

Aalborg Universitet

Program Analysis as Model Checking

Olesen, Mads Chr.

Publication date:
2014

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Olesen, M. C. (2014). Program Analysis as Model Checking. Institut for Datalogi, Aalborg Universitet.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 02, 2024

https://vbn.aau.dk/en/publications/956c3de8-815f-4647-955f-a777c7223938

Program Analysis as Model Checking

Mads Chr. Olesen

Department of Computer Science,
Aalborg University,

Denmark

PhD Thesis
Defended 20th December 2013

Abstract Interpretation

Lattices

Worklist Algorithm

Fix-Point Iteration with Dynamic Abstraction

Trace Partitioning

Efficiency

Galois Connection

Invariants

α γ

=

≡

≈

simulated by

is

can simulate

viewed as

viewedas

Reachability Checking

Automata

Timed Automata

Fix-Point Iteration without Dynamic Abstraction

Logics

Precision

Counterexample

|=

Lattice Automata

γ(Jane) = >

Abstract

Software programs are proliferating throughout modern life, to a point
where even the simplest appliances such as lightbulbs contain software, in
addition to the software embedded in cars and airplanes. The correct func-
tioning of these programs is therefore of the utmost importance, for the
quality and sustenance of life. Due to the complexity inherent in the soft-
ware it can be very difficult for the software developer to guarantee the
absence of errors; automated support in the form of automated program
analysis is therefore essential.

Two methods have traditionally been proposed: model checking and
abstract interpretation. Model checking views the program as a finite au-
tomaton and tries to prove logical properties over the automaton model,
or present a counter-example if not possible — with a focus on precision.
Abstract interpretation translates the program semantics into abstract se-
mantics efficiently represented as a lattice structure, and tries to use the
invariants given by the lattice element to prove the absence of errors —
with a focus on efficiency.

Previous work has argued that on a theoretical level the two methods are
converging, and one method can indeed be used to solve the same problems
as the other by a reformulation. This thesis argues that there is even a con-
vergence on the practical level, and that a generalisation of the formalism
of timed automata into lattice automata captures key aspects of both meth-
ods; indeed model checking timed automata can be formulated in terms of
an abstract interpretation.

For the generalisation to lattice automata to have benefit it is important
that efficient tools exist. This thesis presents multi-core tools for efficient
and scalable reachability and Büchi emptiness checking of timed/lattice au-
tomata.

Finally, a number of case studies are considered, among others numerical
analysis of c programs, and worst-case execution time analysis of ARM
programs. It is shown how lattice automata allow automatic and manual
tuning of the precision and efficiency of the verification procedure. In the
case of worst-case execution time analysis a sound overapproximation of the
hardware is needed; the case of identifying timing anomalous hardware for
which such abstractions are hard to find is considered.

Dansk Sammenfatning

Softwareprogrammer findes overalt i det moderne liv, til et punkt hvor
selv de simpleste apparater som lyspærer indeholder software, udover det
software der er indlejret i biler og fly. Korrekt funktionalitet fra disse pro-
grammer er derfor af den yderste vigtighed, for at opretholde kvaliteten og
i visse tilfælde tilstedeværelsen af liv. P̊a grund af den kompleksitet der
er medfødt i softwaren kan det være meget svært for software udvikleren
at garantere fraværet af fejl; automatiseret support i form af automatiseret
program analyse er derfor essentiel.

To metoder er traditionelt blevet foresl̊aet: model checking og abstrakt
fortolkning. Model checking ser et program som en endelig automat og
forsøger at vise at en logisk egenskab holder, eller finde et modeksempel —
med et fokus p̊a præcision. Abstrakt fortolkning oversætter programmets se-
mantik til en abstrakt semantik, effektivt repræsenteret i en lattice-struktur,
og forsøger at bruge invarianter givet af lattice elementer til at bevise at fejl
ikke kan forekomme — med et fokus p̊a effektivitet.

Tidligere arbejder har argumenteret for at de to metoder konvergerer
p̊a et teoretisk plan og at en metode kan bruges til at løse problemer fra
den anden ved en omformulering. Denne afhandling argumenterer for at
denne konvergens ogs̊a er sket p̊a et praktisk plan, og at en generalisering
af formalismen tids-automater til lattice-automater fanger nøgleaspekter fra
begge metoder; model checking af tids-automater kan endda formuleres som
en abstrakt fortolkning.

For at en s̊adan generalisering til lattice-automater har værdi, kræver
det at effektive værktøjer eksisterer. Denne afhandling præsenterer multi-
core værktøjer der kan udføre effektiv og skalerbar reachability og Büchi
tomheds-check for tids/lattice-automater.

Endeligt vil et antal eksempler p̊a anvendelse blive gennemg̊aet, bl.a.
numerisk analyse af c programmer og værste kørselstid analyse af ARM
programmer. Det vil blive vist hvordan lattice-automater kan bruges til
automatisk og manuel tuning af præcision og effektivitet af verifikations-
proceduren. I tilfældet for værste kørselstid analyse kræver det en abstrakt
model der med garanti overapproksimerer hardwaren; der gives en definition
af hvorn̊ar en given hardware udviser tids-anomaliteter, der gør det svært
at finde en s̊adan abstrakt model.

Mandatory Page
Title: Program Analysis as Model Checking
Author: Mads Chr. Olesen
Supervisors:

Professor Kim Guldstrand Larsen,
Associate Professor René Rydhof Hansen

Published papers:

[42] Andreas Engelbredt Dalsgaard, René Rydhof Hansen, Kenneth Yrke
Jørgensen, Kim Guldstrand Larsen, Mads Chr. Olesen, Petur Olsen
and Jǐŕı Srba: opaal: A Lattice Model Checker. In Proceedings of
the International Symposium NASA Formal Methods (NFM), volume
6617 of Lecture Notes in Computer Science, pages 487–493. Springer,
2011.

[43] Andreas Engelbredt Dalsgaard, Alfons Laarman, Kim G. Larsen, Mads
Chr. Olesen and Jaco van de Pol: Multi-Core Reachability for Timed
Automata. In Proceedings of Formal Modeling and Analysis of Timed
Systems (FORMATS) volume 7595 of Lecture Notes in Computer Sci-
ence, pages 91–106. Springer, 2012.

[66] Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard,
Kim G. Larsen and Jaco van de Pol: Multi-Core Emptiness Checking
of Timed Buchi Automata using Inclusion Abstraction In Proceedings
of the 25th International Conference on Computer Aided Verification
(CAV), volume 8044 of Lecture Notes in Computer Science, pages 968–
983. Springer, 2013.

[83] Mads Chr. Olesen, René Rydhof Hansen and Kim Guldstrand Larsen:
An Automata-Based Approach to Trace Partitioned Abstract Inter-
pretation. Under submission.

[31] Franck Cassez, René Rydhof Hansen and Mads Chr. Olesen: What is
a Timing Anomaly?. In Proceedings of the 12th International Work-
shop on Worst-Case Execution-Time Analysis, pages 1–12. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

vi

This thesis has been submitted for assessment in partial fulfillment of the
PhD degree. The thesis is based on the submitted or published scientific
papers which are listed above. Parts of the papers are used directly or
indirectly in the extended summary of the thesis. As part of the assessment,
co-author statements have been made available to the assessment committee
and are also available at the Faculty. The thesis is not in its present form
acceptable for open publication but only in limited and closed circulation as
copyright may not be ensured.

vii

Acknowledgments

I would like to thank my supervisors, Kim Guldstrand Larsen and René
Rydhof Hansen, for their excellent guidance in the great adventure that is
science. Not only have you been my supervisors, you have also become my
friends; thanks for sharing coffee, beer, Wiener Melange, advice, anecdotes,
long hours, crazy ideas and lessons learned.

Many thanks should also be given to my office-mates over the years:
Martin Toft, Andreas Dalsgaard, Sebastian Biallas, Kenneth Jørgensen and
Mikael Møller (even though I owe you one). An office space without people
is just an empty room; thank you all for filling the empty room with your
presence, humour and companionship in the journey that is a PhD study.
Thanks to the members of “Madklubben”: Line Juhl, Simon Laursen and
Erik Wognsen; you learn a lot about someone when you share a meal to-
gether, and we have shared many meals. May the “rævesovs” be with you,
always. A special thanks should go to Franck, Sebastian, Ralf, Thomas,
Peter Höfner and Rob van Glabbeek for making my six months stay down
under very pleasurable, and for being my lunch companions away from home.

The work in this thesis would not have been possible without my co-
conspirators, that I have had the great privilege of working together with:
Franck Cassez, Alfons Laarman, Jaco van de Pol, Petur Olsen, Jörg Brauer,
Jǐŕı Srba and Ralf Huuck. I hope our collaboration will continue.

Life is not only work; thank you to the F-klub. You can leave, but you
can never check out. Thank you Bo, Markus, Thomas, Henrik, Jesper and
all others who have shared a beer, a boardgame, and a weird discussion.
When all else fails, it is nice to be able to go to Hal9k every Thursday,
and spend an evening doing totally unrelated awesome stuff together with
Anders, Alex, Mikael and all the other hackers.

Thank you far, mor, Anne, Signe, farmor and Anne for being my family,
with all that goes with it, and supporting me in whatever crazy plans I come
up with.

Finally, the biggest thanks should go to Jane. I know this journey has
at times been at least as hard for you as it has been for me. Thanks for
supporting me in this small adventure, part of the bigger adventure that we
share.

viii

Contents

1 Introduction 1

2 Model Checking of Timed Automata Viewed as an Abstract
Interpretation 4

2.1 Timed Automata . 4

2.2 Symbolic Semantics for a Timed Automaton 9

2.3 Abstract Interpretation . 14

2.4 A Connection . 27

2.5 Lattice Automata . 33

3 Thesis Summary 37

4 opaal: A Lattice Model Checker 44

4.1 Introduction . 44

4.2 Examples . 46

4.3 Conclusion . 50

5 Efficient Multi-Core Reachability Checking for Timed Au-
tomata 51

5.1 Introduction . 52

5.2 Related Work . 53

5.3 Preliminaries . 53

5.4 A Multi-Core Timed Reachability Tool 56

5.5 Successor Generation using opaal 57

5.6 Well-Structured Transition Systems in LTSmin 59

5.7 Experiments . 63

5.8 Conclusions . 67

6 Multicore Büchi Emptiness Checking for Timed Automata 72

6.1 Introduction . 73

6.2 Preliminaries: Timed Büchi Automata and Abstractions . . . 74

6.3 Preservation of Büchi Emptiness under Subsumption 80

6.4 Timed Nested Depth-First Search with Subsumption 81

6.5 Multi-Core CNDFS with Subsumption 84

ix

6.6 Experimental Evaluation . 87
6.7 Viewed as Abstractions . 91

7 Automata-Based Approach to Trace Partitioned Abstract
Interpretation 95
7.1 Introduction . 96
7.2 Related Work . 97
7.3 Abstract Interpretation and Trace Partitioning 99
7.4 Lattice Automata . 101
7.5 Abstract Interpretation as Lattice Model Checking 106
7.6 Experiments . 112
7.7 Conclusion . 114
7.8 Case Studies and Applications 115

8 What is a Timing Anomaly? 123
8.1 Introduction . 123
8.2 Execution of Programs on Hardware 126
8.3 Formalising Timing Anomalies 129
8.4 Related Work . 131
8.5 Results . 135
8.6 Conclusion and Future Work 136

9 Conclusion 138

x

Chapter 1

Introduction

The human civilisation is increasingly relying on automated machines, that
for reasons of cost and flexibility are controlled by programmable computers;
in our homes in the form of all sorts of appliances, on the roads in the form of
self-driving vehicles, auto-piloted airplanes in the air above us, and even fur-
ther away satellites that are crucial for the everyday communication around
the globe that we have come to take for granted. Incorrect functioning of
the computers we surround ourselves with can therefore have any number
of consequences from a minor inconvenience, to injury or death. The ver-
ification of the correct functionality of programs is therefore of paramount
importance.

The properties to be verified can range from simple properties like “The
program does not crash” to more complicated properties like “The program
always produces the desired result”, and in many cases also properties about
timeliness like “The program always responds within 5 seconds”.

Several methods for verifying programs have been put forward over the
years, allowing for different trade-offs between the level of trustworthiness
and the precision, cost and automation of the analysis. All of them prove (in
different ways) invariants about a program, that is, a logical formula that
holds for any execution of the program.

Theorem Proving affords a very high level of verification, but at the cost
of a massive effort. Verifying the seL4 microkernel of 10,000 lines of
code took an effort of 20 personyears [64]. Such proofs typically build
on a number of assumptions, e.g., that the hardware works as specified
and that the compiler also works correctly.

The human-written proof can be verified automatically by a small
verifier program, which is assumed to be correct. For additional trust-
worthiness several such verifiers can be written and run.

Abstract Interpretation is a method for analysing a program and ex-
tracting invariants about each point in the program. It works by ab-

1

Chapter 1

stracting the concrete semantics of the programming language (which
is assumed to be executed correctly) and extracting abstract seman-
tics that are imprecise, but always over-approximating the concrete
behaviour. The abstract semantics is typically defined in terms of an
abstract domain, that captures the part of the semantics that is inter-
esting for the verification at hand, e.g., the signedness or interval of
variables. Abstract interpretation has been used to successfully verify
industrial flight control software for the absence of runtime errors1.

The design of a new abstract domain can require significant effort, but
usage of that domain afterwards is automatic. Abstract interpretation
typically prioritises efficiency, at the cost of precision. If an abstract
interpretation is unable to find a strong enough invariant for verifying
the correctness, a number of techniques can be applied at additional
cost, such as trace partitioning or disjunctive completion.

Model Checking is an exhaustive method for verifying properties on a
model of a system. The model is typically a form of automaton, of
which the possible behaviours are explored looking for an error. The
model is assumed to faithfully model the relevant behaviour of the
real system, or in other words, the relation between the model and
the real system needs to be proven2. Typically the behaviour of the
model is finite, otherwise the näıve model checking degenerates into
a semi-algorithm: if there is an error it will be found, but there is
no guarantee of termination. Alternatively, a finite abstraction of the
model can be used, as is done for model checking timed automata.
Model checkers such as uppaal and spin have been successfully used
to find errors in real-life programs and protocols3.

For verifying programs the model can be automatically extracted from
the program artifact itself. This process is typically done in an ad-hoc
manner. It is worthwhile to notice that the model is itself an artifact
that can be inspected, simulated and altered by a human. Simulating
the execution of the model can, e.g., be used in debugging to replay a
path. The model can be altered to, e.g., account for assumptions that
can be made about the environment, or to exclude certain scenarios
from the analysis.

The relative cost and verification depth has been plotted in Figure 1.1,
for comparison. Besides cost and verification depth, another key aspect
is traceability: whether the verification carried out has any connection to
the object whose properties are to be verified. In abstract interpretation
the traceability is typically ensured by the use of a Galois connection when

1Using Astreé [39].
2Such a proof could be done using methods from abstract interpretation.
3E.g., using uppaal [57] or Java PathFinder [97].

2

Introduction

Cost

Verification depth

Abstract
Interpretation

Model
Checking

Theorem
Proving

Figure 1.1: Various verification methods graphed in terms of typical cost
and verification depth.

extracting the abstract semantics. In model checking the correspondence
of the model to the real program is often simply assumed. However, if the
standard language semantics do not apply (e.g., because of the possibility
of hardware faults, or environment assumptions) the abstract semantics will
have to be re-calculated for an abstract interpretation, where as such changes
can easily be manually or automatically incorporated into the model for
model checking.

The main focus of this dissertation is to use a combination of model
checking and abstract interpretation to verify the correctness of programs.
It will be shown that this combination allows abstraction techniques from
abstract interpretation to effectively extract a model for verification with
increased traceability, while techniques from model checking allow the ver-
ification to be carried out efficiently and with increased flexibility for the
human overseeing the verification, in terms of ad hoc experiments or perfor-
mance fine-tuning.

3

Chapter 2

Model Checking of Timed
Automata Viewed as an
Abstract Interpretation

In this chapter the modelling formalism timed automata [4] is introduced,
and it will be shown how the model checking of such automata can be viewed
as an abstract interpretation. Then the timed automata formalism will be
generalised to lattice automata.

Timed automata build on finite automata, but are extended with a num-
ber of real-valued clock variables that increase at the same, constant rate —
thereby allowing modelling of real-time systems in a convenient manner. For
completeness, timed automata will be defined extended with discrete vari-
ables, and extended to networks of timed automata; this closely matches the
formalism as implemented in uppaal [16, 72], but it should be noted that
it does not add additional expressive power.

In Section 2.1 timed automata will be formally defined, whereafter the
symbolic semantics used for timed automata model checking will be intro-
duced in Section 2.2. In Section 2.3 the basic concepts of abstract interpre-
tation will be introduced, and finally in Section 2.4 the connection between
the two will be made, outlining how model checking timed automata can
be viewed as an abstract interpretation. In Section 2.5 the model of lat-
tice automata will be introduced, encompassing timed automata and the
connection to program analysis briefly outlined.

2.1 Timed Automata

Timed automata are finite state machines with a finite set of real-valued,
resettable clocks. Transitions between states can be guarded by constraints
on clocks.

4

Model Checking of Timed Automata Viewed as an Abstract Interpretation

Definition 1 (Clock constraints). Let G(C) be the set of diagonal-free1 clock
constraints over the set of clocks C, and let g, g1, g2 ∈ G(C):

g := c ./ n | g1 ∧ g2

where c ∈ C, n ∈ N0 is a constant, and ./ ∈ {<,≤, >,≥,=} is a comparison
operator.

A clock constraint is downwards closed if it only imposes constraints on
the upper bounds of clocks, i.e. only uses < and ≤.

The time moments that a timed automaton can reach are defined as
clock valuations.

Definition 2 (Clock valuation). A clock valuation for a set of clocks C is a
function vC : C → R≥0.

Two operations on clock valuations will be needed: vC + d for delay s.t.

(vC + d)(c) = vC(c) + d

and reset of a set of clocks r ⊆ C s.t.

vC [r](c) =

{
0 if c ∈ r
vC(c) otherwise

The notation vC |= g means that the clock valuation vC satisfies the clock
constraint g.

Timed automata can be extended with discrete variables, a feature in-
dispensable for modelling real-world systems. For this variable valuations
needs to be defined.

Definition 3 (Variable valuation). For a finite set of integer variables V
over a finite domain

Dom(V) = {n ∈ Z|Vmin ≤ n ≤ Vmax} for some Vmin, Vmax ∈ Z

a variable valuation is a function vV : V → Dom(V).

Note that there are only finitely many variable valuations, for a given
V and Dom(V). The notation Expr(V) is defined as expressions over the
discrete variables, while

Stat(V) ::= v := Expr(V)

| Stat(V);Stat(V)

1To ensure the correctness of the later presented forward-reachability algorithm, guard
constraints are not allowed to compare clocks, see Bouyer [26].

5

Chapter 2

where v ∈ V , denotes statements assigning new values to the discrete vari-
ables, based on expressions over the discrete variables. For a variable valu-
ation vV and an expression g ∈ Expr(V) let vV |= g mean that the variable
valuation satisfies the expression. The variable valuation resulting from ap-
plying a statement s ∈ Stat(V) to a valuation vV is denoted as vV [s], with
the usual semantics. If the set of variables V is empty the symbol “·” will
be used to denote the empty clock valuation.

Guard constraints over the clocks C and expressions over the discrete
variables Expr(V) are allowed to be mixed freely, to form extended guard
constraints. In the following an extended guard g will be, in an abuse of
notation, used both as a clock constraint and as an expression over the
discrete variables.

Timed automata extended with variables can now be defined:

Definition 4 (Extended timed automaton). An extended timed automaton
is a 7-tuple A = (L, V, C, Act, l0,→, IC) where

• L is a finite set of locations, typically denoted by l

• V is a finite set of integer variables over a finite domain Dom(V)

• C is a finite set of clocks, typically denoted by c

• Act is a finite set of actions

• l0 ∈ L is the initial location

• →⊆ L × (G(C) × Expr(V)) × Act × Stat(V) × 2C × L is the (non-
deterministic) transition relation, of which elements will be denoted
as

l
g,a,s,r−−−−→ l′

for a transition, where

l is the source location,

g is an extended guard constraint over the clocks and discrete vari-
ables,

a is the action,

s is the update statement for the discrete variables,

r is the set of clocks reset, and

l′ is the target location.

• IC : L → G(C) is a function mapping locations to downwards closed
clock constraints, giving an invariant for each location.

An example of the graphical representation of an extended timed au-
tomaton is given in Figure 2.1. Locations are represented by nodes in the
automaton with invariants written below the locations, transitions by edges
in the automaton with guards and resets written above.

6

Model Checking of Timed Automata Viewed as an Abstract Interpretation

l0start l1 l2

c2 ≤ 2 c2 ≤ 2

c1 > 2, c1 := 0, c2 := 0

c2 := 0

x > 21

x ≤ 42, c1 := 0, c2 := 0,
x := x+ 1

Figure 2.1: An example of an extended timed automaton, with clocks C =
{c1, c2} and variables V = {x}. All transitions implicitly have the action τ ,
and the set of actions is Act = {τ}.

2.1.1 Networks of Extended Timed Automata and Semantics

A network of timed automata is a parallel composition of extended timed
automata that enables synchronisation over a finite set of channel names
Chan. Let ch! and ch? denote the output and input action on a channel
ch ∈ Chan.

Definition 5 (Network of timed automata). Let

Act = {ch!, ch?|ch ∈ Chan} ∪ {τ}

be a finite set of actions, and let C be a finite set of clocks. Then the parallel
composition of the extended timed automata

Ai = (Li, V, C, Act, li0,→i, I
i
C)

for all 1 ≤ i ≤ n, where n ∈ N, is a network of timed automata, denoted

A = A1||A2|| . . . ||An

The concrete semantics of a network of timed automata is defined over
the timed transition system (S,⇒, Chan ∪ {τ} ∪ R) s.t.

1. S is the set of states, where each element is of the form (l1, l2, . . . , ln, vV , vC)
where li ∈ Li are locations, vV is a variable valuation and vC is a clock
valuation.

2. ⇒ is the transition relation such that there are three types of transi-
tions:

• Discrete transitions:

(l1, . . . , li, . . . , ln, vV , vC)
τ

=⇒ (l1, . . . , l
′
i, . . . , ln, v

′
V , v

′
C)

7

Chapter 2

if an edge
li

g,τ,s,r−−−−→ l′i

exists and guards
vV |= g and vC |= g

are satisfied as well as updated variables

v′V = vV [s] and clocks v′C = vC [r]

satisfy invariants

v′C |= IiC(l
′
i) ∧

∧
k 6=i

IkC (lk)

• Binary synchronisation transitions:

(l1, . . . , li, . . . , lj , . . . , ln, vV , vC)
a

=⇒ (l1, . . . , l
′
i, . . . , l

′
j , . . . , ln, v

′
V , v

′
C)

if edges

li
gi,a!,si,ri−−−−−−→ l′i and lj

gj ,a?,sj ,rj−−−−−−→ l′j

exists and guards

vV |= gi ∧ gj and vC |= gi ∧ gj
are satisfied as well as updated variables

v′V = (vV [si])[sj] and clocks v′C = vC [ri ∪ rj]

satisfy invariants

v′C |= IiC(l
′
i) ∧ I

j
C(l
′
j) ∧

∧
k 6∈{i,j}

IkC (lk)

• Delay transitions, by d time units:

(l1, . . . , ln, vV , vC)
d

=⇒ (l1, . . . , ln, vV , vC + d)

for d ∈ R≥0 if

vC + d |=
n∧
k=1

IkC (lk)

As noted previously, modelling using a network of timed automata does
not add expressive power over modelling with just one timed automaton,
since any network of timed automata can be flattened to a single timed
automaton. An example of a network of timed automata is given in Fig-
ure 2.2. The two automata cannot synchronise on the first transition unless
both guards are fulfilled, and one automaton cannot take the transition
without the other. Thus, a valid run of the network is:

((l0, l2), ·, [c1 = 0])
5

=⇒ ((l0, l2), ·, [c1 = 5])
0.1
=⇒ ((l0, l2), ·, [c1 = 5.1])

a
=⇒

((l1, l3), ·, [c1 = 5.1])
τ

=⇒ ((l1, l4), ·, [c1 = 0]) (2.1)

8

Model Checking of Timed Automata Viewed as an Abstract Interpretation

l0start

l1

l2start

l3

l4

a!,
c1 > 2

a?,
c1 > 5

c1 < 7,
c1 := 0

Figure 2.2: An example of a network of two timed automata {A1, A2}, with
clocks C = {c1}, and the set of actions is Act = {τ, a!, a?}.

2.2 Symbolic Semantics for a Timed Automaton

The concrete semantics of timed automata gives rise to an uncountable
state space [16]. To model check it a finite abstraction of the state space
is needed; the abstraction used by most timed automata model checkers is
the zone abstraction [27]. Zones are sets of clock constraints that can be
efficiently represented by Difference Bounded Matrices (DBMs) [19].

Definition 6 (Zones). Similar to the clock constraints of Definition 1, let
Z(C) be the set of clock constraints over the set of clocks c, c1, c2 ∈ C gener-
alized by:

Z(C) ::= c ./ n | c1 − c2 ./ n | Z(C) ∧ Z(C) | true | false

where n ∈ Z is a constant, and ./ ∈ {<,≤, >,≥} is a comparison operator.
The equals operator, =, will be used as short-hand for the conjunction of
≤ and ≥.

This set of clock constraints are known as zones, where a zone is typically
denoted by Z.

Zones represent (infinite) sets of clock valuations. The notation vC |= Z
means that the clock valuation vC is included in the zone Z, and for the set
of clock valuations in a zone the notation JZK = {vC | vC |= Z} will be used.

The fundamental operations on zones are, for two zones Z and Z ′:

• Z ↑ modifying the constraints such that the zone represents all the
clock valuations that can result from a delay from the current con-
straint set:

JZ ↑K = {vC + d|d ∈ R≥0, vC ∈ JZK}

9

Chapter 2

• Z ∩ Z ′ adding additional constraints to the zone Z, e.g. because a
transition is taken that imposes a clock constraint (clock constraints
can also be represented as a zone, which will be used later in a slight
abuse of notation).

JZ ∩ Z ′K = JZK ∩ JZ ′K

The additional constraints might also make the zone empty, meaning
that no clock valuations can satisfy the constraints.

• Z[r] where r ⊆ C is a clock reset of the clocks in r:

JZ[r]K = {vC [r]|vC ∈ JZK}

• Z ⊆ Z ′ for checking if the constraints of Z ′ imply the constraints of
Z, i.e. Z ′ is a less constrained zone, or equivalently: Z ′ contain the
clock valuations of Z and possibly more:

Z ⊆ Z ′ iff JZK ⊆ JZ ′K

Zones are usually represented using Difference Bound Matrices (DBMs)[47,
19], which will be introduced later in Definition 19.

Definition 7 (Zone semantics). The semantics of an extended timed au-
tomata

A = (L, V, C, Act, l0,→, IC)

under the zone abstraction is a simulation graph:

SG(A) = (SZ , s0, TZ)

such that:

1. SZ consists of triples (l, vV , Z) where l ∈ L is a location, vV is a
variable valuation, and Z ∈ Z(C) is a zone.

2. s0 ∈ SZ is the initial state (l0, v
0
V , Z0 ↑ ∧ IC(l0)) with v0

V (v) = 0 and
Z0 =

∧
c∈C(c = 0).

3. TZ is the symbolic transition relation using zones, s.t. (s, s′) ∈ TZ ,
denoted s⇒ s′ with s = (l, vV , Z) and s′ = (l′, v′V , Z

′), if an edge

l
g,a,s,r−−−−→ l′

exists, and Z ∧ g 6= false, and vV |= g, and

v′V = vV [s]

Z ′ = (((Z ∧ g)[r]) ↑) ∧ IC(l
′)

and Z ′ 6= false.

10

Model Checking of Timed Automata Viewed as an Abstract Interpretation

In the symbolic semantics the run illustrated in (2.1) on page 8 would
be:

((l0, l2), ·, [c1 ≥ 0])
a

=⇒ ((l1, l3), ·, [c1 > 5])
τ

=⇒ ((l1, l4), ·, [c1 ≥ 0]) (2.2)

Note how there are no delay transitions, as these are implicitly applied after
the discrete transitions.

Extrapolation. Extrapolation with respect to maximal bounds [14, 4] is
needed to make the symbolic state space finite. Basically, it is a mapping
for each clock indicating the maximal possible constant the clock can be
compared to in the future. It is used in such a way that if the value of a
clock has passed its maximal constant, the clock’s value is indistinguishable
for the model, and can be set to ∞ to no longer track the precise value.

As an example consider the timed automaton in Figure 2.3, with regards
to the clock c2: any two clock valuations vC , v

′
C such that

∀c ∈ C \ {c2} : vC(c) = v′C(c)

and
vC(c2) > 42 ∧ v′C(c2) > 42

are indistinguishable for the automaton.

astart

c1 ≤ 1

b

c1 ≤ 1

c

c1 = 1, c1 := 0

c1 = 1

c2 ≥ 42

Figure 2.3: Timed automaton with maximal constant 42.

The extrapolation operation on zones is defined as:

• Z/B doing maximal bounds extrapolation, where B : C → N0 is the
maximal bounds needed to be tracked for each clock.

Given a maximal bounds function B, it can be incorporated into the sym-
bolic semantics such that

(l, vV , Z)⇒(l′, v′V , Z
′)

becomes

(l, vV , Z/B)⇒(l′, v′V , Z
′/B),

which in turn induces a finite transition system.

11

Chapter 2

As an example, consider the un-extrapolated run of the timed automaton
in Figure 2.3:

(a, ·,

c2

c10

−1

1

2

−1 1 2 3

0 ≤ c1 = c2 ≤ 1

) =⇒ (b, ·,

c2

c10

−1

1

2

−1 1 2 3
0 ≤ c1 ≤ 1 ≤ c2 ≤ 2∧
c1 − c2 = −1

) =⇒

(a, ·,

c2

c10

−1

1

2

−1 1 2 3

c1 = 1, c2 = 2

) =⇒ . . .

(a, ·,

c2

c141

42

43

0 1 2 3

c1 = 1, c2 = 42

) =⇒ (b, ·,

c2

c141

42

43

0 1 2 3
0 ≤ c1 ≤ 1, 42 ≤ c2 ≤ 43∧
c1 − c2 = −42

) =⇒

(a, ·,

c2

c141

42

43

0 1 2 3

c1 = 1, c2 = 43

) =⇒ . . .

Clearly this run can be continued indefinitely without repeating a state,
with the transition to the c location being enabled, from that point on,

12

Model Checking of Timed Automata Viewed as an Abstract Interpretation

With max clock bounds function B(·) = 42 the same run in the extrap-
olated transition system becomes:

. . . =⇒ (a, ·,

c2

c141

42

43

0 1 2 3

c1 = 1, c2 = 43

) =⇒

(b, ·, [0 ≤ c1 ≤ 1, 43 ≤ c2 ≤ 44]/B) = (b, ·,

c2

c141

42

43

0 1 2 3

0 ≤ c1 ≤ 1, c2 > 43

) =⇒

(a, ·,

c2

c141

42

43

0 1 2 3

c1 = 1, c2 > 43

) =⇒ (b, ·,

c2

c141

42

43

0 1 2 3

0 ≤ c1 ≤ 1, c2 > 43

) =⇒

(a, ·,

c2

c141

42

43

0 1 2 3

c1 = 1, c2 > 43

) =⇒ . . .

Where the state (a, ·, [c1 = 1, c2 > 43]) repeats, and thus the run can no
longer be continued indefinitely without repeating a state.

The maximal clock bounds function B can be defined in a more or less
precise manner: globally [5], per clock, per clock in each location [14] or

13

Chapter 2

using both lower- and upper bounds [15]. It is typically derived by a coarse
pre-analysis propagating clock bounds backwards along edges [14], but it
could also be viewed as a simple static analysis in the monotone framework.
Such a formulation will however not be pursued further, in this thesis.

Reachability Algorithm. The location reachability problem asks whether
a certain location lg is reachable, that is whether there exists some run end-
ing in a state (lg, vV , Z) for some variable valuation vV and zone Z. The
location reachability problem is important, because any question about clock
valuation reachability can be encoded as an location reachability problem.

Using the symbolic zone semantics under extrapolation, the location
reachability algorithm for timed automata can be stated as Algorithm 1.

Algorithm 1 Location reachability for timed automata.

proc reachability(lg)
W := { initial-state() } ; P := ∅
while W 6= ∅
W := W \ (l, vV , Z) for some (l, vV , Z) ∈W
P := P ∪ {(l, vV , Z)}
for (l′, v′V , Z

′) s.t. (l, vV , Z)⇒ (l′, v′V , Z
′) do

i f l′ = lg then report & exit
i f 6 ∃Z ′′ : (l′, v′V , Z

′′) ∈W ∪ P ∧ Z ′ ⊆ Z ′′
W := W \ {(l′, v′V , Z ′′) | Z ′′ ⊆ Z ′} ∪ (l′, v′V , Z

′)

The algorithm and the symbolic zone state space have here been stated
without proof, or argumentation, that they are indeed correct, that is:

• Sound: if the algorithm reports a location is reachable, the location is.

• Complete: if a location is reachable the algorithm will report so.

• Terminating: the algorithm terminates for all inputs.

In the following the framework of abstract interpretation [34] will be intro-
duced, whereafter the correctness will be argued for within that framework.

2.3 Abstract Interpretation

Abstract interpretation is concerned with deriving a set of invariants for each
point in a program, by interpreting the semantics of the program abstractly
in an abstract domain. Most commonly, the relation between the concrete
semantics and the abstract semantics are specified using a Galois connection.
Most commonly, an invariant before/after each syntactic statement of the

14

Model Checking of Timed Automata Viewed as an Abstract Interpretation

program is computed, although more precise invariants can be found using
trace partitioning ; this will be explored in Chapter 7.

Abstract interpretation uses abstract domains to efficiently represent
program invariants. An abstract domain is at least a join semi-lattice, as
defined by a partial order operator and a least upper bound, but often also
a meet operator is defined making it a complete lattice.

Definition 8 (Complete Lattice). A complete lattice is a 6-tuple

L = (D,v,t,u,⊥,>)

where

• D is a set,

• v: D×D is a partial order, i.e. reflexive, transitive and anti-symmetric.

• t : D × D → D is a least upper bound operator s.t. it is an upper
bound operator:

if a t b = c then a v c ∧ b v c

and it is a least upper bound operator:

if a t b = c then ∀d ∈ D : a v d ∧ b v d =⇒ d = c ∨ c v d

• u : D × D → D is a greatest lower bound operator s.t. it is a lower
bound operator:

if a u b = c then c v a ∧ c v b

and it is a greatest lower bound operator:

if a u b = c then ∀d ∈ D : d v a ∧ d v b =⇒ d = c ∨ d v c

• ⊥ is a least element, i.e. ∀a ∈ D : ⊥ v a.

• > is a greatest element, i.e. ∀a ∈ D : a v >.

The lattice L will sometimes be used to refer to the underlying set D,
when unambiguous.

2.3.1 Programs and Galois Connection

Definition 9 (Program). A program is taken to be a transition system
(S, Act,→, s0) where S is the set of states, Act is the set of actions (state-
ments), →⊆ S × Act × S is the transition relation, and s0 is the initial
state.

15

Chapter 2

Following convention, we write s
a−→ s′ for the transition (s, a, s′) ∈→.

Definition 10 (Traces of programs). A finite trace over a program is a
finite sequence of states: σ = s0 . . . sn, such that for 0 ≤ i ≤ n, si ∈ S and
si

a−→ si+1 for some a ∈ Act.

We denote the final state of a trace σ as σa. The set of all (finite) traces
of a program P is denoted JP K = {σ ∈ S∗|σ is a finite trace of P} where S∗
is the set of all sequences of states in S.

In “standard” abstract interpretation, i.e., non-trace partitioning ab-
stract interpretation, safety properties for a given program can be verified
using approximations of the set of states that are reachable by the pro-
gram. The sets of reachable states are usually represented using an abstract
domain, D, with a concomitant concretisation function. For presentation
purposes (and in preparation for future developments in Chapter 7) the
powerset domain of program traces will be used as the concrete domain,
although Galois connections in general can be between any lattices.

Definition 11 (Concretisation function). A concretisation function

γ : D → 2S
∗

maps an abstract state to a super-set of traces whose states are all represented
by the abstract state.

Note that JP K ⊆ 2S
∗
, so the concretisation function might include traces

not allowed by the program.
Given an abstraction function α : 2S

∗ → D exists, a Galois connection
can be formed.

Definition 12 (Galois connection). The functions:

α : 2S
∗ → D γ : D → 2S

∗

form a Galois connection iff [82, p. 236]

α(X) v ` ⇐⇒ X v γ(`)

as illustrated in Figure 2.4.

Note that if the functions α, γ form a Galois connection, they also
uniquely determine each other [82, p. 239].

If α and γ, in addition to being a Galois connection, satisfy α ◦ γ = id
then they form a Galois insertion. Galois insertions (for the purposes of
program analysis) have the nice property that no precision is lost by doing
a concretisation and then an abstraction.

A Galois connection, comprising α and γ, can be used to induce an
abstract model [92] of a program P = (S, Act,→, s0), by defining for each

16

Model Checking of Timed Automata Viewed as an Abstract Interpretation

2S
∗

D

X α(X)

α

`γ(`)
γ

⊆ v

Figure 2.4: An illustration of the Galois connection defined in Definition 12,
[82, Figure 4.6].

concrete action a corresponding abstract action, i.e. a ∈ Act fa : D → D,
that safely approximates the concrete semantics by requiring that for all
s, s′ ∈ S the following holds

s
a−→ s′ and s1s2 · · · s ∈ X and α(X) = ` =⇒ fa(`) = `′ and s1s2 · · · ss′ ∈ γ(`′)

For any program, P , this abstract model of (all the actions of) a program is
denoted: MP = {fa|a ∈ Act}.

2.3.2 Computing a fix-point

For a program P = (S, Act,→, s0), an abstract domain L = (D,v,t,u,⊥,>),
and an associated abstract model of a program MP = {fa|a ∈ Act}, the
strongest invariant expressible in the domain L can be computed for each
program location, as the least fixpoint of a set of equations (see below). The
set of program locations is denoted L, and a program location is the syntac-
tical location in the program, e.g. the control-flow location. It is typically
derived by splitting the set of program states S into L × MEM where L
is the control flow locations, and MEM is the memory state i.e. values of
variables. The abstract transformers fa can be suitably split as well, such
that

fa : L×D → L×D

The set of equations the fix-point needs to be computed over are given
as a function P : L→ D:

P (l) =
⊔
{`|l′ a−→ l and fa(l

′, P (l′)) = (l, `)}

The least fix-point can then be computed using e.g. the worklist algorithm,
as specified in Algorithm 2.

17

Chapter 2

Algorithm 2 The standard worklist algorithm, used in abstract interpre-
tation to compute a fix-point [82].

1 proc w o r k l i s t (l0, `0)
2 W ∈ 2L , P : L→ D
3 W := {l0}
4 P (·, ·) := ⊥, P (l0) := `0
5
6 while W 6= ∅
7 W := W \ {l} for some l ∈W
8 for (l′, `′) s.t. l

a−→ l′ and fa(l, P (l)) = (l′, `′) do
9 i f `′ 6v P (l′) then

10 P (l′) := P (l′) t `′
11 W := W ∪ {l′}

2.3.3 Widening for Faster Convergence

For an abstract domain L = (D,v,t,u,⊥,>), it might be the case that
this fix-point computation does not converge. It could be that |D| =∞ and
there are infinitely ascending chains, i.e. an infinite sequence

`0 v `1 v . . .

or it might be the case that the fix-point computation simply converges too
slowly to be useful in practice. A method for accelerating convergence is to
use a widening operator.

Definition 13 (Widening operator). Given an abstract domain

L = (D,v,t,u,⊥,>)

a function
∇ : D ×D → D

typically written inline as `1∇`2 = ∇(`1, `2), is a widening operator iff:

• For `1, `2 ∈ D it holds that `1 v `1∇`2 and `2 v `1∇`2

• For all ascending chains

`0 v `1 v `2 v . . .

it holds that the ascending chain given by

`0 v `0∇`1 v (`0∇`1)∇`2 v . . .

eventually stabilises.

18

Model Checking of Timed Automata Viewed as an Abstract Interpretation

A widening operator can be used to speed up the fix-point computation,
but at the cost that the fix-point computed might not be the least fix-point.
Widening can be introduced in Algorithm 2 simply by changing line 10 to:

P (l′) := P (l′)∇`′

Because all ascending chains using ∇ eventually stabilise, convergence of
this modified Algorithm 2 is guaranteed.

The fix-point reached by Algorithm 2 with widening can be improved by
further iteration without widening, the reason being that widening might
“overshoot” the least fix-point. Similarly, this iteration towards a fix-point
can be accelerated using a narrowing operator, for which the details can be
found in, e.g., [82].

2.3.4 Abstract Domains

A number of numerical domains typically used for program analysis will
now be presented. It should be clear that they are each increasingly more
precise: the sign domain, the interval domain, the difference bounded ma-
trices domain and finally the octagon domain. In addition, a number of
domain-theoretic constructs will be presented: the extension of a domain
for a single variable to multiple variables, the disjunctive completion of a
domain (turning it into a powerset domain), and the down-set completion
of a domain.

The Sign Domain. The sign domain only keeps track of the sign of each
variable. For a single variable the domain is shown in Figure 2.5.

⊥

− 0 +

>

γ(⊥) = ∅
γ(−) = {. . . ,−1}

γ(0) = {0}
γ(+) = {1, . . .}

γ(>) = {. . . ,−1, 0, 1, . . .}

Figure 2.5: The Sign domain with the ordering shown as lines, and with
associated concretisation function to the integers, γ : D → 2Z.

Definition 14 (Sign domain for a single variable). The sign domain lattice
is defined as L± = (D,v,t,u,⊥,>) where

• D is the set {⊥,−, 0,+,>},

• v, t, and u is given by Figure 2.5.

19

Chapter 2

• ⊥ is an “artificial” least element, i.e. it does not have a natural in-
terpretation using the concretisation function.

• > is a greatest element, i.e. the concretisation function maps it to all
concrete values.

The concretisation function γ is as given in Figure 2.5.

For a set of variables the sign domain (and any numerical abstract do-
main in general) is extended in the natural way by the use of the Cartesian
product, for which the partial order is applied component-wise.

Definition 15 (Extension to multiple variables). An abstract domain for a
single variable, L = (D,v,t,u,⊥,>), with concretisation function γ : D →
2Z, can be extended to multiple variables in the natural way by repeated
application of the following definition extending to two variables:

L2 = (D ×D,v2,t2,u2, (⊥,⊥), (>,>))

where

• (a, b) v2 (c, d) iff a v c and b v d.

• (a, b) t2 (c, d) = (e, f) s.t. e = a t c and f = b t d.

• (a, b) u2 (c, d) = (e, f) s.t. e = a u c and f = b u d.

and concretisation function γ2 : D ×D → 2Z × 2Z, s.t.

γ2(`, `′) = (γ(`), γ(`′))

A graphical example of the type of invariants the Sign domain, extended
to multiple variables, can represent is given in Figure 2.6.

The Interval Domain. The interval domain stores a lower- and an upper-
bound for each variable. It is strictly more precise than the sign domain,
at the expense of having an infinite cardinality, and even infinite ascending
chains.

Definition 16 (Interval Domain). The interval domain lattice (illustrated
in Figure 2.7) is defined as Linterval = (D,v,t,u,⊥,>) where

• D is the set {⊥} ∪ {(x, y) ∈ (Z∪ {−∞,∞})× (Z∪ {−∞,∞})|x ≤ y},
that is all pairs (x, y) where x ≤ y where ≤ is extended to handle −∞
and ∞ in the natural way,

• v is given by ⊥ v `, ` v > and [x, y] v [x′, y′] iff x′ ≤ x ∧ y′ ≥ y

• t is given by `t⊥ = `, `t> = >, and [x, y]t[x′, y′] = [min(x, x′),max(y, y′)]

20

Model Checking of Timed Automata Viewed as an Abstract Interpretation

y

x0

−1

1

2

3

−1 1 2 3 4 5

Figure 2.6: A representation of an element of the Sign domain for 2 variables,
capturing the invariants x ≥ 0 ∧ y ≥ 0.

• u is given by `u⊥ = ⊥, `u> = `, and [x, y]t[x′, y′] = [max(x, x′),min(y, y′)]

• ⊥ is an “artificial” least element, i.e. it does not have a natural in-
terpretation using the concretisation function.

• > = [−∞,∞] is the greatest element, i.e. the concretisation function
maps it to all concrete values.

The concretisation function γ is as given by

γ(⊥) = ∅
γ(>) = Z

γ([x, y]) = {i|x ≤ i ≤ y}

A graphical example of the type of invariants the Interval domain can
represent is given in Figure 2.8.

Disjunctive Completion [35] (Powerset domain). The disjunctive
completion of an underlying domain is a way of retaining precision that
would otherwise be lost under join operations. It works by lifting the original
domain from D to the powerset 2D, and letting join add elements to the set.
In this way a domain can gain power, by being able to express disjunctions,
i.e. x = 2∨x = 4, or more powerful disjunctive invariants depending on the
underlying domain.

Definition 17 (Disjunctive Completion [35]). The disjunctive completion
of a domain L = (D,v,t,u,⊥,>) is defined as Ldis = (2D,v′,∪,∩, ∅, D)
where

• v′: 2D × 2D is defined as A v′ B iff ∀` ∈ A.∃`′ ∈ B : ` v `′.

21

Chapter 2

⊥

.[−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2]

.[−2,−1] [−1, 0] [0, 1] [1, 2]

.[−2, 0] [−1, 1] [0, 2]

...
...

...[−∞,−1]

[−∞, 0]

[−∞, 1]

. .
.

. .
.

[1,∞]

[0,∞]

[−1,∞]

. . .

. . .

> = [−∞,∞]

Figure 2.7: The interval domain for a single variable [82, Figure 4.2].

and the other operators are the regular operations from sets.
If the concretisation function for the domain L to a concrete domain A

is given by γ : D → 2A, then the concretisation function for Ldis is given by
γ′ : 2D → 2A, s.t.

γ′({`0, . . . `n}) =
n⋃
i=0

γ(`i)

Note that Definition 17 allows for “redundancies” to remain in the lattice
elements, e.g. if ` = {a, b} and a v b, then because γ′({a, b}) = γ′({b}),
a can be viewed as redundant. This leads to the definition of the down
closure [36, Sec. 4.2.3.4] for a set X:

↓ X = {y|∃x ∈ X : y v x}

which allows the definition of the more effective, but equally precise, down-
set completion [36, Sec. 4.2.3.4] (here following the presentation of [8]).

Definition 18 (Down-set Completion [36]). The down-set completion of
a domain L = (D,v,t,u,⊥,>) is defined as L↓ = (D′,v′,Ω ◦ ∪,∩, ∅, D)
where

• D′ = ∅ ∪ {X ∈ 2D|∀`, `′ ∈ X : ` v `′ =⇒ ` = `′} is the set of all
non-redundant sub-sets of 2D, i.e. the minimal sets. Note that for any
X ∈ 2D there exists an X ′ ∈ D′ s.t. ↓ X =↓ X ′.

• v′: 2D × 2D is defined as A v′ B iff ∀` ∈ A.∃`′ ∈ B : ` v `′.

22

Model Checking of Timed Automata Viewed as an Abstract Interpretation

y

x0

−1

1

2

3

−1 1 2 3 4 5

Figure 2.8: A representation of a element of the Interval domain for 2 vari-
ables, capturing the invariants x ∈ [1, 5] ∧ y ∈ [1, 3].

• Ω : 2D → D′ is removing redundancies:

Ω(X) = X \ {` ∈ X|` = ⊥ ∨ ∃`′ ∈ X.` 6= `′ ∧ ` v `′}

and the other operators are the regular operations from sets. The concreti-
sation function is as given by Definition 17.

A graphical example of the type of invariants the disjunctive completion
of the Interval domain can represent is given in Figure 2.9. In the following
the disjunctive completion will be used to define derived domains, while
the down-set completion readily allows these derived domains to be more
efficient domain.

y

x0

−1

1

2

3

−1 1 2 3 4 5

Figure 2.9: A representation of a element of the disjunctive completion of
the Interval domain for 2 variables, capturing the invariants (x ∈ [1, 4]∧ y ∈
[1, 2]) ∨ (x ∈ [2, 5] ∧ y ∈ [2, 3]).

23

Chapter 2

Difference Bound Matrices [47, 77, 19]. The DBM domain is a do-
main for representing not only the interval of a variable, i.e. x ∈ [a, b] , but
also the interval of differences between variables, i.e. x − y ∈ [a, b]. They
were originally intended for the verification of timed automata, for which
they have been very successfully applied in e.g. UPPAAL [72]. Here, they
are presented as an abstract domain, as was first done in [77].

For a set of variables V , the notation V0 will denote V ∪ {0}, where 0 is
a special variable that is always 0.

Definition 19 (Difference Bound Matrix Domain). The DBM domain lat-
tice for a set of variables V is defined as LDBM = (D,v,t,u,⊥,>) where

• D is the set of all matrices of size (|V |+1)×(|V |+1), where each matrix
element is from Z ∪ {∞}, and the natural ordering of Z is extended
such that (in an abuse of notation) Z < ∞. The i, j’th element of a
DBM ` will be denoted as `i,j.

Each matrix element represents a variable difference xi − xj ≤ ci,j,
with differences against the special 0 variable expressing constraints
of the form xi ≤ ci,0 and −xi ≤ c0,i. For presentation purposes all
constraints will be non-strict, i.e. using ≤, as opposed to optionally
being strict, i.e. <. Also, it will be assumed that all DBMs are in
canonical form [19].

• v is defined such that ` v `′ iff:

`i,j ≤ `′i,j ∀0 ≤ i, j ≤ |V |+ 1

• t is defined such that ` = `′ t `′′, gives each element of ` as:

`i,j = max(`′i,j , `
′′
i,j)

• u is defined such that ` = `′ u `′′, gives each element of ` as:

`i,j = min(`′i,j , `
′′
i,j)

• ⊥ is an artificial least element, representing a DBM with unsatisfiable
constraints. An unique element is used for this purpose.

• > is given as the unique element

> =


0 ∞ · · · ∞
∞ 0 · · · ∞
...

...
. . .

...
∞ ∞ · · · 0


24

Model Checking of Timed Automata Viewed as an Abstract Interpretation

As the domain is a relational domain, the concretisation function must
map DBMs to variable valuations in order for it to capture relational con-
straints precisely. The concretisation function γ : LDBM → (V → Z) is as
given by

γ(`) = {vV ∈ (V → Z) |
∀i, j.i 6= 0, j 6= 0, i 6= j : vV (vi)− vV (vj) ≤ `i,j∧
∀i : vV (vi) ≤ `i,0∧
∀i : −vV (vi) ≤ `0,i}

which consists of three conjunctions:

1. Relational constraints between two variables

2. Upper bounds on variables, expressed as differences to the special 0
element

3. Lower bounds on variables, expressed as differences to the special 0
element

A graphical example of the type of invariants a DBM can represent
is given in Figure 2.10. The join operator is also known as the convex

y

x0

−1

1

2

3

−1 1 2 3 4 5

Figure 2.10: A representation of a DBM for 2 variables, capturing the in-
variants x ∈ [1, 5] ∧ y ∈ [1, 3] ∧ x− y ∈ [0, 2].

hull operation, because it returns the smallest DBM that encompasses both
operands. An example of the convex hull operation is shown in Figure 2.11.
Note how for the DBMs a and b there an implicit invariant that x − y ∈
[−1, 3], that is implied by the other constraints. This however becomes
relevant when computing the convex hull, to e.g. eliminate the valuation
x = 5, y = 1 that would have been included if the join was performed in the
interval domain.

25

Chapter 2

c

a

b

y

x0

−1

1

2

3

−1 1 2 3 4 5

Figure 2.11: A representation of a DBM for 2 variables, showing the join of
the two DBMs a = (x ∈ [1, 4] ∧ y ∈ [1, 2]) and b = (x ∈ [2, 5] ∧ y ∈ [2, 3]),
and the result c = (x ∈ [1, 5] ∧ y ∈ [1, 3] ∧ x− y ∈ [−1, 3]).

Octagons [78, 79]. Octagons are an extension of DBMs, such that not
only the interval of a variable, i.e. x ∈ [a, b], and the interval of differ-
ences between variables, i.e. x − y ∈ [a, b], but the more general sum con-
straints [78] of the form ±x± y ≤ a are tracked. For a set of variables V =
{v0, . . . vn} a DBM over the twice as large set V + = {v+

0 , v
−
0 , . . . , v

+
n , v

−
n }

is constructed, as a representation of the octagon. Note that no special 0
variable needs to be introduced, as constraints of the form vi ≤ a and vi ≥ a
can be represented by v+

i − v
−
i ≤ 2a and v−i − v

+
i ≤ −2a, respectively.

Definition 20 (Octagon Domain). The Octagon domain lattice for a set of
variables V is defined as LOCT = (D,v,t,u,⊥,>) where

• D is the set of all matrices of size (|V | ·2)×(|V | ·2), where each matrix
element is from Z ∪ {∞}, and the natural ordering of Z is extended
such that (in an abuse of notation) Z <∞. The i, j’th element of an
octagon ` will be denoted as `i,j.

A row or column with index 2 · i represents the variable v+
i , and a row

or column with index 2 · i + 1 represents the variable v−i . Thus, the
matrix elements represents constraints of one of these forms:

– `i,j represents v+
i − v

+
j ≤ a

– `i,j+1 represents v+
i − v

−
j ≤ a, i.e. vi + vj ≤ a

– `i+1,j represents v−i − v
+
j ≤ a, i.e. −vi − vj ≤ a

– `i+1,j+1 represents v−i − v
−
j ≤ a, i.e. −vi + vj ≤ a

Interval constraints such as vi ≤ a and vi ≥ a are represented as
v+
i − v

−
i ≤ 2 · a and v−i − v

+
i ≤ −2 · a respectively.

26

Model Checking of Timed Automata Viewed as an Abstract Interpretation

Special care must be taken for the octagon to be in closed (canonical)
form [78]. The closure algorithm depends on whether the concretisa-
tion function maps to integers, or to the reals or rationals; computing
the smallest closure for the integers is more expensive than for the re-
als or rationals. In the following it will be assumed that all octagons
are in closed form.

• v is defined such that ` v `′ iff:

`i,j ≤ `′i,j ∀0 ≤ i, j ≤ |V | · 2− 1

• t is defined such that ` = `′ t `′′, gives each element of ` as:

`i,j = max(`′i,j , `
′′
i,j)

• u is defined such that ` = `′ u `′′, gives each element of ` as:

`i,j = min(`′i,j , `
′′
i,j)

• ⊥ is an artificial least element, representing an octagon with unsatis-
fiable constraints.

• > is given as the unique element

> =


0 ∞ · · · ∞
∞ 0 · · · ∞
...

...
. . .

...
∞ ∞ · · · 0


Octagons are able to represent constraints that, in two dimensions, fea-

ture eight edges, hence the name. An example of an octagon representation
is given in Figure 2.12.

More expressive domains for numerical analysis exist, such as polyhe-
dra [41], but these will not be covered in detail in this thesis.

2.4 A Connection

In Section 2.2 the symbolic semantics for timed automata using zones repre-
sented as DBMs were reviewed. In Section 2.3 a number of abstract domains
were presented, including the domain given by DBMs. In this section the
model checking of a timed automaton will be cast as an abstract interpre-
tation.

27

Chapter 2

y

x0

−1

1

2

3

4

−1 1 2 3 4 5

Figure 2.12: A graphical representation of an octagon for 2 variables, cap-
turing the invariants x ∈ [1, 4] ∧ y ∈ [1, 4] ∧ x− y ∈ [−2, 2] ∧ x+ y ∈ [3, 7].

2.4.1 Domain Used for Model Checking Timed Automata

Timed automata model checking is a sound and complete procedure. The
soundness can be directly established by a Galois connection between the
concrete semantics, and the symbolic zone semantics. It should be noted
that clocks in timed automata can readily be viewed as variables, with the
exception of the special “delay” operation which increases all clock vari-
ables at the same rate. The notion of “clock” and “variable” will be used
interchangeably in this section.

Galois Connection for Timed Automata Semantics. Any DBM from
the DBM lattice (Definition 19) represents a convex set of clock valuations.
The concretisation function maps any DBM to the set of clock valuations
that satisfies its constraints:

γ(D) = {vC |vC |= D}

The abstraction function is straightforward, as any clock valuation de-
scribes a set of precise constraints on the clocks of the form ci = xi, starting
from the unconstrained DBM >. The only pitfall is that the clock valuation
can involve real values, whereas a DBM can only involve constraints using
integers; as such the abstraction needs to map the clock valuation to the
smallest DBM including the clock valuation. This is given by the region

28

Model Checking of Timed Automata Viewed as an Abstract Interpretation

construction [5], and thus the abstraction function becomes:

α(vC) =>u (2.3)

[c0 ≥ bvC(c0)c ∧ c0 ≤ dvC(c0)e)] u . . . u [cn ≥ bvC(cn)c ∧ cn ≤ dvC(cn)e]
(2.4)

u
nl

i=0,j=0


[ci − cj = vC(ci)− vC(cj)] if frac(vC(ci)) = frac(vC(cj))

[ci − cj < bvC(ci)c − bvC(cj)c] if frac(vC(ci)) < frac(vC(cj))

[ci − cj > bvC(ci)c − bvC(cj)c] if frac(vC(ci)) > frac(vC(cj))

(2.5)

where frac is the fractional part of the clock value. The big formula consists
of (2.4) a number of interval constraints, and (2.5) a number of diagonal
constraints.

Lemma 1. α and γ as defined forms a Galois insertion from the set of clock
valuations to DBMs.

Using the domain of DBMs an abstract interpretation of the concrete
semantics of a timed automaton

A = (L, V, C, Act, l0,→, IC)

as given by Definition 4, can be constructed. The abstract semantics are
defined over the timed transition system

(S,⇒, Act ∪ R)

where

1. S consists of triples(l, vV , D) where l ∈ L is a location, vV is a variable
valuation and D is a DBM from the DBM domain.

2. ⇒ is the transition relation s.t.

• A discrete transition for an action a ∈ Act:
(l, vV , D)

a
=⇒ (l, v′V , D

′) if an edge

l
g,τ,s,r−−−−→ l′ exists and vV |= g is satisfied, as well as updated

variables v′V = vV [s] and some clock valuation vC |= D satisfies
the guard vC |= g, and after performing the transition:

D′ = α({v′C |vC ∈ γ(D) s.t. vC |= g, v′C = vC [r], and v′C |= IC(l)})

which can be re-written as

D′ = α({v′C |vC ∈ γ(D u g) s.t. v′C = vC [r], and v′C |= IC(l)})

29

Chapter 2

(Because the clock constraint g can be viewed as a zone/DBM
element)

D′ = α({v′C |v′C ∈ γ((D u g)[r]) s.t. v′C |= IC(l)})

(The clock reset can be performed in the abstract)

D′ = α({v′C |v′C ∈ γ((D u g)[r] u IC(l))})

(The clock invariant can be viewed as a DBM element)

D′ = α(γ((D u g)[r] u IC(l)))

Finally, because α and γ form a Galois insertion, the successor
DBM computation can be reduced to

D′ = (D u g)[r] u IC(l)

• A delay by d time units:

(l, vV , D)
d

=⇒ (l, vV , D
′) for d ∈ R≥0 if

D′ = α({v′C |vC ∈ γ(D) s.t. v′C = vC + d and v′C |= IC(l)})

As delay transitions can be combined it is more efficient to compute the
symbolic delay as the closed form of⊔

d=0...∞
{D′|α({v′C |vC ∈ γ(D) s.t. v′C = vC + d and v′C |= IC(l)})}

which corresponds to delaying between 0 and ∞ time units. For the case
without an invariant (or IC(l) = true), this transformer exists and further-
more can be represented without loss of precision:

D′ = D ↑

Concretely, this is implemented by removing all upper bounds from D. A
valid concern is that an unbounded delay might allow a delay not possible
in the concrete semantics due to an invariant. However, per Definition 4
invariants can only be downwards closed, meaning that if a delay of d is not
allowed, then a delay of d+ x for any x is also not allowed.

Thus, an unbounded delay transition with an invariant (l, vV , D) =⇒
(l, vV , D

′) can be represented as

D′ = D ↑ uIC(l)

As delay transitions are always enabled the semantics for a discrete tran-
sition followed by a delay transition can be combined into a single step. As
delay transitions can be represented without loss of precision, this is often
done for efficiency.

In the fixpoint computation, for each location a DBM representing the
join of all clock valuations that the location can be reached by is kept. This
is presented in Algorithm 3.

30

Model Checking of Timed Automata Viewed as an Abstract Interpretation

Algorithm 3 Abstract interpretation fixpoint computation for timed au-
tomaton with abstract semantics.

1 proc w o r k l i s t (l0, v
0
V , D0)

2 W ∈ 2L×(V→Dom(V)) , P : L× (V → Dom(V))→ D
3 W := {(l0, v0

V)}
4 P (·, ·) := ⊥, P (l0, v

0
V) := D0

5
6 while W 6= ∅
7 W := W \ {(l, vV)} for some (l, vV) ∈W
8 for (l′, v′V , D

′) s.t. (l, vV , P (l, vV))⇒ (l′, v′V , D
′) do

9 i f D′ 6v P (l′, v′V) then
10 P (l′, v′V) := P (l′, v′V) tD′
11 W := W ∪ {l′, v′V }

Lemma 2. Algorithm 3 is sound, but not complete, with regards to location
reachability.

Proof. The soundness follows from the Galois connection. The incomplete-
ness is due to the possible loss of precision of the join operator for the
DBM, the convex-hull, that can result in “spurious” clock valuations be-
ing included in the state space, that can in turn result in transitions being
spuriously enabled, and locations spuriously deemed reachable.

Besides not being complete, another problem is that the DBM domain
has infinite ascending chains, so the termination of Algorithm 3 is not guar-
anteed. The traditional method for ensuring termination, and the method
for proving that model checking timed automata is decidable is the obser-
vation by Alur and Dill [5] that for a given timed automaton certain classes
of clock valuations are indistinguishable – namely those for which the value
of the clocks are above the maximal syntactic constant against which any
clock is compared in the model. In the original work by Alur and Dill [5] the
extrapolation was done using the maximal syntactic constant in the model,
and using the same constant for all clocks.

The default solution is to use an “extrapolation” operator, enlarging
DBMs that are indistinguishable.

Definition 21 (Global max constant extrapolation). Given a timed au-
tomaton A over the set of clocks C, where the maximal constant appearing
in any clock guard or invariant is k, the global max constant extrapolation

31

Chapter 2

is defined [14] extrak(D) = D′ s.t. for each element of the DBM D′i,j:

D′i,j =


∞, if Di,j > k.

−k, if Di,j < −k.
Di,j , otherwise.

Lemma 3. Incorporating extrapolation in the abstract semantics, s.t. any
transition (l, vV , D)⇒ (l′, v′V , D

′) becomes (l, vV , D)⇒ (l′, v′V , extrak(D
′)),

results in a finite transition system.

Proof. The image of extrak is a finite set, immediately giving the result.

Lemma 4. For any reachable symbolic state (l, vV , D), and for every out-

going edge l
g,a,s,r−−−−→ l′ with clock constraint g ∈ G(C) it holds that

D u g 6= false ⇐⇒ extrak(D) u g 6= false

meaning, that no edge clock guards will be enabled by applying an extrapola-
tion [14].

2.4.2 Extrapolation: Abstraction or Widening?

Extrapolation can be viewed in one of two different ways: either as a
model-specific abstraction operator for the Galois connection, or as a model-
dependent widening operator. Both viewpoints will be explored.

Viewing extrapolation as an abstraction operator is straightforward, and
follows the style of [45, 14, 15]. Using an extrapolation operator extra :
LDBM → LDBM , the abstraction of the Galois connection becomes extra◦α,
while the concretisation operator remains the same. This viewpoint makes
for a rather straight-forward analysis, but it does make the abstraction op-
erator depend on the current model, which is unconventional in abstract
interpretation.

A conventional mean of dealing with non-convergence in abstract inter-
pretation is to use a widening. Widenings are typically instantiated per pro-
gram, e.g. using all the constants in the program as widening points [34, 82].
Thus, for a more conventional analysis specification an extrapolation can be
viewed as a widening.

Definition 22 (Extrapolation as Widening). An extrapolation operator

extra : LDBM → LDBM

can be turned into a widening operator (Definition 13) as:

D0∇extraD1 = extra(D0) t extra(D1)

32

Model Checking of Timed Automata Viewed as an Abstract Interpretation

2.4.3 Regaining Completeness

A key issue in (reachability) model checking of timed automata is that the
procedure should be sound, terminating and complete. Using Algorithm 3
on an extrapolated transition system provides a sound and terminating pro-
cedure. To regain completeness the abstract domain needs to be altered
slightly. The key observation is that the extrapolated transition system is
finite; thus any imprecision is introduced by the joining. Lifting the DBM
using the disjunctive completion makes the joining operator precise, regain-
ing completeness.

For completeness the definition of the actual domain used is given below,
although it is just the combination of using Definition 17 to lift Definition 19.

Definition 23 (Disjunctive Completion of the Difference Bound Matrix
Domain). The disjunctive completion of the DBM domain lattice for a set
of variables V given by LDBM = (D,v,t,u,⊥,>), is defined as LDBM,dis =
(2D,v′,∪,∩, ∅, {>}) where

• v′: 2D × 2D is defined as A v′ B iff ∀` ∈ A.∃`′ ∈ B : ` v `′.

• The top element, {>} is given as the unique singleton set of > from
LDBM .

The concretisation function is as given in Definition 17.

Theorem 1. Using Algorithm 3 with the domain from Definition 23 on an
abstract semantics providing a finite transition system (such as Lemma 3)
gives a sound, complete, and terminating procedure.

Proof. The soundness is due to the Galois connection. The termination is
due to the transition system being finite, by Lemma 3. Furthermore, the
use of extrapolation does not enable any additional transitions by Lemma 4,
thereby not affecting the completeness. The completeness is due to the use
of a precise join operator, namely the set union of the disjunctive completion
given by Definition 23.

2.5 Lattice Automata

The formalism of timed automata can be generalised from using the DBM
domain to using any lattice. This formalism will be called lattice automata.

Definition 24 (Lattice Automaton). A lattice automaton is a triple T =
(S,L,−→) where S is a finite set of locations, L = (D,v,t) is a join semi-
lattice and −→⊆ S × D × S × D is a transition relation which has the
monotonicity property: for all s1, s2 ∈ S and `1, `2, `

′
1 ∈ D:

if (s1, `1) −→ (s2, `2) and `1 v `′1
then ∃`′2 ∈ D : (s1, `

′
1) −→ (s2, `

′
2) with `2 v `′2

33

Chapter 2

Note that the lattice L will often be a complete lattice as the meet
u operation is often useful for the transition relation. The monotonicity
property arises naturally for many cases, e.g. if a Galois connection exists the
soundness of the concretisation function γ will lead to a monotone transition
relation.

Transitions are usually written as (s, `) −→ (s′, `′) whenever (s, `, s′, `′) ∈−→.
Configurations are pairs of the form (s, `) where s ∈ S and ` ∈ D.

Definition 25 (Lattice Transition System). A lattice transition system over
a lattice automaton T is given by (S ×D,−→, (s0, `0)) where

• S ×D is the set of configurations,

• −→ is the transition relation,

• and (s0, `0) is the initial state.

Definition 26 (Path). A finite path over a lattice automaton T is a finite
sequence σ = (s0, `0)(s1, `1) · · · (sn, `n) such that (si, `i) −→ (si+1, `i+1) for
all i, 0 ≤ i ≤ n− 1.

The v ordering is extended to configurations such that

(s, `) v (t, `′) ⇐⇒ s = t ∧ ` v `′

Given a set of configurations X and a configuration (s, `) the notation
(s, `) v X will mean that ∃(s, `′) ∈ X : ` v `′.

For use in computing counter-examples abstract paths will be useful.

Definition 27 (Abstract Paths). A finite abstract path over a lattice au-
tomaton T is a finite sequence σ = (s0, `0)(s1, `1) · · · (sn, `n) such that

(si, `i) −→ (si+1, `
′
i+1) for some `′i+1 v `i+1

for all i, 0 ≤ i ≤ n− 1.

In an abstract path some steps might be going to more abstract states
than the transition relation itself allows; thus an abstract path might not
be realisable in the transition system itself.

Lemma 5. The symbolic statespace of a timed automata can be generated
by a lattice automaton.

Proof sketch. Given a timed automaton A = (L, V, C, l0,→, IC) the corre-
sponding lattice automaton can be constructed as

• The locations of the lattice automaton will be the set L × (V →
Dom(V)).

34

Model Checking of Timed Automata Viewed as an Abstract Interpretation

• The lattice will be the DBM abstract domain, LDBM from Defini-
tion 19.

• The transition relation will be as given by the symbolic zone semantics
with extrapolation, as in Lemma 3.

The requirement that the transition relation has the monotonicity prop-
erty can be seen to be fulfilled by examining that each of the DBM operations
in the successor computation are monotonic.

The basic algorithm (Algorithm 4) on lattice automata is to compute
a covering set, P ⊆ S × L such that for any reachable state (s, `) in the
transition system of the lattice automaton it holds that (s, `) v (s, `′) for
some (s, `′) ∈ P . The algorithm can optionally be given a logic formulae φ
which is the state property the user wishes to prove; if φ is given and found
to be false, a counterexample can be returned.

Algorithm 4 Algorithm to compute a covering set or a counter-example,
given a model in the form of a lattice transition system M = (S,L,→
), initial configuration (s0, `0) and formulae φ, and using lattice join as
abstraction.

1: procedure MC-join(M, (s0, `0), φ)
2: W := {(s0, `0)}, P := ∅
3: while W 6= ∅ do
4: Remove some (s, `) from W
5: if (s, `) |= φ then return counterexample

6: if (s, `) 6v P then
7: for all (t, `′) s.t. (s, `)→ (t, `′) do
8: `′′ := `′ t

⊔
{`′′′|(t, `′′′) ∈W ∪ P}

9: W := W \ {(t, `′′′)|`′′′ v `′′} ∪ {(t, `′′)}
10: `′′ := ` t

⊔
{`′′′|(s, `′′′) ∈ P}

11: P := P \ {(s, `′)|`′ v `′′} ∪ {(s, `′′)}
12: return Covering set P

The counter-example returned is an abstract path given by backtracking
from the offending (s, `) 6|= φ to the initial location s0. The counter-example
is the abstract path given by:

(s0, P (s0))(s1, P (s1)) . . . (s, `)

If the covering set computed by Algorithm 4 is too coarse for the pur-
pose at hand, or an abstract path is returned as a counter-example but the
abstract path is spurious, a joining strategy can help by refining the covering
set.

35

Chapter 2

Definition 28 (Joining Strategy). A joining strategy is a function

δ : (S × L)× (S × L)→ {true, false}

detailing whether two states in a lattice transition system are allowed to be
joined, or should be kept separate.

The joining strategy can be integrated in the cover algorithm (Algo-
rithm 4) as done in Algorithm 5.

Algorithm 5 Algorithm to compute a covering set or a counter-example,
given a model in the form of a lattice transition system M = (S,L,→),
initial configuration (s0, `0) and formulae φ, and using the joining strategy
δ as abstraction.

1: procedure MC-join-strategy(M, (s0, `0), φ, δ)
2: W := {(s0, `0)}, P := ∅
3: while W 6= ∅ do
4: Remove some (s, `) from W
5: if (s, `) |= φ then return counterexample

6: if (s, `) 6v P then
7: for all (t, `′) s.t. (s, `)→ (t, `′) do
8: `′′ := `′ t

⊔
{`′′′|(t, `′′′) ∈W ∪ P, δ(t, `′′′, t, `′)}

9: W := W \ {(t, `′′′)|`′′′ v `′′} ∪ {(t, `′′)}
10: `′′ := ` t

⊔
{`′′′|(s, `′′′) ∈ P, δ(s, `′′′, s, `)}

11: P := P \ {(s, `′)|`′ v `′′} ∪ {(s, `′′)}
12: return Covering set P

Although the joining strategy is defined as a static function, nothing
prevents it from being dynamic, i.e. taking the runtime properties of the
algorithm into account.

In Chapter 4 the opaal tool implementing Algorithm 4 and Algorithm 5
will be introduced, along with a number of case studies. The case of timed
automata will be covered in Chapter 5. In Chapter 7 it will be shown how
lattice automata can be derived from a program as an abstract interpreta-
tion. The covering set of such a lattice automaton will then be isomorphic to
the fix-point as computed by the classic work-list algorithm, Algorithm 2.

36

Chapter 3

Thesis Summary

This thesis is based on five papers. In general the papers have only been
adjusted to fit the layout of this thesis, except where otherwise noted. Each
paper will now be summarised by its abstract, contribution, and details
about its publication.

In addition to these five papers, the following papers have also been
published during the PhD study:

[44] A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen, and K. G.
Larsen. METAMOC: Modular Execution Time Analysis Using Model
Checking. In Proceedings of the 10th International Workshop on Worst-
Case Execution Time Analysis (WCET), pages 114–124, 2010.

[84] M. C. Olesen, R. R. Hansen, J. Lawall, and N. Palix. Clang and Coc-
cinelle: Synergising program analysis tools for CERT C Secure Cod-
ing Standard certification. In Pre-proceedings of the 4th International
Workshop on Foundations and Techniques for Open Source Software
Certification (OpenCert), volume 33 of Electronic Communications of
the EASST, pages 51–69, 2010.

[29] J. Brauer, R. R. Hansen, S. Kowalewski, K. G. Larsen, and M. C. Ole-
sen. Adaptable Value-Set Analysis for Low-Level Code. In Proceedings
of the 6th International Workshop on Systems Software Verification
(SSV), pages 32–43, 2011.

[63] T. Jensen, H. Pedersen, M. C. Olesen, and R. R. Hansen. THAPS:
Automated Vulnerability Scanning of PHP Applications. In Proceed-
ings of the 17th Nordic Conference on Secure IT Systems (NordSec),
volume 7617 of Lecture Notes in Computer Science, pages 31–46.
Springer, 2012.

[85] M. C. Olesen, R. R. Hansen, J. L. Lawall, and N. Palix. Coccinelle:
Tool support for automated CERT C Secure Coding Standard certifi-
cation. Science of Computer Programming (SCP), 2012.

37

Chapter 3

[23] S. Biallas, M. C. Olesen, F. Cassez, and R. Huuck. PtrTracker: Prag-
matic Pointer Analysis. In Proceedings of the 12th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), (to appear). IEEE Computer Society, 2013.

38

Thesis Summary

Paper A – opaal: A Lattice Model Checker

Andreas Engelbredt Dalsgaard René Rydhof Hansen
Kenneth Yrke Jørgensen Kim Guldstrand Larsen
Mads Chr. Olesen Petur Olsen Jiř́ı Srba

We present a new open source model checker, opaal, for automatic veri-
fication of models using lattice automata. Lattice automata allow the users
to incorporate abstractions of a model into the model itself. This provides
an efficient verification procedure, while giving the user fine-grained control
of the level of abstraction by using a method similar to Counter-Example
Guided Abstraction Refinement. The opaal engine supports a subset of the
uppaal timed automata language extended with lattice features. We re-
port on the status of the first public release of opaal, and demonstrate how
opaal can be used for efficient verification on examples from domains such
as database programs, lossy communication protocols and cache analysis.

Contributions

• Exploration of the use of the lattice automata formalism for verifica-
tion, for a diverse set of domains.

• The implementation of the prototype model checker opaal.

• Experiments showing the potential benefits of using lattice automata.

Publication history

The paper was accepted and presented at the NASA Formal Methods -
Third International Symposium (NFM 2011), and published in the Springer
Lecture Notes in Computer Science vol. 6617, p. 487–493. The paper has
been reformatted to fit the layout of this thesis.

39

Chapter 3

Paper B – Multi-Core Reachability for Timed Au-
tomata

Andreas Engelbredt Dalsgaard Alfons Laarman
Kim G. Larsen Mads Chr. Olesen Jaco van de Pol

Model checking of timed automata is a widely used technique. But in
order to take advantage of modern hardware, the algorithms need to be
parallelized. We present a multi-core reachability algorithm for the more
general class of well-structured transition systems, and an implementation
for timed automata.

Our implementation extends the opaal tool to generate a timed automa-
ton successor generator in c++, that is efficient enough to compete with
the uppaal model checker, and can be used by the discrete model checker
LTSmin, whose parallel reachability algorithms are now extended to handle
subsumption of semi-symbolic states. The reuse of efficient lockless data
structures guarantees high scalability and efficient memory use.

With experiments we show that opaal+LTSmin can outperform the
current state-of-the-art, uppaal. The added parallelism is shown to reduce
verification times from minutes to mere seconds with speedups of up to 40
on a 48-core machine. Finally, strict BFS and (surprisingly) parallel DFS
search order are shown to reduce the state count, and improve speedups.

Contributions

• A multi-core model-checker exploiting subsumption, either as lattice
automata or more generally for well-structured transition systems.

• Extension of the opaal tool to be a frontend for LTSmin.

• Implementing efficient data structures in LTSmin, for handling semi-
symbolic states.

• Experiments showing the performance and scalability of the tool.

Publication history

The paper was accepted and presented at the 10th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS 2012), and
published in the Springer Lecture Notes in Computer Science vol. 7595, p.
91–106. The paper has been reformatted to fit the layout of this thesis, and
it has been clarified that the reachable part of the transition system needs
to be finite.

40

Thesis Summary

Paper C – Multi-Core Emptiness Checking of Timed
Büchi Automata using Inclusion Abstraction

Alfons Laarman Mads Chr. Olesen
Andreas Engelbredt Dalsgaard Kim Guldstrand Larsen
Jaco van de Pol

This paper contributes to the multi-core model checking of timed au-
tomata (TA) with respect to liveness properties, by investigating checking
of TA Büchi emptiness under the very coarse inclusion abstraction or zone
subsumption, an open problem in this field.

We show that in general Büchi emptiness is not preserved under this
abstraction, but some other structural properties are preserved. Based on
those, we propose a variation of the classical nested depth-first search (ndfs)
algorithm that exploits subsumption. In addition, we extend the multi-core
cndfs algorithm with subsumption, providing the first parallel LTL model
checking algorithm for timed automata.

The algorithms are implemented in LTSmin, and experimental evalua-
tions show the effectiveness and scalability of both contributions: subsump-
tion halves the number of states in the real-world FDDI case study, and the
multi-core algorithm yields speedups of up to 40 using 48 cores.

Contributions

• A multi-core implementation of the nested depth-first-search algorithm
for timed Büchi automata.

• Proving that subsumption does not preserve Büchi emptiness.

• Proving that subsumption preserves some structural properties.

• An NDFS algorithm exploiting the properties preserved by subsump-
tion.

• Experiments showing the efficiency and scalability of the algorithm.

Publication history

The paper was accepted at the 25th International Conference on Computer
Aided Verification (CAV 2013), and published in the Springer Lecture Notes
in Computer Science vol. 8044, p. 968–983. The paper has been reformatted
to fit the layout of this thesis.

41

Chapter 3

Paper D – An Automata-Based Approach to Trace
Partitioned Abstract Interpretation

Mads Chr. Olesen René Rydhof Hansen
Kim Guldstrand Larsen

Trace partitioning is a technique for retaining precision in abstract inter-
pretation, by partitioning all traces into a number of classes and computing
an invariant for each class. In this work we present an automata-based ap-
proach to trace partitioning, by augmenting the finite automaton given by
the control-flow graph with abstract transformers over a lattice. The result
is a lattice automaton, for which efficient model-checking tools exist. By
adding additional predicates to the automaton, different classes of traces
can be distinguised.

This shows a very practical connection between abstract interpretation
and model checking: a formalism encompassing problems from both do-
mains, and accompanying machinery that can be used to solve problems
from both domains efficiently.

This practical connection has the advantage that improvements from
one domain can very easily be transferred to the other. We exemplify this
with the use of multi-core processors for a scalable computation. Further-
more, the use of a modelling formalism as intermediary format allows the
program analyst to simulate, combine and alter models to perform ad-hoc
experiments.

Contributions

• Showing how an abstract interpretation can be viewed as an lattice
automata.

• Showing that the covering set algorithm for lattice automata computes
the same result as the fix-point computation of an abstract interpre-
tation.

• Exploring how trace partitioning is naturally incorporated in the lat-
tice automata model.

• A prototype to generate opaal lattice automata from c programs,
using the octagon domain implementation from APRON, extension of
the LTSmin multi-core backend with joining, and experiments showing
that the use of LTSmin as a multi-core backend is scalable under trace
partitioning.

Publication history

The paper is currently under submission.

42

Thesis Summary

Paper E – What is a Timing Anomaly?

Franck Cassez René Rydhof Hansen
Mads Chr. Olesen

Timing anomalies make worst-case execution time analysis much harder,
because the analysis will have to consider all local choices. It has been widely
recognised that certain hardware features are timing anomalous, while others
are not. However, defining formally what a timing anomaly is, has been
difficult.

We examine previous definitions of timing anomalies, and identify exam-
ples where they do not align with common observations. We then provide a
definition for consistently slower hardware traces that can be used to define
timing anomalies and aligns with common observations.

Contributions

• Exploring previous formal definitions of timing anomalies, comparing
and contrasting them against one another, and intuitive definitions.

• Presenting different hardware models to highlight the differences of
the previous definitions, exposing counter-intuitive examples.

• Showing that input data should not be deemed timing anomalous.

• Proposing a definition of timing anomalies not relying on abstraction,
showing how this correlates better with the intuitive definition.

Publication history

The paper was accepted and presented at the 12th International Workshop
on Worst-Case Execution-Time Analysis (WCET 2012), and published in
the Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik OASICS vol. 23, p.
1–12. The paper has been reformatted to fit the layout of this thesis.

43

Chapter 4

opaal: A Lattice Model
Checker

This chapter is based on the paper “opaal: A Lattice Model Checker” [42].
The paper explores model checking statespaces with lattice structure,

and presents the opaal tool which is the basis for the subsequent contri-
butions of this thesis. The opaal tool was originally built as a prototype
model checker, compatible with uppaal, but extended to more general lat-
tices than just DBMs. It allowed prototyping of various methods such as
joining strategies, while still allowing the input format to be edited in the
uppaal graphical editor.

Abstract

We present a new open source model checker, opaal, for automatic verifi-
cation of models using lattice automata. Lattice automata allow the users
to incorporate abstractions of a model into the model itself. This provides
an efficient verification procedure, while giving the user fine-grained control
of the level of abstraction by using a method similar to Counter-Example
Guided Abstraction Refinement. The opaal engine supports a subset of the
uppaal timed automata language extended with lattice features. We re-
port on the status of the first public release of opaal, and demonstrate how
opaal can be used for efficient verification on examples from domains such
as database programs, lossy communication protocols and cache analysis.

4.1 Introduction

Common to almost all applications of model checking is the notion of an
underlying concrete system with a very large—or sometimes even infinite—
concrete state space. In order to enable model checking of such systems, it

44

opaal: A Lattice Model Checker

is necessary to construct an abstract model of the concrete system, where
some system features are only modelled approximately and system features
that are irrelevant for a given verification purpose are “abstracted away”.

The opaal model checker described in this paper allows for such abstrac-
tions to be integrated in the model through user-defined lattices. Models are
formalised by lattice automata: synchronising extended finite state machines
which may include lattices as variable types. The lattice elements are or-
dered by the amount of behaviour they induce on the system, that is, larger
lattice elements introduce more behaviour. We call this the monotonicity
property. The addition of explicit lattices makes it possible to apply some
of the advanced concepts and expressive power of abstract interpretation
directly in the models.

Lattice automata, as implemented in opaal, are a subclass of well-
structured transition systems [51]. The tool can exploit the ordering re-
lation to reduce the explored state space by not re-exploring a state if its
behaviour is covered by an already explored state. In addition to the order-
ing relation, lattices have a join operator that joins two lattice elements by
computing their least upper bound, thereby potentially overapproximating
the behaviour, with the gain of a reduced state space. Model checking the
overapproximated model can however be inconclusive. We introduce the
notion of a joining strategy affording the user more control over the overap-
proximation, by specifying which lattice elements are joinable. This allows
for a form of user-directed CEGAR (Counter-Example Guided Abstraction
Refinement) [59, 10]. The CEGAR approach can easily be automated by
the user, by exploiting application-specific knowledge to derive more fine-
grained joining strategies given a spurious error trace. Thus providing, for
some systems and properties, efficient model checking and conclusive an-
swers at the same time.

The opaal model checker is released under an open source license, and
can be freely downloaded from our webpage: www.opaal-modelchecker.

com. The tool is available both in a GUI and CLI version, shown in Fig-
ure 4.1. The uppaal [16] GUI is used for creation of models.

The opaal tool is implemented in Python and is a stand-alone model
checking engine. Models are specified using the uppaal XML format, ex-
tended with some specialised lattice features. Using an interpreted language
has the advantage that it is easy to develop and integrate new lattice imple-
mentations in the core model checking algorithm. Our experiments indicate
that although opaal uses an interpreted language, it is still sufficiently fast
to be useful.

Users can create new lattices by implementing simple Python class inter-
faces. The new classes can then be used directly in the model (including all
user-defined methods). Joining strategies are defined as Python functions.

An overview of the opaal architecture is given in Figure 4.2, showing the
five main components of opaal. The “Successor Generator” is responsible

45

www.opaal-modelchecker.com
www.opaal-modelchecker.com

Chapter 4

Figure 4.1: opaal GUI and CLI

for generating a transition function for the transition system based on the
semantics of uppaal automata. The transition function is combined with
one or more lattice implementations from the “Lattice Library”.

The “Successor Generator” exposes an interface that the “Reachability
Checker” can use to perform the actual verification. During this process a
“Passed-Waiting List” is used to save explored and to-be explored states; it
employs a user-provided “Joining Strategy” on the lattice elements of states,
before they are added to the list.

4.2 Examples

In this section we present a few examples to demonstrate the wide applica-
bility of opaal. The tool currently has a number of readily available lattices
that are used to abstract the real data in our examples.

4.2.1 Database Programs

In recent work by Olsen et al. [86], the authors propose using present-
absent sets for the verification of database programs. The key idea is that
many behavioural properties may be verified by only keeping track of a few

46

opaal: A Lattice Model Checker

Figure 4.2: Overview of opaal’s architecture.

representative data values.

This idea can be naturally described as a lattice tracking the definite
present- and absent-ness of database elements. In the model, this is im-
plemented using a bit-vector lattice. For the experiment we adopt a model
from [86], where users can login, work, and logout. The model has been
updated to fit within the lattice framework, as shown in Figure 4.3(a). In
the code in Figure 4.3(b), the construct extern is used on line 3 to import
a lattice from the library. Subsequently two lattice variables, pLogin and
aLogin, are defined at line 4 and 5, both vectors of size N USERS. The
lattice variables are used in the transitions of the graphical model, where
e.g. a special method “num0s()” is used to count the number of 0’s in the
bitvector. The definition of a lattice type in Figure 4.3(c) is just an ordinary
Python class with at least two methods: join and the ordering.

We can verify that two users of the system cannot work at the same time
using explicit exploration, or by exploiting the lattice ordering to do cover
checks, see Figure 4.4.

Another property to check is that the database cannot become full. For
this property we can exploit a CEGAR approach: A näıve joining strategy
will give inconclusive results, but refining the joining strategy not to join two
states if the resulting state has a full database, leads to conclusive results
while still preserving a significant speedup, see Figure 4.5.

4.2.2 Asynchronous Lossy Communication Protocol: Leader
Election

Communication protocols where messages are asynchronously passed via
an unreliable (lossy and duplicating) medium can be modelled as a lattice
automaton. As long as we are interested in safety properties, such a com-
munication can be modelled as a set of already sent messages called pool.
Initially the set pool is empty. Once a message it sent, it is added to the set

47

Chapter 4

pLogin[i] = 0 ; aLogin[i] = 1

aLogin.setall()

pLogin[i] = 1 ;
aLogin[i] = 0

Bad

not aLogin[i]

not pLogin[i]

aLogin[i] == 0

pLogin[i] == 0

Logout

Work

aLogin.num0s() ==
N_USERS

Login

Init

aLogin.num0s() < (N_USERS − 1)

work[i]?

workErr[i]!

loginOK[i]!

login[i]?

logoutErr[i]!

workOK[i]!

logoutOK[i]!

logout[i]?

(a) Database model

1 const int N USERS = 17 ;
2 . . .
3 extern In t e r sB i tVec to r ;
4 In t e r sB i tVec to r pLogin [N USERS] ;
5 In t e r sB i tVec to r aLogin [N USERS] ;

(b) Lattice variables

1 class In t e r sB i tVec to r :
2 def j o i n (s e l f , o ther) :
3 . . .
4
5 def l e (s e l f , o ther) :
6 . . .

(c) Lattice library (in Python

Figure 4.3

pool and it remains there forever (duplication). As the protocol parties are
not forced to read any message from pool and we ask about safety properties,
lossiness is covered by the definition too.

It is obvious that 2pool , i.e. the set of all subsets of pool, together with
the subset ordering is a complete lattice. As long as the set of messages is
finite and all parties in the protocol behave in the way that their steps are
conditioned only on the presence of a message in the pool and not on its
absence, the system will satisfy the monotonicity property and we can apply
our model checker.

We have modelled the asynchronous leader election protocol [52] in
opaal. Here we have N agents with their unique identifications 0, 1, . . . , N−
1 and they select a leader with the highest id. Experimental data, for the
property that only the agent with the highest id can become leader, are pro-
vided in Figure 4.6. The cover check column refers to using only the mono-
tonicity property to reduce the explored state-space. We can see that while
being exact (no overapproximation), the speed-up is considerable. More-
over, using the join strategy provides even more significant speed-up while
still providing conclusive answers.

48

opaal: A Lattice Model Checker

Number of users explicit exploration cover check

2 224 (<1s) 56 (<1s)
3 2352 (2s) 336 (<1s)
4 21952 (28s) 1792 (2s)
5 192080 (8:22m) 8960 (9s)
6 - 43008 (48s)
7 - 200704 (4:38m)

Figure 4.4: Explored states and time for the property “no two users work
at the same time”

Number explicit joining joining
of users exploration (näıve strategy) (refined strategy)

8 6312 (15s) (Inconclusive) 51 (<1s) 787 (1s)
9 14228 (56s) (Inconclusive) 57 (<1s) 1238 (2s)
10 31614 (4:19m) (Inconclusive) 63 (<1s) 976 (2s)
11 69478 (21:35m) (Inconclusive) 69 (<1s) 1036 (2s)
12 - (Inconclusive) 75 (<1s) 1707 (3s)
16 - (Inconclusive) 99 (<1s) 25900 (4:18m)
17 - (Inconclusive) 105 (<1s) 66490 (25:01m)

Figure 4.5: Explored states and time for the property “database cannot
become full”

Number of agents explicit exploration cover check joining

5 840 (5s) 37 (<1s) 17 (<1s)
6 5760 (5:20m) 58 (<1s) 23 (<1s)
7 45360 (671:02m) 86 (1s) 30 (<1s)
15 - 682 (4:21m) 122 (2s)
25 - 2927 (283:16m) 327 (12s)
50 - - 1277 (4:19m)
100 - - 5052 (98:45m)

Figure 4.6: Explored states and time for the leader election protocol

4.2.3 Cache Analysis

To ensure safe scheduling of real-time systems, the estimation of Worst-Case
Execution Time (WCET) of each task in a given system is necessary [99].
One major part of determining WCETs for modern processors is accounting
for the effects of the memory cache. Efficient abstractions exist for analysing

49

Chapter 4

some types of caches [3], which we have implemented as a lattice. By recast-
ing the cache analysis into our framework we gain the ability to give WCET
guarantees, and gradually refine those guarantees by being more and more
concrete with respect to the data-flow of the program.

On a simple program (binary search in array of size 100) and a simple
cache we get the same WCET using all approaches. The complete state
space has 5726 states (computed in 6s), cover update reduces this to 4043
states (3s), while join only needs to store 3944 states (3s). On more complex
examples join will start to give overapproximated guarantees, which can be
further refined.

4.2.4 Timed Automata

It is well-known that the theory of zones of timed automata (see e.g. [58, 20])
is a finite-state abstraction of clock values with a lattice structure. A zone-
lattice is currently being developed for use in opaal, but has not matured
to a point where meaningful experiments can be made yet.

4.3 Conclusion

We presented a new model checker, opaal, for lattice automata and provided
a number of applications. The expressiveness of the formalism, derived from
well-structured transition systems, promises broad applicability of the tool.
Our initial experiments indicate that careful abstraction using the techniques
implemented in opaal lead to efficient verification.

We plan on extending the foundations of opaal to additional formalisms
such as Petri nets, as well as on improving the performance of the tool by
rewriting core parts in a compiled language. Of course, additional lattices
and areas of application are also to be investigated.

50

Chapter 5

Efficient Multi-Core
Reachability Checking for
Timed Automata

This chapter is based on the paper “Multi-Core Reachability for Timed
Automata” [43].

As was shown in Chapter 2 solving the reachability problem for timed
automata is typically done by an (implicit) abstract interpretation – as in the
following. Therefore, any improvements to the method for timed automata
(such as a multi-core model checking algorithm) should be transferable back
into the more general setting of other abstract interpretations. One impor-
tant aspect is that the use of joining in this paper is limited to the set-join
of the disjunctive completion (Definition 23), a limitation that will be lifted
in Chapter 7.

Additionally, the paper is written in the more general framework of Well-
Structured Transition Systems, which has less structure than a lattice – the
ordering is not a partial order (see Definition 8) but a well-quasi order (see
Definition 29). Of course the work still holds for the more structure present
under a partial order.

Abstract

Model checking of timed automata is a widely used technique. But in order
to take advantage of modern hardware, the algorithms need to be paral-
lelized. We present a multi-core reachability algorithm for the more general
class of well-structured transition systems, and an implementation for timed
automata.

Our implementation extends the opaal tool to generate a timed automa-
ton successor generator in c++, that is efficient enough to compete with

51

Chapter 5

the uppaal model checker, and can be used by the discrete model checker
LTSmin, whose parallel reachability algorithms are now extended to handle
subsumption of semi-symbolic states. The reuse of efficient lockless data
structures guarantees high scalability and efficient memory use.

With experiments we show that opaal+LTSmin can outperform the
current state-of-the-art, uppaal. The added parallelism is shown to reduce
verification times from minutes to mere seconds with speedups of up to 40
on a 48-core machine. Finally, strict BFS and (surprisingly) parallel DFS
search order are shown to reduce the state count, and improve speedups.

5.1 Introduction

In industries developing safety-critical real-time systems, a number of safety
requirements must be fulfilled. Model checking is a well-known method to
achieve this and is critical for ensuring correct behaviour along all paths of
execution of a system. One popular formalism for real-time systems is timed
automata [5], where the time is modelled as a number of resettable clocks.
Good tool support for timed automata exists [16].

However, as the desire to model check ever larger and more complex
models arises, there is a need for more effective techniques. One option
for handling large models has always been to buy a bigger machine. This
provided great improvements; while early model checkers handled thousands
of states, now we can handle billions. However, in recent years processor
speed has stopped increasing, and instead more cores are added. These cores
cannot be taken advantage of by the normal sequential algorithms for model
checking.

The goal of this work is to develop scaling multi-core reachability for
timed automata [5] as a first step towards full multi-core LTL model check-
ing. A review of the history of discrete model checkers shows that indeed
multi-core reachability is a crucial ingredient for efficient parallel LTL model
checking (see Section 5.2). To attain our goal, we extended and combined
several existing software tools:

LTSmin is a language-independent model checking framework, compris-
ing, inter alia, an explicit-state multi-core backend [68, 24].

opaal is a model checker designed for rapid prototype implementation of
new model checking concepts. It supports a generalised form of timed
automata [42], and uses the uppaal input format.

The UPPAAL DBM library is an efficient library for representing timed
automata zones and operations thereon, used in the uppaal model
checker [16].

52

Efficient Multi-Core Reachability Checking for Timed Automata

Contributions: We describe a multi-core reachability algorithm for timed
automata, which is generalizable to all models where a well-quasi-ordering
on the behaviour of states exist [51]. The algorithm has been implemented
for timed automata, and we report on the structure and performance of this
prototype.

Before we move on to a description of our solution and its evaluation, we
first review related work, and then briefly introduce the modelling formalism.

5.2 Related Work

One efficient model checker for timed automata is the uppaal tool [16, 13].
Our work is closely related to UPPAAL in that we share the same input
format and reuse its editor to create input models. In addition, we reused
the open source uppaal dbm library for the internal symbolic representa-
tion of time zones.

Distributed model checking algorithms for timed automata were intro-
duced in [18, 12]. These algorithms exhibited almost linear scalability (50–
90% efficiency) on a 14-node cluster of that time. However, analysis also
shows that static partitioning used for distribution has some inherent limita-
tions [28]. Furthermore, in the field of explicit-state model checking, the Di-
VinE tool showed that static partitioning can be reused in a shared-memory
setting [11]. While the problem of parallelisation is considerably simpler in
this setting, this tool nonetheless featured suboptimal performance with
less than 40% efficiency on 16-core machines [69]. It was soon demonstrated
that shared-memory systems are exploited better by combining local search
stacks with a lockless hash table as shared passed set and an off-the-shelf
load balancing algorithm for workload distribution [69]. Especially in recent
experiments on newer 48-core machines [49, Sec. 5], the latter solution was
clearly shown to have the edge with 50–90% efficiency.

Linear-time, on-the-fly liveness verification algorithms are based on depth-
first search (DFS) order [71]. Next to the additional scalability, the shared
hash table solution also provides more freedom for the search algorithm,
which can be pseudo DFS and pseudo breadth-first search (BFS) order [69],
but also strict BFS (see Subsection 5.6.2). This freedom has already been
exploited by parallel NDFS algorithms for LTL model checking [71, 49] that
are linear in the size of the input graph (unlike their BFS-based counter-
parts). While these algorithms are heuristic in nature, their scalability has
been shown to be superior to their BFS-based counterparts.

5.3 Preliminaries

We will now define the general formalism of well-structured transition sys-
tems [51, 1], and specifically networks of timed automata under the zone

53

Chapter 5

abstraction [4].

Definition 29 (Well-quasi-ordering). A well-quasi-ordering v is a reflexive
and transitive relation over a set X, s.t. for any infinite sequence x0, x1, . . .
eventually for some i < j it will hold that xi v xj.

In other words, in any infinite sequence eventually an element exists
which is “larger” than some earlier element.

Definition 30 (Well-structured transition system). A well-structured tran-
sition system is a 3-tuple (S,→,v), where S is the set of states, →: S × S
is the (computable) transition relation and v is a well-quasi-ordering over
S, s.t. if s→ t then ∀s′.s v s′ there ∃t′.s′ → t′ ∧ t v t′.1

We thus require v to be a monotonic ordering on the behaviour of states,
i.e., if s v t then t has at least the behaviour of s (and possibly more), and
we say that t subsumes or covers s.

One instance of well-structured transition systems arise from the sym-
bolic semantics of timed automata. Timed automata are finite state ma-
chines with a finite set of real-valued, resettable clocks. Transitions between
states can be guarded by constraints on clocks, denoted G(C).

Definition 31 (Timed automaton). A timed automaton is a 6-tuple A =
(L,C,Act, s0,→, IC) where

• L is a finite set of locations, typically denoted by `

• C is a finite set of clocks, typically denoted by c

• Act is a finite set of actions

• s0 ∈ L is the initial location

• →⊆ L × G(C) × Act × 2C × L is the (non-deterministic) transition

relation. We normally write `
g,a,r−−−→ `′ for a transition, where ` is the

source location, g is the guard over the clocks, a is the action, and r
is the set of clocks reset.

• IC : L → G(C) is a function mapping locations to downwards closed
clock invariants.

Using the definition of timed automata we can now define networks of
timed automata, as modelled by uppaal, see [16] for details. A network of
timed automata is a parallel composition of timed automata that enables
synchronisation over a finite set of channel names Chan. We let ch! and ch?
denote the output and input action on a channel ch ∈ Chan.

1With strong compatibility, see [51]

54

Efficient Multi-Core Reachability Checking for Timed Automata

Definition 32 (Network of timed automata). Let Act = {ch!, ch?|ch ∈
Chan} ∪ {τ} be a finite set of actions, and let C be a finite set of clocks.
Then the parallel composition of timed automata

Ai = (Li, C,Act, s
i
0,→i, I

i
C)

for all 1 ≤ i ≤ n, where n ∈ N, is a network of timed automata, denoted
A = A1||A2|| . . . ||An.

The concrete semantics of timed automata [16] gives rise to a possibly
uncountable state space. To model check it a finite abstraction of the state
space is needed; the abstraction used by most model checkers is the zone
abstraction [27]. Zones are sets of clock constraints that can be efficiently
represented by Difference Bounded Matrices (DBMs) [19]. The fundamental
operations of DBMs are:

• D ↑ modifying the constraints such that the DBM represents all the
clock valuations that can result from delay from the current constraint
set

• D∩D′ adding additional constraints to the DBM, e.g. because a tran-
sition is taken that imposes a clock constraint (guard clock constraints
can also be represented as a DBM, and we will do so) 2. The additional
constraints might also make the DBM empty, meaning that no clock
valuations can satisfy the constraints.

• D[r] where r ⊆ C is a clock reset of the clocks in r.

• D/B doing maximal bounds extrapolation, where B : C → N0 is the
maximal bounds needed to be tracked for each clock. Extrapolation
with respect to maximal bounds [14] is needed to make the number of
DBMs finite. Basically, it is a mapping for each clock indicating the
maximal possible constant the clock can be compared to in the future.
It is used in such a way that if the value of a clock has passed its
maximal constant, the clock’s value is indistinguishable for the model.

• D ⊆ D′ for checking if the constraints of D′ imply the constraints of
D, i.e. D′ is a more relaxed DBM. D′ has the behaviour of D and
possibly more.

Lemma 6. Timed automata under the zone abstraction are well-structured
transition systems: (S,⇒DBM , Act,v) s.t.

1. S consists of pairs (`,D) where ` ∈ L, and D is a DBM.

2The DBM might need to be put into normal form after more constraints have been
added [27]

55

Chapter 5

2. ⇒DBM is the symbolic transition function using DBMs, and Act is as
before

3. v: S → S is defined as (`,D) v (`′, D′) iff ` = `′, and D ⊆ D′.

Remark that part of the ordering v is compared using discrete equality
(the location vector), while only a subpart is compared using a well-quasi-
ordering. Without loss of generality, and as done in [42], we can split the
state into an explicit part S, and a symbolic part Σ, s.t. the well-structured
transition system is defined over S × Σ. We denote the explicit part as
s, t, r ∈ S and the symbolic part of states by σ, τ, ρ, π, υ ∈ Σ, and a state as
a pair (s, σ).

Model checking of safety properties is done by proving or disproving the
reachability of a certain concrete goal location sg.

Definition 33 ((Safety) Model checking of a well-structured transition sys-
tem). Given a well-structured transition system (S × Σ,→,v), an initial
state (s0, σ0) ∈ S × Σ, and a goal location sg does a path exist (s0, σ0) →
· · · → (sg, σ

′
g).

In practice, the transition system is constructed on-the-fly starting from
(s0, σ0) and recursively applying→ to discover new states. To facilitate this,
we extend the next-state interface of pins with subsumption:

Definition 34. A next-state interface with subsumption has three functions:
initial-state() = (s0, σ0),
next-state((s, σ)) = {(s1, σ1), . . . , (sn, σn)} returning all successors of (s, σ),
(s, σ)→ (si, σi), and
covers(σ′, σ) = σ v σ′ returning whether the symbolic part σ′ subsumes σ.

5.4 A Multi-Core Timed Reachability Tool

For the construction of our real-time multi-core model checker, we made
an effort to reuse and combine existing components, while extending their
functionality where necessary. For the specification models, we use the up-
paal XML format. This enables the use of its extensive real-time modelling
language through an excellent user interface. To implement the model’s
semantics (in the form of a next-state interface) we rely on opaal and the
uppaal dbm library.3 Finally, LTSmin is used as a model checking backend,
because of its language-independent design.

Figure 5.1 gives an overview of the new toolchain. It shows how the
XML input file is read by opaal which generates c++ code. The c++ file
implements the pins interface with subsumption specifically for the input

3http://people.cs.aau.dk/~adavid/UDBM/

56

http://people.cs.aau.dk/~adavid/UDBM/

Efficient Multi-Core Reachability Checking for Timed Automata

Figure 5.1: Reachability with subsumption [42]

model. Hence, after compilation (c++ compiler), LTSmin can load the
object file to perform the model checking.

Previously, the opaal tool was used to generate Python code [42], but
important parts of its infrastructure, e.g., analysing the model to find max
clock constants [14], can be reused. In Section 5.5, we describe how opaal

implements the semantics of timed automata, and the structure of the gen-
erated c++ code.

The pins interface of the LTSmin tool [24] has been shown to enable
efficient, yet language-independent, model checking algorithms of different
flavours, inter alia: distributed [24], symbolic [24] and multi-core reachabil-
ity [69, 70], and LTL model checking [71, 67]. We extended the pins interface
to distinguish the new symbolic states of the opaal successor generator ac-
cording to Definition 34. In Section 5.6, we describe our new multi-core
reachability algorithms with subsumption.

5.5 Successor Generation using opaal

The opaal tool was designed to rapidly prototype new model checking fea-
tures and as such was designed to be extended with other successor gen-
erators. It already implements a substantial part of the uppaal features.
For an explanation of the uppaal features see [16, p. 4-7]. The new c++
opaal successor generator supports the following features: templates, con-
stants, bounded integer variables, arrays, selects, guards, updates, invariants
on both variables and clocks, committed and urgent locations, binary syn-
chronisation, broadcast channels, urgent synchronisation, selects, and much
of the C-like language that uppaal uses to express guards and variable
updates.

A state in the symbolic transition system using DBMs, is a location
vector and a DBM. To represent a state in the c++ code we use a struct
with a number of components: one integer for each location, and a pointer
to a DBM object from the uppaal DBM library. Therefore a state is a
tuple: (`1, . . . , `n, D).

The initial-state function is rather straightforward: it returns a state
struct initialised to the initial location vector, and a DBM representing

57

Chapter 5

the initial zone (delayed, and with invariants applied as necessary). The
structure of the next-state function is more involved, because it needs to
consider the syntactic structure of the model, as can be seen in Algorithm 6.

Algorithm 6 Overall structure of the successor generator

1 proc next-state(sin = (`1, . . . , `n, D))
2 out states := ∅
3 for `i ∈ `1, . . . , `n
4 for all `i

g,a,r−−−→ `′i
5 D′ := D ∩ g
6 if D′ 6= ∅ . is the guard satisfied?
7 if a = τ . this is not a synchronising transition
8 D′ := D′[r] ↑ . clock reset, delay

9 D′ := D′ ∩ IiC(`′i) ∩
⋂

k 6=i I
k
C(`k) . apply clock invariants

10 if D′ 6= ∅
11 D′ := D′/B(`1, . . . , `

′
i . . . , `n)

12 out states := out states ∪ {(`1, . . . , `′i, . . . , `n, D′)}
13 else if a = ch! . binary sync. sender
14 for `j ∈ `1, . . . , `n, j 6= i

15 for all `j
gj ,ch?,rj−−−−−−→ `′j . find receivers

16 if D′′ := D′ ∩ gj 6= ∅ . receiver guard satisfied?
17 D′′ := D′′[r][rj] ↑ . clock resets, delay

18 D′′ := D′′ ∩ IiC(`′i) ∩ I
j
C(`′j) ∩

⋂
k 6∈{i,j} I

k
C(`k) . clock invariants

19 if D′′ 6= ∅
20 D′′ := D′′/B(`1, . . . , `

′
i, . . . , `

′
j . . . , `n)

21 out states := out states ∪ {(l1, . . . , l′i, . . . , l′j , . . . , ln, D′′)}
22 return out states

At l. 4, we consider all outgoing transitions for the current location of
each process (l. 3). If the transition is internal, we can evaluate it right away,
and possibly generate a successor at l. 12. If it is a sending synchronisation
(ch!), we need to find possible synchronisation partners (l. 15). So again
we iterate over all processes and the transitions of their current locations
(l. 14–21).

In the generated c++ code a few optimisations have been made, com-
pared to Algorithm 6: The loops on line l. 3 and l. 14 have been unrolled,
since the number of processes they iterate over is known beforehand. In
that manner the transitions to consider can be efficiently found. As an op-
timisation, before starting the code generation, we compute the set of all
possible receivers for all channels, for the unrolling of l. 14. In practice there
are usually many receivers but few senders for each channel, resulting in the
unrolling being an acceptable trade-off.

When doing the max bounds extrapolation (/) in Algorithm 6, we obtain
the bounds from a location-dependent function B : L1 × · · · × Ln → (C →

58

Efficient Multi-Core Reachability Checking for Timed Automata

Algorithm 7 Reachability with subsumption [42]

1 proc r e a c h a b i l i t y (sg)
2 W := { initial-state() } ; P := ∅
3 while W 6= ∅
4 W := W \ (s, σ) for some (s, σ) ∈W
5 P := P ∪ {(s, σ)}
6 for (t, τ) ∈ next-state((s, σ)) do
7 i f t = sg then report & exit
8 i f 6 ∃ρ : (t, ρ) ∈W ∪ P ∧ covers(ρ, τ)
9 W := W \ {(t, ρ) | covers(τ, ρ)} ∪ (t, τ)

N0). This function is pre-computed in opaal using the method described
in [14].

Some features are not formalised in this work, but have been imple-
mented for ease of modelling. We support integer variables, urgency that
can be modelled using urgent/committed locations and urgent channels, but
also channel arrays with dynamically computed senders, broadcast channels,
and process priorities. These are all implemented as simple extensions of
Algorithm 6. Other features are supported in the form of a syntactic expan-
sion, namely: selects, and templates.

To make the next-state function thread-safe, we had to make the up-
paal DBM library thread-safe. Therefore, we replaced its internal allocator
with a concurrent memory allocator (see Section 5.7). We also replaced
the internal hash table, used to filter duplicate DBM allocations, with a
concurrent hash table.

5.6 Well-Structured Transition Systems in LTSmin

The current section presents the parallel reachability algorithm that was
implemented in LTSmin to handle well-structured transition systems with
finite reachability sets. According to Definition 34, we can split up states
into a discrete part, which is always compared using equality (for timed
automata this consists of the locations and variables), and a part that is
compared using a well-quasi-ordering (for timed automata this is the DBM).

We recall the sequential algorithm from [42] (Figure 7) and adapt it to
use the next-state interface with subsumption. At its basis, this algorithm
is a search with a waiting set (W), containing the states to be explored, and
a passed set (P), containing the states that are already explored.

New successors (t, τ) are added to W (l. 9), but only if they are not
subsumed by previous states (l. 8). Additionally, states in the waiting set W

59

Chapter 5

that are subsumed by the new state are discarded (l. 9), avoiding redundant
explorations.

5.6.1 A Parallel Reachability Algorithm with Subsumption

In the parallel setting, we localize all work sets (Qp, for each worker p)
and create a shared data structure L storing both W and P . We attach
a status flag passed or waiting to each state in L to create a global view
of the passed and waiting set and avoid unnecessary reexplorations. L can
be represented as a multimap, saving multiple symbolic state parts with
each explicit state part L : S → Σ∗. To make L thread-safe, we protect its
operations with a fine-grained locking mechanism that locks only the part of
the map associated with an explicit state part s: lock(L(s)), similar to the
spinlocks in [69]. An off-the-shelf load balancer takes care of distributing
work at the startup and when some Qp runs empty prematurely. This design
corresponds to the shared hash table approach discussed in Section 5.2 and
avoids a static partitioning of the state space.

Algorithm 8 on page 68 presents the discussed design. The algorithm is
initialised by calling reachability with the desired number of threads P and a
discrete goal location sg. This method initialises the shared data structure
L and gets the initial state using the initial-state function from the next-
state interface with subsumption. The initial state is then added to L and
the worker threads are initialised at l. 6. Worker thread 1 explores the initial
state; work load is propagated later.

The while loop on l. 20 corresponds closely to the sequential algorithm,
in a quick overview: a state (s, σ) is taken from the work set at l. 21, its
flag is set to passed by grab if it were not already, and then the successors
(t, τ) of (s, σ) are checked against the passed and the waiting set by update.
We now discuss the operations on L (update, grab) and the load balancing
in more detail.

To implement the subsumption check (line l. 8–9 in Figure 7) for succes-
sors (t, τ) and to update the waiting set concurrently, update is called. It
first locks L on t. Now, for all symbolic parts and status flag ρ, f associated
with t, the method checks if τ is already covered by ρ. In that case (t, τ) will
not be explored. Alternatively, all ρ with status flag waiting that are covered
by τ are removed from L(t) and τ is added. The update algorithm maintains
the invariant that a state in the waiting set is never subsumed by any other
state in L: ∀s ∀(ρ, f), (ρ′, f ′) ∈ L(s) : f = waiting∧ρ 6= ρ′ ⇒ ρ 6v ρ′ (Inv. 1).
Hence, similar to Figure 7 l. 8–9, it can never happen that (t, τ) first discards
some (t, ρ) from L(s) (l. 14) and is discarded itself in turn by some (t, ρ′) in
L(s) (l. 10), since then we would have ρ v τ v ρ′; by transitivity of v and
the invariant, ρ and ρ′ cannot be both in L(t). Finally, notice that update
unlocks L(t) on all paths.

The task of the method grab is to check if a state (s, σ) still needs to be

60

Efficient Multi-Core Reachability Checking for Timed Automata

Algorithm 9 Strict parallel BFS

1 proc search(s0, σ0, p)
2 Cp := i f p = 1 then {(s0, σ0)} else ∅
3 do
4 while Cp 6= ∅ ∨ balance(Cp)
5 Cp := Cp \ (s, σ) for some (s, σ) ∈ Cp
6 . . .
7 Np := Np ∪ (t, τ)
8 load := reduce(sum, |Np|, P)
9 Cp , Np := Np , ∅

10 while load 6= 0

explored, as it might have been explored by another thread in the meantime.
It first locks L(s). If σ is no longer in L(s) or it is no longer globally flagged
waiting (l. 29), it is discarded (l. 22). Otherwise, it is “grabbed” by setting
its status flag to passed. Notice again that on all paths through grab, L(s)
is unlocked.

Finally, the method balance handles termination detection and load bal-
ancing. It has the side-effect of adding work to Qp. We use a standard
solution [91].

5.6.2 Exploration Order

The shared hash table approach gives us the freedom to allow for a DFS or
BFS exploration order depending on the implementation of Qp. Note, how-
ever, that only pseudo-DFS/BFS is obtained, due to randomness introduced
by parallelism.

It has been shown for timed automata that the number of generated
states is quite sensitive to the exploration order and that in most cases strict
BFS shows the best results [18]. Fortunately, we can obtain strict BFS by
synchronising workers between the different BFS levels. To this end, we first
split Qp into two separate sets that hold the current BFS level (Cp) and the
next BFS level (Np) [2]. The order within these sets does not matter, as
long as the current is explored before the next set. Load balancing will
only be performed on Cp, hence a level terminates once Cp = ∅ for all p.
At this point, if Np = ∅ for all p, the algorithm can terminate because the

next BFS level is empty. The synchronising reduce method counts
∑P

i=1 |Ni|
(similar to mpi reduce).

Algorithm 9 shows a parallel strict-BFS implementation. An extra outer
loop iterates over the levels, while the inner loop (l. 4–7) is the same as in
Algorithm 8. Except for the lines that add and remove states to and from

61

Chapter 5

the work set, which now operate on Np and Cp. The (pointers to) the work
sets are swapped, after the reduce call at l. 8 calculates the load of the next
level.

5.6.3 A Data Structure for Semi-Symbolic States

In [69], we introduced a lockless hash table, which we reuse here to design
a data structure for L that supports the operations used in Algorithm 8.
To allow for massive parallelism on modern multi-core machines with steep
memory hierarchies, it is crucial to keep a low memory footprint [69, Sec. II].
To this end, lookups in the large table of state data are filtered through a
separate smaller table of hashes. The table assigns a unique number (the
hash location) to each explicit state stored in it: D : S → N. In finite reality,
we have: D : S → {1, . . . , N}.

We now reuse the state numbering of D to create a multimap structure
for L. The first component of the new data structure is an array I[N] used
for indexing on the explicit state parts. To associate a set of symbolic states
(pointers to DBMs) with our explicit state stored in D[x], we are going
to attach a linked list structure to I[x]. Creating a standard linked list
would cause a single cache line access per element, increasing the memory
footprint, and would introduce costly synchronisations for each modification.
Therefore, we allocate multi-buckets, i.e., an array of pointers as one linked
list element. To save memory, we store lists of just one element directly in
I and completely fill the last multi-bucket.

Figure 5.2 shows three instances of the discussed data structure: L,L′

and L′′. Each multimap is a pointer (arrow) to an array I shown as a vertical
bucket array. L contains {(s, σ), (t, τ), (t, ρ), (t, υ)}. We see how a multi-
bucket with (fixed) length 3 is created for t, while the single symbolic state
attached to s is kept directly in I. The figure shows how σ is moved when
(s, π) is added by the add operation (dashed arrow), yielding L′. Adding π
to t would have moved υ to a new linked multi-bucket together with π.

Removing elements from the waiting list is implemented by marking
bucket entries as tombstone, so they can later be reused (see L′′). This
avoids memory fragmentation and expensive communication to reuse multi-

N

L

σD(s)

D(t)

I

τ ρ υ

L.add(s, π)

L′

τ ρ υ

σ π

L′.del(t, τ)

L′′

ρ υ

σ π

Figure 5.2: Data structure for L, and operations

62

Efficient Multi-Core Reachability Checking for Timed Automata

struct l ink or dbm {
bit po in t e r [60]
bit f l a g ∈ {waiting , passed}
bit lock ∈ {locked , unlocked}
bit s t a t u s [2] ∈ {empty , tomb,

dbm ptr , list ptr}
}

Figure 5.3: Bit layout of word-sized bucket

buckets. For highest scalability, we allocate multi-buckets of size 8, equal
to a cache line. Other values can reduce memory usage, but we found this
sufficiently efficient (see Section 5.7).

We still need to deal with locking of explicit states, and storing of the
various flags for symbolic states (waiting/passed). Internally, the algorithms
also need to distinguish between the different buckets: empty, tomb stone,
linked list pointers and symbolic state pointers. To this end, we can bitcram
additional bits into the pointers in the buckets, as is shown in Figure 5.3.
Now lock(L(s)) can be implemented as a spinlock using the atomic compare-
and-swap (CAS) instruction on I[s] [69]. Since all operations on L(s) are
done after lock(L(s)), the corresponding bits of the buckets can be updated
and read with normal load and store instructions.

5.6.4 Improving Scalability through a Non-Blocking Imple-
mentation

The size of the critical regions in Algorithm 8 depends crucially on the
|Σ|/|S| ratio; a higher ratio means that more states in L(t) have to be
considered in the method update(t, τ), affecting scalability negatively. A
similar limitation is reported for distributed reachability [28]. Therefore, we
implemented a non-blocking version: instead of first deleting all subsumed
symbolic states with a waiting flag, we atomically replace them with the
larger state using CAS. For a failed CAS, we retry the subsumption check
after a reread. L can be atomically extended using the well-known read-
copy-update technique. However, workers might miss updates by others, as
Inv. 1 no longer holds. This could cause |Σ| to increase again.

5.7 Experiments

To investigate the performance of the generated code, we compare full reach-
ability in opaal+LTSmin with the current state-of-the-art (uppaal).4 To

4 opaal is available at https://code.launchpad.net/~opaal-developers/opaal/

opaal-ltsmin-succgen, LTSmin at http://fmt.cs.utwente.nl/tools/ltsmin/

63

https://code.launchpad.net/~opaal-developers/opaal/opaal-ltsmin-succgen
https://code.launchpad.net/~opaal-developers/opaal/opaal-ltsmin-succgen
http://fmt.cs.utwente.nl/tools/ltsmin/

Chapter 5

investigate scalability, we benchmarked on a 48-core machine (a four-way
AMD OpteronTM 6168) with a varying number of threads. Statistics on
memory usage were gathered and compared against uppaal. Experiments
were repeated 5 times.

We consider three models from the uppaal demos: viking (one discrete
variable, but many synchronisations), train-gate (relatively large amount
of code, several variables), and fischer (very small discrete part). Addi-
tionally, we experiment with a generated model, train-crossing, which
has a different structure from most hand-made models. For some models,
we created multiple numbered instances, the numbers represent the number
of processes in the model.

For uppaal, we ran the experiments with BFS and disabled space op-
timisation. The opaal ltsmin script in opaal was used to generate and
compile models. In LTSmin we used a fixed hash table (--state=table)
size of 226 states (-s26), waiting set updates as in Algorithm 8 (-u1) and
multi-buckets of size 8 (-l8).

Performance & Scalability. Table 5.1 on page 69 shows the reacha-
bility runtimes of the different models in uppaal and opaal+LTSmin with
strict BFS (--strategy=sbfs). Except for fischer6, we see that both tools
compete with each other on the sequential runtimes, with 2 threads however
opaal+LTSmin is faster than uppaal. With the massive parallelism of 48
cores, we see how verification tasks of minutes are reduced to mere seconds.
The outlier, fischer6, is likely due to the use of more efficient clock extrap-
olations in uppaal, and other optimisations, as witnessed by the evolution
of the runtime of this model in [17, 6].

We noticed that the 48-core runtimes of the smaller models were dom-
inated by the small BFS levels at the beginning and the end of the explo-
ration due to synchronisation in the load balancer and the reduce function.
This overhead takes consistently 0.5–1 second, while it handles less than
thousand states. Hence to obtain useful scalability measurements for small
models, we excluded this time in the speedup calculations (Figure 5.4–5.7).
The runtimes in Table 5.1–5.2 still include this overhead. Figure 5.4 plots
the speedups of strict BFS with the standard deviation drawn as vertical
lines (mostly negligible, hence invisible). Most models show almost linear
scalability with a speedup of up to 40, e.g. train-gate-N10. As expected,
we see that a high |Σ|/|S| ratio causes low scalability (see fischer and
train-crossing and Table 5.1). Therefore, we tried the non-blocking vari-
ant (Subsection 5.6.3) of our algorithm (-n). As expected, the speedups in
Figure 5.5 improve and the runtimes even show a threefold improvement for
fischer.6 (Table 5.2). The efficiency on 48 cores remains closely dependent
to the |Σ|/|S| ratio of the model (or the average length of the lists in the
multimap), but the scalability is now at least sub-linear and not stagnant
anymore.

64

Efficient Multi-Core Reachability Checking for Timed Automata

0

10

20

30

40

●●
●

●
● ● ● ● ● ●

0 10 20 30 40 50
Threads

S
pe

ed
up

Model

● fischer6

train−crossing−stdred−5

train−gate−N10

train−gate−N9

viking15

viking17

Figure 5.4: Speedup strict BFS

0

10

20

30

40

●●
●

●

●

●

●

● ●
●

0 10 20 30 40 50
Threads

S
pe

ed
up

Model

● fischer6

train−crossing−stdred−5

train−gate−N10

train−gate−N9

viking15

viking17

Figure 5.5: Speedup non-blocking strict
BFS

We further investigated different search orders. Figure 5.6 shows results
with pseudo BFS order (--strategy=bfs). While speedups become higher
due to the lacking level synchronisations, the loose search order tends to
reach “large” states later and therefore generates more states for two of the
models (|Σ1| vs |Σ48| in Table 5.2). This demonstrates that our strict BFS
implementation indeed pays off.

Finally, we also experimented with randomized DFS search order (-prr
--strategy=dfs). Table 5.2 shows that DFS causes again more states to
be generated. But, surprisingly, the number of states actually reduces with
the parallelism for the fischer6 model, even below the state count of strict
BFS from Table 5.1! This causes a super-linear speedup in Figure 5.7 and

0

10

20

30

40

●● ●
●

● ●
● ● ● ●

0 10 20 30 40 50
Threads

S
pe

ed
up

Model

● fischer6

train−crossing−stdred−5

train−gate−N10

train−gate−N9

viking15

viking17

Figure 5.6: Speedup pseudo BFS

0

10

20

30

40

●
●

●

●

●

●

●

●

● ●

0 10 20 30 40 50
Threads

S
pe

ed
up

Model

● fischer6

train−crossing−stdred−5

train−gate−N10

train−gate−N9

viking15

viking17

Figure 5.7: Speedup randomized
pseudo DFS

65

Chapter 5

threefold runtime improvement over strict BFS. We do not consider this
behaviour as an exception (even though train-crossing does not show it),
since it is compatible with our observation that parallel DFS finds shorter
counter examples than parallel BFS [49, Sec. 4.3].

Design decisions. Some design decisions presented here were motivated
by earlier work that has proven successful for multi-core model checking [69,
49]. In particular, we reused the shared hash table and a synchronous load
balancer [91]. Even though we observed load distributions close to ideal, a
modern work stealing solution might still improve our results, since the work
granularity for timed reachability is higher than for untimed reachability.
The main bottlenecks, however, have proven to be the increase in state
count by parallelism and the cost of the spinlocks due to a high |Σ|/|S|
ratio. The latter we partly solved with a non-blocking algorithm. Strict
BFS orders have proven to aid the former problem and randomized DFS
orders could aid both problems.

Memory usage. Table 5.3 on page 71 shows the memory consumption
of uppaal (U-S0) and sequential opaal+LTSmin (O+L1) with strict BFS.
From it, we conclude that our memory usage is within 25% of uppaal’s for
the larger models (where these measurements are precise enough). Further-
more, we extensively experimented with different concurrent allocators and
found that TBB malloc (used in this paper) yields the best performance for
our algorithms.5 Its overhead (O+L1 vs O+L48 in Table 5.3) appears to
be limited to a moderate fixed amount of 250MB more than the sequential
runs, for which we used the normal glibc allocator.

We also counted the memory usage inside the different data structures:
the multimap L (including partly-filled multi-buckets), the hash table D, the
combined local work sets (Q), and the DBM duplicate table (dbm). As we
expected the overhead of the 8-sized multi-buckets is little compared to the
size of D and the DBMs. We may however replace D with the compressed,
parallel tree table (T) from [70]. The resulting total memory usage (O+LT),
can now be dominated by L, i.e., for viking17. But if we reduce L to a
linked list (-l2), its size shrinks by 60% to 214MB for this model (L2). Just
a modest gain compared to the total.

For completeness, we included the results of uppaal’s state space op-
timisation (U-S2). As expected, it also yields great reductions, which is
the more interesting since the two techniques are orthogonal and could be
combined.

5cf. http://fmt.cs.utwente.nl/tools/ltsmin/formats-2012/ for additional data

66

http://fmt.cs.utwente.nl/tools/ltsmin/formats-2012/

Efficient Multi-Core Reachability Checking for Timed Automata

5.8 Conclusions

We presented novel algorithms and data structures for multi-core reachabil-
ity on well-structured transition systems and an efficient implementation for
timed automata in particular. Experiments show good speedups, up to 40
times on a 48-core machine and also identify current bottlenecks. In partic-
ular, we see speedups of 58 times compared to uppaal. Memory usage is
limited to an acceptable maximum of 25% more than uppaal.

Our experiments demonstrate the flexibility of the search order that our
parallel approach allows for. BFS-like order is shown to be occasionally
slightly faster than strict BFS but is substantially slower on other models,
as previously observed in the distributed setting. A new surprising result is
that parallel randomized (pseudo) DFS order sometimes reduces the state
count below that of strict BFS, yielding a substantial speedup in those cases.

Previous work has shown that better parallel reachability [69, 70] cru-
cially enables new and better solutions to parallel model checking of liveness
properties [71, 49]. Therefore, our natural next step is to port multi-core
nested depth-first search solutions to the timed automata setting.

Because of our use of generic toolsets, more possibilities are open to be
explored. The opaal support for the uppaal language can be extended
and support for optimisations like symmetry reduction and partial order
reduction could be added, enabling easier modeling and better scalability.
Additionally, lattice-based languages [42] can be included in the c++ code
generator. On the backend side, the distributed [24] and symbolic [24] algo-
rithms in LTSmin can be extended to support subsumption, enabling other
powerful means of verification. We also plan to add a join operator to the
pins interface, to enable abstraction/refinement-based approaches [42].

67

Chapter 5

Algorithm 8 Reachability with cover update of the waiting set

1 global L : S → (Σ× {waiting, passed})∗

2 proc r e a c h a b i l i t y (P, sg)
3 L := S → ∅
4 (s0, σ0) := s := initial-state()
5 L(s0) := (σ0,waiting)
6 search(s, sg, 1)|| . . . || search(s, sg, P)

7 proc update(t, τ)
8 lock(L(t))
9 for (ρ, f) ∈ L(t) do

10 i f covers(ρ, τ)
11 unlock(L(t))
12 return true
13 else i f f = waiting ∧ covers(τ, ρ)
14 L(t) := L(t) \ (ρ,waiting)
15 L(t) := L(t) ∪ (τ,waiting)
16 unlock(L(t))
17 return fa l se

18 proc search((s0, σ0), sg, p)
19 Qp := i f p = 1 then {(s0, σ0)} else ∅
20 while Qp 6= ∅ ∨ balance(Qp)
21 Qp := Qp \ (s, σ) for some (s, σ) ∈ Qp
22 i f ¬grab(s, σ) then continue
23 for (t, τ) ∈ next-state((s, σ)) do
24 i f t = sg then report & exit
25 i f ¬update(t, τ)
26 Qp := Qp ∪ (t, τ)

27 proc grab(s, σ)
28 lock(L(s))
29 i f σ 6∈ L(s) ∨ passed = L(s, σ)
30 unlock(L(s))
31 return fa l se
32 L(s, σ) := passed
33 unlock(L(s))
34 return true

68

Efficient Multi-Core Reachability Checking for Timed Automata

T
a
b

le
5
.1

:
S,
|Σ
|(
|Σ
|
|S
|)

a
n

d
ru

n
ti

m
es

(s
ec

)
in

u
p
pa

a
l

an
d
o
p
a
a
l
+

L
T

S
m

in
(s

tr
ic

t
B

F
S

)

|S
|

u
p
pa

a
l

o
p
a
a
l
+

L
T

S
m

in
(c

or
es

)
T

|Σ
|
|Σ

1
|
|Σ

4
8
|

T
1

T
2

T
8

T
1
6

T
3
2

T
4
8

tr
a
in

-g
a
te

-N
10

7
e+

0
7

83
7.

4
1.

0
1.

0
1.

0
57

3.
3

29
7.

8
76

.7
39

.4
21

.1
14

.4
v
ik

in
g1

7
1
e+

0
7

20
7.

8
1.

0
1.

5
1.

5
33

1.
5

17
2.

5
44

.2
22

.7
11

.9
8.

6
tr

a
in

-g
a
te

-N
9

7
e+

0
6

7
6.

8
1.

0
1.

0
1.

0
52

.4
28

.5
7.

7
4.

1
2.

4
2.

0
v
ik

in
g1

5
3
e+

0
6

3
8.

0
1.

0
1.

5
1.

5
67

.0
34

.8
9.

7
5.

1
3.

0
2.

3
tr

a
in

-c
ro

ss
in

g
3
e+

0
4

4
8.

3
2
0.

8
16

.1
17

.3
24

.5
37

.2
5.

8
2.

7
2.

0
2.

1
fi

sc
h

er
6

1
e+

0
4

0.
1

0.
3

50
.1

50
.1

21
9.

2
12

9.
2

46
.4

36
.1

32
.9

31
.8

69

Chapter 5

T
a
b

le
5.2:
|Σ
|

(|Σ
|
|S
|)

an
d

ru
n
tim

es
(sec)

w
ith

n
on

-b
lo

ck
in

g
S

B
F

S
,

D
F

S
an

d
B

F
S

N
B

S
B

F
S

D
F

S
B

F
S

|Σ
1 |
|Σ

4
8 |

T
1

T
4
8

|Σ
1 |
|Σ

4
8 |

T
1

T
4
8
|Σ

1 |
|Σ

4
8 |

T
1

T
4
8

tra
in

-gate-N
10

1.0
1.0

547.9
14.5

1.0
1.0

647.8
15.6

1.0
1.0

559.3
13.1

v
ik

in
g17

1.5
1.5

320.1
9.2

1.6
1.6

386.5
9.1

1.5
1.5

325.6
7.8

tra
in

-gate-N
9

1.0
1.0

52.1
2.1

1.0
1.0

61.7
1.7

1.0
1.0

51.9
1.6

v
ik

in
g15

1.5
1.5

64.8
2.5

1.6
1.6

80.2
3.1

1.5
1.5

66.0
2.3

tra
in

-crossin
g

1
6.1

16
.1

24.1
1.8

169.8
179.0

3371.0
297.4

16.1
37.1

24.5
157.5

fi
sch

er6
5
0.1

50
.1

201.3
12.0

54.4
39.4

405.1
10.6

50.1
58.1

206.0
32.3

70

Efficient Multi-Core Reachability Checking for Timed Automata

T
ab

le
5.

3:
M

em
or

y
u

sa
ge

(M
B

)
of

b
ot

h
u
p
pa

a
l

(U
-S

0
an

d
U

-S
2)

an
d
o
p
a
a
l
+

L
T

S
m

in

T
D

L
L

2
Q

d
b

m
O

+
L

1
O

+
L

4
8

O
+

L
T 1

O
+

L
T 4
8

U
-S

0
U

-S
2

tr
a
in

-g
a
te

-N
10

7
77

59
89

4
99

49
9

24
9

13
63

81
01

82
41

27
90

30
28

60
91

33
48

v
ik

in
g1

7
1
56

10
40

5
36

21
4

40
87

17
04

19
31

82
8

10
47

15
79

72
2

tr
a
in

-g
a
te

-N
9

81
54

9
5
0

50
24

61
68

4
81

5
21

4
34

7
60

7
33

2
v
ik

in
g1

5
32

19
0

1
12

44
8

55
36

4
58

1
20

3
42

3
33

3
16

2
tr

a
in

-c
ro

ss
in

g
0

2
5

7
0

41
9

42
6

62
3

42
5

62
2

48
64

fi
sc

h
er

6
0

0
5

9
1

17
6

42
9

51
2

29
0

42
9

0
4

71

Chapter 6

Multicore Büchi Emptiness
Checking for Timed
Automata

This chapter is based on the paper “Multi-Core Emptiness Checking of
Timed Büchi Automata using Inclusion Abstraction” [66]. Section 6.7 is an
independent expansion for this thesis.

The paper builds on the previous work of Chapter 5 ([43]), but expands
it from reachability properties to the more general Büchi acceptance criteria
which specifically includes liveness properties. One of the main goals of the
paper is to exploit the partial ordering to reduce the statespace, while still
preserving soundness and completeness. This results in a modified algo-
rithm, but it could as well be viewed as a different abstraction, a view that
will be expanded on in Section 6.7.

Abstract

This paper contributes to the multi-core model checking of timed automata
(TA) with respect to liveness properties, by investigating checking of TA
Büchi emptiness under the very coarse inclusion abstraction or zone sub-
sumption, an open problem in this field.

We show that in general Büchi emptiness is not preserved under this
abstraction, but some other structural properties are preserved. Based on
those, we propose a variation of the classical nested depth-first search (ndfs)
algorithm that exploits subsumption. In addition, we extend the multi-core
cndfs algorithm with subsumption, providing the first parallel LTL model
checking algorithm for timed automata.

The algorithms are implemented in LTSmin, and experimental evalua-
tions show the effectiveness and scalability of both contributions: subsump-

72

Multicore Büchi Emptiness Checking for Timed Automata

tion halves the number of states in the real-world FDDI case study, and the
multi-core algorithm yields speedups of up to 40 using 48 cores.

6.1 Introduction

Model checking safety properties can be done with reachability, but only
guarantees that the system does not enter a dangerous state, not that the
system actually serves some useful purpose. To model check such liveness
properties is more involved since they state conditions over infinite execu-
tions, e.g. that a request must infinitely often produce a result. One of the
most well-known logics for describing liveness properties is Linear Temporal
Logic (LTL) [9].

The automata-theoretic approach for LTL model checking [96] solves the
problem efficiently by translating it to the Büchi emptiness problem, which
has been shown decidable for real-time systems as well [5]. However, its
complexity is exponential, both in the size of the system specification and of
the property. In the current paper, therefore, we consider two possible ways
of alleviating this so-called state space explosion problem: (1) by utilising the
many cores in modern processors, and (2) by employing coarser abstractions
to the state space.

Related work. The verification of timed automata was made possible by
Alur and Dill’s region construction [5], which represents clock valuations
using constraints, called regions. A max-clock constant abstraction, or k-
extrapolation, bounded the number of regions. Since the region construction
is exponential in the number of clocks and constraints in the TA, coarser
abstractions such as the symbolic zone abstraction have been studied [47],
and also implemented in, among others, the state-of-the-art model checker
uppaal [72]. Later, the k-extrapolation for zones was refined to include
lower clock constraints in the so-called lower/upper-bound (LU) abstraction
proposed in [15]. Finally, the inclusion abstraction, or simply subsumption,
prunes reachability according to the partial order of the symbolic states [45].
All these abstractions preserve reachability properties [45, 15].

Model checking LTL properties on timed automata, or equivalently check-
ing timed Büchi automata (TBA) emptiness, was proven decidable in [5], by
using the region construction. Bouajjani et al. [25] showed that the region-
closed simulation graph preserve TBA emptiness. Tripakis [94] proved that
the k-extrapolated zone simulation graph also preserves TBA emptiness,
while posing the question whether other abstractions such as the LU ab-
straction and subsumption also preserve this property. Li [73] showed that
the LU abstraction does in fact preserve TBA emptiness. The status of
subsumption in LTL model checking is still open.

One way of establishing TBA emptiness on a finite simulation graph is

73

Chapter 6

the nested depth-first (ndfs) algorithm [33, 60]. Recently, some multi-core
version of these algorithms were introduced by Evangelista and Laarman
et al [71, 50, 49]. These algorithms have the following properties: their
runtime is linear in the number of states in the worst case while typically
yielding good scalability; they are on-the-fly [67] and yield short counter
examples [49, Sec. 4.3]. The latest version, called cndfs, combines all these
qualities and decreases memory usage [49].

In previous work, we parallelised reachability for timed automata using
the mentioned abstractions [43]. It resulted in almost linear scalability, and
speedups of up to 60 on a 48 core machine, compared to uppaal. The
current work extends this previous work to the setting of liveness properties
for timed automata. It also shares the uppaal input format, and re-uses
the uppaal dbm library.

Problem statement. Parallel model checking of liveness properties for
timed systems has been a challenge for several years. While advances were
made with distributed versions of e.g. uppaal [12], these were limited to
safety properties. Furthermore, it is unknown how subsumption, the coars-
est abstraction, can be used for checking TBA emptiness.

Contributions. (1) For the first time, we realize parallel LTL model
checking of timed systems using the cndfs algorithm. (2) We prove that
subsumption preserves several structural state space properties (Section 6.3),
and show how these properties can be exploited by ndfs and cndfs (Sec-
tion 6.4 and Section 6.5). (3) We implement ndfs and cndfs with subsump-
tion in the LTSmin toolset [68] and opaal [42]. Finally, (4) our experiments
show considerable state space reductions by subsumption and good parallel
scalability of cndfs with speedups of up to 40 using 48 cores.

6.2 Preliminaries: Timed Büchi Automata and Ab-
stractions

In the current section, we first recall the formalism of timed Büchi automata
(TBA), that allows modelling of both a real-time system and its liveness
requirements. Subsequently, we introduce finite symbolic semantics using
zone abstraction with extrapolation and subsumption. Finally, we show
which properties are known to be preserved under said abstractions.

Timed Automata and Transition Systems. Definition 36 provides a
basic definition of a TBA. It can be extended with features such as finitely
valued variables, and parallel composition to model networks of timed au-
tomata, as done in uppaal [16].

74

Multicore Büchi Emptiness Checking for Timed Automata

Definition 35 (Guards). Let G(C) be a conjunction of clock constraints over
the set of clocks c ∈ C, generalized by:

g ::= c ./ n | g ∧ g | true

where n ∈ N0 is a constant, and ./ ∈ {<,≤,=, >,≥} is a comparison oper-
ator. We call a guard downwards closed if all ./ ∈ {<,≤,=}.

Definition 36 (Timed Büchi Automaton). A timed Büchi automaton (TBA)
is a 6-tuple B = (L, C,F , l0,→, IC), where

• L is a finite set of locations, typically denoted by `, where `0 ∈ L is
the initial location, and F ⊆ L, is the set of accepting locations,

• C is a finite set of clocks, typically denoted by c,

• → ⊆ L× G(C)× 2C × L is the (non-deterministic) transition relation.
We write ` g,R−→ `′ for a transition, where ` is the source and `′ the
target location, g ∈ G(C) is a transition guard, R ⊆ C is the set of
clocks to reset, and

• IC : L → G(C) is an invariant function, mapping locations to a set
of guards. To simplify the semantics, we require invariants to be
downwards-closed.

The states of a TBA involve the notion of clock valuations. A clock
valuation is a function v : C → R≥0. We denote all clock valuations over C
with VC . We need two operations on clock valuations: v ′ = v + δ for a delay
of δ ∈ R≥0 time units s.t. ∀c ∈ C : v ′(c) = v(c) + δ, and reset v ′ = v [R] of a
set of clocks R ⊆ C s.t. v ′(c) = 0 if c ∈ R, and v ′(c) = v(c) otherwise. We
write v |= g to mean that the clock valuation v satisfies the clock constraint
g.

Definition 37 (Transition system semantics of a TBA). The semantics of
a TBA B is defined over the transition system T SBv = (Sv , s0, Tv) s.t.:

1. A state s ∈ Sv is a pair: (`, v) with a location ` ∈ L, and a clock
valuation v .

2. An initial state s0 ∈ Sv , s.t. s0 = (`0, v0), where ∀c ∈ C : v0(c) = 0.

3. Tv : Sv × ({ε} ∪ R≥0) × Sv is a transition relation with (s, a, s′) ∈ Tv ,
denoted s a→ s′ s.t. there are two types of transitions:

(a) A discrete (instantaneous) transition: (`, v) ε→ (`′, v ′) if an edge
` g,R−→ `′ exists, v |= g and v ′ = v [R], and v ′ |= IC(`

′).

(b) A delay by δ time units: (`, v) δ→ (`, v +δ) for δ ∈ R≥0 if v +δ |=
IC(`).

75

Chapter 6

`0start `1 `2

y ≤ 2 y ≤ 2

y := 0

x > 2, x := 0, y := 0x := 0, y := 0

Figure 6.1: A timed Büchi automaton.

We say a state s ∈ S is accepting, or s ∈ F , when s = (`, . . .) and ` ∈ F .
We write s δ→ ε→ s′ if there exists a state s′′ such that s δ→ s′′ and s′′ ε→ s′.
We denote an infinite run in T SBv = (Sv , s0, Tv) as an infinite path π =

s1
δ1→ ε→ s2

δ2→ ε→ s3 . . . The run is accepting if there exist an infinite number
of indices i s.t. si ∈ F . A(n infinite) run’s time lapse is Time(π) =

∑
i≥1 δi.

An infinite path π in T SBv is time convergent , or zeno, if Time(π) < ∞,
otherwise it is divergent. For example, the TBA in Figure 6.1 has an infinite
run: (`0, v0) 1→ (`0, v0) 1→ · · · , that is not accepting, but is non-zeno. We
claim that there is no accepting non-zeno run, exemplified by the finite run:
(`0, v0) 2→ ε→ (`1, v1) 0→ ε→ (`2, v0) 0→ ε→ (`1, v0) 1.9→ 6ε→ .

Definition 38 (A TBA’s language and the emptiness problem). The lan-
guage accepted by B, denoted L(B), is defined as the set of non-zeno accepting
runs. The language emptiness problem for B is to check whether L(B) = ∅.

Remark 1 (Zenoness). Zenoness is considered a modelling artifact as the
behaviour it models cannot occur in any real system, which after all has finite
processing speeds. Therefore, zeno runs should be excluded from analysis.
However, any TBA B can be syntactically transformed to a strongly non-
zeno B’ [95], s.t. L(B) = ∅ iff L(B′) = ∅. Therefore, in the following,
w.l.o.g., we assume that all TBAs are strongly non-zeno.

Definition 39 (Time-abstracting simulation relation). A time-abstracting
simulation relation R is a binary relation on Sv s.t. if s1Rs2 then:

• If s1
ε→ s′1, then there exists s′2 s.t. s2

ε→ s′2 and s′1Rs
′
2.

• If s1
δ→ s′1, then there exists s′2 and δ′ s.t. s2

δ′→ s′2 and s′1Rs
′
2.

If both R and R−1 are time-abstracting simulation relations, we call R a
time-abstracting bisimulation relation.

Symbolic Abstractions using Zones. A zone is a symbolic represen-
tation of an infinite set of clock valuations by means of a clock constraint.
These constraints are conjuncts (Definition 40) of simple linear inequali-
ties on clock values, and thus describe (unbounded) convex polytopes in a
|C|-dimensional plane (e.g. Figure 6.2). Therefore, zones can be efficiently
represented by Difference Bounded Matrices (DBMs) [19].

76

Multicore Büchi Emptiness Checking for Timed Automata

y

x0

1

2

3

0 1 2 3 4 5

Figure 6.2: A graphical representation of a zone over 2 clocks: 0 ≤ x−y ≤ 2.

Definition 40 (Zones). Similar to the guard definition, let Z(C) be the set
of clock constraints over the set of clocks c, c1, c2 ∈ C generalized by:

Z ::= c ./ n | c1 − c2 ./ n | Z ∧ Z | true | false

where n ∈ N0 is a constant, and ./ ∈ {<,≤, >,≥} is a comparison operator.
We also use = for equalities, short for the conjunction of ≤ and ≥.

We write v |= Z if the clock valuation v is included in Z, for the set
of clock valuations in a zone JZK = {v | v |= Z}, and for zone inclusion
Z ⊆ Z ′ iff JZK ⊆ JZ ′K. Notice that JfalseK = ∅. Using the fundamental
operations below, which are detailed in [19], we define the zone semantics
over simulation graphs in Definition 41. Most importantly, these operations
are implementable in O(n3) or O(n2) and closed w.r.t. Z.

delay : JZ ↑K = {v + δ|δ ∈ R≥0, v ∈ JZK},

clock reset : JZ[R]K = {v [R]|v ∈ JZK}, and

constraining : JZ ∧ Z ′K = JZK ∩ JZ ′K.

Definition 41 (Zone semantics). The semantics of a TBA B = (L, C,F , `0,→,
IC) under the zone abstraction is a simulation graph: SG(B) = (SZ , s0, TZ) s.t.:

1. SZ consists of pairs (`, Z) where ` ∈ L, and Z ∈ Z is a zone.

2. s0 ∈ SZ is an initial state (`0, Z0 ↑ ∧ IC(`0)) with Z0 =
∧
c∈C c = 0.

3. TZ is the symbolic transition function using zones, s.t. (s, s′) ∈ TZ ,
denoted s ⇒ s′ with s = (`, Z) and s′ = (`′, Z ′), if an edge ` g,R−→ `′

exists, and Z∧g 6= false, Z ′ = (((Z∧g)[R]) ↑)∧ IC(`
′) and Z ′ 6= false.

Any simulation graph is a discrete graph, hence cycles and lassos are
defined in the standard way. We write s⇒+ s′ iff there is a non-empty path
in SG(B) from s to s′, or s⇒∗ s′ if the path can be empty. An infinite run
in SG(B) is an infinite sequence of states π = s1s2 . . . , s.t. si ⇒ si+1 for
all i ≥ 1. It is accepting if it contains infinitely many accepting states. If
SG(B) is finite, any infinite path from s0 defines a lasso: s0 ⇒∗ s⇒+ s.

77

Chapter 6

Definition 42 (A TBA’s language under Zone Semantics). The language
accepted by a TBA B under the zone semantics, denoted L(SG(B)), is the
set of infinite runs π = s0s1s2 . . . s.t. there exists an infinite set of indices
s.t. si ∈ F .

Because there are infinitely many zones, the state space of SG(B) may
also be infinite. To bound the number of zones, extrapolation methods
combine all zones which a given TBA B cannot distinguish. For example, k-
extrapolation finds the largest upper bound k in the guards and invariants of
B, and extrapolates all bounds in the zones Z that exceed this value, while
LU-extrapolation uses both the maximal lower bound l and the maximal
upper bound u [15]. Extrapolation can be refined on a per-clock basis [15],
and on a per-location basis.

Definition 43. An abstraction over a simulation graph SG(B) = (SZ , s0, TZ)
is a mapping α : SZ → SZ s.t. if α((`, Z)) = (`′, Z ′) then ` = `′ and Z ⊆ Z ′.
If the image of an abstraction α is finite, we call it a finite abstraction.

Definition 44. Abstraction α over zone transition system SG(B)=(SZ , s0, TZ)
induces a zone transition system SGα(B) = (Sα, α(s0), Tα) where:

• Sα = {α(s) | s ∈ SZ} is the set of states, s.t. Sα ⊆ SZ ,

• α(s0) is the initial state, and

• (s, s′) ∈ Tα iff (s, s′′) ∈ TZ and s′ = α(s′′), is the transition relation.

We call an abstraction α an extrapolation if there exists a simulation
relation R s.t. if α((`, Z)) = (`, Z ′) then for all v ′ ∈ Z ′ there exist a
v ∈ Z s.t. v ′Rv [73]. This means extrapolations do not introduce be-
haviour that the un-extrapolated system cannot simulate. The abstraction
defined by k-extrapolation is denoted by αk, while the abstraction defined by
LU-extrapolation is called αlu. Hence, αk and αlu induce finite simulation
graphs, written SGk(B) and SGlu(B).

Subsumption abstraction. While SGk(B) and SGlu(B) are finite, their
size is still exponential in the number of clocks. Therefore, we turn to
the coarser inclusion/ subsumption abstraction of [45], hereafter denoted
subsumption abstraction. We extend the notion of subsumption to states: a
state s = (`, Z) ∈ SZ is subsumed by another s′ = (`′, Z ′), denoted s v s′,
when ` = `′ and Z ⊆ Z ′. Let R(SG(B)) = {s|s0 ⇒∗ s} denote the set of
reachable states in SG(B).

Proposition 1 (v is a simulation relation). If (`, Z1) v (`, Z2) and (`, Z1)⇒
(`′, Z ′1) then there exists Z ′2 s.t. (`, Z2)⇒ (`′, Z ′2) and (`′, Z ′1) v (`′, Z ′2).

Proof. By the definition of v, and the fact that ⇒ is monotone w.r.t ⊆ of
zones.

78

Multicore Büchi Emptiness Checking for Timed Automata

SGv

SGlu
SGk

SG
T Sv

αv

αlu

αv

αk

preserves loc. reach.

finite

preserves Büchi

Figure 6.3: Abstractions.

Definition 45 (Subsumption abstraction [45]). A subsumption abstraction
αv over a zone transition system SG(B) = (SZ , s0, TZ) is a total function
αv : R(SG(B))→ R(SG(B)) s.t. s v αv(s)

Note the subsumption abstraction is defined only over the reachable
state space, and is not an extrapolation, because it might introduce extra
transitions that the unabstracted system cannot simulate. Typically α is
constructed on-the-fly during analysis, only abstracting to states that are
already found to be reachable. This makes its performance depend heavily
on the search order, as finding “large” states quickly can make the abstrac-
tion coarser [43].

Property preservation under abstractions. We now consider the preser-
vation by the abstractions above of the property of location reachability (a
location ` is reachable iff s0 ⇒∗ (`, . . .)) and that of Büchi emptiness.

Proposition 2. For any of the abstractions α: αk [45], αlu [15], αk ◦ αv [45],
and αlu ◦ αv [15], it holds that

` is reachable in T SBv ⇐⇒ ` is reachable in SGα(B)

Proposition 3. For any finite extrapolation [73] α, e.g. the abstractions
αk [94] and αlu [73] it holds that

L(B) = ∅ ⇐⇒ L(SGα(B)) = ∅

From hereon we will denote any finite extrapolation as αfin , and the
associated simulation graph SGfin(B). To denote that this graph can be
generated on-the-fly [96, 9, 45], we use a next-state(s) function which
returns the set of successor states for s: {s′ ∈ Sfin | s⇒ s′}.

As a result of Proposition 3 we can focus on finding accepting runs
in SGfin(B). Because it is finite, any such run is represented by a lasso:
s0 ⇒ s⇒+ s. Tripakis [94] poses the question of whether αv can be used to
check Büchi emptiness. We will investigate this further in the next section.

79

Chapter 6

6.3 Preservation of Büchi Emptiness under Sub-
sumption

The current section, investigates what properties are preserved by a sub-
sumption abstraction αv, when applied on a finite simulation graph ob-
tained by an extrapolation, αfin , in the following, denoted as SGv(B) =
(SGfin◦v(B)).

Proposition 4. For all abstractions α, s ∈ F ⇔ α(s) ∈ F (by Defini-
tion 43).

Proposition 5. An αv abstraction is safe w.r.t. Büchi emptiness:

L(B) 6= ∅ =⇒ L(SGv(B)) 6= ∅

Proof. If L(B) 6= ∅, there must be an infinite accepting path π. This path is
inscribed [94] in SGfin(B), and because v is a simulation relation a similar
path exists in SGv(B).

Proposition 5 shows that subsumption abstraction preserves Büchi empti-
ness in one direction. Unfortunately, an accepting cycle in SGv(B) is not
always reflected in SGfin(B), as Figure 6.4 illustrates. The figure visualises
SGv(B) by drawing subsumed states inside subsuming states (e.g. s3 v s1).

s0 s1

s2 s3

s0

s2

s3

s1
Z1 :=

y − x ≤ 0 ∧ y ≤ 2

y

x

2

2
Z2 := Z3 :=

y − x = 0 ∧ y ≤ 2

y

x

2

2

Figure 6.4: The state space SGv(B) of the model in Figure 6.1 with `1 ∈
F contains 4 states (shown on the left): s0, s1 = (`1, Z1), s2 = (`2, Z2)
and s3 = (`1, Z3). The graphical representation of the zones Z1–Z3 (right)
reveals that Z3 ⊆ Z1 and hence s3 v s1. As s3 v s1 and both are reachable,
a subsumption abstraction is allowed to map αv(s3) = s1, introducing a
cycle s1 ⇒ s2 ⇒ s1 in SGv(B).

However, subsumption introduces strong properties on paths and cycles
to which we devote the rest of the current section. In subsequent sections,
we exploit these properties to improve algorithms that implement the TBA
emptiness check.

Lemma 7 (Accepting cycles under v). If SGfin(B) contains states s, s′ s.t.
s leads to an accepting cycle and s v s′, then s′ leads to an accepting cycle.

80

Multicore Büchi Emptiness Checking for Timed Automata

Proof. We have that s ⇒∗ t ⇒+ t, and because v is a simulation relation
we have the existence of a state x s.t. t v x:

s′ t′ · · · x⇒∗ ⇒ ⇒

s t · · · t⇒∗ ⇒ ⇒
v v v v

From x, we again have a similar path, to some x′. This sequence will even-
tually repeat some x′′, because SGfin(B) is finite. It follows that all states in
x′′ ⇒+ x′′ subsume states in t⇒+ t, hence the former cycle is also accepting
(Proposition 4).

Lemma 8 (Paths under v). If SGfin(B) contains a path s⇒+ s′ containing
an accepting state and s v s′, then s leads to an accepting cycle.

Proof. Because v is a simulation relation we have that s ⇒+ s′ and s v s′

implies the existence of some t such that s′ ⇒+ t and s′ v t. From t, we again
obtain a similar path to some t′, s.t. t v t′. Because SGfin(B) is finite, the
sequence of t′s will eventually repeat some element x, s.t. x⇒+ · · · ⇒+ x.

s s′ t · · · x x⇒+ ⇒+ ⇒+ ⇒+ ⇒+

s′ t t′ · · · t′′ x⇒+ ⇒+ ⇒+ ⇒+ ⇒+

v v v v v =

This gives us the lasso s ⇒∗ x ⇒+ x. It also follows that all states in
x ⇒+ x subsume states in s ⇒+ s′, hence the former cycle is accepting
(Proposition 4).

6.4 Timed Nested Depth-First Search with Sub-
sumption

Algorithm 10 ndfs

1: procedure ndfs()
2: Cyan := Blue := Red := ∅
3: dfsBlue (s0)
4: report no cycle

5: procedure dfsRed (s)
6: Red := Red ∪ {s}
7: for all t in next-state(s) do
8: if t ∈ Cyan then
9: report cycle

10: if (t 6∈ Red) then dfsRed (t)

11: procedure dfsBlue (s)
12: Cyan := Cyan ∪ {s}
13: for all t in next-state(s) do
14: if t 6∈ Blue ∧ t 6∈ Cyan then
15: dfsBlue (t)

16: if s ∈ F then
17: dfsRed (s)

18: Blue := Blue ∪ {s}
19: Cyan := Cyan \ {s}

81

Chapter 6

In the current section, we extend the classic linear-time ndfs [33, 93]
algorithm to exploit subsumption. The algorithm detects accepting cycles,
the absence of which implies Büchi emptiness. It is correct for the graph
SGfin(B) according to Proposition 3. In the following, with soundness, we
mean that when ndfs reports a cycle, indeed an accepting cycle exists in the
graph, while completeness indicates that ndfs always reports an accepting
cycle if the graph contains one.

The ndfs algorithm in Algorithm 10 consists of an outer DFS (dfsBlue)
that sorts accepting states s in DFS postorder . And an inner DFS (dfsRed)
that searches for cycles over each s, called the seed . States are maintained
in 3 colour sets:

1. Blue, states explored by dfsBlue ,

2. Cyan, states on the stack of dfsBlue (visited but not yet explored),
which are used by dfsRed to close cycles over s early at l.8 [93], and

3. Red , visited by dfsRed .

Algorithm 10 maintains a few strong invariants, which are already mentioned
in [33, 93]:

I0: At l.14 all red states are blue.

I1: The only accepting state visited by dfsRed is the seed.

I2: Outside of dfsRed , accepting cycles are not reachable from red states.

I3: A sufficient postcondition for dfsRed (s) is that all reachable states
from s are included in Red and no cyan state is reachable from it.

We now try to employ subsumption on the different colours to prune the
searches, even though we cannot use it on all colours as SGv(B) introduces
additional cycles as Figure 6.4 showed. To express subsumption checks on
sets we write s v S, meaning ∃s′ ∈ S : s v s′. And S v s, meaning ∃s′ ∈
S : s′ v s. At several places in Algorithm 10 we might apply subsumption,
leading to the following options:

1. On cyan for cycle detection:

(a) t v Cyan at l.8, or

(b) Cyan v t at l.8.

2. On dfsBlue , by replacing t 6∈ Blue ∧ t 6∈ Cyan at l.14 with t 6v Blue ∪
Cyan.

3. On the blue set (explored states), by replacing t 6∈ Blue at l.14 with
t 6v Blue.

82

Multicore Büchi Emptiness Checking for Timed Automata

s0

s2

s3

Cyan
Cyan

Blue

s1

Figure 6.5: Counter example to subsumption on Blue and Cyan (item 2).

4. On dfsRed , by replacing t 6∈ Red at l.10 with t 6v Red .

Subsumption on cyan for cycle detection as in item 1a makes the algo-
rithm unsound: cycles in SGv(B) are not always reflected in SGfin(B) (Fig-
ure 6.4). There is also no hope of “unwinding” the algorithm upon detecting
an accepting cycle that does not exist in the underlying SGfin(B) without
losing its linear-time complexity, as the number of cycles can be exponential
in the size of SGv(B).

If, on the other hand, we prune the blue search as in item 2, the algorithm
becomes incomplete. Figure 6.5 shows a run of the modified ndfs on an
SGfin(B) with cycle s3 ⇒ s2 ⇒ s3. The dfsBlue backtracked over s2 as
s3 v s1 and s1 ∈ Cyan. The dfsRed now launched from s1, will however
continue to visit s3, while missing the cycle as s2 is not cyan. We also
observe that I1 is violated, indicating that the postorder on accepting states
(s3 before s1) is lost.

It is tempting therefore to use subsumption on blue only, as in item 3.
However, Figure 6.6 shows an “animation” of a run with the modified ndfs
which is incomplete. Here state s1 is first backtracked in the blue search as
all successors are cyan (left). Then state s1 is marked blue; The blue search
backtracks to s2, proceeds to s3 and backtracks because it finds s′1 v s1 ∈
Blue (middle). Then a red search is started from s3, which subsumes the
cyan stack (s2) and visits accepting state s4, violating I1 and missing the
accepting cycle s4 ⇒ s5 ⇒ s4.

A viable option however is to use inverse subsumption on cyan as in
item 1b. According to Lemma 7, a state that subsumes a state on the cyan
stack leads to a cycle. And as the only goal of the red search is to find a
cyan state (to close an accepting cycle over the seed), it does not rely on
DFS (I3). Thus we may as well use subsumption in the red search as in
item 4. By definition (Definition 45), SGv(B) contains a “larger” state for
all reachable states in SGfin(B). So in combination with item 1b this is
sufficient to find all accepting cycles.

The strong invariant (I2) states accepting cycles are not reachable from
red states, so red states can prune the blue search. We can strengthen the
condition on l.14 to t 6∈ Blue ∪Cyan ∪Red . However, this is of no use since
by (I0), Red ⊆ Blue. Luckily, even states subsumed by red do not lead to

83

Chapter 6

s0

s2
s′2

s1

s′1 s3

s4

s5

Cyan

Cyan

Cyan

(a) dfsBlue (s1)

s0

s2
s′2

s1

s′1 s3

s4

s5

Blue

Cyan

Cyan

Cyan

(b) dfsBlue (s3)

s0

s2
s′2

s1

s′1 s3

s4

s5

Blue

Cyan

Cyan

Cyan∩
Red

Red

Red

Red

Red

(c) dfsRed from s3

Figure 6.6: Counter example to subsumption on Blue

accepting cycles (contraposition of Lemma 7), so we can use subsumption
again: t 6∈ Blue ∪ Cyan ∧ t 6v Red . The benefit of this can be illustrated
using Figure 6.4. Once dfsBlue backtracks over s1, we have s1, s2, s3 ∈ Red
by dfsRed at l.17. Any hypothetical other path from s0 to a state subsumed
by these red states can be ignored.

Algorithm 11 shows a version of ndfs with all correct improvements.
Notice that I2 and I3 are sufficient to conclude correctness of these modifi-
cations.

6.5 Multi-Core CNDFS with Subsumption

CNDFS [49] is a parallel algorithm for checking Büchi emptiness [49]. By
Proposition 3, it is correct for SGfin . In the current section, we extend cndfs
with subsumption, in a similar way as we have done for the sequential ndfs
in the previous section.

In cndfs (Algorithm 12 without underlined parts), each worker thread i
runs a seemingly independent dfsBluei and dfsRed i, with a local stack colour
Cyani, and its own random successor ordering (indicated by the subscript
i of the next-state function). However, the workers assist each other by
sharing the colours Blue and Red globally, thus pruning each other’s search
space.

The main problem that cndfs has to solve is the loss of postorder on

84

Multicore Büchi Emptiness Checking for Timed Automata

Algorithm 11 ndfs with subsumption on red, cycle detection, and red
prune of dfsBlue .

1: procedure ndfs()
2: Cyan := Blue := Red := ∅
3: dfsBlue (s0)
4: report no cycle

5: procedure dfsRed (s)
6: Red := Red ∪ {s}
7: for all t in next-state(s) do
8: if Cyan v t then
9: report cycle

10: if (t 6v Red) then dfsRed (t)

11: procedure dfsBlue (s)
12: Cyan := Cyan ∪ {s}
13: for all t in next-state(s) do
14: if (t 6∈ Blue ∪ Cyan ∧ t 6v Red)
15: then dfsBlue (t)

16: if s ∈ F then
17: dfsRed (s)

18: Blue := Blue ∪ {s}
19: Cyan := Cyan \ {s}

the accepting states due to the shared blue color (similar to the effects of
item 3 as illustrated in Figure 6.6). In the previous section, we have seen
that a loss of postorder may cause dfsRed to visit non-seed accepting states,
i.e. I1 is violated. cndfs demonstrates that repairing the latter dangerous
situation is sufficient to preserve correctness [49, Sec. 3].

To detect a dangerous situation, cndfs collects the states visited by
dfsRed i in a set Ri at l.7. After completion of dfsRed i, the algorithm then
checks Ri for non-seed accepting states at l.21. By simply waiting for these
states to become red, the dangerous situation is resolved as the blue state
that caused the situation was always placed by some other worker, which
will eventually continue [49, Prop. 3]. Once the situation is detected to be
resolved, all states from the local Ri are added to Red at l.22.

cndfs maintains similar invariants as ndfs:

I2’ Red states do not lead to accepting cycles (Lemma 1 and Prop. 2 in
[49]).

I3’ After dfsRed i(s) states reachable from s are red or in Ri (from [49,
Lem. 2]).

Because these invariants are as strong or stronger than I2 and I3, we can
use subsumption in a similar way as for ndfs. Algorithm 12 underlines the
changes to algorithm w.r.t. Alg. 2 in [49]. We additionally have to extend
the waiting procedure to include subsumption at l.21, because the use of
subsumption in dfsRed i can cause other workers to find “larger” states.

In the next section, we will benchmark Algorithm 12 on timed models.
An important property that the algorithm inherits from cndfs, is that its
runtime is linear in the size of the input graph N . However, in the worst
case, all workers may visit the same states. Therefore, the complexity of
the amount of work that the algorithm performs (or the amount of power it

85

Chapter 6

Algorithm 12 CNDFS with subsumption

1: procedure cndfs(P)
2: Blue := Red := ∅
3: forall i in 1..P do Cyani := ∅
4: dfsBlue1(s0) ‖ .. ‖ dfsBlueP (s0)
5: report no cycle

6: procedure dfsRed i(s)
7: Ri := Ri ∪ {s}
8: for all t in next-statei(s) do
9: if Cyan v t then cycle

10: if t 6∈ Ri ∧ t 6v Red then
11: dfsRed i(t)

12: procedure dfsBluei(s)
13: Cyani := Cyani ∪ {s}
14: for all t in next-statei(s) do
15: if t 6∈ Cyani ∪ Blue ∧ t 6v Red then
16: dfsBlue (t)

17: Blue := Blue ∪ {s}
18: if s ∈ F then
19: Ri := ∅
20: dfsRed (s)
21: await ∀s′ ∈ Ri ∩ F \ {s} : s′ v Red
22: forall s′ in Ri do Red := Red ∪ s′

23: Cyani := Cyani \ {s}

86

Multicore Büchi Emptiness Checking for Timed Automata

consumes) equals N ·P , where P is the number of processors used. The ran-
domised successor function next-statei however ensures that this does not
happen for most practical inputs. Experiments on over 300 examples con-
firmed this [49, Sec. 4], making cndfs the current state-of-the-art parallel
LTL model checking algorithm.

6.6 Experimental Evaluation

To evaluate the performance of the proposed algorithms experimentally, we
implemented cndfs without [49] and with subsumption (Algorithm 12) in
LTSmin 2.01. The opaal [42] tool2 functions as a front-end for uppaal
models. Previously, we demonstrated scalable multi-core reachability for
timed automata [43].

Experimental setup. We benchmarked3 on a 48-core machine (a four-
way AMD OpteronTM 6168) with a varying number of threads, averaging
results over 5 repetitions. We consider the following models and LTL prop-
erties:

csma4 is a protocol for Carrier Sense, Multiple-Access with Collision Detec-
tion with 10 nodes. We verify the property that on collisions, even-
tually the bus will be active again: 2((P0=bus collision1) =⇒
3(P0=bus active)).

fischer-1/25 implements a mutual exclusion protocol; a canonical bench-
mark for timed automata, with 10 nodes. As in [73], we use the prop-
erty (1): ¬((23k=1)∨(23k=0)), where k is the number of pro-
cesses in their critical section. We also add a weak fairness property
(2): 2((2P 1=req) =⇒ (3P 1=cs)): processes requesting infinitely
often will eventually be served.

fddi4 models a token ring system as described in [25], where a network
of 10 stations are organised in a ring and can hand back the token
in a synchronous or asynchronous fashion. We verify the property
from [25] that every station will eventually send asynchronous mes-
sages: 2(3(ST1=station z sync)).

train-gate4 models a railway interlocking, with 10 trains. Trains drive
onto the interconnect until detected by sensors. There they wait until
receiving a signal for safe crossing. The property prescribes that each

1Available as open source at: http://fmt.cs.utwente.nl/tools/ltsmin
2Available as open source at: http://opaal-modelchecker.com
3 All results are available at: http://fmt.cs.utwente.nl/tools/ltsmin/cav-2013
4From http://www.it.uu.se/research/group/darts/uppaal/benchmarks/
5As distributed with uppaal.

87

http://fmt.cs.utwente.nl/tools/ltsmin
http://opaal-modelchecker.com
http://fmt.cs.utwente.nl/tools/ltsmin/cav-2013
http://www.it.uu.se/research/group/darts/uppaal/benchmarks/

Chapter 6

approaching train eventually should be serviced: 2(Train 1=Appr =⇒
(3Train 1=Cross)).

The following command-line was used to start the LTSmin tool: opaal2lts-
mc --strategy=[A] --ltl-semantics=textbook --ltl=[f] -s28 --threads=[P] -u[0,1]
[m].
This runs algorithm A on the cross-product of the model m with the Büchi
automaton of formula f. It uses a fixed hash table of size 228 and P threads,
and either subsumption (-u1) or not (-u0). The option ltl-semantics selects
textbook LTL semantics as defined in [9, Ch. 4]. To investigate the overhead
of cndfs, we also run the multi-core algorithms for plain reachability on this
crossproduct, even though this does not make sense from a model checking
perspective. To compare effects of the search order on subsumption, we use
both dfs and bfs.

Note finally, that we are only interested here in full verification, i.e. in
LTL properties that are correct w.r.t the system under verification. This is
the hardest case as the algorithm has to explore the full simulation graph.
To test their on-the-fly nature, we also tried a few incorrect LTL formula for
the above models, to which the algorithms all delivered counter examples
within a second. But with parallelism this happens almost instantly [49,
Sec. 4.2].

Implementation. LTSmin defines a next-state function as part of its
pins interface for language-independent symbolic/parallel model checking [24].
Previously, we extended pins with subsumption [43]. opaal is used to parse
the uppaal models and generate C code that implements pins. The gener-
ated code uses the uppaal DBM library to implement the simulation graph
semantics under LU-extrapolated zones. The LTL crossproduct [9] is calcu-
lated by LTSmin.

LTSmin’s multi-core tool [68] stores states in one lockless hash/tree ta-
ble in shared memory [69, 70]. For timed systems, this table is used to
store explicit state parts, i.e. the locations and state variables [16]. The
DBMs representing zones, here referred to as the symbolic state parts, are
stored in a separate lockless hash table, while a lockless multimap structure
efficiently stores full states, by linking multiple symbolic to a single explicit
state part [43]. Global colour sets of cndfs (Blue and Red) are encoded
with extra bits in the multimap, while local colours are maintained in local
tables to reduce contention to a minimum.

Hypothesis. cndfs for untimed model checking scaled mostly linearly. In
the timed automata setting, several parameters could change this picture.
In the first place, the computational intensity increases, because the DBM
operations use many calculations. In modern multi-core computers, this
feature improves scalability, because it more closely matches the machine’s

88

Multicore Büchi Emptiness Checking for Timed Automata

high frequency/bandwidth ratio [69]. On the other hand, the lock granular-
ity increases since a single lock now governs multiple DBMs stored in the
multimap [43, Sec. 6.1]. Nonetheless, for multi-core timed reachability, pre-
vious experiments showed almost linear scalability [43, Sec. 7], even when
using other model checkers (uppaal) as a base line. On the other hand,
the cndfs algorithm requires more queries on the multimap structure to
distinguish the different colour sets.

Subsumption probably improves the absolute performance of cndfs.
We expect that models with many clocks and constraints exhibit a better
reduction than others. Moreover, it is known [12] that the reduction due
to subsumption depends strongly on the exploration order: bfs typically
results in better reductions than dfs, since “large” states are encountered
later. cndfs might share this disadvantage with dfs. However, as shown
in [43], subsumption with random parallel dfs performs much better than
sequential dfs, which could be beneficial for the scalability of cndfs. So
it is really hard to predict the relative performance and scalability of these
algorithms, and the effects of subsumption.

Table 6.1: Runtimes (sec) and states counts without subsumption.

Model P |L| |R| |V |cndfs |⇒|bfs Tbfs Tdfs Tcndfs

csma 1 135449 438005 438005 1016428 26.1 26.2 27.8
csma 48 135449 438005 453658 1016428 1.0 0.9 0.9
fddi 1 119 179515 179515 314684 26.3 26.6 34.2
fddi 48 119 179515 566093 314684 1.6 0.7 2.7
fischer-1 1 521996 4987796 4987796 19481530 195.9 196.7 212.2
fischer-1 48 521996 4987796 5190490 19481530 4.8 4.6 5.1
fischer-2 1 358901 3345866 3345866 10426444 135.8 136.5 145.5
fischer-2 48 358901 3345866 3541373 10426444 3.4 3.3 3.7
train-gate 1 119989268 119989268 119989268 177201017 1608 1621 1724
train-gate 48 119989268 119989268 319766765 177201017 34.9 45.4 145.8

Experimental results without subsumption. We first compare the
algorithms bfs, dfs (parallel reachability) and cndfs (accepting cycles)
without subsumption. Table 6.1 shows their sequential (P = 1) and parallel
(P = 48) runtimes (T). Note that sequential cndfs is just ndfs. We show
the number of explicit state parts (|L|), full states (|R|), transitions (|⇒|),
and also the number of states visited in cndfs (|V |). These numbers confirm
the findings reported previously for cndfs applied to untimed systems: The
sequential run times (P = 1) are very similar, indicating little overhead in
cndfs. For the parallel runs (P = 48), however, the number of states visited
by cndfs (|V |) increases due to work duplication.

To further investigate the scalability of the timed cndfs algorithm, we
plot the speedups in Figure 6.7. Vertical bars represent the (mostly neg-

89

Chapter 6

0

10

20

30

40

50

●

●

●

●

●

●
●

●

0 10 20 30 40 50
Threads

S
pe

ed
up

Model

● csma

fddi

fischer−1

fischer−2

train−gate

Figure 6.7: Speedups in LTSmin/opaal

ligible) standard deviation over the five benchmarks. Three benchmarks
exhibit linear scalability, while train-gate and fddi show a sub-linear, yet
still positive, trend. For train-gate, we suspect that this is caused by the
structure of the state space. Because fddi has only 119 explicit state parts,
we attribute the poor scalability to lock contention, harming more with a
growing number of workers.

Subsumption. Table 6.2 shows the experimental data for bfs, dfs and
cndfs with subsumption (Algorithm 12). The number of explicit state parts
|L| is stable, since reachability of locations is preserved under subsumption
(Proposition 2). However, the achieved reduction of full states depends on
the search order, so we now report |R| per algorithm, as a percentage of the
original numbers.

We confirm [12] that subsumption works best for bfs reachability, with
even more than 30-fold reduction for fddi, but none for train-gate (cf. column
|R|bfs). For these benchmarks, the reduction is correlated to the ratio X =
|R|/|L|; e.g. X ≈ 1500 for fddi and X ≈ 10 for fischer. Subsumption is
much less effective with sequential dfs, but parallel dfs improves it slightly
(cf. column |R|dfs).

cndfs benefits considerably from subsumption, but less so than bfs:
we observe around 2-fold reduction for fddi, fischer and csma (cf. column
|R|cndfs). Surprisingly, the reduction for parallel runs of cndfs is not better
than for sequential runs. One disadvantage of cndfs compared to bfs is

90

Multicore Büchi Emptiness Checking for Timed Automata

Table 6.2: Runtimes and states counts with subsumption (in % relative to
Table 6.1).

Model P |R|bfs |R|dfs |R|cndfs |V |cndfs | ⇒ |bfs Tbfs Tdfs Tcndfs

csma 1 48.7 88.9 58.3 94.7 41.2 41.3 90.3 95.2
csma 48 48.7 77.5 58.3 93.6 41.2 64.5 85.3 97.8
fddi 1 3.1 3.4 50.8 53.1 3.4 4.3 4.7 132.3
fddi 48 3.1 2.4 50.8 80.1 3.4 51.0 19.5 121.0
fischer-1 1 17.9 72.4 55.2 91.9 27.0 25.6 78.7 97.3
fischer-1 48 17.9 71.1 55.2 95.9 27.0 33.1 79.6 103.0
fischer-2 1 18.6 68.5 77.5 95.8 28.7 27.0 75.3 98.9
fischer-2 48 18.6 62.7 77.5 95.8 28.7 37.4 72.5 98.3
train-gate 1 100.0 100.0 100.0 100.0 100.0 100.6 100.6 104.3
train-gate 48 100.0 100.0 100.0 100.0 100.0 101.7 83.5 83.1

that only red states attribute to subsumption reduction. Probably some
“large” states are never coloured red. We measured that for all benchmark
models, 20%–50% of all reachable states are coloured red (except for fischer-
2, which has no red states).

Subsumption decreases the running times for reachability: a lot for bfs,
and still considerably for dfs, both in the sequential case and the parallel
case, up to 48 workers. However, subsumption is less beneficial for the
running time of cndfs (it might even increase), but the speedup remains
unaffected.

6.7 Viewed as Abstractions

In this section the view that the algorithms put forth in the paper can instead
be reformulated as different abstractions over a lattice automaton will be
explored. This will require that the classic NDFS algorithm be reformulated
in terms of computing a fixpoint (albeit with a small trick to compute the
fixpoint in correct DFS order), and subsequently this formulation can be
extended to exploit subsumption. For the purpose of this exercise it is easier
to work on the classic algorithm without any extensions for early termination
– these extensions (the cyan color) only complicate the exercise, and are of
no use when computing a fixpoint, because there is no possibility of early
termination. Putting this into perspective the algorithms as formulated in
Algorithm 10 and Algorithm 11 can be seen as imperative descriptions, while
what is formulated in this section is a declarative description.

The classic Nested Depth First Search (NDFS) algorithm for a discrete
state space ([93, 33]) can be reformulated as calculating a fixpoint in a lattice
statespace of structure

S × (S ∪ {⊥})× Lcolor (6.1)

91

Chapter 6

Algorithm 13 The classic NDFS algorithm [33], as formulated in [93, Fig.
1].

1: procedure ndfs(s)
2: dfsBlue (s0)

3: procedure dfsBlue (s)
4: s.blue := true
5: for all t in next-state(s) do
6: if ¬t.blue then
7: dfsBlue (t)

8: if s ∈ F then
9: seed := s

10: dfsRed (s)

11: procedure dfsRed (s)
12: s.red := true
13: for all t in succ(s) do
14: if ¬t.red then dfsRed (t)
15: else if t = seed then
16: report cycle

where S is the statespace, and Lcolor is an abstract domain given by Defini-
tion 46. The structure of the state space is, informally:

1. The current state of the automaton (blue/red search).

2. A seed accepting state, for which we are now searching for a path back
to (red search); or ⊥ if no accepting state has been seen (blue search).

3. The colors of the current state.

It should be noted that each state of this statespace closely correspond to a
state of Algorithm 13.

Definition 46. The NDFS color abstract domain is defined as Lcolor =
(D,v,t,u,⊥,>) where

• D is the set {⊥, blue, red ,>}, from which elements will typically be
denoted c,

• v, t, and u is given by Figure 6.8.

• ⊥ is an element representing no colors.

• > is an artificial greatest element, used to denote Büchi acceptance.

The domain can be structured as such, due to the fact that a state that
is red must already be blue [93], also formulated as (I0) on page 82 for the
slightly modified algorithm.

The transition system for the state space from Equation 6.1 is given
by lifting each transition (s → t) from the transition relation for S to
(s, seed, c)→ (t, seed′, c′) with the following transitions:

92

Multicore Büchi Emptiness Checking for Timed Automata

⊥

blue

red

>

Figure 6.8: The NDFS color domain with the ordering shown as lines.

1. Add a non-deterministic transition if s is accepting and seed = ⊥,
with seed′ = s, c′ = red . This corresponds to the call to dfsRed (s) on
l.10 of Algorithm 13.

2. A normal transition:

(a) if t = seed then c′ = >, to capture the discovery of a Büchi
accepting lasso, and seed′ = seed. This corresponds to the check
on l.15 of Algorithm 13.

(b) otherwise: seed′ = seed, c′ = c, as the blue or red search con-
tinues. This corresponds to the recursive call on l.7 or l.14 of
Algorithm 13.

Note that the order of these transitions is important, in order to preserve the
required depth-first search order: transitions of type 2 needs to be explored
depth-first, before transitions of type 1. The initial state is (s0,⊥, blue),
where s0 is the initial state of S.

The ordering over the state space is given by

(s, seed, c) v (t, seed′, c′) ⇐⇒ s = t ∧ c v c′ (6.2)

which captures that a state (regardless of seed) needs to be explored iff

(i) it wasn’t explored before and should now be explored as blue

(ii) it was explored as blue but should now be explored as red

(iii) it was explored as red but now an accepting cycle was found, which
needs to be propagated.

Theorem 2. Computing the fixpoint of the transition system described using
Algorithm 3 on page 31, with a worklist implemented as a stack, will result
in a fixpoint f : S × (S ∪ {⊥}) → Lcolor. If ∃s ∈ S s.t. f(s, s) = > then S
has an accepting lasso.

93

Chapter 6

Furthermore, the worst-case time complexity of visiting each state at
most twice in the case of no accepting lassos can be verified simply by looking
at the ordering in Equation 6.3 and the structure of Lcolor in Figure 6.8: If
no transition assigns the > value the fix-point value of any s ∈ S can increase
at most twice (from ⊥ to blue, and from blue to red). In case of an accepting
lasso, the worst-case time complexity is visiting each state three times – a
case avoided by the early termination of Algorithm 13.

For the case where the statespace S is actually a finite simulation graph
SGfin(B) this construction of course works as well, due to Proposition 3
on page 79. Expanding the statespace structure using the definition of the
simulation graph using Definition 41 on page 77 gives us:

S × (S ∪ {⊥})× Lcolor
(L×Z)× ((L×Z) ∪ {⊥})× Lcolor

where we recall that

L is the set of locations of the automaton

Z is the set of zones, typically represented as an element of the DBM do-
main, Definition 19 on page 24.

In this statespace we can define a different ordering, capturing the im-
provements put forth in Algorithm 11 on page 85:

((`, Z), seed, c) v ((`′, Z ′), seed′, c′) ⇐⇒ ` = `′ ∧ Z v Z ′∧ (6.3)

((Z = Z ′ ∧ c v c′)∨ (6.4)

(red v c′ ∧ c v c′)) (6.5)

where Equation 6.4 is the same condition as Equation 6.2, and Equation 6.5
is the condition that a state is subsumed if the subsuming state is at least
red .

From this exercise a few interesting points can be extracted: it is immedi-
ately obvious that the ordering defined by Equation 6.3 is more fine-grained
than the ordering of Equation 6.2. In addition, it shows how the NDFS al-
gorithm can be implemented using a fixpoint algorithm such as Algorithm 3
on page 31, albeit with the small restriction of using a stack for the worklist
to enforce a certain iteration order.

94

Chapter 7

An Automata-Based
Approach to Trace
Partitioned Abstract
Interpretation

This chapter is based on the paper “An Automata-Based Approach to Trace
Partitioned Abstract Interpretation” [83], currently under submission. Sec-
tion 7.8 is an independent expansion for this thesis: it showcases some of
the possibilities of having a model of the program as an artifact enables.

The paper proposes to use abstract interpretation to extract a lattice
automaton (based on the control-flow graph of the program) with abstract
transformers on the edges. This automaton, being an artifact in itself, can
then be manipulated by the program analyst: edited, simulated, and verified.
One possibility is to incorporate knowledge about the environment. Another
is to do trace partitioning in order to gain precision.

It is shown how the model checker developed in Chapter 5 can be ex-
tended to incorporate joining of states, and how the resulting algorithm
computes the exact same fixpoint as the classic worklist algorithm. The
model checker benefits from using multiple cores.

Abstract

Trace partitioning is a technique for retaining precision in abstract inter-
pretation, by partitioning all traces into a number of classes and computing
an invariant for each class. In this work we present an automata-based ap-
proach to trace partitioning, by augmenting the finite automaton given by
the control-flow graph with abstract transformers over a lattice. The result

95

Chapter 7

is a lattice automaton, for which efficient model-checking tools exist. By
adding additional predicates to the automaton, different classes of traces
can be distinguised.

This shows a very practical connection between abstract interpretation
and model checking: a formalism encompassing problems from both do-
mains, and accompanying machinery that can be used to solve problems
from both domains efficiently.

This practical connection has the advantage that improvements from
one domain can very easily be transferred to the other. We exemplify this
with the use of multi-core processors for a scalable computation. Further-
more, the use of a modelling formalism as intermediary format allows the
program analyst to simulate, combine and alter models to perform ad-hoc
experiments.

7.1 Introduction

The formal connections and similarities between model checking and static
analysis are well known and have been explored by both Schmidt and Stef-
fen [92], viewing static analysis as a model checking problem, and more
recently by Nielson and Nielson [81], viewing model checking as a static
analysis problem.

In this paper we exploit, and further explore, this deep connection be-
tween abstract interpretation and model checking by taking it in a more
practical direction. In particular, we develop an automata-based approach
to trace partitioning, as used in abstract interpretation, in which the control-
flow graph of a program under analysis is transformed into a lattice automa-
ton that can be model checked efficiently [42] to yield program analysis in-
formation. An overview of the proposed method can be seen in Figure 7.1.
The proposed approach opens a very direct route for an implementation of

Program

Model
(Lattice

automata)

Analysis
result
(Fixed
Point)

Extract
control
flow,

compute
abstract
trans-

formers

Compute
fix-point,

using
model
checker

Figure 7.1: Overview of the proposed method.

an abstract interpretation to take advantage of highly-optimised state-of-
the-art model checking engines and automatically gain by any performance
improvements in the underlying model checking engine. In the following,

96

Automata-Based Approach to Trace Partitioned Abstract Interpretation

we illustrate this point by taking advantage of recent advances in model
checking on multi-core platforms [43] to obtain an efficient implementation
of abstract interpretation through trace partitioning.

In addition to efficient implementations, we believe that our approach
also simplifies the often difficult task of using, adapting, and fine-tuning
trace partitioning in abstract interpretation.

Finally, since programs in our approach are represented by expressive
high-level models ready for model checking, it is easy to refine or add to
the models. This is useful, e.g., for running simulations of the program;
modelling the environment in which the program will run; or other systems,
devices, or services that the program will interact with. These additional
models can be as concrete or abstract as needed, e.g., using specifications
to model services that have not yet been implemented.

As an example consider whether this program fragment is buggy:

1 char s [4 0] ;
2 ge t s () ;
3 p r i n t f (”%s ” , s) ;

The answer should be: it depends. It could be the case that a guarantee can
be made that any input will at most be 39 characters long. By extracting an
abstract model of the program, this model can be edited by a program ana-
lyst to add details about the environment that are external to the program,
in order to e.g. eliminate false warnings.

7.2 Related Work

The structure A×D where A is a finite set and D is a partially ordered but
possibly infinite set, is a structure occuring:

• In model checking of infinite state systems (e.g. timed automata [43])
where the basis is a finite automaton with states A, enhanced with a
symbolic part D where each element represents an infinite set of clock
valuations.

• In static analysis using abstract interpretation [34], where the basis is
a lattice D representing a program invariant over a set of traces, and
A is used to divide the set of all traces into partitions (most commonly
partitioning on the end-state of the trace) [76].

Additionally, a least upper-bound operator on D is used for doing approxi-
mate analysis: it is the basis of abstract interpretation [34], but also occurs
in model checking of timed automata in the form of the convex hull abstrac-
tion [45].

Because the structure is so common, it is difficult to list all related work;
we will focus on related work in the area of program analysis. We have

97

Chapter 7

derived the proposed formalism from that used for model checking timed
automata in uppaal [16], but it could as well be characterised as deriving
from well-structured transition systems [51]. The addition of a join operator
to the state space sets our definition apart from both, but the definition of
abstraction operators has previously been done for e.g. timed automata [45]
with the convex-hull abstraction for zones, or for finite lattices in finite
automata in αSPIN [46]. In this work we address cases where the lattice
has no infinite ascending chains, or where widening is applied to eliminate
such chains.

Abstract interpretation [34] derives abstract transformers from the con-
crete semantics of a program, in relation to a given abstraction, namely a
lattice. The abstraction is typically defined in terms of a Galois connec-
tion, or using widening/narrowing [37] where the latter is more powerful;
in this work we focus on the Galois connection approach, and implicitly
apply widening in place of joining to eliminate infinite ascending chains, as
also done in [92]. Much work has been focused on finding abstract domains
that are powerful enough to prove invariants of interest in real programs,
while still being computationally affordable [40]. One technique for gain-
ing precision without changing domain or sacrificing performance is trace
partitioning [76, 61, 56, 90]. In this work we show how trace partitioning
corresponds directly to instrumenting a finite automaton with additional
predicates. [22] is another work in this area, describing a series of program
analyses configurable in precision by a partial join operator, mimicking as-
pects of trace partitioning, but remarking that their base work-engine is a
model checker.

The connection between abstract interpretation and model checking has
been explored by Schmidt and Steffen [92], where it was shown how a param-
eterised variant of CTL-logic model checked over an abstract interpretation
of a program can be used to answer data-flow queries. We build heavily on
the work of [92], where the focus in [92] was on showing how model check-
ing machinery could be used to solve the same problems as static analysis
for models where a finite abstract model can be derived. Our focus is on
showing that the same machinery can solve both model checking problems
and static analysis problems, also for models where joining or widening is
required for termination. In [38] it was shown how abstract interpretation
can be used to reduce the state space needing to be searched by a model
checker.

Model checking [9] was initially only applicable for small finite state
automata. The state-space explosion problem meant that abstractions were
needed [32] to reduce the state space to practical size. The case of finite
domains [32, 4] allows the methods for finite state automata to be applied
to these abstract models directly. In general, infinite domains are avoided
because termination is not guaranteed.

98

Automata-Based Approach to Trace Partitioned Abstract Interpretation

In model checking software the counter-example guided abstraction re-
finement [59] approach allows model checking of increasingly more detailed
abstractions of the program, starting from the control-flow graph. Based
on found error traces additional boolean predicates are added to the lat-
tice domain. CEGAR works very well in practice, but termination is not
guaranteed.

Very efficient implementations of model checking algorithms for models
with lattices exist, mostly in the area of timed automata model-checking [72,
43]. In particular model checkers such as LTSmin [68] exploit the multiple
processing cores of modern shared-memory processors to do the work in
parallel. The multi-core backend of LTSmin has recently been extended to
the timed automata setting [43], with shown scalability up to 48 cores. The
static analyser Astreé also has a parallel version [80], for which timings on
a distributed cluster architecture (non-shared memory) are reported scaling
up to 3–4 machines.

The work on lattice automata in [65] is unrelated to our definition of
lattice automata, in that we allow arbitrary transitions as long as the transi-
tions are monotonically enabled with regards to the lattice ordering, and [65]
only allows transitions to affect the “value of a run” using the meet operator
– which does not allow abstract transformers such as those of assignments.

7.3 Abstract Interpretation and Trace Partition-
ing

In this section we briefly review and define concepts and terminology related
to trace partitioning in abstract interpretation, following Mauborgne and
Rival [76].

A program is taken to be a transition system (S,A,→, s0) where S is
the set of states, A is the set of actions (statements), →⊆ S × A × S is
the transition relation, and s0 is the initial state. Following convention, we
write s

a−→ s′ for the transition (s, a, s′) ∈→.

A finite trace over a program is a finite sequence of states: σ = s0 . . . sn,
such that for 0 ≤ i ≤ n, si ∈ S and si

ai−→ si+1 for some ai ∈ A. We denote
the final state of a trace σ as σa. The set of all (finite) traces of a program
P is denoted JP K = {σ ∈ S∗|σ is a finite trace of P} where S∗ is the set of
all sequences of states in S.

In “standard” abstract interpretation, i.e., non-trace partitioning ab-
stract interpretation, safety properties for a given program can be verified
using approximations of the set of states that are reachable by the program.
In the following we will approximate sets of traces, in anticipation of future
developments.

The approximation of the set of traces are represented using an abstract
domain, D, whose concomitant concretisation function maps an abstract

99

Chapter 7

representation, ` ∈ D, to the set of (program) traces represented by the
abstract representation, i.e., γ : D → 2S

∗
. This gives the existence of a

Galois connection, comprising α and γ s.t. α(X) v ` ⇐⇒ X v γ(`). This
Galois connection, can be used to induce an abstract model [92] of a program
P = (S,A,→, s0), by defining for each concrete action a corresponding
abstract action, a ∈ A fa : D → D, that safely approximates the concrete
semantics by requiring that for all s, s′ ∈ S the following holds

s
a−→ s′ and s1s2 · · · s ∈ X and α(X) = ` =⇒ fa(`) = `′ and s1s2 · · · ss′ ∈ γ(`′)

For any program, P , we denote this abstract model of (all the actions of) a
program: MP = {fa|a ∈ A}.

In the above approach to abstract interpretation, all traces (correspond-
ing to a given abstract value) are treated in the same way, since it is not
possible to discern where the different traces originate from, e.g., whether
or not a given trace corresponds to a ‘then’ branch of a conditional or to the
‘else’ branch. This may lead to an increased number of false positives when
attempting to verify safety properties.

As shown in [76], it is possible to extract more information from the
traces by partitioning the set of traces and thereby increase the precision of
the analysis by treating each partition separately. Partitioning is performed
through the use of a partitioning function:

Definition 47 (Partitioning function [76]). A function δ : E → 2F is called
a partitioning function if and only if it is covering:⋃

e∈E
δ(e) = F

and it is a partitioning of F :

∀e, e′ ∈ E : e 6= e′ =⇒ δ(e) ∩ δ(e′) = ∅

In [76] it is proven that using trace partitioning leads to more precise
analyses.

An example of a trace partitioning is the final control state partition that
partitions traces based on their final state. This partitioning is commonly
built into the abstract semantics in “standard” abstract interpretation. Fol-
lowing [76], we define a state to be a pair consisting of a control location,
and a memory state: S = LOC ×MEM . The final control state partitioning
function is then δLOC : LOC → 2S

∗
, such that:

δLOC (l) = {σ ∈ S∗|σa = (l,m) for some m ∈ MEM }

We can now define the result of a static analysis using abstract interpre-
tation under a trace partitioning.

100

Automata-Based Approach to Trace Partitioned Abstract Interpretation

Definition 48 (Maximal Fixed Point Solution [82]). Let P = (S,A,→, s0)
be a program,MP an abstract model of P over the lattice L, and δ : E → 2S

∗

a partitioning function. The maximal fixed point solution (MFP) for the set
of monotone framework equations for P is then a mapping MFPP : E → D,
such that for any element e ∈ E: MFPP (e) is the least fixed point given
MP and P .

The MFP is typically calculated using a worklist algorithm; for the final
control state partitioning the instantiation is as shown in Algorithm 14.

Algorithm 14 The worklist algorithm for computing the MFPP [82, p.
75], given abstract model MP = {fa|a ∈ A}, and initial lattice element `0.
In the algorithm s, t ∈ LOC and a ∈ A.

procedure Worklist
W := {(s, a, t)|(s, a, t) ∈→}
Analysis(·) := ⊥, Analysis(s0) := `0
while W 6= ∅ do

Remove some (s, a, t) from W
if fa(Analysis(s)) 6v Analysis(t) then

Analysis(t) := Analysis(t) t fa(Analysis(s))

for all a′, t′ where t
a′−→ t′ do

W := W ∪ {(t, a′, t′)}
MFP := Analysis

More specialised partitioning functions can be defined, resulting in a
more precise MFP . In [76] a number of partitioning functions are defined
and discussed, partitioning on control flow and values, these will be treated
in Section 7.5. A distinction should be made between static partitioning
(where the trace partitioning is decided before the analysis, and does not
change during the analysis) and dynamic partitioning (where the trace parti-
tioning can change during the analysis). In Section 7.5 we will see how static
partitioning allows for a more efficient encoding into an abstract model.

7.4 Lattice Automata

In the following we introduce the concept of a lattice automata and define
model checking of lattice automata. Model checking is a well-known tech-
nique for verification purposes: it takes as input a model of the intended
target system, e.g., a representation of a program, typically in the form
of an automaton, and then computes the unfolded transition system of the
automaton on-the-fly while checking all encountered states against the prop-
erties to be verified (usually formulated in a special logic). In this paper we
will limit ourselves to reachability properties, namely whether a state with
a certain property can be reached.

101

Chapter 7

We start by defining lattice transition systems, a formalism that sub-
sumes many other types of transition systems traditionally used in model
checking, such as finite automata and timed automata.

Definition 49 (Lattice Transition System). A lattice transition system is
a triple T = (S,L,−→) where S is a finite set of states, L = (D,v,t) is
a lattice and −→⊆ S × D × S × D is a transition relation which has the
monotonicity property: for all s1, s2 ∈ S and `1, `2, `

′
1 ∈ D if (s1, `1) −→

(s2, `2) and `1 v `′1 then (s1, `
′
1) −→ (s2, `

′
2) for some `′2 ∈ D with `2 v `′2.

Transitions are usually written as (s, `) −→ (s′, `′) whenever (s, `, s′, `′) ∈−→.
Configurations are pairs of the form (s, `) where s ∈ S and ` ∈ D.

Definition 50 (Path). A finite path in a lattice transition system T is a fi-
nite sequence σ = (s0, `0)(s1, `1) · · · (sn, `n) such that (si, `i) −→ (si+1, `i+1)
for all i, 0 ≤ i ≤ n− 1.

We extend the v ordering to configurations such that (s, `) v (t, `′) ⇐⇒
s = t ∧ ` v `′. Given a set of configurations X and a configuration (s, `) we
will write (s, `) v X to mean ∃(s, `′) ∈ X : ` v `′.

To describe a lattice transition system in a concise way we will use net-
works of extended lattice automata (analogously to networks of timed au-
tomata as in uppaal [16]). An extended lattice automata is a finite au-
tomata extended with a finite set of integer variables of a finite domain.
In uppaal, and our implementation in opaal, a restricted subset of the
C programming language can be used to describe what conditions guard a
transition, and how a transition updates the integer variables. For a net-
work of n automata with states Si, and m integer variables over the finite
domain {0, . . . ,max} the set of states S of the network product is given by
the crossproduct S0 × · · · × Sn × {0, . . . ,max}m, which is equivalent to a
(large) finite automaton.

Denoting lattice elements by `, `′ transitions can also be guarded by
expressions over the lattice, e.g. ` u `′ 6= ⊥, as long as the monotonicity
property is satisfied. Note that the monotonicity property does not apply to
guards or updates of the discrete variables. We will describe how a transition
updates the lattice element from ` to `′ by an assignment of a expression
using ` to `′, e.g. `′ = ` u `′′. To describe an abstract transformation of an
action a of the lattice element ` we will use the notation `JaK, equivalent to
applying the abstract transformer fa(`).

In a network of automata, different automata can synchronise over chan-
nels, such that one automaton initiates a synchronisation over channel ch
using the syntax ch!, while another receives on the same channel: ch?. Syn-
chronisations can either be one-to-one (handshake), or one-to-many (broad-
cast). Handshake synchronisation is blocking, and chooses a receiver non-
deterministically among the enabled receivers. Unless otherwise noted all

102

Automata-Based Approach to Trace Partitioned Abstract Interpretation

synchronisations are handshake. An example of a network of extended lat-
tice automata is shown in Figure 7.2.

s0

s1

s2

s3

s′0

s′1

s′2

s′3

`uJaK 6= ⊥
i := 7

call foo!

return foo?

call foo?

i = 7
`′ = `JbKtrue

i ≤ 17∧
` u JcK 6=
⊥

return foo!

Figure 7.2: An example of a network of two lattice automata, with in-
teger variable i, initial states s0 and s′0, and two channels call foo and
return foo.

With the basic notions in place, we now turn to (reachability) model
checking: model checking of lattice automata asks whether a model, M,
satisfies a formulae φ, expressed in some appropriate logic, writtenM |= φ.
The result of solving a model checking problem instance is either a negative
answer and a counter-example path, σ, or a positive answer and a set of
configurations {(s0, `0), . . .} such that for any reachable state (s, `) there
exists some (si, `i) such that (s, `) v (si, `i).

The requirement that a positive answer is accompanied by a set of config-
urations that cover all reachable configurations can be viewed as providing a
certificate. It typically comprises the set of configurations examined during
the model checking, the so-called “passed set” of all explored configurations.
We call the set of configurations returned a covering set. Traditionally, the
covering set is not presented to the user, due to the fact that its size may
be exponential in the size of the input model. The covering set is related to
the coverability problem of well-structured transition systems [54]. In the
following we are only interested in using model checking to find a covering
set, and thus assume the formula φ = true, which is always satisfied.

We will now give two algorithms for solving the model checking problem
for a lattice transition system.

Algorithm 15 is the algorithm typically used for model-checking reacha-
bility for timed automata, where the lattice L is the set of all zones (convex
sets of clock valuations, efficiently representable as difference-bounded ma-
trices), and v is the inclusion abstraction of [45]. If the set of reachable
configurations in the model M is finite (typically because the lattice do-

103

Chapter 7

Algorithm 15 Algorithm to compute a covering set or a counter-example,
given a model in the form of a lattice transition system M = (S,L,→),
initial configuration (s0, `0) and formulae φ, if the reachable configurations
in M is finite.

1: procedure MC-cover(M, (s0, `0), φ)
2: W := {(s0, `0)}, P := ∅
3: while W 6= ∅ do
4: Remove some (s, `) from W
5: if (s, `) 6|= φ then return counterexample

6: if (s, `) 6v P then
7: for all (t, `′) s.t. (s, `)→ (t, `′) do
8: W := W \ {(t, `′′)|`′′ v `′} ∪ {(t, `′)}
9: P := P \ {(s, `′)|`′ v `} ∪ {(s, `)}

10: return Covering set P

main D is finite), Algorithm 15 will terminate.

Lemma 9. If Algorithm 15 returns a covering set it is exact, i.e. some
(s, `) is covered by a reachable configuration if and only if (s, `) v P .

Sketch. For the if direction assume that some (s, `) is covered by a reachable
configuration. The algorithm will eventually visit some state (s, `′) with
` v `′ because of the monotonicity of →, and add this to P , so eventually
(s, `) v P . To see that this holds invariantly afterwards notice that the only
configurations removed from P in line 9, are covered by the newly added
state thus preserving the invariant.

For the only if direction assume (s, `) v P . Since the algorithm only
adds a configuration (s, `) to P if it is reachable and not already covered by
P , the lemma holds.

Algorithm 15 is only useful for finite state spaces, but provides exact an-
swers. If a sound but over-approximated answer is sufficient, Algorithm 16
can be used. Algorithm 16 is the algorithm used for over-approximate reach-
ability checking of timed automata using the convex-hull abstraction [45]. If
the lattice L has no infinite ascending chains Algorithm 16 will terminate.
If L has infinite ascending chains widening will have to be used instead of
joining.

Lemma 10. If Algorithm 16 returns a covering set it is sound, i.e. if some
(s, `) is covered by a reachable configuration then (s, `) v P .

Sketch. Assume (s, `) is covered by a reachable configuration. Then at some
point an (s, `′) with ` v `′ has been removed from W at line 4, because of the
monotonicity of→. At line 11 the invariant (s, `′) v P (implying (s, `) v P)

104

Automata-Based Approach to Trace Partitioned Abstract Interpretation

Algorithm 16 Algorithm to compute a covering set or a counter-example,
given a model in the form of a lattice transition system M = (S,L,→
), initial configuration (s0, `0) and formulae φ, and using lattice join as
abstraction.

1: procedure MC-join(M, (s0, `0), φ)
2: W := {(s0, `0)}, P := ∅
3: while W 6= ∅ do
4: Remove some (s, `) from W
5: if (s, `) 6|= φ then return counterexample

6: if (s, `) 6v P then
7: for all (t, `′) s.t. (s, `)→ (t, `′) do
8: `joined := `′ t

⊔
{`′′′|(t, `′′′) ∈W ∪ P}

9: W := W \ {(t, `′′′)|`′′′ v `joined} ∪ {(t, `joined)}
10: `′′ := ` t

⊔
{`′′′|(s, `′′′) ∈ P}

11: P := P \ {(s, `′)|`′ v `′′} ∪ {(s, `′′)}
12: return Covering set P

will be established. Future modifications to P at line 11 preserves this
invariant.

Algorithm 15 was implemented in the multi-core backend of LTSmin
with the purpose of model checking timed automata [43]. The performance
and scalability of this algorithm was shown to scale almost linearly up to 48
processors, primarily limited by the size/structure of the model.

For the implementation of Algorithm 15 the disjunctive completion of
the lattice L needs to be stored in general. In the implementation [43] this is
done by storing states (s) in a shared passed-waiting hash table, and for each
state storing a linked list of lattice elements (`, `′, . . .) forming configurations
((s, `), (s, `′), . . .), and a number of bits for each lattice element marking
whether it is waiting or passed. This leads to scaling sub-linearly on models
where there are many reachable configurations compared to the number of
reachable states.

In this work we have extended the implementation to also have joining,
providing a multi-core implementation of Algorithm 16. Because the imple-
mentation actually works on the disjunctive completion we can allow the
join operator t to be selective; it can select to keep two elements separate
if so desired. This will be important for implementing dynamic partition-
ing. Note how Lemma 10 still holds in this case; on lines 9 and 11 only
configurations actually covered by the joined lattice element are discarded.

105

Chapter 7

7.5 Abstract Interpretation as Lattice Model Check-
ing

In this section we describe how to concretely transform the problem of com-
puting a MFP given a program P = (S,A,→, s0) and abstract model of
the programMP over a domain D and a trace partitioning function δ, into
a problem of computing a covering set for a lattice automaton. The pre-
sentation will be divided into four parts, depending on the nature of the
trace partitioning function. Even though the most general case (dynamic
partitioning) is sufficient, the simpler cases are crucial for the performance
of the model checking.

7.5.1 Final Control Location Partitioning

The most abstract partitioning function we consider in this paper is the
final control state partitioning δLOC as defined in Section 7.3. Recall that it
partitions traces, based on the control location of the last state of the trace.
Given a trace, it is thus sufficient to keep track of which control location
the trace ends in, to know which trace partition the current memory state
should be put in. Also recall that we assume program states are pairs in
LOC ×MEM .

A finite automaton that accepts valid traces of the program P and at
the same time keeps track of the current control location is the control-
flow graph, given by the set of locations LOC and the set of edges E ⊆
LOC × LOC such that (s, s′) ∈ E iff ∃a ∈ A such that s

a−→ s′. Consider
the program in Figure 7.3a, for which the control-flow graph is shown in
Figure 7.3b.

Given abstract semantics for the program P ,MP over some lattice L =
(D,v, t), we construct a lattice automaton T = (S,D,⇒) based on the
control-flow graph:

S is the set of control locations LOC

D is the abstract domain as given by the abstraction

⇒ is the transition relation such that for a pair of configurations (s, `) and
(s′, `′) it holds that (s, `) ⇒ (s′, `′) if and only if ∃a ∈ A such that
s
a−→ s′ and fa(`) = `′.

The lattice automaton for the program in Figure 7.3a is shown in Figure 7.3c,
with the abstract transformers written on the edges as transformations of a
lattice element ` into another `′. Using Algorithm 16 a covering set can be
computed for this lattice automaton.

We can now state our main theorem:

106

Automata-Based Approach to Trace Partitioned Abstract Interpretation

1 i f (x > 42)
2 y := −2
3 else
4 y := 0
5 while (y = 0 && x > 42)
6 x := x + 1
7 x := 2
8

(a) Program

s1

s2s4

s5

s6s7

s8

(b) Control-flow graph

s1

s2s4

s5

s6s7

s8

`′ = ` u Jx > 42K`′ = ` u Jx ≤ 42K

`′ = `Jy := 0K `′ = `Jy := −2K

`′ = ` u Jy = 0 ∧ x > 42K

`′ = `Jx := x+ 1K

`′ = ` u Jy 6= 0 ∨ x ≥ 42K

`′ = `Jx := 2K

(c) Lattice automaton

Figure 7.3: (a) Program, (b) Control-flow graph of the program, and (c)
constructed lattice automaton.

Theorem 3. Given a program P = (S,A,→, s0) and abstract semantics
MP over a domain D and the final control trace partitioning function δLOC ,
the MFP as computed by Algorithm 14 is the same as the covering set P
computed by Algorithm 16 on the lattice automaton T = (S,D,⇒) con-
structed as described above.

Sketch. For simplicity we assume the case of t being a total function. The
cardinality of the covering set, and MFP are then the same: one lattice
element in LOC . We can therefore view P as a mapping P : LOC → D,
where P (s) = ⊥ if there is no (s, `) 6∈ P . Similarly, we can consider the
waiting list W as a function W : LOC → D, because at any point in the
algorithm there will be only one (s, `) ∈W .

We show the proof in two parts: first we show that each iteration of
Algorithm 16 can be simulated by a finite number of iterations in Algo-
rithm 14. From [82, Sec. 2.4] we have that Analysis v MFP after each
iteration of Algorithm 14. In the second part we show that at termination
P (s) is a fixed-point.

107

Chapter 7

First part: each update of P (s) in Algorithm 16 can be simulated by a
finite number of updates of Analysis(s) in Algorithm 14. Note that line 11
can be written as P (s) := P (s)t `, where (s, `) was removed from W . Also,
line 9 can be written as W (s) := W (s) t P (s) t fa(`) for some abstract
transformer fa.

We proceed by induction on the number of iterations in Algorithm 16.
For the base case we have that the first update of P at line 11 must be of
s0, and because P (s0) = ⊥ we have that

P (s0) := ⊥ t `0 = `0

This is simulated by the initial value of Analysis(s0) in Algorithm 14. In
the first iteration, the configurations added to W in line 9 of Algorithm 16
are equivalent to adding the transitions to W in Algorithm 14.

In the inductive step we have that P (s) := P (s)t ` at line 11 must have
produced ` as follows, on line 9 of some previous iteration:

` = W ′(s) t P ′(s) t fb(`′) (7.1)

for some previous values of W ′(s) and P ′(s). By the induction hypothesis we
have that P ′(s) is equal to Analysis(s) for some iteration for some execution
of Algorithm 14.

The value of W ′(s) is the result of the join of a number of lattice elements
`′ found as successors in line 7, which is calculated as `′ = fa(W

′(s′)) for
some transition (s′,W ′(s′))⇒ (s, `′). Thus the general form of W ′(s) is:

W ′(s) = fa(W
′(s′)) tW ′(s) t P ′(s)

for which W ′(s′) can again be similarly decomposed as being calculated in
some previous iteration. Because the number of iterations is finite, at some
point it will be the case that W ′(s) = ⊥. Then we have that:

W ′(s) = fa(W
′(s′)) t ⊥ t P ′(s) = fa(W

′(s′)) t P ′(s)

in which fa(W
′(s′)) can be similarly decomposed to a case where fa(W

′(s′)) =
fa(P

′′(s′)), giving us

W ′(s) = fa(P
′′(s′)) t P ′(s)

which substituted back into equation (7.1) gives (because of the monotonic-
ity of P ′′(s) v P ′(s) v P (s)):

` = fa(P
′′(s′)) t P ′(s) t P ′(s) t fb(`′′) (7.2)

P (s) := P (s) t fa(P ′′(s′)) t P ′(s) t P ′(s) t fb(`′′) (7.3)

P (s) := P (s) t fa(P ′′(s′)) t fb(`′′) (7.4)

108

Automata-Based Approach to Trace Partitioned Abstract Interpretation

This last equation is equivalent to two iterations of Algorithm 14 updating
P (s) given two different transitions, concluding the proof of this part.

Second part: At termination P (s) is a fixed-point. Assume, towards a
contradiction, that for some transition s

a−→ t it is the case that fa(P (s)) 6v
P (t). P (s) was last updated in line 11, but before P (s) was updated the
abstract successor corresponding to the transition s

a−→ t was considered and
a configuration (t, fa(`)tW ′(t)tP ′(t)) was put on the waiting list W . Any
update of W (t) afterwards is monotonically increasing, until at some point
later the configuration was removed from W , and either was already covered
by P (t) or P (t) := P (t)t fa(`) . . . at line 11. Thus we have a contradiction.

Combining the two parts we have that after each iteration P v MFP ,
and eventually P reaches a fixed-point: as MFP is the least fixed-point,
P = MFP .

7.5.2 Control Flow Based Partitioning

Another class of trace partitioning functions put forth is trace partitioning
based on control flow [76, 56]. In general, control flow partitioning partitions
traces based on their history of control flow choices, possibly merging the
partitions at a later point in execution.

Lattice automata elegantly allow the recording of a limited amount of
control flow history, by using discrete finitely valued integer variables. For
each part control-flow partitioning point a discrete variable i is added, such
that each branch of the control-flow point sets i to an unique value. If the
partitions should later be merged [76] the variable is simply reset to one
value. Consider the example lattice automata in Figure 7.4a, where traces
are partitioned depending on the control flow at s1, and merged at s7.

Similarly loops can be unrolled any finite number of times by adding a
loop counter variable that is reset on entry to the loop, and incremented
on backedges until a certain limit. In fact, any iteration pattern that can
be described by a finite automaton can be partitioned in this manner, e.g.
partitioning the loop into whether the iteration count is even or odd: add
variable i and annotate the backedge with i = i+ 1 modulo 2.

An advantage of using an intermediary format is that the program ana-
lyst can easily experiment with different control-flow partitionings by man-
ually adding discrete variables and setting their value at different locations
in a model editor. As long as no guards depend on the introduced variables,
the soundness of properties is preserved.

7.5.3 Value Based Partitioning

Another class of trace partitioning is based on partitioning different values
into different partitions. This can be handled similarly to the control-flow
partitioning case, by splitting control flow into a finite set of value classes

109

Chapter 7

s1

s2s4

s5

s6s7

s8

i = 1;
`′ = ` u Jx > 42K

i = 0;
`′ = ` u Jx ≤ 42K

`′ = `Jy := 0K `′ = `Jy := −2K

`′ = ` u Jy = 0 ∧ x > 42K

`′ = `Jx := x+ 1K

i = 0;
`′ = `uJy 6= 0∨x ≥ 42K

`′ = `Jx := 2K

(a) Lattice automaton with control flow partitioning, the only addition compared
to Figure 7.3c being the updates of the variable i, as highlighted.

s1, i = 0

s2, i = 1s4, i = 0

s5, i = 1

s6, i = 1

s5, i = 0

s6, i = 0 s7, i = 0

s8, i = 0

(b) Reachable locations for the lattice automaton in Figure 7.4a.

Figure 7.4: Control flow partitioning of the program in Figure 7.3a

(covering the entire range of the variable) using the general pattern shown
in Figure 7.5. For partitioning into v0, . . . , vn different values a discrete
variable i with range [0, n] is added. At the partitioning point n transitions
are added, each following the pattern in Figure 7.5. Each transition has a
guard of the form `u Jx = v1K 6= ⊥ meaning that the transition can only be
taken if at s the invariant x = v1 is possible; there is no reason to explore a
partition if it is already proven that no execution can have this value. If the
transition is taken the partition is recorded in the discrete variable i, and
the value vi of the partition is assigned using the abstract transformer. If
merging is desired at a later point, i is simply set to a constant value.

7.5.4 Dynamic Partitioning

The most general class of trace partitioning is allowing for the partitioning
to be changed during computation [90]. In our setting this is realised using a
joining strategy [42], namely allowing the t function to be selective in which

110

Automata-Based Approach to Trace Partitioned Abstract Interpretation

s

s′

· · ·
` u Jx = v0K 6= ⊥
i = 0; `′ = `Jx := v0K

` u Jx = vnK 6= ⊥
i = n; `′ = `Jx := vnK

Figure 7.5: The general pattern of value based partitioning on a variable x
into a finite number of partitions of values v0, . . . , vn.

elements to join.

Definition 51 (Joining Strategy). A joining strategy is a function

δ : (S × L)× (S × L)→ {true, false}

detailing whether two states in a lattice transition system are allowed to be
joined, or should be kept separate.

A joining strategy can be used to define a partial join operator as

Definition 52 (Partial Join Operator). A joining strategy δ implies a partial
join operator for a lattice transition system:

tδ((s, `), (s′, `′)) =

{
(s, ` t `′) if δ((s, `), (s′, `′)) = true

(s, `) otherwise

As mentioned in Section 7.4, Algorithm 16 is already designed for this.

During the analysis the joining strategy can be changed. One direction
is to make the analysis coarser, based on the current analysis result or on
extra-analysis information such as runtime and memory usage. A joining
strategy δ1 is (possibly) coarser than another δ2 iff:

∀s, `, s′, `′ : δ2((s, `), (s′, `′)) = true =⇒ δ1((s, `), (s′, `′)) = true

This is analogously to the ordering defined in [90], however it does suggest
that the basis is a “completely partitioned system” and partitions are then
merged to ensure termination.

A dynamically calculated joining strategy is however only limited by
the answers it has already given and can be thought of as a sort of oracle.
It can dynamically give answers that in turn create partitions, as long as
no partitions overlap. This allows a joining strategy to exactly mimic the
mechanisms put forth in [90]. It should be noted that static partitioning
provides better performance than dynamic partitioning, because of the data
structures used.

111

Chapter 7

7.6 Experiments

To evaluate the feasibility and performance of the described approach, we
have implemented a prototype for a small subset of C. The prototype is writ-
ten in Python using the pycparser library, and generates models compatible
with the opaal model checking framework [42]. One of the tools in opaal

exports models to the multi-core model checker in the LTSmin toolset [68],
previously developed for timed automata in [43]. The models can be edited
in the uppaal [72] GUI, to introduce static partitionings.

We have implemented support for using the octagon domain [79] from
the APRON library [62] (using the standard widening) in opaal models, and
made the required changes to implement Algorithm 16 in the multi-core
model-checker LTSmin; the change to the core algorithm implementation is
6 lines of code.

void main () {
unsigned int a1 , a2 , a3 ,

a4 , a5 , a6 ; int r ;
while (a1 < 20) {

a1++; }
while (a2 < 20) {

a2++; }
while (a3 < 20) {

a3++; }
while (a4 < 20) {

a4++; }
while (a5 < 20) {

a5++; }
}

Figure 7.6: The explode.c program from [40]; with full control-flow trace
partitioning there is an exponential number of traces to explore.

We have experimented with this prototype on a 8-core Intel Xeon X5570
machine, with 74Gb of RAM. In Figure 7.7 the runtimes for calculating
a fix-point with increasingly more precise control-flow trace partitioning of
the program in Figure 7.6, for which [40] reports that Astreé is unable to
perform full trace partitioning. LTSmin has been invoked with the fol-
lowing command: opaal2lts-mc --state=table -s 25 --threads=N -o

bfs -u3 -prr meaning to use a hashtable for passed-waiting list of size 225,
run with N threads, use a breadth-first search order, do joining and chose
a local successor state at random. Each experiment has been repeated 4
times and the mean is plotted, to account for the inherent non-determinism
of the search order between multiple threads. As noted in [43] the search

112

Automata-Based Approach to Trace Partitioned Abstract Interpretation

order can have a large effect on the runtime, because one worker can find a
“large” (according to the v ordering) state quickly, enabling another worker
to skip part of the state space.

Threads

T
im

e
(s

)

200

400

600

800

1000

1200

● ● ● ●

1 2 3 4 5 6 7 8

Model

● explode_tp0

explode_tp3

explode_tp4

explode_tp5

Figure 7.7: Benchmark timings (mean and standard deviation) for the
explode.c program with full trace partitioning on the first 0, 3, 4 or 5
loops, run on 1, 2, 4 and 8 cores.

As can be seen in Figure 7.7 and Table 7.1 the use of more cores improves
the runtime, in all cases except for no trace partitioning where the analysis
time is so low that the thread initialisation is more expensive than the
computation itself. Note that our runtimes cannot be compared to those
in [40], as the domain in Astreé is more advanced than ours. The speedup
is sub-linear, yielding speedups up to 3.5 using 8 cores. In [43], where the
abstract domain was quite similar to the octagon domain namely Difference-
Bound Matrices using uppaal’s DBM library, the speedup was shown to be
up to 40 using 48 cores. The difference in scalability can be attributed to
two factors: implementation details affecting the multi-core performance1

and the structure of the models allowing for less parallelism – as can be seen
by the smaller speedup of models with little trace partitioning.

1E.g. increased usage of the dynamic memory allocator: APRON uses dynamic resizing
of some data structures, whereas the uppaal DBM library does not. In general dynamic
memory allocation is more expensive in a multi-core shared-memory setting, because it
potentially requires synchronisation.

113

Chapter 7

Table 7.1: Mean benchmark runtimes in seconds for the explode.c program
with control-flow trace partitioning of the first 0, 3, 4 or 5 loops, run on 1,
2, 4 or 8 cores. (Relative speedups are in parentheses)

Time1 Time2 Time4 Time8

explode tp0 0.02s (1.00) 0.06s (0.39) 0.10s (0.25) 0.09s (0.26)
explode tp3 6.34s (1.00) 3.41s (1.86) 3.01s (2.11) 2.18s (2.91)
explode tp4 122.99s (1.00) 87.62s (1.40) 49.68s (2.48) 34.93s (3.52)
explode tp5 1301.92s (1.00) 1038.70s (1.25) 645.40s (2.02) 379.44s (3.43)

7.7 Conclusion

We have shown the connection between abstract interpretation and model
checking at a very practical level: by defining a formalism of lattice au-
tomata encompassing both domains, showing how this formalism can be
used to compute a fix-point of an abstract semantics defined by a Galois
connection and showing how trace partitioning is modelled very simply in
this formalism. A common formalism as an intermediate format has the ad-
vantage that the intermediate format can be edited, debugged and simulated
by a program analyst, to, e.g., add components modelling the environment
external to the program.

A common formalism allows using the same machinery for solving prob-
lems from both domains. This approach has the advantage that improve-
ments from one domain can immediately be transfered to the other, exem-
plified by using a multi-core model checker. This yields significant speedups,
reducing analysis times by up to a factor 3.5 on a 8-core machine.

We plan to implement support for a much more complete subset of C,
in order to perform more complete experiments. In addition we plan to
implement support for more input programming languages; an especially
exciting perspective is the ability to combine models extracted from different
programming languages and model the interaction of e.g. Python code with
C-code, or C-code with assembly.

Since the search order has a large impact on the speed-up it will be inter-
esting to see how techniques from model checking, or from static analysis [55]
can influence the performance – especially also in a multi-core setting, where
different workers can employ different strategies.

Since we are using a model-checker we would like to implement support
for asking the model-checker itself whether an error state or an assert is
reachable. Since we are normally interested in all such possible violations,
the logic formula would be a very large disjunction of predicates, which
would need to be handled. It will also be interesting whether checking more
elaborate properties, e.g. (bounded) liveness is possible.

114

Automata-Based Approach to Trace Partitioned Abstract Interpretation

Acknowledgments We would like to thank the LTSmin and APRON
developers for making their excellent code available to others in the research
community.

7.8 Case Studies and Applications

In the previous sections it was shown how to use abstract interpretation to
extract an lattice automata as an artifact. The machinery from Chapter 5
was extended to compute a program analysis result in the form of a fixpoint.

In this section a few simple case studies will be presented, of how this
framework can be utilised to analyse programs in context. They fall into
two categories: numerical analysis of c programs and worst-case execution
time analysis of ARM binaries.

In Chapter 7 a Python prototype to extract models from c programs
was introduced, c2opaal. In this section a number of case studies will
be presented, showing the possibilities having such a model of the program
enables.

7.8.1 Modelling the Environment

Consider the very simple program in Figure 7.8a. If executed and given a
0-character as input, it will crash with a “division by zero” exception.

1 int main () {
2 int i , j ;
3 i = getchar () ;
4 j = 42 / i ;
5 return j ;
6 }

(a) The c source code.

oct_updateValueInterval(i, INT_MIN, INT_MAX)

oct_updateValueInterval(j, INT_MIN, INT_MAX)

main_init

l3_1

l4_2

done

(b) The lattice automaton generated by
c2opaal when run on the program.

Figure 7.8: A program whose correctness depends on the environment in
which it executes.

115

Chapter 7

Using c2opaal the lattice automaton in Figure 7.8b is produced. Using
the toolchain of Chapter 7 the octagon computed for l. 4 is:

. . . i+ 2147483648 >= 0;−i+ 2147483647 >= 0 . . .

meaning that i ∈ [−2147483647, 2147483648] and that the division by i
might divide by zero.

Indeed, this shows the prototype state of c2opaal; the call to getchar

always returns something in the range [−1, 255]. Suppose this program is
only called by another program, caller, and that caller writes exactly one
upper-case alphabetical characters to this program. The program analyst
can quite easily incorporate this information by editing the model, as shown
in Figure 7.9. This produces a octagon for l. 4 that i ∈ [65, 90], and thus no
division by zero is possible.

oct_updateValueInterval(i, 65, 90)

oct_updateValueInterval(j, INT_MIN, INT_MAX)

main_init

l3_1

l4_2

done

Figure 7.9: The edited lattice automaton of Figure 7.8b.

This example is admittedly very simplistic, and a similar effect might
be obtained using e.g. source code annotations. The real advantage is that
since the assumptions are part of the model itself any regular pattern of
assumptions can be modelled, e.g. “first character is [65, 90] then the next
is [32, 32], then [65, 90], then [32, 32] . . . ”. The full power of the uppaal
modelling language is available for use in the modification, e.g. adding
additional synchronising automata, the subset of c that uppaal supports,
etc.

7.8.2 Combining Models: Client-Server Communication

Instead of manually modelling the environment, it might be that the envi-
ronment is instead given by another software component. Such is the case
with e.g. applications communicating over a network or a hardware bus.
A classic example of this is the client-server architecture, where a server

116

Automata-Based Approach to Trace Partitioned Abstract Interpretation

receives requests over the network from a client that in turn receives a re-
sponse. The client and server might not be written in the same language,
although for this example they will.

In UNIX-like systems communication over the network or between pro-
grams is abstracted through the use of sockets. After the setup of a network
connection a socket is returned. To not get bogged down in details about
how to setup a network connection, this example will use the standard in-
put/output (the stdin and stdout sockets) as the communication medium.

1 int main () {
2 int c i , c j ;
3 while ((c i = getchar ()) != −1) {
4 i f (c i >= 65 && c i <= 90)
5 putchar (c i) ;
6 else
7 putchar (’ ’) ;
8 }
9 }

(a) c source code for the “client” application. Accepts input, relays upper-
case ASCII characters and replaces anything else by a space.

1 int main () {
2 int s i , s j ;
3 while ((s i = getchar ()) != −1) {
4 /∗ output 1 f o r A−Z input , 2 f o r space ∗/
5 s j = 90 / s i ;
6 putchar (s j) ;
7 }
8 }

(b) c source code for the “server” application. Outputs 1 if given a upper-
case ASCII character as input, and a 2 for a space.

Figure 7.10: A client-server application.

In Figure 7.10 a client-server application is given. The objective is to
verify that the server application, when used by the client application, always
outputs 1 or 2, i.e. in l. 6 of Figure 7.10b it holds that sj ∈ [1, 2].

From each program a lattice automaton is extracted using c2opaal.
These automata are then manually combined to a network of lattice au-
tomata, and are made to synchronise such that the client sending on l. 5
and l. 7 of Figure 7.10a synchronise to the server receiving on l. 3 of Fig-
ure 7.10b, thus emulating a blocking send/receive. If so desired the network

117

Chapter 7

could also be modelled as an additional automaton in between, modelling the
effects of buffers, network delay and packet loss. This process can of course
be automated on a case-by-case basis, but for now is a manual process. The
resulting model is displayed in Figure 7.11.

communicate!communicate!

oct_updateValueInterval(ci, -1, 255)

oct_assumeInterval(ci, 65, INT_MAX);
oct_assumeInterval(ci, INT_MIN, 90),

oct_updateVariableInterval(socketchar, ci, 0, 0)oct_updateValueInterval(socketchar, 32, 32)

main_init

l3_1

l4_2

l4_3_exit

l5_4

l5_5_ret

l7_6

l7_7_ret

done

communicate?

communicate?

oct_updateVariableInterval(si, socketchar, 0, 0)

oct_updateValueInterval(sj, INT_MIN, INT_MAX)

oct_updateVariableInterval(si, socketchar, 0, 0)

main_init

l3_1

l5_2

l6_3

l6_4_ret

done

Figure 7.11: The manually composed client and server model of Figure 7.10.
The two automata communicate over the octagon variable socketchar and
synchronise over the channel communicate.

Some details have been edited that c2opaal does not yet support: the
client call to getchar returns something in the range [−1, 255], and the
communication has been simplified by removing the various calls to getchar

and putchar.
The division on l. 5 cannot be modelled exactly in the octagon do-

main [79], but instead it can be verified that on l. 5, si ∈ [32, 90]. The
state space computed for the model in Figure 7.11 contains 46 states, of
which the server process is in the location l5 2 in 9 of them. Inspecting the
octagon for each of these states reveal that either:

118

Automata-Based Approach to Trace Partitioned Abstract Interpretation

• si - 32 >= 0 ; -si + 32 >= 0 i.e. si ∈ [32, 32] or

• si - 65 >= 0 ; -si + 90 >= 0 i.e. si ∈ [65, 90].

Either joining these two intervals to [32, 90] or keeping them separate and
modelling the division in the interval domain confirms that

[90, 90]/[32, 90] = [1, 2]

thus allowing the verification that the client-server system always outputs
either 1 or 2.

7.8.3 Combining Models: Embedding

In the previous example the client and server were both written in c. This
need however not be the case, as long as a lattice automaton can be extracted
from the program and the “glue” to combine models can be created, the
programs need not be written in the same language. Another instance of
this need to do program analysis across languages arises when analysing
Python calling out to a c library, Python embedded in a c program, or a c
program with embedded assembler. This aspect of cross-language program
analysis will be explored by considering a small example of a c program
with a small fragment of embedded ARM assembly, as given in Figure 7.12.

The c2opaal tool can generate a skeleton of the control-flow of the c
code, but does not understand the ARM assembler. A separate prototype
tool, ARM2opaal has been developed that extracts a lattice automaton,
over the APRON octagon domain, for ARM binaries. After separating out
the ARM assembly ARM2opaal can be used to generate a lattice automa-
ton, that can subsequently be combined with the one extracted by c2opaal.
At the moment this re-combination is a manual process, but it could be au-
tomated. The resulting model can be seen in Figure 7.13. The “glue”
transitions assign the value of i to the register r1 when going from the c
level to the assembly level, and assigns the value of r0 to j when going back.

In Figure 7.13 an assumption is added that the getchar call returns a
lower-case alphabetical character, an ASCII value in [97, 122]. The model
checker in turn returns a result that in l. 16 the value of j must be

j ∈ [65, 90]

meaning that the output is always an upper-case ASCII letter, as desired.

7.8.4 Worst-Case Execution Time Analysis of ARM Binaries

In [44] a framework for using model checking of timed automata to solve
the worst-case execution time (WCET) analysis [99] for ARM binaries was
presented. Following the work of Cassez et.al. [30] a program can be viewed

119

Chapter 7

1 int main () {
2 int i , j ;
3 i = getchar () ;
4
5 /∗ j = i − ’ a ’ + ’A ’ ; ∗/
6 asm(
7 ”sub r3 , %1, #97”
8 ”mov r4 , #65”
9 ”add r3 , r3 , r4 ”

10 ”mov %0, r3 ”
11 : ”=r ” (j)
12 : ” r ” (i)
13 : ” r3 ” , ” r4 ”
14) ;
15
16 putchar (j) ;
17 return 0 ;
18 }

Figure 7.12: A c program, with embedded ARM assembly, having the same
effect as the c fragment in the comment.

as a language generator, that the hardware in turn accepts at some speed
and side-effect. That is, for a model P of the program, and a model H of
the hardware, the model

P ||H

models the execution of P on H.

Re-using the uppaal models of the hardware from [44, 30], and com-
bining them with a network of lattice automata modelling the program ex-
tracted using e.g. ARM2opaal, gives such a combined model. The program
will compute invariants using the APRON octagon domain, while the hard-
ware will use the uppaal DBM domain to keep track of timing constraints,
making the states of the system

(lP , lH , `octagon, `DBM)

with partial ordering

(lP , lH , `octagon, `DBM) v (l′P , l
′
H , `

′
octagon, `

′
DBM)

⇐⇒
lP = l′P ∧ lH = l′H ∧ `octagon v `′octagon ∧ `DBM v `′DBM

120

Automata-Based Approach to Trace Partitioned Abstract Interpretation

and a similarly defined joining operator. However, a joining strategy could
be employed, to not get an overapproximation of the possible clock valua-
tions, s.t.

δ((lP , lH , `octagon, `DBM),(l′P , l
′
H , `

′
octagon, `

′
DBM)) = true

⇐⇒
lP = l′P ∧ lH = l′H ∧ `DBM v `′DBM

The benefits of such a combined model would be that any refinement
of the program model to rule out infeasible paths, e.g. infeasible paths
eliminated by the invariant tracking of the octagon domain or applying trace
partitioning, will possibly improve the WCET estimate. A path leading to
the returned WCET estimate can be returned, and the path can then be
inspected using manual or automated techniques to ascertain its feasibility.

The implementation of the outlined approach is currently a work-in-
progress, that will require some amount of practical work in maturing the
ARM2opaal prototype, adapting the hardware models from [44] for usage
with the opaal toolchain, and allowing the usage of multiple lattices in the
same model.

One aspect that is essential for the sound application of any WCET
method is the derivation of a sound overapproximation of the hardware, an
aspect that will be explored in the next chapter.

121

Chapter 7

oct_updateVariableInterval(j, r0, 0, 0)

oct_updateVariableInterval(r1, i, 0, 0)

oct_updateValueInterval(i, 97, 122)

oct_updateVariableInterval(r3, r1, -97, -97)

oct_updateValueInterval(r4, 65, 65)

oct_updateIncrementVariable(r3, r4)

oct_updateVariableInterval(r0, r3, 0, 0)

done

l16_3_ret

l16_2

retfromasm

l3_1

main_init

i0x4_mov_r4_65

i0xc_mov_r0_r3

i0x8_add_r3_r3_r4

i0x0_sub_r3_r1_97

asmdone

Figure 7.13: The manually combined lattice automaton for the program in
Figure 7.12. The c level is on the left, while the ARM level is on the right,
with “glue” transitions in between.

122

Chapter 8

What is a Timing Anomaly?

This chapter is based on the paper “What is a Timing Anomaly?” [31].

It is concerned with finding a good definition of timing anomalies, be-
cause the presence of these make finding good and sound abstractions for
hardware very difficult. Ultimately, the goal would be to use the definition
of timing anomalies in the worst-case execution time analysis of programs,
by e.g. defining a lattice-based abstraction of the hardware, such as done
for caches in [3].

Abstract

Timing anomalies make worst-case execution time analysis much harder,
because the analysis will have to consider all local choices. It has been widely
recognised that certain hardware features are timing anomalous, while others
are not. However, defining formally what a timing anomaly is, has been
difficult.

We examine previous definitions of timing anomalies, and identify exam-
ples where they do not align with common observations. We then provide a
definition for consistently slower hardware traces that can be used to define
timing anomalies and aligns with common observations.

8.1 Introduction

Developing reliable real-time systems requires that guarantees on the run-
time of tasks can be given, that hold under all circumstances i.e. regardless
of the input data and previous execution history of the system. Typically
the Worst-Case Execution Time (WCET) is the most important guarantee
as it can be used to ensure the system responds in a timely manner.

However, modern processors are not optimized for worst cases, but opti-
mize for improving the average case performance instead. This often makes

123

Chapter 8

their worst-case behaviour much harder to predict, and thus makes it harder
to give absolute guarantees. One often hoped for property is that local worst-
case timing choices will lead to the global worst-case timing — when this is
not the case it is dubbed a timing anomaly. The classic example of a timing
anomaly [75] is shown in Figure 8.1, where a cache miss for instruction A
(bottom) is locally slower but turns out not to be the globally slowest (the
top trace is slower). The example will be treated in greater detail later.

1 2 3 4 5 6 7 8 9 10 11 12 13

LSU

IU

MCIU

A

B C

D E

1 2 3 4 5 6 7 8 9 10 11 12 13

LSU

IU

MCIU

A

BC

D E

Figure 8.1: The canonical example of a timing anomaly from [75], where a
cache miss (locally slower) leads to a scheduling that is globally faster. LSU,
IU and MCIU are the three functional units that can execute out-of-order,
but preference is given to older instructions.

If an execution platform can be proven to be free of timing anoma-
lies, very efficient techniques exist for analysing the worst-case timing be-
haviour [99]. On the contrary, if the execution platform exhibits timing
anomalies there is little hope for using the same efficient abstraction tech-
niques [75].

Because of this, identifying timing anomalies has been an area of interest
for some time, and some observations have been broadly recognised as being
true:

• The LRU cache replacement policy is not timing anomalous.

• Other cache replacement policies such as FIFO and MRU exhibit tim-
ing anomalies [21, 53].

• In-order pipelines (without caches) are not timing anomalous.

124

What is a Timing Anomaly?

• Resource allocation decisions (such as those presented by out-of-order
execution or cache replacement) are a necessary condition for timing
anomalies [98].

Using efficient abstraction techniques to compute the WCET is at the core
of WCET analysis tools. However, the most powerful abstractions are sound
only for timing anomaly free hardware. This explains why there have been
some attempts to formally define timing anomalies [75, 89], but the various
definitions have not been related to each other thus far.

In this work we will argue that the previous attempts are either too
coarse or too precise to be used as universal definitions of timing anomalies.
Each of the previous attempts definitely have their merits for application in
connection with different analysis techniques (abstract interpretation, etc.),
but a definition of timing anomalies should be as general as possible, while
still retaining the property that the existence of timing anomalies forces the
WCET analysis to consider more than one local choice.

Our Contribution

Our work is guided by the need for a definition of timing anomalies on the
concrete model of the processor, instead of abstractions thereof. Conse-
quently, in the following we propose a definition of timing anomalies that
can be used in two different directions:

1. on hardware systems that are proven to be free of timing anomalies,
the efficient abstraction techniques used in most WCET analysis tools
are sound;

2. the definition we propose is based on the concrete reference hardware
and only relates comparable hardware traces in order to avoid spu-
rious timing anomalous diagnostics (see Section 8.4.2) resulting from
abstraction of the hardware and/or of the hardware traces.

Without a definition of timing anomalies on the concrete reference hardware
model, it is impossible to prove that abstraction is sound. Therefore we
define timing anomalies as a property over different traces of the concrete
hardware model.

But what traces should be comparable? We will argue that only traces
resulting in the same instruction stream, i.e. the same program execution,
should be comparable, in particular traces produced by different input data
should not be comparable. It seems natural that different input data can
result in different control flows, and therefore different instruction streams,
where small changes in the input can result in much longer instruction
streams, and therefore much longer execution times.

Another consideration is what elements of the hardware traces should
be compared. Previous definitions have compared the timing of the first

125

Chapter 8

instruction with the timing of the last instruction in the stream [75], or
made comparisons at points where the two traces have executed the same
number of instructions [48]. We will argue that comparisons should be made
on the completion times of each instruction.

Outline of the Paper

This work is divided into five sections: In Section 8.2 we define hardware
systems and execution of programs on them. In Section 8.3 we define timing
anomalies, and then examine related work in Section 8.4. We then compare
the different definitions in Section 8.5, before concluding in Section 8.6.

8.2 Execution of Programs on Hardware

Before turning to timing anomalies, we first need to formalise our notion of
hardware systems and how programs are executed on them. In order for our
work to be applicable to a wide variety of systems, we aim to make as few
assumptions about the hardware as possible. However, it usually consists of
a processor and main memory (including caches). As usual, the hardware
can process (machine code) instructions, taken from the set Instructions, with
each instruction located in memory at some address. We let HardwareStates
be the (finite) set of possible hardware states and assume the hardware
states contain the state of the memory.

The semantics of a hardware system is given by a transition system that
specifies how the state of the hardware evolves in order to execute a program
on given input data. We only model transitions between hardware states
that take an observable amount of time and produce an observable result1,
e.g., finishing execution of a (set of) instruction(s).

The observable results, in the set Observations, are not strictly necessary
but are admitted as a convenience for later developments. In our work, the
typical observations of interest in a given hardware system are the instruc-
tions that finish (in each cycle or time unit). We can now give the formal
definition of a hardware system.

Definition 53 (Hardware System). A hardware system H is formalised as
a stutter-free and deterministic labelled transition system

H = (HardwareStates,Time× Observations,→).

The transition relation

→⊆ HardwareStates× (Time× Observations)× HardwareStates

1Bus latency, speculative execution, pipeline flushes, etc., are not visible and may
generate extra cycles before an externally visible hardware state occurs.

126

What is a Timing Anomaly?

describes the time required to reach the next state and the externally visible
observations produced by a transition.

As usual, a transition (s, (t, o), s′) ∈→ is denoted s
(t,o)−−→ s′. The proper-

ties “stutter-free” and “deterministic” can then be formulated as follows:

if s
(t,o)−−−−→ s′ then s 6= s′, and if s

(t,o)−−−−→ s′ and s
(t′,o′)−−−−−→ s′′ then

t = t′, o = o′ and s′ = s′′. A run in the hardware system H is de-

fined to be a sequence σ = s0
(t1,o1)−−−−→ s1

(t2,o2)−−−−→ · · · (tn,on)−−−−→ sn such that

for all 1 ≤ i ≤ n − 1 it holds that si
(ti+1,oi+1)−−−−−−−→ si+1 (in the H transi-

tion system) and the length of the run is defined as length(σ) = n. The
trace of the run σ is trace(σ) = (t1, o1) : (t2, o2) : · · · : (tn, on); the time
trace of σ is time(σ) = t1 : · · · : tn, and the observation trace of σ is
obs(σ) = o1 : o2 : · · · : on.

Example 1. Observing the two traces shown in Figure 8.1 using “just fin-
ished instructions” as observations, we obtain the following run for the first
(top) part of the example:

h0
(2,{A})−−−−→ h1

(1,{B})−−−−→ h2
(1,{C})−−−−→ h3

(4,{D})−−−−−→ h4
(4,{E})−−−−→ h5

and the run below for the second (lower) example in Figure 8.1:

h0
(3,{C})−−−−→ h1

(4,{D})−−−−−→ h2
(3,{A})−−−−→ h3

(1,{B,E})−−−−−−→ h4

Note that the observation on the final transition above shows that the two
instructions labelled B and E finish simultaneously.

8.2.1 Execution of a Program on Hardware

We assume that all programs terminate. Given a program P and input
data d in Data(P) (the set of admissible input data for P), the language
semantics uniquely determine the program trace, i.e. the sequence of in-
structions to be performed to compute the result of program P on input
d. In the following we need to be able to unambiguously identify spe-
cific occurrences of instructions in a program trace (the same instruction
can be performed several times in the trace, for instance when loops are
executed). Thus we formalise the program trace for (P, d) to be a map-
ping that assigns a unique index to each instruction in the program trace:
ProgramTrace(P, d) : [1..k] → Instructions where k is the length of the trace
and ProgramTrace(P, d)(j) gives the instruction executed at step j for each
index 1 ≤ j ≤ k.

Example 2. The program trace for the example in Figure 8.1 is:

ProgramTrace(P, d) = [1 7→ A, 2 7→ B, 3 7→ C, 4 7→ D, 5 7→ E]

127

Chapter 8

Given a hardware system H, a program P and input data d ∈ Data(P),
we let I(P, d) ⊆ HardwareStates be the hardware states that contain pro-
gram P and input data d in memory, and where the first instruction of P
is about to start execution. For h0 ∈ I(P, d), executing P with input d

on H yields a unique sequence2 of transitions in the hardware: h0
(t1,o1)−−−−→

h1 · · ·hn−1
(tn,on)−−−−→ hn. As the hardware is deterministic, each observation oi

can be taken to be a set of indices in {1, . . . , k}: the indices uniquely iden-
tify the occurrences of instructions of ProgramTrace(P, d) being completed
at each step. We can now formalise what it means to execute a program on
a hardware system:

Definition 54 ((P, d, h0)-run). Let H be a hardware system, P a program,

d input data, and h0 ∈ HardwareStates. Then the run (in H) h0
(t1,o1)−−−−→

h1 · · ·hn−1
(tn,on)−−−−→ hn is called a (P, d, h0)-run (in H) whenever h0 ∈ I(P, d)

and oi is the set of (indices of) instructions completed during the transition

hi−1
(ti,oi)−−−→ hi for 1 ≤ i ≤ n.

Definition 55 (Completion Time). Let

ProgramTrace(P, d) : [1..k]→ Instructions

be the program trace of (P, d) and let σ be the corresponding (P, d, h)-run
starting in h ∈ I(P, d) with trace(σ) = (t1, o1) : · · · : (tn, on). By
Ctime(ProgramTrace(P, d)[j], h) we denote the completion time of instruc-
tion 1 ≤ j ≤ k finishing after transition m (i.e., j ∈ om) and define it as
follows Ctime(ProgramTrace(P, d)[j], h) =

∑m
i=1 ti.

We let

Ctime(ProgramTrace(P, d), h) = max
1≤j≤k

Ctime(ProgramTrace(P, d)[j], h)

denote the maximal completion time for all instructions in the program and
thus for completing the entire program.

Example 3. The first trace in the example in Figure 8.1 has the following
completion times for the 5 instructions: [2, 3, 4, 8, 12] and for the second
trace: [10, 11, 3, 7, 11].

8.2.2 Exemplary Hardware Models

To be able to exemplify different phenomena we will use three different
hardware models:

2Which we assume to be correct with regard to the instruction semantics.

128

What is a Timing Anomaly?

M1 is a single-stage pipeline with a data-cache. The instructions of inter-
est are the memory accesses, and the hardware model will be used to
demonstrate timing anomalies with different cache replacement poli-
cies such as LRU and FIFO. For this reason we will simply denote
instructions by the memory address they access.

M2 is the simplified PowerPC architecture described in [75]. It is an out-of-
order processor with three functional units: a Load/Store unit (LSU)
communicating with a data cache, a Multi-Cycle Integer Unit (MCIU)
and an Integer Unit (IU). For a detailed description see [75]. It is used
for the classic example in Figure 8.1.

M3 is a single-stage pipeline with no caches, but with a multiplication in-
struction MUL that takes 1 cycle if one of the operands is 0, and 2 cycles
otherwise. This is a simplified version of the processor model in [48].
We extend M3 with conditional execution of all instructions as on the
ARM architecture [7].

8.3 Formalising Timing Anomalies

Slightly simplified, our notion of timing anomaly is based on the idea that
timing anomalies only occur when a program is executed on a hardware
system where no initial state gives rise to worse (slower) execution time than
all other initial hardware states (modulo “irrelevant” parts of the hardware
state). This approach requires us to formalise what it means for one program
execution to be slower than, or rather: consistently as slow as, another
execution (of the same program on the same data):

Definition 56 (Consistently as slow). Let P be a program with input data
d and let ProgramTrace(P, d) : [1..k] → Instructions be the program trace of
(P, d). Let h, h′ ∈ I(P, d) and σ (respectively σ′) be a (P, d, h)-run (respec-
tively (P, d, h′)-run). Then h′ is said to be consistently as slow as h, denoted
h vtime h

′, if and only if

∀1 ≤ j ≤ k : Ctime(ProgramTrace(P, d)[j], h) ≤ Ctime(ProgramTrace(P, d)[j], h′)

Intuitively the above definition compares the execution time of all pre-
fixes of a program trace and requires one to be consistently as slow as the
other.

Example 4. Consider the example in Figure 8.1, where h is the hardware
state resulting in the top run, and h′ the state resulting in the bottom run.

Ctime(ProgramTrace(P, d)[1], h) = 2 ≤ Ctime(ProgramTrace(P, d)[1], h′) = 10

meaning instruction A was slower in the bottom trace, but

Ctime(ProgramTrace(P, d)[5], h) = 12 6≤ Ctime(ProgramTrace(P, d)[5], h′) = 11

129

Chapter 8

meaning instruction E was not slower in the top trace, thus h 6vtime h′.
However instruction A in the bottom trace is still slower than in the top
trace, so h′ 6vtime h.

The “consistently as slow” ordering is a pre-order (see below). However,
it is not a partial order since two hardware states, which differ only in
parts that are irrelevant to a given program, will still give rise to identical
instruction completion times:

Lemma 11. For all programs P and input data d the relation vtime is a
pre-order on I(P, d).

We can now propose a formal definition for timing anomalies:

Definition 57 (Timing Anomaly Free). A hardware system, H, is said to be
free of timing anomalies with respect to program P and input d, if and only
if there exists a maximal element, W ∈ I(P, d): ∀h ∈ I(P, d) : h vtime W.

Note that the maximal element is not necessarily unique: consider the
case of LRU caches with no useful elements in them, hence all references
resulting in cache misses.

The following lemma characterises (the absence of) timing anomalies in
terms of upper bounds for arbitrary pairs of states. As shown in Section 8.5,
this characterisation can be convenient when proving the presence of timing
anomalies.

Lemma 12. A hardware system H is free of timing anomalies with re-
spect to program P and input data d if and only if ∀h, h′ ∈ I(P, d) : ∃h′′ ∈
I(P, d) : h vtime h

′′ ∧ h′ vtime h
′′.

Proof. The “only if” direction is trivial and the “if” direction is proved by
induction in the size of I(P, d).

Note that this does not require all hardware states to be ordered under
vtime , but only requires that for any pair of states a third state exists that
gives rise to a consistently as slow run as both; i.e. it should be an upper
bound for the pair of states.

Consider the example in Figure 8.2 where two runs of a LRU cache are
not ordered either way, but we would still like to characterise LRU as not
timing anomalous; there exists a consistently slower initial state than both,
namely the empty cache.

Having defined timing anomaly free-ness for a given program and in-
put data, it is straightforward to generalise the definition to cover entire
hardware systems:

Definition 58 (Timing Anomaly Free Hardware System). A hardware sys-
tem, H, is said to be free of timing anomalies for program P if and only if it

130

What is a Timing Anomaly?

Cache contents: {E,C,A}
1 2 3 4 5 6 7 8 9 10

LSU A B (evicts C) C

Cache contents: {B,C,E}
1 2 3 4 5 6 7 8 9 10

LSU A B C

Figure 8.2: Two runs of the program LD A; LD B; LD C on hardware model
M1 with a LRU cache. The cache contents are ordered sets of data elements,
from newest to oldest.

is timing anomaly free for each d ∈ Data(P). Hardware H if free of timing
anomalies if and only if it is timing anomaly free for all programs P (valid
for H).

Finally we relate our definition of “consistently as slow as” to the defi-
nition of the WCET for a program P on hardware H.

Definition 59 (Worst Case Execution Time (WCET)). The worst case
execution time for a program P (on H) is defined as follows:

WCETH(P) = max
h∈I(P,d),d∈Data(P)

{Ctime(ProgramTrace(P, d), h)}

If H is free of timing anomalies for P , only a maximal element in I(P, d)
need be considered. Indeed, if h vtime h

′, then Ctime(ProgramTrace(P, d), h) ≤
Ctime(ProgramTrace(P, d), h′). Definition 59 is then reduced to computing
maxd∈Data(P){Ctime(ProgramTrace(P, d), h)|h maximal in I(P, d)}.

8.4 Related Work

8.4.1 Defining Timing Anomalies by Changes in Instruction
Latency

Timing anomalies were first discovered by Lundqvist and Stenström in [75,
74]. Their definition is re-used in [98], and we formulate it here in our
framework.

Assume a sequence of instructions π = i1 : · · · : in, with corresponding la-
tencies τπ(ij), and total execution time C. Consider a situation where there
exists a latency variation, ∆t, such that the same sequence of instructions,

131

Chapter 8

but with a modified latency for the first instruction τ ′π(i1) = τπ(i1) + ∆t,
results in a different sequence of instruction latencies τπ(i1) + ∆t : τπ(i2) :
· · · : τπ(in) and thus a possible different total execution time C ′, and thus a
timing difference of ∆C = C ′ − C.

Definition 60 (Timing Anomalies by Changes in Instruction Latency [98]).
A timing anomaly is defined as a situation where according to the sign of
∆t one of the following cases become true:

a) Increase of the latency: ∆t > 0 =⇒ (∆C > ∆t) ∨ (∆C < 0)

b) Decrease of the latency: ∆t < 0 =⇒ (∆C < ∆t) ∨ (∆C > 0)

This definition has some drawbacks:

• As pointed out in [89] there is an underlying assumption that the
latency change of the first instruction does not influence the latencies
of the subsequent instructions. This is not always the case.

• In [75] the change in latency can be unrelated to a change in hardware
state, resulting in the definition deeming a hardware platform to suffer
from timing anomalies, while the actual platform does not.

In [98] the second point is alleviated as the change in latency is assumed
to be associated to two different initial hardware states, which are further
assumed to be “almost identical”. However without a formalisation of “al-
most identical” it could be argued that the two LRU caches in Figure 8.2
are almost identical, and thus would be deemed timing anomalous.

8.4.2 Defining Timing Anomalies by Abstract Models

In [89] a formal definition of timing anomalies is given. It however states
that “Non-determinism – which is necessary for timing anomalies – is only
introduced by abstraction”, and goes on to define timing anomalies in terms
of non-deterministic hardware models. We note that timing anomalies as
demonstrated originally in [75] do not involve non-determinism, but instead
involve concrete traces run on the same concrete (deterministic) hardware
model.

We will argue that non-determinism is not necessary for timing anomalies
to occur. Indeed, there is a strong link between the presence of timing
anomalies and the existence of a sound deterministic over-approximating
model of the timing of the hardware, but the causality is not both ways. In
some cases timing anomalies can even occur as artefacts of the abstraction,
even though they are not present in the concrete hardware.

As an example consider the two traces in Figure 8.3. Here different input
data results in very different instruction streams, sharing similarities with
timing anomalous traces. In our opinion this should not be characterised as

132

What is a Timing Anomaly?

1 2 3 4 5 6 7 8 9 10

A B C

(a)

1 2 3 4 5 6 7 8 9 10

A B

(b)

Figure 8.3: Example program run onM3. The program is A: MULR0, R0, R1;
B: BRZ R0, C, where C is a linear, data-independent, subprogram sum-
marised into one instruction. The instruction BRZ is interpreted as “branch
to C if R0 is zero”. The two traces are (a) where R0 = 0, and (b) where
R0 = 1.

a timing anomaly, as this would render practically all programs accepting
input on all platforms to be timing anomalous. The definition in [89] re-
quires that the two traces must have the same instruction streams, and thus
Figure 8.3 is not a timing anomaly by that definition.

We however note that the same instruction stream can still result in
two very different timing behaviours, when given different input data. As
an example, the ARM architecture allows the conditional execution of most
instructions. We can thus derive an example where the same instruction
stream gives rise to timing anomalous behaviour on different input data, as
seen in Figure 8.4.

According to the definition in [89] this would be timing anomalous, as
there exists a non-local worst-case path (the A instruction in (a)) resulting
in a globally longer path, than all local worst-case paths (b).

In [88] a slightly relaxed definition from [89] is given, which is used
to compute upperbounds on the the possible error in WCET estimation
between two hardware states. However, with regards to the examples we
consider there is no difference.

In the same line [48] describes a method to identify timing anomalies in
a processor using bounded model checking. This is done by comparing the
execution time of the same instruction stream on two different processors:
the real processor, and an (abstract) “always-worst case” performing pro-
cessor. If the “worst-case” processor can overtake the real processor, the
processor is deemed to have timing anomalies.

However [48] uses abstraction of input data and thus ends up comparing

133

Chapter 8

1 2 3 4 5 6 7 8 9 10

A C D

(a)

1 2 3 4 5 6 7 8 9 10

A C D

(b)

Figure 8.4: The example from Figure 8.3, but instead of branching it uses
conditional execution. Therefore the two instruction streams are the same,
but the processor treats C as a no-op in (b). The program is A: MUL

R0, R0, R1; C: MULNZ R2, R2, R1; D: MULNZ R2, R2, R1 , where we let A set
the condition flags. Thus C and D only gets executed if R0 is not 0.

execution traces which can only result from different input data: The trace
given in [48] (a) cannot occur on the real processor with the same input data
as the trace in (b). For trace (a) to occur one of the operands (R4 and R6

in this case) needs to be 0, that is R4 = 0 ∨ R6 = 0. However for trace (b)
to occur none of the operands can be 0, thus R4 6= 0 ∧ R6 6= 0. As these
two conditions are the negation of one another, the two traces cannot occur
with the same input data. Since the two traces cannot occur with the same
input data, they will be incomparable, per our Definition 56. Of course,
hardware can be viewed abstractly. For timing analysis it is very important
that these abstractions are sound, i.e. overapproximating the timing.

Definition 61 (More Favorable Hardware). Hardware H with hardware
states HardwareStates is more favorable than hardware H′ with hardware
states HardwareStates′, written H v H′, if there exists a mapping

α : HardwareStates→ HardwareStates′

s.t. ∀P,∀d ∈ Data(P) : h vtime α(h), where vtime is extended across differ-
ent hardware systems.

Typically α is an abstraction function. Clearly, if H v H′, then for any
program P , WCETH(P) ≤WCETH′(P). H′ is thus a sound abstraction for
computing the WCET of any program. The technique presented in [48] is a
very valuable tool in finding sound abstractions, however, the unsoundness
of an abstraction cannot be translated into the real hardware exhibiting
timing anomalies.

134

What is a Timing Anomaly?

8.5 Results

We will now compare the different definitions of timing anomalies, and how
they hold for and apply to different examples:

Lemma 13. The classic example in Figure 8.1 is timing anomalous by
Definition 57.

Proof. We will show that none of the two initial hardware states is consis-
tently worse than the other, per Definition 56, and thus no upper bound
can exist, per Definition 57. The only two initial hardware states that are
relevant to consider is the cache where the data item referenced by A is
in the cache, and a state where the data item referenced by A is not in
the cache. Since there are only two initial hardware states, one or both of
them would have to be consistently slower than the other. In Example 4 we
already showed that none of the two traces is consistently slower than the
other. Therefore, Definition 57 cannot be fulfilled.

Lemma 14. The control-flow example in Figure 8.3 is not timing anomalous
by Definition 57.

Proof. Since M3 has no cache, there is actually only one initial hardware
state, h0, where the first instruction is able to enter the processor in the
first cycle: the empty pipeline. For every program P and data d there is
therefore only one element in I(P, d). By Definition 57 and the reflexivity
of vtime the hardware system is timing anomaly free.

Lemma 15. The “branching by conditional execution” example in Figure 8.4
is not timing anomalous by Definition 57.

Proof. The argumentation is the same as for Lemma 14.

Lemma 16. LRU caches are not timing anomalous by our Definition 58.

Proof. A stronger statement can actually be proven: that the empty cache is
always the worst initial hardware state for LRU caches [87]. By Definition 57
this satisfies Definition 58.

Lemma 17. FIFO caches are timing anomalous by our Definition 58.

Proof. Consider the two traces in Figure 8.5, none of which are consistently
slower than the other. By Lemma 12 an upper bound should exist. An
upper bound would have to have misses for all accesses. By enumeration of
all distinct initial caches, none of them have misses for all accesses, and thus
no upper bound for the two traces exist.

135

Chapter 8

d e b a

a a d x b a
c c a x c b x

a c a a c x
b b c x b a x
c b c c b x

a a b x a c x
b a b b a x
c c a x c b x

Figure 8.5: Example of a timing anomaly for the FIFO cache on M1, adopted
from [21]. The first line is the initial state of the cache for the two traces.
The first column is the access sequence, and the x’es indicate cache misses.

8.6 Conclusion and Future Work

In this work we have looked at previous definitions of timing anomalies, and
identified flaws in them. Specifically in their applicability to various types of
known timing anomalies, but also in what examples they deem to be timing
anomalies. We have proposed a definition of timing anomalies in terms of
the existence of a consistently worst initial hardware state, in the concrete
model of the hardware and shown that it coincides with common knowledge
about timing anomalies.

The next step is to provide an operational definition of timing anoma-
lies that enables us to effectively check whether some hardware is timing
anomalous, and if it is, identify a set of initial hardware states, such that
they are consistently worse than all other hardware states. This would en-
able a WCET analysis by simulating the execution of these initial states.
The framework we have proposed can also be used to take advantage of
the efficient abstraction techniques to over-approximate WCET on timing
anomalous platforms: given H which is timing anomalous, define H′ that
soundly approximates H and show that H′ is timing anomaly free.

136

What is a Timing Anomaly?

O
u

r
D

efi
n

it
io

n
s

57
,

58
L

at
en

cy
ch

an
ge

[7
5,

98
]

A
b

st
ra

ct
io

n
[4

8,
89

,
88

]

C
la

ss
ic

E
x
.

[7
5
]

(F
ig

.
8.

1)
Y

es
,

L
em

m
a

1
3

Y
es

Y
es

L
R

U
C

ac
h

e
N

o
,

L
em

m
a

1
6

In
ap

p
li

ca
b

le
1

N
o

F
IF

O
C

ac
h

e
Y

es
,

L
em

m
a

1
7

In
ap

p
li

ca
b

le
1

Y
es

4

B
ra

n
ch

in
g

(F
ig

.
8.

3)
N

o
,

L
em

m
a

1
4

In
ap

p
li

ca
b

le
2

N
o

4

C
o
n

d
it

io
n

a
l

ex
ec

.
(F

ig
.

8.
4)

N
o
,

L
em

m
a

1
5

Y
es

Y
es

4

M
U

L
0-

sp
ee

d
u

p
[4

8,
F

ig
.

3]
N

o
Y

es
3

Y
es

4

1
B

ec
a
u

se
th

e
la

te
n

cy
ch

an
g
e

ca
n

in
g
en

er
a
l

n
ot

b
e

li
m

it
ed

to
,

or
co

n
ta

in
ed

w
it

h
in

,
th

e
fi

rs
t

in
st

ru
ct

io
n

.
2

B
ec

a
u

se
th

e
se

q
u

en
ce

of
in

st
ru

ct
io

n
s

ar
e

n
ot

th
e

sa
m

e.
3

If
w

e
a
ll

ow
th

e
la

te
n

cy
ch

an
g
e

to
o
cc

u
r

on
th

e
se

co
n

d
in

st
ru

ct
io

n
.

4
D

ep
en

d
s

on
th

e
ab

st
ra

ct
io

n
.

137

Chapter 9

Conclusion

Abstract interpretation and model checking are converging at a practical
level. In this thesis the formalism of lattice automata has been presented.
It has been shown how lattice automata can be model checked, and how ab-
stract interpretation can be used to extract lattice automata from programs.
This methodology results in a program model that is directly traceable back
to the program semantics, but that still allows the program analyst to ex-
plore the model and perform ad hoc experiments, such as modelling parts of
the program interaction that an abstract interpretation cannot capture —
such as combining lattice automata extracted from different languages. The
method of trace partitioning has been shown to be a model transformation
in this framework, allowing to tune the precision and cost of the analysis.

A multi-core model checking toolchain has been presented, making effi-
cient and scalable fixpoint computation over lattice automata possible. The
toolchain has been shown scalable up to 48 cores, reducing computation
times of hours to minutes and seconds.

Finally, the problem of obtaining models soundly overapproximating a
hardware platform has been explored, and a definition of timing anoma-
lies has been presented. Importantly, the definition does not rely on any
abstraction itself.

It is the hope that readers of this thesis will be able to use the concepts
and terminology to more closely understand the relationship between pro-
gram analysis, abstract interpretation and model checking — on points of
similarity and difference, likewise. Or at the very least, that the reader will
be confused on a higher level.

138

Bibliography

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General
Decidability Theorems for Infinite-State Systems. In Proceedings of
the Eleventh Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 313–321, jul 1996.

[2] V. Agarwal, F. Petrini, D. Pasetto, and D. Bader. Scalable Graph
Exploration on Multicore Processors. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’10, pages 1–11, Washington,
DC, USA, 2010. IEEE Computer Society.

[3] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache Behavior Pre-
diction by Abstract Interpretation. In Proceedings of the Third Inter-
national Symposium on Static Analysis (SAS), volume 1145 of Lecture
Notes in Computer Science, pages 52–66, London, UK, 1995. Springer-
Verlag.

[4] R. Alur. Timed Automata. In Proceedings of the 11th International
Conference on Computer Aided Verification (CAV), volume 1633 of
Lecture Notes in Computer Science, pages 688–688, Trento, Italy, 1999.
Springer.

[5] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

[6] T. Amnell, G. Behrmann, J. Bengtsson, P. D’argenio, A. David,
A. Fehnker, T. Hune, B. Jeannet, K. Larsen, M. Möller, et al. UP-
PAAL - Now, next, and future. In 4th Summer School on Modeling
and verification of parallel processes (MOVEP), volume 2067 of Lecture
Notes in Computer Science, pages 99–124. Springer, 2001.

[7] ARM Limited. ARM920T Technical Reference Manual, 1. edition, 2001.

[8] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening Operators for Pow-
erset Domains. In Proceedings of the 5th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI),

139

volume 2937 of Lecture Notes in Computer Science, pages 135–148.
Springer, 2004.

[9] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT
Press, 2008.

[10] T. Ball and S. Rajamani. The SLAM toolkit. In Proceedings of the
13th International Conference on Computer Aided Verification (CAV),
volume 2102 of Lecture Notes in Computer Science, pages 260–264,
Paris, France, 2001. Springer.

[11] J. Barnat and P. Rockai. Shared Hash Tables in Parallel Model Check-
ing. In Proceedings of the 6th International Workshop on Parallel and
Distributed Methods in verifiCation (PDMC), volume 198 of Electronic
Notes in Theoretical Computer Science, pages 79–91, 2007.

[12] G. Behrmann. Distributed reachability analysis in timed automata. In-
ternational Journal on Software Tools for Technology Transfer (STTT),
7(1):19–30, 2005.

[13] G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and
W. Yi. UPPAAL Implementation Secrets. In Proceedings of the 7th In-
ternational Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRFT), volume 2469 of Lecture Notes in Computer
Science, pages 3–22. Springer, 2002.

[14] G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen. Static Guard
Analysis in Timed Automata Verification. In Proceedings of the 9th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 2619 of Lecture Notes in
Computer Science, pages 254–277. Springer, 2003.

[15] G. Behrmann, P. Bouyer, K. Larsen, and R. Pelánek. Lower and upper
bounds in zone based abstractions of timed automata. In Proceedings
of the 10th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 2988 of Lec-
ture Notes in Computer Science, pages 312–326. Springer, 2004.

[16] G. Behrmann, A. David, and K. Larsen. A Tutorial on UPPAAL. In
International School on Formal Methods for the Design of Computer,
Communication and Software Systems, Formal Methods for the De-
sign of Real-Time Systems (SFM-RT), volume 3185 of Lecture Notes in
Computer Science, pages 33–35, Bertinoro, Italy, 2004. Springer.

[17] G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W. Yi. De-
veloping Uppaal over 15 years. Software: Practice and Experience,
41(2):133–142, February 2011.

140

[18] G. Behrmann, T. Hune, and F. W. Vaandrager. Distributing Timed
Model Checking - How the Search Order Matters. In Proceedings of the
12th International Conference on Computer Aided Verification (CAV),
volume 1855 of Lecture Notes in Computer Science, pages 216–231.
Springer, 2000.

[19] J. Bengtsson. Clocks, DBMs and States in Timed Systems. PhD thesis,
Uppsala University, 2002.

[20] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms
and Tools. In Lectures on Concurrency and Petri Nets, volume 3098 of
Lecture Notes in Computer Science, pages 87–124. Springer, 2004.

[21] C. Berg. PLRU Cache Domino Effects. In Proceedings of the 6th Inter-
national Workshop on Worst-Case Execution Time Analysis (WCET),
volume 4 of OASICS. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

[22] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable Software
Verification: Concretizing the Convergence of Model Checking and Pro-
gram Analysis. In Proceedings of the 19th International Conference on
Computer Aided Verification (CAV), volume 4590 of Lecture Notes in
Computer Science, pages 504–518, Berlin, Germany, 2007. Springer.

[23] S. Biallas, M. C. Olesen, F. Cassez, and R. Huuck. PtrTracker: Prag-
matic Pointer Analysis. In Proceedings of the 12th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), (to appear). IEEE Computer Society, 2013.

[24] S. Blom, J. C. van de Pol, and M. Weber. LTSmin: Distributed and
Symbolic Reachability. In Proceedings of the 22nd International Con-
ference on Computer Aided Verification (CAV), volume 6174 of Lec-
ture Notes in Computer Science, pages 354–359, Edinburgh, UK, 2010.
Springer.

[25] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-Fly Symbolic Model
Checking for Real-Time Systems. In Proceedings of the 18th IEEE
Real-Time Systems Symposium (RTSS), pages 25–34. IEEE Computer
Society, 1997.

[26] P. Bouyer. Untameable Timed Automata! In Proceedings of the
20th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), volume 2607 of Lecture Notes in Computer Science, pages
620–631, Berlin, Germany, 2003. Springer.

[27] P. Bouyer. Forward Analysis of Updatable Timed Automata. Formal
Methods in System Design, 24(3):281–320, 2004.

141

[28] V. A. Braberman, A. Olivero, and F. Schapachnik. Dealing with Prac-
tical Limitations of Distributed Timed Model checking for Timed Au-
tomata. Formal Methods in System Design, 29(2):197–214, 2006.

[29] J. Brauer, R. R. Hansen, S. Kowalewski, K. G. Larsen, and M. C. Ole-
sen. Adaptable Value-Set Analysis for Low-Level Code. In Proceedings
of the 6th International Workshop on Systems Software Verification
(SSV), pages 32–43, 2011.

[30] J.-L. Béchennec and F. Cassez. Computation of WCET using Program
Slicing and Real-Time Model-Checking. Research Report, IRCCyN/C-
NRS, May 2011.

[31] F. Cassez, R. R. Hansen, and M. C. Olesen. What is a Timing Anomaly?
In T. Vardanega, editor, Proceedings of the 12th International Work-
shop on Worst-Case Execution-Time Analysis (WCET), OASIS, pages
1–12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[32] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(5):1512–1542, 1994.

[33] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1(2):275–288, 1992.

[34] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of Programming Languages (POPL), pages
238–252. ACM, 1977.

[35] P. Cousot and R. Cousot. Systematic Design of Program Analysis
Frameworks. In Conference Record of the Sixth Annual ACM Sympo-
sium on Principles of Programming Languages (POPL), pages 269–282,
San Antonio, Texas, USA, 1979. ACM Press.

[36] P. Cousot and R. Cousot. Abstract Interpretation and Application to
Logic Programs. Journal of Logic Programming, 13(1):103–179, 1992.

[37] P. Cousot and R. Cousot. Comparing the Galois Connection and
Widening/Narrowing Approaches to Abstract Interpretation. In
M. Bruynooghe and M. Wirsing, editors, Proceedings of the 4th In-
ternational Symposium on Programming Language Implementation and
Logic Programming (PLILP), volume 631 of Lecture Notes in Computer
Science, pages 269–295, Leuven, Belgium, 1992. Springer.

142

[38] P. Cousot and R. Cousot. Refining Model Checking by Abstract Inter-
pretation. Automated Software Engineering, 6(1):69–95, 1999.

[39] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTRÉE analyzer. In Proceedings of the 14th Eu-
ropean Symposium on Programming, Languages and Systems (ESOP),
volume 3444 of Lecture Notes in Computer Science, pages 21–30, Ed-
inburgh, UK, 2005. Springer.

[40] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival.
Why does ASTRÉE scale up? Formal Methods in System Design,
35(3):229–264, 2009.

[41] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints
Among Variables of a Program. In Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming Languages
(POPL), pages 84–96, Tucson, Arizona, USA, 1978. ACM Press.

[42] A. E. Dalsgaard, R. R. Hansen, K. Y. Jørgensen, K. G. Larsen, M. C.
Olesen, P. Olsen, and J. Srba. opaal: A Lattice Model Checker. In
M. Bobaru, K. Havelund, G. Holzmann, and R. Joshi, editors, Proceed-
ings of the International Symposium NASA Formal Methods (NFM),
volume 6617 of Lecture Notes in Computer Science, pages 487–493.
Springer, 2011.

[43] A. E. Dalsgaard, A. Laarman, K. G. Larsen, M. C. Olesen, and J. v. d.
Pol. Multi-core Reachability for Timed Automata. In Proceedings of
the 11th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS), volume 7595 of Lecture Notes in Com-
puter Science, pages 91–106. Springer, 2012.

[44] A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen, and K. G.
Larsen. METAMOC: Modular Execution Time Analysis Using Model
Checking. In B. Lisper, editor, Proceedings of the 10th International
Workshop on Worst-Case Execution Time Analysis (WCET), pages
114–124, 2010.

[45] C. Daws and S. Tripakis. Model Checking of Real-Time Reachability
Properties Using Abstractions. In Proceedings of the 4th International
Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS), volume 1384 of Lecture Notes in Computer Science,
pages 313–329, Lisbon, Portugal, 1998. Springer.

[46] M. del Mar Gallardo, J. Martinez, P. Merino, and E. Pimentel. aSPIN:
Extending SPIN with abstraction. In Proceedings of the 9th Interna-
tional SPIN Workshop on Model Checking of Software, volume 2318 of

143

Lecture Notes in Computer Science, pages 241–252, Grenoble, France,
2002. Springer.

[47] D. L. Dill. Timing assumptions and verification of finite-state concur-
rent systems. In J. Sifakis, editor, Proceedings of the International
Workshop on Automatic Verification Methods for Finite State Sys-
tems, volume 407 of Lecture Notes in Computer Science, pages 197–212,
Grenoble, France, 1990. Springer.

[48] J. Eisinger, I. Polian, B. Becker, A. Metzner, S. Thesing, and R. Wil-
helm. Automatic identification of timing anomalies for cycle-accurate
worst-case execution time analysis. In Design and Diagnostics of Elec-
tronic Circuits and systems, 2006 IEEE, pages 13–18, 2006.

[49] S. Evangelista, A. W. Laarman, L. Petrucci, and J. C. v. d. Pol. Im-
proved Multi-Core Nested Depth-First Search. In S. Ramesh, edi-
tor, Proceedings of the 10th International Symposium on Automated
Technology for Verification and Analysis (ATVA), volume 7561 of Lec-
ture Notes in Computer Science, pages 269–283, Kerala, India, 2012.
Springer.

[50] S. Evangelista, L. Petrucci, and S. Youcef. Parallel Nested Depth-First
Searches for LTL Model Checking. In Proceedings of the 9th Interna-
tional Symposium on Automated Technology for Verification and Anal-
ysis (ATVA), volume 6996 of Lecture Notes in Computer Science, pages
381–396, Taipei, Taiwan, 2011. Springer.

[51] A. Finkel and P. Schnoebelen. Well-structured transition systems ev-
erywhere! Theoretical Computer Science, 256(1-2):63–92, 2001.

[52] H. Garcia-Molina. Elections in a distributed computing system. IEEE
Trans. Comput., 31(1):48–59, 1982.

[53] G. Gebhard. Timing Anomalies Reloaded. In Proceedings of the
10th International Workshop on Worst-Case Execution Time Analysis
(WCET), volume 15, pages 1–10. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2010.

[54] G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, Enlarge and
Check: New algorithms for the coverability problem of WSTS. Journal
of Computer and System Sciences, 72(1):180, 2006.

[55] D. Gopan and T. Reps. Guided static analysis. In Proceedings of the
14th International Static Analysis Symposium (SAS), volume 4634 of
Lecture Notes in Computer Science, pages 349–365, Kongens Lyngby,
Denmark, 2007. Springer.

144

[56] M. Handjieva and S. Tzolovski. Refining Static Analyses by Trace-
Based Partitioning Using Control Flow. In Proceedings of the 5th In-
ternational Static Analysis Symposium (SAS), volume 1503 of Lecture
Notes in Computer Science, pages 200–214. Springer, 1998.

[57] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal model-
ing and analysis of an audio/video protocol: an industrial case study
using UPPAAL. In Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS), pages 2–13. IEEE, 1997.

[58] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model checking for real-time systems. Information and Computation,
111(2):193–244, 1994.

[59] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstrac-
tion. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages (POPL), pages 58–70. ACM,
2002.

[60] G. J. Holzmann, D. Peled, and M. Yannakakis. On Nested Depth
First Search. In Proceedings of the Second SPIN Workshop (SPIN),
volume 32, pages 23–32. American Mathematical Society, 1996.

[61] B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic Partitioning
in Analyses of Numerical Properties. In Proceedings of the 6th Inter-
national Symposium Static Analysis, volume 1694 of Lecture Notes in
Computer Science, pages 39–50, Venice, Italy, 1999.

[62] B. Jeannet and A. Miné. APRON: A Library of Numerical Abstract
Domains for Static Analysis. In Proceedings of the 21st International
Conference on Computer Aided Verification (CAV), volume 5643 of
Lecture Notes in Computer Science, pages 661–667, Grenoble, France,
2009. Springer.

[63] T. Jensen, H. Pedersen, M. C. Olesen, and R. R. Hansen. THAPS: Au-
tomated Vulnerability Scanning of PHP Applications. In Proceedings
of the 17th Nordic Conference on Secure IT Systems (NordSec), vol-
ume 7617 of Lecture Notes in Computer Science, pages 31–46. Springer,
2012.

[64] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: formal verification of an OS ker-
nel. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP), pages 207–220. ACM, 2009.

145

[65] O. Kupferman and Y. Lustig. Lattice Automata. In Proceedings of the
8th International Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI), volume 4349 of Lecture Notes in Com-
puter Science, pages 199–213, Nice, France, 2007. Springer.

[66] A. Laarman, M. C. Olesen, A. Dalsgaard, K. G. Larsen, and J. van de
Pol. Multi-Core Emptiness Checking of Timed Büchi Automata using
Inclusion Abstraction. In Proceedings of the 25th International Con-
ference on Computer Aided Verification (CAV), Lecture Notes in Com-
puter Science, pages 968–983, Saint Petersburg, Russia, 2013. Springer.

[67] A. Laarman and J. v. d. Pol. Variations on Multi-Core Nested Depth-
First Search. In Proceedings of the 10th International Workshop on
Parallel and Distributed Methods in verifiCation (PDMC), volume 72,
pages 13–28. EPTCS, 2011.

[68] A. Laarman, J. v. d. Pol, and M. Weber. Multi-Core LTSmin: Marrying
Modularity and Scalability. In Proceedings of the International Sympo-
sium NASA Formal Methods (NFM), volume 6617 of Lecture Notes in
Computer Science, pages 506–511, 2011.

[69] A. Laarman, J. van de Pol, and M. Weber. Boosting Multi-Core Reach-
ability Performance with Shared Hash Tables. In N. Sharygina and
R. Bloem, editors, Proceedings of the 10th International Conference
on Formal Methods in Computer-Aided Design, Lugano, Swiss, USA,
October 2010. IEEE Computer Society.

[70] A. Laarman, J. van de Pol, and M. Weber. Parallel Recursive State
Compression for Free. In Proceedings of the 18th International SPIN
Workshop on Model Checking Software, volume 6823 of Lecture Notes
in Computer Science, pages 38–56, Snowbird, UT, USA, 2011. Springer.

[71] A. W. Laarman, R. Langerak, J. C. v. d. Pol, M. Weber, and A. Wijs.
Multi-Core Nested Depth-First Search. In T. Bultan and P. A. Hsiung,
editors, Proceedings of the 9th International Symposium on Automated
Technology for Verification and Analysis (ATVA), volume 6996 of Lec-
ture Notes in Computer Science, Tapei, Taiwan, July 2011. Springer.

[72] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Inter-
national Journal on Software Tools for Technology Transfer (STTT),
1(1):134–152, 1997.

[73] G. Li. Checking timed Büchi automata emptiness using LU-
abstractions. In Proceedings of the 7th International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS), volume
5813 of Lecture Notes in Computer Science, pages 228–242, Budapest,
Hungary, 2009. Springer.

146

[74] T. Lundqvist. A WCET analysis method for pipelined microprocessors
with cache memories. PhD thesis, Chalmers University of Technology,
2002.

[75] T. Lundqvist and P. Stenstrom. Timing Anomalies in Dynamically
Scheduled Microprocessors. In Proceedings of the 20th IEEE Real-Time
Systems Symposium, pages 12–21, Phoenix, AZ, USA, 1999. IEEE Com-
puter Society.

[76] L. Mauborgne and X. Rival. Trace Partitioning in Abstract Interpre-
tation Based Static Analyzers. In Proceedings of the 14th European
Symposium on Programming Languages and Systems (ESOP), volume
3444 of Lecture Notes in Computer Science, pages 5–20, Edinburgh,
UK, 2005. Springer.

[77] A. Miné. A New Numerical Abstract Domain Based on Difference-
Bound Matrices. In Proceedings of the Second Symposium on Programs
as Data Objects (PADO), volume 2053 of Lecture Notes in Computer
Science, pages 155–172. Springer, May 2001. http://www.di.ens.fr/
mine/publi/article-mine-padoII.pdf.

[78] A. Miné. The octagon abstract domain. In Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE), pages 310–319,
Stuttgart, Germany, Oct. 2001. IEEE Computer Society.

[79] A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation (HOSC), 19(1):31–100, 2006.

[80] D. Monniaux. The parallel implementation of the Astrée static ana-
lyzer. In Proceedings of the Third Asian Symposium on Programming
Languages and Systems (APLAS), volume 3780 of Lecture Notes in
Computer Science, pages 86–96. Springer, 2005.

[81] F. Nielson and H. R. Nielson. Model Checking Is Static Analysis of
Modal Logic. In L. Ong, editor, Proceedings of the 13th International
Conference on Foundations of Software Science and Computational
Structures (FoSSaCS), volume 6014 of Lecture Notes in Computer Sci-
ence, pages 191–205. Springer-Verlag, 2010.

[82] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Anal-
ysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[83] M. C. Olesen, R. R. Hansen, and K. G. Larsen. An Automata-Based
Approach to Trace Partitioned Abstract Interpretation. 2013.

[84] M. C. Olesen, R. R. Hansen, J. Lawall, and N. Palix. Clang and Coc-
cinelle: Synergising program analysis tools for CERT C Secure Cod-
ing Standard certification. In Pre-proceedings of the 4th International

147

Workshop on Foundations and Techniques for Open Source Software
Certification (OpenCert), volume 33 of Electronic Communications of
the EASST, pages 51–69, 2010.

[85] M. C. Olesen, R. R. Hansen, J. L. Lawall, and N. Palix. Coccinelle: Tool
support for automated CERT C Secure Coding Standard certification.
Science of Computer Programming (SCP), 2012.

[86] P. Olsen, K. G. Larsen, and A. Skou. Present and Absent Sets: Ab-
straction for Testing of Reactive Systems with Databases. Electronic
Notes in Theoretical Computer Science (ENTCS), 264(3):53–68, 2010.

[87] J. Reineke and D. Grund. Sensitivity of Cache Replacement Poli-
cies. Technical Report 36, AVACS (Automatic Verification and
Analysis of Complex Systems), March 2008. ISSN: 1860-9821,
http://www.avacs.org/.

[88] J. Reineke and R. Sen. Sound and Efficient WCET Analysis in the
Presence of Timing Anomalies. In Proceedings of the 9th International
Workshop on Worst-Case Execution Time Analysis (WCET), vol-
ume 10 of OASICS, page 101, Dublin, Ireland, 2009. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany.

[89] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker. A Definition and Classification of Timing Anomalies.
In Proceedings of the 6th International Workshop on Worst-Case Exe-
cution Time Analysis (WCET), volume 4 of OASICS. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2006.

[90] X. Rival and L. Mauborgne. The Trace Partitioning Abstract Do-
main. ACM Transactions on Programming Languages and Systems
(TOPLAS), 29(5):26, 2007.

[91] P. Sanders. Lastverteilungsalgorithmen fur Parallele Tiefensuche. num-
ber 463. In in Fortschrittsberichte, Reihe 10. VDI. Verlag, 1997.

[92] D. A. Schmidt and B. Steffen. Program Analysis as Model Checking
of Abstract Interpretations. In Proceedings of the 5th International
Static Analysis Symposium, volume 1503 of Lecture Notes in Computer
Science, pages 351–380, Pisa, Italy, 1998. Springer.

[93] S. Schwoon and J. Esparza. A Note on On-the-Fly Verification Al-
gorithms. In In Proceedings of the 11th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 3440 of Lecture Notes in Computer Science, pages
174–190, Edinburgh, UK, 2005. Springer.

148

[94] S. Tripakis. Checking Timed Büchi Automata Emptiness on Simulation
Graphs. ACM Transactions on Computational Logic (TOCL), 10(3):15,
2009.

[95] S. Tripakis, S. Yovine, and A. Bouajjani. Checking Timed Büchi
Automata Emptiness Efficiently. Formal Methods in System Design,
26(3):267–292, 2005.

[96] M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Au-
tomatic Program Verification. In Proceedings of the 1st Symposium on
Logic in Computer Science (LICS), pages 332–344, Cambridge, June
1986.

[97] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Check-
ing Programs. Automated Software Engineering, 10(2):203–232, 2003.

[98] I. Wenzel, R. Kirner, P. P. Puschner, and B. Rieder. Principles of
Timing Anomalies in Superscalar Processors. In Proceedings of the Fifth
International Conference on Quality Software (QSIC), pages 295–306,
Melbourne, Australia, 2005. IEEE Computer Society.

[99] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The Worst-
Case Execution Time Problem - Overview of Methods and Survey of
Tools. Trans. on Embedded Computing Sys., 7(3):1–53, 2008.

149

	Introduction
	Model Checking of Timed Automata Viewed as an Abstract Interpretation
	Timed Automata
	Symbolic Semantics for a Timed Automaton
	Abstract Interpretation
	A Connection
	Lattice Automata

	Thesis Summary
	opaal: A Lattice Model Checker
	Introduction
	Examples
	Conclusion

	Efficient Multi-Core Reachability Checking for Timed Automata
	Introduction
	Related Work
	Preliminaries
	A Multi-Core Timed Reachability Tool
	Successor Generation using opaal
	Well-Structured Transition Systems in LTSmin
	Experiments
	Conclusions

	Multicore Büchi Emptiness Checking for Timed Automata
	Introduction
	Preliminaries: Timed Büchi Automata and Abstractions
	Preservation of Büchi Emptiness under Subsumption
	Timed Nested Depth-First Search with Subsumption
	Multi-Core CNDFS with Subsumption
	Experimental Evaluation
	Viewed as Abstractions

	Automata-Based Approach to Trace Partitioned Abstract Interpretation
	Introduction
	Related Work
	Abstract Interpretation and Trace Partitioning
	Lattice Automata
	Abstract Interpretation as Lattice Model Checking
	Experiments
	Conclusion
	Case Studies and Applications

	What is a Timing Anomaly?
	Introduction
	Execution of Programs on Hardware
	Formalising Timing Anomalies
	Related Work
	Results
	Conclusion and Future Work

	Conclusion

