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Abstract 
 

Complexity of communication networks is ever increasing and getting complicated by their 

heterogeneity and dynamism.  Traditional techniques are facing challenges in network performance 

management. Cognitive networking is an emerging paradigm to make networks more intelligent, 

thereby overcoming traditional limitations and potentially achieving better performance. The vision is 

that, networks should be able to monitor themselves, reason upon changes in self and environment, 

act towards the achievement of specific goals and learn from experience.  

The concept of a Cognitive Engine (CE) supporting cognitive functions, as part of network elements, 

enabling above said autonomic capabilities is gathering attention. Awareness of the self and the world 

is an important aspect of the cognitive engine to be autonomic. This is achieved through embedding 

their models in the engine, but the complexity and achievable truthfulness of such models are of 

concern considering the dynamic and non-linear behavior of the network. Moreover the knowledge 

model should be able to capture and represent the holistic aspect of the network in a scalable manner.  

In the present work, I focus on the architectural aspects of the cognitive engine that incorporates a 

context space based information structure to its knowledge model.  I propose a set of guiding 

principles behind a cognitive system to be autonomic and use them with additional requirements to 

build a detailed architecture for the cognitive engine. I define a context space structure integrating 

various information structures that are required for the knowledge model. Use graphical models 

towards representing and reasoning about context space is a direction followed here. Specifically I 

analyze the framework of qualitative models for their suitability to represent the dynamic behavior of 

the wireless network. The motivation behind this novel approach is in the possibility of building the 

knowledge model from the qualitative information in the form of influence diagrams elicited from 

human experts. Considering the difficulties of building large scale models through structure learning, 

the above approach is attractive.  After a detailed analysis of the qualitative model I select a set of 

fitting semi-qualitative extensions with inference mechanisms to overcome their observed limitations. 

With learning from this exercise I propose a methodology for preparing and using the qualitative 

models in a cognitive engine.  

Further I use the methodology in multiple functional scenarios of cognitive networks including self- 

optimization and self- monitoring. In the case of self-optimization, I integrate principles from 

monotonicity analysis to evaluate and enhance qualitative models as part of the methodology. Related 

to self-monitoring, the proposal is on an architecture for network monitoring and fault diagnostics 

using qualitative models.  

Towards the end I propose a novel cognitive acoustic communication network for short range data 

communication between devices. I present the design and implementation details along with its 

interesting applications for near field communications.  Further I compare the qualitative models of 

the acoustic network with an equivalent radio network. The comparison results points to the generality 

of qualitative models across multi-technology systems. 

Major contributions of this research work is in discovering the applicability of qualitative knowledge 

models and developing mechanisms to efficiently use them in cognitive networks. 

 



 

Dansk Resume 
 

 

Kompleksiteten af kommunikationsnetværk er stadigt stigende, og bliver yderligere kompliceret af 

deres indbyrdes forskelle og dynamik. Traditionelle teknikker udfordres i ”network performance 

management”. ”Cognitiv networking” er et spirende paradigme for at gøre netværk mere intelligente 

og således overvinde de traditionelle begrænsninger og potentielt opnå en bedre ydeevne. Visionen er, 

at netværk er i stand til at overvåge sig selv, på baggrund af ændringer i netværket og miljø, for 

derigennem at opfylde specifikke mål og lære af erfaringerne. 

 

Begrebet Cognitiv Engine (CE) som understøtter kognitive funktioner, som en del af 

netværkselementer, så overnævnte autonome elementer får opmærksomhed. Bevidsthed om netværket 

og omgivelserne er et vigtigt aspekt for at få den ”cognitive engine” til at være autonom. Dette opnås 

ved indlejring af deres modeller i enginen, men kompleksiteten og værdien af sådanne modeller er 

problemet, når dynamisk og ulineær opførsel af nettet tages i betragtning. Desuden skal modellen 

være i stand til at fastholde og repræsentere det holistiske aspekt af netværket på en skalérbar måde. 

 

I det foreliggende arbejde fokuserer vi på de arkitektoniske aspekter af den cognitive engine, der 

inkorporerer en 3D baseret information struktur til sin videnmodel. Vi foreslår et sæt vejledende 

principper til et kognitiv system, der skal være autonom og bruges med yderligere information for at 

opbygge en detaljeret arkitektur for den cognitive engine. Vi definerer en kontekst baseret struktur, 

der integrerer de forskellige informationsstrukturer, som er nødvendige for videnmodellen. Der bruges 

grafiske modeller til at repræsentere og ræsonnere om de rummelige sammenhænge vi følger. Konkret 

analyserer vi inden for rammerne af kvalitative modeller for deres egnethed til at repræsentere den 

dynamiske adfærd af det trådløse netværk. Motivationen bag denne nye fremgangsmåde er i 

muligheden for at opbygge en viden model fra kvalitative oplysninger i form af indflydelse 

diagrammer genereret af humane eksperter. I betragtning af de vanskeligheder, der er ved at bygge 

store modeller gennem struktur læring, er den ovennævnte fremgangsmåde attraktiv. Efter en 

detaljeret analyse af den kvalitative model, vælger vi at tilpasse en semi-kvalitativ tillæg med logiske 

beslutninger for at overvinde de observerede begrænsninger. På baggrund af denne øvelse foreslår vi 

en metode til fremstilling og anvendelse af de kvalitative modeller i en cognitiv engine. 

 

Yderligere bruger vi metoden i multiple kognitive netværk funktions scenarier, herunder selv-

optimering og selvovervågning. I tilfælde af selv-optimering, integrerer vi principperne fra analysen 

til at evaluere og forbedre den kvalitative model som en del af metoden. Relateret til selv-

monitorering, peger forslaget i retning af en arkitektur for overvågning af netværk og fejldiagnoser. 

 

Mod slutningen foreslår vi en ny kognitiv akustisk kommunikations netværk for kortdistance 

kommunikation mellem enheder. Vi præsenterer design og implementerings detaljer sammen med 

anvendelsesmuligheder. Yderligere, sammenligner vi de kvalitative modeller af det akustiske netværk 

med et tilsvarende radionetværk. Sammenligningen resulterer i punkter til den generelle anvendelse af 

kvalitative modeller på tværs af multi-teknologi systemer. 

 

Hovedresultater af denne forskning er anvendelsen af kvalitative videnmodeller og udvikling af 

mekanismer til effektivt at bruge dem på kognitive netværk. 
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1 
1  Introduction 

 

 

1.1 Research Problem  

 

Knowledge modeling and management is observed to be a key building block for self-management in 

Cognitive Networks with an end-to-end perspective.  The scientific objective of this research is to 

discover ways though which novel knowledge management can bring-in context awareness and 

enable autonomic capabilities in networks with an enhanced efficiency. To fulfill this objective, this 

research work proposes novel architectures and algorithms for a cognitive engine that encapsulates a 

knowledge model used by the cognitive process that is frugal yet good enough to be implemented on 

network elements to enable them to be integrated as a cognitive network.  Applicability of Qualitative 

Models is of specific focus.  

Several outcomes of this research work have been published in various journals and conference 

proceedings. A list of 12 publications, where the contributions appeared, is included at the end of this 

chapter. This is followed by a list of patents filed on some of the novel aspects of the work. 

1.2 Motivation 
 

Wireless networks are ubiquitous and of great economic importance to modern connected society. It is 

also the source of many of the fundamental scientific challenges faced by modern communication 

networks. A key feature of modern networks is their scale and complexity. It far exceeds the ability of 

users and operators to optimally configure them.  

Future application over wireless networks will require an ecosystem consisting of numerous 

coexisting Radio Access Technologies (RATs). The multi-RAT networks will provide user-centric 

communications catering a multitude of services to end-users, including machines, with seamless 

mobility, application and session management and higher levels of Quality of Experience (QoE). 

Emerging applications involving Machine to Machine communications and Internet of Things poised 

to bring in a multi-fold increase in number of communicating nodes into future networks.  This along 

with introducing more spectrum-efficient technologies makes the networks more and more complex, 

and therefore, more difficult to monitor, control, configure and manage. This poses a challenge to 

wireless network operators in the task of running their networks while introducing new services and 

achieving goals in terms of customer satisfaction, benefit, market share, innovation, reputation etc. 

Minimization of human intervention in wireless network management is one direction of exploration 

that is considered in Self Organizing Networks (SONs) [1]. It addresses a family of functionalities 

used in operating a network in a highly autonomous manner, encompassing self-configuration, self-

optimization and self-healing [2][3]. Ericsson estimates the adoption of SON features in 4G Networks 
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has resulted in 40% faster roll outs, and as much as 90% reduction in daily maintenance of new LTE 

networks (Figure 1.1) [3].  

 

 

Figure 1.1   Measurable benefits from SON features on Live Networks (source: Ericsson).  

functionality needs to work across all radio-access, transport and core networks in such a way that the 

differences between these technologies are masked for higher level operations [Figure 1.2]. This will 

enable the operators to meet end-to-end service Key Performance Indicators (KPIs). 

 

Cognitive Radio applies the idea of self-organizing to air-interface and generally aims at enabling 

spectrum sharing. Cognitive Network is extending the self-organization techniques used for radio 

access subsystem to include entire network with knowledge representation, automated reasoning and 

learning. This encompasses adaptive mapping of user‟s requirements, preferences, context and 

situation onto offered services considering the service provider‟s resource assignment and other 

policies. This requires techniques for real-time monitoring and control of situation and context of 

network and its resources. Unlike traditional network management that is generally statically 

configured, the paradigm shift with cognitive networks is continuous and dynamic configuration and 

optimization.  

 

 

Figure 1.2 SON functionality across all technologies (Source: Ericsson) 

In-network management is an approach that supports management operations by the means of a 

highly distributed architecture. Here the management functions are located in or close to the managed 

network and service elements. In most of the cases (such as adhoc networks) it is co-located on the 

same nodes. The distributed network architecture promotes support for self-management features with 
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a suitable trade-off between computing and communication required for management. Many of the 

self-organization related challenges are addressed in the emerging paradigm of Cognitive Networks.  

Knowledge modeling and management is observed as a key building block for self-organization with 

an end-to-end perspective. From the operators‟ perspective, a service- and business-driven 

management needs to be transparent and independent of the underlying network infrastructure, 

domains, and resources. The network complexity should be hidden from the operators‟ perspective. A 

unified knowledge modeling framework that can have an end-to-end scope is still an open problem for 

research. 

. 

1.2.1 The emerging paradigm of Cognitive Networks 

Much of the cognitive network concepts have been drawn or evolved from that of cognitive radios 

(CR). An initial definition of cognitive networks has been given by Thomas et al. [5]. In line with the 

definition of Cognitive Radios, “A cognitive network is defined as a network with a cognitive process 

that can perceive current network conditions, and then plan, decide, and act on those conditions. The 

network can learn from these adaptations and use them to make future decisions, all while taking into 

account end-to-end goals”.  It seems to have motivated by the Knowledge Plane described by Clark 

[6] as a “distributed cognitive system that permeates the network”. 

Though the CN concept draws a lot from the CR, CR need not be a necessary part of cognitive 

network.  A network of cognitive radios is termed as Cognitive Radio Networks (CRN). This view on 

CN can be seen as CR extended up the stack and across the network. Fig 1.3 illustrates the difference 

between cognitive radio (CR), cognitive network (CN) and cognitive radio network (CRN). While the 

scope of CR is the wireless link, CRN spans the network of CRs.  CN is the most general concept 

spanning over the entire communication system, including the core network. 

 

 

Figure 1.3 Scope of Cognitive Radio, Cognitive Radio Network, Cognitive Network (Adapted 

from [11]) 

Looking at some of the recent works related to Cognitive Networks, substantial explorations have 

been performed by End-to-End Reconfigurability Project E2R II [7], m@ANGEL platform[8], CTVR 

at Trinity College[9]  and the Institute for Wireless Networks at RWTH Aachen University[10].  

Architectures at various degrees of maturity for end-to-end oriented, autonomous networks have been 

proposed as part of the above works. Most of them emphasize the need to have a holistic picture of 

the network rather than limited local scope. Beyond the high level architectural details, practical 

CR 

CR 

CRN 

CN 
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considerations for implementing them in real-world devices is still required. A unified theory and set 

of principles underlying the architectures is desired and should be explicitly identified so that future 

extensions and enhancements can be consistent and scalable. 

In general a cognitive framework incorporates two key components namely Knowledge Management 

and a cognition loop (Cognitive Process). Knowledge management involves the acquisition, 

representation and refinement of the knowledge about the network and environment enabled by 

learning. This brings context awareness capability to the network. The orchestration of the tasks 

involved in the autonomic network management is done though a cognitive process.  

 

 

Figure 1.4  Cognitive cycles as it is evolved 

There are different representations of cognitive loop proposed in the literature, but invariably they 

convey similar ideas.  Col. Boyde's OODA (Observe-Orient-Decide-Act) loop in Figure 1.4a, was 

devised to understand opponents' moves [11]. Deming's cycle (Plan-Do-Check-Act) was formulated 

for quality improvement (Figure 1.4b).  Figure 1.4c incorporates learning as an explicit task present 

along with other tasks in the cycle and it can be said as more complete depiction of the cognitive 

cycle. The emerging view is that, the self-aware network will sense the environment (Sense) and the 

observations captured by the sensors will be further used for planning (Plan) to bring up various 

solution options. The planning module determines potential actions, i.e. strategies to be followed 

based on observations and policies stored in the policy module (Policy). The decision module decides 

on the actions to be taken based on possible moves from planning stage. Learning capability is 

invoked for each of these modules to learn and remember about respective input/output behavior, so 

that the experience gathered could be used for improving the performance. Finally, the actuators (Act) 

are responsible with implementing chosen changes (reconfigurations) in the system.  

Many times all the task elements of the cognitive cycles are not co-located. Sensing happens at one or 

multiple devices and the actuation happens at another. Major aspect that is constraining cognitive 

cycle is this communication capability.  One of the gaps observed in the above discussed cognitive 

cycles is the absence of a communication capability identified that can achieve synchronization 

between multiple cognitive cycles distributed over different network elements.   

 

a) Col. J. Boyde's OODA  Loop 

b) Deming’s Cycle (PDCA) 

c) Cognition cycle (adapted from [12] ) 

Policy 
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1.3 Challenges Considered 

 

There are several fundamental challenges for a cognitive framework for autonomic networking.  The 

focus of this research is to build architecture and algorithms for cognitive networks with a knowledge 

modeling mechanism that incorporates following capabilities.  

Managing Uncertainty:  

Achieving survivable communication services providing acceptable end-to-end quality of service 

(QoS) is challenging in presence of uncertainty. Some of the uncertainties in wireless networks are 

perceived mostly at the physical communication layer - due to rapidly varying wireless link qualities, 

or variable points of network attachment for mobile users. Further application characteristics, users 

behavior, mobility etc are some of the additional sources of uncertainty with networks.   An 

autonomic management entity should take care of the network management in a robust manner at a 

reasonable computational complexity. 

Context-Awareness:  

A context is any relevant attribute of a device that provides information about its interaction with 

other devices and/or its surrounding environment at any instant of time. Knowledge about the contexts 

of the participating devices as well as the context of the environment is required to effectively manage 

the uncertainty. A sequence of device/entity contexts with the underlying interpretation (semantics) 

defines a situation. Imparting situation awareness through efficient context awareness is a challenge. 

Autonomic Resource Management: 

Flexible and seamless configuration and delivery of services in large, autonomous, and complex 

evolving networks is another challenge. How to efficiently and dynamically manage the spectrum 

(bands) in cognitive radios? How to improve the QoS by preventing the over-provisioning of scarce 

resources (bandwidth, power) and using learning algorithms to profile and anticipate future resource 

usage, so that the resulting system performance is optimal or near optimal? And there are many. 

Considering the above challenges we explore architectures and algorithms that impart robustness 

in terms of self-configuration and self-optimization for cognitive networks with a low complexity 

cognitive engine, in the absence of a high resolution model.  Some of the questions we are addressing 

as part of this research are: How the cognitive engine can be driven with a qualitative or semi-

qualitative model that can be developed by an expert initially and the engine can refine it through 

learning from the experience? What are the suitable architectures that can support it?  Further how the 

cognitive engine operating at a node level can integrate at a network level to achieve network goals? 

 

Further some key questions to answer through this research that can address objectives stated above 

are: 

 How effective is Qualitative graphic models to represent the dynamic behavior of cognitive 

radio and wireless networks? What are the issues, challenges and possible mitigations?  

 How Qualitative graphic models can be effective for the analysis and inference towards 

solving cross layer problems in wireless networks? What are the enhancements possible to 

address the correctness of inference, achieve tradeoffs, without the loss of efficiency?  Can 

the combination of monotonicity analysis help in resolving the trade-off? How to handle 

influences that are not monotonic and can affect the inferences? 

 How a Qualitative model based cognitive engine performs for a self-optimizing radio or a 

network? How QPN based analysis can help in the cognitive controller design?  

 Can the model analysis bring out some indicators/guidelines on the design of underlying radio 

or network so that it can be fed back into the system re-design?  
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 How can the graph based model be used by the radio for fault detection and self-diagnosis 

through qualitative inference?  

 

1.4 Contributions and Novelties 

 

The specific research problem being addressed in this thesis is in conceptualizing and enhancing the 

architecture of cognitive engine (CE) with a novel approach for knowledge representation and 

management mechanism applicable to cognitive networks. Key requirements for the cognition process 

and its components have been formulated from the basic principles drawn from cognitive science and 

developed a detailed architecture and framework of a Cognitive Engine (CE). We proposed the novel 

concept of using Qualitative modeling with influence graphs to represent the dynamic behavior of 

cognitive radios and networks. It can evolve to a more quantitative representation through learning 

while in operation. The specific modeling formalism chosen is based on Qualitative Probabilistic 

Networks (QPN). Suitable techniques have been incorporated to deal with ambiguities while QPN 

inference and a methodology to construct, configure and integrate QPN models for wireless networks 

in the CE have been proposed. 

 

Figure 1-5  Highlighting Areas of Contributions  

  

In addition to this new approach and methodology of using QPN based qualitative models for online 

dynamic configuration and optimization in a CE, an optimization algorithm encapsulated in an 

optimization core has been developed. It adopts QPN Model based inference for a sequential 

optimization approach with innovative techniques for overcoming the problem of ambiguous 

inference results from conflicting influences. A heuristic method is introduced to determine the 

sequence of activation of the controls in the optimization algorithm. This is based on their domain 

property categorization of the state variables into resource, capacity and consumer variables. 

Integrating monotonicity analysis with QPN to analyze the fitment of the model to be used in 

optimization loop is another novel contribution. With this the CE can check if the model is 

sufficiently constrained and select the right active constraints to consider while optimization in 

progress.   
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A Case Based Learning algorithm is incorporated to avoid anomalous configurations that are 

catastrophic for run time optimization process. A unique compact representation of the situation of the 

anomalous configuration enabled by the QPN graph structure minimized the size of the database 

required to support this. 

Extending the usage of QPN models to identify network failures towards contributing to self-

monitoring capability in CE is another contribution. It includes a proposed architecture and 

methodology for fault detection and diagnosis based on QPN models. 

Finally a novel concept of cognitive acoustic data communication for short range device to device 

(D2D) communication is introduced. A link design and implementation results are presented.  The 

QPN model of the behavior of this access technology has been observed to be similar to that of a 

cognitive radio link and we propose that the QPN models can be general enough and technology 

agonistic. 

The contributions topics with respective chapter mapping are depicted in Figure 1.5   

Some of the novel contributions which had immediate innovation potential have been filed as patents 

(Section 1.7) 

1.5 Outline of the Thesis 

  

The thesis is a monograph presenting the novel contributions and results on investigations in the area 

of cognitive networks and is organized as follows.  

Chapter 2 analyses the guiding principles behind a cognitive system and defines the requirements of 

a cognitive engine for imparting autonomic features to cognitive wireless communications. Based on 

the requirements a novel architectural proposal for the cognitive engine is proposed and that forms the 

reference for the works in remaining chapters. This Chapter also proposes how to address the need for 

efficient mechanisms for representing and managing the knowledge of the „self‟ and the „world‟.  

Chapter 3.  Qualitative Probabilistic Networks (QPN) is proposed as a novel approach for modeling 

the dynamic behavior of cognitive networks and the easy capture of qualitative knowledge from 

human experts to build the Knowledgebase is the major motivation. The Chapter proposes and 

designs (or solves) an optimization algorithm based on QPN modeling and reasoning. The use of 

semi-qualitative extensions in resolving trade-offs and thus enhancing the efficiency of the 

optimization are analyzed, and based on this analysis, a methodology for incorporating them in the 

model is proposed. The approach is evaluated through simulation of a cognitive link optimization 

scenario. 

Chapter 4 proposes to extend the use of the QPN Model of wireless networks for driving self-

optimization within the framework of the cognitive engine.  It uses a sequential optimization 

algorithm with the novelty of QPN based inference with a heuristic selection of order of the control 

variables.  Further, it demonstrates its application to a cognitive radio link adaptation and throughput 

optimization. Combining the monotonicity analysis with the QPN based methodology is another 

aspect of novelty in this chapter. 

Chapter 5 develops and analyzes QPN models for capturing behaviors at the network layer and 

above. The QPN methodology proposed in Chapter 4 is applied here also to prepare the model 

suitable for inference. To motivate the analysis we focus on a practical problem of TCP congestion 

management in an adhoc wireless network scenario. We show that a joint congestion management 

involving TCP and wireless link adaptation strategy can be inferred from the QPN model and the 

cognitive engine can operationalize it. This follows a simulation study to support and verify the 

observations.  

Chapter 6 proposes a novel scheme for using the QPN model for self-monitoring. The objective here 

is to identify network failures and provide clues in diagnosing the faults. An algorithm for fault 

detection is developed and illustrated using an antenna failure scenario in a radio link. Further the 

monitoring architecture is extended to cover regulatory compliance monitoring for cognitive radios. 
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Chapter 7 proposes a novel communication scheme using upper audio frequency band for short range 

communication between devices/appliances over the air. We refer to this scheme as Upper Audio 

Band (UAB) Communication. Cognitive Radio concepts have been used here to operate this 

communication modem as a secondary in presence of primary users such as TV, Home Entertainment 

Systems. We present the design and implementation details of the cognitive acoustic modem and its 

performance details. Further, the idea of using this in a personal area cognitive network is proposed 

and analyzed. The QPN model for this radio link is also similar to the one that for the radio from 

chapter 3, and it points to the use of generality of QPN models across communication technologies. 

Chapter 8 Concludes with the research findings and suggests several open problems for future 

research.  

 

1.6  List of Publications from this Research Work 

 

A. Balamuralidhar P, Ramjee Prasad, “Self-Configuration and Optimization for Cognitive 

Networked Devices”,  Springer Journal on Wireless Personal Communications, 2011, DOI: 

10.1007/s11277-011-0240-8    (Chapter 2,3 & 4) 

B. Balamuralidhar P, Rajan M.A, “Signed Graph based Approach for On-line Optimization in 

Cognitive Networks”, Proceedings, COMSNETS-2011, Third International conference on 

Communication Systems and Networks, 4-8 January 2011, Bangalore India    (Chapter 3) 

C. Balamuralidhar P, “Exploring Qualitative Probabilistic Networks for Knowledge Modeling in 

Cognitive Wireless Networks”, IWCMC-2013   (Chapter 3, 4) 

D. Hemant K Rath, Rajan MA, Balamuralidhar, “Monotonic Signed Graph Approach for Cross-layer 

Congestion Control in Wireless Ad-hoc Networks”, GlobeCom 2011.    (Chapter 5) 

E. Balamuralidhar P, Ramjee Prasad, “A context driven architecture for cognitive radio nodes”, 

International Journal of Wireless Personal Communications (Springer), Vol. 45 (3), May 2008, pp 

423-434   (Chapter 2) 

F. Rahul Sinha, P. Balamuralidhar, Rajeev Bhujade, “An Upper Audio Band based Low Data Rate 

Communication Modem”, Accepted in ICSPCS-2012  (Chapter 7) 

G. Rahul Sinha, P. Balamuralidhar, Rajeev Bhujade, “Software defined radio based on the upper 

audio band for low data rate communications over short distances”, SDR12-WinnComm, 2012, 

Accepted.   (Chapter 7) 

H. Balamuralidhar P, Ramjee Prasad, “A Programming Paradigm for Cognitive Radios”, 

International Conference on Wireless Personal Multimedia Systems (WPMC07),  Jaipur,  Dec 4-

6, 2007.   (Chapter 2) 

I. P.S.Subramanian, Balamuralidhar P, “Intensional description of autonomic use cases”, ”, ICT ‟06, 

11-12 May 2006, Funchal, Portugal   (Chapter 2) 

J. Balamuralidhar P, Ramjee Prasad,   “ A Radio Compliance Monitor Architecture for Enabling   

Regulatory Certification for Cognitive Radios” , WPMC06 , San Diego, U.S.A. from September 

17 to 20, 2006    (Chapter 6) 

K. Hrishikesh Sharma, Balamuralidhar P, “A Context Interpretation framework for Cognitive 

Network devices”, International Conference on Software Defined Radios, SDRF, Denver, USA, 

Dec 2007   (Appendix A) 

L. Hrishikesh Sharma, Balamuralidhar P, “Application of Semantic Web technologies for Context 

Interpretation in Cognitive Communication Devices”, WWRF – 19 conference, 5-7 Nov 2007, 

Chennai, India  (Appendix A) 
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a) Balamuralidhar P, “Dynamic Self Configuration Engine for Cognitive Networks and Networked 
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2 
2 Cognitive Engine Architecture 

 

 

In this chapter we propose basic guiding principles to be supported by a cognitive system 

and formulate the requirements of a cognitive engine for imparting autonomic features to 

cognitive wireless communications. Idea about a structured context space that incorporates 

various information structures needed by the cognitive process is a key aspect of the 

proposal. Based on the key requirements we develop a detailed architecture of a Cognitive 

Engine. 
 

 

2.1 Cognitive Engine – Introduction 
 

Cognitive Engine is conceptualized as an executable unit that can be embedded in network 

elements to provide them cognitive capability individually as well as collectively. The network 

element is a general term that includes various entities in a network such as radios, base stations, 

routers etc. Further we define cognitive nodes as a network element with an embedded cognitive 

engine. In this line we view cognitive network as a system driven by a network of cognitive engines.  

 

The cognitive network research community has proposed several architectural designs for 

cognitive networks. In this section we review a few key developments towards drawing out a list of 

major architectural requirements of a cognitive engine in the context of cognitive networking. 

 

2.1.1 Related works 

 

Pioneering work by Clark et.al [1] proposed a cognitive-enhanced networking concept with a 

major focus on self-recovery from faults. They introduced Knowledge Plane (KP) as a key component 

of the cognitive system. It followed a closed loop distributed control system structure enabled by 

learning and reasoning capabilities. It maintains a high level model of the network. Architecturally KP 

is a vertical plane cutting across the protocol layers and spans horizontally across nodes.  The KP 

should take advantage of the different observations that can be made in various points of the network, 

implement a unified approach to solve problems, avoid ad-hoc solutions, include network edges, in 

order to exploit their knowledge; be able to function in dynamical, continuously changing 

environments, also robustness against misleading and/or incomplete information, and under 

conflicting high-level goals. It is noted that these basic principles are shared by many of the 

researchers those followed research work related to cognitive networks. 

 

 Thomas et al.[2], introduced cognitive networks more formally and specified the architecture 

characteristics such as  (i) extensibility and proactivity; (ii) the capability by the decision process to 

use network metrics as input and provide actions as output; (iii) the capability to achieve higher 

performance levels with respect to traditional networks. They define three layers for the cognitive 
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entity namely behavioral, computational and neuro-physical. Objectives with an end-to-end scope is 

handled by the behavioral layer, the decomposed local objectives are in the scope of middle layer and 

implementation of actions are accomplished by bottom layer. A CN is formed of a set of software 

agents, which have certain reasoning capabilities. These software agents are connected in a network 

and interact with each other; they can cooperate and act. While functioning in this environment, the 

agents can learn and take decisions in order to reach an end-to-end goal. These end-to-end goals are 

dictated by the business and user‟s requirements. 

 

 

The work from Trinity College of Dublin presents a framework for cognitive Network [3] that 

proposes a logical separation between network nodes and the cognitive engine running in the network. 

The cognitive engine performs learning, orientation, planning, and decision-making functions; the 

network node performs observation and reconfiguration. While it provides some flexibility, the 

logical separation of the two entities can potentially limit the benefits from local optimization and can 

increase signaling overhead.  

 

  The concept of a cognitive plane is introduced in CogNet [4], to use information from all layers 

and run joint-layer optimization algorithms that can be distributed throughout the network. In this 

proposal, each protocol layer is extended with so-called Intra-layer Cognition Modules for performing 

intra-layer monitoring, control, and coordination functions. Modules are interconnected through the 

Cognitive Bus, for the coordination of the cognition modules. While this reduces the complexity of 

managing cognitive processes, the performance is highly dependent on the coordination of intra-layer 

modules. Though a distributed operation is conceptualized here the interaction between multiple 

cognitive planes are not clearly brought out.  

 

Mihailovic et al.[5] investigated two specific topics: i) the definition and formulation of the 

knowledge lifecycle in self-managed networks, ii)  the building of situation awareness in such 

networks as a ubiquitous concept in dynamic control. In most of these proposals the cognitive entity 

can comprise all the layers of a node or even just a subset of them, whereas the reconfigurable entity 

involves reconfigurations not only inside a single node but possibly also in each node of the network. 

However in the case of multiple distributed cognitive entities, it is not clear how the multiple 

reconfigurations are coordinated to achieve a network wide goal. Recently the architecture proposed 

by Fonseca [6] has a hierarchical architecture consisting of three levels of cognitive functionality, 

namely layer level, node level and network level. While this architecture is good for hierarchically 

structured networks, it would not be efficient for adhoc networks. 

2.1.2  Knowledge representation for cognitive Networks – a gap 

One of the major requirements of using a cognitive approach for network wide adaptation is the 

use of sharable knowledge among network elements to enhance collaboration and cooperation. Most 

of the reported works choose the use of markup languages, such as the Extensible Markup Language 

(XML). There are some proponents for the use of  DARPA Agent Markup Language (DAML) by the 

Defense Advanced Research Projects Agency (DARPA), that the features of both XML and the 

Resource Description Framework (RDF).  to support ontologies for web objects and some cases 

ontology languages such as OWL. Some earlier proposals include Radio Knowledge Representation 

Language (RKRL), first promoted by Mitola [7] with the objective to represent radio knowledge 

through the use of structured, yet natural, language. Though these are typical representational 

mechanisms the real information are gathered from sources/structures such as Management 

Information Bases (MIBs)[8].  

 

There are practical issues with the use of semantic web technologies to run on typical embedded 

radio platforms due to the limited resource availability of these platforms.  One of our investigations 

conducted for the evaluation of ontology based context reasoning is presented in Appendix A of this 

thesis. It was concluded that, while XML based languages are recommended for the purpose of 

standardized information exchange, they may not be efficient for embedded applications since they 



Cognitive Engine Architecture  
12 

 

 

are more verbose. One possibility of addressing this is by catching the most frequent decision patterns 

in the history, and using them for faster decisions. In addition to this there can be a hybrid approach 

towards more efficient and optimized data structures for context representation and interpretation 

internally, while they are used in XML based formats for standardized information exchange 

externally.  No structured analysis of the information space handled by such representation 

mechanisms in the context of cognitive networks has been reported in the literature to the best of our 

knowledge. 

2.2 Cognitive Architectures – Guiding Thoughts 

As discussed earlier there is a gap in understanding the structural details required for efficient 

capture and manipulation of information in a cognitive engine. In this section we bring forth some key 

insights on this aspect and subsequently integrate them in extended cognitive engine architecture to be 

presented in a later section. 

 

2.2.1 Cognitive Systems – Knowledge of the ‘self ‘and the ‘world’ 

Here we propose the following fundamental requirements of an object to be cognitive.  

 

Cognitive as a prefix applied to an object, which may have a spatio-temporal extension -i.e which 

may persist in time and may occupy non-trivial domain of space - should satisfy the following: 

 

a) Within the object a representation of the Ontology of both the internals of the object and the 

environment the object “lives in” should exist. 

b) Mechanisms to maintain the global faithfulness (w.r.t temporal variation) and global 

consistency (w.r.t spatial variations) of these representations should exist. 

Here by ontology we mean the representation of reality or facts, by specifying various concepts 

and their inter-relationships used in the system. This explicit representation enables multiple systems 

to share the knowledge and interoperate with a common semantics. A cognitive object should 

incorporate ontology of the „self‟ and the „world‟ where it operates. It should also have mechanisms to 

keep this knowledge up-to-date and relate truthfully with the internal and external states of the object. 

In the context of a wireless network element the term „self‟ means the facts about the internals of the 

device such as radio parameters, protocol stack configuration, applications, processor, memory, 

battery power etc. „World‟ representation includes the information about the network, network 

objectives, state of the neighbor devices, communication environment etc.     

 

Maintenance of these representations need not necessarily be completely local; in fact for non-

trivial cognitive systems there will be spatio-temporal instances in which the sensed ontology and the 

internal ontology will be different and a conscious decision will be made not to update the internal 

ontology if due to prior learning the sensed ontology is known to be in a transient mode.  

 

Indeed what is important in Cognitive systems is the Persistent and Unitary Ontology which can 

be called the conscious knowledge of the system and which constitutes the “self” of the system. The 

persistent nature of this ontology enables pro-activeness and robustness to “ignorable events” while 

the unitary nature enables end-to-end adaptations. Robustness of adaptive behavior is ensured by the 

minimization of the generalization error in learning due to the insistence of a persistent ontology.  

Moreover, this feature – of having a core persistent and unitary ontology- is what will distinguish 

cognitive systems from merely adaptive systems which may also need ontology to function but will 

not have such a notion of “self”. When there is a system constituting many autonomous elements, 

then there is “self” for each of those elements and the “world” for each of them is the complement of 

respective “self”s.  Further to keep the unitary nature at the system level the ontology should be 

communicated between all elements. This communication capability is logically different from the 

regular network data communication.  
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Further the ontology also includes the key social behavioral rules that every member of the society of 

cognitive nodes needs to follow. From the cognitive networks point of view the rules related fairness, 

non-interference, network utility maximization are such social policies. 

 

With this we see the cognitive process model to have the following basic capabilities, Sense, Analyse, 

Decide and Act supported by two pervasive capabilities ; Learn and Communicate.  Communication 

will be more important when any of the elementary capabilities in the cycle is distributed. 

 

2.3 Context Space and Ontology 

So for a cognitive node, awareness about the „self‟ and the „world‟ is an essential pre-requisite for 

self-adaptations and it can be addressed under the general framework of context awareness. Here the 

term context is used in a more general sense that context is the information that surrounds, and gives 

semantic meaning to, an entity. Alternately it can be said that context is the raw information that, 

when correctly interpreted, identifies the characteristics of an entity and it is a function of time and 

environment. In the case of a network element, this includes the information about the device, 

network, user and applications. 

 

Conceptual knowledge provides the meaning of fundamental notions in a domain of interest as well as 

fundamental principles relating to those concepts. This kind of knowledge is referred as ontology and 

they are formally represented using ontology languages. A discussion on this aspect is given later in 

this chapter. 

 

To represent and analyze the cognitive system the crucial first task is to get a clear conceptual 

understanding of the set of contexts. An accepted way of obtaining a conceptual understanding is to 

strive for a coordinatisation of the set which refines “conceptual” into a “structural” understanding 

[10].  Here we propose the approach of using a context space to bring that kind of a structural 

understanding to the system. 

 

2.3.1 Context Space 

The basic premise of this approach is that a structure for a robust architecture for a context aware 

network element should be based on a detailed structural analysis of the spaces associated with this 

application. A possible strategy is to enumerate a set of contexts; define a (possibly mixed) 

coordinatisation of this set to make it into a context space. The “axes” of this space will play the role 

of descriptors of the adaptation loops. These descriptors have to be rich enough so that any “new” 

adaptation one may come up with at a later point in time can be adequately described. This also can 

enable the discovery of new adaptations to satisfy a given goal. This also brings the open adaptation 

capability towards a future proof system. A detailed discussion on the coordinatisation and context 

space structure is given in our paper [11]. 

 

On the implementation side, the structure of the context space should help in the identification of 

generic algorithms applicable for a maximal set of problems addressed by the cognitive engine. It 

should also be amenable to use formal methods for design and analysis of system behaviors. 

 

The set of contexts relevant to a cognitive network element is considered as inhabiting a 

multidimensional space as exemplified in Figure 2.1. There are many alternatives possible as the 

coordinates for the context space. Here we choose to structure major dimensions of the context space 

in terms of „Self‟, representing the internals of the network element (device) and „World‟ representing 

the externals. They are further refined in a hierarchical manner. It should also be noted that some of 

the dimensions are refinements of other dimensions. It is in this sense we call this coordinatisation as 

mixed. 
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We define context space is defined as a triple <C, IC, DC> where C is a partial order < C,‟ ‟ > , 

where „ ‟ indicating the sub-context relation, IC  is a family of structures indicating the 

informational relations and DC  is a family of structures indicating the tradeoff relations. The 

structure C modularizes the context space so that it can be easily accessed, updated and managed. The 

trade-off relations DC  is used to identify the relations where resolution of trade-off is required for 

decision making or evaluating the related information elements.   IC includes different structures to 

facilitate the representation of deductive relationships such as dependency, causality and 

monotonicity. The deductive relations are used to deduce the state of one information element from 

one or more elements involved in the relation.    

 
      

  Figure 2.1  Example illustration of the context graph for a Cognitive Radio device 

2.3.2 Cognitive Processes 

 

Cognitive Processes are a sequence of executable functions following the meta-process structure „S-A-

D-R‟ operating on the Context Space (Figure 2.2).  

 

We introduce an additional meta process element „Communicate‟  to emphasize the requirement of 

having the communication capability to synchronize with the process elements and other entities 

involved. This pervasive „Communicate‟ capability is required by a cognitive engine to boot strap and 

connect with other cognitive elements in the network.  As proposed in the guiding principles from 

previous section the requirement of having a unitary ontology and mechanism to maintain its 

truthfulness is enabled through this „Communicate‟ capability ( Figure 2.3) When the process 

elements are local then this capability may get implemented through suitable interprocess 

communication (IPC) mechanisms or Application programming interfaces (API). But more 

importantly to communicate in non-local manner across multiple CEs the concepts like Cognitive 

Pilot Channels (CPC) [14] and Cross layer Coordination and Signaling Plane (CCSP)[6] need to be 

considered.  
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Figure 2-2 Enhanced Cognitive Meta Process 

 

 

Cognitive adaptations are aimed at achieving goals specified at a higher level related to QoS, 

connectivity, security, mobility etc. Once these high level social goals are specified by the policy then 

a suitable plan or process is synthesized or fetched by the execution unit for deployment. More details 

on this approach is given in our paper [9]. 

 

There are two categories of goals for adaptation in the cognitive network system. 

 

1. Maintain the equilibrium in a state/situation 

2. Optimize performance and efficiency around an equilibrium 

 

In the first case the system is put into a state of operation which is expected to be stable for a 

sufficiently long time, but its stability can be challenged by various external factors including channel 

conditions, traffic load, mobility etc. The adaptation scheme should keep the system in its 

equilibrium. 
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Figure 2.3 Cognitive Process and its interaction between two nodes 

 

In the second case the system is in a state of equilibrium, but there is a quest for optimization of 

performance and resource consumption dynamically, without affecting the equilibrium. Most cases 

this will involve trade-off between multiple cost functions for optimizations. For example there is a 

trade-off between Quality of Service and Power consumption. 

 

A typical context based adaptation loop starts with sensing or measuring the context information, then 

analyzing the raw information gathered to perform appropriate context abstraction/interpretation, 

presenting the composite events and abstracted information to take decision on the system 

configuration and finally implement the reconfiguration decision.  

 

 

2.3.3 Emerging Architecture 

Architecturally a Cognitive Radio can be viewed as the integration of a flexible radio platform 

with a cognitive management layer. A software defined radio (SDR) can provide the required 

reconfiguration services and a Cognitive Engine (CE) implements the cognitive capabilities required 

for the device. The change in SDR to Cognitive Radio to Cognitive Networks is in the scope of 

intelligent reconfigurations using the cognitive engine as depicted in Figure 2.4. While the scope of 

SDR is at Radio level, the domain of Cognitive Radio includes the link layer. Cognitive Network has 

an end-to-end perspective of the network and the scope spans from physical layer to application layer.   

Figure also shows an emerging view of the cognitive node architecture at a high level. Here the SDR 

platform is abstracted as a black-box with certain knobs for control/configuration of the device and 

meters which provides various context measurements. The cognitive entity/engine (CE) consists of a 

cognitive execution engine which runs a  goal driven cognitive process. The meta model of this 

process is a cognitive cycle – Sense, Analyse, Decide, Reconfigure (SADR). It can be easily mapped 

to various cognitive cycles proposed in the literature (eg: OODA ). It uses a knowledge base including 

ontology, rules, models, plans, and state representations. The cognitive execution engine could be 

considered as a virtual machine running the cognitive programs that are abstract descriptions of 

various cognitive processes involved. This module will be responsible for the run-time refinement, 
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composition and scheduling of the processes based on the context space knowledge. A detailed 

discussion on this architecture and guiding principles are given in our paper [9].   

 

 
 

 
 

 

 Figure 2.4  Cognitive Engine – High Level Architecture and Scope 

 

 

2.4  Cognitive Engine Architecture – Key  Requirements 

Following the high level architecture presented, this section consolidates the key requirements of a 

cognitive engine (CE) from a practical perspective for applying to cognitive networks. Further it bases 

these requirements to propose an extended architecture for CE. 

 

Requirements:  
 

Knowledgebase 

 
a) The Knowledgebase of a cognitive engine should have effective mechanisms to represent 

the ontology related to „self‟ and „world‟ as defined by a context space.  

b) Handling uncertainty is identified as a challenge in Cognitive Networks. The knowledge 

model should support representation and reasoning under uncertainty.  

c) The model should enable the representation of knowledge that is persistent and transient. 

The representation should have a modular and scalable structure and it should be 

shareable across nodes. 

d) It should facilitate the inclusion of semantic information that is required by the self- 

configuration and self-optimization engine such as costs, type, relationships (dependency, 

causality) etc. It should also include the representation of network wide policies. 

e) It should support modeling the dynamic behavior of the network towards use in dynamic 

optimization. 
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Cognitive Process 
a) CE should sense all mandated protocol stack and other device parameters defined by the 

policy and they should be reported. 

b) Sensing should support change detection in the network environment parameters so that 

efficiency of analysis and decision making could be improved with event triggering on 

context changes.  

c) The sensing process also should enable synchronization of the reported measurements 

before submitting them to other consumer modules. 

d) Need to support standardized  interfaces for collecting the measurements from protocol 

layers 

e) Adaptation needs to be considered with an end-to-end perspective 

f) Adaptation needs to be completed before any substantial change in the external 

environment/situation. 

g) The adaptation should support planning and operation of control loops running at 

different time scales. 

h) The transients during the reconfiguration process need to be avoided or minimized. 

i) The reconfiguration module should synchronize with the protocol stack state and 

procedures so as to avoid transients and faulty configurations. 

 

General Requirements  

a) Architecture should support centralized as well as distributed deployment of cognitive 

engines  

b) It should accompany a life cycle methodology for design, development and management 

of the cognitive engine. 

c) There should be mechanisms to assign roles and responsibilities to nodes for reporting, 

decision making and reconfiguring.  There should be a mandate to Sense, empowerment 

to Decide, and authorization to Reconfigure. 

 

2.5 Detailed Architecture of a Cognitive Engine 

In this section we present an architectural framework for implementing the cognitive engine as a 

centralized or distributed entity in network elements. 

 

Major modules identified in the architecture reflect the cognitive meta process Sense-Analyse-Decide-

Reconfigure (SADR) cycle.   The modules are grouped as State Sensing, Analysis & Decision, 

Reconfigure, Learning and Communication as shown in Figure 2.5.  State sensing module has a 

mandate to collect measurement reports from the network protocol stack following the underlying 

networking standard procedures. It also does periodic measurement of device‟s internal states such as 

battery level, memory, processor utilization etc.  The list of parameters to be measured is obtained 

from the context space model. The measurement may arrive at different times and periodicity.  They 

need to be synchronized through suitable methods such as interpolation and resampling to get a 

common time reference.   Further the sensing process detects and reports certain events and situations 

defined which composite contexts in the context space model are. Context parameters related to 

environment is monitored for any substantial change, and that „change‟ event may be used to trigger 

the reconfiguration of the related network aspects. 
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Knowledgebase is the key element that is accessed and shared by all other modules.  It houses the 

persistent and transient knowledge about the „self‟ and „world‟ related to the network element. A 

context space model incorporating the state variables, and supporting information structures constitute 

the key component of the knowledgebase.  This is used by the sensing module to plan the 

measurements, state determination and various event detections. Some of the information structures in 

the context space model will be used to find alternate information means in case of a sensor failure.  

Policy and profiles (user and application) are other information elements in the knowledgebase used 

by Analysis and Decision unit.  The Decision database includes an initial set of configurations 

corresponding to a set of acceptable operating points of the system. This is used as initial points for 

system self-configuration. This database will be augmented with additional good configurations that 

are found during the course of operation of the optimization process by the Analysis & Decision 

module. Additionally boundaries of anomalous configuration spaces, where a configuration resulted 

in very bad system performance, are also remembered in the database. This anomalous configuration 

history will help in avoiding disruptive transients during the system reconfiguration. Further policies 

and profiles from the knowledgebase are used to specify the boundaries of the configuration space. 

This will manifest in the context space structure in the form of constraints and variable assignments. 

 

The Analysis &Decision engine uses the current state information, consults the context space model 

to understand the situation, and examines the policy database to choose the goals and constraints to 

arrive at a set of candidate re-configurations towards achieving the goals. These configurations are 

further filtered by considering the cost of reconfiguration and possibility of disruptive transients.  The 

context model incorporate necessary cost attributes for computing the overall cost of reconfiguration. 

Time for reconfiguration is a common metric for the cost.  Further there is a check for the feasibility 

of completing the reconfiguration within the time available for configuration. This time availability 

will depend on the dynamics of the external environment. The change detection function of the 

sensing module is expected provide this guidance to the decision maker.  For quick decisions, the 

decision database is consulted to find a best suited configuration for the current situation. After an 

initial configuration the optimization process can continue based on the statics of the system state. 

Since wireless networks are known to be highly dynamic the optimization needs to be online and it 

has to undergo multiple „SADR‟ cycles. The underlying optimization algorithm may change based on 

the specific nature of the adaptation loop. A controller is envisaged to be supporting this orchestration 

of optimization process. 
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Figure 2.5  Architecture of the Cognitive Engine 

 

Next stage is to implement the configuration decisions on the target network elements. This is 

required to be synchronized and scheduled with the state machine of respective protocol stacks and 

device platform. The function of reconfiguration coordinator is exactly this. If it is a local 

configuration it is done through specific APIs. Remote configuration requires a communication 

channel to transport the configuration variables. This is common concern for the Sensing module as 

well. Here we conceive an Interface module which handles interfacing the engine with local and 

remote configuration and sensing points.  

 

From the interface standards perspective some of the noteworthy proposals are ULLA (Universal Link 

Layer API) [12], GENI (GEneric Network Interface), and Common Application Requirement 

Interface (CAPRI) [13]. While ULLA focuses on interfacing the PHY and Link Layer, GENI enables 

the detailed monitoring and configuration of the transport and network layers. Together, ULLA and 

GENI provide interface functionalities through the provision of a generic and portable API. For 

interfacing with the Application Layer the interface specified by Common Application Requirement 

Interface (CAPRI) is a good choice.  

2.6 Embedding the Context Space Structure in the Knowledge base 

A context space structure supporting the required informational elements that represents the state and 

dynamics of the network is a key component of the knowledgebase in the cognitive engine. The 
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structure should support the representation of information dependency, causal relationships, and 

further support the incorporation of additional attributes of the system to these relation structures.   

Graphical models are best suited for such requirements.  In the next chapter we present an 

investigation and a proposal in this direction. 

 

2.7  Summary 

In this chapter we proposed the basic guiding principles behind a cognitive system that should be 

considered while designing the cognitive network architecture. The unitary nature of the ontology 

representing the self & world with mechanisms to keep its truthfulness with respect to the current 

state of the system is a very fundamental requirement.  This proliferates a system wide self-awareness 

capability. We further formulated important requirements of a cognitive engine in the context of 

cognitive networking.  Based on the stated requirements we developed a detailed architecture of the 

cognitive engine and will be a basis for the works in the following chapters.   
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3 Qualitative Probabilistic Networks for Context 
Space Model in Cognitive Engine 

 

 

In this chapter we propose the use of Qualitative Probabilistic Networks (QPN) for modeling 

dynamic behavior of cognitive networks. Easy capture of qualitative knowledge from human 

experts to build the Knowledgebase is the major motivation. We use some of the semi-

qualitative extensions of QPN to resolve trade-offs while reasoning with a QPN model of the 

network.  Further we propose an integrated methodology for the development and use of 

QPN models for cognitive networks. 
 

3.1 Introduction - Graphical Models for Cognitive Networks 
 

Ulrich G. Oppel[14] states that “Every complex system can be determined by a causal probabilistic 

network without cycles and every such network determines a Markov field. Graphical models have 

been observed to be very useful for modeling the layered network protocol stack. Bayesian Networks 

(BN) is a graphical model representing the statistical relationships between random variables that is 

being widely used for statistical inference and machine learning. Beyond learning and representing 

the parameters that model the network, BN can be used to make inferences and drive a control loop 

that can take the network to a stable high performing operating point. However it is to be noted that in 

general probabilistic inference is known to be NP-hard [1]. 

 

3.1.1  Related Works 
Graphical models are widely explored for cognitive network optimization. E Meshkova [2] has 

explored the use of simulated annealing and graphical models (BN) for cognitive network 

optimization. In their observation complex Bayesian model do not perform consistently better than 

simple probabilistic models. Moreover large graphical models tend to be computationally costly, esp 

for resource constrained environments.  Later Georgio [3][4] showed that BN can be used for 

modeling a cognitive network and inference the network behavior. However they also observed the 

sensitivity of BN model and inference to the sample size required for training.  It was noted that in 

some cases the BN based inference perform better with shorter training data compared to the case 

where large training data is used. As the number of variables increases the reasoning using BN 

becomes more computationally intensive. Moreover the construction of a truthful representative BN 

for the communication network through machine learning is found to be difficult and highly depend 

on the training data set. In this situation still domain experts are to be relied up on to build the 

qualitative part of BN and gathering reliable probabilities remains a challenge.  
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3.1.2 Qualitative Modeling  
 

Traditionally, engineering systems including wireless communication networks uses quantitative 

models aimed at producing precise numerical results as answers to related queries. Many times such 

numerical results are overly elaborate and contain much more details than that is required. In some 

other cases the system is highly dynamic and nonlinear, and then the precision brought-in by the 

numerical model is misleading in presence of the uncertainty. Emulating the humans‟ use of common 

sense to reason about problems qualitatively would be an interesting direction to explore.    

 

Generally qualitative reasoning is viewed as an abstraction of quantitative reasoning.  In some cases 

the information required for the model is elicited from human, and that is often qualitative. There are 

many ways to present this abstraction. One way is to use symbolic values and intervals to represent a 

numeric value. This has a bearing on fuzzy sets. For example the Signal to Noise Ratio (SNR) at a 

radio receiver that has a numeric value of 2.32dB may be stated as „low‟ SNR. Another technique that 

can be followed is to find time derivatives and abstract them into „direction of change‟ such as 

increasing / decreasing.  A measurement time series of SNR having values (2.32, 3.45, 6.57) can be 

stated as „increasing‟. A third principle for abstraction that can be used is to simplify functions into 

monotonic relations. For example, the bit error rate (BER) is a non-linear function of SNR and this 

function can be abstracted as a monotonic causal relation from SNR to BER. 

 

There are advantages and disadvantages of following a qualitative approach for modeling. A 

qualitative model is easier to specify than a complex numerical model that may have may have many 

parameters to be defined.  They can be easily explained, understood, and verified by human. In 

presence of uncertainty, a precise numerical model is likely to be highly in-correct than its qualitative 

counterpart. However major disadvantage of Qualitative model is its limited expressibility and the 

information is in-sufficient for many decision making tasks where as a numerical model may perform 

better.  

 

In the view of difficulties faced by the BN to scale up with the precise numerical probability values, it 

would be interesting to explore on how far their qualitative version can be useful for modeling and 

reasoning in the context of Cognitive Networks. This aspect has not been explored so far to the best of 

our knowledge. 

 

3.2 Qualitative Probabilistic Networks and Signed Graphs 

Here we consider two related formalisms for the Qualitative Modeling approach. They are Qualitative 

Probabilistic Networks and Signed Graphs. 

Qualitative Probabilistic Networks (QPN) is such a structure in which the probabilistic information 

captured is the qualitative signs of probabilities and is more robust than exact numbers. Once the QPN 

is evaluated to be robust then quantitative information may be brought-in through learning process in 

a systematic manner.  While QPN can be the basis of a full-fledged BN, the robustness of the QPN 

structure (though limited in information) is a reliable fall back for the probabilistic reasoning. With 

this various possibilities of use it is important to derive as much information as possible from such 

networks. In our context of knowledge representation in cognitive wireless networks, QPN can be 

considered as part of the context space model. 

When the link signs/symbols indicating the causal influence are limited to {-,0,+} then the QPN 

structure can be termed equivalent to a Signed Directed Acyclic Graph (SDAG).  The directed acyclic 

graph causal framework has shown to be a useful tool in thinking carefully about questions of 

confounding and causal inference [13]. With assumptions on monotonicity as indicated by the signs, 

we consider both basic QPN and SDAG are structurally equivalent for our discussions unless stated 

otherwise. 
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3.3  Qualitative Probabilistic Networks - Preliminaries 
 

Qualitative Probabilistic Networks (QPN), is a special case of BN and introduced by Wellman [5].  

QPN encodes statistical variables and the probability of influences between them in a digraph 

G=(V(G),E(G)). Nodes in the set V(G) represent the variables.  We use the notations π(A) to denote 

the set of all predecessors of node A in G. Similarly ζ(A) denotes the set of all predecessors of A. 

Edges in E(G) express causal influence from one node to the other node of  E. It is looked upon as 

qualitative influences which are either + or – instead of conditional probabilities of BN. Formally the 

edges can be said to represent the probabilistic independence among the represented variables.  A path 

between two nodes is blocked if it includes either an observed node with at least one outgoing edge or 

an unobserved node with two incoming edges and no observed descendants. Two nodes are said to be 

d-separated if all paths between them are blocked. The corresponding variables are considered to be 

conditionally independent given the entered observations.  Though QPN has been explored in the 

literature for qualitative analysis of systems in biology and chemistry, its application in the context of 

cognitive networks has not been explored so far to the best of our knowledge.  

A qualitative network associates with its digraph a set of qualitative influences such as positive, 

negative or no influence.  A positive qualitative influence of a node B1 to B2 is expressed as S
+
(B1,B2) 

which says probability of B2 has a positive influence from that of B1. In other words if there is an 

increase in probability of B1, then probability of B2 also will increase regardless of any other 

incoming influence on B2. This means   (  |   )    (  |  
̅̅ ̅ )     for any combination of values 

x for the set π(B2)\{B1} of predecessors of B2 other than B1.  The notation π is used to indicate the set 

of predecessors and small letters {b1,b2} indicate the values of {B1,B2}. Considering binary values 

for variables, b1 denotes b1=TRUE and   ̅  denotes b1=FALSE.  In a similar manner S
-
(B1,B2) is 

defined for negative influence. When the influence is non-monotonic or unknown, the representation 

used is S
?
(B1,B2) which indicates an ambiguous relationship.  In QPN the nodes represent the 

variables and directed edges represent the influences. The edges are labeled by one of the symbols in 

{+,-,0,?} based on the nature of influence.  

 

Let us consider an example from wireless communications involving three variables Signal to Noise 

Ratio (SNR), Transmit Power (P), and Distance from transmitter (d). Let us consider these as binary 

variables taking a value of INCREASE or DECREASE. It can be observed that there is causal 

relationship from P to SNR and d to P .  Also it is known that   (   | )    (   | ̅  )     and 

can be expressed as S
+
(P,SNR). Similarly    (   | )    (   | ̅  )      and we get S

-
(d, SNR)  as 

shown in Figure 3-1 (a). Another influence diagram involving the causal relationship between 

modulation (m), bit error rate (e), burst bit rate (r) and throughput T is shown in Figure 3-1(b). It can 

be explained in a similar manner. 

 

 
Figure 3-1 QPN Examples  
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In QPN the influence relation is assumed to follow symmetry property, that is   (     )  
  (     ) where   *       +.  According to transitivity property, the net influence of a chain 

consisting of nodes with only single incoming and outgoing arcs can be computed with a ⊗ operator 

from Table 1. Composition property mandates that multiple influences between two nodes along 

parallel chains combine into a single influence using the  ⊕ operator from Table 3-1. 

 

Table 3-1 QPN Operators 
⊕ + - 0 ? 

+ + ? + ? 

- ? - - ? 

0 + - 0 ? 

? ? ? ? ? 
 

 

⊗ + - 0 ? 

+ + - 0 ? 

- - + 0 ? 

0 0 0 0 0 

? ? ? 0 ? 

 

 3.3.1  Reasoning using QPN 
The reasoning in QPN is based on the idea of propagating and combining signs. It builds upon the 

properties of symmetry, transitivity and composition of qualitative influences. An efficient algorithm 

for reasoning with QPN is given by Druzdzel [6].  Subsequently Kouwen [7]  has given a revised 

version of the algorithm and Xiang-Kun Li et.al [8] enhanced the algorithm to support the propagation 

of multiple observations  ( Algorithm 3.1). The basic idea of the algorithm is to trace the effect of 

observing a set of variable‟s values on the probabilities of the values of all other variables in the QPN 

by message-passing between neighboring nodes (variables).  The sign of the net influence along all 

active trails between the newly observed variable and the other variables in the network is computed 

by using sign propagation and combining employing repeated use of ⊗ and ⊕ operators.  For each 

variable, it finds the net influence in a node-sign that indicates the direction of movement in the 

variable‟s probability distribution that is caused by the new observation.  

 

Given a QPN structure and a set of observed nodes O with their signs, the function 

PropagateObservation (QPN,O,sign)  in Algorithm 3.1 performs a sign propagation based reasoning 

and updates all the relevant nodes of the QPN. The inferred effect of these observations on other 

nodes can be obtained by accessing the updated variables corresponding to the nodes of interest. A 

detailed discussion on the algorithm is available in [8]. 

 

 

Algorithm 3.1  QPN Sign Propagation Algorithm for Multiple Observations 

 
O  – set of observations 

sign  -  signs of observations 

 

procedure  PropagateObservation ( QPN, O, sign ) 

 for each     ( ) do 

  sign[Vi] ← „0‟ 

  oppdir_sign[Vi] ← „0‟ 

 end for 

 for each  , -    do 

  Xi ← Bayes_Ball(V(G),O[],O[i]) 
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  PropagateSign ( Empty, O, O, sign,Xi ) 

 end for 

end procedure 

 

procedure PropagateSign( trail, from, to, message, X) 

sign[to] ← sign[to] ⊕ message 

if to    (    ) then 

 oppdir_sign[to] ← oppdir_sign[to]   ⊕   message 

end if 

trail ← trail   {to} 

for each active neighbor Vi of  to do 

 if        then 

  linksign ← sign of (induced) influence between to and Vi 

  if      (  )  then 

   message ← oppdir_sign[to]  ⊗  linksign 

  else  

   message ← sign[to]  ⊗  linksign 

  end if 

  if Vi         and not SignsEqual ( to, Vi, message ) then 

   PropagateSign ( trail, to, Vi,  messagesign ) 

  end if 

end if 

end for 

end procedure 

 

function SignsEqual ( to, Vi, messagesign ): Boolean 

 signsequal ← false 

 if     (  )  then 

  if oppdir_sign[Vi] = oppdir_sign [Vi]    ⊕  messagesign then 

   signsequal ← true 

  end if 

 end if 

 return signsequal 

end function 

 

 

This reasoning process can deduce the effect of a change observed by a variable on its successors. In a 

wireless network model this reasoning process can yield the effect of change in a control variable 

(such as transmit power) on the goal function (such as throughput). In an optimization setting, 

repeated queries on the effect of a change in control variables can be used to drive an optimization 

cycle. In the following sections an example of a wireless link is considered to illustrate the 

applicability of QPN in modeling and reasoning. 

  

3.4 QPN Model of a wireless link 
 

We develop an example QPN model of a cognitive radio link showing the well-known influence 

relationships between different cross layer parameters (Figure 3.2).  The cognitive radio accesses the 

medium as a secondary through spectrum sensing in presence of a primary transmitter.  The key 

parameters considered here are TxPower, Signal to Noise Ratio(SNR), SINR Threshold, SINR margin, 

Distance between Tx and Rx (d) , Bit Error Rate (BER), Frame Error Rate (FER), Burst Rate, Tx 
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Bitrate, Tx Overhead, FrameSize, Spectrum Sense duration, Interference to Primary etc.  In the given 

model, it says an increase in TxPower improves Signal to Noise Ratio (SNR), which in turn reduces 

the Bit Error Rate (BER). A decrease in BER causes reduction of Frame Error Rate (FER) and finally 

it improves throughput.  Similarly an increase in modulation order increases the SNR threshold 

required to achieve a given BER. At a given SNR this increase in modulation order increases the 

BER, affecting the throughput negatively. At the same time the increase in modulation order increases 

the burst rate and results into a positive influence in throughput.  Effect of spectrum sensing is 

captured in this model as the influence of spectrum sensing duration on the interference caused by 

secondary to a primary transmitter. An increase in spectrum sensing duration will increase the 

probability of detection of the primary transmitter and reduce the probability of secondary 

interference to primary. Further the spectrum sensing duration has an impact on the transmission 

overhead (reducing the time available for data transmission).  An increase in the sensing duration 

increases the TXoverhead. TxBitRate is rate of bits arriving in the transmit queue and it has a positive 

causal relationship with Throughput. In this model the parameters Modulation, TxPower, FrameSize 

and Spectrum sensing duration are controllable variables, while distance is an environmental /external 

variable.   

 

 

 

 
 
Figure 3.2  QPN Model of a wireless link 

 

Now we analyse the above QPN model to understand the reasoning process and how it can be useful 

in a cognitive engine in the following sections. 

 

3.5 Qualitative Probabilistic Reasoning 
The reasoning process can deduce the effect of  a change observed by a variable on its successors.  It 

is based on the idea of propagating and combining signs. It tells us the effect of a single variable 

change on the whole QPN.  The knowledge of the cause-effect relation between control parameters 

and goal variable of a system model will be useful in system control and optimization. We would use 

this inference mechanism to see the effect of changing a control in previous example (Figure 3.2) on a 

performance variable, that is Throughput here.   

 

Tpt – Link Throughput 

Io – Interference (Outgoing) 

Iin – Interference (Incoming) 

TxR – Tx Bit rate 

Br – Burst Rate 

TxO-Tx Overhead 

FSz – Frame Size 

SINRm – SINR margin 

SINRth – SINR Threshold 

Tdr – Transmit Duty ratio 

Pt-Transmit Power 

Mc-Modulation & Coding 

d – Distance  

BER – Bit Error rate 

Ts – Spectrum Sensing 

duration 
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Case 1: Change of TxPower 

Let   (                  ) states the influence of TxPower on Throughput, where δ is the sign 

of the influence. 

The δ can be obtained by propagating the sign over the chain TxPower->SINR->SINRMargin->BER-

>FER->Throughput. 

 (                  )    ⊗  ⊗  ⊗  ⊗          
 

This conveys that  TxPower has a positive influence on Throughput.  Alternately this inference is 

stated as    (                  ). 

 

Case 2: Change of Modulation 

In this case there are two active paths from modulation to throughput.  The net influence is inferred as 

 (                     )   (      ) ⊕  (      ) 

  ( ⊗  ⊗  ) ⊕ ( ⊗  ⊗  ⊗  ⊗  )  

    ⊕        

Therefore this inference can be stated as   (                     ) and it conveys that with the 

given information it is not possible to unambiguously infer its net influence of Modulation on 

Throughput. This type of ambiguity resulting relations are termed as trade-offs. 

Spread of  the ambiguity sign „?‟ on inference is a major problem in QPN. Often additional 

information on the relationship is needed to resolve this crisis. Assigning a relative influence metric 

that factors-in strength of influence is one approach to address the problem.  Renooij [9] handles this 

problem of achieving trade-off under conflicting influences by enhancing the QPN with the 

introduction of relative influence strength measures which may be said to be a semi-qualitative 

approach.   

Another aspect to be considered is the dynamism of the strength of influence between two variables,  

that is not captured in the model. In the present example the influence of SNR Margin on BER is 

indicated as „-„. While this true in a general sense, the influence strength on BER is high for low SNR 

Margins  and is negligible at high SNR Margins.  That is the influence sign changes from „-„ to „0‟ for 

high SNR Margins. This calls for a mechanism to incorporate conditional signs or situation specific 

signs. 

 

These two aspects of relative influences and situation specific signs are brought-in in the following 

sections to enhance the QPN model.  

 

3.6 Enhanced QPN Model for the CR link 
Assigning an influence metric that expresses relative strengths is an approach to resolve the problem 

of ambiguity.  We propose to explore the use of enhanced QPN model [9] here. It works on an 

extended list of signs {-,--,+,++,0,?} representing relative strengths of influences such as positive, 

strongly positive, negative, strongly negative etc. This provides one more level of differentiating 

positive and negative influences so that the resultant ambiguities can be reduced while combining 

them.  

 

In an enhanced QPN the strong and weak influences are partitioned into two disjoint sets and a cut-off 

value α is used for the purpose. For example a strong influence    (   )  is determined when  

  (    )    (   ̅ )    for any combination of values x for the set X of parents of B other than A. 

Further   (   )  expresses   (  (    )    (   ̅ ))   . The sign „+
?
‟ indicates a positive 

influence sign that is ambiguous in its relative influence. In a similar fashion the extended signs can 

be determined for negative influences as well. Practically the cut-off value α need not be established 

explicitly. The partitioning into strong and weak influences will be elicited from domain experts. A 

detailed formulation is available in [9]. A review of that work requires extensive introduction to the 
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formalisms involved and is beyond the scope of this thesis. At this point it should be sufficient to say 

that the enhanced QPN will need the operators ⊗ and ⊕ to be redefined for the new signs. These 

operators use an additional information element called multiplication-index lists that helps to resolve 

the trade-off. The relative strengths are expressed as a polynomial in α , and the multiplication-index 

list is the list of indices of   in that polynomial. However this   is used internally by the sign 

propagation algorithm and human experts who provide the qualitative information need not worry 

about it. 

 

Table II defines the extended operators ⊗ and ⊕.  I and J are the multiplication-index list 

corresponding to the two operands and it gets generated during the sign propagation. The same sign 

propagation algorithm referred in the previous section is used here with the redefined operators. I will 

be set to 0 and J will be set to 1  for the first operation of the propagation. 

 
Table 3-2 QPN Operators for extended signs 
 
 

⊗ ++
J
 +

J
 0 -

J
 --

J
 ? 

++
I 

++
I+J 

+
J 

0 -
J 

--
I+J 

? 

+
I 

+
I 

+
I+J 

0 -
I+J 

-
I 

? 

0 0 0 0 0 0 0 

-
I 

-
I 

-
I+J 

0 +
I+J 

+
I 

? 

--
I 

--
I+J 

-
J 

0 +
J 

++
I+J 

? 

? ? ? 0 ? ? ? 

 

 

 

⊕ ++
J
 +

J
 0 -

J
 --

J
 ? 

++
I 

++
m 

++
I 

++
I
 a)

 
?

 
? 

+
I 

++
J 

+
0 

+
I 

?
 

d)
 

? 

0 ++
J
 +

J 
0 -

J 
--

J 
? 

-
I 

b)
 

?
 

-
I 

-
0 

--
J 

? 

--
I 

?
 

c)
 

--
I 

--
I 

--
m 

? 

? ? ? ? ? ? ? 

Where m = min(I,J) 

a)  +
0
, if I ≤ J else „?‟ 

b) +
0
, if J ≤ I else „?‟ 

c) -
0
, if I ≤ J else „?‟ 

d) -
0
, if J ≤ I else „?‟ 

 

We propose to enhance the CR link example from Figure 3.2 using this extended sign representation.  

In the model it should be observed that some of the influences are not static but varying based on the 

value of their dependent variables. For example the strength of negative influence of SINRMargin on 

BER is strong when SINRMargin is very low and it is weak when SINR is much higher. Using the 

extended signs it can be stated as    (              )     (            )  and  

  (              )     (              )  where εSH  is a threshold value. 

 

Similarly when FER is very low the influence of FER (below a threshold εFL ) on throughput is 

negligible. For high FER this influence is strong. This can be stated as 

 

  (              )      (       ) 

   (              )      (       ) 

  (              )           
 

where εL  εH are lower and upper  threshold values for FER. 

 

The observation is that in many cases the strengths of influences are not static but changes based on 

certain conditions such as low SNR, high SNR, low FER, high FER etc.  The QPN model needs to be 

extended to incorporate these context specific changes. Towards this we propose to integrate a 
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methodology of context specific sign propagation along with enhanced QPN introduced in [9][10]. 

The details are provided in the following section. 

 

3.7 Using Context Specific Signs in Extended QPN model 
 

Major aspect of context specific, or alternately situation specific, signs is that the influence sign is not 

static but dynamic. The sign will be dependent on a context function C(x). A new context node Ci will 

be added in the QPN structure and its value will depend on the evaluation of a context function 

associated with it. Let δ(Ci) denote the associated sign of the related influence. 

 

To incorporate the context specific signs for the above CR link example we define two context nodes 

C1 and C2. These context nodes evaluate to a sign based on the contexts they represent. The state of C1 

and C2 are used to determine the context dependent signs of the edges E(SINRMargin,BER) and 

E(FER,Throughput) respectively and are represented as  (  ) and  (  ). See Figure 3.3. 

 

The state of the context node C1 is defined as: 

   {             
            

    

 

Please note that c1 is the respective context dependent sign is expressed as   (    )    
        (     )     „ and  (    )=0. 

Similarly the value of the context node C2 is defined as    {   (       )
           

 

 The respective context depended sign is expressed as   (    )          (     )    
       (    )      . 
 

 

 
 Figure 3.3  QPN Model of the wireless link with context specific signs with two identified contexts C1 and 

C2 
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3.8  Inference using Extended QPN model 
 

Now let us look at the influence of TxPower.  From the earlier model discussed in section D, Case 1,  

the influence of TxPower on Throughput was inferred to be „+‟.  But we know that this is not a linear 

influence and it saturates beyond a point. The key influence of this effect is from the relation between 

SINRMargin and BER which comes within the corresponding influence chain. Incorporation of a 

context node C1 in the modified QPN model can handle this as follows. 

 

 (                  )   ( ⊗  ⊗  (  ) ⊗  ⊗  (  ))
 
  {

     (  )          (  )      

             
 

 

Now let us have a relook at the influence of modulation on Throughput. The inference process 

described in section 3.5 (case2) resulted in an ambiguity sign „?‟. With the extended sign model 

shown in Fig 3.2 and using the definition of operators from Table 3.2, we can write 

 (                     )   (      ) ⊕  (      ) 

= ( ⊗  ⊗  )  ⊕ ( ⊗  ⊗  (  ) ⊗  ⊗  (  ))  

= {
     (  )          (  )     

             
 

So it can be observed that there is an improvement in the trade-off resolution. However the inference 

result is still ambiguous when  (  ) and  (  ) are non-zeros.  

 

To reduce this ambiguity further we explore by assigning stronger signs to all edges with static signs 

in path 2 (ie Modulation, SNRMargin,…,Throughput). That is „+‟ is changed to „++‟ and „-„ is 

changed to „--„. But the net influence on the sign propagation still result into the same level of 

ambiguity: 

 

 (                     )  {
     (  )          (  )       

     (  )        (  )      
             

 

 

Here, the fact that at high FER  Throughput will go down with increase in Modulation, is not getting 

represented by this extended sign representation too. Even if we assign strong signs to all links in the 

path2, in last phase of the sign propagation the composition at Throughput node is „+
3
‟ ⊕ „--

5
‟ = „?‟. 

This is a drawback we find with extended signs when too many arcs are involved and has a major 

asymmetry in the number of arcs in the conflicting paths. 

 

This problem we propose to solve by an additional context node C3 with it value defined as  

   {
         

           
 

 

A context depended sign  (  ) is assigned to the edge E(TxbitRate,Throughput). With this it can be 

seen that the ambiguity is resolved to be „-„ for high FER case. 

 

The procedure of using context depended signs that switches to „0‟ is equivalent to temporarily 

removing the edges and that goes along with philosophy of balancing the respective sign graph. 

 

In general enhanced QPN with context specific signs indeed reduce the trade-off problem, though the 

ambiguity is not completely eliminated.  Considering the fact that practically it is not feasible or 

difficult to remove the uncertainty associated with the resultant inference completely, it is important 

and useful to state the level of uncertainty explicitly. In that sense QPN based inference has some 
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positive advantage of explicitly stating the ambiguity compared to many quantitative approaches 

where measure of confidence on the inferences are not easily available.     

 

3.9 Hierarchical Reasoning 

 

While it is relatively easy to go with extending the signs for smaller networks, it is a complex and 

cumbersome process for large QPNs. Here we propose to adopt a method using network 

decomposition to sub-nets and then subjecting it to hierarchical reasoning [12]. Each subnet is just a 

tree or a reduced graph, with one head and one tail each. The head node has its output degree more 

than 1, and the tail node has its input degree is more than 1. All the other nodes' input degree and 

output degree are all equal to 1. Here sign propagation is done for each of the sub-graphs individually 

first.  Those sub-graphs under trade-off are selectively applied with sign extensions and other trade-

off measures. With the decomposed subnets we construct a hierarchical QPN  (h-QPN) model. In h-

QPN model the nodes included are only the heads and tails of the sub-graph. The edges hide the 

respective subnet and carry the sign of the subnet (determined through local sign propagation within 

the sub-net). In case any of the subnets have a trade-off relation then suitable resolution mechanism is 

deployed at the sub-net level. This is done through either enhanced signs, or context specific signs or 

both. Eventually this procedure will result into a simpler QPN model. 

 

While abstracting the causal influence of a QPN variable A on another variable B in terms of a sign, 

we use an underlying assumption regarding the monotonicity of the said influence. If A is a control 

variable (such as modulation, transmit power), its domain is often discretized into an ordered set to 

make this relation monotonic. An increase or decrease of the variable is implemented by incrementing 

or decrementing the domain index. In some cases the increase in independent variable may not make 

appreciable change in the dependent variable for a few settings. This too can be brought inside the 

monotonicity concept if the relation is non-increasing or non-decreasing. While this is feasible in 

many cases, there are situations where the relation is not at all monotonic. Next section presents a 

couple of such cases and proposes an approach to handle the related issues. 

 

3.10 Some Challenges in QPN representation 

A few challenges are encountered while modeling the QPN representation of some of behaviors of 

wireless communication system. Expressing non-monotonic relations and dependencies between 

control variables are posing some difficulties. In this section we discuss some specific cases and 

propose problem mitigation approaches that can be generalized for applying in similar cases. 

 

3.10.1 Handling variables that have non-monotonic influences 

 There are situations where a set of variables have non-monotonic relations. For example let us 

consider different Multiple Input Multiple Output techniques (MIMO) as part of existing and 

advanced wireless communication standards.  

 

Table 3-3 shows high level influences of various MIMO techniques on Bit rate and SINR with 

reference to WiMAX standard. This is also subject to certain constraints on the number of Transmit 

antennas (Nt) and number of receive antennas (Nr) used. Further the total number of antennas also has 

an impact on the strength of these influences which are not considered in this example. 
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Table 3-3   MIMO configurations and their influences on bit rate and SINR 

 

MIMO Techniques Rate SINR Nr Nt 

Reliability Enhancements 

Selection Combining (SC) 0 + ≥1 1 

Max Ratio Combining (MRC) 0 + >1 1 

Tx Select Diversity (TxS) 0 + ≥1 >1 

Beam forming (BM) 0 + >1 >1 

STBC - + >1 >1 

Precoding/capacity enhancements  

Linear Diversity Precoding (LDP) 0 + ≥1 >1 

Eigen Beam forming (EBM) + + ≥1 >1 

General Linear Precoding (GLP) + 0 >1 >1 

Spatial Multiplexing (SM) + 0 >1 >1 

 

 

 
 
Figure 3.4  Splitting non-monotonic influences to piecewise monotonic influences  - example case of 

MIMO configurations    (A) -  Relationship with Bit rate is non-monotonic   (B)  Split up the domain 

of MIMO into two ordered subdomains  with C2 constraints only one of them is active at a time. 

 

The influences listed in Table 3-3  is depicted as an influence diagram in Figure 3.4A. While 

considering the MIMO configurations as a whole, its influence on Bit rate is mixed and cannot be 

ordered to induce a monotonic relation. However its influence on SINR can be termed as weakly 

monotonic where some configurations have no effect while some others have positive effect. 

 

In order to get a definite signed relationship we split the MIMO variable into four having subdomains 

as given below. Domains of each split variables are ordered, however the ordering shown in this 

example is indicative only. In practice the ordering will depend on specific implementation of each of 

techniques.  

 

MIMO1  =  {GLP,SM} 

MIMO2 =  {EBM} 

MIMO3 = {STBC} 

MIMO4 =  {SC, MRC, TxS, BM, LDP} 
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Here we propose to use the context specific sign approach. Introduce two context specific nodes Cm1 

and Cm2 with their values defined as  

 

    {

                   

            

             

 

.  

    {
                        

            
 

 

This context specific sign switching takes care of the correct sign propagation (Figure 3.4B). In short 

what we propose here is to split the domain of the non-monotonic variable so that each subsets can be 

ordered to induce monotonicity. Then use appropriate context variables to switch them. 

 

3.10.2 Handling Coupled Controls 

Sometimes there are situations in which the controls are dependent on each other such that certain 

combinations of the control values are not allowed. One immediate example is Modulation and 

Coding Rate.  While domain of Modulation is {„BPSK‟,‟QPSK‟, „16QAM‟, „64QAM‟} and that of 

Coding rate is { ½, 2/3, ¾ }. However these controls cannot be moved independent of each other. The 

allowed combinations are  { (BPSK,1/2), (QPSK,1/2),(QPSK,2/3), (16QAM,1/2),(16QAM, 3/4 

),(64QAM,2/3)(64QAM,3/4) }. One approach we have used is to combine these two controls and 

synthesize a joint control variable Modulation&Coding and order the domain such way that 

monotonicity is preserved (Figure 3.5). 

 

 
 

Figure 3.5  Simplified influence diagram depicting coupled control of Modulation and Coding Rate. (A) 

Two individual controls with a constraint C1 that restricts the combination of assignments   (B) 

Combined control with a re-ordered domain 

 

Another approach is to check if there is a primary secondary relationship between the coupled 

variables. For example the primary variable provides a coarse control effect while the secondary 

control has a finer impact on the same set of intermediate or objective variables. In such cases 

whenever the primary variable is changed the secondary variable is brought to its minimum possible 

value and fine tuning is done subsequently.  In the above case the situation is similar. Modulation  

provide a coarser control on BER and Throughput while Coding rate provide a finer control. 
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3.11 Additional semantics through attributes to Nodes and Edges 

To provide additional semantics to the state variables for context aware manipulation by cognitive 

engine we propose a set of node attributes. The attributes include classification of variables as 

„Control‟, „Environment‟, ‟Concept‟, „Performance‟, and „Observed/Measured‟. There is an additional 

categorization proposed on variables as either „deterministic‟ or „stochastic‟.  This is to distinguish 

between some variables those are deterministically computed or set by the policies from others those 

are stochastic in nature. One application of this categorization is in pruning the domain of QPN sign 

propagation while reasoning. 

 

Control variables:  These are deterministic variables that can be controlled/configured. These 

variables have a discrete ordered domain so that there is notion of increase/decrease is established by 

incrementing/decrementing the domain index. This is also required to establish local monotonicity 

with its child nodes. A cost attribute is used for the arcs incident on the nodes which captures the 

estimated time taken for effecting the new control setting on the system. 

 

Observed/Measured variables:  They are measured or observed from the system and reported to 

the designated cognitive engine. The measurement is in general a real value that describes a physical 

state/phenomenon.  This variable has an additional binary state value which depicts a change 

(increase/decrease) from previous state. There is a threshold value specified to detect this change 

through comparison. In certain cases they can have an associated mathematical expression with which 

it computes its state from a set of dependent measurements. Such nodes provide a higher level of 

abstraction to the dependent observed nodes. The arcs going out from a measurement node have an 

additional attribute on cost of measurement. The cost considered here is the time taken for the 

measurement process and communicating it to the child node. 

 

Environment Variables:  They are external variables that are beyond direct control of the local 

system. They may change based on their external dynamics and a high level of uncertainty is 

attributed. One attribute that is captured as part of environment variable is the specification of an 

expected time duration (interval) before a change can occur.  This is useful for the cognitive engine to 

plan the actions based on the dynamics of environment variables and check the feasibility of 

completing the adaptation before any appreciable change of context occur. 

 

Concept Variables:  They are variables that are included for conceptual explanation.  They may 

derive logical values from their child nodes through sign propagation.  

 

These node classifications and attributes are beyond the standard QPN model, but are used to 

extend the QPN structure to represent the context space that is used by the cognitive engine. 

 

 

Now we propose a methodology for preparing the context space based on QPN structure as a 

knowledge base to the cognitive engine. 

 

 

3.12 A Methodology for Preparation of QPN Models 

Here we propose a methodology for preparing QPN models of wireless communication systems 

that can be integrated as a knowledge base in the Cognitive Engine (Figure 3.6).  There are two 

approaches available for the construction of QPN structure. One is structure learning through training 

data. The process starts with the identification of a dictionary of terms that describe related concepts, 

parameters etc. that can depict the state of the system. They are majorly the state variables that span 

the system context space. Next step is to identify pairwise causal relations between these variables 

and assign suitable QPN signs that truthfully describe the relationships. This, we suggest, best be done 
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by a set of human experts to construct the QPN structure in a modular manner. Since the model is 

human readable and it can be reviewed and certified by the expert team. Further enhancements to the 

basic model may be made by the cognitive engine through additional structure learning from the data 

collected while in operation. 

 

Next step is to specify additional semantics to the variables as node attributes.  As described in 

previous section (3.9) the attributes include classification of variables as „Control‟, „Environment‟, 

‟Concept‟, „Performance‟, and „Observed/Measured‟. There is an additional categorization proposed 

on variables as either „deterministic‟ or „stochastic‟.  This is to distinguish between some variables 

those are deterministically computed or set by the policies from others those are stochastic in nature.  

 

 
Figure 3.6  QPN Model development methodology 
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The primary concern with a QPN model is in its ability to provide truthful inferences with reduced 

ambiguity to the possible extent. For large graphs it is proposed to split the QPN into a set of sub-

graphs organized hierarchically. This is followed by identification of sub-graphs that have unresolved 

trade-offs.  Suitable techniques including extended signs, rough-set based weights, context specific 

signs etc are used to reduce the trade-off ambiguity in those sub-graphs. 

 

 

With this we can say that the graph structure of the QPN developed can hold additional 

information structures to constitute the context space that is needed by the cognitive engine to operate 

its cognitive cycle efficiently and effectively.  It can form a unifying structure for defining and 

executing multitudes of cross layer adaptations and optimizations envisaged in the vision of a 

cognitive network. We will present some of the use cases later in this thesis. 

 

 

3.13 Summary 

In this chapter we have proposed the novel use of QPN for representing the dynamic behavior of 

wireless networks.  Various QPN inference mechanisms were evaluated and chosen a set of 

techniques to be used for the application in wireless communication networks.  While most of the 

trade-off situations are addressed by the semi-qualitative enhancements, there is certain level of 

ambiguity left and that is proposed to be handled by the self-optimization engine in next chapter. We 

concluded this chapter with a proposed methodology for the construction of QPN  based context space 

as per the requirements of Cognitive Engine laid out in chapter 2. 

 

In the next chapter we propose the use of the above QPN structure to build an optimization engine 

within the cognitive engine framework. 
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4 
4 Self-Optimization Driven by QPN Models  

 
In this chapter we propose the use of QPN Model of wireless networks for driving self-

optimization within the framework of cognitive engine introduced in chapter 2.  A novel 

scheme for optimization using QPN model based inference is a part of it. It is demonstrated 

using a cognitive radio link towards link adaptation and throughput optimization. Further we 

refine the methodology of optimization with several innovative methods including 

monotonicity analysis and anomalous configuration avoidance using case based learning.  

 
 

 

4.1 Introduction - Optimization in wireless networks 
Optimization problems involved in wireless networks in general are largely nonlinear. Many of the 

cause-effect relations involved are analytically in-tractable. Hence a white-box approach for 

optimization where a detailed model of the wireless network, is not often feasible.  There are several 

distinguishing aspects in wireless network protocol stack optimization from classical optimization.  

The network environment is highly dynamic and traditional static optimization techniques alone will 

not work.  There will a substantial run-time part for the optimization process which may take several 

iterations of the cognitive cycle. However the system must conclude the actions before the situation 

for which the adaptation is performed changes. Further the adaptations involved will have multiple 

time scales to address the different dynamics of the environment variables.  

 

In this chapter we take forward the QPN based context space model from the previous chapter and 

propose its use to guide the optimization process within the framework of the cognitive engine. 

 

4.2 Optimization driven by QPN Inference 

 

In QPN the inference process is through propagation of sign generated by an observation to other 

parts of the network. The sign-propagation algorithm for inference with a qualitative network 

basically serves to compute the effects of a single observation. However, multiple observations can be 

incorporated by a sequential updation and a super-positioning of the inference of individual 

observations [1] . 

 

A high level logical architecture of the optimization engine is shown in Figure 4.1.  This maps to the 

cognitive engine architecture described in Chapter 2. In the QPN model we identify following 

attributes to the variables  

 Control/Configuration:  (eg: Frequency channel, modulation, coding rate , Txpower  etc) 

 Performance  : (SNR, PER, Throughput etc) 

 Environment (channel conditions, interference,  etc) 

 Concept Variables ( variables those are concepts – not computed or measured) 

 



Self-Optimization Driven by QPN Models  
41 

 

Control parameters are knobs which can be controlled /configured.  The domains of the control 

parameters discretized and ordered so that their monotonic relations can be established. Performance 

variables on the other hand are meters which are measurements either raw or estimated. They have 

associated properties like lifetime, resolution, accuracy, timestamp. Environment variables are 

generally beyond the control of radio/network controller. Concept variables are hidden variables 

introduced for the ease of understanding and explaining. 

 

 
Figure 4.1 High level block diagram of the optimization flow 

 

4.2.1 Discovering Candidates for Optimization 

Generally the optimization loops are defined upfront and included as part of the knowledgebase for 

the cognitive engine to deploy them suitably. Given the context space structure, it is also desirable for 

the cognitive engine to discover opportunities for optimization and enrich the knowledgebase.  

 

We propose following Lemma to identify candidates for optimization in a QPN Model 

 

We define Q (V,E) as the QPN model,      as the goal variable and     as a control variable.  

 

Lemma 4.1 :  If an undirected cycle corresponding to a sub-graph     has an odd number of 

negative arcs, and T is in a path from U to Z then there exists a candidate optimization cycle  O(U,Z). 

 

Alternately, this Lemma states that if there is a trade-off relation involved in the path from a control 

variable to a goal variable, then there is an optimization loop to consider. 

 

Importance of this Lemma is that the CE can use this to synthesize optimization loops by analyzing 

the QPN model. Also from an off-line analysis perspective this Lemma is useful for designing the 

optimization strategy with the updation of the knowledgebase. 

  

 

4.3 QPN Model based Optimization  Algorithm  (QOpt) 
 

The generalized network optimization problem considered is stated as follows: 

 

Given a QPN Model Q with  

U = {Ui} , control variables 

Z , Goal variable 

Device 

Control Variables 

Perf  Variables 

Env  Variables 

 
Network 

 
Channel 

 
User 

QPN Model  
Optimization 

Engine 

Goals 
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S = {Si}, Constraints 

M = {Mi}, measurements / observations 

 

Objective is to find a configuration U
*
  that minimize/maximize Z, subject to S. 

 

A sequential online optimization approach is adopted in which each control is applied sequentially.  

The optimization loop is explained as a  pseudo code given in Algorithm 4.1. QPN model is used to 

infer the impact of changing each of the control variables one at a time.  

 

The function SelectControlVar() makes the choice of the control variable. Basis of selection can be 

random, trade-off status, sensitivity or any other prioritization criterion.  Here we propose to use the 

following heuristic approach for the sequence selection of the control variables. First, we categorize 

the control variables into the following: 

 

Vp  -  Productivity variables 

Vr  - Resource variables 

Vt  - Tuning variables 

 

In the CR link example, TxPower is a resource variable, ModulationCoding is a productivity variable 

that uses the resource variable to create link capacity. FrameSize is a tuning variable. Once the control 

variables are categorized as above, we use the following sequence for optimization. Increase resource 

supply to the system to the maximum possible extent, subsequently increase capacity, followed by 

consumption of capacity by increasing productivity and finally fine tuning to improve the efficiency. 

The approach here is to execute a sequential plan involving resource provision, capacity/productivity 

creation, consummation and finally removal of surplus capacity & resources. 

 

 

Algorithm 4.1 -  QOpt - QPN Model based Sequential Optimization 

 
 

 

The QPN sign propagation algorithm PropagateObservation()  finds the inferred change that to be 

made on the selected control variable to improve the goal function. If the inference returns a non-

ambiguous sign with respect to a control variable change (increase/decrease), and then move the 

U={ui} – control variables 

U0 – Initial value 

Z – Goal Variable 

S={Sj} - Constraints 

U ←U0 

Initialise() 

while not Optimized(Z)  do 

 u ← SelectControlVar(U) 

  (   ) ← PropagateObservation(‟+‟,u) 

 if   (   ) ≠ „?‟ 

  (u
*
,Z

*
) ←   ApplyControl (u,  (   )) 

  if  ConstraintViolation() or not GoalImproved() 

      (u
*
,Z

*
) ←RetractControl((u,  (   )) 

  end if 

 else 
  δ(u) ←ChooseMove(u) 

  (u
*
,Z

*
) ←   ApplyControl (u,  (   )) 

 (u
*
,Z

*
)  ←HillClimb(u, δ(u), Z) 

 end if 

end do 
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control in that direction so as to improve the goal function.  In case the inference results in an 

ambiguous sign („?‟), then the respective control variable is given a perturbation (either increase or 

decrease) to identify the direction of desired movement for goal improvement. Continue moving the 

control variable in the same direction as long as the goal variable shows improvement.  Basically this 

is nothing but a local search such as hill climbing. This local search can be turned off if there is not 

enough time available for the optimization process due to real-time constraints. 

 

We use this optimization approach for a link optimization problem to demonstrate the use of QPN 

model and inference. 

 

4.4 Example- Link Adaptation in a Cognitive Radio Link 

In this simulation scenario ( Figure 4.2 ) two cognitive radio nodes CR1 and CR2 are communicating 

the presence of a Primary transmitter P. The CR nodes are accessing the channel as secondary using 

spectrum sensing.  CR2 is moving in a specified trajectory. Here the goal is to maximize throughput of 

the link with a constraint on interference to primary. The QPN model used here is the same as the one 

discussed in chapter 3. Goal variable is Throughput and control variables are Modulation, TxPower, 

Framesize and Spectrum sense duration.  We use the following analytical model to simulate the 

scenario. 

 

 
Figure 4.2 Cognitive Link Adaptation Scenario 

4.4.1 Radio Link Model 

We use the following CR model to simulate the CR link for studying the performance of the QPN 

based link optimization described above. The CR link works as a secondary in presence of a primary 

transmitter, Physical layer is an adaptation from WiMax (IEEE 802.16d) and the medium access is 

done through spectrum sensing. 

 

The parameters used in the model are Pt = Transmit Power dBm;  m = Modulation scheme;  f = Frame 

Size , bytes; ρ – SNR;  ρth,  ρm– SNR Threshold, SNR margin;  d – distance between transmitter and 

receiver;  d0- Reference distance;  γ – Burst rate;    – Transmit duty ratio;     – Bit error rate;     – 

Frame error rate; f – Frame size;  ts – Spectrum sensing duration;  nD – Number of samples used for 

sensing;  nP -  number of samples duration between adjacent sensing;  PFA- Probability of False 

Alarm; PD – Probability of Detection;  td – Time elapsed between sensing; T – Throughput;    – 

Threshold for primary detection;    - Interference  to Primary (referenced at Tx of secondary) ;    = 

SNR of Primary transmission at Secondary Receiver. 

CR1 

 CR2 

 CR2 
 PR1 

movement 

transmission 

interference 
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The following empirical propagation model is adapted from IEEE 802.16d standards annexure.  
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Where the probability of false alarm PFA  and probability of detection PD of primary using spectrum 

sensing is computed as [2] 

 

     (
 

 √    
 

 √  ) 

    (
 

  
(   (   )  √    ))  

Interference to primary is caused by missed detections and is computed as 

    (    )  
    

 

Here the control variables are U = { Pt ,m, f, nD}. Domains of the control variables are ordered and as 

follows: 

m = {BPSK-1/2, QPSK-1/2, QPSK-3/4, 16QAM-1/2, 16QAM-3/4, 64QAM2/3, 64QAM-3/4} 

Pt = {2dbm to 24dbm in steps of 2} 

f = {200 to 2000 bytes in steps of 200} 

nD = {2,4,6,8,10,12,14,16,18,20} samples 
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Figure 4.3 Response Surface of various control variables of the link model 

 

 

The response surfaces of some of the important variables are shown in Figure 4.3 to have a 

visualization of the reference link model. 

4.4.2 Simulation Results 

We implemented a prototype simulation system as shown in Figure 4.1 using Python language. The 

simplified analytical model of a radio link described in has been used to simulate the target radio link 

in presence of a primary transmission. The distance between transmitter and receiver is varied over a 

predefined path to generate a dynamic scenario. Transmission duty ratio of Primary is assumed to be 

stationary. The goal is to maximize secondary throughput with a constraint on interference to primary. 

The cognitive engine is configured to perform runtime throughput optimization based on the „QOpt‟ 

algorithm described in Algorithm 4.1. The optimization engine is triggered periodically in every 10 

seconds to reduce the computation overhead compared to that in a continuous operation. Figure 4.4 

shows the trajectory of the secondary link throughput achieved by the optimization engine.  It shows 

the average of 50 runs. The total simulation time is 170 seconds and the total data transfer during the 

time is 630 Mbytes. This is compared with the reference optimum trajectory that is determined from 

an exhaustive search. Though the exhaustive search option is impracticable in real application it 

provides as a reference bound for the performance. The reference data transfer is 697 Mbytes and the 

QPN sequential optimization process shows a performance figure of 90.6% of that reported by 

exhaustive search. 

a) Modulation Vs Transmit Power at d=5Km 

 

b) Modulation Vs Transmit Power at d=2Km 

 

  

c) Spectrum sense duration Vs Transmit 

Power at d=5Km   

  

d) Interference to Primary (dbm)   
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Figure 4.4  Performance in Link Adaptation using QPN sequential Inference. The solid line indicates 

trajectory for the QPN based optimization(QOpt)   

 

From these two simulation experiments we observe that the QPN model based optimization approach 

performs reasonably good (better than 90% of the reference bound) with a low computational 

complexity (It should be noted that a QPN sign propagation require only a few sign multiplication 

over a chain for inferencing) 

 

4.5 Adaptive FEC for enhancing the Robustness  
Here we extend the scope of the above cognitive link model by introducing the use of application 

level Forward Error Correction (FEC) with erasure coding for improving the robustness of the 

communication link. Motivation for this approach is that in addition or instead of the traditional 

retransmission scheme erasure coding can be used for reducing the overall packet drops in the 

communication channel. 

 

Here we use an (n; k; e) erasure coding scheme where k packets are encoded to form n packets with 

an addition of e repair packets. If the receiver receives correctly at least (n-e) packets of any type, i.e. 

data or repair, out of n transmitted packets, it can reconstruct the original k data packets. Here, e is the 

erasure correction capability of the code. When the number of erasures is more than e, the recovery is 

not possible. We consider the use of an optimal erasure correcting code where e = (n - k).  Figure 4.5 

shows the modified QPN model incorporating the FEC scheme. 

 

We enhance the simulation model of the cognitive link described in earlier section with the 

incorporation of the effect of FEC on Tpt and QoS.  We express QoS as a simple utility function of  

Tpt and PktL (packet loss)          .
   

      
(      )/. In the following specific simulation 

study we use the FEC block size as 11 (packets) and e  takes the values {0, 2,3,4,5}.  A detailed 

discussion on this simulation study is available in our paper [7]. 
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Figure 4.5  QPN Model Enhanced with the 

FEC Scheme 

Figure 4.6 Performance in Link Adaptation 

with FEC using sequential QPN  Inference.  

 

We use the same simulation setup described in the previous section to simulate the additional effect of 

FEC in the overall optimization of link QoS. Figure 4.6 shows the throughput performance along the 

transmission duration when sequential optimization approach is used. As in the previous simulation 

study the reference curve shows the upper bound obtained from an exhaustive search. The ideal 

reference performance bound for the total data transfer is 695 Mb and packet loss is 1e-3 %. The 

corresponding figures obtained for QPN approach is 568.9 Mbytes (81.8%) at an average packet loss 

(PktL) of 2.3%.   Overall the performance of the optimization engine has been in the similar lines as 

that of the previous case.  

 

 

4.6 QPN and Monotonicity Analysis 
 

In this section we propose to integrate a few key results from monotonicity analysis theory of signed 

graphs with the QPN based model framework for optimization. 

 

Identification of monotonicity in system behavior and exploiting it for elegant algorithms for 

optimization and control is rewarding because they have nice properties of “order” in their dynamical 

behavior. Monotonic systems do not admit stable periodic orbits or chaotic behavior in a control loop. 

More importantly, for strongly monotone systems, Hirsch theorem states that almost every bounded 

solution converges to the set of equilibriums [3]. Both monotonicity and strong monotonicity admit 

graphical characterizations in terms of the influence graphs and so also in QPN structure. A system is 

monotone when all undirected cycles of its influence graph have positive sign (i.e., have an even 

number of negative edges). For an irreducible system it is strongly monotone when the same property 

holds for directed cycles [4].  From this it can be observed that a sub-graph resulting in a trade-off 

relation in QPN is not monotonic.  Therefore one way to approach for resolving conflicts is by 

making the undirected cycle positive. This is also termed as balancing the associated sign graph. One 

possibility is to break the cycle by removing an arc that is comparatively insignificant. We have used 

this approach in the context specific sign propagation scheme described earlier.  Another direction is 

to explore if the sign of an edge can be changed. A weak influence sign could be reversed if there is 

no substantial impact of this change. 
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Monotonicity analysis has been used to simplify the solution or completely solve in closed form 

design (optimization) problems which have otherwise required extensive numerical computation [5]. 

Qualitative optimization has been used to decompose an optimization problem into a reasonable 

number of smaller sub-problems which are readily solved. By analyzing the solutions of these smaller 

problems, the solution to the original problem can be identified. 

 

 

The optimization engine in the CE has access to the policy database to deduce the goal variable and 

associated constraints for the optimization task in hand. Before attempting the optimization process, 

the optimization engine need to check the problem is well constrained.  Towards that we propose to 

use the following monotonicity principles to analyze the QPN structure and associated constraints [5]. 

 

Monotonicity Principle 1 :  In a well–constrained minimizing objective function every increasing 

(decreasing) variable is bounded below (above) by at least one active constraint. 

 

Monotonicity Principle 2: Every strictly monotonic nonobjective variable in a well–bounded problem 

is either,  

a) irrelevant and can be deleted from the problem together with all (inactive) constraints in 

which it occurs, or  

b) relevant and bounded by two active constraints, one from above and one from below 

 

Maximal Activity Principle: The number of independent constraints active in any subset of constraints 

should not exceed the number of variables on which these constraints depend.  

 

Thus, a problem is said to be well constrained if it satisfies the Monotonicity and Maximal Activity 

Principles stated above. 

 

By considering a sequential optimization approach of QOpt algorithm, the optimization engine picks 

up each control variable and performs an inference using QPN model to know which direction the 

variable to be moved towards optimizing the goal function. Assuming the monotonic property of the 

path to the goal variable, the control is continued in that direction. According to the monotonicity 

principle 1, there should be a bounding constraint in the opposite direction of the movement.  There 

should be at least one such constraint involving any of the variables in the chain from control variable 

to goal variable. In the link model example, the effect of TxPower increase on Throughput is non-

decreasing and its effect on interference is also positive. In this case the increase of TxPower is 

desirable to improve goal function, but is limited by the constraint specified on Interference. So we 

can say the TxPower control is well constrained. 

 

According to principle 2 we need not consider constraints that do not include any of the variables in 

the path(s) to the goal node. Applying maximal activity principle, we can conclude that the number of 

independent constraints considered need not exceed the number of paths to the goal node. The 

optimization engine should verify these requirements on the QPN model before commencing the 

optimization process. 

 

We introduce an Active-Constraints-Check module in the QOpt algorithm which checks if the QPN 

model is well constrained according to the principles of monotonicity as described above. This is 

included as part of the Initialize function in the algorithm. In this function we take each control 

variable and relevant constraints to their paths to the goal variable. Apply monotonicity principles to 

select the active constraints. If there are no active constraints found, then a default constraint is 

included which limits the value of the control variable to its discrete domain.  

 

Considering the fact that the QPN model encodes only a qualitative knowledge about, the near 

optimality of the result needs to be appreciated. However there are some immediate concerns too. 

Since it uses a sequential optimization approach, the time taken for completing the optimization could 

be a concern. Another issue is the spurious reconfigurations due to random moves selected when QPN 

inference turns out to be ambiguous („?‟). In the cognitive engine architecture discussion we proposed 
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to address this problem by a decision database supported by a case based learning scheme. This is 

described in the following section. 

 

4.7 Avoiding spurious configurations during on-line adaptation 
One of the artifacts that can be observed in Figure 4.4 is the periodic downward spikes indicating the 

fall of objective function (Throughput). This is because of a few unavoidable spurious configurations 

during the solution search process during online optimization. We propose to reduce or eliminate such 

spurious configurations using a learning mechanism which will remember such situations and avoid 

any future repetition of those undesirable configurations. 

 

Here we propose a Case based Learning (CBL) approach to create and manage a database of 

situations (contexts) and configurations that caused drastic fall of the objective function value, so that 

such bad configurations can be avoided in future.  For that a compact representation of the situation is 

needed. 

4.6.1 Compact Representation of a Situation 

Situation is defined as a stable state of the system at a particular time/event of interest. It can be 

represented by the system state variables and their stable state values corresponding to the situation. 

Once a reference situation is stored in the data base as a reference point, a similar situation can be 

identified by matching the new situation with the reference situation. An appropriate similarity 

function needs to be used for this matching process. Identifying and storing reference situations are 

part of the learning. This is the central idea behind case based learning. 

 

We propose the following Lemma to capture a compact representation of the situation by selecting a 

set of relevant parameters. 

 

Lemma:  Minimal set of state variables  χi required to define a situation S,  relevant to a control 

variable  ui and goal variable Z is  χi 
S
 = { ui, δi, z, J(ui,Z),Cj}  where δi : direction of change of ui  ; z: 

Value of goal variable Z;  J(ui,Z) is values of variable nodes in the paths from ui to Z that have an 

incident chain from a control variable or external variable, Cj is the set of conditional variables 

associated with the paths (ui,Z). 

 

In the QPN structure the situation χi
S
 is the set of variables those are sufficient to represent the 

situation so that the influence of ui on the goal variable can be inferred. This Lemma is used to 

identify a compact set of state variables χi that are required to represent the state change due to a 

specific control variable change. This avoids the need for storing the state information corresponding 

to the whole context space and improves storage efficiency of the case database. 

 

4.6.2 Case Based Learning of Spurious configurations 

We define the following terms: 

 

Spurious configuration :   Indicates a configuration change of ui in the direction of δi  which caused 

the objective function Z to drop below a threshold low value , Z < Zlow  . 

 

Reference situation :  Let χ i
r
(δi,) be the reference situation that lead to a spurious configuration when 

ui changed in the direction of δi, 

 

Similarity function  :   The similarity function is used  to check if a candidate situation χi
c
 falls in the 

neighborhood of any of the bad situations stored in X
R
.  That is to find out any cases such that  

(|  
    

 | )      where     
        

 

The similarity function similar(  
    

 ) is Boolean and will return the result of similarity check. 
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Learning function: we define the function for learning as Learn(ui, δi, zc):  if a Spurious configuration 

on ui is detected, that results in a drastic degradation of objective function from zp to zc, then store the 

situation corresponding this state as a reference situation.  

 

Algorithm 4.2 presents the pseudo code for the detection and avoidance of spurious configurations as 

part of the enhancement to the QOpt algorithm (Algorithm 4.1).  The ApplyControl function in 

Algorithm 4.1 is replaced with the enhanced version incorporating the spurious configuration 

avoidance part. In this enhancement we first perform the check if the selected configuration is similar 

to any entries in the spurious configuration database.  If it is present, then the configuration is skipped. 

Otherwise we go ahead with the reconfiguration. Subsequently we observe the effect of this new 

configuration and see if it has generated an anomalous system response. In case a new spurious 

configuration is detected, then the data base is updated using the Learn function. 

 

 

ALGORITHM  4.2      DETECTION AND AVOIDANCE OF SPURIOUS CONFIGURATION 

 
 

 

 
 

4.6.3 Simulation Results 

 

The CBL based algorithm for avoidance of spurious configurations described above has been 

incorporated in the link optimization algorithm and applied it on the CR link optimization problem 

described in 4.4 . Figure 4.7 presents the trajectory of the optimum throughput with the CBL 

algorithm. It can be observed that there are some spurious configurations in the first half (as indicated 

by sharp downward spikes) there are no major anomalous configurations towards the later part of the 

trace. This shows the effectiveness of the algorithm that is highly beneficial for practical optimization 

scenarios with CE. 

 

Db  -  Case Database 

ui  -  Control variable 

Z –   Goal Variable 

Zc – Current value of Z 

Xi
c
 – Current Situation 

 

procedure ApplyControlwithLearning(Db, ui, δ(ui,Z), zc) 

 Xi
c
 ← CurrentSituation(ui, δi, zc) 

 if  not Similar (Db, Xi
c
) then 

  ApplyControl ( ui , δ(ui,Z)) 

 If Spurious ( ui , δ(ui,Z)) then 

   Db ← Learn (Xi
c
)  

 end 

end  
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Figure 4.7  Profile of the link throughput with case based learning of spurious configurations ( Time in 

seconds) 

 

In the present optimization scheme, when the QPN inference gives an ambiguous result („?‟) we do a 

local hill climbing search to refine a configuration. This is based on the assumption that the influence 

relation δ(u,Z) is monotonic in their individual paths to the goal variable. But due to the presence of 

noise or a deviation on this assumption, the hill climbing algorithm may not perform well due to local 

minima problem. For such cases considering a global search algorithm would be beneficial however 

for an online optimization problem the number of steps required for the search is of a high concern. In 

the next section we experiment the use of simulated annealing algorithm within the QOpt framework 

and analyse its performance. 

4.6.4 Simulated Annealing enabled with Influence graphs 

Simulated Annealing (SA) is a very popular meta-heuristic algorithm that is known to be effective for 

optimizations as a black-box approach. Application of SA for wireless network optimization has been 

explored by a few researchers and a recent work is available in [6] where the authors use several 

enhancements to improve the search efficiency.    The basic algorithm is simple and problem specific 

refinements are possible to enhance its performance. The algorithm steps are as follows:  Starting 

from a random position in the search space, the next point is chosen at an arbitrary location within the 

distance of a jump proportional to a temperature parameter. Initially the temperature is set to 

maximum. Then the new selection may be accepted with a probability even if it is an inferior solution. 

The probability of acceptance could be proportional to the improvement in utility and temperature. 

Every iteration of the search also results a temperature decrease.   The algorithm stops when the 

temperature drops below a threshold or maximum number of iterations reached. Further there will be 

a reheating process in which the controlled cooling is performed iteratively.  

 

We have used the SA algorithm to the same link optimization problem described earlier. The control 

variables such as Modulation Coding, Tx Power and Framesize were assigned values selected from 

their neighborhood in every iteration. The size of the neighborhood was controlled by a decreasing 

temperature function. To select the neighborhood solution space we have used the influence 

information from signed graph representation of the link. The solution giving a better utility, that is 

Throughput  here , was selected as the initial choice for next iteration. The solution giving inferior 

utility is selected with a probability determined by the difference in throughput values and a 

temperature variable. The iterations are stopped once the temperature reaches a minimum or 

maximum number of iterations. On multiple runs it was noted that it took arbitrarily different number 

of iterations to reach the optimum and in some cases even with 100 iterations an optimum solution 

was not reached.  

0

20000

40000

60000

80000

100000

120000

140000

0 2 4 6 8 10 12 14 16 18

Time

T
h

r
o

u
g

p
u

t

(sec) 



Self-Optimization Driven by QPN Models  
52 

 

 
Figure 4.8 Profile of the link throughput with simulated annealing 

 

The Figure 4.8 presents the trajectory of the throughput for different number of maximum iterations 

settings  (10, 50 and 100 ). It can be observed that there is progressive improvement in tracking the 

optimal configuration as the number of maximum iterations is increased. With about 100 iterations the 

optimal solution almost matches with the results of QPN based optimization algorithm. This shows 

that there is no good return on investment of using SA along with QPN in the QOpt. So we do not 

consider SA to be integrated QOpt in the proposed Cognitive Engine. 

 

4.8 Summary 

In this chapter we proposed the use of QPN Model based inference to drive self-optimization in the 

Cognitive Engine. A sequential optimization algorithm “QOpt” is used to demonstrate its use in a 

simple cognitive link adaptation use case. The performance is highly satisfactory with respect to the 

expectation from a qualitative model incorporating limited information about the system. Integration 

of Monotonicity analysis with the QPN structure is a novel step to ensure that a well constrained 

model is available for the QOpt algorithm for a converging optimization. In the next chapter we 

extend this methodology to build a network level modeling and optimization. 
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5 
5 Qualitative Modelling and Inference for Network 

Scenarios 
 

In this chapter we develop and analyze QPN models for capturing behaviors at network layer 

and above. The QPN methodology proposed in the previous chapter is applied here also to 

prepare the model suitable for inference. To motivate the analysis we focus on a practical 

problem of TCP congestion management in an adhoc wireless network scenario. It is shown 

that a joint congestion management involving TCP and wireless link adaptation strategy can 

be inferred from the QPN model and the cognitive engine can operationalize it. A Simulation 

study is conducted and results are presented to support the observations.  

 

 
 

QPN Models enhanced with the semi-qualitative extensions have been shown to be useful in 

modeling the link layer behaviors of wireless networks in the previous chapter. The link layer 

challenges are very high considering the fact that it is the layer sourcing most of the uncertainty 

introduced in wireless communications. At network layer the surprise factor comes from the coupled 

effect of mobility, routing and traffic generated by the applications. 

 

In the following section we enhance the link level QPN model discussed in previous chapter with 

network level variables. Subsequently we analyze the QPN for issues and challenges of using it for 

cognitive reasoning. 

 

5.1 QPN Model including Network Layer 
 

One significant addition to the link layer model is the TCP behavior. TCP has good mechanisms 

incorporated for network congestion control and congestion avoidance. They are specifically designed 

for wired networks where the links are reliable and capacities are not fluctuating.  In the event of a 

NW Congestion (NWc) there will be increase in packet loss (Pktl) and round trip time (RTT). In TCP, 

congestion is said to have occurred when the sender receives three duplicate acknowledgments 

(dupacks) or when a timeout occurs. The TCP congestion control techniques are divided into three 

broad categories, viz., (i) window based, (ii) equation based, and (iii) rate based. In this discussion we 

focus on window based schemes because that is more suitable for wireless scenarios. An Adaptive 

Window Management technique  is used in the window based congestion control, in which increase 

and decrease of congestion window (cwnd) is based on packet drops and dupacks. This increase and 

decrease of cwnds are based on the principle of Adaptive Increase and Multiplicative Decrease 

(AIMD). There are many variants of TCP such as Tahoe [1], Reno [2], [3] and Vegas[4] using 
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variants of window based congestion control. In effect when packet loss (Pktl) and increased RTT is 

detected TCP adjusts its rate (TCPr) by controlling the congestion window (congestion control and 

congestion avoidance schemes). A decrease in TCPr leads to a decrease in network congestion (NWc) 

as well as node level congestion (Nc). Node level congestion is influenced by the link capacity and 

when there is an increased capacity due to good SINR the probability of Node congestion reduces. At 

the same time an increase in throughput reduces Nc assuming the input data rate is constant. Nc and 

NWc introduces packet loss and that will adversely affect the TCP goodput (TCPg).  When there is a 

congestion detected, the TCP congestion controller adjusts TCPr and this forms a control loop. A QoS 

variable is included which depends on power consumption (Pc) and Delay (Td). Power consumption 

has a dependency on transmit power and transmit duty ratio (Tdr).  

 

 

 

Figure 5.1 QPN Model depicting the  network behavior 

 

A QPN model of the network behavior described above is depicted in Figure 5.1 

5.1.1 Analysis 

Following the line of QPN based methodology described for link level optimization in the previous 

sections; same approach can be extended to this network model also. It involves finding of new 

undirected cycles where trade-offs are present and attempt to resolve them through enhanced signs or 

context based edge switching. Once the trade-off issues are resolved to the extent possible, the model 

can be used in the inference engine for driving various network level adaptations as envisaged within 

the framework of cognitive networking. 

 

TCPr – TCP Rate 

Pktl – Packet Loss 

Tpt – Link Throughput 

Nc – Node level congestion 

NWc – Network Congestion 

RTT – Round Trip Time 

Io – Interference (Outgoing) 

Iin – Interference (Incoming) 

TxR – Tx Bit rate 

TxO-Tx Overhead 

FSz – Frame Size 

SINRm – SINR margin 

SINRth – SINR Threshold 

Pc – Power Consumption 

Tdr – Transmit Duty ratio 

Chd – Channel Access Delay 

ChQ – Channel Quality 

Pt-Transmit Power 

Mc-Modulation & Coding 

d – Distance  

BER – Bit Error rate 

TCPg – TCP goodput 

TCP 

Controller 



Qualitative Modelling and Inference for 
Network Scenarios  

55 

 

 

First is to lookout for the subgraphs that have trade-off issues. This is done by identifying subgraphs 

having their undirected cycles negative. Alternately sign propagation from head node to tail node will 

result in an ambiguous sign ( „?‟) for at least one  node.  We analyse the graph in Figure 5.1 and 

observe that there is a new trade-off relation between Pt and Pktl, in addition to the ones we have 

discussed and mitigated in previous chapter. There are two chains in the relation. In one chain ( Pt-

SINR-SINRm-BER-FER-Pktl ) the net influence is „+‟ while in the other chain (Pt-Io-NWc-Pktl) is „-

„.  This conveys that an increase in transmit power can reduce packet loss if link capacity is limited. 

On the other side an increase in transmit power increases interference to other nodes and can cause 

increased network congestion and thus the packet loss. In the following section we look at closely on 

how the QPN model at a single link level integrated into a multi-node network. 

 

Let us consider a small adhoc network consisting of three CDMA communication nodes operating in 

a common radio environment. We use a simplified influence diagram for the node with each node 

consisting of only a few variables, (Pt,Iin,Io,SINR,Pktl,Nc,TCPr),  that depicts the salient TCP 

behavior.  The influence diagram representing the interaction of all the three nodes is shown in Figure 

5.2.  The subscripts of the variables indicate the node id. 

 

 

Figure 5.2 Mutual influences between three nodes in a radio network 

 

Here it can be seen that at a node level the TCP controller controls the TCP rate based on the 

perceived network congestion indicated by packet loss. Following inferences are made using QPN 

sign propagation. 
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Table 5.1  List of observations and inferences from Network QPN model 

 

Observation Inference Comments 

Pt1 ( ‘+’) SINR1(„+‟), Nc1(-), Io1(„+‟), 

NWc(„+‟) 

 

SINR2(„-„), Nc2(„+‟) 

SINR3(„-„), Nc3(„+‟) 

 

Increase in Pt of a node decreases the probability 

of Node congestion and increases network  

congestion NWc.  

Increase in interference creates an increased 

probability of node congestion for other nodes 

TCPr1(‘+‘) Nc(„+‟),NWc(„+‟),TCPg(„?‟) 

 

TCPg2(„-„), TCPg3(„-„) 

 

When TCP rate is increased there is a probability 

of increase in Nc and NWc. While the direct 

influence of TCPr on TCPg is positive, its 

indirect influence through NWc is negative and a 

trade-off relation is created. 

The increased NWc will create negative 

influence for TCPg for other nodes. 

 

 

 

In the above observations we propose to use the context specific signs and constraints for the 

reduction of trade-offs and reduction of complexity. In the influence chain of Pt1, introducing a limit 

Pt1 < Pt1max , we conditionally remove the influence chain corresponding to the interference Io1. 

With this we observe that the influence of Pt on Nc is monotonic ( at least „non-increasing‟ ). 

 

Looking at the influence of TCPr1, we note that it has an ambiguous relation with TCPg involving Nc 

and NWc in two trade-offs leading to a rate optimization loop. TCP Congestion controller does 

exactly that. When congestion is detected it reduces the TCPr. The mechanism used by TCP to detect 

congestion (Pktl ,RTT etc) does not distinguish between the sources of congestion (Nc or NWc). From 

the Figure 5.1 and Figure 5.2 it is inferred that TCP need not adapt TCPr when there is a node 

congestion and it should be primarily handled by link adaptation.  

 

The inferences discussed above also reflect the TCP controller‟s inability to distinguish between 

network congestion and node congestion due to wireless link capacity limitation. If  δ(SINR) is made 

„0‟, that is stable SINR without any change, then  Pktl will only depend on NWc and thus it reflect the 

change in network congestion. Therefore an adaptation of Pt  to make SINR stable will make  the 

TCP congestion control to function as desired.  

5.1.2 QPN decomposition through Graph Partitioning 

From the analysis of QPN structure in Figure 5.1 it is observed that there are two adaptation loops 

(controllers) operating over this model. One is the link optimization and the other is TCP congestion 

control. From a graph theory perspective it is interesting to note that the QPN graph can be 

decomposed into two by applying a min-cut with minimum coupling between the two controllers. 

In graph theory, a cut is a partition of the vertices of a graph G(V,E) into two disjoint subsets C=(S,T). 

The cut-set of the cut is the set of edges Ec whose end points are in different subsets of the partition. 

That is C=(S,T) is the set *(   )   |       +. Edges in Ec are said to be crossing the cut if they 

are in its cut-set. The cut of a graph can sometimes refer to its cut-set instead of the partition. There 

are well known algorithms such as Kargers algorithm [5,6] for efficient solution of min-cut 

partitioning. 
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In the QPN model of Fig 5.1, it is found that the minimum cut-set C = (S,T) is obtained when 

S={Io,Cp,Tpt,Pc} and T={NWc,Nc,Qos} such that the two controllers are separated in two partitions. 

Figure 5.3 presents the decomposition ( the variables Qos and Pc are are not shown). 

 

Figure 5.3  Decomposition of QPN model using graph partitioning 

 

 

This joint power and congestion control has been already recognized as an approach to address this 

TCP behavior for wireless networks in the literature.  We briefly give an overview of the joint TCP 

congestion control in the following section. 

 

5.2 Related Works - Joint Congestion and Power Control in TCP  

For wireless networks packet loss or/and delay can result due to time varying nature of the wireless 

channel in addition to congestion. Also, the link capacities are not fixed, rather depend upon the signal 

to interference and noise ratio (SINR) of the link. To address this problem, a joint congestion and 

power control technique for TCP Vegas is proposed in [1]. Further, a Joint Optimal Congestion 

control and Power control (JOCP) techniques to address congestion in wireless networks and to 

improve battery life-time through optimal use of transmission power is presented in [8][9]. JOCP is a 

cross-layer approach involving TCP and physical (PHY) layer, in which TCP layer performs window 

based flow control and PHY layer controls transmission power of wireless nodes.  

 

The objective set for JOCP is to maximize the network throughput. The objective function of JOCP 

consists of two parts involving two optimization loops.  First part is the TCP rate control taken care by 

TCP congestion control mechanism of TCP by increasing/decreasing the window size in each RTT 

for each flow. The second loop chooses the appropriate transmission power of wireless nodes based 

on a common variable relating both loops. This   is termed as link price, which indicates the cost 

of transmission over the wireless link. It plays a significant role in determining the equilibrium 

window size and transmission power. In JOCP [8], each node requires information in-terms of a 

message       
jjj
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j
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
     from all other nodes to find this.  This message passing for 

the distributed optimization is an overhead observed of the JOCP algorithm and details are given in 

[8].   
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5.3 Time Scales for Adaptations 

Another aspect we consider here is the time scales of these two adaptations (congestion control and 

Power Control ). The changes in wireless channel are much faster (milliseconds) where that in TCP 

networks is comparatively slower (seconds). TCP performs the adaptation step once in every RTT, 

while power control needs to complete the adaptation with one RTT.  

 

This point out to the need for incorporating additional information related to the dynamics of external 

context variables in the QPN model and the CE would use this information to schedule various 

adaptation functions accordingly.   

  

We propose to incorporate an additional attribute on time scale of change to the model variables. This 

information is brought into the model by two ways: 

 

a) Apriori time scale information specified for all external variables (specified by experts) 

b) A learning algorithm that estimates and update a dynamics model ( a multi-state markov 

chain for example) linked to the above attribute.  

We propose to incorporate this by modifying the SelectControlVar(U) function in QOpt (Algorithm 

4.1) to make the selection of the control variables based on their timescale attribute.  

 

5.4 Experimental Evaluation 

In this section, we describe simulation experiments that have been performed to evaluate the QPN 

model based congestion control algorithm. We also compare the performance of this approach with 

that of JOCP approach. All the simulations have been conducted using implementations of cross-layer 

congestion control algorithm in MATLAB. We consider a CDMA ad-hoc network with six wireless 

nodes and two pairs of TCP flows (1-5) and (2-6) as in shown in Figure 5.4. 

 

 
Figure 5-4 Topology of the adhoc network 

 

In the QPN model based approach, all nodes in our simulation are capable of determining the 

transmission power and modulation index (in adaptive modulation) and in the JOCP approach, all 

nodes are capable of transmitting and receiving the cost i . All six nodes run TCP NewReno agents 

and we set the TCP retransmission timeout to be 4 × RTT. We update RTT by using    

measuredestimated RTTRTTRTT )1(   .  We assume that   = 0.85 for our simulations. We assume 

fixed packet lengths of 1000 bits size. We assume that the time required for transmission in each of 

the segments (Figure 5.3) 1-3, 2-3, 3-4, 4-5 and 4-6 are same. We use fixed as well as adaptive 
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modulation schemes. The path loss exponent due to distance is set as   = 4. We consider Additive 

White Gaussian Noise (AWGN) with Power Spectral Density (PSD) N0 = 0.35 (4.5 dB/Hz). We also 

simulate shadowing in our experiments. The shadowing is modeled as Log-normal with mean zero 

and standard deviation (  ) 8 dB. In each simulation run, the channel gain due to Log-normal 

shadowing is kept fixed for the entire duration of simulation. We also repeat the experiments with 

different Log-normal shadowing with   = 4,6,8 and 12 dB. We assume channel reciprocity, i.e., both 

forward and reverse link gains are the same.  

 

TCP NewReno is implemented in MATLAB. The data rate xi is computed by using the relation     

i

i
i

RTT

tcwnd
tx

)(
)(   whereas cwndi  and RTTi   are updated using TCP NewReno congestion control 

principle. We also consider step size of ∂ = 0.1 for changing Pi.  

 

 

 
Figure 5.5 Simulation Setup 

 

The simulation architecture is shown in Figure 5.5. Here we use the control variables { Pt, Mc}. 

Observation (Measurement) variables are SINR and TCPr. Goal of individual node is to maximize the 

rate TCPr.  Following constraints are set on the QPN variables.      {Pt  <  15W,  BER <1e-6}. Based 

on this constraint on BER the threshold for context dependent variable C1 is computed. 

 

 We use the domain of the control variables as Pi,= {8:0.25:15} , mi = {2, 4, 8}. Following are the 

constraints identified so that it helps to balance the sub-graphs involving these control variables. 

 

An adapted version of the QOpt algorithm (Algorithm 4.1) has been used here for the optimization 

engine. The system parameters used for simulations are presented in Table 5.1 (For QPN and JOCP). 

The value of each parameter observed has been averaged over 10 independent simulation runs. 

 

Table 5.2 Summary of Simulation Parameters 
 

Parameters Value 
  0.85 

cwndinitial 3 packets 

Pt {8:0.25:15} watts 

Mc {2,4,8} 

 

 

 

Adhoc Network Model 

Repository QPN Model 

Inference Engine 

Controller Goal 

SINR, TCPr  Pt, Mc 
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5.5 Simulation results 

In Figure 5.6 and Figure 5.7, we plot one instance of the cwnd variation (corresponding to TCPr) of 

both flows using QPN based and JOCP approaches respectively. From these figures, we observe that 

cwnd variation over time is uniform for both the schemes, irrespective of fixed and adaptive 

modulation. Regarding the convergence the observation is that the QPN  is somewhat slower than 

JOCP, however it is not too bad since it converges within 4-5 RTTs. Because of its slightly increased 

convergence time QPN based algorithm is more suitable for longer flows. Figure 5.8 and 5.9 shows 

the power control for the flows in JOCP and QOpt methods. We also observe that the average cwnd 

size of QPN approach with fixed modulation is 17.36 packets and with adaptive modulation is 14.06 

packets. In addition, we found that the average cwnd size of JOCP approach with fixed modulation is 

18.10 packets and with adaptive modulation is 14.10 packets. Though the average throughput is more 

in fixed modulation schemes, there are more packet drops resulting in drop in TCP good-put.  

 

 

 
Figure 5.6.  Variation cwnd size  for the two flows in JOCP  

 

 
 

Figure 5.7  Variation cwnd size  for the two flows in QPN 
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We also observe that the average transmission power in QPN approach is 11.34 watts, whereas it is 

11.42 watts in JOCP approach; average transmission powers are close to each other. 

 
 

Figure 5.8  Variation of Tx power for three flows using JOCP approach 

 

 

 
Figure 5.9   Variation of Tx power for three flows using QPN approach 

 

 

 We also conducted experiments with different standard deviation ( ) of Log-normal shadowing and 

plot the variation of throughput with   in Figure 5.10. We observe that throughput decreases as   

increases in fixed modulation, whereas throughput remains almost constant in adaptive modulation. 

The higher rate of throughput drop for the fixed modulation can be attributed to the fact that as 

shadowing increases, transmission power decreases resulting in decrease in the average throughput. 

We also observe the average transmission power of individual nodes at different channel states (cf. 

Figure.5. 11). From this, we observe that the average transmission power decreases when the channel 
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gain deteriorates (similar to Opportunistic scheduling) for fixed modulation, whereas average 

transmission power increases (at a slower rate) for adaptive modulation. 

 
 

 
Figure 5.10   Variation of throughput with channel variation 

 

 
Figure 5.11    Variation of Tx  Power with Channel Variation 

 

 

A detailed discussion on this simulation study is published in [10]. 

5.6 Summary 

 

In this chapter we proposed the use of QPN modeling the network behavior involving the interaction 

of multiple nodes. TCP congestion control behavior has been taken as a specific example and shown 

how the inferences are drawn towards a joint optimization involving TCP and the link layer. A 

simulation study demonstrating the applicability and performance of QPN model based qualitative 

optimization approach for a self-optimizing adhoc wireless network.  The performance has been 

compared with a traditional algorithm. The simulation results show that both schemes stabilizes and 

optimizes system at-par with respect to throughput and transmission power for reasonably good 

channel conditions. On a positive note, in QPN approach we do not use any form of message passing, 

whereas in JOCP approach that , we considered here for comparison, we rely heavily on message 

JOCP-f  
JOCP-a 
QPN-f 

QPN-a 

JOCP-f  
JOCP-a 
QPN-f 

QPN-a 
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passing to determine the modulation index and transmission power. Therefore, for a cross-layer 

implementation perspective, QPN model based approach is better and implementable as compared to 

that of JOCP approach and is scalable.  

 

References 
 

[1] L. S. Brakmo, S. W. O‟Malley, and L. L. Peterson, “TCP Vegas: New Techniques for Congestion 

Detection and Avoidance,” in ACM SIGCOMM, pp. 24–35, 1994. 

[2] V. Jacobson, “Congestion Avoidance and Control,” in ACM SIGCOMM, pp. 314–329, August 

1988. 

[3] R. Braden, V. Jacobson, and L. Zhang, “TCP Extensions for High speed Paths,” vol. RFC-1185, 

October 1990. 

[4] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgment Options,” 

April 1996. RFC-2018. 

[5] Karger, David (1993),  "Global Min-cuts in RNC and Other Ramifications of a Simple Mincut 

Algorithm". Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms.  

[6] Karger, David Clifford Stein (1996). "A New Approach to the Minimum Cut Problem". Journal 

of the ACM 43 (4): 601–640. 

[7] M. Chiang and R. Man, “Jointly Optimal Congestion Control and Power Control in Wireless 

Multi-hop Networks,” in Proc. of GLOBECOM, December 2003. 

[8] H. K. Rath, A. Sahoo, and A. Karandikar, “Cross Layer Congestion Control Algorithm in 

Wireless Networks for TCP Reno-2,” in Proc. Of NCC, IIT Delhi, January 2006. 

[9] H. K. Rath and A. Karandikar, “On Cross Layer Congestion Control for CDMA based Ad-hoc 

Networks,” in Proc. of NCC, IIT Bombay, February 2008. 

[10] Hemant K Rath, Rajan MA, Balamuralidhar, “Monotonic Signed Graph Approach for Cross-

layer Congestion Control in Wireless Ad-hoc Networks”, GlobeCom 2011 



QPN Model based Self-Monitoring in Wireless 
Networks  

64 

 

 

 

 

 

 

 

6 
6 QPN Model based Self-Monitoring in Wireless 

Networks 
 

In this chapter we propose a self-monitoring methodology for fault detection and 

diagnosis in wireless networks based on the QPN model. This uses the QPN inference 

mechanism along with related performance thresholds to detect a fault and explain the 

reason behind the failure. Subsequently a network management system can be triggered with 

the causes to initiate remedial measures automatically or with human intervention. The 

methodology is illustrated with an example of an antenna failure in a radio link. 

Subsequently we propose a scheme for ensuring regulatory compliance, another important 

aspect of self-monitoring.  

 

 

6.1 Introduction: Self-Monitoring for Wireless Networks 
 

In today‟s networks, lot of man hours is being spent in fault detection, diagnosis and remedial 

measures.  Maintaining and operating this large and technically complex system is a difficult task that 

requires operational staff working round the clock. Undetected system faults have serious 

consequences that will affect network performance and user experience which is very costly for a 

competitive telecom operator [1].  Diagnosis is currently a manual process left to experts dedicated to 

daily analysis of a few key performance indicators (KPIs) and the alarms of the network.  As the 

networks grow in size and integrate diverse technologies the task of monitoring cannot be 

accomplished satisfactorily with conventional methods. In cellular networks problems like detection 

of automatic cell degradation followed by diagnosis and healing has a huge importance with respect to 

economy and user experience. Beyond this the fore-sight is for self-managing systems,  that self-

configure, self-protect, self-heal and self-optimize  are the efficiency enhancement approach to handle 

the complexity of future networks.  From a network operational cost perspective this is a very 

important area, however it has not yet received deserved attention from researchers. 
 

6.1.1 Self-Healing – Related Works 

 

Self-healing process involves majorly three steps, namely, fault detection, fault diagnosis and fault 

recovery.  Identification of the situation that there is a fault with the system is fault-detection. This 

may be inferred from many of the network performance indicators such as number of dropped calls, 

access failures, congestion etc. Once a failure is detected, the cause of the problem is to be diagnosed.  

It is the defective behavior of some logical or physical component of the network that caused the 

failure. It could be generated from a bad configuration, hardware failure, component degradation  etc.  
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In many cases a fault could be associated with certain symptoms, such as alerts generated from 

violation of a constraint or threshold, oscillations in configuration etc. A  list of common causes and 

symptoms of faults in wireless networks is given in Barco [2] for GSM/GPRS and in Khanafer for  

UMTS [3]. 

 

Faults in networks generally fall into one of the two categories [4]. Hardware and software 

subsystems that actively report the failures are one category.  The second category faults are more 

difficult to detect, such as RF failures (antenna orientation and connectivity issues, power amplifier 

degradation etc), configuration and scheduling problems. “Sleeping cells” in cellular networks that do 

not service any traffic are especially problematic and difficult to detect.  

 

The first step in fault management is to differentiate between normal and abnormal system behavior. 

Any “symptoms” of abnormal behavior are linked to a set of potential causes, in most cases based on 

empirical knowledge supplied to the system by human operators.  

 

One of the traditional approaches followed for fault detection in RAN is based on alarm correlation 

[5]. Alarm correlation consists in the conceptual fusion of multiple alarms, so that an inferred 

meaning is assigned to the original alarms. Although alarm correlation can be used for diagnosis of 

faults, many times it does not provide conclusive information to identify the cause of problems.  

 
Application of Bayesian Networks (BN) to diagnose fault states under uncertainty has been explored 

for industrial control systems [8][9]. Compared to deterministic rule-based systems BNs provide 

robustness to unreliable observations [9][6].  In network management also BN based fault diagnosis 

has been investigated [2][7][9] . The authors in [7] train a BN to learn the normal state of a network 

based on observations of network traffic in a router. They show how the trained BN is capable of 

detecting network anomalies but do not diagnose their causes. In [2] diagnosis is performed in an end-

node solely to support fault recovery that only uses traffic observations readily available in the end 

node. 

 

Here we propose a scheme for self-monitoring in cognitive engine that uses QPN for modeling the 

network behavior. Unlike in BN where quantitative probabilistic information is used to inference the 

causes of a fault, the QPN based inference engine is used to check the consistency of network 

behavior with respect to the model. The parameters involved in inconsistent relations are flagged as 

potential anomalies.  

 

6.2 Fault Detection using QPN model 

 

A high level architecture of the self-healing functionality mapped to the cognitive engine is presented 

in Figure 6.1. The fault detection module monitors the context sensors and generates fault events 

whenever a fault condition is evaluated true. These fault conditions are part of a fault & diagnosis 

model. Once a fault event is generated, the reasoning engine is triggered and possible causes of faults 

are inferred. If remedial actions corresponding to these causes is available in the Action database then 

that is deployed by the reconfiguration module.  Otherwise suitable alarms are generated. 
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Figure 6-1 High level architecture for self-healing in a Cognitive Engine 
 

Further we propose to realize each of this modular functionality as described below. 

 

6.2.1 Fault & Diagnosis Model 

We use the QPN model of the network as the basis for building the fault and diagnosis model. For this 

model we introduce two additional categories of variables. They are Fault Cause variables ( Fc )  and 

Fault Detector variables ( Fd ) .  Fc is a set of binary variables that indicates the presence or absence of 

a fault with the respective subsystem represented by the variable.  These variables are added in the 

QPN structure reflecting their causal relationships with other context variables.  Fd is a situation 

specific binary variable with an associated Boolean expression which on evaluation indicates the 

presence of a fault if Fd=TRUE.  
 

Each of the Fault Detection variable  Fd is associated with a tuple  < Si , Ci > where Si represents a 

situation and Ci is a condition (Boolean expression over the context variables) associated with a fault.   

This is to state that in any situation similar to S1 if the condition C1 becomes TRUE, then a fault Fd1  is 

detected. These new variables are added to the QPN structure in a similar fashion as the context 

specific nodes presented in chapter 3.   

6.2.2 Fault detection and diagnosis 

The fault detection module periodically updates the fault detection variables and generates events in 

case they evaluate to be TRUE.  The reasoning engine uses the event information and observations to 

infer the state of the fault cause (Fc) variables. This is done through the QPN sign propagation 

algorithm described in previous chapter. 

 

6.2.3 Illustrative Example – Antenna Failure 

Here we consider a simple example of a radio link (Figure 6.2a ) in which the above approach is used 

for detection and diagnosis of a fault with antenna system. The figure shows the QPN based fault 

model of the link.  Pt is the transmitter power and Iin is incoming interference at the receiver. We 

introduce a fault cause variable FGA  which represents a fault with the antenna gain ( undue reduction 
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of antenna gain due to a fault). When FGA is TRUE,  it will have a negative influence on SINR (in the 

presence of No - thermal noise).  The separation between transmitter and receiver is represented by d.  

Here we define undue increase of FER as the symptom of a fault in the radio. It is defined by the tuple 

  
        (        )    where    *        + , relevant parameters defining the situation.  

     is the reference FER from history corresponding to a situation S1
*
 that is similar to S1.   When 

they are similar situations ( current situation S1 and the reference situation S1
*
 in the database) the 

QPN signs of the variables associated to S1 (change with respect to S1
*
 ) are  (  )   ( )  

   (   )   . Using this as the observations a QPN sign propagation of  δ(FER)=‟+‟ yields the inferred 

sign value of δ(FGA) as „+‟. The interpretation of this inference is that while the situation S1 identical, 

an increase in FER greater than       indicates a failure of Antenna as the cause of the observed fault. 

The argument used here is that while all the dependent variables of FER, other than FGA, known to be 

stationary, then any change with FER will be due to FGA. 

 

 
Figure 6.2 Simple influence diagram showing fault model of a radio link as an illustrative example.  a) 

Depicting Fga indicating antenna fault    b) Depicting two fault points antenna gain (Ag) and Antenna 

alignment (Aa) 

 

We present an algorithm for the fault detection diagnosis using QPN model in Algorithm 6.1. Here we 

present the algorithm as an infinite loop checking for events as indicators for possible faults. We 

prepare a database of reference situations those are frequently occurring and consistent with the QPN 

model. We define a symptom variable Ci which is often a Boolean expression of  a set of observed 

parameters. Whenever the symptom is detected and a matching reference situation in database exists, 

a fault detected flag fd is set.  A list of parent nodes of V, where the symptom variable is attached, 

which are head nodes form the possible set of fault causes Fc
*
. A list O of observation variables are 

prepared which are parents of V (and head nodes) not including Fc
* 

. A QPN sign propagation with 

these observation variables in O set to „0‟ (that is no change) yields its effect on Fc*. If any of the 

variables Fc* is set then that is declared as potential causes of faults. 

 

Figure 6.2b presents an influence diagram with some more additional fault parameters. It includes 

Antenna Alignment (Aa), Antenna directional gain (Adg), Power Amplifier Gain (Pag). Other 

dependent parametrs are Interference at the receiver (Ir), Noise power at the receiver (Nr), and Signal 

Power received (Si). The same procedure described above can be extended to this towards 

determining the related faults.   

 

 

 

a) b) 
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Algorithm 6.1   Algorithm for fault detection and diagnosis 

 

 

 
 

6.3 Radio Monitoring for Regulatory Compliance 

Flexibility provided by the radio part of a cognitive network node is another important point for 

monitoring from a regulatory perspective. The implementation of a cognitive radio in general follows 

a Software Defined Radio (SDR) approach providing sufficient flexibility for supporting cognitive 

capability. Ensuring regulatory compliance of the cognitive radio is a very important aspect to be 

addressed for commercial deployment. 

 

Regulatory aspect of the cognitive radios - that is, how to make sure that any radio terminal designed 

would operate properly in the ecosystem of CR – is an aspect needed for certification. Cognitive 

Radio may use the spectrum differently based on its multiple modes of operation. The transmission 

modes may change from what is anticipated at design time. These changes may be due to the 

reconfiguration action of the CR or some software failure. So there is a possibility of interferences 

from the operation of CR which need to be contained.  
 

6.3.1 Regulatory Compliance 

While it is mandatory for the radio to implement the regulatory policies, the compliance needs to be 

established for regulatory certification. The existing communication devices are type approved by 

certifying agencies with the assumption that they have tested all possible modes of operation of the 

device and there is a mechanism exists in the device to prevent it from going to any new modes. With 

the new dynamically reconfigurable communications devices this is not true, there are innumerable 

modes that are difficult to cover through testing and there are unanticipated modes of operation that 

FD – Fault Database 

Fd –  Set of faults 

Fc –  Set of Fault causes 

Fd, S, C – Fault id, Situation, Fault condition 

fd  -  Fault detected 

fc  - Fault cause 

FD = {< Fdi, Si, Ci >} 

 

Sc – Current situation 

while TRUE 

 if similar (Sc ,Si ) and eval(Ci)=TRUE then 

  fd = Fdi 

  Fc 
* 
←    ( (   ))     

  O ←  *    
    |     ( (   ))   

 + 
  δ(Fc

*
)  ← signpropagate (Fdi,‟+‟,O) 

  if      (  
 )  and fj=‟+‟ then 

   fc ← fj 

   InitiateAction(fd,fc) 

  end if 

 end if 

end while 
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the device may configure itself into.  Here we investigate the structure that is required for a CE to 

address this requirement. 

6.3.2 Regulatory Compliance Monitor for Cognitive Radios 

We conceptualize a regulatory compliance monitor (RCM) for cognitive radios to be incorporated in 

the cognitive engine. Following are the major requirements of RCM considered. An authenticated and 

truthful regulatory policy information need to be available to the RCM. The sensors and context 

measurements that provide the information elements for policy evaluation need to be trustable. 

 

The policy updation mechanism provides the current and authenticated machine readable policy to the 

RCM. For the evaluation of these policies the required context information is provided from the 

knowledge repository. On the event of a reconfiguration the control parameters are scrutinized by the 

RCM as guided by the regulatory policy. Based on the conformance status RCM gives out a go/nogo 

signal  that enables/disables the reconfiguration controller from using the proposed control 

parameters. Figure 6.3 gives a high level architecture of integrating the RCM functionality in the 

cognitive engine. 
 

 
Figure 6.3  Integration of Regulatory Compliance Monitor (RCM) in cognitive engine 

 
 

Figure 6.4 Dependency diagram for Interference as a compliance measure in Cognitive Radios 

 

Interference is a useful metric to monitor the regulatory compliance of a radio. Figure 6.4  
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presents a view of the dependency diagram showing major parameters that determine the interference 

generated by a radio to other radio receivers. Majorly the interference is due to the spectrum mask 

violation and deviation from medium access etiquette. The dependent parameters include frequency 

band, bandwidth, transmit power, modulation, time & location of the radio and performance of the 

spectrum sensor. The medium access scheme and dynamic access rights are  also part of the MAC 

etiquette. Location information is needed for a cognitive radios with universal roaming, and the 

spectral policies may be different for countries, regions, localities (urban Vs rural). In future it may 

have a dependency even on Time of Day.  The dependency diagram giving the related control and 

observation parameters is extracted from the QPN model by the RCM. This can be mapped to the 

fault detection & diagnosis architecture where a constraint violation/fault is acted upon. In a similar 

manner a violation of regulatory policy is also considered as a fault event. 

 

6.3.4  Approach for Regulatory Certification based on RCM 

As explained above, responsibility of the RCM is to evaluate the constraints based on the measured or 

estimated constraint variables. These measurements are done through the Sensing module of the CE. 

Accuracy of sensor measurements has an impact on the constraint evaluation. Some constraints are 

enforced by embedded design ensuring respective compliance. We propose the procedures listed 

below to assess the compliance of radio device: 

 

a) Correctness of the policy statements and the QPN Model 

b) Authentication mechanism for the policy management 

c) Validation of the mechanism for constraint formation from policies 

d) Test the accuracy of the sensors 

e) Verification of correct provision of device context information 

f) Implementation of the control mechanism in case of a violation 

g) Black box testing of implicit constraining by design 
 

6.3.5 Policy Management 

Spectrum policies have to be expressed in a machine readable form to enable autonomic reasoning 

and decision making. A policy language could be used to express the policies published by regulators 

which are generally in a human readable form. A relevant work towards this has been reported for 

DARPA XG program in which a language framework of Ontology Web Language (OWL) has been 

used [9] . This is a declarative language enabling merging of multiple policies. OWL can be seen to 

be equivalent to description logic (DL), which allows OWL to exploit most of the existing DL 

reasoning approaches. 

 

A CR will use these policies with appropriate reasoning to select a potential compliant mode of 

transmission. From a regulatory point of view what needed is a framework for detecting and stopping 

policy violations. This can be seen as detection of violation of certain boundary constraints derived 

from the above policies. These constraints may be derived statically in a constraint repository or 

dynamically based on the device context. 

6.3.6 Security 

Policies are to be updated in a secure manner. Agencies involved in the specifications are Regulators, 

Manufacturers and Operators. Digital certificates can be one of the methods to authenticate the policy 

files and related processing commands. Architecture of a Radio Security Module enabling global 

roaming of an SDR terminal presented in [11] takes a similar approach. Simpler schemes involving 

light weight cryptosystems can also be considered. A policy based framework could be used as a 
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secure boundary, similar to the concept of trusted kernel in secure systems. Critical performance 

validations are kept within this kernel and future innovations can happen outside this boundary. The 

secure module should not be modifiable by software reconfiguration and it should be sufficiently 

tamper proof. 

 

6.4 Summary 

Self-monitoring for fault detection, diagnostics and reconfiguration is an important requirement in 

cognitive networks and that needs to be facilitated by the cognitive engine. An approach based on 

QPN model to support the feature of fault detection and diagnosis is proposed in this chapter. The 

QPN sign propagation based inference along with the historical information is used to detect a 

deterioration of a key performance metric that indicating a possible fault condition and causes. Further 

a scheme for monitoring of radio for regulatory compliance has also been discussed. The proposed  

approach of using Radio Compliance Monitor (RCM) integrates well with  the CE architecture. The 

RCM works inside a secure policy management boundary. Validation of the RCM could be a basis for 

ensuring radio compliance and certification. 
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7 
7 Cognitive Acoustic Communications  

 

 

In this chapter we propose a novel communication scheme using upper audio frequency 

band for short range communication between devices/appliances over the air. We refer this 

scheme is Upper Audio Band (UAB) Communication. Cognitive Radio concepts have been 

used here to operate this communication modem as a secondary in presence of primary users 

such as TV, Home Entertainment Systems. This acoustic modem has been implemented and 

its performance details are discussed. Further the idea of using this in a personal area 

cognitive network is presented. 

 

7.1 Introduction - Short Range Acoustic Communications  

Here a novel and interesting use case with a practical implementation of an acoustic cognitive radio is 

introduced. This addresses the need of a low cost software modem that can be used for short range 

low data rate device-to-device (D2D) communications.  A major requirement that has been put on the 

system is that it should use audio, but should be imperceptible for human ears, at the same time the 

frequency band used should be supported by the devices involved. This stringent requirement has 

been addressed by choosing the upper audio band in the range of 16KHz to 20KHz for 

communication. Achieving meaningful data rates in this narrow band required us to adopt innovative 

modulation techniques along with error correction coding for robustness.   Further the intended 

spectrum might be occupied by transmissions from entertainment appliances such Hi-Fi audio 

systems, HD-TV etc. Therefore our design is to use the cognitive acoustic radio as a secondary user 

with the above appliances as primary. 

 

7.2 Related Works  

New methods of communication, protocols and signal processing and accompanying standards are 

needed for devices in the Internet of Things so that they can connect to a variety of access points even 

if conventional RF interfaces are not available. Prior work in [1,2,3] has used the audio band for 

communicating data. In [2], multi-carrier modulation has been proposed for transmission of data over 

the air using the perceptible audio band of 6.4-8KHz. The frequencies in this band are first filtered out 

from the original sound. A multi-carrier modulation with 32 sub-carriers is then used to communicate 

data. In [3], data is embedded in a sound signal over the perceptible audio band. This method 

performs a Lapped transform on an audio signal, and then modifies the phase of the transform 

coefficients to embed the data. The inverse of the transform coefficients with modified phase gives a 

time-domain signal, which is then played by a speaker. The error rate performance reported for the 

systems in [1,2,3] is unsuited for data communication. In addition, there is an inevitable distortion of 

the original audio signal in which the data is embedded.  
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A method of communicating data over the audio band without distorting existing sound signals is 

needed. Signaling methods suited for the audio channel need to be designed. Audio interfaces on 

mobile devices are typically sensitive to frequencies upto 20KHz. Since the Upper Audio Band 

(UAB) in the range 16-20 KHz is almost imperceptible to the adult human ear over short time 

duration, it can be used for data communication. Within this bandwidth, it is possible to communicate 

at a low data rate over a short range depending on the sensitivity specifications of the speaker and 

microphones.   

 

7.3 UAB Physical Layer Design 

To design signaling schemes for communication over the audio channel, it is important to study the 

channel characteristics. In this section we characterize the UAB channel and propose signaling 

schemes matched to this channel. The signal processing operations at the receiver are optimized for 

the audio channel.  

  

7.3.1 UAB Channel Model 

The audio channel can be modeled as a Linear Time Invariant (LTI) system. Eigen functions of LTI 

systems are complex exponentials which pass through the channel undistorted. Multi-tone FSK 

signals which are linear combinations of sinusoids are eigen functions, which can be used for 

communication over the audio channel. The signal model in the next section elaborates on the choice 

of frequencies for a multi-tone FSK signal. Furthermore, in a closed room environment, without 

ambient sound, the recorded signal on a microphone was observed to have an approximately Gaussian 

distribution.  

7.3.2 Signal Model  

For this application we propose the use of Multi-tone FSK modulation with tones arranged in a lattice 

structure for communicating data over the audio channel.  A dense packing of circular contour plots 

with a given radius in 2 dimensional space is a hexagonal lattice packing [4]. If two tones  21 f,f  are 

chosen from a Hexagonal lattice, the correct decision region (Voronoi region) for each lattice co-

ordinate point is a hexagon. The generator matrix for a hexagonal lattice is given by [4]: 

 

  









2/35.0

01
)2(G         (2) 

 

With a base pair of frequencies, M1=13000 Hz,   M0=12000 Hz and a translation of  6500 Hz, we 

compute the 4 pairs of tones for a 2-tone FSK modulation to obtain the 4 adjacent frequency lattice 

co-ordinates: 

 

F1 =[M0 M0]
)2(

G +[0 6500]= [18000,16892]   

F2 =[M0 M1]
)2(

G +[0 6500]= [18500,17758]    

F3 =[M1 M0]
)2(

G +[0 6500]= [19000,16892]    

F4 =[M1 M1]
)2(

G +[0 6500]= [19500,17758]    

The co-ordinate points ],,,[ 4321 FFFF  are labeled using a binary reflected Gray code of order 2. 

Adjacent co-ordinate points are spaced 1000Hz apart in the frequency plane. The frequency lattice 

constellation is shown in Figure 7-1.  
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Figure 7-1 Frequency lattice constellation for 2-tone FSK modulated signal 

  

We define a channel as the frequency band spanned by a set of 4 adjacent lattice co-ordinate points. 

Multiple channels can be introduced by translating the lattice co-ordinates in a default channel. The 

hexagonal lattice packing is a spectrally efficient packing in the frequency plane allowing a larger 

number of channels to be introduced, compared to any other arrangement of frequency co-ordinate 

points.  

 

The signaling model can be extended to a 3-tone FSK. In three dimensions, a laminated hexagonal 

lattice is the densest packing of spheres[4]. The generator matrix can be derived as: 

 



















3/230.5/ 0.5

02/30.5

001

)3(G           (3) 

7.3.3 Pulse Shaping   

  The multi-tone FSK modulated signal is pulse shaped using a  Dolph-Chebyshev window to reduce 

the perceptibility of  spurious frequencies to human ears caused by sharp transitions across signaling 

intervals and to create silence zones between adjacent signaling intervals. The silence zone should be 

larger  than the maximum expected delays of acoustic echoes in a  closed room environment to avoid 

errors in decoding due to inter-symbol interference. Figure 7-2 shows the Power Spectral Density 

(PSD) of a 2-tone FSK signal. The Chebyshev pulse shaped signal has a lower out-of-band spectral 

response compared to the non-pulse shaped signal. This reduces the perceptibility of interference to 

human ears due to the out-of-band frequencies.  
 

 
 Figure 7-2 Power Spectral Density estimate comparison for a 2-tone FSK modulated signal (Chebyshev 

window shaping v.s no pulse shaping) 
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7.3.4 Receiver  

The received signal is filtered using a band pass filter with a pass-band range of 16-22 KHz. With a 

default sampling interval ss f=t /1 , where sf =44100 samples/s. A signal-onset detection is 

performed at the receiver using the Teager-Kaiser (TK) energy operator on the received signal 

samples. The TK energy operator [5] is useful to detect transient signals in the presence of noise.  The 

output of the TK energy operator when applied to a 2-tone FSK modulated signal over a time interval 

[0,T/2] is shown in Figure 7.3. The TK energy operator acts as a filter, reducing the noise in the 

received signal.  

 

 
Figure 7.3 The TK energy operator output when applied to a pulse shaped 2 tone FSK modulated signal 

over a time interval [0,T/2]. 

 

 

 
Figure 7-4  Histogram of the TK energy of the signal and the sample average of the TK energy. 

 

Figure 7-4 shows a histogram plot of the TK energy for the signal and the noise. The histograms are 

observed to have overlapped Meijer G distributions. In contrast, the sample averages Y and W were 

observed to have well separated Gaussian distributions. The p.d.f )(wfW  is centered on the variance 

of the noise sequence  )(nwC
. The signal onset detector now has to test for two hypotheses: 

0.87 

-10 

0.88 

-5 

0.89 

0 

0.9 

5 

0.91 

10 

0.92 

15 

-0.02 

20 

-0.01 

0 

0 

20 

0.01 

40 

Time (seconds) 

60 

Amplitude 

80 

Pulse shaped 2D Lattice Multi-tone FSK modulated signal 

TK energy operator output 

0.88 

Frequency of occurence 

0.885 

0.8 

0.89 

0.9 

0.895 

1 

0.9 

1.1 

0.905 

1.2 

-2 

1.3 

0 

1.4 

2 

1.5 

4 

0 

x 10 

50 

-5 

100 

Teager-Kaiser energy operator output 

150 

Time (seconds) 

200 

0.88 

Sample average of TK energy operator output 

0.885 

Frequency of occurence 

0.89 

Histogram of Y 

0.895 

Histogram of W 

0.9 

Histogram-TK energy of  

0.905 

y(n) 

0 

Histogram-TK energy of  

2 

w(n) 

4 
x 10 -3 Cumulative sum of the Teager-Kaiser energy operator 

Time (seconds) 



Cognitive Acoustic Communication 
76 

 

 

 

0

1

:

:

W H

Y H








                                          (4) 

The detector threshold  must be chosen such that:  
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An optimal threshold   is chosen as the point where )()(  WY ff  . Since the p.d.f )(wfW  is 

centered about the variance of the noise  ( )Cw n , the threshold   is dependent on the noise variance. 

The lowest Signal to Noise Ratio (SNR) for which the constraints in (5) are met is the detector 

sensitivity.  Figure 7-5 shows the BER performance for different multiple tone FSK modulated cases. 

In the multi-tone lattice a smaller spacing between frequency lattice points may allow the use of 

additional channels, but will degrade the BER performance. Hence the tradeoff between the allowed 

number of channels and the BER performance needs to be taken into consideration when choosing 

frequencies for the multi-tone FSK modulation.  
 

 
Figure 7-5  Comparison of Bit Error Rates for a 2/3 dimensional lattice multi-tone FSK modulated signal 

and 4, 8 FSK over AWGN 

7.4 UAB modem prototype design 

A prototype modem was developed  (Figure 7.6) using the upper audio band of frequencies and the 

proposed multi-tone modulation format. A three symbol error correcting (15,9) Reed-Solomon (RS) 

code over the field GF(2
4
) was used for data encoding/decoding. A data sequence 

1, 2,. 32..D d d ,d   

with  1,0id was appended with a flag sequence [0000], giving a 36 bit message sequence        [D, 

[0000]] which was encoded using a (15,9) Reed Solomon code. The field elements of the RS code 

over the field GF(2
4
) were generated using a primitive polynomial 41)( XXXp  . The encoded 

symbols were mapped to a 2-tone FSK signal for data transmission over the UAB. The modulated 

signal is played using compatible speakers.   
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Figure 7-6  Transmit/Receive chain for the UAB modem 

 

 
 

Figure 7-7  Physical layer frame structure 

 

For the medium access we follow a simple scheme of repeated cycle of two slots, namely Sense and 

Transmit [6]. The time slot structure is designed by dividing each fixed-size cycle of length 
FT  into 

the following two phases:  

 

1. Sensing Phase- During the sensing phase, all active UAB devices perform spectrum sensing on the 

channel. Only links whose sensing results in Not Busy status proceed to the next phase. A channel is 

usable if the computed periodogram of the received signal does not cross a pre-determined threshold 

at the tone pairs/triads for the 2/3 tone FSK modulation.  

 

2. Data transmission phase -A 32 bit data sequence and a 4 bit flag sequence is RS encoded. The 

physical layer frame structure is shown in Figure 7.7. The Flag sequence of 4 bits can also be used for 

indicating the modulation scheme (2/3 tone FSK modulation) to the receiver, for a reconfigurable 

modem, which can adapt its data rate.  

 

There is a tradeoff between interference avoidance and sensing efficiency. Sensing efficiency is 

determined by the following parameters: 

 

1. Sensing periodicity 

2. Detection sensitivity 
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A sensing slot is scheduled every data frame. This period can be varied (scheduled for every set of 

data frames instead) depending on the environment. The thresholds estimated for identifying valid 

tones determine the false alarm and misdetection probabilities and depend on the sensing time 

interval. A larger sensing time interval allows a better detection at the cost of reducing the throughput. 

The signaling interval for a 2-tone FSK modulation was taken as 20ms, giving a data rate of 100 

bits/s. One RS codeword over the field GF(2
4
) is represented by 60 bits. An encoded data frame of 60 

bits spans a time interval of 1.2 seconds. The Beacon broadcast and Quiet period were each allocated 

a time interval of 40ms. For a 3-tone FSK modulation, a RS encoding over GF(2
3
) was used.  The 

field elements of a two error correcting (7,3) RS code over this field were generated using a primitive 

polynomial 31)( XXXp  .  

7.5 Implementation and Experimentation  

The UAB modem is implemented on an Apple iPad  in software. The microphone of the iPad is used 

as the receiver.  A portable mp3 player used as a transmitter which played a pre-computed transmitter 

waveform stored in its flash card. For a data rate of 100 bps, the data could be decoded successfully at 

a receiving iPad upto a distance of 10 meters from a portable speaker with an 80 dB/W/m Sound 

Pressure Level (SPL) specification playing an mp3 encoded transmit waveform file.  The receiving 

iPad was able to decode data correctly in the presence of background instrumental music in a closed 

room lab environment with furniture and equipment. It was observed that receiving microphones need 

to have sensitivity in the range of 50-100 mVolts/Pascal.  

 

A practical demonstration on indoor location identification using a UAB modem implemented on 

Apple iPad is shown in Figure 7.8. Here the location code is converted to a UAB modulated audio 

stream in mp3 and an mp3 player is used to transmit this periodically. An Apple iPad or iPhone 

having the UAB application installed, receives this audio location beacon and detects the location id.   

 

 
 

Figure 7-8  Cognitive UAB modem implemented on Apple iPad receives location messages transmitted by 

a UAB transmitter (an mp3 player is used) kept at the top. 

 

7.6 Cognitive Communications using UAB  

The UAB modem can be positioned to work as a secondary in presence of various primary 

transmitters. The possible primary transmitters are TV, Hi-Fi music systems and other audio systems. 

The UAB transmission should not create interference to humans who are listening to those primary 

transmissions. 
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Figure 7-9 shows the spectrogram recorded during the UAB transmission in presence of a TV and Hi-

Fi music system as primary. Since there is a strong interference from the audio/music the UAB 

modem schedules on only one channel near 20KHz that is relatively interference free. Other channels 

those are below the first one is turned off.  In Figure 7.4b it is observed that the UAB modem 

schedules another channel when the primary transmitter goes off. 

 

 
Figure 7-9  Spectrogram corresponding to UAB transmission in presence of TV and Hi-Fi Music.  

 

For an efficient cognitive operation the performance of spectrum sensing plays an important role. 

Some observations based on practical experiments using the above prototype are presented in the 

following section.  

7.6.1 Sensitivity of Sensing Duration 

 

We have conducted a practical experiments  involving the measurement of throughput of UAB link 

for different sensing durations in presence of a primary transmission. A slotted data transmission from 

the Primary User (PU) was generated on a single channel. The receiving audio modem was tuned to 

synchronize with the empty time slots to schedule its transmission. The total number of bits it can 

transmit in the sensed empty time slots determines the throughput of the audio modem. The 

throughput is hence defined as the ratio of the total time of sensed empty time slots to the total time of 

observation. The effective throughput for different sensing durations and a 2-tone FSK signal model is 

given in tables 2a, 2b, 2c.  

 

 
Table 7-1  Effective throughput for different sensing durations for different speaker-microphone 

distances  

 

Sensing 

duration 

Throughput (kbps) 

 2 ft 4 ft 6 ft 

10ms 0.55 0.54 0.95 

13ms 0.54 0.53 0.93 

20ms 0.52 0.50 0.90 

 

 
It can be seen that a better throughput is obtained with smaller sensing duration. With an increase in 

distance (e.g. 6ft), the signal power of the PU reduces and the received signal at the spectrum sensor 

does not meet the set thresholds. This makes the spectrum sensor flag more „empty‟ time slots 

resulting in more transmission opportunities and an increase in the throughput. With weak PU signals, 

there is a low probability of incorrect decoding by the SU due to interference and hence the 

throughput increases.   
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The details of the UAB communication modem design, implementation and experimentation are 

published in [7][8] 

7.6.2 Range Performance 

An experiment is conducted to observe the range performance of the UAB link. The received signal 

strength measured at the receiver for various distances is plotted in Figure 7.10.  

 

 
 
Figure 7.10  Variation of received signal strength with range  

 

The characteristic is similar to the response of a short range radio link such as IEEE 802.15.4.  In spite 

of the local undulations the overall characteristics is observed as a monotonic causal relationship from 

distance to received signal strength ( or SNR). 

 

7.7 QPN Model for the UAB Link 

Based on the above performance characteristics and experimental observations the behavior of the 

UAB link is modeled as follows. As first step we list the observed facts followed by the construction 

of a corresponding QPN representation. 

 

Let us define following terms: 

 

m – modulation ( number of tones , {2,3,4,8} ) 

Ts – spectrum sensing duration ( {10,13,20} ms) 

PD – Probability of Detection of Primary 

dP – Distance from Primary Transmitter 

d -  Distance between secondary Tx and Rx 

Pr -  Received signal strength 

BER – Bit Error Rate 

 

Table 7-2 Influences Observed for UAB Link 
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From To Sign 

m BER + 

Ts PD + 

Ts Tpt - 

dP Tpt + 

d Pr - 

 

With these observations and using additional well known background information we construct the 

following QPN model for the link. We have added two known variables TxR (Tx bitrate) and TxO 

(TxOverhead)  for a clearer interpretation.  The constructed QPN model is shown in Figur. By 

comparing with the QPN model of a generic CR introduced in Chapter 3, it can be observed that they 

are consistent. It also points to the fact that there is a high probability of QPN models being consistent 

across multiple technologies. These technology agonistic models are of great value add to the 

cognitive engine to be relevant for handling heterogeneous networks (Hetnets). 

 

 

 
 

 
Figure 7.11  QPN Model for the UAB link constructed from observations 

 

7.8 Summary 

In this  Chapter the design and implementation of a novel communication scheme using upper audio 

band (UAB) for short range low data rate communication presented. We used a novel multi-tone 

lattice modulation scheme along with error correction codes to achieve a robust communication. This 

technology can be used as a low cost, low data rate, short range software communication modem for 

devices those have integrated audio interfaces. This is envisaged to be used for communications 

between devices/appliances including cell phones over the air and has several promising applications. 

Indoor location tracking is one such application. Further it has been shown that Cognitive Radio 

concepts can be used to operate this UAB link as a secondary in presence of primary users such as 

TV, Home Entertainment Systems. Further QPN model for the UAB link from the experimental 

observations is found to be consistent with the generic CR model presented in chapter 3. It gives us a 
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positive feel that these QPN models are technology agonistic  and  of great value add to the cognitive 

engine to be relevant for handling heterogeneous networks (Hetnets) of future. 

 

References 
 

[1] Aerial acoustic communications,  Lopes, C.V. Aguiar, P.M.Q. 2001 IEEE Workshop on the 

Applications of Signal Processing to Audio and Acoustics. 

[2] Evaluation and Demonstration of Acoustic OFDM, Nakashima,  Y. Matsuoka,   H.Yoshimura, T.  

Fortieth Asilomar Conference on ,Signals, Systems and Computers, 2006. ACSSC '06.Oct. 2006. 

[3] Acoustic Data Transmission Based on Modulated Complex Lapped Transform, H. Yun, K. Cho, 

N. Kim, IEEE Signal Processing Letters, Vol 17, Jan 2010. 

[4] Sphere Packings, Lattices and Groups, J.H Conway, N. Sloane, Springer, 1998  

[5] Detection of transient signals using the energy operator, R.B. Dunn, T.F. Quatieri, J.F. Kaiser, 

ICASSP 1993. 

[6] Lifeng Lai; El Gamal, H.; Hai Jiang; Poor, H.V, "Cognitive Medium Access: Exploration, 

Exploitation, and Competition," IEEE Transactions on Mobile Computing, vol.10, no.2, pp.239-

253, Feb. 2011.  

[7] Rahul Sinha, P. Balamuralidhar, Rajeev Bhujade, “An Upper Audio Band based Low Data Rate 

Communication Modem”, ICSPCS-2012  

[8] Rahul Sinha, P. Balamuralidhar, Rajeev Bhujade, “Software defined radio based on the upper 

audio band for low data rate communications over short distances”, SDR12-WinnComm  

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions and Future Works 
 

83 

 

 

 

 

8 
8 Conclusions and Future Works  

 

 

8.1 Conclusions 
 
Imparting autonomic features to communication networks has been the basic driving force behind the 

concept of Cognitive Networks. The approach to enable cognitive functionality in existing networks is 

to incorporate a knowledge plane with an embedded cognitive engine. The cognitive engine has the 

functionality of facilitating autonomic features including self-configuration, self-optimization and 

self-stabilization to the system. These self-x features along with others can be put in a single basket of 

self- management. We believe that a systematic approach to architecting the cognitive network should 

consider the guidance from cognitive science.  

 

In chapter 2 we proposed key guiding principles behind a cognitive entity. One of the strong point 

emphasized here is that a cognitive entity needs to have a model of „self‟ along with a model of the 

„world‟. Use of ontology is a key aspect here. The persistent nature of this ontology enables pro-

activeness and robustness to „ignorable events‟ and our arguments on this have been appreciated in 

several citations of our publication on this.  Bringing context awareness through the conceptualization 

of a context space with necessary information structures is positioned as a key basis for knowledge 

modeling and management. In the underlying cognitive process, in addition to Sense-Analyse-Decide-

Reconfigure (SADR) supported by underlying Learning, the significance of „Communicate‟ as a new 

process element is to be noted.  This „cognitive communication‟ capability is required to boot strap 

and synchronize cognitive engines distributed across multiple network elements.  Based on the 

guiding principles of cognition a set of requirements for the cognitive engine were stated and a 

detailed architecture was developed.  

 

For the representation and manipulation of context space with required information structures 

graphical models are well suited. By considering the complexity of popular Bayesian Networks (BN) 

we chose to explore qualitative approaches including sign graphs and qualitative probabilistic 

networks (QPN).  While these qualitative techniques are used in other science streams including 

biology and chemistry, its use in wireless communication networks is new. In chapter 3 we introduced 

QPN modeling in the context of wireless networks and developed a QPN model for a generic 

cognitive radio link.  Structurally the QPN is similar to signed directed acyclic graphs (SDAG) which 

has a good theory behind it for systems analysis. While analyzing the QPN model for the CR link 

using sign propagation we found that trade-off is a major problem where the inference results in 

ambiguity.  This posed serious limitation on the usability of QPN in our intended application. We 

found that by the combined use of situation based signs and enhanced signs the problem of trade-off 

can be addressed to a great extent.  Situation specific switching of signs of certain edges is found to be 

good strategy and this switching often requires certain state measurements and thresholding. Initial 

experimentations can estimate these thresholds, however they needs to be adapted through learning. 

While developing the QPN model we came across situations where the causal relation is not 

monotonic and cannot be assigned a single sign. Example case discussed is based on the behavior of 

MIMO on SINR and rate. Another situation is the case of coupled controls where there is a coupling 

between control variables. In both these cases approaches for restructuring the relations are suggested. 
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We also proposed the use of hierarchical decomposition of larger graphs to smaller sub-graphs for 

improving the efficiency in addressing the trade-offs and reasoning process. Finally we introduced a 

methodology to develop an extended QPN model for its use as a knowledge model in the cognitive 

engine. 

 

One key application of the above dynamic model is in self-optimization.  We devised an online 

optimization algorithm that sequentially exercised the control variables based on reasoning with the 

QPN model.  In case of an ambiguous inference regarding the decision on any control variable a 

perturbation is made and a local search is initiated. On performance evaluation using a link 

optimization problem in a dynamic network scenario, it has been observed that the algorithm is giving 

satisfactory results.  Complexity is much less than a simulated annealing based optimizer, also giving 

better performance.  There was a problem anomalous configuration observed occasionally giving 

sharp deterioration of the goal function during the search process. Since the optimization is on-line, 

there is no way to know if the configurations are going to be good or bad. For this purpose a case 

based learning scheme was developed and integrated with the optimization engine to remember such 

bad configuration boundaries and avoid them at future run time. 

 

In Chapter 5 we extended the scope of the QPN model to cover the network layer aspects.  The link 

level model was enhanced with incorporating the TCP behavior and QoS measures. It also depicted 

the interaction behavior of multiple nodes in the same access network, and their coupling through 

mutual interferences.  One of the major problems known with TCP is its poor performance of 

congestion management in wireless networks. We chose to see how the QPN model interprets this 

aspect and experiment an optimization strategy for a joint congestion control based on the model. A 

CDMA based adhoc network supporting TCP was considered as a simulation Performance of the 

QPN model based distributed optimization was analyzed for a few test cases. The results were 

compared with a state of the art approach and found to be on par. This is really an encouraging 

performance for a qualitative model with limited knowledge embedding.  However it leaves a clear 

indication on its relevance to model network behaviors and efficient reasoning for various cognitive 

functionalities.  

 

Beyond self-optimization, self-monitoring is another important capability that a cognitive engine need 

to facilitate. In chapter 6, architecture for self-healing incorporating fault detection, diagnosis and 

recovery in the context of using the above cognitive engine is presented. An illustrative example is 

used to show the flow for the detection and diagnosis using QPN model in the case of an antenna 

failure.  Radio monitoring from the perspective of regulatory compliance is another important aspect 

of a cognitive radio that can even impact its business case. The requirements to incorporate a radio 

compliance monitor (RCM) are presented. Further a certification strategy for cognitive radios with 

embedded RCM is proposed. However in our opinion, it is not easy to support certification of radios 

that has an unlimited flexibility in terms of dynamism in waveform design, spectrum mask and 

medium access techniques. The configuration modes need restriction until there is a practical 

mechanism to identify violators and penalize them. 

 

Chapter 7 introduced a novel and interesting use case with a practical implementation of an acoustic 

cognitive radio. This addresses the need of a low cost software modem that can be used for short 

range low data rate device-to-device (D2D) communications.  There was a stringent requirement of 

imperceptibility to human ears has pushed us to choose the upper audio band in the range of 16KHz to 

20KHz. Achieving meaningful data rates in this narrow band required us to adopt innovative 

modulation techniques along with error correction coding for robustness.   Further the intended 

spectrum might be occupied by transmissions from entertainment appliances such Hi-Fi audio 

systems, HD-TV etc. Therefore our design is to use the cognitive acoustic radio as a secondary user 

with the above appliances as primary. We have conducted some experiments to understand various 

behavioral aspects of the radio and use these facts to build a simplistic QPN model. It was observed 

that the qualitative behavior is same as that of a generic cognitive radio model introduced in chapter 3.  

This prompt us to argue that the Qualitative models of wireless networks can be technology-agonistic 
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and are of great value add to the cognitive engine to be relevant for handling heterogeneous networks 

(Hetnets). 

 

We believe that this research work has brought significant insights on the architectural aspects of 

cognitive engine and applicability of qualitative techniques for knowledge modeling in the cognitive 

engine for cognitive radios and networks. Many of the information structures that are required for the 

cognitive engine is possible to be incorporated around the QPN structure and can be an integral part of 

the context space representation. Further we observe that there is a potential for positioning the 

network influence graph in the form of QPN, possibly integrated with a standard ontology language,  

as a knowledge modeling standard for representing the dynamic behavior of cognitive radios and 

networks. 

 

 

8.2 Future Research Directions 

 

The applicability of cognitive networking has a rich opportunity and impact in the area of networked 

embedded systems. The uncertainty, variability, heterogeneity, scale etc are at the major concerns for 

such systems and cognitive networking has a major role to bring in efficiency and robustness. 

Moreover the CE as a generic module could be used to enable devices with autonomic capabilities.  

 

The influence graph framework is a good formalism to represent the system dynamics across network, 

device, application, and user experience in a scalable manner. Graph theory can help in simplifying 

large graphs through decompositions to get a set of manageable interconnected subsystems.  

The QPN and sign graph based Qualitative models and inference mechanisms can be taken forward in 

many directions. Improving expressability of the model can help in reducing the ambiguity in 

inferences. This means the incorporation of more semi-qualitative to quantitative information in the 

structure and thus the complexity.  There are several semi-qualitative extensions to QPN that are 

proposed in literature, that considers various ways of introducing measure of influence strengths.  

This includes strength measurements in terms order-of-magnitude kappa values, interval probabilities 

and rough sets. While introducing more precision in the probability values, they pause increasing 

challenges in getting these information from human experts. Alternately there are schemes to estimate 

them from training data. Evaluating and refining these metrics as candidate representations is an 

exercise to be done.   

 

Some of the specific enhancements suggested for  QPN based modeling of Cognitive networks are: 

 

 Use of semi-qualitative influence information in the form of intervals, rough sets 

 Exploration of the use of synergetic influences  

 Non-symmetric influence strengths 

 Hybrid models with deterministic nodes, expressions evaluating the influence strengths 

 Systematic decomposition approaches for large networks 

 Distributed algorithms using QPN models 

 Integration of serial-parallel inference algorithm 

 Analysis and approach for global optima 

 

Another direction is to look at QPN as the stepping stone for a more powerful mechanism of BN. As 

the CE gathers experience from the network, the QPN can be refined and enhanced to a full-fledged 

BN with the learned conditional probability measures. This enhancement need not be done at a global 

level, but at sub-graph level as per the performance requirement. 
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Another requirement is to consider the dynamism of the „world‟ variables that may have different 

time scales. In QPN model, the environment variables can be given an additional attribute on an 

expected time before a change. This information is useful in planning adaptation loops in multi-time 

scale based on the dynamics involved. Suitable markov models can be embedded in those nodes to 

learn and predict this additional attribute. 

 

Extending the monotonicity analysis to identify possible monotonic decompositions for a large 

network and integrate it as a cascaded system of monotonic subsystems will be very useful from a 

control theory perspective to analyze and ensure stability of various network adaptations. 

 

Integration of context space structure in the network ontology that is represented in a standardized 

ontology language can be a potential standard in itself. This will also have a compact graph based 

representation that can be embedded inside network elements with constrained resources.  

 

Test and validation of cognitive network system is an important aspect to be considered. There is a 

potential for designing systematic test and validation process guided by the context space structure. 

Moreover the cognitive engine can use the QPN models to plan conduct self-tests autonomically. 

  

Further we believe that the use of influence diagrams to explain the dynamics of wireless networks to 

students has a great potential to contribute towards wireless standards education. Several professors 

have supported this view and suggested to include them in text books and even in wireless standards 

documents. 

 

"Cognitive" as a design paradigm is being explored in many areas such as pervasive computing, 

vehicular communications, networked embedded systems etc. The strength of cognitive framework is 

in its systematic knowledge management and cognitive meta process cycle. It has developed very well 

in the context of autonomic communications and spreading in other fields as well. 
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Appendix A 
Appendix A- Context Interpretation using Ontology 

 

 

A1 Contexts and Ontology  
 

A context model is needed to define and store context data in the required machine-processable form. 

A survey by Strang et al[1] classified the most relevant context modeling approaches. The conclusions 

of their evaluation show that ontologism is the most expressive model and fulfills most of  their six 

requirements for context-aware systems. 

 

Ontologies allow machine-processing of context data by enabling formal reasoning over them. There 

are wide varieties of languages for explicit specification of context information. The graphical 

notations include UML and RDF while the (description) logic-based notations include DAML+OIL, 

OWL etc. While the concepts and their relations are captured using ontologies, the actual instantiated-

from-concepts context data is specified using notations such as RDF. Typical features of such 

instances can be found in [2]. OWL Language is an extension of RDF.  

 

While the context information can be stored and represented using ontologies, the “intelligence” in the 

context aware system is implemented by context interpretation engine, which reasons over the context 

information. Classically, context and ontology based methodologies have been well explored for 

performing interpretation to systems predominantly at application level in the semantic web domain. 

But while mapping, the approach could be extended further to cover all other entities in a cognitive 

network by integrating information and interaction of radio resources, communication protocols and 

user actions. 

 

A2 Context Interpreter (CI) Architecture 
The detailed architecture evolved out of mapping context interpretation function which can be 

incorporated as a part of the cognitive management entity shown in Figure A.1 

 

Raw context sensor data is pre-processed to remove outliers in terms of data formatting, noise etc. 

Suitable data abstraction techniques such as aggregation and fusion are applied on the pre-processed 

data to extract higher level information elements  as defined by the Ontology. Validation of the data is 

done through appropriate consistency check with the ontological model and stored in the 

knowledgebase. Some of the knowledge representation can be done through rule base as well. This 

requires the context interpretation engine to include both ontology based reasoner as well as rule 

based reasoner.  Typically events are easier to be detected by rules and situations are identified by 

ontology. 
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Figure A.1  Architecture for Context Interpretation 

 

A3 Prototype 
 

Using various semantic web tools and technologies, an initial proof-of-concept system has been 

implemented to study and understand its feasibility of incorporating context interpretation as required 

by a cognitive engine. The system was implemented using a tool-chain  shown in Figure A.2. OWL 

was chosen as the ontology language, RDF as the context data language, while SWRL was chosen as 

the rule language. Being extension of OWL, it is easy to store SWRL rules with OWL, RDF 

information. The popular query language to RDF database is SPARQL, and we chose this language 

for our use. 
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Figure A.2   Architecture of Ontology based Context Interpretation Prototype 

 

Protégé-OWL plugin was used as the basic CI framework. Protégé is based on Java, and it supports 

OWL-DL. It has a built-in knowledge base container. Protégé allows editing and storage of SWRL 

rules in the knowledge base. It supports rule engine integration, especially with JESS, and also 

attaches to various OWL reasoners easily, such as Pellet or RacerPro. 
 

We chose Pellet as ontology reasoner for ease of integration as well as license issues. Similarly, JESS 

was chosen as the rule reasoner. To support SPARQL query, we used JENA framework. The entire 

integration work was carried out in Java language.  

 

A3.1 An Example Use Case Scenario 
 

Following representative use case scenario was chosen to evaluate the above CI architecture. 

 

This scenario considers the work of Rahul, a sales executive of a retail company who has to travel 

frequently between multiple locations and use multi-modal transport for the travel. For his enterprise 

network connectivity he uses a laptop that has 3G cellular data connectivity, a GPS based location 

system, and an RFID affixed for asset management. A context management agent sitting on his laptop 

takes care of identifying his situation and trigger appropriate application reconfigurations on the 

laptop. 

 

When Rahul enters his office and hooks his laptop to the company‟s network, some of his enterprise 

applications are automatically enabled. The enterprise presence server is updated with his location 

information.  

Next, Rahul goes for a trade fair by catching a train. While on train, he connects his laptop to 3G 

network and launches an enterprise application to complete certain workflows. In addition there are a 

few other applications also launched including a song streamed from a server, download of an ebook 

and web browsing.  With the present application load, the estimated laptop battery life is 2 hours but 

his travel time to reach the destination is 4 hours. Also he is not yet aware of the fact that his train 

does not have a facility for battery charging. But, for his consolation, the context management entity 

detects the situation and advises him to take necessary steps and in certain cases takes proactive steps 

to reconfigure the applications by itself. 
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A3.2 Context Interpretation for the Use Case Scenario 

The CI prototype described in section 7.3 has been configured for the use case scenario described in 

the previous section. The implementation was tested for various events and situations for expected 

context interpretation as outlined in the use case. A screen shot of the GUI is shown in Figure 

First task was to build the ontology that describes the needed concepts, relations and properties 

pertaining to this specific use case. This included entities like Employee, User terminal, laptop, 

battery, battery charging, Software Applications, Travel, vehicle, train, location, mobility etc. There 

are sensors to gather data on location, laptop battery charge level, battery drain rate, network QoS, 

Application status etc. Further the data sources like user‟s activity plan, travel itinerary, train schedule 

etc are also consulted.  Subsequently various event rules and rules for data abstractions are defined. 

This include the detection of battery low condition, condition to be maintained for sustained operation 

of the laptop (ie battery life time should be greater than the time to connect to an alternate power 

source), user mobility, travel mode, estimating battery life time and time to get alternate power source 

etc. Details of this implementation and evaluation are presented in our publications [3][4].  Various 

situations could be specified by setting appropriate context variables through a GUI and the 

interpreted events are observed to reflect the intended use case scenario. 

 

 

 
 
Figure A.3 Prototype developed for the context interpretation framework 

A3.3 Discussion 
The prototype was tested by us for some use cases for functional as well as performance studies. The 

first performance bottleneck was found in the time taken for repeated validation of knowledge base, 

whenever an update is made to the knowledgebase. This is addressed by changing the runtime 

parameter of Pellet to make it do a quick, incremental reasoning. We experimented with iterations 

over rule-based reasoning, but could not gain clarity over when to stop.  

 

The time-performance for our medium-sized ontologies drastically increased. The Protégé-JESS 

bridge exports only those facts that are relevant to the set of rules being executed, and hence speed 

was satisfactory. Overall, the time taken at various steps for a database of 23 concepts, 39 properties 
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and 149 concept/property instances was found to be of order of 100 ms on a Pentium-IV processor-

based desktop. 

 

One of the major issues with this CI implementation is the large memory requirement of such an 

architecture which might be infeasible for a handheld cognitive device to provide. This may not be the 

issue with architecture, but relates to the tool chain involved in the prototyping. An alternative could 

be to provide this interpretation functionality by a more powerful network device as a service.  

 

A4 Conclusions 
Ontologies are indeed a good mechanism for providing robust interoperable context management and 

provisioning to drive the cognitive process for an intelligent terminal. But the concern is in 

implementing the same in the constrained embedded environment of a network element such as 

handheld terminal. But the use of a relatively powerful network device can support this and it could 

be outsourced with the CI functionality required by attached cognitive terminals in the network. 
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