number of any independent coded packets
and can then decode the original data. When g is fixed RLNC
with GF(2) performs the worst of the RLNC approaches and
GF(28) and GF(232) performs the same, therefore we do not
consider GF(232) in the following.
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Fig. 5: Expected number of transmission per packet, p = 0.3.



In Figure 5 we see that network performance improves when
either the field or generation size is increased. When the field
size increases the probability of linear dependency decreases
and when the generation size increase the uncertainty of how
many packets will be lost at each sink decreases. Generally
the benefit of doubling g is greater than going from GF(2)
to GF(28) and additionally the performance benefit of moving
from GF(2) to GF(28) decreases as g increases. The reason
is that for high values of g linear dependency becomes less
important because only the very last packet will have a
low probability of being linear independent. Thus when g is
increased the ratio of packet that have low probability of being
linear independent decreases.

Thus if the throughput that can be achieved with GF(2)
allows for a substantially higher value of g compared to an
implementation with GF(28), it may be beneficial to use the
small field in some cases.

IV. IMPLEMENTATION

To get a feel for the achievable encoding and decoding
throughput we implemented RLNC based on GF(2). In GF(2)
adding two packets simplifies to the XOR operation. Encoding
a packet in GF(2) can be performed in two simple steps. First
the encoding vector is generated as a random bit vector, where
the indices in the vector corresponds to packets in the original
data set i.e. index one corresponds to packet one. The second
step is performed by iterating over the encoding vector and
adding packets where the corresponding index in the encoding
vector is 1. The following listing shows the encoding algorithm
in pseudo code, where M is the data buffer containing all
original packets, g is an encoding vector and x is the resulting
encoded packet.

1: procedure ENCODEPACKET(M,x,g)
2: x = 0
3: for each bit b in g do
4: if b equal 1 then
5: i = position of b in g
6: x = XOR(x, M[i])
7: end if
8: end for
9: end procedure
Decoding is performed on the run in two steps with a

slightly modified Gauss-Jordan algorithm. Note that this ap-
proach is different from what is typically done in implemen-
tations for higher field sizes where the encoding matrix is
inverted and then subsequently multiplied with the data matrix.
Thus the received data at the sink is always decoded as much
as possible and the load on the CPU is distributed evenly.
In the first step we reduce the incoming encoded packet by
performing a forward substitution of already received packets.
This is done by inspecting the elements of the encoding vector
from start to end and thus determining which original packets
the coded packet is a combination of. If an element is 1 and
we have already identified a packet with this element as a
pivot element we subtract that packet from the coded packet
and continue the inspection. If an element is 1 and we have

not already identified a packet where this element is a pivot
element we have identified a pivot packet and continue to
the second stage of the decoding. Note that if we are able
to subtract all information contained in the received encoded
packet, it will contain no information useful to us and can be
discarded.

In the second step we perform backward substitution with
the newly identified pivot packet. We do this by subtracting
the pivot packet from previously received packets for which
the corresponding encoding vector indicates that the particular
packet is a combination of the pivot packet. The following
listing shows the decoding algorithm in pseudo code, where
M̂ is the packet decode buffer of packets received and decoded
so far and Ĝ is the corresponding encoding vector buffer, x̂ is
a newly received encoded packet and ĝ is the newly received
encoding vector.

1: procedure DECODEPACKET(M̂,Ĝ,x̂,ĝ)
2: pivotposition = 0
3: pivotfound = false
4: for each bit b in ĝ do ⊲ Forward Substitution
5: if b equal 1 then
6: i = position of b in ĝ
7: if i’th packet is in M̂ then
8: ĝ = XOR(ĝ,Ĝ[i])
9: x̂ = XOR(x̂,M̂[i])

10: else
11: pivotfound = true
12: pivotposition = i
13: end if
14: end if
15: end for
16: if pivotfound equal false then
17: Exit procedure ⊲ The packet was linear dependant
18: end if
19: for each packet j in M̂ do ⊲ Backward Substitution
20: k = Ĝ[j]
21: if bit at pivotposition in k equal 1 then
22: Ĝ[j] = XOR(Ĝ[j],ĝ)
23: M̂[j] = XOR(M̂[j],x̂)
24: end if
25: end for
26: Ĝ[pivotposition] = ĝ
27: M̂[pivotposition] = x̂
28: end procedure

The algorithm can also be used unmodified in a systematic
coding approach, in which case we only have to ensure that
uncoded packets are treated as pivot packets. Based on these
algorithms we have implemented a coding library designed
to deliver high throughput and optimized through assembly
and SIMD instructions. Subsequently the implementation was
ported to Symbian to allow for tests on a mobile platform. All
implementations are single threaded. We used the following
platforms for the tests.

1) Nokia N95-8GB, ARM 11 332 MHz CPU, 128 MB ram,
Symbian OS 9.2.



2) Lenovo T61p, 2.53 GHz Intel Core2Duo, 2 GB ram,
Kubuntu 8.10 64bit.

We tested the performance of the implementation by en-
coding and decoding without transmission over any network
at different generation sizes from 16 to 256. First a large file,
5 MB for the phone and 128 MB for the PC, was divided
into packets of 1500 Bytes. These packets were then split
into generations of size equal to the specified generation size.
From each of these generations packets were generated and
saved. Then packets from each generation were read and
decoded until the original data was recreated. Encoding and
decoding time were measured and from this the throughput
was calculated.
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Fig. 6: Encoding and Decoding throughput on a mobile phone.
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Fig. 7: Encoding and Decoding throughput on a laptop.

Both encoding and decoding throughput is considerably
higher than any other reported result known to the authors and
the throughput is approximately a first order function of the
generation size. Note that for the systematic approach 70% of
the packets where uncoded and 30% coded. In a real wireless
scenario the ratio of coded vs. uncoded packets depends on the
error probability of the link. In the pure approach all packets
are coded, thus the throughput for the pure approach is equal
to the worst case throughput of the systematic approach.

V. CONCLUSION

In this paper we have proposed to base RLNC on the
binary Galois field in order to decrease the computational
complexity. Additionally we have proposed techniques for
reducing the amount of coding needed, which can help to
increase throughput and decrease energy consumption of NC
implementations. The proposed approach have been analyzed
from a network point of view. The approach have been
implemented and we have demonstrated that high encoding
and decoding throughputs can be achieved on both mobile
phones and laptops.
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Abstract—This paper investigated the possibility of intrinsic
information conveying in network coding systems. The infor-
mation is embedded into the coding vector by constructing the
vector based on a set of predefined rules. This information can
subsequently be retrieved by any receiver. The starting point
is Random Linear Network Coding (RLNC) and the goal is
to reduce the amount of coding operations both at the coding
and decoding node, and at the same time remove the need for
dedicated signaling messages. In a traditional RLNC system,
coding operation takes up significant computational resources
and adds to the overall energy consumption, which is particular
problematic for mobile battery-driven devices. In RLNC coding is
performed over a Finite Field (FF). We propose to divide this field
into sub fields, and let each sub field signify some information
or state. In order to embed the information correctly the coding
operations must be performed in a particular way, which we
introduce. Finally we evaluate the suggested system and find
that the amount of coding can be significantly reduced both at
nodes that recode and decode.

I. INTRODUCTION

Network Coding (NC) is a promising concept that breaks
with the existing store-and-forward paradigm in computer
networks, and has been shown to achieve capacity in any
communication network [1]. NC breaks with the end-to-end
approach of channel and source coding, as packets are no
longer treated as atomic entities, and data may be combined
and re-combined at any point in the network. This new
feature can provide advantages over traditional routing in
meshed networks, and be a powerful tool in mobile multi-hop
communication systems.

As an example consider the following cooperative scenario
where several mobile devices wish to receive the same data.
Each node is connected to a global overlay network that it
receives data from, such as UMTS or LTE. In addition the
nodes are in close proximity and connected locally via WiFi.
The connection among the nodes can be direct links or realized
by relaying. If the mobile nodes want to share their data, the
mobile nodes can form a cluster where they exchange data
locally. NC can be very useful for the local exchange as it
can be used to overcome the coupon collector’s problem [2].
However, one remaining problem is how the packets should
be coded to ensure efficient cooperation.

With the COPE method introduced in [3], each node at-
tempts to combine packets based on what packets the neigh-
boring nodes need. When a node sends a packet it attempts
to identify a set of packets that its neighboring node needs,

code these packets together, and send the resulting coded
packet. Thus the sender can satisfy all receivers with one coded
packet. In broadcast systems this can only be achieved if all
nodes needs the same packet, otherwise the sent packet will
be useless for some of the receivers. One problem with this
approach is that all nodes must obtain knowledge about what
have been received by the other nodes in the cluster. In order
to obtain this knowledge some signaling may be necessary
which introduces overhead.

RLNC was introduced in [4] to remove the need to gather
information about neighboring nodes. With RLNC packets are
coded ”randomly” and if the used FF size is large enough, the
probability of generating linear dependent packets is small. On
the downside the computational complexity is much higher in
RLNC compared to COPE. Furthermore RLNC requires some
mechanism that determines when the nodes have received
enough packets. For instance, in the described cooperative
scenario, the nodes must know when to stop the local exchange
of packets, this require some form of signaling.

In RLNC a coded packet is a combination of all the
packets available at the coding node. The performed coding
is described by the coding vector. For RLNC this coding is
dense, as many packets are combined, and therefore the com-
putational complexity of the coding is high. If fewer packets
are combined, the density of the coding vector decreases, it
becomes more sparse. This, which decreases the computational
complexity of both encoding and decoding the packet. How-
ever, if it is not done carefully it can increase the amount of
linear dependent packets created. See [5] for an overview of
gossip approaches to reduce the coding complexity.

Therefore we advocate exploiting the coding vector to
gain knowledge about the packets received by neighboring
nodes and to identify when the cooperative exchange can be
stopped. Thus this necessary information can be distributed
in the cluster without additional signaling. To achieve this
we propose to dynamically and intelligently craft the coding
vectors based on the information available at the coding node.

The remainder of this paper is organized as follows; Sec-
tion II explains how information can be embedded into the
coding vector, and introduces an example of information that
can be embedded. In Section III we consider a cooperative
network topology and compare the amount of coding when
RLNC is used alone and in combination with conveyed intrin-
sic information. The final conclusions are drawn in Section IV.



II. DIVIDING THE FIELD

All coding operations are performed over a Finite Field
(FF), of size q, and thus the original data is represented by
a series of ⌈m

q ⌉ field elements, each of size q. In the same
way each coding vector is represented by g field elements of
size q, where each element in the coding vector describes the
operations performed on the corresponding symbol. Typically
the elements in the coding vector are drawn at random
from q. Instead we propose to divide this field into n sets
A1, A2, . . . , An, where q = |A1|+ |A2|+ . . .+ |An|. Each subset
can be associated with some condition at the coding node, and
thus be used to embed information into the coding vector.

We use the following rules to illustrate the idea; a field
element in set A1 indicates that a pivot element has been
identified for the corresponding symbol at the sender, and a
field element in set A2 indicates that no pivot element has been
identified for that symbol. An additional set A0 = 0 indicates
nothing and is necessary for reasons we will return to. For
a sink each of the g symbols in a generation can be in one
of three states, unknown, no-pivot, or pivot. All sinks hold
this state information for each of the other sinks. Whenever
a sink receives a coded symbol it updates the g states that
corresponds to the sender, where transitions between the states
occur as illustrated on Figure 1.

A0

A0

A0 A1

A1

A1

A2

A2Unknown No-pivot Pivot

Fig. 1: The three states and the possible transitions.

If a sink has not yet identified a pivot element for a symbol,
it needs a coded symbol that includes that particular symbol
to complete the decoding. Therefore indicating no-pivot for a
symbol can be interpreted as a request for that symbol. When
a node identifies a pivot element for a symbol, it may omit
that from future coding vectors to create more sparse packets.
This is done by setting the corresponding element to 0 in the
coding vector. Therefore a no-pivot indication followed by a 0
A0 indicate that a pivot has been identified. If pivot elements
for all symbols are available among the sinks in the cluster,
they will be able to decode the original data by exchanging
symbols. Thus if the sinks indicate for which symbols they
have a pivot element, this can be used to determine when the
entire cluster holds enough symbols to decode. Additionally
any receiver can determine the rank at the sender, simply by
counting the number of indicated pivot elements.

The reason we do not convey more precise information
such as, symbol decoded, and symbol not decoded, should
become apparent when we explain how this information can
be embedded when a symbol is coded. To understand how
the information can be embedded we need to take a closer
look at the available coding operations, encoding, decoding,

and recoding. Readers unfamiliar with NC can refer to [6]
for an introduction. Data to be transferred from the source to
the sinks is divided into packets of length m. The number of
original packets over which encoding is performed is typically
referred to as the batch size or generation size and denoted g.
Thus the g original data packets of length m are arranged in
the matrix M = [m1; m2; . . . ; mg], where mi is a column
vector. When a coded symbol is transmitted into the network,
it must be accompanied by a coding vector that describes the
operations performed to create the coded symbol. The coding
vector is used to decode or recode the symbol at other nodes
in the network that receive the symbol.

A. Encoding

Normally to encode a packet x at the source, M is
multiplied with a randomly generated coding column vector
g of length g, x = M × g. In this way we can construct
X = [x1; x2; . . . ; xg+r] that consists of g + r coded data
packets and G = [g1; g2; . . . ; gg+r ] that contains g + r
randomly generated encoding vectors, where r is any number
of redundant packets.

In order to embed information into the coding vector, g
is not drawn randomly but instead, from one of the sets Ai

based on the defined conditions. With the suggested approach
all field elements for coding vectors generated at a source are
in A1. To allow sources to encode sparse packets, 0 /∈ A2,
as otherwise 0 would incorrectly indicate that the source has
no pivot element for that symbol. Note that when encoding
all elements in g can be chosen arbitrarily because the source
holds all original symbols, and thus all possible g are valid
encoding vectors. If a coding vector consists of all 0’s except
a single element that is 1, the coded packet is equal to an
original symbol and we say that it is trivially coded.

B. Decoding

When a coded symbol is received the embedded information
of the coding vector is first retrieved. The goal of decoding
is to transform the received coded symbols into the original
symbols and thus obtain the original data M . To complete
the decoding, g linear independent coded symbols and coding
vectors are needed. Decoding should be performed on-the-fly
in order to distribute the computational work and determine
the progress of the decoding. During decoding, it is more
convenient to consider the coded symbols and coding vectors
as row vectors. Thus all g′ received symbols are collected
in X̂

T
[x̂1, x̂2, . . . , x̂g′ ] where x̂i is a coded symbol. And

the corresponding coding vectors are collected in Ĝ
T

=

[ĝ1, ĝ2, . . . , ĝg′ ] where ĝi is a coding vector. We denote Ĝ
T

the decoding matrix as it holds the information necessary to
decode the received symbols in X̂

T
. To decode the original

data, Ĝ
T

is transformed into the identity matrix, by performing
row operations, that is simultaneously performed on X̂

T
. In

this way X̂
T → MT as Ĝ

T → I .
Equation (1) is an example of a part of a decoding matrix,

Ĝ
T

, for a node that has received four linear independent



symbols. In the attempt to bring Ĝ
T

to a reduced echelon form,
pivot elements have been identified for the indices 0,1,2, and
4. No pivot element has been identified for index 3, thus no
coding vector has been inserted into the corresponding rows.
Additionally ĝ5,3 = 0, as if this was not the case a pivot
element would have been identified for index 3. The remainder
of rows 0,1,2, and 4 can be any field elements.

Ĝ
T

=




1 0 0 ĝ3,0 0 ĝ5,0 · · ·
0 1 0 ĝ3,1 0 ĝ5,1 · · ·
0 0 1 ĝ3,2 0 ĝ5,2 · · ·
0 0 0 0 0 0 · · ·
0 0 0 0 1 ĝ5,4 · · ·




(1)

C. Recoding

Recoding is similar to encoding so we represent the symbols
and coding vectors as column vectors. It is more complicated
to embed information into the coding vector during recoding
compared to encoding. The reason is that the vector used to
recode, we denote this h, is not the vector that is transmitted
together with the resulting coded symbol. Any node that has
received g′ > 1 linear independent packets, can recode and
thus create new coded symbols. All received g′ symbols are
held in the matrix X̂ = [x̂1x̂2 . . . x̂g′ ] and all coding vectors
are in the matrix Ĝ = [ĝ1ĝ2 . . . ĝg′ ]. To recode a symbol Ĝ

and X̂ are multiplied with a randomly generated vector h of
length g′, g̃ = Ĝ × h, x̃ = X̂ × h. Note that h is only used
locally and that there is no need to distinguish between coded
and recoded symbols.

We reuse the example from Equation (1) to compute a new
coding vector, g̃, to illustrate the problem. Note that any h
is valid as long as hi = 0 for every index where no pivot
element has been identified in Ĝ

T
.

Ĝ︷ ︸︸ ︷


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

ĝ3,0 ĝ3,1 ĝ3,2 0 0
0 0 0 0 1

ĝ5,0 ĝ5,1 ĝ5,2 0 ĝ5,4

...
...

...
...

...




×

h︷ ︸︸ ︷


h0

h1

h2

0
h4




=

g̃︷ ︸︸ ︷


h0

h1

h2

σ3

h4

σ5

...




(2)

where : σj = h0 · ĝj,0 + h1 · ĝj,1 + h2 · ĝj,2 + h4 · ĝj,4

In the created coding vector g̃, each index for which an
pivot element has been identified in Ĝ

T
is equal to the index

in h. However for indices where no pivot element has been
identified in Ĝ

T
, the result is a sum of products. Thus g′ of

the indices in g̃ can be easily specified, whereas the remaining
g − g′ cannot.

D. Drawing Recoding Vectors and Linear Dependency

The simplest approach to insure that all g − g′ elements are
in A2 is to draw all elements in h randomly from A1. If one of
the resulting elements in g̃ is in A1 the embedded information

is incorrect, h is discarded, and a new h generated. The
elements ĝ are in q and thus if g′ is not very low, we can
assume that the resulting g − g′ σ’s are uniformly distributed.
The probability that one resulting index is in A2 is |A2|

q and
thus the probability that all g − g′ are not in A2 is.

Pdiscard = 1 −
( |A2|

q

)g−g′

(3)

The probability Pdiscard is highest when g′ is low. In
particular the mean Pdiscard is of interest, this is system
dependent as it dependent on when recoding is performed.
Specifically the distribution of g′ must be known to calculate
the mean Pdiscard exact. However, recoding will most likely
not be performed when g′ is very low as this would mean that
the recoding node hold little information. Thus we assume that
g′ ≥ g/2. However, when |A2| is increased, |A1| is decreased
which in particular impacts coding at a source.

Additionally consider the case where a node has only
received trivial coded packets. In this case all valid h’s are
0 for the indices where the node has received no symbols,
and thus g̃ will also be zero for these indices. Thus 0 /∈ A1,
and we have established that 0 /∈ (A1 ∪ A2) is required.

When a coded symbol is received there is a non-zero
probability that the symbol is a linear combination of the
already received symbols. A source that knows nothing about
the symbols of a receiver, must code packets at random and
hope that the sent symbol is useful at the receiver. In this
case, the probability that a symbol is linear dependent at a
receiving node is a function of the field size, q, and the rank
deficiency at the receiving node, g − g′ [7]. As a source has
pivot elements for all symbols, the usable field size is reduced
from q to |A1|.

Pdependent =
1

|A1|g−g′ (4)

In particular the mean Pdependent is of interest. Again the
distribution of g′ is necessary to calculate this value exact.
However, if A1 ≥ 2, 2 is also the minimal field size, and the
generation size g is not very low, this overhead is small [8]. If
the sender does not hold all symbols uncoded, rank(Ĝ

T
) < g

this probability is less straight forward and depends on the
correlation of the symbols at the sender and receiver.

Both Equation (4) and (3) should be low and hence there
is a trade-off between |A1| and |A2|. Ff q is not limited both
probabilities can be arbitrary small. If q = 232 it is possible
to choose |A1| and |A2|, such that both mean Pdiscard and
Pdependent are extremely small regardless of g, and thus we
can neglect them. If q = 28, g = 128, and we choose |A1| = 2
then Pdiscard for g′ = g/2 = 64 is 53%. If we assume that g′ is
uniformly distributed between g/2 and g the mean Pdiscard is
30%. See [9] for a small script to calculate these probabilities.
Notice that recoding should first performed only be performed
on the coding vector, and subsequently on the symbol only if
the coding vector is usable. In this way the computational
overhead from generating an unusable coded packet is very
small.



III. SYSTEM EXAMPLE & PERFORMANCE

To illustrate how intrinsic information in the coding vector
could be used in a real system, we consider the following
wireless cooperative scenario. N nearby sinks want to down-
load the same data from some service provider. Each sink has a
cellular link and a local wireless link. With the cellular link the
node is connected to a Base Station (BS) that provides access
to the service. We assume that a systematic random approach
is used at the BS to reduce the computational overhead [8]. All
sinks are interconnected via the local wireless link. In order
to improve the download speed, conserve cellular bandwidth,
conserve energy, etc. the sinks cooperate on downloading the
data [10].

If the cellular links are orthogonal the BS should split the
content into N parts and transmit each part to one sink. As
each sink receives unique symbols from the BS these symbols
should be forwarded to the rest of the sinks in the cluster. As
the BS is unicasting data to each sink, it is straightforward to
ensure that the cluster combined receives all the symbols.

If the cellular links are non-orthogonal, the sinks cannot
know if they hold unique symbols without signalling, as other
sinks could also have received the symbols. Thus when a
symbol is received from the BS it is only stored. In this case
the BS is broadcasting the data to the cluster and therefore
it is more complicated to ensure that each symbol has been
received by at least one sink in the cluster. There exists several
approaches, and we assume that such an approach is used.

In both cases erasures on the broadcast link causes each sink
to hold a subset of the original symbols, and potentially some
coded symbols. Furthermore we assume that each symbol has
been received by at least one sink in the cluster. Hence the
cluster can cooperate locally and exchange symbols until all
sinks can decode the data. In this local repair phase the intro-
duced intrinsic idea can be used to reduce the computational
complexity.

Initially each sink knows nothing about what the other sinks
hold, as it has not received any symbols from them. If a
sink has no information about the other sinks, it is necessary
to fall back to the traditional RLNC approach. However, as
intrinsic information is embedded into the coding vector, the
sink simultaneously communicates what it has and does not
have. Thus a sink starts to code more intelligently when it has
received one coding vector from each of the other sinks in the
cluster.

Based on the knowledge of what the other sinks need, each
sink can create coded symbols that are useful for all other
sinks. The coding sink identifies, for each of the other sinks,
a symbol that is needed by that sink and for which the coding
sink has a pivot element. In the worst case the coding sink
must choose a different symbol for each sink. In the best case
they all need the same symbol and the coding sink can simply
send that symbol. Whenever a sink receives a symbol from
another sink, it updates its local state information about the
sending node. To keep this information up to data the nodes
can transmit in round-robin fashion.

A. Computational Complexity
Here we consider the computational complexity as the num-

ber of row operations performed, where each row operation
is either multiply and add or multiply and subtract. As we
consider a binary extension field addition and subtraction is
identical.

Two things influence the computational complexity in this
system. One is the amount of coding needed to recode a
symbol at a sink, or alternatively how many symbols held
at the sinks that are combined. The other is the density of the
resulting coding vector, as this indicates the amount of work
necessary to decode the symbols at the receiver. The density
is the ratio of non-zero elements in a coding vector, and can
be calculated with Equation (5), for a coding vector h with a
generation size g.

D(h) =

∑g
k=1(hk 6= 0)

g
(5)

When a sink codes i symbols together, the first symbol is
multiplied with an element drawn from q and copied to a
buffer. For each subsequent symbol an element is drawn from
q and multiplied onto the symbol, the results is then added to
the buffer.

In a traditional RLNC, all received symbols are combined
every time, hence Equation (6). With the intrinsic approach the
number of combined symbols is at most equal to the number
of sinks, if a different symbol is coded for each sink. As one
sink is sending, the number of receivers is N − 1. In the best
case a single symbol can simply be forwarded, if there is a
symbol for which all receivers have no pivot element. This
gives the bound in Equation (7) and (8).

RRLNC = g′ (6)
Rintrinsic ≤ min(N − 1, g′) (7)
Rintrinsic ≥ 0 (8)

When a sink decodes it identifies the first non-zero element
in g̃. The coding vector and the coded symbol is then mul-
tiplied with this elements inverse to obtain a pivot element
in the coding vector. If the sink holds another coding vector
that has pivot element for the same index it is then subtracts,
the coding vector and coded symbol from the received coding
vector and symbol. This substitution is continued until the data
is decoded. Thus the computation complexity of coding and
decoding are comparable. For the traditional RLNC approach
all coded symbols are completely dense. For the intrinsic
approach the density is at worst equal to the sum of the rank
deficiency at the coding sink, and the number of symbols that
are coded together. The reason is that for all indices’ where
no pivot element has been identified, the result is a non-zero
index in g̃. The minimum density is similar but only a single
symbol is forwarded.

DRLNC = g (9)
Dintrinsic ≤ min(N − 1 + g − g′, g) (10)
Dintrinsic ≥ min(g − g′, g) (11)



B. Results

Thus we know the computational requirements for coding
a symbol, and decoding the symbol as a function of g′.
Decoding is completed when g′ = g and thus we can calculate
the number of operations needed to go from g′ to g, which
is done by calculating the survival function, or one minus
the cumulative distribution function. In particular the survival
function here specifies the number of expected remaining
operations that must be performed from an particular g′ until
decoding is completed. The normalized survival function is
plotted for g = 128 and n = 4 on Figure 2. On the x-
axis is g′ which indicates the starting point of the nodes g′.
If this number is divided by g it can be interpreted as the
Packet Error Probability (PEP) for the broadcast channel, e.g.
if g′ = g/2 then half of the g symbols was lost and thus
PEP=.5. Additionally g′ equal to g and 0 represent the extreme
cases of PEP=0% and 100% respectively. The latter case also
represent the case when a non-systematic code is used, as
no trivially coded packets are received. On the y-axis is the
survival function of the number of operations. Note that for
Cintrinsic and Dintrinsic the area between the upper and lower
bound is filled.
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Fig. 2: Number of operations needed to finish decoding as a
function of g′.

Figure 2 shows how the amount of coding operations
needed for recode and decode is significantly reduced, when
information is conveyed with the intrinsic approach. We have
marked the case where g′ = .75 · g, which corresponds to a
PEP of 0.25. For this case the coding complexity is decreased
by 96 %, and decoding complexity is decreased by 82 %.

If g′ is lower the numeric reduction in complexity is higher.
However the reduction in percent is lower. Unless g′ ≈ g
the reduction in amount of coding is very significant, and as
a result we expect the computational load to be decreased
considerably for both recoding and decoding nodes.

IV. CONCLUSION

We have proposed the idea of embedding information into
the coding vector that accompanies a coded symbol in a
random linear network coding system. We have also intro-
duced an approach for how this information can be embedded,
and retrieved in a practical system. To evaluate the idea we
have outlined a simple suggestion for what information could
be conveyed and how the system could operate in a simple
cooperative scenario. The results demonstrate that the amount
of coding performed can be significantly reduced when the
conveyed information is used during recoding of symbols.
Additionally the density of the coding vectors is reduced which
makes decoding at the receiver less computational demanding.

The outlined system is meant to demonstrate the idea, and
how it could be implemented in a practical system. However,
additional work is necessary to produce a complete system
and a working protocol. Furthermore such a system should
be evaluated in a realistic scenario, e.g. simulated with proper
channel models.
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Abstract. We consider the problem of efficient decoding of a random
linear code over a finite field. In particular we are interested in the case
where the code is random, relatively sparse, and use the binary finite field
as an example. The goal is to decode the data using fewer operations to
potentially achieve a high coding throughput, and reduce energy con-
sumption. We use an on-the-fly version of the Gauss-Jordan algorithm
as a baseline, and provide several simple improvements to reduce the
number of operations needed to perform decoding. Our tests show that
the improvements can reduce the number of operations used during de-
coding with 10-20% on average depending on the code parameters.

Keywords: Network Coding; Algorithms; Implementation

1 Introduction

When implementing and deploying Network Coding (NC) at least two perfor-
mance criteria are important; the magnitude of overhead added by the code,
and the speed at which encoding, recoding and decoding can be performed. We
consider the last issue and note that it is trivial to implement encoding such that
the minimal number of operations are used. As recoding is similar to encoding
we turn our attention to the problem of fast decoding.

A popular approach to network coding is Random Linear Network Coding
(RLNC), introduced in [2]. It is based on finite fields, and it has been shown that
high coding throughput can be obtained with this code when the binary finite
field is used [1]. Additionally, as a randomly drawn element from the binary field
is zero with high probability (50%), the resulting code will be sparse.

As data is encoded and recoded in a random way, there is no special struc-
ture or shortcut to exploit when performing decoding. Instead we are left with
the tedious task of determining the inverse of operations performed during en-
coding/recoding. Additionally we prefer to perform decoding as packets arrive
in order to avoid a large decoding delay when the final packet arrives. We know
the resulting code is sparse, and therefore propose some simple mechanisms to
utilize this fact. We have implemented these and their impact on the number of
operations used during decoding.

In the remainder of this paper we introduce the used encoding approach,
several decoding optimizations, and their measured impact on the decoding.



2 Coding Algorihtms

We consider encoding packets from some data to be sent from a source to a sink,
we denote this data the generation. The generation consists of g pieces, called
symbols each with a size of m bits, where g is called the generation size, and
thus the generation contains g ·m bits of data. The g symbols are arranged in
the matrix M = [m1;m2; . . . ; mg], where mi is a column vector. In practise
some original file or data stream may be split into several generations, but here
we only consider a single generation.

To generate a new encoded symbol x, M is multiplied with a randomly
generated coding vector g of length g, x = M ×g. In this way we can construct
g + r coded symbols and coding vectors, where r is any number of redundant
symbols as the code is rateless. When a coded symbol is transmitted on the
network it is accompanied by its coding vector, and together they form a coded
packet. A practical interpretation is that each coded symbol, is a combination
or mix of the original symbols from the generation. The benefit is that nearly
infinite coded symbols can be created.

Coded packet︷ ︸︸ ︷
Existing protocol header Coding vector g Coded symbol x

2.1 Decoding

A sink must receive g linearly independent symbols and coding vectors from the
generation to decode the data successfully. All received symbols are placed in
the matrix X̂ = [x̂1, x̂2, . . . , x̂g] and all coding vectors are placed in the matrix

Ĝ = [ĝ1, ĝ2, . . . , ĝg], we denote Ĝ the decoding matrix. Thus the vectors and

symbols are row vectors in Ĝ and X̂ respectively as this is more convenient
during recoding. Hence we may perform any row operation on Ĝ if we perform
the same row operation on X̂.

The original data M can then be decoded as M̂ = X̂×Ĝ
−1

by the decoder.
The problem is how to achieve this in an efficient way. We note that row opera-
tions on X̂ are more computationally expensive compared to operations on Ĝ,
as generally m >> g.

Elements in the matrices are indexed row-column, thus Ĝ[i, j] is the element

in Ĝ on the intersection between the i’th row and the j’th column. The i’th row
in the matrix is indexed as Ĝ[i]. Initially no packets have been received, thus

Ĝ and X̂ are zero matrices. As we operate in the binary finite field we denote
bitwise XOR of two bit strings of the same length as ⊕.

Algorithm 1: Decoder initial state

Input: g,m
Data: Ĝ← 0g×g ▷ The decoding matrix

Data: X̂ ← 0g×m ▷ The (partially) decoded data

Data: rank ← 0 ▷ the rank of Ĝ



2.2 Basic

As a reference we use the basic decoder algorithm, see Algorithm 5, described
in [1]. This algorithm is a modified version of the Gauss-Jordan algorithm. On
each run the algorithm attempts to get the decoding matrix into reduced echelon
form. First the received vector and symbol ĝ and x̂ is forward substituted into the
previous received vectors and symbols Ĝ and X̂ respectively, and subsequently
backward substitution is performed. If the packet was a linear combination of
previous received packets it is reduced to the zero-vector 0g and discarded.

Algorithm 2: ForwardSubstitute

Input: x̂,ĝ
1 pivotPosition ← 0 ▷ 0 Indicates that no pivot was found
2 for i← 1 : g do
3 if ĝ[i] = 1 then

4 if Ĝ[i, i] = 1 then

5 ĝ ← ĝ ⊕ Ĝ[i] ▷ substitute into new vector

6 x̂← x̂⊕ X̂[i] ▷ substitute into new symbol

7 else
8 pivotPosition ← i ▷ pivot element found
9 break

10 return pivotPosition

Algorithm 3: BackwardsSubstitute

Input: x̂,ĝ, pivotPosition
1 for i← (pivotPosition− 1) : 1 do

2 if Ĝ[i, pivotPosition] = 1 then

3 Ĝ[i]← Ĝ[i]⊕ ĝ ▷ substitute into old vector

4 X̂[i]← X̂[i]⊕ x̂ ▷ substitute into old symbol

Algorithm 4: InsertPacket

Input: x̂,ĝ, pivotPosition
1 Ĝ[pivotposition] = ĝ

2 X̂[pivotposition] = x̂

Algorithm 5: DecoderBasic

Input: x̂,ĝ
1 pivotPosition = ForwardSubstitute(x̂,ĝ)
2 if pivotPosition > 0 then
3 BackwardsSubstitute(x̂,ĝ, pivotPosition)
4 InsertPacket(x̂,ĝ, pivotPosition)
5 rank++

6 return rank



2.3 Suppress Null (SN)

To avoid wasting operations on symbols that does not carry novel information,
we record the operations performed on the vector. If the vector is reduced to
the zero vector, the packet was linearly dependent and the recorded operations
are discarded. Otherwise the packet was novel and the recorded operations are
executed on the symbol. This reduces the computational cost when a linear
dependent packet is received. This is most likely to occur in the end phase of
the decoding, thus it is most beneficial for small generation sizes. In real world
scenarios the probability of receiving a linearly dependent packet can be high,
in which cases this approach would be beneficial. To implement this, line 1 in
Algorithm 5 is replaced with Algorithm 7.

Algorithm 6: ExecuteRecipe

Input: x̂,recipe
1 for i← 1 : g do
2 if recipe[i] = 1 then

3 x̂← x̂⊕ X̂[i] ▷ substitute into symbol

Algorithm 7: ForwardSubstituteSuppressNull

Input: x̂,ĝ
1 pivotPosition ← 0 ▷ 0 Indicates that no pivot was found
2 recipe ← 0g

3 for i← 1 : g do
4 if ĝ[i] = 1 then

5 if Ĝ[i, i] = 1 then

6 ĝ ← ĝ ⊕ Ĝ[i] ▷ substitute into new vector
7 recipe[i]← 1

8 else
9 pivotPosition ← i ▷ pivot element found

10 break

11 if pivotPosition > 0 then
12 ExecuteRecipe(x̂,recipe)

13 return pivotPosition

2.4 Density Check (DC)

When forward substitution is performed there is a risk that a high density packets
is substituted into a low density packet. The density is defined as Density(h) =∑g

k=1(hk ̸=0)

g , which is the number of non-zeros in the vector, and where h is
the coding vector. Generally a sparse packet requires little work to decode and
a dense packet requires much work to decode. When a vector is substituted
into a sparse vector, the resulting vector will with high probability have higher
density and thus fill-in occur. To reduce this problem incoming packets can



be sorted based on density during forward substitution. When it is detected
that two vectors have the same pivot element their densities are compared. The
vector with the lowest density is inserted into the decoding matrix. The low
density packet is then substituted into the high density packet, and the forward
substitution is continued with the resulting packet. To implement this, line 1 in
Algorithm 5 is replaced with Algorithm 8.

Algorithm 8: ForwardSubstituteDensityCheck

Input: x̂,ĝ
1 pivotPosition ← 0 ▷ 0 Indicates that no pivot was found
2 for i← 1 : g do
3 if ĝ[i] = 1 then

4 if Ĝ[i, i] = 1 then

5 if Density(ĝ) < Density(Ĝ[i]) then

6 ĝ ↔ Ĝ[i] ▷ swap new vector with old vector

7 x̂↔ X̂[i] ▷ swap new symbol with old symbol

8 ĝ ← ĝ ⊕ Ĝ[i]

9 x̂← x̂⊕ X̂[i]

10 else
11 pivotPosition ← i ▷ pivot element found
12 break

13 return pivotPosition

2.5 Delayed Backwards Substitution (DBS)

To reduce the fill-in effect the backwards substitution is postponed until the
decoding matrix has full rank. Additionally it is not necessary to perform any
backwards substitution on the vectors because backwards substitution is per-
formed starting from the last row. Hence when backwards substitution of a
packet is complete, that packet has a pivot element for which all other encoding
vectors are zero. This approach is only semi on-the-fly, as only some decoding
is performed when packets arrive. Therefore the decoding delay when the final
packet arrive will increase. This is implemented with Algorithm 9

Algorithm 9: DecoderDelayedBackwardsSubstitution

Input: x̂,ĝ
1 pivotPosition = ForwardSubstitute(x̂,ĝ)
2 if pivotPosition > 0 then
3 InsertPacket(x̂,ĝ, pivotPosition)
4 rank++

5 if rank = g then
6 BackwardsSubstituteFinal()

7 return rank



Algorithm 10: BackwardsSubstituteFinal

1 for i← g : 2 do
2 for j ← (i− 1) : 1 do ▷ All rows above

3 if Ĝ[j, i] = 1 then

4 X̂[j]← X̂[j]⊕ X̂[i] ▷ substitute into the symbol

2.6 Density Check, and Delayed Backwards Substitution (DC-DBS)

When DC and DBS are combined vectors are sorted so sparse vectors are kept
at the top of the decoding matrix while dense vectors are pushed downwards.
Because backwards substitution is performed only when the rank is full, no
fill-in occurs during backwards substitution, as only fully decoded packets are
substituted back. To implement this, line 1 in Algorithm 9 is replaced with
Algorithm 8.

2.7 Suppress Null, Density Check, and Delayed Backwards
Substitution (SN-DC-DBS)

To reduce the cost of receiving linear dependent packets we include SN, by
replacing line 1 in Algorithm 9 with Algorithm 11.

Algorithm 11: ForwardSubstitute-SN-DC

Input: x̂,ĝ
1 pivotPosition ← 0 ▷ 0 Indicates that no pivot was found
2 recipe ← 0g

3 for i← 1 : g do
4 if ĝ[i] = 1 then

5 if Ĝ[i, i] = 1 then

6 if Density(ĝ) < Density(Ĝ[i]) then
7 ExecuteRecipe(x̂,recipe)
8 recipe ← 0g ▷ reset recipe

9 ĝ ↔ Ĝ[i] ▷ swap new vector with old vector

10 x̂↔ X̂[i] ▷ swap new symbol with old symbol

11 ĝ ← ĝ ⊕ Ĝ[i] ▷ substitute into new vector
12 recipe[i]← 1

13 else
14 pivotPosition ← i ▷ pivot element found
15 break

16 if pivotPosition > 0 then
17 ExecuteRecipe(x̂,recipe)

18 return pivotPosition



3 Results

We have decoded a large number of generations with each of the optimizations,
and measured the used vector and symbol operations which is ⊕ of two vectors,
and two symbols respectively. We have considered two densities while encoding,

d = 1
2 and d = log2(g)

g which we denote dense and sparse respectively. d = 1
2 gives

the lowest probability of linear dependence, and d = log2(g)
g is a good trade-off

between linear dependence and density. As a reference the mean number of both
vector and symbol operations during encoding of one packet can be calculated
as g

2 and log2(g) for the dense and sparse case respectively.
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(a) vector operations, dense encoding
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(b) symbol operations, dense encoding
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(c) vector operations, sparse encoding
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(d) symbol operations, sparse encoding

Fig. 1. Vector and symbol operations during decoding, when d = 1
2

and d = log2(g)

g
.

With the Basic algorithm the number of operations during encoding and
decoding is identical for the dense case, see Fig 1(a) and 1(b) and calculate g

2 .
For the sparse case the number of operations is significantly higher for decoding
than for encoding, see Fig 1(c) and 1(d), and calculate log2(g).

When Suppress Null is used the number of reduced symbol operations can
be observed by subtracting the number of symbol operations from the number of



vector operations. The reduction is highest for small g, which is where the ratio
of linearly dependent packet is largest. For g = 16 and g = 32 the reduction in
symbol operations is 9.5% and 4.4% respectively, for high g′s the reduction is
approximately 0%.

Density Check reduces the number of operations for the sparse case marginally,
but has no effect for the dense case.

The Delayed Backwards Substitution decreases the number of vector opera-
tions with approximately 40% when the encoding is sparse, and 50% when the
encoding is dense as no operations needs to be performed on the vectors during
backwards substitution. Interestingly the number of symbol operations increase
significantly for the sparse encoding.

In DC-DBS, density check and delayed backwards substitution are combined,
and the number of both data and vector operations are significantly reduced.
For the sparse case the reduction is approximately 50% of the vector operations,
and almost 20% of the symbol operations. For the dense case the reduction
is approximately 50% of the vector operations, and almost 10% of the symbol
operations. Interestingly the number of vector and symbol operations is lower
for decoding compared to encoding, in the dense case. Hence the combination of
DC and DBS is significantly better than the two alone, as the expensive symbol
operations are reduced.

With SN-DC-DBS we additionally include Suppress Null, the number of
symbol operations is reduced slightly for high g and significantly for low g.

4 Conclusion

The considered decoding optimizations have been shown to reduce the number
of necessary operations during decoding. The reduction in symbol decoding op-
erations is approximately 10%, and 20%, when the density during encoding is
dense and sparse respectively. In both cases the number of vector operations
is approximately halved. Surprisingly decoding can in some cases be performed
with fewer operations than encoding.
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Abstract—Random Linear Network Coding (RLNC) provides
a theoretically efficient method for coding. The drawbacks associ-
ated with it are the complexity of the decoding and the overhead
resulting from the encoding vector. Increasing the field size and
generation size presents a fundamental trade-off between packet-
based throughput and operational overhead. On the one hand,
decreasing the probability of transmitting redundant packets is
beneficial for throughput and, consequently, reduces transmission
energy. On the other hand, the decoding complexity and amount
of header overhead increase with field size and generation
length, leading to higher energy consumption. Therefore, the
optimal trade-off is system and topology dependent, as it depends
on the cost in energy of performing coding operations versus
transmitting data. We show that moderate field sizes are the
correct choice when trade-offs are considered. The results show
that sparse binary codes perform the best, unless the generation
size is very low.

I. INTRODUCTION

Network Coding (NC) is a promising paradigm that breaks
with the existing store-and-forward paradigm in computer
networks [1]. NC enables coding on the fly at the individual
node in the communication network, and thus is fundamentally
different from the end-to-end approach of channel and source
coding. Thus packets are no longer treated as atomic entities as
the number of incoming and outgoing packets per node, is not
necessarily equal and data may be combined and re-combined
at any point in the network. This new feature can provide
advantages over traditional routing in meshed networks, and
fits perfectly with the ideas of cooperative and distributed
networks.

A promising popular approach, introduced in [2], is RLNC.
In RLNC coding is performed at random which minimizes the
need for signaling, compared to deterministic codes. Because
coding is performed randomly there is a non-zero probability,
that a received coded symbol is linearly dependent on already
received symbols, and thus unusable. Figure 1 illustrates
the benefits of coding. When no coding is used nodes can
only forward symbols, and as the relays must forward two
different packet for the sink to decode. If binary coding is
used an additional symbol can be created, A⊕B, and thus
the probability that the relays forward two different symbols
increases. If coding is performed over a higher field many
more symbols can be created, αA⊕βB, and the probability
that the relays forward two different symbols increases.

s

t

r1 r2

A,B

A,B

(a) No coding,
Pfail = 50%

s

t

r1 r2

A,B,A⊕B

A,B,A⊕B

(b) Binary coding,
Pfail = 33%

s

t

r1 r2

A,B,αA⊕βB

A,B,αA⊕βB

(c) Higher field cod-
ing, Pfail ≈ 1/q

Fig. 1: Example network with and without coding, s is the
source, t is the sink, r1 and r2 are relays.

This probability result in the linear dependence overhead.
The parameters; generation size, field size and density in-
fluence this overhead, and are often assumed to be high
as this decreases the probability of linear dependence. To
decode a received symbol a sink needs the coding vector of
the symbol, which describes the coding operation performed
during encoding. This information must be included as header
information when the coded symbol is transmitted, which
results in an additional header overhead.

Unfortunately, when coding is performed on a computa-
tional device, the parameters also affect the coding throughput,
which is the rate at which coding is performed [Mb/s].
Higher values generally result in lower coding throughput [3]–
[6]. However, the coding throughput also depends on less
deterministic parameters e.g. the hardware platform, program-
ming language, and implementation optimizations. Recently
[7] have shown that a systematic code with a RLNC-based
redundancy can achieve low computational complexity while
remaining binary, but only over a single-hop system.

The objective of this work is to increase the coding through-
put without significantly increasing the linear dependence
overhead. Our contribution is two fold. In Section II we ana-
lyze the impact of changing the field size, generation size, and
density, and provide bounds for the resulting linear dependence
overhead. In Section III we consider the representation of the
coding vector, the resulting header overhead.



II. CODING

The data, of size B that is to be transferred from a source
to one or more sinks is divided into generations of size g · m,
a generation is sometimes also referred to as a source block
or a batch. Each generation constitutes g symbols of size m,
where g is called the generation size. The g original symbols
of length m in one generation, are arranged in the matrix
M = [m1; m2; . . . ; mg], where mi is a column vector. In
an application the block of data can be a file or a part of a
media stream, and is divided into ⌈ B

m⌉ pieces, called symbols.
Generation number 0 constitutes the first g symbols, or the
first g · m bytes of data, there are ⌈ B

g·m⌉ such generations.
To encode a new symbol x from a generation at the

source, M is multiplied with a randomly generated coding
vector g of length g, x = M × g. In this way we can
construct g + r coded symbols and coding vectors, where r
is any number of redundant symbols as the code is rateless.
When a coded symbol is transmitted on the network it is
accompanied by its coding vector, and together they form a
coded packet. A practical interpretation is that each coded
symbol, is a combination or mix of the original symbols
from one generation. The benefit is that nearly infinite coded
symbols can be created.

Coded packet︷ ︸︸ ︷
Existing header Coding vector Coded symbol

In order for a sink to successfully decode a generation,
it must receive g linearly independent symbols and coding
vectors from that generation. All received symbols are placed
in the matrix X̂ = [x̂1; x̂2; . . . ; x̂g] and all coding vectors
are placed in the matrix Ĝ = [ĝ1; ĝ2; . . . ; ĝg], we denote
Ĝ the decoding matrix. The original data M can then be
decoded as M̂ = X̂×Ĝ

−1
. To spread the computational load

this can be performed with an on-the-fly version of Gaussian
elimination. In practice if approximately any g symbols from
a generation are received the original data in that generation
can be decoded. This is a much looser condition, compared to
when no coding is used, where exactly all g unique original
symbols must be collected [8].

Any node that have received g′, where g′ = [2, g] is the
number of received linearly independent symbols from a gen-
eration and is equal to the rank of Ĝ, can recode. All received
symbols are placed in the matrix X̂ = [x̂1; x̂2; . . . ; x̂g′ ] and
all coding vectors in the matrix Ĝ = [ĝ1; ĝ2; . . . ; ĝg′ ]. To
recode a symbol these matrices are multiplied with a randomly
generated vector h of length g′, g̃ = Ĝ×h, x̃ = X̂×h. In this
way we can construct r′ randomly generated recoding vectors
and r′ recoded symbols. r′ > g′ is possible, however a node
can never create more than g′ independent symbols. Note that
h is only used locally and that there is no need to distinguish
between coded and recoded symbols. In practice this means
that a node that have received more than one symbol can
recombine those symbols into recoded symbols, similar to the
way coded symbols are constructed at the source.

A. Generation Size
The generation size g is the number of symbols over which

encoding is performed, and defines the maximal number of
symbols that can be combined into a coded symbol. Data is
decoded on a per generation level, thus at least g symbols
must be received before decoding is possible. Hence the size
of a generation g · m dictates the decoding delay which is
the minimum amount of data that must be received before
decoding is possible.

From a linear dependence overhead point of view g should
be high, especially in multiple-sink broadcast networks, where
a low g increases the amount of expected transmissions
per symbol, due to erasures [5]. From a practical point of
view, decoding delay and coding throughput must also be
considered. For bulk downloads the decoding delay is not
important. But for streaming services and Voice over Internet
Protocol (VoIP) in particular it is critical, and g must be
chosen with care. Additionally a high g generally decreases
the coding throughput, thus g must be chosen low enough to
ensure satisfactory coding throughput on the given platform.

To achieve reliability in a practical system some signaling
is necessary for each generation. A simple form could be to
acknowledge when each generation is successfully decoded.
Thus the benefits of NC in terms of reduced signaling dimin-
ish, when the generation size is decreased, as the number of
generations necessary to represent some fixed amount of data
increases. This overhead is protocol and topology dependent,
and therefore outside the scope of this work.

B. Field Size
The field size, q, defines the size of the finite field over

which all coding operations are performed, and thus the
number of unique field elements. A necessary but insufficient
condition for decoding is that all rows have at least one non-
zero scalar. This probability can be found from the probability
of receiving a symbol where at least one scalar in the coding
vector, that corresponds to a symbol for which the decoder has
not yet identified a pivot element, is non-zero. The following
bound for linear independence, when each scalar in the coding
vector is drawn uniformly, is assumed in an alternative form
in [9], [10] and is said to hold when q is high.

Pindependent ≤ 1 − 1

qg−g′ (1)

In [5] we observed the probability of generating g symbols
that are not all independent, given by Equation (2), is a good
approximation even at low values of q.

1 −
g−1∏

g′=0

(
1 − 1

qg−g′

)
(2)

Thus as g′ goes towards g it becomes increasingly more
difficult to receive useful symbols, because the coding vector
must be non-zero in at least one of the g − g′ corresponding
scalars. This yields the following transition probabilities.

Pg′→g′ =
1

qg−g′ Pg′→g′+1 = 1 − 1

qg−g′



P =




1
qg 0 · · · 0

(1 − 1
qg ) 1

qg−1

...
...

. . . 0
0 · · · (1 − 1

q1 ) 1




Thus the expected amount of overhead for a generation can
be found by evaluating the probability that the rank is not
full after k transmissions, p(g′ 6= g). Initially no symbols are
received and therefore the starting pmf s is, s = [1, 0, ...].
When less than g symbols are received, p(g′ = g) = 0, and
hence the overhead can be evaluated as.

α ≥
∞∑

k=g′

pk(g′ 6= g), pk = (Pk × s) (3)

This can be rewritten to the form in Equation (4).

α(q, g) ≥
g−1∑

g′=0

((
1 − 1

qg−g′

)−1

− 1

)

=

g−1∑

g′=0

(
1

qg−g′ − 1

)
(4)

It might be expected that a decreased density would impact
this directly. However as decoding progresses the not-decoded
remainder of the coding vectors will go towards a uniform
drawn distribution, due to the fill-in effect. Therefor a separate
contribution to the overhead stems from the density.

C. Density

The ratio of non-zero scalars in a coding vector is often
referred to as the density. The density of a coding vector h
with a generation size g is defined by Equation (5).

d(h) =

∑g
k=1(hk 6= 0)

g
(5)

A necessary but insufficient condition for decoding is that
all columns have at least one non-zero scalar. For a generation
a receiving node can have j = [0, g] non-zero columns. The
probability that a scalar is non-zero in a received symbol
is d. Before the transition there are j non-zero columns,
after the transition there are j′. Thus the number of possible
combinations for the transition is given by

(
g−j
g−j′

)
. j′ − j

columns becomes non-zero with probability d. g − j′ columns
remain all-zero with probability 1−d. Thus the probability of
transition from state j to state j′, where j′ ≥ j, is.

Oj→j′ = dj′−j · (1 − d)g−j′ ·
(

g − j

g − j′

)
(6)

O =




(1 − d)g 0 · · · 0

d · (1 − d)g−1
(

g
g−1

)
(1 − d)g−1

...
...

. . . 0
dg · · · d 1




Initially all columns in the decoding matrix consist of zero
vectors. Therefore the starting pmf s is, s = [1, 0, ...]. At
least g symbols must be received for decoding to be possible.
Hence the estimated number of symbols that must be received
in addition to g before all columns contain non-zero values
can be evaluated as.

β ≥
∞∑

k=g

tk(j 6= g), tk = (Ok × s) (7)

The probability that one column is the zero vector is
the probability that one scalar is zero to the power of the
number of received symbols. From this we can determine the
probability that at least one additional packet is needed when
k symbols have been received.

β(d, g) ≥
∞∑

k=g

(
1 −

(
1 − (1 − d)k

)g)
(8)

for 0 < d ≤ 1 − q−1

D. Linear Dependence Overhead

The total overhead of a given code is given by the expected
number of redundant symbols necessary.

α + β

g
(9)

To verify Equations (4), (8), and (9) we compare with
measured overhead obtained from a high number of runs of
our own implementation of RLNC. The results are plotted on
Figure 2, where g is on the x-axis and the resulting overhead
is on the y-axis.

Fig. 2: Linear dependence overhead, analytical values are
plotted as lines, measured values are marked with triangles.

On Figure 2, triangles denote measured overhead, which
show that the analytical results are a good approximation of
the measured values, the error is below 6 % for all measured
settings. As g increases the overhead decreases, and when g
becomes sufficiently high, d can be decreased with no penalty
to the overhead.



III. CODING VECTOR REPRESENTATION

To decode a received symbol, a node must in addition
to the symbol, hold the corresponding coding vector which
results in the header overhead. It has been suggested to use a
predefined pseudo random function to generate coding vectors
based on a seed, and then include the seed instead of the
coding vector itself, e.g. in [11]. This reduces the overhead to
the size of the seed, but also reduces the number of unique
coding vectors to the size of the seed. This approach is not
suitable for recoding [12]. The reason is that during recoding
the coding vector is not drawn randomly but instead computed
as g̃ = ĝ × h where h is random. As g̃ can take qg values,
not all possible g̃ can be constructed from the seed. Even if
this was possible there is the challenge of identifying which
seed produces the wanted coding vector.

We assume that recoding is a requirement, and thus the
pseudo random function approach cannot be used, Instead
we consider some other representations. A simple but naive
approach is to construct the coding vector from all the scalars.

s0 s1 . . . sg

Each scalar can be represented by log2(q) bits, and there
are g such scalars. We denote this overhead introduced by the
coding vector γ.

γ1 = log2(q) · g (10)

If the density is low, the coding vector will be sparse, and
will mostly consist of 0’s. Hence the naive approach will be
very inefficient. Instead we can represent each non-zero scalar
by an index-scalar pair. It is also necessary to append the
number of index-scalars pairs, as this can vary.

t i0 so i1 s1 . . . it st

The number of index-scalar pairs, t, takes up at most log2(g)
bits, as the maximal number of non-zero scalars is g. Each
index takes log2(g) bits and each scalar takes log2(q) bits, and
on average there are g · d such pairs. For q = 2 it is only
necessary to include the indices’s as there is only one non-
zero scalar.

γ2 = log2(g) + (log2(g) + log2(q)) · g · d (11)

The coding vector can also be represented by a bit array,
that indicates which scalars are non-zero, and the values of
these scalars.

a0 a1 . . . ag sx sy . . . sz

The bit array can be represented by g bits. Each of the
scalars takes log2(q) bits, and on average there are g · d such
scalars for each encoded symbol. If the bit array is compressed
with an optimal code, the amount of bits necessary to represent

it can be reduced from g to the entropy of the bit vector, H(a),
which can be calculated from d and g.

γ3 = H(a) + log2(q) · g · d (12)

A. Total Overhead

The total overhead constitutes the linear dependence and
header overhead, divided by the size of a generation g · m

(α + β) · m + (g + α + β) · γ
g · m

(13)

Three examples of the contributions to the total overhead is
illustrated on Figure 3. On the x-axis in the range [10−3, 1], on
the y-axis is the resulting overhead, and the minimal overhead
is marked with a vertical line. On the figure, four contributions
from Equation (13) are stacked, α

g from the field size, β
g from

the density, γ
m from the coding vector representation, and the

remainder (α+β)·γ
g·m .

On Figure 3 it can be seen that the contribution from α is
constant. On Figure 3a the contribution from β is dominating
until the density reaches approximately 0.1. When g is larger,
in Figure 3b, the contribution from α decreases, and the
contribution from β decreases faster. However, the contribution
from γ becomes bigger, for high densities. For a higher q, in
Figure 3c, the contribution from α is significantly reduced.
However, for high densities the contribution from γ dominates.

The interesting result is the minimal obtainable overhead
for a given value of g. Therefore we have identified this for
different values of g, the result of this search is plotted on
Figure 4, where g is on the x-axis and lowest total obtainable
overhead is on the y-axis.

Fig. 4: Lowest total overhead obtainable for different ap-
proaches when g is varied.

Interestingly the result shows that q = 232 should never be
used. The reason is that the increased entropy of the coding
vector is much larger compared to the benefit from the high q-
value. For g < 256 the lowest overhead can be obtained when
q = 28. For g > 256, q = 2 can give the lowest overhead.



(a) q = 2, g = 64 (b) q = 2, g = 1024 (c) q = 28, g = 1024

Fig. 3: Examples of the total overhead, that is a function of the field size, the density, and the coding vector representation.

One might conclude that a very low generation size would
be the best choice. However, it is important to remember the
consequences of a low generation size, see Section II-A. Since
the index approach is much simpler to implement compared to
the array approach, it may still be useful as the performance
when q = 2 is similar for the two approaches.

Remark that all evaluations are performed at m = 1500 B.
This fits well with bulk data distribution or very high rate
media streaming over Wireless Local Area Network (WLAN)
networks. To evaluate settings where m is significantly differ-
ent, see [13] for a small script to evaluate the overhead for
different setting.

IV. CONCLUSION

In this paper we have analyzed the transmission overhead
of RLNC, as a function of the generation size, field size, den-
sity, and coding vector representation. The results have been
verified with measurements from our own implementation of
RLNC. The results show that generally, in the case where
recoding must be supported, a field size of 2 and a low density
should be used. If the field size and density is increased, the
bits necessary for coding vector representation increases faster
than the improvement obtained from the lower amount of
linearly dependent packets. However, if the generation size
is very low a larger field size than 2 provides the lowest
overhead. From a transmission overhead point-of-view, if
the recoding operation is not required, the generation size,
field size, and density should be chosen as high as possible.
However, these parameters also impact the coding through-
put, therefore they must be chosen with care in practical
applications. As the coding throughput is implementation and
topology dependent, no single set of optimal values exists.
The results in this work can be used when RLNC is deployed
in a real application. The practical performance in terms
of coding throughput and energy consumption of the used
RLNC implementation, can be compared with the transmission
overhead obtained for given parameters. Hence a good trade-
off in terms of coding throughput, transmission overhead, and
energy can be determined, for a given application and network
topology.
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Abstract—Random Linear Network Coding (RLNC) provides a theoretically efficient method for coding. Some of its practical drawbacks
are the complexity of decoding and the overhead resulting from the coding vector. For computational limited and battery driven platforms
these challenges are particular important as they lead to increased computational load and energy consumption. In this work we present
an approach to RLNC where the code is sparse, non-uniform and the coding vectors have a compact representation. The sparsity
allow for fast encoding and decoding, and the non-uniform protection of symbols enables recoding where the produced symbols are
indistinguishable from those encoded at the source. The results show that the presented approach can provide a coding overhead
arbitrarily close to that of RLNC, but at significantly reduced computational load. Additionally the approach allows for easy adjustment
between coding throughput and code overhead, which makes it suitable for a broad range of platforms and applications.

Index Terms—network coding, implementation, algorithms, complexity

✦

1 INTRODUCTION

Network Coding (NC) is a promising paradigm [1] that
has been shown to provide benefits in many different
networks and applications. NC enables coding at indi-
vidual nodes in a communication network, and thus is
fundamentally different from the end-to-end approach
of channel and source coding. With NC packets are no
longer treated as atomic entities as they can be combined
and re-combined at any node in the network. This allows
for a less restricted view on the flow of information in
networks, which can be particular helpful when building
distribution systems for less structured networks such as
meshed, peer-to-peer or highly mobile networks.

In this work we focus on random NC approaches
RLNC [2], and disregard deterministic coding ap-
proaches. The reason is that our primary interest is
cooperative and highly mobile wireless networks, which
fit perfectly with the highly decentralized nature of
RLNC. In particular RLNC reduces the signaling over-
head and increases robustness towards changing channel
conditions in the network. At the same time it allow for
the construction of much simpler distribution systems,
which from an engineering point of view is desirable.

Unfortunately, RLNC is inherently computational de-
manding which have spawned several efforts to produce
optimized implementations and modify the underly-
ing code [3], [4]. Even though several solutions and
implementations have been declared to provide suffi-
cient coding throughput continued efforts are valid as it
can ensure higher coding throughput, which conserve
computational resources for other tasks such as video
decoding, and reduce the energy consumption intro-
duced by coding. This is of particular importance when
NC is deployed on battery driven devices with modest
computational capabilities.

This paper presents our work on an alternative ap-
proach to RLNC that can provide benefits over standard
RLNC. The encoding is sparse and non-uniform which
allows for fast decoding as fill-in [5] is avoided while at
the same time maintaining the possibility of recoding.
We describe how encoding and decoding and different
types of recoding can be performed. We analyze the
overhead and complexity of the proposed approach and
verify our results with our own C++ implementation,
which also provides practical throughput results. The re-
sults show that significantly lower decoding complexity
compared to RLNC is possible even at code overheads
very close to that of RLNC.The highest gain is obtained
at the highest tested generation size of 2048, where both
encoding and decoding throughput is approximately one
order of magnitude higher than that of standard RLNC.
Additionally it is possible to adjust the trade-off between
code overhead and coding complexity which makes
this approach applicable for a wide range of platforms.
Finally it solves the problem of efficient coding vector
representation, discussed in [6].

This paper is primarily intended for researchers and
developers that work with reliable data distribution on
wireless and mobile platforms. Therefore we provide a
short overview of RLNC and related work in Section 2.
The approach to encoding, decoding and recoding is
presented in Section 3 together with algorithms aimed
at implementations in C or C++. Section 4 provides
some analysis of the performance of the code in terms of
decoding complexity and code overhead, and compares
measurements results obtained from our implementa-
tion with the analytically expressions. Readers primarily
interested in theoretical results will already be familiar
with with Forward Error Correction (FEC) and in partic-
ular RLNC and should therefore skip Section 2 as well
as the majority of Section 3, specifically from Section 3.1.
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2 RLNC AND RELATED WORK

When data is distributed from one or more sources to
one or more sinks using RLNC. The data is encoded at the
sources to produce coded symbols and coding vectors
that describe the encoding procedure. Together a coded
symbol and a coding vector form a coded packet. When a
sink has received enough such coded packets, it can decode
the original data. Additionally at any relaying nodes in
between the sources and sinks, received symbols can be
recombined and thus recoded.

Existing header Coding vector Coded symbol
︸ ︷︷ ︸

Coded packet

For practical reasons the original data is typically
divided into generations [7] of size g, we denote the data
in such a generation M . This ensures that coding can
be performed over data of any size and that the perfor-
mance of RLNC is independent of the data size. Each
generation is divided into symbols and these symbols
are then combined at random to create a coded symbol.
As all operations are performed over a Finite Field (FF)
Fq, the code is linear, and thus new valid coded symbols
can be created from coded and non-coded symbols. Fig. 1
illustrates how the original symbols can be combined at
random and provide a endless stream of coded symbols.
The original data can then be decoded by inverting
the coding operations performed on the coded symbol.
See [8], [9] for an introductions to FF and RLNC.

m0 m1 m2 m3 m4 m5 . . . mg−1

x0 x1 x2 . . . . . . . . . xi . . .

M

Fig. 1: Coded symbols are created from the original data.

Dividing the data into generations reduces both the
computational work and the decoding delay. Unfortu-
nately, it also introduces the need for additional signal-
ing [10], [11], as each of the generations must be decoded
successfully before the original data is recovered fully.
It also increases the probability that the sink receives
linearly dependent symbols which adds to the overhead
of the code. For network typologies where it can be
assumed that symbols are received only from sources
that hold the original information, this overhead is well
understood [12]–[14]. In such systems the parameters of
the code can be chosen so the overhead tends to zero
and can be ignored. However, these parameters present
a trade off where generally higher values result in lower
code overhead but lower coding throughput. [4]. The
coding throughput also depends on less deterministic
parameters e.g. the hardware platform, programming

language, and implementation optimization’s [14]–[18].
Therefore a universally optimal set of values cannot be
identified, as it depends on the system in where they are
used and on the devices on which it is deployed.

Some simplifications that can increase the coding
throughput of RLNC are binary, systematic, and sparse
variants [6], [14], [19], [20]. Binary codes are in
widespread use and can obtain a low code overhead.
They can be fast as operations in the binary field can be
performed in parallel by all modern computers.

Using a systematic code comes with no cost in term
of overhead, and can potentially provide a high gain in
both encoding and decoding throughput. Unfortunately,
it is not possible to apply it in general, but only at
sources. Thus there is no or little gain if recoding is
performed, which is the main reason to use RLNC in
the first place. Using a sparse random code provides
similar benefits and drawback as a systematic code. It
becomes impractical to perform recoding, and the gain in
decoding throughput can be small or non-existing [21].

Alternatively the underlying code can be fundamen-
tally modified or replaced to ensure a lower decoding
complexity. A noteworthy suggestion is to use a convo-
lutional code as the underlying code [22], [23] as they
have been used in communication systems for many
years. These efforts are still primarily theoretical as to
the best of our knowledge currently no implementa-
tion of convolutional codes for NC exists. An approach
with a related fundamental concept, combined with a
concatenated approach such as that used in the Raptor
code [24], was suggest in the unpublished draft [25] and
called perpetual codes. The authors aim was to propose a
cache-friendly rateless erasure code, and therefore did
not consider recoding. The fundamental idea in our
approach is similar and we have adopted the name
perpetual, importantly our approach supports recoding
and is therefore suitable as a NC code. We note that
linear block codes and convolutional codes may in some
cases be equivalent, as they can describe codes with
similar realizations using different terminology [26], [27].

Another direction in the search for improved trade-off
between computational work and code overhead was
suggested in [28]. Here the authors considered coding
over several generations, called a random annex code [11],
[29]. Each generation is extended to include symbols
from other generations and thus when a generation is
decoded these extra symbols are released. This reduces
the problem of ensuring that all generations are decoded,
and thus the overhead. At the same time it is less
computational demanding as the decoding is performed
in an inner and outer step. The approach is very useful
for file transfers, but less so for streaming as the final
decoding delay is high as generations are not decoded
sequentially. Additional, the problem of how recoding
could be performed has so far not been considered.
Importantly the idea of a random annex can be applied
to many underlying codes, including the perpetual code
considered in this work.
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3 CODE OPERATION
This section introduces the code and the three opera-
tions, encoding, decoding and recoding, that can be per-
formed at nodes in the network. The notation used for
analysis and algorithms is listed Table 1. In vectors and
matrices we denote the first element with index zero. In
some algorithms the value −1 is used to denote non-
valid or non-existing.

TABLE 1: Notation used for analysis and algorithms

Symbol Definition

g Generation size
q Field size
w Coding vector witdth
Fq A finite field with q elements
g Coding vector, with g elements starting at element 0
G Matrix containing all received coding vectors
x Coded symbol
X Matrix containing all received symbol
h Local recoding vector

Gi The ith row of the coding matrix
Gi,j The index in row i and column j of the coding matrix.
Xi The ith row of the symbol matrix
Xi,j The index in row i and column j of the symbol matrix.
gp The pivot index for the coding vector
gb The backside element for the coding vector
bi The row which have backside element i.
ρ and ̺ Local variables for pivot indices
β Local variable for backside indices
? A randomly drawn integer.

In RLNC the elements in the coding vector g are
drawn completely at random, and thus each coded
symbol is a combination of all the original symbols in
one generation. For the perpetual approach we consider
in this work, this is not the case. Instead an elements
with index p is chosen as the pivot, and the following
w elements are drawn at random from Fq. We denote w
as the width of the coding vector. See Fig. 2 for a small
example of some resulting coding vectors.

1

1

1

1

1

1

1

1

γ0,1 γ0,2 γ0,3

γ1,2 γ1,3 γ1,4

γ2,3 γ2,4 γ2,5

γ3,4 γ3,5 γ3,6

γ4,5 γ4,6 γ4,7

γ5,6 γ5,7γ5,0

γ6,7γ6,0 γ6,1

γ7,0 γ7,1 γ7,2

w

w

g

g

Fig. 2: All possible coding vectors, when g = 8 and w =
3. The γ’s denote randomly drawn elements from Fq .

3.1 Encoding
The data to be transmitted from the source is divided
into generations, we denote the data in such a generation
M . Each generation is divided into g symbols that
are represented with one or more FF elements Fq . The
symbols are combined as specified by the coding vector
g in order to create coded symbols x.

x = M · g (1)

The construction of a coding vector g and the corre-
sponding coded symbol x is described by Algorithm 1.

Algorithm 1: encode
Input: M

1 g ← 0
2 ρ← (? mod g)
3 gρ ← 1
4 for i ∈ (ρ, ρ + w] do
5 g(i mod g) ← (? mod q)

6 x←M · g
7 return g, x

An index in the generation is drawn at random and
used as the pivot, ρ ∈ [0, g). The index in g that
corresponds to this pivot element is set to one. For
the subsequent w indices in g an element is drawn at
random from Fq. The remaining elements in g are zeros.
The resulting coding vector is of the form illustrated
in Fig. 2. To create a coded symbol the coding vector
is multiplied onto the the data, x = M · g. Together
the coding vector g and coded symbol x form a coded
packet.

It is trivial to represent the coding vector in a very
compact way. Each coding vector can be represented
by an index and w scalars. The necessary bits for their

p s1 s2 . . . sw

representation is given by Equation (2). The index can
take g values and each of each of the w elements can
take q values.

|g| = log2(g) + w · log2(q) [bits] (2)

Coding vectors can be generated in slightly different
ways depending on how ρ is drawn and the size of
w, see Table 2. The systematic mode does not produce
coding vectors of the specified form, but we include it
for completeness.

TABLE 2: Different encoding modes.

Mode ρ drawn w

Random random ∈ [0, g) 0 < w < g
Sequential sequentially looping from 0 to g-1 0 < w < g
Systematic sequentially from 0 to g-1, subsequently

drawn at random ∈ [0, g)
w = 0
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3.2 Decoding

A node that receives coded packets can decode the
original data, by collecting the coded symbols in X̂ and
the coding vectors in Ĝ. The original information M can
be found as in Equation (3), provided that Ĝ is invertible
and thus have full rank.

M = X̂ · Ĝ−1
(3)

To decode the original data in M̂ , Ĝ must be brought
onto identity form by performing basic row operations
that is simultaneously performed on M̂ . When it is not
possible to decode a symbol fully upon reception, it
is partially decoded, referred to as on-the-fly decoding,
and stored for later processing. When enough symbols
have been received so that Ĝ has full rank, all received
symbols can be fully decoded and the original data
retrieved, we refer to this as final decoding.

Unlike RLNC and Sparse Random Linear Network
Coding (SRLNC), for this perpetual approach the lo-
cation of the non-zero values are well defined in the
coding vector. This makes it possible to decode symbols
efficiently and without the problematic fill-in that can be
observed during decoding and recoding SRLNC [21].

3.2.1 On-the-fly Decoding

When a new coded packet arrives its coding vector is
inserted into the decoding matrix iff. it has a pivot can-
didate that was not previously identified. We distinguish
between pivot and pivot candidate as the element that
is used as the pivot is sometimes first found during
the final decoding. Otherwise the previously received
symbol with the same pivot candidate is subtracted from
the new symbol, and the pivot candidate of the new
symbol is changed. This is repeated until a new pivot
candidate is identified. If the symbols coding vector is
reduced to the zero vector the symbol is discarded.

In Fig. 3, three coded packets have been received and
their coding vectors inserted into the decoding matrix,
the received packets have pivot candidate zero, one, and
seven respectively. Subsequently a coded packet with
pivot candidate zero is received. This is denoted with
a filled circle and arrow pointing to the coding vector of
the packet in the left hand side matrix. A symbol with
the same pivot candidate have already been identified.
Therefore the existing row zero is subtracted from the
incoming packet. This is denoted with the arrow point-
ing left into the left hand side matrix. The element that
initially was the pivot candidate is now zero and an
element to the right has now become the pivot candidate.
This step is repeated for the new pivot candidate and
thus row one is subtracted from the incoming packet
and element two becomes the pivot candidate. As this
pivot candidate was previously not identified the coding
vector is inserted into the decoding matrix, which is
marked with orange and the arrow pointing right into
the decoding matrix.

A special case is when the on-the-fly phase causes
the pivot candidate to wrap around to the start of the
coding vector. If the last element in the coding vector is
reduced to the zero vector, the first element in the vector
is considered next and becomes the pivot candidate. An
example of this is illustrated in Fig. 4. The incoming
packet has pivot candidate seven for which a pivot
candidate have already been identified in Ĝ. Thus row
seven in Ĝ is subtracted from the incoming packet. The
resulting coding vector has a zero at index seven and
thus the pivot candidate is now index zero. The packet
is then further reduced similarly to the example in Fig. 3.

Algorithm 2: forwardSubstitute
Input: g, x

1 while g 6= 0 do
2 ρ← gp

3 if Gρ 6= 0 then
4 g ← g ⊕Gρ ⊲ Substitute into the new packet
5 x← x⊕Xρ

6 else
7 Gρ ← g ⊲ Insert the new packet
8 Xρ ← x
9 return ρ

10 return −1

In Algorithm 2 unless the received coding vector
has been reduced to the zero vector, the existing row
with the same pivot candidate is substituted into the
received symbol. If a previously not seen pivot candidate
is identified the coding vector and symbol is inserted
into the respective matrices. Importantly this algorithm
guarantees that w is not increased during decoding.

The coding vector can be reduced to the zero vector if
it is a linear combination of previously received coding
vectors. It is also possible to end in a dead-lock where
a sequence of rows is repeatedly subtracted from the
new packet. To avoid this the decoding should be ter-
minated after some attempts and the packet discarded.
We have determined empirically that decoding should
be terminated after 2g or 3g iterations. To avoid wasting
operations on such cases, row operations can first be
performed on the coding vector and then repeated on the
coded symbol [21]. We note that the resulting overhead
in both cases are due to the same reason, namely that
the symbol is a linear combination of already received
symbols.

A simple optimization in cases where the w of the
incoming packet is lower than the w of the held symbol
with the same pivot candidate, is to simply swap these
two to guarantee that w is never increased. Our current
implementation does not support this and we leave it to
future work to test whether this increases the decoding
throughput. However, some of our previous experiments
showed that such optimizations often comes with a high
cost in terms of bookkeeping [21].
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1 γ0,1 γ0,2 γ0,3

1 γ1,2 γ1,3 γ1,4

1γ7,0 γ7,1 γ7,2

1 γ̂1 γ̂2 γ̂3

γ̂1 γ̂2 γ̂3

γ̂2 γ̂3 γ̂4 1 γ2,3 γ2,4

0

0

Fig. 3: On-the-fly decoding of a received coded packet. The right hand side matrix is the decoding matrix Ĝ. The
left hand side matrix show the coding vector of the incoming symbol as it is decoded. The γ’s denotes random field
elements. The filled circle and arrow indicate the original coding vector of the incoming packet. The straight arrows
indicate what rows are substituted into the coding vector. The arching arrows indicate the step of the decoding.

1 γ0,1 γ0,2 γ0,3

1 γ1,2 γ1,3 γ1,4

1 γ2,3 γ2,4

1γ7,0 γ7,1 γ7,2γ̂0 γ̂1 γ̂2 1

γ̂0 γ̂1 γ̂2

γ̂1 γ̂2 γ̂3

γ̂2 γ̂3 γ̂4

γ̂3 γ̂4 1 γ3,4

0

0

0

0

Fig. 4: On-the-fly decoding similar to Fig. 3, but the pivot candidate wraps around the end of the decoding matrix.

3.2.2 Final Decoding

When a pivot candidate has been identified for all rows,
final decoding is performed by forward substitution and
backwards substitution. Initially the decoding matrix has
a form similar to that shown in Fig. 5a. But the length of
the vectors in all rows are not necessarily uniform and
in that case the last element will not be monotonically
increasing down through the rows. It should also be
noted that even though a pivot candidate has been
identified for all rows this does not guarantee that the
decoding matrix has full rank. Therefore it is important
to perform the final decoding in a way that ensures that
the decoding matrix is not left in a state where future
decoding becomes impossible or problematic.

To bring the matrix onto echelon form forward sub-
stitution is performed on the non-zero elements in the
lower left corner of Fig. 5a. When forward substitution
is performed on the first column, non-zero elements
can be introduced in the lower w rows and further
substitution becomes necessary, illustrated on Fig. 5b.
After the forward substitution step the decoding matrix
is brought onto echelon form in Fig. 5c.

The final forward step can be implemented in several
ways. The approach in Algorithm 3 ensure that the
decoding matrix is always left in a valid state also if
partial final decoding occur. This happens in cases where
it turns out that the decoding matrix does not have full
rank, even though a pivot candidate for each row was
identified.

In Algorithm 3 for each column (i) a pivot element
must be defined, if no such pivot element can be found
it means that none of the received symbols can be used
to decode the corresponding row, and we need to receive
additional symbols. Therefore we traverse all the rows
(j) from the diagonal and down, as we know that for all
rows above a pivot index have already been identified.
When we find a row for which the pivot we are looking
for is non-zero we swap it to the correct row, if it not
already located correctly. We then forward substitute into
the below rows. If we iterate to the last row without
identifying a pivot element we cannot decode the row
we are looking for, and we discard the symbol that
incorrectly is located on row i. However, we do not
want to discard useful symbols, therefore we check if the
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(a) Initial
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(b) During final forward substitution

1

1

1

1

1

1

1

1

γ0,1 γ0,2 γ0,3
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γ2,3 γ2,4 γ2,5

γ3,4 γ3,5 γ3,6

γ4,5 γ4,6 γ4,7

γ5,6 γ5,7

γ6,7

(c) After final forward substitution

Fig. 5: The decoding matrix Ĝ at various states of the final decoding. The dotted part of the arrows indicate rows
where no substitution is needed. The arching arrows show how the pivot candidate moves towards the diagonal.

Algorithm 3: finalForward

1 for i ∈ [0, . . . , g) do
2 for j ∈ [i, . . . , g) do
3 if Gj,i 6= 0 then
4 if i 6= j then
5 Gi ↔ Gj

6 X i ↔Xj

7 for k ∈ [max(j + 1, g − w), g) do
8 if Gk,i 6= 0 then
9 Gk ← Gk ⊕Gi

10 Xk ←Xk ⊕Xi

11 break ⊲ Found a pivot, skip to the next

12 else
13 if j = (g − 1) then
14 if i 6= (g − 1) then
15 if Gi 6= Gi+1 then
16 Gi+1 ← Gi+1 ⊕Gi

17 Xi+1 ←Xi+1 ⊕Xi

18 Gi ← 0
19 X i ← 0

coding vector for row i is equal to the row below, if not
we simply add it to the row below. If the two symbols
were identical the result would be the 0 vector and we
would discard two rows instead of one. Finally if we are
looking for the pivot element for the final column, there
are no rows below our target row, and we simply discard
without checking. In this way the decoding matrix will
always be brought as close to echelon form as possible.

After the forward substitution, and when the rank
of the matrix is full, standard backward substitution
is performed to bring the decoding matrix to reduced
echelon form and decode the original data.

Algorithm 4: finalBackward

1 for i ∈ (g, . . . , 0] do
2 for j ∈ (i, . . . , max(i− w, 0)] do
3 if Gj,i 6= 0 then
4 Gj ← Gj ⊕Gi

5 Xj ← Xj ⊕Xi

All rows from the bottom and up is used to remove
any remaining non-zeros in the rows above. Note that
for each index it is only necessary to inspect the above
w rows, as all other rows are guaranteed to be zero due
to the form of the decoding matrix. Algorithms 2-4 can
be combined to create the decoder in Algorithm 5.

Algorithm 5: decode
Input: g, x

1 ρ← forwardSubstitute(g, x)
2 if ρ 6= −1 then
3 Gρ ← g
4 Xρ ← x

5 if rank(G) = g then
6 finalForward()

7 if Grank = g then
8 finalBackward()

9 return rank(G)

When a new packet arrives it is first forward substi-
tuted. If a new pivot element is identified the coding
vector and coded symbol is inserted into the decoding
matrix. When the rank of the decoding matrix is full
final decoding is attempted using forward substitution.
This might initially fail, however when it succeeds final
backwards substitution is performed and the original
data in the generation is decoded.
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3.2.3 Partial backwards substitution
To decrease the final decoding work and thus the final
decoding delay we can modify the decoding process. The
overall goal is to perform some backward substitutions,
but without causing fill-in. We define the backside as the
last non-zero element after the pivot candidate, note that
if p ≥ g − w then the backside index can be lower than
the pivot index. Here we consider an approach where
the backside is moved towards the pivot candidate and
the non-zero part of the vector is decreased.

Consider Fig. 3, we see that after the new coding
vector have been inserted, two rows have the same
backside, row one and two. Thus if we substitute row
two from row one the current backside element of row
one will become a zero. Note that it may be necessary
to multiply row two with a scalar to insure that the
backside of the two rows have the same value. As the
pivot element of row two is smaller than that of row
one it is guaranteed that the pivot element of row one
will not be altered. By using this insight we can perform
a partial backward substitution as illustrated in Fig. 6.
When the first partial backward substitution have been
performed, the backside of row one is decreased, and
now be the same as that of row one. Hence we can
continue by subtracting row one from row zero, and so
on.

1 γ0,1 γ0,2

1 γ1,2 γ1,3

1γ2,3 γ2,4

1 γ3,4 γ3,5

0

0

0

Fig. 6: Partial backward substitution after partial forward
substitution of a received packet. The zeros indicate the
reduced elements.

In Fig. 6 row two is substituted into row one and thus
the former backside element of row one becomes zero.
Then row one is substituted into row zero to reduce
the backside of row zero. Now the top of the decoding
matrix have been reached and therefore row zero is
substituted into row seven. The width of the non-zero
diagonal in the decoding vector has been decreased as
indicated by the introduced zero’s.

Algorihtm 6 provide a way to implements this, based
on maintaining a list of the row that have a given back-
side. If two rows have the same backside, one should be
subtract from the other and they would no longer have
the same backside.

Algorithm 6: reduceBack
Input: g, x, ρ

1 while 1 do
2 β ← gb ⊲ The target backside
3 ̺← bβ ⊲ Existing row with target backside
4 if ̺ = ρ then
5 return ⊲ If itself stop

6 if ̺ = −1 then
7 bβ ← ρ ⊲ A unique backside was identified
8 return

9 else
10 if (β − ρ mod g) < (β − ̺ mod g) then
11 G̺ ← G̺ ⊕ g
12 X̺ ←X̺ ⊕ x
13 bβ ← ρ
14 ρ← ̺ ⊲ New target row identified
15 g ← G̺

16 x←X̺

17 else
18 g ← g ⊕G̺

19 x← x⊕X̺

Whenever a row is inserted into the decoding matrix
we check if there existing a row with the same backside.
If not we are done otherwise we substitute the row with
the lowest pivot into the row with the highest pivot. The
row we substitute into will now have a new backside
and we continue the process with this row. In line ten
we test to see if the new row is shorter than the row
that is currently in the backside list. If this is the case
we subtract the new row from the old row, insert the
new row into the backside list, and continue to reduce
the old row, otherwise we subtract the old row from the
new row.

Finally we can define an alternative decoder that
utilizes the partial backward substitution approach.

Algorithm 7: decode with partial backwards substitution
Input: g, x

1 ρ← forwardSubstitute(g, x)
2 if ρ 6= −1 then
3 reduceBack(g, x, ρ)
4 Gρ ← g
5 Xρ ← x

6 if rank(G) = g then
7 finalForward()

8 if rank(G) = g then
9 finalBackward()

10 return rank(G)

Another partial backward substitution approach
would be to backwards substitute with a row once it
becomes fully decoded.
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3.3 Recoding
When two or more coded or non-coded symbols have
been received they can be combined by recoding. This
can be described by Equation (4) and (5), where the col-
lected coding vectors and coded symbols are combined
as defined by h of length g′, where g′ is the number of
received symbols. Then x̃ and g̃ together form a recoded
packet.

g̃ = Ĝ · h (4)

x̃ = X̂ · h (5)

In classical RLNC coded packets are accumulated and
recoding is performed as a separate operation which
result in a significant computational load, we denote this
type of recoding active recoding. As explained in [6] this
form of recoding is not suitable when the code is sparse,
because the recoded symbol will be more dense with
high probability [5], [21]. To combat this problems we
introduce a new type of recoding and denote it passive
recoding.

3.3.1 Active Recoding
Combining all collected packets completely at random,
as in standard RLNC, result in recoded packets where
the non-zero elements are no longer confined to w
elements. If we instead we can pick packets that have
similar pivot elements the resulting coded packet will
in the worst case only have slightly more non-zero
elements w′ than that of the original coding vectors.
This decreases the freedom in recoding but allow us to
maintain the sparsity in recoded packets. Unfortunately
such an approach significantly increases the complexity
of recoding as it introduces a search for an appropri-
ate sets. Additionally it is more deterministic than the
standard recoding approach and thus great care must
be taken to avoid generating more linearly dependent
symbols.

3.3.2 Passive Recoding
When on-the-fly decoding is performed, previously re-
ceived symbols are subtracted from an incoming symbol,
to partially decode it. This combining of packets can also
be considered as recoding and therefore the operations
can be reused in order to reduce the computational load
of recoding.

If the operations performed on the received sym-
bols are tracked, a symbol where a sufficient number
of operations have been performed can be used as a
recoded symbol. One way is to keep a list for each
received symbol, in which it is recorded what symbols
are substituted into the symbol. However, if g is high this
could become unfeasible. It is simpler to hold an integer
for each symbol that is used to count the number of other
symbols that have been substituted into the symbol. It is
important to remember that during decoding we attempt
to decode the symbols, therefore symbols that have been
reduced too much should not be used as recoded symbols

directly. We note that this passive approach can also be
used for other codes.

3.3.3 Active plus Passive Recoding
To combine the two types of recoding we can monitor
the passive recoding. If some neighboring set of packets
combined meet our criteria for row operations, we can
combine these by actively recoding them and thus obtain
a recoded symbol. With this hybrid approach we can
recode symbols whenever we need them and still reduce
the computation work associated with recoding.

3.3.4 Re-encoding
When a receiver has decoded a generation it can encode
packets the same way as the original source. This is
sometimes referred to as recoding, which we believe
is misleading, and instead denote this re-encoding to
distinguish this from encoding at the original source.

3.3.5 Implementation
In our implementation we have chosen to implement
a simple version of the active plus passive recoding. The
primary reasons is to reuse the operations performed
during decoding, and at the same time allow recoding
to be performed when and as much as desired. Another
important consideration is to avoid introducing a deter-
ministic behaivor when recoding.

Algorithm 8: recode

Input: Ĝ, X̂
1 if rank(Ĝ) = 0 then
2 return −1 ⊲ no data available

3 ρ← (? mod g)

4 while Ĝρ,ρ = 0 do
5 ρ← (? mod g)

6 hp ← 1
7 for i ∈ (ρ, ρ + w] do
8 if Ĝi,i 6= 0 then
9 h(i mod g) ← (? mod q)

10 g̃ ← Ĝ · h
11 x̃← X̂ · h
12 return g, x

First row indices are drawn at random until a row that
is non-zero is identified. Then for each of the following w
rows that are non-zero, a random index is drawn which
defines the recoding vector h. The remaining indices in h
are zeros. The new coding vector and coded symbol are
then computed as g̃ = Ĝ ·h and x̃ = X̂ ·h, respectively.

This approach ensure that the width of the recoded
vector w′ < 2w. However, it is worth observing that if
a symbol with a higher w is received, the size of w can
be reduced during the forward substitution. This would
happen more frequently if the width of the received and
existing row is compared as mentioned in Section 3.2.
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4 ANALYSIS AND EXPERIMENTS

In this section we present analytic and experimental
results on the code overhead, complexity and through-
put. To verify the analytically expressions we have im-
plemented the proposed code in C++ [30]. This also
provide us with the possibility to report on encoding
and decoding throughput with is a more interesting
parameter as it defines the computational load at the
coding nodes. The current implementation is well tested
and we believe it provide a good trade-off between sim-
plicity and throughput. As the code is available under a
research friendly license, we encourage suggestions that
can improve the throughput or simplify the implemen-
tation.

4.1 Overhead

The code overhead depends on the field size, density,
generation size and possibly other factors. From stan-
dard RLNC we have a lower bound for the code over-
head as defined in Equation (7), see [6]. The same lower
bound holds here, as the lowest overhead is obtained
when w = g − 1, in which case the perpetual code
becomes identical to RLNC.

Equation (6) evaluate the expected overhead based on
the probability that the rank is increased at the receiver
when a new coded symbol is received. This is a function
of the generation size, g, the field size q, and the rank at
the receiver, g′. For each of the indices where the decoder
have already identified a pivot element, the index in
the incoming packet is reduced to zero by the decoder.
Hence the remaining g − g′ can in the best case be
considered as elements drawn at random from Fq. Hence
the probability that these are all zero and the packet
is linearly dependent is 1/qg−g′

. The mean overhead is
then calculated as the sum of the expected amount of
overhead for the decoding of each packet, for all possible
ranks of the decoder. Note that the overhead is primarily
due to the last packets, and that it become negligible for
high values of q.

α ≥
g−1∑

g′=0

((
1− 1

qg−g′

)−1

− 1

)
(6)

=

g−1∑

g′=0

(
1

qg−g′ − 1

)
(7)

Each coded perpetual symbol is a combination of w+1
symbols, and there are g pivots they can cover. Each
pivot is not already covered with probability 1− r

g , where
r is the rank. The expected probability that a symbol
covers a not already seen pivot is calculated by summing
over all possible ranks, and divide by the number of
possible ranks. From this the probability that a symbol
is covered when x coded symbols have been received
can be found by the probability that all x coded symbols
do not cover the symbol. In the worst case decoding is
possible when all g pivots are covered.

FX(x) ≥
(

1−
(

1− 1

g

g−1∑

r=0

(1 + w) · g ·
(

1− r

g

))x)g

(8)

=

(
1−

(
1− 1 + w

g
∑g

r′=1
1
r′

)x)g

(9)

The resulting cdf can then be used to calculate an
upper bound for the code overhead by evaluating the
corresponding survival function (sf), which defines the
probability that all symbols are not covered after x trans-
mission and thus additional transmissions are necessary.

β ≤
∞∑

x=g

SX(x) =

∞∑

x=g

1− FX(x) (10)

α ≤ O ≤ α + β (11)

In Fig. 7 the overhead for different generation sizes is
plotted as a function of the width. The width of the used
code is shown on the x-axis. On the y-axis is the resulting
overhead given in percent. The dotted lines denote the
upper and lower bounds respectively.
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Fig. 7: Code overhead in percent as a function of g and
w. The dotted lines denote the analytically lower and
upper bounds respectively.

For each generation size the overhead decreases as the
width increases, until the width is sufficiently high and
the overhead becomes indistinguishable from the lower
bound. If the width is decreased below what is sufficient
the overhead increases significantly. Therefore values of
w below this point should generally not be used. The
bounds are loose for low values of w but becomes tighter
as w increases. Thus the provided bounds are useful for
identifying a value of w that is sufficiently high.

We note that these result does not follow the overhead
as a function of the density defined in [6], which is simi-
lar to the width for this code. This is not surprising as the
code treated here is significantly less random compared
to the sparse RLNC considered in the reference.
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4.2 Complexity

We express the computational complexity in the
compound metric row multiplication-addition, where a
multiplication-addition is multiplying a row with a
scalar and adding or subtracting it to or from another
row. Here we only consider the binary field therefore
the multiplication scalar is always one, and a row
multiplication-addition is simply adding or subtracting
a row to or from another row.

To encode a single packet, the expected number of row
operations is given by Equation (12). We start with an
empty vector and first add the chosen pivot row to it. For
each of the following w rows that row is multiplied with
a random element from Fq and added to the new row.
The probability that a randomly drawn element from Fq

with size q is non-zero is 1− 1
q .

1 + w · (1− 1

q
) (12)

During on-the-fly decoding, forward substitution is
performed on the incoming symbol until a new pivot
candidate is identified, or the symbol is reduced to the
0 vector. The forward substitution continues until the
next element in the coding vector is non-zero, with
probability 1 − 1

q and has not already been identified
as a pivot, with probability 1− r

g where r is the current
rank of the decoding matrix. Hence the expected number
of indices that must be inspected and hence the number
of row operations necessary is found by summing the
inverse of this probability and divide with g to find the
expected number of operations per packet.

δfly ≤
1

g

g−1∑

r=0

((
1− 1

q

)(
1− r

g

))−1

(13)

=
q

q − 1
· 1
g

g−1∑

r=0

g

g − r
(14)

=
q

q − 1

g∑

r′=1

1

r′ (15)

For the upper bound for the final decoding we consider
the worst case, where most scalars are non-zero, see
Fig. 5a. The final forward stage on Fig. 5b can be
considered in two steps. First the bottom w rows are
reduced, so only the last w elements are non-zero, by
substituting the top g−w into them, hence Equation (16).
Then the bottom w rows are brought onto echelon form.
The (g −w)’th row is substituted into the below (w− 1)
rows, the (g−w+1)’th row is substituted into the below
(w− 2) rows and so on, hence Equation (18). To include
the probability that an element in Fq is equal to zero,
we multiply with

(
1− 1

q

)
and divide by g to find the

operations per packet, which is rewritten as
(

q−1
q·g

)
.

δforward1 ≤
(

q − 1

q · g

)
· (g − w) · w (16)

δforward2 ≤
(

q − 1

q · g

)
·

w−1∑

i=1

i (17)

=

(
q − 1

q · g

)
· w · (w − 1)

2
(18)

To finalize the decoding a similar procedure is per-
formed, but this time upwards. Each of the g−w bottom
rows are substituted into the w rows directly above
them. Thus the number of operations is exactly the
same as in Equation (16) and Equation (18) and we
obtain Equation (20).

δ ≤ δfly + 2δforward1 + 2δforward2 (19)

=
q

q − 1

g∑

r′=1

1

r′ +

(
q − 1

q · g

)
(w · (2g − w − 1)) (20)

In Fig. 8 the calculated and measured number of
row multiplication-additions performed to decode one
generation, both during the on-the-fly and final decoding
phase, is plotted for different values of g and w. The
generation size and width is noted on the x-axis, and the
number of row operations per decoded packet on the y-
axis. The operations during the two phases are stacked
to show the total number of row operations.
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Fig. 8: Mean row operations per decoded symbol.

Both the analytically expression for the on-the-fly and
final provide good bounds for the measured results,
especially when w is sufficiently high. For low values
of w the bound is less tight, but such settings should
not be used when the code overhead is considered.

These values can be compared with traditional RLNC
where the expected operations to decode a packet is
approximately g/2 for the binary case [21]. Thus the
reduction in complexity compared to RLNC grows as
g grows.
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4.3 Throughput

A low complexity does not guarantee a low compu-
tational load and therefore we investigate the coding
throughput. Some reasons are the complexity intro-
duced by the algorithms that determine how decoding
is performed, the quality of their implementation and
the bookkeeping they add. Other reasons are architec-
ture specific such as cache misses, memory delay and
throughput, which additionally can be influenced by the
memory access pattern.

For each setting first data was encode, and subse-
quently decoded on the same machine. Each setting was
run at a minimum of 60 s to reduce the deviation.

TABLE 3: Specifications of the test machine.

Model Dell Opiplex 790 DT

CPU Intel Core i7-2600 @ 3.40GHz, 8192 KB L2 cache
Memory 16GB DDR3 1333 MHz Dual channel
Chipset Intel Q65 Express
OS 64bit Debian Wheezy
Compiler GNU G++ 4.6

To provide a comparison we have performed bench-
marks of our RLNC implementation using the same
values of g as for the perpetual code. The encoding
and decoding throughput’s are listed in Table 4 along
with the corresponding gains over comparable RLNC in
percent.

TABLE 4: Measured encoding and decoding throughput
for RLNC and the proposed perpetual code. Through-
puts are reported for different generation sizes, g, and
in the case of the perpetual code at different widths, w.
The lowest tested value of w where the perpetual code
provides a similar code overhead as RLNC is marked.

g w
Overhead Encoding Gain Decoding Gain
[packets] [MB/s] [%] [MB/s] [%]

6 8.34 2883.91 156 2879.99 147
8 4.20 2512.14 123 2034.45 74

32 12 1.85 1915.58 70 1359.66 16
16 1.52 1506.90 34 1214.37 4
24 1.62 1080.19 -4 881.03 -25

RLNC 1.61 1126.16 - 1167.67 -

12 17.07 1612.36 441 1209.09 326
16 6.06 1309.09 339 951.04 235

128 24 1.77 951.04 219 620.30 119
32 1.61 742.68 149 526.43 86
48 1.64 520.06 74 360.34 27

RLNC 1.61 298.28 - 283.69 -

24 24.54 747.29 921 490.50 655
32 7.03 612.69 737 392.39 504

512 48 1.64 449.39 514 273.00 320
64 1.65 354.48 384 228.40 251
96 1.56 249.25 241 167.27 157

RLNC 1.61 73.17 - 64.99 -

48 36.43 314.79 1656 203.11 1321
64 9.02 263.36 1369 167.82 1074

2048 96 1.78 198.93 1010 129.93 809
128 1.66 160.38 795 99.90 599
192 1.72 115.00 541 66.81 368

RLNC 1.61 17.93 - 14.29 -

As expected the throughput for both encoding and de-
coding decreases as g and w increases. The gain increases
for higher values of g which corresponds with the an-
alytically results. To ease the comparison with standard
RLNC the throughputs for the proposed approach where
the code overhead is similar to RLNC is marked. The
highest gain in encoding and decoding throughput is
observed at the highest tested generation size of 2048,
and approximately eleven and nine times that of RLNC
respectively.

To make a fair comparison with RLNC we must con-
sider both the overhead and the complexity / through-
put simultaneously, as the performance of the perpetual
code is a trade-off between overhead and speed. As the
lower bounds are the same as for RLNC we can never
hope to achieve a lower code overhead. However, we can
achieve a similar overhead but at lower computational
complexity.

The values of marked values in Table 4 corresponds
to the lowest tested w where the code overhead of
RLNC and the perpetual code are similar, see Fig. 7. The
increase in throughput over the RLNC is significant in
particular for higher values of g. It should also be noted
that using an excessive high w should be avoided as
it decrease the throughput without reducing the code
overhead. Additionally a higher w increases the size of
the coding vector representation, see Equation (2), which
adds to the overall overhead.

For low values of g the increase in throughput is small,
and in a single case negative. This is a consequence of
the slightly more complicated algorithms compared to
the ones used in the standard RLNC implementation.
Additionally as g decreases w approaches g if we wish
to maintain a similar code overhead as RLNC. Thus the
perpetual approach is most useful for values of g that
are not very small, as in such cases it can deliver a sim-
ilar code overhead as RLNC at significantly decreased
coding complexity.

Ideally all decoding should be performed on-the-fly as
this decreases the final decoding delay and distribute
the processing load evenly. At the same time decoding
should be performed in such a way that fill-in does
not occur, as this reduces the amount of work neces-
sary to decode [5]. In our presented results the ratio
of operations performed in the on-the-fly phase is low,
see Fig. 8. Fortunately the structure of the code make it
possible to perform something that can best be described
as opportunistic backwards substitution. Our tests with
this approach show that most of the decoding operations
can be performed when symbols are received. However,
this algorithm proved to be more difficult to analyze and
due to space constraint we have omitted it.

We note that the implementation does not take advan-
tage of multiple cores. This could however be exploited
by encoding multiple streams simultaneously or encod-
ing simultaneously from different blocks of the same
data.
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5 DISCUSSION

In this section we discuss some of the choices made in
this work, and provide some insights and observations.
By collecting these here we hope to provide a story that
is more easy to follow in the rest of this paper.

When the performance of the presented and other
RLNC codes are investigated, a fundamental parameter
is the generation size g. It is important to remember
that the generation size defines the lowest delay that can
be achieved from when the first packet in a generation
is received until the generation is decoded. Therefore
the generation size should be defined before any other
parameter based on application under consideration.
For delay sensitive applications like audio and video
streaming this means that low to medium sizes of g,
e.g. 32-128, should be used, depending on the bitrate
and the size of the payload in each packet. For non-
delay type applications such as standard file downloads
and p2p g should be as high as can be supported to
reduce the code overhead and signaling. However, for
high values of g, e.g. 512-2048, the throughput of existing
RLNC approaches is low.

In this work we have focused a solution that uses the
binary field, q = 2. The reason is that the binary field
allows for simpler and faster implementations compared
to when higher field sizes are used. Additionally higher
field sizes are most applicable at low generation sizes as
the overhead due to the coding vectors can become much
higher than the overhead due to linear dependency.

We have throughout this work compared the proposed
perpetual code with RLNC and SRLNC and not other
rateless FEC codes. The reason is that NC codes allow for
recoding where traditional FEC codes do not, thus they
are less suitable for realizing the cooperative networks
that is our interest. Compared to RLNC and SRLNC the
perpetual code provides the following benefits, depend-
ing on the chosen values of g and w.

1) Faster encoding, recoding, and decoding.
2) Sparsity is retained when recoding.
3) Small coding vector representation.
4) Maintain simple decoding algorithms.
As the code is sparse fast encoding is trivial. Fast

decoding is possible due to the structure of the code,
that make it possible to avoid fill-in during decoding.
Recoding can be performed fast by using the suggested
passive recoding approach, we note that this trick can
also be employed for other NC codes.

The structure and density of the coded packets can
be retained if recoding is performed more carefully than
what has been proposed for the standard RLNC, we have
denoted this active recoding. We note that doing so limits
the degrees of freedom when recoding, but believe that
our proposed passive plus active recoding presents a good
trade off between these two approaches.

As the location of the non-zeros are well defined, it
is trivial to create compact representations of the coding
vectors. We believe that this is important as the com-

monly used assumption of a pseudo random function
can be used to compress the coding vector cannot be
used if recoding is to be supported [6]. Thus the size of
the coding vector must be included in the total overhead.

The presented decoding algorithms are slightly more
complicated than for standard RLNC. However due to
the sparsity and structure of the coded symbols it is
possible to eliminate many of the inspections that are
necessary when inverting the coding matrix.

Our current implementation is an extension to our
existing implementation work on RLNC. Therefore we
have chosen to use a matrix representation of the de-
coding matrix and keep the local representation of the
coding vectors in their full vector form. This is a simple
approach that allow for very fast additions of coding
vectors using paralleled instructions. The drawbacks
are that coding vectors must be convert between their
compact and full representation when coded packets are
sent and received. Additionally a large number of zero
elements are added which could become a dominating
factor for the throughput for very high values of g. Al-
ternatively the coding vectors could be in their compact
form locally. However, in this case it would become
necessary to perform bit shifts in order to align vectors,
so that the additions of vectors can be performed using
paralleled instructions.

We have only consider the random encoding mode,
meaning that the pivot element is always drawn at
random and independently of the previous pivots, see
Table 2. This corresponds to the worst-case, where the
channel is extremely lossy and thus systematic ap-
proaches are of no benefit. In cases where the erasure
probability is low or moderate, a systematic or sequential
mode could be used which would decrease the code
overhead and in particular the decoding complexity.

The approach presented here is similar to what is
called a smooth perpetual code in [25], but with two signif-
icant differences, we do not use zero padding nor a pre-
code. Because we do not zero pad, the overhead of the
code is reduced as all original symbols are represented
with equal probability. However, it also complicates the
final decoding step. By not using a precode the code
becomes simpler to analyze and implement, but it also
increases the overhead of the code. As our interest is
towards practical implementation we believe that our
choice is sound and that it generally makes sense to
first consider the simplest case and add complexity later.
Especially as we are interested in very computational
constrained platforms where it might not be possible to
use the more complex features.

Finally we note that perpetual codes are not a substitu-
tion but a supplement to RLNC. Specifically we believe
that RLNC is a good choice for low generation sizes,
but perpetual codes are more suitable at medium sized
generations and possible generations sizes similar to
those in fountain codes.
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6 CONCLUSION

In this paper we presented our initial findings on per-
petual codes which is suitable for RLNC. We described
how encoding, decoding, and recoding can be performed
and formalized it as implementation near algorithms.
We provided initial analysis of the code performance
in terms of overhead and complexity. The analysis was
compared with measurements obtained from our C++
implementation, from which we also obtained coding
throughput measurements.

The analysis and tests showed that the proposed ap-
proach can obtain a coding overhead similar to RLNC
but at a much lower computational cost. For all tested
settings resulting in a code overhead similar to that of
RLNC the proposed approach led to improved encod-
ing and decoding throughput. For the highest tested
generation size of 2048 the decoding throughput was
almost one order of magnitude higher than that of
RLNC. Additionally the approach provides an easily
adjustable parameter that allow the trade-off between
coding complexity and code overhead to be tweaked to
the used platform and application.

For the future more rigorous analysis of the code
overhead is necessary, especially for the case where low
values of w is used. Such analysis would be useful
when more advanced variants of the perpetual code is
studied. For our implementation we plan to perform
tests using higher field sizes, implement and evaluate the
partial backward substitution, and perform benchmarks
on mobile platforms such as mobile phones. This could
help to improve the understanding of how to choose
good parameters, and demonstrate the proposed solu-
tions validity on devices in one of the fastest growing
categories, mobile phones and tablets.
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