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Abstract

Acoustic feedback problems occur when the output loudspeaker signal of an audio system
is partly returned to the input microphone via an acoustic coupling through the air. This
problem often causes significant performance degradations in applications such as public
address systems and hearing aids. In the worst case, the audio system becomes unstable
and howling occurs.

In this work, first we analyze a general multiple microphone audio processing sys-
tem, where a cancellation system using adaptive filters is used to cancel the effect of
acoustic feedback. We introduce and derive an accurate approximation of a frequency
domain measure—the power transfer function—and show how it can be used to predict
the convergence rate, system stability bound, and the steady-state behavior of the en-
tire cancellation system across time and frequency without knowing the true acoustic
feedback paths. This power transfer function method is also applicable to an acoustic
echo cancellation system with a similar structure.

Furthermore, we consider the biased estimation problem, which is one of the most
challenging problems for state-of-the-art acoustic feedback cancellation systems. A com-
monly known approach to deal with the biased estimation problem is adding a probe
noise signal to the loudspeaker signal and base the estimation on that. This approach
is particularly promising, since it can be shown that, in theory, the biased estimation
problem can be completely eliminated. However, we analyze a traditional probe noise
approach and conclude that it can not work in most acoustic feedback cancellation
systems in practice, due to the very low convergence rate of the adaptive cancellation
system when using low level and inaudible probe noise signals.

We propose a novel probe noise approach to solve the biased estimation problem in
acoustic feedback cancellation for hearing aids. It utilizes a probe noise signal which
is generated with a specific characteristic so that it can facilitate an unbiased adaptive
filter estimation with fast tracking of feedback path variations/changes despite its low
signal level. We show in a hearing aid application that whereas the traditional and state-
of-the-art acoustic feedback cancellation systems fail with significant sound distortions
and howling as consequences, the new probe noise approach is able to remove feedback
artifacts caused by the feedback path change in no more than a few hundred milliseconds.
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Resumé

Akustiske tilbagekoblingsproblemer opstår, når udgangshøjttalersignalet af et lydanlæg
vender delvist tilbage til indgangsmikrofonen via en akustisk kobling gennem luften.
Dette problem forårsager ofte en betydelig nedsættelse af ydeevnen i applikationer såsom
højttaleranlæg og høreapparater. I værste fald bliver lydsystemet ustabilt og hyl opstår.

I dette arbejde analyserer vi først et generelt lydanlæg med flere mikrofoner, hvor
et annulleringssystem ved hjælp af adaptive filtre er anvendt til at ophæve akustisk
tilbagekoblingsvirkning. Vi introducerer og udleder en præcis tilnærmelse af et frekvens-
domæne mål—power transfer function—og viser hvordan det kan bruges til at forudsige
konvergenshastighed, system stabilitetsgrænse, og ligevægtstilstandsopførsel af hele an-
nulleringssystemet over tid og frekvens uden at kende de rigtige akustiske tilbagekob-
lingsveje. Denne power transfer function barserede metode kan også anvendes til et
akustisk ekkoannulleringssystem med en lignende struktur.

Desuden arbejder vi med et af de mest udfordrende problemer for de bedste/nyeste
akustiske tilbagekoblingsannulleringssystemer, nemlig problemet med det ikke-centrale
estimat. En kendt metode til at behandle dette problem på er at tilføje et probestøjsignal
til højttalersignalet og derefter baserer estimeringen på dette. Denne metode virker
generelt godt, da det kan påvises, at det i teorien giver et centralt estimat. Men vi
analyserer en traditionel probestøjsmetode og konkluderer, at den ikke kan fungere i
de fleste akustiske tilbagekoblingsannulleringssystemer i praksis som følge af den meget
lave konvergensrate af det adaptive annulleringssystem, når der anvendes et ikke hørbart
probestøjsignal med lavt niveau.

Vi foreslår en ny probestøjsmetode til at løse problemet med det ikke-centrale estimat
i akustisk tilbagekoblingsannullering til høreapparater. Her anvendes et probestøjsig-
nal, som genereres med en bestemt egenskab, så det resulterer i et centralt adap-
tivt filter estimat med hurtig sporing af tilbagekoblingsvejes variationer/ændringer til
trods for sit lave signalniveau. Vi viser i en høreapparatsimulering, at når de tradi-
tionelle og de nyeste akustisk tilbagekoblingsannulleringssystemer svigter og betydelige
forvrængninger af lyden og hyl derfor opstår, er den nye probestøjsmetode i stand til
at fjerne tilbagekoblingsartefakter forårsaget af en ændring i tilbagekoblingsvejen inden
for få hundrede millisekunder.

v





Contents

Preface xi

List of Papers xiii

Acknowledgment xv

Introduction 1

1 The Acoustic Feedback Problem . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Acoustic Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hearing Aid Systems . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Acoustic Feedback in Hearing Aids . . . . . . . . . . . . . . . . . 5

2 State-of-the-Art Feedback Control Systems . . . . . . . . . . . . . . . . 7

2.1 Feedforward Suppression . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Feedback Cancellation Using Adaptive Filters . . . . . . . . . . . 10

2.3 The Biased Estimation Problem . . . . . . . . . . . . . . . . . . 13

2.4 Towards Unbiased Estimation . . . . . . . . . . . . . . . . . . . . 14

3 Evaluation of Feedback Cancellation Systems . . . . . . . . . . . . . . . 20

3.1 Feedback Cancellation Performance . . . . . . . . . . . . . . . . 20

3.2 Sound Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 23

4 Acoustic Echo Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Acoustic Echo and Echo Cancellation . . . . . . . . . . . . . . . 24

4.2 Some Relations to Feedback Cancellation . . . . . . . . . . . . . 26

5 Topics of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . 29

6 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . 32

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



A Analysis of Acoustic Feedback/Echo Cancellation in Multiple–Microphone
and Single–Loudspeaker Systems Using a Power Transfer Function
Method A.1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.3
2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.6
3 Power Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . A.9
4 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.10

4.1 PTF for LMS Algorithm . . . . . . . . . . . . . . . . . . . . . . . A.10
4.2 PTF for NLMS Algorithm . . . . . . . . . . . . . . . . . . . . . . A.12
4.3 PTF for RLS Algorithm . . . . . . . . . . . . . . . . . . . . . . . A.13

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.15
5.1 System Behavior for LMS Algorithm . . . . . . . . . . . . . . . . A.16
5.2 System Behavior for NLMS Algorithm . . . . . . . . . . . . . . . A.17
5.3 System Behavior for RLS Algorithm . . . . . . . . . . . . . . . . A.18
5.4 Summary of System Behavior . . . . . . . . . . . . . . . . . . . . A.19
5.5 Relation to Existing Work . . . . . . . . . . . . . . . . . . . . . . A.20

6 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . A.22
6.1 Simulation Experiment Using Synthetic Signals . . . . . . . . . . A.22
6.2 Simulation Experiment for Acoustic Feedback Cancellation . . . A.29

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.32
A Estimation Error Correlation Matrix . . . . . . . . . . . . . . . . . . . . A.33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.35

B Acoustic Feedback and Echo Cancellation Strategies for Multiple–
Microphone and Single–Loudspeaker Systems B.1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.3
2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.5
3 Review of Power Transfer Function . . . . . . . . . . . . . . . . . . . . . B.7
4 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.8

4.1 Review of MMSL System With Independent Estimation . . . . . B.8
4.2 Analysis of MMSL System With Joint Estimation . . . . . . . . B.9

5 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.10
5.1 System Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . B.11
5.2 Relation to Stereophonic Acoustic Echo Cancellation . . . . . . . B.12

6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.13
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.14

C On Acoustic Feedback Cancellation Using Probe Noise in Multiple–
Microphone and Single–Loudspeaker Systems C.1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.3

viii



2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.5

3 Review of Power Transfer Function . . . . . . . . . . . . . . . . . . . . . C.6

4 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.6

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.8

6 Simulation Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.9

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.11

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.11

D Novel Acoustic Feedback Cancellation Approaches in Hearing Aid Ap-
plications Using Probe Noise and Probe Noise Enhancement D.1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.3

2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.7

2.1 Traditional AFC Approach (T-AFC) . . . . . . . . . . . . . . . . D.7

2.2 Traditional Probe Noise Approach (T-PN) . . . . . . . . . . . . . D.9

2.3 Proposed Probe Noise Approach I (PN-I) . . . . . . . . . . . . . D.9

2.4 Proposed Probe Noise Approach II (PN-II) . . . . . . . . . . . . D.11

3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.12

3.1 Review of Power Transfer Function . . . . . . . . . . . . . . . . . D.12

3.2 Analytic Expressions for System Behavior . . . . . . . . . . . . . D.13

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.19

3.4 Verification of Analysis Results . . . . . . . . . . . . . . . . . . . D.21

4 Demonstration in A Practical Application . . . . . . . . . . . . . . . . . D.23

4.1 Acoustic Environment . . . . . . . . . . . . . . . . . . . . . . . . D.24

4.2 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.26

4.3 Simulation Results and Discussions . . . . . . . . . . . . . . . . . D.29

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.31

A Constraint on Enhancement Filter to Ensure Unbiased Estimation . . . D.33

B Influence of Enhancement Filter on Probe Noise . . . . . . . . . . . . . D.34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.35

E On the Use of a Phase Modulation Method for Decorrelation in Acous-
tic Feedback Cancellation E.1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E.3

2 Analysis of Decorrelation Methods . . . . . . . . . . . . . . . . . . . . . E.5

3 Sound Quality Considerations . . . . . . . . . . . . . . . . . . . . . . . . E.7

4 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . E.9

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E.11

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E.12

ix



F Evaluation of State-of-the-Art Acoustic Feedback Cancellation Sys-
tems for Hearing Aids F.1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.3
2 Overview of Different AFC Systems . . . . . . . . . . . . . . . . . . . . F.5

2.1 System I: F-AFC System . . . . . . . . . . . . . . . . . . . . . . F.7
2.2 System II: PEM-AFC System . . . . . . . . . . . . . . . . . . . . F.7
2.3 System III: S-AFC System . . . . . . . . . . . . . . . . . . . . . F.8
2.4 System IV: FS-AFC System . . . . . . . . . . . . . . . . . . . . . F.8
2.5 System V: PN-AFC System . . . . . . . . . . . . . . . . . . . . . F.9

3 Sound Quality Evaluation of Decorrelation Methods . . . . . . . . . . . F.9
3.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . F.9
3.2 Processing of Test Signals . . . . . . . . . . . . . . . . . . . . . . F.10
3.3 Training and Test Procedure . . . . . . . . . . . . . . . . . . . . F.12
3.4 Listening Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.12
3.5 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.12
3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.13

4 AFC Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . F.15
4.1 Objective Performance Measures . . . . . . . . . . . . . . . . . . F.15
4.2 Test Setups and Signals . . . . . . . . . . . . . . . . . . . . . . . F.16
4.3 Test Results and Discussions . . . . . . . . . . . . . . . . . . . . F.18

5 Computational Complexity Evaluation . . . . . . . . . . . . . . . . . . . F.21
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.23

G Analysis of Closed–Loop Acoustic Feedback Cancellation Systems G.1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G.3
2 Review of Power Transfer Function . . . . . . . . . . . . . . . . . . . . . G.4
3 Extended PTF in Closed-Loop Systems . . . . . . . . . . . . . . . . . . G.5

3.1 Definition of Extended PTF . . . . . . . . . . . . . . . . . . . . . G.6
3.2 Extended PTF Analysis . . . . . . . . . . . . . . . . . . . . . . . G.7

4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G.8
5 Simulation Verifications . . . . . . . . . . . . . . . . . . . . . . . . . . . G.9
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G.11
7 Relations to Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . G.11
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G.11

x



Preface

This thesis is submitted to the Doctoral School of Engineering and Science at Aalborg
University, Denmark, in a partial fulfilment of the requirements for the Ph.D. degree.

The work was carried out as an industrial Ph.D. project, in the period from March
2010 to December 2012, jointly at the Department of Electronic Systems, Aalborg Uni-
versity, and Oticon A/S, Denmark. Some of the work was conducted in collaboration
with the Department of Electrical and Computer Engineering, Missouri University of
Science and Technology in Rolla, Missouri, USA.

The work deals with acoustic feedback and echo cancellation techniques. The main
focus is on analysis of a general acoustic feedback and echo cancellation system, and on
design and evaluation of a novel acoustic feedback cancellation system for hearing aids.

This thesis consists of two parts, the introduction and the main body. In the intro-
duction part, we provide an overview of the acoustic feedback problem. More specif-
ically, we present the background, state-of-the-art solutions, and the remaining open
problems in the area of acoustic feedback control, before we introduce a novel acoustic
feedback cancellation system. The main body of the thesis consists of seven research
papers which have been published or accepted to be published in peer-reviewed journals
or conferences. The main contributions in this thesis are primarily in these papers.
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Introduction

1 The Acoustic Feedback Problem

1.1 Acoustic Feedback

Acoustic feedback is an electroacoustic phenomenon which occurs in audio reinforcement
systems, such as public address systems and hearing aids. It is also referred to as
audio feedback or simply feedback, or the Larsen effect after the Danish physicist Søren
Absalon Larsen (1871–1957), who is cited [199, 204] to be first to discover the properties
of acoustic feedback described in his work [113]. Acoustic feedback problems occur
when microphones of an audio system pick up its output loudspeaker signals, so that
an acoustic loop is created. Generally speaking, feedback problems can occur when the
signal travelling around this acoustic loop gets stronger for each round trip.

The acoustic feedback problems often cause significant performance degradations
in audio systems; in the worst case, the systems become unstable and howling occurs.
Although the howling effect due to feedback can be intentionally used to generate a
pure tone [113] and certain audio effects in popular music, and feedback is often used
on purpose in control systems to improve the performance [143, 176], its appearance
is generally undesired in audio reinforcement systems. Fig. 1 illustrates the principle
of acoustic feedback in a single microphone system; all signals are real-valued, and we
denote all signals as discrete-time signals with time index n for convenience.

In Fig. 1, x(n) denotes the desired incoming signal to an audio processing system
consisting of a microphone, a loudspeaker, and the forward path impulse response f(n)
which represents the signal processing applied to the microphone signal y(n) to create
the loudspeaker signal u(n); h(n) denotes the impulse response of the acoustic feedback
path from the loudspeaker to the microphone of the audio system, and the microphone
signal y(n) consists of the desired incoming signal x(n) and the undesired but unavoid-
able feedback signal v(n). The presence of the feedback path h(n) can cause a stability
problem in the audio system, and it can significantly degrade sound quality of loud-
speaker signal u(n), see e.g. [199] and the references therein.

A measure to determine stability in a linear and time-invariant closed-loop system

1
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Audio System

f(n) h(n)

v(n)

x(n)y(n)

u(n)

Fig. 1: A single microphone audio system with a feedback path h(n) from its loudspeaker to micro-
phone. All signals are real-valued, and we denote all signals as discrete-time signals with time index n
for convenience.

is the open-loop transfer function Θ(ω, n) across discrete frequency ω and time n; for
the system shown in Fig. 1, the open-loop transfer function Θ(ω, n) is defined as

Θ(ω, n) = F (ω, n)H(ω, n), (1)

where F (ω, n) and H(ω, n) are the frequency responses of f(n) and h(n), respectively.
The Nyquist stability criterion [144, 203] states that a linear and time-invariant closed-
loop system becomes unstable whenever the following two conditions are both fulfilled:

|Θ(ω, n)| ≥1, (2)

∠Θ(ω, n) =l2π, l = Z. (3)

That is, the magnitude of the signal travelling around the loop does not decrease for
each round trip, and the feedback signal adds up in phase to the microphone signal.

The main functionality of F (ω, n) in an audio reinforcement system is to amplify
sound signals; |F (ω, n)| typically has a value larger than one for a wide range of ω.
Hence, there is a potential risk to violate the condition stated in Eq. (2), and system
instability would then occur at the frequencies ω for which the condition stated in Eq.
(3) is fulfilled.

Furthermore, even for a stable audio system, feedback can significantly degrade
the sound quality of the loudspeaker signal u(n). Let X(ω, n) and U(ω, n) denote the
spectra of incoming and loudspeaker signals x(n) and u(n), respectively. It can be shown
that the magnitude of the input-output transfer function Γ(ω, n) from microphone to
loudspeaker of the audio system shown in Fig. 1 is determined by

|Γ(ω, n)| =
|U(ω, n)|

|X(ω, n)|
=

|F (ω, n)|

|1 − Θ(ω, n)|
. (4)
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In the ideal situation for a system without feedback, i.e. H(ω, n) = 0, we find from Eqs.
(1) and (4) that,

|Γ(ω, n)| = |F (ω, n)|, (5)

and

|U(ω, n)| = |F (ω, n)| · |X(ω, n)|. (6)

Thus, the magnitude of the loudspeaker signal spectrum |U(ω, n)| is desirably obtained
as the magnitude of the incoming signal spectrum |X(ω, n)| shaped by the forward path
magnitude function |F (ω, n)|. Otherwise, even for a stable system with feedback, i.e.
0 < |Θ(ω, n)| < 1, undesired modifications of the loudspeaker signal may be introduced.
In the limit as |Θ(ω, n)| → 1, we get

|Γ(ω, n)| →

{
∞

|F (ω,n)|
2

for
|Θ(ω, n)| → 1, and ∠Θ(ω, n) = l2π, l = Z.
|Θ(ω, n)| → 1, and ∠Θ(ω, n) = π + l2π, l = Z.

(7)

This corresponds to an undesired shaping of the loudspeaker signal u(n) depending on
the values of Θ(ω, n) across frequencies ω. In practice, this undesired signal shaping
due to |Γ(ω, n)| 6= |F (ω, n)| might lead to a significant sound distortion in loudspeaker
signal u(n).

Traditionally, studies have focused on controlling the effects of acoustic feedback in
public address systems [17, 18, 28, 167]; more attention was specifically paid to the
hearing aid application during the recent years, see the example studies in [24, 58, 69,
96, 127, 183]. In this work, we mainly focus on the acoustic feedback problem in a
hearing aid application. However, as we will discuss in Sec. 5, our theoretical work is
general and may find applications in other areas than hearing aid systems.

1.2 Hearing Aid Systems

In this section, we briefly describe the goal of a hearing aid, its most important functions
and limitations.

Deficits in the human auditory system lead to different types of hearing impairments
[132, 152]. The topic of hearing impairment and compensation is beyond the scope of
this work, therefore, we refer to [34, 101, 165] for details. However, for many people, a
hearing impairment can be a major barrier in their everyday life. It might reduce the
ability to communicate with other people leading to social isolation, it might induce
safety problems should a person not be able to hear alarms or understand security
instructions, it might also delay or even affect the language development and learning
of children, etc.

There exist different ways for helping people with hearing impairments. One well-
known and probably the most commonly used method is by means of a hearing aid. A



4 INTRODUCTION

Fig. 2: An example of a modern behind-the-ear hearing aid.

hearing aid is a small electroacoustic device mainly used to amplify a sound signal for
a user with hearing impairments [34, 101, 165]. A modern hearing aid is small in size,
and it typically fits behind the ear or even in the ear canal of its user. Fig. 2 shows an
example of it.

A modern hearing aid typically has many functions, the far most important one is
to provide an amplified sound signal to its user; the technique used is typically referred
to as compression [34, 101, 165]. Another important function in a hearing aid is noise
reduction, which is used to increase the desired signal to noise signal ratio and thereby
reduce listening effort, and improve sound quality and speech intelligibility. Other
functions make the use of the hearing aid more convenient, such as automatic program
selections for ensuring that a hearing aid is always working appropriately in different
environments, the ability to connect to other electronic devices such as mobile phones or
televisions to improve the sound quality in these situations, to mention a few examples.

Unfortunately, there are also some drawbacks by using a hearing aid. Probably
the most significant one is the already mentioned acoustic feedback problem. If not
properly treated, the feedback problem limits the maximum available amplification/gain
in hearing aids due to the stability and sound quality degradation reasons discussed
above, and a user would not benefit sufficiently from his/her hearing aid. It was e.g.
shown in [107, 108], that the feedback problem is still one of the main factors causing
hearing aid user dissatisfaction. Another cause for feedback problems in hearing aids
is the mechanical coupling between loudspeakers and microphones. In this work, we
do not focus on the mechanical feedback problem, since it is already largely reduced
in hearing aids after the introduction of modern electret microphones which are less
sensitive to mechanical vibration [2].
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1.3 Acoustic Feedback in Hearing Aids

The acoustic feedback problem in hearing aids is difficult to avoid, since the hearing
aid microphone should ideally be placed next to ear drum in order to preserve recorded
sound signal as it would have been perceived naturally by the user. Furthermore, the
output signal of the hearing aid loudspeaker1 must be presented to the ear drum of
the user. In practice, although compromises are made with respect to microphone and
loudspeaker locations, the microphone would normally pick up the loudspeaker signal
as a feedback signal.

In the following, we discuss some characteristics of feedback paths for hearing aids.
In many hearing aid styles, an ear mold or a hearing aid shell is placed in the user’s ear
canal, and there are typically acoustic leaks between these and the ear canal. Further-
more, to reduce the unpleasant feeling of a closed ear canal which is also referred to as
occlusion effect [34], a ventilation channel referred to as vent is typically used on the ear
mold or the hearing aid shell, or a so-called open dome solution is applied which allows
the ear to remain partially open. The impulse response of feedback paths in a hearing
aid application is mainly determined by the acoustic leaks, the vent size, the open dome,
the effects of the pinna, combined with microphones and loudspeakers including their
amplification circuits, see more details in [34, 94, 101, 154].

Fig. 3 illustrates different characteristics of hearing aid feedback paths. In general,
the impulse response h(n) of a feedback path is short in duration, typically in the order
of a few milliseconds, especially when compared to the feedback paths of public address
systems, in which the length of the impulse response could easily be hundreds and even
thousands of milliseconds depending on the room acoustics. Fig. 3(a) illustrates two
example impulse responses of feedback paths measured from the same user using two
hearing aid styles (In-the-ear and Behind-the-ear), at a sampling rate of 20 kHz. In both
cases, the numerical values of taps above time index 50 are close to zero, indicating that
the effective duration of the impulse responses is roughly 2.5 ms.

We also observe from Fig. 3(a), that different hearing aid styles contribute greatly
to variations in feedback path impulse responses, even for the same user. In different
hearing aid styles, microphones and loudspeakers are placed at different positions; they
are typically placed either both behind the ear, both in the ear canal, or microphones
behind the ear and loudspeakers in the ear canal.

Moreover, the feedback paths are time-varying, especially when the hearing aid user
is eating, chewing, or yawning [81, 99]. Other situations might cause an almost momen-
tary change of feedback paths, such as when a user puts on a hat or places a telephone
next to his/her ear [81, 156]. Fig. 3(b) shows magnitude responses |H(ω)| of two feed-
back path measurements for the same user wearing the same hearing aid with and
without a telephone placed next to his ear. In this example, the difference is more than

1In hearing aid terminologies, the loudspeaker is generally referred to as the receiver. However, we
refer it to as the loudspeaker in this work.
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Fig. 3: Measured acoustic feedback paths at a sampling rate of 20 kHz. (a) Impulse responses for two
hearing aid styles measured on the same user. (b) Magnitude responses with and without a telephone
placed next to the ear of a hearing aid user. (c)-(d) Magnitude and phase responses of feedback paths
for two hearing aid users.

15 dB at some frequencies, and it can be even more than 25 dB in some cases [81].
Another interesting characteristic of feedback paths in hearing aids is that the

feedback problem is more probable to occur at higher frequencies above typically 3-
4 kHz [81], due to the hearing aid styles and the surrounding geometry of hearing aids,
see e.g. the magnitude responses in Fig. 3(b). Unfortunately, the desired amplification
in the hearing aid forward path f(n) is often higher at high frequencies [34], making the
feedback problem even more probable to occur.

Furthermore, the acoustic feedback in a hearing aid application depends highly on
each individual user. Figs. 3(c) and 3(d) show magnitude and phase responses of feed-
back paths measured on two different users wearing the same hearing aid. The frequency
regions with high risk of feedback are different for these two users; they are around 8-9
kHz for the first user and 6-8 kHz for the second user, respectively.

Moreover, hearing aid loudspeakers and microphones are essentially nonlinear de-
vices [101], which become part of the acoustic feedback paths; this makes the feedback
control even more challenging. However, the nonlinearity can often be modeled and
compensated as e.g. discussed in [44, 95]. In this work, we do not pay attention to the
nonlinearity in acoustic feedback paths.

All these specific characteristics and variations in acoustic feedback paths make the
feedback control in hearing aids unique and difficult to solve.
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Audio System

f(n) h(n)

v(n)

x(n)y(n)

u(n)

(a)

Audio System

f(n) ĥ(n) h(n)

+

v(n)

x(n)

v̂(n)
–

y(n)e(n)

u(n)

(b)

Fig. 4: A single channel acoustic feedback control system. The arrows through blocks indicate mod-
ifications made specifically for feedback control. (a) Feedforward suppression by modifying f(n). (b)

Feedback cancellation by estimating ĥ(n).

2 State-of-the-Art Feedback Control Systems

In order to minimize the effects of acoustic feedback, a vast range of techniques for
feedback control have been developed in the past. In this section, we provide an overview
of these and discuss some remaining challenges and possible solutions.

Feedback problems can be reduced via electroacoustic design, e.g. by reducing vent
diameter, ensuring a tight seal of ear mold in the ear, etc. [2]. However, even the best
electroacoustic design may not be sufficient to avoid feedback problems. One way of
dealing with these remaining feedback problems is by means of signal processing in
hearing aids.

There are different ways to categorize signal processing based feedback control tech-
niques [77, 180, 199]. In this work, we divide these techniques into two categories as
suggested in [77, 180], the feedforward suppression and feedback cancellation techniques.

Fig. 4 illustrates how these two types of techniques control acoustic feedback. The
feedforward suppression techniques in Fig. 4(a) modify the forward path f(n) from the
microphone signal y(n) to the loudspeaker signal u(n) for suppressing the feedback
effect, whereas the feedback cancellation techniques in Fig. 4(b) make an estimation

ĥ(n) of the acoustic feedback path h(n) to create a signal v̂(n) to cancel the feedback
signal v(n).

The motivation for both categories is to ensure that the conditions of the Nyquist
stability criterion in Eqs. (2) and (3) are not satisfied. Recall the definition of the open-
loop transfer function Θ(ω, n) = F (ω, n)H(ω, n) in Eq. (1). The feedforward suppression
techniques in Fig. 4(a) modify the forward path transfer function F (ω, n) to avoid that
Θ(ω, n) fulfills the conditions of the Nyquist stability criterion by e.g. carrying out a
gain reduction. For the cancellation system shown in Fig. 4(b), the open-loop transfer
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Table 1: Categorized feedforward suppression methods.

Category Feedforward Suppression Method

Gain reduction

Fullband gain reduction
Automatic equalization
Notch-filter-based gain reduction
Spatial filtering

Phase modification
Frequency shifting/compression
Phase modulation

function Θc(ω, n) is expressed by

Θc(ω, n) = F (ω, n)
(

H(ω, n) − Ĥ(ω, n)
)

, (8)

where Ĥ(ω, n) is the frequency response of ĥ(n). The feedback cancellation techniques
minimize the contribution of H(ω, n) − Ĥ(ω, n) in Eq. (8).

Clearly, an ideal feedback cancellation system is better than a feedforward sup-
pression system, since it removes the feedback contribution of H(ω, n) completely and
provides an unmodified forward path transfer function F (ω, n). In the following, we pro-
vide a brief overview of feedforward suppression techniques, before we focus on feedback
cancellation techniques and their remaining challenges.

2.1 Feedforward Suppression

The feedforward suppression techniques can be further divided into two categories: gain
reduction and phase modification methods. In both cases, the goal is to alter F (ω, n)
so that ideally |Θ(ω, n)| ≪ 1 and/or ∠Θ(ω, n) 6= l2π ∀ ω, l ∈ Z, respectively. Table
1 provides an overview of different methods within these two categories of feedforward
suppression techniques.

2.1.1 Gain Reduction

Obviously, the gain reduction can be simply and effectively performed by the users of
audio systems using a volume control to reduce |F (ω, n)|. More sophisticated automatic
gain reduction methods exist. For example in [150], a fullband gain reduction in |F (ω, n)|
is carried out based on the detection of system instability. However, the fullband gain
reduction is often not necessary for stabilizing audio systems, and it might unnecessarily
reduce gain in frequency regions without stability or sound quality problems.

Therefore, automatic equalization in frequency subbands, e.g. in auditory critical
bands, have been proposed [6, 135, 136, 190]; the gain reduction is only carried out
in the frequency regions where |Θ(ω, n)| is close to unity. A further refinement of the
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equalization methods are the notch-filter-based techniques [24, 41, 55, 111, 198], where
an instability frequency is detected and a notch filter is constructed for this particular
frequency. In this way, the gain reduction is performed in a minimal frequency region,
ideally leading to fewer distortions in the loudspeaker signal. To further reduce artifacts,
a gain reduction scheme based on audibility of signal components is suggested in [148].

An attempt to minimize undesired gain reductions is carried out in [35] using spatial
filters by assuming that the feedback and desired signals are coming from different
spatial directions. A microphone array beamformer [22, 52] is used to let the desired
sound signals from certain directions pass through unmodified, whereas the beamformer
places its spatial nulls in the directions of feedback signals. Hence, the gain provided
to the desired signals is ideally unchanged, whereas the feedback signal is attenuated.
In [35], both loudspeaker and microphone arrays are suggested to achieve this.

However, in all these methods, the general problem is that large values of |Θ(ω, n)|
must be detected and the gain reduction may therefore be applied at times or frequencies
where no instability is present, leading to sound quality degradations for the user. Fur-
thermore, with gain reductions the audio system might only provide a less-than-desired
amplification in |F (ω, n)|.

2.1.2 Phase Modification

The second group of feedforward suppression techniques involves phase modifications
of F (ω, n), and it can e.g. be performed by modulating F (ω, n) with an exponential
function ejϕ(ω,n), as

Fm(ω, n) = F (ω, n) · ejϕ(ω,n), (9)

to form the modified forward path frequency response Fm(ω, n). Frequency shift-
ing [23, 166, 167] and phase modulation [128] methods are two well-known phase modifi-
cation methods which use a linear and sinusoidal phase function of ϕ(ω, n), respectively.
In addition to these methods, a delay modulation method is discussed in [142]. Imple-
mentations of these methods are relatively simple, see e.g. [202]. Generally, modifying
the signal phase by ejϕ(ω,n) causes the system to become a time-varying system, and,
strictly speaking, the Nyquist stability criterion does not apply anymore.

Frequency shifting and phase modulation methods break the acoustic feedback loop
by moving feedback sound to a different frequency. Furthermore, they have a smoothing
effect on the open-loop magnitude function |Θ(ω, n)| so that the maximum value of
|Θ(ω, n)| would generally be smaller [13, 167]. A similar smoothing effect on |Θ(ω, n)|
can also be obtained using spatial filtering [39].

However, the frequency shifting and phase modulation methods do generally not
preserve harmonic structures found in voiced part of speech signals [126] and many
audio signals. The consequence could therefore be a sound quality degradation in the
loudspeaker signals u(n). A frequency compression [4] technique can be used to preserve
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the harmonic frequency structure and still being able to compensate acoustic feedback,
although the frequency compressed signal sounds clearly different than the original
signal. In general, an additional gain of about 6 dB can be obtained in |F (ω, n)|, when
limiting the sound quality degradation to a low level in phase modification methods [166].

2.1.3 Summary

Although somewhat effective for feedback control, the feedforward suppression tech-
niques have significant limitations. The gain reduction techniques limit the amplification
in the forward path f(n), which is contradicting the main purpose of audio reinforcement
systems including hearing aids. Phase modification techniques can lead to severe sound
quality distortions in loudspeaker signals u(n). In the next section, we give an overview
of feedback cancellation techniques which generally allow a higher forward path gain
|F (ω, n)| and better sound quality in u(n).

2.2 Feedback Cancellation Using Adaptive Filters

In contrast to the feedforward suppression approaches, the feedback control in a feedback
cancellation system using adaptive filters [76, 163, 164, 207] is not based on modifications

of the forward path f(n). In Fig. 4(b), the adaptive filter ĥ(n) estimates the true acoustic

feedback path h(n) in a system identification configuration [116, 151]. Ideally, ĥ(n) =
h(n) and the feedback cancellation signal v̂(n) is thereby identical to the feedback signal
v(n); when subtracting v̂(n) from the microphone signal y(n), we obtain a completely
feedback canceled signal, that is e(n) = x(n).

2.2.1 Basics of Adaptive Filters

There are different ways to estimate the adaptive filter ĥ(n) which we assume to be of
order L − 1. A general class of adaptive filters referred to as Wiener filters minimizes
the cost function JMSE(n) in terms of the mean square error of e(n),

JMSE(n) = E
[
e2(n)

]
, (10)

where e(n) = y(n) − ĥT (n)u(n), u(n) = [u(n), u(n − 1), . . . , u(n − L + 1)]T is the
loudspeaker signal vector, E[·] is the expectation operator, and the signals u(n) and
y(n) are considered realizations of the underlying stochastic processes.

The Wiener filter is derived based on ensemble averages, so that the filter is statis-
tically optimal on average across all realizations of the underlying stochastic processes.
Minimizing Eq. (10) with respect to ĥ(n), we find the Wiener-Hopf equation as, see
e.g. [76],

ho(n) = R−1
uu (n)ruy(n), (11)
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where ho(n) is the Wiener-Hopf solution, Ruu(n) and ruy(n) are the autocorrelation
matrix and the cross-correlation vector of signals u(n) and y(n), defined as

Ruu(n) = E
[
u(n)uT (n)

]
, (12)

ruy(n) = E [u(n)y(n)] , (13)

respectively.
To avoid inverting the correlation matrix Ruu(n) in Eq. (11), a deterministic gradient

approach such as the steepest decent algorithm can be used to recursively compute the
Wiener-Hopf solution ho(n). The gradient with respect to ĥ(n) can be shown to be

∂JMSE(n)

∂ĥ(n)
= − 2

(

ruy(n) − Ruu(n)ĥ(n)
)

= − 2E [u(n)e(n)] , (14)

and the update of ĥ(n) would be

ĥ(n + 1) =ĥ(n) + µ(n)E [u(n)e(n)] , (15)

with the step size parameter µ(n).
Furthermore, a widely used stochastic gradient approach is the least mean square

(LMS) algorithm, firstly proposed in the area of telecommunication [206], due to its
simplicity and it does not require the knowledge of Ruu(n) and ruy(n). In the LMS

algorithm, the adaptive filter estimation of ĥ(n) is carried out using the stochastic
gradient vector u(n)e(n) and the step size parameter µ(n), as

ĥ(n + 1) = ĥ(n) + µ(n)u(n)e(n). (16)

Other well-known stochastic gradient algorithms are normalized least mean square
(NLMS) and affine projection (AP) algorithms. The NLMS differs from the LMS
algorithm by utilizing a step size parameter scaled by the signal power/energy esti-
mate of u(n) in terms of uT (n)u(n) + δ, where δ is a regularization parameter for
ensuring numerical stability [76]. The AP algorithm can be considered as a general-
ization of the NLMS algorithm, which involves the loudspeaker signal matrix A(n) =
[u(n), u(n − 1), . . . , u(n − N + 1)], of order N − 1, instead of the loudspeaker signal
vector u(n). In this way, the NLMS algorithm is an AP algorithm with N = 1. Both
algorithms improve the convergence rate of the original LMS algorithm at the cost of
increased computational complexity.

Another class of adaptive filters is based on a deterministic approach referred to as
the method of least squares (LS). In contrast to the Wiener filter which is derived from
the mean square error E[e2(n)] to be optimal on average across all realizations of the
underlying stochastic process (ensemble average), the LS approach is based on averages
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of deterministic data samples over time. More specifically, it minimizes the cost function
JLS(n) in terms of the sum of squares of the error signal e(n) as

JLS(n) =

n∑

i=0

e2(i). (17)

The basic LS approach requires a potentially computationally complex matrix inversion.
Therefore, the recursive least squares (RLS) algorithm was developed based on the
matrix inversion lemma to bypass the matrix inversion [76]. The RLS algorithm typically
increases convergence rate compared to the AP and NLMS algorithms, depending on
the signal properties of u(n). Furthermore, the RLS can be shown to be a special case
of the Kalman filter framework, which has a recursive solution based on the latest data
samples and its state estimate [76].

The NLMS type algorithms for adaptive estimation of ĥ(n) are typically preferred
in a hearing aid application [101, 165] due to their simplicity and tracking property. In
this work, we mainly focus on the NLMS type algorithms.

2.2.2 Advances in Adaptive Filtering

A lot of specific improvements for different applications have been proposed in the past,
such as the algorithms choosing optimal step size and regularization parameters such
as [1, 12, 110, 112, 147, 170, 200], the so-called filtered-X algorithms with a fixed filter
to model a (typically known) part of the unknown impulse response in series with the
adaptive filter [15, 78, 98, 129, 207], the proportionate algorithms [10, 38, 50, 104, 119,
120, 211] for long and sparse impulse response estimations, the robust algorithms with
slow divergence properties as discussed in [9], the signed regressor algorithms for better
implementation simplicity [37, 53, 109, 169], other computationally efficient algorithms
such as [32, 37, 51, 168, 178], etc.

The adaptive filter can also be estimated in subbands [46, 103, 209, 210], in the
frequency domain [93, 174, 185], or in a band-limited frequency region [29]. The main
advantages are typically increased convergence rate, more control flexibilities, and com-
putational complexity reductions for adaptive filters with many taps. One of the biggest
drawbacks for real-time applications in traditional subband and frequency domain ap-
proaches is that they introduce an additional delay in the forward path f(n). However,
the delayless subband structure introduced in [134] and refined in [83] eliminates this
additional delay.

Moreover, a combination of feedback cancellation and feedforward suppression in
terms of a gain reduction is suggested in [157]. The motivation for this was that the
feedback cancellation in practice would not be perfect, an adaptive gain limit is therefore
computed based on the tracking ability of the feedback cancellation system, and it is
applied to the actual audio system gain to further ensure system stability. Some similar
gain processing approaches are suggested in [16, 61]. Other studies have been carried



2. STATE-OF-THE-ART FEEDBACK CONTROL SYSTEMS 13

out for analyzing and determining optimal strategies for combined feedback cancellation
and beamformer or noise suppression systems in hearing aids, see e.g. [89, 114, 121, 186].

Furthermore, much work has been done that analyze [40, 59, 60, 62, 63, 72, 105, 117,
122, 138, 177, 205, 208] and improve [7, 44, 191] adaptive algorithms in terms of e.g.
robustness, stability bounds, convergence rate, and steady-state behavior.

2.2.3 Summary

Feedback cancellation using adaptive filters is generally more effective to control feed-
back than feedforward suppression methods, and it provides better sound quality [180,
199]. However, one of the biggest remaining problems is the biased estimation problem
for closed-loop systems such as hearing aids. In the next section, we study this problem
in more details.

2.3 The Biased Estimation Problem

One of the biggest problems remaining in using adaptive filters for acoustic feedback
cancellation is the biased estimation of ĥ(n) [175, 180, 185]. It can be easily shown by
inserting Eqs. (12) and (13) in the Wiener-Hopf equation in Eq. (11), that

ho(n) = R−1
uu (n)ruy(n)

= E
[
u(n)uT (n)

]−1
E [u(n)y(n)]

= E
[
u(n)uT (n)

]−1
E
[
u(n)

(
uT (n)h(n) + x(n)

)]

= h(n)
︸︷︷︸

Desired

+ E
[
u(n)uT (n)

]−1
E [u(n)x(n)]

︸ ︷︷ ︸

Bias

. (18)

Eq. (18) shows that the Wiener-Hopf solution ho(n) consists of two terms, the true

feedback path h(n) and the product of the inverse correlation matrix E
[
u(n)uT (n)

]−1

and the cross-correlation vector E[u(n)x(n)] between the loudspeaker signal u(n) and
the incoming signal x(n). To obtain an unbiased estimation, the cross-correlation vector
must satisfy E[u(n)x(n)] = 0 in Eq. (18). In the following, we show that this is generally
not the case in practice, so that ho(n) becomes biased.

In general audio reinforcement systems including hearing aids, the loudspeaker signal
u(n) is ideally an amplified version of the incoming signal x(n), see Fig. 1. Furthermore,
there is a processing delay d through the audio processing system. To demonstrate the
problem, we simply model the loudspeaker signal u(n) as

u(n) = c · x(n − d), (19)

where c is a gain factor. The cross-correlation vector E[u(n)x(n)] can be written as

E [u(n)x(n)] = c · E [x(n − d)x(n)] , (20)
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where x = [x(n), x(n − 1), . . . , x(n − L + 1)]T denotes the incoming signal vector. Let
rxx(k) = E[x(n)x(n − k)] denote the autocorrelation function of x(n), such that Eq.
(20) can be rewritten as

E [u(n)x(n)] = c ·








rxx(d)
rxx(d + 1)
...

rxx(d + L − 1)








. (21)

Eq. (21) reveals that the autocorrelation rxx(k) of incoming signals x(n) is the key

factor in obtaining an unbiased estimation of ĥ(n). For an incoming signal with a short
correlation time compared to the audio system latency d so that rxx(|k|) = 0 ∀ |k| ≥ d,
the cross-correlation vector E[u(n)x(n)] in Eq. (21) would be a null vector, and unbiased
estimation, i.e. ho(n) = h(n), is obtained in Eq. (18). Otherwise, the cross-correlation
vector in Eq. (21) would consist of nonzero values and the consequence is an biased
estimation, i.e. ho(n) 6= h(n).

Unfortunately, for many everyday sound signals like speech signals and tonal signals
such as most musical signals and alarm tones, the signal correlation time is longer than
the audio system latency, especially in a hearing aid application, where the system
latency is typical between 4 − 8 ms [21, 182]. Consequently, the estimate ĥ(n) becomes
biased, and the cancellation performance is reduced and/or howling occurs.

2.4 Towards Unbiased Estimation

2.4.1 Methods for Unbiased Estimation

Different methods have been proposed to minimize the effect of biased estimation. Some
studies take the physical feedback path into consideration to limit the estimation of ĥ(n)

to avoid bias. For example in [97, 155], the estimation of ĥ(n) is constrained by the
a priori knowledge of true acoustic feedback paths h(n), typically as a feedback path
model, to minimize the influence from the correlation between u(n) and x(n). Some
studies to determine acoustic feedback path characteristics and models can e.g. be found
in [80, 81, 123, 125, 156].

Band-limited adaptations [29, 100] have been suggested for carrying out the esti-
mation in the frequency regions without strong autocorrelation of x(n). In [137], an
additional microphone is used to obtain an incoming signal estimate, which is removed
from the signals for the adaptive estimation to minimize the biased estimation problem.

Furthermore, a detection can be used to control the adaptive algorithms. In [102], a
slow adaptation of the feedback path estimate is chosen to avoid fast divergence due to
autocorrelation in x(n), and the adaptation speed is increased when system instability
or feedback path changes are detected. In [106], when strong autocorrelation is detected
in the incoming signal x(n), the adaptation is slowed down or frozen. However, these
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Table 2: Some well-known decorrelation techniques.

Decorrelation Method Decorrelation Path

Delay Loudspeaker signal and/or filter estimation
Phase modification Loudspeaker signal
Pre-whitening Filter estimation
Probe noise injection Loudspeaker signal and filter estimation

detect-and-react strategies do not work well when there is a strong autocorrelation in
x(n) and the feedback path changes at the same time.

2.4.2 Traditional Decorrelation Methods for Unbiased Estimation

Unbiased estimation of ĥ(n) can be obtained via methods which decorrelate the loud-
speaker signal u(n) from the incoming signal x(n), so that the term E[u(n)x(n)] → 0 in
Eq. (18). The decorrelation can be performed either in the loudspeaker signal path or
in the adaptive filter estimation path in the cancellation system. The advantage of car-
rying out the decorrelation in the adaptive estimation path is that this does not modify
the loudspeaker signal, so that no sound quality degradation is introduced due to decor-
relation. Table 2 provides an overview of some well-known decorrelation techniques and
indicates whether the decorrelation is performed in the loudspeaker signal path or in
the adaptive filter estimation path. Fig. 5 illustrates these decorrelation techniques.

Delay
Inserting a delay in the forward path f(n) and/or in the adaptive filter estimation path
as suggested in [25, 175] is the simplest decorrelation method, see Fig. 5(a). It is used
to partly bypass the typically strong signal correlation at lower time lags and model
the initial delay in acoustic feedback path impulse response due to the distance between
loudspeaker and microphone.

However, only relatively short delays can be used in real-time applications and to
correctly model the initial delay in feedback paths h(n). Therefore, although delay is
effective to decorrelate many signals with relatively short correlation times, its use is
limited in practice.

Phase Modification Methods
Fig. 5(b) shows a feedback cancellation system with phase modification in the forward
path f(n). As mentioned in Sec. 2.1.2, frequency shifting and phase modulation can be
used for feedforward suppression in the forward path. However, they are also effective
for decorrelation between u(n) and x(n). Frequency compression and shifting have been
discussed in e.g. [92, 153], and phase modification has been studied in e.g. [19, 71, 149],
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+

x(n)

–

y(n)e(n)

u(n)

w(n)

(d)

Fig. 5: Some decorrelation techniques for an unbiased estimation of ĥ(n). (a) A delay in the loud-
speaker signal path and/or in the adaptive filter estimation path. (b) Phase modification in the loud-
speaker signal path. (c) Pre-whitening in the adaptive filter estimation path. (d) Probe noise signal
injection of w(n) in the loudspeaker signal path and in the adaptive filter estimation path.

for improving feedback cancellation performance by decorrelating u(n) from x(n). Gen-
erally, the cancellation performance improvement is relatively large for phase modifica-
tion methods, at the price of audible artifacts due to the modifications of loudspeaker
signal u(n).

Pre-whitening Approaches
In the pre-whitening approach, the decorrelation is carried out on the signals used for
the estimation of ĥ(n), see Fig. 5(c). In this way, the forward path f(n) is unmodified,
and no artifacts are introduced to the loudspeaker signal u(n) due to decorrelation.

Some simple pre-whitening approaches are suggested by removing parts of the sig-
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nals, which are strongly correlated, from the adaptive filter estimation. For example
in [162], notch filters are estimated and used to remove the frequencies with strong sig-
nal correlation from the signals e(n) and u(n) to form ep(n) and up(n), which are used

to obtain an unbiased estimation of ĥ(n).
Another well-known pre-whitening method is the prediction error method, which

is known from closed-loop identification [5, 42, 73, 192], and it was analyzed and sug-
gested for a hearing aid system in e.g. [78, 79, 183, 184], or for applications with long
feedback path impulse responses such as public address systems and automotive speech
reinforcement systems in e.g. [30, 158, 159].

Many prediction error method based approaches whiten the signals for the adaptive
filter estimation by assuming that the incoming signal x(n) can be modeled well as a
white noise sequence ǫ(n) filtered through an all-pole model A(n, z),

A(n, z) =
1

1 +
∑Lp−1

k=1 pk(n)z−k
, (22)

where z−1 is the unit delay operator.
Let p(n) = [1, p1(n), . . . , pLp−1(n)]T . The prefilter p̂(n) = [1, p̂1(n), . . . , p̂Lp−1(n)]T

is then jointly estimated with the cancellation filter ĥ(n). Furthermore, the prefilters
are applied to the signals u(n) and e(n) entering the adaptive filter estimation and they
approximately whiten the incoming signal components in these signals and thereby
compensate for the biased estimation of ĥ(n). Ideally, the signal component x(n) in
the error signal e(n), filtered by the prefilter p̂(n), would be the white noise excitation
sequence ǫ(n) due to the assumption of an autoregressive incoming signal x(n) and it
would no longer cause a biased estimation. In this way, the prediction error method
would ideally provide an unbiased estimation of ĥ(n). In practice it works well for most
speech signals, since the unvoiced part of speech signals can be modeled well as a white
noise sequence filtered through the all-pole model in Eq. (22) [126].

However, these all-pole model based prediction error methods do not perform well for
e.g. music signals, because the assumption that x(n) is autoregressive is violated. Several
studies have suggested modifications to improve the performance for music signals by
using instead a frequency-warped all-pole model [194], a cascade of a conventional all-
pole linear prediction model and one of the alternative linear prediction models [196]
described in [195], and sinusoidal models [139, 140], or the prediction error method in
a transform domain [54].

Traditional Probe Noise Approaches
Fig. 5(d) illustrates a feedback cancellation system using a probe noise signal w(n),
where w(n) is uncorrelated with x(n) and u(n) by construction, and an unbiased esti-

mation of ĥ(n) can be obtained based on w(n). Alternatively, the mixture of u(n) and

w(n) can be used for the estimation [199]. However, in that case the estimation of ĥ(n)
can be shown to be a mixture of a biased and an unbiased part.
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A class of closed-loop identification methods utilizes a probe noise signal w(n) added
to the original loudspeaker signal u(n), e.g. the indirect and joint input-output ap-
proaches [42, 43, 172, 173, 193]. The goal of the probe noise signal w(n) is to estimate

ĥ(n) indirectly in an open-loop setup.
It is also possible to deploy the added probe noise signal w(n) in a different way,

where the estimation of ĥ(n) is directly based on w(n). A non-continuous adaptation

is studied in [96], the adaptive estimation of ĥ(n) is only performed when the system is
detected to be close to instability, and the loudspeaker signal u(n) is then muted and
the probe noise signal w(n) is presented as the loudspeaker signal. In this way, the
adaptive estimation is directly driven by the probe noise signal w(n) in an open-loop
configuration. By looking at Eq. (18), this corresponds to replacing the loudspeaker
signal vector u(n) with the probe noise signal vector w(n) = [w(n), w(n − 1), . . . , w(n −
L + 1)]T , and ho(n) can be shown to be,

ho(n) = R−1
ww(n)rwy(n) (23)

= h(n) + E
[
w(n)wT (n)

]−1
E [w(n)x(n)]

︸ ︷︷ ︸

=0

. (24)

Since w(n) is uncorrelated with x(n), we get an unbiased estimation, i.e. ho(n) =
h(n). In [127], a similar non-continuous adaptation with a different decision criterion
for starting the adaptation is proposed; specifically, probe noise insertion and adaptive
filter estimation is only performed during quiet intervals; the attempt is made to reduce
the audible artifacts introduced by a high-level probe noise signal. Nevertheless, the
cancellation performance in these systems is highly dependent on the detectors for the
non-continuous adaptation.

Although the probe noise approach in principle eliminates the biased estimation
problem, the perhaps biggest drawback in using it in feedback cancellation systems in
general is that the probe noise signal must often be powerful compared to the loud-
speaker signal u(n), for achieving a noticeable improvement in acoustic feedback can-
cellation systems. Unfortunately, powerful probe noise signals become clearly audi-
ble [79, 173, 197]. In [66], it is shown theoretically that when the probe noise level
is adjusted to be inaudible, the probe noise to disturbing signal ratio is generally low
and the convergence rate of the adaptive system is decreased, by as much as a factor
of 30 in practice compared to a traditional cancellation system. Hence, the decreased
convergence rate and/or clearly audible artifacts limit the practical use of the probe
noise approach.

Studies exist that minimize the sound quality degradation due to decorrelation by
using specifically generated probe noise signals, such as in [124], where the high fre-
quency part of the loudspeaker signal u(n) is replaced by a synthetic signal, and the
replacement signal is perceptually similar to u(n) but it is statistically uncorrelated with
x(n).
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Fig. 6: A multiple microphone channel hearing aid acoustic feedback cancellation system using a probe
noise signal w(n) and probe noise enhancement filters âi(n).

Generally, a compromise exists in traditional probe noise approaches, between sound
quality degradation in the loudspeaker signal u(n) and improved feedback cancellation
performance.

2.4.3 A Novel Probe Noise Based Approach for Unbiased Estimation

In [69], we introduced a novel probe noise approach which provides an unbiased estima-

tion of ĥ(n) without introducing perceptually significant sound quality degradations.
Fig. 6 illustrates the structure of this novel probe noise based approach, which looks
somewhat like a combination of the pre-whitening approach and the traditional probe
noise approach shown in Figs. 5(c) and 5(d), respectively. However, the goal of the
enhancement filters a(n) is to increase the probe noise to disturbing signal ratio, in
contrast to the pre-whitening approach that decorrelates the incoming signal x(n) and
the loudspeaker signal u(n).

We desire a probe noise signal w(n) with the highest possible signal power at all
frequencies while being inaudible in the presence of the original loudspeaker signal u(n).
Therefore, we generate the probe noise signal w(n) using a spectral masking model based
on e.g. [91, 146]. This kind of probe noise generation method was firstly introduced for
system identification and feedback cancellation applications in [33, 90]; however, the low
probe noise signal power leads to a decreased convergence rate in the adaptive systems.
Hence, further improvements of the system convergence rate are needed.

The improvements found in the proposed approach are obtained by using so-called
enhancement filters a(n) to reduce the influences of the disturbing signals, e.g. the in-

coming signals x(n), for the estimation of ĥ(n). At the same time, the filters a(n) are
specifically designed, in coordination with the probe noise signal w(n), so that they are
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statistically transparent for w(n) in the estimation of ĥ(n). This characteristic of a(n)
increases the probe noise to disturbing signal ratio, and it leads to an increased conver-
gence rate compared to the traditional probe signal approach, without compromising
the steady-state behavior in the cancellation system. We refer to [69] for more details.

A comparison between different state-of-the-art feedback cancellation systems in [70]
shows that this novel probe noise approach outperforms other feedback cancellation sys-
tems, including a prediction error method based system and a frequency shifting based
system, since this novel probe noise approach is very robust against biased estimation
problem for all types of incoming signals without introducing perceptual sound quality
degradation. Furthermore, the computational complexity increase in this novel approach
is less than a factor of three compared to traditional feedback cancellation systems [70].

3 Evaluation of Feedback Cancellation Systems

An evaluation of feedback cancellation systems needs to cover various aspects, and the
final assessment is typically based on a trade-off between these aspects. We consider gen-
erally three major aspects: feedback cancellation performance, sound quality distortion,
and computational complexity.

3.1 Feedback Cancellation Performance

3.1.1 Evaluation Methods

An objective evaluation of feedback cancellation performance can be carried out either in
computer simulations or by physical measurements. Objective evaluation is essentially
useful for system analysis and design, because it is reproducible, and based on computer
simulation experiments it can evaluate many complicated test scenarios with different
test situations, parameter settings, etc. quickly compared to subjective tests based on
opinions from test subjects. Objective cancellation performance is typically evaluated in
terms of convergence rate, stability bounds, steady-state behavior including steady-state
error and tracking error [76].

Generally, it is straightforward to evaluate feedback cancellation performance in
simulations. The convergence rate and steady-state error can easily be determined
using a static feedback path h. To evaluate the tracking ability of feedback cancellation
systems, the feedback paths must undergo variations, this can be achieved using different
feedback path variation models [117].

Physical measurements in a static feedback environment can be performed e.g. on a
mannequin, designed for sound quality testing. However, to make feedback path varia-
tions reproducible in physical measurements is more challenging. A robotic mechanism
is suggested for this purpose in [187], particularly to measure the influence of a fast
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variation/change in feedback paths due to a telephone handset brought next to user’s
ear and hearing aid.

3.1.2 Performance Measures

There are generally two types of performance evaluation measures for feedback cancel-
lation systems.

The first type is based on measurements carried out on signals in the cancellation
system. Traditional evaluation measures are often formulated in terms of the mean
square error E[e2(n)], e.g. its decay which indicates the convergence, and its steady-state
value. Other measures are typically based on comparisons of different signals such as
e(n), u(n), and/or the amplifications |F (ω, n)| in the systems as described and applied in
evaluations of commercial hearing aids in [45, 171, 181, 182]. The greatest advantage of
this kind of evaluation measures is that they can be used both in physical measurements
and simulations for design purpose, since all signals are in principle accessible, although
it might be necessary to perform additional reference measurements in a system without
feedback. Some of these cancellation performance measures based on measured signals
are also somewhat related to sound quality [181].

The other type of evaluation measures is based on a distance measure between the
true and estimated feedback path, such as the mean square deviation E[‖h(n)− ĥ(n)‖2]
[76]. In contrast to the signal based measures, the use of these measures is more limited
since the true acoustic feedback path h(n) must be known a priori. However, this is
always the case in computer simulations and, in principle, in physical measurements
with a well-controlled acoustic feedback environment, but never in a real application.
The greatest advantage of using this kind of evaluation measures is that the evaluation
results are directly linked to system stability via the open-loop transfer function, which
h(n) − ĥ(n) is a part of.

There are different variants of the mean square deviation measure such as its fre-
quency domain version E[|H(ω, n) − Ĥ(ω, n)|2]. An example measure of this kind re-
ferred to as the power transfer function is introduced in [63]. Furthermore, some com-
monly used performance measures are based on the mean square deviation such as the
maximum stable gain and the added stable gain etc. [181].

In this work, we mainly evaluate cancellation performance, in terms of convergence
rate and steady-state behavior, in simulation experiments using the distance based mea-
sures.

3.2 Sound Quality

3.2.1 Listening Test

Sound quality evaluation of feedback cancellation systems can be performed using a
listening test. In order to assess sound quality of feedback cancellation systems, typically
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Table 3: Descriptions of mean-opinion-scores (MOS) scores [87].

MOS Quality Description of Impairment

5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

a paired comparison or an absolute rating of quality is performed [34]. In a paired
comparison, test subjects simply choose which of the two presented test signals they
prefer. This method is simple and it is often used to improve hearing aid fittings [34].
In tests with absolute ratings of quality, test subjects rate each test signal on a sound
quality scale, such as the mean-opinion-scores (MOS) in the range 1 − 5 [87], as given
in Table 3.

Listening tests based on absolute ratings of quality are more complicated to design
and conduct than paired comparison based tests. However, it is easy to assess, based on
absolute ratings, how much better is the preferred test signal. Tests based on absolute
ratings are often used for evaluation of sound quality in feedback cancellation systems.
In [58, 127], test subjects rated hearing aid loudspeaker signals on a scale from 1 to 10,
indicating unacceptable and excellent quality, respectively. However, it is also possible
to rate directly the difference between two test signals as performed in [29], where test
subjects should rate two different hearing aid loudspeaker signals on a scale from 0 to
5, which indicate no difference or one of them is much better, respectively. In our work,
we use the absolute ratings of quality method.

Another concern in a listening test for hearing aid applications regards the choice
between normal hearing and hearing impaired test subjects. In our work, we choose
to evaluate the sound quality using normal hearing test subjects. Our assumption is
that if the sound distortion is acceptable for normal hearing people, then it will also be
acceptable for hearing impaired people. In this way, we expect the results of normal
hearing test subjects provide a sound quality acceptance lower bound. The study in
e.g. [20] shows that this assumption is realistic.

3.2.2 Evaluation of Feedback Cancellation System Introduced Artifacts

The overall sound quality degradations in a feedback cancellation system consists of
sound distortions due to feedback and sound distortions introduced by the cancellation
system, such as the effects of decorrelation, which is used in an attempt to get better
cancellation performance and overall sound quality. A severe sound distortion due to
decorrelation could in principle lead to better cancellation performance and thereby
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improve the overall sound quality. Therefore, it is preferable to evaluate the overall
sound quality.

In practice, however, it is generally too complicated to evaluate the overall sound
quality subjectively, since the listening test must cover many different aspects such as
acoustic situations, system parameter settings, etc. and it will be very time consuming
to conduct. Therefore, much work has focused on maximizing cancellation performance
and improve the overall sound quality by keeping sound distortions introduced by the
cancellation system at a low level. For example in [19], a pairwise comparison test
based on the International Telecommunication Union (ITU) recommendation BS.1116-
1 [84] is performed to evaluate sound quality distortion due to a time-varying all-pass
filter processing in hearing aids. In [70], a multiple comparison based on the ITU
recommendation BS.1534-1 [86] (also referred to as a MUSHRA test) is carried out
for assessing sound quality distortion introduced by frequency shifting and probe noise
injection.

3.2.3 Objective Sound Quality Evaluation

Sound quality evaluation via listening tests is generally complicated and time consuming,
and it requires proper preparations and post-processing [8, 131]. Therefore, robust
objective predictions of sound quality is useful as a supplement.

Objective sound quality evaluation is typically carried out by comparing test signals
to a reference signal without sound distortions. The frequency weighted log-spectral
signal distortion [57] is a distance measure between the test signal and the reference
signal spectra, and it is e.g. used for sound quality evaluation in feedback cancellation
systems [197]. Furthermore, in order to verify that the initial parameter choices for
decorrelation only introduce insignificant sound quality distortions, the perceptual eval-
uation of speech quality (PESQ) and perceptual evaluation of audio quality (PEAQ)
models can be applied, see e.g. [69–71]. The PESQ and PEAQ are standardized algo-
rithms for objectively measuring perceived speech and audio quality, described in the
ITU recommendations [88] and [85]. In [70], it is shown that there is actually a reason-
able agreement between PESQ/PEAQ predictions and the obtained subjective sound
quality scores in the listening test for evaluating frequency shifting and probe noise
artifacts.

Unfortunately, in contrast to the PESQ and PEAQ scores which are widely accepted
for objectively predicting/evaluating speech and audio qualities for coding and/or com-
munication channel artifacts, there is so far no well-established objective sound quality
measure, which is verified to be reliable, for evaluating acoustic feedback artifacts.

3.3 Computational Complexity

Computational complexity in terms of required arithmetic operations is an important
design parameter in any digital signal processing algorithm. This becomes even more
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important for the hearing aid application, since one particular limitation in hearing aids
is a very short battery time [101], besides the less powerful processing unit, compared
to other electronic mobile devices such as mobile phones or laptops.

Specifically for the feedback cancellation systems in hearing aids, the trade-off is
often between cancellation performance, sound quality, and computational complexity
when choosing a particular system. In our work, we typically count the number of
multiplications (and additions/subtractions) for a particular algorithm to make a rough
estimate of computational complexity, as e.g. reported in [70]. On the other hand, we
do not focus on divisions, although they are computationally expensive in hardware
implementations, since they are rare and very often realized in different ways based on
multiplication, subtraction, and table look-up [145].

Moreover, it should be mentioned that another important power consumption con-
cern regards the memory requirement in different algorithms/systems [27, 130]. A less
demanding algorithm in terms of arithmetic operations might not be necessarily the
most power efficient one, should it require excessive memory usage. Furthermore, nu-
merical robustness in fixed-point implementations is another main concern [31, 115, 118]
in general signal processing algorithm design.

4 Acoustic Echo Cancellation

The acoustic feedback problem is very similar in structure to the acoustic echo problem,
which also involves an audio system which loudspeaker signal is recaptured by its mi-
crophone. In this section, we give a short introduction to the acoustic echo cancellation
problem, before we relate the echo and feedback cancellation systems.

4.1 Acoustic Echo and Echo Cancellation

4.1.1 Background

The acoustic echo problem occurs typically in hands-free telephony and teleconferencing
situations. Fig. 7 illustrates an echo situation and an echo cancellation system using
adaptive filters. The far-end and near-end denote the transmitting and receiving ends
over a communication channel, such as a telephone line, where two users, one at the
far-end and the other at the near-end side, are communicating.

Both ends can be considered as mirrored copies of each other, therefore, we only focus
on the near-end in the following. Ideally, only the near-end speech signal x(n) should
be transmitted to the far-end. However, in practice, the signal v(n) is also transmitted
to the far-end where it is perceived as an echo.

For convenience, we consider the near-end loudspeaker signal u(n) as an unprocessed
speech signal spoken by the far-end user. Very similar to the acoustic feedback problem,
the loudspeaker signal u(n) is modified by the near-end echo path hN(n) to produce
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hF(n) ĥF(n) ĥN(n) hN(n)

+

–

Far-end

y(n)

v̂(n)

–

u(n)

e(n)

Near-end

v(n)

x(n)

C
o
m

m
u

n
ic

a
ti

o
n

ch
a
n

n
el

Fig. 7: An acoustic echo cancellation system. The far-end and near-end systems can be considered as
mirrored copies of each other.

an echo signal v(n) which is recorded by the microphone. Since the microphone signal
y(n) is transmitted back to the far-end, the far-end user would hear a delayed and
distorted version of his/her own voice as an echo. This is the basic acoustic echo
problem. The echo path hN(n) depends on the acoustic properties of the near-end room
such as reflective surfaces and movements of the user [74].

4.1.2 Echo Cancellation Using Adaptive Filters

Echo cancellation using adaptive filters is an effective method to control echoes, see
e.g. [9]. In Fig. 7, an adaptive filter ĥN(n) is used to model the echo path hN(n) and
create the cancellation signal v̂(n). It is clear that the near-end echo cancellation system
in Fig. 7 is very similar in structure to the acoustic feedback cancellation system in Fig.
4(b). The only difference is that there is an additional forward path denoted by f(n) in
the acoustic feedback cancellation system.

In echo cancellation systems, the far-end impulse response difference hF(n) − ĥF(n)
can be considered as the counterpart to f(n), and it is often neglected in the near-end

echo cancellation of hN(n), since hF(n) − ĥF(n) typically does not contain significant
amplification in contrast to f(n) in feedback cancellation systems, especially when a

relatively accurate estimate ĥF(n) is obtained at the far-end; it leads to a relatively low
magnitude of the open-loop transfer function Θe(ω, n),

Θe(ω, n) =
(

HF(ω, n) − ĤF(ω, n)
)(

HN(ω, n) − ĤN(ω, n)
)

, (25)

where HF(ω, n), ĤF(ω, n), HN(ω, n), and ĤN(ω, n) are frequency responses of hF(n),

ĥF(n), hN(n), and ĥN(n), respectively. Hence, whereas the acoustic feedback cancel-
lation is a closed-loop system identification problem, the echo cancellation is generally
considered as an open-loop problem.
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4.2 Some Relations to Feedback Cancellation

The echo cancellation problem is similar to the feedback cancellation problem. In this
section, we present two difficult-to-handle echo cancellation problems, the double-talk
problem and the non-uniqueness problem, and we relate them to feedback cancellation
systems.

4.2.1 The Double-Talk Problem

One of the main challenges in echo cancellation is the so-called double-talk situation,
see e.g. [9]. It occurs when both the far-end and the near-end users are talking simulta-
neously, such that the near-end loudspeaker signal u(n) and the near-end speech signal
x(n) are active at the same time. Unfortunately, adaptive algorithms adjusted to a
high convergence rate usually diverge quickly in this situation. A well-known procedure
to limit the divergence of adaptive filters is based on a double-talk detector, e.g. the
Geigel detector [36], which controls the adaptive algorithm by e.g. freezing or slowing
down the adaptation when a double-talk situation is detected. Extensive studies have
been carried out to deal with the double-talk situation, see e.g. [48, 49, 201] and the
references therein.

Although the double-talk situation is difficult to handle, it is typically not always
present in an echo cancellation situation, and it is possible to carry out a normal single-
talk adaptation of adaptive filters most of the time. In contrast, in a feedback situation
“double-talk” is actually unavoidable and occurs all the time; moving back to Fig. 4(b),
we observe that the loudspeaker signal u(n) is a processed version of x(n). Without the
presence of an incoming signal x(n), there is no loudspeaker signal u(n), and they will
always appear in pairs.

Hence, in feedback cancellation, we need to actively deal with double-talk situation
always, and freezing the adaptive filters when detecting a double-talk situation is gen-
erally not an option. Traditionally, a relatively slow adaptation is very often needed in
order to handle the double-talk situation. From the double-talk problem’s point of view,
the acoustic feedback cancellation problem is more difficult to solve than the acoustic
echo cancellation problem.

4.2.2 The Non-Uniqueness Problem

Another major challenge in echo cancellation arises when stereo or multichannel au-
dio systems are used to provide spatial perception of sound signals. Fig. 8 shows a
stereophonic echo cancellation situation with adaptive filters ĥ1(n) and ĥ2(n) for echo
cancellation in each microphone channel, and the far-end source signal s(n) is modi-
fied by the room impulse responses g1(n) and g2(n) to form the far-end microphone
incoming signals u1(n) and u2(n).
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Fig. 8: A stereophonic acoustic echo cancellation system.

The stereophonic echo cancellation situation suffers from a non-uniqueness problem,
see e.g. [179], so that there exist infinitely many solutions of ĥ1(n) and ĥ2(n) that

lead to perfect echo cancellation of h1(n) and h2(n), and typically ĥ1(n) 6= h1(n) and

ĥ2(n) 6= h2(n). Unfortunately, all solutions but the true one, where ĥ1(n) = h1(n) and

ĥ2(n) = h2(n), depend on the far-end room impulse responses g1(n) and g2(n), and any
change of far-end room impulse responses, e.g. the movement of talkers, would affect or
even destroy the near-end echo cancellation.

In [11], it is shown that an effective solution to the non-uniqueness problem is to re-
duce the cross-correlation between the signals u1(n) and u2(n), and a nonlinear method
of half-wave rectification for decorrelation is proposed. Since then, the stereophonic echo
cancellation problem has been extensively studied, different suggestions for decorrela-
tion have been proposed, such as perceptually shaped noise signals [47, 56], time-varying
all-pass filters [3, 188, 189], time-reversal of signals [141], different types of nonlineari-
ties [133], phase modification based methods [14, 82], and methods [26, 160, 161] based
on the psychoacoustic phenomenon of the missing fundamental [75].

Hence, although the underlying reasons are different, decorrelation techniques are
useful in acoustic echo cancellation as well as in acoustic feedback cancellation. Un-
fortunately, methods which are effective for decorrelation for one system might not be
effective for the other. It is shown in [197], that the half-wave rectification which is
effective against the non-uniqueness problem in stereophonic echo cancellation is not ef-
fective against the biased estimation problem in acoustic feedback cancellation. Hence,
decorrelation should be designed and verified specifically for each cancellation system.
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Paper A
[IEEE TSP]

Paper C
[IEEE SPL]

Paper D
[IEEE TASL]

Paper E
[EUSIPCO]

Paper B
[Asilomar Conf.]

Paper G
[ICASSP]

Paper F
[JAES]

Fig. 9: An overview of relations between the included papers. Shaded areas indicate the two main
topics in this work. Arrows with solid/dashed lines indicate direct/indirect connections between papers.
Paper A is the initial point for our work (indicated by the double lined box), and Paper D is the
most significant contribution (indicated by the thick solid box). Paper outline: A. Power transfer
function method [63]. B. Estimation Strategies [62]. C. Biased estimation and traditional probe noise
approach [66]. D. A novel probe noise approach for unbiased estimation [69]. E. Frequency shifting
and phase modulation methods for unbiased estimation [71]. F. Comparison of different state-of-the-art
cancellation systems [70]. G. Power transfer function refinement [72].

5 Topics of the Thesis

The main part of this thesis consists of a collection of selected papers, contributing to
the development of acoustic feedback and echo cancellation systems. In this section,
first we provide an overview of the relations between these papers, then we describe
each paper in more details and highlight the main contributions.

5.1 Outline

Fig. 9 shows the relations between the included papers. There are two main topics in
this work. First, we analyze an acoustic feedback and/or echo cancellation system in
a multiple microphone audio processing system to predict cancellation system behav-
ior. Secondly, we use this analytical method to evaluate the biased estimation problem,
which is perhaps the biggest remaining problem in the field of acoustic feedback cancel-
lation. Based on this evaluation result, we propose a novel probe noise based acoustic
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feedback cancellation system for a hearing aid application to solve the biased estimation
problem.

Paper A is our initial work, where we propose a frequency domain evaluation measure
referred to as the power transfer function (PTF) to predict system behavior for both
feedback and echo cancellation systems. The PTF expression is derived as a function of
different signal properties and the applied adaptive algorithms, but it does not require
knowledge of true acoustic feedback/echo path. In Paper B, the PTF method is used to
determine optimal adaptive cancellation strategies for feedback and echo cancellation
systems. The PTF is further refined in Paper G for a more accurate evaluation and
prediction of system behavior in acoustic feedback cancellation systems.

The PTF method is used in Papers C and D to analyze a traditional probe noise
approach and design a novel probe noise based cancellation system, respectively. The
novel probe noise approach is able to provide an unbiased estimation, and a significantly
increased convergence rate compared to the traditional probe noise approach, while only
introducing minor noticeable but not annoying artifacts. In Paper E, we further analyze
and compare the frequency shifting and phase modulation methods with perceptually
motivated parameter setups, which ensure minimal sound distortions, to deal with the
biased estimation problem. In Paper F, we conduct a comparison of different state-of-
the-art feedback cancellation systems in a hearing aid application including the methods
described in Papers D and E. At an insignificant sound quality degradation level, the
method proposed in Paper D turns out to have the best overall cancellation performance,
with only a relatively small computational complexity increase.

5.2 Summary of Contributions

Paper A – Analysis of Acoustic Feedback/Echo Cancellation in Multiple-
Microphone and Single-Loudspeaker Systems Using a Power Transfer Func-
tion Method

In Paper A, we analyze a general multiple-microphone and single-loudspeaker audio
processing system, where a multichannel adaptive system is used to cancel the effect of
acoustic feedback/echo, and a beamformer processes the feedback/echo canceled signals.
We introduce and derive an accurate approximation of a frequency domain measure—
the power transfer function—and show how it can be used to predict the convergence
rate, steady-state behavior, and the system stability bound of the entire cancellation
system across frequency and time. Furthermore, we derive expressions to determine the
step size parameter in the adaptive algorithms to achieve a desired system behavior,
e.g. convergence rate at a specific frequency. Different parts of this work have been
published in preliminary form in [64, 65].
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Paper B – Acoustic Feedback and Echo Cancellation Strategies for Multiple-
Microphone and Single-Loudspeaker Systems

This work is motivated by the fact that often acoustic feedback/echo cancellation in a
multiple-microphone and single-loudspeaker system is carried out using a cancellation fil-
ter for each microphone channel, and the filters are adaptively estimated, independently
of each other. Hence, we consider another strategy by estimating all the cancellation
filters jointly and assess if an improved cancellation performance is achievable compared
to the independent estimation strategy.

We show, using the power transfer function method introduced in Paper A, that
under certain reasonable assumptions the independent estimation strategy is statistically
identical to the joint estimation strategy. Hence, there is no performance advantages
by using the computationally more complex joint estimation strategy in the considered
system. Furthermore, we relate the joint estimation strategy to a stereophonic acoustic
echo cancellation system and provide analytic expressions for its system behavior.

Paper C – On Acoustic Feedback Cancellation Using Probe Noise in Multiple-
Microphone and Single-Loudspeaker Systems

In Paper C, we focus on a traditional probe noise approach to prevent biased estimation
in a feedback cancellation system, as discussed in Sec. 2.3. Although the traditional
probe noise approach is effective against the bias problem, practical experiences and
simulation results indicated that whenever a low-level and inaudible probe noise signal
is used, the convergence rate of the adaptive estimation is significantly decreased when
keeping the steady-state error unchanged.

In this work, we show theoretically how different system parameters and signal prop-
erties affect the cancellation performance, and the results explain the decreased conver-
gence rate from a theoretical point of view. Understanding this was important for
making further improvements (as presented in Paper D) to the traditional probe noise
approach.

Paper D – Novel Acoustic Feedback Cancellation Approaches in Hearing Aid
Applications Using Probe Noise and Probe Noise Enhancement

In Paper D, based on the knowledge obtained from Paper C, we propose and study ana-
lytically two new probe noise approaches utilizing a combination of specifically designed
probe noise signals and probe noise enhancement filters. Despite using low-level and
inaudible probe noise signals, both approaches significantly improve the convergence
behavior of the cancellation system compared to the traditional probe noise approach.

In particular, we utilize a simple spectral masking model to generate a probe noise
signal w(n), which is inaudible in the presence of the original loudspeaker signal u(n).
The improvements in convergence rate are obtained by processing the signals entering
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the adaptive algorithms using enhancement filters specifically designed as long-term pre-
diction error filters, so that the disturbance from the incoming signals x(n) is reduced,
whereas the probe noise signal properties are unmodified, and it thereby increases the
probe noise to disturbing signal ratio. Part of this work has been published in prelimi-
nary form in [67], whereas its application in hearing aids has been presented in [68].

Paper E – On the Use of a Phase Modulation Method for Decorrelation in
Acoustic Feedback Cancellation

In Paper E, we consider an otherwise well-known phase modulation decorrelation method
for reducing the biased estimation problem in feedback cancellation systems. However,
we configure the parameter setting for the phase modulation over frequency in a percep-
tually motivated way so that the sound quality degradation is at a very low level. We
determine if this configuration is effective for decorrelation in acoustic feedback cancel-
lation systems by comparing it to a structurally similar frequency shifting decorrelation
method. We show that the phase modulation method with the specific perceptually
motivated parameter choices is suitable for decorrelation in a hearing aid acoustic feed-
back cancellation system, although the frequency shifting method in general is slightly
more effective.

Paper F – Evaluation of State-of-the-Art Acoustic Feedback Cancellation
Systems for Hearing Aids

In Paper F, we evaluate four state-of-the-art acoustic feedback cancellation systems used
and/or proposed for a hearing aid application including the novel probe noise based
system, described in Paper D, in terms of their abilities to cancel acoustic feedback,
additional sound quality degradations they might introduce to hearing aid output signals
due to decorrelation, and their computational complexity.

All these four state-of-the-art cancellation systems outperform the traditional can-
cellation system which has significant limitations due to the biased estimation problem,
and the computational complexity increases are no more than a factor of three. Fur-
thermore, we show that especially the novel probe noise based system is most effective
for cancellation and robust against the biased estimation in the case of highly correlated
incoming signals like music.

Paper G – Analysis of Closed-Loop Acoustic Feedback Cancellation Systems

In Paper G, we propose a refinement to the power transfer function described in Paper A.
The analysis in Paper A is derived in an open-loop acoustic echo cancellation system, and
it provides inaccurate predictions in closed-loop acoustic feedback cancellation systems
if there is a strong correlation between the loudspeaker signal and the signals entering
the microphones.
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This work extends the power transfer function performance analysis by studying the
effects of the nonzero signal correlation on adaptive filters, and the extension provides
accurate performance predictions in closed-loop acoustic feedback cancellation systems.

6 Conclusions and Future Directions

This thesis treats the analysis, design, and evaluation of acoustic feedback and/or echo
cancellation systems. The first main contribution is the analysis of a general multiple-
microphone and single-loudspeaker acoustic feedback/echo cancellation system using
an introduced frequency domain evaluation measure referred to as the power transfer
function in Paper A. This measure can be used to predict system behaviors such as
convergence rate and/or steady-state error in acoustic feedback and echo cancellation
systems, and it can be used to set system parameters to obtain specifically desired
cancellation properties.

The second main contribution is the design and evaluation of a novel probe noise
based approach for hearing aid acoustic feedback cancellation described in Paper D and
Paper F, respectively. We have shown in Paper F that the proposed probe noise based
feedback cancellation system outperforms other state-of-the-art hearing aid feedback
cancellation systems, especially in the most difficult-to-handle situation.

Although the contributions in this thesis solve some of the major problems in acous-
tic feedback cancellation for hearing aids, some challenges still remain. For example, the
novel probe noise based system has an increase in computational complexity by a fac-
tor of roughly three compared to the traditional acoustic feedback cancellation system.
Due to the limited computing power available in hearing aids, a complexity reduction
is therefore preferable before it is realized for practical use. Furthermore, it is also im-
portant to verify how the proposed probe noise based system perform in practice, e.g.
in a more complicated acoustic environment, which makes the enhancement filter esti-
mation more challenging, as the incoming signal is very probably a mixture of different
signals including background noise etc. Another interesting research question regards
the possible interactions between the proposed probe noise based cancellation system
and other hearing aid signal processing algorithms such as adaptive beamformer/noise
reduction algorithms. These are topics for future work.

Moreover, the proposed probe noise system is specifically designed for hearing aids,
utilizing their short acoustic feedback paths. Therefore, we expect that it is useful for
other applications with short acoustic feedback/echo paths such as headsets. Another
topic for future work is to investigate if this system is useful (or should be modified) for
acoustic feedback cancellation in public address systems and/or acoustic echo cancella-
tion in general, where the feedback/echo paths are typically much longer.
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Analysis of Acoustic Feedback/Echo Cancellation

in Multiple-Microphone and Single-Loudspeaker
Systems Using a Power Transfer Function Method

Meng Guo, Thomas Bo Elmedyb, Søren Holdt Jensen, and Jesper Jensen

Abstract

In this work, we analyze a general multiple-microphone and single-loudspeaker audio
processing system, where a multichannel adaptive system is used to cancel the effect of
acoustic feedback/echo, and a beamformer processes the feedback/echo canceled signals.
We introduce and derive an accurate approximation of a frequency domain measure—the
power transfer function—and show how it can be used to predict the convergence rate,
system stability bound and the steady-state behavior of the entire cancellation system
across frequency and time. We consider three example adaptive algorithms in the can-
cellation system: the least mean square, normalized least mean square and the recursive
least squares algorithms. Furthermore, we derive expressions to determine the step size
parameter in the adaptive algorithms to achieve a desired system behavior, e.g. conver-
gence rate at a specific frequency. Finally, we compare and discuss the performance of
all three adaptive algorithms, and we verify the derived expressions through simulation
experiments.

1 Introduction

Acoustic feedback/echo problems occur in audio systems/devices with simultaneous
recording and playback, where the microphones pick up part of the output signal from
the loudspeakers. In applications such as public address systems and hearing aids,
the acoustic feedback problem often degrades the system performance. In the worst-
case, the systems become unstable and howling occurs as a consequence. Acoustic echo
problems often occur in telephony and teleconferencing systems, where users hear their
own voices as disturbing echoes.

During the past half-century, many approaches have been proposed to minimize the
effects of the acoustic feedback/echo problems such as gain reduction, phase modification
and frequency shifting/transposition, e.g. in [1–3]. A widely used solution for reducing
the effect of this problem is the acoustic feedback cancellation (AFC) and acoustic

A.3
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F (ω, n) Ĥ(ω, n) H(ω, n)

+

A

B –

PP

(a)

P
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Fig. 1: Systems with acoustic feedback/echo and the cancellation. (a) A basic single-microphone and
single-loudspeaker system. (b) A multiple-microphone and single-loudspeaker system with a beam-
former, where i = 1, . . . , P , and P denotes the number of microphone channels.

echo cancellation (AEC) algorithms which identify the acoustic feedback/echo paths by
means of an adaptive filter in a system identification configuration, see e.g. [4–10].

Fig. 1(a) shows a single-microphone and single-loudspeaker (SMSL) audio processing
system. An acoustic feedback/echo path is represented by the transfer function (TF)
H(ω, n), where ω and n denote the discrete normalized frequency and the discrete-time
index, respectively. An estimate Ĥ(ω, n) of H(ω, n) is computed in the AFC/AEC
system by means of an adaptive filter algorithm in order to cancel the effect of H(ω, n).
The TF F (ω, n) denotes a forward path, which is found in closed-loop AFC applications,
e.g. to implement a frequency dependent amplification in a hearing aid [11]; on the
other hand, in the area of AEC, F (ω, n) represents a far-end TF and is usually ignored,
resulting in an open-loop setup.

The adaptive filter approach was firstly developed in 1960s in the area of telecommu-
nication [12]. Since then, a vast range of different adaptive algorithms have been pro-
posed including the least mean square (LMS), normalized least mean square (NLMS),
affine projection (AP), recursive least squares (RLS) and Kalman filter to mention a
few [4, 5].

Many studies exist which analyze, characterize and improve adaptive algorithms in
terms of e.g. robustness, stability bounds, convergence rate and steady-state behavior,
see e.g. [13–22] and the references therein. Often, the analysis focuses on criteria such as
mean-square error, mean-square deviation [4, 5] and variations of these. Although these
criteria provide useful information about the behavior of the adaptive systems, they do
not reveal frequency domain behavior, which could be more suitable in areas such as
AFC and AEC, because the electro-acoustic properties of feedback/echo paths are easier
described in the frequency domain in terms of the magnitude and phase spectra, and
because in connection with sound quality assessment of the cancellation performance,
a frequency domain measure is more directly linked to human auditory perception [23].
Some examples of frequency domain criteria can be found in e.g. [24].
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In the following, we discuss a frequency domain criterion for characterizing both
closed-loop AFC and open-loop AEC systems. In closed-loop systems such as hearing
aids, the open-loop transfer function (OLTF) describes the system stability. In the
example given in Fig. 1(a), the OLTF at a particular frequency ω and time instant n is
determined by OLTF(ω, n) = F (ω, n)(H(ω, n) − Ĥ(ω, n)). The stability in the system
is determined by the OLTF according to the Nyquist stability criterion [25], which
states that a linear and time-invariant closed-loop system becomes unstable whenever
the following two criteria are both fulfilled:

1. |OLTF(ω, n)| ≥ 1; 2. ∠OLTF(ω, n) = l2π, l = Z. (1)

In practice, the OLTF(ω, n) can not be calculated directly due to the unknown feed-
back/echo path H(ω, n). Instead, we express the expected magnitude-squared OLTF
by

E
[
|OLTF(ω, n)|2

]
= |F (ω, n)|2ξ(ω, n), (2)

where ξ(ω, n) denotes the expected magnitude-squared TF from point A to B in Fig.
1(a). We refer to ξ(ω, n) as the power transfer function (PTF).

As given in Eq. (1), there are two criteria for the system stability. However, we
ignore the phase information in Eq. (2) because we consider a worst-case scenario for
the system stability, namely, by assuming ∠OLTF(ω, n) = l2π, where l = Z, at all
frequencies and times.

If the PTF ξ(ω, n) could be identified, then E[|OLTF(ω, n)|2] would follow trivially,
because in many closed-loop applications such as hearing aids, the forward path F (ω, n)
is observable and can simply be added to ξ(ω, n) in order to determine E[|OLTF(ω, n)|2].
In the area of AEC, the influence of the far-end TF F (ω, n) is minimal, assuming that
an acoustic echo cancellation system is applied at the far-end. Hence, the PTF ξ(ω, n)
itself reveals the echo cancellation performance, over time and frequency, of the entire
system. Therefore, in both the AFC and AEC systems, we are interested in the PTF
ξ(ω, n). Ideally, with perfect cancellation Ĥ(ω, n) = H(ω, n), we would have ξ(ω, n) = 0
for all frequencies. In practice, the PTF ξ(ω, n) is stochastic.

The goal of this work is to derive simple expressions for the PTF ξ(ω, n) in a unified
framework of a multiple-microphone and single-loudspeaker (MMSL) system, whereas a
conventional linear beamformer [26], performing spatial filtering of the incoming signals,
processes the feedback canceled signals as illustrated in Fig. 1(b). We show that it is
possible to derive a simple expression for the PTF ξ(ω, n) which allows prediction of the
system behavior, without the knowledge of Hi(ω, n), as a function of system parameters,
e.g. the estimation filter order, adaptive cancellation algorithm, assumptions of the
feedback/echo path changes and the statistical properties of different signals. This
work is inspired by the studies in [27, 28] of tracking characteristics of frequency domain
mean-square errors E[|Ĥ(ω, n) − H(ω, n)|2] for an SMSL system which can be viewed
as a special case of the presented generalized framework.
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The derivations in the following are based on the LMS, NLMS and the RLS algo-
rithms. We chose the LMS algorithm for its simplicity and the NLMS algorithm for its
popularity in practical applications, whereas we chose the RLS algorithm for its poten-
tially much better convergence properties. With these choices, we derive and interpret
analytic expressions for the convergence rate, system stability bound and the steady-
state behavior in terms of the PTF. We show how to choose the step size parameter
in the adaptive algorithms, for a given desired convergence rate and/or steady-state
behavior. Furthermore, our derived expressions can be used to predict if an algorithm
would meet given requirements at different frequencies and thereby would be suitable
for a particular application.

Parts of this work were published in [29, 30], where the PTF in MMSL systems was
introduced. In this paper, we present the in-depth mathematical derivation of the PTF
and provide more detailed interpretation of the results, and their relations to existing
work for SMSL systems. Finally, we verify the validity of the derived expressions through
extensive simulation experiments and demonstrate the practical relevance in a hearing
aid AFC system using real data.

In this paper, column vectors and matrices are emphasized using lower and up-
per letters in bold, respectively. Transposition, Hermitian transposition and complex
conjugation are denoted by the superscripts T , H and ∗, respectively.

In Sec. 2, we introduce the system under analysis. We define the exact PTF ξ(ω, n)
and its approximation in Sec. 3. In Sec. 4, we present the detailed derivations of the
PTF. After that, we discuss and verify the derived expressions through simulations in
Sec. 5 and Sec. 6, respectively. Finally, we give conclusions in Sec. 7.

2 System Description

A detailed overview of the MMSL system under analysis is given in Fig. 2. For conve-
nience, we have expressed the feedback signal vi(n) and the incoming signal xi(n) as
discrete-time signals, although in practice they are continuous-time signals.

A finite impulse response (FIR) hi(n) of order L − 1 is used to model the ith true
feedback/echo path, as

hi(n) = [hi(0, n), . . . , hi(L − 1, n)]
T

. (3)

We derive results for sufficiently large filter orders, in principle, L → ∞. This ensures
that the error in representing the true underlying acoustic feedback/echo path by an
FIR tends to zero, even if it has an infinite impulse response (IIR). Furthermore, a lower
order FIR of the true acoustic feedback/echo path can be represented by zero-padding
to the length L. Thus, knowledge of the exact length of the true acoustic feedback/echo
paths is not needed in our analysis.
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Fig. 2: A general multiple-microphone and single-loudspeaker system. In this work, we focus on the
power transfer function from point A to B.

The frequency response determined as the discrete Fourier transform (DFT) of hi(n)
is expressed by

Hi(ω, n) =

L−1∑

k=0

hi(k, n)e−jωk. (4)

We allow feedback/echo path variations over time. There are different ways to model
these variations, see e.g. [14]. In this work, we use a simple random walk model given
by

Hi(ω, n) = Hi(ω, n − 1) + Ȟi(ω, n), (5)

for the ith feedback/echo path, where Ȟi(ω, n) ∈ C is a zero-mean Gaussian stochastic
sequence with covariance

Sȟij
(ω) = E

[

Ȟi(ω, n)Ȟ∗
j (ω, n)

]

. (6)

In the time domain, the feedback/echo path variation vector is

ȟi(n) = hi(n) − hi(n − 1). (7)

The correlation matrix of the ith and jth feedback/echo path variation is defined as

Ȟij = E
[

ȟi(n)ȟT
j (n)

]

. (8)



A.8 PAPER A.

The adaptively estimated feedback/echo path ĥi(n) of order L − 1 is expressed by

ĥi(n) =
[

ĥi(0, n), . . . , ĥi(L − 1, n)
]T

, (9)

and the estimation error vector which expresses the difference between the true and
estimated feedback/echo path is

h̃i(n) = ĥi(n) − hi(n), (10)

with a frequency response given by

H̃i(ω, n) =

L−1∑

k=0

h̃i(k, n)e−jωk. (11)

In the analysis, we consider the loudspeaker signal u(n) as a deterministic zero-mean
signal, because it is measurable and thereby known with certainty. However, our results
remain valid, even if the loudspeaker signal u(n) is considered as a realization of a
stochastic process; the same approach is applied and explained in details in [27]. This
important point will be demonstrated by simulations in Sec. 6. The loudspeaker signal
vector u(n) is defined as

u(n) = [u(n), . . . , u(n − L + 1)]
T

. (12)

We assume the incoming signals xi(n) are zero-mean stationary stochastic signals with
the correlation function

rxij
(k) = E [xi(n)xj(n − k)] . (13)

The ith microphone signal is modeled as

yi(n) = hT
i (n − 1)u(n) + xi(n). (14)

The ith feedback/echo compensated error signal is given by

ei(n) = yi(n) − ĥT
i (n − 1)u(n). (15)

In the MMSL system shown in Fig. 2, spatial filtering is carried out by applying beam-
former filters on the error signals ei(n). Each beamformer filter gi is an FIR of order
N − 1,

gi = [gi(0), . . . , gi(N − 1)]
T

, (16)
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with frequency response

Gi(ω) =

N−1∑

k=0

gi(k)e−jωk. (17)

The output signal of the beamformer is therefore

ē(n) =
P∑

i=1

ēi(n)

=

P∑

i=1

N−1∑

k=0

gi(k)ei(n − k). (18)

In principle, the order of the beamformer and the acoustic feedback/echo cancellation
system could be reversed. In that case, the beamformer would operate directly on
the microphone signals, whereas a single-channel acoustic feedback/echo cancellation
is carried out on the beamformer processed output signal. In this paper, we focus on
the case where the cancellation is performed prior to the beamformer as given in Fig. 2.
This setup requires more computational power due to multiple cancellation systems, but
the beamformer would not affect the cancellation process negatively as demonstrated
in [31].

3 Power Transfer Function

Consider the MMSL system shown in Fig. 2. The PTF ξ(ω, n) is defined as the expected
magnitude-squared TF from point A to B. More specifically, the PTF ξ(ω, n) is given
by

ξ(ω, n) =E





∣
∣
∣
∣
∣

P∑

i=1

Gi(ω)H̃i(ω, n)

∣
∣
∣
∣
∣

2




=

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)ξij(ω, n), (19)

where ξij(ω, n) = E[H̃i(ω, n)H̃∗
j (ω, n)], and the expectation is with respect to Hi(ω, n)

which is considered as a stochastic variable.
Traditionally, time domain criteria such as mean-square error defined as E[e2(n)] and

mean-square deviation defined as E[‖h̃(n)‖2] have been used in adaptive filter design
and performance evaluation to describe convergence rate, stability bound and steady-
state behavior of a single adaptive filter, e.g. [4, 18–21]. These criteria are related to the
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PTF, despite providing information in different ways. For instance, the mean-square
deviation E[‖h̃(n)‖2] can be seen as a time domain, fullband version of the PTF in an
SMSL system. We study these relations further in Sec. 5.

The exact analytic expression for Eq. (19) is complicated and difficult to interpret.

Thus, in this work, we derive a much simpler but accurate approximation ξ̂(ω, n). We
introduce the notation

ξ̂ij(ω, n) ≈ E
[
H̃i(ω, n)H̃∗

j (ω, n)
]

, (20)

and a PTF approximation of ξ(ω, n) in Eq. (19) is defined as

ξ̂(ω, n) =

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)ξ̂ij(ω, n). (21)

Our derivations are based on an open-loop setup, i.e. f(n) is omitted in Fig. 2, as in a
traditional AEC system. As we demonstrate in a simulation experiment in Sec. 6, the
derived results also provide accurate approximations in a closed-loop hearing aid AFC
system with a realistic delay in f(n).

4 System Analysis

4.1 PTF for LMS Algorithm

In this section, we derive the PTF approximation ξ̂(ω, n) for an MMSL system where

cancellation filters ĥi(n) are estimated using the LMS algorithm. The LMS update
using a step size µ(n) of the ith channel is expressed by, see e.g. [4],

ĥi(n) = ĥi(n − 1) + µ(n)u(n)ei(n). (22)

Using Eqs. (22), (15), (14) and (7), the estimation error vector defined in Eq. (10) can
also be expressed by

h̃i(n) =
(
I − µ(n)u(n)uT (n)

)
h̃i(n − 1) + µ(n)u(n)xi(n) − ȟi(n), (23)

where I is the identity matrix. Assuming the feedback/echo path variation vector ȟi(n)
is uncorrelated with every other term in Eq. (23), we introduce the matrix A(n) =
I − µ(n)u(n)uT (n) and compute the estimation error correlation matrix Hij(n) =
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E
[
h̃i(n)h̃T

j (n)
]

as

Hij(n) =E
[

h̃i(n − 1)h̃T
j (n − 1) − µ(n)u(n)uT (n)h̃i(n − 1)h̃T

j (n − 1)AT (n)

−h̃i(n − 1)h̃T
j (n − 1)u(n)uT (n)µ(n) + ȟi(n)ȟT

j (n)

+µ2(n)u(n)xi(n)xj(n)uT (n) + µ(n)u(n)xi(n)h̃T
j (n − 1)AT (n)

+A(n)h̃i(n − 1)xj(n)uT (n)µ(n)
]

. (24)

Under the assumption of sufficiently small step size µ(n), in principle, µ(n) → 0, it
follows that A(n) ≈ I. Using this in Eq. (24) corresponds to neglecting all second order
terms involving the matrix µ(n)u(n)uT (n) due to the presence of the first-order terms.
Eq. (24) can now be simplified as

Hij(n) ≈Hij(n − 1) − µ(n)u(n)uT (n)Hij(n − 1) − Hij(n − 1)u(n)uT (n)µ(n)

+ Ȟij + µ2(n)u(n)uT (n)E [xi(n)xj(n)]

+ E
[
µ(n)u(n)xi(n)h̃T

j (n − 1)
]

+ E
[
h̃i(n − 1)xj(n)uT (n)µ(n)

]
. (25)

Eq. (25) is a difference equation in Hij(n). According to the direct-averaging method
described in [32], and using again the small step size assumption µ(n) → 0, u(n)uT (n)
can be replaced by its sample average Ru(0), where Ru(k) is defined as

Ru(k) = lim
N→∞

1

N

N∑

n=1

u(n)uT (n − k). (26)

Using Eqs. (25)-(26), the approximated estimation error correlation matrix Ĥij(n) ≈
E[h̃i(n)h̃T

j (n)] is written as

Ĥij(n) =Ĥij(n − 1) − µ(n)Ru(0)Ĥij(n − 1) − µ(n)Ĥij(n − 1)Ru(0)

+ Ȟij + µ2(n)Ru(0)rxij
(0) + E

[
µ(n)u(n)xi(n)h̃T

j (n − 1)
]

+ E
[
h̃i(n − 1)xj(n)uT (n)µ(n)

]
. (27)

Assuming µ(n) → 0 and that the incoming signals xi(n) have a finite correlation func-
tion, i.e.

rxij
(k) = 0 ∀ |k| > k0, (28)

where k0 is a finite integer number, it can be shown (see Appendix A for details) that
Eq. (27) can be written as

Ĥij(n) =Ĥij(n − 1) − µ(n)Ru(0)Ĥij(n − 1) − µ(n)Ĥij(n − 1)Ru(0)

+ Ȟij + µ2(n)

k0∑

k=−k0

Ru(k)rxij
(k). (29)
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Recall that Ĥij(n) ≈ E[h̃i(n)h̃T
j (n)] and ξ̂ij(ω, n) ≈ E[H̃i(ω, n)H̃∗

j (ω, n)], where H̃i(ω, n)

is the frequency response of h̃i(n). To find an expression for ξ̂ij(ω, n), we let F ∈ CL×L

be a DFT matrix. It is well-known that F diagonalizes a Toeplitz matrix asymptotically
as L → ∞ [33]. Thus, the matrix

Ξ̂ij(n) = FĤij(n)FH (30)

approaches a diagonal matrix, as L → ∞, with the diagonal elements ξ̂ij(ω, n) as given
in Eq. (20).

Similarly, both FȞijFH and 1
L FRu(0)FH approach diagonal matrices as L → ∞.

The resulting diagonal elements Sȟij
(ω) and Su(ω) are the covariances of the underlying

feedback/echo path changes, and the power spectrum density (PSD) of the loudspeaker
signal u(n), respectively.

Inserting Eq. (29) in Eq. (30) and using that 1
L FHF = I, the matrix Ξ̂ij(n) is

expressed by

Ξ̂ij(n) =FĤij(n − 1)FH + FȞijFH − µ(n)
1

L
FRu(0)FHFĤij(n − 1)FH

− µ(n)
1

L
FĤij(n − 1)FHFRu(0)FH + µ2(n)

k0∑

k=−k0

FRu(k)FHrxij
(k). (31)

ξ̂ij(ω, n), defined in Eq. (20), follow as the diagonal elements of Ξ̂ij(n) which are given
by

ξ̂ij(ω, n) = (1 − 2µ(n)Su(ω)) ξ̂ij(ω, n − 1) + Lµ2(n)Su(ω)Sxij
(ω) + Sȟij

(ω), (32)

where Sxij
(ω) denotes the cross(auto) PSDs of the incoming signals xi(n) and xj(n).

Finally, inserting Eq. (32) in Eq. (21), we arrive at

ξ̂(ω, n) = (1 − 2µ(n)Su(ω)) ξ̂(ω, n − 1)

+ Lµ2(n)Su(ω)

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

+
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sȟij

(ω). (33)

4.2 PTF for NLMS Algorithm

We can use the methodology from Sec. 4.1 to derive the PTF approximation ξ̂(ω, n) for
the NLMS algorithm. However, in this section, we show how to obtain the same result



4. SYSTEM ANALYSIS A.13

more easily by adapting the results of the LMS algorithm. The NLMS update of the
ith cancellation filter is, see e.g. [4],

ĥi(n) = ĥi(n − 1) + µ̄(n)
u(n)ei(n)

uT (n)u(n) + δ
, (34)

where µ̄(n) is the NLMS step size, and δ > 0 is a scalar often referred to as the
regularization term.

Note that uT (n)u(n) = Lσ̂2
u, where σ̂2

u(n) is an estimate of the variance σ2
u of the

loudspeaker signal u(n). Using the fact that for small step sizes µ̄(n) → 0, the NLMS
algorithm has a low-pass effect on the loudspeaker signal u(n), and this allows us to
replace σ̂2

u(n) by σ2
u. Hence, Eq. (34) can be rewritten as

ĥi(n) = ĥi(n − 1) +
µ̄(n)

Lσ2
u + δ

u(n)ei(n). (35)

From Eqs. (35) and (22), it is seen that the relation between the LMS and NLMS
algorithms is a normalized step size according to

µ(n) =
µ̄(n)

Lσ2
u + δ

. (36)

Inserting Eq. (36) in Eq. (33), the PTF approximation ξ̂(ω, n) of the MMSL system
using the NLMS algorithm, under the same assumptions as for the LMS algorithm, is
expressed by

ξ̂(ω, n) =

(

1 − 2
µ̄(n)

Lσ2
u + δ

Su(ω)

)

ξ̂(ω, n − 1)

+ L
µ̄2(n)

(Lσ2
u + δ)2

Su(ω)

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

+
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sȟij

(ω). (37)

4.3 PTF for RLS Algorithm

The RLS update step is given by, see e.g. [4],

ĥi(n) = ĥi(n − 1) + Z(n)u(n)ei(n), (38)

Z(n) =
P(n − 1)

λ + uT (n)P(n − 1)u(n)
, (39)

P(n) =
1

λ

(
P(n − 1) − Z(n)u(n)uT (n)P(n − 1)

)
, (40)
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where 0 < λ < 1 denotes the forgetting factor, and P(0) = δI, δ is a regularization
parameter.

The same methodology used in Sec. 4.1 to derive the PTF approximation ξ̂(ω, n) for

the LMS algorithm can be used for the RLS algorithm. The resulting PTF ξ̂(ω, n) can
be found to be

ξ̂(ω, n) = (1 − 2z(ω, n)Su(ω)) ξ̂(ω, n − 1)

+ Lz2(ω, n)Su(ω)

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

+
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sȟij

(ω), (41)

where z(ω, n) is the element in the diagonal of 1
LFZ(n)FH .

We are interested in finding an expression for z(ω, n) in Eq. (41). The matrix P(n)
is a recursively updated inverse matrix in the RLS algorithm expressed by P(n) =
(∑n

m=1 λn−mu(m)uT (m) + δλnI
)−1

. Asymptotically, as λ → 1 and for large values of
n, the matrix

∑n
m=1 λn−mu(m)uT (m) contains large values, and therefore the matrix

P(n) tends to have small entries. Hence, for large values of n, and asymptotically, as
λ → 1, the matrix Z(n) in Eq. (39) can be approximated by Z(n) ≈ P(n)1, and the
matrix P(n) in Eq. (40) can therefore be expressed by

Z(n) ≈
1

λ

(
Z(n) − Z(n)u(n)uT (n)Z(n)

)
. (42)

The matrix P(n) ≈ Z(n) becomes Toeplitz structure when converged and can be di-
agonalized using the DFT matrix F. Based on Eq. (42), we calculate z(ω, n) as the
diagonal entries of the matrix 1

LFZ(n)FH , which are given by

z(ω, n) ≈
1

λ

(
z(ω, n) − z2(ω, n)Su(ω)

)
. (43)

Solving the second-order difference equation in z(ω, n) gives

z(ω, n) =
1 − λ

Su(ω)
. (44)

Inserting Eq. (44) in Eq. (41), the PTF approximation ξ̂(ω, n) for the RLS algorithm is

1This requires that the matrix P(n) has converged, i.e. P(n) ≈ P(n − 1). Convergence of P(n) does
not necessarily mean that n → ∞, we observed from the simulations that P(n) may already converge
for n < 1000.
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finally expressed by

ξ̂(ω, n) = (2λ − 1) ξ̂(ω, n − 1)

+ L
(1 − λ)2

Su(ω)

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

+
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sȟij

(ω). (45)

5 Discussion

In this section, we use the derived expressions for the LMS, NLMS and the RLS algo-
rithms to predict the system behavior. Specifically, we discuss the system behavior, in
terms of convergence rate defined by the decay rate of ξ̂(ω, n), system stability bound
of the step size parameters to ensure algorithm convergence, and steady-state behavior
describing ξ̂(ω, n) when the adaptive algorithm has converged. Furthermore, we discuss
how to use the derived PTF expressions to choose the step size parameters when given
a desired system behavior for a specific frequency ω; this is especially useful for setting
up the parameters in closed-loop applications such as a hearing aid because the system
instability as consequence of the acoustic feedback often occurs at a single frequency at
a time.

Eqs. (33), (37) and (45) are all first-order difference equations in ξ̂(ω, n) expressed
by a TF T (z) = β

1−αz−1 , where α, β ∈ R. The coefficient α determines the pole location
of T (z) and thereby the convergence rate of the system. The convergence rate CR in dB
per iteration (in this case, for each time instant n) can be calculated as the derivative
of the logarithm of the envelope of the impulse response (IR) function, t(n) = β · αn, of
T (z) as

CR[dB/iteration] =
d

dn
10 log10(β · |α|n)

= 10 log10(|α|). (46)

Furthermore, stability of T (z) is ensured whenever

|α| < 1. (47)

The steady-state behavior is described through evaluation of

ξ̂(ω, ∞) = lim
n→∞

ξ̂(ω, n). (48)
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5.1 System Behavior for LMS Algorithm

In Eq. (33), the frequency dependent coefficient α(ω) is expressed by

α(ω) = 1 − 2µ(n)Su(ω). (49)

Using Eqs. (49) and (47), the step size µ(n) to ensure system stability is given by

0 < µ(n) <
1

maxω Su(ω)
. (50)

Inserting Eq. (33) in Eq. (48), the steady-state behavior is

ξ̂(ω, ∞) = lim
n→∞

L
µ(n)

2

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

︸ ︷︷ ︸

Steady-State Error

+ lim
n→∞

∑P
i=1

∑P
j=1 Gi(ω)G∗

j (ω)Sȟij
(ω)

2µ(n)Su(ω)
︸ ︷︷ ︸

Tracking Error

. (51)

Eq. (51) consists of two parts. The first part indicates the lowest possible steady-state

value of ξ̂(ω, n); the second part gives the additional tracking error as a result of the
variations Sȟij

(ω) > 0 in the feedback/echo paths.

Using Eqs. (46) and (49), a desired convergence rate in dB/iteration is achieved by
choosing the step size according to

µ(n) =
1 − 10CR[dB/iteration]/10

2Su(ω)
. (52)

Using Eq. (51), a desired steady-state error ξ̂(ω, ∞), ignoring the tracking error for
simplicity, could be achieved by setting the step size µ(n) as

µ(n) =
2ξ̂(ω, ∞)

L
∑P

i=1

∑P
j=1 Gi(ω)G∗

j (ω)Sxij
(ω)

. (53)

We observe from Eq. (49) that the convergence rate only depends on the step size µ(n)
and the PSD Su(ω) of the loudspeaker signal u(n). Similar results for the LMS algorithm
in an SMSL system are derived in [27].

From the first part of Eq. (51), it is observed that the model order parameter L, the
step size µ(n), and the PSDs Sxij

(ω) weighted by the frequency responses Gi(ω) and
G∗

j (ω) are linearly proportional to the steady-state error. However, the second part of
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Eq. (51) shows that a larger step size µ(n) and higher PSD Su(ω) lead to smaller tracking
error when the system is undergoing variations, i.e. Sȟij

(ω) > 0. The overall steady-state

value ξ̂(ω, ∞) is therefore a compromise between the steady-state behavior in situations
with time invariant feedback/echo paths and tracking behavior in situations with time
varying feedback/echo paths, this trade-off is well-known from existing fullband SMSL
system analyses, e.g. in [4]. Furthermore, the frequency responses Gi(ω) and G∗

j (ω)
act as weighting factors for Sxij

(ω) and Sȟij
(ω), thus, the expected steady-state value

ξ̂(ω, ∞) according to Eq. (51) would change instantly followed by any changes in Gi(ω)
and G∗

j (ω), even when the signals such as u(n) and xi(n) were stationary, and the step
size parameter µ(n) was unchanged.

5.2 System Behavior for NLMS Algorithm

From Eq. (37), the convergence rate for the NLMS algorithm is determined by the
coefficient

α(ω) = 1 − 2
µ̄(n)

Lσ2
u + δ

Su(ω). (54)

Inserting Eq. (54) in (47), the range of the step size µ̄(n) to ensure system stability is
determined as

0 < µ̄(n) <
Lσ2

u + δ

maxω Su(ω)
. (55)

Furthermore, the steady-state behavior is expressed by

ξ̂(ω, ∞) = lim
n→∞

L
µ̄(n)

2(Lσ2
u + δ)

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

︸ ︷︷ ︸

Steady-State Error

+ lim
n→∞

(Lσ2
u + δ)

∑P
i=1

∑P
j=1 Gi(ω)G∗

j (ω)Sȟij
(ω)

2µ̄(n)Su(ω)
︸ ︷︷ ︸

Tracking Error

. (56)

In order to achieve desired convergence rate and steady-state error, the NLMS step size
µ̄(n) should be chosen as:

µ̄(n) = (Lσ2
u + δ)

1 − 10CR[dB/iteration]/10

2Su(ω)
, (57)

µ̄(n) =
2(Lσ2

u + δ)ξ̂(ω, ∞)

L
∑P

i=1

∑P
j=1 Gi(ω)G∗

j (ω)Sxij
(ω)

. (58)
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Although the structure of Eqs. (54)-(56) for the NLMS algorithm is similar to Eqs.
(49)-(51) for the LMS algorithm, there are some important differences in the system
behavior due to the normalization of the step size.

The convergence rate and the tracking error in the NLMS adaptation are no more
dependent on the absolute value of Su(ω) due to the presence of the variance σ2

u in Eqs.
(54) and (56), but rather the value of Su(ω) relative to Lσ2

u + δ. Increasing the value
of L results in decreased convergence rate and increased tracking error. The steady-
state error is now also dependent on the variance σ2

u. A higher variance leads to lower
steady-state error.

We observe from Eq. (55) that the stability upper-bound of the NLMS step size µ̄(n)
is identical to the LMS stability upper-bound scaled by the factor of Lσ2

u + δ. As in
the case when using the LMS algorithm, the expected steady-state error ξ̂(ω, ∞) in Eq.
(56) would instantly follow any variations in the frequency responses Gi(ω) and G∗

j (ω).

5.3 System Behavior for RLS Algorithm

For the RLS algorithm, the coefficient α, which expresses the convergence rate, is ob-
tained from Eq. (45) as

α = 2λ − 1, (59)

and according to Eq. (47), stability is ensured for

0 < λ < 1. (60)

The steady-state behavior is expressed by

ξ̂(ω, ∞) = L
1 − λ

2Su(ω)

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

︸ ︷︷ ︸

Steady-State Error

+

∑P
i=1

∑P
j=1 Gi(ω)G∗

j (ω)Sȟij
(ω)

2(1 − λ)
︸ ︷︷ ︸

Tracking Error

. (61)

Furthermore, in order to achieve a desired convergence rate and steady-state error, the
RLS forgetting factor λ should be:

λ =
1 + 10CR[dB/iteration]/10

2
, (62)

λ = 1 −
2Su(ω)ξ̂(ω, ∞)

L
∑P

i=1

∑P
j=1 Gi(ω)G∗

j (ω)Sxij
(ω)

. (63)
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Table 1: System behavior in terms of convergence rate (CR), steady-state error (SSE) and tracking
error (TE) at frequency ω, when increasing the value of different system parameters. (↑: increase, ↓:
decrease, −: unchanged.)

System Parameter CR SSE TE

LMS

↑ µ(n) ↑ ↑ ↓

↑ L - ↑ -

↑ Su(ω) ↑ - ↓

NLMS

↑ µ̄(n) ↑ ↑ ↓

↑ L/(Lσ2
u + δ) - ↑ -

↑ Su(ω)/(Lσ2
u + δ) ↑ - ↓

RLS

↑ λ ↓ ↓ ↑

↑ L - ↑ -

↑ Su(ω) - ↓ -

Common

↑ Gi(ω) - As weights As weights

↑ Sxij
(ω) - ↑ -

↑ Sȟij
(ω) - - ↑

From Eqs. (59)-(61), we observe some major differences in the RLS algorithm compared
to the LMS and NLMS algorithms. For the RLS algorithm, the convergence rate is
not only frequency independent, but also signal independent; it only depends on the
value of the forgetting factor λ. Increasing the value of λ gives slower convergence
and tracking, but also lower steady-state error. In contrast to the LMS and NLMS
algorithms, the PSD Su(ω) is inversely proportional to the steady-state error when using
the RLS algorithm, and it has no influences on the convergence rate and the tracking
error. However, similarly to the LMS algorithm, increasing the model order parameter
L leads to higher steady-state error. Once more, we observe that any variations in the
frequency responses Gi(ω) and G∗

j (ω) would lead to an instant change in the expected

steady-state error ξ̂(ω, n) given by Eq. (61).

5.4 Summary of System Behavior

In Table 1, system behaviors for the LMS, NLMS and the RLS algorithms are summa-
rized in terms of convergence rate, steady-state error and tracking error, when varying
the values of most important system parameters.

The similarities and differences shown in Table 1 are well expected due to the un-
derlying assumptions and procedures of the algorithms. Identical behaviors can simply
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be obtained for the LMS and NLMS algorithms, because the NLMS algorithm can be
seen as a step size adjusted LMS algorithm according to Eq. (36). It is also possible to
achieve identical convergence rate and steady-state behavior for a specific frequency ω
in the NLMS and RLS algorithms. To see this, equate Eqs. (54) and (59), and solve for
the forgetting factor λ, to find

λ = 1 −
µ̄(n)

Lσ2
u + δ

Su(ω). (64)

It is seen from Eq. (64) that the NLMS and RLS behavior is generally different across
frequencies, unless the values of the PSD Su(ω) are identical at different frequencies.

In principle, if the step size µ̄(n) could be independently adjusted across frequencies
in the NLMS algorithm, then it would be possible to obtain identical behavior for the
NLMS and RLS algorithms for all frequencies. In practice, this could e.g. be achieved
approximately using frequency-domain adaptive filters and/or a sub-band structure with
NLMS adaptation carried out in each sub-band, see e.g. [34–36]. In this case, the NLMS
algorithm might be preferred because the frequency dependent step size µ̄(ω, n) gives
more choices to obtain desired properties which are not possible with an RLS algorithm
with a single design parameter λ.

5.5 Relation to Existing Work

As mentioned, many studies exist already for adaptive system performance analysis
using the LMS, NLMS and RLS algorithms in different contexts. The relationships
observed in this work between the convergence rate, steady-state error in a time invariant
system, and the additional tracking error in a time varying system are well in line
with these studies. The PTF analysis in this work differs mainly from the existing
studies in two ways. First, we analyze a multiple-microphone system, whereas existing
works mainly focus on the single-microphone situation. Second, we evaluate the system
performance for each frequency over time, whereas existing works tend to focus on
fullband performance over time. In the following, we relate the PTF to the analysis
results in [4] and [18], which both focus on the fullband performance analysis of adaptive
algorithms in a single-microphone time-varying system.

Using the mean-square deviation criterion D(n) = ||h(n) − ĥ(n)||2, it was shown
in [4] that the first-order difference equations describing the kth natural mode of the
LMS filter contain the iteration coefficients 1 − µλu,k, where µ is the step size and λu,k

is the kth eigenvalue of the correlation matrix of the loudspeaker signal u(n). From
this, the well-known system stability bound of the LMS algorithm [4] is given by

0 < µ <
2

maxk λu,k
. (65)

Using the fact that maxk λu,k ≤ maxω Su(ω) [4], we observe that our derived stability
upper-bound in Eq. (50) is smaller than the upper-bound defined in Eq. (65). This
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difference is due to the approximation made from Eq. (24) to Eq. (25), where we, under
the assumption of µ(n) → 0, ignored the second-order term E[µ2(n)u(n)uT (n)h̃i(n −
1)h̃T

j (n − 1)u(n)uT (n)] in Eq. (24). Nevertheless, asymptotically, as µ(n) → 0, the de-
rived stability bound is still valid. Although not explicitly treated in [4], the coefficients
1 − µλu,k are linked to convergence rates α(ω) in Eq. (49), as the eigenvalues λu,k of
the L × L dimensional correlation matrix of the loudspeaker signal u(n) approach the
PSD Su(ω) of the signal, as L → ∞ [4].

The derived steady-state behaviors in this work are also well related to the existing
studies. In [4], the mean-square deviation D(n) for the LMS algorithm and large n is
expressed by

D(n) ≈
µ

2
Lσ2

x
︸ ︷︷ ︸

Steady-State Error

+
1

2µ

L∑

k=1

λȟ,k

λu,k

︸ ︷︷ ︸

Tracking Error

,
(66)

where σ2
x denotes the variance of the incoming signal x(n), λȟ,k is the kth eigenvalue of

the correlation matrix of the feedback/echo path variation vector ȟ(n), and where we
have adapted the notation from our analysis for convenience.

A similar result to Eq. (66) was obtained in [18], where the performance analysis
is carried out for the NLMS(LMS), AP and RLS algorithms and their tap-selective
partial updating versions in a single-microphone time-varying system. However, since a
slightly different model is used for the time-varying acoustic feedback/echo paths, the
mean-square deviation D(n) for the LMS algorithm was derived as2,

D(n) ≈
µ

2
Lσ2

x
︸ ︷︷ ︸

Steady-State Error

+
(1 − ζ)Lσ2

ȟ

µσ2
u

︸ ︷︷ ︸

Tracking Error

,
(67)

where σ2
u is the variance of the loudspeaker signal u(n), and ζ is a parameter used in [18]

to model the variations of acoustic feedback/echo paths h(n+1) = ζh(n)+
√

1 − ζ2ȟ(n),

where elements of ȟ(n) are drawn from the normal distribution N(0, σ2
ȟ
).

Comparing Eqs. (66)-(67) to the steady-state error of Eq. (51), it is clear that the

equivalent term to σ2
x in D(n) is

∑P
i=1

∑P
j=1 Gi(ω)G∗

j (ω)Sxij
(ω) in ξ̂(ω, n), which is a

combined result from different microphone channels through the beamformer including
the cross-channel effects. Choosing P = 1 and G(ω) = 1 simplifies this term to Sx(ω),
which is the spectral variance measured at frequency ω; summing over all frequencies,
we get σ2

x.

2Note that the LMS step size used in [18] is scaled by a factor of 1

2
compared to the step size from

this study.



A.22 PAPER A.

In our analysis, we used a model for the variations of feedback/echo paths identical
to [4], so a comparison between Eqs. (51) and (66) is therefore most meaningful. The
eigenvalues λȟ,k and λu,k in Eq. (66) approach Sȟij

(ω) and Su(ω), respectively, as

L → ∞. As before, choosing P = 1, G(ω) = 1 and summing over all frequencies in the
expression for the tracking error in Eq. (51) lead to the expression for the tracking error
in Eq. (66). Similar expression of the tracking error is observed in Eq. (67), however,

since different models were used for the acoustic feedback/echo path variations ȟ(n),
the result is further scaled by the factor 2(1 − ζ).

Similar comparisons can be made between the derived PTF expressions and the
analysis results from e.g. [4, 18], for the NLMS and RLS algorithms. In all cases,
the well-known fullband behavior for SMSL systems can be obtained from the derived
PTF expressions by considering a P = 1 microphone setup, ignoring the beamformer
coefficients, and summing over all frequencies.

In addition to the open-loop analyses discussed above, a closed-loop steady-state
analysis of an AFC system in hearing aids using the NLMS algorithm was studied in [37].
Let us focus on the first part of Eq. (56) and simplify it to a P = 1 microphone setup
with the beamformer frequency response G(ω) = 1. Adopting the assumptions from [37]

that x(n) is white noise, σ2
u = Sx(ω), and δ = 0, we obtain ξ̂(ω, ∞) = limn→∞ µ̄(n)/2,

which is the result presented in [37].

6 Simulation Experiments

In this section, we verify the derived expressions by simulation experiments. In the
first experiment, we verify the derived expressions for the convergence rate, steady-
state behavior and the step size parameters using synthetic signals in an open-loop
MMSL system. In the second experiment, we demonstrate the practical relevance of the
derived expressions in a closed-loop MMSL system, in particular, a hearing aid AFC
system using real data including speech signals.

6.1 Simulation Experiment Using Synthetic Signals

In the first simulation experiment, we consider an open-loop MMSL system with P = 3
microphones. During the simulations, the true feedback/echo paths hi(n) are known.
Therefore, it is possible to compute the true PTF ξ(ω, n) given by Eq. (19) using Eqs.
(10), (11) and (17) to verify the predicted convergence rate and steady-state behavior.
In order to compute ξ(ω, n), the simulations consist of a number of R runs; an averaged

result based on all R runs, at each frequency, is calculated as ξ̄(ω, n) = 1
R

∑R
r=1 ξr(ω, n),

where ξr(ω, n) denotes the result of the simulation run r.

The duration of each simulation run is denoted by Ds, where n = 0, . . . , Ds − 1.
The feedback/echo path estimates are initialized to zeros, i.e. ĥi(0) = 0, in all sim-
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ulation runs. In the first part of the experiment, the true feedback/echo paths are
fixed during the first half of the simulation, whereas variations are added to these dur-
ing the second half of the simulation according to the random walk model hi(k, n) =
hi(k, 0) +

∑n
m=Ds/2 ǫhi

(m), where hi(k, n) is the kth tap of the IR of the true feed-

back/echo paths at time index n, and ǫhi
(n) denotes the nth sample of a realization of

a Gaussian stochastic sequence with mean value µhi
and variance σ2

hi
. In the second

part of the experiment, the feedback/echo paths hi(n) remain fixed.
For each simulation run, the loudspeaker signal u(n) is generated by filtering a

realization of Gaussian stochastic sequence through an Lu − 1 order shaping filter,
hu = [hu(0), . . . , hu(Lu − 1)]

T
, i.e. u(n) =

∑Lu−1
k=0 hu(k)ǫu(n − k), where ǫu(n) denotes

the nth sample of a realization of the standard Gaussian stochastic sequence to gener-

ate u(n). The incoming signal x1(n) is created as x1(n) =
∑Lx1 −1

k=0 hx1(k)ǫx1(n − k),

where an Lx1 − 1 order shaping filter, hx1 = [hx1(0), . . . , hx1(Lx1 − 1)]T is applied to
a realization of standard Gaussian stochastic sequence ǫx1 for generating x1(n). The
remaining incoming signals xi(n) for i = 2, . . . , P are generated as xi(n) = κix1(n) +
∑Lxi

−1

k=0 hxi
(k)ǫxi

(n − k), where κi is a mixing factor.
All common simulation parameters for this experiment are given in Table 2. A

minimum order of various filters are used to be able to provide the numerical values of
all coefficients.

6.1.1 Simulation Experiment for LMS Algorithm

A constant step size µ = 2−9 is used in the first part of this experiment. The simulated
and predicted values of convergence rate and steady-state values of ξ̂(ω, n) obtained
from Eqs. (49) and (51) at two representative frequencies ω = 2πl

L , l = 7, 11 are shown
in Figs. 3(a)-(b). Clearly, the simulation results support the predicted convergence rate
and steady-state behavior. As expected, we observe different convergence rates, steady-
state errors and the additional tracking errors due to the spectral shaping of hu, hxi

and gi. Differences between the simulation results and the predicted values at selected
time indices are computed and shown in Table 3. In all cases, only very small deviations
are observed.

Despite the underlying assumptions of L → ∞ and µ(n) → 0 in the analysis, we
observe from the simulation results that, in practice, the derived expressions can give
accurate approximations already at values such as L = 32 and µ = 2−9. Another
important point demonstrated by the simulations is that the derived results are valid,
when the loudspeaker signal u(n) is a realization of a stochastic process, although u(n)
was considered deterministic in the analysis.

In the second part of this experiment, using Eqs. (52)-(53), we calculated the step size
µ ≈ 0.0012 and µ ≈ 0.0008 to achieve a desired convergence rate of −0.01 dB/iteration
and a steady-state error of −12 dB, respectively. Only the step size and the variations
of feedback/echo paths differ from the first part of the experiment. The simulated
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Table 2: Common simulation parameters for all adaptive algorithms.

Symbol Value Description

Ds 10000 Duration of simulation.

R 100 Number of simulation runs.

P 3 Number of microphone channels.

L 32 Length of ĥi(n).

g1 [1, 0.36]T IR of beamformer filter 1.

g2 [1, −0.32]
T

IR of beamformer filter 2.

g3 [1, 0.23]
T

IR of beamformer filter 3.

h1(0) [1, 0.14]
T

Initial IR of h1(n).

h2(0) [1, −0.40]
T

Initial IR of h2(n).

h3(0) [1, 0.23]
T

Initial IR of h3(n).

N(µh1 , σ2
h1

) N(0, 0.03842) Gaussian statistics for h1(n).

N(µh2 , σ2
h2

) N(0, 0.03322) Gaussian statistics for h2(n).

N(µh3 , σ2
h3

) N(0, 0.00242) Gaussian statistics for h3(n).

Lu 2 Length of shaping filter for u(n).

hu [1, −0.3]
T

IR of shaping filter for u(n).

Lx1 2 Length of shaping filter for x1(n).

Lx2 2 Length of shaping filter for x2(n).

Lx3 2 Length of shaping filter for x3(n).

hx1 [1, 0.3]
T

IR of shaping filter for x1(n).

hx2 [1, −0.2]
T

IR of shaping filter for x2(n).

hx3 [1, 0.5]
T

IR of shaping filter for x3(n).

κ2 -0.3 Mixing factor for x2(n).

κ3 0.45 Mixing factor for x3(n).

and predicted results at frequency bin l = 7 are shown in Figs. 3(c)-(d). Again, the
simulation results support the theory.

6.1.2 Simulation Experiment for NLMS Algorithm

We now repeat the experiment from above for the NLMS algorithm. In the first part of
the experiment, a fixed step size is chosen as µ̄ = 2−4 and the regularization term δ is
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Simulation Results

Predicted Convergence Rate (Tangent Line)

Predicted Steady−State Error

Predicted Steady−State Error + Tracking Error

Fig. 3: LMS algorithm: the simulation results based on 100 simulation runs and the predicted values
(a)-(b) Using Eqs. (49) and (51) at frequency bin l = 7 and l = 11. (c)-(d) Using Eqs. (52)-(53) at
frequency bin l = 7. (a) PTF at frequency bin l = 7. (b) PTF at frequency bin l = 11. (c) Desired
convergence rate = −0.01 dB/iteration. (d) Desired steady-state error = −12 dB.
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Table 3: Difference between the simulation results and predicted values for the convergence rate (CR),
steady-state error (SSE) and the tracking error (TE) in Fig. 3(a).

Time Index Difference [dB]

CR 1:5 0.001 0.002 0.002 -0.002 -0.000

SSE 4996:5000 0.051 0.090 0.180 0.201 0.179

TE 9996:10000 0.126 0.095 0.040 0.062 0.130

set to zero3. Hence, the only difference to the LMS algorithm is the step size µ̄. Figs.
4(a)-(b) show the results for two representative frequencies l = 7, 11, to verify Eqs. (54)
and (56).

In the second part of the experiment, using Eqs. (57)-(58), the step size values are
calculated as µ̄ ≈ 0.0412 and µ̄ ≈ 0.0283 to achieve a desired convergence rate of −0.01
dB/iteration and a steady-state error of −12 dB, respectively. In Figs. 4(c)-(d), the
simulation results are provided.

As for the LMS algorithm, the simulation results support the predicted results, and
the derived expressions are accurate for practical values such as L = 32 and µ̄ = 2−4.

The NLMS algorithm can be considered an LMS algorithm with adjusted step size
according to Eq. (36); thus, with an appropriate step size choice, it is possible to obtain
identical system behavior for the two algorithms, at all frequencies. This is already
implicitly done in the second part of this experiment, when we chose the step size
parameters µ and µ̄ according to the desired convergence rate and steady-state value.
It is seen from Figs. 3(c)-(d) and 4(c)-(d) that identical behavior at frequency bin l = 7
is obtained. Actually, making similar plots for other frequencies would demonstrate that
this is the case at all frequencies.

6.1.3 Simulation Experiment for RLS Algorithm

In the first part of the experiment for the RLS algorithm, the forgetting factor λ = 0.999
was used to verify Eqs. (59) and (61). In the second part, the forgetting factor λ was set
to λ ≈ 0.9989 and λ ≈ 0.9992, by using Eqs. (62)-(63), to obtain a desired convergence
rate of −0.01 dB/iteration and a steady-state error of −12 dB, respectively.

It is seen in Fig. 5 that the simulation results again support the predicted results.
Again, we observe that the derived expressions are already accurate for practical values
such as L = 32 and λ = 0.999. Comparing Figs. 4(c)-(d) and 5(c)-(d) shows that identi-
cal behaviors for the NLMS and RLS algorithms are obtained at one specific frequency.

3The regularization term δ, besides the step size parameter µ̄(n), might have significant influence
on the performance of the NLMS algorithm, especially with a large step size µ̄(n), as demonstrated
in [38]. However, in the following simulations, we apply a small step size and focus on its influence on
the system behavior in terms of the PTF by setting δ = 0.
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Simulation Results

Predicted Convergence Rate (Tangent Line)

Predicted Steady−State Error

Predicted Steady−State Error + Tracking Error

Fig. 4: NLMS algorithm: the simulation results based on 100 simulation runs and the predicted values
(a)-(b) Using Eqs. (54) and (56) at frequency bin l = 7 and l = 11. (c)-(d) Using Eqs. (57)-(58) at
frequency bin l = 7. (a) PTF at frequency bin l = 7. (b) PTF at frequency bin l = 11. (c) Desired
convergence rate = −0.01 dB/iteration. (d) Desired steady-state error = −12 dB.
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Simulation Results

Predicted Convergence Rate (Tangent Line)

Predicted Steady−State Error

Predicted Steady−State Error + Tracking Error

Fig. 5: RLS algorithm: the simulation results based on 100 simulation runs and the predicted values
(a)-(b) Using Eqs. (59) and (61) at frequency bin l = 7 and l = 11. (c)-(d) Using Eqs. (62)-(63) at
frequency bin l = 7. (a) PTF at frequency bin l = 7. (b) PTF at frequency bin l = 11. (c) Desired
convergence rate = −0.01 dB/iteration. (d) Desired steady-state error = −12 dB.
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However, in this given example, the behaviors of these two algorithms are different at
all other frequencies because of the different values of Su(ω) across frequencies.

6.2 Simulation Experiment for Acoustic Feedback Cancellation

As discussed in Sec. 3, the PTF derivation is performed under open-loop assumption,
i.e. by omitting f(n) in Fig. 2. In closed-loop systems, the loudspeaker signal u(n) is
a processed and delayed version of the incoming signals xi(n). Thus, the correlation
between u(n) and xi(n) is nonzero for many natural signals, e.g. speech signals. This
nonzero correlation is a general problem in closed-loop system identification as it leads
to a biased solution in the adaptive estimation algorithms, see e.g. [6]. Besides, the
assumption of uncorrelated u(n) and xi(n) for the PTF derivation is violated.

Nevertheless, as demonstrated through this simulation experiment, the derived PTF
expressions can be useful for predicting system behavior even in a closed-loop AFC
application, e.g. in a hearing aid system.

6.2.1 Background of Feedback Problem in Hearing Aids

In hearing aids, acoustic feedback typically occurs in high frequency regions for two
reasons. First, a larger amplification is usually implemented in the forward path f(n)
for high frequencies above 3-5 kHz following the typical hearing loss patterns for the
hearing aid users [11, 23]. Second, the peak magnitude response of the acoustic feedback
paths in hearing aids represented by hi(n) in Fig. 2 is typically located in the frequency
region above 5 kHz due to the resonance frequency caused by the ventilation canals in
the ear plugs [39].

Thus, feedback cancellation in hearing aids is particularly necessary in the high
frequency region above 3 kHz. For many everyday signals including speech signals, the
correlation functions in the critical frequency region above 3-5 kHz often decay rapidly
for increasing correlation lags. For a typical hearing aid processing delay of 5-7 ms [24]
in the forward path f(n), the correlation between the loudspeaker signal u(n) and the
incoming signal xi(n) at these frequencies is rather low. Thus, it is expected that the
assumption of uncorrelated u(n) and xi(n) is approximately valid in this high frequency
region. However, this depends strongly on the incoming signals xi(n), e.g. for musical
signals with many sustained high frequency components, the prediction of the system
behavior using the derived PTF expressions would be less accurate.

6.2.2 Simulation Experiment

There exists a wide range of practical attempts for reducing the bias caused by the
correlation problem in hearing aid AFC systems including band-limited estimation [40,
41], where the estimation of acoustic feedback paths is only carried out in a limited
frequency band, typically above 1-2 kHz, selective step size algorithms [42] where the
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step size parameter is adjusted according to an estimated correlation function between
u(n) and xi(n), and decorrelation methods [22] where e.g. frequency shifting is used
to actively decorrelate u(n) and xi(n). Applying these methods would reduce the bias
problem further and allows an even better PTF prediction. However, our goal here is, to
avoid these complications and to demonstrate that our analysis is approximately valid
even without these methods.

We consider an MMSL system with P = 2 microphones, the NLMS algorithm with
relatively small step size µ̄ = 2−9 and a regularization parameter δ = 2−30 is used for
a fullband feedback path estimation and cancellation. The duration of the simulation
is 90 s. The incoming signal x1(n) is a female speech, and x2(n) is a delayed version of
x1(n) by one sample using a sampling frequency of fs = 20 kHz. This models a situation
where the sound signal is coming from the frontal direction of the hearing aid, and the
distance between the front and rear microphones in the hearing aid is about 15 mm.
The beamformer filters are simply set to g1 = g2 = 1

2 . The acoustic feedback paths
hi(n) are obtained from measurements of a behind-the-ear hearing aid. The impulse
responses, magnitude responses and phase responses for both microphone channels are
shown in Fig. 6.

The first 64 taps of the measured feedback paths hi(n) are shown in Fig. 6. The true
length of hi(n) is unknown but considered to be about 50-55 taps, which corresponds
to about 2.6 ms. In the simulation experiment, the length of adaptive filter is chosen
to be L = 64. Furthermore, feedback path variations are added during the last 30 s
of the simulation, similarly to the first experiment; the variances are σ2

h1
= 5.3 · 10−5

and σ2
h2

= 3.8 · 10−5, respectively. The forward path f(n) consists of a pure delay of
120 samples corresponding to 6 ms to model the input-to-output processing delay in a
hearing aid, and a single-channel fullband compressor [11] to provide the amplification
as a function of the energy of its input signal ē(n) over time. In our simulation, the
compressor provided a fullband amplification of 20 dB for the entire simulation. In this
way, the most critical frequency is found at approximately 7.7 kHz, where the magnitude
value of the OLTF is approximately −1 dB and the phase value is 0 rad.

To obtain the PTF prediction values, we computed the long-term PSDs Sxij
(ω) and

Su(ω) of the incoming signals xi(n) and the loudspeaker signal u(n) and inserted them
in Eqs. (54) and (56). Using long-term PSDs is motivated by the fact that for small
step size µ̄, the adaptive algorithm has a low-pass effect on the adaptive estimation and
the PTF. In this simulation experiment, the PSD estimates are obtained from the entire
signal sequences xi(n) and u(n).

As in the first experiment, we compute the true PTF ξ(ω, n) using Eq. (19). The
results from just one simulation run is shown in Fig. 7, where the simulation and pre-
diction results for the frequency bin at 7.8 kHz are given. It is seen that especially
the convergence rate and the steady-state value for the time-varying system are well
predicted. The steady-state values for the time invariant system obtained from the sim-
ulation might be slightly biased, but they are still close to the predicted value. These
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Fig. 6: Measured acoustic feedback paths from a behind-the-ear hearing aid with a sampling frequency
fs = 20 kHz. (a) Impulse response. (b) Magnitude response. (c) Phase response.

results are obtained despite the fact that the magnitude of the OLTF at the start of
the simulation n = 0 was as high as −1 dB and a speech signal is used as the incoming
signals xi(n). In this simulation experiment, the PTF predictions for frequencies below
2-3 kHz were less precise due to the correlation between u(n) and xi(n).

The relatively rapid variations in the simulation results between 25-60 s in Fig. 7
are caused by the dynamics in the speech signal. Thus, there are mismatches between
the true instantaneous PSDs and the long-terms estimates Sxij

(ω) and Su(ω) used in
the PTF predictions. More precise and time-varying PSD estimates over shorter time
duration could be used to improve the prediction. Ideally, the time duration should
match the time constant of the averaging effect caused by the applied step size. It
should also be noted that the simulation result in Fig. 7 is from one simulation run only,
which corresponds to a practical situation. Much smoother simulation curves similar to
the ones in Figs. 3-5 can be expected, if more simulation runs were carried out and an
average result was computed.

In practice, the incoming signals xi(n) are unknown, and it is therefore not possible
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Fig. 7: Simulation results based on one simulation run in a closed-loop hearing aid acoustic feedback
cancellation system with a female speech as the incoming signal. The results are given at the frequency
bin 25 (∼ 7.8 kHz), closest to the most critical frequency of 7.7 kHz.

to compute Sxij
(ω) directly. However, from the derived PTF expressions Eqs. (49) and

(51) for the LMS algorithm, Eqs. (54) and (56) for the NLMS algorithm, and Eqs. (59)
and (61) for the RLS algorithm, it can be seen that Sxij

(ω) only have influence on
the steady-state error. This allows the use of the feedback/echo compensated signals

ei(n) as estimates of xi(n) upon convergence of the adaptive filters ĥi(n). For this
simulation experiment, estimating Sxij

(ω) based on ei(n) led to prediction results of
the steady-state values within 1 dB of those shown in Fig. 7.

7 Conclusion

In this work, we dealt with acoustic feedback/echo cancellation in a multiple-microphone
and single-loudspeaker audio processing system. We derived analytic expressions for a
frequency domain measure referred to as the power transfer function. These expressions
are used to predict the feedback/echo cancellation performance in terms of the conver-
gence rate, system stability bound and the steady-state behavior for the entire audio
processing system at each frequency and time instant. The power transfer function is
determined as a function of system parameters, e.g. the estimation filter order, and the
statistical properties of different signals. We showed that the derived power transfer
function approximations can be used to control system parameters, e.g. the step size
parameter in the adaptive cancellation algorithms in order to achieve desired behaviors
such as convergence rate and steady-state behavior at a specific frequency.

We considered three example adaptive algorithms, namely the least mean square,
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normalized least mean square, and the recursive least squares, and we compared their
system behaviors in terms of the power transfer function. Furthermore, we related the
derived power transfer function expressions to other well-known fullband analysis results
for single-microphone systems from existing works. Finally, the derived results are
successfully verified by simulations using synthetic signals, and in a closed-loop hearing
aid acoustic feedback cancellation system using real data including speech signals.

A Estimation Error Correlation Matrix

In this appendix, we derive Eq. (29) from Eq. (27). The estimation error vector h̃i(n)
in Eq. (23) can be expressed by

h̃i(n) =A(n)h̃i(n − 1) + µ(n)u(n)xi(n) − ȟi(n)

=A(n)
(

A(n − 1)h̃i(n − 2) + µ(n − 1)u(n − 1)xi(n − 1) − ȟi(n − 1)
)

+ µ(n)u(n)xi(n) − ȟi(n)

= . . .

=

n∏

l=1

A(l)h̃i(0) +

n∑

m=1

(
n∏

l=m+1

A(l)

)
(

µ(m)u(m)xi(m) − ȟi(m)
)

, (68)

where we use that
∏n

l=n0
A(l) = I for n0 > n. Furthermore, we assume that the

adaptation starts at n = 0.
Inserting Eq. (68) in the second last term of Eq. (27) and under the assumption that

h̃i(0) = ĥi(0) − hi(0) is uncorrelated with u(n), we get

E
[
µ(n)u(n)xi(n)h̃T

j (n − 1)
]

=µ(n)E



u(n)xi(n)

·

(
n−1∏

l=1

A(l)h̃j(0) +
n−1∑

m=1

(
n−1∏

l=m+1

A(l)

)

·
(

µ(m)u(m)xj(m) − ȟj(m)
)
)T




=µ(n)

−(n−1)
∑

k=−1

µ(n + k)u(n)uT (n + k)rxij
(k)

·

(
n−1∏

l=n+k+1

A(l)

)T

, where k = m − n. (69)
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It can be shown that Eq. (69) only influences the steady-state behavior of the PTF
ξ(ω, n). Thus, it is sufficient to consider the situation where n is large, specifically, for
the case n − 1 ≥ k0. Using Eq. (28) and considering the case where n − 1 ≥ k0, Eq. (69)
can be further expressed by

E
[
µ(n)u(n)xi(n)h̃T

j (n − 1)
]

= µ(n)

·

−k0∑

k=−1

µ(n + k)u(n)uT (n + k)rxij
(k)

(
n−1∏

l=n+k+1

A(l)

)T

. (70)

The matrix
∏n−1

l=n+k+1 A(l) in Eq. (70) can be simplified. Considering the case k = −k0

where this matrix contains most factors expressed by

n−1∏

l=n−k0+1

A(l) =

n−1∏

l=n−k0+1

(
I − µ(l)u(l)uT (l)

)

=I − µ(n − k0 + 1)u(n − k0 + 1)uT (n − k0 + 1)

+ . . . +

n−1∏

l=n−k0+1

(
−µ(l)u(l)uT (l)

)
. (71)

Inserting Eq. (71) in Eq. (70), it can be seen, that all terms besides I in Eq. (71) result
in higher order terms involving µ(n)µ(n + k)u(n)uT (n + k) in Eq. (70) and are thereby
neglected. Hence, Eq. (70) can now be expressed by

E
[
µ(n)u(n)xi(n)h̃T

j (n − 1)
]

=µ(n)

−k0∑

k=−1

µ(n + k)u(n)uT (n + k)rxij
(k)

=µ2(n)

−k0∑

k=−1

Ru(k)rxij
(k). (72)

The last line in Eq. (72) is carried out under the assumption of slowly varying step size
µ(n) over time, so that µ(n)µ(n − k0) = µ2(n). This requires that the variation in µ(n)
must be slower than the decay of rxij

(k). Furthermore, we replaced u(n)uT (n + k) by
Ru(k) using the direct-averaging method.

Similarly, we can express the last term in Eq. (27) as

E
[
h̃i(n − 1)xj(n)uT (n)µ(n)

]
=µ2(n)

k0∑

k=1

Ru(k)rxij
(k). (73)

Finally, inserting Eqs. (72)-(73) in Eq. (27), we get Eq. (29).
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Acoustic Feedback and Echo Cancellation
Strategies for Multiple-Microphone

and Single-Loudspeaker Systems

Meng Guo, Thomas Bo Elmedyb, Søren Holdt Jensen, and Jesper Jensen

Abstract

Acoustic feedback/echo cancellation in a multiple-microphone and single-loudspeaker
system is often carried out using a cancellation filter for each microphone channel, and
the filters are adaptively estimated, independently of each other. In this work, we con-
sider another strategy by estimating all the cancellation filters jointly and in this way
exploit information from all microphone channels. We determine the statistical system
behavior for the joint estimation strategy in terms of the convergence rate and steady-
state behavior across time and frequency. We assess if an improved cancellation perfor-
mance is achievable compared to the independent estimation strategy. Furthermore, we
relate the joint estimation strategy to a stereophonic acoustic echo cancellation system
and provide analytic expressions for its system behavior.

1 Introduction

Acoustic feedback/echo problems occur when the microphone of a sound system picks
up the acoustic output signal from the loudspeaker. In practical applications such as
public address systems, teleconferencing systems and hearing aids, the acoustic feed-
back/echo problem often degrades the system performance. Feedback/echo cancellation
using adaptive filters is one of the most applied methods to compensate for this problem,
see e.g. [1, 2] and the references therein.

In this work, we focus on a multiple-microphone and single-loudspeaker (MMSL)
system shown in Fig. 1, where the acoustic feedback/echo cancellation is performed

using the adaptive filters ĥi(n) for estimating the true feedback/echo paths hi(n), where
n is the time index and P denotes the number of microphone channels. A beamformer
performs spatial filtering of the feedback/echo compensated signals ei(n). This MMSL
system could e.g. be a teleconferencing system or a hearing aid system. In acoustic
feedback cancellation (AFC) applications, f(n) denotes a forward path e.g. to implement
amplification in a hearing aid. In the area of acoustic echo cancellation (AEC), f(n)
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f(n) ĥP (n) ĥ1(n) h1(n) hP (n)

+ g1 + +

gP +

A u(n)
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Fig. 1: A general multiple-microphone and single-loudspeaker system.

represents a far-end impulse response function and is usually ignored.
More specifically, we study estimation strategies for the adaptive filters ĥi(n) in this

work. Very often, the estimation of these in MMSL systems is carried out independently
for each microphone channel, e.g. by minimizing the error cost function E[e2

i (n)] using
an adaptive algorithm such as the least mean square (LMS) algorithm [3]. We refer to
this strategy as the independent estimation strategy.

Instead of focusing on each error signal ei(n) as in the independent estimation strat-
egy, we consider minimizing the beamformer output signal as E[(e(n) − ē(n))2], where
e(n) is the ideal beamformer output signal at point B in Fig. 1, assuming no feedback
signals, i.e. v̂i(n) = vi(n) = 0 ∀ i. In this way, we make use of all available infor-
mation from different microphone channels in the adaptive system at once, instead of
considering each of them separately. We refer to this strategy as the joint estimation
strategy.

In contrast to the traditional independent estimation strategy, the joint estimation
strategy studied here allows for a mismatch in each pair of ĥi(n) and hi(n), as long as
the sum of such mismatches lead to a smaller value (or faster convergence) of E[(e(n) −
ē(n))2]. It is clear that these two strategies lead to the same statistical behaviors, if all
error signals ei(n) are mutually independent. However, this is obviously not the case
when strong correlations can be expected between different microphone signals yi(n)
due to the closely located microphones.

In this paper, we first derive analytical expressions for the convergence and steady-
state behavior in the MMSL system using an example LMS algorithm1 in the cancella-
tion systems with the joint estimation strategy. This derivation is based on a recently

1We study the LMS algorithm for its simplicity, extending the results to other adaptive algorithms
e.g. the normalized least mean square is possible.
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Fig. 2: The redrawn system with auxiliary loudspeakers and signals ūi(n) and x̄i(n).

introduced frequency domain design and evaluation criterion referred to as the power
transfer function (PTF) [4], inspired by the work in [5]. After that, we compare the de-
rived results to the obtained results using the independent estimation strategy from an
identical MMSL system [4], in terms of the convergence rate and steady-state behavior.
Furthermore, we relate the results to a stereophonic acoustic echo cancellation system.

2 System Description

In order to ease the analysis, we redraw the MMSL system in Fig. 1 as the system
shown in Fig. 2. The beamformer filters gi are repositioned, and different auxiliary
loudspeakers and signals ū(n) and x̄(n) are created. It can be shown that both systems
are identical, when minimizing E[(e(n) − ē(n))2] in the adaptive cancellation system,

by assuming linear and time-invariant filters gi, hi(n) and ĥi(n) at a given time index
n. The following analysis is carried out on the redrawn system in Fig. 2.

The true but unknown feedback/echo path from the ith (auxiliary) loudspeaker to
the ith microphone is modeled by a finite impulse response (FIR) of order L − 1,

hi(n) = [hi(0, n), . . . , hi(L − 1, n)]
T

. (1)

The frequency response as the discrete Fourier transform (DFT) of hi(n) is expressed
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by

Hi(ω, n) =

L−1∑

k=0

hi(k, n)e−jωk. (2)

As in [4], we model time variations of the true feedback/echo paths hi(n) using the
random walk model

Hi(ω, n) = Hi(ω, n − 1) + Ȟi(ω, n), (3)

where Ȟi(ω, n) ∈ C is a sample from a zero-mean Gaussian stochastic process with
variance

Sȟii
(ω) = E

[

Ȟi(ω, n)Ȟ∗
i (ω, n)

]

. (4)

In the time domain, the feedback/echo path variation vector is

ȟi(n) = hi(n) − hi(n − 1). (5)

The estimate ĥi(n) of the ith true feedback/echo path is given by

ĥi(n) =
[

ĥi(0, n), . . . , ĥi(L − 1, n)
]T

, (6)

and the corresponding estimation error vector is defined as

h̃i(n) = ĥi(n) − hi(n), (7)

with a frequency response of

H̃i(ω, n) =

L−1∑

k=0

h̃i(k, n)e−jωk. (8)

Each beamformer filter gi is represented by an FIR filter

gi = [gi(0), . . . , gi(N − 1)]
T

, (9)

and its frequency response is

Gi(ω) =

N−1∑

k=0

gi(k)e−jωk. (10)

We consider the original loudspeaker signal u(n) as a deterministic signal because it is
measurable and thereby known. However, as argued in [5], our results remain valid,
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even if the loudspeaker signal u(n) is considered as a realization of a stochastic process,
which is statistically independent of the incoming signals xi(n); this important point
will be demonstrated by simulations in Sec. 6.

In the redrawn system, the auxiliary loudspeaker signal ūi(n) is expressed by

ūi(n) =

N−1∑

k=0

gi(k)u(n − k), (11)

and the signal vector ūi(n) is

ūi(n) = [ūi(n), . . . , ūi(n − L + 1)]
T

. (12)

We assume that the incoming signals xi(n) are zero-mean, stationary stochastic signals,
and the auxiliary incoming signals are expressed by

x̄i(n) =

N−1∑

k=0

gi(k)xi(n − k). (13)

Furthermore, the ith microphone signal yi(n) is modeled as

yi(n) = hT
i (n − 1)ūi(n) + x̄i(n). (14)

The ith error signal ēi(n) is expressed by

ēi(n) = yi(n) − ĥT
i (n − 1)ūi(n). (15)

The beamformer output signal ē(n) is given by

ē(n) =

P∑

i=1

ēi(n). (16)

The impulse response f(n) = [f(0, n), . . . , f(0, Lf − 1)]T has a frequency response

F (ω, n) =
∑Lf −1

k=0 f(k, n)e−jωk.

3 Review of Power Transfer Function

In our analysis, we define the PTF as the expected magnitude-squared transfer function
from point A to B in Fig. 2. The frequency responses Hi(ω, n) of the true feedback/echo
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paths hi(n) are unknown and considered as stochastic. Hence, as in [4], we define the
exact PTF of the MMSL system as

ξ(ω, n) = E





∣
∣
∣
∣
∣

P∑

i=1

Gi(ω)H̃i(ω, n)

∣
∣
∣
∣
∣

2




=

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)ξij(ω, n), (17)

where ξij(ω, n) = E[H̃i(ω, n)H̃∗
j (ω, n)] and ∗ denotes complex conjugation.

In AFC systems, the PTF ξ(ω, n) is the unknown part of the expected magnitude-
squared open-loop transfer function given by E[|OLTF(ω, n)|2] = |F (ω, n)|2ξ(ω, n). If
|OLTF(ω, n)| < 1, system stability is guaranteed [6]. For AEC applications, the PTF
ξ(ω, n) is similar to the mean-square deviation E[||h̃(n)||2] [3], but more importantly
it describes the cancellation behavior, across frequency in addition to time, for the
entire system rather than a single cancellation filter. Thus, for both AFC and AEC
applications, the PTF is a useful criterion for designing and evaluating the cancellation
system.

In general, however, we can not calculate the PTF ξ(ω, n) directly because Hi(ω, n)
is unknown. In this work, we derive a simple but accurate approximation of the PTF
as

ξ̂(ω, n) =

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)ξ̂ij(ω, n), (18)

where ξ̂ij(ω, n) ≈ E[H̃i(ω, n)H̃∗
j (ω, n)].

4 System Analysis

4.1 Review of MMSL System With Independent Estimation

In [4], we analyzed an MMSL system in terms of the PTF where feedback paths hi(n)
were estimated independently using the LMS algorithm. We showed the convergence
rate describing the decay of ξ̂(ω, n) is given by the coefficient

α(ω) = 1 − 2µ0(n)Su(ω), (19)

where µ0(n) is the LMS step size and Su(ω) denotes the power spectrum density (PSD)
of the loudspeaker signal u(n). Furthermore, the steady-state behavior describing
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ξ̂(ω, n) upon convergence, is

ξ̂(ω, ∞) = lim
n→∞

ξ̂(ω, n)

= lim
n→∞

L
µ0(n)

2

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

︸ ︷︷ ︸

Steady-State Error

+ lim
n→∞

∑P
i=1 |Gi(ω)|2Sȟii

(ω)

2µ0(n)Su(ω)
︸ ︷︷ ︸

Tracking Error

, (20)

where Sxij
(ω) denotes the cross(auto) PSDs of the incoming signals xi(n) and xj(n).

For details of the derivation of Eqs. (19) and (20), we refer to [4].

4.2 Analysis of MMSL System With Joint Estimation

Using the joint estimation strategy and considering u(n) as a deterministic signal, it
can be shown that the cost function E[(e(n) − ē(n))2] to be minimized is identical to

J(n) = E
[
ē2(n)

]
= E





(
P∑

i=1

ēi(n)

)2


 . (21)

The partial derivative of Eq. (21) is found as

∂J(n)

∂ĥi(n − 1)
= −2E

[

ūi(n)

P∑

p=1

ēp(n)

]

. (22)

The LMS adaptation [3], using a step size µ(n), is given by

ĥi(n) = ĥi(n − 1) + µ(n)ūi(n)

P∑

p=1

ēp(n). (23)

Using Eqs. (23), (15), (14) and (5), the ith feedback/echo path estimation error vector
given by Eq. (7) is also described as

h̃i(n) = h̃i(n − 1) + µ(n)ūi(n)

P∑

p=1

(
x̄p(n) − ūT

p h̃p(n − 1)
)

− ȟi(n). (24)

We assume that µ(n) varies slowly over time in addition to µ(n) is sufficiently small,
in principle µ(n) → 0, and the correlation function rxij

(k) = E[xi(n)xj(n − k)] of the
incoming signals xi(n) and xj(n) fulfills rxij

(k) = 0 ∀ |k| > k0 ∈ N. Furthermore, by
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ignoring higher order terms, an approximation of the estimation error correlation matrix
Hij(n) = E[h̃i(n)h̃T

j (n)] can be written as

Ĥij(n) =Ĥij(n − 1) − µ(n)

(
P∑

p=1

Rūip
(0)Ĥpj(n − 1) + Ĥip(n − 1)Rūpj

(0)

)

+ µ2(n)

P∑

p=1

P∑

q=1

k0∑

k=−k0

Rūij
(k)rx̄pq

(k) + Ȟij , (25)

under the assumption of µ(n) → 0 and using the direct-averaging method [7] to re-

place ūi(n)ūT
j (n) by its sample average Rūij

(k) = lim
N→∞

1
N

∑N
n=1 ūi(n)ūT

j (n − k). In

Eq. (25), rx̄ij
(k) = E[x̄i(n)x̄j(n − k)] denotes the correlation function of the sig-

nals x̄i(n) and x̄j(n), and Ȟij = E[ȟi(n)ȟT
j (n)] is the correlation matrix of the ith

and jth feedback/echo path variations. Furthermore, we assume, for simplicity, that

Ȟij = 0L×L ∀ i 6= j.
Assuming a sufficiently large L, asymptotically as L → ∞, we can use the DFT

matrix F ∈ CL×L to diagonalize the Toeplitz matrix Ĥij(n) [8]. Introduce the notation

Gij = G∗
i (ω)Gj(ω). The values of ξ̂ij(ω, n) are obtained as the diagonal elements of the

matrix FĤij(n)FH and can be expressed by

ξ̂ij(ω, n) =ξ̂ij(ω, n − 1) − µ(n)Su(ω)

P∑

p=1

(

Gipξ̂pj(ω, n − 1) + Gpj ξ̂ip(ω, n − 1)
)

+ Lµ2(n)Su(ω)Gij

P∑

p=1

P∑

q=1

GqpSxpq
(ω) + Sȟij

(ω). (26)

Inserting Eq. (26) in Eq. (18), the PTF approximation ξ̂(ω, n) is given by

ξ̂(ω, n) =

(

1 − 2µ(n)Su(ω)

P∑

i=1

|Gi(ω)|2

)

ξ̂(ω, n − 1)

+ Lµ2(n)Su(ω)

(
P∑

i=1

|Gi(ω)|2

)2 P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

+

P∑

i=1

|Gi(ω)|2Sȟii
(ω). (27)

5 Interpretation
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5.1 System Behavior

Considering Eq. (27) as a first-order difference equation in ξ̂(ω, n), the convergence rate
is determined by the coefficient

α(ω) = 1 − 2µ(n)Su(ω)

P∑

i=1

|Gi(ω)|2, (28)

which determines the pole location of the first-order system. The convergence rate in
dB/iteration is computed as 10 log10 |α(ω)|. Therefore, increasing the values of µ(n),

Su(ω) and
∑P

i=1 |Gi(ω)|2 lead to higher convergence rate.
Algorithm stability is ensured if |α(ω)| < 1. Hence, using Eq. (28), the step size

range to ensure stability is expressed by

0 < µ(n) <
1

maxω Su(ω)
∑P

i=1 |Gi(ω)|2
. (29)

Furthermore, the steady-state behavior ξ̂(ω, ∞) = limn→∞ ξ̂(ω, n) is given by

ξ̂(ω, ∞) = lim
n→∞

L
µ(n)

2

P∑

i=1

|Gi(ω)|2
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

︸ ︷︷ ︸

Steady-State Error

+ lim
n→∞

∑P
i=1 |Gi(ω)|2Sȟii

(ω)

2µ(n)Su(ω)
∑P

i=1 |Gi(ω)|2
︸ ︷︷ ︸

Tracking Error

. (30)

The first term in Eq. (30) is the steady-state value of ξ̂(ω, n) with time invariant feed-
back/echo paths, i.e. Sȟii

(ω) = 0; the second term is the extra error contribution as a

result of variations in the feedback/echo paths. In a time invariant system, ξ̂(ω, ∞) is

linearly proportional to L, µ(n),
∑P

i=1 |Gi(ω)|2, and the PSDs Sxij
(ω) weighted by the

frequency responses Gi(ω) and G∗
j (ω). On the other hand, it is seen from the second

term that a larger values of µ(n), Su(ω) and
∑P

i=1 |Gi(ω)|2 lead to smaller additional
error when the feedback paths are undergoing variations. Therefore, the overall steady-
state value ξ̂(ω, ∞) is a compromise between the steady-state error and the tracking
error, as in the single adaptive filter case [3].

More interestingly, by comparing Eq. (28) to Eq. (19) and Eq. (30) to Eq. (20), we

observe that
∑P

i=1 |Gi(ω)|2 is the only difference between the independent and joint
estimation strategies. Thus, by choosing the step size according to

µ0(ω, n) = µ(n)

P∑

i=1

|Gi(ω)|2, (31)
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Fig. 3: A stereophonic acoustic echo cancellation system.

statistically identical behavior is obtained in both strategies. The LMS step size now
becomes frequency dependent as µ0(ω, n), this can be achieved using e.g. frequency-
domain adaptive filters [9]. Hence, perhaps somewhat surprisingly, there is no per-
formance advantage by using the joint estimation strategy over the computationally
simpler independent estimation strategy. Note that this conclusion and the relation in
Eq. (31) are valid under the assumption of fixed or at least slowly varying beamformer
filters gi.

5.2 Relation to Stereophonic Acoustic Echo Cancellation

From Fig. 2, we observe that the redrawn MMSL system is very similar in structure to
a stereophonic acoustic echo cancellation (SAEC) system [1] given in Fig. 3. Consider
u(n) as a far-end source signal which is modified by the room impulse responses (RIRs)
gi into the far-end microphone signals ūi(n) which are transmitted to the near-end and
played through loudspeakers. These loudspeaker signals are modified by the near-end
RIRs hi(n) before recorded by a near-end microphone. This corresponds to a summation
∑

i vi(n). The estimates ĥi(n) are used to cancel hi(n), resulting in the echo canceled
signals ē(n).

The slight difference between these two systems, shown in Figs. 2 and 3, is that the
summation of the signals ēi(n) in Fig. 2 is moved in front of the near-end microphone
in the SAEC system, and only the mixture signal

∑

i vi(n), not the individual signal
vi(n), is presented at the near-end microphone.

Hence, independent estimation strategy is not an option in the SAEC situation,
and a joint estimation strategy minimizing the error signal ē(n) must be carried out.
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Thus, Eqs. (28) and (30) describe the cancellation behavior in terms of the convergence
rate and steady-state behavior, over frequency and time, in an SAEC system with a
corresponding near-end microphone signal

∑P
i=1 x̄i(n).

6 Experiment

Simulations are carried out in an MMSL system with P = 3 microphones, to verify Eqs.
(28) and (30).

In the simulations, the beamformer filters gi and true feedback/echo paths hi(n) are
modeled by first-order FIR filters and thereby known. Thus, it is possible to compute
the true PTF ξ(ω, n) given by Eq. (17) to verify the prediction values using Eqs. (28)
and (30). The duration of each simulation run is 104 iterations, and 100 simulation runs
are performed to obtain an averaged ξ(ω, n). In each simulation run, new realizations
of standard Gaussian stochastic sequences are drawn; they are then filtered by various
fixed first-order FIR shaping filters hu and hxi

to generate the loudspeaker signal u(n)
and the incoming signals xi(n), respectively.

The feedback/echo path estimates start from zeros, i.e. ĥi(0) = 0L×1, and L = 32.
The true feedback/echo paths hi(n), modeled by first-order FIR filters for simplicity,
are fixed during the first half of the simulations, whereas random walk variations with
Gaussian statistics N(µhi

, σ2
hi

) are added during the second half. Furthermore, a fixed
step size µ = 2−9 is used. The numerical values of all simulation parameters are given
in Table 1.

The simulated and predicted results, at a representative example frequency ω =
2πl/L, l = 7, are shown in Fig. 4. The simulation results agree with the predicted
convergence rate and steady-state values. The fact that a new realization of u(n) is
drawn for each simulation run demonstrates, as expected, that the derived results are
valid, when the loudspeaker signal u(n) is a realization of a stochastic process, even
though we considered u(n) as a deterministic signal in the analysis. For a detailed
discussion of this, we refer to [5]. Furthermore, we also observed that the derived
expressions are accurate for practical values as L = 32 and µ(n) = 2−9.

7 Conclusions

This work deals with acoustic feedback and echo cancellation strategies for multiple-
microphone and single-loudspeaker systems. We analyzed a new strategy where the
filters are estimated jointly in order to minimize the error signal after the beamformer
in the system. We derived analytic expressions for the convergence rate and steady-
state behavior, and these expressions are verified by simulations. Our analysis showed
that with appropriately chosen parameter values, and under the assumption of fixed or
slowly varying beamformer filters, the independent estimation strategy is statistically
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Table 1: The simulation parameters.

Symbol Value Description

Ds 104 Duration of simulation.

R 100 Number of simulation runs.

P 3 Number of microphone channels.

L 32 Length of ĥi(n).

µ(n) 2−9 A fixed step size.

g1 [1, 0.36]
T

FIR of beamformer filter 1.

g2 [1, −0.32]
T

FIR of beamformer filter 2.

g3 [1, 0.23]
T

FIR of beamformer filter 3.

h1(0) [1, 0.14]
T

Initial FIR of h1(n).

h2(0) [1, −0.40]
T

Initial FIR of h2(n).

h3(0) [1, 0.23]
T

Initial FIR of h3(n).

N(µh1 , σ2
h1

) N(0, 0.03842) Gaussian statistics for h1(n).

N(µh2 , σ2
h2

) N(0, 0.03322) Gaussian statistics for h2(n).

N(µh3 , σ2
h3

) N(0, 0.00242) Gaussian statistics for h3(n).

hu [1, −0.3]
T

FIR of shaping filter for u(n).

hx1 [1, 0.3]
T

FIR of shaping filter for x1(n).

hx2 [1, −0.2]
T

FIR of shaping filter for x2(n).

hx3 [1, 0.5]
T

FIR of shaping filter for x3(n).

identical to the joint estimation strategy. Hence, there is no performance advantages
by using the computationally more complex joint estimation strategy in the considered
system. Finally, we showed that the derived results of the joint estimation strategy also
describe the behavior of a stereophonic acoustic echo cancellation system.
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On Acoustic Feedback Cancellation Using
Probe Noise in Multiple-Microphone

and Single-Loudspeaker Systems

Meng Guo, Thomas Bo Elmedyb, Søren Holdt Jensen, and Jesper Jensen

Abstract

A probe noise signal can be used in an acoustic feedback cancellation system to pre-
vent biased adaptive estimation of acoustic feedback paths. However, practical experi-
ences and simulation results indicate that whenever a low-level and inaudible probe noise
signal is used, the convergence rate of the adaptive estimation is significantly decreased
when keeping the steady-state error unchanged. The goal of this work is to derive ana-
lytic expressions for the system behavior such as convergence rate and steady-state error
for a multiple-microphone and single-loudspeaker audio system, where the acoustic feed-
back cancellation is carried out using a probe noise signal. The derived results show how
different system parameters and signal properties affect the cancellation performance,
and the results explain theoretically the decreased convergence rate. Understanding this
is important for making further improvements in the existing probe noise approach.

1 Introduction

Acoustic feedback problems occur in audio systems when the microphone picks up part
of the loudspeaker output signal. This problem often causes performance degradation
in applications such as public address systems and hearing aids.

Acoustic feedback cancellation (AFC) using adaptive filters is one of the most ap-
plied methods to compensate for the feedback problem. The main problem of using
adaptive filters for AFC is that the filter estimates become biased whenever the in-
coming signal and loudspeaker signal are correlated [1]. The bias generally leads to
poor cancellation performance and in worst-case causes the cancellation system to fail.
Different techniques have been proposed to prevent biased estimation including phase
modification, frequency shifting, nonlinear processing, decorrelating prefilters and probe
noise injection, see e.g. [2] and the references therein.

In this work, we focus on a probe noise approach in a multiple-microphone and
single-loudspeaker (MMSL) audio system shown in Fig. 1. AFC is carried out using the

C.3
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Fig. 1: A multiple-microphone and single-loudspeaker system using a probe noise signal w(n) for
unbiased estimation of hi(n).

adaptive filters ĥi(n) for estimating the true feedback paths hi(n), where n is the time
index, i = 1, . . . , P , and P is the number of microphones. The probe noise signal w(n)
is added to the original loudspeaker signal u(n) to facilitate unbiased estimation of the

true feedback paths hi(n), and the estimation of adaptive filters ĥi(n) is based on the
signals w(n) and ei(n). More details on Fig. 1 are given in Sec. 2.

Different studies have reported that the probe noise approach is feasible in practice,
only if the power of the probe noise w(n) is high enough compared to the original
loudspeaker signal u(n), see e.g. [3–6]. Unfortunately, the required probe noise power is
generally so high that the probe noise becomes clearly audible and annoying for the users
of the audio system. When the probe noise is adjusted to be inaudible, the convergence
rate of the adaptive algorithm is highly decreased while maintaining the steady-state
error, which limits the practical use of the probe noise approach in an AFC system.

In this work, we derive theoretically the behavior of an AFC system using probe
noise in an MMSL system as shown in Fig. 1. In [7], we introduced a frequency domain
evaluation criterion referred to as the power transfer function (PTF), which describes
AFC system behavior for a general MMSL system without probe noise. The PTF crite-
rion was a further development of the work on frequency domain tracking characteristics
of adaptive algorithms in [8]. In this paper, we show theoretically that existing probe
noise approaches give a significantly decreased convergence rate compared to systems
without probe noise, assuming that the probe noise must be inaudible and the steady-
state error in AFC systems unchanged. The derived expressions provide a theoretical
description of the existing probe noise approach, which we believe is important for
further improvements.
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2 System Description

Fig. 1 shows a general MMSL system. The ith unknown feedback path hi(n) is repre-
sented by a finite impulse response (FIR) of order L − 1, hi(n) = [hi(0, n), . . . , hi(L −
1, n)]T and its frequency response is given by the discrete Fourier transform (DFT),

Hi(ω, n) =
∑L−1

k=0 hi(k, n)e−jωk.
For simplicity, we model time variations of the feedback paths hi(n) using the random

walk model Hi(ω, n) = Hi(ω, n − 1) + Ȟi(ω, n). The complex scalar Ȟi(ω, n) ∈ C

is a sample from a zero-mean Gaussian1 stochastic process with variance Sȟii
(ω) =

E[Ȟi(ω, n)Ȟ∗
i (ω, n)], where ∗ denotes complex conjugation. For simplicity, we assume

Sȟij
(ω) = 0 ∀ i 6= j. Alternatively, different feedback path variation models [9] can be

used, but the methodology of analysis would remain the same.
In the time domain, the feedback path variation vector is

ȟi(n) = hi(n) − hi(n − 1). (1)

The estimate of the ith feedback path is given by ĥi(n) = [ĥi(0, n), . . . , ĥi(L − 1, n)]T

and the corresponding estimation error vector h̃i(n) = [h̃i(0, n), . . . , h̃i(L − 1, n)]T is

h̃i(n) = ĥi(n) − hi(n), (2)

with frequency response of H̃i(ω, n) =
∑L−1

k=0 h̃i(k, n)e−jωk.
In the analysis, we consider the original loudspeaker signal u(n) and probe noise

signal w(n) as deterministic signals because they are measurable and thereby known.
The original loudspeaker signal vector is defined as u(n) = [u(n), . . . , u(n−L+1)]T , and
the probe noise signal vector is defined as w(n) = [w(n), . . . , w(n − L + 1)]T . The probe

noise signal is generated as w(n) =
∑Lw−1

k=0 hw(k)ǫ(n − k), where ǫ(n) is a zero-mean
Gaussian stochastic sequence with unit variance, and hw = [hw(0), . . . , hw(Lw − 1)]T is
a known spectral shaping filter. The resulting loudspeaker signal is uw(n) = u(n)+w(n)

with a signal vector uw(n) = [uw(n), . . . , uw(n − L + 1)]
T

, and

uw(n) = u(n) + w(n). (3)

The ith microphone signal yi(n) is expressed by

yi(n) = xi(n) + uT
w(n)hi(n − 1), (4)

and the ith error signal ei(n) is

ei(n) = yi(n) − uT
w(n)ĥi(n − 1). (5)

1For convenience, we use the Gaussian distribution for different signals. However, we do not rely on
the Gaussian distribution in our analysis.
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In this work, the beamformer filters gi are considered fixed because they are in general
slowly varying compared to AFC systems; they are represented by FIR filters gi =
[gi(0), . . . , gi(N − 1)]T with frequency responses of Gi(ω) =

∑N−1
k=0 gi(k)e−jωk. The

output ēi(n) of the ith beamformer filter is ēi(n) =
∑N−1

k=0 gi(k)ei(n − k), and the

beamformer output signal is given by ē(n) =
∑P

i=1 ēi(n).
There is a slightly different but regularly used probe noise approach which uses uw(n)

to estimate the adaptive filters ĥi(n), see e.g. [2]. However, analysis of this approach is
outside the scope of this work.

3 Review of Power Transfer Function

In our analysis, we use the PTF introduced in [7] to describe the system behavior. The
PTF ξ(ω, n) is defined as the expected magnitude-squared transfer function from point
A to B in Fig. 1,

ξ(ω, n) = E
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Gi(ω)H̃i(ω, n)

∣
∣
∣
∣
∣

2




=

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)ξij(ω, n), (6)

where ξij(ω, n) = E[H̃i(ω, n)H̃∗
j (ω, n)].

The PTF ξ(ω, n) is the unknown part of the expected magnitude-squared open-loop
transfer function given by E[|OLTF(ω, n)|2] = |F (ω, n)|2ξ(ω, n), where F (ω, n) is the
frequency response of the forward path impulse response f(n). If |OLTF(ω, n)| < 1,
system stability is guaranteed [10].

In general, the frequency responses Hi(ω, n) of the true feedback paths hi(n), and
thereby H̃i(ω, n) = Ĥi(ω, n) − Hi(ω, n), are unknown and considered as stochastic.
Hence, in practice, we can not compute the PTF ξ(ω, n) directly. Instead, we let

ξ̂ij(ω, n) ≈ E[H̃i(ω, n)H̃∗
j (ω, n)] and derive a simple and easier-to-interpret approxima-

tion of the PTF,

ξ̂(ω, n) =
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)ξ̂ij(ω, n). (7)

4 System Analysis

In this section, we derive the PTF approximation ξ̂ij(ω, n) based on an example adaptive
algorithm. It is possible to conduct derivations for other adaptive algorithms using the



4. SYSTEM ANALYSIS C.7

same methodology.
With traditional adaptive algorithms such as the least mean square (LMS) algorithm

[11], nonzero signal correlation rxu(k) = E[x(n)u(n − k)] between the incoming signal
x(n) and the original loudspeaker signal u(n) leads to biased feedback path estimates

ĥi(n), see e.g. [1]. The bias can be avoided by basing the estimation of ĥi(n) on a
probe noise signal w(n), which is uncorrelated with both x(n) and u(n); in this case,
the actual signal correlation rxu(k) is no more important for the estimation [2]. With
the probe noise approach in Fig. 1, an expression for the error signal ei(n) can be found
by inserting Eqs. (3)-(4) in Eq. (5),

ei(n) = xi(n) − wT (n)h̃i(n − 1) − uT (n)h̃i(n − 1). (8)

The update of ĥi(n) with a step size µ(n) is performed as

ĥi(n) = ĥi(n − 1) + µ(n)w(n)ei(n). (9)

The PTF for the MMSL system with probe noise can be derived based on the update
rule in Eq. (9) as follows. Using Eqs. (9), (8) and (1), the estimation error vector defined
in Eq. (2) can be expressed by

h̃i(n) =
(
I − µ(n)w(n)wT (n) − µ(n)w(n)uT (n)

)
h̃i(n − 1)

+ µ(n)w(n)xi(n) − ȟi(n), (10)

where I is the identity matrix. Furthermore, it can be shown that an approximation of
the estimation error correlation matrix, Ĥij(n) ≈ E

[
h̃i(n)h̃T

j (n)
]
, is given by

Ĥij(n) =Ĥij(n − 1) − µ(n)Rw(0)Ĥij(n − 1)

− µ(n)Ĥij(n − 1)Rw(0) + Ȟij + µ2(n)

k0∑

k=−k0

Rw(k)rxij
(k). (11)

Eq. (11) is derived under the assumption of a sufficiently small step size, i.e. µ(n) → 0,
and we used the direct-averaging method [12] to replace w(n)wT (n−k) and w(n)uT (n−

k) by their sample average Rw(k) = lim
N→∞

1
N

∑N
n=1 w(n)wT (n − k) and Rwu(k) =

lim
N→∞

1
N

∑N
n=1 w(n)uT (n − k) = 0, respectively. Furthermore, Ȟij = E[ȟi(n)ȟT

j (n)]

is the correlation matrix of the ith and jth feedback path variations, and we assumed
that the correlation function rxij

(k) = E[xi(n)xj(n − k)] of the incoming signals fulfills
rxij

(k) = 0 ∀ |k| > k0 ∈ N.

To find an expression for ξ̂ij(ω, n), we let F ∈ CL×L be a DFT matrix. It is well-
known that F diagonalizes a Toeplitz matrix for sufficiently large L [13]. The matrix
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Ĥij(n) is asymptotically a Toeplitz matrix; therefore, FĤij(n)FH approaches a diagonal
matrix asymptotically as L → ∞. It can be shown that the diagonal elements are

ξ̂ij(ω, n) = (1 − 2µ(n)Sw(ω)) ξ̂ij(ω, n − 1) + Lµ2(n)Sw(ω)Sxij
(ω, n) + Sȟij

(ω), (12)

where Sw(ω) denotes the power spectrum density (PSD) of the probe noise signal w(n),
and Sxij

(ω) denotes the cross(auto) PSDs of the incoming signals xi(n) and xj(n).

Finally, inserting Eq. (12) in Eq. (7), the PTF approximation ξ̂(ω, n) can be ex-
pressed by

ξ̂(ω, n) = (1 − 2µ(n)Sw(ω)) ξ̂(ω, n − 1)

+ Lµ2(n)Sw(ω)
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω) +
P∑

i=1

|Gi(ω)|2Sȟii
(ω). (13)

5 Discussion

We can now determine the convergence rate, algorithm stability bound for the step
size, and steady-state behavior of the probe noise based AFC algorithm in the MMSL
system.

The PTF expression in Eq. (13) can be viewed as a first-order difference equation in

ξ̂(ω, n) described by the transfer function H(z) = β
1−αz−1 . The coefficient α determines

the pole location in H(z) and thus the decay rate of ξ̂(ω, n), it is given by

α = 1 − 2µ(n)Sw(ω). (14)

The convergence rate in dB/iteration is given by 10 log10(|α|). Algorithm stability is
guaranteed if |α| < 1, so the stability bound for µ(n) is

0 < µ(n) <
1

maxω Sw(ω)
. (15)

The steady-state behavior, ξ̂(ω, ∞) = limn→∞ ξ̂(ω, n), is

ξ̂(ω, ∞) = lim
n→∞

L
µ(n)

2

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

︸ ︷︷ ︸

Steady-State Error

+ lim
n→∞

∑P
i=1 |Gi(ω)|2Sȟii

(ω)

2µ(n)Sw(ω)
︸ ︷︷ ︸

Tracking Error

. (16)

The tracking error is caused by the time-varying feedback paths hi(n), and the steady-
state error is due to the incoming signals xi(n) and xj(n). Eqs. (14) and (16) provide
a theoretical description of the system behavior for a probe noise based AFC system.
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They describe how the system parameters µ(n), L and Gp(ω), the signal properties
Sw(ω) and Sxij

(ω), and the feedback path variations Sȟii
(ω) affect the convergence

rate and steady-state behavior. It is interesting to note that system behavior could be
considered to be independent of the original loudspeaker signal u(n).

Eqs. (14)-(16) are similar in structure to the corresponding expressions for the same
MMSL system without probe noise injection [7]. The important difference is that in
Eqs. (14)-(16), the PSD Su(ω) of the original loudspeaker signal u(n) is now replaced
by the PSD Sw(ω) of the probe noise signal w(n). It means that using the same step
size µ(n) in both systems would lead to an identical steady-state error, but a decrease
in convergence rate and an increase in tracking error both by a factor of Su(ω)/Sw(ω)
in the probe noise system. In many practical systems, one wishes the probe noise
w(n) to be inaudible in the presence of the original loudspeaker signal u(n), such that
the resulting loudspeaker signal uw(n) is perceived as the original loudspeaker signal
u(n). This may be achieved by exploiting the masking effects of the human auditory
system [14], to generate a probe noise signal w(n) masked by u(n). In this case, a
time-varying Sw(ω, n) is chosen as a function of the short-time PSD Su(ω, n), and is
generally as much as 15-25 dB below the level of Su(ω, n), according to e.g. perceptual
audio coding techniques [15]. Hence, we would expect a reduction in convergence rate
and an increase in tracking error by a factor of more than 30.

6 Simulation Verification

The goal of the simulations is to verify the derived theoretical expressions in Eqs. (14)
and (16), and to compare these with the behavior of an identical MMSL system with-
out probe noise [7]. The simulations are performed in an MMSL system with P = 3
microphones.

In the simulations, the beamformer filters gi and the true feedback paths hi(n) are
modeled by first-order FIR filters2 g1 = [1, 0.36]T , g2 = [1, −0.32]T , g3 = [1, 0.23]T ,
h1(n) = [1, 0.14]T , h2(n) = [1, −0.4]T and h3(n) = [1, 0.21]T . Thus, it is possible to
compute the true PTF ξ(ω, n) in Eq. (6). The duration of each simulation run is 2 · 104

iterations, and 100 simulation runs are performed to obtain an averaged ξ(ω, n).
In each simulation run, new realizations of standard Gaussian stochastic sequences

are drawn; they are then filtered by various fixed first-order FIR shaping filters hu(n) =
[1, −0.3]T , hw(n) = 1

2 · [1, −0.3]T , hx1(n) = [1, 0.3]T , hx2(n) = [1, −0.2]T and hx3(n) =
[1, 0.5]T to generate the original loudspeaker signal u(n), probe noise signal w(n) and
the incoming signals xi(n), respectively. In this way, u(n) and xi(n) are uncorrelated,
although this is not necessary to verify the derived PTF expressions for the AFC system

2Using first-order FIR filters to model the true feedback paths hi(n) is unrealistic in practice. How-
ever, the derivations show that the PTF expressions and thereby the AFC performance are actually
independent of hi(n) which we have verified by simulations. First-order filters are chosen for repro-
ducibility in this experiment.
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Simulation Results

Predicted Convergence Rate (Tangent Line)

Predicted Steady−State Value: Time Inv. Sys.
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Fig. 2: Verification results at frequency ω = 2πl/L, where L = 32 and l = 7. (a) An MMSL system
using a probe noise signal. (b) The same MMSL system without probe noise.

using probe noise, which is immune to these correlations. However, using uncorrelated
u(n) and xi(n) signals, an unbiased estimation and PTF prediction in an AFC system
without probe noise, carried out in the next simulation experiment, can be obtained; it
makes a direct comparison between the convergence rate and steady-state error in both
systems straightforward. Furthermore, for ease of demonstration, the probe noise signal
level is simply chosen as half of the original loudspeaker signal.

The feedback path estimates are initialized to zero, i.e. ĥi(0) = 0L×1, and L = 32.
The true feedback paths are fixed during the first 104 iterations of the simulations,
whereas random walk variations with variances σ2

h1
= 0.0184, σ2

h2
= 0.0132 and σ2

h3
=

0.0124 are added in the remaining period. A fixed step size µ = 2−9 is used. The
simulated and predicted results, at a representative example frequency ω = 2πl/L,
where l = 7, are shown in Fig. 2(a). The simulation results agree with the predicted
convergence rate and steady-state values in Eqs. (14) and (16).

A similar simulation experiment is carried out with the same MMSL system but
without probe noise injection [7]. The estimation of ĥi(n) is based on the original loud-

speaker signal u(n) using a standard LMS algorithm ĥi(n) = ĥi(n−1)+µ(n)u(n)ei(n),
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where ei(n) = xi(n) − uT (n)h̃i(n − 1). As in the previous experiment, the step size
is µ = 2−9. The prediction values are computed by replacing Sw(ω) with Su(ω) in
Eqs. (14) and (16). The simulation results are given in Fig. 2(b). The results con-
firm that when the steady-state error is equal in both systems, the convergence rate of
the system with probe noise injection is decreased by the ratio of Su(ω)/Sw(ω) com-
pared to the identical system without probe noise. In this example experiment, since
Su(ω) = 4Sw(ω), the convergence rate is decreased by a factor of four. For the same
reason, the tracking error as given in the second part of Eq. (16) becomes four times
larger.

7 Conclusions

This work dealt with acoustic feedback cancellation for multiple-microphone and single-
loudspeaker audio systems. We derived expressions for the cancellation behavior in
terms of the convergence rate and steady-state behavior for the entire system, when
using a probe noise signal in the adaptive feedback cancellation algorithm. The derived
expressions describe the impact of different system parameters and signal properties
on the convergence rate and steady-state behavior, and thereby provide a theoreti-
cal description of the probe noise approach, which we believe is important for further
improvements. In particular, the analysis explain the decreased convergence rate in
the cancellation system using probe noise compared to an identical system without it.
Specifically, the price to pay for unbiased feedback cancellation using probe noise is a
decrease in convergence rate determined by the ratio of Su(ω)/Sw(ω).
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Abstract

Adaptive filters are widely used in acoustic feedback cancellation systems and have
evolved to be state-of-the-art. One major challenge remaining is that the adaptive filter
estimates are biased due to the nonzero correlation between the loudspeaker signals and
the signals entering the audio system. In many cases, this bias problem causes the can-
cellation system to fail. The traditional probe noise approach, where a noise signal is
added to the loudspeaker signal can, in theory, prevent the bias. However, in practice,
the probe noise level must often be so high that the noise is clearly audible and annoying;
this makes the traditional probe noise approach less useful in practical applications. In
this work, we explain theoretically the decreased convergence rate when using low-level
probe noise in the traditional approach, before we propose and study analytically two
new probe noise approaches utilizing a combination of specifically designed probe noise
signals and probe noise enhancement. Despite using low-level and inaudible probe noise
signals, both approaches significantly improve the convergence behavior of the cancella-
tion system compared to the traditional probe noise approach. This makes the proposed
approaches much more attractive in practical applications. We demonstrate this through
a simulation experiment with audio signals in a hearing aid acoustic feedback cancella-
tion system, where the convergence rate is improved by as much as a factor of 10.

1 Introduction

Acoustic feedback problems may occur in audio systems when the microphone picks
up part of the acoustic output signal from the loudspeaker. This problem often causes
significant performance degradations in applications such as public address systems and
hearing aids. In the worst-case, the audio system becomes unstable and howling occurs.
Many solutions have been proposed for reducing the effect of acoustic feedback, see
e.g. [1, 2] and the references therein. A widely used and probably the best solution to
date is to use adaptive filters in a system identification configuration [3].
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Fig. 1: A traditional acoustic feedback cancellation approach in a multiple-microphone and single-
loudspeaker system.

Fig. 1 shows a general acoustic feedback cancellation (AFC) approach using adaptive
filters in a multiple-microphone and single-loudspeaker (MMSL) audio system, where

AFC is carried out using the adaptive filters ĥi(n) to compensate for the true acoustic
feedback paths hi(n), where n is the discrete-time index, i = 1, . . . , P , and P is the
number of microphones. The estimation of the true feedback paths hi(n) by means of

adaptive filters ĥi(n) is based on the loudspeaker signal u(n) and the error signals ei(n)
and can be performed using e.g. least mean square (LMS), normalized least mean square
(NLMS), and recursive least squares (RLS) algorithms [3, 4]. The incoming signals to
the microphones of the MMSL system are denoted by xi(n). Often, multiple-microphone
audio systems are equipped with a beamforming algorithm to perform spatial filtering
of the incoming signals. The beamformer filters gi process the error signals ei(n) to
form a spatially filtered beamformer output signal ē(n), which is further modified by
the forward path f(n) to produce the loudspeaker signal u(n). More details on Fig. 1
are given in Sec. 2.1.

The adaptive filter ĥi(n) approximates the acoustic feedback path hi(n). Although
AFC using adaptive filters is one of the most applied methods to compensate for the
feedback problem, one of the major problems remaining is that the estimates ĥi(n)

become biased, i.e. E[ĥi(n)] 6= hi(n), where E[·] denotes the statistical expectation
operator, whenever the loudspeaker signal u(n) and the incoming signals xi(n) are
correlated [5]. This is generally unavoidable in closed-loop systems as e.g. shown in
Fig. 1, because the loudspeaker signal u(n) is a processed and delayed version of the
incoming signals xi(n). The biased estimation of hi(n) may lead to a poor feedback
cancellation and in the worst-case causes the cancellation system to fail.

Different techniques have been proposed to prevent or reduce the biased estimation
problem. Nonlinear processing methods [1] add an ideally inaudible, nonlinearly dis-
torted version of loudspeaker signal u(n) to u(n) to decorrelate it from the incoming
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Fig. 2: A traditional probe noise based acoustic feedback cancellation approach in a multiple-
microphone and single-loudspeaker system.

signals xi(n). Typically, a half-wave rectifier is used to introduce the distortion. The
frequency transposition methods [6, 7] introduce a modification in the forward path
f(n), by e.g. shifting the frequency components from the incoming signals xi(n) to
other frequencies. Thus, it decorrelates the loudspeaker signal u(n) and the incoming
signals xi(n) and is thereby capable of reducing the bias problem. The prediction error
method [8, 9] utilizes prefilters applied to the signals entering the adaptive filter estima-
tion; the prefilters are used to approximately whiten the incoming signal components in
these signals and thereby compensate for the biased estimation.

In this work, we focus on the probe noise approach. Fig. 2 shows a traditional
probe noise approach in an MMSL system. The probe noise signal w(n) is added to the
original loudspeaker signal u(n) to facilitate unbiased estimation of the true feedback
paths hi(n). In contrast to the traditional AFC approach shown in Fig. 1, the adaptive

filters ĥi(n) are estimated based on the probe noise signal w(n) and the error signals
ei(n), and unbiased estimation is guaranteed since w(n) is uncorrelated with u(n) and
xi(n) by construction. More details on Fig. 2 are given in Sec. 2.2.

Adaptive filter estimation based on probe noise can be carried out in different ways.
In [10], the adaptive filter estimates are only updated when the system is detected to
be close to instability; in this case, the original loudspeaker signal u(n) is muted, and
only the probe noise signal w(n) is presented as the loudspeaker signal to perform the
estimation. In [11], an attempt is made to reduce the audible artifacts introduced by
a high-level probe noise signal; specifically, probe noise insertion and adaptive filter
estimation is only performed during quiet intervals. In both cases, a non-continuous
adaptation is carried out, and the cancellation performance is highly dependent on the
decisions made by the stability and quiet-interval detectors, respectively. For input
signals with few quiet passages, e.g. musical signals, these systems can not update
their feedback path estimate and are therefore sensitive to feedback path changes. In
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other probe noise approaches [12, 13], an estimate û(n) of the loudspeaker signal u(n) is
created by using a probe noise signal in an open-loop system identification configuration,
and the adaptive filter estimation relies on this estimated signal û(n) instead of u(n);
û(n) is ideally uncorrelated with xi(n), and an unbiased estimation can thereby be
obtained. However, the drawback is that a loud and clearly audible probe noise signal
is required.

In principle, all these probe noise approaches can prevent the bias problem and
improve the cancellation performance. In [14], it was shown that the traditional probe
noise approach is capable of providing similar or even better performance than other
state-of-the-art AFC approaches, but only if the level of probe noise w(n) is powerful
enough compared to the original loudspeaker signal u(n), see also [13, 15]. On the other
hand, when the probe noise level is adjusted to be inaudible, the convergence rate of the
adaptive algorithm is often highly decreased (while maintaining the steady-state error),
which limits the practical use of the probe noise approach in an AFC system. In [16],
it was shown theoretically that when using the traditional probe noise approach with
inaudible probe noise signals, the convergence rate of the adaptive system is decreased,
by as much as a factor 30 in practice. Based on [16], a theoretical framework was
proposed in [17] for an improved probe noise approach, which is capable of significantly
increasing the convergence rate without compromising the steady-state error at a given
probe noise level. In this paper, we present a comprehensive theoretical analysis of the
improved approach in [17] and discuss some important practical aspects of its application
in real situations. Within the same theoretical framework, we present a further improved
probe noise approach, where the convergence rate is increased by up to a factor 2
compared to [17] with only minimal additional calculations.

The improvements by the proposed probe noise approaches are obtained by process-
ing the signals entering the adaptive algorithms, such that the disturbance from the
incoming signals xi(n) is reduced. Additionally, both improved approaches utilize a
simple spectral masking model to generate a probe noise signal w(n), which is inaudible
in the presence of the original loudspeaker signal u(n). This provides a resulting loud-
speaker signal uw(n) that is perceived essentially identically to the original loudspeaker
signal u(n). This probe noise generation method was introduced for AFC applications
in [18].

For both proposed approaches, we derive analytical expressions for their system
behavior; we compare them to a traditional AFC system without probe noise [19], and
a traditional probe noise based AFC system [16]. Furthermore, we demonstrate the
improvements in simulation experiments using audio signals and practical parameter
settings in a realistic hearing aid AFC system.

In this work, column vectors and matrices are emphasized using lower and upper
letters in bold, respectively. Transposition, Hermitian transposition and complex con-
jugation are denoted by the superscripts T , H and ∗, respectively.

The rest of this paper is organized as follows. In Sec. 2, we introduce different
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MMSL systems using the traditional AFC approach, traditional probe noise approach
and the two proposed probe noise approaches. In Sec. 3, we derive analytic expres-
sions for the system behavior in terms of convergence rate and steady-state behavior
to explain analytically the improvements obtained using the proposed approaches. In
Sec. 4, we perform simulation experiments, using audio signals, to compare the proposed
probe noise approaches to the traditional probe noise approach and the traditional AFC
approach. Finally, we conclude this work in Sec. 5.

2 System Overview

In this section, we introduce MMSL systems using the four different AFC approaches,
which are considered in this work: 1) The traditional AFC approach (T-AFC). 2) A
traditional probe noise approach (T-PN). 3) The proposed probe noise approach I (PN-I)
in [17]. 4) The proposed probe noise approach II (PN-II).

For convenience, we express all signals as discrete-time signals, although in practice
the signals entering the microphones and leaving the loudspeaker are continuous-time
signals.

2.1 Traditional AFC Approach (T-AFC)

Fig. 1 shows the MMSL system using the T-AFC approach. The ith true acoustic
feedback path hi(n) = [hi(0, n), . . . , hi(L − 1, n)]

T
is assumed to be a finite impulse

response (FIR) of order L − 1. The frequency response of hi(n) is expressed by the dis-

crete Fourier transform (DFT) Hi(ω, n) =
∑L−1

k=0 hi(k, n)e−jωk, where ω is the discrete
normalized frequency.

There are different ways to model feedback path variations over time, see e.g. [20].
In this work, we use a simple random walk model given by Hi(ω, n) = Hi(ω, n −
1) + Ȟi(ω, n) for the ith feedback path, where Ȟi(ω, n) ∈ C is a sample from an
independent zero-mean Gaussian stochastic sequence with cross-covariance Sȟij

(ω) =

E[Ȟi(ω, n)Ȟ∗
j (ω, n)]. Thus, in the time domain, the feedback path variation vector is

ȟi(n) = hi(n) − hi(n − 1). (1)

The adaptively estimated feedback path ĥi(n) of order L − 1 is expressed by ĥi(n) =

[ĥi(0, n), . . . , ĥi(L − 1, n)]T , and the estimation error vector is

h̃i(n) = ĥi(n) − hi(n), (2)

with a frequency response H̃i(ω, n) =
∑L−1

k=0 h̃i(k, n)e−jωk.
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In this work, we denote the lengths of both hi(n) and ĥi(n) with L. We assume that

ĥi(n) has a sufficient length L, in principle L → ∞. Thus, the effective length of hi(n)
could be shorter than L, e.g. in the case when hi(n) is zero-padded to the length L.

The signal vector u(n) for the loudspeaker signal u(n) is defined as u(n) = [u(n), . . . ,
u(n − L + 1)]T , whereas the ith microphone signal yi(n) is modeled as1

yi(n) = xi(n) + uT (n − 1)hi(n − 1), (3)

and the ith feedback compensated error signal is given by

ei(n) = yi(n) − uT (n − 1)ĥi(n − 1). (4)

The adaptive estimation of hi(n) can e.g. be performed using the LMS algorithm [3]
with the step size µ(n) and the update rule

ĥi(n) = ĥi(n − 1) + µ(n)u(n − 1)ei(n), (5)

although many more options exist, see e.g. [3, 4].

In the MMSL system shown in Fig. 1, spatial filtering is carried out using a simple lin-
ear beamformer [22] applied to the error signals ei(n). In this work, the beamformer fil-
ters gi are considered fixed because they are often slowly varying compared to AFC sys-
tems; they are represented by FIR filters gi of order Lg −1, gi = [gi(0), . . . , gi(Lg − 1)]

T

with a frequency response Gi(ω) =
∑Lg−1

k=0 gi(k)e−jωk. The output signal of the beam-

former is therefore ē(n) =
∑P

i=1 ēi(n) =
∑P

i=1

∑Lg−1
k=0 gi(k)ei(n − k).

Although it is possible to reverse the order of the beamformer and the acoustic feed-
back cancellation system, we only focus on the case where the cancellation is performed
prior to the beamformer as given in Fig. 1. This setup requires more computational
power due to multiple cancellation systems, but the beamformer would not affect the
cancellation process negatively as demonstrated in [23].

The forward path f(n) represents the process of converting ē(n) to the loudspeaker
signal u(n). Generally, the forward path f(n) consists of an amplification and a pro-
cessing delay for closed-loop audio systems. The impulse response of the forward path
is denoted by f(n) = [f(0, n), . . . , f(Lf − 1, n)]T with a frequency response F (ω, n) =
∑Lf −1

k=0 f(k, n)e−jωk, and the loudspeaker signal is obtained as u(n) =
∑Lf −1

k=0 f(k, n)ē(n−
k).

1At least one delay element is needed in closed-loop systems to avoid an algebraic loop. As in [21],
we chose to model this delay in hi by using the time index n−1 for notational convenience, since it then
would appear to have the same time index as its parallel-structured acoustic feedback path estimate
ĥi. This notation of time indexing does not affect the result.
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2.2 Traditional Probe Noise Approach (T-PN)

Fig. 2 shows the MMSL system using the T-PN approach. The significant difference
compared to the T-AFC system in Fig. 1 is that a probe noise signal w(n) is added

to the original loudspeaker signal u(n), and w(n) is used directly for updating ĥi(n).
The probe noise signal vector is defined as w(n) = [w(n), . . . , w(n − L + 1)]T . The
resulting loudspeaker signal is uw(n) = u(n) + w(n) with a signal vector uw(n) =

[uw(n), . . . , uw(n − L + 1)]T , where

uw(n) = u(n) + w(n). (6)

The ith microphone signal yi(n) is given by

yi(n) = xi(n) + uT
w(n − 1)hi(n − 1), (7)

and the ith error signal ei(n) is expressed by

ei(n) = yi(n) − uT
w(n − 1)ĥi(n − 1). (8)

The goal of the probe noise w(n) is to ensure an unbiased estimation of hi(n), be-
cause the probe noise signal w(n) is constructed to be uncorrelated with both the
incoming signals xi(n) and the original loudspeaker signal u(n), see e.g. [2, 5] for de-
tails. The probe noise is generated, using a known spectral shaping filter hw(n) =

[hw(0, n), . . . , hw(Lw − 1, n)]T , as w(n) =
∑Lw−1

k=0 hw(k, n)ǫ(n − k), where ǫ(n) is a zero-
mean Gaussian stochastic sequence with unit variance. In this work, we generate a
probe noise signal w(n) which is ideally inaudible in the presence of u(n) by adaptively
updating hw(n) based on the spectral properties of u(n); details on this are given in
Sec. 4.2.3. Generally speaking, the goal of this is to maximize the power of the probe
noise such that it is just not audible.

The unbiased estimation of hi(n) is driven by the probe noise signal w(n) and can
e.g. be obtained using an update rule similar to Eq. (5), that is

ĥi(n) = ĥi(n − 1) + µ(n)w(n − 1)ei(n). (9)

2.3 Proposed Probe Noise Approach I (PN-I)

Fig. 3 shows the PN-I approach presented in [17]. The difference from the T-PN ap-
proach in Fig. 2 is the introduction of the so-called enhancement filters ai(n) applied to
the error signals ei(n).

Ideally, in the adaptive filter estimation in a system identification configuration,
the error signal entering the estimation block of ĥi(n) is −wT (n − 1)h̃i(n − 1). In
practice, however, the error signal ei(n) contains also signal components such as xi(n)
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Fig. 3: The improved probe noise acoustic feedback cancellation approach in a multiple-microphone
and single-loudspeaker system. The traditional probe noise approach is obtained by setting the filters
ai(n) = 1.

and −uT (n − 1)h̃i(n − 1), which are disturbing the estimation of hi(n). The goal of the
enhancement filters ai(n) is to reduce the disturbing signal power, without changing
the probe noise power for the estimation of hi(n) at the same time [17]. As we will
explain in more details in Sec. 3, the higher the power ratio between the probe noise
and the disturbing signals, the faster convergence can be achieved given a fixed steady-
state error in the adaptive cancellation system. As ai(n) improves the probe noise
to disturbing signal ratio, an increased convergence rate can be obtained compared to
the T-PN approach without compromising the steady-state behavior in the cancellation
system.

The increased probe noise to disturbing signal ratio is obtained by a specific design
procedure of the enhancement filter ai(n), which is closely related to the probe noise
shaping filter length Lw and the feedback path length L. In this work, we assume that
the same enhancement filter is applied across microphone channels, i.e. ai(n) = a(n).
This is not strictly necessary, but gives a simple result. Furthermore, for audio sys-
tems with closely placed microphones such as hearing aids, this is a reasonable sim-
plification. Furthermore, the enhancement filter is presented by an La − 1 order FIR
a(n) = [a(0, n), . . . , a(La − 1, n)]T . Very importantly, the design of a(n) is constrained
such that its frequency response is expressed by

A(ω, n) = 1 +

La−1∑

k=D

a(k, n)e−jωk, (10)
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and the value D is chosen as

D ≥ L + Lw − 1. (11)

Thus, the structure of the enhancement filter is a(n) = [1, 0, . . . , 0, a(D, n), . . . , a(La −
1, n)]T , and it is estimated as

â(n) = arg min
a(n)

E
[
ě2

i (n)
]

. (12)

Thus, it is clear that â(n) is simply the minimum mean square error (MMSE) prediction
error filter [3]. Furthermore, for a large value of D in Eq. (11), it becomes a long-term
prediction error filter [24]. We will explain the reason for these choices in Sec. 3.

The filtered error signal ěi(n) is expressed by

ěi(n) =

La−1∑

k=0

a(k, n)ei(n − k), (13)

and the unbiased feedback path estimation is carried out by basing the estimation of
hi(n) on the probe noise signal w(n) and filtered error signal ěi(n), e.g. using the update
rule

ĥi(n) = ĥi(n − 1) + µ(n)w(n − 1)ěi(n), (14)

which is similar in structure to the LMS update rule used in Eq. (5).

2.4 Proposed Probe Noise Approach II (PN-II)

It is possible to further improve the PN-I approach. This is done by applying copies of
the enhancement filter a(n) to the probe noise signal w(n) to form w̌i(n) as shown in
Fig. 4, in which the general terminology ai(n) is used, although we assume ai(n) = a(n)
for simplicity. As we will show through the theoretical analysis in Sec. 3, these copies
of a(n) on the probe noise signal w(n) lead to even higher probe noise to disturbing
signals ratio than the PN-I approach shown in Fig. 3, by increasing the effective probe
noise power for the estimation of hi(n). Thus, a further increment of the convergence
can be obtained in this cancellation system.

Due to the assumption of ai(n) = a(n), the filtered probe noise w̌i(n) = w̌(n) is
obtained as

w̌(n) =

La−1∑

k=0

a(k, n)w(n − k). (15)

The probe noise signal vector w̌(n) is defined as w̌(n) = [w̌(n), . . . , w̌(n − L + 1)]T , and
an unbiased feedback path estimation can be carried out e.g. using the update rule

ĥi(n) = ĥi(n − 1) + µ(n)w̌(n − 1)ěi(n). (16)
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ěp(n) ě1(n)

w̌p(n) w̌1(n)

. . . . . .

...
.... .

.

+

aP (n) a1(n)

f(n) Est. P ĥP (n) Est. 1 ĥ1(n) h1(n) hP (n)

aP (n) a1(n)

+ g1 + +

gP +

A u(n) uw(n)

ē(n)

B

w(n)

v̂P (n)

–

v̂1(n)

–

e1(n)

eP (n)

y1(n)

yP (n)

ē1(n)

ēP (n)

v1(n) vP (n)

x1(n)

xP (n)

Beamformer

Fig. 4: The further improved probe noise acoustic feedback cancellation approaches in a multiple-
microphone and single-loudspeaker system. The difference is that the copies of ai(n) are applied on
the probe noise signal w(n) to form w̌i(n) which are used in the estimation of hi(n).

3 Theoretical Analysis

In this section, we derive analytic expressions to describe system behavior in terms of
convergence rate and steady-state error, as a function of time and frequency, based on
the example update rules in Eqs. (5), (9), (14) and (16). The derived expressions explain
analytically the differences between all four considered AFC approaches. Later in this
section, simple simulations are performed to verify the derived expressions.

3.1 Review of Power Transfer Function

The theoretical analysis of the system behavior is based on a recently introduced fre-
quency domain design and evaluation criterion for adaptive systems, the power transfer
function (PTF) [19], which describes the expected magnitude-squared transfer function
from point A to B in Figs. 1-4. More specifically, the PTF is expressed by

ξ(ω, n) = E





∣
∣
∣
∣
∣

P∑

i=1

Gi(ω)H̃i(ω, n)

∣
∣
∣
∣
∣

2


 , (17)

and it represents the unknown part of the expected magnitude-squared open-loop trans-
fer function, E[|Θ(ω, n)|2] = |F (ω, n)|2ξ(ω, n). If |Θ(ω, n)| < 1 ∀ ω, system stability
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is guaranteed [25]. Hence, ξ(ω, n) provides important information of system behavior.
The PTF can generally not be computed directly because the true acoustic feedback
paths hi(n) and thereby H̃(ω, n) = Ĥ(ω, n)−H(ω, n) are unknown. However, as shown

in [19], it is possible to obtain an accurate approximation ξ̂(ω, n) of ξ(ω, n). This ap-

proximation is expressed by a first-order difference equation in ξ̂(ω, n). Based on this, it
is possible to determine the convergence rate and steady-state behavior for the system
under concern.

As in [19], we let ξ̂ij(ω, n) ≈ E[H̃i(ω, n)H̃∗
j (ω, n)] and via Eq. (17) the PTF approx-

imation can be shown to be

ξ̂(ω, n) =

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)ξ̂ij(ω, n). (18)

In the following, we briefly review the PTF approximation ξ̂(ω, n) for the MMSL system
using the T-AFC approach [19], and the T-PN approach [16]. Then, we derive the

PTF approximation ξ̂(ω, n) for the PN-I and PN-II approaches. The derivations and
comparisons provide a theoretical explanation of the motivation and improvements by
the proposed approaches. For simplicity, the derivation is carried out in an open-loop
configuration by omitting f(n) in the MMSL systems. It can be shown that this has only
minor effects on the practical use of the derived results for closed-loop AFC approaches
in general [26], and it has no influences on the technical explanations provided in this
section. Finally, we assume for simplicity the incoming signals xi(n) are zero-mean
stationary stochastic signals in the analysis.

3.2 Analytic Expressions for System Behavior

3.2.1 Some Definitions

To ease the derivation, we assume a(n) = a and divide it further into the parts
a1 = [a1(0), . . . , a1(La − 1)]T = [1, 0, . . . , 0]T and a0 = [a0(0), . . . , a0(La − 1)]T =
[0, . . . , 0, a(D), . . . , a(La − 1)]T , such that

a = a1 + a0. (19)

The frequency responses of a1 and a0 are A1(ω) = 1 and A0(ω) =
∑La−1

k=D a(k)e−jωk,
respectively.

Furthermore, we define the Toeplitz-structured filtering matrix Aq, with the dimen-
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sion [L + La − 1, L], as

Aq =

















aq(0) 0
. . . 0

... aq(0)
. . . 0

aq(La − 1)
...

. . . 0

0 aq(La − 1)
. . . aq(0)

...
. . .

. . .
...

0 0
. . . aq(La − 1)

















, (20)

where q = 0, 1, so that we get the matrices A0 and A1. Furthermore, we define

A = A0 + A1. (21)

Finally, we define the vectors w̄(n) = [w(n), . . . , w(n − L − La + 2)]T and ū(n) =
[u(n), . . . , u(n − L − La + 2)]T .

3.2.2 Traditional AFC Approach (T-AFC)

In [19], the PTF approximation for the MMSL system shown in Fig. 1, using the update
rule in Eq. (5), was derived as

ξ̂(ω, n) = (1 − 2µ(n)Su(ω)) ξ̂(ω, n − 1)

+ Lµ2(n)Su(ω)

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

+
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sȟij

(ω), (22)

where Su(ω) denotes the power spectrum density (PSD) of the loudspeaker signal u(n),
and Sxij

(ω) denotes the auto/cross PSDs of the incoming signals xi(n) and xj(n). Eq.
(22) was derived under the assumptions of sufficiently small step size µ(n) and large
model order parameter L, in principle, µ(n) → 0 and L → ∞. In Eq. (22), the last
term is slightly modified compared to the result in [19], since the additional simplifying
assumption of Sȟij

(ω) = 0 ∀ i 6= j was applied in [19].

3.2.3 Traditional Probe Noise Approach (T-PN)

In [16], the PTF approximation for the MMSL system using the T-PN approach shown
in Fig. 2 and the update rule in Eq. (9) was derived. Under the same assumptions of
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µ(n) and L as for the T-AFC approach, it can be shown that

ξ̂(ω, n) = (1 − 2µ(n)Sw(ω)) ξ̂(ω, n − 1)

+ Lµ2(n)Sw(ω)
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

+

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sȟij

(ω), (23)

where Sw(ω) denotes the PSD of the probe noise signal w(n). In Eq. (23), the last term
is again slightly modified compared to the result in [16] with the additional simplifying
assumption of Sȟij

(ω) = 0 ∀ i 6= j.

3.2.4 Proposed Probe Noise Approach I (PN-I)

In [17], we provided the final PTF expression ξ̂(ω, n) for the PN-I approach in Fig. 3
without detailed derivations. This section provides more details towards this result. The
methodology used for the derivation is similar to the one presented in [26]. However,
in contrast to [26], we consider the original loudspeaker signal u(n) as a disturbing
signal for the estimation of hi(n). Additionally, we need to deal with the effects of
enhancement filter a(n) on different signals and ensure that the estimation of hi(n) is

still unbiased. In the following, we derive ξ̂(ω, n) for the PN-I approach with emphasis
on this consideration.

Define the matrices W(n) = [w(n), . . . , w(n − La + 1)]T and U(n) = [u(n), . . . , u(n−

La + 1)]T . Then, using Eqs. (6)-(8) and (13), the example update rule for ĥi(n) given
by Eq. (14), for the PN-I approach shown in Fig. 3, can be expressed as

ĥi(n) =ĥi(n − 1) + µ(n)w(n − 1)
(
aT xi(n)

− aT U(n − 1)h̃i(n − 1) − aT W(n − 1)h̃i(n − 1)
)

. (24)

It can be shown (see Appendix A) when the enhancement filter a fulfills the important
constraint D ≥ L + Lw − 1 in Eq. (11), then unbiased estimation of hi(n) is ensured,

i.e. E[ĥi(n)] = hi(n).

In order to derive the PTF expression ξ̂(ω, n), we use Eqs. (24), (19) and (1) to
express the estimation error vector defined in Eq. (2) as

h̃i(n) =
(
I − µ(n)w(n − 1)

(
wT (n − 1) + aT

0 W(n − 1)
)

−µ(n)w(n − 1)aT U(n − 1)
)

h̃i(n − 1) + µ(n)w(n − 1)aT xi(n) − ȟi(n). (25)

The approximation of the estimation error (auto-) covariance matrix Hij(n) =
E[h̃i(n)h̃T

j (n)] is computed using Eq. (25), under the assumption of sufficiently small
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µ(n), in principle µ(n) → 0, and by neglecting the second-order terms involving µ(n)
due to the presence of their first-order versions. In addition, we consider w(n) and u(n)
as deterministic signals in deriving Eq. (26). As argued in [21] and demonstrated in our
simulation experiments, the resulting expression is valid even for the case where w(n)
and u(n) are in fact realizations of stochastic processes. The approximation of Hij(n)
becomes

Ĥij(n) =Ĥij(n − 1) − µ(n)w(n − 1)wT (n − 1)Ĥij(n − 1)

− µ(n)w(n − 1)aT U(n − 1)Ĥij(n − 1)

− µ(n)w(n − 1)aT
0 (n)W(n − 1)Ĥij(n − 1)

− µ(n)Ĥij(n − 1)w(n − 1)wT (n − 1)

− µ(n)Ĥij(n − 1)UT (n − 1)awT (n − 1)

− µ(n)Ĥij(n − 1)WT (n − 1)a0wT (n − 1) + Ȟij

+ E
[
µ2(n)w(n − 1)aT xi(n)xT

j (n)awT (n − 1)
]

+ E
[
µ(n)w(n − 1)aT xi(n)h̃T

j (n − 1)
]

+ E
[
µ(n)h̃i(n − 1)xT

j (n)awT (n − 1)
]

, (26)

where the correlation matrix of the ith and jth feedback path variations is defined as
Ȟij = E[ȟi(n)ȟT

j (n)].
Eq. (26) can be simplified. Recall that w(n) is uncorrelated with u(n), thereby

E[w(n − 1)aT U(n − 1)] = 0. Furthermore, since D ≥ L + Lw − 1 by construction, see
Eq. (11), it can be shown that E[w(n−1)aT

0 W(n−1)] = 0 (see Appendix B). Using the
direct-averaging method [27] to replace the matrix w(n − 1)wT (n − 1) with its sample

average Rw(0) = limN→∞
1
N

∑N
n=1 w(n − 1)wT (n − 1), the matrix w(n − 1)aT U(n − 1)

with its sample average limN→∞
1
N

∑N
n=1 w(n − 1)aT U(n − 1) = 0, and the matrix

w(n−1)aT
0 W(n−1) with its sample average limN→∞

1
N

∑N
n=1 w(n−1)aT

0 W(n−1) = 0,

the approximation Ĥij(n) in Eq. (26) can be simplified to

Ĥij(n) =Ĥij(n − 1) − µ(n)Rw(0)Ĥij(n − 1)

− µ(n)Ĥij(n − 1)Rw(0) + Ȟij

+ µ2(n)Rw(0)E
[
aT xi(n)xT

j (n)a
]

+ E
[
µ(n)w(n − 1)aT xi(n)h̃T

j (n − 1)
]

+ E
[
µ(n)h̃i(n − 1)xT

j (n)awT (n − 1)
]

. (27)

We now bring the time domain expression in Eq. (27) to the frequency domain to
simplify it further. Recall that, asymptotically as L → ∞, the DFT matrix F ∈ CL×L

diagonalizes any Toeplitz matrix [28]. Using this, we can show that ξ̂ij(ω, n) are obtained
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as the diagonal values of the matrix FĤij(n)FH expressed by

ξ̂ij(ω, n) = (1 − 2µ(n)Sw(ω)) ξ̂ij(ω, n − 1)

+ Lµ2(n)Sw(ω)|A(ω)|2Sxij
(ω) + Sȟij

(ω). (28)

Details on this derivation can be found in [26]. Inserting Eq. (28) in Eq. (18), the PTF

approximation ξ̂(ω, n) is finally obtained as

ξ̂(ω, n) = (1 − 2µ(n)Sw(ω)) ξ̂(ω, n − 1)

+ Lµ2(n)Sw(ω)|A(ω)|2
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

+

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sȟij

(ω). (29)

3.2.5 Proposed Probe Noise Approach II (PN-II)

In the derivation of the PN-II approach, extra attention must be paid to the copies
of the enhancement filter a filtering the probe noise signal w(n); otherwise, the same
procedure is applied as for the PN-I approach.

Using Eqs. (6)-(8), (13) and (15), the estimate of hi(n) given by Eq. (16) can be
written as

ĥi(n) =ĥi(n − 1) + µ(n)WT (n − 1)a
(
aT xi(n)

− aT U(n − 1)h̃i(n − 1) − aT W(n − 1)h̃i(n − 1)
)

. (30)

Similarly to the PN-I approach, it can be shown that an unbiased estimation of hi(n)
can be obtained as long as the constraint on the enhancement filter a in Eq. (11) is
obeyed.

Using Eqs. (30), (19) and (1), the estimation error vector defined in Eq. (2) can also
be expressed by

h̃i(n) =
(
I − µ(n)WT (n − 1)aaT W(n − 1)

− µ(n)WT (n − 1)aaT U(n − 1)
)

h̃i(n − 1)

+ µ(n)WT (n − 1)aaT xi(n) − ȟi(n). (31)

The approximation of the estimation error (auto-) covariance matrix Hij(n) is again
computed, under the assumption of sufficiently small µ(n), and by neglecting the second-
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order terms involving µ(n) in the presence of their first-order versions, as

Ĥij(n) =Ĥij(n − 1) − µ(n)WT (n − 1)aaT W(n − 1)Ĥij(n − 1)

− µ(n)WT (n − 1)aaT U(n − 1)Ĥij(n − 1)

− µ(n)Ĥij(n − 1)WT (n − 1)aaT W(n − 1)

− µ(n)Ĥij(n − 1)UT (n − 1)aaT W(n − 1) + Ȟij

+ E
[
µ2(n)WT (n − 1)aaT xi(n)xT

j (n)aaT W(n − 1)
]

+ E
[
µ(n)WT (n − 1)aaT xi(n)h̃T

j (n − 1)
]

+ E
[
µ(n)h̃i(n − 1)xT

j (n)aaT W(n − 1)
]

. (32)

Considering that WT (n − 1)aaT W(n − 1) = AT w̄(n − 1)w̄T (n − 1)A, and using the
direct-averaging method to further rewrite AT w̄(n − 1)w̄T (n − 1)A as AT Rw̄(0)A,

then the matrix Rw̄(0) = limN→∞
1
N

∑N
n=1 w̄(n − 1)w̄T (n − 1) is identical to Rw(0)

as L → ∞, because w(n) and w̄(n) are both signal vectors containing w(n), but with
different dimensions. Similarly, we rewrite WT (n−1)aaT U(n−1) as AT Rw̄ū(0)A = 0,

where Rw̄ū(0) = limN→∞
1
N

∑N
n=1 w̄(n − 1)ūT (n − 1). The approximation Ĥij(n) can

therefore be simplified to

Ĥij(n) =Ĥij(n − 1) − µ(n)AT Rw(0)AĤij(n − 1)

− µ(n)Ĥij(n − 1)AT Rw(0)A + Ȟij

+ µ2(n)AT Rw(0)AE
[
aT xi(n)xT

j (n)a
]

+ E
[
µ(n)WT (n − 1)aaT xi(n)h̃T

j (n − 1)
]

+ E
[
µ(n)h̃i(n − 1)xT

j (n)aaT W(n − 1)
]

. (33)

Using similar considerations as in Appendix B, the matrix AT Rw(0)A can be expressed
by

AT Rw(0)A = (A1 + A0)T Rw(0) (A1 + A0)

=AT
1 Rw(0)A1 + AT

0 Rw(0)A0

=Rw(0) + AT
0 Rw(0)A0. (34)

Inserting Eq. (34) in Eq. (33), and again using the DFT matrix F to diagonalize Ĥij(n)

in Eq. (33), it can be shown that ξ̂ij(ω, n) are obtained as the diagonal elements of the

resulting matrix FĤij(n)FH , as

ξ̂ij(ω, n) =
(
1 − 2µ(n)(1 + |A0(ω)|2)Sw(ω)

)
ξ̂ij(ω, n − 1)

+ Lµ2(n)(1 + |A0(ω)|2)Sw(ω)|A(ω)|2Sxij
(ω) + Sȟij

(ω). (35)



3. THEORETICAL ANALYSIS D.19

Table 1: System behavior in terms of convergence rate (CR), steady-state error (SSE) and tracking
error (TE) at frequency ω, for the traditional AFC approach (T-AFC), traditional probe noise AFC
approach (T-PN), proposed probe noise approach I (PN-I) and the proposed probe noise approach

II (PN-II). For reading convenience, we introduce Γ1 =
∑P

i=1

∑P

j=1
Gi(ω)G∗

j
(ω)Sxij

(ω) and Γ2 =
∑P

i=1

∑P

j=1
Gi(ω)G∗

j
(ω)S

ȟij
(ω).

CR SSE TE

T-AFC 1 − 2µ(n)Su(ω) L µ(n)
2 Γ1

Γ2

2µ(n)Su(ω)

T-PN 1 − 2µ(n)Sw(ω) L µ(n)
2 Γ1

Γ2

2µ(n)Sw(ω)

PN-I 1 − 2µ(n)Sw(ω) L µ(n)
2 |A(ω)|2Γ1

Γ2

2µ(n)Sw(ω)

PN-II 1 − 2µ(n)(1 + |A0(ω)|2)Sw(ω) L µ(n)
2 |A(ω)|2Γ1

Γ2

2µ(n)(1+|A0(ω)|2)Sw(ω)

Finally, inserting Eq. (35) in Eq. (18), the resulting PTF ξ̂(ω, n) is expressed by

ξ̂(ω, n) =
(
1 − 2µ(n)(1 + |A0(ω)|2)Sw(ω)

)
ξ̂(ω, n − 1)

+ Lµ2(n)(1 + |A0(ω)|2)Sw(ω)|A(ω)|2
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sxij

(ω)

+

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)Sȟij

(ω). (36)

3.3 Discussion

3.3.1 Resulting Expressions for All Approaches

Eqs. (22), (23), (29) and (36) are first-order difference equations in ξ̂(ω, n) and determine
the behavior of the corresponding systems. In particular, we determine the convergence
rate describing the decay rate of ξ̂(ω, n) per sample period, and the steady-state behavior

limn→∞ ξ̂(ω, n) which is the sum of steady-state and tracking errors upon convergence

of ξ̂(ω, n). The steady-state error describes the lowest possible steady-state value of

ξ̂(ω, n), whereas the tracking error is the additional error to that due to the variations
in the acoustic feedback paths. The resulting expressions are given in Table 1, for ease
of a comparison between the different approaches.

3.3.2 T-PN vs. T-AFC

It is seen from Table 1 that the only difference between the T-AFC approach and the T-
PN approach is that for the convergence rate and the tracking error, Su(ω) is replaced
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by Sw(ω). Because Sw(ω) must generally be much lower than Su(ω) to ensure the
added probe noise is inaudible, the convergence rate in T-PN is reduced by the factor
Su(ω)/Sw(ω), which is typically as large as 30, and the tracking error is increased by
the same amount.

3.3.3 PN-I vs. T-PN

The only modification introduced by the PN-I approach is the scaling of the steady-
state error by the factor of |A(ω)|2 compared to the T-PN approach. Thus, depending
on |A(ω)|2, the PN-I approach has the capability of reducing the steady-state error
compared to the T-PN approach, while maintaining the convergence rate and tracking
error. This is obtained for |A(ω)|2 < 1, i.e. in frequency regions where the enhancement

filter a can (partly) predict ei(n) based on its past samples, via êi(n) =
∑La

k=D a(k)ei(n−
k). Recall that the enhancement filter a is found as the MMSE long-term prediction
error filter in Eq. (12), ei(n) and −êi(n) can be considered as the direct and prediction
part of the filtered error signal ěi(n) = ei(n) + êi(n). Thus, a is able to (partly)
predict/remove the disturbing signals, e.g. the incoming signals xi(n), for the estimation
of hi(n), as long as the autocorrelation function rx(k) = E[xi(n)xi(n − k)] has nonzero
lags for |k| ≥ D. This typically occurs for tonal signals with clear spectral peaks, where
−êi(n) provides a precise estimate of ei(n), so that E[ě2

i (n)] ≪ E[e2
i (n)] and |A(ω)| ≪ 1.

Thus, a reduction in steady-state error is expected using the PN-I approach, particularly
in frequency regions of ei(n) with distinct spectral peaks.

On the other hand, as shown in Appendices A and B, due to the structure of the
enhancement filter a, in particular, the constraint of D given in Eq. (11), a does not

have any influence on the probe noise signal w(n) either in the expected value E[ĥi(n)]

nor in the covariance calculation of Ĥij(n). Thus, the enhancement filter a can be
considered statistically transparent for the probe noise signal w(n) in the estimation of
hi(n).

To summarize, in the PN-I approach, the different characteristics of the specifically
designed enhancement filter a on the probe noise signal with limited correlation time
and disturbing signals lead to a reduced steady-state error without sacrificing the con-
vergence rate and tracking error. The degree of reduction in steady-state error depends
on the capability of the enhancement filter to predict/remove the disturbing signals.
Typically, a better prediction and thereby higher reduction in steady-state error can
be obtained for tonal signals. Furthermore, it is possible to apply an increased step
size µ(n) to obtain a higher convergence rate and lower tracking error in the PN-I ap-
proach, while still obtaining an unchanged steady-state error as in the T-PN approach.
In this way, part of the drop in convergence rate associated with T-PN approach can
be regained.
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3.3.4 PN-II vs. PN-I

The idea behind the PN-II approach is similar to the PN-I approach, i.e. utilizing
the long-term prediction characteristic of the enhancement filter a. The copies of a
to generate the filtered probe noise signal w̌(n) = w(n) + ŵ(n) makes it possible to

achieve further improvements, where w(n) and −ŵ(n) = −
∑La

k=D a(k)w(n − k) can be
considered as the direct and prediction part of the signal w̌(n), however, w(n) and ŵ(n)
are uncorrelated due to the constraint on D. The introduction of the extra enhancement
filters applied to w(n) means that instead of considering the terms involving w(n −
1)aT W(n−1) = w(n−1)wT (n−1)+w(n−1)aT

0 W(n−1) in Eq. (26), where E[w(n−
1)aT

0 W(n−1)] = 0 as shown in Appendix A, we are now considering the terms involving

WT (n − 1)aaT W(n − 1) in Eq. (32) in the calculation of Ĥij(n) in the PN-II approach,
and we get the additional contribution AT

0 Rw(0)A0 6= 0 in Eq. (34). This corresponds
to utilizing both the direct parts of signals w(n) and ei(n), and the prediction parts
−ŵ(n) and −êi(n) of the filtered signals w̌(n) and ěi(n) for the estimation of hi(n).

In this way, in contrast to the PN-I approach, where the expected disturbing signal
power E[x2

i (n)] is reduced and the expected probe noise power E[w2(n)] can be consid-
ered unchanged, the expected probe noise power E[w̌2(n)] = E[w2(n)] + E[ŵ2(n)] for
the estimation algorithm and thereby the probe noise to disturbing signal ratio is further
increased in the PN-II approach. As the result, the convergence rate and tracking error
are increased by the factor of 1 + |A0(ω)|2, with |A0(ω)| ≤ 1 at the frequency ω where
the enhancement filter a is able to make a reasonable prediction of ei(n) from its past
samples ei(n − D), . . . , ei(n − La + 1). Hence, in the PN-II approach, the convergence
rate can be further increased by the factor 1 ≤ 1 + |A0(ω)|2 ≤ 2, and the tracking error
is reduced by the same amount, while maintaining the steady-state error as in the PN-I
approach.

Although the proposed probe noise approaches PN-I shown in Fig. 3 and especially
PN-II shown in Fig. 4 are somewhat similar in structure to the decorrelating prefilter
method [9], where prefilters are applied to the loudspeaker and error signals in a similar
way to the enhancement filters, their goal and procedure are very different. The goal
of the prefilters in [9] is to decorrelate the incoming signals xi(n) and the loudspeaker
signal u(n), whereas the goal of the enhancement filters is to increase the probe noise
to disturbing signal ratio. Furthermore, the proposed approaches differ from the decor-
relating prefilter method by using long-term prediction error filters as the enhancement
filters.

3.4 Verification of Analysis Results

To complete the analytical analysis and discussion, we perform simple simulation exper-
iments to verify the derived PTF expressions in Eqs. (23), (29) and (36), for the different
probe noise approaches shown in Figs. 2-4, respectively, and to visually demonstrate the
improvements.
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The simulations are performed in a closed-loop AFC system in a hearing aid setup
with P = 2 microphones, using a sampling frequency fs = 20 kHz. The feedback
paths h1(n) and h2(n) are measured from a behind-the-ear hearing aid with an order
of about 50. Because the impulse responses hi(n) are known, we can compute the

true PTF ξ(ω, n) according to Eq. (17) to verify the derived expressions for ξ̂(ω, n).
We compute ξ(ω, n) as the average across R = 100 simulation runs, i.e. ξ(ω, n) ≈
1
R

∑R
k=1 |

∑P
i=1 Gi(ω)H̃k

i (ω, n)|2, where H̃k
i (ω, n) is the result of the kth simulation run.

A simple beamformer is used, g1 = g2 = 1
2 . The forward path f(n) has a delay of 120

samples modeling a hearing aid processing delay of 6 ms, and it has a fixed amplification
of approximately 29 dB so that the most critical frequency for system stability can be
found at approximately 2.5 kHz, where the magnitude value of the open-loop transfer
function is −1 dB and the phase is 0 rad.

The adaptive filters ĥi(n) have a length of L = 64 and are initialized as ĥi(0) = 0.
The true feedback paths hi(n) are fixed during the first part of the simulation, whereas
random walk variations with variances σ2

h1
= 4.844 × 10−5 and σ2

h2
= 6.484 × 10−5 are

added during the last 15 s. Three different simulation experiments are carried out using
the T-PN, PN-I and the PN-II approaches. The step size values are respectively chosen
to be 2−24, 2−21 and 2−21 for all three experiments, in order to obtain same steady-state
errors but different convergence rates and tracking errors.

In each simulation run, new realizations of standard Gaussian stochastic sequences
are drawn; the incoming signals xi(n) and the probe noise signal w(n) are obtained
as these sequences filtered by the inverse of the enhancement filter a and probe noise
shaping filter hw, respectively. Both filters are known and fixed in this simulation
experiment, because the goal of this experiment is to verify the derived expressions; we
postpone simulation of the more practical situation where these filters are time-varying
to the next section. The shaping filter hw with a length Lw = 13 is created by first
computing Su(ω) as the PSD Sxij

(ω) scaled by the forward path amplification of 29 dB,
and then the PSD Sw(ω) = 0.25Su(ω) is computed as a scaled version of Su(ω). Finally,
the filter hw is designed using the frequency sampling method. The power ratio between
the signals w(n) and u(n) is thereby −12 dB; clearly, the probe noise will generally be
audible in this case. In the next section, we demonstrate system performance when the
noise is created to be inaudible. The enhancement filter a has a length of La = 96 with
a value of D = 76 to fulfill the requirement of D ≥ L + Lw − 1, and its magnitude
response has a sharp notch at 2.5 kHz.

Fig. 5 shows the simulation results verifying the PTF prediction values, at the most
critical frequency ω = 2πl/L, where l = 8, corresponding to 2.5 kHz. In all cases, the
values predicted from the derived expressions are successfully verified by the simulation
results. Furthermore, the desired steady-state error of approximately −52 dB is obtained
for all three approaches, but very clearly, the convergence rates and the tracking errors
are completely different, as expected. Due to the difference in step sizes by a factor of 8,
the convergence rate is increased and the tracking error is reduced by the same amount
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Simulation Results

Predicted Convergence Rate (Tangent Line)

Predicted Steady−State Error

Predicted Steady−State Error + Tracking Error

Fig. 5: Verification at the frequency of 2.5 kHz. (a) The traditional probe noise approach (T-PN). (b)
The proposed probe noise approach I (PN-I). (c) The proposed probe noise approach II (PN-II).

for the PN-I approach compared to the T-PN approach. Furthermore, it is seen that by
using an identical step size in the PN-II approach, the convergence rate and tracking
error is further modified by a factor of approximately 1.8 due to the extra enhancement
filters applied on the probe noise signal.

4 Demonstration in A Practical Application

In this section, we perform simulations using audio signals in a hearing aid AFC system
with P = 2 microphones. The goal of the simulations is to show the improvements by
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the proposed PN-I and PN-II approaches compared to the T-PN approach in a practical
situation, where enhancement filters are time-varying and estimated based on available
signals only, the probe noise signal w(n) is generated using a spectral masking model to
be inaudible in the presence of the original loudspeaker signal u(n), and the feedback
paths hi(n) exhibit quick changes, e.g. corresponding to a telephone-to-ear situation,
which is known to be a difficult scenario for hearing aid AFC systems. We show that
whereas the T-AFC and the T-PN approaches fail to cancel the acoustic feedback, the
proposed PN-I and PN-II approaches are efficient in doing so.

4.1 Acoustic Environment

The simulations are carried out using a sampling frequency of fs = 20 kHz. In the
following, we provide information of the true feedback paths and the audio signal used
to generate the incoming signals in the simulations.

4.1.1 Acoustic Feedback Paths

The true acoustic feedback paths denoted as hi(n) in Figs. 1-4 are obtained by mea-
surements from a behind-the-ear hearing aid while worn by a test person. The hearing
aid has two omnidirectional microphones and a loudspeaker. We divide the entire sim-
ulation into two different periods. In both periods, the true feedback paths hi(n) are
stationary. At the transition between the periods, we change the feedback paths momen-
tarily to simulate a situation where the hearing aid user makes a phone call and places a
telephone close to the ear and thereby the hearing aid. This change of feedback paths is
usually very challenging for AFC systems, because sound reflected on the phone/hand
back to the microphones increases the feedback path magnitude response by as much as
16 dB [29], almost momentarily, and the AFC system must adapt to the new acoustic
feedback paths very quickly to prevent the system from becoming unstable.

The feedback paths used before the transition were measured without any obstacles
in the close proximity of the hearing aid, whereas the feedback paths used after the
transition were measured when a telephone is closely placed to the ear (less than 1
cm). Fig. 6 shows the impulse and frequency responses of the true feedback paths. It is
clearly seen that the telephone-to-ear transition in this example increases the magnitude
response in the order of 5 − 10 dB for most frequencies.

4.1.2 Incoming Signals

The bias problem in general AFC systems typically occurs for tonal signals due to their
long correlation time. Although the traditional probe noise approaches can be used to
avoid the bias problem in this situation, other side effects such as decreased convergence
rate would appear. Therefore, in order to make the demonstration most convincing, we
choose an audio signal which has some significant spectral peaks. In particular, we
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Fig. 6: The measured acoustic feedback paths without and with a telephone closely placed to the
hearing aid. (a) Impulse response. (b) Magnitude response. (c) Phase response.

choose an audio signal with a very dominating flute sound around 2.5 kHz as shown in
the spectrogram in Fig. 7.

The audio signal shown in Fig. 7 is used as a basis for the incoming signals x1(n)
and x2(n). For a longer simulation, this audio signal is repeated. In order to perform
beamforming, the two hearing aid microphones are typically aligned in the horizontal
plane and in the same direction as the face of the hearing aid user; the distance between
them is often about 15 mm. In the following simulations, we simply apply a delay to
model the distance between the microphones. The audio signal of Fig. 7 is used as the
incoming signal x1(n), whereas the incoming signal x2(n) is generated by delaying x1(n)
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Fig. 7: The spectrogram of an audio signal used for generating the incoming signals. The window
size is 512 samples with 50% overlap, and a Hanning window is applied. Furthermore, for reading
convenience, we limit the frequency axis to 0 − 6 kHz, because most frequency content of the signal are
found in this range.

by one sample. This simulates the source signal coming from the frontal direction, with
a distance between the two microphones of about 17 mm.

4.2 System Setup

4.2.1 Forward Path and Beamformer

Similar to the simulation experiment in Sec. 3.4, we apply a simple beamformer by
setting g1 = g2 = 1

2 . Furthermore, a hearing aid input-to-output processing delay is
typically around 4 − 8 ms [30]; in this simulation experiment, we model this as a pure
delay of 120 samples corresponding to 6 ms in the forward path f(n).

In contrast to the experiment in Sec. 3.4, the forward path f(n) in the present
experiment provides a time-varying amplification using a single-channel fullband com-
pressor [31]. The amplification over time is computed as a function of the power level
of the signal ē(n). The compressor provides, for all frequencies, an amplification of 29
dB when the estimated power level is below a certain point, and the amplification is
reduced by the excess amount of the estimated power level above this point. With the
chosen compressor settings and the acoustic feedback paths, the most critical frequency
is found at about 2.5 kHz, where the magnitude of the open-loop transfer function is
about −1 dB and the phase 0 rad at the beginning of the simulation; it means that the
system initially is close to instability without an AFC system. At the feedback path
transition, the worst-case magnitude value of the open-loop transfer function increases
momentarily to about 4.5 dB without an AFC system, and the system would certainly
become unstable without a properly working AFC system.
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4.2.2 AFC using Delayless Subband Adaptive Filters

In practical applications, implementing AFC using a subband structure is often preferred
for obtaining higher convergence rate and a reduction in computational complexity
[32]. In this work, we apply a delayless subband adaptive filter (SAF) in a closed-loop

structure [33, 34] to obtain ĥi(n) in the estimation blocks shown in Figs. 1-4.

The length of the fullband filter ĥi(n) is chosen to be L = 64. The subband NLMS
step size for the PN-I and PN-II approaches is chosen as µ = 2−12 for all subbands
except the lowest one, where the step size is set to 0. Thus, AFC is not performed
below approximately 500 Hz, because there is generally no feedback problem at the
lowest frequencies in hearing aid applications, as e.g. seen in Fig. 6(b). For the T-
PN and T-AFC approaches, the step size is decreased by a factor of 6, so that the
steady-state error is approximately the same for all approaches.

4.2.3 Probe Noise Generation

The probe noise signal w(n) should be generated with the highest possible signal power
at each frequency while being inaudible in the presence of the original loudspeaker
signal u(n). This can e.g. be achieved by using perceptual audio coding techniques,
see e.g. [35] and the references therein, based on the masking effects of the human
auditory system [36]. In this work, we generate the probe noise signal using a spectral
masking model based on [37]. For a given loudspeaker signal u(n), the model estimates
a masking threshold M(ω, n); ideally, additive and uncorrelated noise shaped according
to this threshold would be inaudible in the presence of u(n).

The shaping filter hw(n) with length Lw = 128 is created using the frequency sam-
pling filter design method, based on M(ω, n). In order to verify that the generated
probe noise w(n) is essentially inaudible in the presence of u(n), we performed control
measurements, based on the perceptual evaluation of speech quality (PESQ) and per-
ceptual evaluation of audio quality (PEAQ) models, described in [38] and [39]. More
specifically, we use the Matlab implementations of PESQ and PEAQ provided in [40]
and [41] for our verifications. The explanations of the output scores from these PESQ
and PEAQ implementations are given in Table 2. Both scores are related to the mean
opinion scores [42].

For each noise induced test signal, PESQ or PEAQ values are computed. For com-
parison, we also evaluated test signals injected with white noise at different fullband
signal-to-noise ratio (SNR) of 60 dB, 40 dB and 20 dB, respectively. The results are
given in Table 3.

From Table 3, it is seen that the generated probe noise is rated somewhere between
imperceptible and perceptible but not annoying, which is very satisfactory. On the other
hand, using white noise as probe noise, the SNR must be somewhere between 40 and
60 dB in order to obtain similar sound quality. However, the fullband SNRs between
the test signals and the perceptually generated probe noise signals are generally found
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Table 2: The output scores given by the applied PESQ and PEAQ models.

PESQ PEAQ Quality Description of Impairment

4.5 0 Excellent Imperceptible
4 -1 Good Perceptible but not annoying
3 -2 Fair Slightly annoying
2 -3 Poor Annoying
1 -4 Bad Very annoying

Table 3: Several test signals with inserted probe noise are objectively evaluated using PESQ or PEAQ.
The probe noises are either perceptually generated probe noise (PGPB) or white noise at the SNR 60
dB (WN60), 40 dB (WN40) and 20 dB (WN20).

Test Signal PGPB WN60 WN40 WN20

PESQ

Danish Male Speech 4.11 4.49 4.06 2.50
Eng. Female Speech 1 4.03 4.48 3.91 2.44
Eng. Female Speech 2 4.23 4.48 3.75 2.43
Eng. Male Speech 4.22 4.48 4.09 2.89
Japanese Male Speech 4.18 4.49 4.19 3.12

PEAQ

Music - Classic -0.33 -0.02 -0.95 -3.33
Music - Flute -0.89 -0.30 -2.44 -3.85
Music - Jazz -0.63 -0.04 -1.06 -3.52
Music - Symphony -0.68 0.00 -1.45 -3.52
Music - Trumpet -0.70 -0.79 -2.93 -3.84

to be 20 − 25 dB. Thus, shaping the probe noise in a perceptual relevant manner, it is
possible to inject an inaudible probe noise with higher signal power compared to using
white noise as probe noise.

4.2.4 Enhancement Filter Estimation

In our simulations, the time-varying enhancement filter a(n) is estimated based on the
error signal e1(n), according to Eq. (12). The estimated filter coefficients are then copied
to different blocks indicated by ai(n) in Figs. 1-4. The length of a(n) is chosen to be
La = 260, and D = 197 is used. Thereby, the requirement of D in Eq. (11) is fulfilled.

For simplicity, we used the same SAF approach, as in Sec. 4.2.2, to estimate the
nonzero part of the enhancement filter a(n) with a length-64 adaptive filter. The sub-
band NLMS step size µ = 2−8 is used for all subbands except for the lowest one, where
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the step size is set to 0.

4.3 Simulation Results and Discussions

Five simulation experiments are carried out. In the first experiment, we set hi(n) =

ĥi(n) = 0 in Fig. 1, this gives an ideal working situation for the hearing aid without
acoustic feedback. In the remaining four experiments, the loudspeaker signal is fed
back to the microphones through the acoustic feedback paths hi(n) as shown in Fig.
6, and AFC is carried out using the different approaches illustrated in Figs. 1-4. The
duration of the simulation is 150 s, and the transition of the feedback paths hi(n) from
the normal to the telephone situation takes place after 50 s. As mentioned, the step
sizes for estimation of hi(n) are adjusted so that the same steady-state error would be
obtained in all approaches.

4.3.1 Howling Suppression

First, we evaluate the abilities to suppress howling by examining the loudspeaker signals
from the different AFC approaches. In Fig. 8, the spectrograms are shown for a selected
time period and frequency region of the loudspeaker signals from all five simulations.
The selected time period includes the transition of the acoustic feedback paths hi(n)
after 50 s, and the selected frequency region 0 − 6 kHz includes the most significant dif-
ferences among the approaches. It is expected that the system would become unstable,
and howling occurs, shortly after the transition, until the AFC system again stabilizes
the system by adapting to the new acoustic feedback paths.

Comparing Fig. 8(b) to the reference loudspeaker signal in Fig. 8(a), it is seen that
using the T-AFC approach shown in Fig. 1, severe sound distortions are introduced in
the resulting loudspeaker signal. The distortion is present before the telephone-to-ear
transition at 50 s, and it is caused by biased estimation of hi(n), because the incoming
signals have very dominant spectral peaks, especially around 2.5 kHz, which leads to a
nonzero correlation between the loudspeaker signal and the incoming signal (despite the
hearing aid processing delay of 6 ms). Furthermore, howling occurs after the feedback
path transition at 50 s, reflected by the additional tonal components in the loudspeaker
signal after the transition.

Comparing the results from the T-PN approach shown in Fig. 8(c) to the reference
signal in Fig. 8(a), no severe sound distortions are observed before the feedback path
transition at 50 s. This is a significant improvement compared to the traditional AFC
approach shown in Fig. 8(b) and is achieved because the T-PN approach guarantees
unbiased estimation, and because the true feedback paths are stationary, such that
the slow convergence rate of T-PN approach is not revealed. However, the system
becomes unstable after the transition, as seen by the additional tonal component found
at approximately 2.5 kHz after 50 s in Fig. 8(c). The howling disappears over time,
although it can not be seen in Fig. 8(c). The long howling time is caused by the slow
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Fig. 8: The spectrograms of the loudspeaker signal in a hearing aid system. The window size is 512
samples with 50% overlap, and a Hanning window is applied. (a) The reference - without acoustic feed-
back and AFC. (b) The traditional AFC approach (T-AFC). (c) The traditional probe noise approach
(T-PN). (d) The proposed probe noise approach I (PN-I). (e) The proposed probe noise approach II
(PN-II).
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convergence rate of the T-PN approach due to the low probe noise to disturbing signal
ratio. This is an example where the T-PN approach faces significant difficulties in
practical applications.

Using the PN-I approach, the howling after the feedback path transition is not
completely eliminated, as seen in Fig. 8(d). However, it is canceled within 1 s by
the AFC system. This is significantly shorter than the case for the T-PN approach.
Otherwise, no noteworthy signal distortion is observed from this improved approach.

Finally, using the PN-II approach as shown in Fig. 8(e), the howling is almost avoided
after the feedback path transition; the howling is only barely observed after the feedback
path transition due to the further increased convergence rate in this approach.

4.3.2 Convergence over Frequencies

We evaluate further the different AFC approaches objectively by using a performance
measure, similar to the PTF expression in Eq. (17), defined as

ξ′(ω, n) =

∣
∣
∣
∣
∣

P∑

i=1

Gi(ω)H̃i(ω, n)

∣
∣
∣
∣
∣
. (37)

The magnitude of the open-loop transfer function is given by |Θ(ω, n)| = F (ω, n)ξ′(ω, n).
To ensure system stability, the forward path gain F (ω, n) for each frequency ω and time
index n can be limited to F (ω, n) < 1/ξ′(ω, n), so that |Θ(ω, n)| < 1. This gain limit can
be considered as an instantaneous gain margin, which provides the maximum possible
gain in the forward path f(n) before the system might become unstable; obviously, a
relatively large gain margin is desired.

In Fig. 9, we show ξ′(ω, n) at 2.5 kHz, where the incoming signals have the most
spectral energy and the enhancement filter has most of its effect around this specific
frequency. It is clear that ξ′(ω, n) has a high steady-state value when using the T-
AFC approach due to the bias problem. Using the T-PN approach, ξ′(ω, n) converges
over time, but only at a very slow speed. On the other hand, the convergence rate is
significantly increased, by a factor of approximately 6 in this example using the PN-I
approach; an additional improvement by a factor of more than 1.6 is obtained in the
PN-II approach. The curves in Fig. 9 are computed based on a single simulation run
and are therefore less smooth than the curves in Fig. 5, which are the average of 100
simulation runs.

5 Conclusion

In this work, we dealt with probe noise based acoustic feedback cancellation approaches
in a multiple-microphone and single-loudspeaker audio system. Traditional probe noise
approaches can be used to prevent the major problem of biased adaptive filter estimation
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Fig. 9: Evaluation of different AFC approaches using the convergence of ξ′(ω, n) at 2.5 kHz.

in acoustic feedback cancellation by basing the estimation of acoustic feedback paths
on a probe noise signal. However, the convergence rate is generally decreased since
the added probe noise must have low power in order to be inaudible. In this paper,
we presented and analyzed two probe noise based approaches. We showed that both
approaches are capable of increasing the convergence rate significantly without compro-
mising the desired steady-state error, by using a combination of an inaudible probe noise
signal with limited correlation time and the so-called probe noise enhancement filters de-
signed as long-term prediction error filters. This is verified by simulation experiments,
where the proposed probe noise approach I increases the convergence rate by a factor
of 6 compared to the traditional probe noise approach, and the proposed probe noise
approach II increases the convergence rate further by a factor of 1.6, whereas the tradi-
tional acoustic feedback cancellation approach without probe noise completely fails due
to the bias problem. Furthermore, we demonstrated through simulation experiments
that these proposed approaches are applicable to acoustic feedback cancellation in a
realistic hearing aid system.

We believe that the proposed probe noise approaches, which provide unbiased esti-
mation with much higher convergence rate than the traditional probe noise approaches,
bring us closer to a complete solution of the biased estimation problem in closed-loop
hearing aid systems. The idea behind these approaches could also be applicable in
other closed-loop applications such as public address systems and in open-loop acoustic
echo cancellation systems. These are considered as future work, which also include a
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comparison between the proposed approaches and existing AFC systems in terms of
cancellation performance and computational complexity.

A Constraint on Enhancement Filter to Ensure Un-
biased Estimation

In this appendix, we show that by using the constraint given in Eq. (11), an unbiased
estimation of hi(n) is guaranteed in the PN-I approach.

Recall that w(n) is uncorrelated with the incoming signals xi(n) and the original

loudspeaker signal u(n). Then, using Eqs. (24) and (19), the expected value of ĥi(n)
can be expressed by

E
[

ĥi(n)
]

=E
[

ĥi(n − 1) + µ(n)w(n − 1)
(
aT xi(n)

−aT U(n − 1)h̃i(n − 1) − aT W(n − 1)h̃i(n − 1)
)]

=E
[

ĥi(n − 1) − µ(n)w(n − 1)aT W(n − 1)h̃i(n − 1)
]

=E
[

ĥi(n − 1) − µ(n)w(n − 1)wT (n − 1)h̃i(n − 1)
]

− E
[
µ(n)w(n − 1)aT

0 W(n − 1)h̃i(n − 1)
]

. (38)

It is seen that the expectation term E[ĥi(n−1)−µ(n)w(n−1)wT (n−1)h̃i(n−1)] in Eq.
(38) follows a standard LMS algorithm and therefore provides an unbiased estimation of
hi(n). However, we need to consider the last term of E[µ(n)w(n−1)aT

0 W(n−1)h̃i(n−1)]
in Eq. (38), which occurs due to the introduction of the enhancement filter a, where the
desired filtered probe noise signal −w(n−1)h̃i(n−1) can be modified by a0 and thereby

may introduce a bias in E[ĥi(n)]. Introducing the vector whi
(n) = W(n)h̃i(n) =

[whi
(0, n), . . . , whi

(La − 1, n)]T , its element is given by

whi
(l, n) =

L−1∑

k=0

h̃i(k, n)w(n − l − k). (39)

The last term in Eq. (38) can now be written as

E
[
µ(n)w(n − 1)aT

0 W(n − 1)h̃i(n − 1)
]

=µ(n)E
[
w(n − 1)wT

hi
(n − 1)

]
a0. (40)

The expected value E[w(n − 1)wT
hi

(n − 1)] is further expressed by Eq. (41), where we
use the notation rw(k) = E[w(n)w(n − k)]. It follows that rw(k) = 0 ∀ |k| ≥ Lw

because w(n) is generated using an Lw − 1 order shaping filter hw(n). Thus, it can
be seen from Eq. (41) that all entries in the columns L + Lw − 1 through La of the
matrix E[w(n − 1)wT

hi
(n − 1)] are equal to zero because these entries only involve the
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E
[
w(n − 1)wT

hi
(n − 1)

]
=








∑L−1
k=0 h̃i(k, n − 1)rw(k) . . .

∑L−1
k=0 h̃i(k, n − 1)rw(k − 1) . . .

... . . .
∑L−1

k=0 h̃i(k, n − 1)rw(k − L + 1) . . .
∑L−1

k=0 h̃i(k, n − 1)rw(k + 1) . . .
∑L−1

k=0 h̃i(k, n − 1)rw(k + La − 1)
∑L−1

k=0 h̃i(k, n − 1)rw(k) . . .
∑L−1

k=0 h̃i(k, n − 1)rw(k + La − 2)
...

. . .
...

∑L−1
k=0 h̃i(k, n − 1)rw(k − L + 2) . . .

∑L−1
k=0 h̃i(k, n − 1)rw(k + La − L)








(41)

autocorrelation values rw(k) ∀ |k| ≥ Lw. It means that by imposing the constraint
introduced in Eq. (11), the vector E[µ(n)w(n − 1)aT

0 W(n − 1)h̃i(n − 1)] in Eqs. (40)
and (38) equals a null-vector. It is now seen that Eq. (38) follows a standard LMS
algorithm and thereby provides an unbiased estimation of hi(n) [3].

B Influence of Enhancement Filter on Probe Noise

Under the constraint of D ≥ L + Lw − 1 in Eq. (11), we show that E[w(n − 1)aT
0 W(n −

1)] = 0.
Define rw(k) = E[w(n)w(n − k)]. It follows that

E
[
w(n − 1)aT

0 W(n − 1)
]

=E
[
w(n − 1)w̄T (n − 1)

]
A0

=






rw(0) . . . rw(Lw − 1) . . . rw(L + La − 2)
... . . .

... . . .
...

rw(1 − L) . . . rw(Lw − L) . . . rw(La − 1)




A0

=0, (42)

where we defined w̄(n) and A0 in Sec. 3.2.1. Eq. (42) is valid because the first D − 1
samples of a0 = [a0(0), . . . , a0(La − 1)]T are zeros and rw(k) = 0 ∀ |k| ≥ Lw.
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On the Use of a Phase Modulation Method for
Decorrelation in Acoustic Feedback Cancellation

Meng Guo, Søren Holdt Jensen, Jesper Jensen, and Steven L. Grant

Abstract

A major problem in using an adaptive filter in acoustic feedback cancellation systems
is that the loudspeaker signal is correlated with the signals entering the microphones of
the audio system, leading to biased filter estimates. One possible solution for reducing
this problem is by means of decorrelation. In this work, we study a subband phase modu-
lation method, which was originally proposed for decorrelation in multichannel acoustic
echo cancellation systems. We determine if this method is effective for decorrelation in
acoustic feedback cancellation systems by comparing it to a structurally similar frequency
shifting decorrelation method. We show that the phase modulation method is suitable for
decorrelation in a hearing aid acoustic feedback cancellation system, although the fre-
quency shifting method is in general slightly more effective.

1 Introduction

Adaptive filters have been widely used in both acoustic echo cancellation (AEC) for
audio and communication systems and acoustic feedback cancellation (AFC) for sound
reinforcement systems. The goal of the adaptive filters in both cases is to model the
acoustic signal paths from loudspeakers to microphones of audio systems.

A major problem when using adaptive filters in stereo and/or multichannel AEC
systems is the so-called non-uniqueness problem due to the fact that the loudspeaker
signals are strongly correlated [1]. It can be shown that the adaptive filter estimates do
not converge correctly to the true acoustic echo paths. In AFC systems, on the other
hand, the main problem in using adaptive filters is the biased adaptive filter estimation
of the acoustic feedback paths [2], which is caused by the nonzero correlation between
the loudspeaker signals and the signals entering the microphones.

In both cases, the biased filter estimation is due to undesired and unavoidable signal
correlations in audio systems, although the causes of these signal correlations are dif-
ferent. Many decorrelation methods have been proposed for both stereo AEC and AFC
systems in the past. A simple method is to introduce nonlinear distortions to loud-
speaker signals as firstly proposed for stereo AEC systems [3] and later studied for AFC

E.3
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Fig. 1: A general AFC system with a decorrelation function.

systems [4]. Another widely used decorrelation method for both stereo AEC and AFC
systems is performed by adding uncorrelated noise to the loudspeaker signals; the added
noise is preferably generated such that it is inaudible in the presence of the loudspeaker
signals, see e.g. [5–7]. Some other proposed decorrelation methods include introducing
time-variable delays on the loudspeaker signals [8], using variable all-pass filtering on
the loudspeaker signals to introduce phase shifts [9], applying decorrelation prefilters to
the signals used for the adaptive filter estimation [10], and using frequency shifting of
the loudspeaker signals [11]. Generally, all these methods might introduce sound quality
degradations. Thus, an important compromise in using these methods is sound quality
versus decorrelation ability and thereby cancellation performance improvement.

In this work, we study decorrelation methods in an AFC system as shown in Fig.
1, where the AFC is carried out by adaptive filters ĥi(n), where n is the time index,

i = 1, ..., P , and P is the number of microphones. The goal of ĥi(n) is to cancel the
effects of the true acoustic feedback paths hi(n). Furthermore, beamformer filters gi

are performing a spatial filtering on the feedback compensated signals ei(n). The block
“Decorr.” denotes the applied decorrelation function, and the decorrelated signal ēd(n)
is modified by the forward path f(n) to form the loudspeaker signal u(n).

More specifically, we study a perceptually motivated decorrelation method by means
of subband phase modulation for AFC systems. This phase modulation method was
originally introduced for stereo and multichannel AEC systems in [12], where it provided
a good cancellation performance without significant sound quality degradation. Here
we will determine if this phase modulation method is useful for AFC systems, since not
every decorrelation method suitable for AEC would necessarily be appropriate for AFC
systems [4].

This phase modulation method is in structure very similar to a frequency shifting
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Fig. 2: Decorrelation with subband phase modifications.

decorrelation method [4] carried out in a subband implementation. Thus, we find it
obvious to compare both methods. Since the frequency shifting has already been evalu-
ated among other decorrelation methods for AFC systems [4], this comparison will also
reveal the effectiveness of the phase modulation method. In particular, we determine
analytically the differences between these two methods, before we evaluate AFC perfor-
mance by simulations, given that sound quality distortions are at same levels for both
methods.

2 Analysis of Decorrelation Methods

In this section, we provide details on the subband phase modulation and frequency
shifting decorrelation methods. Furthermore, we discuss the differences between them.

Both decorrelation methods are carried out in filter bank subbands, as shown in
Fig. 2. An over-sampled analysis filter bank with a decimation factor D divides the
input signal w(n) into M subbands with subband index m = 0, 1, . . . , M − 1. A com-
plex exponential function ejϕ(k,m) is then multiplied on each filter bank subband signal
w(k, m) to create z(k, m) = w(k, m)ejϕ(k,m), where k = 0, 1, 2, . . . is the subband time
index with the corresponding fullband time index n = 0, D, 2D, . . .. A synthesis filter
bank recombines the processed subband signals z(k, m) to a fullband signal z(n). The
difference between these two decorrelation methods is the choice of complex exponential
functions ejϕ(k,m).

The subband structure allows the use of different phase functions ϕ(k, m) over sub-
bands, and ϕ(k, m) can be chosen based on human auditory perception to minimize
sound quality degradation. In the phase modulation method proposed in [12], a smooth
phase function ϕp(t, m) to provide decorrelation with minor sound distortions was sug-
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gested as

ϕp(t, m) = α(m) sin (2πfmt) , (1)

where t denotes continuous time, α(m) is the phase amplitude for the mth subband, and
fm is the modulation frequency. In [12], the optimal values of α(m) and fm were found
by a listening procedure, so that effects of ϕp(t, m) would be perceptually insignificant.
In particular, a modulation frequency fm = 0.75 Hz was suggested, whereas the phase
amplitudes α(m) varied from 10 degrees at low frequencies to 90 degrees above 2.5
kHz. Furthermore, complex conjugated phase functions ϕp(t, m) were applied on both
microphone channels in a stereo system.

Eq. (1) can also be expressed in the subband time index k using t = k
fs/D , where fs

is the fullband sampling rate, as

ϕp(k, m) = α(m) sin

(

2πfmk
D

fs

)

. (2)

On the other hand, the frequency shifting method is carried out using the complex
exponential function ejϕf (k,m) in filter bank subbands, and the phase function ϕf (k, m)
is given by

ϕf (k, m) = 2πf0(m)k
D

fs
, (3)

where f0(m) denotes the amount of frequency shifting in subband m. Thus, for f0(m) >
0, ϕf (k, m) increases linearly with increasing k. Furthermore, using the modulus oper-
ator mod(), the wrapped version of ϕf (k, m) > 0 is expressed by

ϕ′
f (k, m) = mod

(

2πf0(m)k
D

fs
, 2π

)

− c, (4)

where c = 0 if mod(2πf0(m)k D
fs

, 2π) ≤ π, and c = 2π, otherwise.

Fig. 3 shows the phase functions ϕp(k, m) and ϕ′
f (k, m) given by Eqs. (2) and (4) for

the phase modulation and frequency shifting methods, respectively. The time is com-
puted as t = k

fs/D . There are some obvious similarities, both functions are periodic with

a certain frequency and amplitude. In the phase modulation case, the frequency and
amplitude of ϕp(k, m) are determined by fm and α(m), respectively. In the frequency
shifting case, the frequency of ϕ′

f (k, m) is determined by f0(m), whereas the maximum
and minimum amplitude values are always ±π.

An important difference between these phase functions is that ϕ′
f (k, m) is an in-

creasing function in its unwrapped form ϕf (k, m) given by Eq. (3), whereas ϕp(k, m)
is identical to its wrapped function and it is always periodic. Since a frequency shift is
introduced proportionally to the temporal derivative of the phase function ϕ(k, m), a
constant frequency shift is obtained by using the phase function ϕf (k, m), whereas with
ϕp(k, m) the amount of frequency shift is time-varying with an average of zero.
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Fig. 3: Phase functions ϕp(k, m) and ϕ′

f (k, m) with different parameter values. (a) α(m) = π
2

,
fm = 1 Hz, and f0(m) = 1 Hz. (b) α(m) = π, fm = 4 Hz, and f0(m) = 2 Hz.

3 Sound Quality Considerations

In this section, we choose parameters f0(m), α(m) and fm for both decorrelation meth-
ods, so that they only introduce insignificant and somewhat equal sound quality degra-
dations.

In many applications, a fullband frequency shifting factor f0 is commonly chosen as
0 < f0 ≤ 10 Hz to avoid significant sound quality distortions, as e.g. suggested in [4].
In this work, we let f0 be subband dependent as f0(m), and we only perform frequency
shifting at higher frequencies to further preserve sound quality, especially for speech
signals. We use filter banks with M = 64 complex conjugated subbands with a fullband
sampling rate of fs = 20 kHz and a decimation factor D = 8. Table 1 shows the chosen
shifting factors f0(m) for subbands m = 0, . . . , 31.

The phase function ϕp(k, m) for the phase modulation method has two parameters,
α(m) and fm. In this work, we use the phase amplitude values α(m) as given in Table 2.
We chose these amplitude values to match the introduced phase amplitude differences
between microphone channels in [12]. Furthermore, as demonstrated in Fig. 3, the
phase modulation frequency fm determines the frequency of the periodic phase function
ϕp(k, m) as the shifting frequency f0(m) does for ϕ′

f (k, m). From this relation, we
choose fm = 10 Hz in an attempt to obtain similar sound qualities in both methods.

We now perform objective sound quality measurements to verify our parameter
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Table 1: The frequency shifting factor f0(m) for subbands m = 0, . . . , 31. The subband bandwidth is
312.5 Hz.

Subband m 0 1 2 3 ≥ 4

f0(m) [Hz] 0 0 0 0 10

Table 2: The phase amplitude α(m) for subbands m = 0, . . . , 31. The subband bandwidth is 312.5
Hz.

Subband m 0 − 3 4 5 6 ≥ 7

α(m) [Degrees] 20 40 70 90 180

Table 3: The output scores from PESQ and PEAQ models.

PESQ PEAQ Sound Quality/Description

4.5 0 Excellent/Imperceptible

4 -1 Good/Perceptible but not annoying

3 -2 Fair/Slightly annoying

2 -3 Poor/Annoying

1 -4 Bad/Very annoying

choices, by using the Matlab implementations [13, 14] of perceptual evaluation of
speech quality (PESQ) and perceptual evaluation of audio quality (PEAQ) models, de-
scribed in [15] and [16], respectively. Table 3 provides descriptions of the output scores
from both models.

Although both models were originally developed to assess relatively mild coding arti-
facts, we use them to evaluate the relatively small degradations from both decorrelation
methods. We compare several test signals w(n) with their processed versions z(n) ob-
tained as shown in Fig. 2 using both decorrelation methods. Table 4 shows the mean,
standard deviation, and median values of the determined sound quality scores based on
a total of 18 speech and music test signals.

The quality scores in Table 4 show that similar sound quality degradations can
be expected from both decorrelation methods, with the chosen parameters of f0(m),
α(m) and fm. Furthermore, the sound quality degradations are limited in both cases,
especially for speech signals. From the determined PESQ scores we can classify the
degradation as only slightly perceptual but not annoying. This is because none or only
minor modifications are carried out in frequency regions below approximately 1.5 kHz.
For music signals, however, the sound quality degradations are more severe since they
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Table 4: The mean, standard deviation, and median values of the PESQ and PEAQ scores based on
9 speech signals and 9 music signals processed by the frequency shifting (FS) and phase modulation
(PM) decorrelation methods.

Statistics
PESQ PEAQ

FS PM FS PM
Mean 4.26 4.30 -1.29 -1.34
Stdv. 0.04 0.11 0.69 0.59

Median 4.27 4.29 -1.00 -1.05

generally have more high frequency contents. Nevertheless, the introduced degradations
can still be roughly characterized as perceptible but not annoying. Furthermore, the re-
sult from the objective sound quality evaluation was also confirmed by a few experienced
listeners.

4 Simulation Experiments

In this section, we perform simulations to evaluate both decorrelation methods in a
hearing aid AFC system as shown in Fig. 1 with two microphones (P = 2). We deter-
mine how effective the phase modulation method is compared to the frequency shifting
method, when both methods have sound quality degradations at similar levels as deter-
mined in Sec. 3.

The true acoustic feedback paths hi(n) remain time invariant in simulations, i.e.
hi(n) = hi, and they are obtained by measurements from a behind-the-ear hearing
aid with two microphones. Fig. 4 shows the impulse responses hi for both microphone
channels, where the sampling rate is 20 kHz. From Fig. 4 we observe that the effective
length, which covers the nonzero values of hi, is approximately 50 taps.

The feedback path estimates ĥi(n) are obtained using a delayless subband adaptive
filter approach [17, 18] with 32 subbands and a decimation factor of 16, where the

corresponding fullband adaptive filters ĥi(n) have 64 taps, and the subband NLMS
algorithm utilizes a step size of µ = 2−11 for subbands above approximately 1.25 kHz,
and µ = 0 for low frequency subbands. This is motivated by the fact that AFC is usually
not necessary for the lowest frequencies in a hearing aid application. Furthermore, the
regularization parameter δ = 2−14 is used in the subband NLMS algorithm.

We evaluate the AFC performance using the coefficient misalignment criterion ǫ(n)
defined as

ǫ(n) =

∑P
i=1 ‖hi − ĥi(n)‖2

∑P
i=1 ‖hi‖2

. (5)

In simulations, the incoming signal x1(n) is either a speech or music signal, and we
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Fig. 4: Measured acoustic feedback paths from a behind-the-ear hearing aid with a sampling rate of
fs = 20 kHz.
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Fig. 5: A representative example simulation result showing the misalignments ǫ(n) for three different
AFC systems.

simply use a delay of one sample between x2(n) and x1(n) to model the distance between
the microphones. This delay corresponds to a microphone distance of approximately 17
mm, assuming the microphones are aligned in front/rear positions in a horizontal plane,
and the sound signal is coming from the front direction.

We use a simple beamformer setup as g1 = g2 = 1
2 , whereas the forward path f(n)

consists of a delay of 120 samples, corresponding to a hearing aid processing delay of
6 ms. Furthermore, f(n) consists of a single-channel fullband compressor to provide a
maximum amplification of 29.3 dB, and the most critical closed-loop magnitude value
without ĥi(n) becomes −1 dB at approximately 2.5 kHz.

We compare simulation results in terms of ǫ(n) between a reference AFC system
without applying any decorrelation method and two AFC systems using each decorre-
lation method. We performed many simulation trials with different speech and music
signals as the incoming signals xi(n). Fig. 5 shows a representative example result for
a music signal. We observe that a smaller misalignment ǫ(n) is already obtained after
about 1 s, by using either decorrelation method compared to the system without decor-
relation, and the improvement is more than 6 dB in the frequency shifting case at the
end of the simulation.

Table 5 shows statistics of the steady-state misalignments from all simulations. For
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Table 5: Simple statistics for steady-state misalignments [dB] in AFC systems without decorrelation
(None), with phase modulation (PM) and frequency shifting (FS), respectively.

Stat.
Speech Music

None PM FS None PM FS
Mean -14.6 -16.0 -16.0 -7.6 -13.6 -14.8
Stdv. 1.4 0.5 0.9 3.6 2.4 2.7

Median -14.3 -16.0 -16.2 -9.2 -14.5 -16.2

speech signals, the steady-state misalignments ǫ(n) are close (within 1.4 dB) between all
three systems. In fact, ǫ(n) generally followed each other closely over time (not shown).
Hence, there is only small improvements by using either decorrelation method in this
case. This is because speech signals in general only cause a limited correlation problem
for the estimation of ĥi(n) at the higher frequencies above approximately 1.5 kHz, so a
decorrelation in this region can not improve AFC performance much further.

On the other hand, the correlation problem is generally more severe for most music
signals in the frequency region above 1.5 kHz, and we can expect a more significant AFC
improvement when using decorrelation. This is confirmed by our simulations. In Table
5, we observe the average steady-state misalignment improvements for music signals are
6 dB and 7.2 dB in the phase modulation and frequency shifting cases, respectively. In
some simulations, these improvements were found to be more than 12 dB. Furthermore,
Table 5 also reveals that similar AFC performance to speech signals can be achieved for
music signals when using decorrelation.

We should emphasize that the AFC performance improvements achieved from both
decorrelation methods depend on the compromise made in sound quality. Thus, we
conclude based on the chosen parameter values and sound quality evaluations done
in Sec. 3, that the phase modulation decorrelation method is effective in improving
hearing aid AFC performance, especially for music signals. However, the structurally
very similar frequency shifting decorrelation method is generally slightly better for doing
so.

5 Conclusion

In this work, we studied a subband phase modulation decorrelation method originally
proposed for stereo and multichannel AEC systems. We compared it to a similar fre-
quency shifting decorrelation method in an AFC system. We determined analytically
the differences between these two decorrelation methods. Furthermore, we showed that
by choosing appropriate parameter values in the phase modulation method, it is capable
of improving the AFC performance without introducing significant sound quality degra-
dations. However, by controlling sound quality degradations at similar and insignificant
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levels in both methods, the frequency shifting decorrelation method gives slightly bet-
ter overall AFC performance, which probably makes it the preferred method, especially
when taking its simplicity into account.
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Evaluation of State-of-the-Art Acoustic Feedback
Cancellation Systems for Hearing Aids

Meng Guo, Søren Holdt Jensen, and Jesper Jensen

Abstract

In this work, we evaluate four state-of-the-art acoustic feedback cancellation systems
for hearing aid applications. We show that significant improvements in cancellation
performance can be made over traditional systems by allowing small alterations in the
loudspeaker signal, and a computational complexity increase by a factor of 2 − 3. The
evaluation is based on a listening test and objective assessments of simulation results.

1 Introduction

Acoustic feedback occurs when the output signal of an audio device returns to its micro-
phone and thereby forms an acoustic feedback loop. The typical consequences of acoustic
feedback are sound quality degradation and, in the worst-case, howling. Acoustic feed-
back occurs typically in a sound reinforcement system such as public address systems
and hearing aids; especially, it is very likely to occur in a hearing aid, due to the closely
placed microphones and loudspeaker, typically only a few millimeters to a few centime-
ters apart depending on the hearing aid style. In this work, we focus on hearing aid
systems.

Acoustic feedback cancellation (AFC) using adaptive filter techniques in a system
identification configuration [1] has become the state-of-the-art method for reducing the
effect of acoustic feedback [2]. Fig. 1 illustrates a simple hearing aid system with an AFC

system, where an adaptive filter ĥ(n) models and cancels the acoustic feedback path
h(n) from the hearing aid loudspeaker to the microphone. The hearing aid processing is
represented by the generally time-varying forward path impulse response f(n), and the
microphone signal y(n) consists of the desired incoming signal x(n) and the undesired
but unavoidable feedback signal v(n), whereas the loudspeaker signal is denoted by u(n).

In a traditional fullband (FB) AFC system [2], the cancellation is carried out by

updating the adaptive filter ĥ(n) using e.g. normalized least mean square (NLMS),
affine projection (AP), or recursive least squares (RLS) algorithms [1]. One of the
challenges in using this traditional AFC system is that whenever the correlation time
of the incoming signal x(n) is longer than the system latency (from the microphones to

F.3
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Hearing aid

f(n) ĥ(n) h(n)

+

v(n)

x(n)

v̂(n)
–

y(n)e(n)

u(n)

Fig. 1: A simple single microphone hearing aid system. All signals are denoted as discrete-time signals
for notational convenience.

the loudspeaker) of the hearing aid, the signals x(n) and u(n) become correlated, and

the adaptive filter estimate ĥ(n) is biased [3, 4].
There are different techniques to compensate for this biased estimation problem. The

adaptive filter update can be carried out in a non-continuous and open-loop manner as
suggested in [5, 6]. The indirect approaches [7, 8] utilize a probe noise (PN) signal to

obtain an estimate û(n) of u(n), where an unbiased estimation of ĥ(n) based on û(n) is
possible since û(n) is uncorrelated with x(n). The prediction error method (PEM) [9, 10]
utilizes a prefilter to whiten the component of the incoming signal x(n) entering the
adaptive filter estimation and thereby decorrelate it from u(n). The frequency shifting
(FS) technique [11, 12] shifts the spectral contents of the microphone signal y(n) to
create the loudspeaker signal u(n); ideally, it decorrelates x(n) and u(n) and thereby

facilitates unbiased estimation of ĥ(n). Furthermore, unbiased estimation of ĥ(n) can
be achieved by basing the adaptive filter estimation on a probe noise signal added to
the loudspeaker signal u(n), see e.g. [2] and the recently proposed probe noise approach
in [13].

Ideally, all the above mentioned techniques eliminate the biased estimation problem.
However, to reach this goal, they either rely on certain signal models of incoming sig-
nals x(n) which are not always valid in practice (e.g. the PEM based techniques), or
they introduce modifications to the loudspeaker signal u(n) to decorrelate it from x(n),
which might cause sound quality degradations (e.g. the frequency shifting and probe
noise based approaches). However, allowing a minor sound quality degradation from
the decorrelation process can very often improve AFC performance greatly, and it is
thereby possible to obtain a much better overall sound quality in u(n). Furthermore,
for practical applications such as hearing aids, another important issue is the compu-
tational complexity. Hence, the trade-off in practice is often between getting a better
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AFC performance by obtaining an unbiased estimation of ĥ(n), the degree of introduced
sound quality degradations for obtaining this unbiased estimation, and computational
complexity.

Some recent studies have compared the performance of different AFC systems. A
comparison of different sound reinforcement AFC systems was presented in [14], where
the cancellation performance and sound quality degradation are both evaluated objec-
tively. In [15], a comparison based on physical measurements of different commercial
hearing aids is reported; in this study, however, it is not clear which AFC system is
used in each individual commercial hearing aid, and these AFC systems might not be
state-of-the-art. Hence, no reported work exists for comparing different state-of-the-art
AFC algorithms/systems for hearing aids, in terms of AFC performance, sound qual-
ity degradation, and computational complexity. Moreover, the recent introduction of a
novel probe noise based AFC system [13] makes such a comparison even more appealing.

Therefore, in this work, we compare four different state-of-the-art AFC systems to a
traditional fullband AFC system in terms of their abilities to cancel acoustic feedback,
the sound quality degradations they might introduce to decorrelate the loudspeaker
signal from the incoming signal, and their computational complexity. This comparison
is performed using simulation experiments with realistic hearing aid setups and objective
performance measures. To ensure a high sound quality in u(n), the distortions (if any)
introduced in u(n) for decorrelation must be controlled; this is carried out by choosing
appropriate parameters in different systems, and we evaluate the sound quality using
both objective quality measures and a subjective listening test.

The rest of this paper is organized as follows. In Sec. 2, we provide an overview of
all considered AFC systems. In Sec. 3, we evaluate the sound quality for two systems
which introduce additional sound degradations for decorrelation. In Sec. 4, we perform
simulation experiments, using audio signals, to compare cancellation performance for
all systems. Sec. 5 outlines the computational complexity of the systems. Finally, we
conclude this work in Sec. 6.

2 Overview of Different AFC Systems

In this work, we consider two different structures for adaptive filter estimation: A full-
band NLMS algorithm and a subband (SB) NLMS algorithm. Other adaptive algorithms

such as AP and RLS can be used for the adaptive estimation of ĥ(n), but the NLMS
algorithm is often chosen in hearing aid applications for its simplicity. A subband sys-
tem is more complex in structure than the fullband system, but it has more freedom in
its configuration since one step size parameter per subband is available for the adaptive
algorithm compared to a single step size parameter for all frequencies in the fullband
system. In addition, due to the subband processing, the subband spectrum is generally
flatter than the fullband spectrum, and an increased convergence rate of the adaptive
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Table 1: The combinations of adaptive filter structures and decorrelation methods. In this work, we
focus on five selected systems.

No Decor. PEM FS PN

Fullband ! ! – –

Subband ! – ! !

Table 2: Abbreviations and descriptions for AFC systems.

Sys. Abbreviation Description
I F-AFC FB AFC system
II PEM-AFC FB PEM-based AFC system
III S-AFC SB AFC system
IV FS-AFC SB FS-based AFC system
V PN-AFC SB PN-based AFC system

estimation is thereby possible [16]. Furthermore, in contrast to the fullband system, a
subband system is often less sensitive to the biased estimation problem, which would
only affect a few subbands in the frequency regions with strong signal correlations be-
tween u(n) and x(n), while a correct estimation would still be possible in the remaining
frequency regions.

Each adaptive filter structure can be further combined with different decorrelation
methods to form a complete AFC system. We focus on the prediction error method be-
cause it has been shown to have superior performance compared to many other decorre-
lation methods [14], and it does not introduce sound degradations in u(n). Furthermore,
we focus on the frequency shifting decorrelation method for its performance [14] and
simplicity [17]. Finally, we consider the recently proposed probe noise approach in
combination with probe noise enhancement [13].

Clearly, there are many AFC systems, if all possible combinations of adaptive filter
structures and decorrelation methods were considered. To limit our study to a practical
size, we focus on the AFC systems outlined in Table 1. We choose the traditional full-
band AFC system without any decorrelation as a reference; the fullband PEM is chosen
as a basic version of various PEM systems; the subband system without decorrelation is
chosen for a direct adaptive filter structure comparison to the reference fullband AFC
system; we choose the subband system with frequency shifting to evaluate a simple al-
ternative to the subband system with probe noise for decorrelation as described in [13].
We evaluate these five systems in a hearing aid application with realistic parameter
settings.

In the following, we describe each of the five AFC systems. Table 2 provides descrip-
tions and abbreviations for the five systems. Fig. 2 shows a compact block diagram for
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Fig. 2: An overview of the AFC systems I-V. For simplicity, we only consider a hearing aid system with
a single microphone. For each system I-V, the blocks A-D in the block diagram should be accordingly
substituted by their replacement blocks given in the dashed boxes A-D.

all five AFC systems. For each system I-V, the blocks A-D in the block diagram should
be accordingly substituted by their replacement blocks given in the dashed boxes A-D.

2.1 System I: F-AFC System

In the F-AFC system [2], the adaptive filter ĥ(n) is estimated to minimize the mean

square error E[e2(n)]. An NLMS algorithm is used to estimate ĥ(n). As we will demon-
strate in Sec. 4, one of the major limitations in this system is the biased estimation of
ĥ(n) whenever u(n) is correlated with x(n).

2.2 System II: PEM-AFC System

The PEM-AFC systems [9, 10] assume that the incoming signal x(n) can be modeled well

as a white noise sequence filtered through an autoregressive model 1/
∑Lp−1

k=0 pk(n)z−k,
where z−1 is the unit delay operator. Let p(n) = [p0(n), p1(n), . . . , pLp−1(n)]T , the
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prefilter p̂(n) = [p̂0(n), p̂1(n), . . . , p̂Lp−1(n)]T and cancellation filter ĥ(n) are then jointly

estimated to minimize the mean square error E[e2
p(n)], where ep(n) =

∑Lp−1
k=0 p̂k(n)e(n−

k) is the filtered signal of e(n).
For an ideal estimation, p̂(n) = p(n), the filtered error signal ep(n) only contains the

filtered signal vp(n) of v(n) and samples of the white noise excitation sequence, which
are uncorrelated with the loudspeaker signal u(n) and the filtered signal up(n) of u(n),

respectively. In this way, the PEM-AFC ideally provides an unbiased estimation of ĥ(n)
for autoregressive incoming signals x(n).

In different versions of the PEM-AFC system, x(n) is modeled in different ways, and

various schemes to estimate p̂(n) and ĥ(n) have been proposed. For more details on
the PEM-AFC system, we refer to [4, 9, 10].

2.3 System III: S-AFC System

The S-AFC system facilitates adaptive filter estimation in filter bank subbands. We
employ the delayless subband structure proposed in [18] and refined in [19]. The greatest
advantage by using this structure in contrast to other subband adaptive filter structures
e.g. [20] is that no additional delay is introduced in the signal path from y(n) to u(n).
In particular, uniform filter banks are used to divide the fullband error signal e(n)
and loudspeaker signal u(n) to subband signals E(m, k) and U(m, k) with the subband
frequency index m and time index k, respectively. The adaptive filter estimation of
the frequency response H(m, k) is then performed in the subband domain using e.g. a
low-order NLMS algorithm based on E(m, k) and U(m, k). The fullband adaptive filter

estimate ĥ(n) is obtained by the inverse discrete Fourier transform of the frequency
response estimate Ĥ(m, k).

The subband structure also makes it easy to use different parameter settings across
frequency regions, e.g. the subband step size parameter. For hearing aid applications,
AFC systems are often only necessary for frequencies higher than above approximately
1 kHz [9]. On the other hand, the signal correlation between u(n) and x(n) is often
most dominant at low frequency regions, e.g. for speech signals. Therefore, having AFC
systems running in the lowest frequencies might introduce artifacts due to the biased
estimation problem rather than solving a small acoustic feedback problem. In this
subband structure, AFC systems at lower frequencies can easily be turned off by setting
the corresponding subband step sizes to zero.

2.4 System IV: FS-AFC System

The FS-AFC system utilizes the same subband AFC system as the S-AFC system. In
addition, a frequency shifting [17] is applied before the hearing aid processing unit f(n).
It is known that frequency shifting decorrelates the loudspeaker signal u(n) from the
incoming signal x(n) and can thereby reduce the biased estimation problem [11, 12, 14].
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2.5 System V: PN-AFC System

The PN-AFC system also makes use of the subband AFC system, and it is described in
detail in [13]. Instead of modifying the loudspeaker signal u(n) via frequency shifting,

this system obtains an unbiased estimation of adaptive filter ĥ(n) by adding a generally
non-stationary probe noise signal w(n), which is uncorrelated with x(n), to the loud-
speaker signal u(n). The probe noise signal w(n) is generated using a masking model
to ensure that w(n) is inaudible in the presence of the loudspeaker signal u(n).

Furthermore, enhancement filters â(n) are used for filtering the probe noise signal
w(n) and the error signal e(n) before they entry the adaptive estimation algorithm. The
enhancement filters have a specific structure which allows them to improve the probe
noise to disturbing signal power ratio and then improve the estimation of ĥ(n). We
refer to [13] for more details.

3 Sound Quality Evaluation of Decorrelation Meth-

ods

Among the five AFC systems, the FS-AFC and PN-AFC systems might introduce addi-
tional audible artifacts because they modify the loudspeaker signal u(n) to decorrelate
it from x(n). More specifically, for the FS-AFC system, the loudspeaker signal u(n) is
frequency shifted, whereas the PN-AFC system adds a probe noise signal w(n) to the
loudspeaker signal u(n). These modifications of the loudspeaker signal u(n) might be
perceived as a sound quality degradation. Depending on the exact system parameter
settings, frequency shifting might introduce a vibrato-like sound degradation for both
speech and music signals, whereas probe noise might add an audible hiss to the orig-
inal signal. Therefore, it is important to understand how these modifications of the
loudspeaker signal u(n) affect the sound quality. Ideally, only minor and nonirritating
audible artifacts should be allowed to preserve sound quality. Furthermore, the degra-
dations should ideally be at similar levels for making the AFC performance comparison
in Sec. 4 more straightforward. To achieve these, we perform a sound quality evaluation.

3.1 Evaluation Method

We carry out a listening test to evaluate the sound quality degradation due to the
decorrelation in terms of frequency shifting and probe noise injection in the FS-AFC
and PN-AFC systems, respectively. We initially adjust system parameters in both
decorrelation methods so that they are effective for decorrelation, and the sound quality
degradations are in the range of intermediate to small (verified by informal listening
tests). Moreover, we want to evaluate the sound quality for both speech and music
signals. To achieve this, we use the “MUlti Stimulus test with Hidden Reference and
Anchor (MUSHRA)” specified in [21] with one reference signal, five test signals including



F.10 PAPER F.

Table 3: Sound signals used for the MUSHRA.

Speech 1 Danish Female Reading
Speech 2 English Male Reading
Music 1 Piano + Female Singing
Music 2 Female Singing
Music 3 Singing Female Voice

a hidden reference, a hidden anchor, two test signals processed with frequency shifting
variants, and one test signal processed with probe noise injection.

Furthermore, we choose to evaluate the sound quality using normal hearing test
subjects. The underlying hypothesis is that if the sound quality degradation is not
significant nor annoying for normal hearing persons, then it is also not annoying for
hearing impairment persons, and it would work for all hearing aid users in contrast to
obtaining an acceptance level of artifacts based on a specific group of test subjects with
hearing impairments.

3.2 Processing of Test Signals

We focus on the artifacts of the frequency shifting and probe noise injection, without
any interaction with AFC systems; it makes the interpretation of this sound quality eval-
uation results more straightforward. Moving back to Fig. 2, it corresponds to removing
the feedback path h(n) and its estimate ĥ(n), i.e. h(n) = 0 and ĥ(n) = 0.

The reference signal in the MUSHRA is created by passing an unprocessed high
quality sound signal through the hearing aid processing with only an amplification and
delay. Test signals are created by passing the same high quality sound signal through
the hearing aid processing with the same amplification and delay, and an additional
frequency shifting or probe noise injection; in this way, the hearing aid loudspeaker
signals u(n) are presented to test subjects in this listening test1. The anchor signal is
created in a similar way as the test signals, but with both frequency shifting and probe
noise injection. Table 3 shows the five sound signals chosen for the MUSHRA. Details
on the processing conditions are given in Table 4.

1We considered to present instead a mixture of the loudspeaker signal u(n) and the incoming signal
x(n) because this would be closer to reality for some hearing aid styles [22]. However, with the mixed
signal, an undesired comb filter effect is probable to occur [22]. The comb filter effect makes the listening
test more complicated, since test subjects have to assess and judge one type artifact (comb filter effect)
found in the reference signal from other types of artifacts (comb filter effect + frequency shifting or
probe noise) found in the test signals. A potential risk of doing such a test is that test subjects would
non-deliberately pay more attention to the comb filter effect instead of artifacts from frequency shifting
and probe noise. Therefore, to avoid this, we decided to present the loudspeaker signals u(n) in the
MUSHRA.
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Table 4: Processing of test signals for each test sound. All test signals are processed with identical
amplification and delay.

Test Signal Description
Reference Amplification + Delay.
FS-500 Amplification + Delay + Frequency shifting of 10 Hz above 500 Hz.
FS-1000 Amplification + Delay + Frequency shifting of 10 Hz above 1000 Hz.
PN-500 Amplification + Delay + Probe noise above 500 Hz with noise level

computed based on a spectral masking threshold M(m, k) for the
mth frequency at time index k, see [13] for more details.

Anchor Amplification + Delay + Frequency shifting of 25 Hz above 500 Hz
and probe noise injection above 500 Hz with noise level 2 · M(m, k).

Speech 1 Speech 2 Music 1 Music 2 Music 3
1 (Bad)

2 (Poor)

3 (Fair)

4 (Good)

5 (Excellent)
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FS−500 FS−1000 PN−500

Fig. 3: Initial verifications of test signals for the MUSHRA, using respectively PESQ/PEAQ scores
for speech/music signals.

To ensure that the chosen parameters for frequency shifting and probe noise in-
jection given in Table 4 do not introduce significant sound quality degradations, we
initially verified these parameter choices via informal listening test and using the objec-
tive evaluation measures PESQ [23] and PEAQ [24] for respectively speech and music
signals (although these objective evaluation measures were not specifically designed for
evaluating the artifacts of either frequency shifting nor probe noise). Fig. 3 shows the
PESQ/PEAQ prediction results.

The PESQ/PEAQ predictions were in line with the observations made via the ini-
tial informal listening, and they indicate that the parameter choices actually provide
nonsignificant sound quality degradations, and the minor sound quality degradations
from both methods are at a similar level, which makes the AFC performance evaluation
results in Sec. 4 more directly comparable.
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3.3 Training and Test Procedure

In subjective tests including the MUSHRA, training of test subjects is important to
obtaining reliable results. Preliminary tests and experiences gathered through the de-
velopment of the FS-AFC system show that the training for this listening test is difficult.

Specifically, we noticed that the training period in the frequency shifting case might
be as long as days or weeks of listening, before the artifacts become clearly noticeable
for even experienced test subjects. However, once these artifacts become noticeable,
they appear to be very annoying for some test subjects. On the other hand, we did not
notice that test subjects became more annoyed with probe noise injection over time.

For practical reasons in this work, we were not able to conduct a preparation over
weeks for a large group of test subjects. Therefore, we decided to have two training
sessions prior to the actual test session, where the artifacts of frequency shifting and
probe noise are exaggerated in the first training session in the hope that this would
shorten the training period. The three test signals are processed by frequency shifting
of 20 Hz and probe noise threshold 1.5 · M(m, k) in contrast to the nominal 10 Hz and
M(m, k) as given in Table 4, which are used for the second training session and the test
session. In this way, the test consists of three sessions: two training sessions and a test
session.

3.4 Listening Test

The listening test is conducted during a period of three days in a quiet room, and a
total of 16 normal-hearing test subjects participated in the test. The test signals are
presented diotically via a headphone (Sennheiser EH2270) connected to a computer,
which runs the MUSHRA interface, and the sound level is adjusted individually by the
subjects. The rating of each test signal is recorded by the computer.

We instructed test subjects to find the hidden reference and anchor for each test
trial, and rate them with the quality scores 100 and 0, respectively. The remaining test
signals should be rated with respect to the reference and anchor. We did not inform
test subjects which kind of artifacts nor the processing algorithms they were listening
to. For most subjects, the entire listening test took about 20 − 40 min. including the
initial instruction, two training sessions, the test session, and a short debriefing at the
end of the test.

3.5 Test Results

Only the results from the test session are used for determining test statistics. The
statistics determined from all subjects are shown in Fig. 4. Since all test subjects were
able to correctly find the hidden reference and anchor, the results of these are not
presented. Seven test subjects were already familiar with both type of artifacts before
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Fig. 4: Mean and 95%-confidence interval of test results for all test subjects (sample size = 16).

Speech 1 Speech 2 Music 1 Music 2 Music 3
0

Bad         

20

Poor        

40

Fair         

60

Good       

80

Excellent    

100

Q
u

a
lit

y
 S

c
o

re
s

 

 

FS−500 FS−1000 PN−500

Fig. 5: Mean and 95%-confidence interval of test results for expert test subjects (sample size = 7).

the listening test, and can therefore be considered as expert listeners for this test. Fig.
5 shows the statistics of test results from this expert panel.

3.6 Discussions

From Figs. 4 and 5 we conclude that the frequency shifting of 10 Hz with a cut-off
frequency at 1000 Hz (FS-1000) and probe noise with a cut-off frequency at 500 Hz (PN-
500) introduce relatively small degradations, especially for speech signals. Moreover,
we conclude that the frequency shifting with a cut-off frequency at 500 Hz (FS-500)
generally produces signals with sound quality in the range of poor to fair. Hence, we
consider the FS-500 processing to degrade sound quality too much compared to the
FS-1000 and PN-500 processing, and it is thereby not recommended for practical use
and we exclude it from the following discussion.
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The PN-500 processing seems to have a higher degradation level for speech signals
compared to the FS-1000, although it can be shown that the difference is not statistically
significant based on a paired t-test with a 5% level of significance. Nevertheless, the
sound quality of speech signals is still perceived as almost excellent for the PN-500. This
trend is just opposite for music signals, where the PN-500 seems to provide a slightly
better sound quality than the FS-1000. However, it should be noted that the PN-500
has a decorrelation effect in the frequency region of 500−1000 Hz, which is not the case
for the FS-1000, and better AFC performance can thereby be expected for the PN-500.

Interestingly, the expert test subjects rated the test signals differently than the
general test subjects. By comparing Figs. 4 and 5, it is clear that the expert subjects
generally rated the frequency shifting processed test signals (FS-1000) lower, and the
probe noise processed test signals (PN-500) higher compared to the general test subjects,
although it is not statistically significant due to the relatively small sample size in the
test. This can be explained by the hypothesis that a long training period is necessary
for test subjects to be aware of the frequency shifting artifact, and they tend to dislike
it once noticing it. Fig. 5 suggests that the sound quality degradation with FS-1000
is somewhat higher than with PN-500, especially for music signals, and that only two
training sessions are not adequate for general test subjects. Moreover, these results
shown in Fig. 5 can also be considered as upper-bounds for the sound quality that can
be achieved in an ideal AFC system when using these decorrelation methods, that is
when ĥ(n) = h(n).

Furthermore, test subjects typically used words such as “vibration”, “ringing sounds”,
“modulation”, “metallic”, and “additional tones” to describe the frequency shifting ar-
tifacts; whereas for the probe noise artifacts, the most common describing words are
“noisy” and “hiss”. Test subjects also suggested that the level of sound quality degra-
dation depends on test signals, and speech signals generally have higher quality. Most
test subjects reported that they get more annoyed by the modulation artifacts from the
frequency shifting, because they do not “fit into” the sound, whereas the noise from the
probe noise processing is better “hidden” in the original signals.

Finally, a comparison of Figs. 3 and 5 shows that there is a great similarity between
the sound quality prediction using PESQ/PEAQ and the subjective evaluated sound
quality using the MUSHRA with expert subjects. Similar trends are found in both the
PESQ/PEAQ measures and the MUSHRA results, e.g. that the speech signals have
generally higher sound quality scores than music signals, and the PN-500 provides a
similar if not better overall sound quality compared to the FS-1000 processing. The
absolute values of sound quality scores might not be directly comparable between these
two evaluations, since the sound quality scores in the MUSHRA depend on the anchor
signal; increasing the quality of the anchor signal would somewhat lower the sound
quality perception for the test signals and vice versa. However, it is still clear that the
PESQ/PEAQ measures seem to provide an accurate relative sound quality prediction.

In addition to the sound quality consideration, another important concern of these
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two decorrelation methods regards the preservation of the localization cues for binaural
reproductive systems upon modifications of loudspeaker signals. This is a topic for
future work.

4 AFC Performance Evaluation

In the previous section, evaluations are carried out to ensure that the signal distortions
due to decorrelation are insignificant and at similar levels for the FS-AFC and PN-AFC
systems. In this section, we conduct simulation experiments for comparing the ability
to cancel feedback in all five AFC systems.

4.1 Objective Performance Measures

To quantify objectively the cancellation performance, we use two performance measures
to be described in the following. The difference between the feedback path impulse
response h(n) and its estimate ĥ(n) is directly linked to system stability via the open-
loop transfer function Θ(ω, n). For the general system (ignoring the frequency shifting)
shown in Fig. 2, Θ(ω, n) is expressed by

Θ(ω, n) = F (ω, n)
(

H(ω, n) − Ĥ(ω, n)
)

, (1)

where F (ω, n) is the frequency response of the hearing aid forward path impulse response

f(n), H(ω, n) and Ĥ(ω, n) are frequency responses of h(n) and ĥ(n), respectively. The
open-loop transfer function Θ(ω, n) determines system stability according to the Nyquist
stability criterion [25], which states that a linear and time-invariant closed-loop system
becomes unstable whenever the following two criteria are both fulfilled:

1. |Θ(ω, n)| ≥ 1; (2)

2. ∠Θ(ω, n) = l2π, l = Z. (3)

Eq. (2) forms the basis for different distance measures between h(n) and ĥ(n) [1]. A
direct measure of the convergence rate, tracking error, and the steady-state error of the
adaptive filter ĥ(n) is the frequency domain coefficient misalignment measure ε(ω, n)
defined as

ε(ω, n) =
∣
∣
∣H(ω, n) − Ĥ(ω, n)

∣
∣
∣ . (4)

Focusing on the most critical value of ε(ω, n) in Eq. (4) over frequencies, we define a
simplified measure referred to as the maximum coefficient misalignment (MCM) εF(n);
it is determined by the maximum of ε(ω, n) across a frequency region denoted by F , as

εF(n) [dB] = 20 log10 max
ω∈F

ε(ω, n). (5)
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Fig. 6: Measured acoustic feedback paths with and without a telephone placed next to the ear of a
hearing aid user. (a) Impulse Response. (b) Magnitude Response.

Furthermore, assuming that Eq. (3) is fulfilled for all frequencies, a conservative maxi-
mum fullband (ω ∈ [0, π]) gain to ensure system stability referred to as the maximum
stable gain (MSG) M(n) is determined as

M(n) [dB] = −20 log10 max
ω

ε(ω, n). (6)

In this work, we use εF(n) and M(n) for the objective performance evaluation.

4.2 Test Setups and Signals

4.2.1 Acoustic Feedback Path

The acoustic feedback paths h(n) used in the simulation experiments are obtained from
measurements on hearing aids. During simulations, the feedback path h(n) remains
fixed for most of the time. However, halfway through each simulation run, a feedback
path change is simulated by a complete and momentary change of h(n). This change
models a situation, where a hearing aid user places a telephone close to the ear and
thereby the hearing aid, and it is known to be a very challenging situation for hearing
aid AFC systems [26].

Fig. 6 shows an example of measured acoustic feedback paths h(n) before and after
a telephone is placed next to the ear of a hearing aid user. The sampling rate is 20 kHz
for the measurement. Placing the telephone next to the ear increases the feedback path
magnitude response by 15 dB at certain frequencies.

4.2.2 Forward Path

For simplicity, the forward path f(n) only consists of an amplification and delay for all
systems. A single-channel compressor [22] is used to provide a fullband, time-varying,
and signal dependent amplification. The maximum amplification of the compressor is
limited so that the magnitude of the open-loop transfer function |Θ(ω, n)| is −1 dB

without acoustic feedback cancellation, i.e. when ĥ(n) = 0.
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Table 5: Test signals used in simulation experiments.

Speech Music
Danish Female Speech Classic
Japanese Female Speech Female Singing
Norwegian Male Speech Violin + Female Singing
English Female Speech 1 Flute
English Female Speech 2 Organ
English Male Speech Piano + Female Singing

4.2.3 Test Signals

We use speech and music signals as test signals x(n) in the simulation experiments. The
duration of each test signal is 60 s, and the sampling rate is 20 kHz.

In this work, we choose speech signals spoken by both male and female speakers
and in different languages. In contrast to speech, for which the autocorrelation time is
often several tens of ms, music signals might have correlation time of several hundreds
or even thousands of ms, and it could easily cause significantly biased estimation of
ĥ(n). Therefore, we choose some music signals with clear sustaining tonal components
for relatively long time periods. With these test signals and the already introduced
acoustic feedback path change, we determine cancellation performance of different AFC
systems in a very demanding but realistic situation. Table 5 summarizes the test signals
used in the simulations.

4.2.4 AFC Systems

For all AFC systems, the length of ĥ(n) is 64 at a sampling rate of 20 kHz. Furthermore,
we choose the parameters of the various systems so that a similar and relatively fast
convergence is achieved for all systems for speech signals.

For the F-AFC system, an NLMS algorithm with a step size of 2−9 and a regular-
ization parameter of 2−12 is used to estimate ĥ(n).

For the PEM-AFC system, we use the Levinson-Durbin recursion [27] to compute the
prefilter p̂(n) of order 20 based on the error signal e(n), whereas we use the same NLMS

algorithm and parameter settings for the estimation of ĥ(n) as the F-AFC system.
For the S-AFC system, uniform filter banks with 32 complex conjugated subbands

and a decimation factor of 16 divide fullband signals e(n) and u(n) into subbands for the
subband estimation. The subband NLMS step size is chosen to be 2−12 for all subbands
except the lowest one (DC band), which is set to zero, so that the AFC is not performed
under approximately 500 Hz. The subband NLMS regularization parameter is 2−16.

For the FS-AFC system, we use the same S-AFC system to estimate ĥ(n). In addi-
tion, a frequency shifting of 10 Hz is performed in the forward path f(n) for frequencies
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Fig. 7: Results for an example speech signal. (a) Maximum coefficient misalignment εF (n). (b)
Maximum stable gain M(n). See Fig. 7(b) for legend.

above 1000 Hz, because performing frequency shifting at the lowest frequencies would
not be beneficial since the AFC system is already turned off, and it could significantly
degrade sound quality, as shown in Sec. 3.

For the PN-AFC system, we again use the S-AFC system to estimate ĥ(n). Further-
more, the probe noise signal is generated using a masking model, and the probe noise
enhancement filter a(n) is estimated using the same subband adaptive filter structure

for estimating ĥ(n), with the subband step size of 2−2 for all subbands.

4.3 Test Results and Discussions

In this section, we evaluate the test results in terms of the maximum coefficient misalign-
ment εF(n) and the maximum stable gain M(n). We consider εF(n) in four equally
divided frequency regions from 0 to 10 kHz.

4.3.1 Speech Signals

Fig. 7 shows test results for an example speech signal in terms of εF(n) and M(n). As
expected, εF(n) decreases and M(n) increases over time as the AFC systems adaptively
improve the feedback path estimate; it continues until the feedback path undergoes
a momentary change after 30 s. The result of this is a mismatch between the true
and estimated feedback paths, which is seen as the jump/drop in εF(n) and M(n),
respectively.

We observed that for this example speech signal, the AFC cancellation performance
in terms of εF(n) and M(n) are very similar for almost all AFC systems except the F-
AFC, which performs poorly at the lower frequencies 0 − 2.5 kHz, where the correlation
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Fig. 8: Average maximum stable gain for speech signals.

in speech signals is generally strong. The consequence of this is that a relatively small
M(n) less than 35 dB (as an additional gain less than 5 dB added to the initial value
of M(0) ≈ 30 dB) will be available in the system, as seen in Fig. 7(b), even though the
desired amplification in hearing aids can be more than 50 dB [22]. In this example case,
the improvement of the maximum stable gains can be more than 10 dB in the other
AFC systems. Furthermore, Fig. 8 shows the averaged maximum stable gains obtained
from simulations of all speech signals. Again, it is seen that the F-AFC performs much
worse than the other AFC systems, which have similar behaviors.

The PEM-AFC system works generally well in this case, since the assumption of au-
toregressive incoming signals x(n) is reasonably valid especially for the unvoiced regions
of speech signals [28]. The S-AFC system transforms the fullband signals u(n) and e(n)
to subbands, this transform generally decorrelates the signals [1], and an improvement
is thereby obtained. In the FS-AFC and PN-AFC systems, the frequency shifting and
probe noise are applied in addition to the subband transform, it seems that any further
improvement is very limited compared to the S-AFC system. Furthermore, the PEM-
AFC and PN-AFC seem to have a slightly faster convergence but lower maximum stable
gain in the steady-state with the chosen simulation parameters.

4.3.2 Music Signals

Fig. 9 shows similar simulation results for an example music signal. It is very clear that
the F-AFC does not work properly, due to the much stronger correlation, over the entire
frequency spectrum, in the music signal. Interestingly, performance of PEM-AFC and
S-AFC is not much better than F-AFC in terms of MSG M(n) and MCM εF (n) below
5 kHz. The PEM-AFC system is not performing well due to the assumption of the
incoming signals x(n) to be autoregressive is violated in the music signal case, and the
prefilters in the PEM-AFC system can thereby not decorrelate the loudspeaker signal
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Fig. 9: Results for an example music signal. (a) Maximum coefficient misalignment εF (n). (b)
Maximum stable gain M(n). See Fig. 9(b) for legend.

u(n) from the incoming signal x(n). The subband transform in the S-AFC system still
has a decorrelation effect, but it is no longer adequate.

Furthermore, it is clear that the FS-AFC and PN-AFC systems perform significantly
better than other systems in this case. Fig. 9(a) shows that the FS-AFC system is very
effective to provide unbiased estimation at higher frequencies above 5 kHz, but it has
only limited effects in lower frequencies, due to the stronger correlation in signals. On the
other hand, the PN-AFC is able to provide unbiased estimation in the entire frequency
range, and it provides the highest maximum stable gain as seen in Fig. 9(b).

The same trend is observed in Fig. 10, which shows the averaged maximum stable
gain obtained from all simulations of music signals. It is clear that the F-AFC system
fails to increase the maximum stable gain over time, the PEM-AFC and S-AFC can
only provide minimal increments, but the FS-AFC improves it by more than 6 dB, and
the PN-AFC improves it by more than 12 dB.

4.3.3 Speech Versus Music Signals

To complete the observations, we computed the slopes of the average maximum stable
gain curves based on the first 5 seconds of all simulation results. Table 6 shows the
computed slopes. These data demonstrate that all AFC systems except the F-AFC
perform well for speech signals, but only the FS-AFC and especially the PN-AFC are
robust against music signals.

Furthermore, an interesting and somewhat unexpected observation is that the PEM-
AFC has similar performance as the S-AFC system for speech signals, whereas the S-
AFC system is slightly more robust against correlation in music signals (compared to
this particular version of the PEM-AFC). A similar conclusion is found in a comparison
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Fig. 10: Average maximum stable gain for music signals.

Table 6: Slopes [dB/s] of average maximum stable gain curves.

System Speech Music
F-AFC 0.41 -0.25

PEM-AFC 0.75 0.11
S-AFC 0.73 0.22

FS-AFC 0.72 0.54
PN-AFC 0.83 1.23

between an DCT domain AFC system and a PEM based AFC system in a recent
work [29].

5 Computational Complexity Evaluation

In addition to the sound quality and AFC performance improvement evaluations, an-
other important consideration is the computational complexity and memory usage for
each AFC system. In this section, we make a rough complexity estimation of each sys-
tem by counting the number of required real multiplications; we do not take into account
that specific optimizations and modifications of algorithms could reduce the complex-
ity significantly for a particular system. Hence, our estimates should be considered as
upper-bounds for the complexity.

We estimated the complexity for each AFC system in a two microphone channel
hearing aid system. The exact number of multiplications are computed based on the
chosen parameters for simulations in this work. For convenience, we normalized the
results relative to the F-AFC reference system. Furthermore, we divided each AFC
system into functional subgroups and computed the complexity in percentage for each
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Table 7: Complexity factors (CF) for different AFC systems.

System CF Subgroup Complexity

F-AFC 1
NLMS update 67%
Filtering 33%

PEM-AFC 1.27
Prefilter estimation 9%
Prefilter filtering 12%
F-AFC System 79%

S-AFC 1.55

Subband transform 12%
Subband NLMS update 28%
Time-domain filter 38%
Filtering 22%

FS-AFC 1.68
Frequency shifting 8%
S-AFC System 92%

PN-AFC 2.78
Probe noise generation 8%
Probe noise enhancement 36%
S-AFC System 56%

subgroup. The results are given in Table 7.
The F-AFC system has the lowest computational complexity, the adaptive filter esti-

mation is done cheaply using the NLMS algorithm. The PEM-AFC needs an additional
prefilter estimation and the subsequent filtering on error and reference signals for the
adaptive filter estimation. The S-AFC system is more complex due to the need of fil-
ter banks to divide fullband signals into subbands, where a subband NLMS algorithm
works on complex signals rather than real signals in the F-AFC system, and the fre-
quency domain feedback path estimate has to be transformed back to a time-domain
filter. The FS-AFC needs an additional frequency shifting algorithm compared to the
S-AFC system. Finally, the PN-AFC system needs probe noise generation, probe noise
enhancement including filtering of error and reference signals similar to the PEM-AFC
system, in addition to the subband adaptive filter estimation as in the S-AFC system.

Table 7 shows, perhaps as expected, that the systems with best AFC performance
as demonstrated in Sec. 4 also have higher computational complexity.

6 Conclusion

We conducted an evaluation of several state-of-the-art acoustic feedback cancellation
systems for hearing aids in terms of the cancellation performance, sound quality degra-
dation, and computational complexity. In particular, we compared a traditional fullband
system to a prediction error method based fullband system, a subband system, a sub-
band system with frequency shifting, and a recently proposed subband system with a



REFERENCES F.23

novel probe noise usage. By allowing a perceptually noticeable but small sound quality
degradation in the loudspeaker signal to decorrelate it from the incoming signal, we eval-
uated the cancellation performance in terms of maximum coefficient misalignment of the
adaptive filters and the maximum stable gain in hearing aid simulations. All systems
outperformed the traditional fullband system in cancellation performance. Especially
the subband system with probe noise provided an improvement of more than 12 dB in
maximum stable gain in the most difficult situations, but it is also the most computa-
tionally complex system, roughly 2.8 times more complex than the traditional system.
The subband system with frequency shifting improved the maximum stable gain by
more than 6 dB with a complexity increment by a factor of 1.7 for the same situations.
Furthermore, we showed that the subband system had a slightly larger improvement
than the prediction error method based fullband system, which had the lowest compu-
tational complexity increment by a factor of 1.3 compared to the traditional system.
In this way, the systems providing largest improvements are also more computationally
complex. Hence, choosing an appropriate system for a practical application, among
these evaluated, is a clear compromise between performance and computational cost.
However, for a price of 2 − 3 times the reference complexity, a cancellation system can
be realized which is robust in even the most challenging feedback situations. With the
increasing computational power available in hearing aids, these improved cancellation
systems can be realistically implemented in the near future.
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Analysis of Closed-Loop Acoustic Feedback
Cancellation Systems

Meng Guo, Søren Holdt Jensen, Jesper Jensen, and Steven L. Grant

Abstract

In a previous study, the performance of an acoustic feedback/echo cancellation sys-
tem was analyzed using a power transfer function method. Whereas the analysis result
provides very accurate performance predictions in open-loop acoustic echo cancellation
systems, it is less accurate in closed-loop acoustic feedback cancellation systems if there
is a strong correlation between the loudspeaker signal and the signals entering the mi-
crophones. This work extends the performance analysis to include the effects of the
nonzero correlation on the adaptive filters. Simulation results verify that this extension
provides much more accurate performance predictions in closed-loop acoustic feedback
cancellation systems.

1 Introduction

Acoustic feedback problems arise when a microphone of an audio system picks up part
of its acoustic output signal from the loudspeaker. Acoustic feedback cancellation using
adaptive filters [1–3] in a system identification setup [4, 5] has evolved to be a state-
of-the-art solution [6–12]. Much work has been done to analyze/characterize [13–19]
and improve [20–25] these adaptive algorithms in terms of robustness, stability bounds,
convergence rate, steady-state behavior, complexity, etc.

In [26], an analysis is performed to describe the frequency domain performance char-
acteristics for acoustic feedback cancellation (AFC) and/or acoustic echo cancellation
(AEC) in a multiple-microphone and single-loudspeaker (MMSL) system, illustrated in
Fig. 1, in terms of the concept of power transfer function (PTF). The AFC/AEC is

carried out by adaptive filters ĥi(n), where n is the time index, and i = 1, ..., P , where
P is the number of microphones, and the beamformer filters gi are performing a spa-
tial filtering on the feedback/echo compensated signals ei(n). The PTF analysis in [26]

determined a simple and accurate approximation ξ̂(ω, n) of the expected magnitude-
squared transfer function from point A to B in Fig. 1, where ω is the discrete frequency
index. This approximation allowed prediction of the convergence rate, steady-state be-
havior, and the tracking ability of AFC/AEC systems without knowing the true acoustic

G.3
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feedback/echo paths hi(n).

For simplicity, the analysis in [26] was performed in an open-loop system by omitting
the forward path f(n) in Fig. 1, and the loudspeaker signal u(n) was assumed to be
uncorrelated with the incoming signals xi(n). Hence, whereas the results from [26]
are very accurate for open-loop AEC systems, these results have certain limitations in
closed-loop AFC systems.

Specifically, the most significant limitation occurs when the incoming signals xi(n)
have long tails in their autocorrelation functions (compared to the system latency from
microphone to loudspeaker), such as in most music and alarm signals. The loudspeaker

signal u(n) is then correlated with xi(n). This leads to a biased estimation of ĥi(n) [7],
and it violates the assumption of uncorrelated u(n) and xi(n) for the PTF prediction.
Thus, for strongly correlated incoming signals, the derived PTF expressions in [26]
provide poor predictions, although the expressions are relatively accurate when the
incoming signals were speech signals as demonstrated in [26].

Another important application of the PTF approximation ξ̂(ω, n) in AFC systems
is to ensure system stability. The true PTF ξ(ω, n) is the unknown part of the expected
magnitude-squared open-loop transfer function E[|OLTF(ω, n)|2] of the MMSL system
expressed by E

[
|OLTF(ω, n)|2

]
= |F (ω, n)|2ξ(ω, n), where F (ω, n) is the, generally

known, frequency response of f(n). If |OLTF(ω, n)| < 1, system stability is guaranteed

[27]. However, when the estimation of ĥ(n) is biased due to the correlation between

u(n) and xi(n), ξ̂(ω, n) determined in [26] would generally be too small. Even if the

forward path gain |F (ω, n)| was chosen as |F (ω, n)| < 1/

√

ξ̂(ω, n), stability could not
be guaranteed.

In this work, we derive an extended PTF approximation that includes the influence
of potentially biased estimation of ĥi(n). In particular, this is done by allowing the
correlation function between the loudspeaker signal u(n) and the incoming signals xi(n)
to be nonzero.

2 Review of Power Transfer Function

The PTF describes the expected magnitude-squared transfer function from point A to
B in Fig. 1, where the frequency responses Hi(ω, n) of the true feedback paths hi(n)
are unknown and considered stochastic. Hence, as in [26], we define the exact PTF of

the MMSL system as ξ(ω, n) = E[|
∑P

i=1 Gi(ω)H̃i(ω, n)|2], where Gi(ω) is the frequency

response of gi, and H̃i(ω, n) = Ĥi(ω, n) − Hi(ω, n) is the frequency response of h̃i(n) =

ĥi(n) − hi(n). Clearly, ξ(ω, n) =
∑P

i=1

∑P
j=1 Gi(ω)G∗

j (ω)ξij(ω, n), where ∗ denotes

complex conjugation and ξij(ω, n) = E[H̃i(ω, n)H̃∗
j (ω, n)].

In general, however, we can not calculate the PTF ξ(ω, n) directly because Hi(ω, n)

is unknown. In [26], an approximation ξ̂ij(ω, n) ≈ E[H̃i(ω, n)H̃∗
j (ω, n)] was introduced,
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Fig. 1: A multiple-microphone and single-loudspeaker system.

where ξ̂ij(ω, n) is expressed by a relatively simple function, leading to an approximate

PTF ξ̂(ω, n) =
∑P

i=1

∑P
j=1 Gi(ω)G∗

j (ω)ξ̂ij(ω, n).

In [26], we derived PTF approximations ξ̂(ω, n) for several adaptive algorithms for
estimating the feedback/echo paths hi(n). In this work, to limit our scope, we focus on

ξ̂(ω, n) for the least mean square (LMS) adaptive algorithm. Under the assumptions of
uncorrelated u(n) and xi(n), the LMS step size µ(n) → 0, the length of the adaptive
filter L → ∞, and rxij

(k) = E[xi(n)xj(n + k)] = 0 ∀ |k| > k0 ∈ N, the PTF could be
approximated as [26],

ξ̂(ω, n) = (1 − 2µ(n)Su(ω)) ξ̂(ω, n − 1)

+ Lµ2(n)Su(ω)

P∑

i=1

P∑

j=1

Gij(ω)Sxij
(ω) +

P∑

i=1

P∑

j=1

Gij(ω)Sȟij
(ω), (1)

where Su(ω) denotes the power spectrum density (PSD) of the loudspeaker signal u(n),
Sxij

(ω) denotes the cross(auto) PSDs of the incoming signals xi(n) and xj(n), Gij(ω) =
Gi(ω)G∗

j (ω), and Sȟij
(ω) is the PSD of the feedback/echo path variations over time.

Furthermore, system behavior in terms of the convergence rate, steady-state error,
and the tracking error can be determined using Eq. (1), we refer to [26] for details.

3 Extended PTF in Closed-Loop Systems

In this section, we derive an extended PTF approximation for the case where u(n) and
xi(n) may be correlated. We do this based on the bias of the Wiener solution of the
adaptive filter estimation for AFC systems.
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3.1 Definition of Extended PTF

We consider the adaptive filter estimate ĥi(n) as ĥi(n) = h̄i(n) + h̆i(n), where h̄i(n)
denotes the unbiased estimate from the adaptive algorithms if u(n) was uncorrelated
with xi(n), i.e. E[h̄i(n)] = hi(n), and h̆i(n) is the additional bias vector due to the
correlation between u(n) and xi(n).

The expected value of the adaptive filter estimate ĥi(n) which minimizes E[e2
i (n)]

in MMSL systems as in Fig. 1 can be shown to be E[ĥi(n)] = hi(n) + E[h̆i(n)], and
E[h̆i(n)] is the Wiener solution of the bias vector h̆i(n) given by

E
[

h̆i(n)
]

= E
[
u(n)uT (n)

]−1
· E [u(n)xi(n)] , (2)

where u(n) = [u(n), u(n−1), . . . , u(n−L+1)]T . An unbiased solution E[ĥi(n)] = hi(n)
is obtained if E[u(n)xi(n)] = 0. However, this is usually not the case for AFC systems.

We now study the impact of E[h̆i(n)] on the PTF. The frequency response of ĥi(n)
is denoted by Ĥi(ω, n) = H̄i(ω, n) + H̆i(ω, n). We express the exact extended PTF

ξ̆exact(ω, n) as

ξ̆exact(ω, n) =E





∣
∣
∣
∣
∣

P∑

i=1

Gi(ω)
(

Ĥi(ω, n) − Hi(ω, n)
)
∣
∣
∣
∣
∣

2


 . (3)

Eq. (3) can be simplified. For a small step size µ(n), in principle µ(n) → 0, the fluctua-
tion of the unbiased adaptive estimate H̄i(ω, n) tends to 0, i.e. H̄i(ω, n) − Hi(ω, n) → 0.
We can thereby neglect the cross-term E[H̆i(ω, n)(H̄∗

i (ω, n) − H∗
i (ω, n))] compared to

the auto-term E[H̆i(ω, n)H̆∗
i (ω, n)] when evaluating Eq. (3), which becomes

ξ̆exact(ω, n) =E





∣
∣
∣
∣
∣

P∑

i=1

Gi(ω)
(
H̄i(ω, n) − Hi(ω, n)

)

∣
∣
∣
∣
∣

2


+ E





∣
∣
∣
∣
∣

P∑

i=1

Gi(ω)H̆i(ω, n)

∣
∣
∣
∣
∣

2




=ξ(ω, n) +
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)E

[

H̆i(ω, n)H̆∗
j (ω, n)

]

. (4)

Thus, the correlation between xi(n) and u(n) leads to a nonzero bias term (the last term)

in Eq. (4), which in turn leads to an increase in the extended PTF ξ̆exact(ω, n), over the
PTF ξ(ω, n) which would have been achieved, had xi(n) and u(n) been uncorrelated. To
further simplify Eq. (4), we replace H̆i(ω, n) with its expected value E[H̆i(ω, n)], since we
are studying the steady-state effects of E[h̆i(n)] in Eq. (2) on the PTF, and H̆i(ω, n) →
E[H̆i(ω, n)] in steady-state for the LMS step size µ(n) → 0 [28]. Furthermore, by

replacing the PTF ξ(ω, n) in Eq. (4) with its approximation ξ̂(ω, n), we get the extended
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PTF approximation ξ̆(ω, n), as

ξ̆(ω, n) =ξ̂(ω, n) +

P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)E

[

H̆i(ω, n)
]

· E
[

H̆∗
j (ω, n)

]

. (5)

The last term in Eq. (5) is independent of the step size parameter in applied adaptive
algorithms, since the expected value of adaptive filter bias E[h̆i(n)] only depends on the
incoming signals xi(n) and the loudspeaker signal u(n) as given in Eq. (2). Furthermore,
this bias term can be considered as an additional error contribution to the steady-state
error given by ξ̂(ω, n). Therefore, while the convergence of ξ̆(ω, n) is only determined

by ξ̂(ω, n), the steady-state behavior of ξ̆(ω, n) is determined by both ξ̂(ω, n) and this
bias term. In the following sections, we study the influences of this bias term.

3.2 Extended PTF Analysis

We model the forward path f(n) as f(n) = f0(n)∗δ(n−d), where ∗ denotes convolution,
i.e. a filtering part f0(n) and a delay of d > 0 samples. Let F0(n) ∈ RL×L and Gi ∈
RL×L be the Toeplitz structured convolution matrices of the forward path filter f0(n) and
the beamformer filter gi, respectively. We define the incoming signal vector as xi(n) =
[xi(n), xi(n−1), . . . , xi(n−L+1)]T , and by considering the case that Hi(ω, n)−Ĥi(ω, n)
is relatively small in a steady-state situation, i.e. the adaptive filter provides a relatively
precise estimate Ĥi(ω, n) despite an eventual bias term H̆i(ω, n) 6= 0, we can neglect
the closed-loop effect, given by the transfer function 1/(1 − F0(ω, n)Gi(ω)(Hi(ω, n) −
Ĥi(ω, n))), on the loudspeaker signal vector u(n), which is now simply expressed by

u(n) =

P∑

i=1

F0(n)Gixi(n − d). (6)

The correspondence of the resulting theory and the simulation results presented later
showed that Eq. (6) is reasonable for even relatively large values of the bias term H̆i(ω, n)
and thereby Hi(ω, n) − Ĥi(ω, n). Inserting Eq. (6) in Eq. (2), E[h̆i(n)] can be written
as

E
[

h̆i(n)
]

=

(
P∑

p=1

P∑

q=1

F0(n)GpRxpq
(0)GT

q FT
0 (n)

)−1

·
P∑

p=1

F0(n)Gprxpi
(d), (7)

where Rxij
(k) = E[xi(n)xT

j (n + k)] and rxij
(k) = E[xi(n)xj(n + k)].

We compute the frequency response E[H̆i(ω, n)] of E[h̆i(n)] using the discrete Fourier
transform (DFT) matrix D ∈ CL×L. Since the DFT matrix D diagonalizes any Toeplitz
matrix asymptotically, as L → ∞ [29], and the matrices F0(n), Gi, and Rxij

(0) are all
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asymptotically Toeplitz matrices, each element E[H̆i(ω, n)] of the frequency response
vector DE[h̆i(n)] can be shown to be

E
[

H̆i(ω, n)
]

=

∑P
p=1 F0(ω, n)Gp(ω)Γxpi

(ω)
∑P

p=1

∑P
q=1 F0(ω, n)Gp(ω)Sxpq

(ω)G∗
q(ω)F ∗

0 (ω, n)
. (8)

Γxpi
(ω) are elements of the vector Drxpi

(d), which is the DFT of the autocorrelation tail
sequence rxpi

(d), rxpi
(d + 1), . . . , rxpi

(d + L − 1). Furthermore, Sxpq
(ω) are the diagonal

entries of the matrix 1
L DRxpq

(0)DH , these approach the DFT of the autocorrelation
sequence rxpq

(0), rxpq
(1), . . . , rxpq

(L − 1), as L → ∞. Finally, inserting Eq. (8) in Eq.

(5), we get the expression for the extended PTF approximation ξ̆(ω, n) as

ξ̆(ω, n) =ξ̂(ω, n) +
P∑

i=1

P∑

j=1

Gi(ω)G∗
j (ω)

·

( ∑P
p=1 F0(ω, n)Gp(ω)Γxpi

(ω)
∑P

p=1

∑P
q=1 F0(ω, n)Gp(ω)Sxpq

(ω)G∗
q(ω)F ∗

0 (ω, n)

)

·

( ∑P
p=1 F0(ω, n)Gp(ω)Γxpj

(ω)
∑P

p=1

∑P
q=1 F0(ω, n)Gp(ω)Sxpq

(ω)G∗
q(ω)F ∗

0 (ω, n)

)∗

. (9)

4 Discussions

Generally, Eq. (9) is not easily interpreted. However, for a single-microphone and single-

loudspeaker (SMSL) system (P = 1), the extended PTF approximation ξ̆(ω, n) given
by Eq. (9) simply reduces to

ξ̆(ω, n) = ξ̂(ω, n) +
|Γx(ω)|2

|F0(ω, n)|2S2
x(ω)

. (10)

In general, ξ̆(ω, n) > ξ̂(ω, n) since |Γx(ω)| > 0 in Eq. (10). However, for incoming
signals x(n) fulfilling rx(k) = 0 ∀ |k| > k0 ∈ N, increasing the forward path delay d
would generally decorrelate u(n) from x(n), see e.g. [30–32], and for a large value of

d > k0, we get Γx(ω) = 0 leading to ξ̆(ω, n) = ξ̂(ω, n) in Eq. (10).
Furthermore, Eq. (10) reveals that increasing the forward path gain |F0(ω, n)| leads

to a smaller bias term in ξ̆(ω, n). Intuitively this can be explained by the fact when the
forward path gain |F0(ω, n)| gets larger, the larger is u(n) compared to x(n), see e.g. Eq.
(6), the amplitude of each element in the expected bias vector E[h̆i(n)] would thereby
be smaller as also seen from Eq. (2). However, although a large forward path gain

|F0(ω, n)| leads to a small ξ̆(ω, n) in Eq. (10), |F0(ω, n)| is still a compromise between
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Table 1: Common parameters for simulation experiments.

Symbol Value Description

Ds 80000 Duration of simulation.

R 100 Number of sim. runs.

µ 2−11 LMS step size.

L 32 Length of ĥ(n).

g 0.1 · [10, 3, −2.5, 1, 0.5]T Beamformer filter.

h(0) 0.01 · [6, 0.84, −1.38]T Initial values of h(n).

N(µh, σ2
h) N(0, 0.00192) Feedback path variation.

hx 0.01 · [10, −3, 4, −1, 0.5]T Shaping filter for x(n).

f0 [10]T Forward path filter.

d 1 Forward path delay.

being large enough to ensure a reasonably small bias, and being small enough to maintain
system stability. In particular, |F0(ω, n)| should be chosen according to |F0(ω, n)| <

1/

√

ξ̆(ω, n) to ensure stability. Furthermore, using Eq. (10), a lower bound for the

magnitude-squared open-loop transfer function |OLTF(ω, n)|2 = |F0(ω, n)|2ξ̆(ω, n) is

obtained as |Γx(ω)|2/S2
x(ω) for ξ̂(ω, n) → 0, and it is interesting to note that it is

actually independent of |F0(ω, n)|.

5 Simulation Verifications

In this section, we perform simulation experiments to verify the extended PTF ap-
proximation ξ̆(ω, n) in Eq. (9) and show the improvements by comparing to the PTF

approximation ξ̂(ω, n) in Eq. (1). We consider an SMSL system (P = 1) with a known
feedback path h(n), which remains fixed during the first half of the simulation exper-
iment, but undergoes variations in the second half. We use the same procedure as
described in Sec. VI-A of [26] for these simulation experiments. We refer to [26] for
details. The only difference is that u(n) is no longer independently generated, but it
is rather computed in the closed-loop system as the error signal ē(n) filtered through
a time invariant forward path f . Table 1 shows the general simulation parameters; the
beamformer filter g, initial feedback path h(0), and the forward path filter f0 are chosen
to be lower order filters for reproducibility in these experiments.

In the first simulation experiment, we verify that the extended PTF expression in
Eq. (9) can accurately predict biased steady-state values for an SMSL AFC system using
an LMS algorithm. A biased estimation of h(n) is expected due to the choices of the
forward path delay d and the shaping filter hx, which is used to generate the incoming
signals x(n) by convolving hx with a white noise sequence.

Fig. 3 shows the results at two representative example frequency bins l = 3, 7. The
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Simulation Result

Predicted Convergence Rate (Tangent Line)

Predicted Steady−State Value:
Time Invariant + Open−Loop System

Predicted Steady−State Value:
Time Varying + Open−Loop System

Predicted Steady−State Value:
Time Invariant + Closed−Loop System

Predicted Steady−State Value:
Time Varying + Closed−Loop System

Fig. 2: Legends for Figs. 3-5.
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Fig. 3: PTF values for frequency bins (a) l = 3. (b) l = 7. See Fig.
2 for legend.
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Fig. 4: PTF values for frequency bin 3. The forward path delay is (a) d = 1 sample. (b) d = 3
samples. (c) d = 5 samples. See Fig. 2 for legend.
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Fig. 5: PTF values for frequency bin 3. The forward path gain is (a) |F0(ω)| = 6 dB. (b) |F0(ω)| = 10
dB. (c) |F0(ω)| = 20 dB. See Fig. 2 for legend.

true PTF values can be calculated in simulations because h(n) is known. These true
PTF values confirm the PTF prediction values using Eqs. (1) and (10) for computing the
convergence rate and steady-state behaviors for the open-loop (see details in [26]) and
closed-loop systems, respectively. Furthermore, the closed-loop PTF values for biased
estimation of ĥ(n) are generally found at higher levels than the open-loop PTF values
without biased estimation.

In the second simulation experiment, we show the dependence between forward path
delay d and the PTF values. All simulation parameters are the same as given in Table
1, except the forward path delay, which is d = 1, 3, 5 in three different simulations. Fig.
4 shows the simulation results. The shaping filter hx is a fourth-order filter, it means
that rx(k) = 0 ∀ |k| > 4. Clearly, with a forward path delay d = 1, 3, ξ̆(ω) > ξ̂(ω) due

to biased estimation of ĥ(n). For a longer enough delay d = 5, ξ̆(ω) = ξ̂(ω).

In the last simulation experiment, we show the dependence between the forward
path gain |F0(ω)| and the PTF values. We again use the general simulation parameters
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given in Table 1, only the forward path filter f0 varies so that the |F0(ω)| = 6, 10, 20
dB, respectively. Fig. 5 shows the simulation results for different forward path gains
|F0(ω)|. As expected, a higher forward gain |F0(ω)| gives lower steady-state PTF values,
as expressed in Eq. (10).

6 Conclusion

In previous work, PTF approximations have been derived for different adaptive algo-
rithms in open-loop MMSL systems. In this work, we derived extensions to these PTF
expressions for closed-loop MMSL systems. We showed that this extension provides
more accurate and useful performance predictions of closed-loop AFC systems, espe-
cially if there are strong correlations between the loudspeaker and incoming signals,
and the adaptive filter estimates therefore become heavily biased. The results also
showed the relations between the forward path delay/gain in closed-loop systems and
the biased adaptive filter estimates and thereby the PTF prediction values. This knowl-
edge is important in designing AFC systems and provides a very useful upper-limit for
the forward path gain to guarantee system stability in closed-loop AFC systems.

7 Relations to Prior Work

This work is an extension of the power transfer function analysis of a multiple-microphone
and single-loudspeaker cancellation system introduced in [26]. The extended analysis
provides accurate cancellation performance predictions in closed-loop systems even if
there is a strong correlation between the loudspeaker and incoming signals, see details
in the Introduction. The power transfer function analysis is inspired by the studies
in [33, 34] of tracking characteristics for an open-loop single-microphone and single-
loudspeaker cancellation system, which is a special case of the presented framework.
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