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Abstract

Hearing impaired listeners often face difficulties in understanding speech,
especially in noisy situations. A highly effective solution to solve this prob-
lem is to employ a hearing aid system (HAS), which can connect to a wireless
microphone worn by the talker of interest. The wireless microphone allows the
HAS to access an essentially noise-free version of the target signals that can
be presented to the user. However, despite the increase in intelligibility, some
users do not feel comfortable with this solution, because it does not provide
the correct spatial cues of the target sound, so that the user cannot localize the
target talker. This can reduce a user’s sense of immersion and can cause the
user to feel detached from the surroundings. Further, in situations where sev-
eral talkers are simultaneously present and each of them are wearing a wire-
less microphone, lack of spatial cues can degrade the speech intelligibility of
target signals, especially when some of the talkers are talking concurrently.

One solution to address these problems is to impose the correct spatial
cues on the wirelessly received signals, before rendering them to the HAS
user. To do so, one could solve the informed sound source localization (SSL)
problem, i.e estimate the location of the target talker(s) based on the knowl-
edge of the noise-free version of the target signal(s). Despite the fact that the
informed SSL problem is mainly relevant in acoustically noisy situations, and
that HAS microphones are typically located behind/in the users’ ears, exist-
ing informed SSL algorithms often ignore ambient noise characteristics and
effects of the user’s head on the received signals. In this thesis, we propose
a maximum likelihood (ML) framework for solving the informed SSL problem,
which allows to take both ambient noise characteristics and effects of a user’s
head into account. Ambient noise characteristics can be relatively easily esti-
mated based on the wirelessly available noise-free target signal and the noisy
target signals captured by the HAS microphones. To model effects of the
head, we employ four different head models, which include generic models,
which do not depend on a specific user, and individualizable models, which
allow to take user-specific details into account. For each of the head mod-
els, we propose an informed SSL algorithm using the ML framework. Even-
though the computational complexity of the proposed methods differ, each of

v



Abstract

the proposed algorithms has been formulated with computational efficiency
in mind. Some of the proposed methods are flexible in the sense that they do
not depend on a particular microphone array configuration. For these meth-
ods, we study how the microphone array geometry affects their performance.
This is important because some microphone configurations (e.g. binaural)
may require higher implementation costs than others (e.g. monaural). Finally,
we assess the performance of the proposed methods in different noisy and
reverberant conditions to demonstrate and to compare their effectiveness.
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Resumé

Hørehæmmede lyttere har ofte problemer med at forstå tale, specielt i støj-
fyldte situationer. En særdeles effektiv løsning på dette problem er, at an-
vende et høreapparat som kan forbindes til en trådløs mikrofon båret af den
taler, man ønsker at lytte til. Den trådløse mikrofon giver høreapparatet
adgang til en essentielt set støjfri version af talen, som så kan præsenteres di-
rekte til brugeren. Til trods for en forbedret taleforståelse, er mange brugere
dog ikke komfortable med denne løsning, da den ikke viderebringer de
egenskaber ved lyden, som normalt tillader mennesker at lokalisere taleren.
Dette kan reducere brugerens grad af indlevelse og kan få brugeren til at
føle sig afkoblet fra omgivelserne. Yderligere, i situationer hvor flere talere
bærer mikrofoner på samme tid, kan den manglende evne til at lokalisere
talerne føre til tab af taleforståelse, især hvis talerne taler på samme tid.
En løsning på disse problemer er, at påtrykke de korrekte egenskaber på
lyden fra den trådløse mikrofon, før denne præsenteres til høreapparats-
brugeren. For at gøre dette, kan man gøre brug af informeret lydkildelokalis-
ering (LKL), dvs. estimere placeringen af taleren baseret på kendskab til
det støjfrie signal. På trods af det faktum, at LKL oftest er relevant i støj-
fyldte situationer, og at mikrofonerne på et høreapparat typisk er placeret
bag eller i brugerens øre, ignorerer eksisterende LKL-algoritmer ofte både
støjkarakteristika og den akustiske effekt, som brugerens hoved har på de
modtagede signaler. I denne afhandling foreslår vi et maximum-likelihood-
baseret framework til at løse LKL-problemet, som tillader os at tage højde for
både baggrundsstøjens karakteristika og den akustiske effekt af brugerens
hoved. Baggrundsstøjens karakteristik er relativt enkel at estimere, baseret
på det, trådløst tilgængelige, støjfrie talesignal og det støjfyldte signal op-
fanget af høreapparatets mikrofoner. For at modellere hovedets indflydelse
anvender vi forskellige hovedmodeller, hvilke inkluderer generiske mod-
eller, som ikke afhænger af den specifikke bruger, samt individualiserbare
modeller som tager højde for brugerspecifikke detaljer. For hver af hoved-
modellerne foreslår vi en informeret LKL-algoritme baseret på det nævnte
maximum-likelihood-framework. Til trods for, at der er forskelle på beregn-
ingskompleksiteten af de forskellige metoder, er alle de udviklede algoritmer
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Resumé

designet med beregningseffektivitet i sinde. Visse af de udviklede metoder
er fleksible i den forstand, at de ikke afhænger af en bestemt fysisk konfig-
uration af mikrofoner. For disse metoder undersøger vi relationen mellem
mikrofonkonfiguration og opnået ydeevne. Dette er væsentligt, da visse kon-
figurationer (f.eks. binaurale) er mere omkostningstunge at implementere
end andre (f.eks. monaurale). Endeligt vurderer vi de udviklede metoders
ydeevne i forskellige situationer med baggrundsstøj og rumklang for at sam-
menligne deres effektivitet.
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Preface

This thesis is submitted to the Technical Doctoral School of IT and Design at
Aalborg University, Denmark, in a partial fulfilment of the requirements for
the Ph.D. degree.

The work was carried out in the period from April 2014 to April 2017,
jointly at Signal and Information Processing (SIP) group of the Department of
Electronic Systems, Aalborg University, and Audiological Design & Signal Pro-
cessing group at Oticon A/S, Denmark. Some of the work was conducted
in collaboration with the Circuits and Systems (group) of the Department of
Microelectronics, Delft University of Technology, The Netherlands.

This thesis is composed of two parts, the introduction and the main body.
In the introduction part, we provide an overview of how humans localize
sound sources (Chapter 1) , and how hearing loss (Chapter 2) and hearing
aids (Chapter 3) can influence the localization performance of humans. More-
over, we review existing sound source localization algorithms, and discuss
their advantages and disadvantages for hearing aid applications (Chapter 4).
Finally, we motivate our research and provide a summary of contributions
made in this thesis (Chapter 5). The main body of the thesis constitutes of
eight research papers, which have been published in or submitted to peer-
reviewed journals or conferences.
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Introduction

1 Human Sound Source Localization

Sound source localization (SSL) refers to the process of identifying the location
of a sound source, mostly in terms of direction and distance, relative to the
head of a listener [10, 100]. SSL intuitively plays an important role in our
perception of and interaction with the environment around us, especially
when sound sources are not in our field of vision.

Realistic acoustic scenes generally consist of several spatially distributed
sound sources, and sound signals reaching our ears are often complex mix-
tures of signals originating from different sources. Amazingly, our auditory
system can, to a great extent, analyze the mixture of signals reaching our two
ears, perceptually decompose the mixture into the constituent signals, and
build a picture and a perception of the acoustic scene around us [18]. This
ability is known as auditory scene analysis (ASA) [18]. The information, which
we gain from ASA, generally includes the number of sounds that are present,
and the timbre, pitch, loudness, clarity, and location of each [18]. Therefore,
we can consider SSL as an essential part of ASA.

The most well-known phenomenon used to illustrate the ASA ability in
humans is the so-called cocktail party effect [20, 112], which describes the ca-
pability of humans to focus intentionally on a conversation with one talker,
while other talkers are speaking simultaneously. It has been shown that local-
ization cues of a target talker assist the auditory system to extract the target
speech signal from a complex mixture of signals of different talkers, in a way
that it is more intelligible [18, 53, 64, 65, 146]. In other words, SSL helps to
improve speech intelligibility.

In this chapter, we review the spatial cues, which the human auditory
system can exploit to localize a sound source. We do so, because—as we
shall see—the SSL algorithms proposed in this thesis exploit these cues, too.
Further, we review the SSL performance of the human auditory system, as it
defines the accuracy, which the SSL algorithms proposed in this thesis must
provide.

Before the review, let us define some terms, which will be used. The coor-
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Fig. 1: The coordinate system used to define the position of a sound source relative to the head.

dinate system employed to define the position of a sound source is illustrated
in Fig. 1. The direction of a sound source is defined in terms of its azimuth
and its elevation relative to the listener’s head (cf. Fig. 1). Sound signals of a
source located at an azimuth of 0◦ and at an elevation of 0◦ originate exactly
from the front of the listener’s head. The horizontal plane is defined as the
locations, whose elevations are 0◦ [10, 100]. The median plane is defined as the
locations, whose azimuths are 0◦ and are at an equal distance from the two
ears of the listener [10, 100]. Unless otherwise stated, in this study, we use the
term “localization” for identifying only the direction of a source. Further, we
generally assume that point sound sources are in the far-field1 with respect
to the listener. Generally speaking, the far-field assumption is valid when the
sound source distance is 5-10 times larger than the size of the head2 [128];
therefore, in everyday life, many of the encountered sound sources can be
considered in the far-field.

1.1 Localization cues

The cues used by the human auditory system to localize a sound source has
been investigated widely, e.g [10, 24, 51, 55, 115, 116, 120, 146, 153, 154]. Gen-
erally, localization cues can be categorized as binaural cues or monaural cues.

Binaural cues are based on the differences between the signals received at
the left and the right ear [100, 111]. Fig. 23 shows exemplary signals received
at the left and the right ear of a listener, from a source generating a ramped

1Far-field is formally defined as “a region in free space, distant from a sound source, where
the sound pressure level obeys the inverse square law (the sound pressure level decreases 6 dB
with each doubling of distance from the source). Also, in this region the sound particle velocity
is in phase with the sound pressure” [56]. In signal processing algorithms using microphone
arrays, a far-field situation implies that the wavefronts impinging on the array can be considered
as plane waves [13, 93].

2To be more precise, the sound source distance should be 5-10 times larger than the distance
between the ears (“microphones”).

3To generate the figure, the head related impulse responses measured in the ear and provided
by [78] have been used.
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1. Human Sound Source Localization

0 1 2 3 4 5 6 7
Time (milliseconds)

Left ear
Right ear

(a) The source is located at an azimuth of
−90◦ and an elevation of 0◦, i.e. on the left-
hand side of the listener.

0 1 2 3 4 5 6 7
Time (milliseconds)

Left ear
Right ear

(b) The source is located at an azimuth of
+10◦ and an elevation of 0◦, i.e. to the front-
right of the listener.

Fig. 2: Exemplary signals received at the ears of a listener from a source placed 0.8 meters away
generating a 4-kHz sinusoidal signal.

4-kHz sinusoidal signal. As can be seen, depending on the location of the
source, one of the received signals is delayed and attenuated with respect
to the other one. More precisely, when the source is located on the left-
hand side of the listener, the signal received at the right ear is delayed and
attenuated with respect to the signal received at the left ear, and vice versa.
These differences are due to the presence of the head and the difference of the
distances between the source location and each of the ears. The binaural cues
obtained from the relative delays and attenuations of the received signals are,
respectively, referred to as interaural time differences (ITDs) and interaural level
differences (ILDs). In addition to binaural cues, several studies, e.g. [10, 24,
142, 153], have shown that humans are still able to localize a sound source,
to some extent, when the sound signals are presented to only one of the ears.
The cues used by the auditory system to localize a sound source in monaural
situations are called monaural cues.

Interaural time difference (ITD)

As demonstrated in Fig. 2, the time of arrivals (ToAs) of the sound signals of a
source received at the ears of a listener depend on the relative location of the
source and the listener. The ToAs differ because the signals travel different
distances and paths to arrive at the ears [111]. The ITD, which we denote by
∆T, is defined as the difference between the ToAs [111], i.e. ∆T = tright − tleft,
where tright and tleft represent the ToAs of the sound signal at the left and the
right ear, respectively.

In the literature, both physical and perceptual aspects of the ITD have
been investigated. Some of the main physical aspects of ITDs include:

• The magnitude of the ITD in adults varies in the range of 0 to approx-
imately 690 µs (the exact range depends on the size of the listener’s
head) [51, 100]. The maximum magnitude of the ITD occurs when the
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sound source is located at the sides of the head, i.e. azimuths of ±90◦,
and the ITD of 0 occurs when the source is on the median plane.

• The relation between ITD ∆T and azimuth θ of a source in the horizon-
tal plane can be approximated by [10]

∆T ≈ a
c
(θ + sin(θ)), (1)

where a is the radius of the head, and c is the speed of sound. This re-
lation has been derived based on a rigid spherical head model [10, 86].

• In principle, the ITD not only depends on the location of the source,
but also on the frequency of the source signal [2, 10, 51, 86, 100, 111].
The frequency-dependency of the ITD is due to the diffraction of sound
waves imposed by the head of the listener [43, 86]. As a rule of thumb,
the ITD measured at low frequencies (< 500 Hz) is 50% greater than
the ITD measured at high frequencies (& 2000 Hz) [42, 86].

The main perceptual aspects of the ITD can be summarized as:

• The smallest detectable ITD of single tones by human listeners is gener-
ally frequency dependent [22, 81]. The smallest threshold is when the
frequency of the signal is in the range of 700 to 1000 Hz [22]. At lower
frequencies, i.e. in the range of 250 to 700 Hz, the threshold is inversely
proportional to the frequency of the signal, while at higher frequencies,
more than 1000 Hz, the threshold is increasing rapidly (faster than ex-
ponentially) [22]. For a broadband noise in the horizontal plane, the
smallest detectable ITD is approximately 10 µs [81].

• The smallest perceivable change in an ITD by a human listener is re-
ferred to as the just noticeable difference (JND) of the ITD [111]. The
JND of an ITD directly relates to the magnitude of the ITD [60], i.e. the
greater the magnitude of the ITD, the greater the JND of the ITD [60].
In other words, the smallest JNDs of ITD occur when the sound source
is in the median plane, while the greatest JNDs of ITD occur when the
sound source is at the sides. This intuitively implies that the smallest
detectable change in the azimuth of a source directly depends on the
current azimuth of the source. In other words, humans have the best
spatial resolution when the source is in the front (humans can detect
changes of approximately 1◦ in the angle [111]), while they have the
worst spatial resolution when the source is at the sides (they can detect
changes of approximately 20◦ in the angle [111]).

• When the sound signal includes low frequency components (< 1500 Hz),
the ITD is the dominant and the main cue used by the auditory system
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1. Human Sound Source Localization

to identify the direction of the sound source [111, 154]. Hence, for most
natural sounds, localization is dominated by ITD cues [111].

• Besides the fine waveform of a sound, humans can exploit the fluctua-
tions in the sound temporal envelope, i.e. “the slower variations in the
peak amplitude of the waveform” [111], to estimate ITD, particularly at
high frequencies [111, 137].

Interaural level difference (ILD)

To define ILD, let us first define the intensity and the level of a sound signal.
The intensity of a sound signal is defined as the energy of the sound waves
passing through a unit area [111]. Expressing the intensity in decibels with
respect to a reference intensity is called the level (l) of the sound signal. In
other words,

l = 10 log10(
I
I0
), (2)

where I is the sound intensity, and I0 is a reference intensity [111]. The con-
ventional value of I0 is 10−12 W

m2 [111], and a sound level, which is expressed
with respect to this I0, is called a sound pressure level (SPL).

The ILD, which we denote by ∆L, is defined as the difference in the level
of a sound signal received at the two ears [111], i.e. ∆L = lright − lleft, where
lleft and lright are the levels of the sounds received at the left and right ear, re-
spectively. As suggested by Fig. 2, similarly to the ITD, the ILD also depends
on the relative location of the source and the listener.

The main cause of the ILD is the “shadowing effect” of the listener’s head
on the received sound [10, 111]. In other words, the head blocks some of the
energy of the sound from reaching the contralateral ear [111], and this leads
to the ILD. As for the ITD, the ILD is also frequency dependent [10, 61, 100],
and it generally has a direct relationship with the frequency of the signal
[51, 100], i.e. the higher the frequency, the greater the ILD.

The ILD is smaller at lower frequencies because of the diffraction of the
sound signals [100]. In other words, at low frequencies, the wavelength is
larger than the size of the listener’s head; therefore, the waves can bend
around the head, and only a small “shadow” is made by the head. For
frequencies less than 500 Hz, the ILD is very small and negligible in far-field
situations; however, when the sound source is very close to the listener’s
head, notable ILDs may occur, even at low frequencies [23, 100]. At high
frequencies, the wavelength is smaller than the size of the head, and this
prevents diffraction, i.e. a strong “shadow” can occur [100].

Interestingly, the smallest detectable ILD by human listeners in a frequency
range from 200 to 5000 Hz is roughly frequency-independent [61, 156, 157].
The smallest detectable ILD in this frequency range is approximately 0.5 to
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Fig. 3: An exemplary cone of confusion. Every locations on the surface of the cone produce
similar ITDs and ILDs.

1 dB [61, 156]. However, the smallest detectable ILD seems to decrease for
higher frequencies [52]. Moreover, as with ITD, the greater the magnitude of
an ILD, the greater the JND of the ILD [149].

Monaural cues

Even though the binaural cues play the most important role in human SSL,
especially for sound sources in the horizontal plane, the binaural cues alone
are not sufficient to identify the exact location of a sound source in a three-
dimensional space [111]. This is because there is no one-to-one mapping
between the binaural cues and the possible locations. For example, an ITD
of 0 seconds and an ILD of 0 dB (∆L ≈ 0 and ∆T ≈ 0) can essentially be
produced from all locations on the median plane [10]. More generally, for
any particular ITD, there are an infinity of locations, which can produce that
particular ITD. These locations form the surface of a cone, which is known
as a cone of confusion (cf. Fig. 3) [111]. ILDs produced from locations on a
cone of confusion are also similar [111]. Therefore, the ITD and the ILD are
not sufficient to determine the exact location of the sound source. Further, as
mentioned earlier, when sound signals are presented to just one of the ears,
i.e. when binaural cues are not available, humans can still to some extent
localize sound sources [10, 100, 111, 142, 153]. Therefore, besides binaural
cues, our auditory system exploits other spatial cues, which we refer to as
monaural cues.

The monaural cues are based on spectral changes imposed by the head
and torso and, especially, by the pinna of the listener on incoming sounds
[10, 100, 111]. These spectral changes depend on the direction of arrival
(DoA) of the sound signal, and are prominent at higher frequencies [10].
Moreover, these spectral changes are often measured and represented in
terms of head related transfer functions (HRTFs) [27], which are formally de-
fined as “a specific individuals left or right ear far-field frequency response,
as measured from a specific point in the free field to a specific point in the
ear canal” [27].

The monaural cues are specifically important for determining the eleva-
tion [61, 116], and for SSL at high frequencies, above approximately 4000 Hz,
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1. Human Sound Source Localization

because the wavelength of the signal is comparable to the size of the pinna,
head and torso at high frequencies [61, 100, 111]. Moreover, HRTFs differ
across different individuals, especially above 6000 Hz, because the size and
the shape of their heads and pinnae are different [100]. Several studies have
shown that individualized monaural cues (HRTFs) play a main role in re-
solving front-back and up-down confusions, or more generally, localization
along a particular cone of confusion [67, 150].

It should be noted that besides the monaural cues, humans exploit their
head movements to resolve confusions and to facilitate the localization of
sound sources [72, 102, 108, 152]. Movements of the head relative to a sound
source change the monaural and binaural cues and reveal additional evidence
of the source position, which humans integrate to resolve ambiguities.

1.2 Distance estimation

So far, we have focused on the spatial cues used by the auditory system to
localize a sound source in terms of its direction. Another important location
information is the sound source distance, which humans use to interact with
the environment, e.g. to avoid a vehicle approaching from behind [159].

The primary cue to distance, especially for familiar sounds, is believed
to be sound level [100, 111, 159]. Physically, sound level has an inverse rela-
tionship with distance. In free-field and far-field situations, this relationship
obeys an inverse-square law, i.e. every doubling in distance implies a 6 dB
reduction in sound level [111, 159]. In situations, where sound level is the
only cue to distance, it has been demonstrated that the perceived distance is
independent of the actual physical distance [54, 159]. However, the sound
level change, e.g. when a listener walks towards a sound source, can be an
absolute cue to distance [6, 100]. Moreover, when multiple sound sources are
present in the acoustic scene, sound level seems to be the most beneficial cue
for distinguishing the relative distances of the sound sources [100].

Besides sound level, reverberation is another factor which contributes to
humans’ estimate of distance. Several studies have shown that perceived dis-
tances are more accurate in reverberant environments than in anechoic situa-
tions [21, 97, 159]. Moreover, it has been shown that the perceived distance is
inversely related to the direct-to-reverberant ratio (DRR) of the sound, i.e. the
lower the DRR, the greater the perceived distance. [100, 111, 159]. Further,
this cue seems to be beneficial for distance estimation, even when the sound
is not familiar [111]. However, because the ability of humans in detecting
changes in the DRR is limited [111, 158]—we can detect changes in the DRR
when the sound distance more than doubles—it has been suggested that the
DRR provides a primary cue to absolute distance rather than a cue for de-
tecting relative distances [158, 159].

Over long distances, longer than 15 meters, the spectrum of the sound
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may be changed by the absorbing properties of the air, especially at high
frequencies [100, 111, 159]. This change affects the spectral balance of the
sound [111], and is another cue to distance, especially when the sound is
familiar [100]. However, this effect is relatively small, e.g. at 4 kHz, the power
loss is 3 to 4 dB per 100 meters [159].

1.3 General remarks

Here, we briefly review some of the important points about the SSL perfor-
mance of humans:

• Humans generally perform much more accurately in estimating the di-
rection than estimating the distance [10, 159].

• Humans generally perform better in estimating the azimuths of sound
sources than their elevations [10].

• Humans perform best in estimating the source direction, when the
source is in front of the listener (azimuth of 0◦), while perform worst,
when the source is to the sides (azimuth of ±90◦) [10].

• Humans usually underestimate the distance to faraway sound sources,
while they often overestimate the distance to close sound sources (gen-
erally, when the distance is less than one meter) [159].

• SSL performance of humans improves when sound signals of the source
are familiar [10].

• Non-acoustical cues, such as visual cues, obviously also contribute to
SSL in humans [111, 159], e.g. to resolve front-back confusions.

2 Hearing loss

Hearing loss is one of the most common physical disabilities in the world [111].
Statistics show that over 5% of the world’s population (around 360 million
people) have disabling hearing loss that markedly disturbs their daily life [1].

Broadly speaking, hearing loss can be defined as any impairment to hu-
mans’ ability to receive, process and perceive sounds, which are normally
audible. More formally, hearing loss is defined as an increase in the hearing
threshold, which is the minimum sound pressure level required to perceive a
pure tone4 [121]. Our auditory system is sensitive to frequencies from ap-
proximately 20 Hz to 20000 Hz [100]. Fig. 4 shows the hearing threshold of

4Note that some auditory deficits do not change the pure tone hearing threshold, but they
still limit the perception of some sounds that are above the normal hearing threshold. Such a
hearing impairment is called hidden hearing loss [110].
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Fig. 4: The hearing threshold of humans with normal hearing [71].

humans with normal hearing at these frequencies [71]. The hearing loss of a
listener is recognized by the difference between the individual hearing thresh-
old and the threshold shown in Fig. 4 [121]. It should be noted that the hear-
ing threshold generally largely varies among individuals, and Fig. 4 shows
an average of hearing thresholds, which are considered to be normal. Any
individual hearing threshold up to 15 dB higher than the threshold shown in
Fig. 4 is considered normal [121].

To describe details and consequences of hearing loss, it is necessary to
briefly review the peripheral auditory system and its different parts.

2.1 The peripheral auditory system

As depicted in Fig. 5, the peripheral auditory system consists of three main
parts: outer ear, middle ear, and inner ear [111]. The outer ear, which consists of
the pinna and the ear canal, collects sounds from the environment, passively
amplify some components of the sounds, and conducts the sounds to the
middle ear [121]. The eardrum (tympanic membrane) separates the outer ear
from the middle ear. The middle ear consists of ossicles, which are three
tiny bones called malleus, incus and stapes [111, 121]. The main responsibility
of the middle ear is to efficiently transmit the pressure vibrations made by
the sound waves to the inner ear [111, 121]. The inner ear—cochlea—is the,
perhaps, most important part of the peripheral auditory system. The main
task of the cochlea is to transduce the mechanical vibrations into electrical
nerve impulses, which are transferred to the brain for processing via the
auditory nerve [111, 121].

Structure of the cochlea

The cochlea is a spiral tube with a shape similar to a snail shell [109, 111].
Fig. 6 depicts a cross-section of the cochlea and its components. Two mem-
branes, Reissner’s membrane and the basilar membrane, divide the cochlea along
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Fig. 5: The peripheral auditory system (copied with permission from [111]).

Fig. 6: A cross-section of the cochlea (copied with permission from [111]).

Fig. 7: The tectorial membrane and the organ of Corti (copied with permission from [111]).
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its length into three fluid-filled compartments: the scala vestibuli, the scala
media, and the scala tympani [100, 111]. The scala vestibuli and the scala
tympani are connected to each other via a small opening (helictrema) at the
apex of cochlea, while the scala media is a completely separate compart-
ment [109, 111].

In the scala media and above the basilar membrane, a gelatinous struc-
ture called the tectorial membrane is located [109, 111]. Between the tectorial
membrane and the basilar membrane is the organ of Corti [100, 109, 111]. Fig. 7
depicts more details of this structure. The organ of Corti contains rows of hair
cells, which can be divided into inner hair cells and outer hair cells [109, 111].
In the cochlea of humans, there are often one row of inner hair cells and up
to five rows of outer hair cells [100, 111]. On top of the hair cells, there are
protein filaments called stereocilia [100, 109]. In contrast to inner hair cells, the
tallest tips of the stereocilia in outer hair cells are implanted in the tectorial
membrane [111]. The main task of the inner hair cells is to transduce the vi-
brations of the basilar membrane into neural activities, while outer hair cells
are believed to actively help to amplify the vibrations of the basilar mem-
brane [100, 111]. The amplification of the basilar membrane vibrations by
outer hair cells is greatest for low sound levels, whereas it decreases to zeros
for sound levels above around 90 dB SPL [111].

Functionality of the cochlea

Sounds are conveyed to the cochlea via the oval window, which is covered by a
membrane [100, 111]. More precisely, to convey the sounds, the stapes move
the membrane of the oval window according to the vibrations of the sounds
[111]. Due to the incompressibility of the fluid in the cochlea, the movements
of the oval window lead to vibrations of the basilar membrane [100, 111].

The basilar membrane plays a crucial role in hearing. The main effect of
the basilar membrane is to break down a sound into its frequency compo-
nents [109, 111]. The stiffness of the basilar membrane varies continuously
along its length; therefore, different parts of the basilar membrane are sensi-
tive to different frequency components of a sound [100, 111]. This implies that
different frequency components of a sound excite different parts of the basilar
membrane [100, 111]. High frequency components are generally processed
at places near to the oval window, while low frequency components are gen-
erally processed at places near to the other end of cochlea (apex) [109, 111].
In other words, the basilar membrane acts as a bank of overlapping band-pass
filters called auditory filters [100, 111]. This tonotopic (frequency-to-place) rep-
resentation of frequencies is preserved at almost all levels of auditory pro-
cessing [100, 111, 146].

When the basilar membrane moves, it leads to electrochemical activities in
the pertinent inner hair cells and causes neurotransmitters to be released [109,
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111]. The neurotransmitters activate the relevant neuron in the auditory nerve
and cause the neuron to generate neural spikes [109, 111]. The magnitude of
the basilar membrane vibrations, at the place where the neuron is linked, is
directly correlated with the firing rate of the neuron [109, 111]. Moreover, it
has been shown that the neurons in the auditory nerve tend to fire spikes at
a particular phase in the vibration of the basilar membrane [100, 111]. This
mechanism is referred to as phase locking [100, 111]. It should be noted that
because the neural activities in inner hair cells are limited, it is believed that
the phase locking occurs for frequencies up to 5000 Hz [74, 111]. Above 5000
Hz, the neurons seem to be phase locked to the sound envelope, i.e. “the
slower variations in the peak amplitude of the waveform” [111].

Phase locking of neural spikes plays an important role in SSL of humans,
as it allows the central auditory system (the auditory centers in the brainstem
and cerebral cortex) to derive the ToAs of sounds at the two ears [58, 100, 111].
To extract ITDs, it is believed that the central auditory system exploits an
array of neurons, where each neuron in the array is most sensitive to a specific
delay between the inputs from the ears [73, 118, 146]. To extract ILDs, the
firing rate of the neurons plays the most important role. To be more precise,
because the firing rate of the neurons linked to the inner hair cells depends
on the intensity of sound [111, 146], ILDs are believed to be estimated by the
central auditory system from the differences between the firing rates of these
neurons at the two ears [146].

2.2 Types of hearing loss

The type of hearing loss is identified by which part of the auditory system
that does not function normally [37, 111, 121]. Hearing loss can be catego-
rized into the following types [121]:

1. Conductive hearing loss: Any disorder in the outer or middle ear can
cause a conductive hearing loss, which degrades the efficiency of the con-
duction of the sound to the inner ear [37, 121]. Conductive hearing
loss constitute approximately 10% of all hearing losses [121] and are of-
ten treated by surgery or medical treatments. Sometimes, the effects of
a conductive hearing loss can be mitigated by bone-anchored hearing
aids, which bypass the middle ear by transmitting the sound through
vibration of the skull bone in accordance with the sound [121, 123, 131].

2. Sensorineural hearing loss: This type of hearing loss occurs when the
cochlea or possibly the auditory nerve is damaged [37, 111, 121]. Sen-
sorineural hearing loss is the most common type of hearing loss—it
constitutes around 90% of all hearing losses [121]. The underlying
cause of most sensorineural hearing is damage of the hair cells in the
cochlea [111]. Damage of the inner hair cells diminishes the sensitivity

14



2. Hearing loss

Table 1: Degree of hearing loss [31, 132].

Degree Hearing loss range [dB]

Normal -10 to 15

Minimal 16 to 25

Mild 26 to 40

Moderate 41 to 55

Moderately severe 56 to 70

Severe 71 to 90

Profound >90

of the ear to the vibrations of the basilar membrane, whereas dam-
age of the outer hair cells weakens the vibrations of the basilar mem-
brane [111]. Nonetheless, both types of damage lead to elevation of the
hearing threshold [111]. Currently, sensorineural hearing loss cannot be
treated by surgery or medical treatments [37, 121]. However, amplify-
ing the acoustic signals by conventional hearing aids can often mitigate
the effects of this type of hearing loss [37, 121].

3. Mixed hearing loss: When a conductive hearing loss and a sensorineural
hearing loss occur simultaneously, it is called a mixed hearing loss [121].

4. Central hearing loss (or hidden hearing loss): This type of hearing loss is
due to disorders in the central auditory nerve system [121]. A central
hearing loss usually barely changes the hearing thresholds, but it de-
grades the word or speech recognitions abilities. Central hearing loss is
uncommon, and currently does not have any treatment [121].

2.3 Degree of hearing loss

The degree of hearing loss describes the severity of the loss [132]. Based on
the average hearing loss at frequencies 500 Hz, 1000 Hz, and 2000 Hz (these
frequencies are important for understanding speech, and are known as speech
frequencies [121]), the degree of a hearing loss has been classified into seven
categories shown in Table 1 [31, 132].

2.4 Configuration of hearing loss

The configuration of a hearing loss defines general characteristics of the hear-
ing loss [121, 132]. One of the main characteristics of a hearing loss is its
spectral shape [121, 132]. The shape of hearing loss across frequency has
generally been categorized into seven groups5:

5This is an extended version of the categorization proposed in [121].
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1. Flat: The differences between the hearing loss at different frequencies is
less than 20 dB.

2. Rising: The hearing loss at low frequencies is at least 20 dB larger than
the hearing loss at high frequencies.

3. Sloping (ski slope): The hearing loss at high frequencies is at least 20 dB
larger than the hearing loss at low frequencies.

4. Low-frequency: The hearing loss affects only low frequencies.

5. High-frequency: The hearing loss affects only high frequencies.

6. Cookie bite: The hearing loss affects only mid frequencies [98].

7. Precipitous: The hearing loss is increasing steeply towards high frequen-
cies (at least 20 dB per octave.) [121].

Other characteristics of a hearing loss defined by its configuration can be
summarized as [121, 132]

• Unilateral vs. bilateral: If a hearing loss affects only one of the ears, it is
called a unilateral hearing loss; otherwise, it is a bilateral hearing loss.

• Symmetrical vs. asymmetrical: In a bilateral hearing loss, if the shape and
the degree of the hearing loss at both ears are similar, it is called a
symmetrical hearing loss; otherwise, it is a asymmetrical hearing loss.

• Sudden vs. progressive: If a hearing loss has occurred suddenly, it is
called a sudden hearing loss. On the other hand, if the hearing loss
has evolved over time, it is called a progressive hearing loss.

• Stable vs. fluctuating: If a hearing loss improves at times and deteriorates
again, it is a fluctuating hearing loss; but if the hearing loss does not
change over time, it is a stable hearing loss.

2.5 Effects of hearing loss

Some of the main impacts of a hearing loss, particularly a sensorineural hear-
ing loss, are [37]:

i) Reduction in audibility: Due to elevation of the hearing threshold, hearing
impaired listeners usually cannot detect quiet sounds. An important
consequence of this is difficulties in understanding speech [37].

ii) Reduction in dynamic range: The dynamic range of hearing (DRH) is the
range of sound levels, where our auditory system works effectively [111].
For the frequency range of 1000 Hz to 6000 Hz, an intact DRH is about
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2. Hearing loss

120 dB, while at lower and higher frequencies, the DRH decreases [111].
The DRH is characterized by its lower limit, which is the hearing thresh-
old, and its upper limit, which is the pain threshold6 (threshold of loud-
ness discomfort) [37]. Even though a sensorineural hearing loss elevates
the hearing threshold, it usually does not change the pain threshold. In
other words, hearing-impaired listeners cannot hear soft sounds, whose
levels are below their hearing thresholds, while they can hear intense
sounds as loud as a normal-hearing listener [37, 121]. This implies that
the DRH of a hearing-impaired person is often less than the DRH of a
normal-hearing person [37, 111, 121]. It also implies that each increase
of sound level leads to a bigger loudness—the perceived sound level—
increase for a hearing impaired listener than for a normal hearing lis-
tener. The latter implication is referred to as loudness recruitment [37].

iii) Reduction in frequency selectivity: The frequency selectivity refers to the
ability of the auditory system to resolve and separate the frequency
components of sounds [100, 111]. This ability allows us to hear sounds
with different frequencies that arrive at our ears simultaneously. The
frequency selectivity stems from the fact that different frequencies are
processed by different places in cochlea [100, 111]. Several studies, e.g.
[11, 99, 101], have shown that sensorineural hearing loss reduces the fre-
quency selectivity ability of hearing-impaired people. In other words,
sensorineural hearing loss broadens the bandwidths or the critical bands
of the auditory filters and degrades the ability of hearing-impaired peo-
ple in detecting a target sound in noisy situations [100, 111].

iv) Reduction in temporal resolution: The temporal resolution refers to how fast
our auditory system can detect and process changes in the characteristics
of sounds over the time [100, 111]. This is one of the most important as-
pects of peripheral auditory system, because information in the auditory
domain are primarily encoded in these changes [111]. The temporal res-
olution plays a crucial rule in understanding speech, especially in a noisy
background [37, 100, 111]. For example, it allows us to take advantage
of dip listening—catching brief moments of speech, when ambient noise
levels momentarily drop-off [57]. Several studies, e.g. [68, 99, 126], have
shown that hearing loss deteriorates the temporal resolution, which, in
turn, leads to degradation in the ability of hearing-impaired people to
understand speech [57].

2.6 Sound source localization by hearing-impaired listeners

As explained, hearing loss generally degrades transmission of the received
sound information from the peripheral auditory system to the central audi-

6also known as uncomfortable loudness level (UCL).
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tory system. This obviously can effect human SSL performance. It has been
reported that unaided hearing-impaired listeners generally perform worse
than normal-hearing listeners in SSL tasks [3, 8, 44, 62, 85, 90, 106, 107].
Degradations of SSL performance in hearing-impaired listeners generally re-
lates to the type and configuration of the hearing loss of listeners, the spatial
origin of the sound source, and the signal level [44, 62, 106]. In the following,
we briefly describe important points of these relations.

In the horizontal plane, SSL performance of listeners with conductive
hearing loss is usually markedly poorer than the performance of listeners
with sensorineural hearing loss, when both type of listeners have similar de-
grees of hearing loss [44, 62, 106]. This is most likely because estimation of
ITDs at low frequencies is usually severely disrupted for listeners with con-
ductive hearing losses [106]—as mentioned above, ITDs at low frequencies
are normally the dominant cues for SSL in the horizontal plane [100, 111].

In the frontal horizontal plane, SSL performance of listeners with high-
frequency sensorineural hearing loss is comparable to normal-hearing listen-
ers, as long as the hearing loss is not severe at either low (250 to 1000
Hz) or midrange (2000 to 4000 Hz) frequencies [106]. However, listeners
with high-frequency hearing loss, generally suffer more from front-back confu-
sions, compared with normal-hearing listeners, because high-frequency com-
ponents, which assist the auditory system to resolve front-back confusions,
have been affected by the hearing loss [106].

In the median plane, performance of listeners with a conductive hear-
ing loss is still generally worse than the performance of listeners with sen-
sorineural hearing loss [106]. However, compared with the horizontal plane,
the difference between the performance of these two type of listeners is
smaller [106]. This is partly because SSL in the median plane is associated
with sensitivity of the auditory system to high frequencies [106], and listeners
with conductive hearing loss, to some extent, can discriminate ILDs at high
frequencies [62]. It has been shown that listeners with sloping hearing loss
perform poorly in SSL in the median plane, because high-frequency compo-
nents of sound signals, which are important for estimating elevation in the
median plane, cannot be exploited by the auditory system [106].

3 Hearing aids

A hearing aid is a miniature sound system, which amplifies sounds to reduce
the impact of hearing loss [75]. Often, hearing aids are the only solution to
mitigate the effects of a sensorineural hearing loss, which is the most common
type of hearing loss. Therefore, hearing aids play an important role in daily
life of many people. In what follows, we generally restrict our attention to
sensorineural hearing loss. Hence, whenever we use the term “hearing loss”
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3. Hearing aids

alone, it refers to a sensorineural hearing loss.

3.1 Types of hearing aids

The type or style of a hearing aid system (HAS) determines its physical size
and to where it should be worn [37, 75, 121]. The common types of hearing
aids are: behind the ear (BTE), in the ear (ITE), in the canal (ITC), and completely
in the canal (CIC) [75, 121]. The BTE is by far the most common type of HAS,
and as its name implies, it is placed behind the outer ear (pinna) of a user [37].
The ITE is smaller than the BTE, and it is placed in the concha of the outer
ear [37]. The ITC is sufficiently small such that it only occupies a small part
of the cavity of concha up to the opening of the ear canal [37]. The CIC is the
smallest conventional type of hearing aids and fits the size and shape of the
individual ear canal [75].

Hearing aid users usually prefer a hearing aid to be as small as possible
so that it is less visible; however, the smaller the hearing aid, the less space
for the hearing aid’s components (including battery and extra microphones),
and hence, the less computational power [37]. Generally, each type of HAS
has its own advantages and disadvantages, and the requirements of a user
determines the appropriate type [37].

3.2 Hearing aid components

The first industrial HASs were analog devices, which consisted of a micro-
phone, amplifier, and receiver packed in a case [75]. Nowadays, almost all
HASs are digital devices, which manipulate the sound using digital signal
processing algorithms—such as multichannel dynamic range compression,
feedback cancellation and noise reduction—to enhance the effectiveness of
the hearing aids [75, 121].

Fig. 8 shows the most basic hardware architecture of a digital hearing
aid [37, 75]. It consists of a

• microphone(s): to convert sound waves into analog electrical voltages.

• analog-to-digital converter (ADC): to digitize the analog electrical volt-
ages.

• digital signal processor (DSP): to manipulate the digital signal in order
to amplify the sound and to improve its quality.

• memory: to store the data, parameters and instructions of signal pro-
cessing algorithms.

• digital-to-analog converter (DAC): to convert the processed digital sig-
nal into electrical voltages, which can be converted to sound waves.

19



Mic.
Analog-to-

Digital 
converter

Digital Signal 
Processor

Memory

Digital-to-
Analog 

converter

Hearing aid

SP
K

R

Vent

Fig. 8: Basic hardware architecture of a digital hearing aid [37].

• receiver (or speaker): to generate sound waves presented to the user
based on the obtained electrical voltages.

• vent7: to decrease the occlusion effect8.

HASs have limited processing power and memory capacity, far less than a
smart phone. Further, they must operate in real time, i.e. the processing de-
lay must be low [37, 75]. As a rule of thumb, the processing delay of a HAS
generally should be less than 10 milliseconds [95]. This is because sounds
are reaching the eardrum of a hearing aid user via two different paths: 1) an
acoustic path: sounds reach the eardrum by passing around the hearing aid
and through the vent, 2) a hearing aid path: sounds are picked up by the
HAS microphones, are processed, and are then presented to the eardrum via
the HAS receiver. In comparison with the time delay of the hearing aid path,
the time delay of the acoustic pass is negligible. Therefore, the processing de-
lay of a HAS can cause spectral ripples (referred to as comb filtering effect [37]),
which can be audible and disturbing to the user, especially when the process-
ing delay is longer than roughly 10 milliseconds. Hence, signal processing
algorithms developed for HASs have to consider these limitations. Moreover,
because a hearing loss generally affects different frequencies of a sound in a
different manner, processing algorithms of HASs most often operate in the
frequency domain [37, 75, 121].

7“any opening between the inner part of the ear canal and the free air outside the ear will be
called a vent” [37].

8“the occlusion effect refers to the increase in low-frequency sound pressure within the
blocked ear canal when the hearing-aid user is talking” [75]. In other words, when an object
blocks the ear canal of a person, he/she may perceive his/her voice as “hollow” or “boom-
ing” [103]
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3. Hearing aids

3.3 Signal processing algorithms

Digital HASs are equipped with various signal processing algorithms, e.g. for
amplifying or filtering the incoming sound, so that it is audible and intelli-
gible to the hearing aid user. The three main processing algorithms, which
are usually available in most digital HASs, are wide dynamic range compres-
sion (WDRC), feedback cancellation and noise reduction. Here, we very briefly
explain the roles and functionalities of these algorithms.

Wide dynamic range compression (WDRC)

As explained in Sec. 2.5, the DRH of a hearing-impaired listener is smaller
than that of a normal-hearing listener, because hearing loss elevates the hear-
ing threshold, while generally does not change the pain threshold (the upper
limit of the DRH). Due to the smaller DRH, it is not feasible to amplify all
sounds by a fixed gain, in order to make soft sounds audible for a hearing-
impaired listener. This is because the fixed gain would amplify intense
sounds to levels louder than the pain threshold. Apart from instant discom-
fort, this could significantly harm the auditory system of the user [37, 121].
Instead, most existing HASs use a WDRC algorithm to reduce the range of
sound levels in the environment to fit into the DRH of a hearing-impaired
listener. WDRC algorithms usually vary the gain needed to amplify sounds
with respect to the input sound level. Two important aspects in designing a
WDRC algorithm are [121]: 1) Static aspects: defining the amount of gain as
a function of input sound level. 2) Dynamic aspects: defining how fast the
algorithm should change the gain with respect to the changes in the input
sound level.

Feedback cancellation

Because the microphone and the receiver of a hearing aid are placed close
to each other, it is likely that the sound generated by the receiver leaks back
to the microphone [59, 75]. This problem is known as “acoustic feedback
problem”, which can degrade the sound quality of HASs and may lead to an
unstable system, which, in turn, may cause the hearing aid to howl [59, 75].
To solve this issue, HASs usually use a feedback cancellation system to detect
the feedback problem when it occurs, and to cancel its effects [59, 75].

Noise reduction

As mentioned, in noisy situations, hearing-impaired listeners face more diffi-
culties in detecting a target sound and understanding speech compared with
normal-hearing listeners. Therefore, HASs usually employ a noise reduction
system to analyze the input sounds, and to estimate and to reduce the amount
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of noise in the received sounds, in a way that the target sound is more in-
telligible or has higher sound quality [66, 121]. Moreover, instead of using
one microphone, most existing HASs incorporate an array of microphones—
typically two—which allows for spatial filtering, i.e. to amplify the sounds
originating from a desired direction while attenuating the interferer sounds
coming from other directions. We refer to this feature as (adaptive) directional
microphones or beamforming [37, 75, 121].

Generally, performance of different processing algorithms in a HAS depends
on each other. Therefore, another challenge in designing a HAS is to tune
the parameters of algorithms, so that the overall performance of a HAS is
improved [37].

3.4 Effects of hearing aids on sound source localization

As seen in Sec. 2.5, hearing loss degrades the SSL performance of humans. In
this section, we explain the effects of HASs and hearing aid signal processing
algorithms on SSL performance of hearing-impaired listeners. In general,
several studies, e.g. [104, 133, 136, 140, 141], have shown that most existing
HASs not only do not improve the SSL performance of hearing-impaired
listeners, but sometimes even deteriorate the SSL performance.

The effects of WDRC systems on SSL performance have been investigated
in [79, 124, 133, 151]. These studies showed that WDRC systems generally
distort ILDs, and thereby can affect the localization performance, especially
for high frequency sounds. However, if low-frequency binaural cues are in-
tact and available, the negative effects of WDRC on SSL performance are
reduced [151].

Generally, noise reduction systems can significantly affect the SSL per-
formance [79, 136, 139, 140]. Particularly, most existing directional noise re-
duction systems can completely distort binaural cues related to interferers,
because essentially, these systems are not designed in a way that preserves
the localization cues [41, 84]. Moreover, when bilateral hearing aids operate
completely independently of each other, mismatches between their noise re-
duction systems can markedly distort binaural cues, especially ITDs, thereby
degrading the localization performance in the horizontal plane [136, 139, 140].
However, more recent noise reduction systems aim at tackling this issue,
e.g. [84, 92].

The hearing aids type or more precisely, the location of hearing aids’ mi-
crophones can also play a role in the SSL performance of users [9, 133, 138].
CIC, ITC and ITE hearing aids generally preserve the monaural cues better
than BTE hearing aids [9, 138], and to some extent, can assist their users in
resolving front-back confusions [9]. Moreover, it has been shown that the po-
sition of the microphones can also affect binaural cues, especially ILDs [133].
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4. Sound Source Localization Algorithms

BTE hearing aids can distort ILDs up to 30 dB in the frequency range of 6 to
8 kHz [133].

4 Sound Source Localization Algorithms

Taking the spatial information of sound sources into account potentially al-
lows HASs to improve spatial hearing of hearing aid users [84, 130]. To do
so, HASs generally need to “know” the location of the target sound source.
Most existing HASs assume the target sound source is always in the front of
the user, because the user usually looks towards the target to allow the use of
visual cues, such as lipreading [127]. However, in practice, the target talker
might not be in the front, either because it can be socially awkward to keep
the target talker always in the front, or because the physical situation, e.g. a
car cabin, does not allow it. In this case, HASs would benefit from being able
to localize the sound source. In this section, we review the main existing SSL
algorithms proposed in different applications.

As mentioned earlier, most HASs include a microphone array. SSL using
a microphone array has been investigated widely over decades, e.g. [7, 13,
32, 36, 69, 70, 91, 94, 105, 113, 114, 122, 135, 146, 147, 160, 162]. In practice,
performance of SSL algorithms is limited [13, 69, 128], because :

• Sound signals, particularly speech, are generally wideband, and their
spectral contents are changing across time [69].

• Ambient noise, including other interfering sound sources, are typically
present, especially in hearing aid applications. Further, typical noise
sources are often time varying (nonstationary) [13, 69, 128].

• Reverberation and reflections degenerate the target sound, and make
the SSL problem more challenging [13, 69, 128].

In our review of existing SSL algorithms, we categorize them into four
type of approaches [50]: 1) Time-difference-of-arrival (TDoA)-based methods,
2) Steered-response-power (SRP)-based methods, 3) High-resolution-spectral-
estimation (HRSE)-based methods, and 4) HRTF-based methods. In the fol-
lowing, we explain each of these approaches.

4.1 Time-difference-of-arrival (TDoA)-based methods

TDoA-based algorithms generally consist of two steps [69]. In the first step,
a set of TDoAs of the target signal arriving at each pair of microphones in
the array are estimated. In the next step, the location of the target source is
determined based on the estimated TDoAs and the known geometry of the
array [13, 69].
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The accuracy of the estimated TDoAs plays a crucial role in the SSL per-
formance of these algorithms [13]. To estimate the TDoAs, several different
approaches, which are summarized in [13, 69], have been proposed. The
most well-known and computationally efficient approach is based on the
generalized-cross-correlation (GCC) function [82]. In this approach, the TDoA
estimate of signals received by any two microphones is the time index or the
time lag which maximizes their related GCC function [82]. To cope with the
effects of non-stationarity, ambient noise and reverberation, variants of the
GCC function have been proposed, e.g. [15, 25, 26, 82, 119, 147]. Among the
variants of the GCC function, the GCC-phase-transform (GCC-PHAT) method
is widely used, as it is computationally efficient and operates optimally, in a
maximum likelihood sense, in low-noise, highly-reverberant situations [161].

Another main approach to estimate TDoAs is the eigenvalue-decomposi-
tion-based method proposed in [7], which performs well for speech signals
in reverberant situations. This method uses an iterative solution and has
a higher computational complexity than GCC methods [13]. This implies
that the eigenvalue-decomposition-based approach is less suitable for low-
complexity applications, like hearing aids.

Given the estimated TDoAs, the next step is to determine the location
of the sound source. To do so, one often needs to solve a set of nonlinear
equations [13]. To solve the equations efficiently in a closed-form manner,
several different approaches have been proposed, e.g. [14, 125]. These closed-
form solutions are often suboptimal, but their detriment in performance is
small, and their computational requirements are relatively low [13].

For hearing aid applications, TDoA-based methods are generally compu-
tationally desirable; however, they have two fundamental drawbacks:

1. In the discrete time domain, true TDoAs must be expressed as fractional
sample shifts, which are most often ignored in the estimated TDoAs
[93].

2. These methods only take the delay of the signals into account for SSL.
In other words, head shadowing effects are not considered.

Ignoring fractional delays degrades the SSL performance, especially when
the microphones in the array are close to each other, or when the sampling
rate is low [19]. To address the fractional delay problem, interpolation meth-
ods, e.g. [143], can be used that increase the computational complexity of
TDoA-based SSL. To take head shadowing effects into account, HRTF-based
methods, which will be explained later in this section, can be used.

4.2 Steered-response-power (SRP)-based methods

The basic idea of SRP-based methods is to steer an adaptive directional mi-
crophones, also called a beamformer, towards several candidate locations and
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look for the candidate location that maximizes the output power [13, 93].
In principle, any type of beamformers can be used for SRP-based SSL. The

simplest type of beamformers is a delay-and-sum (DS) beamformer. The out-
put of a DS beamformer is the sum of all the microphone signals, with their
ToAs aligned according to the candidate location and the geometry of the ar-
ray [13, 93, 128]. One of the main disadvantages of a simple DS beamformer
for SSL is that its performance significantly degrades, when ambient noise or
reverberation is present [13]. To reduce the effects of noise and reverberation,
more sophisticated beamformers, which filter the microphone signals as well
as align their ToAs, can be used [13, 87]. In practice, the well-known SRP-
PHAT method [13], which weight the frequency components of the received
signals according to the PHAT weighting, is often used.

At the cost of higher computational complexity, SRP-based methods gen-
erally perform better than TDoA-based methods. To decrease the computa-
tional load of SRP-based methods, several studies, e.g. [32, 38, 39], propose
to replace the exhaustive search among the candidate locations with a more
intelligent search strategy for finding the best candidate location.

4.3 High-resolution-spectral-estimation-based methods

High-resolution-spectral-estimation (HRSE)-based methods (also called sub-
space methods [93]) are based on the spatiospectral correlation matrix de-
rived from the microphones signals [13]. One of the most well-known HRSE-
based methods is the multiple signal classification algorithm (known as the
MUSIC algorithm), which was originally proposed to localize multiple nar-
rowband uncorrelated sources [93, 122]. Assuming a far-field situation, the
MUSIC algorithm exploits an eigenvalue decomposition technique to esti-
mate the source locations from a lower-dimensional vector subspace embed-
ded within the signal space spanned by the columns of the correlation matrix
of the noisy microphone signals.

Even-though the MUSIC algorithm has been proposed for narrowband
uncorrelated sources, it can be extended to wideband coherent signals, at
the cost of higher computational complexity [148, 155]. In practice, the spa-
tiospectral correlation matrix of the noisy microphone signals is unknown,
and it is estimated via averaging over a time interval, in which the target
signals and the noise are assumed to be statistically stationary and their loca-
tions are assumed to be fixed [13]. For speech sound sources, satisfying these
conditions over sufficiently long time intervals can be challenging [13].

One of the main drawbacks of HRSE-based methods is that deviations
from signal modeling assumptions generally degrade their performance more
than the performance of SRP-based methods [13, 144].
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4.4 HRTF-based methods

In applications like hearing aids, where the microphone array is mounted
close to the head and torso of a user, the shadowing effect and the spectral
changes imposed by the head and torso on the received signals can be used
to localize the sound source [17, 70, 80, 89, 91, 114, 145, 163]. HRTF-based
methods generally can be categorized into two groups:

1. Model-based: These methods resort to mathematical models of the head
and torso effects on the received signals as a function of the sound
source locations [89, 114, 163]. To localize a sound source, these meth-
ods estimate the head and torso effects on the current received signals,
and use the mathematical models to associate the estimated effects with
a location.

2. Dictionary-based: In these methods, the spectral changes imposed by
the head and torso on the received signal are measured from different
locations in advance, and are stored in a database or dictionary [17, 80,
91]. Each entry in the dictionary has been labeled by its corresponding
location. To localize a sound source, all the entries in the dictionary
are evaluated based on the received signals and a utility (cost) function.
The label of the entry, which maximizes (minimizes) the utility (cost)
function, is the estimate of the sound source location.

At the cost of higher computational and storage complexity, dictionary-
based methods can potentially perform better than model-based methods.

5 Informed Sound Source Localization

Most existing SSL algorithms have been proposed for applications, where the
noise-free target sound is not available, i.e. they are “uninformed” about the
noise-free content of the target signal.

In this study, on the other hand, we consider an “informed” SSL problem,
in which an essentially noise-free target signal is available to the SSL algo-
rithm. To be more precise, we consider a situation (e.g. a classroom situation),
where the target talker (e.g. a teacher) is wearing a wireless microphone, and
hearing-impaired listeners are wearing HASs that can connect to the wire-
less microphone. In such a situation, the wireless microphone transmits the
essentially noise-free version of the target signal to the HAS, whose goal is
to find the relative location of the target talker (the DoA of the target sound)
with respect to the head of the HAS user.

Fig. 9 depicts an exemplar scenario of the “informed” SSL problem con-
sidered in this study. In this scenario, the HAS consists of two hearing aids,
which are mounted behind each ear of the user, and which are connected to
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Fig. 9: An informed SSL scenario for hearing aid applications [49].

each other wirelessly. The wireless link between the hearing aids allows them
to exchange the signals received by their microphones. Target signal s(n) pro-
duced by the target talker, propagates through the acoustic channel hm(n, θ),
and arrives at microphone m of the HAS from angle θ; n is the discrete-time
index. Signal rm(n) received by microphone m of the HAS is a noisy-version
of the target signal, because it has been contaminated by the ambient noise,
(e.g. in the classroom situation mentioned above, ambient noise may include
irrelevant conversation of students in the class, fan noise from a ventilation
system, microphone self-noise, and etc.). Moreover, in this “informed” sce-
nario, the noise-free target signal, i.e. s(n), is also transmitted to the HAS via
a wireless connection between the wireless microphone and the HAS. The
goal is to estimate the DoA of the target sound, i.e. θ.

To motivate our interest in estimating the DoA in an informed situation,
let us first review the existing wireless microphone systems and the advan-
tages, which they provide for HAS users.

5.1 Wireless microphone systems

As mentioned in Sec. 2, hearing-impaired listeners have difficulties in under-
standing speech in noisy and reverberant situations. In Sec. 3, we mentioned
that HASs employ noise reduction systems to decrease the effects of noise
and reverberation on the target speech, and to increase intelligibility of the
target speech. Even though noise reduction systems can be effective in certain
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situations (particularly for non-(or slowly-)time-varying noise fields, or when
the target position is frontal with respect to the HAS user), there exist many
everyday situations, where their performance is limited [40]. Further, the per-
formance of “traditional” noise reduction systems is limited, in principle, due
to physical constraints. For example, HAS microphones are mounted close
to each other and behind (or in) the ears of a HAS user; therefore, increasing
the distance of the target source will generally decrease the performance of
noise reduction systems in reverberant, noisy situations [88].

A highly effective solution proposed to avoid negative effects of noise and
reverberation on target speech is to capture the speech where it is most pow-
erful with respect to the background noise, e.g. next to the talker’s mouth,
and transmit this clean speech to a HAS via an electromagnetic signal or
a magnetic field, rather than an acoustic signal [37, 88]. Given that HASs
have the required receiver to convert the received electromagnetic signal or
magnetic field into an acoustic signal, with this strategy, the clean speech is
available at the HAS and can be delivered to its user [37].

Existing technologies

Wireless transmission technologies used with HASs can be categorized into
[35, 37, 96]: 1) infrared systems, 2) induction loops, 3) near-field magnetic induc-
tion (NFMI) systems, and 4) radio-frequency (RF) systems.

In infrared systems, the target signal is transmitted electromagnetically
(at frequencies of about 1014 Hz [37]). Infrared signals are fragile in the
sense that they can be reflected easily by flat light-colored surfaces, can be
blocked by opaque obstacles, and can be disturbed by direct sunlight [37].
Hence, the use of infrared systems are generally marginal for hearing aid
applications [35, 37, 77].

Induction loop systems transmit audio signals by converting them into
magnetic fields [37]. If a HAS is equipped with a telecoil (“a small coil of wire
that produces a voltage when an alternating magnetic field flows through
it” [37]), the magnetic field induces an electrical voltage in the telecoil [37],
and the induced voltage can then be converted back into a sound wave via the
HAS receiver [37]. The cost of installing an induction loop system is relatively
high [77]. Therefore, induction loop systems are suitable for applications, like
auditoriums or theaters, where the number of users is relatively high [77].

An NFMI system can be considered as a “personal induction loop system”
that allows for low-power, short-range, wireless communication [96]. NFMI
systems are reasonably resistant to interference [96]; however, their practical
transmission range is limited (in the range of 1− 1.5 m) [96]. Therefore, these
systems are generally better suited for wireless transmission between hear-
ing aids of a binaural HAS than wireless transmission between a wireless
microphone and a HAS.
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5. Informed Sound Source Localization

RF systems offer a portable way to transmit a clean signal from a target
talker to a listener [37]. An RF system consists of a transmitter along with
a microphone worn by the target talker, and a receiver placed at the HAS
worn by the user. To transmit the audio signals, RF systems modulate an
electromagnetic carrier signal, which is demodulated by the receiver to extract
the audio signals [37]. In principle, any modulation technique can be used for
transmission, but the two most commonly used for short-range transmissions
are frequency modulation (FM) and frequency-hopping spread-spectrum modulation
(FHSS) [37, 96].

FM systems used to be the most common RF system for hearing aid appli-
cations [35, 96]. However, new HASs often exploit variants of FHSS technol-
ogy for RF transmission [37, 96]. FM systems generally suffer from interfer-
ence when two (or more) FM transmitters are transmitting at the same carrier
frequency [37]. In contrast, FHSS systems are less prone to interference and
are more suitable for transmission of digital data [37].

The most well-known FHSS system is the Bluetooth protocol, which al-
lows multiple transmitters to work together without interfering with each
other [37, 96]. The primary Bluetooth standard was not appropriate for
hearing aid applications due to its long delay and high power consump-
tion [37, 96]. However, a new version of the Bluetooth protocol, called “Blue-
tooth Smart” or “Bluetooth low energy”, has been published recently that
allows low-power and low-latency wireless transmissions within a range of
up to 50 m [96].

Advantages of wireless microphone systems

The benefits of the availability of an almost clean target signal by exist-
ing wireless microphone systems have been investigated by several studies,
e.g. [12, 29, 63, 77, 129]. Advantages of induction loop systems have been
discussed in [77]. Induction loop systems generally seem to improve speech
intelligibility, reduce listening effort, and enhance sound quality in a way
that even normal-hearing listeners would benefit from them in many situa-
tions [35, 77]. In noisy situations, it has been shown that FM systems gener-
ally improve speech recognition significantly for hearing-impaired listeners
as well as for normal-hearing listeners [12, 63, 88].

Combination of wireless microphone signals and local microphone signals

In practice, hearing-impaired listeners sometimes need to hear more than one
talker, e.g. when they are working in a small group [37]. Hence, it is not suf-
ficient for the user to hear only signals of the target talker, who is wearing a
wireless microphone, especially when this target talker is far away from the
other talkers. One way to solve this issue is to combine the signal received
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from the FM transmitter and the signal picked up by the HAS microphone
(referred to as the local microphone). In this way, the HAS user can hear both
the target talker and the nearby talkers; however, ambient noise and rever-
beration picked up by the local microphone can potentially degrade most of
the benefits provided by the FM system [37, 63]. To mitigate the effects of
noise and reverberation, HASs usually amplify the output of the FM system
before combining it with the local microphone output [37]. The difference
between the level of the local microphone output and the level of the FM
system plus local microphone output is referred to as the FM advantage [129].
The American speech-language-hearing association (ASHA) suggests a 10 dB
FM advantage for optimum speech recognition in noise [5, 129].

Even though the output of the FM system alone provides a higher speech
intelligibility than the output of the FM system plus local microphone [33, 37,
63], it has been shown that hearing-impaired people, specifically children,
generally prefer the FM system plus local microphone output [33, 35, 37].
This is most likely because listening only to the output of the FM system
causes the users to feel detached from the environment around them [37].

Another commonly-used solution to combine FM systems output and lo-
cal microphones output is a dynamic FM or adaptive FM system [37, 129]. In
dynamic FM systems, the FM advantage is automatically adapted based on
the background noise level [37, 129]. To be more precise, to increase the intel-
ligibility of the target sound when the background noise level is high, the FM
advantage is increased. On the other hand, when the background noise level
is low, the FM advantage is decreased to develop a feeling of connectedness
to the environment for the user [37].

Overall, although RF systems, particularly FM systems, generally provide
a great help in noisy situations, it should be noted that the successful use of
RF systems in daily life by HAS users requires several counseling, instruction
and coaching sessions [12, 29].

5.2 Motivation of research

Most existing HASs, which are using a wireless microphone system, render
the wirelessly received signal of a target talker in a monaural or diotic way
(the same signal is presented at both ears [100]). These ways of rendering
of the target signal obviously remove all spatial cues about the target talker
location, which can degrade the sense of immersion and causes the user to
feel detached from the environment [35]. Moreover, as mentioned in Sec. 1,
lack of spatial cues can degrade the intelligibility of the target speech, in
situations where several simultaneous talkers are present, especially, when
each of the talkers are wearing a wireless microphone, e.g. in a conference
[35]. To be more precise, in these multi-talker multi-microphone situations,
if two of the talkers talk simultaneously, rendering of both target signals in a

30



5. Informed Sound Source Localization

diotic way would deteriorate the intelligibility of both signals (as mentioned
in Sec. 1, spatial cues assist humans to “decompose” the mixture of signals in
way that they are more intelligible).

One solution to overcome this problem and to improve the sense of im-
mersion is to impose the corresponding spatial cues on the wirelessly re-
ceived signals, before presenting them to the HAS user [35]. To do so, HASs
must know the location of the talker. This leads to the informed SSL problem
considered in this study.

5.3 Topics of the thesis

This thesis—apart from this Introduction—consists of a collection of papers,
contributing to solving the informed SSL problem introduced earlier in this
section. Here, we aim to summarize the scientific contributions of each paper
and discuss the relations between the papers.

The informed SSL problem for binaural HASs is an essentially unexplored
problem. It was first introduced and addressed in [34]. The method proposed
in [34] is a TDoA-based approach, which uses a cross-correlation technique
and the wirelessly received clean target to estimate the ToAs of the acoustic
target signal received at the left and the right hearing aids, thereby estimating
the TDoA. Afterwards, the method resorts to a sine law to map the estimated
TDoA to a DoA estimate [34]. The computational complexity of the method
proposed in [34] is low enough to nominate this method as a candidate for
practical new-future implementation in HAS. However, it does not take the
head shadowing effect and ambient noise characteristics into account. This
negligence can degrade the estimation performance markedly [46–48, 50].

The main contribution of this thesis, in a few words, is to solve the in-
formed SSL problem using a maximum likelihood (ML) framework, which
does allow to take ambient noise characteristics and head shadowing effects
into account. The general strategy used by the ML framework to localize the
target sound source bear similarities to the SRP-based methods discussed in
Sec. 4. To be more precise, to localize the target sound source, a proposed
likelihood function will be evaluated for a discrete set of candidate locations.
The ML estimate of the target sound source location is the candidate location
that maximizes the likelihood function. In the following, we briefly explain
the scientific contribution of each paper.

Paper A – Informed TDoA-based direction of arrival estimation for hearing
aid applications

Situations, where the background noise levels are high, are challenging for
informed SSL algorithms. This paper presents a methodology, where easy
access to noise statistics may be used to improve informed SSL performance
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over algorithms that do not take noise characteristics into account, e.g. [34].
To do so, a likelihood function has been proposed, which assumes that the
noise signals received at the HAS microphones follows a zero-mean circularly-
symmetric complex Gaussian distribution. The proposed likelihood function
is based on the noise cross power spectral density (CPSD) matrix, which can
be relatively easily estimated in an informed SSL scenario. Moreover, the
likelihood function is formulated in a way that can be evaluated efficiently
using an inverse discrete Fourier transform (IDFT). Simulation results show
that taking the ambient noise characteristics into account can significantly im-
prove the estimation performance, in comparison with the method proposed
in [34]. The method proposed in Paper A assumes a free-field and far-field
situation, i.e. does not take the presence of the head into account. Therefore,
we refer to this method as the free-field-far-field-model-based method.

Paper B – Informed direction of arrival estimation using a spherical-head
model for hearing aid applications

Microphones of existing HASs are most often placed at/in the ears of the
HAS user. This implies that any sound signal picked up by the HAS micro-
phones is affected by the head presence. Hence, Paper B modifies the Paper
A’s solution to take head shadowing effects, in addition to the noise charac-
teristics, into account. To do so, the method proposed in Paper B resorts to a
spherical head model to amend the free-field-far-field-model-based method
proposed in Paper A. The proposed spherical head model is generic and
does not depend on physical features of any specific user. Similar to the free-
field-far-field-model-based method, the likelihood function of the proposed
method, which we refer to as the spherical-head-model-based method, can be
evaluated computationally efficiently using an IDFT. Simulation results show
that the spherical-head-model-based method can improve the estimation per-
formance, specifically when the target sound source is at the sides of the user,
i.e. where the head has the strongest shadowing effect on the received signals.

Paper C – Maximum likelihood approach to “informed” sound source lo-
calization for hearing aid applications

Paper C explores to which extent informed SSL performance can be improved
in situations where very detailed and accurate person-specific head-and-torso
information is available to the SSL algorithm. The proposed method, called
MLSSL (maximum likelihood sound source localization), is a dictionary-based
method, which exploits the ML framework together with a database (dictio-
nary) of HRTFs measured for a specific user. The HRTF database allows to
individually model the presence of the head. MLSSL is highly flexible in
the sense that it does not depend on any particular microphone array con-
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5. Informed Sound Source Localization

figuration, and it can work even with one single microphone (the free-field-
far-field-model-based method and the spherical-head-model-based method
consider a binaural configuration using two microphones—one microphone
in each hearing aid). Simulation results show that MLSSL is highly effective
under severely noisy conditions, as long as the user-specific HRTF database
accurately reflects the real world.

Paper D – On the influence of microphone array geometry on HRTF-based
sound source localization

Since MLSSL does not depend on any specific microphone array configura-
tion, Paper D studies how the microphone array geometry can affect the per-
formance of MLSSL. This research question is important because some mi-
crophone configurations (e.g. binaural) may require higher implementation
costs than others (e.g. monaural). This paper shows that MLSSL performance
depends on the location of the target talker and the configuration of the mi-
crophone array. It shows that binaural configurations (one microphone in
each hearing aid) provide better performance for situations, where the talker
is in the front, while monaural configurations provide better performance for
situations, where the talker is at the sides.

Paper E – Informed sound source localization using relative transfer func-
tions for hearing aid applications

Even-though MLSSL is highly flexible and effective, its computational load is
relatively high. This is because HRTFs generally depend both on the distance
and the direction of the target sound source. Therefore, the HRTF database
searched by MLSSL should ideally contain a large number of HRTF entries
to cover all possible directions and distances; otherwise, MLSSL performance
is degraded significantly.

To decrease the MLSSL computational load, the method proposed in Pa-
per E uses a database of relative transfer functions (RTFs) rather than the
HRTF used in MLSSL. RTFs, in contrast to HRTFs, are relatively distance-
independent, especially in far-field situations. Hence, the proposed method,
which we refer to as the measured-RTF-based method, uses in an RTF database,
which has substantially fewer entries than the HRTF database. Similar to the
free-field-far-field-model-based method and the spherical-head-model-based
method, the likelihood function of the measured-RTF-based method can be
evaluated computationally efficiently using an IDFT.

Paper E shows that the measured-RTF-based method is more robust to
mismatches between the dictionary elements and characteristics of a specific
user than MLSSL. This behavior of the measured-RTF-based method is par-
ticularly important in practical situations, where a user-specific database is
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not available, but a more generic database (e.g. an HRTF database measured
for a head-and-torso-simulator (HATS)) is available.

Finally, Paper E provides a unified presentation of the free-field-far-field-
model-based, the spherical-head-model-based, and the measured-RTF-based
methods, and assesses their performance more extensively.

Paper F – Bias-compensated informed sound source localization using rel-
ative transfer functions

The measured-RTF-based method is not as flexible as MLSSL in the sense
that it considers only a binaural configuration using two microphones—one
microphone in each hearing aid—similarly to the methods proposed in Paper
A and Paper B.

In Paper F, the measured-RTF-based method is extended to work in both
monaural and binaural configurations. Moreover, the likelihood function of
the proposed method is modified, so that it can be evaluated using a sum over
frequency components (with a computational complexity of O(N)9,10) in-
stead of computing an IDFT (with a computational complexity of O(N log N)).
Further, a closed-form expression is derived for the bias in the proposed like-
lihood function, and Paper F proposes a method to analytically compensate
for the bias. Finally, to reduce the number of parameters required to be
wirelessly exchanged between the hearing aids in binaural configurations, an
information fusion strategy is proposed that avoids transmitting microphone
signals between the hearing aids. We refer to the method proposed in this
paper as the bias-compensated-measured-RTF-based method.

Paper G – TDOA-based self-calibration of dual-microphone arrays

This paper does not directly solve the informed SSL problem, but propose an
algorithm which supports the free-field-far-field-model-based and spherical-
head-model-based methods. In these methods, the relative locations of the
microphones must be known. In binaural configurations, the exact relative
locations of the microphones is variable in practice, because of different heads
radii and varying shapes of pinnae of users. Instead of measuring the rela-
tive locations of the microphones manually, Paper G offers an automatic solu-
tion, which has lower computational complexity than other existing methods,
while showing comparable performance. The proposed method is based on
TDoAs of signals received from different sound sources.

9Big O notation is used to describe the time, memory or computational complexity of an
algorithm [83]. A computational complexity of O( f (q)) means the number of operations is
lower than C ∗ f (q) for all q > q0, where f (.) is a function defined on some subset of the real
numbers, C is a constant, and q0 is a positive real number.

10 N is the number of frequency components.
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6. Conclusion

Paper H – Concurrent localization of sound sources and dual-microphone
sub-arrays using TOFs

The method proposed in Paper G for estimating the relative locations of the
microphones is “uninformed”, i.e. it does not exploit the fact that a clean
target signal is available in informed scenarios. Hence, Paper H offers an
alternative “informed” solution, which uses this extra information. The pro-
posed method is based on the target signals time of flights (TOFs), which can
be relatively easily estimated in informed scenarios.

Comparison of the proposed informed SSL methods

To summarize this section, we compare key aspects of the proposed informed
SSL methods in Table 2.

Finally, it should be noted that situations, where several talkers are simul-
taneously present and each of them are wearing a wireless microphone, have
not been addressed directly in this thesis. However, all the proposed meth-
ods can be extended easily to handle these multi-talker multi-microphone
situations by simply executing an instance of the algorithms for each wire-
less microphone. To be more precise, to estimate the location of a particular
talker in these situations, the signals received from other talkers are con-
sidered as noise. Therefore, we must separately estimate the noise CPSD
matrix for each talker, who is wearing a wireless microphone. Knowing the
noise CPSD matrices associated with a particular talker allows us to estimate
her/his position using the methods proposed in this thesis.

6 Conclusion

This thesis addresses the problem of localizing a target talker for hearing
aid applications. We consider situations where the noise-free content of the
target speech emitted at the target talker location is available at the hearing
aid system (HAS) via a wireless microphone worn by the target talker.

To solve the problem, a maximum likelihood (ML) framework has been
developed. This framework is based on the access to the ambient noise char-
acteristics and the noise-free target signal, and allows to take the shadowing
effect of the user’s head into account. To localize the target talker, the pro-
posed ML framework evaluates a likelihood function for various candidate
locations. The candidate location which has the highest likelihood is the ML
estimate of the target talker’s location.

To consider the effects of the user’s head and torso on the signals received
by the HAS microphones, four different models have been employed:

1. Free-field-far-field model: This model assumes a free-field situations, i.e. it
simply ignores the presence of the head.
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6. Conclusion

2. Spherical-head model: This model considers the head as a rigid sphere.

3. Head-related-transfer-function (HRTF)-database model: This model uses a
database of HRTFs measured from various candidate locations.

4. Relative-transfer-function (RTF)-database model: This model uses a database
of RTFs measured from various candidate locations.

These models allow different degrees of individualization. The free-field-
far-field model and the spherical-head-model are generic models, i.e. do not
depend on any specific user. On the other hand, the HRTF-database and the
RTF-database models allow person-specific details to be taken into account.

This thesis shows that

i) Incorporating ambient noise characteristics and head shadowing effects
can markedly improve the localization performance.

ii) Individualized head models generally lead to better localization perfor-
mance than generic head models.

iii) The proposed informed SSL method that relies on person-specific HRTF
database tend to be sensitive to model mismatches.

iv) The proposed informed SSL methods based on the RTF-database are
more robust to model mismatches, and have a lower computational com-
plexity than the method based on the HRTF-database model.

6.1 Directions of future research

The methods proposed in this study rely on spatiospectral characteristics of
signals, such as noise CPSD matrices, and assume these characteristics to be
invariant across a short time duration (in the range of milliseconds). To inte-
grate information across longer time durations, as a topic of future research,
one can extend the localization methods to take temporal characteristics of
the acoustic scene into account. This might be done by noting that physi-
cal objects, such as target talker and the user’s head (and hence, the HAS
microphones), can only move with finite velocity with respect to each other.
Therefore, modeling and tracking of the target source and user’s head move-
ments could improve SSL performance further [117, 134].

In practice, informed SSL scenarios often occurs in reverberant environ-
ments. However, the signal model used in this study does not directly con-
sider and model reverberation. Another topic for future research is to explic-
itly take the reverberation into account, e.g. by modeling the reverberation as
a highly time varying isotropic noise field, e.g. [16, 87].

Extra sensors in hearing aids, such as accelerometers [28, 163], or tech-
nologies, such as electroencephalogram (EEG) [30, 45], eye tracking and head
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movement detection [4], generally provide additional non-acoustic informa-
tion about how an acoustic scene is changing over time. It is a topic for
future research to investigate how to incorporate this additional information
to solve the informed SSL problem.

Finally, practical implementation of the informed SSL algorithms in HASs
and investigation of how to render the acoustic scene to the HAS user based
on the outputs of the proposed algorithms is another direction of future re-
search [35, 76].
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1. Introduction

Abstract

This paper deals with estimation of the target sound direction of arrival (DoA) for
a hearing aid system (HAS) which can connect to a wireless microphone worn by
a target talker. In this setup, the HAS is “informed” about the almost noise-free
content of the target sound via the wireless microphone and can use this information
for the DoA estimation. Here, we propose an “informed” DoA estimator based on the
time difference of arrival (TDoA) of the target sound at two microphones mounted
on the ears of the HAS user—one microphone on each ear. To estimate the TDoA
and the DoA, we propose a maximum likelihood framework relying on the noise-free
target sound and estimation of the ambient noise characteristics. We show how the
proposed ML framework allows us to estimate the TDoA and the DoA jointly or
consecutively. Further, to evaluate the likelihood function efficiently, we resort to
an inverse discrete Fourier transform (IDFT) technique. To study the performance
of the proposed algorithms, we run simulations for various DoAs, signal to noise
ratios (SNRs), and distances in large crowd noise situations. In these situations, the
proposed estimator improves the estimation performance markedly over a recently
proposed “informed” TDoA-based DoA estimator.

1 Introduction

Estimation of the target sound direction of arrival (DoA) enables hearing aid
systems (HASs) to improve the spatial hearing of their users by maintaining
or accentuating the spatial cues of the target sound [1, 2]. State-of-the-art
HASs usually consist of a pair of wirelessly connected hearing aids which
enables them to utilize binaural signals in their speech enhancement and DoA
estimation algorithms. The DoA estimation problem has been investigated
with different approaches, e.g. [1–7]. Most of them have been proposed for
applications which do not have any access to the noise-free target sound, e.g.
[2–6]; in other words, they are “uninformed” about the content of the target
sound. However, recent advances in wireless technology allow new HASs—
where the target talker is wearing a wireless microphone—to have access to
an essentially noise-free version of the target signal [1, 7]. This information
turns the “uninformed” DoA estimation problem into the “informed” DoA
estimation problem (Fig. A.1) considered in this paper.

In previous work [7], we proposed an “informed” maximum likelihood
DoA estimation algorithm, named MLSSL (maximum likelihood sound source
localization), relying on the noise-free target signal, a database of head related
transfer functions (HRTFs) of the specific HAS user, and estimation of the am-
bient noise characteristics. MLSSL is markedly effective under severely noisy
conditions when the individual HRTFs are available [7].

In some situations, measuring HRTFs for each HAS user is impractical,
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(e.g. competing talkers)

Wireless Connection

Fig. A.1: An “informed” binaural DoA estimation scenario for a hearing aid system using a
wireless microphone. rm(n), s(n) and hm(n) are the noisy received sound at microphone m, the
noise-free target sound and the acoustic channel impulse response between the target talker and
microphone m, respectively. s(n) is available at the hearing aid via wireless connection to the
wireless microphone at the target talker. The goal is to estimate θ.

and alternative methods which do not depend on user-specific HRTFs are of
interest. In this paper, we propose an “informed” binaural DoA estimator
that relies on a minimal number of user-related prior assumptions. The pro-
posed DoA estimator depends on the Time Difference of Arrival (TDoA) of
the target sound at two microphones placed on the ears of the HAS user—one
microphone on each ear. As a signal model for the DoA estimation problem,
we disregard the “shadowing effect” of the HAS user’s head and consider
a far field and a free field model. To estimate the TDoA and the DoA, we
propose a maximum likelihood (ML) framework which performs well de-
spite the crude modeling assumptions. Further, this framework allows us
to estimate the TDoA and the DoA jointly or consecutively. We show that
the joint estimation of the TDoA and the DoA improves the accuracy of the
estimations in the cost of higher computation.

The “informed” TDoA-based DoA estimation problem was first studied
in [1]. This method estimates the TDoA and the DoA consecutively by resort-
ing to a cross-correlation technique and a sine law. The proposed method in
this paper is different from [1], because it takes into account the background
noise characteristics, which are relatively readily available, to improve the
estimation performance. Moreover, the proposed method allows to estimate
the TDoA and the DoA both jointly and consecutively, where the “joint ap-
proach” enhance the estimation performance.
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2 Signal Model

The noisy signal rm received at microphone m in Fig.A.1 is given by:

rm(n) = s(n) ? hm(n) + vm(n), m = 1, 2; (A.1)

where s(n), hm(n) and vm(n) are the noise-free target signal emitted at the
target talker’s position, the acoustic channel impulse response between the
target talker and microphone m, and an additive noise component, respec-
tively. Furthermore, n is the discrete time index, and ? is the convolution
operator.

In a free field and far field situation, the acoustic channel can be modeled
as a function that delays and attenuates its input signals uniformly across
frequencies. This allows us to model hm(n) as:

Hm(k) =
N−1

∑
n=0

hm(n)e−
j2πkn

N = αme
−j2πk

N Dm , (A.2)

where Hm(k) denotes the discrete Fourier transform (DFT) of hm(n), αm is a
real number and denotes the attenuation factor due to propagation effects,
Dm is the propagation time from the target sound source to microphone m,
and the DFT order N is greater or equal to the duration of hm(n)

Most state-of-the-art HASs operate in the short time Fourier transform
(STFT) domain because of frequency dependent processing, computational
efficiency and the ability to adapt to the changing conditions. Therefore,
let Rm(l, k), S(l, k) and Vm(l, k) denote the STFT of rm(n), s(n) and vm(n),
respectively. Specifically,

Rm(l, k) = ∑
n

rm(n)w(n− lA)e−
j2πk

N (n−lA), (A.3)

where l and k are frame and frequency bin indexes, respectively, N is the
frame length, A is the decimation factor, w(n) is the windowing function,
and j =

√
−1 is the imaginary unit. We define S(l, k) and Vm(l, k) similarly.

Eq.(A.1) can be approximated in the STFT domain as:

Rm(l, k) = S(l, k)Hm(k) + Vm(l, k). (A.4)

The accuracy of this approximation depends on the length and smoothness
of w(n); the longer and the smoother the support of w(n), the more accurate
the approximation [8].

3 Problem Statement

Let us consider a free field scenario shown in Fig. A.2; and let dm, c, θ, and
a denote the distance between the target sound source and microphone m,
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Mic.2Mic.1
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Fig. A.2: A free field scenario.

the sound speed, the target sound DoA, and the distance between the micro-
phones, respectively. The propagation time of the target signal received at
each microphone is given by:

Dm =
dm

c
, m = 1, 2; (A.5)

and the inter-microphone TDoA is:

D1 − D2 =
a
c

sin(θ), (A.6)

which leads to
θ = arcsin

(
(D1 − D2)

c
a

)
. (A.7)

We consider two different approaches to find θ:

1. Independent delays: D1 and D2 are estimated independently, and the
estimated D1 and D2 are substituted into (A.7) to estimate θ, i.e. the
TDoA and the DoA are estimated consecutively.

2. Dependent delays: from (A.6), D1 and D2 relate to each other via θ,
which allows us to use this fact and estimate the TDoA and the DoA
jointly.

The proposed ML framework encompasses as special cases both these ap-
proaches for estimation of θ.

4 Maximum Likelihood Framework

In this section, we define the likelihood function for a general case, where we
consider M received microphone signals (1 ≤ M ≤ number of HAS micro-
phones). Afterwards, to estimate θ and to maximize the likelihood function
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efficiently, we will reformulate the likelihood function for two special cases
where M = 1 and M = 2, which correspond to the two different approaches
for estimating θ outlined in section 3.

4.1 Likelihood function

To define the likelihood function, we model the additive noise V(l, k) =
[V1(l, k) V2(l, k) ... VM(l, k)]T as a zero-mean circularly-symmetric complex
Gaussian vector:

V(l, k) ∼ N (0, Cv(l, k)), (A.8)

where Cv(l, k) = E{V(l, k)VH(l, k)}, and where E{.} and the superscript H
represent the expectation and Hermitian transpose operators, respectively.
Since the noise-free signal S is available at the HAS, we can relatively eas-
ily determine the time-frequency regions in the noisy microphones signals
where the target speech is essentially absent; therefore, we adaptively esti-
mate Cv using exponential smoothing over the time-frequency regions where
the noise is dominant. Moreover, we assume the noisy observations are inde-
pendent across frequencies and frames; therefore, the likelihood function for
each frame is defined by:

p(R(l)|S(l), H, Cv(l)) =

N

∏
k=1

1
πM|Cv(l, k)| e

{−(Z(l,k))HC−1
v (l,k)(Z(l,k))}, (A.9)

where |.| denotes the matrix determinant, N is the number of frequency in-
dexes and

R(l) = [R(l, 1) R(l, 2) · · · R(l, N)],

R(l, k) = [R1(l, k) R2(l, k) ... RM(l, k)]T, 1 ≤ k ≤ N,

S(l) = [S(l, 1) S(l, 2) · · · S(l, N)],

Cv(l) = [Cv(l, 1) Cv(l, 2) · · · Cv(l, N)]T,

Z(l, k) = R(l, k)− S(l, k)H(k),

H = [H(1) H(2) · · · H(N)],

H(k) = [H1(k) H2(k) ... HM(k)]T, 1 ≤ k ≤ N,

= [α1e−j2π k
N D1 ... αMe−j2π k

N DM ]T.

The corresponding reduced log-likelihood function, with terms independent
of Dm and θ omitted, is given by:

L̂ =
N

∑
k=1
{−(Z(l, k))HC−1

v (l, k)(Z(l, k))}. (A.10)
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4.2 Independent delays estimation (M = 1)

If we consider the received signal of each microphone independently, i.e. M =
1, the reduced log-likelihood function L̂m for the mth microphone can be
written as

L̂m(αm, Dm) = −
N

∑
k=1

Z∗m(l, k)Zm(l, k)
Cv(l, k)

, (A.11)

where Zm(l, k) = Rm(l, k)− αmS(l, k)e−j2π K
N Dm , and ∗ represents the complex

conjugate operator.
We aim to find the maximum likelihood estimate (MLE) of Dm. To make

L̂m independent of αm, we replace the MLE of αm into (A.11). To find the
MLE of αm, we solve ∂L̂m

∂αm
= 0. This leads to:

α̂m =
N

∑
k=1

Rm(l, k)
S(l, k)

ej2π k
N Dm . (A.12)

By inserting (A.12) into (A.11) and making simplifications, we have:

L̃m(Dm) =
N

∑
k=1

1
Cv(l, k)

S∗(l, k)Rm(l, k)ej2π k
N Dm , (A.13)

which must be maximized for Dm. This can be done efficiently because (A.13)
is an inverse discrete Fourier transform (IDFT) with respect to Dm. Equation
(A.13) can also be interpreted as a Generalized Cross Correlation (GCC) rela-
tion [9] with a weighting function of ψ(k) = 1

Cv(l,k)
. The MLE of Dm equals:

D̂m = arg max
Dm
L̃m(Dm), m = 1, 2 , (A.14)

which when inserted in (A.7) leads to an estimate of θ:

θ̂ = arcsin
(
(D̂1 − D̂2)

c
a

)
. (A.15)

4.3 Dependent delays estimation (M = 2)

In the previous subsection, we estimated D1 and D2 independently. However,
D1 and D2 depends on each other via θ. In this subsection, we consider (A.6)
and the received signals of M = 2 microphones together to estimate Dm and
θ jointly.

In the following, we find the MLE of θ for two different cases of Cv(l, k).
We first consider the general case of Cv(l, k) without any constraints. After-
wards, we assume that V1 and V2 are uncorrelated, and we model Cv(l, k) as
a diagonal matrix to decrease the computation overhead.
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General Cv(l, k)

Let us denote C−1
v (l, k) for M = 2 as

C−1
v (l, k) =

[
C11(l, k) C12(l, k)
C21(l, k) C22(l, k)

]
. (A.16)

Further, in a far field and a free field situation, we have that α1 = α2 = α.
Using this assumption, we expand (A.10) for M = 2 and note that D2 =
D1 − sin(θ) a

c . The obtained expansion L̂(θ, α, D1) is a function of θ, α, and
D1, and we aim to find the MLE of θ and D1. To eliminate the dependency
on α, we substitute the MLE of α in L̂(θ, α, D1). It can be shown that the MLE
of α is:

α̂ =
f (θ, D1)

g(θ)
, (A.17)

where

f (θ, D1) =
N

∑
k=1

(
C11(l, k)R1(l, k) + C12(l, k)R2(l, k)

+
(
C21(l, k)R1(l, k) + C22(l, k)R2(l, k)

)
ej2π k

N [− sin(θ) a
c ]
)

S∗(l, k)ej2π k
N D1 , (A.18)

and

g(θ) =
N

∑
k=1

(
C11(l, k) + 2C21(l, k)ej2π k

N [− sin(θ) a
c ] +

C22(l, k)
)
|S(l, k)|2. (A.19)

where [.] rounds to nearest integer. Inserting α̂ into L̂(θ, α, D1) gives us:

L̃(θ, D1) =
f 2(θ, D1)

g(θ)
. (A.20)

From (A.18), it can be seen that f (θ, D1) is an IDFT, which can be evaluated
efficiently, with respect to D1; therefore, for a given θ, computing L̃(θ, D1)
results in a discrete-time sequence, where the MLE of D1 is the time index of
the maximum of the sequence. Since θ is unknown, we consider a discrete
set Θ of different θs, and compute L̃(θ, D1) for each θ ∈ Θ. The MLEs of D1
and θ are then found from the global maximum:

[θ̂, D̂1] = arg maxθ∈Θ,D1
L̃(θ, D1). (A.21)
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Diagonal Cv(l, k)

To decrease the computation overhead and to simplify the solution, let us
assume V1(l, k) and V2(l, k) are uncorrelated, so that the noise covariance
matrix is diagonal:

C−1
v (l, k) =

[
C11(l, k) 0

0 C22(l, k)

]
. (A.22)

Following a similar procedure as in the previous section leads to a reduced
log-likelihood function

L̃(θ, D1) =
N

∑
k=1

(
p(l, k) + q(l, k, θ)

)
S∗(l, k)ej2π k

N D1 , (A.23)

where

p(l, k) = C11(l, k)R1(l, k), (A.24)

q(l, k, θ) = C22(l, k)R2(l, k)ej2π k
N [− sin(θ) a

c ]. (A.25)

As before, (A.23) can be evaluated using an IDFT with respect to D1; however,
due to its simpler structure, it is computationally cheaper than (A.20). The
MLEs of D1 and θ are found as in (A.21).

5 Related Work

We compare the proposed methods with the method proposed in [1], which
belongs to the “independent delays” class of approaches and which uses
conventional cross correlation to find D1 and D2. In general, any method
based on Generalized Cross Correlation (GCC) method [9] can be used to
estimate D1 and D2 independently:

D̂m = arg max
Dm
RGCC

S,Rm
(Dm), m = 1, 2; (A.26)

RGCC
S,Rm

(Dm) =
N

∑
k=1

ψ(k)S∗(l, k)Rm(l, k)ej2π k
N Dm . (A.27)

The method proposed in [1] uses ψ(k) = 1. Regarding the PHAT weighting
function [9], we propose an “informed” PHAT weighting function as ψ(k) =

1
|S∗(l,k)Rm(l,k)| for comparison.

6 Simulation Experiments

In this section, we evaluate estimation performance in simulation experi-
ments. Specifically, we study the effects of the target sound DoA θ, the
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Signal-to-Noise ratio (SNR) and the distance d between the target source and
the user.

6.1 Setup

To simulate a real world situation, we use a set of head related impulse re-
sponses (HRIRs) measured with behind-the-ear (BTE) hearing aids which are
mounted behind each pinna of a head-and-torso-simulator (HATS) in an ane-
choic chamber. The HRIRs were measured for 35 positions uniformly spaced
on a semicircle in the front-horizontal plane with radius 1.2 m centered at the
HATS, i.e. θ ∈ {−85◦,−80◦, · · · , 85◦}. To simulate a signal from a position,
we convolve the signal with the corresponding HRIR.

We consider a 20-second sample of the ISTS signal [10] composed of 21
female voices in 6 different languages as the target speech signal. To approx-
imate a large-crowd noise field, we synthesize different speech signals origi-
nating from each of the 35 positions simultaneously. The TSP database [11],
which consists of different male and female voices, is used as noise sound
sources. The global SNR of a given simulation experiment is expressed rela-
tive to the left-ear microphone signals. The other simulation parameters are
as follows: the sampling frequency is 20 kHz, N = 2048, A = 1024, w(n)
is a hamming window, and Θ = {−85◦,−80◦, · · · , 85◦}. Due to the pres-
ence of the head, a must be chosen greater than the distance between the
microphones in a free field situation to model the curved path around the
head. Therefore, a has been calibrated separately to maximize the perfor-
mance for each method. As a performance metric, we use the mean absolute
error (MAE) given by:

σ =
1
L

L

∑
j=1
|θ − θ̂j|, (A.28)

where θ̂j is the estimated DoA for the jth frame of the signal.

6.2 Results and discussion

Fig. A.3 shows the MAE of the DoA estimators as a function of θ at an SNR
of 0 dB. As can be seen, the proposed ML-based methods perform better than
the Cross-Correlation-based method [1] and the proposed “informed” PHAT
method. Among the ML-based methods, the ones which consider dependent
delays estimate θ more accurately, at a higher computation cost. However,
using a non-diagonal Cv does not provide considerable improvement com-
pared with modeling Cv as diagonal. The estimators perform worse for θs
towards the sides of the head because the far field and free field assumption
(i.e. α1 = α2) is less valid for these θs.
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Fig. A.3: Performance as a function of θ at SNR = 0 dB.
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Fig. A.4: Performance as a function of SNR, averaged across θs.

Fig. A.4 shows the MAE averaged over all θs as a function of SNR. As
expected, the higher the SNR, the better the performance. The general per-
formance order of Fig. A.3 remains at different SNRs.

We finally study the performance of the estimators as a function of dis-
tance between the target source and the HAS user. Since HRTF measure-
ments for long distances were not available, we use the analytical HRTFs for
a spherical head model computed by the model of Duda and Martens in [12].
Fig. A.5 shows the performance for different ds. As can be seen, the ML-
based methods are more effective than the other “informed” DoA estimators.
The ML-based method which considers a general Cv is less accurate than the
one which considers a diagonal Cv; apparently, using a general Cv makes the
ML framework more sensitive to the violation of the free field assumption.
Moreover, it should be noted that the SNR is kept at 0 dB for all distances,
explaining why the performance hardly degrades with distance.

7 Conclusion

In this paper, we proposed a binaural TDoA-based DoA estimator for a new
hearing aid system which is able to connect to a wireless microphone and
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Fig. A.5: Performance as a function of d at SNR = 0 dB, averaged across θs.

has access to the noise-free version of the target signal. To rely on minimal
number of user-specific prior assumptions, we considered a free field and far
field signal model, and we proposed a maximum likelihood framework based
on the noise-free target sound and the back-ground noise characteristics to
estimate the DoA. We showed that for M = 1 and M = 2 microphones, the
likelihood function can be calculated efficiently via inverse-discrete-Fourier-
transform techniques. In simulation experiments with a target speech signal
in a large-crowd noise, the proposed ML framework performs better than a
recently proposed “informed” TDoA-based DoA estimator [1]. Future work
includes investigating the effect of reverberation and more realistic acoustic
setups.
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1. Introduction

Abstract

In this paper, we propose a direction of arrival (DoA) estimator for a hearing aid
system (HAS) which can connect to a wireless microphone worn by a target talker.
The wireless microphone “informs” the HAS about the almost noise-free content of
the target sound, and the proposed DoA estimator uses the knowledge of the noise-
free target sound and the received microphone signals to estimate the DoA via a
maximum likelihood approach. Moreover, the proposed DoA estimator resorts to a
user-independent spherical-head model to consider the acoustic impacts of the head
on the received signals at the HAS. Further, the proposed DoA estimator uses an in-
verse discrete Fourier transform (IDFT) technique to evaluate the likelihood function
computationally efficiently. We assessed the performance of the proposed estimator
for various DoAs, signal to noise Ratios (SNRs), and target distances in different
noisy and reverberant situations. The proposed estimator improves the performance
markedly over other recently proposed “informed” DoA estimators.

1 Introduction

Direction of arrival (DoA) estimation of a target sound has been investigated
with different approaches in various applications, such as robotics [1–3],
video conferencing [4], surveillance [5], wireless acoustic sensor network [6],
and hearing aids [7–10]. In this paper, we propose a DoA estimator for an
advanced hearing aid system (HAS) which can connect to a wireless micro-
phone worn by a target talker. Recognizing the target sound DoA allows
HASs to enhance the spatial hearing of the HAS user by maintaining or ac-
centuating the spatial cues of the target sound [10–12].

Most DoA estimation algorithms have been proposed for applications
which are “uninformed” about the noise-free content of the target sound,
e.g. [1–7, 12–15]. However, advances in wireless technology enable new
HASs—where the target talker is wearing a wireless microphone—to have
access to an essentially noise-free version of the target signal [8–11]. This
change introduces the “informed” DoA estimation problem considered in
this paper (Fig. B.1).

The “informed” DoA estimation problem was first studied and tackled
via a binaural time-difference-of-arrival (TDoA)-based method in [10]. This
method estimates the TDoA by resorting to a cross-correlation technique and
then maps the estimated TDoA to a DoA estimate through a sine law. This
method [10] has a low computational overhead and confines the target loca-
tions to the front-horizontal plane.

In previous papers [8, 9], we also dealt with the “informed” DoA es-
timation problem. Specifically, we proposed a maximum likelihood (ML)
framework that utilizes the wirelessly transmitted signal and ambient noise
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the target talker
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microphones

Acoustic Propagation 

Channel

Direction of Arrival

Ambient Noise 
(e.g. competing talkers)

Wireless Connection

Fig. B.1: An “informed” DoA estimation scenario for a hearing aid system using a wireless mi-
crophone. rm(n), s(n) and hm(n, θ) are the noisy received sound at microphone m, the noise-free
target sound and the acoustic channel impulse response between the target talker and micro-
phone m, respectively. s(n) is available at the hearing aid via wireless connection, and the goal
is to estimate θ.

characteristics for DoA estimation. The algorithm proposed in [8]—called
MLSSL (maximum likelihood sound source localization)—uses a database of
measured head related transfer functions (HRTFs) of the specific HAS user
in order to model the user’s head shadowing effect and the acoustic channel.
On the other hand, the estimator proposed in [9], which is a TDoA-based
DoA estimator, employs a free-field and far-field model to avoid user-related
prior assumptions. The signal model in [9] enabled the use of inverse dis-
crete Fourier transform (IDFT) techniques to evaluate the likelihood function
computationally efficiently.

MLSSL [8] and the TDoA-based method [9] form a family of ML-based
methods for solving the “informed” DoA estimation problem. These two
methods are the two extremes in this family regarding modeling of and de-
pendence on the acoustic characteristics of the specific user’s head: MLSSL
[8] relies on detailed knowledge of the head characteristics of a specific user,
while the TDoA-based method [9] totally ignores the acoustic shadowing ef-
fect of the head. In general, MLSSL is more accurate than the TDoA-based
method at the cost of higher computation and prior knowledge of HRTFs.

In this paper, we propose an intermediate approach to gain advantages
of both methods. To improve the accuracy over the TDoA-based method,
we propose a simplified spherical-head model which allows to consider the
acoustic effects of the head without being user-dependent. Further, we show
that the likelihood function in the proposed method can be computed effi-
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ciently using IDFTs. The proposed method is different from [10] because it
uses a maximum likelihood approach, which considers the background noise
characteristics, models the presence of the head, and estimates the DoA and
the TDoA jointly.

2 Signal Model

Regarding Fig. B.1, for microphone m of the HAS, we can write:

rm(n) = s(n) ∗ hm(n, θ) + vm(n), m ∈ {left, right} , (B.1)

where rm, s, hm and vm are the noisy signal received at microphone m, the
noise-free target signal emitted at the target talker’s position, the acoustic
channel impulse response between the target talker and microphone m, and
an additive noise component, respectively. n is the discrete time index, and ∗
is the convolution operator.

Let Rm(l, k), S(l, k) and Vm(l, k) denote the short time Fourier transform
(STFT) of rm, s and vm, respectively. Specifically, let

Rm(l, k) = ∑
n

rm(n)w(n− lA)e−
j2πk

N (n−lA), (B.2)

where l and k are frame and frequency bin indexes, respectively, N is the
frame length, A is the decimation factor, w(n) is the windowing function,
and j =

√
−1 is the imaginary unit. We define S(l, k) and Vm(l, k) similarly.

Moreover, let Hm(k, θ) denote the discrete Fourier transform (DFT) of hm:

Hm(k, θ) = ∑
n

hm(n, θ)e−
j2πkn

N (B.3)

= αm(k, θ)e−
j2πk

N Dm(k,θ), (B.4)

where N is the DFT order, αm(k, θ) is a real number and denotes the frequency-
dependent attenuation factor due to propagation effects, and Dm(k, θ) is the
frequency-dependent propagation time from the target sound source to mi-
crophone m. For simplicity and to decrease computation overhead, we model
the acoustic channel as a function that delays and attenuates its input signals
uniformly across frequencies [9], i.e.

H̃m(k, θ) = α̃m(θ)e−
j2πk

N D̃m(θ), (B.5)

where D̃m(θ) and α̃m(θ) are frequency-independent. Now, we can approxi-
mate Eq. (B.1) in the STFT domain as:

Rm(l, k) = S(l, k)H̃m(k, θ) + Vm(l, k). (B.6)
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The vector form of Eq. (B.6) is written as:

R(l, k) = S(l, k)H̃(k, θ) + V(l, k), (B.7)

where

R(l, k) = [ Rleft(l, k), Rright(l, k) ]ᵀ,

H̃(k, θ) = [ H̃left(k, θ), H̃right(k, θ) ]ᵀ,

V(l, k) = [ Vleft(l, k), Vright(l, k) ]ᵀ,

and the superscript ᵀ is the transpose operator.

3 Maximum Likelihood Framework

To define the likelihood function, we assume the additive noise observed at
the microphones is distributed according to a zero-mean circularly-symmetric
complex Gaussian distribution, i.e. V(l, k) ∼ N (0, Cv(l, k)), where Cv(l, k) =
E{V(l, k)VH(l, k)}, and where E{.} and superscript H represent the expecta-
tion and Hermitian transpose operators, respectively. Since S(l, k) is available
at the HAS, we can relatively easily determine the time-frequency regions in
the received noisy microphone signals, where the target speech is essentially
absent; therefore, we adaptively estimate Cv(l, k) using exponential smooth-
ing over these time-frequency regions. Moreover, we assume the noisy obser-
vations are independent across frequencies; therefore, the likelihood function
for each frame is defined by:

p(R(l)|S(l), H̃(θ), Cv(l)) =

N

∏
k=1

1
πM|Cv(l, k)| e

{−(Z(l,k))HC−1
v (l,k)(Z(l,k))}, (B.8)

where |.| denotes the matrix determinant, N is the number of frequency in-
dexes and

R(l) = [ R(l, 1), R(l, 2), · · · , R(l, N) ],

R(l, k) = [ Rleft(l, k), Rright(l, k) ]ᵀ, 1 ≤ k ≤ N,

S(l) = [ S(l, 1), S(l, 2), · · · , S(l, N) ]ᵀ,

H̃(θ) = [ H̃(1, θ), H̃(2, θ), · · · , H̃(N, θ) ],

H̃(k, θ) = [ H̃left(k, θ), H̃right(k, θ) ]ᵀ

=

[
α̃left(θ)e−j2π k

N D̃left(θ)

α̃right(θ)e
−j2π k

N D̃right(θ)

]
, 1 ≤ k ≤ N,

Cv(l) = [ Cv(l, 1), Cv(l, 2), · · · , Cv(l, N) ]ᵀ,

Z(l, k) = R(l, k)− S(l, k)H̃(k).
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The corresponding reduced log-likelihood function, with terms independent
of θ omitted, is given by:

L̃ =
N

∑
k=1
{−(Z(l, k))HC−1

v (l, k)(Z(l, k))}. (B.9)

4 DoA Estimation using a Head Model

In this section, we aim to find the MLE of θ. The first step is to describe the
acoustic model of the head.

4.1 Spherical-head model

To describe the acoustic characteristics of a head, we use the “inter-microphone
time difference” (IMTD) and the “inter-microphone level difference” (IMLD),
which are defined as follows:

IMTD : ∆T(θ) = D̃left(θ)− D̃right(θ), (B.10)

IMLD : ∆L(θ) = 20 log10

(
α̃left(θ)

α̃right(θ)

)
, (B.11)

where D̃m and α̃m are defined in Eq. (B.5).
In general, IMTD and IMLD are frequency-dependent; however, to com-

pute the likelihood function computationally efficiently using IDFTs, we as-
sume they are frequency-independent. Despite this crude assumption, we
show in our simulation experiments that this leads to performance improve-
ments. For a rigid spherical head, the IMTD can be approximated by [16]:

IMTD : D̃left(θ)− D̃right(θ) =
b
c
(sin(θ) + θ) , (B.12)

where b is the sphere radius and c is the speed of sound. To model the IMLD,
we use the following relation inspired by the work in [15]:

IMLD : 20 log10

(
α̃left(θ)

α̃right(θ)

)
= γ sin(θ). (B.13)

In [15], γ is a frequency-dependent scaling factor, which is generally smaller
at lower frequencies and larger at higher frequencies; however, to be able to
apply IDFTs, we assume γ to be frequency-independent. We describe how to
determine this value in sec. 4.3.
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4.2 DoA estimator

To find the MLE of θ, we expand Eq. (B.9). Let us denote

C−1
v (l, k) ≡

[
C11(l, k) C12(l, k)
C21(l, k) C22(l, k)

]
. (B.14)

From Eqs. (B.12) and (B.13), D̃right and α̃right can be expressed in terms of
D̃left and α̃left, respectively. Inserting these expressions in Eq. (B.9), we arrive
at L̃(θ, D̃left, α̃left) which is independent of D̃right and α̃right. To eliminate the
dependency on α̃left, we insert the MLE of α̃left in L̃. It can be shown that the
MLE of α̃left is:

α̂left =
f (θ, Dleft)

g(θ)
, (B.15)

where

f (θ, Dleft) =
N

∑
k=1

(
C11(l, k)Rleft(l, k) +

C12(l, k)Rright(l, k) + 10
γ sin(θ)

20

(
C21(l, k)Rleft(l, k) +

C22(l, k)Rright(l, k)
)

ej2π k
N [− b

c (sin(θ)+θ)]

)
×

S∗(l, k)ej2π k
N Dleft(θ), (B.16)

g(θ) =
N

∑
k=1

(
C11(l, k) +

2× 10
γ sin(θ)

20 C21ej2π k
N [− b

c (sin(θ)+θ)] +

10
γ sin(θ)

10 C22(l, k)
)
|S(l, k)|2, (B.17)

where [.] rounds to nearest integer. Inserting α̂left into L̃ gives us:

L̃(θ, Dleft) =
f 2(θ, Dleft)

g(θ)
. (B.18)

Note that f (θ, Dleft) in Eq. (B.16) has a structure of an IDFT, which can be
evaluated computationally efficiently, with respect to Dleft; therefore, for a
given θ, computing L̃(θ, Dleft) results in a discrete-time sequence, where the
MLE of Dleft is the time index of the maximum of the sequence. Since θ is
unknown, we consider a discrete set Θ of different θs, and evaluate L̃(θ, Dleft)
using an IDFT for each θ ∈ Θ. The MLEs of Dleft and θ are then given by the
global maximum:

[θ̂, D̂left] = arg maxθ∈Θ,Dleft
L̃(θ, Dleft). (B.19)
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Fig. B.2: Scaling factor γ of IMLD (Eq. (B.13)) for a spherical head using theoretical HRTFs [17].

4.3 Scaling factor γ

The only remaining issue is the value of γ, which should be inserted in
Eqs. (B.16) and (B.17) to evaluate Eq. (B.18). As shown in Fig. B.2, ideally,
the scaling factor is frequency- and DoA-dependent (γ(k, θ)). To find a
frequency- and DoA-independent γ, one could consider averaging over DoAs
and frequencies, which leads to γ̄ ≈ 12.4. However, in the considered ap-
plication, the target signal is speech, which is a relatively low-pass signal.
Therefore, we expect that low-frequency components should play a larger
role in finding γ.

To find the appropriate value of γ, we run simulations for numerous
acoustic setups and different γ ∈ Γ = {1, 1.5, 2, ..., 20} and select the γ lead-
ing to the best DoA estimation performance. We evaluate the performance in
terms of Mean Absolute Error (MAE):

σ =
1
L

L

∑
j=1
|θ − θ̂j|, (B.20)

where θ̂j is the estimated DoA for the jth frame of the signal, and L is the
number of target-active frames. We use the value of γ which minimizes the
MAE over the considered conditions.

To simulate a rigid spherical-head, we use theoretical HRTFs proposed
in [17]. We run simulations for 72 different configurations: four different
target sources (two males and two females), three different distances (1 m,
5 m and 10 m), three different SNRs (-10 dB, 0 dB and 10 dB) and two differ-
ent noise types (large-crowd noise and bottling-factory-hall noise). The sig-
nal duration for each configuration is 60 s, and we use the speech database
provided by [18] for the target signals. For each configuration, the tar-
get source is placed at 35 different angles at the front-horizontal plane, i.e.
θ ∈ {−85◦,−80◦, · · · , 85◦}. The other simulation parameters are as follows:
the sampling frequency is 20 kHz, N = 2048, A = 1024, and w(n) is a Ham-
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Fig. B.3: The map of the room used for HRIRs measurements.

ming window.
From the simulation results, we find that γ = 6.5 provides minimum MAE

averaged over all considered configurations and θs. As expected, the obtained
value of γ = 6.5 is less than the result of a simple averaging of the scaling
factor over the frequencies for the considered spherical head, i.e. γ̄ ≈ 12.4
(Fig. B.2).

5 Simulation Results

In this section, we evaluate the proposed estimator under realistic conditions
which were not used in the simulation experiments to find γ. Here, we study
the impacts of the true DoA, noise type, SNR, reverberation level, and the
target distance on the performance of the proposed estimator. In the follow-
ing, the proposed estimator is referred as “Spherical-Head-Model-based DoA
estimator”.

5.1 Setup

To simulate real world scenarios, we use two different sets of head related
impulse responses (HRIRs) measured with behind-the-ear (BTE) hearing aids
mounted behind each pinna of a head-and-torso-simulator (HATS). The first
set of HRIRs was measured in an anechoic chamber for 35 positions uni-
formly spaced on a semicircle in the front-horizontal plane with radius 1 m
centered at the HATS, i.e. θ ∈ {−85◦,−80◦, ..., 85◦}. The second set was mea-
sured in a reverberant room shown in Fig. B.3. These HRIRs were measured
for 35 positions: five DoAs θ ∈ {−90◦,−45◦, 0◦, 45◦, 90◦} versus seven dis-
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Fig. B.4: Performance as a function of θ at SNR = 0 dB in an anechoic room.

tances d ∈ {0.5 m, 1 m, 1.5 m, ..., 3.5 m}. To simulate a signal from a position,
the signal is convolved with its related HRIR.

As target signal, we consider a four-minute signal composed of two male
and two female speech signals [18]. We consider two different noise-types:
speech-babble and bottling-factory-hall noise. Speech-babble is synthesized
by playing back different speech signals from each θ simultaneously. The
TSP database [18], which consists of different male and female voices, is used
as noise sources. The wide-band SNR in each simulation experiments is
expressed relative to the left-ear microphone signals. The other simulation
parameters are as follows: the sampling frequency is 20 kHz, N = 2048,
A = 1024, w(n) is a Hamming window, the length of w(n) and the DFT order
are the same, and Θ = {−90◦,−85◦, · · · , 90◦}. We use the MAE (Eq. (B.20))
as performance metric.

5.2 Results and discussion

Fig. B.4 shows the MAE of various “informed” DoA estimators as a function
of θ at an SNR of 0 dB for two different noise-types in an anechoic room.
Clearly, the proposed spherical-head-model-based estimator performs better
than existing “informed” DoA estimators, and appears robust against the
noise types. In contrast, the performance of the “informed” GCC-PHAT-
based estimator, introduced in [9], is quite dependent on the noise types.
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Fig. B.5: Performance as a function of distance in a reverberant room shown in Fig. B.3 at SNR
= 0 dB, and σ is averaged over all θs.
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Fig. B.6: Performance as a function of SNR in a reverberant room shown in Fig. B.3. d = 3.5m,
and σ is averaged over all θs.

As mentioned before, the TDoA-based estimator [9] relies on a free-field as-
sumption, which is more valid for θ ≈ 0◦ and less valid for θ ≈ ±90◦. The
influence of the free-field assumption is clearly visible in the results of the
TDoA-based estimator. On the other hand, because the proposed estimator
simulates the presence of the head, it improves the performance of the DoA
estimation compared with the TDoA-based estimator for θ ∈ [−90,−50] or
θ ∈ [60, 90].

Fig. B.5 shows the MAE of the estimators averaged across the noise types
and θs as a function of target distance in a reverberant room (Fig. B.3). In
general, increasing the distance will decrease the direct-to-reverberant en-
ergy ratio [19], i.e. reverberation will degrade the received signals more at
larger distances. However, the proposed estimator still shows consistent im-
provement.

Fig. B.6 shows the MAE of the estimators averaged across the noise types
and θs as a function of SNR in a reverberant situation. As expected, the
higher the SNR, the better the performance. The excellent performance of
the GCC-PHAT-based estimator at high SNRs may be explained by the fact
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that the PHAT algorithm is almost ML optimal in low-noise reverberant en-
vironments [20]. While the proposed method already performs decently in
this situation, we expect that a signal model which directly takes the rever-
beration into account, e.g. [4, 21], would improve the performance further.

6 Conclusion

In this paper, we proposed a DoA estimator for a hearing aid system which
has access to the noise-free target signal via a wireless microphone. We
employed a spherical-head model and proposed a maximum likelihood ap-
proach to estimate the DoA. We showed that the considered signal model al-
lowed the likelihood function to be calculated efficiently via inverse-discrete-
Fourier-transform techniques. In simulation experiments, we studied the ef-
fects of the true DoA, noise type, SNR, reverberation level, and target distance
on the performance of the proposed algorithm. The proposed method im-
proves the estimation performance over recently proposed “informed” DoA
estimators, especially, when the target is at the sides of the head, where the
influence of a head model is largest.
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1. Introduction

Abstract

Most state-of-the-art sound source localization (SSL) algorithms have been proposed
for applications which are “uninformed” about the target sound content; however,
utilizing a wireless microphone worn by a target talker, enables recent Hearing Aid
Systems (HASs) to access to an almost noise-free sound signal of the target talker at
the HAS via the wireless connection. Therefore, in this paper, we propose a maximum
likelihood (ML) approach, which we call MLSSL, to estimate the direction of arrival
(DoA) of the target signal given access to the target signal content. Compared with
other “informed” SSL algorithms which use binaural microphones for localization,
MLSSL performs better using signals of one or more microphones placed on just one
ear, thereby reducing the wireless transmission overhead of binaural hearing aids.
More specifically, when the target location confined to the front-horizontal plane,
MLSSL shows an average absolute DoA estimation error of 5 degrees at SNR of
−5 dB in a large-crowd noise and non-reverberant situation. Moreover, MLSSL
suffers less from front-back confusions compared with the recent approaches.

1 Introduction

Sound source localization (SSL) has been investigated in many applications,
such as robotics [1–3], video conferencing [4], and hearing aids [5]. In a
sense, SSL is a primitive task which would improve performance of higher
level tasks. For example, in a hearing aid system (HAS), knowing the location
of the target sound may improve noise reduction algorithms [6, 7], leading to
better speech enhancement performance.

In general, different acoustic localization strategies using microphone ar-
rays have been investigated [8, ch. 8]:

• Steered-beamformer-based location estimators: these methods steer the
beam to the potential sound source locations and search for a maximum
in output power (termed focalization) [9].

• High-resolution-spectral-estimation-based location Estimators: these meth-
ods exploit the spatiospectral correlation matrix obtained from the mi-
crophones signals. Under certain assumptions, the sound source loca-
tions can be derived from a lower-dimensional vector subspace embed-
ded within the signal space spanned by the columns of the correlation
matrix [8, ch. 8].

• Time-difference-of-arrival (TDoA)-Based Location Estimators: these meth-
ods use a set of TDoA estimations of the signals reaching each pair of
microphones to estimate the sound source location [8, ch. 8] [10].
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Wireless Connection

Fig. C.1: SSL scenario for a hearing aid system using a wireless microphone: rm(n), s(n) and
hm(n) are the noisy received sound, the noise-free target sound and the corresponding HRIR for
microphone m, respectively. s(n) is available at the hearing aid via wireless connection to the
wireless microphone at the target talker. Estimating the direction of arrival θ is the goal in this
scenario.

When the microphone array is located next to the ears, like in HASs or hu-
manoid robots, bio-inspired binaural cues, such as interaural time difference
(ITD), interaural intensity difference (IID) and monaural cues represented
by head related transfer functions (HRTFs) [called head related impulse re-
sponses (HRIRs) in the time domain] are often used for SSL [11]. Roughly,
humans are thought to use ITDs for low frequency components, up to ap-
proximately 1500 Hz, and IIDs for higher frequency components [12]. For
monaural spatial hearing, humans are believed to utilize the spectral filtering
of the incoming sound at the head, torso and pinnae [11], i.e. filtering of the
incoming sound through HRTFs.

Most current SSL algorithms have been proposed for applications which
are “uninformed” about the target source signal content [1, 3, 4], i.e. they do
not have any access to the noise-free target signal content. However, recent
advances in wireless technology enables new HASs, where the target talker
is wearing a wireless microphone, to have access to an essentially noise-free
version of the target signal [5]. This turns the “uninformed” SSL problem
into the “informed” SSL problem considered in this paper.

Fig. C.1 depicts the system considered in this paper. The target signal
s(n) is transmitted through the acoustic channel hm(n) and reaches the mth

microphone of the HAS. Due to additive environmental noise, a noisy sig-
nal rm(n) is received at the mth microphone. Moreover, the noise-free target
signal s(n) is also transmitted to the HAS via the wireless connection. We
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2. Signal Model

aim at estimating the target signal direction of arrival (DoA) θ based on these
signals.

In HASs, since microphones are located at the ears, the acoustic shad-
owing effects of the user’s head and torso cause hm(m) to depend on θ [11].
However, for simplicity, many SSL algorithms, e.g. [5, 10], assume a free field
situation and disregard the user’s head and torso acoustic shadowing effect,
causing the location estimation performance to be reduced. In this paper, we
propose a method which does take the head presence into account to distin-
guish directions, thereby improving localization performance. The proposed
method is a maximum likelihood approach; therefore, we call it maximum
likelihood sound source localization (MLSSL).

2 Signal Model

Fig. C.1 shows the situation at hand: the noisy received sound signal rm(n)
at microphone m is a result of the convolution of the target signal s(n) with
the acoustic channel impulse response hm(n) from the target talker to micro-
phone m, and is contaminated by additive noise vm(n). For each microphone
of the HAS, we can write:

rm(n) = dm(n) + vm(n), m = 1, · · · , M , (C.1)

dm(n) = s(n) ∗ hm(n), (C.2)

where M ≥ 1 is the number of available microphones, n is the discrete time
index, and ∗ is the convolution operator.

Most state-of-the-art HASs operate in the short time Fourier transform
(STFT) domain because it allows frequency dependent processing, computa-
tional efficiency and low latency algorithm implementation. Therefore, let

S(l, k) = ∑
n

s(n)w(n− lA)e−
j2πk

N (n−lA), (C.3)

Dm(l, k) = ∑
n

∑
t

hm(t)s(n− t)×

w(n− lA)e−
j2πk

N (n−lA)

= ∑
n

s(n)∑
t

hm(t)×

w(n + t− lA)e−
j2πk

N (n+t−lA) (C.4)

denote the STFT representations of s(n) and dm(n), respectively, where l and
k are frame and frequency bin indices, respectively, N is the frame length, A
is the decimation factor, w(n) is the windowing function, and j =

√
−1 is the
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imaginary unit. Moreover, let

Hm(k) = ∑
t

hm(t)e−
j2πkt

N (C.5)

denote the discrete Fourier transform of hm(n), where N is greater or equal to
the duration of hm(n). Eq. (C.4) implies that Dm(l, k) 6= S(l, k)Hm(k). How-
ever, if the support of w(n) is smoothly long enough compared with the
duration of hm(n), then w(n− t)hm(t) ≈ w(n)hm(t) [13]; in this case, we find:

Dm(l, k) ≈ ∑
n

s(n)w(n− lA)e−
j2πk

N (n−lA) ×

∑
t

hm(t)e−
j2πk

N (t) (C.6)

= S(l, k)Hm(k), (C.7)

i.e. Dm(l, k) can be approximated as a point-wise multiplication of S(l, k) and
Hm(l, k) [13]. With this approximation, Eq. (C.1) can be approximated in the
STFT domain as:

Rm(l, k) = S(l, k)Hm(k) + Vm(l, k), (C.8)

where Rm(l, k) and Vm(l, k) are STFT coefficients of the received signal and
noise signal for the mth microphone, respectively, and are defined analo-
gously to S(l, k) in Eq. (C.3).

Collecting the M microphone equations (Eq. (C.8)) in a column vector
gives rise to the following signal model:

R(l, k) = S(l, k)H(k) + V(l, k), (C.9)

where

R(l, k) = [R1(l, k), R2(l, k), · · · , RM(l, k)]T, (C.10)

H(k) = [H1(k), H2(k), · · · , HM(k)]T, (C.11)

V(l, k) = [V1(l, k), V2(l, k), · · · , VM(l, k)]T. (C.12)

3 Maximum Likelihood Estimation of DoA

The acoustic shadowing effects of the head and torso cause H(k) to depend
on θ [11]; therefore, if we possess a prestored databaseH = {H1, H2, · · · , HI},
which consists of I sets of HRTFs labelled by their corresponding θ, the target
θ may be estimated by finding the best candidate in H. In fact, H is a discrete
model of the continuous space of HRTFs. To find the best Hi in H based on
the received signals, we introduce a maximum likelihood strategy.
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3. Maximum Likelihood Estimation of DoA

Let us assume that V(l, k) in Eq. (C.9) is a zero-mean, circularly-symmetric
complex Gaussian random vector, i.e. V(l, k) ∼ N (0, CV(l, k)), where CV(l, k)
is the inter-microphone noise covariance matrix. Since we assume the target
signal is picked up without any noise by the wireless microphone, S(l, k) is
available at the HAS, and we consider it as deterministic and known. H(k) is
also considered deterministic but unknown (H ∈ H). Hence, from Eq. (C.9)
follows:

R(l, k) ∼ N (S(l, k)H(k), CV(l, k)). (C.13)

Since S(l, k) is available at the HAS, we can relatively easily determine
the time-frequency regions in the noisy microphones signals where the tar-
get speech is essentially absent; therefore, we adaptively estimate CV(l, k)
using exponential smoothing over the frames where the noise is dominant.
Furthermore, for mathematical convenience, we assume that the noisy obser-
vations are independent over time and frequency. Therefore, the likelihood
function of each Hi ∈ H regarding the received signals at frame l is defined
as:

fl (R, S; Hi) =

l

∏
j=l−D+1

K

∏
k=1

1
πM|CV(j, k)|e

{−ZH
i (j,k)C−1

V (j,k)Zi(j,k)}, (C.14)

where Zi(j, k) = R(j, k)− S(j, k)Hi(k), and |.| and H denotes the matrix de-
terminant and Hermitian transpose operator, respectively. D is the number
of frames and K is the number of frequency indices used to compute the
likelihood. It should be noted that we assume that the target source location
is fixed across D frames. The corresponding log-likelihood function is given
by:

Ll(Hi) = −MDK log π −
l

∑
j=l−D+1

K

∑
k=1

log |CV(j, k)| −

l

∑
j=l−D+1

K

∑
k=1

ZH
i (j, k)C−1

V (j, k)Zi(j, k), (C.15)

leading to the maximum likelihood estimation of the HRTF:

HML = arg max
Hi∈H

Ll(Hi), (C.16)

from which the corresponding DoA estimate θ̂ follows. We solve Eq. (C.16)
via an exhaustive search in H.
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0 Deg.

90 Deg. -90 Deg.

180 Deg.

Fig. C.2: Experiment setup. In an anechoic chamber, 72 loudspeakers, represented by arrows, are
placed on a circle with radius 1.5 m in the horizontal plane centered at the HATS. Microphones
locations are represented by × behind the left ear of the HATS (i.e. around 90◦).

4 Simulations Results

4.1 Experiment setup

Fig. C.2 shows the situation considered for assessing the algorithm. The tar-
get source is assumed to be placed at one of 72 uniformly spaced possible
positions, i.e. with a 5 degrees resolution, on a circle in the horizontal plane
with radius 1.5 m centered at a head-and-torso-simulator (HATS). Behind the
left pinna of the HATS a two-microphone behind-the-ear (BTE) hearing aid is
placed. The distance between front and rear microphones is 12 mm, and the
sampling frequency of the microphone signals is 20 kHz. The other simula-
tion parameters are as follows: N = 2048 samples, A = 1024 samples, and
D = 2. H consists of I = 72 sets of HRTFs, measured from each loudspeaker
to microphones, and the target speech signal is a 10-second sample of the
ISTS signal [14] composed of 21 female voices in 6 different languages. To
approximate a practical large-crowd noise field, we play back different speech
signals from each of the I = 72 target positions simultaneously. The database
provided by [15], which consists of different male and female voices, is used
as noise sound sources.

When the power of the noise sources is fixed, then the signal-to-noise-ratio
(SNR) observed at each of the microphones is a function of θ since the target
signal is filtered by the head and torso of the HAS user. Specifically, the SNR
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4. Simulations Results

is generally reduced when the microphone is in the “shadow” part of the
head compared with the case where the microphone is in the “sunny” part.
Moreover, for the same θ, “sunny” part microphones have higher SNRs than
“shadow” part microphones; therefore, the reference SNRs of the simulations
are expressed relative to the left-front microphone and θ = 0◦.

As performance metrics, we define the percentage of the DoA correct de-
tection and the DoA estimation mean absolute error (MAE) in the following.
Let Qθ denote the number of frames for which θ̂ = θ. The percentage of the
DoA correct detections is:

P
θ
=

Qθ

L
× 100, (C.17)

where L is the total number of frames of the received signals. Moreover, the
mean absolute error (MAE) of the DoA estimation is given by:

σθ̂ =
1
L

L

∑
j=1
|θ − θ̂j|, (C.18)

where θ̂j is the estimated DoA for the jth frame of the signal.

4.2 MLSSL using one microphone

In contrast to other SSL algorithms which often use two microphones, MLSSL
allows us to estimate θ with just one microphone. Figs. C.3a and C.3b show
the MLSSL performance in terms of P

θ
and σθ̂ at a reference SNR of 0 dB for

the full-band signal using M = 1 microphone signal (the Left-Front micro-
phone). As can be seen, P

θ
drops when the target is located at the sides of

the HATS (i.e. θ ≈ −90◦ and θ ≈ 90◦), compared with when the target is in
front (θ ≈ 0◦) or behind (θ ≈ 180◦). On the other hand, σθ̂ in Fig. C.3b shows
that even though MLSSL has lower P

θ
for θ close to −90◦ or 90◦, the MAE is

less than the cases where θ is close to 0◦ or 180◦. To explain these behaviours,
we plot the MLSSL confusion matrix shown in Fig. C.4. Each column of the
matrix relates to a θ, and represents the normalized histogram of θ̂s for that
particular θ. The almost red diagonal of the matrix shows that MLSSL is gen-
erally successful in estimating the θ. However, the two parallel anti-diagonal
lines show that when MLSSL fails in detecting the correct θ, then the most
probable cause of errors is a front-back confusion. Front-back confusions re-
sult in larger estimation errors for the θs in the front or back of the HATS
than the left or right sides θs and explain the higher σθ̂ around θ = 0◦ or
180◦. As mentioned before, the SNR is a function θ and is almost higher for
θ ≈ 90◦ when the microphones are on the left ear, but since influences of the
head and torso are small for θ ≈ 90◦, their HRTFs are locally very similar and
cause local errors and relatively low P

θ
. Finally, as can be seen in Fig. C.3b, σθ̂

is generally higher when θ ∈ [−180◦, 0◦] since the microphone is in the head
shadow region, and the SNR is lower.
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Fig. C.3: MLSSL simulation results for the left-front microphone at 0 dB SNR.
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Fig. C.4: Confusion matrix of MLSSL for the left-front microphone at 0 dB SNR.

4.3 Comparison with the state-of-the-art

Courtois et al. in [5] recently introduced the informed SSL problem and pro-
posed a solution based on ITD and binaural signals. They use the wirelessly
received noise-free target signal as a time reference to estimate the ITD, and
then to estimate θ, they resort to a “sine law” [5]. This causes their method
to be unable to differentiate between front and back angles, e.g. θ = 45◦ and
θ = 135◦. Although MLSSL does not have this limitation, for comparison, we
consider the frontal horizontal plane only.

Fig. C.5 shows σθ̂ for MLSSL using one or two microphones placed behind
the left ear, compared with the Courtois et al. method [5]. As can be seen,
MLSSL performs significantly better for all θs. The Courtois et al. results are
symmetric with respect to θ = 0 since they use binaural signals, but MLSSL
results are asymmetric because microphones are located at one ear only, and
the head shadow influences signals which are coming from left and right
differently. Furthermore, comparing Figs. C.5 and C.3b shows that knowing
a priori that θ is in the frontal plane, improves the MLSSL σθ̂ significantly by
eliminating front-back confusions.

In practice, since θ is a continuous variable, it may be represented exactly
by none of the HRTFs in H. To assess MLSSL performance in this situa-
tion, we made a reduced database H′ by eliminating every other HRTF from
H, i.e. there is no HRTF in H′ for half of the considered θs. Fig. C.6 shows
MAE of the methods averaged over all the frontal θs as a function of SNR.
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Fig. C.5: Performance comparison of MLSSL with the Courtois et al. method for the frontal plane
DoAs at the reference SNR of 0 dB.
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5. Conclusion and future work

As expected, MLSSL has the best performance when θ is represented in the
database. But when θ is not in H′, MLSSL mostly finds the nearest DoA in
the database, which means that the resolution of the database is a key factor
that influences DoA estimation performance using MLSSL.

5 Conclusion and future work

In this paper, we formulated a target sound DoA estimation problem for a
new infrastructure of hearing aid systems, which employs a wireless micro-
phone worn by a sound source of interest. To solve the problem, we con-
sidered a maximum likelihood strategy which exploits the noise-free target
sound and pre-stored HRTFs. In simulations, MLSSL showed better per-
formance than a recent binaural method proposed by Courtois et al. in [5]
even when MLSSL uses only a single microphone. The proposed framework
is flexible and easily scalable to any number of microphones. Considering
an intelligent search instead of an exhaustive search in the HRTFs database
would decrease the computation overhead, and moreover, considering eleva-
tion and range in addition to the azimuth will generalize the method. Fur-
thermore, robustness to reverberation is an important issue for SSL. These
topics will be investigated in future work.
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1. Introduction

Abstract

The direction dependence of head related transfer functions (HRTFs) forms the basis
for HRTF-based sound source localization (SSL) algorithms. In this paper, we show
how spectral similarities of the HRTFs of different directions in the horizontal plane
influence performance of HRTF-based SSL algorithms; the more similar the HRTFs
of different angles to the HRTF of the target angle, the worse the performance. How-
ever, we also show how the microphone array geometry can assist in differentiating
between the HRTFs of the different angles, thereby improving performance of HRTF-
based SSL algorithms. Furthermore, to demonstrate the analysis results, we show
the impact of HRTFs similarities and microphone array geometry on an exemplary
HRTF-based SSL algorithm, called MLSSL. This algorithm is well-suited for this
purpose as it allows to estimate the direction of arrival (DoA) of the target sound us-
ing any number of microphones and any geometries of the microphone array around
the head.

1 Introduction

Sound source localization (SSL) using a microphone array has been studied
in different applications, such as robotics [1–3], video conferencing [4], and
hearing aids [5].

Bio-inspired spatial cues, like interaural time difference (ITD), interau-
ral intensity difference (IID) and the monaural spectral cues in head related
transfer functions (HRTFs) [called head related impulse responses (HRIRs)
in the time domain] are often used for SSL when the microphone array is
located next to the ears1, such as in hearing aid systems (HASs).

Acoustic shadowing effects of the head and torso of a HAS user or a
humanoid robot cause the HRTFs to depend on the target sound direction
of arrival (DoA) θ [6]. HRTF-based SSL algorithms use this fact and often
exploit a dictionary of HRTFs, labelled by their corresponding θ, to estimate
the target sound DoA by finding the best HRTF match in the dictionary [1, 3].

The SSL scenario, which is considered in this paper, is shown in Fig. D.1.
Because of recent advances in wireless technology for HASs, the depicted sce-
nario is of practical interest. The target signal s(n) is transmitted through the
acoustic channel hm(n) and is “polluted” by environmental noise to generate
the noisy signal rm(n) at microphone m of the HAS. Moreover, we assume
that the noise-free target signal s(n) is also available at the HAS via a wireless
connection. We aim at estimating θ in this scenario.

1While formally, an HRTF is defined to be “a specific individual’s left or right ear far-field
frequency response, as measured from a specific point in the free field to a specific point in the
ear canal” [6], in this paper we use the term HRTF to describe the frequency response from a
target source to a microphone of a hearing aid system.
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Fig. D.1: SSL scenario for a HAS using a wireless microphone: rm(n), s(n) and hm(n) are the
noisy received sound, the clean target signal and the correspondent HRIR for microphone m,
respectively. s(n) is available at the HAS via wireless connection to the wireless microphone. We
aim at estimating θ in this scenario.

In general, spectral similarities of the HRTFs and microphone array ge-
ometries affect HRTF-based SSL performance. The spectral similarities of
the HRTFs in the dictionary may complicate finding the best candidate in
the dictionary and reduce the SSL performance. However, the microphone
array geometry may assist to improve the SSL performance. Different micro-
phone array geometries impose different amounts of computation and wire-
less transmission overhead; for example, generally, two different microphone
array configurations are conceivable for a HAS: a) a binaural configuration
which allows usage of microphones from wirelessly connected hearing aids,
but impose wireless transmission overhead, and b) a monaural configuration,
which is restricted to use microphones of one hearing aid only, but which
does not impose any transmission overhead. The goal of this paper is to
compare different microphone array configurations in terms of performance
for HRTF-based SSL. Specifically, we wish to study to which extent the need
for wireless data transmission in binaural configuration is justified in terms
of performance improvements over a monaural configuration.

To demonstrate our investigation results about HRTFs spectral similarities
and microphone array geometry, we consider an exemplary SSL algorithm,
called maximum likelihood sound source localization (MLSSL) [7], that uses
the noisy microphone signals, the noise-free target signal and a maximum
likelihood (ML) strategy to find the best HRTF match in the dictionary to
estimate θ. MLSSL is well-suited for the purpose of this paper since it is
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scalable to any number of microphones and any array geometry around the
head.

2 Signal Model and MLSSL

In this section, we briefly review the MLSSL algorithm [7]. Regarding Fig. D.1,
for microphone m of the HAS, we can write:

rm(n) = s(n) ∗ hm(n) + vm(n), m = 1, · · · , M, (D.1)

where rm(n), s(n), hm(n) and vm(n) are the noisy microphone signal, the
noise-free target signal, the HRIR between the target source and microphone
m, and the noise signal, respectively. M ≥ 1 is the number of available HAS
microphones, n is the discrete time index, and ∗ represents the convolution
operator. It can be shown that Eq. (D.1) can be approximated in the short-time
Fourier-transform (STFT) domain as [7, 8]:

Rm(l, k) = S(l, k)Hm(k) + Vm(l, k), (D.2)

where Rm(l, k), S(l, k) and Vm(l, k) are STFT coefficients of the noisy micro-
phone signal, target signal and noise signal for the mth microphone, respec-
tively. Hm(k) is the corresponding HRTF, and l and k are frame and frequency
bin indices, respectively.

Collecting expressions for the received microphone signals in a column
vector leads to:

R(l, k) = S(l, k)H(k) + V(l, k), (D.3)

where

R(l, k) = [R1(l, k), R2(l, k), · · · , RM(l, k)]T, (D.4)

H(k) = [H1(k), H2(k), · · · , HM(k)]T, (D.5)

V(l, k) = [V1(l, k), V2(l, k), · · · , VM(l, k)]T. (D.6)

Assume we possess a dictionaryH = {H1, H2, · · · , HI} of I sets of HRTFs
labelled by their corresponding θs, then MLSSL aims at finding the Hi in H
that fits best the observed signals, and in this way estimate the target θ.

Let us assume that V(l, k) in Eq. (D.3) is a zero-mean, circularly-symmetric
complex Gaussian random vector, i.e. V(l, k) ∼ N (0, CV(l, k)), where CV(l, k)
is the inter-microphone noise covariance matrix. Since we assume the noise-
free S(l, k) is available at the HAS, it is considered as known and determin-
istic. H(k) is also considered as deterministic but unknown (H ∈ H). There-
fore, R(l, k) in Eq. (D.3) obeys a Gaussian distribution according to:

R(l, k) ∼ N (S(l, k)H(k), CV(l, k)). (D.7)
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Because S(l, k) is available at the HAS, it is easy to determine the time-
frequency regions in the noisy microphones signals where the target speech is
essentially absent, and therefore, adaptively estimate CV(l, k) over the frames
where the noise is dominant. Moreover, for mathematical convenience, the
noisy observations are considered to be independent over time and frequen-
cies. Therefore, the likelihood function of Hi ∈ H at frame l, regarding the
received signals is given by:

fl (R, S; Hi) =

l

∏
j=l−D+1

K

∏
k=1

1
πM|CV(j, k)|e

{−ZH
i (j,k)C−1

V (j,k)Zi(j,k)}, (D.8)

where Zi(j, k) = R(j, k)− S(j, k)Hi(k), and |.| and H denotes the matrix de-
terminant and Hermitian transpose operator, respectively. D and K are the
number of frames and frequency indices, respectively, used for calculating
fl . We assume the target sound source location is fixed during the D frames.
The corresponding log-likelihood function is:

Ll (Hi) = −MDK log π −
l

∑
j=l−D+1

K

∑
k=1

log |CV(j, k)| −

l

∑
j=l−D+1

K

∑
k=1

ZH
i (j, k)C−1

V (j, k)Zi(j, k), (D.9)

leading to the maximum likelihood estimation of the HRTF:

HML = arg max
Hi∈H

Ll (Hi) (D.10)

from which the corresponding DoA estimate θ̂ follows. For implementation
of Eq. (D.10), we use an exhaustive search in H.

3 Performance Analysis

3.1 Acoustic setup and experiment configurations

For investigating effects of different factors on SSL algorithm performance,
an anechoic chamber environment is considered (Fig. D.2). The target source
can be located at one of 72 uniformly spaced positions, i.e. with 5 degrees res-
olution, on a horizontal circle with radius 1.5 m centered at a head-and-torso
simulator (HATS). Behind-the-ear (BTE) hearing aids are mounted behind
each ear of the HATS. The microphone signals of each hearing aid can be
wirelessly exchanged such that a maximum of four microphones can be used
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0 Deg.

90 Deg. 270 Deg.

180 Deg.

Fig. D.2: Acoustic setup. In an anechoic chamber, 72 loudspeakers are placed on a circle with
radius of 1.5 m in a horizontal plane centered at the HATS. Possible microphones locations are
represented by × behind the HATS’ pinnae.

to perform SSL. We assume this exchange to be instantaneous and error-
free. The distance between front and rear microphones in each hearing aid is
12 mm, and the sampling frequency of the microphone signals is 20 kHz. The
STFT uses a frame length of 2048 samples, and a decimation factor of 1024
samples. We use a number of D = 2 frames and the dictionary H consists
of I = 72 sets of microphones HRTFs, measured from each loudspeaker to
the microphones. The target speech signal is a 10-seconds sample of the ISTS
V1.0 [9] which is composed of 21 female voices in 6 different languages.

To generate a realistic and difficult situation, we approximate a cylindri-
cally isotropic large-crowd noise field [10], which is simulated by a number of
speech sources that are uniformly spaced on the considered circle. The large-
crowd speech signals are from the TSP speech database [11] which consists of
different male and female voices. The power of the noise sources is constant
for all θs. Therefore, the acoustic shadowing of the HATS causes the effective
signal-to-noise-ratios (SNRs) observed at each microphone to be a function of
target direction θ. For this reason, the simulation SNRs are expressed relative
to the left-front microphone and θ = 0◦.

To quantify SSL performance, we define the percentage of the DoA correct
detection and the DoA estimation mean absolute error (MAE) as following.
Let Qθ denote the number of frames for which θ̂ = θ. The percentage of the
DoA correct detections is:

P
θ
=

Qθ

L
× 100, (D.11)
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Fig. D.3: Log-spectral distances of the HRTFs of θs for the front microphone of the left hearing
aid.

where L is the total frames of the target signal. Furthermore, the mean abso-
lute error (MAE) of the DoA estimation is given by:

σθ̂ =
1
L

L

∑
j=1
|θ − θ̂j|, (D.12)

where θ̂j is the estimated DoA for the jth frame of the signal.

3.2 HRTF similarities

In this section, we study spectral similarities of HRTFs to be able to identify
general challenges that any HRTF-based SSL algorithm faces. Intuitively,
we expect that HRTF similarities reduce performance of HRTF-based SSL
algorithms. To quantify the similarity between two HRTFs Hi and Hj in H,
we use the log-spectral distance (LSD) measure [12]:

LSD(Hi, Hj) =

√√√√ 1
K

K

∑
k=1

(
20 log10

|Hi(k)|
|Hj(k)|

)2

, (D.13)

where |.| denotes the absolute value, and K is the number of frequency bin
indices.

Fig. D.3 depicts the LSDs of pairs of HRTFs in H for the front microphone
of the left hearing aid. As can be seen, for θs which are on the left side
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Left Mic.

Right Mic.

Sound Wave

Fig. D.4: Left-Right microphone axis.

of the head (θ ∈ [0◦; 180◦]), i.e. the same side of the hearing aid, their cor-
responding HRTFs are more similar to each other than to the HRTFs of θs
of the other side. This fact helps HRTF-based SSL algorithms to decrease
right-left confusions. On the other hand, HRTFs corresponding to angles
which are almost symmetric relative to the axis between the left and right
ears have similar HRTFs, represented by almost two anti-diagonal blue lines
in Fig. D.3. These two anti-diagonal blue lines represent the projection of the
3D cone-of-confusion [13] onto the 2D horizontal plane. These similarities
cause front-back confusions, which result in larger estimation errors for the
θs in the front or back of the HATS than the left or right sides θs.

3.3 Microphone array configurations

To analyze the impact of microphone array geometry, let us first focus on the
two-microphone (M = 2) situation. In a HAS context, two configurations are
of interest: Left-Right axis (Fig. D.4) and Front-Rear axis (Fig. D.5). Left-Right
axis is a binaural configuration and uses the front microphones of the left
and right hearing aids. On the other hand, Front-Rear axis is a monaural
configuration and uses the front and rear microphone of a single hearing
aid. Without loss of generality, we assume the Front-Rear microphone axis
is placed on the left ear. The Left-Right axis needs wireless communication
between the hearing aids while the Front-Rear axis does not.

To explain the influence of different configurations on HRTF-based SSL,
we analyze the inter-microphone time differences of arrival (TDoA). Since
HRTFs can be treated as a minimum phase FIR filter [6], inter-microphone
TDoAs are “encoded” in the HRTFs and implicitly affect HRTF-based SSL.
To simplify the analysis, we consider a free field and far field situation (ig-
noring the head and torso filtering effects and assuming a planar wavefront).
Let dLR and dFR denote the distance between left and right microphones
(Fig. D.4), and front and rear microphones (Fig. D.5), respectively, and ‘c’ the
sound velocity. The inter-microphone TDoAs for the Left-Right and Front-
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Front Mic.

Rear Mic.

Sound Wave

Fig. D.5: Front-Rear microphone axis.
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Fig. D.6: Inter-Microphone TDoA derivation for different configurations of two microphones.

Rear microphone axes are given by:

τLR =
dLR sin θ

c
, τFR =

dFR cos θ

c
, respectively.

The different microphone axes provide different sensitivities to changes
in θ; the higher the change in TDoA with respect to the change in θ, the
better SSL performance. To measure the sensitivity of TDoA to θ changes, the
derivatives of τLR and τFR with respect to θ are shown in Fig. D.6. Clearly, the
Front-Rear microphone axis is more sensitive to θ changes when θ is around
90◦ and 270◦ while the Left-Right microphone axis is more sensitive to the
changes of θ when θ is around 0◦ and 180◦. Moreover, the sensitivity to the
DoA changes is a function of the microphone distance; the larger the distance,
the higher the sensitivity to θ changes.

Regarding Fig. D.1, increasing the number of microphones to M = 3 en-
ables us to take advantage of both the Left-Right axis and the Front-Rear axis
at the cost of computation and wireless transmission overhead. Increasing M
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Fig. D.7: The MLSSL performance using one and two microphones with different axes at 0 dB
SNR.

further to M = 4 will add another Front-Rear axis in the horizontal plane.
However, we would not expect this extra Front-Rear axis to provide signifi-
cant information for SSL in a horizontal plane because the plane is already
spanned by the existing microphone axes.

3.4 MLSSL performance

To validate and demonstrate the above analysis, we show the performance
of the MLSSL algorithm. Fig. D.7 shows P

θ
and σθ̂ using one and two micro-

phones signals in different configurations as a function of θ at 0 dB reference
SNR. As can be seen in Fig. D.7a, P

θ
generally falls when the target is located

at the sides of the HATS (i.e. θ ≈ 90◦ and θ ≈ 270◦), compared with when
the target is in the front (θ ≈ 0) or behind (θ ≈ 180◦). This is because the
HRTFs around 90◦ and 270◦ are locally more similar than the HRTFs around
0◦ and 180◦ (Sec. 3.2). Moreover, as can be seen in Fig. D.7b, σθ̂ shows dif-
ferent and sometimes opposite behaviour, specifically, for MLSSL using one
microphone. This behaviour is because of front-back confusions which cause
larger estimation errors for the θs in the front or back of the HATS than the
left or right sides θs (Sec. 3.2).
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Fig. D.8: The MLSSL performance in terms of logarithm of averaged σθ̂ over considered θs for
different number of microphones as a function of reference SNR.

Fig. D.7 shows that increasing the number of microphones generally im-
proves the performance. However, as expected, the configuration of the mi-
crophones also affect MLSSL performance. From Fig. D.7a, it is clear that
MLSSL (M = 1) has lower Pθ for θs around 90◦ and 270◦. For M = 2, the
Front-Rear configuration is preferred (over the Left-Right) because the Front-
Rear axis is more sensitive to changes in θ at these angles (Sec. 3.3, Fig. D.6).

Fig. D.8 shows the MLSSL performance in terms of the logarithm of the
averaged σθ̂ over the 72 θs for different number of microphones as a function
of reference SNR. The performance difference between M = 1 and M = 2
of the MLSSL is significant due to the fact that two microphones can form a
new microphone axis in the plane. It is clear that for M = 2 the Left-Right
axis, which requires wireless communication capabilities, does not offer any
advantage over the Front-Rear axis. Increasing the number of microphones
to M = 3 or M = 4, improve the performance of the MLSSL at the cost of
higher computation and communication overhead. The performance differ-
ence between M = 2 and M = 3 is also relatively significant, since three
microphones configuration allows the MLSSL to make use of both Right-Left
and Front-Rear axes via the wireless connection. The performance differ-
ences between using M = 3 and M = 4 are relatively small since the planar
dimensions are already spanned when M = 3.

4 Conclusion

In this paper, we analyzed the performance of HRTF-based SSL algorithms in
terms of spectral similarities between HRTFs and microphone array geome-
try. We showed that due to similarities of different HRTFs, the performance of
HRTF-based SSL algorithms depends on the DoA of the target signal. More-
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over, we showed that even though increasing the number of microphones in
the microphone array improves SSL performance, the geometry of the micro-
phone array plays a key role in improving the performance. For example,
a binaural wireless configuration does not necessarily improve the SSL per-
formance compared with a monaural configuration. In this paper, we only
considered target locations in the horizontal plane and BTE hearing aids;
future research includes considering elevation and range in addition to the
azimuth. Furthermore, considering other types of hearing aids than BTE will
help complement the investigation.
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1. Introduction

Abstract

Recent hearing aid systems (HASs) can connect to a wireless microphone worn by
the talker of interest. This feature gives the HASs access to a noise-free version of the
target signal. In this paper, we address the problem of estimating the target sound
direction of arrival (DoA) for a binaural HAS given access to the noise-free content
of the target signal. To estimate the DoA, we present a maximum likelihood frame-
work which takes the shadowing effect of the user’s head on the received signals into
account by modeling the relative transfer functions (RTFs) between the HAS’s mi-
crophones. We propose three different RTF models which have different degrees of
accuracy and individualization. Further, we show that the proposed DoA estimators
can be formulated in terms of inverse discrete Fourier transforms (IDFTs) to eval-
uate the likelihood function computationally efficiently. We extensively assess the
performance of the proposed DoA estimators for various DoAs, signal to noise ratios
(SNRs), and in different noisy and reverberant situations. The results show that the
proposed estimators improve the performance markedly over other recently proposed
“informed” DoA estimators.

1 Introduction

In realistic acoustic scenes, where several sound sources are present simulta-
neously, the auditory scene analysis (ASA) ability in humans allows them to
focus deliberately on a sound source while suppressing the other irrelevant
sound sources [1]. Sensorineural hearing loss degrades this ability [2], and
hearing impaired listeners face difficulties in interacting with the environ-
ment. Hearing aid systems (HASs) may take some of these ASA responsibil-
ities to restore the normal interactions of the hearing impaired users with the
environment.

Sound source localization (SSL) is one of the main tasks in ASA, and
different SSL approaches have been proposed for various applications, such
as robotics [3, 4], video conferencing [5], surveillance [6], and hearing aids [7].

SSL strategies using microphone arrays can be generally categorized as1:

• Steered-beamformer-based (also called steered response power meth-
ods): the main idea of these methods is to steer a beamformer towards
potential locations and look for a maximum in the output power [8,
ch. 8], [9].

• High-resolution-spectral-estimation-based: these methods are based on
the spatiospectral correlation matrix obtained from the microphones
signals. Under certain assumptions, the sound source locations can be

1This is an extended version of the categorization proposed in [8, ch. 8].
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Fig. E.1: An “informed” SSL scenario for a binaural hearing aid system using a wireless micro-
phone. rm(n) is the noisy received sound at microphone m, s(n) is the noise-free target sound
emitted at the target location, and hm(n, θ) is the acoustic channel impulse response between the
target talker and microphone m. s(n) is available at the HAS via the wireless connection, and
the hearing aids are also connected to each other wirelessly. The goal is to estimate θ.

estimated from a lower-dimensional vector subspace embedded within
the signal space spanned by the columns of the correlation matrix [10,
11].

• Time-difference-of-arrival (TDoA)-based: these methods first estimate
a set of TDoAs of the signals reaching each pair of the microphones in
the microphone array, then map the estimated TDoAs to an estimate of
the sound source location using a mapping function [12, 13].

• Head-related-transfer-function (HRTF)-based: when the microphone ar-
ray is mounted at the head and torso of humans or humanoid robots,
the filtering effects of the head and torso on the incoming sounds can
be used for SSL [4, 14–17].

Most existing SSL algorithms have been proposed for applications which
are “uninformed” about the noise-free content of the target sound, e.g. [3–
7, 9–16]. However, recent HASs can employ a wireless microphone worn by
the target talker to access an essentially noise-free version of the target signal
emitted at the target talker’s position [17–20]. Using a wireless microphone
worn by the target talker introduces the “informed” SSL problem considered
in this paper.

Fig. E.1 depicts the situation considered in this paper. The HAS consists of
two hearing aids (HAs) connected wirelessly and mounted on each ear of the
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user, and a wireless microphone worn by the target talker. The target signal
s(n) is emitted at the target location, propagates through the acoustic chan-
nel hm(n, θ), and reaches microphone m ∈ {left, right} of the binaural HAS.
Due to additive environmental noise, the signal captured by microphone m,
denoted by rm(n), is a noisy version of the target signal impinging on the
microphone. The problem considered in this paper is to estimate the target
signal direction of arrival (DoA) θ based on the wirelessly available target sig-
nal s(n) and the noisy microphone signals rm(n). Estimating the target sound
DoA in this system allows the HAS to enhance the spatial correctness of the
acoustic scene presented to the HAS user, e.g. by imposing the corresponding
binaural cues on the wirelessly received target sound [21].

The “informed” SSL problem for hearing aid applications was first inves-
tigated via a TDoA-based approach in [18]. The method proposed in [18] uses
a cross-correlation technique to estimate the TDoA, then uses a sine law to
map the estimated TDoA to a DoA estimate. The approach proposed in [18]
has relatively low computational load, because it does not take the shadowing
effect of the user’s head and the ambient noise characteristics into account.
Disregarding the head shadowing effect inevitably degrades the DoA estima-
tion performance, especially when the target sound is located at the sides of
the user’s head, where the head shadowing has the highest impact on the re-
ceived signals. Moreover, neglecting the ambient noise characteristics causes
the estimator performance to be sensitive to the noise type.

In this paper, we present a maximum likelihood (ML) framework for “in-
formed” SSL relying on the noise-free target signal and the ambient noise
characteristics. Moreover, to improve the estimation accuracy, we consider
the effects of the user’s head on the received signals by modeling the direction-
dependent relative transfer functions (RTFs) between the left and right mi-
crophones of the HAS. More precisely, we present three different RTF mod-
els: i) the free-field-far-field model, ii) the spherical-head model, and iii) the
measured-RTF model. These models have different degrees of accuracy and
individualization. Using the proposed ML framework and based on each
of the RTF models, we propose an ML estimator for the target sound DoA.
Moreover, besides the DoA, as a by-product, the proposed methods provide
an ML estimate of the target signal propagation time between the target talker
and the user. The propagation time can be easily converted to a distance es-
timate, which is an important information about the target location.

The free-field-far-field model and the spherical-head model have been
proposed and used for informed DoA estimation in [19] and [20], respec-
tively. In this paper, we introduce the measured-RTF model and its corre-
sponding ML DoA estimator. Moreover, we provide a new unified presenta-
tion of all the models and investigate their performances extensively.

The idea of using measured RTFs for “uninformed” DoA estimation was
already presented in [22]. The method proposed in [22] considers a narrow-
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band “uniformed” DoA estimation problem and solves it using a minimum
mean square error approach. In contrast, our proposed estimator based on
the measured-RTF model solves a wide-band “informed” DoA estimation
problem using a ML approach. We show that formulating the “informed”
DoA estimation problem as wide-band allows us to evaluate the proposed
likelihood function in all frequency bins at once using inverse discrete Fourier
transforms (IDFTs), which can be computed efficiently.

The general ML framework presented in this paper was first proposed
in [17] for the informed SSL, using a database of measured HRTFs. The
HRTF database was used to model the acoustic channel and the shadowing
effect of a particular user’s head. To estimate the DoA, the proposed method
in [17], called MLSSL (maximum likelihood sound source localization), looks
for the HRTF entry in the database which maximizes the likelihood of the
observed microphone signals. MLSSL is markedly effective under severely
noisy conditions when the detailed information of the user-specific HRTFs
for different directions and different distances is available.

Compared with MLSSL, which is based on HRTFs, the proposed esti-
mators in this paper are based on RTFs. In contrast to HRTFs, which are
distance-dependent, RTFs are almost independent of the distance between
the target talker and the user, especially in far-field situations [23]. The dis-
tance independency decreases the required memory and the computational
overhead of the proposed estimators. This is because to estimate the DoA, the
proposed estimators must search in a RTF database, which is only a function
of DoA, while MLSSL searches in an HRTF database which is a function of
both DoA and distance. Further, the proposed estimators in this paper can
all be formulated in terms of IDFTs which can be computed efficiently.

The structure of this paper is as follows. In Sections 2 and 3, the sig-
nal model and the ML framework are presented, respectively. Afterwards,
in Section 4, different RTF models used for modeling the presence of the
head are introduced. The proposed DoA estimators using the proposed RTF
models and the ML framework are derived in Section V. In Section VI, the
performance of the proposed estimators is evaluated and compared using
experimental simulations. Lastly, we conclude the paper in Section VII.

2 Signal Model

Regarding Fig. E.1, the noisy signal received at microphone m ∈ {left, right}
of the HAS is given by:

rm(n) = s(n) ∗ hm(n, θ) + vm(n), (E.1)

where s(n), hm(n, θ) and vm(n) are the noise-free target signal emitted at the
target talker’s position, the acoustic channel impulse response between the
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target talker and microphone m, and an additive noise component, respec-
tively. Further, n is the discrete time index, and ∗ denotes the convolution
operator.

Most state-of-the-art HASs operate in the short time Fourier transform
(STFT) domain because it allows frequency dependent processing, computa-
tional efficiency and low latency algorithm implementations. Therefore, Let

Rm(l, k) = ∑
n

rm(n)w(n− lA)e−
j2πk

N (n−lA),

denote the STFT of rm(n), where l and k are frame and frequency bin in-
dexes, respectively, N is the discrete Fourier transform (DFT) order, A is the
decimation factor, w(n) is the windowing function, and j =

√
−1 is the imag-

inary unit. Similarly, let us denote the STFT of s(n) and vm(n) by S(l, k) and
Vm(l, k), respectively, which are defined analogously to Rm(l, k). Moreover,
let

Hm(k, θ) = ∑
n

hm(n, θ)e−
j2πkn

N

= αm(k, θ)e−
j2πk

N Dm(k,θ), (E.2)

denote the discrete Fourier transform (DFT) of hm(n, θ), where αm(k, θ) is a
real positive number and denotes the frequency-dependent attenuation factor
due to propagation effects, and Dm(k, θ) is the frequency-dependent propaga-
tion time measured in samples, from the target sound source to microphone
m. Eq. (E.1) can be approximated in the STFT domain as:

Rm(l, k) = S(l, k)Hm(k, θ) + Vm(l, k). (E.3)

This approximation is known as the multiplicative transfer function (MTF)
approximation [24], and its accuracy depends on the length and smoothness
of the windowing function w(n): the longer and the smoother the analysis
window w(n), the more accurate the approximation [24].

3 Maximum Likelihood Framework

To define the likelihood function, let us assume that the additive noise ob-
served at the microphones follows a zero-mean circularly-symmetric complex
Gaussian distribution:

V(l, k) =
[

Vleft(l, k)
Vright(l, k)

]
∼ N (0, Cv(l, k)), (E.4)

where Cv(l, k) is the noise cross power spectral density (CPSD) matrix de-
fined as Cv(l, k) = E{V(l, k)VH(l, k)}, where E{.} and superscript H repre-
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sent the expectation and Hermitian transpose operators, respectively. Fur-
ther, let us assume that the noisy observations are independent across fre-
quencies (strictly speaking, this assumption holds when the correlation time
of the signal is short compared with the frame length [25, 26]). Therefore, the
likelihood function for frame l is defined by:

p(R(l); H(θ)) =

N−1

∏
k=0

1
πMdet [Cv(l, k)]

e{−(Z(l,k))HC−1
v (l,k)(Z(l,k))}, (E.5)

where det[.] denotes the matrix determinant, and

R(l) = [ R(l, 0), R(l, 1), · · · , R(l, N − 1) ],

R(l, k) = [ Rleft(l, k), Rright(l, k) ]T, 0 ≤ k ≤ N − 1,

H(θ) = [ H(0, θ), H(1, θ), · · · , H(N − 1, θ) ],

H(k, θ) = [ Hleft(k, θ), Hright(k, θ) ]T

=

[
αleft(k, θ)e−j2π k

N Dleft(k,θ)

αright(k, θ)e−j2π k
N Dright(k,θ)

]
,

Z(l, k) = R(l, k)− S(l, k)H(k).

To reduce the computational overhead, we consider the log-likelihood func-
tion and omit the terms independent of θ. Therefore, the reduced log-likelihood
function is given by:

L(R(l); H(θ)) =
N−1

∑
k=0
{−(Z(l, k))HC−1

v (l, k)(Z(l, k))}. (E.6)

The ML estimate of θ is found by maximizing L. However, to maximize L
with respect to θ, we need to model and find the ML estimate of the param-
eters (αleft, Dleft, αright and Dright) in H(θ). Instead of estimating all the pa-
rameters separately, in the following, we present three different RTF models,
which model and define the relations between the parameters in H(θ) consid-
ering the influence of the user’s head, and with different degrees of accuracy
and individualization. These RTF models allow us to formulate L depending
on the parameters of the transfer function between the target and only one,
not both, of the microphones, while it also considers the head presence.

4 Relative Transfer Function (RTF) Models

The RTF between the left and the right microphones represents the filtering
effect of the user’s head. Moreover, this RTF defines the relation between the
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acoustic channels’ parameters (the attenuations and the delays) correspond-
ing to the left and the right microphones. An RTF is usually defined with
respect to a reference microphone. Without loss of generality, let us con-
sider the left microphone as the reference microphone; therefore, considering
Eq. (E.2), the RTF at frequency bin k is defined by

Ψ(k, θ) =
Hright(k, θ)

Hleft(k, θ)

= Γ(k, θ)e−j2π k
N ∆D(k,θ),

where

Γ(k, θ) =
αright(k, θ)

αleft(k, θ)
,

∆D(k, θ) = Dright(k, θ)− Dleft(k, θ).

We refer to Γ(k, θ) in dB as the inter-microphone level difference (IMLD), and
to ∆D(k, θ) in discrete time samples as the inter-microphone time difference
(IMTD). In the following, three different models are presented for the RTF
with different degrees of accuracy.

4.1 The free-field-far-field model

The free-field-far-field model Ψff(θ) is the simplest and the most straightfor-
ward model, which simply ignores the shadowing effect of the user’s head
and relies on a minimal number of user-related prior assumptions. In a free-
field and far-field situation, the delay and the attenuation of an acoustic chan-
nel are frequency-independent. Therefore, using basic geometry rules, the
IMTD can be formulated as [19]

∆Dff(θ) = Dright(θ)− Dleft(θ)

= − a
c

sin(θ), (E.7)

where a is the head diameter (or more precisely, the distance between the
microphones) and c is the sound speed. It should be noted that θ = 0◦ is
exactly at the front of the user, and DoAs are defined clockwise with respect
to 0◦. Moreover, in a free-field and far-field situation, αleft(θ) = αright(θ), i.e.

Γff(θ) =
αright(θ)

αleft(θ)
= 1. (E.8)

Accordingly, the RTF in a free-field and far-field situation is given by:

Ψff(θ) = [Ψff(0, θ), Ψff(1, θ), · · · , Ψff(N − 1, θ)]T

where
Ψff(k, θ) = ej2π k

N ( a
c sin(θ)), 0 ≤ k ≤ N − 1.
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4.2 The spherical-head model

For the spherical-head model Ψsp(θ), we model the user’s head as a rigid
sphere. Even though the IMTD and the IMLD for a spherical head are gen-
erally frequency-dependent, here we assume that the IMTD and the IMLD,
or more precisely the delays and the attenuations of the acoustic channels,
are frequency-independent. The frequency-independency assumption keeps
the model simple and decreases the computational load [20]. Moreover, our
preliminary simulation results reveal that a frequency-dependent spherical-
head model, which is a more accurate model with more parameters, does not
necessarily provide more accurate DoA estimation. This is partly because the
frequency-dependent model is over-fitted to the spherical head, while there
is a mismatch between the spherical head and an actual head.

For a spherical head, the IMTD can be approximated by the Woodworth
model [27, pp. 520-–523]:

∆Dsp(θ) = −
a

2c
(θ + sin(θ)) . (E.9)

Moreover, to model the IMLD, we use the following expression inspired by
the work in [28]:

20 log10 Γsp(θ) = γ sin(θ), (E.10)

where γ is a frequency-independent scaling factor. In [20], to find the best
γ for the DoA estimation, we ran simulation using the theoretical HRTF of
the spherical-head model proposed in [23]. The results showed that γ = 6.5
provides the best DoA estimation performance [20]. Therefore, the RTF for
the spherical-head model is given by

Ψsp(θ) =
[
Ψsp(0, θ), Ψsp(1, θ), · · · , Ψsp(N − 1, θ)

]T ,

where

Ψsp(k, θ) = 10
6.5 sin(θ)

20 ej2π k
N ( a

2c (θ+sin(θ))), 0 ≤ k ≤ N − 1.

4.3 The measured-RTF model

The measured-RTF model Ψms(θ) is the most detailed and individualized
model. This model uses a database of RTFs for different directions obtained
from the corresponding HRTFs measured for the specific user. The measured
RTF model is defined as

Ψms(θ) = [Ψms(0, θ), Ψms(1, θ), · · · , Ψms(N − 1, θ)]T ,

where
Ψms(k, θ) = Γms(k, θ)ejΦms(k,θ), 0 ≤ k ≤ N − 1,
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where

Γms(k, θ) =
|H̃right(k, θ)|
|H̃left(k, θ)|

, (E.11)

Φms(k, θ) = ∠
H̃right(k, θ)

H̃left(k, θ)
, (E.12)

where H̃left(k, θ) and H̃right(k, θ) are the measured HRTFs2 for the left and
right microphones, respectively, and |.| and ∠ denote the magnitude and the
phase angle of a complex number, respectively.

5 Proposed DoA Estimators

In this section, we derive DoA estimators based on each of the proposed RTF
models (Section 4) using the ML framework (Section 3). In the derivations,
we denote the inverse of the noise CPSD matrix as

C−1
v (l, k) ≡

[
C11(l, k) C12(l, k)
C21(l, k) C22(l, k)

]
. (E.13)

To derive the DoA estimators, we expand the reduced log-likelihood function
L presented in Eq. (E.6). Let

αleft(θ) = [αleft(0, θ), αleft(1, θ), · · · , αleft(N − 1, θ)]T,

Dleft(θ) = [Dleft(0, θ), Dleft(1, θ), · · · , Dleft(N − 1, θ)]T,

αright(θ) = [αright(0, θ), αright(1, θ), · · · , αright(N − 1, θ)]T,

and
Dright(θ) = [Dright(0, θ), Dright(1, θ), · · · , Dright(N − 1, θ)]T.

2Formally, an HRTF is defined as “a specific individuals left or right ear far-field frequency
response, as measured from a specific point in the free field to a specific point in the ear canal”
[29]. However, in this paper we relax this definition and use the term HRTF to describe the
frequency response from a target source to the microphone of a hearing aid system.
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The expansion of L is

L
(

R(l); αleft(θ), Dleft(θ), αright(θ), Dright(θ)
)
=

N

∑
k=1

2αleft(k, θ)C11(l, k)Rleft(l, k)S∗(l, k)e
j2πkDleft(k,θ)

N +

2αleft(k, θ)C12(l, k)Rright(l, k)S∗(l, k)e
j2πkDleft(k,θ)

N +

2αright(k, θ)C21(l, k)Rleft(l, k)S∗(l, k)e
j2πkDright(k,θ)

N +

2αright(k, θ)C22(l, k)Rright(l, k)S∗(l, k)e
j2πkDright(k,θ)

N +(
α2

left(k, θ)C11(l, k) + α2
right(k, θ)C22(l, k)

)
|S(l, k)|2+

2αleft(k, θ)αright(k, θ)C21(l, k)|S(l, k)|2×

e
j2πk

N (Dright(k,θ)−Dleft(k,θ)). (E.14)

In the following, we aim to make L independent of all other parameters
except θ, using the proposed RTF models.

5.1 The free-field-far-field model DoA estimator

As mentioned, in a free-field and far-field situation, the delays and the atten-
uations of acoustic channels are frequency independent. Based on Eqs. (E.7)
and (E.8), Dright(θ) and αright(θ) can be written as functions of Dleft(θ) and
αleft(θ), respectively:

Dright(θ) = ∆Dff(θ) + Dleft(θ)

= − a
c

sin(θ) + Dleft(θ),

αright(θ) = Γff(θ)αleft(θ)

= αleft(θ).

Inserting these relations in Eq. (E.14), we arrive at the reduced log-likelihood
function L(R(l); Ψff(θ), αleft(θ), Dleft(θ)) which is independent of Hright pa-
rameters (i.e. Dright(θ) and αright(θ)). To eliminate the dependency of L on
αleft(θ), we find the maximum likelihood estimate (MLE) of αleft(θ) in terms
of other parameters, and replace the result into L. To do so, we solve

∂L
∂αleft(θ)

= 0, which leads to

α̂left(θ) =
fff(Ψff(θ), Dleft(θ))

gff(Ψff(θ))
, (E.15)
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where

fff(Ψff(θ), Dleft(θ)) =
N

∑
k=1

(
C11(l, k)Rleft(l, k) +

C12(l, k)Rright(l, k) +
(
C21(l, k)Rleft(l, k) +

C22(l, k)Rright(l, k)
)
Ψ∗ff(k, θ)

)
×

S∗(l, k)e
j2πkDleft(θ)

N , (E.16)

and

gff(Ψff(θ)) =
N

∑
k=1

(
C11(l, k) + 2C21(l, k)Ψ∗ff(k, θ) +

C22(l, k)
)
|S(l, k)|2. (E.17)

Inserting α̂left into L gives us:

Lff(R(l); Ψff(θ), Dleft(θ)) =
f 2

ff
(Ψff(θ), Dleft(θ))

gff(Ψff(θ))
. (E.18)

From Eq. (E.16) it can be seen that for a given θ, fff(Ψff(θ), Dleft(θ)) is an IDFT,
which can be evaluated efficiently, with respect to Dleft(θ), while gff(Ψff(θ))
is a simple summation. Therefore, computing Lff for a given θ results in a
discrete-time sequence corresponding to different values of Dleft(θ). Since
θ is unknown, we consider a discrete set Θ of different θs, and compute L
for each θ ∈ Θ using an IDFT. Evaluating L for all θ ∈ Θ results in a 2-
dimensional discrete grid as a function of different values of θ and Dleft. The
MLEs of θ and Dleft are then found from the global maximum:[

θ̂ff , D̂left
]
= arg max

θ∈Θ,Dleft

Lff(R(l); Ψff(θ), Dleft(θ)). (E.19)

5.2 The spherical-head model DoA estimator

The derivation of the DoA estimator based on the spherical-head model is
analogous to the free-field-far-field DoA estimator. We assume, as in the
free-field-far-field model, that the delay and the attenuation of acoustic chan-
nels are frequency-independent, and we replace Dright(θ) and αright(θ) with
functions of Dleft(θ) and αleft(θ), respectively, using Eqs. (E.9) and (E.10):

Dright(θ) = ∆Dsp(θ) + Dleft(θ)

= − a
2c

(sin(θ) + θ) + Dleft(θ), (E.20)

αright(θ) = Γsp(θ)αleft(θ)

= 10
6.5 sin(θ)

20 αleft(θ). (E.21)
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Inserting Eqs. (E.20) and (E.21) into Eq. (E.14) makes L independent of Dright(θ)
and αright(θ), i.e. we have L(R(l); Ψsp(θ), αleft(θ), Dleft(θ)). As for the free-
field-far-field model, to find the MLE of αleft(θ) as a function of the other
parameters, we solve ∂L

∂αleft(θ)
= 0. The resulting MLE of αleft(θ) can be ex-

pressed as

α̂left(θ) =
fsp(Ψsp(θ), Dleft(θ))

gsp(Ψsp(θ))
, (E.22)

where

fsp(Ψsp(θ), Dleft(θ)) =
N

∑
k=1

(
C11(l, k)Rleft(l, k) +

C12(l, k)Rright(l, k) +
(
C21(l, k)Rleft(l, k) +

C22(l, k)Rright(l, k)
)
Ψ∗sp(k, θ)

)
×

S∗(l, k)e
j2πkDleft(θ)

N , (E.23)

and

gsp(Ψsp(θ)) =
N

∑
k=1

(
C11(l, k) + 2C21(l, k)Ψ∗sp(k, θ) +

Γ2
sp(θ)C22(l, k)

)
|S(l, k)|2. (E.24)

Inserting Eq. (E.22) into L(R(l); Ψsp(θ), αleft(θ), Dleft(θ)) gives us:

Lsp(R(l); Ψsp(θ), Dleft(θ)) =
f 2

sp

(
Ψsp(θ), Dleft(θ)

)
gsp(Ψsp(θ))

. (E.25)

Again, it can be seen that fsp(Ψsp(θ), Dleft(θ)) in Eq. (E.23) is an IDFT with
respect to Dleft(θ), and gsp(Ψsp(θ)) is a simple summation for a given θ. As
before, for a given θ, evaluating Lsp results in a discrete-time sequence cor-
responding to different discrete values of Dleft(θ). Since θ is unknown, we
consider a discrete set Θ of different θs, and compute L for each θ ∈ Θ using
an IDFT. The MLEs of θ and Dleft are then found from the global maximum:[

θ̂sp , D̂left

]
= arg max

θ∈Θ,Dleft

Lsp(R(l); Ψsp(θ), Dleft(θ)). (E.26)

5.3 The measured-RTF model DoA estimator

In the measured-RTF model, we assume that a database Θms of measured
frequency-dependent RTFs, labeled by their corresponding directions, for the
specific user, is available. The DoA estimator using this model is based on
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evaluating L for the different RTFs in Θms. The DoA label of the RTF, which
gives the highest likelihood is the MLE of the target DoA.

To evaluate L for each Ψms(θ) ∈ Θms, we assume the parameters of the
acoustic transfer function related to the “sunny” microphone is frequency
independent. The “sunny” microphone is the microphone which is not in
the “shadow” of the head, if we assume the sound is coming from the direc-
tion θ. To be more precise, when we evaluate L for Ψms(θ) corresponding
to the directions on the left side of the head (θ ∈ [−90◦, 0◦]), the acoustic
transfer function parameters related to the left microphone, i.e. αleft(θ) and
Dleft(θ), are assumed to be frequency independent. Similarly, when we eval-
uate L for Ψms(θ) corresponding to the directions on the right side of the
head (θ ∈ (0◦,+90◦]), the acoustic transfer function parameters related to the
right microphone, i.e. αright(θ) and Dright(θ), are assumed to be frequency in-
dependent. Note that this evaluation strategy can be carried out in practice;
it requires no prior knowledge about the true DoA.

This assumption about the “sunny” microphone is reasonable, because
if the sound is really coming from direction θ, the signal received by the
“sunny” microphone is almost unaltered by the head and torso of the user,
i.e. this resembles a free-field situation. As shown below, this assumption
allows us to use an IDFT for evaluation of L. Note that this frequency-
independency assumption is only related to the acoustic channel parameters
from the target to one of the microphones. The RTFs between microphones
are allowed to be frequency-dependent.

To evaluate L for Ψms(θ) where θ ∈ [−90◦, 0◦], let us replace αright(k, θ)
and Dright(k, θ) in L with functions of Dleft(θ) and αleft(θ), respectively:

αright(k, θ) = Γms(k, θ)αleft(θ), (E.27)

Dright(k, θ) = ∆Dms(k, θ) + Dleft(θ)

=
−N
2πk

(Φms(k, θ) + 2πρ) + Dleft(θ), (E.28)

where ρ is a phase unwrapping factor. This makes L independent of Hright
parameters. Afterwards, as before, to make L independent of αleft(θ), we
find the MLE of αleft(θ) as functions of other parameters in L by solving

∂L
∂αleft(θ)

= 0. The obtained MLE of αleft(θ) is:

α̂left(θ) =
fms,left(Ψms(θ), Dleft(θ))

gms,left(Ψms(θ))
, (E.29)
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where

fms,left(Ψms(θ), Dleft(θ)) =
N

∑
k=1

(
C11(l, k)Rleft(l, k) +

C12(l, k)Rright(l, k) +
(
C21(l, k)Rleft(l, k) +

C22(l, k)Rright(l, k)
)
Ψ∗ms(k, θ)

)
×

S∗(l, k)e
j2πkDleft(θ)

N , (E.30)

and

gms,left(Ψms(θ)) =
N

∑
k=1

(
C11(l, k) + 2C21(l, k)Ψ∗ms(k, θ) +

Γ2
ms(θ)C22(l, k)

)
|S(l, k)|2. (E.31)

Substituting α̂left(θ) in L leads to

Lms,left(R(l); Ψms(θ), Dleft(θ)) =
f 2

ms,left
(Ψms(θ), Dleft(θ))

gms,left(Ψms(θ))
.

Analogously, to evaluate L for Ψms(θ) where θ ∈ (0◦,+90◦], if we replace
αleft(k, θ) and Dleft(k, θ) in L with functions of αright(θ) and Dright(θ), respec-
tively, and go through the similar process, we end up with

Lms,right(R(l); Ψms(θ), Dright(θ)) =
f 2

ms,right

(
Ψms(θ), Dright(θ)

)
gms,right(Ψms(θ))

,

where

fms,right(Ψms(θ), Dright(θ)) =
N

∑
k=1

(
C21(l, k)Rleft(l, k) +

C22(l, k)Rright(l, k) +
(
C11(l, k)Rleft(l, k) +

C12(l, k)Rright(l, k)
)
(Ψ∗ms)

−1(k, θ)
)
×

S∗(l, k)e
j2πkDright(θ)

N , (E.32)

and

gms,right(Ψms(θ)) =
N

∑
k=1

(
C22(l, k) + 2C12(l, k)(Ψ∗ms(k, θ))−1+

Γ−2
ms(θ)C11(l, k)

)
|S(l, k)|2. (E.33)
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Regarding Eqs. (E.30) and (E.32), fms,left(Ψms(θ), Dleft(θ)) and fms,right(Ψms(θ)

, Dright(θ)) can be seen to be IDFTs with respect to Dleft(θ) and Dright(θ), re-
spectively. Therefore, for a given θ, evaluating Lms,left or Lms,right results in a
discrete-time sequence corresponding to different discrete values of Dleft(θ)
or Dright(θ). Therefore, evaluating L for all Ψms(θ) ∈ Θms results in a 2-
dimensional discrete grid. The MLEs of θ and Dleft or Dright are then found
from the global maximum:[

θ̂ms , D̂
]
= arg max

Ψms(θ)∈Θms,D
Lms(R(l); Ψms(θ), D(θ)), (E.34)

where

Lms(R(l); Ψms(θ), D(θ)) ={
Lms,left(R(l); Ψms(θ), Dleft(θ)) , θ ∈ [−90◦, 0◦]
Lms,right(R(l); Ψms(θ), Dright(θ)) , θ ∈ (0◦,+90◦]

.

6 Simulation Results

In this section, we evaluate the performance of the estimators in simulation
experiments. Specifically, we study the effects of the target sound DoA θ, the
signal-to-noise ratio (SNR), the frame length, the noise type and the reverber-
ation.

6.1 Implementation

The simulation parameters are generally as follows: the sampling frequency
is 16 kHz, the DFT order N = 512, w(n) is a Hamming window, the length
of the window w(n) is the same as the DFT order N, A = N

2 , and the micro-
phone distance a = 16.4 cm. Moreover, to evaluate the likelihood functions,
the noise CPSD matrix Cv(l, k) must be known. In the following, the proce-
dure for estimating Cv(l, k) is outlined.

Estimating the noise CPSD matrix

to estimate Cv(l, k) in practice, we use S(l, k), which is available at the HAS, as
a voice activity detector. Specifically, access to S(l, k) allows us to determine
the time-frequency regions in R(l, k), where the target speech is essentially
absent, and to adaptively estimate Cv(l, k) via recursive averaging [17, 30].

Alg. 1 shows the procedure for estimating Cv(l, k). If the difference be-
tween the maximum energy Smax(k) in frequency bin k of the target signal
observed so far and the energy of S(l, k) in dB is larger than a certain thresh-
old δth, we assume the target signal to be absent in frame l and frequency bin
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Algorithm 1: Estimation of Cv(l, k)
Input : R(l, k), S(l, k)
Output: Cv(l, k)

1 if Smax(k)− 20 log10 |S(l, k)| > δth then
/* Target signal is almost absent */

2 Cv(l, k) = ηR(l, k) ∗ R(l, k)H + (1− η)Cv(l − 1, k);
3 else
4 Cv(l, k) = Cv(l − 1, k);
5 end
6 if Smax(k) < 20 log10 |S(l, k)| then
7 Smax(k) = 20 log10 |S(l, k)|
8 else
9 Smax(k) = Smax(k) + 10 log10(β)

10 end

k. Hence, R(l, k) is noise dominated in this time-frequency region. There-
fore, the estimate of Cv(l, k) is updated via exponential smoothing with a
smoothing factor 0 < η < 1. On the other hand, if the difference is smaller
than the threshold δth, the target signal is assumed to be present in R(l, k).
Therefore, the estimate of Cv is not updated, i.e. Cv(l, k) = Cv(l − 1, k). Fi-
nally, we update Smax(k) if needed, or use a forgetting factor 0 < β < 1 to
adapt Smax(k) with the possible changes in the target signal over time, e.g. if
the target talker has changed, or if the target talker stops speaking. We use
δth = 25 dB, η = 0.9 and β = 0.95 in the implementation.

6.2 Acoustic setup

To simulate real world scenarios, we use the database of head related im-
pulse responses (HRIRs) and binaural room impulse responses, provided
by [31]. We use a subset of the database for the frontal-horizontal plane
θ ∈ Θ = {−85◦,−80◦, · · · ,+85◦} measured with behind-the-ear (BTE) hear-
ing aids mounted behind the ears of a head-and-torso simulator (HATS).
We consider only the frontal-horizontal plane because in practice, the tar-
get talker is usually located at the front of the user. Moreover, because of
the head symmetry and the microphone locations, the estimators suffer from
front-back confusions, as humans do [32]. Therefore, considering only the
frontal plane allows to avoid the influence of the front-back confusions on
the estimators performance. To simulate a signal from a particular position,
we convolve the signal with the corresponding impulse response.

As a target signal, we consider a four-minute speech signal composed of
two male and two female voices from the TSP database [33]. To evaluate the
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performance of the estimators in different noisy situations, we consider four
different noise types: car-interior noise, speech-shaped noise, large-crowd
noise, and bottling-factory-hall noise. These noise types cover noise signals
with low-frequency content (the car-interior noise), high-frequency content
(the bottling-factory-hall noise), stationary noises (the speech-shaped noise)
and non-stationary noises (the large-crowd noise). The long-term power spec-
trum of the target signal emitted at the target position and the noise signals
received at the left microphone are depicted in Fig. E.2. To simulate a large-
crowd noise field, we play back simultaneously 72 different speech signals
from 72 different positions, which are uniformly distributed on a circle in the
horizontal plane centered at the HATS. Similarly, for the speech-shaped noise
and the bottling-factory-hall noise, we play back different realizations of the
considered noise signal from all 72 considered positions simultaneously. The
car-interior noise field, however, is a binaural recording measured by BTE
hearing aids mounted behind the ears of a HATS placed on the passenger seat
of a car driving in a city. The wide-band SNR, to be reported for each simu-
lation experiment, is expressed relative to the left-ear microphone signals.

6.3 Performance metric

As a performance metric, we use the mean absolute error (MAE) of the DoA
estimation, given by:

MAE =
1
L

L

∑
j=1
|θ − θ̂j|, (E.35)

where θ̂j is the estimated DoA for the jth frame of the signal, and L is the
number of target-active frames (the target-inactive frames are disregarded).

6.4 Competing methods

We compare the proposed estimators with the methods proposed in [18]
and [17]. As outlined in Section 1, the method proposed in [18], which we
refer to as the cross-correlation-based method, is simple because it does not
take the ambient noise characteristics and the head shadowing effect into ac-
count. However, to model the curved path between the microphones, the
distance between the microphones is assumed to be 25.2 cm, which is larger
than the actual microphones distance. This particular distance is used be-
cause it leads to the best performance [18]. On the other hand, the method
proposed in [17], called MLSSL, is a complex method. It takes the ambient
noise characteristics into account by a maximum likelihood approach, and it
exploits the details of the head shadowing effect via a database of HRTFs.
In the MLSSL implementation, we use the same measured HRTF database,
which is used to build the measured-RTF model.
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(a) Target signal emitted at the target position.
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(b) Car-interior noise at the left microphone.
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(c) Speech-shaped noise at the left microphone.
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(d) Large-crowd noise at the left microphone.
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(e) Bottling-factory-hall noise at the left microphone.

Fig. E.2: Long-term power spectrum of the signals.
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6.5 Results and discussions

Influence of the target DoA

Fig. E.3 compares the performance of the DoA estimators as a function of θ in
an anechoic situation at SNR of 0 dB in different noise fields. As can be seen,
the performance of all the estimators proposed in this paper are markedly
more accurate than the performance of the cross-correlation-based method
proposed in [18].

The poor performance of the cross-correlation-based method can be partly
explained by the fact that the conventional cross-correlation technique is a
maximum-likelihood optimal TDoA estimator for the situation, where the
noise is white and Gaussian [34]. However, the frequency characteristics
of the considered noise fields, shown in Fig. E.2, are different from a white
noise. This difference degrades considerably the performance of the cross-
correlation-based method.

Among the estimators proposed in this paper, the estimator based on the
free-field-far-field model has the worst performance because it does not con-
sider the shadowing effect of the user’s head. In contrast, the spherical-head-
model-based estimator models the head shadowing effect and improves the
performance of the DoA estimation significantly, especially when the target
is located at the sides of the HATS (θ ≈ ±85◦), because this is where the
shadowing effect of the head has the highest impact. When the user-specific,
measured RTFs are available, even better performance can be achieved, be-
cause the influence of the head and torso is modeled more accurately.

Finally, as can be seen in Fig. E.3, the performance of MLSSL is better
than the performance of the measured-RTF-based estimator. This is because
the exact HRTFs corresponding to the target locations are in the database
searched by MLSSL, i.e. a highly idealized situation. Frequency-dependent
HRTFs, as used in MLSSL, represent the acoustic transfer functions more
accurately than the signal model used in the measured-RTF-based method,
where the parameters of the acoustic channel between the target source and
the microphone which is not in the head “shadow” are assumed to be fre-
quency independent.

Another point to be made from Fig. E.3 is that, similar to the sound source
localization performance of humans [32], the general performance of the es-
timators when the target is at the sides (i.e. θ ≈ ±90) is worse than when
the target is at the front (θ ≈ 0◦). This is because the HRTFs (RTFs) cor-
responding to the front vary stronger within a certain angular range than
the HRTFs (RTFs) corresponding to the sides [35]. In other words, when
θ ∈ [−90◦,−75◦] or θ ∈ [75◦, 90◦], it is more probable to confuse the true
HRTF (RTF) with the nearby HRTFs (RTFs).
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(b) Large-crowd noise.
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(c) Car-interior noise.
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(d) Bottling-factory-hall noise.

Fig. E.3: Performance as a function of θ in an anechoic situation at SNR of 0 dB for different
noise fields. The distance between the user and the target source is 300 cm. The HRTF database
used for generation of the target signal is identical to the HRTF database used by MLSSL and
the HRTFs used to build the measured-RTF model.
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Fig. E.4: Performance as a function of θ in an anechoic situation at SNR 0 dB in the large-crowd
noise field. The HRTF database used by MLSSL and the measured-RTF database do not have
any entries for every other considered θs for simulation.

Influence of the resolution of the databases

In practice, none of the entries in the HRTF database used by MLSSL or none
of the entries in the RTF database used by the measured-RTF-based method
can be expected to represent the actual DoA or distance of the target. Here,
we investigate the performance of the estimators in these situations.

First, let us consider situations where the exact θ are not represented
in the databases. To assess the performance of MLSSL and the measured-
RTF-based estimator in these situations, we constructed reduced databases
by eliminating every other entry from the MLSSL HRTF database and from
the measured-RTF-model database. In other words, there is no entry in the
databases for half of the considered target θs. Fig. E.4 shows the performance
of the estimators in this case. Comparing Fig. E.4 with Fig. E.3b shows that
when the exact θ is not in the databases, the performance of MLSSL and the
measured-RTF-based estimator degrade, as expected. However, most often,
they succeed in finding the database entry closest to the target θ.

Next, we consider situations where the HRTFs corresponding to the actual
distance between the target and the user are not in the database searched by
MLSSL or in the HRTF database used to build the measured-RTF model.
Fig. E.5 shows the performance in such a situation, where the actual distance
between the user and the target is 300 cm, but the employed HRTF database
is for the case where the target is 80 cm away from the user (the database
contains HRTFs for all the considered directions). It can be seen that the
performance of MLSSL degrades dramatically in this situation: MLSSL is
extremely sensitive to these HRTF mismatches. However, when the same
HRTF database is used to build the measured-RTF model, the performance
of the measured-RTF-based method degrades only slightly compared with
Fig. E.3. This robustness to the distance mismatches is because the measured
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Fig. E.5: Performance as a function of θ in an anechoic situation at SNR 0 dB in the large-crowd
noise field. The distance between the user and the target source is 300 cm. The HRTF database
used by MLSSL and the HRTF database used to build the measured-RTF model are for the case
where the target is 80 cm away from the user.
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Fig. E.6: Performance as a function of SNR in the same situation as in Fig. E.3. The MAE is
averaged over all considered θs.

RTFs are relatively distance independent. Therefore, the database used by
the measured-RTF-based method can be just a function of the DoA, leading
to a significant reduction of both memory and search complexity over the
MLSSL method.

Influence of SNR

The SNR is another factor which generally influences the estimation perfor-
mance. Fig. E.6 shows the performance for different SNRs in terms of the
MAE averaged over all considered θs in an anechoic situation in a large-
crowd noise field. As expected, the higher the SNR, the better the perfor-
mance. Moreover, as can be seen, the general performance order of Fig. E.3 re-
mains at different SNRs; however, the performance of the proposed measured-
RTF-based method is almost the same as the performance of the MLSSL at
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Fig. E.7: Performance as a function of θ in a reverberant office with a reverberation time T60 of
around 500 ms at SNR of 0 dB. The target is one meter away from the user. The HRTF database
used by MLSSL, and the HRTFs used to build the measured-RTF model are “dry” and “clean”
HRTFs for the case where the target is 80 cm away.

high SNRs.

Influence of reverberation

Many speech communication situations occur indoor, where reverberation
exists. Therefore, it is important to study the impact of reverberation on the
performance of the estimators. Fig. E.7 shows the performance of the DoA
estimators as a function of θ in a reverberant office (T60 ≈ 500 ms) at SNR
of 0 dB in a large-crowd noise field. In contrast to Fig. E.3, performance of
all the estimators is reduced because none of them directly considers and
models the reverberation. Even though, on average, the general performance
order of Fig. E.3 remains, the performance of the spherical-head-model-based
method, the measured-RTF method and the MLSSL method approach each
other. This is partly because the available “clean” HRTF database used by
MLSSL and used to build the measured-RTF model are for the case where
the target is 80 cm away while the actual distance of the target is 100 cm in
the simulations.

Influence of the window length

Another factor which influences the performance of the estimators is the win-
dow (frame) length. Generally, at the cost of higher computational overhead
and longer algorithmic delay, longer window lengths must lead to better per-
formance because: 1) greater window lengths provide more observations,
which reduces the variance of the estimates in a noisy situation, 2) the MTF
approximation (Eq. E.3) depends on the window length: the greater the win-
dow length, the better the approximation [24], and 3) greater window lengths
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Fig. E.8: Performance as a function of N in the same condition as in Fig. E.3. The MAE is
averaged over all considered θs.

strengthen the assumption that DFT coefficients are independent across fre-
quencies (this assumption was used to write the simplified likelihood func-
tion in Eq. (E.5)). On the other hand, increasing the window length may vi-
olate the assumption implicitly made in Eq. (E.5) that signals are stationarity
within a window duration.

Fig. E.8 shows the performance of the DoA estimators as a function of
window length. The results are consistent with the expectations: greater win-
dow lengths lead to better performance. Interestingly, even though MLSSL
has better performance at longer window lengths, its performance is appar-
ently very sensitive to smaller window lengths and deteriorates dramatically
compared with the proposed estimators performance.

Influence of non-individualized HRTF databases

MLSSL and the measured-RTF-based method rely on HRTF databases mea-
sured for a specific user, and so far, we have presented their performance
when user-specific databases are available. In some situations, measuring
HRTFs for each user is impractical; however, it is possible to measure the
HRTFs for a HATS beforehand. Therefore, in this part, we would like to
compare the performance of the estimators in two different cases: 1) individ-
ualized: user-specific HRTF databases are available. 2) non-individualized:
user-specific HRTF databases are not available; however, the corresponding
databases measured for a HATS is available.

For the simulation, we use the HRTFs measured for binaural BTE hearing
aids for five different persons (three males and two females) and a HATS.
The HRTFs are measured in an anechoic situation for the frontal-horizontal
plane.

Fig. E.9 shows the performance of the estimators for the considered cases
at an SNR of 0 dB in the large-crowd noise field. As can be seen, MLSSL is
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Fig. E.9: Influence of non-individualized HRTF databases on the DoA estimators. The SNR is 0
dB in the large-crowd noise field. The MAE is averaged over all considered θs.

very sensitive to the mismatches in user-specific HRTF database. It has the
best performance for all the users (subjects) when the user-specific HRTFs
are available (the individualized case), but its performance degrades signif-
icantly when the HATS database is used for the DoA estimation (the non-
individualized case). On the other hand, the measured-RTF-based method
is much less sensitive. Overall, the measured-RTF-based method performs
markedly better than MLSSL in the non-individualized case (when only the
HATS database is available for the DoA estimation). The performance of
the measured-RTF-based method in the non-individualized case is also bet-
ter than the spherical-head-model-based method, which does not depend on
any user-specific databases.

centage of a column being occupied by floats.

Informed estimator vs. uninformed estimator

To demonstrate the benefits of access to the noise-free target signal, here we
compare the performance of the proposed “informed” DoA estimators with
the performance of a recently developed “uninformed” DoA estimator [22],
which we refer to as Braun’s method. As mentioned in Section 1, Braun’s
method is a narrow-band estimator based on the measured-RTF model for
the “uninformed” DoA estimation problem, i.e. where the clean target sig-
nal is not available. Regarding Eq. (E.3), it has been shown in [22] that the
minimum mean square error (MMSE) estimator of the RTF between the two
microphones at a particular frequency bin is given by:

Ψ̂i,j(k, θ) =
φRi,j − φVi,j

φRj,j − φVj,j

, (E.36)

where i and j are microphone indexes, φRi,j = E{Ri(l, k)R∗j (l, k)} and φVi,j =

E{Vi(l, k)V∗j (l, k)}. To make the estimate more robust, Braun’s method aver-
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Fig. E.10: Comparison of the “informed” DoA estimators with an “uninformed” DoA estimator
proposed in [22], in different noise fields. The simulation was done in the same conditions as in
Fig. E.3. The MAE is averaged over all considered θs.

ages the RTF estimate over the microphone index permutations, i.e.

Ψ̄i,j(k, θ) =
1
2

{
Ψ̂i,j(k, θ) + Ψ̂−1

j,i (k, θ)
}

. (E.37)

Regarding the measured-RTF model Θms, Braun’s method estimates the DoA
θ of the target signal at a particular frequency bin by

θ̂Braun = arg min
Ψms(k,θ)∈Θms

∑
i,j∈M

Wi,j|Ψ̄i,j(k, θ)−Ψms(k, θ)|, (E.38)

where the set M contains all microphone pair combinations, and Wi,j is a
weighting factor for the {i, j}-th pair. In our setup, because we only have one
microphone pair, we drop Wi,j and consider i = right and j = left. Moreover,
because the target in our problem is at the same position in all frequency
bins, we modify the cost function as follows, to integrate the information of
all frequency bins:

θ̂Braun = arg min
Ψms(θ)∈Θms

N−1

∑
k=0
|Ψ̄i,j(k, θ)−Ψms(k, θ)|. (E.39)

To implement Braun’s method, we used the same measured-RTF model as
used by the proposed “informed” measured-RTF-based estimator. Moreover,
as proposed in [22], to estimate φRi,j , a recursive averaging technique with a
time constant of 50 ms was used. Finally, to estimate φVi,j used in Braun’s
method, we use the estimation of Cv outlined in Section 6.1.

Fig. E.10 shows the performance of the proposed “informed” DoA estima-
tors vs. Braun’s method. Clearly, the proposed DoA estimators, which have
access to the noise-free target signal, perform markedly better than Braun’s
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method, which does not have access to the noise-free signal. Moreover, in
large-crowd noise, speech-shaped noise and bottling-factory-hall noise fields,
the cross-correlation-based estimator, which is an “informed” estimator with
low computational complexity, performs slightly better than Braun’s method,
which has relatively higher computational overhead. However, the estima-
tion error of Braun’s method significantly decreases in the car-interior noise,
which is relatively stationary low frequency noise (c.f. Fig. E.2b). At the cost
of higher computational complexity, the performance of Braun’s method
could be improved to some extent by measuring the positive definiteness
of Q(l, k) = E

{
R(l, k)RH(l, k)

}
−Cv(l, k), before subtracting the correlations

in Eq. (E.36). In cases where Q(l, k) is not positive definite, the nearest pos-
itive definite matrix [36] of Q(l, k) could be used to modify the estimate of
Cv(l, k) used in Eq. (E.36).

7 Conclusion and Future Work

In this paper, we proposed three maximum-likelihood-based DoA estimators
for a hearing aid system (HAS) which has access to the noise-free target signal
via a wireless microphone. The proposed DoA estimators are based on three
different models of the direction-dependent relative transfer functions (RTFs)
between the HAS’ microphones. These RTF models, which we call i) the free-
field-far-field model, ii) the spherical-head model, and iii) the measured-RTF
model, represent, with increasing accuracy and complexity, the head shad-
owing effect of the user’s head on impinging signals. We showed that the
considered signal model and the RTF models allowed the likelihood function
to be calculated efficiently via inverse discrete Fourier transform techniques.
In simulation experiments, we analyzed the influences of the true DoA, SNR,
window length and reverberation on the performance of the proposed esti-
mators. Moreover, we compared the performance of the estimators with the
methods proposed in [18] and [17], which we refer to as the cross-correlation-
based method and MLSSL, respectively. The cross-correlation-based method
does not take ambient noise characteristics and head shadowing effects into
account while MLSSL does take noise characteristics and detailed head shad-
owing effects into account via a user-specific HRTF database. Simulation re-
sults showed that all the DoA estimators proposed in this paper markedly
outperform the cross-correlation-based method, while MLSSL outperform
the proposed DoA estimators, when the user-specific HRTFs corresponding
to the actual location of the target is in the HRTF database used by MLSSL;
this is obviously a highly ideal case. We showed that MLSSL is very sensi-
tive to mismatches between the HRTF database and the actual target source
distance and the particular user. These mismatches deteriorate the MLSSL
performance dramatically while the proposed estimators generally perform
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well.
Among the DoA estimators proposed in this paper, the measured-RTF-

based method provides the lowest DoA estimation error robustly across dif-
ferent noise fields, DoAs, SNRs, and window lengths. In situations where
the user-specific measured RTFs or the measured RTFs for a head-and-torso
simulator (HATS) are not available, the spherical-head-model-based estima-
tor provides a good performance and is robust against changing physical
characteristics and, hence, HRTFs of users.

The proposed estimators rely on spatiospectral signal characteristics, which
are assumed fixed across a short (in the range of milliseconds) duration. It
is a topic of future research to extend the estimators to take temporal char-
acteristics of the acoustic scene into accounts, e.g. by modeling the relative
movement of the user’s head and the target source.
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1. Introduction

Abstract

In this paper, we consider the problem of estimating the target sound direction of
arrival (DoA) for a hearing aid system (HAS), which can connect to a wireless mi-
crophone worn by the talker of interest. The wireless microphone “informs” the HAS
about the noise-free target speech. To estimate the DoA, we consider a maximum
likelihood (ML) approach, and we assume that a database of DoA-dependent rela-
tive transfer functions (RTFs) has been measured in advance and is available. The
proposed DoA estimator is able to take the available noise-free target speech, ambi-
ent noise characteristics and the shadowing effect of the user’s head on the received
signals into account, and it supports both monaural and binaural microphone array
configurations. Moreover, we analytically analyze the bias in the proposed estimator
and introduce a modified estimator, which has been compensated for the bias. We
demonstrate that the proposed method has lower computational complexity and bet-
ter performance than recent RTF-based estimators. Further, to decrease the number
of parameters required to be wirelessly exchanged between the hearing aids (HAs)
in binaural configurations, we propose an information fusion strategy, which avoids
transmitting microphone signals between the HAs. An important benefit of the pro-
posed IF strategy is that the number of parameters to be exchanged between the
HAs is independent of the number of HA microphones. Finally, we investigate the
performance of variants of the proposed estimator extensively in different noisy and
reverberant situations.

1 Introduction

The auditory scene analysis (ASA) ability in humans allows us to focus inten-
tionally on a sound source, while suppressing other unrelated sound sources,
which are usually present simultaneously in realistic acoustic scenes [1]. Sen-
sorineural hearing-impaired listeners lose this ability to some extent and face
difficulties in interacting with the environment [2]. In an attempt to retrieve
the normal interactions of the hearing impaired users with the environment,
hearing aid systems (HASs) may carry out some of the ASA tasks, which are
carried out by a healthy auditory system.

This paper studies sound source localization (SSL)—one of the main tasks
in ASA—in a hearing aid context. SSL using microphone arrays has been
investigated extensively in various applications, such as robotics [4–7], video
conferencing [8–10], surveillance [11, 12], and hearing aids [13–15]. In most
of these applications, the noise-free target sound is not accessible, e.g. [4–15].
However, modern HASs can connect to a wireless microphone worn by the
target talker to access an essentially noise-free version of the target signal
emitted at the target talker’s position [3, 16–21]. This feature introduces the
“informed” SSL problem considered in this paper.
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Fig. F.1: An “informed” SSL scenario for a HAS using a wireless microphone. rm(n) is the noisy
received signal at microphone m, s(n) is the noise-free target signal emitted at the target location,
and hm(n, θ) is the acoustic channel impulse response between the target talker and microphone
m. s(n) is available at the HAS via the wireless connection, and the HAs are also connected to
each other wirelessly. The goal is to estimate the direction of arrival θ [3].

Fig. F.1 depicts an exemplar situation considered in this paper. The HAS
includes two wirelessly connected hearing aids (HAs) and a wireless micro-
phone. The HAs are mounted behind each ear of the user, and the wireless
microphone is worn by the target talker. The target signal s(n) is generated
at the target location, propagates through the acoustic channel hm(n, θ), and
reaches microphone m of the binaural HAS. Due to additive ambient noise,
the signal rm(n) captured by microphone m is a noisy signal. Further, the
signal s(n) is transmitted wirelessly to the HAS. In this setup, we aim to
estimate the target signal direction of arrival (DoA) θ. Estimation of the tar-
get sound DoA would allow the HAS to enhance the spatial rendering of
the acoustic scene, e.g. by imposing the corresponding binaural cues on the
wirelessly received target sound [17, 18].

The “informed” SSL problem for hearing aid applications was first stud-
ied in [16]. The method proposed in [16] is based on estimation of time
difference of arrivals (TDoAs) of microphone signals. More precisely, this
method employs a cross-correlation technique to estimate the time difference
of arrival (TDoA), then considers a sine law to map the estimated TDoA to
a DoA estimate. This approach has relatively low computational load; how-
ever, it does not take the shadowing effect of the user’s head and potential
ambient noise characteristics into account. This degrades the DoA estimation
performance markedly [3, 19].

To consider the head shadowing effect and ambient noise characteristics
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for the “informed” SSL, a maximum likelihood (ML) approach has been pro-
posed in [19] using a database of measured head related transfer functions
(HRTFs1) labeled by their corresponding DoA. To estimate the DoA, this
approach, called MLSSL (maximum likelihood sound source localization),
looks for the HRTF entry in the database, which maximizes the likelihood
of the observed microphone signals. MLSSL has relatively high computa-
tional load, but it performs effectively under severely noisy conditions, when
detailed personal HRTFs for different directions and different distances are
available [3, 19]. On the other hand, when the personal HRTFs are not avail-
able, or when the HRTFs corresponding to the actual distance of the target
are not covered in the database, the estimation performance of MLSSL de-
grades [3].

In [3], a new ML approach, which also considers head shadowing effects
and ambient noise characteristics, has been proposed for “informed” SSL us-
ing a database of measured relative transfer functions (RTFs). An RTF is the
ratio between two HRTFs [23] and can easily be obtained from the measured
HRTFs [3]. Compared with MLSSL, this new approach has lower computa-
tional load, and provides more robust performance, when an individualized
database is not available [3]. RTFs, in comparison with HRTFs, are almost
independent of the distance between the target talker and the user, especially
in far-field situations [3, 24]. The distance independency of RTFs reduces
the required memory and the computational load of the estimator proposed
in [3] compared with MLSSL. This is because, to estimate the DoA, the es-
timator in [3] must search in an RTF database, which is only a function of
DoA, while MLSSL must search in an HRTF database which is a function of
both DoA and distance.

In this paper, we propose an ML approach that uses a database of mea-
sured RTFs to estimate the DoA. Unlike the estimator proposed in [3], which
considers a binaural configuration using exactly two microphones (one mi-
crophone in each HA), the proposed method works for any M ≥ 2 micro-
phones in both monaural and binaural configurations. Further, compared
with [3], the proposed method decreases the computational complexity and
the number of parameters required to be wirelessly transmitted between the
HAs, while maintaining—and in some situations, even improving—the esti-
mation accuracy. To decrease the computational load, we relax some of the
constraints used in [3] for modeling the acoustic transfer function between
the target and a reference microphone. This relaxation makes the signal
model more realistic, and we show that it also allows us to formulate the
problem in a way that decreases the computational complexity. To decrease

1An HRTF is formally defined as “a specific individuals left or right ear far-field frequency
response, as measured from a specific point in the free field to a specific point in the ear canal”
[22]. Here, an HRTF refers to the frequency response from a target source to the microphone of
a hearing aid system [3, 19].
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the number of parameters required to be wirelessly exchanged between the
HAs in binaural configurations, we propose an information fusion strategy,
which transmits posterior DoA probabilities between the HAs instead of en-
tire signal frames. Finally, we analytically derive the bias in the estimator, and
propose a closed-form bias-compensation strategy, resulting in an unbiased
estimator.

The structure of this paper is as follows. In Secs. 2 and 3, the signal model
and the ML framework are presented, respectively. Afterwards, in Sec. 4, the
proposed “informed” DoA estimators using the ML framework is derived.
In Sec. 5, we analytically derive the bias of the DoA estimator and propose
a bias-compensation strategy. In Sec. 6, we propose an information fusion
strategy to decrease the wireless communication between the HAs in bin-
aural configurations. In Sec. 7, the performance of variants of the proposed
estimator is studied extensively and compared with existing algorithms using
experimental simulations. Lastly, we conclude the paper in Sec. 8.

2 Signal Model

In Fig. F.1, the noisy signal rm received at microphone m of the HAS is given
by:

rm(n) = s(n) ∗ hm(n, θ) + vm(n), m = 1, 2, · · ·M, (F.1)

where s(n) is the noise-free target signal emitted at the target talker’s po-
sition, hm(n, θ) is the acoustic channel impulse response between the target
talker and microphone m, and vm(n) is an additive noise component. Further,
n is the discrete time index, and ∗ indicates the convolution operator.

In the short time Fourier transform (STFT) domain, Eq. (F.1) can be ap-
proximated as [25]:

Rm(l, k) = S(l, k)Hm(k, θ) + Vm(l, k), (F.2)

where
Rm(l, k) = ∑

n
rm(n)w(n− lA)e−

j2πk
N (n−lA),

denotes the STFT of rm(n), where l and k are frame and frequency bin in-
dexes, respectively, N is the discrete Fourier transform (DFT) order, A is the
decimation factor, w(n) is the windowing function, and j =

√
−1 is the imag-

inary unit. Similarly, S(l, k) and Vm(l, k) denote the STFT of s(n) and vm(n),
respectively, and are defined analogously to Rm(l, k). Moreover,

Hm(k, θ) = ∑
n

hm(n, θ)e−
j2πkn

N

= αm(k, θ)e−
j2πk

N Dm(k,θ), (F.3)
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denotes the discrete Fourier transform (DFT) of hm(n, θ), where αm(k, θ) is
a positive real number which denotes the frequency-dependent attenuation
factor due to propagation effects, and Dm(k, θ) is the frequency-dependent
propagation time, in samples, from the target talker to microphone m.

As mentioned, Eq. (F.2) is an approximation of Eq. (F.1) in the STFT do-
main. This approximation is known as the multiplicative transfer function
(MTF) approximation [25], and its accuracy depends on the length and smooth-
ness of w(n): the longer and the smoother the analysis window w(n), the
more accurate the approximation [25].

To rewrite Eq. (F.2) into vector form, let d(k, θ) = [d1(k, θ), d2(k, θ), · · · ,
dM(k, θ)]T denote a vector of RTFs defined with respect to a reference micro-
phone, as

dm(k, θ) =
Hm(k, θ)

Hu(k, θ)
, m = 1, · · · , M,

where u is the index of the reference microphone. Moreover, let R(l, k) =
[R1(l, k), R2(l, k), · · · , RM(l, k)]T, and V(l, k) = [V1(l, k), V2(l, k), · · · , VM(l, k)]T.
Now, Eq. (F.2) can written as:

R(l, k) = S(l, k)Hu(k, θ)d(k, θ) + V(l, k). (F.4)

3 Maximum Likelihood Framework

To define the likelihood function, we assume that the additive noise vector
V(l, k) follows a zero-mean circularly-symmetric complex Gaussian distribu-
tion, i.e. V(l, k) ∼ N (0, Cv(l, k)), where Cv(l, k) = E{V(l, k)VH(l, k)}, and
where E{.} and the superscript H represent the expectation and Hermitian
transpose operators, respectively. Since we assume that the target signal is
picked up without any noise by the wireless microphone, we consider S(l, k)
as a deterministic and known variable at the HAS. Moreover, Hu(k, θ) and
d(k, θ) are also considered deterministic, but unknown. Further, Cv(l, k) is
assumed to be known (in Sec. 7.1, we briefly explain a simple and robust
method for estimating Cv(l, k)). Hence, from Eq. (F.4), it follows that:

R(l, k) ∼ N (S(l, k)Hu(k, θ)d(k, θ), Cv(l, k)) .

Furthermore, let us assume that the noisy observations are independent across
frequencies (to be precise, this assumption is valid, when the correlation time
of the signal is short compared with the frame length [26, 27]). Accordingly,
the likelihood function for frame l is given by:

p(R(l); Hu(θ), d(θ)) =
N−1

∏
k=0

1
πMdet [Cv(l, k)]

e{−(Z(l,k))HC−1
v (l,k)(Z(l,k))},
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where det[.] denotes the matrix determinant, and

R(l) = [ R(l, 0), R(l, 1), · · · , R(l, N − 1) ],

Hu(θ) = [ Hu(0, θ), Hu(1, θ), · · · , Hu(N − 1, θ) ],

d(θ) = [ d(0, θ), d(1, θ), · · · , d(N − 1, θ) ],

Z(l, k) = R(l, k)− S(l, k)Hu(k, θ)d(k, θ).

To simplify the expressions, we consider the log-likelihood function and drop
terms independent of θ. Therefore, the reduced log-likelihood function is
given by:

L(R(l); Hu(θ), d(θ))) =
N−1

∑
k=0
{−(Z(l, k))HC−1

v (l, k)(Z(l, k))}. (F.5)

The ML estimate of θ at frame l is found by maximizing L with respect to θ.
In the following, we derive the proposed DoA estimator.

4 The Proposed DoA Estimator

To derive the proposed estimator, we assume a database Θ of pre-measured
ds labeled by their corresponding θi is available. To be more precise, Θ ={

d(θ1), d(θ2), · · · , d(θI)
}

, where I is the number of entries in Θ, is assumed
to be available for the DoA estimation. To find the ML estimate of θ, the
proposed DoA estimator evaluates L for each d(θi) ∈ Θ. The MLE of θ is the
DoA label of the d, which leads to the largest log-likelihood. In other words,

θ̂ = arg max
d(θi)∈Θ

L(R(l); Hu(θ), d(θi)).

To be able to evaluate L efficiently for different d(θi), we first make L
independent of Hu. To do so, we find the maximum likelihood estimate
(MLE) of Hu, as a function of the other variables, and replace the MLE back
into L. Solving ∂L

∂Hu(k,θ) = 0 for Hu(k, θ) leads to

Ĥu(k, θ) =
dH(k, θ)C−1

v (l, k)R(l, k)
S(l, k)dH(k, θ)C−1

v (l, k)d(k, θ)
.

Inserting Ĥu(k, θ) into L gives

L(R(l); d(θ)) ∝
N−1

∑
k=1

|RH(l, k)C−1
v (l, k)d(k, θ)|2

dH(k, θ)C−1
v (l, k)d(k, θ)

, (F.6)
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where |.| denotes the magnitude of a complex number. Note that terms inde-
pendent of θ have been omitted.

Regarding Eq. (F.6), L is now independent of Hu, but surprisingly, it is
also independent of the clean target signal S(l, k), which is available in the
set up considered in this paper. In other words, the accessible information of
S(l, k) does not play any direct role in the estimator (Eq. (F.6))—the indirect
role of S(l, k) is in estimating Cv(l, k) as explained in Sec. 7.1. To investigate
the reason, let us consider the signal model presented in Eq. (F.4). The factor
S(l, k)Hu(k, θ) represents the clean signal received at the reference micro-
phone. Even though S(l, k) is known, the product S(l, k)Hu(k, θ) is entirely
unknown, because Hu(k, θ) is an unknown variable. In other words, replac-
ing S(l, k)Hu(k, θ) with a deterministic but unknown dummy variable X(l, k),
which represents the unknown clean signal received at the reference micro-
phone, leads to an “uninformed” signal model. Finding the MLE of X(l, k),
and replacing the result in the corresponding log-likelihood function, would
lead to an equation similar to Eq. (F.6). Hence, the current signal model of
Hu completely spoils the knowledge of S(l, k), when forming the product
S(l, k)Hu(k, θ). In the following, we explain how this problem can be con-
fronted by imposing certain constraints on Hu.

To solve the problem mentioned above and to exploit the accessible S(l, k)
in the DoA estimator, we assume that Hu is related to a “sunny” micro-
phone [3]. In other words, when the method evaluates L for ds correspond-
ing to directions to the left side of the head, Hu is related to a microphone in
the left HA, and when the method evaluates L for ds corresponding to direc-
tions to the right side of the head, Hu is related to a microphone in the right
HA (note that this evaluation strategy is practically operational and requires
no prior knowledge about the true DoA). Further, in contrast to the method
proposed in [3], which assumes that both the attenuation αu and the delay Du
of the “sunny” HRTF are frequency independent, we remove the frequency-
independency constraint on the delay Du. Removing this constraint makes
the signal model more realistic, because the head presence generally intro-
duces a frequency-dependent delay on the received signals, which is more
in-line with human head acoustics [24]. When evaluating L, we will show
that this “sunny” HRTF model allows us to simply sum over all frequency
bins instead of computing an inverse discrete Fourier transform (IDFT) as
proposed in [3]. This decreases the estimator’s computational complexity be-
cause an IDFT has an order of complexity of N log N [28], while summing
over all frequencies has an order of complexity of N.

Regarding Eq. (F.3), Hu can be written as a function of its parameters, i.e.
αu(k, θ) and Du(k, θ). Let us assume that the attenuation αu(k, θ) is frequency
independent, i.e. αu(k, θ) = αu(θ), and collect the Du(k, θ) values in a vector
Du(θ) = [Du(0, θ), Du(1, θ), ..., Du(N − 1, θ)]T. This allows us to write the
log-likelihood function as L(R(l); αu(θ), Du(θ), d(θ)).
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As before, to evaluate L efficiently for different d(θi), we eliminate αu(θ)
and Du(θ) by substituting their MLEs into L. To find the MLE of αu, we solve

∂L
∂αu(θ)

= 0, which leads to

α̂u(θ) =
∑N−1

k=1 (A(l, k, θ) + A∗(l, k, θ))

∑N−1
k=1 B(l, k, θ)

, (F.7)

where

A(l, k, θ) = S∗(l, k)dH(k, θ)C−1
v (l, k)R(l, k)e

j2πk
N D1(k,θ),

and B(l, k, θ) = |S(l, k)|2dH(k, θ)C−1
v (l, k)d(k, θ).

Replacing Eq. (F.7) into L gives

L(R(l); Du(θ), d(θ)) =(
∑N−1

k=1 (A(l, k, θ) + A∗(l, k, θ))
)2

4 ∑N−1
k=1 B(l, k, θ)

. (F.8)

Now, let us find the MLE of Du(k, θ) by solving ∂L
∂Du(k,θ) = 0 and replace

the result into L. The MLE of Du(k, θ) is given by

D̂u(k, θ) =
N

j4πk
log
(

C∗(k, θ)

C(k, θ)

)
, (F.9)

where
C(k, θ) = S∗(l, k)dH(k, θ)C−1

v (l, k)R(l, k).

Substituting Eq. (F.9) into Eq. (F.8) leads to the final result

L̃(R(l); d(θ)) =(
∑N−1

k=1 |S
∗(l, k)dH(k, θ)C−1

v (l, k)R(l, k)|
)2

∑N−1
k=1 |S(l, k)|2dH(k, θ)C−1

v (l, k)d(k, θ)
, (F.10)

which only depends on the unknown d(θ). Note that in contrast to Eq. (F.6),
the available clean target signal S(l, k) also contributes in the derived log-
likelihood function. Further, the evaluation of Eq. (F.10) only requires sum-
mation across frequencies in contrast to computing IDFTs, which are required
in the method proposed in [3]. Now, we can find the MLE of θ by

θ̂ = arg max
d(θi)∈Θ

L̃(R(l); d(θi)).
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5 Bias Investigation

Generally, it is desirable that the proposed log-likelihood function does not
have any intrinsic bias towards any specific direction. In this section, we an-
alytically show that the proposed log-likelihood function is indeed biased,
and we propose a closed-form bias-compensated log-likelihood function. To
do so, we consider situations, where the target signal is almost absent, or the
signal to noise ratio (SNR) is approaching −∞. In these situations, the likeli-
hood values corresponding to the different directions in Θ should ideally be
equal and independent of θ. To be more precise, when the target signal is
almost absent or when the SNR→ −∞, we have R(l, k) ≈ V(l, k), and

lim
SNR→−∞ or S→0

L̃(R(l); d(θ)) =(
∑N−1

k=1 |S
∗(l, k)dH(k, θ)C−1

v (l, k)V(l, k)|
)2

∑N−1
k=1 |S(l, k)|2dH(k, θ)C−1

v (l, k)d(k, θ)
. (F.11)

In these situations, the expected value of L̃ with respect to V should ideally
be constant with respect to θ, or equivalently, it should be independent of
d(θ).

In the following, we derive a closed-form expression for the expected
value of Eq. (F.11) with respect to the only random variable in this expression,
i.e. V . For notational convenience, we omit the frequency and the frame in-
dexes. From the assumption that V follows a zero-mean circularly-symmetric
complex Gaussian distribution, i.e. V ∼ N (0, Cv) (Sec. 3), we have

S∗dH(θ)C−1
v V ∼ N (0, |S|2dH(θ)C−1

v d(θ)).

Since S∗dH(θ)C−1
v V follows a circularly-symmetric complex Gaussian distri-

bution, its real and imaginary parts, i.e. X = Re{S∗dH(θ)C−1
v V} and Y =

Im{S∗dH(θ)C−1
v V}, are independent and also follow Gaussian distributions

[29],

X ∼ N (0,
1
2
|S|2dH(θ)C−1

v d(θ)),

and
Y ∼ N (0,

1
2
|S|2dH(θ)C−1

v d(θ)).

Therefore, U =
√

X2 + Y2 = |S∗dH(θ)C−1
v V | follows a Rayleigh distribution

[29], where

E {U} =
√

π

4
|S|2dH(θ)C−1

v d(θ),

and
Var {U} = 4− π

4
|S|2dH(θ)C−1

v d(θ),

155



Paper F.

where Var{.} denotes the variance operator. Reinvoking the assumption that
observations are independent across frequencies (Sec. 3), we have

E

{
N−1

∑
k=1

U

}
=

N−1

∑
k=1

√
π

4
|S|2dH(θ)C−1

v d(θ), (F.12)

and

Var

{
N−1

∑
k=1

U

}
=

N−1

∑
k=1

4− π

4
|S|2dH(θ)C−1

v d(θ). (F.13)

From Eqs. (F.12) and (F.13), the expected value of the numerator of Eq. (F.11)
with respect to V is given by F

E


(

N−1

∑
k=1

U

)2
 =

(
E

{
N−1

∑
k=1

U

})2

+ Var

{
N−1

∑
k=1

U

}
.

Hence, the expected value of L̃ with respect to V , when the target signal is
almost absent, or the SNR is approaching −∞, is given by

E
{
L̃(R(l); d(θ))

} |
SNR→−∞ or S→0

=(
∑N−1

k=1

√
π
4 |S|2dH(θ)C−1

v d(θ)
)2

∑N−1
k=1 |S|2dH(θ)C−1

v d(θ)
+

4− π

4
. (F.14)

Unfortunately, Eq. (F.14) shows that the expected value of L̃ with respect to
V in the considered situations is not independent of d(θ), and hence, L̃ is bi-
ased. However, a bias-compensated log-likelihood function can be defined
simply by subtracting this expectation (Eq. (F.14)) from the log-likelihood
(Eq. (F.10)), i.e.

L̄(R(l); d(θ)) =(
∑N−1

k=1 |S
∗dH(θ)C−1

v R|
)2

∑N−1
k=1 |S|2dH(θ)C−1

v d(θ)
−

(
∑N−1

k=1

√
π
4 |S|2dH(θ)C−1

v d(θ)
)2

∑N−1
k=1 |S|2dH(θ)C−1

v d(θ)
− 4− π

4
, (F.15)

and the bias-compensated MLE of θ is given by

θ̄ = arg max
d(θi)∈Θ

L̄(R(l); d(θi)).
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6. Reducing the Wireless Communication in
Binaural Configurations

6 Reducing the Wireless Communication in
Binaural Configurations

In binaural configurations, up to this point, we assumed that the signals re-
ceived by all the microphones of both HAs are available at the “master” HA
(the HA which performs the DoA estimation). This means that one of the
HAs should transmit the signals received by its microphones to the other HA
(the “master” HA). In this section, we aim to decrease the number of param-
eters required to be exchanged between the HAs in binaural configurations,
where the number of microphones in each HA is at least two.

The trivial way to completely eliminate the wireless communication be-
tween the HAs is that each HA estimates the DoA independently using the
signals received by its own microphones. This way is expected to degrade
the estimation performance notably, because the number of signal frames
considered for estimating the DoA has been decreased, compared with a sys-
tem utilizing all microphone signals. Moreover, this can cause the HAs to
have different and inconsistent estimates of the DoA.

Instead, in this section, we present an information fusion (IF) strategy,
which needs some wireless communication between the HAs, but does not
need to transmit all the microphone signals between the HAs. Moreover,
using the proposed IF strategy, the number of parameters required to be
exchanged between the HAs is independent of the number of microphones
in a HA, i.e. increasing the number of microphones does not change the
number of parameters to be exchanged. To do so, we assume that each HA
evaluates L̄ locally for each d(θi) ∈ Θ, using the signals picked up by its
own microphones. In other words, for each d(θi) ∈ Θ, two evaluations of
L̄ are performed, one in the left HA and one in the right HA (let us denote
them as L̄left and L̄right, respectively). Afterwards, one of the HAs, e.g. the
right HA, transmits the evaluation values of L̄right for all d(θi) ∈ Θ to the
“master” HA, i.e. the left HA. To estimate the DoA, the “master” HA uses
an IF technique, which will be defined later in this section, to combine L̄left
and L̄right values. This strategy decreases the number of parameters to be
transmitted between the HAs, because instead of transmitting all microphone
signals, only I different evaluations of L̄ corresponding to different d(θi) ∈ Θ,
must be transmitted, at each time frame (typically, I is much smaller than the
signal frame length.).

The main idea in fusing L̄left and L̄right is to approximate the joint likeli-

hood p
(

Rleft(l), Rright(l); d(θi)
)

, where Rleft(l) and Rright(l) respectively rep-
resent the signals received by the microphones of the left HA and the right
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HA. To do so, we use the following conditional probabilities:

p
(

Rleft(l); d(θi)
)

∝ exp
(
L̄left

(
Rleft(l); d(θi)

))
,

p
(

Rright(l); d(θi)
)

∝ exp
(
L̄right

(
Rright(l); d(θi)

))
.

It should be noted that normalization is necessary to ensure that the sum of
all posterior probabilities equals unity in each HA.

In general, to calculate p(Rleft(l), Rright(l); d(θi)), the covariance between

Rleft(l) and Rright(l) must be known; and to estimate this covariance matrix,
the microphones’ signals must be transmitted between the HAs. However, if
we assume Rright(l) and Rleft(l) are conditionally independent of each other

given d(θi), there is no need to transfer the signals between the HAs, because
the joint probability is the product of the two marginals,

p
(

Rleft(l), Rright(l); d(θi)
)
=

p
(

Rleft(l); d(θi)
)
× p

(
Rright(l); d(θi)

)
. (F.16)

Strictly speaking, Rright(l) and Rleft(l) are conditionally independent of each

other given d(θi), when Vleft and Vright are independent of each other (Vleft
and Vright represent noise signals received by microphones of the left HA
and the right HA, respectively). Clearly, in cases where Vleft and Vright contain
only internal microphone noise, i.e. when ambient noise is essentially absent,
Vleft and Vright can be assumed independent of each other. Moreover, when
the noise field can be approximated as isotropic, an approximation which
is often used to model commonly encountered reverberation [30], Vleft and
Vright can be considered independent, especially for frequencies higher than
approximately 600 Hz, e.g. [31].

Based on Eq. (F.16), the estimate of θ is given by

θ̌ = arg max
d(θi)∈Θ

p(Rright, Rleft; d(θi)).

7 Simulation Results

In this section, we assess and compare the performance of the variants of the
proposed estimator with existing methods in simulation experiments. Partic-
ularly, we investigate the effects of microphone array configuration, signal-
to-noise ratio (SNR), noise type and reverberation on performance.
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7. Simulation Results

7.1 Implementation

The parameters used in all simulation experiments are as follows: the sam-
pling frequency is 16 kHz, the DFT order N = 512, w(n) is a Hamming
window with a length of 512 samples, the DFT order N is the same as the
window length (i.e. N = 512) and the decimation factor A = N

2 . Moreover,
to evaluate the likelihood functions, the noise CPSD matrix Cv(l, k) must be
known. To estimate Cv(l, k), we use the same procedure as in [3]. Briefly,
this method uses S(l, k), which is available at the HAS, as a voice activity
detector (VAD) to determine the time-frequency regions in R(l, k) where the
target speech is essentially absent. Based on these noise-dominant regions,
we adaptively estimate Cv(l, k) via recursive averaging [3].

7.2 Acoustic setup

To simulate realistic acoustic scenarios, we use the database of head related
impulse responses (HRIRs) and binaural room impulse responses (BRIRs),
made available by [32]. We only use the part of the database, which corre-
sponds to the horizontal plane, Θ = {−175◦,−170◦,−165◦, · · · ,+180◦}, and
which is measured with behind-the-ear (BTE) hearing aids mounted behind
the ears of a head-and-torso simulator (HATS). To generate a signal from
a desired position, we convolve the signal with the corresponding impulse
response.

Similar to [3], as a target signal, a four-minute speech signal is used
consisting of two male and two female voices from the TSP database [33].
To assess the performance of the estimator in different noisy situations, we
consider four different noise fields: car-interior noise, speech-shaped noise,
large-crowd noise, and bottling-factory-hall noise. These noise fields cover
noisy situations with different characteristics [3], e.g. with low-frequency
content (the car-interior noise), with high-frequency content (the bottling-
factory-hall noise), statistically stationary (the speech-shaped noise) and sta-
tistically non-stationary (the large-crowd noise). To generate the large-crowd
noise field, the speech-shaped noise field and the bottling-factory-hall noise
field, different realizations of the considered noise signals are played back
simultaneously from spatial positions, which are uniformly distributed on a
circle in the horizontal plane centered at the HATS. Further, the car-interior
noise field was measured binaurally by BTE hearing aids mounted behind the
ears of a HATS placed on the passenger seat of a car driving in a city. Fig. F.2
shows the long-term power spectrum of the target signal measured at the tar-
get position and the noise signals received at the front microphone of the left
hearing aid. The wide-band SNR reported for each simulation experiment is
defined in terms of the signals of the front microphone of the left HA.
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(a) Target signal emitted at the target position.
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(b) Car-interior noise at the front microphone of the left HA.
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(c) Speech-shaped noise at the front microphone of the left
HA.
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(d) Large-crowd noise at the front microphone of the left
HA.
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(e) Bottling-factory-hall noise at the front microphone of the
left HA.

Fig. F.2: Long-term power spectrum of the signals [3].
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7. Simulation Results

7.3 Performance metric

To measure performance of estimators, we use the absolute error (AE) metric,
given by:

AEl = f {θl − θ̂j}, (F.17)

where θl and θ̂l are the true DoA and the estimated DoA at time frame l,
respectively. The function f {.} is a circular wrapping function that gives the
absolute error and guarantees that the error is smaller than the maximum
possible error, i.e. 180◦.

To report the results, we generally use box plots [34], where the bottom
and top of a box are the first and third quartiles, and the band inside a box
is the median of the results. Moreover, we represent the mean absolute error
(MAE) of the results with a circle on the box plots. It should be noted that we
only report the results of the target-active frames. This reflects performance
that is achievable in practical systems, because an accurate VAD is available
in informed situations.

7.4 Competing methods

To compare the performance of the proposed estimator with existing meth-
ods, we consider the estimators proposed in [3] and [14], which we refer to
them as the measured-RTF-based method and Braun’s method, respectively.

The measured-RTF-based method is an “informed” estimator. We consider
this particular estimator amongst “informed” estimators, because the measured-
RTF-based method is the most recent one, which, as reported in [3], performs
more accurately and more robustly than other “informed” estimators pro-
posed in [16, 19–21]. Further, the proposed method and measured-RTF-based
method both are based on a database of measured RTFs; however, the pro-
posed method is bias-compensated, employs a more realistic model of the
acoustic transfer function between the target and the “sunny” microphone,
and is computationally cheaper than the measured-RTF-based method.

Braun’s method is a narrow-band “uninformed” DoA estimator, which also
uses a database of measured RTFs, for hearing applications. Comparing the
performance of the proposed method with Braun’s method shows the advan-
tage of having access to the noise-free target signal. To make the implemen-
tation choices clear, in the following, we briefly explain Braun’s method.

Braun’s method

With respect to the signal model presented in Eq. (F.2), it has been shown that
the minimum mean squared error (MMSE) estimator of the RTF between the
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two microphones at a particular frequency bin is given by [14]:

d̂i,j(k) =
φRi,j − φVi,j

φRj,j − φVj,j

,

where i and j are microphone indexes, φRi,j = E{Ri(l, k)R∗j (l, k)} and φVi,j =

E{Vi(l, k)V∗j (l, k)}. Averaging the RTF estimate over the microphone index
permutation, i.e.

d̄i,j(k) =
1
2

{
d̂i,j(k) + d̂−1

j,i (k)
}

,

makes the estimate more robust [14]. Braun’s method estimates the DoA θ
of the target signal at a particular frequency bin using a database Θ of the
measured-RTFs labeled by their corresponding DoA by

θ̂Braun = arg min
d(θu)∈Θ

∑
i,j∈M

Wi,j(k)|d̄i,j(k)− di,j(k, θu)|,

where the set M contains all microphone pair combinations, and Wi,j is a
weighting factor for the {i, j}-th pair. In [14], the performance of the DoA es-
timator, which uses Wi,j(k) = 1, was compared with the performance of the
DoA estimator, which uses a weighting function based on coherent-to-diffuse
ratios. The simulation results in [14] show that both estimators perform sim-
ilarly. Therefore, we consider Wi,j(k) = 1 in the implementation of Braun’s
method. Moreover, because the target source is located at the same position
for all frequency bins, we change the cost function as follows, to combine the
information of all frequency bins:

θ̂Braun = arg min
d(θu)∈Θ

N−1

∑
k=0
|d̄i,j(k)− d(k, θu)|.

To estimate φRi,j used in Braun’s method, a recursive averaging technique with
a time constant of 50 ms was used, as proposed in [14]. Moreover, to estimate
φVi,j , we use the recursive estimate of Cv as described in Sec. 7.1.

7.5 Results and discussion

Biased vs bias-compensated log-likelihoods

In this part, we numerically compare the biased log-likelihood function L̃
proposed in Eq. (F.10) with the bias-compensated log-likelihood function L̄
proposed in Eq. (F.15). To do so, we consider a situation where the true DoA
is 0◦, and the SNR is −100 dB in a large-crowd noise field.

As mentioned in Sec. 5, at very low SNRs, ideally, we would expect all
DoAs in Θ to be equally likely. Fig. F.3 shows the normalized log-likelihood
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7. Simulation Results

Fig. F.3: Biased vs. bias-compensated log-likelihood at SNR of −100 dB in a large-crowd noise
field and in an anechoic situation. The log-likelihoods are evaluated using the signals of four
microphones (two microphones in each HA) in a binaural configuration. The log-likelihood val-
ues are normalized by the sum of the log-likelihood values of all entries in Θ, and are averaged
over all signal frames. The shaded areas represent the standard deviations. The true DoA is 0◦.

values as a function of d(θi) ∈ Θ. As Fig. F.3 shows, the uncompensated
log-likelihood function L̃ (Eq. (F.10)) is biased towards directions to the left
side of the user, i.e. θi ∈ [−175◦, 0◦]. In contrast, the bias-compensated log-
likelihood function L̄ (Eq. (F.15)) is essentially uniformly distributed across
DoAs. Therefore, for the remaining simulation results, we only consider the
bias-compensated version of the proposed method.

Influence of the microphone array geometry

In general, the microphone array configuration influences the performance
of the DoA estimators [35]. In this part, we investigate the influence of dif-
ferent microphone array configurations on the performance of the proposed
method (cf. Table F.1). These configurations require different degrees of wire-
less communication between the HAs. More precisely, for each time frame,
the monaural configurations, indicated by ‘C’ and ‘D’ in Table F.1, do not
need any wireless information exchange between the HAs. The binaural con-
figurations indicated by ‘A’, ‘B’ and ‘E’ need 2N signal samples, N signal
samples and I log-likelihood values, respectively, to be transmitted between
HAs (N is the window length, and I is the number of the entries in the RTF
database (N � I)).

Fig. F.4 shows the performance of the proposed method based on the dif-
ferent configurations mentioned in Table F.1. For comparison, the perfor-
mance of the measured-RTF-based method [3] and Braun’s method [14] are also
shown. The measured-RTF-based method considers a binaural configuration
similar to configuration ‘B’, while Braun’s method considers a binaural config-
uration similar to configuration ‘A’.

To determine whether there are any statistically significant differences
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(a) Large-crowd noise field.
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(b) Speech-shaped noise field.
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(c) Bottling-factory-hall noise field.
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(d) Car-interior noise field.

Fig. F.4: The box plot of the performance of the proposed method based on the different mi-
crophone array configurations in Table F.1. The circles represent the MAEs. The simulation
experiment was done in an anechoic situation at SNR of 0 dB in different noise fields.
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Table F.1: Different microphone array geometries.

Config. Details
A a binaural configuration using the signals of four

microphones—two microphones in each HA.
B a binaural configuration using the signals of two

microphones—one microphone in each HA.
C a monaural configuration using the signals of two mi-

crophones in the left HA.
D a monaural configuration using the signals of two mi-

crophones in the right HA.
E a binaural configuration using the signals of four micro-

phones and exploiting the IF technique proposed in Sec.
6 to decrease the wireless communication.

between the MAEs of the methods, we performed a one-way analysis of vari-
ance (ANOVA) test [36, 37]. Before the test, we transformed the AEs of the
methods as

AE′j = log(AEj + 1), (F.18)

to equalize the variances of the AEs of the different methods [36, 38]. As a
result, the ANOVA test rejected the hypothesis that all MAEs are identical
(p < 10−10), in all the noise fields. Moreover, as a post hoc test, multiple
pairwise comparison test (Tukey HSD [36]) was applied to identify the sta-
tistical differences between the MAEs of any two methods. The results of the
test revealed that the MAEs of all the methods are statistically different from
each other (p < 10−5), except for the MAEs of the configurations ‘C’ and ‘D’
in the speech-shape noise field (p = 0.23). Therefore, we can conclude from
the simulation results shown in Fig. F.4 that:

i) The performance of configuration ‘A’ is the best, at the cost of higher
computational load and wireless exchange of two microphones’ signals.

ii) While configurations ‘B’, ‘C’ and ‘D’ use signals of two microphones, the
performance of the monaural configurations, i.e. configurations ‘C’ and
‘D’, is generally better than the performance of the binaural configura-
tion ‘B’ (except for the interior-car noise field). The reason for the better
performance of the monaural configurations will be explained later in
this section.

iii) Configuration E, which uses the information fusion approach and needs
less parameters than configurations ‘A’ and ‘B’ to be wirelessly exchanged
between the HAs, performs generally better than the monaural configu-
rations and the binaural configuration ‘B’.
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iv) The performance of the proposed method based on configuration ‘B’ is
slightly better than the performance of the measured-RTF-based method,
while the computational complexity of the measured-RTF-based method is
higher than the proposed method.

v) The performance of the proposed method based on configuration ‘A’ is,
as expected, significantly better than the performance of Braun’s method.
The access to the clean target signal gives the proposed method a large
advantage compared with Braun’s method.

To study the performance of the proposed method in more detail, we plot
in Fig. F.5 the confusion matrices of the proposed method based on different
configurations. Each column of the matrices relates to a particular true DoA,
and represents the normalized histogram (probability) of the estimated DoAs
for that particular true DoA.

The confusion matrices depicted in Fig. F.5 demonstrate the following
points:

i) In Fig. F.5a, the clear diagonal of the confusion matrix shows that the
configuration ‘A’ is very effective in finding the true DoAs. If the pro-
posed method based on this configuration cannot find the true DoA, the
estimated DoA is generally close to the true DoA.

ii) In Fig. F.5b, the two parallel anti-diagonal lines in the confusion matrix
show that the proposed method based on configuration ‘B’ suffers from
front-back confusions, as humans do [39]. In other words, when the
proposed method based on this configuration cannot find the true DoA,
then the most probable choice is located on the other side of the head
with respect to the axis between the considered microphones. The front-
back confusions are because of the symmetry of the head with respect to
the microphone array placement. The front-back confusions cause large
estimation errors, especially for the DoAs located in the front or back of
the HATS.

iii) Figs. F.5c and F.5d show the confusion matrices of the proposed method
based on the monaural configurations. These matrices demonstrate that
when the true DoA is from the same side of the head as where the
HA is positioned (i.e. θ ∈ [−175◦, 0◦] in Fig. F.5c and θ ∈ [0◦, 180◦] in
Fig. F.5d), the proposed method based on monaural configurations per-
forms decently. However, when the true DoA is from the other side of
the head (i.e. θ ∈ [0◦, 180◦] in Fig. F.5c and θ ∈ [−175◦, 0◦] in Fig. F.5d),
the proposed method suffers somewhat from left-right confusions, es-
pecially when the true DoA is at the sides. This is partly because of
head-shadowing effect.
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(a) Configuration ‘A’.
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(b) Configuration ‘B’.
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(c) Configuration ‘C’.
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(d) Configuration ‘D’.
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(e) Configuration ‘E’.

Fig. F.5: Confusion matrices of the proposed method based on different configurations men-
tioned in Table F.1. The simulation experiment conditions are the same as in Fig. F.4a.
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Table F.2: Different cases considered to study the influence of the resolution of the RTF database.

Case I for all the considered locations of the target talker, there
is a representative entry in the RTF database searched
by the proposed method.

Case II there is no entry in the RTF database for every other
considered DoAs, i.e. there is no entry in the database
for half of the considered DoAs.

Case III the actual distance of the target from the user is dif-
ferent from the target distance used in constructing the
RTF database: the actual distance of the target from the
user is 300 cm, while the RTF database is measured for
a target distance of 80 cm. For all the DoAs, there is a
representative RTF in the database.

iv) Fig. F.5e shows that when we combine the information of the monaural
configurations using the IF technique proposed in Sec. 6, the left-right
confusions, which occurs in monaural configurations, can largely be re-
solved.

v) As reported in Fig. F.4, on average, the proposed method based on con-
figuration ‘B’ performs worse than the proposed method based on con-
figurations ‘C’ and ‘D’. The reason can be explained by comparing Fig.
F.5b with Figs. F.5c and F.5d. A large part of the estimation errors is
because of front-back confusions for configuration ‘B’ and left-right con-
fusions for configurations ‘C’ and ‘D’. Comparing Fig. F.5b with Figs. F.5c
and F.5d demonstrates that the possibility of the front-back confusions
for configuration ‘B’ is higher than the possibility of left-right confusions
for configuration ‘C’ or ‘D’. This is because front-back confusions for con-
figuration ‘B’ may occur in the estimations of all the considered DoAs,
while left-right confusions for configurations ‘C’ and ‘D’ often occur for
a smaller subset of DoAs—the DoAs located in the shadow of the head.

Influence of the resolution of the RTF database

In practice, most of the time, none of the entries in the RTF database, searched
by the proposed DoA estimator, represent exactly the actual DoA or distance
of the target. Here, we study the performance of the proposed estimator
in these situations. To do so, we compare the performance of the proposed
method for three different cases outlined in Table F.2.

Fig. F.6 shows the performance of the proposed method for these cases
in different configurations. In all configurations, the one-way ANOVA test
on the transformed AEs (Eq. (F.18)) shows that the MAEs of different cases
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Fig. F.6: Performance of the proposed method based on different microphone array configura-
tions (Table F.1) for different RTF-database resolutions mentioned in Table F.2. The simulation
experiment was done in an anechoic situation at an SNR of 0 dB in a large-crowd noise field.
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Fig. F.7: Performance of the proposed method based on the different microphone array config-
urations mentioned in Table F.1 for different SNRs. The simulation experiment were done in an
anechoic situation in a large-crowd noise field.

are statistically different (p < 10−10). Pairwise Tukey HSD tests for each
configuration show that the MAEs of any two cases are different (p < 10−9),
except the MAEs of Case I and Case II in Braun’s method (p = 0.99). Even
though the MAEs of different cases are statistically different, the differences
are small. This suggests that the performance of the proposed method is
robust against the mismatches between the actual location of the target and
the RTF database.

Influence of SNR

Another factor which generally affects the estimation performance is SNR.
Fig. F.7 shows the estimation performance for different SNRs in terms of the
MAE averaged over all considered DoAs in an anechoic situation in a large-
crowd noise field. As expected, the estimation performance of all methods is
improving by increasing the SNR. Moreover, the general performance order
of Fig. F.4a remains at different SNRs; however, at high SNRs, the perfor-
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Fig. F.8: Performance of the proposed method based on the different microphone array configu-
rations mentioned in Table F.1 in both anechoic and reverberant situations. The simulation was
done in a large-crowd noise field at an SNR of 0 dB.

mance of Braun’s method, which uses a configuration similar to configuration
‘A’, is improving more than the performance of the other methods. In other
words, at a sufficiently high SNR, the “uninformed” Braun’s method using
four noisy microphone signals reveals more about the target location than
the “informed” estimator using two microphone signals.

Influence of reverberation

In practice, HASs must operate in reverberant situations. Therefore, we in-
vestigate the impact of reverberation on the performance of the proposed
estimator. To simulate a reverberant environment, we use the BRIRs mea-
sured in an office (T60 ≈ 500 ms) [32]. Because the BRIRs are only available
for the front-horizontal half-plane, we confine the proposed method to search
in the database for the DoAs related to this half-plane.

Fig. F.8 shows the performance of the different configurations of the pro-
posed method in both anechoic and reverberant situations. For each configu-
ration, to analyze the statistical difference of the MAEs of the anechoic and re-
verberant situations, a two-sample t-tests on the transformed AEs (Eq. (F.18))
has been applied. The test results show that the MAEs of the anechoic and
reverberant situations are statistically different (p < 10−10) in all configura-
tions. We can conclude that performance of all the methods is degraded in
the reverberant situation, compared with the performance in the anechoic
situation. This is because none of the methods directly consider and model
the reverberation. One way to explicitly take the reverberation into account
is to model it as a highly time-varying isotropic noise field, e.g. [30, 40].

Another point, which is visible by comparing Fig. F.8 with Fig. F.4a is
that the performance of the proposed method based on configuration ‘B’ for
the anechoic situation has been improved significantly. This is because the
RTF database has been confined to the DoAs related to the front-horizontal
half-plane. This restriction prevents front-back confusions and improves
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8. Conclusion

markedly the performance of the proposed method based on configuration
‘B’. Obviously, in many practical situations, the target signal may not be safely
assumed to be originating from the frontal-horizontal half-plane, in which
case performance similar to that of Fig. F.4a must be expected.

Influence of non-individualized RTFs

So far, we have presented performance, when the RTF database measured for
the specific user is available. In practice, measuring the RTFs for each user
might be difficult; however, it is often possible to measure the RTFs of a HATS
beforehand. Therefore, in this part, we aim to compare the performance of
the estimators for two different cases:

1. Individualized: user-specific databases are available.

2. Non-individualized: user-specific databases are not available; however,
an RTF database measured for a HATS is available.

For the simulation experiment, we use the HRTFs measured by binaural
BTE hearing aids for five different persons (three males and two females) and
a HATS.

Fig. F.9 shows the performance of the methods for different subjects at an
SNR of 0 dB in the large-crowd noise field. For each subject and for each
configuration, to determine the statistical differences between the MAEs of
the individualized and non-individualized cases, we applied a two-sample
t-tests on the transformed AEs (Eq. (F.18)). The results show that the MAEs
of the individualized and non-individualized cases for all subjects and in
all configurations are statistically different (p < 10−10). However, as can be
seen in Fig. F.9, the performance of the proposed method degrades relatively
slightly in the absence of the individualized databases. This means the per-
formance of the proposed method appears to be robust to inaccuracies in the
RTF database.

8 Conclusion

In this paper, we proposed a target source DoA estimator for a hearing aid
system (HAS) which has access to the noise-free target signal via a wireless
microphone. The proposed method is based on a pre-measured database of
relative transfer functions (RTFs). Each measured RTF entry in the database
has been labeled by its corresponding DoA, and the proposed method uses
a maximum likelihood approach to find the RTF entry, which maximizes the
likelihood of the received signals. The label of the RTF entry is considered
as the estimate of the DoA. Moreover, we analytically investigated the bias
of the estimator, and proposed an estimator which has been compensated
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Fig. F.9: Influence of non-individualized databases on the DoA estimators for five different
subjects. The SNR is 0 dB in the large-crowd noise field. The MAE is averaged over all considered
DoAs.
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for the bias. We showed that the proposed estimator is computationally
cheaper and performs better than other recent RTF-based DoA estimators.
The proposed method supports any microphone array configurations, with
M ≥ 2 microphones, both monaural and binaural. Our simulation exper-
iments for hearing aid applications suggest that the binaural configuration
using four microphones (two microphones in each hearing aid (HA)) pro-
vides the best performance at the cost of higher computational complexity
and wireless communication, while the monaural configurations using two
microphones suffer from left-right confusions, and the binaural configuration
using two microphones (one microphone in each HA) suffers from front-back
confusions. To decrease the number of parameters required to be wirelessly
exchanged between the HAs in binaural configurations, where the number
of microphones in each HA is at least two, we proposed an information fu-
sion technique, which avoids transmitting microphones’ signals between the
HAs. An important benefit of the proposed IF strategy is that the number of
parameters required to be exchanged between the HAs is independent of the
number of microphones in the HA.

As a topic of future research, we aim to extend the proposed estimator
to take temporal characteristics of the acoustic scene into accounts, e.g. by
modeling and tracking the relative movement of the user’s head and the
target source.
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1. Introduction

Abstract

We consider the problem of determining the relative position of dual-microphone sub-
arrays. The proposed solution is mainly developed for binaural hearing aid systems
(HASs), where each hearing aid (HA) in the HAS has two microphones at a known
distance from each other. However, the proposed algorithm can effortlessly be ap-
plied to acoustic sensor network applications. In contrast to most state-of-the-art
calibration algorithms, which model the calibration problem as a non-linear prob-
lem resulting in high computational complexity, we model the calibration problem
as a simple linear system of equations by utilizing a far-field assumption. The pro-
posed model is based on target signals time-difference-of-arrivals (TDoAs) between
the HAS microphones. Working with TDoAs avoids clock synchronization between
sound sources and microphones, and target signals need not be known beforehand.
To solve the calibration problem, we propose a least squares estimator which is simple
and does not need any probabilistic assumptions about the observed signals.

1 Introduction

Performance of many signal processing algorithms using microphone arrays
depends on the knowledge of the microphone array geometry. For example,
in [1, 2], the microphone array geometry is needed to estimate the direction
of arrival (DoA) of the target sound for a binaural hearing aid system (HAS).
A binaural HAS consists of two hearing aids (HAs) mounted on the ears of
a user. Different heads radii and varying shapes of pinnae of users cause
uncertainties about the geometry of the microphone array, e.g. the distance
between the HAs, which degrade performance of the DoA estimation algo-
rithms.

The microphone array calibration problem is the problem of determining
the relative locations of the microphones in a microphone array. This prob-
lem has been studied using different types of measurements such as received
signal strength (RSS) [3], time-of-arrival (ToA) [4–6], and time-difference-of-
arrival (TDoA) [7]. Among these, TDoA is a suitable choice for HAS ap-
plications because it is less vulnerable to reverberation [4], does not require
clock-synchronization between sources and microphones, and does not re-
quire the time of emission of the target signals.

Different techniques have been proposed to solve the calibration prob-
lem. Multi-dimensional scaling (MDS) [8] is one of the earliest methods that
implicitly needs each node (HA) to be a compound of a microphone and a
sound source, a requirement which in general is not satisfied in HA applica-
tions. Another approach has been proposed in [9] based on singular value
decomposition (SVD) that finds the coordinates of the microphones up to
an invertible matrix by assuming that sources are in the far-field. Finding
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Fig. G.1: A typical scenario of microphone array calibration problem for a binaural HAS. We aim
to find the relative locations of h1 and h2 using signals received from sound sources s1, s2, ..., sN
which are distributed randomly around the user.

the appropriate invertible matrix is a non-linear optimization problem [9],
which might be trapped in local minima. An SVD-based approach has also
been proposed in [10], which avoids the far-field assumption but requires co-
location of one of the sources and one of the microphones for a closed-form
solution. Recently, an alternative approach was proposed [11] that solves the
localization problem for a minimal case, where minimal number of micro-
phones and sound sources are required to solve the problem, without im-
posing any co-location constraint. However, for overdetermined cases, where
more sound sources or microphones than the minimal case are available, an
additional non-linear optimization is still required. In [12] a closed-form
solution has been proposed for an overdetermined case based on ToA mea-
surements, for which synchronization of sources and microphones is needed.
Lately, a new approach has been proposed [6] where pairs of microphones are
set on a rigid rack, similar to the problem considered in this paper. However,
the approach in [6] is based on ToA measurements which are not suitable for
HAS applications.

Fig. G.1 shows an exemplary scenario of the problem considered in this
paper. There are two HAs hk, k = 1, 2, each with two microphones rk,1 and
rk,2. The distance l between rk,1 and rk,2 is known, but the relative loca-
tions of h1 and h2 are unknown (we define the location of hk as the center
of its microphones axis). We aim to find the relative locations of h1 and h2
using the signals received by the HAs microphones from N sound sources
s1, s2, ..., sN . We assume that N is known and, at each time frame, exactly one
sound source is active. This assumption is reasonable in HA applications,
because when the HAS user moves his/her head, the relative location of a
sound source with respect to the microphone array will change, which can
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2. Problem Formulation

be interpreted as a new sound source originating from a different relative
location. Therefore, the user’s head movements ensure sound signals from
several different relative locations as needed.

The main contribution of this paper is in modeling the microphone array
calibration problem as a linear system by utilizing a special far-field assump-
tion. The proposed model is based on target signals TDoAs, which do not
need clock synchronization between sound sources and microphones, and
knowledge of target signals is not necessary. The latter point means that
special calibration signals are unnecessary, and we can use signals which are
naturally present, e.g. speech signals, for the calibration. To solve the mod-
eled calibration problem, we use a least squares (LS) estimator, which ad-
ditionally provides estimates of the sound sources locations. The proposed
method effectively exploits the extra information about the microphones dis-
tance in a HA and needs only two sources when considering the horizontal
plane, i.e. two dimensions. For simplicity, we will discuss our estimator in
2D. However, the generalization to three dimensions is straightforward.

2 Problem Formulation

Let tk,i,j denote the ToA of the target signal generated by source sj received
at receiver rk,i (microphone i ∈ {1, 2} of hearing aid hk ∈ {h1, h2}), which is
given by

tk,i,j =
‖rk,i − sj‖2

c
+ tj + δk,i, (G.1)

where ‖.‖2 denotes the Euclidean norm, c is the sound speed, tj is the emis-
sion time at source j, and δi is the internal delay of microphone rk,i. If we as-
sume that the internal delays of the HAS microphones are equal, i.e. δk,i = δ
for all i and k, the TDoA of the target signal generated by source j received
at rk,i and ru,w (microphone w ∈ {1, 2} of hearing aid hu ∈ {h1, h2}) is

∆k,i,u,w,j = tk,i,j − tu,w,j =
‖rk,i − sj‖2

c
−
‖ru,w − sj‖2

c
.

Hence, the TDoA depends only on the locations of the sources and the re-
ceivers, and it is independent of the δ and tjs. In the following, we will
estimate the relative locations of the HAs using TDoAs and a special far-field
assumption.

2.1 Far-field assumption

Let dk,j denote the distance between sj and hk. In HAS applications, the
dk,js are usually much larger than the microphones distance within a HA,
i.e. dk,j � l. Therefore, we can assume that the DoAs of the target sounds
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Fig. G.2: The special far-field assumption considered in this paper.

for the microphones of a HA are almost equal (see Fig. G.2). However, we
assume the target distances are not much larger than the diameters of the
user’s head, which means θ1,j and θ2,j are not necessarily equal.

The far-field assumption and the given estimated TDoAs allow us to esti-
mate θk,j, k = 1, 2 (see Fig. G.2), up to a sign as follows:

∆̂k,2,k,1,j =
l
c

cos
(

θ̂k,j

)
⇒ θ̃k,j = ±θ̂k,j = ± arccos

( c
l

∆̂k,2,k,1,j

)
, (G.2)

where ∆̂k,2,k,1,j is the estimated TDoA between rk,2 and rk,1 for the target signal
from sj. Note that the DoAs are expressed clockwise with respect to the
microphones axis. Moreover, we define the TDoA of the target signal from

sj between midpoint of h1 and h2 as ∆j =
∆̂2,1,1,1,j+∆̂2,2,1,2,j

2 to estimate ∆dj =
d2,j − d1,j as

∆dj ≈ ∆jc. (G.3)

Therefore, there are three known parameters for each source sj: θ̃1,j, θ̃2,j and
∆dj, which leads to 3N known parameters in total. On the other hand, the
locations of the sound sources, h1 and h2 are unknown. Without loss of
generality, we will assume h1 = [ 0, 0 ]T, and we estimate locations of h2 and
{s1, ..., sN} with respect to h1. As a consequence, we have 2N + 2 unknown
in a two-dimensional scenario, and the calibration problem is solvable when
3N ≥ 2N + 2, i.e. N ≥ 2.

3 Localization Algorithm

In this section, we propose an algorithm to estimate the relative locations of h1
and h2 using the known parameters. The relation between sj and hk, k = 1, 2,
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can be written as

sj = hk + dk,j
[
sin(θk,j) cos(θk,j)

]T , (G.4)

which allows us to formulate the relative location of h2 as

h2 =

[
X
Y

]
= h1 + d1,j

[
sin(θ1,j)
cos(θ1,j)

]
− d2,j

[
sin(θ2,j)
cos(θ2,j)

]
. (G.5)

From Eq. (G.3), we have d2,j = d1,j + ∆dj. Therefore,[
X
Y

]
=

[
d1,j sin(θ1,j)− (d1,j + ∆dj) sin(θ2,j)
d1,j cos(θ1,j)− (d1,j + ∆dj) cos(θ2,j)

]
. (G.6)

Considering the second row of Eq. (G.6), we can express d1,j as a function of
Y and ∆dj:

d1,j =
Y + ∆dj cos(θ2,j)

cos(θ1,j)− cos(θ2,j)
. (G.7)

Substitution of Eq. (G.7) into the first row of Eq. (G.6) leads to:[
cos(θ1,j)− cos(θ2,j)
− sin(θ1,j) + sin(θ2,j)

]T [X
Y

]
= ∆dj sin(θ1,j − θ2,j), (G.8)

and considering N sound sources together leads to a linear system of equa-
tions

Ah2 = bbb, (G.9)

where A ∈ RN×2 and bbb ∈ RN . The first and second columns of row j of A
are Aj1 = cos(θ1,j)− cos(θ2,j), Aj2 = − sin(θ1,j) + sin(θ2,j) respectively, and
row j of bbb is bj = ∆dj sin(θ1,j − θ2,j).

Because in practice observations are always noisy, to obtain the location
of h2 based on Eq. (G.9), we will compute a LS estimate of h2 which is given
by

ĥ2 = A+bbb, (G.10)

where A+ denotes the pseudo-inverse of A. and straightforwardly, the LS
estimators of sj ∈ {s1, s2, ..., sN} can be obtained by replacing ĥ2 in Eqs. (G.7)
and (G.4), respectively.

One remaining issue is that, as showed in Sec. 2.1, we can estimate θk,j

only up to a sign
(
see Eq. (G.2)

)
. Therefore, for each sj, three different cases

are conceivable (see Fig. G.3):

• Case 1: sj is on the right sides of h1 and h2 (Fig. G.3a), i.e. θ1,j = +θ̂1,j

and θ2,j = +θ̂2,j.
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(a) The source is on the right side of the both HAs.

(b) The source is between the HAs.

(c) The source is on the left side of the both HAs.

Fig. G.3: Different relative locations of a sound source with respect to a binaural HAS.
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• Case 2: sj is between h1 and h2 (Fig. G.3b), i.e. θ1,j = +θ̂1,j and θ2,j =

−θ̂2,j.

• Case 3: sj is on the left sides of h1 and h2 (Fig. G.3c), i.e. θ1,j = −θ̂1,j and
θ2,j = −θ̂2,j.

We can distinguish Case 1 and Case 3 by ∆j:

• If ∆j > 0, the target signal reached h1 before h2, i.e. case 3 cannot be
the case.

• If ∆j < 0, the target signal reached h2 before h1, i.e. case 1 cannot be
the case.

However, cases 1 and 2, and cases 2 and 3 are not distinguishable from each
other based on ∆dj. In other words:

[
θ1,j, θ2,j

]
=

{
[±θ̂1,j,−θ̂2,j], if ∆dj > 0
[+θ̂1,j,±θ̂2,j], otherwise

. (G.11)

Therefore, for each source, we have two different cases which cannot be dis-
tinguished based on ∆dj. To resolve this ambiguity, we solve the calibration
problem for all possible combinations of different cases of the θk,js, and the
combination of the cases that can justify all the estimated parameters best is
the solution to the problem. Two different cases for each source result in 2N

different combinations of cases considering all sources. Therefore, the prob-
lem must be solved for 2N different combinations of the cases, and the best
combination b∗ is given by:

b∗ = arg min
b∈B

N

∑
j=1
‖∆dj − ∆̂dj,b‖2, (G.12)

where B is the set of all possible combinations of the cases, and ∆̂dj,b =

d̂2,j,b − d̂1,j,b, where d̂1,j,b is obtained by Eq. G.7 for combination b and d̂2,j,b =

‖ĥ2,b − ŝj,b‖2, (ĥ2,b and ŝj,b denote the estimated locations of h2 and sj for
combination b, respectively). The outputs of the localization algorithm are
ĥ2,b∗ and {ŝ1,b∗ , ..., ŝN,b∗}.

3.1 TDoA estimation

The last issue is how to estimate the TDoAs upon which the above algorithm
relies. The most well-known approach for time delay estimation (TDE) is
based on the Generalized Cross Correlation (GCC) method [13]: the GCC of
two correlated signals has a maximum at a lag τ corresponding to the delay.
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Let rk,i,j(n) and ru,w,j(n) denote the signals received from source j by mi-
crophone i of hearing aid k, and microphone w of hearing aid u, respectively.
Furthermore, let Rk,i,j( f ) and Ru,w,j( f ) denote their discrete Fourier trans-
forms (DFTs), respectively. The GCC is then given by [13]:

Rk,i,u,w,j(τ) =
M

∑
f=1

ψ( f )R∗k,i,j( f )Ru,w,j( f )ej2π f τ , (G.13)

where M is the DFT order, ∗ represents complex conjugation and ψ(.) is a
weighting function. Then, the estimated ∆k,i,u,w,j is given by:

∆̂k,i,u,w,j = arg max
τ
Rk,i,u,w,j(τ). (G.14)

Because microphone array calibrations are usually performed in high SNR
situations, we simply use the conventional cross-correlation method for TDoA
estimation, i.e. ψ( f ) = 1 for all f in Eq. (G.13). However, to improve the TDE
performance in noisy situations, there are more complex weighting functions
which take into account the noise characteristics [13].

Because TDoAs are estimated based on sampled signals, the estimation
accuracy is limited by the sampling interval. Moreover, the small distance
between the microphones of a HA limits the possible discrete TDoA values.
Therefore, subsample TDE is necessary, and we need interpolation methods
to tackle this problem [14, 15]. In this paper, we use the cubic spline method
[16] to interpolate the microphone signals before computing the GGC.

4 Simulation Results

4.1 Setup

To evaluate the performance of the proposed algorithm, we consider a free-
field situation, i.e. head presence is ignored in the simulations. Moreover, we
set l = 1 cm and consider the head diameter, or more precisely, the distance
between h1 and h2 to be 16 cm. We distribute the sound sources randomly
according to a uniform distribution on a disc or a circle (depending on the
experiment) around the user. We use the TSP database [17] for generating
speech sound sources. The sampling frequency is 48 kHz, the estimation
window length is 1024 samples, and we run the simulations for 200 different
realizations. The number of query points for interpolation between each two
consecutive sample points of the signal is 100.

4.2 Performance measures

To evaluate the estimated location of h2, we use

σh = ‖h2 − ĥ2‖2, (G.15)
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Fig. G.4: The box plot of the performance of the proposed algorithm as a function of number of
sound sources. The bottom and top of the boxes are the first and third quartiles, and the bands
inside the boxes are the median.

where ‖.‖ denotes the 2-norm. As another performance metric, we use the
mean absolute error of the obtained DoAs:

σθ =
1
N

N

∑
j=1

(
|θ1,j − θ̃1,j|+ |θ2,j − θ̃2,j|

2

)
, (G.16)

where θ̃1,j and θ̃2,j obtained from h1 = [ 0, 0 ]T, ĥ2,b∗ and ŝj,b∗ , and θ1,j and θ2,j
are the true DoAs of the target signal from sj to h1 and h2, respectively.

To demonstrate the results, we use box plots (Figs. G.4 and G.5), where
the bottom and top of the box are the first and third quartiles, and the band
inside the box is the median.

4.3 Results and discussion

The effect of the number of sound sources on the proposed algorithm has
been shown in a box plot in Fig. G.4. As can be seen, increasing the number of
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Fig. G.5: The box plot of the performance of the proposed algorithm as a function of the distance
of the sound sources from the user.

sound sources from two to three would improve the estimation performance.
However, increasing the number of the sound sources to more than three
does not offer any advantages because the fundamental subsample error of
the TDoA estimation cannot be overcome by increasing the number of the
sound sources. Overall, the estimated medians of σh and σθ are around 1 cm
and 2 degree, respectively. It should be mentioned that dj ∈ [0.5, 1.5] in these
simulations.

Fig. G.5 shows the box plot of the proposed algorithm as a function of dj.
We distribute three sound sources randomly on a circle centered at the user’s
head for different distances. Generally, increasing the distance degrades the
performance because the distance increment would put the sound sources in
a far-field situation regarding both HAs—we modeled the problem in a way
that the sound sources are in far-field with respect to each HA individually,
not both HAs. Overall, as before, the estimated medians of σh and σθ are
around 1 cm and 2 degree, respectively.
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5 Conclusion and Future Work

In this paper, we studied the microphone array calibration problem for bin-
aural hearing aid systems. The proposed algorithm is based on the estimated
TDoAs of the target signals received by hearing aid microphones. We used
a far-field assumption to model the problem as a linear system, and we pro-
posed a least squares estimator to estimate the locations. As future work,
we plan to study the proposed algorithm under more realistic situations by
considering presence of the head, microphone noise and reverberation.
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1. Introduction

Abstract

In this paper, we present a localization algorithm which simultaneously estimates the
locations of the target sound sources and dual-microphone sub-arrays using time-
of-flight (ToF) measurements of the target signals. The proposed solution is mainly
developed for a binaural hearing aid system (HAS) which consists of two hearing
aids (HAs) mounted on the ears of a user. Each HA has two microphones at a known
distance from each other, but the relative locations of the HAs are unknown. In this
paper, we aim to find the relative locations of the HAs and the locations of the target
sources. The main contribution of this paper is in modeling the localization problem
as a simple linear system of equations, which markedly decreases the computation
overhead in contrast to most state-of-the-art localization algorithms, which model the
problem as a non-linear problem resulting in higher computational complexity. The
proposed algorithm requires at least two sound sources with different locations to
solve the localization problem in 2D.

1 Introduction

In many microphone array applications, knowledge of the relative positions
of the microphones is required. For example, in [1, 2], estimation of the direc-
tion of arrival (DoA) of target sounds for a binaural hearing aid system (HAS)
relies on the knowledge of the microphone array geometry. A binaural HAS
consists of two hearing aids (HAs) mounted on the ears of a user. Different
heads radii and varying shapes of pinnae of users [3] result in uncertainties
about the geometry of the microphone array, which deteriorate performance
of the DoA estimation algorithms.

The microphone array localization problem, also called the microphone
array calibration problem, deals with determining the relative locations of
the microphones in a microphone array using the signals received from some
sound sources, whose positions are unknown. The state-of-the-art solutions
are based on different types of measurements such as received signal strength
(RSS) [4], time-of-flight

(
ToF, sometimes called time-of-arrival (ToA)

)
[5–9],

time-difference-of-arrival (TDoA) [10, 11], and angle-of-arrival [12]. Among
these, we use ToF measurements because they can be relatively easily es-
timated in the setup considered in this paper. The considered setup is an
advanced Hearing Aid System (HAS) which can connect to a wireless mi-
crophone worn by a target talker (cf. Fig. H.1). The wireless microphone pro-
vides an almost noise-free content of the target signals and their time of
emissions, which are necessary for the ToFs estimations.

Given the inter-node distances (obtained by multiplying the ToFs by the
sound speed), different techniques have been proposed to solve the local-
ization problem. Multi-dimensional scaling (MDS) [13] is one of the earliest
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Fig. H.1: The binaural hearing aid system (HAS) considered in this paper. It consists of two
hearing aids (HAs) and four microphones: r1, r2, r3 and r4. Moreover, the HAS can connect to
a wireless microphone worn by a target talker. The distance l between the microphones within
a HA is known, but the relative locations of the microphones are unknown. We aim to find the
relative locations of ri , i = 1, · · · , 4, and the locations of the target talker over time using the
signals received by the HAS microphones from the target talker.

methods that implicitly needs each node to be a compound of a microphone
and a sound source, a requirement which in general is not satisfied in HA
applications. Alternatively, one could consider a likelihood maximization
approach [14] which leads to a non-convex optimization problem and might
be trapped in local minima. A singular value decomposition (SVD)-based
approach has been proposed in [15] that finds the coordinates of the mi-
crophones up to an invertible matrix by assuming that sources are in the
far-field. Finding the appropriate invertible matrix is a non-linear optimiza-
tion problem [15]. Recently, a closed-form solution has been proposed in [9],
which avoids the far-field assumption but requires co-location of one of the
sources and one of the microphones and also needs both microphones and
sources to be spread on the 3D space, i.e. they do not lie on a plane; however,
microphones’ locations in HAS scenarios usually span a 2D plane. Recently,
an alternative approach was proposed [16] that solves the localization prob-
lem for a minimal case, where minimal number of microphones and sound
sources are required to solve the problem, without imposing any co-location
constraint. However, for overdetermined cases, where more sound sources
or microphones than the minimal case are available, an additional non-linear
optimization is still required. In [8], a matrix-factorization-based solution has
been proposed which needs at least five microphones and 10 sound sources
in 3D and uses a non-linear least-squares approach to refine the estimations.
Lately, a new approach has been proposed [7] where pairs of microphones are
set on a rigid rack, similar to the problem considered in this paper. However,
the approach in [7] do not tackle the problem when both the sound sources
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and the microphones lie on the same plane. In [10], a far-field assumption
has been employed to propose a TDoA-based localization algorithm for dual-
microphone sub-arrays.

The main contribution of this paper is in modeling the localization prob-
lem of the dual-microphone sub-arrays as a linear system of equations and
avoiding any far-field assumptions. The proposed model is based on target
signals’ ToFs, which can be estimated relatively easily in the setup considered
in this paper. The proposed method effectively exploits the extra information
about the microphones distance in a HA and needs only two sound sources
with different locations (or more precisely, two different relative positions of
the target talker with respect to the microphone array) in 2D. The relative
positions of the sound sources are also estimated simultaneously by the pro-
posed solution. We will discuss our estimator in 2D because HAS scenarios
usually span a 2D plane. However, the generalization to three dimensions is
relatively straightforward.

2 Problem Formulation

Fig. H.1 shows the binaural HAS considered in this paper. The HAS consists
of two HAs and has four microphones denoted by r1, r2, r3 and r4. Moreover,
the HAS can connect to a wireless microphone worn by the target talker. The
distance l between the microphones within a HA is known, but the relative
locations of the microphones are unknown. We aim to find the relative lo-
cations of the HAS microphones (r1, r2, r3 and r4) using the signals received
by the HAS microphones from the target talker over N different time frames:
{sj : j = 1, · · · , N}, where sj denotes the relative position of the target talker
with respect to the microphone array at time frame j. In HAS applications,
because of possible movements of the target talker and the movements of
the user’s head, the relative location of the target talker with respect to the
microphone array will change over time. This change can be interpreted as a
new sound source originating from a different relative location. We assume
that at each time frame the relative location of the target talker with respect
to the microphone array will change, and in this paper, we treat the different
relative locations of the target talker over N time frames as N different sound
sources.

The ToF of a signal is the time that it takes to travel the distance between
the source and the receiver. In other words, the ToF of a signal generated by
source j received at receiver i is

ti,j =
‖ri − sj‖2

c
, (H.1)

where ‖.‖2 denotes the Euclidean norm, and c is the sound speed. Assuming
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all the clocks in the system are synchronized, ti,j can be estimated by

t̂i,j = q̂i,j − τj, (H.2)

where q̂i,j denotes the estimated reception time (time of arrival) at receiver i of
the signal generated by source j, and τj denotes the emission time at source j.
In the HAS setup considered in this paper, q̂i,j can be estimated by the cross-
correlation between the noise-free target signal transferred via the wireless
microphone and the signal received by microphone i of the HAS [17], and τj
is provided by the wireless microphone worn by the target talker. Now, we
can estimate the distances between ri and sj via

d̂i,j = t̂i,j c. (H.3)

In the following, we will estimate the relative locations of the microphones
and sound sources using the obtained distances.

In the localization problem considered in this paper, locations of the
sound sources (the relative locations of the target talker over N time frames)
and the HAS microphones are unknown. Without loss of generality, we as-
sume r1 = [0, 0]T and r2 = [0, l]T, and we estimate locations of r3, r4 and
{sj, j = 1, · · · , N} with respect to r1. Therefore, we have 2N + 4 unknown
parameters in a two-dimensional scenario. On the other hand, for each sj,
we have four different distances between the microphones and sj. Moreover,
the distance between r3 and r4 is also known. Therefore, we have 4N + 1
known parameters. Subsequently, the localization problem is solvable when
2N + 4 ≤ 4N + 1, or more precisely N ≥ 2.

3 Localization Algorithm

In this section, we propose a self-localization algorithm to estimate the rela-
tive locations of the microphones and sound sources using {d̂i,j : i = 1, · · · , 4;
j = 1, · · · , N}. Fig. H.2a shows an exemplary relative positions of the micro-
phones and source j. As can be seen, r1, r2 and sj forms a triangle which
its three sides (d1,j, d2,j and l) are almost known. Similarly, r3, r4 and sj also
forms another triangle which its three sides (d3,j, d4,j and l) are almost known.
Therefore, using the law of cosines [18], we can estimate θ1,j, θ3,j and θ4,j up
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to a sign by:

θ̃1,j = ±θ̂1,j = ± arccos

(
l2 + d̂2

1,j − d̂2
2,j

2 l d̂1,j

)
, (H.4)

θ̃3,j = ±θ̂3,j = ± arccos

(
l2 + d̂2

3,j − d̂2
4,j

2 l d̂3,j

)
, (H.5)

θ̃4,j = ±θ̂4,j = ±π ∓ arccos

(
l2 + d̂2

4,j − d̂2
3,j

2 l d̂4,j

)
. (H.6)

It should be mentioned that the input argument of arccos(.) should be in
the interval of [−1, 1], and if the argument lies outside this interval because
of the estimation errors, we will truncate the argument. Moreover, θi,js are
expressed clockwise with respect to the microphones axis.

Let r̂3,j and r̂4,j denote the estimated relative location of r3 and r4 with
respect to r1 using the estimated distances from source j, respectively. Re-
garding Fig. H.2a, r̂3,j and r̂4,j are given by

r̂3,j = r1 + d̂1,j

[
sin(θ1,j)
cos(θ1,j)

]
− d̂3,j

[
sin(θ3,j)
cos(θ3,j)

]
, (H.7)

r̂4,j = r1 + d̂1,j

[
sin(θ1,j)
cos(θ1,j)

]
− d̂4,j

[
sin(θ4,j)
cos(θ4,j)

]
, (H.8)

respectively. With perfect knowledge of the parameters, estimations of the
relative locations using distances from different sources should be equal, i.e.
r̂3,1 = r̂3,2 = · · · = r̂3,N , and r̂4,1 = r̂4,2 = · · · = r̂4,N . However, in practice,
observations are always noisy; therefore, we consider

r̂3 =
1
N

N

∑
j=1

r̂3,j, r̂4 =
1
N

N

∑
j=1

r̂4,j (H.9)

as the estimated relative locations of r3 and r4. Regrading the microphones’
locations (the unknown variables), Eqs. (H.7), (H.8) and (H.9) form a linear
system of equations, which is the core of the localization algorithm in this
paper.

One remaining issue is that we can estimate θi,j only up to a sign
(
cf.

Eqs. (H.4), (H.5) and (H.6)
)
. Therefore, for each sj, three different cases are

conceivable (cf. Fig. H.2):

• Case 1: sj is on the right sides of the HAS (cf. Fig. H.2a), i.e. θ1,j = +θ̂1,j,
θ3,j = +θ̂3,j and θ4,j = +θ̂4,j.

• Case 2: sj is between the two HAs (cf. Fig. H.2b), i.e. θ1,j = +θ̂1,j,
θ3,j = −θ̂3,j and θ4,j = −θ̂4,j.
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(a) The source is on the right side of the both HAs.

(b) The source is between the HAs.

(c) The source is on the left side of the both HAs.

Fig. H.2: Different relative locations of the target talker with respect to a binaural HAS.
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3. Localization Algorithm

• Case 3: sj is on the left sides of the HAS (cf. Fig. H.2c), i.e. θ1,j = −θ̂1,j,
θ3,j = −θ̂3,j and θ4,j = −θ̂4,j.

We can distinguish Case 1 and Case 3 by the differences between d̂i,js:

• If d̂1,j + d̂2,j > d̂3,j + d̂4,j, case 3 cannot be the case.

• If d̂1,j + d̂2,j < d̂3,j + d̂4,j, case 1 cannot be the case.

However, cases 1 and 2, and cases 2 and 3 are not distinguishable from each
other using the differences between d̂i,js. In other words:

[
θ1,j, θ3,j, θ4,j

]
=

{
[+θ̂1,j,±θ̂3,j,±θ̂4,j], if ∆dj > 0
[±θ̂1,j,−θ̂3,j,−θ̂4,j], otherwise

. (H.10)

where ∆dj = (d̂1,j + d̂2,j) − (d̂3,j + d̂4,j). Therefore, for each source j, we
have two different cases which cannot be distinguished based on ∆dj. Two
different cases for each source result in 2N different combinations of cases
considering all sources.

Let P denote the set of all possible combinations of the indistinguishable
cases considering all sources (|P| = 2N). We aim to find the true combination
of the cases (p∗ ∈ P) which can justify all the measurements best.

For each p ∈ P and each source j, we can solve the localization problem
using Eqs. (H.7) and (H.8). Therefore, we have N different estimators for r3
and r4 for each p ∈ P :

R̂3,p = {r̂3,1,p, r̂3,2,p, · · · , r̂3,N,p}, (H.11)

R̂4,p = {r̂4,1,p, r̂4,2,p, · · · , r̂4,N,p}, (H.12)

where r̂3,j,p and r̂4,j,p denote the estimator of r3 and r4, respectively, using
source j for p ∈ P . The best combination is given when the differences be-
tween all the N estimators are minimum:

p∗ = arg min
p∈P
{σ2

R̂3,p
+ σ2

R̂4,p
} (H.13)

where

σ2
R̂3,p

=
1
N

N

∑
j=1

(
r̂3,j,p − r̂3,p

)2 , (H.14)

σ2
R̂4,p

=
1
N

N

∑
j=1

(
r̂4,j,p − r̂4,p

)2 , (H.15)

where

r̂3,p =
1
N

N

∑
j=1

r̂3,j,p, r̂4,p =
1
N

N

∑
j=1

r̂4,j,p. (H.16)
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The outputs of the localization algorithm are r̂3,p∗ and r̂4,p∗ . Moreover, the
position of sj, j = 1, · · · , N, can be estimated using the estimated positions
of each of the four microphones and the corresponding distances and angles,
i.e. we have four estimators for each sj. We consider the average of these four
estimators as the estimator of sj, i.e.

ŝj =
1
4

4

∑
i=1

(
r̂i,p∗ + d̂i,j

[
sin(θ

∗
i,j)

cos(θ
∗
i,j)

])
, (H.17)

where θ
∗
i,j is the estimation of θi,j for the best combination p∗, and r̂1,p∗ =

[0, 0]T and r̂2,p∗ = [0, l]T.

3.1 ToF estimation

In this section, we explain in more details how to estimate the ToFs upon
which the above algorithm relies.

As mentioned in Sec. 2, the ToF between source j and microphone i, de-
noted by ti,j, can be estimated by Eq. (H.2), where τj is given by the wireless
microphone. Therefore, estimation of ti,j depends on q̂i,j. The more accurate
the estimation of q̂i,j, the more accurate the estimation of ti,j. In the following,
we discuss how to estimate q̂i,j in the considered setup using a Generalized
Cross-Correlation (GCC) approach.

Let xj(n) denote the noise-free target signal emitted at sj, and let yi,j(n)
denote the noisy signal received from source j by microphone i of the HAS.
It should be noted that xj(n) is available at the HAS via the wireless micro-
phone. Furthermore, let Xj( f ) and Yi,j( f ) denote the discrete Fourier trans-
forms (DFTs) of xj(n) and yi,j(n), respectively. The GCC is then given by [19]:

Ri,j(τ) =
M

∑
f=1

ψ( f )X∗j ( f )Yi,j( f )ej2π
f

M τ , (H.18)

where M is the DFT order, ∗ represents complex conjugation and ψ(.) is a
weighting function. Then, q̂i,j is given by:

q̂i,j = arg max
τ
|Ri,j(τ)|, (H.19)

where |.| gives the absolute value of its argument. In this paper, we sim-
ply use the conventional cross-correlation method for the ToF estimation, i.e.
ψ( f ) = 1 for all f in Eq. (H.18). However, to improve the estimation perfor-
mance in noisy situations, there are more complex weighting functions which
take into account the noise characteristics [19].

Because ToFs are estimated based on sampled signals, the estimation ac-
curacy is limited by the sampling interval. Therefore, subsample estimation
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errors are unavoidable, and we use interpolation methods to mitigate this
problem [20, 21]. In this paper, we use the cubic spline method [22] to in-
terpolate the microphone signals before computing the GGC to decrease the
subsample estimation errors.

4 Simulation Results

In this section, we evaluate the performance of the proposed localization
algorithm in simulation experiments. Specifically, we study the effects of the
SNR, the distance between the target talker and the user, and the number of
the sound sources (N) on the proposed algorithm.

4.1 Setup

For evaluation, we consider a free-field situation, i.e. head presence is ignored
in the simulations. Moreover, we set l = 1.5 cm and consider the head diame-
ter, or more precisely, the distance between two hearing aids to be 16 cm. We
distribute the sound sources randomly according to a uniform distribution
on a disc or a circle (depending on the experiment) around the user. We use
the TSP database [23] for generating speech sound sources. The sampling fre-
quency is 48 kHz, the estimation window length is 4096 samples, and we run
the simulations for 200 different realizations. The number of query points for
interpolation between each two consecutive sample points of the signal is 100.

To simulate the noisy received signal yi,j(n), the following signal model

yi,j(n) = xj(n) ∗ hi,j(n) + νi,j, (H.20)

has been used, where hi,j(n) and νi,j(n) are the acoustic channel impulse
response between source j and microphone i, and an additive noise compo-
nent, respectively. Convolution operator is represented by ∗. We consider
the additive noise component νi,j in Eq. (H.20) to be statistically independent
of the target signal, and we generate νi,j as an independent and identically
distributed zero-mean Gaussian random variable, i.e. νi,j ∼ N (0, σ2

ν ).

4.2 Performance measures

To evaluate the estimated microphone locations, we use mean absolute error
defined as

σe =
1
2

4

∑
i=3
‖ri − r̂i,p∗‖2. (H.21)

Moreover, because in HAS applications DoAs of the target sounds are more
important than the exact locations of the target sources, to evaluate the esti-
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mated positions of the sound sources, we use

σθ =
1

4N

N

∑
j=1

4

∑
i=1
|θi,j − θ̌i,j|, (H.22)

where θi,j is the true DoA of the target signal from source j at microphone i,
and θ̌i,j is the estimated DoA given by

θ̌i,j = arctan

(
ûj − x̂i

ŵj − ŷi

)
, (H.23)

where r̂i,p∗ = [x̂i, ŷi]
T and ŝj = [ûj, ŵj]

T.
To demonstrate the results, we use box plots (Figs. H.3, H.4 and H.5),

where the bottom and top of the box are the first and third quartiles, and
the band inside the box is the median of the results obtained from different
realizations.

4.3 Results and discussion

The effect of the SNR on the proposed algorithm has been shown in a box
plot in Fig. H.3. As expected, the higher the SNR, the better performance
of the localization algorithm. This is because, at higher SNRs, estimations
of the ToFs and estimations of the distances between the sound sources and
the microphones are more accurate. However, increasing the SNR to infinite
would not lead to a zero error because the fundamental subsample error of
the ToF estimation cannot be overcome by increasing the SNR. Nevertheless,
if ToFs could in a way be estimated perfectly, then the estimation error of the
proposed localization algorithm would be zero.

Fig. H.4 shows the box plot of the results of the proposed algorithm as
a function of the distance between the target talker and the user. For these
results, we consider N = 3 and for each realization, the three sound sources
are distributed randomly on a circle centered at the user’s head for differ-
ent distances. As can be seen, generally, increasing the distance degrades
the localization performance. Intuitively, it is because increasing the distance
between the user and the target talker leads to a far-field situation, i.e. the
distances between the microphones are negligible with respect to the distance
between the user and the target, or in other words, the microphones’ posi-
tions look almost the same from the position of the target talker. Therefore,
determining the exact locations of the microphones is harder for the pro-
posed localization algorithm. To be more precise, regarding Eqs. (H.7) and
(H.8), the same estimation errors of θi,js result in higher localization errors at
higher distances.

Performance of the proposed localization algorithm as a function of N
has been shown in Fig. H.5. As expected, increasing N generally improves
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Fig. H.3: The box plot of the performance of the proposed algorithm as a function of SNR. The
distance between the target talker and the user is in the range of 0.5 m to 1.5 m, and N is 3.

the localization performance because it provides more information. However,
it costs higher computational overhead.

Overall, at SNRs around 30 dB and distances di,j ≈ 1 m, the estimation
error of the microphones locations is around 1 cm, and the estimation error
of the target sounds DoAs is less than 1◦.

5 Conclusion and Future Work

In this paper, we proposed a localization algorithm for dual-microphone sub-
arrays considering hearing aid applications. The proposed localization algo-
rithm is based on the estimated ToFs of the target signals received by the
hearing aid microphones from sound sources whose locations are unknown.
We modeled the problem as a linear system of equations and avoided any
far-field assumption. We studied the impacts of different factors, such as
SNR, distance of the sound sources from the microphones and number of
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Fig. H.4: The box plot of the performance of the proposed algorithm as a function of distance
between the target talker and the user. The SNR is 30 dB, and N is 3.

the sound sources, on the proposed algorithm. As future work, we plan to
study the proposed algorithm under more realistic situations by considering
presence of the head and reverberation.
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