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ENGLISH SUMMARY 

The objective of this thesis was to facilitate an integrated building design process 

applicable to office buildings in Nordic climate with respect to thermal comfort, 

daylighting and energy use. The thesis is divided into three main parts. 

Part I contains a literature review carried out to investigate if the present thermal 

comfort and daylight design practices constitute any obstacle for conducting an 

integrated design. Based on findings in the literature it was suggested that 

modelling of mean radiant temperature (MRT) should be improved by considering 

the location in the room, accounting for both long-wave and short-wave radiation. 

With respect to daylight design it was suggested that static daylight calculations 

should be replaced by dynamic ones and that climate-based measures should be 

used in the evaluation of daylight supply and glare. Examples of measures for 

daylight supply are given in the literature (e.g. UDI and DA). Candidates for glare 

might be horizontal or vertical illuminance. Additionally, it was investigated how 

solar shading control should be modelled, since the fenestration system and its 

control is a crucial link between the thermal and daylighting performance. It was 

suggested that shading control strategies preferably should be multivariable and 

incorporate variables related to interior conditions. It was proposed that the tilt 

angle should be considered as a control variable for shading with blinds. 

Furthermore, it was found that more knowledge is needed regarding user 

acceptance of automatic solar shading controls.  

Part II describes verification of improved models of MRT and daylighting 

implemented into the simulation tool IDA ICE, which is one of the steps to make 

the integrated design method practically applicable for building designers. The new 

MRT model takes short-wave radiation hitting the occupant into account. The new 

daylight feature utilises the Radiance engine and the climate-based three-phase 

method, which arranges for daylight calculations to be conducted based on the same 

underlying boundary conditions as used in thermal comfort and energy calculations. 

Further, Part II describes the results from an occupant survey carried out to 

investigate occupants preferences with respect to use of automatically controlled 

venetian blinds and their sensation of glare in an office work environment. The 

results from the occupant survey indicated that views to the outside were an 

important factor for the occupants and it confirmed that the tilt angle should be 

incorporated as a control variable in the shading strategy. The results further 

indicated that there was a statistically significant correlation between both vertical 

eye illuminance and horizontal illuminance at the desk and the occupants’ 

perception of glare. Based on this study, threshold of 1700 lux vertical eye 

illuminance at the occupant position and 1900-2100 lux horizontal at the desk was 

found to be reasonable for avoiding excess glare perceptions in perimeter zones.  
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Part II is ended with a proposal for a solar shading strategy suitable for office 

buildings in cold climates. The proposed strategy is based on a modified version of 

a control algorithm developed within the Norwegian R&D project “Glazed facades 

keeping what we promise”. The strategy is improved with findings from the 

literature and results from the occupant survey by utilising tilt angle as a control 

variable as well as applying vertical illuminance of 1700 lux as activation criterion. 

Full-scale measurements during both winter and summer conditions along with 

annual simulations verified high energy, thermal comfort and visual performance; 

resulting in better performance than with the use of a conventional strategy where 

the shading is activated according to external irradiance with closed slats in 

activated position.  

Part III comprises an overall conclusion and suggestions for future work. It is 

indicated that the proposed integrated design might have implications on the 

traditional area of responsibility among design disciplines within a building design.  
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DANSK RESUME 

Formålet med denne afhandling var at tilrættelegge for en integreret designmetode 

med hensyn til termisk komfort, dagslys og energibrug, egnet for anvendelse i 

design af kontorbygninger i nordisk klima. Afhandlingen er delt ind i tre hoveddele.  

Del I omfatter et litteraturstudie gennemføret med det formål at undersøge, om 

nuværende praksis for termisk komfort og dagslysdesign indeholder forhindringer i 

forhold til at udføre integreret design. Baseret på fund i litteraturen er der foreslået, 

at middelstrålingstemperaturen (MRT) bør modelleres som funktion af placering i 

rummet med hensyntagen til effekten af både lang- og kortbølget stråling. Med 

hensyn til dagslysdesign er der foreslået, at statiske dagslysberegninger bør erstattes 

med dynamiske for at dagslysberegninger kan gennemføres baseret på de samme 

rammebetingelser som benyttes i energi og termisk komfort beregninger. Der 

konkluderes med at klimabaserede mål bør bruges i evaluering af både 

dagslystilgang og blænding. Litteraturen indeholder forslag til mål for 

dagslystilgang (f.eks. UDI og DA), mens kandidater for blænding f.eks. kan være 

horisontal eller vertikal illuminans. I tillæg er det undersøgt, hvordan kontrol af 

solafskærmning bør modelleres i bygningsdesign, siden vinduer og deres kontrol er 

et vigtigt link mellem ydelsen på termisk komfort og dagslys. Det er indikeret, at 

kontrolstrategier for solafskærmning med fordel kan være multivariabel og benytte 

variabler relatert til indendørs forhold. I tillæg er der foreslået at  lamelvinkelen bør 

implementeres som styringsvariabel, når persienner anvendes. Der påpeges desuden 

et behov for mere kendskab til brugernes accept for anvendelse af automatiserede 

solafskærmingssystemer. 

 

Del II beskriver verifisering og implementering af forbedret MRT- og dagslysmodel 

i simuleringsprogrammet IDA ICE. Disse implementeringer er et tiltag for at gøre 

den integrerede designmetode praktisk brugbar for bygningsdesignere.  Den nye 

MRT-model inkluderer effekten af kortbølget stråling. Den klimabaserede Radiance 

tre-fase metode er implementeret som ny dagslysmodell. Videre beskriver del II en 

brugerundersøgelse, gennemføret for at undersøge brugernes præferencer i forhold 

til anvendelse af automatisk kontrollerede persienner samt deres oplevelse af 

blænding i et kontormiljø. Resultaterne fra brugerundersøgelsen viste, at udsyn er 

en vigtig faktor for brugerne, og bekræftet, at lamelvinklen bør indgå som en 

kontrolvariabel for solskærmingen. Videre viste brugerundersøgelsen, at der var en 

signifikant korrelation mellem både vertikal øjenilluminans og horisontal 

illuminans ved arbejdsbordet og brugernes oplevelse af blænding. Baseret på dette 

studium blev grænseværdier på henholdsvis 1700 lux og 1900-2100 lux fundet som 

fornuftige for at undgå overdrevet blænding i perimeterzonen.  
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Del II ender ud i et forslag til kontrolstrategi for solafskærmning til brug i 

kontorbygninger i nordisk klima. Den foreslåede strategi er baseret på en 

modificeret version af en styringsalgoritme udviklet i det norske F&U projekt 

”Fasader i glass som holder hva vi lover”. Strategien er forbedret med fund fra 

litteraturen og resultater fra brugerundersøgelsen, hvor lamelvinkelen benyttes som 

en styringsvariabel samt vertical øje illuminans med grænseverdi på 1700 lux 

benyttes som lukkekriterie. Fuldskalamålinger under vinter- og sommerforhold 

samt årssimuleringer verifiserede tilfredsstillende ydelse både med tanke på termisk 

og visuel komfort og energibrug, bedre ydelse end ved brug af en konventionel 

strategi med lukkede lameller aktiveret iht. udvendig solirradians.  

Del III opsummerer en overordnet konklusion og foreslår fremtidigt arbejde. Det er 

indikeret, at den foreslåede integrerede designmetode kan have implikationer på 

den traditionelle ansvarsfordeling indenfor bygningsdesign. 
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FOREWORD  

The work presented in this thesis has been carried out from September 2011 to 

March 2016 supervised by Professor Per Heiselberg at Aalborg University and 

Professor II Ida Bryn at Oslo and Akershus University College of Applied Science.  

The aim of the PhD project was to arrange for an integrated building design with 

respect to thermal comfort, daylighting and energy use. The main substance of such 

an integrated design is for predicted thermal comfort, daylight and energy use to be 

based on the same underlying assumptions, as illustrated in Figure I.   

 
Figure I: Process of the proposed integrated design. 

The work is limited mainly to focus on the calculation methods and evaluation 

criteria for thermal comfort and daylighting. Optimization routines for building 

physical properties are not considered; neither are the presence of skylights and 

atriums. The offered integrated design is first and foremost accommodated for 

office buildings in Nordic climate. Still, the proposed calculation methodology is 

assessed to be rather general. Nevertheless, suggested performance indices may not 

be adequate for buildings where the adaptive options and expectations towards the 

environment are significantly different than at a work station.  

The work is carried out from a practical point of view where the question “Is this 

practical applicable in real building design?” has been an important guideline. The 

detail level is accordingly on a fairly superior level and the main interest has been 

to explore the interaction between thermal comfort, daylighting and energy use, –

not the exact physiological human reaction to the thermal and visual environment.  

The thesis is mainly based on a collection of six articles; see the list of publications. 

Parts of the papers are used directly or indirectly in the extended summary. 

References to the articles are given throughout the extended summary and further 

information is found in the appendices. 

I hope you find the reading interesting. Enjoy! 
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NOMENCLATURE 
𝐴𝑒𝑓𝑓  effective radiation area m

2 

𝐴𝑝  projected area m
2
 

𝑑  profile angle of the sun ˚ 

Eh horizontal illuminance at the desk lux 

𝐸𝑣  vertical eye illuminance lux 

𝑓𝑝  projected area factor - 

𝐹𝑆→𝑗  view factor from surface j to S - 

ℎ𝑐  convective heat transfer coefficient W/m
2
K 

ℎ𝑟  radiative heat transfer coefficient W/m
2
K 

𝐼diffuse

𝑗
  diffuse radiation intensity from surface j W/m

2
 

𝐼direct
𝑖   direct radiation intensity of the beam from opening i W/m

2
 

Isun total irradiation from sun W/m
2 

𝐿𝑏  Luminance background cd/m
2
 

𝐿𝑠  luminance source cd/m
2 

𝑠  spacing between the solar blind slats m 

ta air temperature ˚C 

top operative temperature ˚C 

tmr mean radiant temperature ˚C 

𝑇𝑚𝑟𝑡  MRT of an irradiated person K 

𝑇𝑢𝑚𝑟𝑡  hypothetical MRT of an unirradiated person K 

𝑤  width of the solar blind slats m 

𝑞𝑖𝑟  radiant intensity W/m
2
 

 

Greek symbols 

𝛼  solar altitude angle ˚ 

𝛼𝑖𝑟  short-wave absorptance  - 

𝛽𝑐𝑢𝑡−𝑜𝑓𝑓  cut-off angle ˚ 

𝜀𝑝  emittance of the subject  - 

𝜎  Stefan-Boltzmann constant W/m
2
K

4 

Ω𝑠  solid angle subtended by the glare source modified by Guth’s position index sr 

𝜔𝑠   Solid angle subtended by the glare source sr 

𝛾  solar surface azimuth ˚ 

 

Abbreviations 

BCD Borderline between comfort and discomfort DF Daylight factor 

BSDF Bidirectional scattering distribution functions DGI Daylight glare index 

CBDM Climate-based daylight modelling DGP Daylight glare probability 

CBDm Climate-based daylight metrics MC Monte Carlo 

CGI CIE glare index MRT Mean radiant temperature 

CIE Commission Internationale de l’Eclairage PMV Predicted mean vote 

DA Daylight autonomy PPD Predicted percentage dissatisfied 

sDA300/50% Spatial daylight autonomy 300/50% UDI Useful Daylight Illuminance 
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CHAPTER 1. INTRODUCTION 

1.1 BACKGROUND 

Operation of buildings account for approximately 40 % of the total energy use in 

Europe [1]. Therefore, it is evident that the building sector needs special attention 

when considering national and global energy reduction in order to obtain a 

sustainable development. In 2002 the European Union (EU) adopted the Energy 

Performance of Buildings Directive (EPBD) with the purpose of increase the 

energy efficiency of buildings [2]. EU member states are obliged to implement the 

directive in their regulatory requirements. Additionally, Norway has implemented 

EPBD as part of the European Economic Area (EEA) [3]. A revised version of 

EPBD came into force in 2010, EPBD-recast. EPBD-recast require all new 

buildings to be nearly zero-energy buildings after 2020 [4].  

Strict energy requirements, as a consequence of the EPBD, put a significant 

pressure on the building sector to design and construct energy efficient buildings. 

However, it is additionally extremely important to remember that buildings are 

constructed to house occupants, shelter them from the outdoor conditions and give 

them a healthy and comfortable environment. Use of energy is only a consequence 

of fulfilling this task. It is also essential to keep in mind that people spend a major 

part of their time indoor, –up to 90 % [5]. With respect to a working environment, it 

is moreover of interest to notice that research indicates correlations between indoor 

environment quality and occupant productivity [6-16]. Productivity is an important 

factor for most organisations in developed countries, since salaries of office 

workers are much higher than the operational costs of a building [17]. EPBD 

acknowledge the importance of indoor environment and states that it is not possible 

to fulfil the energy performance requirements by reducing the indoor comfort [4].  

The façade is a determining factor for indoor environment and energy use of a 

building. It may, however, be a climatic challenge to design facades, especially in 

relation to daylight and thermal conditions due to the fact that an initiative to 

improve one aspect may worsen another aspect. Figure 1 gives an illustration of 

how daylight, thermal comfort and energy aspects influence each other in a 

complex manner. This indicates the need for an integrated design method in order 

to obtain the optimal balance of low energy use and sufficient thermal and visual 

comfort. It is highly agreed that use of numerical simulations are appropriate within 

such an integrated building design, in order to carry out multiple-view assessments 

and support design decisions in advance of the construction [18-20]. 
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Figure 1: Interaction of daylight, thermal comfort and energy aspects within a building. 

As illustrated in Figure 1, the link between thermal and lighting performance is the 

fenestration system. The optical and thermal properties of the fenestration system 

and its associated control are therefore critical factors within an integrated design 

[20]. During the last two decades there has been a trend towards extensively glazed 

facades, especially for new commercial buildings. It is a common belief that these 

buildings have a very high daylight supply. However, extensive daylight supply has 

its backside, as glare and overheating might be a huge concern. Unfortunately, the 

glare problems are rarely assessed in the building design, which might be a result of 

the lack of an internationally accepted measure to evaluate glare from windows 

and/or solar shadings at the present time [21, 22]. Accordingly, a very common 

scenario in highly glazed buildings is seeing blinds down and lights on [23, 24].  

Thermal properties of glazed facades are relatively poor compared to opaque 

sections of the façade. A theoretical study of office buildings in Sweden consider 

glazed facades from an energy perspective, and  illustrate that buildings with fully 

glazed facades are likely to consume more energy for both heating and cooling than 

buildings with a 30 % window-to-wall-area [25]. Besides the energy challenge of 

highly glazed facades, it may be challenging to obtain a satisfying thermal 

environment in close-range of glazed façades, due to e.g. cold or warm radiation 

and/or occurrence of downdraft [26, 27]. In case such phenomenon occurs, it is 

expected that occupants would take action to reduce or avoid discomfort by for 

instance turn on heating/cooling and/or activate the solar shading [23, 28, 29]. 

These solutions may, however, result in increased energy use for heating, cooling 

and artificial lighting, – higher than predicted in the project planning phase.  

Artificial lighting make up for 15–30 % of the electricity consumption of office 

buildings in Nordic climate [30, 31]. Wise use of natural daylight in combination 

with intelligent control of artificial lighting can reduce the electrical use for lighting 

[32-36]. Moreover, due to the high luminous efficiency of diffuse daylight (≈100–

130 lm/W) [37], daylight harvesting may in addition reduce the thermal gain from 

lighting and contribute to reduction in the cooling load. From a perspective of 

energy use, there is a growing need for documentation of daylight and daylight 
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control from the early building design stage both in order to document the energy 

saving potential in case of daylight utilization as well as the need for solar shading 

to avoid glare. Yet, according to Reinhart [38] the treatment of blinds may be a 

major source of error for overoptimistic energy savings predictions in present 

daylight calculations. This is due to the fact that static daylight calculations under 

overcast sky still are dominating, where it is assumed that the blinds are retracted 

all year around [38]. Kuhn [39] suggests that treatment of blinds may be a source of 

error also within energy and thermal comfort design. He refers to experience of 

several buildings where overheating occurs, as the building designers have assumed 

completely closed slats for venetian blinds in activated position in their 

calculations, which may be unrealistic due to the occupants desire of view. 

The question has arisen if the lack of realism and commonly simplifications applied 

in building design, in addition to the absence of consistency in the underlying 

assumptions in energy, thermal comfort and daylighting predictions may hinder the 

development of the high performing buildings we want for the future. 

1.2 OBJECTIVE AND RESEARCH QUESTIONS 

This PhD thesis is based on the fact that there is a lack of consistency in the 

building design with respect to thermal comfort, daylighting and energy use. The 

objective of this project is to arrange for a more holistic design process where the 

predicted thermal comfort, daylighting and energy use are based on the same 

underlying assumptions. It is further an aim to make the integrated design process 

practical applicable for engineers in Nordic countries within in the field of energy 

and indoor environment of buildings. The following research questions will be 

answered to support this superior aim.    

1. How are thermal comfort and daylight modelled within building design 

and which evaluation criteria are used for assessment of thermal comfort 

and daylight quality? 

a. Do these models and evaluation criteria constitute any obstacle 

for conducting integrated design? 

b. Are there other models and/or evaluation criteria which may be 

more suitable for integrated design? 

2. How should use of solar shading be accounted for within an integrated 

building design? 

a. What are suitable criteria for activation of solar shading for 

obtaining satisfying thermal and visual comfort as well as a low 

energy use within an office environment? 

b. What are important factors with respect to occupants' satisfaction 

with automatically controlled solar shadings? 
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1.3 THESIS OUTLINE 

This thesis is divided into three parts. Part I incorporates a literature review with the 

aim to cover research question 1 and to a certain degree question 2. Part II describes 

two test cases used for verification of proposed models for thermal comfort and 

daylight calculations to be used within building design. Besides, it includes the 

methodology and results from an occupant survey carried out to indicate occupants' 

preferences with regard to use of solar shading and their sensation of glare in an 

office like work environment. Part II ends with a suggestion for solar shading 

control suited for Nordic climate, with the aim to cover research question 2. Part III 

contains an overall discussion and conclusion where the work is put in perspective. 
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PART I – LITERATURE REVIEW 

 

This part presents a literature review regarding thermal comfort, daylighting and 

use of solar shading within building design. The intention with this chapter is to 

answer research question 1 and to a certain degree question 2 in order to uncover 

where it is appropriate to concentrate the further effort of research for this thesis. 

 

 

 

 

The more I learn, the more I realize how much I don't know… 

‒Albert Einstein 
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CHAPTER 2. THERMAL COMFORT 

Thermal comfort is defined as that condition of mind where the human is satisfied 

with the thermal environment and do not require the environment to be either 

warmer or colder. These comfort conditions are, however, strongly individual and it 

is impossible to satisfy everybody at the same time [40]. So, the goal in present 

building design is to satisfy as many as possible or accept a maximum percentage 

dissatisfied occupants. However, is this goal ambitious enough? Or should we 

design buildings where thermal comfort at least may be obtained at all workstations?  

There are three mechanisms influencing how people perceive their own thermal 

comfort; physical, physiological and psychological. At the present time, two 

principal directions in the science of thermal comfort exist [41-43]. One direction is 

based on physical and physiological theories and the heat balance between the 

human body and its environment. The other is based on psychological theories and 

the assumption that people are adaptable to the thermal environment as well as it is 

assumed that the expectations to the thermal environment may influence the thermal 

perception. Sophisticated analytical, empirical and/or statistical derived models exist 

both within the heat balance [40, 44-46] and the adaptive thermal comfort approach 

[47-51]. Still, in practise operative temperature is often used as an indicator to assess 

thermal comfort within building design, which might be due to operative 

temperature requirements in various national guidelines, e.g. [52-54]. 

2.1 OPERATIVE TEMPERATURE 

Operative temperature is defined as the uniform temperature of an imaginary black 

enclosure in which an occupant would exchange the same amount of heat by 

radiation and convection as in the real non uniform environment [55]. Numerically 

the operative temperature is the average of the air temperature (𝑡𝑎) and mean radiant 

temperature (MRT, 𝑡𝑚𝑟), weighted by the convective (ℎ𝑐) and radiative (ℎ𝑟) heat 

transfer coefficients respectively [56], see equation 1.  

𝑡𝑜 =
ℎ𝑐∙𝑡𝑎+ℎ𝑟∙𝑡𝑚𝑟

ℎ𝑐+ℎ𝑟
     (1) 

The MRT of a person is often rather difficult to determine [40], which might be the 

reason why simulation programs often apply various kinds of simplifications to 

establish this parameter. Typical simplifications are for instance to simplify the 

shape of the human body [57], calculate the MRT as the mean temperature of all the 

surrounding surface areas [40] or to neglect the contribution of short-wave radiation 

on the human body, e.g. arising from solar radiation [58, 59]. Simplifying the shape 

of the human body can often be justified for most realistic situations within building 

design, both since the posture of a person commonly is unknown as well as studies 
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have shown that e.g. the shape of a sphere match quite well for seated persons, while 

it might overestimate the influence of the ceiling and floor for standing persons 

[57].The latter simplifications are, however, more crude and might lead to very 

wrong estimations of MRT of a person at a specific position. This is especially true 

when considering modern office buildings where it is common with open plan 

layouts and extensively glazed façades, whereas both long and short-wave radiation 

might greatly affect the occupants’ thermal comfort as well as major variation in 

MRT throughout the room might occur. It is obvious that if the MRT is wrongly 

estimated this leads to wrong estimations of operative temperature which further 

might contribute to directly misleading results of the thermal comfort analysis. 

In order to be able to predict the variation in MRT of a person as a function of the 

location due to long-wave radiation, it has to be calculated from surrounding surface 

temperatures, emmisivities of the surfaces and view factors between the surfaces and 

the person. Such models exist in sufficiently detailed building simulation programs, 

e.g. [60]. Yet, the effect of short-wave radiation on the human body in indoor spaces 

has received limited attention in the thermal comfort research, due to the assumption 

that people are shaded [61]. However, as indicated above, this assumption may not 

be generally valid, especially not for unshaded, highly glazed office buildings. Only 

more recently, a few studies have addressed the issue of solar radiation and its effect 

of thermal comfort [27, 62-67]. 

Han et al. [63] and Han and Huang [64] have used virtual thermal comfort 

engineering to carry out analysis to assess the influence of various parameters on the 

thermal comfort of an occupant in a passenger compartment of a vehicle. Both 

studies exemplifies that solar load might be dominant in assessment of local thermal 

comfort for body segments exposed to solar radiation. While the body segments 

blocked for sun were found to be relatively insensitive to the solar load. They report 

that the thermal sensation ratings increases fairly linearly with the total solar load on 

the driver [64]. This finding is in line with results reported by Hodder and Parsons 

[62] who indicate an increase of thermal sensation of one scale unit for each increase 

of direct radiation of around 200 W/m
2
. As Han and Huang [64] point out, it is a 

challenge to reduce asymmetric thermal load on cabin occupants in the case of 

extreme solar gain, this might be a challenge in offices as well, c.f. Ref. [68]. 

The solar load of an indoor room is dependent on glass properties, solar incidence 

angle, and incident solar spectrum [69]. Utilization of solar reducing glazing has 

been found to improve the thermal sensation of occupants exposed to solar loads 

[62, 63, 70].  For such assessments it is, however, important to utilise light sources 

with the same spectral properties as solar radiation. This has been highlighted in an 

investigation by Ozeki et al. [71]; their results indicates that a solar reduction glass 

could reduce solar energy absorbed by a car occupant by about 15 % compared to 

normal green glass when considering solar radiation, while the reduction was more 

than 65 % with use of an infrared solar lamp.  
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Fanger [40] proposed a method for calculation of MRT of a person affected by high-

intensity beam heating systems, see equation 2.  

𝑇𝑚𝑟𝑡 = (𝑇𝑢𝑚𝑟𝑡
4 +

𝑓𝑝𝛼𝑖𝑟𝑞𝑖𝑟

𝜀𝑝𝜎
)

0.25

                              (2) 

𝑓𝑝 = 𝐴𝑝/𝐴𝑒𝑓𝑓      (3) 

Where 𝑇𝑚𝑟𝑡  is the MRT of the irradiated person, 𝑇𝑢𝑚𝑟𝑡is the hypothetical MRT of an 

unirradiated person, 𝑓𝑝 is the projected area factor, 𝛼𝑖𝑟  is the absorptance of the outer 

surface of the radiated person, 𝑞𝑖𝑟  is the radiant intensity, 𝜀𝑝 is the emittance of the 

subject, 𝜎 is Stephan-Boltzmann constant, 𝐴𝑝 is the projected area and 𝐴𝑒𝑓𝑓 is the 

effective radiation area.  In case of direct solar radiation, the sun might be 

considered as a high-intensity beam heating source and results from a study by Bryn 

and Smidsrød [72] indicate that equation 2 might be applicable to estimate the MRT 

of a person hit by solar radiation. Similar methods have recently been proposed 

and/or tested both for indoor [59, 61] and outdoor [73, 74] environments and Lyons 

et al. [75] refer to an expression presented by Sullivan for the sensitivity of PMV to 

the incident solar flux.  

2.2 DISCUSSION THERMAL COMFORT 

Based on findings in the literature, it is recommended that occupants’ thermal 

comfort within building design should be evaluated as a function of the location in 

the room, taking the contribution of both long-wave and short-wave radiation into 

consideration. This is especially important when evaluating modern office buildings 

with large open-plan offices and/or highly glazed facades, where there might be 

substantial variations of thermal comfort across the room, –variations which needs 

to be assessed in order to ensure that thermal comfort can be obtained at all locations 

where it is natural to place a workstation.   

The literature indicates that models have been proposed for including short-wave 

radiation in the calculation of MRT. Yet, there is still a lack of implementation of 

these models into simulation tools used in practical engineering and building design. 

It is believed that taking short-wave radiation into consideration in thermal comfort 

analysis may have implications on the predicted energy use and/or the design of the 

façade and the room layout, since e.g. an enlarged need for local cooling or 

increased use of dynamic solar shading might be discovered in the design phase as a 

consequence of the thermal conditions close to the façade. Improvement in the 

calculation of operative temperature may additionally improve the thermal comfort 

predictions with e.g. the PMV/PPD model and adaptive thermal comfort models, 

since operative temperature is included in these models.  
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CHAPTER 3. DAYLIGHT 

Daylight is defined as the part of solar radiation which humans perceive as light 

[69]. The visual radiation within the electromagnetic spectrum is approximately 

between 380-740 nm [69]. Different reasons occur for implementations of daylight 

in building design, ranging from solely aesthetic to more functional purposes. 

Daylight may in addition have positive health effects [76-80] and Wurtman [76] 

states that ”light is the most important environmental input, after food, in controlling 

bodily functions”. Moreover, research has indicated that occupants usually prefer 

daylight as their source of illumination [81-83]. 

3.1 DAYLIGHT METRICS 

The daylight factor (DF) is currently the most commonly used daylight metric 

worldwide [37, 84]. The concept has existed since the late 19
th

 century [85] and is 

today incorporated into a number of national design guidelines, e.g. [52, 86]. The 

DF is defined as the ratio between the internal illuminance at a point in a room and 

the unshaded, external horizontal illuminance under a Commission Internationale de 

l’Eclairage (CIE) overcast sky [87]. The daylight factor of a room can be considered 

to consist of the sky component (SC), the externally reflected component (ERC) and 

the internally reflected component (IRC), see Figure 2.  

 
Figure 2: Visualization of the three daylight components SC, ERC and IRC. 

The primary object of measuring daylight in terms of ratio rather than absolute 

values is to avoid the difficulty involved by the frequent fluctuations in the intensity 

of daylight [88]. However, in real life the daylight indoor is dynamic and influenced 

by the size and orientation of glazed areas, glazing characteristics, room plan, 

outdoor weather and the geographical and topographical location of the building [89, 

90]. Therefore, as an isolated measure DF does not contribute with much 

information regarding the real daylight level in a room. Reinhart [87] argue that the 

popularity of DF probably is due to its simplicity to calculate as well as it is a well-

known measure which may be easy to communicate to a design team.  The lack of 

realism in the DF approach is, however, blamed to be one of the reasons why 

daylight is an under-exploited natural resource [91].  
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During the last decade the need for a new daylight metric to replace the DF has been 

expressed [84, 92-94] and effort has been put down in creating climate-based 

daylight metrics suitable to function as criteria for annual daylight evaluations. 

Climate-based daylight modelling (CBDM) uses sun and sky conditions derived 

from meteorological datasets [95].  Table 1 present a selection of recently developed 

climate-based daylight metrics (CBDm).  

Table 1: Selection of newly developed climate-based daylight metrics 

Metric Information in the 

metric 

Lower 

threshold 

[lux] 

Upper 

threshold 

[lux] 

Comment Reference 

Daylight 

autonomy 

(DA) 

Percentage of 

occupied time when 

a minimum work 

plane illuminance 

can be maintained 
by daylight alone. 

500* - Threshold commonly 

derived from standards 

for artificial lighting. 

[96] 

Useful 
daylight 

illuminance 

(UDI) 

Percentage of work 
hours when daylight 

levels are useful for 

the occupants. 

100 2000 ** 

3000*** 

Thresholds derived 
from literature study on 

occupant preferences 

in daylit offices. Upper 

limit is associated with 

glare/overheating. 

[92, 97] 

DAcon in 

combination 

with DAmax 

Based on the DA 

criteria, but softener 

the threshold by 
attribute partial 

credits to time steps 

when the daylight 

illuminance lies 

below the minimum 

illuminance level. 

500 * 10 times the 

design 

illuminance 
of a space 

DAmax indicate 

occurrence of direct 

sunlight and potentially 
glary conditions. 

[87, 98] 

Spatial 

daylight 

autonomy 
300/50% 

(sDA300/50%) 

Percentage of 

analysis area that 

achieves the 
threshold of 300 lux 

for 50 % of the 

analysis period. 

300 - Target value of 300 lux 

was derived from a 

survey with daylight 
experts and building 

occupants in 61 day lit 

spaces.  

[93, 99] 

* The value of 500 lux is valid for offices. ** 2000 lux is derived for offices, in places where the occupants have 

opportunity to adjust the settings higher illuminances may be accepted [29]. *** 3000 lux has been proposed as 

the upper threshold in a recent publication by Mardaljevic et al. [97] 

 

The question is then which CBDm to use? UDI and sDA300/50% might be preferable, 

since they are developed based on occupant preferences in daylight environments. 

One advantage of sDA300/50% is that the annual daylight level in the room can be 

expressed with one single number and according to the Illuminanting Engineering 

Society of North America (IES); sDA300/50% ≥55 % has to be met in order for a space 

to be nominally acceptable daylit. sDA300/50% has been accepted as daylight metric by 

the IES as part of an methodology for evaluating annual daylight in combination 

with the criteria that solar shadings are temporarily closed whenever more than 2 % 

of a space is illuminated by direct sunlight above 1000 lux [99].  



CHAPTER 3. DAYLIGHT 

31 

Still, from an integrated design perspective, UDI seems to give more 

interdisciplinary information. The UDI concept is divided into four categories [97]; 

UDI_fell short (UDI-f, 0-100 lux) which indicates the time when required 

illuminance has to be maintained by artificial lighting, UDI_supplementary (UDI-s, 

100-300 lux) which indicates the time when artificial lighting needs to supplement 

daylight to maintain required illuminance, UDI_autonomous (UDI-a, 300-3000 lux) 

which indicates the time when the light level can be obtained by daylight alone and 

UDI exceeded (UDI-e, >3000 lux) which is associated with glare or overheating and 

indicates the time when solar shading might be needed. Cantin and Dubois [100] 

suggest to replace DF by UDI in order to evade “the more the better” approach for 

glazing areas in buildings, which may occur when considering DF alone.  

3.2 GLARE 

Glare is commonly divided into two categories: disability glare and discomfort 

glare. According to the CIE vocabulary, disability glare makes a person unable to 

see certain objects in a scene, while discomfort glare produces discomfort without 

necessarily influencing visual performance and visibility [101].  Disability glare is 

rather well understood, but there is still a lack of knowledge about the underlying 

process for discomfort glare, especially discomfort glare from daylight [102, 103]. 

Fluctuation in pupil size [104], visual distraction [105] and hyperexcitability of 

visual neurons [106]  have been suggested as mechanisms for causing discomfort 

glare. According to Vos [107], the present understanding of discomfort glare covers 

two fundamentally different phenomena which he suggests separating into 

discomfort and dazzling glare. Vos explains discomfort glare as disturbing lights off 

the line of sight interfering with the foveal vision. The disturbing lights attract the 

eyes and work as a distraction from the visual task. Dazzling glare, on the other 

hand, occurs when our eyes meet a bright field of view which makes one screw up 

the eyes and show avoidance rather than attraction reactions.  

3.2.1 GLARE METRICS 

Even if discomfort glare is a subjective sensation, several efforts have been made to 

predict it objectively, which have resulted in various glare indexes, e.g. CIE glare 

index (CGI) [108], Daylight glare index (DGI) [109], Unified glare rating (UGR) 

[110] and Daylight glare probability (DGP) [111]. Daylight may be more likely to 

give rise to glare than artificial lighting since daylight sources often are placed in 

vertical walls which makes them prone to be seen directly, or in the peripheral 

vision, while artificial lighting usually is mounted overhead. Yet, only two of the 

aforementioned metrics are intended for daylight glare evaluations: DGI and DGP. 

Hopkinson [109] developed DGI, see equation 4, by modifying the formula for 

Glare Index. According to Hopkinson, discomfort glare from daylight is a direct 

function of both the window size and the brightness of the sky seen through it, and 
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an inverse function of the brightness of the room interior. Even though DGI takes 

into account these factors, Hopkinson emphasises that high correlation between 

glare predictions and the actual discomfort experienced should not be expected, 

since discomfort glare is a complex situation with several side effects. Pleasant view 

was found by Hopkinson to be an important side effect which would extend the 

observer tolerance to discomfort, even though the view is not actually reducing the 

glare [109]. This result has been supported by later studies [102, 112-114].  

𝐷𝐺𝐼 = 10 ∙ 𝑙𝑜𝑔10 0.48 ∑ (𝐿𝑠
1.6Ω𝑠

0.8)/(𝐿𝑏 + 0.07𝜔𝑠
0.5𝐿𝑠)𝑛

𝑖=1   (4) 

Where 𝐿𝑏/𝑠 is the luminance of background/source, Ωs is the solid angle subtended 

by the glare source modified by Guth’s position index (P) and 𝜔𝑠 is the solid angle 

subtended by the glare source.  Several researchers have proposed improvements of 

the formula for DGI over the years, e.g. [112, 114-116]. However, as Van Den 

Wymelenberg [117] points out, neither of the modifications have gained wide 

acceptance in practical building design and, according to Van Den Wymelenberg, 

DGI has surpassed its useful life. 

In 2003-2004 Wienold and Christoffersen [111] conducted user assessments under 

real daylight conditions in Denmark and Germany. The results showed poor 

correlations with existing glare models and revealed a need for a new glare model. 

They developed DGP, which is based on a combination of the existing CGI 

algorithm and an empirical approach, see equation 5. Wienold and Christoffersen 

found that the general field of luminance was not suitable as measure for the 

adaptation level, since the large glare sources themselves have impact on the 

adaptation level. They suggested using vertical eye illuminance (Ev) instead, and by 

implementing this measure in the DGP model a higher correlation with the user 

assessment was found compared to use of general field of luminance. 

𝐷𝐺𝑃 = 5.87 ∙ 10−5𝐸𝑣 + 9.18 ∙ 10−2𝑙𝑜𝑔 (1 + ∑ (𝐿𝑠,𝑖
2 𝜔𝑠,𝑖)/(𝐸𝑣

1.87𝑃𝑖
2)𝑖 + 0.16 (5)  

Some literature recommend use of DGP in assessing discomfort glare from daylight 

[100, 118, 119], and multiple studies show that DGP outperforms DGI [111, 120, 

121]. However, studies also indicate that DGP is not a robust glare metric [122, 

123], at least not as a single measure for securing visual comfort [120, 124].  

3.2.1.1 Annual glare evaluation 

One major drawback with DGP, as well as most of the traditional glare metrics, is 

the high time-consume to carry out an annual analysis. In order to address this 

problem, Wienold [125] developed and validated two simplified versions of DGP: 

(1) DGP simplified (DGPs) based on Ev, see equation 6, and (2) enhanced simplified 

DGP based on Ev in combination with a simplified image. The validation generally 

showed good results for the enhanced simplified DGP and reasonable results for 

DGPs when no peak glare sources where present. 
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𝐷𝐺𝑃𝑠 = 6.22 ∙ 10−5𝐸𝑣 + 0.184    (6) 

As the development of DGP and DGPs demonstrate, vertical illuminance at eye 

level might be a reasonable, simple indicator for discomfort glare applicable for 

annual glare evaluations. A number of other studies have also reported correlation 

between vertical illuminance and perceived glare by occupants [120, 126-129]. Van 

Den Wymelenberg and Inanici [120] conclude that establishing reliable design 

criteria for Ev which can be used in the design stage should lead to improved 

occupant satisfaction with the visual environment. Based on results from their study, 

a threshold for Ev should be in the range of 1000-1500 lux.  

Horizontal illuminance is the variable traditionally evaluated and referred to by 

engineers and architects in the daylight design community, and it is commonly used 

as an indicator of daylight sufficiency. However, it has also been proposed as an 

indicator of visual discomfort [92, 99, 130]. A few recent studies have reported a 

reasonable relationship between the reported glare perception by occupants and 

horizontal illuminance [120, 131]. However, Konis [127] suggests that the relation 

between horizontal illuminance and subjective assessment of discomfort may be 

context specific related to the distance of the observer to the façade as well as 

interior surface reflections. This suggestion is based on the finding that occupants 

report visual discomfort in the core zones of a side-lit office building even when the 

horizontal illuminance at the workstation is low – significantly lower than 2000 lux, 

which was suggested as the original upper threshold of UDI.  

3.3 DAYLIGHT DESIGN PRACTICE 

A few surveys concerning daylight design have been conducted during the last 

decades [132-135]. The essential findings from these surveys are that far from all 

building designers conduct daylight analysis during their design and some designers 

carries it out infrequently depending on the problem.  It is found that an extensive 

amount of different daylight design tools are in use, both manual and computer 

tools. Some frequently mentioned manual tools are; scale models, calculations based 

on Waldram diagrams, BRS daylight protractors and control of window area 

according to simple equations and diagrams. As for the mentioned simulation tools 

the complexity ranges from software packages based on relatively simple analytical 

algorithms to the more complex backward ray-tracing method. Further, results from 

Ref. [134] indicate that the daylight factor is one of the most frequently produced 

outputs from the building design daylight analysis. 

In the two most recently conducted surveys, [134, 135], the major part of the 

participants informed that they utilise simulation tools. The strong bias towards use 

of simulation tools could be explained by the fact that many of the participants had 

been recruited through building simulations mailing lists. Still, the results indicates 

that computer simulations have become more included in daylight design than 

earlier. However, it was found that the usage was significantly higher during the 
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design development than during schematic design.  The dominant tools during the 

schematic design were still experience, rules of thumb and design guides. In Ref. 

[135], free text answers showed that a number of non-standardized, self-made rules-

of-thumb were being used for a variety of design aspects.   

A limited survey, carried out by two master degree students at Oslo and Akershus 

University College of Applied Science [136, 137], indicates similar tendencies 

among Norwegian building designers as suggested in the published literature, see 

Figure 3. A number of the participating building designers do not consider daylight 

in their design. Still, the major part of the questioned architects evaluates daylight, –

which may be expected since daylight often is part of the architects' responsibility. 

Even so, it is seen that the 10 % glazing-to-floor rule, referred to in the guidance to 

the Norwegian building codes [52], is popular among the participating architects. 

This simple, static pre-accepted target has been found not to be a reliable measure to 

secure sufficient daylight supply within modern buildings [138]. 

3.3.1  ANNUAL DAYLIGHT MODELLING  

As indicated in the previous section, the literature gives description of an extensive 

amount of methods used in daylight design. However, simulation tools with annual 

daylight modelling features are required in order to make the previous mentioned 

CBDm and annual glare evaluations useable for daylight designers.  

There are numerous lighting simulation programs available on the marked and most 

of them are based on the radiosity or ray-tracing luminance distribution approaches 

[139-141]. Radiance [142] is considered to be a state-of-the-art backward-raytracing 

tool and it has been highly validated [142, 143]. However, with respect to annual 

daylight evaluations the time consume is extensively high for running traditionally 

Radiance ray-tracing calculations at each time-step. Therefore, several approaches 

for annual daylight modelling has been suggested, see e.g. Ref. [84, 144, 145].    
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Figure 3: a) Categorization of participants responding in the limited survey regarding 

building design. b) Methods used for evaluation of daylight among the survey participants. 
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Reinhart and Walkenhorst [96] validated the Daysim method for annual climate-

based daylight calculations earlier proposed by Reinhart and Herkel [84]. The 

Daysim method is based on combining a modified version of Radiance with 

Tregenza and Waters [146] daylight coefficients and Perez et al. [147] sky 

luminance distribution model. The daylight coefficient gives the contribution to the 

illuminance at a point in the room from a small sky segment [146], see Figure 4. The 

advantage of the daylight coefficient approach is that once a set of daylight 

coefficients are calculated it can be combined with the luminance of sky segments at 

arbitrary sky conditions and the sum of light contribution from each sky segment 

yields the corresponding indoor illuminance at the point of interest [84]. The 

Daysim method distinguishes between light contribution from diffuse sky, ground 

segments and direct sunlight and more recent refinements in the daylight coefficient 

approach with respect to direct sun has been proposed by Bourgeois et al. [148].     

Recently, the Radiance three-phase method [144] was developed, where 

bidirectional scattering distribution functions (BSDF) are used to describe complex 

fenestration systems. The theory behind the three-phase method is thoroughly 

described elsewhere, e.g. [144, 149], and the method is validated by McNeil and Lee 

[150]. Shortly, the calculation procedure is divided into three phases, see Figure 4. A 

Radiance ray tracing simulation generates luminous energy transfer coefficients 

relating (1) the luminance of sky patches to the incident light directions on the 

exterior side of the window, (2) the transmission through the window and (3) light 

from outgoing directions from the interior side of the window to desired interior 

points in the room. These coefficients are stored in three independent matrices; the 

daylight matrix, the transmission matrix and the view matrix respectively. The 

resultant illumination is obtained by matrix multiplication of the three phases in 

combination with a sky matrix that contains the average luminance of the sky 

patches for given times and sky conditions.  

Another approach for annual daylight assessments has been proposed by Hviid et al. 

[145]. They combine the ray-tracing approach for incident initial light and the 

radiosity approach for internal daylight reflections. Further, they utilize a pre-

processor to calculate the light transmission trough the glazing/shading system. 

Validation against Radiance showed good results for isotopic optical materials, 

however rather large deviations were seen for cases with complex shading systems, 

with relative errors up to 20 % [145]. Yet, for early design phase, the error seen 

might be considered satisfactory [151]. 
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Figure 4: Principle illustration of the Daysim method (left, after[96]) and the  three-phase 

method (right, after [152]) and the sky patch sub division according to (1) modified 

Tregenza-145, (2) Reinhart -581 and (3) Reinhart -2321. 

3.4   DISCUSSION DAYLIGHT 

In building design, a set of useful and intuitive evaluation criteria is necessary in 

order to correctly interpret results of performance predictions. Criteria for daylight 

may be used to assess if the daylight environment is satisfying, if artificial lighting 

needs to be added or if there is risk of glare and need for activation of solar shading. 

The literature reviled limitations regarding DF as daylight metric, and one thing 

seems certain; the time of the DF as the dominant evaluation metric for horizontal 

illuminance has passed. In the future, climate-based metrics should be used. It 

should be noted that Mardaljeveic and Christoffersen [153] have suggested a method 

of how to move from static to dynamic daylight evaluations by utilising a 

cumulative illuminance approach during a transition period.  

Avoidance of glare is a request for obtaining visual comfort. From an integrated 

building design perspective, it would be advantageous with simple and 

computationally effective measures of discomfort glare from daylight that give 

reasonable predictions of glare on an annual basis for use in early building design 

when decisions regarding the façade are taken. These quantities should further be 

easily measurable in order to be able to validate the design as well as having the 

potential of being incorporated in building control strategies, e.g. of solar shading 

control. Candidates for such measures might be horizontal illuminance at the desk, 

vertical eye illuminance and more sophisticated models as DGPs or DGP enhanced 

simplified. However, further studies are needed to confirm their applicability.   

Section 3.3 indicated that daylight evaluations not yet are a matter of course within 

building design and simplified and/or static calculations are still dominating among 

those considering daylight. Models for annual daylight calculations need to become 

available for building designers for annual evaluation criteria grow to be main-
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stream. An advantage of the three-phase method with respect to annual calculations 

is that different types of windows and configurations of solar shadings can be 

studied rather easily by only exchanging the transmission matrix in the calculation.      

Table 2 compresses a preliminary proposal for a daylight design in three levels of 

details based on findings in the literature. Since it might be rather unrealistic at the 

present time to totally avoid the use of rules of thumb and simple static calculations 

in the early design phase to make some suggestions to the first design proposal, it is 

recommended to utilize the validated rule of thumb sequence proposed by Reinhart 

and Lo Verso [154]. Still, important features of the proposal are early 

implementation of simulation tools and adoption of climate-based daylight 

modelling, which straightens integration with thermal comfort and energy analysis.  

Table 2: Proposal of how daylight calculations and evaluations may be implemented as an 
integrated part of the building design based on findings in the literature.  

Design 

stage 

Proposed method Evaluation 

metric 

Initial 

design 

Use the validated rule of thumb sequence by Reinhart and LoVerso [154] to 

draw up the first daylight scheme to find minimum required glazing areas; -

initial assumptions regarding wall thickness, window head height, room 

width (w), mean surface reflectance (Rmean) and visual light transmittance 

(τvis) of the glazing have to be made. Use an effective simulation tool to 

check that the glazed areas are consistent with annual daylight requirements 

for UDI-a as well as for thermal comfort and energy use. 

DF/UDI 

Schematic 

design 

phase 

Use a climate-based daylight simulation tool to verify the chosen glazed 

areas and glazing characteristics when use of solar shading is accounted for. 

In case of dynamic solar shading, use a simplified solar shading model and 

utilize UDI-e (3000 lux) as a threshold for activation of solar shading due to 

glare/ overheating. Exchange solar shading, lighting and occupancy profiles 

between daylight, thermal comfort and energy use predictive tools in order 

to achieve a model consistency for the integrated design.  

UDI 

Detail 

design 

phase 

Keep using a climate-based daylight simulation tool, but if necessary make 

a more customised and product oriented simulation with respect to solar 

shading and installed lighting systems. Verify the daylight environmental 

quality with respect to useful daylight illuminance and glare.  

UDI, DGPs/ 

DGPenhanced 

simplified 

 

 

  

For an example of application of the proposed design sequence, please refer to 

Paper V: “Implementation of daylight as part of the integrated design of 

commercial buildings”.  
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CHAPTER 4. SOLAR SHADING 

Tzempelikos [20] defines solar shading to be the primary link in an integrated 

thermal and daylighting building design, this was also indicated in Figure 1 (p.20). 

Accurate knowledge of blind use is therefore needed in order to improve the 

accuracy of predictive energy, thermal comfort and daylighting simulations.  

Solar shading systems can be static or dynamic. Results from an investigation by 

Nielsen et al. [155] indicate that dynamic solar shading solutions function better 

than static ones in a Danish climate. This is true both with respect to energy demand 

and reduction of overheating, as well as it allows for daylight supply and view to the 

outside when there is no need for solar shading. Winther [156] and Liu [157] also 

confirm improved building performance by applying dynamic solar shading on 

different buildings in Denmark; they claim that use of intelligent dynamic facades 

are essential in achieving the high building performance required in the future. 

4.1 CONTROL OF DYNAMIC SOLAR SHADING 

From an energy point of view, automatic control should be applied on dynamic solar 

shading in office buildings, since research shows that users of the building do not 

tend to manually change the solar shading position for the short-term events in the 

outdoor weather conditions and the blind rate of change for manually systems is 

commonly rather low [158-162]. Still, a number of researchers have studied 

occupants’ manual interactions with solar shadings and tried to correlate it with 

physical variables in order to develop control strategies suitable for implementation 

in simulation programs or as a basis for automatic control strategies [162-166]. 

Solar irradiance is a simple and common parameter used in solar shading control 

[158, 159, 167-170].  Van Den Wymelenberg [159] finds evidence in reviewed 

literature of a solar irradiance based blind control predictor used as a proxy for 

occupants’ interactions with window blinds. However, the literature suggests that 

there is a wide disparity among the irradiance values to use, ranging from 

approximately 100-450 W/m
2
, and a variety of locations to detect the irradiance 

[159]. When trying to find the correlation between solar radiation and the occupants’ 

interactions with solar shading, it would be preferable to assess the transmitted solar 

radiation which is the condition experienced by occupants. However, as O’Brien et 

al. [158] report, a significant part of the studies in the literature only considers 

external conditions, probably since it is easier to measure. 

Another relatively common control parameter for solar shading is indoor 

temperature [169, 171-173]. Van Moeseke et al. [169] found that strategies based on 

both the external irradiance and the internal temperatures were more efficient to 



DESIGN METHODOLOGY AND CRITERIA FOR DAYLIGHT AND THERMAL COMFORT IN NEARLY-ZERO ENERGY 
OFFICE BUILDINGS IN NORDIC CLIMATE 

40
 

balance comfort and energy savings compared to strategies based on either of these 

parameters alone. Use of the combined criteria ensures better utilization of solar 

gains for heating during winter and may limit the time of closed mode and, thereby, 

increase the visual contact with the exterior as well as inlet of daylight [169]. 

A number of researchers indicate that glare commonly is the main factor driving 

shading activation, e.g. [158, 162, 174-176]. In order to provide sufficient glare-free 

daylight, Chan and Tzempelikos [177] suggest controlling the solar shading 

according to Daylight Glare Probability, either continuously controlled using real-

time simulations or pre-calculated correlations between transmitted illuminance and 

DGP. Yun et al. [178] and Hoffmann et al. [179] also consider DGP as a control 

criterion within office buildings. However, Yun et al. conclude that this metric is 

impractical for calculation in real scenes and suggest implementing vertical eye 

illuminance as a control criterion instead. Other researchers have also suggested 

control of vertical illuminance for achieving visual comfort, e.g. [120, 180]. 

Based on a comprehensive literature review, Galasiu and Veitch [181] found that 

limited amount of research has focused on occupants’ acceptance, preference or 

satisfaction with automatic solar shading systems. There has been some indication in 

the literature concerning occupants dissatisfaction or lack of preference with 

automatically controlled shadings [162, 182, 183] and evidence that occupants may 

switch off the automatic mode [162, 176]. It has also been given examples of studies 

where the occupants thought the solar shading operated at the wrong times [24, 

184]. High occurrence of overrule actions of automatic solar shading systems has 

additionally been reported [167, 176, 185], which may imply that the occupants are 

dissatisfied with the automatic control. However, results from a recent Dutch pilot 

study carried out to investigate the user satisfaction and interaction with automated 

dynamic facades, did not find any clear link between automated facade operation 

and a high risk for disturbance and discomfort [185]. Furthermore, results from an 

older pilot study by Vine et al. [186] generally indicated high level of acceptance by 

users regarding an automated blind and lighting system, especially when they had 

the ability to overrule the systems. Similar results are reported by Meerbeek et al. 

[176] who suggests that it is not the actual control mode that influences the comfort 

of office workers, but rather the experienced level of control.    

Beside function as glare control and avoidance of overheating, solar shading systems 

might additionally have some insulating properties for reducing the heat loss 

through windows in cold climate [171, 187-189]. The Norwegian R&D project 

“Glazed facades keeping what we promise” (FG project) evaluates different 

functions of solar shadings both with respect to daylight, thermal comfort and 

energy use. One of the outcomes from the FG project is a control algorithm which 

utilises a combination of internal and external solar shading [189], see Figure 5. The 

motivation for utilising both internal and external shading is that solar radiation can 

be very beneficial during heating season in cold climate, while it might still be need 
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for a glare control. Glare is, however, only indicated by vertical external solar 

irradiation on the façade (𝐼𝑠𝑢𝑛) within this control, see Figure 5.  

  
 

Figure 5: Solar shading control algorithm developed within the FG project [189].  

4.2 DISCUSSION SOLAR SHADING 

The literature indicates that solar radiation is the most commonly used parameter 

associated with solar shading activation. However, use of externally measured 

irradiance on the rooftop or vertical on the façade might not necessarily reflect the 

interior conditions, and use of such measures within an automatic control strategy 

might activate the solar shading at wrong times according to occupants’ wishes. 

During occupied hours, the solar shading should be controlled to maintain occupant 

comfort and trigger parameters for activation should if possible be associated to 

interior conditions, e.g. indoor temperature and transmitted solar radiation.  

Since solar shadings may have several functions, multivariable control strategies 

might be preferable. The control strategy proposed within the FG-project seems 

promising. Still, improvements might be needed, especially with respect to 

indication of glare. Moreover, instead of only identifying the shading as open or 

closed, the slat angle should additionally be a variable of consideration for blinds, 

since it might have significant impact on the daylight illuminance in the room. The 

latter was also noticed by Inkarojrit [162].   

At last, user acceptance of automated systems may be crucial for its successful 

implementation within buildings. Still, solar shading control strategies are often 

proposed without verifying its acceptance by occupants in a working environment. 

More studies are needed to gain knowledge of occupants’ preferences regarding 

automatic shading controls.   
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CONCLUDING REMARKS PART I 

Neither of the evaluation criteria for thermal comfort referred to in the literature 

constitute any obstacle for conducting integrated design. Still, the literature reveals a 

need for improvement of the calculation of operative temperature by considering the 

location in the room, accounting for both long-wave and short-wave radiation.  

With respect to daylight design and evaluations, it is evident that the present design 

practice actually constitutes an obstacle for conducting integrated design. Therefore, 

it is a prominent need for a paradigm shift from static calculations and use of e.g. 

DF/𝐷𝐹̅̅ ̅̅  as evaluation criteria, towards dynamic assessment of the daylight 

environment both with respect to daylight supply and glare.  

Regarding solar shading control it is indicated that multivariable control strategies 

might be preferable in order to fulfil various functions of the solar shading. 

Additionally, it is suggested that closing criteria should be associated to interior 

conditions during occupied time, when the solar shading ought to be controlled to 

maintain occupant comfort. For blind based solar shading it is pointed out that the 

tilt angle should be considered as a control variable, since the slat position might 

have significant influence on the visual environment. Also, more information 

regarding user acceptance of automatic controls is needed.  

Based on findings in the literature it is assessed as appropriate to concentrate the 

further effort of research for this thesis on the following, in order to obtain a 

methodology for an integrated design with associated evaluation criteria: 

 Verify and implement a model for MRT which include the contribution 

from short-wave radiation into a simulation tool in use by building 

designers in Nordic countries. 

 Verify and implement the three-phase daylight model within a simulation 

tool in use by building designers in Nordic countries. This will make it 

practical feasible for building designers to conduct climate-based daylight 

evaluations and complete the daylight analysis based on the same 

underlying assumptions as used in thermal simulations with respect to e.g. 

climate data, operational time and use of solar shading.   

 Investigate occupants’ acceptance with automatically controlled solar 

shading strategies. 

 Investigate the suitability of simple illuminance based measures for use as 

indication of glare.  

 Propose an improved solar shading control strategy for office buildings in 

Nordic climate based on the findings from the literature and results from 

the above mentioned investigations.  
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PART II – EXPERIMENTAL WORK AND 
ANALYSIS 

This part describes two test cases used to carry out full-scale measurements for 

verification of models for improved calculation of thermal comfort and daylighting 

implemented into the simulation program IDA ICE. It should be noted that the 

model implementation is completed by Grigori Grozman at Equa Simulations AB. 

Further, this part includes the methodology and results from an occupant survey 

carried out to investigate occupants preferences with respect to use of solar shading 

and their sensation of glare in an office like work environment.  

The part is ended with a suggestion for solar shading control suited for cold Nordic 

climate, based on the control strategy proposed within the FG-project, with the aim 

to cover research question 2. 

 

 

Make things as simple as possible, but not simpler                   

–Albert Einstein 
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CHAPTER 5. TEST CASES 

This chapter presents a description of two test cases used for full-scale 

measurements to verify models for improved calculation of thermal comfort and 

daylighting, based on findings in Part I. It closes by describing the procedure of an 

occupant survey carried out in test case 2 to investigate occupants’ satisfaction with 

two automatically controlled solar shading strategies and the correlation between 

occupants’ response of glare and simple illuminance based measures.   

5.1 TEST CASE 1 – TEAM OFFICE OSLO 

Test case 1 is a team office located in Oslo (latitude 59°57'N, longitude 10°45'E). 

The team office has the dimensions 3.6 × 7.5 m and is situated at the corner of the 

16
th

 floor with one partly obstructed façade oriented 57° east of south and one 

unobstructed façade oriented 33° west of south, see Figure 6a. The opaque part of 

the external facades has a U-value of 0.18 W/m
2
K. The south-east and south-west 

facades contain one and three windows respectively of 2.7 m
2
 each, where three of 

the windows have some fins as external shading, see Figure 6b. All four windows 

are double-glazed, with a low-e coating and argon filling with the properties: direct 

solar transmission of 0.24, g-value of 0.27, visible light transmission at normal 

incidence of 0.50 and U-value of 1.1 W/m
2
K.  

 

Figure 6: Illustration of the team office located in Oslo, Norway, with its surrounding 

obstacles (a), external vertical fins (b) and room layout and measurement locations (c). 

The reflectivity of the internal surfaces was approximated by measurements with an 

illuminance meter (basic accuracy ± 4 %). Table 3 summarises the visible 

reflectance of the internal surfaces and their colour. 

Table 3: Reflectance and color of the internal surfaces of the team office in Oslo. 

Surface Reflectance Colour 

Walls 
Floor 

Ceiling 

0.76 

0.25 

0.88 

White  
Brown  

White  
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5.1.1 CONTROL OF INDOOR ENVIRONEMENT 

The office is equipped with mechanical ventilation, chill beam cooling and water 

based heating by radiators operated according to Table 4. 

Table 4: Set points for the HVAC systems in the test room and overview of the average 
internal gains during the experimental periods. 

VAV-ventilation 2-3.5  l/s m
2

 / 0.8 l/s m
2 (temp control) 

Set point heating 20.3 ˚C (period 1), 21.8 ˚C (period 2) 

Set point cooling 21.5 ˚C (period 1), 23.3 ˚C (period 2) 

Internal gains 

Light  12 W/m
2

 

Equipment  9 W/m
2

 

People  6 W/m
2

 

5.1.2 MEASUREMENTS 

5.1.2.1 Measurement period 

The measurements were conducted over two periods in 2013 of approximately one 

week each, one week in mid-March (period 1) and one week in end of April (period 

2). The observed sky conditions during these periods are summarised in Table 5. As 

can be seen, in total nine days with clear or partly clear sky were recorded.  

Table 5: Observed sky conditions during the experimental periods. 

Date Sky conditions Date Sky conditions 

12.03.2013 Clear sky 20.03.2013 Overcast sky 
13.03.2013 Clear sky 21.03.2013 Clear sky 

14.03.2013 Clear sky 17.04.2013 Partly clear sky 

15.03.2013 Clouded 18.04.2013 Clouded 
16.03.2013 Clouded 19.04.2013 Clouded 

17.03.2013 Clouded 22.04.2013 Partly clear sky 

18.03.2013 Clear sky/ partly clear sky 23.04.2013 Partly clear sky 
19.03.2013 Clouded 24.04.2013 Partly clear sky 

5.1.2.2 Indoor environment 

The level of detail in the indoor measurements were chosen in order to capture the 

daylighting and thermal variations existing in the room, while at the same time 

keeping it at a detail level which might be reasonable within a building design. 

Operative temperatures were measured by use of 40 mm black and grey globe 

thermometers (accuracy ± 0.1 K) at position 1, 3, 4 and 6 in Figure 6c. The short-

wave radiation absorption was approximated to 0.80 and 0.95 for the grey and black 

globes respectively. Room air temperature was recorded in the corner of the room in 

order to avoid influence of direct solar radiation. Additionally indoor environmental 
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conditions were measured using a Thermal Comfort Data logger (Innova 1221) for 

position 7; see Figure 6, in order to make sure that the indoor environment was 

within acceptable ranges for thermal comfort assessments. Innova 1221 consist of a 

collection of instruments and transducers measuring air velocity, humidity, air 

temperature, operative temperature and plane radiant temperature. Data were 

collected every 5 min for all the indoor measurements.  

Indoor horizontal illuminance at the work plane was monitored with eleven 

illuminance sensors located on a grid across the room, 0.80 m above the floor, see 

Figure 6c. The sensors were cosine corrected, connected to an Extech SDL400 or 

Testo 545 illuminance meter with a basic accuracy of ± 4 % and ± 5 % respectively. 

5.1.2.3 Weather data 

Climatic data of hourly global radiation was collected from the BioForsk database 

[190] for the location of Ås, which is situated approximately 30 kilometres south-

east of the experimental location. The global radiation was divided into direct 

normal and diffuse horizontal radiation by use of the Skartveit-Olseth model [191]. 

The climatic data of air temperature, relative humidity, wind velocity and wind 

direction was collected from Eklima database [192] for the location of Oslo. 

5.2 TEST CASE 2 – THE CUBE 

The Cube (latitude 57°3'N, longitude 9°55'E) is a test facility at Aalborg University. 

The test facility has previously been used by Kalyanova [193] to investigate double-

skin façades, by Winther [156] and Liu [157] to explore intelligent glazed facades 

and by Le Dréau [194] to investigate radiant and air-based heating and cooling 

systems. The set-up from Le Dréau has been kept and extended for the present 

survey. The following sections will give a short description of the test facility, for 

further details see Ref. [194] Part II and Ref. [157] Chapter 4. 

5.2.1 CONSTRUCTIONS 

The Cube has a south-oriented experimental room, 2.76 m × 3.6 m × 2.70 m. The 

experimental room consists of an insulated wooden construction covered internally 

by 110-160 mm expanded polystyrene (EPS). In order to increase the thermal mass 

of the room, panels composed of 30 mm extruded polystyrene and 13 mm plaster 

have been glued to the walls [194] and a 50 mm thick concrete tile floor has been 

added. Additionally, it is equipped with a few office furniture and equipment. 
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Figure 7: Illustration of the Cube located in Aalborg, Denmark. (a)South façade, (b) external 

solar shading) and (c) room layout and measurement locations of illuminance. 

Le Dréau [194] measured the infiltration between the test room and the outdoor to 

be less than 0.3 L/sm
2
floor at 50 Pa. A ventilated guarded zone surrounds all the 

enclosures of the experimental room, except the south façade, in order to minimize 

heat transfer through the construction.  

The south façade of the experimental room is equipped with a double layer glazing 

(2.76 m × 1.60 m) that constitutes the major part of the boundary towards the 

exterior, see Figure 7. The window is equipped with both an internal and external 

diffuse white 65 mm convex venetian blind with 60 mm spacing between the slats. 

Table 6 summarises thermal and optical properties for the window system.  

Table 6: Glazing and shading properties at reference conditions according to ISO 15099 
[195] for various configurations. 

Glazing/ shading configuration Tilt 

angle [˚] 

U-

value 

g-

value 

Solar 

transmittance 

Visible 

transmittance 

Glazing - 1.23 0.36 0.31 0.65 
Glazing w/external shading  15 1.12 0.29 0.22 0.49 

80 1.05 0.04 0.01 0.02 

Glazing w/internal shading  15 1.14 0.34 0.23 0.52 
80 1.09 0.26 0.02 0.06 

Glazing w/external and internal 

shading  

80 0.94 0.02 0 0 

The reflectivity of the internal surfaces has been determined using a spectrometer 

(250 to 2500 nm). Table 7 summarises the visible reflectance of the internal surfaces 

and their colour. 

Table 7: Reflectance and colour of the internal surfaces in the Cube. 

Surface Reflectance Colour 

Walls 

Floor 
Ceiling 

0.73 

0.32 

0.94 

White  

Grey  
White  
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5.2.2 CONTROL OF INDOOR ENVIRONMENT 

Table 8 gives an overview of how the indoor environment and the internal gains are 

controlled in the Cube during the experiments.  

Table 8: Overview of indoor environment and internal gains control in the Cube. 

Category Quantity Comments and measurements accuracy 

Internal 
gains 

Occupants 1 thermal 
manikin (8-18 

every day)  

Manikin controlled to maintain a skin temperature of 
34 ˚C.  Heat the manikin ± 1 % [194, 196]. 

Control the skin temperature ± 0.2 K [194, 196].  

(not used during occupant survey) 

Lighting Fluorescent 

ceiling light. 

Max 60 W (8-
18 every day).  

Artificial lighting is added if daylight alone cannot 

supply minimum 300 lux at the horizontal work plane 

1.5 m into the room. Artificial lighting is controlled to 
maintain 500 lux at the work plane according to the 

dimming characteristics given in Figure 9. 

Illuminances are measured with cosine corrected 
Hagner SD1/SD2 detectors connected to a Hagner 

MCA-1600 Multi-Channel Amplifier with a basic 

accuracy of ± 3 %. Power use for artificial lighting is 
recorded with Norma D5255S power analyser, basic 

accuracy ± 0.2 %. 

Ventilation Supply air 

(CAV) 

2.6 l/(s m2) (8-

18 every day) 
1.6 l/(s m2) 

(rest of the 

time) 

Air flow calculated based on pressure differences over 

an orifice plate before the inlet fan, ± 7.5 % [194]. 

Temperature 

control 

Heating 

 

Electrical 

heater, 

capacity of 
1200 W.  

Heating power recorded with Norma D5255S power 

analyser, basic accuracy ± 0.2 %. 

Cooling Active chilled 

beam, capacity 
of approx. 500 

W. 

Cooling power calculated as a function of water flow 

rate (± 0.9 L/h [194]) and temperature difference 

between the forward and return water flow (± 0.057 
K, Pt-500 temperature sensors [194]). 

Heating and cooling is controlled according to air 
temperature measured by a silver-coated type K 

thermocouples (± 0.1˚C ) protected by a mechanically 

ventilated silver-shield, see Ref. [197]. 

Solar 

shading 

control 

Illuminance 

 

 

- 

 

 

A vertical illuminance sensor placed at the east 

sidewall 1.2 m into the room at height 1.2 m above the 

floor is used in combination with the correlation 
equation given in Figure 8 as an approximation of 

vertical eye illuminance at the occupant position in 

order to indicate occurrence of glare. 

Temperature - Same sensor as used for room temperature control. 

Irradiance  - CMP21 pyranometer placed exterior next to the 

glazing, see Figure 10 (accuracy ± 3 % [194]). 
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Figure 8: Left: Photo of the location of the two sensors, indicated by red circles. Right: 
Correlation between vertical eye illuminance at occupant position and vertical illuminance at 
the sensor location at the east sidewall.  

 
Figure 9: Dimming characteristics of the luminaire in the Cube. 

5.2.3 MEASUREMENTS 

5.2.3.1 Indoor environment 

Indoor horizontal illuminance at the work plane was monitored with six illuminance 

sensors in the centre line of the room, 0.85 m above the floor, and one sensor placed 

at the work desk. Additionally an illuminance sensor was placed vertically on a 

wood stand close to the test subject in order to measure the vertical illuminance at 

the eye level, and one illuminance sensor was placed vertically on the east wall 

behind the work station at a height 1.2 m, see the location of the sensors in Figure 8 

and Figure 10. All sensors were cosine corrected SD1/SD2 detectors connected to a 

Hagner MCA-1600 Multi-Channel Amplifier (basic accuracy ± 3 %).   

Operative temperature was measured with grey globe thermometers (d≈40 mm), air 

temperature was measured with silver-coated type K thermocouples (accuracy ± 

0.1˚C) protected by a mechanically ventilated silver-shield, and air velocity was 

measured with hot-sphere anemometers. These measurements were carried out for 

three, five and four positions in the room respectively at four heights for each 

position (0.1 m, 0.6 m, 1.1 m and 1.7 m) confirming to recommended measurement 

height for a seated and standing person according to ISO 7726 [198], see Figure 10. 

y = -0,00003x5 + 0,00531x4 - 0,37862x3 + 12,35750x2 - 

174,13965x + 912,50779 
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5.2.3.2 Weather data 

Vertical irradiance was measured on the facade before and after the glazing by use 

of two CMP21 pyranometers (accuracy ± 3 % [194]). An additional CMP22 

pyranometer was placed horizontally on the roof top of the experimental room in 

order to record the global radiation. The fraction of direct normal and diffuse 

horizontal radiation was calculated by use of the Skartveit-Olseth model [191].  

Outdoor air temperature was measured with a silver-coated type K thermocouple 

(accuracy ± 0.1˚C) shielded from direct solar radiation, placed at the north façade of 

the Cube. Data of wind velocity and relative humidity of the outdoor air was 

collected from the Danish Meteorological Institute [199] for the location of Aalborg 

Airport, approximately 13 km north-west of the experiment location. 

5.3 EXPERIMENTAL SET-UP OCCUPANT SURVEY 

Part I indicated the importance of understanding occupants’ requirements with 

respect to solar shading operation and apply realistic solar shading control strategies 

in the building performance predictions. Additionally, it was pointed out a need for 

computationally effective measures of discomfort glare from daylight for use in 

annual visual comfort analysis and in predictions of need for solar shading.    

This section present the procedure of an occupant survey carried out to investigate 

occupants’ satisfaction with two blind control strategies and to explore the 

suitability of simple and easily measurable quantities like vertical eye illuminance 

and horizontal illuminance at a desk or the model of DGPs as indicators of glare. 

The occupant survey is restricted to focus on the indoor environment close to the 

occupants’ position, which in the present case is close to a window in the 

experimental room in the Cube, see Figure 10.  

Figure 10: Placement of sensors in the experimental room in the Cube. 
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5.3.1 PARTICIPANTS  

Forty-six subjects took part in the study, taking place in May–June 2014. The 

participants were mainly university students, researchers or office workers in the age 

range 20-62 years old, see Table 9. The subjects were instructed to wear vision 

corrected lenses or glasses if these were normally worn in office work situations.  

Table 9: Overview of number of usable responses, sex distribution and age of the participants 
in the investigation of solar shading control strategy and glare. 

Investigation Total number 

of usable 

responses 

Male Female Age 

Mean Median SD 

Solar shading 

control 

40 22 18 28.7 26 8.3 

Glare 44 26 18 28.5 26 8.1 

 

5.3.2 INTRODUCTION TO THE TEST AND TEST FACILITY 

In order to reduce biases caused by the test persons having or not having experience 

with the test room from previous visits, the test subjects conducted a pre-test up to 

10 days before the main test. In the pre-test, the subjects were thoroughly introduced 

to the test and the test room, they got familiar with the concepts of glare and thermal 

comfort and the scales they would use in the test to rate the glare sensation and 

thermal comfort. Additionally, they answered some personal questions regarding 

gender, age and occupation. The pre-test lasted for approximately 20-30 minutes.   

During both the pre-test and the main test, the subjects were facing diagonally 

towards the window (45˚). The subjects had the opportunity to adjust the height of 

the office chair, but they were instructed not to adjust the computer screen in order 

to secure the same pre-set viewing direction for all test subjects.   

5.3.3 SOLAR SHADING CONTROL 

The main test was a repeated measures design where all subjects were exposed to 

both blind strategies illustrated in Figure 11. Yet, the solar shading was only 

activated if needed, according to the criteria given in the solar shading strategies.  

The simple control strategy simulate how solar shading commonly is treated in 

building design, while the detailed strategy is a modified version of the control 

algorithm developed in the FG-project for occupied hours, presented in Figure 5. 

The main modifications were to replace solar irradiance with vertical interior 

illuminance at eye level as indication of glare and to add the slat angle as a control 

variable. In activated state, the slats are tilted according to the estimated cut-off 
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angle, i.e. the angle where direct solar radiation is prevented while maximum view 

contact to the exterior is provided. However, the minimum tilt angle of the slats was 

set to 15˚ in order to avoid negative cut-off angles in situations with large solar 

altitude angles and thereby avoid view to the sky and high risk of glare [200]. The 

cut-off angle was calculated according to equation 7 [201]. Where 𝑑 is the profile 

angle of the sun, 𝑠 is the spacing between the slats, 𝑤 is the width of the slats, 𝛼 is 

the solar altitude angle and 𝛾 is the solar surface azimuth. When activated, the whole 

window is shaded by the blind and all the slats have the same angle position.   

𝛽𝑐𝑢𝑡−𝑜𝑓𝑓 = sin−1(cos(𝑑) ∙ 𝑠/𝑤) − 𝑑                           (7) 

𝑑 = tan−1[tan 𝛼/ cos(𝛾)]                            (8)  

 

 

Figure 11: Schematic illustration of the simple and detailed control strategy. 
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5.3.4 QUESTIONNAIRE AND TEST PROCEDURE 

Test subjects were asked for their subjective feedback with respect to thermal and 

visual comfort by completing a web-based questionnaire constructed in Surve Xact 

[202]. The basic questions and surveying procedure given by Christoffersen and 

Wienold [203] were adopted. This procedure entails that the occupants perform 

different visual tasks like reading from a paper, reading on a computer screen and 

writing on a computer while their performance is recorded.  

Conducting the assigned tasks and answering the questionnaire took approximately 

one hour for each solar shading control strategy, see Figure 12. After completing the 

two tests, the participants were asked which control strategy they preferred, with the 

options “First control strategy”, “Second control strategy” and “No preferences”.  

They also had the opportunity to provide supplementary comments regarding their 

choice. The order of exposure to the different solar shading strategies was 

randomised and balanced between the test subjects and time of day. 

 

 

5.3.5 DATA ANALYSIS 

The occupants’ responses of the visual and thermal environment were combined 

with physical measurements. Measured illuminance were averaged over the 15-20 

last minutes before the occupants answered questions regarding the light 

environment, while measured temperatures were averaged over the 30 last minutes 

before questions regarding the thermal environment were answered.  Statistical data 

analysis was performed using R i386 version 3.1.1 [204]. 

5.3.5.1 Data analysis solar shading control preference 

In comparison of indoor environmental conditions and participants’ responses 

between the two control strategies, a paired t-test was used.  Normality was checked 

for all comparisons by use of normal probability plots. An unpaired t-test was used 

for comparison of two groups where pairing was not practical or purposeful. Where 

data was considered to be far from normally distributed, it was analysed initially by 

use of non-parametric statistical tests, e.g. Wilcoxon rank sum test.  The significance 

of association between categorical variables was tested with the Fisher exact test in 

combination with Monte Carlo (MC) simulations.  

Figure 12: Time schedule for conducting the test.  
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5.3.5.2 Data analysis glare indication 

Occupants’ response of glare from the two solar shading strategies were mixed 

together and a reasonable illuminance range which frequently occurs in an office 

environment is thereby represented in the data. 

5.3.5.2.1 Vertical and horizontal illuminance 

Logistic regression was used to evaluate the correlation between vertical eye 

illuminance or horizontal illuminance at the desk and the perceived glare. For such 

analysis, the response variable of glare was assumed to be a binominal response, i.e. 

disturbed or not disturbed by glare. The four-point glare scale was, therefore, 

simplified to a binary form; imperceptible and noticeable were regarded as “not 

disturbed” while disturbed and intolerable were regarded as “disturbed”.  

AIC and BIC were used to compare the non-nested logistic regression models, the p-

value of the Wald chi-square test was used to indicate the strength of evidence that 

there is some association between the predictor variables and the perceived glare. 

The overall performance of the logistic regression models were evaluated with 

Nagelkerke’s pseudo R
2
 [205] and Brier score [206], while the c-statistic was used 

to indicate the discriminative ability of the logistic regression model. The reader 

should be aware that rather low pseudo R
2
 is common for logistic regressions.  

5.3.5.2.2 DGPs 

DGPs is based on the probability of whether a person is disturbed by glare. With this 

approach the glare scale is also reduced to a binominal response – “disturbed” and 

“not disturbed” – similar to the division for the logistic regression. The probability 

was established by grouping equal sample sizes of responses and evaluating the 

percentage of subjects disturbed in each of these groups. The total available 

responses of glare were 144 for the current study.  

This study uses two approaches of grouping; one analogue approach to the one used 

by Wienold and Christoffersen where the group sizes are as large as practical in 

order to avoid significant sensitivity depending on the grouping while, at the same 

time, having a sufficient amount of groups, and another approach according to the 

recommendations of Hirning et al. [122] where the group size was √𝑚, where 𝑚 is 

the total number of observations being analysed.  

 

For further information regarding the occupant survey, please consult Paper I: 

“Occupant satisfaction with two blind control strategies: Slats closed and slats 

in cut-off position” (DOI: http://dx.doi.org/10.1016/j.solener.2015.02.031) and 

Paper II: “Verification of simple illuminance based measures for indication of 

discomfort glare from windows” (DOI: 

http://dx.doi.org/10.1016/j.buildenv.2015.05.040) 

http://dx.doi.org/10.1016/j.solener.2015.02.031
http://dx.doi.org/10.1016/j.buildenv.2015.05.040
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CHAPTER 6. IMPLEMENTATION AND 

VERIFICATION OF NEW MODELS IN 

IDA ICE 

A finding from Part I was that calculation of operative temperature within 

simulation programs should be improved by implementing the effect of short-wave 

radiation hitting the occupant. Additionally, it was suggested that annual daylight 

models needs to be implemented in user-friendly integrated simulation tools in order 

to make climate-based daylight evaluations practical useable for building designers. 

IDA Indoor Climate and Energy (IDA ICE) [60] is a Swedish developed simulation 

tool for simulation of thermal comfort, indoor air quality and energy use in 

buildings. The program has gained popularity among building designers in the 

Nordic countries during the last decade, which makes it suitable for implementation 

of improved models for thermal comfort and daylight evaluations. This chapter 

describes implementation and verification of new models into IDA ICE. It should be 

noted that these model implementations are only potential and not released in any 

commercial product yet.  

6.1 IMPROVED MRT MODEL IN IDA ICE 

In the present zone model in IDA ICE the MRT of a person at a specific position is 

calculated based on surface temperatures and view factors between the zone surfaces 

and an infinitely small cube. This means that only the long-wave radiation is 

considered in the MRT model. A new zone model has been developed for IDA ICE 

which includes a new MRT model with the ability to account for the effect of 

shortwave radiation in the room. This section briefly describes the new MRT model 

and focus on its verification against full-scale measurements. 

The new zone model developed in IDA ICE has the ability to predict air 

stratification and flow elements. Measurements are collected on a fine regular grid. 

The occupants are modelled as infinitely small spheres. The MRT for a point S is 

calculated according to equation 9, –based on equation 2 proposed by Fanger [40]. 

𝑇mrt
𝑆 = √∑ 𝐹𝑆→𝑗

𝑁
𝑗=1 𝑇𝑗

4  +  
𝛼

𝜎
∑ 𝐹𝑆→𝑗

𝑁
𝑗=1 𝐼

diffuse

𝑗
+ 

𝛼𝑖𝑟

𝜎
∑ 𝐶𝑖𝑟𝑟

𝑖𝑀
𝑖=1 𝑓𝑝𝐼direct

𝑖4
                      (9) 

Where 𝑇j is the temperature of surface j, 𝐹𝑆→𝑗 is the view factor from surface j to S, 

N is the number of surfaces in the thermal zone, 𝛼𝑖𝑟  is the short wave absorptance at 

the surface of S, 𝜎 is Stefan-Boltzmann constant, 𝑓𝑝 is the projected area factor of 
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point S in the direction of the sun beam, 𝐼diffuse

𝑗
 is the diffuse radiation intensity from 

surface j, M is the number of openings, 𝐶𝑖𝑟𝑟
𝑖  is an irradiation coefficient which is 

equal 1 if point S is irradiated by the direct solar beam from opening i  and 0 

otherwise and 𝐼direct
𝑖  is the direct radiation intensity of the beam from opening i. IDA 

ICE does not support the possibility of beams from several openings to hit a point, 

hence only one 𝐶𝑖𝑟𝑟
𝑖  equals 1 and the rest are 0. The operative temperature is further 

assumed to be the mean of MRT and the room air temperature, which is sufficient 

for relative air velocities below 0.2 m/s [56]. 

6.1.1 VERIFICATION OF THE NEW IMPLEMENTED MRT MODEL 

A verification of the model implementation is carried out by comparing simulation 

results with full-scale measurements in the team office in Oslo, described in section 

5.1. Figure 13 shows a scatterplot for the comparison of the simulated and measured 

data of position 1, 4 and 7 for the hours of 8-18 for days with clear sky conditions 

according to Table 5. A high correlation can be seen for all the positions which 

indicate that the new MRT model has been implemented successfully in IDA ICE 

and can be used to predict the operative temperature at the specific positions with a 

reasonable accuracy. The total relative mean bias error of these data is 0.01 % and 

the total relative root mean square error which considers error compensation due to 

opposite sign differences is 0.17 % which is in highly acceptable ranges.  

 
Figure 13: Comparison of simulated 𝑇𝑜𝑝

𝑆  with the new zone model in IDA ICE and 

measured 𝑇𝑜𝑝
𝑆  for position 1, 4 and 7. Total observations n=147, correlation coefficient 

R=0.95 (position 1), R=0.89 (position 4) and R=0.96 (position 7). 

Figure 14 shows a comparison of predicted operative temperature with the old and 

the new zone model in IDA ICE of position 1 for 14
th

 of March 2013. With the old 

zone model it is obvious that the short-wave radiation is neglected since the 

simulated operative temperatures correspond well with the average measured 

operative temperature in the shade. 
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Figure 14: Comparison of measured and simulated operative temperature for position 1. Left: 

old zone model IDA ICE 4.5, right: new zone model 

The measured drops in temperature after a day with clear sky conditions can be 

explained by the fact that the temperature sensor controlling the HVAC systems is 

placed on a concrete pile in the south-east corner in front of the room. In the late 

afternoon this pile is hit by solar radiation and heated up. This affects the readings of 

the temperature sensor and the feedback to the HVAC controller do not reveal the 

actual required heating load.  

6.1.2 CONCLUSION NEW MRT MODEL IN IDA ICE 

The results reported indicate that the new MRT model in IDA ICE contribute to 

considerable improvements in prediction of thermal comfort of persons affected by 

direct solar radiation. This prediction may further have implications on the predicted 

energy use and/or the design of the façade and the room layout, since e.g. an 

enlarged need for local cooling or increased use of dynamic solar shading might be 

discovered in the design phase as a consequence of the thermal conditions close to 

the façade, especially in case of large glass facades. It is expected that use of the 

new MRT model may contribute to increased focus on direct solar transmission of 

glazing and shading systems, since it might be seen that the only way to reduce the 

effect of short-wave radiation is to block or redirect it away from the occupants. 

One of the limitations of the new MRT model at the present time is that it is 

assumed that the whole body is irradiated if the point in question is irradiated. 

Further studies should be done to see if the model can be used for situations where 

only parts of the human body are irradiated. 

 

For more information, please refer to Paper IV: “Operative temperature and 

thermal comfort in the sun – Implementation and verification of a model for 

IDA ICE”  
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6.2 IMPROVED DAYLIGHT MODEL IN IDA ICE 

This section presents work regarding the implementation and verification of a new 

daylight model in IDA ICE. The climate-based three-phase method in Radiance has 

been implemented in IDA ICE. A pre-processor convert the IDA ICE model to 

Radiance geometry and a post-processor import the Radiance simulation results. 

Within IDA ICE, the user can choose between three sky division schemes with 

increasing accuracy, see Figure 4 (p. 36). The user can also choose among three 

levels of calculation accuracy with pre-defined Radiance parameters or they may set 

the Radiance parameters themselves. 

A major advantage of the three-phase method is that different types of windows and 

configurations of solar shadings can be studied rather easily by only exchange the 

transmission matrix in the calculation. These matrices may be generated by use of 

Window 7 [207], which uses a Klems angle basis of of 145 × 145 hemispherical 

luminous coefficients defined by paired incident and outgoing angles to the 

fenestration system [208]. An important approximation in the Klems BSDF 

approach is that the optical properties of the layers in the fenestration system are 

spatially averaged over a suitably-sized area [208]. 

6.2.1 VERIFICATION OF THE DAYLIGH MODEL IMPLEMENTATION 

Figure 15 compares measured and simulated daylight conditions in the team-office 

in Oslo on a sunny day in March 2013 for two representative locations. Some 

diversity is seen, especially before and after the sensors are hit by direct sun. These 

differences may be explained by simplifications used in the three phase model, both 

the sky patch approximation which extends the sun disc over a larger area than the 

exact sun position and the low resolution Klems BSDF basis for the incident and 

outgoing angles to the fenestration system. Yet, the results indicate that the 

geometry and external shading elements are treated correctly in the pre-processor 

and contribute to reliable daylight predictions. 

Figure 15: Comparison of measurements and simulations for two positions in the team office 

located in Oslo for a sunny day 21.03.2013. 
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Figure 16 present some representative comparisons of measurements and 

simulations of daylight conditions in the Cube, Aalborg, for two sunny days in July, 

one day without solar shading (Figure 16 a-b) and one day with the venetian blind 

activated with a tilt angle of approximately 75˚ (Figure 16 c-d). On an overall basis, 

the simulations reproduce well the measurements for a variety of locations within 

the room. However, some severe deviations are seen for sensor 1 when the solar 

shading is deactivated and for sensor 2 in the morning and in the afternoon when the 

solar shading is activated. For the former case it can again be explained by the fact 

that low resolution Klems BSDF division is utilised. In this certain case, the sensor 

is in reality just avoiding being hit by the sun, while in the simulation the sun patch 

is expanding a bit lager which makes the sensor location to be within the sun patch, 

see Figure 17. The deviation seen for sensor 2 can be explained by the fact that the 

external venetian blind is installed with a distance to the façade of approximately 20 

cm. As a consequence, a light stripe is penetrating into the room through the 

openings that occur at the edge of the window, see Figure 18. This phenomenon is 

not captured by the three-phase method where the optical properties are spatially 

averaged over a suitably-sized area in the BSDF.  

Figure 16: Comparison measurements and simulations in the experimental room in Aalborg 
for a sunny day without shading (a-b) and a sunny day with activated solar shading (c-d).   
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Figure 17: Photo inside the experiment room at 13. 30, 20.07.2014 and rendering from 

Radiance at the same time showing that the in the simulation the energy passing through the 

window is dispersed to a greater extent than what is the case in reality. 

 

Figure 18: Photo of the experiment room at 09.30, 23.07.2014 and rendering from Radiance 

showing that the light stripe penetrating into the room is not detected in the simulation. 

6.2.2 CONCLUSION NEW DAYLIGHT MODEL IN IDA ICE 

The comparison between measurements and simulations show promising results and 

indicate that the coupling between IDA ICE and Radiance is working satisfactory. 

The deviations seen between measurements and simulations are most likely caused 

by model approximations as the sky patch approximation, subdivision of the 

fenestration system according to the Klems basis and the Klems BSDF function 

approximation which treats spatially inhomogeneous systems as homogeneous 

layers. Due to these model simplifications deviations might occur when considering 

specific points. However, when evaluating the daylight sufficiency in a room on an 

overall basis and over a sufficient time period, these small, local and time dependent 

deviations might have minor importance. This is especially true for an integrated 

design where the main goal is to predict how the fenestration characteristics 

influence visual and thermal comfort and the consequences it has on the energy use 

as well as to predict the need for use of solar shading to avoid glare and overheating. 

The designer should, however, be aware of the limitations associated with the three 

phase model. 

 

For further reading and an example of application of the new daylight model 

within an integrated design, please refer to Paper VI: “Integrated design of 

daylight, thermal comfort and energy demand with use of IDA ICE”  
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CHAPTER 7. OCCUPANTS 

SATISFACTION WITH TWO BLIND 

CONTROL STRATEGIES 

This chapter present the results of the occupant survey described in Chapter 5 with 

respect to occupants’ satisfaction with the two blind control strategies illustrated in 

Figure 11 (p. 55): slats closed and slats in cut-off position. 

7.1 LIGHT AND THERMAL ENVIRONMENT 

Within the temperature ranges occurring in the test room, the occupants did not 

report significant differences in perceived thermal comfort between the two control 

strategies. It is therefore presumed that the small differences occurring in the thermal 

environment did not affect the test subjects’ perceived visual comfort. Figure 19 

gives an example of how the light conditions might vary throughout a sunny day for 

each of the control strategies. The figure clearly shows that both the access to 

daylight and view to the exterior are better for the detailed strategy.  

 

 
Figure 19: Rendering of the luminance (perspective) and illuminance (horizontal plane 0.85m 

above floor) in the test room for the two solar shading control strategies with use of Velux 

Daylight Visualizer [209] for sunny sky conditions on May 21st  at 09.00 AM (upper row), 

12.00 AM(middle row) and 03.00 PM (lower row). 
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7.2 COMFORT AND PREFERENCES 

A concern regarding use of automatically controlled solar shading systems is the 

acceptance by occupants. Robust control strategies should limit the number of 

overrules actions. When the test subjects were asked if they felt that the blinds 

needed to be changed to maintain a comfortable work place, surprisingly similar 

responses were given during the two control strategies and a considerable part of the 

participants required change, see Figure 20. However, the reason for wanting to 

change the blinds, cf. Figure 21 (a and b), significantly depends on the control 

strategy (Fisher exact test, p=0.04). As anticipated, the dominant reasons for 

wanting to change the blinds during the simple control were particularly to provide 

better view to the outside as well as wanting more light into the room and to the 

desk.  Reasons for wanting to change the blinds during the detailed control strategy 

were more mixed. There are still some test subjects wanting more light into the 

room and better view to the outside, but now noticeable more changes would regard 

the request for less glare and less light into the room.  

 

Figure 20: Reported preference for change of blinds for the simple and detailed control 
strategy in order to maintain a comfortable work place. 
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Figure 21: Reported reasons for changing the blinds during the simple (a) and detailed 
control strategy (b). Participants could check as many explainary factors as they wanted. 
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Several studies have reported that having personal control over the physical 

workspace leads to higher satisfaction with the indoor environment and increased 

occupant comfort [185, 210]. The importance of personal control is supported by the 

responses in this study, see Figure 22. 

7.3 PREFERRED SOLAR SHADING CONTROL STRATEGY 

After completing the test under each control strategy, the test subjects were asked 

about which control strategy they would prefer in their daily office work. Three 

participants selected the option “No preference”, see Figure 23a. Their 

supplementary comments were interpreted as them not liking either of the control 

strategies.  However, what is more interesting is to assess if the detailed control 

strategy is significantly more popular than the simple control strategy. An exact 

binomial test suggests that there is a significantly higher probability that the detailed 

control strategy is preferred than the simple control strategy (p=0.02).  

Figure 23: a) Reported preferred solar shading control strategy. b) Reported subjective 
importance of view.  

One of the variables of interest to inspect, in order to see if it may contribute to 

predict the choice of control strategy, is the test subjects’ rating of importance of 

view. In this study the participants report higher disturbance by glare during the 

detailed control strategy than the simple control strategy, the detailed control 

strategy is nevertheless more preferred. This might be correlated to the phenomenon 

that the participants might tolerate some disturbance due to glare as long as they 

have access to view to the outside. Supplementary comments also gives strong 

indications that view to the outside influences the choice. Figure 23b illustrates that 

all test subjects rated view to be either moderately or very important. The majority 

Figure 22: Preferences for personal control of the solar shading. 
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of the subjects rating the view as very important prefer the detailed control strategy. 

However, a Fisher exact test suggests that the dependence between choice of 

preferred control strategy and rated importance of view is just outside the range of 

being categorized as statistically significant (MC=1e+08 replicates, p=0.06).  

Due to differences in the outdoor weather conditions and time of day when the 

different tests were completed, there were some variations in the indoor conditions 

which the test subjects were exposed to; especially for the detailed control strategy. 

Figure 24(a and c) gives box-plots for the horizontal and vertical illuminance with 

respect to the preferred control strategy for the paper task and computer task during 

the detailed control strategy. Horizontal and vertical illuminance conditions are 

significantly higher during the detailed control strategy for those test subjects 

preferring the simple control strategy than for those preferring the detailed control 

strategy (t-test, p=2.6e-04 and p=0.01). Figure 24(b and d) illustrates the response of 

satisfaction with the light environment. An Exact Wilcoxon rank sum test suggests 

that the test subjects preferring the detailed control strategy report a significantly 

higher satisfaction with the light environment both for the paper task and the 

computer task during the detailed control strategy than those preferring the simple 

control strategy (p=0.03 and p=3.0e-03). 

0

5

10

15

20

25

N
u
m

b
er

 o
f 

re
sp

o
n
se

s 

Satisfaction with light environment paper task  

detailed control strategy 

Simple control preferred Detailed control preferred

b) 

0

5

10

15

20

25

N
u
m

b
er

 o
f 

re
sp

o
n
se

s 

Satisfaction with light environment computer task 

detailed control strategy 

Simple control preferred Detailed control preferred

d) 

Figure 24: a) Box-plot of mean horizontal illuinance when doing paper work. b) Satisfaction 
with light environment when doing paper task. c) Box-plot of mean vertical illuinance when 
doing computer work. d) Satisfaction with light environment when doing computer work. All 
figures refer to response during the detailed control strategy. 
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These last comparisons and findings indicate that there might be space for 

improvement of the detailed control strategy in order to obtain higher acceptance by 

the occupants. The box-plots for vertical illuminance (see Figure 24c) reveal that 

illuminance levels above the set point of 2000 lux occur at several occasions even if 

the solar shading was activated. One improvement might be to make the control tilt 

the slats to an angle larger than the cut-off angle or 15˚ if the set point for vertical 

illuminance is still exceeded after activation [177, 211]. For practical 

implementations, careful consideration of the frequency of the movement must be 

considered for such strategy.  Based on the box-plot for vertical illuminances during 

computer work (see Figure 24c), another improvement in the detailed control 

strategy might be to lower the set point of the vertical illuminance.  

7.4 CONCLUSION 

Comments by the participants in this study strongly suggest that view to the outside 

influenced the choice of preferred control strategy. The results further indicate that a 

cut-off strategy is not sufficient to avoid glare, even though a lower limit of the slat 

angle of 15˚ was set for the current case. Insufficiency of cut-off angles to avoid 

glare has earlier been reported in simulation studies [177, 211]. It is recommended 

that glare analysis should be incorporated into building design to a greater extent 

than what is common practice today. This should though be done in combination 

with daylight supply and view assessment in order to avoid recommending solar 

shading products or strategies that totally block the view contact to the exterior, 

since this study indicate that a certain amount of glare might be accepted by the 

occupants as long as view to the outside is available. 

On an overall basis the results implies that the simplified treatment of blinds with a 

constant g-value corresponding to closed slats commonly used in building design 

might be insufficient when the aim is to make realistic building performance 

predictions. Therefore, it is recommended that building designers consider realistic 

control strategies, utilizes the slat angle as a control variable and apply building 

simulation tools which incorporate models that take angular properties of solar 

shading devices into account in a physical acceptable manner. 

With respect to development of solar shading strategies, it is recommended that 

further effort is put into finding optimal set points for activation of the solar shading 

and for controlling the tilt angle of the blinds in order to obtain a robust control 

strategy with limited overrule actions. 

 

For further reading, please consult Paper I: “Occupant satisfaction with two 

blind control strategies: Slats closed and slats in cut-off position” (DOI: 

http://dx.doi.org/10.1016/j.solener.2015.02.031) 

http://dx.doi.org/10.1016/j.solener.2015.02.031
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CHAPTER 8. SIMPLE MEASURES 

FOR INDICATION OF DISCOMFORT 

GLARE FROM WINDOWS 

In this chapter, the subjects’ glare rating within the occupant survey is compared 

with measures of vertical eye illuminance, horizontal illuminance at the desk and 

predictions with DGPs. This is done in order to investigate if these measures are 

suitable to utilise within building design as an indication of glare. 

8.1 VERTICAL EYE ILLUMINANCE 

Figure 25 shows the ordered results of vertical eye illuminance colour-coded by the 

reported response of perceived glare for the present study. The dotted line in the 

graph markes the turnover point at Ev>1700 lux for where the responses in this study 

indicate that it is more likely to be disturbed by glare than not being disturbed by 

glare when assessing the glare response as an binominal response. This turnover 

point is higher than that reported by Van Den Wymelenberg and Inanici [120] of 

1250 lux; however, their turnover point represents the change from “most perferred” 

to “just uncomfortable” scenes, wheras the turnover point in this study represents the 

change from imperceptible or noticable glare to disturbing or intolerable glare.  

 
Figure 25:  Results ordered according to vertical eye illuminance (Ev) and colour-coded by 

response to perceived glare. The dotted line represents the turnover point where it is more 

likely to be disturbed by glare than not to be disturbed by glare at values above this. 

It might seems like a contradiction that subjects report glare at low illuminance 

levels; however, it is important to remember that contrast-based glare might be a 

considerable concern in low light environments [122, 212]. One of the limitations 
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with vertical eye illuminance as an indicator of glare is that it can never account for 

contrast-based glare, unless the contrast itself contributes to a significant increase in 

the vertical illuminance [131, 212]. It should be noted that all responses of 

disturbing glare in the low illuminance range are reported under the simple solar 

shading control strategy when the lamellas are fully closed. As mentioned in section 

6.2.1, a vertical stripe of light from the side of the solar shading and a horizontal 

stripe of light at the bottom of the solar shading occurred in closed position. When 

the lamellas are closed, the luminance ratio between the vertical/horizontal light 

stripe and the surrounding surfaces might be significant, especially for sunny 

weather conditions (see Figure 26), and the light stripes might act as a distraction to 

the occupants’ eyes away from the central vision. 

 

Figure 26: Rendering of the luminance in the test room for the two solar shading control 

strategies, upper row = simple, lower row = detailed. Luminance values are given with a 

false color scale where red indicates values equal to or above 2000 cd/m2. The rendering is 

done in Velux Daylight Visualizer [209] for sunny sky conditions on May 21st at 10AM. 

Table 10 gives a summary of statistical measures for the logistic regression model 

with Ev as a predictor variable. The resulting p-value from the Wald test suggests 

that Ev is connected to the probability of being disturbed by glare in a statistically 

significant way. Computing the chi square difference between the model with only 

an intercept and the model where Ev is added gives us a p-value of 7.74 e-5, 

suggesting that only adding Ev significantly improve the prediction of disturbance by 

glare. Further, the c-statistic of the model indicates that the model has an acceptable 

but rather weak discriminative ability. The lack of explanatory power of the model 

might be attributed to limited data as well as to a restricted number of occupants 

reporting disturbance by glare in the present study.  



CHAPTER 8. SIMPLE MEASURES FOR INDICATION OF DISCOMFORT GLARE FROM WINDOWS 

73 

Table 10: Statistical measures for the logistic models with Ev and Eh as predictor variables. 

 𝛼 𝛽 AIC BIC Nag.’s 

pseudo 

R
2
 

Brier 

score 

c-

statistic 

p-value 

predictor 

variable 

p-value 

likelihood 

ratio test  

Ev -2.71 0.001 155.28 161.62 0.14 0.13 0.66 1.17 e-4 7.74 e-5 

Eh -3.28 0.001 150.60 156.94 0.18 0.13 0.67 1.24 e-5 6.62 e-6 

 

8.2 HORIZONTAL ILLUMINANCE AT THE DESK 

Figure 27 shows the ordered results of horizontal illuminance at the desk colour-

coded by the reported response of perceived glare and it is seen that the horizontal 

illuminance is generally higher than the vertical illuminance under the test 

conditions. This graphic reveils three preliminary thresholds: if Eh < 1900 lux, it is 

likely that the occupants are not disturbed by glare; if 1900 lux < Eh < 2100 lux, the 

probability of being desturbed/not disturbed by glare is equal; while if Eh > 2100 

lux, it is likely that the occupants are disturbed by glare. This upper threshold 

corresponds well with the the original threshold of UDI-e of 2000 lux [92]. 

 
Figure 27: Results ordered according to horizontal illuminance (Eh) and colour-coded by 

response to perceived glare. The dotted lines show the bounded BCD, where the upper line 

represents the turnover point where it is more likely to be disturbed by glare than not be 

disturbed by glare at values above this. 

Table 10 also presents statistical measures for the logistic regression model for Eh as 

a predictor of glare. Similar to what was seen for vertical illuminance, the resulting 

p-value for Eh from the logistic regression (p=1.24e-5) suggests that Eh is connected 

to the probability of being disturbed by glare in a statistically significant way. 

Conducting a likelihood ratio test between the model with only an intercept and the 

model where Eh is added results in a p-value of 6.62e-6, suggesting that only adding 

Eh significantly improves the prediction of disturbance by glare. Similar to what was 

seen for Ev, the c-statistic of the logistic regression model suggests that the model 

with Eh also has an acceptable but rather weak discriminative ability.  
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Comparing the AIC, BIC and R
2
 presented in Table 10 for the two logistic models 

gives indications that the logistic regression model with Eh performs slightly better 

than the logistic regression model with Ev in this study. However, the difference of 

BIC between the models is <6 which, according to Raftery [213], only gives a 

positive but not statistically strong evidence that the logistic model for Eh performs 

better than the logistic model for Ev. The same Brier score of 0.13 for the two 

models also indicates similar overall performance of the models. 

It should be emphasised that use of horizontal illuminance as an indication of glare 

might be position dependent as suggested by Konis [127] as well as having the same 

limitation as Ev of not being able to adequately represent contrast-based glare 

environments. Additionally, as Wienold [131] points out, horizontal illuminance 

cannot take the spatial light distribution into account.     

8.3 DGPs 

Figure 28 shows the comparison of the percentage of persons disturbed by glare for 

the observed data and the predictions according to DGPs for both of the grouping of 

the data described in section 5.3.5.2.2. The dotted lines indicate the confidence 

interval for the regression lines of the observed data from the current study. The 

coefficients of determination are 0.77 (24 responses) and 0.65 (12 responses), and 

this might support the argument by Hirning et al. [122] suggesting that the group 

division by Wienold and Christoffersen [111] over determine the correlation. 

Figure 28: The daylight glare probability as a function of vertical illuminance at the position 

of the subject’s eyes (EV) both for the observed data in the current survey and for the 

predictions based on DGPs according to two group divisions. The dotted lines represent the 

confidence intervals for the regression lines of the observed data. 

When comparing the reported glare sensation in this study with the predictions done 

according to DGPs, the regression lines for the observed data have steeper slopes 

than the ones for DGPs for both groupings. It seems like the participants in the 

present study are more tolerant to low illuminance levels than what is predicted with 

DGPs, whereas they are more sensitive to illuminances higher than approximately 
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1400-1500 lux than predictions with DGPs indicate. This observation is confirmed 

by an analysis of variance, which suggests that there are statistically significant 

differences both between the intercept (p=0.015 (group of 24 responses), p=1.7e-3 

(group of 12 responses)) and the slope (p=0.029 (group of 24 responses), p=5.0e-3 

(group of 12 responses)) of the lines for the observed data and the line for the 

prediction according to DGPs. It should be noted that the illuminance levels in the 

present study are generally lower than most of the levels reported in the study by 

Wienold and Christoffersen [111], which might be an explanatory factor for the 

differences seen. However, the tendency of being more sensitive to relatively high 

vertical illuminance levels then the DGPs predict are also supported by the studies 

by Van Den Wymelenberg and Inanici [120] and Konis [127], who predicts 50 % of 

the occupants to be disturbed by glare at Ev of 1250 lux and 1600 lux respectively. 

8.4 CONCLUSION 

Similar to earlier reported research, large individual variations were seen in the 

occupants’ assessment of glare. This strongly suggests that the users should have the 

opportunity to control or overrule the glare control within an office environment in 

order to be able to maintain an acceptable visual environment.  

The results from this study confirm that there is a statistically significant correlation 

between both vertical eye illuminance and horizontal illuminance at the desk and the 

occupants’ perception of glare in a perimeter zone office environment. This finding 

is promising as it supports that such simple measures might be applied in annual 

analysis in the building design in order to obtain a design basis which arranges for 

satisfying visual comfort. Based on the result from this study, 1700 lux vertical eye 

illuminance at the occupant position and 1900-2100 lux horizontal at the desk seem 

like reasonable thresholds for avoiding excess glare perceptions in perimeter zones. 

However, as neither vertical nor horizontal illuminance can represent contrast-based 

glare, especially under low-light environment, more detailed analysis is needed in 

case of low-light dominating environments.    

This study was not able to reproduce the results of Wienold and Christoffersen [111] 

with respect to DGPs. The observed response indicate that the participants in the 

present study were more tolerant to low illuminance levels and more sensitive to 

high illuminance levels than the DGPs model would predict. The idea of being able 

to predict the percentage of people being disturbed by glare is advantageous as it 

may allow differentiating between different levels of quality of a design as proposed 

by Wienold [131] and it also addresses the participant variability to glare.  

 

For further reading, please consult Paper II: “Verification of simple illuminance 

based measures for indication of discomfort glare from windows” (DOI: 

http://dx.doi.org/10.1016/j.buildenv.2015.05.040) 

http://dx.doi.org/10.1016/j.buildenv.2015.05.040
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CHAPTER 9. SOLAR SHADING 

CONTROL STRATEGY  

The objective of the study presented in this chapter is to continue the work 

conducted within the FG project (see Figure 5 p. 41) by extending the control 

algorithm with factors relating to glare, daylight sufficiency and view based on 

findings in the literature and results from the occupant survey reported in Chapter 7 

and Chapter 8. This is done in order to obtain a realistic control strategy that 

balances the aspects of indoor environmental performance and energy demand for 

office buildings in cold climate. Full-scale measurements in the Cube will be used to 

verify the control strategy performance. 

9.1 CONTROL ALGORITHM 

The control strategy is divided into two main parts: work hours and outside work 

hours. During the work hours, the main goal is to obtain occupant comfort. In this 

mode the control strategy focuses on avoiding glare and overheating while also, 

when possible, ensuring satisfactory daylight supply and view to the outside by 

utilizing the estimated cut-off angle of the slats in activated state. An improvement 

of the control strategy applied in the occupant survey is that the tilt angle is step-

wised increased in case the cut-off angle is insufficient in avoiding glare. 

Additionally, the set-point of vertical eye illuminance, which is used as an indication 

of glare, is adjusted to 1700 lux based on findings from Chapter 8.  

Outside work hours, energy saving is the main focus, and the solar shading is 

utilized both as an insulating layer during cold periods as well as a protecting shield 

against excessive unwanted solar gains during cooling-dominated periods. 

9.2 SIMULATION MODEL 

A simulation model of the Cube is constructed within IDA ICE [60] according to the 

description of the test case given in section 5.2. The analysis uses the detailed zone 

model with the new improved operative temperature model that includes the effect 

of direct solar radiation, verified in Chapter 6.    

The detailed window model in IDA ICE is applied in the simulation where the 

thermal window and shading performance are modelled according to ISO 

15099:2003 [195]. The daylight contribution from the window opening is calculated 

with the new daylight features in IDA ICE, also verified in Chapter 6. 
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Figure 29: Optimized control strategy with respect to visual and thermal comfort and energy 

use. * Cut-off angle, minimum tilt angle of 15˚. ** Cut-off angle, minimum tilt angle of 15˚ 

and stepwise increase of 10˚ until Ev< 1700 lux. tair, room is room air temperature (˚C), tset, 

heat/cool is set-point temperature for heating/cooling, Ev is vertical eye illuminance and Isun is 

vertical external solar irradiation. 

9.3 VERIFICATION OF SHADING CONTROL PERFORMANCE 

In order to verify the performance of the control strategy for heating and cooling 

seasons, measurements in the Cube were conducted during July 2014 and January 

2015 and compared with simulation results. Due to a relatively warm period in 

Aalborg in January 2015, the set-points for heating and cooling were set to 32 ˚C 

and 35 ˚C respectively in order to trigger a heating demand, for the cooling season it 

was fixed to 21 ˚C and 25 ˚C respectively.  

Figure 30(a) compares measured and simulated heating power during 17.01.2015–

23.01.2015 for which the proposed optimized shading control is applied. 

Additionally, the figure illustrates by use of simulations how the heating demand 

would have been with only external solar shading and without night shading. The 

simulation results reproduce the measurements rather well and the coefficient of 

determination (R
2
) is equal to 0.94, see Figure 29(b). Some severe deviations occur 

at certain situations during daytime where the simulation underdetermines the 

heating demand. The reason for this is mainly the differences in measured and 
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modelled vertical irradiances at the façade and can be attributed the inaccuracy of 

the Skartvet-Olseth model under intermediate sky conditions.         

Based on the simulation results, it is further evident that use of solar shading as 

insulating layers outside work hours may have a certain energy saving potential in 

cold climates during the heating season.  Additionally, using internal solar shading 

as glare protection and letting heat enter the room during periods with a heating 

demand contributes to reduce energy for heating at daytime, see 17.01.2015.  

Figure 30: a) Comparison of measured and simulated heating uses during the period of 

17.01.2015-23.01.2015. b) Correlation between measured and simulated heating uses under 

the proposed optimized control strategy.  

Figure 31 illustrates the resulting chill beam cooling power for the measurements 

and simulations during the period of 25.07.2014–30.07.2014. Figure 31(a) compares 

measured and simulated cooling power for a situation to which the proposed 

optimized shading control is applied. Additionally, the figure illustrates by use of 

simulations how the cooling demand would have been if only internal solar shading 

were applied. Similar to the heating comparisons, the simulation results reproduce 

the measurements rather well with a coefficient of determination (R
2
) of 0.94; see 

Figure 31(b). It should also be pointed out that the simulation results are within the 

measurement accuracy level at all times during the analysed period (±0.9 L/h flow 

meters and ±0.057 K Pt-500 temperature sensors). 

Figure 31: a) Comparison of measured and simulated cooling use during the period of 

25.07.2014-30.07.2014. b) Correlation between measured and simulated cooling use under 

the proposed optimized control strategy. 
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Comparison of air temperatures and operative temperatures at the occupant position 

also shows that the simulations are capable of reproducing the measurements with a 

reasonable level of accuracy for both heating and cooling seasons, see Table 11.        

Table 11: Mean bias errors, mean absolute errors and root mean square error of the 
simulated air and operative temperatures for winter and summer performances in the Cube. 

 MBE [˚C] MAE [˚C] RMSE [˚C] 

 Tair Top Tair Top Tair Top 

Winter performance -0.04 0 0.06 0.10 0.19 0.20 

Summer performance 0.08 -0.04 0.11 0.17 0.15 0.20 

 

9.4 ANNUAL PERFORMANCE SOLAR SHADING CONTROL 

The previous section illustrate that IDA ICE is able to reproduce both heating and 

cooling season situations with reasonable accuracy and that the simulation model is 

well calibrated, which makes it interesting to expand the investigation and explore 

the annual performance of the control strategy at different geographical locations. 

The expanded investigation considers the locations Aalborg (57°3'N, 9°55'E), Oslo 

(59°57'N, 10°45'E) and Røros (62°34'N, 11°23'E).  

The construction of the simulation model is kept unaltered from the investigation in 

the previous sections, while Table 12 summarises the HVAC set-points as well as 

internal gains used in the annual simulations.   

Table 12: Set-points for HVAC systems and overview of internal gains in annual analysis. 

Category Input value 

Set-point heating/cooling 21˚C / 25˚C (15.Sep.-15.May) 

19˚C / 25˚C (15.May-15.Sep.) 

Internal gains Occupants 1 occupant (7-19 weekdays) 

Activity level: 1 met 

Clothing level: 0.85 ± 0.25 clo 

Equipment 50 W (7-19 weekdays) 

Lighting Max 60 W, controlled to maintain 500 lux at the work plane according 

to the dimming characteristics given in Figure 9 (7-19 weekdays). 

Ventilation Supply air (CAV) 2.6 l/(s m2) (7-19 weekdays) 

1.6 l/(s m2) (rest of the time) 

Supply air temperature Outdoor compensated (18 ˚C at -20 ˚C, 16 ˚C at 25 ˚C) 

Heat exchanger 80 % 

In order to evaluate the annual performance of the control strategy in Figure 29, it is 

necessary to compare it to some reference. In this case the reference is chosen to be 

a simple control strategy commonly used in building design annotated Control 100 

W/m
2
 external, as well as the annual performance when there is no shading in use as 

references. Additionally, it is assessed how the annual performance of the proposed 

control strategy would be with either only internal or external solar shading. Table 

13 summarises a short description of the investigated solar shading controls.  
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Table 13: Overview of the simulated solar shading controls. 

Solar shading control Description of solar shading control 

Optimized control According to the control algorithm in Figure 29. 

Detailed control external According to the control algorithm in Figure 29, but only with use of external shading. 

Detailed control internal According to the control algorithm in Figure 29, but only with use of internal shading. 

Control 100 W/m2 external The solar shading is activated when the external vertical irradiance at the façade 

exceeds 100 W/m2. In activated position the slats are closed with a slat angle of 80˚, in 

practice totally closed. 

No solar shading No solar shading applied. 

9.4.1 RESULTS AND DISCUSSION – ANNUAL PERFORMANCE  

Figure 32–Figure 34 present results of the annual performance of the solar shading 

control strategies outlined in Table 13 with respect to energy use and indoor 

environment for the locations of Aalborg, Oslo and Røros. Since identical venetian 

blinds are used both for internal and external shading, there are only neglect able 

differences in the daylight results for the optimized control, detailed control external 

and detailed control internal. These results are, therefore, presented together under 

the label ‘optimized/detailed control’. 

It is apparent that the optimized solar shading control strategy or the detailed control 

strategy with only external shading is the best compromise between energy use and 

indoor environment for all three considered locations. This is the control strategy 

with the lowest net energy demand, a thermal comfort within acceptable ranges as 

well as a highly acceptable daylight sufficiency with DA300_50% of 100 % at all three 

locations. With this control strategy, the solar shading is activated for 61 %, 40 % 

and 45 % of the occupied time for the location of Aalborg, Oslo and Røros 

respectively. During this time, the slat angle is less than 45˚ during significant parts 

of the time, which gives a certain contact to the outside, see Table 14. It should be 

noted that there are times when the vertical eye illuminance at the occupant position 

exceeds 1700 lux even for this control strategy, which indicates that there is not an 

ideal correlation between vertical illuminance at the sensor placement and the 

occupant position at all times. This illustrates the challenge with sensor placement. 

Additionally it proves the importance of arranging for manual override of the solar 

shading, maybe along with flexibility of the occupants’ viewing direction in order 

for the occupant to be able to obtain an acceptable visual work environment at all 

times; strategies which have been pointed out in earlier studies [118, 185, 210].      

Table 14: Summary of percentage of occupied time with activated solar shading and the 
percentage of time with activated solar shading with slat angle <45˚. For Control 100 W/m2 
the tilt angle is fixed at 80˚ in activated mode.  

 Percentage of occupied time with solar shading 

activated 

Percentage of time in activated mode with slat angle 

<45˚ 

 Optimized control Control 100 W/m2 Optimized control Control 100 W/m2 

Aalborg 61 57 72 N/A 

Oslo 40 57 84 N/A 

Røros 45 60 88 N/A 
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Figure 32: Comparison of annual energy demand for heating, cooling and lighting for 
different solar shading controls for the location of Aalborg, Oslo and Røros.  

Figure 33: Room centerline distribution of daylight autonomy 300 lux for the different solar 
shading control strategies for the location of Aalborg (a), Oslo (c) and Røros (e). Duration 
curves of the operative temperature with inclusion of direct sun at the occupant position for 
the different solar shading control strategies for the location of Aalborg (b), Oslo (d) and 
Røros (f). 
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Figure 34: Analysis of the annual Ev at the occupant position with a view direction towards 
the south-west corner of the room according to Figure 7c (p. 50). The dark red areas indicate 
hours with an Ev level above 2100 lx.  
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9.5 CONCLUSION 

Full-scale measurements showed promising performance of the proposed solar 

shading control strategy for both winter and summer conditions. Generally, the 

investigation exemplifies the importance of doing integrated evaluations of energy 

use and thermal and visual comfort when making decisions regarding solar shading 

control strategies. The results of the annual performance illustrated that the proposed 

control strategy would be the best compromise between energy use and indoor 

environmental performance. Still, for moderate cold climates, like Aalborg and 

Oslo, the application of the proposed control strategy with only external shading 

might be the preferred alternative since investment cost of two sets of solar shading 

with automatic control might be unprofitable when considering the lifetime of the 

components. As for more extreme cold climates, the energy and indoor 

environmental performance analyses should be accompanied with a cost-benefit 

analysis when making decisions of installing only external or a combination of 

external and internal solar shading systems.   

Further, sensor placement for vertical illuminance might be a challenge since there 

is no ideal correlation between illuminance at two positions in the room at all times 

during a year. Even with activated solar shading and controlled tilt angle to avoid 

vertical illuminance >1700 lux at the sensor placement, the vertical eye illuminance 

at the occupant position might exceed this threshold which could be associated with 

a risk of glare. Still, it is assessed that the solar shading performance is acceptable 

since the results from the occupant survey reported in Chapter 7 indicates that a 

certain amount of glare might be accepted by the occupants as long as there is a 

view to the outside. However, users should have the opportunity to overrule the 

automatic glare control within an office environment or have the flexibility to 

change viewing direction in order to be able to maintain an acceptable visual 

environment at all times.  

 

  

For further reading, please consult Paper III: “Solar shading control strategy for 

office buildings in cold climate”  

(DOI: http://dx.doi.org/10.1016/j.enbuild.2016.03.014) 

http://dx.doi.org/10.1016/j.enbuild.2016.03.014
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PART III – CONCLUSION AND FUTURE 
WORK 

This part contains an overall discussion and conclusion of the thesis where the work 

is put in perspective. The part is ended off with a suggestion for future work based 

on findings and knowledge gained through this project. 

 

 

 

 

The whole of science is nothing more than a refinement of 

everyday thinking. 

–Albert Einstein 
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CHAPTER 10. CONCLUSION 

This PhD thesis was based on the fact that there is a lack of consistency in the 

building design with respect to thermal comfort, daylighting and energy use. 

Consequently, the objective of this project was to arrange for a more holistic design 

process where the predicted thermal comfort, daylighting and energy use are based 

on the same underlying assumptions. Further, it was an aim to make such integrated 

design method practical applicable for building designers in Nordic countries.  

First out was to investigate if the approaches used to model and evaluate thermal 

comfort and daylight within present building design constituted any obstacles for 

conducting an integrated design. In practical design, operative temperature is the 

most commonly applied evaluation criteria and it was assessed that its use doesn’t 

represent a hinder for conducting integrated design. Even though, studies reported in 

the literature indicated need for improvement of the modelling of MRT. Through the 

last decades a common simplification within practical engineering has been to 

model MRT as the mean temperature of all the surrounding surface areas. However, 

based on findings in the literature, it was suggested to model MRT as a function of 

the location in the room accounting for contribution of both long and short-wave 

radiation, see Figure 35 Such level of detail is required in design of modern office 

buildings, where both use of extensively glazed facades and deep room layouts are 

rather dominating on which significant local differences in the thermal environment 

might occur. Within this thesis it was confirmed that a model proposed by Fanger 

for calculation of MRT of a person affected by a high intensity radiation heating 

source can be used for assessing the effect of solar radiation. Further, it was verified 

that the model is successfully implemented in the simulation tool IDA ICE.  

Figure 35: Illustration of how thermal comfort usually is modelled and evaluated in present 

building design (left) and a suggestion of how it should be done in the future (right). 

Regarding daylight design, results from the literature review indicated that the static 

daylight calculations and widespread evaluations according to 𝐷𝐹/𝐷𝐹̅̅ ̅̅  along with 

lack of glare evaluations actually represented obstacles with respect to achieving an 

integrated design. Based on findings in the literature it was suggested that the DF 
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should be replaced with climate-based daylight metrics for assessment of daylight 

supply. Moreover, it was implied that annual glare evaluations are required within 

visual comfort assessments and predicted need of solar shading activation, see 

Figure 36. A few climate-based daylight models were identified in the literature. The 

three-phase model was implemented in IDA ICE, due to its advantage of efficiently 

consider various fenestration configurations. Successful implementation was 

verified by comparison of simulations and full-scale measurements.  

 
Figure 36: Illustration of how daylight usually is statically modelled and evaluated in present 
building design (left) and a suggestion of how it should be done dynamically with 
consideration of e.g. solar shading, climate and location in the future (right). 

Secondly, it was of interest to investigate how use of solar shading should be 

accounted for within an integrated building design, since the fenestration system and 

its control was identified as a crucial link between thermal and daylighting 

performance. The literature indicated that simple shading control strategies based on 

externally measured solar radiation commonly are utilised in building design and 

operation. Additionally, it was found that the blind slat angle generally is ignored in 

studies treating venetian blinds and that the blind position only is considered as open 

or closed. Based on findings in the literature, it was suggested to use multi-variable 

control strategies in order to fulfil various functions of the solar shading, use 

variables associated with interior conditions as activation criteria to maintain 

occupant comfort as well as consider the blind slat angle as a control variable.  

A multivariable solar shading control algorithm proposed through the Norwegian 

R&D FG-project was modified by implementing blind slat angle as a control 

variable. Additionally, interior vertical eye illuminance replaced external vertical 

solar irradiation as a parameter for indication of glare. The modified part of the 

control strategy (detailed control) for occupied hours were tested in an occupant 

survey together with a control strategy simulating how solar shading commonly is 

treated in present building design with slats closed in activated position (simple 

control), see Figure 37. Results from the occupant survey suggested that 

significantly more of the test subjects in the survey preferred the detailed control 
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strategy, even though it was associated with higher occurrence of glare than the 

simple control. The finding further indicated that view to the outside was an 

important factor for occupants comfort. Based on these results, the modified solar 

shading control was further improved and its performance was verified by full-scale 

measurements at heating and cooling seasons along with annual simulations. The 

simulation results exemplified the importance of doing integrated evaluations when 

making decisions regarding solar shading control strategies, which support the value 

of the proposed framework for integrated design. 

 

Figure 37: Illustration of how solar shading control usually is modelled in present building 
design (left) and a suggestion of how it should be done in the future (right). 

Table 15 summarizes suggested criteria for thermal and visual comfort evaluations 

within an integrated design. With respect to the daylight evaluation, the listed 

criteria are a renewed proposal compared to those presented in Table 2 (p. 37). Since 

the time when the initial proposal for implementation of daylight as part of the 

integrated design was developed, researchers have reported results that strengthen 

the evidence towards using sDA300/50% as annual daylight criteria [214, 215]. 

Additionally, the Education Funding Agency (EFA) in UK now requires use of 

climate based daylight design when designing schools, either UDI or DA [216]. 

Further, sDA300/50% has been implemented in the certification system LEED v4, 

which has extended its application. With respect to glare evaluations, results from 

the occupant survey reported in this thesis confirm that there is a statistically 

significant correlation between both vertical eye illuminance and horizontal 

illuminance at the desk and the occupants’ perception of glare in a perimeter zone 

office. These findings support that horizontal illuminance at the desk might be an 

applicable indicator of glare for perimeter office environments, especially for use in 

early building design. While vertical illuminance, which possess the ability of taking 

the spatial light distribution into account, might be favourable at a later design stage 

when the location of the occupant is decided as well as for incorporation as control 

parameter for building control strategies. Further, evaluation of view has been added 

as a parameter for assessment of visual comfort, since results from the occupant 

survey suggest that view might be an important factor for occupants comfort.  
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Table 15: Suggested thermal and visual evaluation criteria for an integrated design. 

Design 

stage 

Thermal 

comfort 

Daylight 

supply 

View Glare  

Initial 

design 

Top, sun (DF)/ 

sDA300/50% / 

UDI 

Percentage of occupied time 

with closed solar shading. 

2000 lux at the horizontal 

work plane. 

Schematic 

design  

Top, sun sDA300/50% / 

UDI 

Percentage of occupied time 

with closed solar shading. 

2000 lux at the horizontal 

work plane. 

Detail 

design  

Top, sun sDA300/50%/ 

UDI 

Percentage of occupied time 

with closed solar shading, plus 

indication of time when a 

certain amount of view through 

the slats are maintained.  

1700 lux vertical eye 

illuminance. More 

detailed assessments for 

low light environments. 

10.1 PRACTICAL IMPLICATIONS 

By utilising the proposed integrated design method with associated evaluation 

criteria, the designer might experience that predicted energy use may be higher than 

predictions done with conventional methods. In a practical design world where 

fulfilments of energy requirements are high on the agenda, this is of course not an 

incentive for conducting such integrated design. However, the motivation for using 

the suggested integrated approach should be that it reflects the building performance 

more realistically and one can make design decisions and building optimizations 

rooted on a more information based foundation.       

In present building design, architects usually have the responsibility of daylight 

design while the engineers commonly have the commitment towards thermal 

comfort and energy use of the building. The suggested integrated design presented 

in this thesis may have consequences on this traditional distribution of area of 

responsibility. The proposed design is founded on the principle that the predicted 

energy use and thermal and visual comfort are based on the same underlying 

assumptions, e.g. with respect to climate data as well as use of solar shading, 

artificial lighting and heating/cooling. It is therefore highly recommended that an 

integrated simulation tool is utilised throughout the design to secure such agreement 

in the boundary conditions. Subsequently, it will be natural if the responsibility of 

energy use, thermal comfort and daylighting is gathered at one design discipline. 

Due to the physical complexity and required need for numerical simulations it would 

be expected that the responsibility rest with the engineer. This, however, require a 

great commitment towards cooperation between the design disciplines from the very 

beginning of the design, since the aesthetic expression and design of the façade will 

be the determining factor for the energy and indoor environmental performance of 

the building. The proposed design framework therefore implicates an 

interdisciplinary, collaborative design process.          
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10.2 RESEARCH CONTRIBUTION TO ACADEMIA AND 

INDUSTRY 

The findings reported in this thesis have generated contribution both to academia 

and the industry. A list of the contributions is given in the following: 

Contribution to academia 

A number of contributions to academia have been generated along the road of 

establishing a framework which arrange for a more holistic design process regarding 

the predicted energy use and thermal and visual comfort. 

 Findings support that short-wave radiation should be incorporated in calculation 

of MRT in view of the fact that this might improve the prediction of thermal 

comfort, especially close to glazed facades where solar loads might be 

dominating.  

 Results from the occupant survey confirmed that there was a statistically 

significant correlation between both vertical eye illuminance and horizontal 

illuminance at the desk and the occupants’ perception of glare in a perimeter 

zone office environment. This finding is promising as it supports that such 

simple measures might be applied in annual analysis in the building design in 

order to obtain a design basis which arranges for satisfying visual comfort. 

Based on results from the occupant survey, 1700 lux vertical eye illuminance at 

the occupant position and 1900-2100 lux horizontal at the desk seem like 

reasonable thresholds for avoiding excess glare perceptions in perimeter zones. 

These thresholds are in comparable ranges to earlier findings [92, 120, 127].  

 Findings from the occupant survey support that view is an important factor in a 

working environment and that occupants may tolerate a certain degree of glare 

as long as view is present. The quality of view was not investigated and more 

research should be carried out in this area as well as evaluation criteria for view 

should be established. As a minimum at the present time, it is suggested that the 

percentage of occupied time with activated solar shading should be reported as 

an inverse indication of view, in agreement with recommendations by Reinhart 

and Wienold [119]. 
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Contribution to industry 

The main contribution to the industry is the verification of improved models 

implemented in IDA ICE. The value of the models and its output is illustrated in 

simulation cases presented in Chapter 6/Paper III and in Paper VI. If these verified 

models are released in a commercial product of IDA ICE in the future, the proposed 

integrated design methodology will be practical applicable and easily available for 

building designers in Nordic countries.   

Additionally, results reported in this thesis gives advices that can be put into 

practical use: 

 Due to the dynamic nature of daylight, it should be modelled in a dynamic 

manner. Use of simple calculations like the 10 % rule and use of the static DF 

should be avoided when the aim is to get a realistic picture of the daylight 

conditions. 

 Glare analysis should be incorporated into building design to a greater extent 

than what is common practice today. This should though be done in 

combination with daylight supply and view assessment in order to avoid 

recommending solar shading products or strategies that totally block the view 

contact to the exterior, since this study indicate that a certain amount of glare 

might be accepted by the occupants as long as view to the outside is available. 

 Results from the occupant survey strengthen the proof that occupants should 

have some personal control over the physical workspace, especially with respect 

to the glare control since large variations were seen in the occupants’ 

assessment of glare. It is important that the designers arrange for such control 

possibilities. 

 The solar shading control strategy presented in Chapter 9/Paper III that balances 

the aspects of thermal and visual indoor environmental performance and energy 

demand can be used in practical design and building operation.  
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CHAPTER 11. FUTURE WORK 

The research presented in this thesis has resulted in a number of conclusions and 

minor suggestions applicable for academia and the industry. However, it is evident 

that future research should be carried out to further support some of these findings. 

Additionally, some of the results obtained through this thesis have barely touched 

some area of interest which also needs more attention in future research.     

11.1 VIEW  

Results from the occupant survey presented in this thesis indicate that view to the 

outside is an essential factor for occupants in a working environment and that view 

was a decisive factor for the occupants’ preference of solar shading control. At the 

present time, there is no standardized method to assess view; however, proposals 

have recently been given, e.g. [131, 217]. It is recommended that proposed models 

should be verified and possibly improved in order to take the influence of view on 

occupant comfort into account in building design. 

11.2 SIMPLE ANNUAL GLARE EVALUATIONS 

The results presented in Chapter 8 confirmed that there was a statistically significant 

correlation between both vertical eye illuminance and horizontal illuminance at the 

desk and the occupants’ perception of glare in a perimeter zone office environment. 

The results are restricted to office environments where the occupant is facing 

diagonally towards the window. Position and view direction dependency is an issue 

which should be investigated further in the future. 

The occupant survey was not able to reproduce the results of Wienold and 

Christoffersen [111] with respect to DGPs. The observed response indicated that the 

participants in the study in the Cube were more tolerant to low illuminance levels 

and more sensitive to high illuminance levels than the DGPs model would predict. 

The idea of being able to predict the percentage of people being disturbed by glare is 

advantageous as it may allow differentiating between different levels of quality of a 

design, as proposed by Wienold [131], as well as it addresses the participant 

variability to glare. However, more and larger scale studies are needed to either 

confirm the suitability of the DGPs model or to confirm the findings in the present 

study that suggest that the DGPs equation should be renewed. 

11.3 SENSOR PLACEMENT 

Sensor placement for vertical illuminance might be a challenge since there is no 

ideal correlation between illuminance at two positions in the room at all times 
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during a year. The simulation study in Chapter 9 showed that even with activated 

solar shading and controlled tilt angle to avoid vertical illuminance >1700 lux at the 

sensor placement, the vertical eye illuminance at the occupant position might exceed 

this threshold which could be associated with a risk of glare. Further research should 

be accomplished to investigate optimal sensor placement and maybe assess if 

different correlations for different times of the year may result in better control of 

the daylight environment.  

11.4 OPERATIVE TEMPERATURE IN THE SUN 

Due to a number of limitations, the new MRT model implemented into IDA ICE 

might at the present time only be used as a rough indication of how an occupant hit 

by the sun experience the thermal radiation; it is for instance assumed that the whole 

body is irradiated if the point in question is irradiated and the human body is 

approximated as a sphere. Further studies should be done to assess if a more detailed 

model is needed.  

When accounting for short-wave radiation on the human body, assumptions have to 

be made regarding the absorptivity of the clothing. In the studies reported in this 

thesis absorption of 0.7-0.8 is assumed, corresponding to a grey outer surface. 

Further investigations are needed to suggest suitable values for this parameter. 

11.5 DAYLIGHT MODELLING 

Chapter 6 indicated that there are some limitations associated with the three-phase 

method, especially with respect to distribution of direct solar light in a room. A more 

detailed model exists, the five-phase method. However, this model is also more time 

consuming to execute. Studies are needed to assess if higher accuracy in the annual 

daylight modelling is needed within an integrated design.   

11.6 DAYLIGHT REQUIREMENTS IN BUILDING REGULATIONS 

This thesis has illustrated that the static daylight targets given in the guidance to the 

Norwegian building regulations not necessarily result in well daylit buildings. As 

Reinhart and Wienold [119] point out, effort should be put into making code 

authorities understand that use of climate-based daylight modelling might lead to 

better daylit buildings and that this might have positive effects on the comfort and 

health of building occupants. 
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SUMMARY

ISSN (online): 2246-1248
ISBN (online): 978-87-7112-560-3

The objective of this PhD thesis was to arrange for an integrated building 
design with respect to thermal comfort, daylighting and energy use, appli-
cable for office buildings in Nordic climate. In order to achieve this, it is 
suggested that modelling of mean radiant temperature (MRT) should be im-
proved by considering the location in the room, accounting for both long and 
short-wave radiation and that daylighting should be modelled in a dynamic 
manner. Full-scale measurements have been conducted to verify improved 
models for MRT and climate-based daylighting and their implementation 
into the simulation tool IDA ICE. 

Furthermore, the control of solar shading is given attention, since it is a cru-
cial link between the thermal and daylighting performance. The thesis pre-
sents results of an occupant survey with 46 subjects, which was carried out to 
investigate occupants’ preferences towards automatically controlled venetian 
blinds and their sensation of glare in a work environment. The results indi-
cate that view to the outside was important for the occupants’ satisfaction. 
Moreover, a correlation between both vertical eye illuminance and horizontal 
illuminance at the desk and the occupants’ perception of glare was indicat-
ed. Based on these results and findings in the literature, a shading strategy 
was proposed. Its performance is verified by full-scale measurements and 
annual simulations.


