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Abstract

Compressive Failure Mechanisms in Layered Materials.

Two important failure modes in fiber reinforced composite materials in-
cluding layers and laminates occur under loading conditions dominated by
compression in the layer direction. These two distinctly different failure
modes are

1. buckling driven delamination

2. failure by strain localization into kink bands.

The present thesis falls into two parts dealing with the two failure modes.
In the first part of the thesis the effects of system geometry on buckling
driven delamination is investigated. Previous work has focused on buckling
driven delamination of surface layers on flat substrates or on cylindrical
substrates modeling the delamination as an interface fracture mechanical
problem. Here attention is directed towards double-curved substrates, which
introduces a new non-dimensional combination of geometric parameters. It
is shown for a wide range of parameters that by choosing the two non-
dimensional parameters suitably, one of them plays a very insignificant role
on the fracture mechanical parameters such as normalized energy release
rate and mode mixity, which has obvious impact on the presentation of
the results. In some cases, the local curvatures of the system is so high
compared to the extent of the delamination that it may be better modeled as
a sharp corner. The effects of sharp corners on buckling driven delamination
have been studied and are shown to have a significant effect on the fracture
mechanical parameters. One effect of the substrate corner is a decreased
range of parameters for which the interface crack remains open and as a
consequence a study of the effects of crack closure has been carried out.

The other part of the thesis analyzes failure by kink band formation.
More specifically a constitutive model developed to study kink band for-
mation has been implemented into the finite element code ABAQUS. The
analysis focuses on the performance of ABAQUS in terms of reliability and
rate of convergence. Good agreement with previously obtained results is
demonstrated. The constitutive model has no intrinsic length scale for which
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reason the width of the band is mesh dependent. This has some impact on
the convergence rate for decreasing mesh size in the load vs. end shortening
response for a rectangular block of material. Especially in the immediate
post critical range the convergence rate may be slow. The capabilities of
the model to deal with more complicated structural and geometrical effects
are demonstrated by analyzing kink band formation in composite materials
where the load and fiber directions are misaligned.
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Abstrakt (in Danish)

Skadesmekanismer i lagdelte materialer udsat for kompressions-
belastninger.

To vigtige skadesmekanismer i fiberforstærkede kompositmaterialer herun-
der lagdelte materialer og laminater forekommer under belastningsforhold,
der domineres af trykspændinger i fiberretningen. Disse to skadesmekanis-
mer er

1. bulingsdrevet delaminering

2. skade og brud som følge af tøjningslokalisering i s̊akaldte kinkb̊and.

Denne afhandling falder i to dele som analyserer de to skadesmekanismer.
I den første del af afhandlingen studeres effekterne af systemgeometrien
p̊a bulingsdrevet delaminering. Tidligere arbejder har fokuseret p̊a bulings-
drevet delaminering af overfladelag p̊a flade substrater eller p̊a cylindriske
substrater idet delamineringen er modelleret som et brudmekanisk prob-
lem med en revne i en skilleflade. Her fokuseres der p̊a dobbeltkrumme
flader, hvilket introducerer en ny dimensionsløs kombination af geometriske
parametre. Det vises for et stort omr̊ade af parametre, at hvis de to di-
mensionsløse vælges hensigtsmæssigt, har den ene ingen praktisk betydning
for de brudmekaniske parametre s̊asom energifrigørelsesraten og forholdet
mellem modus 1 og 2, hvilket har indlysende betydning for præsentation
af resultater. I visse tilfælde er den lokale krumning af substratet s̊a stor,
sammenlignet med udstrækningen af delamineringen, at den bedre mod-
elleres som et skarpt hjørne. Effekterne af et skarpt hjørne p̊a bulings-
drevet delaminering er studeret og er vist at have væsentlig betydning p̊a de
brudmekaniske parametre. En effekt af hjørnet i substratet er et aftagende
omr̊ade for hvilket revnen forbliver åben og som en konsekvens heraf, er
betydningen af kontakt mellem brudfladerne undersøgt.

Den anden del af afhandligen analyserer skade ved kinkb̊andsdannelse.
Mere specifikt, er en konstitutiv model udviklet til at studere kinkb̊ands-
dannelse blevet implementeret i finite element programmet ABAQUS. Analy-
sen fokuserer p̊a resultaterne opn̊aet med ABAQUS i forhold til p̊alidelighed
og konvergenshastighed. God overensstemmelse med tidligere resultater er
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opn̊aet. Den konstitutive model har ingen indbygget længdeskala hvorfor
bredden af kinkb̊andet er netafhængigt. Dette har nogen indflydelse p̊a kon-
vergenshastigheden med aftagende netstørrelse af last-deformationsresponset
for en rektangulær blok materiale. Specielt i det umiddelbare postkritiske
omr̊ade kan konvergenshastigheden været noget langsom. Modellens evne
til at h̊andtere mere komplicerede strukturelle og geometriske effekter er
demonstreret ved at analysere kinb̊andsdannelse i et kompositmateriale,
hvor belastnings- og fiberretning er forskellige.
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Chapter 1

Delamination of Thin Films

1.1 Introduction

Buckling-driven delamination is an important failure mechanism in mate-
rial combinations where layers of different thickness and different elastic
and thermal properties are joined. Examples of such material combinations
include turbine engine blades with thermal barrier coatings, sandwich struc-
tures where a polymer foam core is bonded to thin cover plates, tools with
hard coatings applied for increased wear resistance, material combinations
with applications in the electronic industry, and diamond-like coatings on
materials for hip joint implants.

front

side
t

2b

M

∆N

E, ν

Es, νs

Figure 1.1: Straight sided blister on a plane substrate.

To describe the concept of delamination, consider a system consisting of
a thin film attached to a plane substate, as in Fig. 1.1. The thin layer is
subject to a uniform, bi-axial compressive stress, σ0. This stress may be an
intrinsic stress from the manufacturing process or thermal stress due to the
difference in thermal expansion coefficient. Suppose a small region exists in
which the bonding between the two materials is poor or non-existing; if the
compressive stress σ0 exceeds a critical value σc, the film will buckle away
from the substrate and this buckling will cause the interface crack to be
loaded by stresses and moments, as shown in Fig. 1.1. If the combination of
these loads lead to an energy release rate that exceeds the fracture toughness
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of the interface, the bonding between the thin film and the substrate will
break and the delaminated area, or blister, may increase in size.

Many problems concerning propagation of cracks can be treated using
the concept of steady-state crack growth, which entails a considerable sim-
plification of the problem, see Kyriakides (1994). Steady-state crack growth
implies that the front of the crack assumes a certain shape that remains sta-
tionary during propagation, which means that the energy release rate will
not depend on the length of the crack or the geometry of the crack front.

Different types of delaminations have been observed, among these the
circular blister, the telephone cord blister, and the straight-sided blister. In
the present work, the analysis will be restricted to the steady-state propa-
gation of the straight-sided blister, which is characterized by the fact that
it grows at one of the ends while the sides remain stationary.

Buckling-driven delamination of thin layers on flat surfaces has previ-
ously been studied in a number of works. The mechanism was described
initially in Chai et al. (1981) with applications to composite plates in mind.
Thin film buckling driven delamination was formulated in a fracture me-
chanics based framework in Evans and Hutchinson (1984). The analysis
was based on a combination of plate theory and fracture mechanics treating
the boundary between the delaminated and bonded region as a crack front.
Results for the energy release rate and stress intensity factors were obtained
for circular delaminations at bifurcation and in the post-bifurcation regime.
Thin film delamination treated in the framework of interface fracture me-
chanics taking into account the mixed mode interface fracture toughness of
an interface crack was introduced in Jensen et al. (1990). The significance
of the energy release rate as well as phase angles of loading along the crack
front was emphasized. The concept of steady-state propagation of buckling-
driven delamination was introduced in Hutchinson and Suo (1992).

Buckling-driven delamination of thin films on curved substrates has been
studied to a lesser extent. Hutchinson (2001) initially quantified the effect
by studying buckling-driven delamination of a thin film on a cylindrical
substrate, while Stor̊akers and Nilsson (1993) studied the effects of initial
geometrical imperfections for the planar case on the energy release rate at
buckling driven delamination. The imperfections cause the energy release
rate to be non-zero at infinitesimal stresses, as a bifurcation stress does not
exist.

In the present work results for delamination from spherical substrates
and around sharp corners are presented. The analysis is carried out under
the assumptions, that the size of the delaminated area is large relative to
the thickness of the film and that there exists a sharp boundary between the
delaminated region of the film and the bonded region. As a consequence of
these assumptions the boundary between the film and the bonded region can
be treated as an interface crack and the stresses in the delaminated region
can be obtained from the theory of thin shells.

2



1.2 Fracture Mechanics

In this section a summary of the theory of fracture mechanics will be pre-
sented. For a more detailed description, see Hutchinson and Suo (1992).

A crack in a homogenous material subject to the three different loading
modes is shown in Fig. 1.2 and crack tip conventions are shown in Fig. 1.3.
The stress field at a crack tip is given by

Mode I Mode II Mode III

Figure 1.2: The three loading modes.

σij (r, θ) =
1√
2πr

(

KIσ
I
ij (θ) +KIIσ

II
ij (θ) +KIIIσ

III
ij (θ)

)

(1.1)

where KI , KII and KIII are the stress intensity factors. This expression
is derived from the biharmonic equation which Airy’s stress function must
satisfy.

In the following only situations where KIII = 0 will be considered, i.e.
all loadings are combinations of mode I and II. The measure of mode II to
mode I loading, the phase angle ψ, is defined by

ψ = arctan

(

KII

KI

)

(1.2)

x1

x2

r

θ

crack tip

Figure 1.3: Crack tip.

3



The relative displacements of the crack faces is given by

(u1, u2) =
(

4/Ē
)

√

2r

π
(KII ,KI) (1.3)

where E is Young’s modulus and

Ē = E /
(

1 − ν2
)

(plane strain)

Ē = E (plane stress) (1.4)

The relation between the energy release rate G and the stress intensity
factors is given by Irwin’s relation

G =
(

K2

I +K2

II

)

/Ē (1.5)

Irwin’s relation results from combining the definition of the energy release
rate G with the asymptotic expressions for the stress state and displacement
state at the crack tip, and integration of the resulting expression

G = lim
x→0

1

2x

∫

(σ22 (r)u2 (x− r) + σ12 (r)u1 (x− r)) dr (1.6)

Consider an interface where two isotropic, linear elastic materials are
joined along the x1-axis as shown in Fig. 1.4, where µi, Ei and νi (i =
1, 2) denote the shear modulus, Young’s modulus and Poisson’s ratio of the
two materials. Furthermore let κi = 3 − 4νi for plane strain and κi =
(3 − νi) / (1 + νi) for plane stress.

x1

x2

µ1, E1, ν1

µ2, E2, ν2

material 1

material 2

Figure 1.4: Interface crack.

Dundurs’ parameters are

α =
µ1 (κ2 + 1) − µ2 (κ1 + 1)

µ1 (κ2 + 1) + µ2 (κ1 + 1)
and β =

µ1 (κ2 − 1) − µ2 (κ1 − 1)

µ1 (κ2 + 1) + µ2 (κ1 + 1)
(1.7)
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Dundurs’ parameters are dimensionless combinations of the elastic moduli
and it was shown in Dundurs (1969) that many problems depend on only two
parameters rather than three, for instance ν1, ν2 and E1/E2. An alternative
expression for α is

α =
Ē1 − Ē2

Ē1 + Ē2

(1.8)

From this expression it is evident that −1 < α < 1. Furthermore α and β
both vanish when the two materials are identical. The crack tip stresses are
given by

σ22 + iσ12 =
1√
2πr

(KI + iKII) r
iε (1.9)

or

σ22 =
1√
2πr

<
(

Kriε
)

and σ12 =
1√
2πr

=
(

Kriε
)

(1.10)

where K = KI + iKII is the complex interface stress intensity factor, and
the bimaterial index is

ε =
1

2π
ln

(

1 − β

1 + β

)

(1.11)

The relative displacements of the crack flanks close to crack tip are

u2 + iu1 =
1

(1 + 2iε) cosh (πε)

4Kriε

E∗

√

2r

π
(1.12)

where
1

E∗

=
1

2

(

1

Ē1

+
1

Ē2

)

(1.13)

The energy release rate for crack advance, see Malyshev and Salganik (1965),
is

G =

(

1 − β2
)

E∗

(

K2

I +K2

II

)

(1.14)

which reduces to (1.5) when the two materials are identical.
Consider a crack in a layered material where the edges are loaded as

shown in Fig. 1.5 with forces and moments per unit width. For a system
like this the following results are obtained from simple beam theory. The
position of the neutral axis is ∆h from the bottom, where

∆ =
1 + 2Ση + Ση2

2η (1 + Ση)
(1.15)

and

Σ ≡ Ē1

Ē2

=
1 + α

1 − α
and η =

h

H
(1.16)

The energy release rate is obtained by calculating the difference in strain
energy ahead of and behind the crack tip,

G =
1

2Ē1

(

P 2
1

h
+ 12

M2
1

h3

)

+
1

2Ē2

(

P 2
2

H
+ 12

M2
2

H3
− P 2

3

Ah
− M2

3

Ih3

)

(1.17)
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P1

P2

M1

M2

M3

P3

∆h

h

H

Figure 1.5: Crack in a layered material.

where the dimensionless cross-section A and moment of inertia I are

A =
1

η
+ Σ (1.18)

and

I = Σ

[

(

∆ − 1

η

)2

−
(

∆ − 1

η

)

+
1

3

]

+
∆

η

(

∆ − 1

η

)

+
1

3η3
(1.19)

The expression for G can also be calculated from the J-integral.
The complex stress intensity factor is

K = h−iε

(

1 − α

1 − β2

)1/2 (

P√
2hU

− ieiγ
M√
2h3V

)

eiω (1.20)

where P and M are linear combinations of the edge loads

P = P1 − C1P3 − C2

M3

h
(1.21)

and
M = M1 − C3M3 (1.22)

The geometric factors are

C1 =
Σ

A
, C2 =

Σ

I

(

1

η
+

1

2
− ∆

)

, C3 =
Σ

12I
(1.23)

and

1

U
= 1 + Ση

(

4 + 6η + 3η2
)

,
1

V
= 12

(

1 + Ση3
)

,
sin γ√
UV

= 6Ση2 (1 + η)

(1.24)
In (1.20), ω is a function tabulated in Suo and Hutchinson (1990). For no
elastic mismatch, i.e. α = β = 0, a good approximation is ω ≈ 52.1◦ − 3◦η.
In the following only systems consisting of thin films attached to thick layers
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will be considered, i.e. h << H. By letting η = 0 in the above equations we
get

G =
P 2

1

2Ē1h
+

6M2

1

Ē1h3
(1.25)

and

tanψ ≡ =
(

Khiε
)

< (Khiε)
=

√
12M1 + hP1 tanω

−
√

12M1 tanω + hP1

(1.26)

and furthermore, ω = 52.1◦ which will be used in the following numerical
calculations.

1.3 Shell Theory

This section contains a review of the shell theory as described by Niordson
(1985). In the following, subscripts and superscripts denote covariant and
contravariant indices respectively and the summation convention is adopted.
For a detailed description of concepts from tensor analysis, see Borisenko
and Tarapov (1979).

In a cartesian coordinate system the middle surface of a shell is given by
the functions

xi = f i
(

u1, u2
)

(1.27)

where uα are coordinates on the surface. The partial derivatives f i
,1 and f i

,2

are tangent vectors to the coordinate curves of the surface and the metric
tensor of the surface is

aαβ = f i
,αf

i
,β (1.28)

The normal vector to the middle surface is given by

Xi =
1√
a
eijkf

j
,1f

k
,2 (1.29)

where a is the determinant of the metric tensor and eijk is the permutation
tensor. Defined this way, the normal vector Xi will be a unit vector. The
tensor of curvature of the surface is

dαβ = Xif i
,αβ (1.30)

It follows immediately from the definitions that the metric tensor aαβ and
the tensor of curvature dαβ are symmetrical.

The deformation of the middle surface is described by the displacement
vector

vi = f i
,αv

α +Xiw (1.31)

i.e., vα
(

u1, u2
)

are the displacements in the direction of the tangents and
w

(

u1, u2
)

is the displacement in the direction of the normal.

7



In the following we will use the Donnell-Mushtari-Vlasov (DMV) theory
in which the approximate expressions for the strain-displacement relations
are

Eαβ = 1

2
(Dαvβ +Dβvα) − dαβw + 1

2
DαwDβw (1.32)

and
Kαβ = DαDβw (1.33)

where Dα denotes covariant differentiation. The DMV theory is based on
the assumptions that the tangential displacements vα are small compared
to the normal displacement w, the wavelength of the deformation is small
compared to the smallest principal radius of curvature and the deformation
gradients are small.

The stress state in the shell is described by an effective force and an
effective moment acting on the middle surface of the shell. These quantities
are represented by the two symmetrical tensors, the effective membrane
stress tensor Nαβ and the effective moment tensor Mαβ .

The two in-plane equilibrium equations are given by

DαN
αβ = 0 (1.34)

and the out-of-plane equilibrium equation is

DαDβM
αβ − (dαβ +Kαβ)Nαβ = 0 (1.35)

These equations result from the application of the principle of virtual work
to an arbitrary part of the shell.

The linear elastic constitutive relations are

Nαβ =
Et

1 − ν2

[

(1 − ν)Eαβ + νaαβEγ
γ

]

(1.36)

and
Mαβ = D

[

(1 − ν)Kαβ + νaαβKγ
γ

]

(1.37)

where the bending stiffness D is given by

D =
Et3

12 (1 − ν2)
(1.38)

and the strain-energy density is

W =
1

2Et

[

(1 + ν)Nβ
αN

α
β − νNα

αN
β
β

]

+
Et3

24 (1 − ν2)

[

(1 − ν)Kβ
αK

α
β + νKα

αK
β
β

]

(1.39)

Along a given curve the normal vector is nα which is a unit vector, i.e.
aαβn

αnβ = aαβnαnβ = 1. Along a boundary with normal vector nα the force
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is N = Nαβnαnβ and the moment M = Mαβnαnβ . With the application
of the shell theory in mind, the constitutive equations (1.36) are modified
so that the undeformed shell is subject to a bi-axial prestress, −σ0, i.e. the
effective force is

N = Nαβnαnβ = −σ0t (1.40)

from where
Nαβ = −aαβσ0t (1.41)

The modified constitutive relations (1.36) due to residual stress then become

Nαβ =
Et

1 − ν2

[

(1 − ν)Eαβ + νaαβEγ
γ

]

− aαβσ0t (1.42)

or
Nαβ = ∆Nαβ − aαβσ0t (1.43)

1.4 Summary of Results

This section contains results for delamination in layered spherical shells and
at corners as presented in the papers [P1] and [P2]. In addition, some basic
results from delamination from a plane substrate, see Hutchinson and Suo
(1992), will be given.

1.4.1 Delamination From a Plane Substrate

A straight-sided blister on a plane surface is shown in Fig. 1.1. Before any
buckling of the film occurs, the film is subject to a bi-axial stress σ11 =
σ22 = −σ0 and the stress intensity factors at the crack front are zero. When
the pre-stress exceeds a critical value σc, buckling occurs and the complex
stress intensity factor (1.20) will be a function of the local bending moment
M and the change of resulting stress ∆N . The energy release rate along the
sides of the blister is

G =

(

1 − ν2
)

t

2E
σ2

0

(

1 − σc

σ0

) (

1 + 3
σc

σ0

)

(1.44)

where

σc =
π2D

b2t
(1.45)

is the classical buckling load of a clamped-clamped plate of width 2b. If b0
denotes the half-width at which buckling occurs when the pre-stress is σ0

we find
σ0

σc
=

(

b

b0

)2

(1.46)
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For large values of σ0/σc, G approaches

G0 ≡
(

1 − ν2
)

t

2E
σ2

0 (1.47)

The amplitude of buckling deflection ξ, defined so that the deflection in the
middle of the blister, w (0) = ξt, is

ξ =

[

4

3

(

σ0

σc
− 1

)]
1

2

(1.48)

and the phase angle (1.26) is

tanψ =
4cosω +

√
3 ξ sinω

−4 sinω +
√

3 ξ cosω
(1.49)

The steady-state energy release rate is found by calculating the difference
in energy density in front of and behind the crack front,

Gss =
1

b

∫ b

0

(W2 −W1) dy (1.50)

which in case of plane substrate yields

Gss =

(

1 − σc

σ0

)2

G0 (1.51)

From (1.25) and (1.47) the normalized energy release rate under plane strain
conditions is

G

G0

=

(

∆N

σ0t

)2

+ 12

(

M

σ0t2

)2

(1.52)

which will be used in the following sections.

1.4.2 Spherical Surface

In paper [P1] it is shown that the equilibrium equations (1.34) and (1.35) for
the case of the spherical surface, see Fig. 1.6, lead to two coupled differential
equations which can be integrated numerically to find the displacements v
and w.

From the strain-displacement relations (1.32) and (1.33) the strains are
determined and stresses and moments can then be calculated from the lin-
ear elastic constitutive relations (1.36) and (1.37). Once the stresses and
moments are determined the energy release rates along the sides and at the
front together with the phase angle can be found from (1.25), (1.50) and
(1.26), respectively.

In Fig. 1.7 the variation of the energy release rate along the sides of
the delamination is shown for four different values of η where the results

10



Figure 1.6: Delamination on a spherical surface.

for η = 0 correspond to the planar case. An essential difference between
results obtained for curved substrates and planar substrates is that the en-
ergy release rate is zero in the planar case until the bifurcation point is
reached at b = b0. Curvature of the substrate acts in a way similar to a
geometrical imperfection, by triggering out-of-plane deformations of the de-
laminated area for infinitesimal stresses. This results in effective bending
moments and membrane forces along the crack front and thus finite values
of the energy release rate. Included in Fig. 1.7 for comparison are the results
for the cylindrical case, see Hutchinson (2001), for η = 1. By comparison
of the results for the cylinder and the sphere, one can see that the shape of
the shell has a significant influence especially at low levels of residual stress.
As a consequence, the results for the cylindrical shell do not quantify the
effect of substrate curvature on buckling-driven delamination, i.e. the shape
of the substrate has profound influence on the energy release rate especially
at relatively low stress levels. However, the dimensionless combination of
geometrical parameters η = b2/(Rt), which is the only combination enter-
ing the equilibrium equations for the cylinder, is also shown to be the most
significant combination for the sphere. As the value of the parameter η is
increased, the peak value of the energy release rate increases and the peak
shifts towards smaller stress levels.

In Fig. 1.8 the variation of the phase angle of loading, ψ, calculated nu-
merically by 1.26 is shown. It is a characteristic feature for buckling-driven
delamination that the phase angle of loading along the sides of the crack
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Figure 1.7: Normalized energy release rate along the sides of the delaminated
region as a function of residual stress level for different values of η = b2/ (Rt).
Results for a cylindrical substrate for η = 1 is included for comparison.

front becomes increasingly more mode II dominated. At a characteristic
stress, the crack tip loading becomes purely mode II, i.e. ψ = −90◦. The
curves in Fig. 1.7 are terminated at the transition to pure mode II load-
ing since large-scale crack face contact occurs beyond that point, which is
not taken into account in the present analysis. Qualitatively the trends in
these curves are similar to the trends observed for a cylindrical substrate.
Again as for the results in Fig. 1.7 for the energy release rate, the largest
deviations between the spherical, the planar and the cylindrical cases occur
at the smallest stress levels. However at larger stress levels deviations be-
come smaller. Effects of the phase angle of loading are most pronounced as
the crack tip loading becomes mode II dominated, see Jensen et al. (1990).
As a consequence, less influence of substrate curvature on mixed mode in-
terface fracture toughness effects is observed than the direct influence of
curvature on the energy release rate in Fig. 1.7. For the results presented
in Fig. 1.8, an assumption regarding the value of the angle ω appearing in
(1.26) has to be made, which in turn depends on the elastic mismatch in the
system through the Dundurs’ parameters (1.7). All other results presented
are independent of the elastic mismatch. As stated in Section 1.2, ω has
been tabulated in Suo and Hutchinson (1990). The variation of ω is rather
modest, typically it varies in the range 45◦ < ω < 65◦. Here, ω = 52.1◦ is
assumed corresponding, for instance, to the case of no elastic mismatch.

In Fig. 1.9, the steady-state energy release rate along the propagating
part of the interface crack is shown as a function of residual stresses. The
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Figure 1.8: Variation of phase angle of loading along the sides of the de-
laminated region as a function of residual stress level for different values of
η = b2/ (Rt).

results are obtained by numerical integration of (1.50), which only requires
knowledge of states far in front and far behind the propagating front. As a
consequence, details such as the shape of the propagating part of the crack
front cannot be resolved. These details were studied in Jensen and Sheinman
(2001) by a complete finite element modeling of the delaminated region for
a planar substrate. The effect of substrate curvature is considerably more
pronounced than for the cylindrical case studied in Hutchinson (2001). At
the value η = 1 , the energy release rate at small stress levels is almost a
factor of 3 higher for the spherical than the cylindrical case, thus making a
spherical shell much more prone to buckling driven delamination.

1.4.3 Corner delamination

The geometry of the corner delamination is sketched in Fig. 1.10. From the
governing differential equations and boundary conditions the deflection w is
found to be

w (y)

t
= η

(

1 − cos (π
√
n)

π
√
n sin (π

√
n)

(

1 − cos

(

π
√
ny

b

))

+
1

π
√
n

sin

(

π
√
ny

b

)

− y

b

)

(1.53)
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Figure 1.9: Normalized steady state energy release rate along the propagat-
ing front of the delamination as a function of residual stress level for different
values of η = b2/ (Rt).
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Figure 1.10: Sketch of problem analyzed. A thin layer covering a substrate
with a sharp corner fails by buckling driven delamination. The sides and
the front of the delaminated region are indicated.
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where the following non-dimensional combinations have been introduced

η =
b

t
tanϕ

n

s
= −N22

σ0t
(1.54)

s =
σ0

σc
=

(

b

b0

)2

Here, b0 denotes the half-width of the flat layer when buckling initially occurs
for a fixed residual stress, σ0. The buckling stress for a clamped flat plate
of width 2b is given by

σc =
π2Et2

12 (1 − ν2) b2
(1.55)

From the governing equations the following expressions are derived. The
parameter n is calculated from the implicit equation

n

s
= 1 − 6

π2s
η2

sin (π
√
n) − π

√
n cos (π

√
n)

π
√
n (1 + cos (π

√
n))

(1.56)

and change of stress and moment are found from

∆N

σ0t
= 1 − n

s
(1.57)

and
M

σ0t2
=

η

π2s

π
√
n (1 − cos (π

√
n))

sin (π
√
n)

(1.58)

The steady-state energy release rate is

Gss

G0

= 1 −
(n

s

)2

− 12η2

π4s2
π
√
n

1 + cos (π
√
n)

(

π
√
n− sin

(

π
√
n
))

(1.59)

The results for G, ψ and Gss are shown in figures 1.11, 1.12 and 1.13,
respectively, for different values of the angle ϕ and η = 10. When ϕ is zero,
the problem corresponds to delamination on a flat substrate, where the stress
in the layer has to exceed the critical value, σc, before any deflection of the
layer can occur. When ϕ assumes a non-zero value, the problem is no longer
a bifurcation problem and solutions exist for stresses below the critical stress
for buckling of a plate, σc. It is important to emphasize that the two sets
of curves for G and Gss in Figs. 1.11 and 1.13 correspond to different mode
mixities. It is noted that the mode mixity along the front is considerably
lower than along the crack sides, that the crack tip along the propagating
front never closes, and that crack closure occurs corresponding to ψ = −90◦

along the sides. By Fig. 1.12, it is clear that the angle ϕ has a pronounced
influence on the mode mixity especially on the conditions for crack closure.
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Figure 1.11: Energy release rate at the sides of the delaminated region as a
function of the delamination width. Substrate is subject to uniform strain.
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Figure 1.12: Mode mixity along the sides of the delaminated region and the
front using the results for a full circular delamination. Substrate is subject
to uniform strain.
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Figure 1.13: Energy release rate along the front of the delaminated region.

The results in Figs. 1.11 - 1.13 are valid for other combinations of the angle
ϕ and the crack length b/t provided the value of η in (1.54) is the same.

A mixed mode fracture criterion prior to crack closure has been invoked
by introducing the criterion in Jensen et al. (1990)

G = Gc

(

1 − (λ2 − 1) sin2 ψ
)

−1
(1.60)

where the factor λ2 adjusts the relative contribution of mode 2 to the fracture
criterion. Experimental support for the fracture criterion may be found
in Cao and Evans (1989), Jensen et al. (1990) and Liechti and Chai (1991).
A discussion of the relation between the fracture criterion (1.60) and detailed
micro-mechanical models of contact and friction along the crack faces may
be found in Evans and Hutchinson (1989) and Jensen (1990). Specifically,
the parameter λ2 could be associated with microscopic parameters for the
interface such as the height and angle of surface asperities, coefficient of
friction etc. In Tvergaard and Hutchinson (1993) it was shown that also
plastic deformation in the layers can explain the mode dependent interface
fracture toughness. The effect of imposing a mixed mode interface fracture
criterion prior to crack closure will be demonstrated after introduction of an
exact asymptotic expression for the fracture mechanical parameters. In the
limit σ0/σc → 0 the expressions for the energy release rates along the sides,
G, and along the propagating front, Gss, and the mode mixity at the sides,
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ψ, can be obtained in closed form as

G

G0

=
η2

(

3 + η2
)

(1 + η2)2
,
Gss

G0

=
η2

1 + η2
, tanψ =

η tanω +
√

3

η −
√

3 tanω
(1.61)

which are used in paper [P2] to illustrate effects of contacting crack faces.
The ratio b/t has to exceed some specified value, say 5, for the shell solutions
to be reasonably accurate, which for specific values of ϕ restricts how small
η can be. By (1.61) it is seen that the mode mixity exceeds −90◦ indicating
that the crack faces are in contact over distances comparable to the layer
thickness if the crack length exceeds a critical value

b

t
≥

√
3 tanω

tanϕ
(1.62)

Whether this critical value is in the range where the shell solution is valid
depends both on the elastic mismatch and the angle ϕ.

1.5 Discussion

In the papers [P1] and [P2] buckling-driven delamination on a spherical sur-
face and at a sharp corner has been analyzed. The analysis was carried
out by considering initial delamination and steady-state propagation of a
narrow layer bonded to a substrate. The delaminated layer propagates in
a self-similar fashion along the crack front leaving behind unloaded crack
faces. In the analysis the boundary between the delaminated region and
the substrate was treated as an interface crack front, which is loaded un-
der mixed mode conditions. Small-scale yielding conditions and small-scale
contact of the crack faces at the crack front were assumed.

For the spherical surface, results for the energy release rate and phase
angle of loading along the sides of the delaminated region and the energy
release rate for steady-state delamination were compared to results from the
literature for delamination of thin films on planar and cylindrical substrates.
The major effect of substrate curvature for the cylindrical substrate com-
pared to the planar substrate is that it acts in a way much similar to the
effect of geometrical imperfections in the sense that normal deflections and
crack driving forces can be present for any small residual stress state in the
film. In the planar case, the crack driving force is zero until a bifurcation
point is passed. Delamination growth will take place in the post-buckling
regime provided it occurs at all. For the case of a curved substrate there is
a bifurcation point only in the case where the film is applied to the inside
of the substrate so that contact between the film and the substrate prevents
the film from deflecting to the side it would naturally deflect if it was applied
to the outside of the substrate.
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The effects of a double curved substrate, such as the spherical substrate,
compared to the cylindrical substrate is that an additional non-dimensional
combination of geometrical parameters enters the formulation. It has been
shown that this additional combination of geometrical parameters play a
minor role on the energy release rate and phase angle of loading for the
range of parameters considered here. This result is believed to be key to the
present study since this implies, for any doubly curved substrate, that the
non-dimensional combination of geometrical parameters identified for the
cylindrical substrate is the only parameter required in addition to material
parameters when mapping the energy release rate and the phase angle of
loading.

In the case of corner delamination, when the corner angle ϕ is zero, the
problem corresponds to delamination on a flat substrate, where the stress
in the layer has to exceed a certain critical value before any deflection of
the layer can occur and thus result in loading of the crack front. When ϕ
assumes a non-zero value, the problem is no longer a bifurcation problem
and solutions exist for stresses below the critical load for a plate. Semi-
analytical results for the energy release rate and the mode mixity along the
crack front have been obtained by coupling the theory of thin shells to elastic
interface fracture mechanics. The results require numerical solution of an
implicit equation. Solutions are verified by comparing to pure numerical
results using an incremental loading scheme. It has also been checked that
bifurcation into non-symmetric deformations at the corner are not expected.

It has been shown that mode dependent interface fracture toughness can
explain the existence of steady state delamination.
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Chapter 2

Kink Band Formation

2.1 Introduction

Kink band formation in fiber reinforced composite materials is the subject
of the papers [P3] and [P4].

Failure by kinking in fiber reinforced composites has been the subject of
a number of recent investigations. It has been found that the compressive
failure strength is considerably lower than the tensile strength, typically in
the order of 50 to 60 percent for carbon fiber composites (Kyriakides et al.

(1995)). It has also been found that the compressive strength is governed
by plastic yielding in the matrix (Budiansky (1983)), and furthermore, that
small misalignments of the fibers have a large influence on the compressive
strength, see Kyriakides et al. (1995). Several investigations of compression
of a fiber reinforced material under the assumption of perfectly aligned fibers
have predicted bifurcations stresses much higher than results obtained from
experiments. Liu et al. (2004) include the effect of random waviness of the
fibers using a Cosserat smeared-out finite element model.

In Kyriakides et al. (1995) the problem of predicting compressive strength
for fiber reinforced materials is approached through an idealized model com-
posite, with individual discretization of fiber and matrix material, and this
two-dimensional micro-mechanical model was later extended to a three di-
mensional model in Hsu et al. (1998). In these investigations the post-
buckling response is also studied, and it is shown that deformation localizes
into well-defined bands of bent fibers.

Kink band formation in fiber reinforced materials was investigated in Chri-
stoffersen and Jensen (1996) and in Jensen and Christoffersen (1997), where
a plane constitutive model for perfectly bonded layered materials was intro-
duced. It was found that this model contains essentially the same informa-
tion in one point of the material as a complete finite element discretization
of a representative volume element, like the model introduced in Kyriakides

20



et al. (1995), and furthermore, that the critical stress is highly influenced
by fiber volume fraction and the constitutive behavior of the constituents.
Another conclusion is that the kink stress is reduced by taking non-linearity
of the fibers into account compared to the predicted critical stress assuming
linear elastic fibers.

In the present study, a smeared-out plane constitutive model, as formu-
lated by Christoffersen and Jensen (1996), is implemented as a user subrou-
tine in the finite element program ABAQUS. Effects of fiber misalignment
for elastic and plastic response are studied, and qualitatively compared to
earlier results.

2.2 A Plane Constitutive Model for Fiber Rein-

forced Composites

The constitutive relations are formulated as the relation between nominal
stress rates and displacement gradient vi,j (with a comma denoting partial
differentiation) in the form

ṡij = Cijklvl,k, i, j, k, l ∈ {1, 2} (2.1)

The following relations hold between Lijkl and Cijkl

Lijkl = Cijkl +
1

2
δilσkj + 1

2
δikσlj + 1

2
σilδkj − 1

2
σikδlj , i, j, k, l ∈ {1, 2} (2.2)

where σij denotes the Cauchy stress tensor and Lijkl denotes the tensor of
instantaneous moduli. The constitutive equations (2.1) are written in the
following alternative notation

ṡα = Cαβv,β, α, β ∈ {1, 2} (2.3)

so that the vectors ṡα and v contain the components of the nominal stress
rates and the displacements according to

ṡ1 =

(

ṡ11
ṡ12

)

, ṡ2 =

(

ṡ21
ṡ22

)

, v =

(

v1
v2

)

(2.4)

and the matrices Cαβ are given by

C11 =

(

C1111 C1112

C1211 C1212

)

C12 =

(

C1121 C1122

C1221 C1222

)

C21 =

(

C2111 C2112

C2211 C2212

)

C22 =

(

C2121 C2122

C2221 C2222

)
(2.5)

It was shown in Christoffersen and Jensen (1996) that the composite moduli
can be written in the form

Cαβ = cfC
f
αβ + cmC

m
αβ − cf cm

(

C
f
α2

− C
m
α2

)

C
∗−1

22

(

C
f
2β − C

m
2β

)

(2.6)
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where
C

∗

22 =
(

cmC
f
22

+ cfC
m
22

)

(2.7)

Each constituent may now be described by arbitrary time-independent
plasticity theories. Here, J2-flow theory is used to model the behavior of both
the fibers and the matrix material. Experimental results in Kyriakides et al.

(1995) showed indications of relative weak fiber nonlinearities. The effects
of this were investigated in Jensen and Christoffersen (1997) showing some
influence on the critical stress for kink band initiation. The J2-flow theory for
the matrix can be formulated as the following incrementally linear relation
between Jaumann rates of Kirchhoff stresses and strains (McMeeking and
Rice (1975))

τ̂ij = Lijklεkl

Lijkl = G (δikδjl + δilδjk) +
(

K − 2

3
G

)

δijδkl − 4

3
(G−Gt)mijmkl

(2.8)

where superscript ()m for the matrix has been omitted and δij denotes the
Kronecker delta. In (2.8), G and K are the elastic shear modulus and bulk
modulus and Gt is the shear tangent modulus, which along with mij are
given by

G =
E

2 (1 + ν)
, K =

E

3 (1 − 2ν)
,

1

Gt
=

3

Et
− 1 − 2ν

E
(2.9)

and

mij =
1

2σeq

(

σij −
1

3
δijσkk

)

(2.10)

Here, Et is the uniaxial tangent modulus, which requires a uniaxial true
stress vs. logarithmic strain to be specified. This is given by

ε =











σ

E
, σ ≤ σy

σy

E

[

1

n

(

σ

σy

)n

− 1

n
+ 1

]

, σ > σy

(2.11)

Furthermore, in (2.9) the effective von Mises’ stress is given by

σeq =

√

3

2
σijσij −

1

2
σiiσjj (2.12)

2.3 ABAQUS Implementation

The subroutine UMAT (User MATerial) is written in FORTRAN and is used
to define the constitutive behavior of a material. ABAQUS provides the de-
formation gradient, total strains and strain increments and the subroutine
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must then return the material Jacobian matrix ∂∆σ/∂∆ε for the constitu-
tive model along with updated stresses. In this case the material behavior
of the composite is simulated by mixing the properties of 2 materials each
described by a power-hardening law.

The UMAT subroutine used in the present work contains the following
steps:

1. Calculate the gradient of velocity from deformation gradient. The
deformation gradient F is provided by ABAQUS and the velocity gra-
dient, which describes the spatial rate of the velocity, is found from
vi,j = ḞikF

−1

kj

2. Calculate the effective von Mises’ stress for matrix and fiber according
to (2.12)

3. Calculate tangent modulus from the uniaxial true stress vs. logarith-
mic strain curve, see (2.11)

4. Calculate Lf
ijkl and Lm

ijkl according to (2.8)

5. Calculate Cijkl from (2.2) and (2.6)

6. Calculate stress increments, see Jensen and Christoffersen (1997)

σ̇ij = Cijklvl,k − σijvk,k + vi,kσkj (2.13)

7. Update stresses

8. Update yield stress

9. Update plastic strains

10. Return state variables, see the following subsection

11. Return material Jacobian matrix ∂∆σ/∂∆ε

All variables are updated using a forward Euler procedure.

The solution-dependent variables are variables that are updated as the
analysis progresses. For instance, in order to be able to return the ma-
terial Jacobian and to update the overall stresses in the composite material,
it is necessary to keep track of the individual stresses in the fiber and matrix
material. The UMAT subroutine utilizes a total of 16 state variables, passed
from ABAQUS through the array STATEV(NSTATV), each containing in-
formation about every integration point. The state variables are:

• The updated yield stresses of the fiber and matrix materials - both
modeled as power hardening materials
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• The effective plastic strain in fiber and matrix

• βf and βm - two variables which will have the value 1 or 0 depending
on if the material is yielding or not

• The stresses in the matrix material, σm
11

, σm
22

, σm
33

, σm
12

• The stresses in the fiber material, σf
11

, σf
22

, σf
33

, σf
12

• The initial direction of the fibers and the current rotation

To the matrix and fiber material 9 material properties are associated: 2
Young’s moduli, Em and Ef , 2 Poisson’s ratios, νm and νf , 2 initial yield
stresses, σm

y and σf
y , 2 hardening parameters, nm and nf and finally the fiber

volume fraction cf . These properties are passed to UMAT by ABAQUS in
the array PROPS(NPROPS). In the input file, the keyword *USER MA-
TERIAL is used to specify material constants. In the present study, the
fiber volume fraction is assumed to remain constant cf = 0.6 throughout
the deformation.

For a more detailed description on how to implement a constitutive
model in ABAQUS, see Dunne and Petrinic (2005).

2.4 Summary of Results

This section contains a summary of the results presented in the papers [P3]
an [P4].

The kink band geometry is sketched in Fig. 2.1. A block of material is
subject to compressive stresses under plane strain conditions. The block has
the dimensions height H = 3 and length L = 10 and in a band of width b
and at an angle β the direction of the fibers is given a small imperfection.
The direction of the fibers outside the band is given by the angle α and
inside the kink band the fibers are assumed to be at an angle φ, and this
angle is given by the expression

φ (x1, x2) = 1

2
φm

[

cos

(

2π cos β

b
(x1 + x2 tan β)

)

+ 1

]

+ α (2.14)

so that a small imperfection is added to the fiber angle α inside the band,
and φm is the value of the imperfection in the middle of the kink band.
Furthermore, the displacements u1 and u2 satisfy the boundary conditions

u1 = 0 on x1 = −L
2

(2.15)

u2 = 0 on (x1, x2) =
(

−L
2
,−H

2

)

(2.16)

In the following, the width of the kink band has the value b = 2, and in all
simulations the fiber volume fraction is 0.6. Furthermore, analysis has been
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restricted to two different fiber/matrix stiffness ratios, Ef/Em = 35 and
Ef/Em = 100, which qualitatively correspond to a glass-fiber reinforced
polymer and a carbon-fiber reinforced polymer, respectively.

H

L

b

α

β

φm + α
x1

x2

Figure 2.1: Kink band geometry.

In Fig. 2.2 normalized load vs. end shortening curves are shown for the
low fiber to matrix ratio , i.e. glass fibers and the high ratio, carbon fibers.
Calculations are carried out for different values of the fiber imperfection
angle φm and outside the band the fibers are aligned with the x1-axis, i.e.
α = 0. As also shown in previous studies, the peak load is highly sensitive to
the misalignment of the fibers. At a sufficiently large imperfection angle, the
peak load disappears and the composite fails by another mechanism. After
the peak load material softening occurs and the curves eventually converge
and the previous load history has insignificant effects.

A contour plot of the plastic strain in the kink band for the case Ef/Em =
35 is shown in Fig. 2.3. The figure shows the tendency for strains to localize
into a band inclined relative to the load and fiber direction. The deforma-
tions remain almost homogeneous outside the localized band.

The peak load is sensitive to a number of parameters. The sensitivity to
the misalignment has been demonstrated and the non-linear response of the
matrix material can also play a role. In Fig. 2.4, load vs. end shortening
curves are shown for different values of the hardening exponent nm for the
matrix. The peak stress and the post critical response is seen to be sensitive
to the hardening exponent in certain regimes. The peak stress as a function
of the hardening exponent nm is shown in Fig. 2.5, where the peak load ini-
tially drops by a large amount until convergence towards an elastic-perfectly
plastic response of the matrix is achieved. Critical load as a function of nm

is shown in Fig. 2.5 for the misalignment angle φm = 3◦.
The peak load is less sensitive to the kink band inclination angle, β.

In Fig. 2.6, the critical load as a function of β is shown for three different
misalignment angles. The peak stress is seen to vary only moderately with
the angle, β, while the angle φm plays a more significant role.
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Figure 2.2: Plastic deformation, kink band formation.
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Figure 2.3: Contour plot of plastic strain.
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Figure 2.6: Critical load vs. β.

The effect of the applied load not being in the same direction as the
fibers is studied by changing the value of α. Load-deformation curves for
various α are given in Fig. 2.7. It is seen that the snap-back effect only
exists for small angles and that the load-deformation curves cease to have a
peak value when the value of α increases.

A material length-scale is not included in the implementation of the
constitutive model and as a consequence, the width of the kink band is un-
determined and mesh dependent. As a result of this, the rate of convergence
of load vs. end-shortening curves, see Fig. 2.8, with decreasing element size
in the mesh is somewhat slow, especially in the immediate post kinking
regime. The peak stress and the response far into the post critical regime
seem to converge faster.

Fig. 2.9 shows contour plots of the effective plastic strain in the 4 different
meshes used in the mesh-dependency studies. It is seen how the width of the
localized band decreases as the size of the elements decreases. Up until this
point all results have been produced using a mesh consisting of rectangular
elements. To investigate how results are affected by a different meshing,
a mesh as shown in Fig. 2.10 is introduced. The elements, 12*40 CPE8R
elements, are aligned with the initial imperfection at an angle of β = 8◦.
The results are shown in Fig. 2.11 and Fig. 2.12 where the load-deformation
curves for a ’regular’ and a ’distorted’ mesh are compared.

In Fig. 2.11 the fiber misalignment angle is φ = 4◦ and Ef/Em = 35,
in Fig. 2.12 the fiber angle is φ = 5◦ and Ef/Em = 100. The critical
load is apparently unaffected by the change of the mesh but the immediate
post-kinking behavior is seen to be different.
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Figure 2.7: Load-deformation curves for various α.
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Figure 2.8: Load vs. end shortening curves for different element sizes.
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Figure 2.9: Four different deformed meshes with contour plot of effective
plastic strains included.

Figure 2.10: ’Distorted’ mesh.
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Figure 2.11: Load vs. deformation for regular and distorted mesh.
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Figure 2.12: Load vs. deformation for regular and distorted mesh.

2.5 Discussion

A plane constitutive model for fiber reinforced composites has been imple-
mented in ABAQUS as a user subroutine. The model has been tested under
cases where failure by kink band formation is a relevant mechanism. The
behavior of a rectangular block of material divided into a number of finite
elements is investigated. The focus in this study is on the performance of
the model when implemented in ABAQUS with respect to reliability and
rate of convergence. In agreement with previous results, it is seen that the
critical stress for kink band formation is rather insensitive to the initial kink
band orientation and that the kink band undergoes a distinct rotation in
the post critical regime. In the model a continuous field may be specified
for the initial fiber orientation. This field can vary with the spatial compo-
nents to mimic real defects in the production of laminated structures. The
imperfection of the composite material applied in the present study is an
assumed band of material of a specified width in which the fiber orientation
gradually changes from the orientation outside the band to a maximum de-
viation from this and back to the original orientation again. The band may
be arbitrarily oriented relative to the fiber direction. No variation of fiber
rotations has been assumed in the direction of the band although this is not
a general restriction in the model.

The constitutive model has no intrinsic length scale and consequently the
width of the kink band is undetermined and mesh dependent. As a result
the rate of convergence of load vs. end-shortening curves with decreasing
finite element mesh size is somewhat slow especially in the immediate post
kinking regime. The peak stress and the response far into the post critical

31



regime seem to converge faster. It is demonstrated that an initial alignment
of the finite element mesh in the direction of the orientation of the kink
band may have the effect of increasing the rate of convergence.

The model is applied in a study of the effect of initial misalignment of
the fiber and load direction. This effect has previously been studied in an
approximate manner by imposing a fixed linear combination of compressive
and shear stresses out side the kink band. The effect of initial misalignments
is very distinct on the peak stress where the critical stress at 10◦ misalign-
ment is reduced to roughly 1/4 the critical stress for compression in the fiber
direction at a fixed band of imperfections. At a misalignment of 15◦ and
above the peak in the stress vs. end shortening response vanishes and the
composite structure fails by another mechanism.

The model is expected to have some immediate applications such as kink
band formation in plates with holes or other more complex structural com-
ponents. The model can also be used to study competing compressive failure
mechanisms such as buckling and kink band formation in fiber composite
based structures.
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Chapter 3

Conclusion

Two failure modes in compression of layered composite materials were con-
sidered: buckling driven delamination and kink band formation.

Effects of substrate curvature on buckling-driven delamination of thin
films or layers were studied by considering initial delamination and steady-
state propagation of a narrow layer bonded to a spherical substrate. The
delaminated layer propagates in a self-similar fashion along the crack front
leaving behind unloaded crack faces. The analysis was carried out by treat-
ing the boundary between the delaminated region and the substrate as an
interface crack front, which is loaded under mixed mode conditions. Small-
scale yielding conditions and small-scale contact of the crack faces at the
crack front were assumed. Results for the energy release rate and phase
angle of loading along the sides of the delaminated region and the energy
release rate for steady-state delamination were compared to results from the
literature for delamination of thin films on planar and cylindrical substrates.
The major effect of substrate curvature for the cylindrical substrate com-
pared to the planar substrate is that it acts in a way much similar to the
effect of geometrical imperfections in the sense that normal deflections and
crack driving forces can be present for any small residual stress state in the
film. In the planar case, the crack driving force is zero until a bifurcation
point is passed. Delamination growth will take place in the post-buckling
regime provided it occurs at all. For the case of a curved substrate there is
no bifurcation point only when the film is applied to the outside. The effects
of a double curved substrate, such as the spherical substrate, compared to
the cylindrical substrate is that an additional non-dimensional combination
of geometrical parameters enters the formulation. It has been shown that
this additional combination of geometrical parameters play a minor role on
the energy release rate and phase angle of loading for the range of para-
meters considered here. The shape of the substrate also affects the energy
release rate and the phase angle of loading. For the spherical substrate the
shape affects the energy release rate most significantly at small values of
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normalized residual stress levels where the tendency is that the higher the
substrate curvature, the higher the peak value of the energy release rate
along the sides of the delamination, and this peak moves towards smaller
values of residual stress.

An analysis of buckling driven delamination at a sharp corner was also
carried out. Semi-analytical results for the energy release rate and the mode
mixity along the crack front have been obtained by coupling the theory of
thin shells to elastic interface fracture mechanics. The results require nu-
merical solution of an implicit equation. Solutions are verified by comparing
to pure numerical results using an incremental loading scheme. It has also
been checked that bifurcation into non-symmetric deformations at the cor-
ner are not expected. The energy release rate along the propagating crack
front was obtained by an assumed path independent integral leading the
crack from an initial state far in front of the propagating front to its final
state far behind. The path independence relies on an assumption that the
released energy during crack propagation is independent of the loading his-
tory bringing the crack from its initial to its final state. Steady state crack
propagation along the front compared to crack propagation at the sides takes
place for the case where the energy release rate is highest. In the limit of
infinitely small stresses, analytical results for the energy release rate and
mode mixity along the sides as well as the steady state energy release rate
along the front have been obtained. It was been shown that mode depen-
dent interface fracture toughness can explain the existence of steady state
delamination. It has been shown that crack closure takes place at sufficient
high stress levels like the case for the flat substrate. The analytical results
for the fracture mechanical parameters in the limit of small stresses were
combined with previously obtained results for the effects of friction between
the crack faces when crack closure occurs. By these results it was shown
that effects of frictional sliding of the contacting crack faces in these cases
can explain a transition in failure mode from crack propagation along the
sides to crack propagation along the front. This means that such failure
modes may exist also in systems where the fracture criterion prior to crack
closure is mode independent.

A plane constitutive model for fiber reinforced composites has been im-
plemented in ABAQUS as a user subroutine. The model has been tested
under cases where failure by kink band formation is a relevant mechanism.
At first it is verified that the model predicts a reasonable behavior for a single
finite element. The behavior of a rectangular block of material divided into a
number of finite elements is then investigated. The focus in this study is on
the performance of the model when implemented in ABAQUS with respect
to reliability and rate of convergence. In agreement with previous results, it
is seen that the critical stress for kink band formation is rather insensitive to
the initial kink band orientation and that the kink band undergoes a distinct
rotation in the post critical regime. In the model, a continuous field may be

34



specified for the initial fiber orientation. This field can vary with the spatial
components to mimic real defects in the production of laminated structures.
The imperfection of the composite material applied in the present study is
an assumed band of material of a specified width in which the fiber orienta-
tion gradually changes from the orientation outside the band to a maximum
deviation from this and back to the original orientation again. The band
may be arbitrarily oriented relative to the fiber direction. No variation of
fiber rotations has been assumed in the direction of the band although this
is not a general restriction in the model. The constitutive model has no
intrinsic length scale and consequently the width of the kink band is un-
determined and mesh dependent. As a result the rate of convergence of
load vs. end-shortening curves with decreasing finite element mesh size is
somewhat slow especially in the immediate post kinking regime. The peak
stress and the response far into the post critical regime seem to converge
faster. It is demonstrated that an initial alignment of the finite element
mesh in the direction of the orientation of the kink band may have the effect
of increasing the rate of convergence. The model is expected to have some
immediate applications such as kink band formation in plates with holes or
other, more complex, structural components. Also, the model can be used
to study competing compressive failure mechanisms such as buckling and
kink band formation in fiber composite based structures.
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Abstract

An analysis of buckling-driven delamination of a layer in a spherical, layered shell has been carried out. The effects of

the substrate having a double curvature compared to previous studies of delamination on cylindrical substrates turn

out to be non-trivial in the sense that additional to the effect of the shape of the substrate, a new non-dimensional

geometrical parameter enters the conditions for steady-state delamination. It is shown that this additional geometrical

parameter in most cases of practical relevance has insignificant influence on the fracture mechanical parameters involved

for the problem. The consequence is that solutions need to be mapped as a function of one rather than two dimensionless

parameters. Furthermore, the shape of the substrate has profound influence especially on initiation of delamination

growth.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Buckling-driven delamination is known to be an important failure mechanism in material combinations
where layers of different thickness and different elastic and thermal properties are joined. Examples of such
material combinations could be turbine engine blades with thermal barrier coatings, sandwich structures
where a polymer foam core is bonded to thin cover plates, tools with hard coatings applied for increased wear
resistance, material combinations with applications in the electronic industry, and diamond-like-coatings on
materials for hip joint implants. In such systems, the substrate may be curved and only little attention has been
directed towards studying the effects of substrate curvature on buckling-driven delamination.

Combinations of external loading, intrinsic stresses from the manufacturing process, thermal stresses and
stresses developing in corrosive layers at high temperature may lead to large compressive stresses in the layers
resulting in buckling and delamination. Typical sites for initiation of delamination are at stress concentrations
such as edges and corners or at system defects.

Buckling-driven delamination of compressed thin films or layers on flat substrates has been studied in a
number of previous works. The mechanism was described initially in Chai et al. (1981) with applications to
composite plates in mind. Thin film buckling-driven delamination was formulated in a fracture mechanics
e front matter r 2007 Elsevier Ltd. All rights reserved.
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based framework in Evans and Hutchinson (1984). The analysis was based on a combination of plate theory
and fracture mechanics treating the boundary between the delaminated and bonded region as a crack front.
Results for the energy release rate and stress intensity factors were obtained for circular delaminations at
bifurcation and in the post-bifurcation regime. Thin film delamination treated in the framework of interface
fracture mechanics taking into account the mixed mode interface fracture toughness of an interface crack was
introduced in Jensen et al. (1990). The significance of the energy release rate as well as phase angles of loading
along the crack front was emphasised. In Hutchinson and Suo (1992) the concept of steady-state propagation
of buckling-driven delamination was introduced. Closed form results for the energy release rate and phase
angle of loading were obtained. Various analyses such as Jensen (1993), Ortiz and Gioia (1994), Audoly
(1999), Jensen and Sheinman (2001,2002) and Moon et al. (2002) have been devoted to studying the most
commonly observed mode of buckling-driven delamination on flat substrates; the so-called ‘telephone cord’
mode. Two fundamentally different effects may result in a transition from simple to wavy crack front
morphology; (i) perturbations of the crack front leading to higher released energy, Hutchinson et al. (1992) or
(ii) buckling of the delaminated region resulting in a perturbation of the crack tip loads, Jensen and Thouless
(1995). A comprehensive study of buckling-driven delamination involving analyses of morphology can be
found in Gioia and Ortiz (1997).

Buckling-driven delamination of thin films on curved substrates has been studied to a lesser extent.
Hutchinson (2001) initially quantified the effect by studying buckling-driven delamination of a thin film on a
cylindrical substrate, while Storåkers and Nilsson (1993) studied the effects of initial geometrical imperfections
for the planar case on the energy release rate at buckling-driven delamination. The imperfections cause the
energy release rate to be non-zero at infinitesimal stresses, as a bifurcation stress does not exist. In Hutchinson
et al. (2000) the effects of a geometrically imperfect interface on buckling-driven delamination and initiation of
delamination were studied. Recent experimental observations of buckling-driven delamination in compressed
films on cylindrical substrates in Moon et al. (2006) indicate that the telephone cord mode is also commonly
observed in curved thin film systems.

The geometry of the system considered in this work is a spherical layered shell containing a surface layer,
which has delaminated. A sketch of the geometry of the problem is presented in Fig. 1 where a surface layer of
width 2b is indicated by lines of larger thickness. The layer buckles or deflects away from the shell due to a
combination of external loads and residual stresses. When the crack front propagates it does so in the
equatorial direction leaving behind unloaded crack faces. It is emphasised that the shape of the substrate
outside the delaminated region has no influence on the results in the following analysis. Also, the thickness of
the shell has no influence on the analysis provided it is larger than the thickness of the delaminated layer. Due
to the steady-state nature of buckling-driven delamination, stresses and deformations behind the propagating
crack front are independent of the coordinate in the direction of propagation, which will be utilised in the
analysis. The shape of the propagating part of the crack front, which is shown in Fig. 1 as if it follows co-
ordinate lines on the surface of the sphere, is unknown and does not enter the analysis in the following.
Fig. 1. Sketch of a strip of a delaminated surface layer of width 2b in a composite spherical shell. The delamination propagates in the

equatorial direction leaving behind unloaded crack sides.
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2. Fracture mechanics

The boundary of the delaminated layer in Fig. 1 is treated as an interface crack front both at the part that is
propagating and the unloaded crack sides left behind. A basic geometry for the fracture mechanics of the
problem consists of a layer of thickness t bonded to a thick substrate. The layer is subject to a local normal
membrane force, N, a shear force, T , and an effective bending moment, M, at the boundary between the
bonded and the delaminated part of the system. The combined mode I/II and the mode III energy release rate
can be obtained by applying the J-integral (Jensen et al., 1990)

G ¼ GI=II þ GIII; GI=II ¼
1� n2

2Et3
ð12M2 þ t2N2Þ; GIII ¼

1

2mt
T2. (1)

Here, E, n and m are Young’s modulus, the Poisson ratio and the elastic shear modulus of the film. The
separation of the energy release rate into mode I, II and III stress intensity factors (K I, KII and K III) is done
via the phase angles of loading c and f introduced in Suo and Hutchinson (1990) and Jensen et al. (1990):

tan c ¼
ImððK I þ iK IIÞt

ieb Þ

ReððK I þ iK IIÞtieb Þ
¼

ffiffiffiffiffi
12
p

M cos oþ tN sin o

�
ffiffiffiffiffi
12
p

M sin oþ tN cos o
,

cos f ¼

ffiffiffiffiffiffiffiffi
GIII

G

r
. ð2Þ

The in-plane crack tip fields governed by K I and K II are coupled due to the oscillating crack tip singularity. In
the definition of the phase angle c in (2), tan c is given as the ratio of shear to normal stress a distance t ahead
of the crack tip. The angle o is tabulated in Suo and Hutchinson (1990) as a function of the Dundurs (1969)
parameters a and b:

a ¼
Ē � Ēs

Ē þ Ēs

; 2b ¼
mð1� 2nsÞ � msð1� 2nÞ
mð1þ nsÞ þ msð1þ nÞ

, (3)

where subscript ðÞs refers to the substrate and Ē ¼ E=ð1� n2Þ. In (2) the bi-material index, eb, is defined by

eb ¼
1

2p
ln

1� b
1þ b

� �
. (4)

The relationship between energy release rate and stress intensity factors is given by the Irwin relation evaluated
by the work done by stresses on opening the crack faces

G ¼ ð1� b2Þ
K2

I þ K2
II

2

1

Ē
þ

1

Ēs

� �
þ

K2
III

4

1

m
þ

1

ms

� �
. (5)

The family of interface fracture criteria formulated in Jensen et al. (1990) can be written as

GGcðc;fÞ ¼ GIc, (6)

where GIc is the mode I toughness, and Gcðc;fÞ is the toughness function Gcð0; p=2Þ ¼ 1. If the toughness
function is identical to 1, Eq. (6) reduces to the Griffith fracture criterion, but otherwise it takes
effects of small-scale plasticity and crack face contact into account. As an alternative to this approach, the
mixed mode fracture toughness could be obtained by a detailed micromechanical analysis accounting for
crack face contact and frictional sliding (Evans and Hutchinson, 1989) or crack tip plasticity (Tvergaard and
Hutchinson, 1993).

The calculation of energy release rates for cracks propagating under steady-state conditions can be carried
out in a simplified formulation when it is utilised that the stresses and deformations behind the propagating
front are independent of the coordinate in which direction, the front propagates.

3. Shell theory

Stresses and deformations in the delaminated region are found by treating this as a thin shell clamped
to the substrate along the crack front. The shell theory described by Niordson (1985) is reviewed in the
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following where a subscript denotes a covariant index, a superscript denotes a contravariant index and
repeated indices denote summation. In a Cartesian coordinate system, xi, the mid-surface of the shell is
described by

xi ¼ f i
ðu1; u2Þ, (7)

where ua are the surface coordinates. The displacements, v̄i, in the Cartesian coordinate system are written in
terms of in-plane displacements, va, and the normal displacement, w, for the mid-surface according to the
Kirchhoff–Love hypothesis

v̄i ¼ f i
;av

a þ X iw, (8)

where a comma denotes partial differentiation with respect to ua , and X i are the Cartesian components of the
surface normal vector. The in-plane equilibrium equations are given as

DaNab ¼ 0, (9)

where Da denotes covariant differentiation and Nab are the contravariant components of the membrane stress
tensor. The out-of-plane equilibrium equation is given by

DaDbMab � ðdab þ KabÞN
ab ¼ 0, (10)

where Mab are the components of the tensor of bending moments, dab is the curvature tensor and Kab is the
bending strain tensor.

The strain energy density is given by

W ¼
Et

2ð1� n2Þ
½ð1� nÞEb

aEa
b þ nEa

aE
b
b� þ

Et3

24ð1� n2Þ
½ð1� nÞKb

aKa
b þ nKa

aK
b
b�. (11)

The components of the mid-surface in-plane strain and bending strain tensors, Eab and Kab, are related to the
membrane stresses and the bending moments by

Nab ¼
Et

1� n2
½ð1� nÞEab þ naabEg

g�, (12)

Mab ¼ D½ð1� nÞKab þ naabKg
g�, (13)

where aab are the contravariant components of the metric tensor for the mid-surface. In (13), the bending
stiffness D is given by

D ¼
Et3

12ð1� n2Þ
. (14)

Utilising (12), (11) can be written in a form more convenient in the following as

W ¼
1

2Et
½ð1þ nÞNb

aNa
b � nNa

aN
b
b� þ

Et3

24ð1� n2Þ
½ð1� nÞKb

aKa
b þ nKa

aK
b
b�. (15)

The non-linear strain–displacement relations allowing for large deformations of the delaminating layer are
given by the Donnell–Mushtari–Vlasov approximations. These are valid for moderately large rotations and
small characteristic wavelengths of the deformation pattern compared to the smallest principal radius of
curvature of the mid-surface and are given by

Eab ¼
1
2
ðDavb þDbvaÞ � dabwþ 1

2
DawDbw, (16)

Kab ¼ DaDbw. (17)

Finally, the stresses are written as a sum of the prestresses, s0, and the difference from these in the form

Nab ¼ DNab � aabs0t. (18)

The calculations below are carried out assuming that the only stresses are caused by residual stresses, but this
is not a general restriction of the formulation. Introducing na as the components of the unit normal vector to
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the crack front, the membrane force and the bending moment in (1) and (2) are

N ¼ DNabnanb; M ¼Mabnanb. (19)

Far in front and far behind the propagating crack front, T ¼ 0.
The equations listed in this section are in the following specialised to a delaminated layer in a spherical shell.

4. Spherical shell

Introducing coordinates ðu1; u2Þ ¼ ðj; yÞ, a spherical mid-surface of radius R is represented by

x1 ¼ R cos y cos j,

x2 ¼ R cos y sin j,

x3 ¼ �R sin y, ð20Þ

where a complete sphere is represented by �p=2oyop=2 and 0pjo2p. For a delaminated layer of width 2b,
the crack propagates in the equatorial j-direction, and in the transverse direction the notation

y ¼ eb ¼ yR; �1pep1 (21)

is introduced. The unloaded crack sides are represented by e ¼ 1 and �1, respectively.
Far in front and far behind the propagating part of the crack front the displacements are j-independent and

there is no displacement in the direction of crack propagation, i.e.

v1 ¼ 0; v2 ¼ v2ðyÞ; w ¼ wðyÞ. (22)

The strain–displacement relations under these conditions are

E11 ¼ � cos y sin y � v2 þ R cos2 y � w,

E12 ¼ 0,

E22 ¼ v2;2 þ Rwþ 1
2
ðw;2Þ

2
ð23Þ

and the bending strain measures are

K11 ¼ � cos y sin y � w;2,

K12 ¼ 0,

K22 ¼ w;22. ð24Þ

Furthermore, one of the in-plane equilibrium equation (9) results in N11 ¼ constant, while the other reduces to

N22
;2 � tan y �N22 þ cos y sin y �N11 ¼ 0 (25)

and the out-of-plane equilibrium equation (10) becomes

D

R4
ðw;2222 � 2 tan y � w;222 � ð1þ nþ tan2 yÞw;22 þ tan y ðn� 2� tan2 yÞw;2Þ

�
Et

ð1� n2ÞR4

ðw;22 � RÞðv2;2 � n tan y � v2 � Rð1þ nÞwþ 1
2
ðw;2Þ

2
Þ

�ðRþ tan y � w;2Þð� tan y � v2 � Rð1þ nÞwþ nv2;2 þ
1
2
nðw;2Þ

2
Þ

�
R2ð1� n2Þ

E
ðw;22 � 2R� tan y � w;2Þs0

0
BBBBBBB@

1
CCCCCCCA
¼ 0. ð26Þ

Non-dimensional equations are introduced according to (21) and

~v ¼
b

t2
v2; ~w ¼

w

t
; Z ¼

b2

Rt
; y20 ¼ Z

t

R
;

s0
sc

¼
s0tb

2

p2D
. (27)
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Eq. (25) then becomes

~v00 ¼ y20ðnþ tan2ðey0ÞÞ~v� Zð1þ nÞ ~w0 � ~w0 ~w00 þ y0 tanðey0Þð~v0 þ 1
2
ð1� nÞð ~w0Þ2Þ. (28)

where the notation ðÞ0 ¼ dðÞ=de is introduced. Furthermore, (26) becomes

~wðIV Þ ¼ 2y0 tanðey0Þ ~w000 � y20ð1þ nþ tan2ðey0ÞÞ ~w00 þ y30 tanðey0Þðn� 2� tan2ðey0ÞÞ ~w0

þ 12ð ~w00 � ZÞð ~v0 � ny0 tanðey0Þ~vþ Zð1þ nÞ ~wþ 1
2
ð ~w0Þ2Þ

� 12ðy0 tanðey0Þ ~w0 þ ZÞðn~v0 � y0 tanðey0Þ~vþ Zð1þ nÞ ~wþ 1
2
nð ~w0Þ2Þ

þ ðy0 tanðey0Þ ~w0 � ~w00 þ 2ZÞp2
s0
sc

� �
. ð29Þ

For specified values of y0; Z;s0=sc, these two coupled, non-linear differential equations are most conveniently
integrated numerically. The boundary conditions are taken to be clamped along e ¼ 1 and �1. Once a solution
for displacements has been obtained, (23) and (24) give the strains and (12) and (13) give the stresses and
moments. The energy release rate and phase angle of loading along the sides of the delaminated region is in turn
given by (1) and (2) using (19) and the energy release rate along the propagating front is obtained by combining
(15) with

Gss ¼
1

b

Z b

0

ðW 2 �W 1Þdy, (30)

where W 2 and W 1 denote the strain energy density far behind and far in front of the propagating crack front.
The integral in (30) is evaluated numerically as the stress s0=sc is increased utilising the relationship between b

and s0=sc given in (27).

5. Results and discussion

Comparing the governing equations for buckling-driven delamination in spherical systems (28) and (29) to
the governing equations for the cylindrical case Hutchinson (2001), one observes that two rather than one
dimensionless combinations of the geometrical parameters b;R; t enter these. The combination of the three
parameters for the cylindrical case is Z defined in (27). By (27)–(29) any two combinations of Z; y0 and t=R can
be chosen as independent variables. The two dimensionless combinations Z and t=R are chosen as independent
variables and the energy release rate is plotted in Fig. 2 as a function of t=R for selected values of Z. When
plotting results for different levels of prestress, s0, it is convenient to introduce the half-width, b0, required to
make a delamination on a flat substrate initially buckle at the residual stress, s0 ¼ sc. The relation between the
width of delamination and the residual stresses are

b

b0
¼

s0
sc

� �1=2

. (31)

As can be seen by Fig. 2 for the range of parameters selected, the parameter Z is the dominating
dimensionless geometrical parameter, while t=R has a practically negligible influence on the energy release
rate. Similar observations can be made for the influence of geometrical parameters on the phase angle of
loading c. As a consequence of the observation, energy release rate and phase angle of loading are shown as a
function of the parameter Z only i.e. they are taken to be independent of t=R. The variation of the fracture
mechanical parameters are thus only shown as function of one rather than two dimensionless combinations of
t, R and b in the following. The energy release rate in Fig. 2 is normalised by a value, G0, which can be
interpreted as the energy release rate of a plane strain edge crack propagating under steady-state conditions
i.e.

G0 ¼
ð1� n2Þts20

2E
. (32)

In Fig. 3 the variation of the energy release rate along the sides of the delamination are shown for four
different values of Z where the results for Z ¼ 0 corresponds to the planar case. An essential difference between
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results obtained for curved substrates and planar substrates is that the energy release rate is zero in the planar
case until the bifurcation point is reached at b ¼ b0. Curvature of the substrate acts in a way similar to a
geometrical imperfection, by triggering out-of-plane deformations of the delaminated area for infinitesimal
stresses. This results in effective bending moments and membrane forces along the crack front and thus finite
values of the energy release rate through (1). Included in Fig. 3 for comparison are the results for the
cylindrical case (Hutchinson, 2001) for Z ¼ 1. By comparison of the results for the cylinder and the sphere, one
can see that the shape of the shell has a significant influence especially at low levels of residual stress. As a
consequence, although the dimensionless combination of geometrical parameters Z, which is the only
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combination entering the equilibrium equations for the cylinder, also is shown to be the most significant
combination for the sphere, the results for the cylindrical shell do not quantify the effect of substrate curvature
on buckling-driven delamination. I.e. the shape of the substrate has profound influence on the energy release
rate especially at relatively low stress levels. As the parameter Z is increased, the peak value of the energy
release rate increases and the peak shifts towards smaller stress levels.

In Fig. 4 the variation of the phase angle of loading, c, calculated numerically by (2) is shown.
It is a characteristic feature for buckling-driven delamination that the phase angle of loading along
the sides of the crack front becomes increasingly more mode II dominated. At a characteristic stress,
the crack tip loading becomes purely mode II, i.e. c ¼ �90�. The curves in Fig. 3 are terminated at the
transition to pure mode II loading since large-scale crack face contact occurs beyond that point,
which is not taken into account in the present analysis. Qualitatively the trends in these curves are
similar to the trends observed for a cylindrical substrate. Again as for the results in Fig. 3 for the energy
release rate, the largest deviations between the spherical, the planar and the cylindrical cases occur
at the smallest stress levels. However, at larger stress levels deviations become smaller. Effects of the phase
angle of loading are most pronounced as the crack tip loading becomes mode II dominated (Jensen et al.,
1990). As a consequence, less influence of substrate curvature on mixed mode interface fracture
toughness effects is observed than the direct influence of curvature on the energy release rate in Fig. 3.
For the results presented in Fig. 4, an assumption regarding the value of the angle o appearing in (2)
has to be made, which in turn depends on the elastic mismatch in the system through the Dundurs’ parameters
(3). All other results presented are independent of the elastic mismatch is stated in Section 2, o has been
tabulated in Suo and Hutchinson (1990). The variation of o is rather modest, typically it varies in the
range 45�ooo 651. Here, o ¼ 52:1� is assumed corresponding, for instance, to the case of no elastic
mismatch.

In Fig. 5, the steady-state energy release rate along the propagating part of the interface crack is shown as a
function of residual stresses. The results are obtained by numerical integration of (29), which only requires
knowledge of states far in front and far behind the propagating front. As a consequence, details such as the
shape of the propagating part of the crack front cannot be resolved. These details were studied in Jensen and
Sheinman (2001) by a complete finite element modelling of the delaminated region for a planar substrate. The
effect of substrate curvature is considerably more pronounced than for the cylindrical case studied in
Hutchinson (2001). At the value Z ¼ 1, the energy release rate at small stress levels is almost factor of 3 higher
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for the spherical than the cylindrical case, thus making a spherical shell much more prone to buckling-driven
delamination.

In Fig. 6, the steady-state energy release rate along the propagating part of the interface crack is shown as a
function of residual stresses in the case where the thin layer is located on the inside of the sphere. Numerical
solutions to (28) and (29) can be found for negative values of the normal deflection w. This indicates an inward
deflection of the layer as dictated by the presence of the substrate. The solutions are plotted in the range where
they are meaningful, i.e. in the range where Gss40 and co� 90�. As expected, the probability of buckling-
driven delamination of a thin layer occurring on the inside of the sphere is much less than for it occurring at
the outside.
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6. Conclusion

Effects of substrate curvature on buckling-driven delamination of thin films or layers were studied by
considering initial delamination and steady-state propagation of a narrow layer bonded to a spherical
substrate. The delaminated layer propagates in a self-similar fashion along the crack front leaving behind
unloaded crack faces. The analysis was carried out by treating the boundary between the delaminated region
and the substrate as an interface crack front, which is loaded under mixed mode conditions. Small-scale
yielding conditions and small-scale contact of the crack faces at the crack front were assumed.

Results for the energy release rate and phase angle of loading along the sides of the delaminated region and
the energy release rate for steady-state delamination were compared to results from the literature for
delamination of thin films on planar and cylindrical substrates. The major effect of substrate curvature for the
cylindrical substrate compared to the planar substrate is that it acts in a way much similar to the effect of
geometrical imperfections in the sense that normal deflections and crack driving forces can be present for any
small residual stress state in the film. In the planar case, the crack driving force is zero until a bifurcation point
is passed. Delamination growth will take place in the post-buckling regime provided it occurs at all. For the
case of a curved substrate there is a bifurcation point only in the case where the film is applied to the inside of
the substrate so that contact between the film and the substrate prevents the film from deflecting to the side it
would naturally deflect if it was applied to the outside of the substrate.

The effects of a double curved substrate, such as the spherical substrate, compared to the cylindrical
substrate is that an additional non-dimensional combination of geometrical parameters enters the
formulation. It has been shown that this additional combination of geometrical parameters play a minor
role on the energy release rate and phase angle of loading for the range of parameters considered here. This
result is believed to be key to the present study since this implies, for any doubly curved substrate, that the
non-dimensional combination of geometrical parameters identified for the cylindrical substrate is the only
parameter required in addition to material parameters when mapping the energy release rate and the phase
angle of loading.

The fact that only one non-dimensional combination of geometrical parameters appears to be of
significance—namely that identified for the cylindrical substrate—does not imply, however, that results for the
cylindrical substrate are representative for any double curved substrate. The shape of the substrate also affects
the energy release rate and the phase angle of loading. This is a second key result of the present investigation.
For the spherical substrate the shape affects the energy release rate most significantly at small values of
normalised residual stress levels where the tendency is that the higher the substrate curvature, the higher the
peak value of the energy release rate along the sides of the delamination, and this peak moves towards smaller
values of residual stress.
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Storåkers, B., Nilsson, K.F., 1993. Imperfection sensitivity at delamination buckling and growth. Int. J. Solids Struct. 30, 1057–1074.

Suo, Z., Hutchinson, J.W., 1990. Interface crack between two elastic layers. Int J. Fract. 43, 1–18.

Tvergaard, V., Hutchinson, J.W., 1993. The influence of plasticity on mixed mode interface toughness. J. Mech. Phys. Solids 41,

1119–1135.



Delamination of Compressed Thin Layers at

Corners

Kim D. Sørensen Henrik M. Jensen∗ Johan Clausen

Department of Civil Engineering
Aalborg University

Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark

∗Aarhus Graduate School of Engineering
University of Aarhus

Dalgas Avenue 4, DK-8000 Århus C, Denmark

Abstract

An analysis of delamination for a thin elastic layer under compres-
sion, attached to a substrate at a corner is carried out. The analysis
is performed by combining results from interface fracture mechanics
and the theory of thin shells. In contrast with earlier results for de-
lamination on a flat substrate, the present problem is not a bifurcation
problem. Crack closure at sufficiently high stress levels are shown to
occur. Results show a very strong dependency on fracture mechanical
parameters of the angle of the corner including the range of parameters
where crack closure occurs. Analytical results for the fracture mechan-
ical properties have been obtained, and these are applied in a study of
the effect of contacting crack faces. Special attention has been given to
analyse conditions under which steady state propagation of buckling
driven delamination takes place.
Keywords: Delamination, Thin layers, Fracture mechanics, Crack
closure, Steady state crack propagation.

1 Introduction

The influence of system curvature on buckling-driven delamination has been
studied in Hutchinson (2001), Faulhaber et al. (2006) and Sørensen and
Jensen (2008). The motivations for these studies have typically been ap-
plications like high temperature turbine blades with thermal barrier coat-
ings Mumm and Evans (2000) or hip joint implants with biocompatible
surface coatings Moon et al. (2002b) just to mention a few.

In a number of technically important applications, local curvatures are so
high that they are better modelled as sharp corners. One example is shown
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Figure 1: (a) Cross section of wind turbine blade, (b) test to failure and (c)
cross section of load carrying main spar after failure showing delaminations
close to the corners.

in Fig. 1, which is taken from Sørensen et al. (2004). Fig. 1(a) is a schematic
view of a cross section of a wind turbine blade, Fig. 1(b) shows a picture
of a blade at extreme load testing close to final failure, and Fig. 1(c) shows
post failure cross sections of the load carrying main spar. Buckling driven
delaminations in the layered glass fibre main spar are seen at the corners
both on the inside and outside. Another example of delamination close to a
sharp corner, but on a much smaller scale is at the edges of interconnecting
plates in solid oxide fuel cells with layers of chromium oxide forming under
compression in service Persson (2007). The present work focuses on studying
buckling driven delamination at corners including the effects on the energy
release rate and mode mixity, and the conditions for steady state propa-
gation of such cracks. Buckling-driven delamination of thin layers on flat
substrates has been studied in a number of previous works. The mechanism
was described initially in Chai et al. (1981) with applications to composite
plates in mind. In Hutchinson and Suo (1992) the steady-state propaga-
tion of buckling driven delamination was described. The phenomenon is
a coupled problem of buckling of a thin, compressed layer on a substrate,
and interface delamination between the layers. The buckling driven delam-
ination is a commonly observed failure mode in layered materials and the
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steady-state mode of propagation is normally the most critical resulting in
the highest energy release rate. This mode of delamination is particularly
critical since it, once initiated, propagates unhindered throughout the in-
terface. In the following, the concept of buckling-driven delamination is
explained in greater detail. Consider a thin layer attached to a substrate
where the thin layer is subject to a uniform, biaxial compressive stress σ0,
see Fig. 2(a). The system contains a sharp corner defined by the angle ϕ.
The case of ϕ = 0◦ corresponds to a flat substrate. Suppose a small region
exists, in which the bonding between the layer and the substrate is poor
or nonexistent. If the compressive stress σ0 exceeds a critical value σc, the
layer will buckle away from the substrate and this buckling will have the
effect, that the crack at the interface will be loaded by normal stresses and
moments, as shown in Fig. 2(b). In case the energy release rate exceeds the
mode adjusted fracture toughness of the interface, the bonding between the
delaminated layer and the other layers (the substrate) will break and the
size of the delaminated region may grow. For ϕ 6= 0 the delamination may
initially be triggered by the stress singularity at the corner and crack tip
loadings are present at all levels of compressive stresses.

Different types of buckling delaminations have been observed, among
these the circular buckle, the ’telephone cord’ buckle and the straight-sided
buckle. In the present paper attention will be given to steady state propa-
gation of the latter, which is characterized by the fact that it grows at one
of the ends while the sides remain stationary, see Fig. 2(a).

Many problems concerning propagation of cracks or other types of insta-
bilities can be treated using the concept of steady-state growth, see Kyr-
iakides (1994), which entails a significant simplification of the problem.
Steady-state crack growth implies that the front of the crack assumes a
certain shape that will remain unchanged during propagation, which means
that the energy release rate will not depend on the length of the crack or the
geometry of the crack front. In the following, steady-state conditions will
be assumed. Designing for safety against steady-state crack growth ensures
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that wide spread cracking will not occur, assuming some limited damage
may be accepted. If this is not the case, designing for safety against crack
initiation will lead to a certain probability of failure.

For the propagation of a straight-sided delamination buckle on a plane
substrate it is found, that even though the crack grows at its end, the energy
release rate at the front is considerable lower than at the side. This is due
to the fact that the fracture toughness of the interface depends strongly on
the so-called mode mixity which again depends on the loads on the inter-
face crack. Interface toughness laws, which describe this dependency, are
formulated in Jensen et al. (1990). This effect is even more pronounced for
the present geometry as it turns out that the presence of the corner induces
a relatively larger mode 2 contribution to the energy release rate compared
to the planar case. For that reason an analysis has been included, which
explicitly treats the effects of contacting crack faces, and the influence of
contact on buckling driven delamination has been addressed.

2 Corner stresses for perfect bonding

To further motivate the present analysis and emphasise some of the limi-
tations, we at first present results for the case of perfect bonding between
a thin layer and a substrate at a corner. Material data are chosen to be
representative of oxide layers on chromium-steel substrates at elevated tem-
peratures. The geometry is sketched in Fig. 3 with dimensions typical of the
interconnect plates in solid oxide fuel cells studied in Persson (2007). An ox-
ide layer of thickness 10µm has typically developed after 1000 hours service
at 900◦. For the steel substrate the Young’s modulus at 900◦ is E = 87GPa,
the Poisson’s ratio is ν = 0.3, the yield stress is σy = 40MPa and the ma-
terial does not work harden. For the oxide layer, E0 = 298GPa, ν0 = 0.29,
and the material is linear elastic. Compressive stresses build up in the oxide
layer as it grows due to lattice mismatch. The strain, ε0, is a measure of
initial stresses; it is the strain in the layer relative to the unstressed state
just when it is attached to the substrate, i.e. the stress in the layer if the
substrate was infinitely rigid would be σ0 = E0ε0/ (1 − ν0). Finite element
calculations based on the commercial code ABAQUS are carried out lead-
ing to the results in Fig. 4 for the shear stress, σ12, measured in MPa. The
sharp corner induces a stress singularity, which could lead to crack initiation
at the interface close to the corner. The stress concentrations are seen to
spread over distances several times the layer thickness. In Persson (2007)
cases are seen where interface cracking between the oxide layer and the metal
substrate occurs close to the corners. At the highest level of initial stresses,
asymmetries in the stress profile develop due to the finite thickness of the
plate. The analysis in the following sections assumes a symmetric stress
profile at the corner. Plastic deformation under small scale yielding condi-
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Figure 3: Sketch of geometry of connector plate in fuel cell with a thin oxide
layer under compression.

Figure 4: Shear stress, σ12, in bonded bimaterial system for different values
of initial stress.

tions is allowed for, and effects of plasticity in the substrate is specifically
modelled by introducing a mixed mode interface fracture criterion, which
reflects that the extent of the plastic zone and thus the amount of energy
dissipated during crack growth depends strongly on the ratio between the
crack tip loadings.

In Fig. 5 the equivalent plastic strain is shown for the same material
parameters and initial stresses as in Fig. 4. The results demonstrate a long
range effect of plasticity at the corner. This is due to general yielding of
the substrate as the initial stress is increased, which reduces the effective
stiffness of the substrate so that buckling of the compressed thin layer may
take place, Biot (1965). The effect of layer buckling will be an undulation of
the interface, which was studied in Hutchinson et al. (2000). It was shown
that the effect has significant influence on the energy release rate for an
interface crack. The effects of layer buckling prior to delamination are not
studied in the present work. We emphasise that while the results presented
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Figure 5: Effective plastic strain, εeq, for different values of initial stress. At
highest stress levels indications of initial buckling of the compressed bonded
layer are seen.

in Figs. 4 and 5 use specific material parameters and geometrical quantities
for interconnect plates, the fracture mechanical analysis below is carried
out in more general terms allowing for arbitrary elastic mismatch and other
corner geometries.

3 Fracture Mechanics

It is assumed that the size of the delamination is large relative to the thick-
ness of the layer. It is furthermore assumed that the transition between the
delaminated region of the layer and the bonded region has a length com-
parable to, or smaller than, the layer thickness. As a consequence of these
assumptions, the boundary between the layer and the bonded region can be
treated as an interface crack and the stresses in the delaminated region can
be obtained from shell theory.

Following Suo and Hutchinson (1990) by application of the J-integral,
the energy release rate, G, for the problem in Fig. 2(b) can be obtained as a
function of the change in membrane stress, ∆N , relative to the initial stress
in the bonded layer and the bending moment, M , in the layer as

G

G0

=

(

∆N

σ0t

)2

+ 12

(

M

σ0t2

)2

(1)

where σ0 is the initial stress in the layer and t is the layer thickness. The
quantity G0 corresponds to all the elastic energy stored in the layer being
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released under plane strain conditions, and is given by

G0 ≡
(

1 − ν2
)

t

2E
σ2

0 (2)

Here, E is the elastic modulus of the layer, and ν is the Poisson’s ratio.
By the definition, in the limit where the layer becomes completely detached
from the substrate assuming plane strain in the layer, the energy release
rate asymptotically approaches G0. It should be emphasised that all the
elastic energy stored in the layer is 2G0/ (1 + ν) i.e. at least 33% higher.
This is important when discussing possible fracture modes, which release
more energy than G0 at high stress levels, see Jensen and Sheinman (2002)
and Moon et al. (2002a).

Along the propagating crack front in Fig. 2(a), there will also be a
shear stress component giving a mode 3 contribution to the energy release
rate in addition to the mode 1 and 2 contributions due to ∆N and M . As
explained below, however, when the crack front propagates under steady
state conditions, the energy release rate along the front can be calculated
by states far in front and far behind the propagating front where the shear
stresses are zero. The mode mixity ψ giving the ratio between mode 1 and
2 stress intensity factors is related to the bending moment and the change
in resultant stress by (Suo and Hutchinson (1990))

tanψ ≡ σ12

σ22

∣

∣

∣

r=t
=

∆Nt sinω +
√

12M cosω

∆Nt cosω −
√

12M sinω
(3)

where ω is a function of the elastic mismatch between layer and substrate.
It has been tabulated by numerical methods in Suo and Hutchinson (1990).
Typical values of ω lie in the range 45◦ < ω < 75◦ depending on the elastic
mismatch, where the highest values correspond to stiff layers on compliant
substrates, and ω = 52.1◦ in the case of no elastic mismatch. In (3), σ12 and
σ22 are shear and normal stresses in the plane of the crack a small distance
r ahead of the tip. Since this ratio varies due to the oscillating crack tip
singularity, the distance is specified to be equal to the layer thickness.

4 Stresses in delaminated layer

The effective membrane stress and bending moment required to calculate the
fracture mechanical quantities listed in the previous section, are calculated
from the theory of thin shells assuming the delaminated region to be clamped
to the substrate along the crack front. For the present problem sketched in
Fig. 2(b), the two halves on each side of the centre line of symmetry are
planar problems, so plate theory is sufficient for calculating the stresses
when imposing symmetry conditions at the centre line. Von Karman non-
linear plate theory, see Niordson (1985), is applied allowing for large normal
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deflections relative to the plate thickness. This geometrical non-linearity
is essential since, for a flat substrate characterised by ϕ = 0◦, the energy
release rate is non-zero only a stress levels higher than the buckling stress.

The two in-plane and the out-of-plane equilibrium equations are given
by

Nαβ,β = 0

Mαβ,αβ −Nαβw,αβ = 0 (4)

where repeated index are summed over the values 1 and 2, and a comma
denotes partial differentiation. The directions 1 and 2 are defined in Fig.
2(b) with x1 = x and x2 = y. In (4), Nαβ and Mαβ are the tensors of
membrane stresses and moments, respectively, and w is the out of plane
deformation of the plate mid surface.

The strain-displacement relations in case of non-linear von Karman plate
theory are

ε =
1

2
(uα,β + uβ,α + w,αw,β)

καβ = w,αβ (5)

where uα are the in plane displacements, εαβ is the strain tensor and καβ

is the curvature tensor. The stress-strain relations assuming linear isotropic
elasticity are

Nαβ =
Et

1 − ν2
((1 − ν) εαβ + νεγγδαβ) − σ0tδαβ

Mαβ = D ((1 − ν)καβ + νκγγδαβ) (6)

where δαβ is the Kronecker delta, and the bending stiffness D of the plate is

D =
Et3

12 (1 − ν2)
(7)

The energy release rate at the crack front Gss is found by calculating the
difference in energy density, W , in the non-deflected layer far in front of the
crack front, W2, and in the deflected layer far behind the crack front, W1

Gss =
1

b

∫ b

0

(W2 −W1) dy (8)

The energy density, W , is a function of the stresses in the layer, and is
obtained by Niordson (1985)

W =
1

2Et

[

(1 + ν)Nβ
αN

α
β − νNα

αN
β
β

]

+
Et3

24 (1 − ν2)

[

(1 − ν)κβ
ακ

α
β + νκα

αK
β
β

]

(9)
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5 Results and discussion

For the present geometry, considerable simplifications follow the observation
that far in front and far behind the propagating crack front, displacements
and stresses are independent of x = x1. So () ,1 = ∂ () /∂x1 = 0 and after in-
troducing () ,2 = ∂ () /∂x2 = ∂ () /∂y = y′, two of the equilibrium equations
in (4) are non-trivial and become

N22 = const.

M ′′

22 −N22w
′′ = 0 (10)

Combining (10) with (5) and (6) yields

N22 =
Et

1 − ν2

(

u′2 +
1

2

(

w′
)2

)

− σ0t

w′′′′ − N22

D
w′′ = 0 (11)

The boundary conditions corresponding to these non-linear, ordinary differ-
ential equations are specified at y = 0, which is at the crack front where the
layer is clamped to the substrate and at y = b which is at the centre line of
symmetry.

w (0) = w′ (0) = w′ (b) = 0 , w′′′ (b) =
N22

D
tanϕ

u2 (0) = 0 , u2 (b) = w (b) tanϕ (12)

The symmetry conditions at y = b state that there is no rotation, that the
projection of normal and shear forces parallel to the plane of symmetry is
zero, and that the projection of normal and in plane displacements perpen-
dicular to the plane of symmetry is zero. By (12), it is seen that for ϕ = 0◦,
the problem is homogeneous and a non-trivial solution exists beyond a bi-
furcation stress, only. The solution to the second equation in (11) with
corresponding boundary conditions is

w (y)

t
= η

(

1 − cos (π
√
n)

π
√
n sin (π

√
n)

(

1 − cos

(

π
√
ny

b

))

+
1

π
√
n

sin

(

π
√
ny

b

)

− y

b

)

(13)
where the following non-dimensional combinations have been introduced

η =
b

t
tanϕ

n

s
= −N22

σ0t
(14)

s =
σ0

σc
=

(

b

b0

)2
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Here, b0 denotes the half-width of the flat layer when buckling initially occurs
for a fixed residual stress, σ0. The buckling stress for a clamped flat plate
of width 2b is given by

σc =
π2Et2

12 (1 − ν2) b2
(15)

The bending moment and membrane stress at the crack front giving the
fracture mechanical properties are obtained by the constitutive relations

M = M22 (0) = Dw′′ (0) , ∆N = σ0t+N22 (16)

where the residual stress is defined positive in compression. In order to
calculate n in (14), the first equation in (11) is integrated from 0 to b giving

N22b =
Et

1 − ν2

∫ b

0

(

1

2

(

w′
)2

)

dy +
Et

1 − ν2
w (b) tanϕ− σ0tb (17)

where the boundary conditions (12) have been utilised. Next, an implicit
equation for determining n is formulated by inserting the solution (13) into
(17). After performing the integration and using (14) the following condition
determines n

n

s
= 1 − 6

π2s
η2

sin (π
√
n) − π

√
n cos (π

√
n)

π
√
n (1 + cos (π

√
n))

(18)

Solutions to (18) are obtained numerically for given η and s. Then (16)
combined with (14) results in

M

σ0t2
=

η

π2s

π
√
n (1 − cos (π

√
n))

sin (π
√
n)

(19)

and
∆N

σ0t
= 1 − n

s
(20)

The energy release rate Gl along the sides of the delamination far behind
the propagating front is obtained by inserting (19) and (20) in (1) and the
corresponding mode mixity, ψl, is obtained by (3). The energy release rate
along the crack front Gss is obtained by specialising the general expression
for W in (9) to the present geometry where

W =
1

Et

(

N2

11 +N2

22 − 2νN11N22

)

+
D

2

(

w′′
)2

(21)

Since the membrane stresses are constant

Gss =
1

b

∫ b

0

(W2 −W1) dy

=
1 − ν2

2Et

(

σ2

0t
2 +N2

22

)

− D

2b

∫ b

0

(

w′′
)2

dy (22)
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Inserting the solution (13) in (22) results in

Gss

G0

= 1 −
(n

s

)2

− 12η2

π4s2
π
√
n

1 + cos (π
√
n)

(

π
√
n− sin

(

π
√
n
))

(23)

In Hutchinson and Suo (1992) the mode mixity, ψss, along the propa-
gating front was estimated using the results for a full circular crack. The
accuracy of this approach was in Jensen and Sheinman (2001) shown to be
good.

It should be noted that the method for determining Gss is exact pro-
vided the energy released along the crack front is independent of the mixed
mode 1, 2 and 3 loading history. Results discussing this assumption have
not, to our knowledge, been published. However, the results in Jensen and
Sheinman (2001) indicated that the mode 3 contribution to the energy re-
lease rate remained smaller than 1/5 times the mode 1 and 2 contributions,
and that the mode 3 component was only significant on a small portion of
the propagating crack front close to the transition between the propagating
part and the sides left behind. A recent paper by Tvergaard and Hutchinson
(2008) investigates the effect of mode 3 on interface toughness. They con-
sider cases, which are mainly mode 1 dominated, while the present problem
is mainly mode 2 dominated. Their results show cases where the toughness
is sensitive to mode 3 components. However, in the present case where only
a small portion of the crack front has a significant mode 3 component, path
dependent effects not taken into account in the present approach are be-
lieved to play a secondary role. A verification of the assumption is beyond
the scope of this investigation.

The results for Gl, ψl and Gss are shown in figures 6, 7 and 8, respec-
tively, for different values of b/b0. When the angle ϕ is zero, the problem
corresponds to delamination on a flat substrate, where the stress in the layer
has to exceed the critical value, σc, before any deflection of the layer can oc-
cur. When assumes a non-zero value, the problem is no longer a bifurcation
problem and solutions exist for stresses below the critical stress for buckling
of a plate, σc.

It is important to emphasise that the two sets of curves for Gl and Gss

in Figs. 6 and 8 correspond to different mode mixities. In Fig. 7 the
mode mixity along the propagating front using results for a full circular
delamination from Hutchinson and Suo (1992) is also included. It is noted
that the mode mixity along the front is considerably lower than along the
crack sides, that the crack tip along the propagating front never closes, and
that crack closure occurs corresponding to ψl = −90◦ along the sides. By
Fig. 7, it is clear that the angle ϕ has a pronounced influence on the mode
mixity especially on the conditions for crack closure. The results in Figs.
6-8 are valid for other combinations of the angle ϕ and the crack length b/t
provided the value of η in (14) is the same.
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Figure 6: Energy release rate along the sides of the delaminated region.

Figure 7: Mode mixity along the sides of the delaminated region and the
front using the results for a full circular delamination.
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Figure 8: Energy release rate along the front of the delaminated region.

A mixed mode fracture criterion prior to crack closure has been invoked
by introducing the criterion in Jensen et al. (1990)

G = Gc

(

1 − (λ2 − 1) sin2 ψ
)

−1
(24)

where the factor λ2 adjusts the relative contribution of mode 2 to the fracture
criterion. Experimental support for the fracture criterion may be found
in Cao and Evans (1989), Jensen et al. (1990) and Liechti and Chai (1991).
A discussion of the relation between the fracture criterion (24) and detailed
micro-mechanical models of contact and friction along the crack faces may
be found in Evans and Hutchinson (1989) and Jensen (1990). Specifically,
the parameter λ2 could be associated with microscopic parameters for the
interface such as the height and angle of surface asperities, coefficient of
friction etc. In Tvergaard and Hutchinson (1993) it was shown that also
plastic deformation in the layers can explain the mode dependent interface
fracture toughness. The effect of imposing a mixed mode interface fracture
criterion prior to crack closure will be demonstrated after introduction of an
exact asymptotic expression for the fracture mechanical parameters. In the
limit σ0/σc → 0 the expressions for the energy release rates along the sides,
Gl, and along the propagating front, Gss, and the mode mixity at the sides,
ψl, can be obtained in closed form as

G

G0

=
η2

(

3 + η2
)

(1 + η2)2
,
Gss

G0

=
η2

1 + η2
, tanψl =

η tanω +
√

3

η −
√

3 tanω
(25)

which will also be used later to illustrate effects of contacting crack faces.
The ratio b/t has to exceed some specified value, say 5, for the shell solutions
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to be reasonably accurate, which for specific values of ϕ restricts how small
η can be.

By (25) it is seen that the mode mixity exceeds −90◦ indicating that the
crack faces are in contact over distances comparable to the layer thickness
if the crack length exceeds a critical value

b

t
≥

√
3 tanω

tanϕ
(26)

Whether this critical value is in the range where the shell solution is valid
depends both on the elastic mismatch and the angle ϕ.

Figure 9: Mode adjusted energy release rate along the sides and the front im-
posing a mixed mode fracture criterion prior to crack closure. The preferred
failure mode is the one with highest energy release rate.

Two sets of curves for Gl and Gss based on (25) and imposing (24)
are shown in Fig. 9; one set is for λ2 = 1 corresponding to a usual mode
independent Griffith fracture criterion, the other set of curves is for λ2 =
0.2, which in Jensen et al. (1990) gave best agreement with experimental
results. The curve has been plotted for ϕ = 3◦ but as before is valid for
other combinations of ϕ and b/t provided the value of η is the same. The
curves are terminated at the point where crack closure occurs. The top
solid curve and the top dashed curve are Gl and Gss for λ2 = 1 where it
is seen that most energy is always released along the sides in contrast to
observations. Like in Hutchinson and Suo (1992) the fact that propagating
buckling driven delamination is commonly observed can be explained by
imposing a mixed mode fracture criterion. The bottom solid and dashed
curves correspond to λ2 = 0.2 where it is seen the mode adjusted energy
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release rate is highest along the sides at small delamination lengths and along
the front at larger delamination indicating a transition of failure modes. By
the results in Fig. 7 for the energy release rate it is seen that as the angle
ϕ is increased, the range in which the crack is open and where (24) can
be applied narrows considerably. It is for this reason investigated in the
following section whether frictional sliding after crack closure occurs alone
can explain a change in the failure mode.

Figure 10: Energy release rate along the sides and the front taking contact
and friction into account after crack closure takes place.

For negative values of ϕ, solutions for the membrane force and the bend-
ing moment in cases not resulting in overlap between the layer and the
substrate could be found for large initial imperfections of the shape of the
delaminated region, only, and the issue will not be pursued further here.
The effect of negative curvature i.e. delamination of a layer on the inside
of a shell was investigated in Hutchinson (2001) for a cylindrical shell and
in Sørensen and Jensen (2008) for a spherical shell. In both cases the energy
release rate is lower than for delaminations on the outside of the shell, and
the delaminations exist and propagate only for a limited range of parame-
ters. Qualitatively, this is appears to be in agreement with the observations
in Fig. 1(c) that the delamination at the inside of the main spar tends to
arrest as it approaches the inside corner (the crack opening displacements
decrease). And the delamination on the outside of the main spar has in-
creasing crack opening displacements towards the corner.

It should be mentioned that the non-linear von Karman plate equations
listed in Section 4, which are the basis for the results presented in this section
normally are applied to cases where the in plane displacements of the plate
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are of much lower magnitude than the out of plane displacement. For the
present problem, unless the angle ϕ is close to 0◦, the symmetry conditions in
(12) at y = b, induce in-plane displacements of the same order of magnitude
as the out-of-plane displacement. In order to verify the accuracy of the
results presented in this section, an incremental numerical scheme not based
on the assumption that in plane displacements are smaller than out of plane
displacements has been set up. The details of this scheme are given in
the appendix, and for none of the results presented there were significant
disagreements between these results. The numerical scheme given in the
appendix has also been applied in an analysis investigating if the centre line
of symmetry has a tendency to rotate. In that case symmetry conditions
were not imposed at the centre line, but rather a small imperfection in the
geometry was introduced leading to an initial rotation of the centre line.
During the incremental loading procedure, the rotation of the corner was
monitored to see if there were sudden changes indicating a bifurcation into
a non-symmetric shape. For the range of parameters investigated there were
no indications of such bifurcations.

6 Contacting crack faces

The curves in Figs. 6-8 are terminated when the mode mixity ψ reaches
the value −90◦ indicating contact between the crack faces over distances
comparable to the layer thickness. The model used to describe the problem
presupposes no contact between the layer and the substrate at the interface
crack, which is what is reflected in a restriction for admissible values of
ψ. It is seen from the results, that the range of stress values in which
solutions exist becomes strongly limited already at small values of the angle
ϕ. The trends in the results for the energy release rates in cases where the
mode mixity exceeds the range where large scale contact takes place should,
however, be obvious by Figs. 6, 7 and 8.

In cases where there is no friction between the cracks the expressions for
Gl and Gss are unaffected by large scale contact as long as it is realised that
the crack sides are under pure mode 2 loading conditions. For cases with
frictional sliding between the crack faces, the energy release rate is reduced
as analysed in Thouless et al. (1992) for constant friction and Stringfellow
and Freund (1993) for Coulomb friction.

Thouless et al. (1992) present their results for buckling driven delam-
ination and edge delaminations in the planar case in a form which here
can be applied to the geometry in Fig. 2. Thouless et al. (1992) introduce
the mode 2 stress intensity factor, K2, as a linear function of the membrane
force, ∆N , and the constant friction stress, τ , and relate M and ∆N through
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linear conditions

K2/t
1/2 = C1τ + C2∆N/t

M/t2 = C3τ + C4∆N/t (27)

where the C’s are functions of the length of the contact zone between the
crack faces, which are tabulated in Thouless et al. (1992) using continuous
distribution of dislocations. In the present case, M and ∆N are determined
by (18)-(20). For a given friction stress, the length of the contact zone can
be specified in the second condition in (27), which combined with the exact
asymptotic expression (25) in the limit of small stresses leads to a second
order equation in η

η2

(

C4 +
τ

σ0

C3

)

− η

2
+

τ

σ0

C3 = 0 (28)

By the solution, the mode 2 stress intensity factor can be obtained by the
first of the conditions in (27).

The effects of contacting crack faces on the energy release rates along
the side and the front are demonstrated in Fig. 10, which is obtained by
combination of the tabulated values of the C’s in (27) and the asymptotic
expression in (25). A mixed mode fracture criterion is not imposed prior to
crack closure, and it seen that frictional sliding due to contacting crack faces
alone can explain a transition of the failure mode from propagation along
the sides to propagation along the front. A such transition is expected when
the curves for Gl and Gss intersect. The plot in Fig. 10 is carried out in the
case of no elastic mismatch α = β = 0. Other values of elastic mismatch
parameters would change the values of the C parameters in (27) and the
value of the angle ω in (25), which in turn affects the mode adjusted energy
release rate in (24) through ψ.

7 Conclusion

An analysis of buckling driven delamination at a sharp corner has been
carried out. When the corner angle ϕ is zero, the problem corresponds to
delamination on a flat substrate, where the stress in the layer has to exceed
a certain critical value before any deflection of the layer can occur and thus
result in loading of the crack front. When assumes a non-zero value, the
problem is no longer a bifurcation problem and solutions exist for stresses
below the critical load for a plate σc. Semi-analytical results for the energy
release rate and the mode mixity along the crack front have been obtained
by coupling the theory of thin shells to elastic interface fracture mechanics.
The results require numerical solution of an implicit equation. Solutions are
verified by comparing to pure numerical results using an incremental load-
ing scheme. It has also been checked that bifurcation into non-symmetric
deformations at the corner are not expected.
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The energy release rate along the propagating crack front is obtained
by an assumed path independent integral leading the crack from an initial
state far in front of the propagating front to its final state far behind. The
path independence relies on an assumption that the released energy during
crack propagation is independent of the mixed mode 1, 2 and 3 loading
history bringing the crack from its initial to its final state. Steady state
crack propagation along the front compared to crack propagation at the
sides takes place for the case where the energy release rate is highest. In the
limit of infinitely small stresses, analytical results for the energy release rate
and mode mixity along the sides as well as the steady state energy release
rate along the front have been obtained.

It has been shown that mode dependent interface fracture toughness can
explain the existence of steady state delamination. It has been shown that
crack closure takes place at sufficient high stress levels like the case for the
flat substrate. It has also been shown, that the range of stress values in
which the crack is open is strongly limited compared to when ϕ = 0◦ even
for small angles ϕ.

The analytical results for the fracture mechanical parameters in the limit
of small stresses have been combined with previously obtained results for
the effects of friction between the crack faces when crack closure occurs. By
these results it is shown that effects of frictional sliding of the contacting
crack faces in these cases can explain a transition in failure mode from crack
propagation along the sides to crack propagation along the front. This
means that such failure modes may exist also in systems where the fracture
criterion prior to crack closure is mode independent.
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Appendix

An incremental numerical approach to verify the semi-analytical results in
Section 5 has been carried out as outlined below following Byskov et al.

(2002). A planar beam element with conventions for displacements u and
v, arc length s, angle of beam tangent with x-axis θ, shear stress T , normal
stress N , and moment M defined in Fig. 11 is introduced. With (˙) denoting
the increment of a quantity the kinematical relations allowing for arbitrary
rotations and strains are

x

y

u(s)

v(s)

s q (s)

T(s)
N(s)

M(s)

x

y

u(s)

v(s)

s q (s)

T(s)
N(s)

M(s)

Figure 11: Sketch of sign conventions for displacements and generalised
forces for beam element.

du

ds
= ε cos θ − θ̇ sin θ ,

dv

ds
= ε sin θ + θ̇ cos θ (29)

where ε is the strain rate, which along with the bending rate κ is given by

ε =
dṡ

ds
, κ =

dθ̇

ds
(30)

The two incremental force equilibrium equations and the moment equilib-
rium equation are given as

dṪ

ds
= −Ṅ dθ

ds
−Nκ ,

dṄ

ds
= Ṫ

dθ

ds
+ Tκ ,

dṀ

ds
= −Ṫ − Tε (31)

The constitutive relations assuming linear elasticity are

Ṅ = Etε− σ̇0t , Ṁ =
1

12
Et3κ (32)

By introducing the curvature k

k =
dθ

ds
(33)
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and non-dimensional quantities according to

ũ =
u

t
, ṽ =

v

t
, k̃ = bk , κ̃ = bκ

T̃ =
T

Et
, Ñ =

N

Et
, η1 =

b

t
, s̃ =

s

b
(34)

the following six coupled, linear ordinary first-order differential equations
are obtained

dũ

ds̃
= η1

(

ε cos θ − θ̇ sin θ
)

,
dṽ

ds̃
= η1

(

ε sin θ + θ̇ cos θ
)

,
dθ̇

ds̃
= κ̃

dκ̃

ds̃
= −12η2

1

(

˙̃T + T̃ ε
)

,
dε

ds̃
= Ṫ k̃ + T̃ κ̃

d ˙̃T

ds̃
= −

(

ε− π2

12η2

1

(

σ̇0

σc

))

k̃ − Ñ κ̃ (35)

The boundary conditions are clamped at s = 0 and either symmetry con-
ditions at the centre s = b or when symmetry is not assumed, clamped
conditions at s = 2b i.e.

ũ (0) = ṽ (0) = θ̇ (0) = 0 and

ũ (1) = ˙̃T (1) −
(

π2

12η2

1

σ̇0

σc
− ε (1)

)

tanϕ = θ̇ (1) = 0 or (36)

ũ (2) = ṽ (2) = θ̇ (2) = 0

The linear set of equations (35) with boundary conditions (36) are integrated
numerically.
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ABSTRACT

Simulations of kink band formation in fiber reinforced composites are carried out using the
commercial finite element program ABAQUS. A smeared-out, plane constitutive model for
fiber reinforced materials is implemented as a user subroutine, and effects of fiber misalign-
ment on elastic and plastic deformation are studied under plane strain conditions.

Keywords: Kink band, constitutive model, ABAQUS, fiber misalignment

1. INTRODUCTION

Failure by kinking in fiber reinforced composites has been the subject of a number of recent
investigations. It has been found that the compressive failure strength is considerably lower
than the tensile strength, typically in the order of 50 to 60 percent for carbon fiber composites
(Kyriakides et al., 1995). It has also been found that the compressive strength is governed by
plastic yielding in the matrix (Budiansky, 1983), and futhermore, that small misalignments
of the fibers have a large influence on the compressive strength, see Kyriakides et al. (1995).
Several investigations of compression of a fiber reinforced material under the assumption
of perfectly aligned fibers have predicted bifurcations stresses much higher than results
obtained from experiments. Liu, Fleck and Sutcliffe (2004) include the effect of random
waviness of the fibers using a Cosserat smeared-out finite element model.

In Kyriakides et al. (1995) the problem of predicting compressive strength for fiber rein-
forced materials is approached through an idealized model composite, with individual dis-
cretization of fiber and matrix material, and this two-dimensional michromechanical model
was later (Kyriakides et al.,1998) extended to a three dimensional model. In these investi-
gations the post-buckling respone is also studied, and it is shown that deformation localizes
into well-defined bands of bent fibers.
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Kink band formation in fiber reinforced materials was investigatated in Christoffersen and
Jensen (1996) and in Jensen and Christoffersen (1997), where a plane constitutive model for
perfectly bonded layered materials was introduced. It was found that this model contains
essentially the same information in one point of the material as a complete finite element
discretization of a representative volume element, like the model introduced in Kyriakides
et al. (1995), and furthermore, that the critical stress is highly influenced by fiber volume
fraction and the constitutive behavior of the constituents. Another conclusion is that the
kink stress is reduced by taking non-linearity of the fibers into account compared to the
predicted critical stress assuming linear-elastic fibers.

In the present study, a smeared-out plane constitutive model, as formulated by Christof-
fersen and Jensen (1996), is implemented as a user subroutine in the finite element program
ABAQUS. Effects of fiber misalignment for elastic and plastic response are studied, and
qualitatively compared to earlier results.

2. IMPLEMENTATION OF THE CONSTITUTIVE MODEL

For a detailed description of the constitutive model used in these kinkband simulations, see
Jensen and Christoffersen (1997) and Christoffersen and Jensen (1996).

2.1 The constitutive model.

The general relations between rates of Cauchy stress and the strain rates in three dimensions
are given by

σ̇ij = Lijklεkl (1)

where Lijkl are the elastic-plastic tangent moduli. The strain rates are given by

εij = 1

2
(vi,j + vj,i) (2)

with vi,j denoting the components of the gradient of velocity components vi.

The two-dimensional constitutive equations implemented in ABAQUS are given in the form

ṡij = Cijklvl,k, i, j, k, l ∈ {1, 2} (3)

where ṡij are components of the nominal stress rate, vi,j are components of the gradient
of velocity components vi, and Cijkl are components of the tensor of nominal moduli, and
from this formulation Lijkl is found by the relation

Lijkl = Cijkl + 1

2
δilσkj + 1

2
δikσlj + 1

2
σilδkj −

1

2
σikδlj, i, j, k, l ∈ {1, 2} (4)

by futhermore using the assumption τij ≈ σij, with τij being components of Kirchoff stress.

The components of the tensor of nominal moduli Cijkl are found from a mixture of fiber
and matrix properties.

The constitutive model is based on three assumptions:

• Material lines parallel with the fibers are subject to a common stretching and rotation



Simulation of kink bands

• Planes parallel with the fibers transmit identical tractions

• The material of the constituents is elastic or elastic-plastic

The first of these assumptions correspond to a Voigt estimate for effective material properties
whereas the second corresponds to a Reuss estimate. The third assumption is a standard
specification of time independant materials.

The expressions for Cijkl, the components of the tensor of nominal moduli, can be found
in Christoffersen and Jensen (1996).

2.2 The behavior of the constituents.

For both constituents we have the relations

ṡc
ij = Cc

ijklv
c
l,k, (5)

similar to equation 3. Furthermore, both materials are assumed to be characterized by a
power-law hardening with isotropical hardening. The power-law is given by

ε =

{

σ
E

, σ ≤ σy

σy

E

[

1

n

(

σ
σy

)n

− 1

n
+ 1

]

, σ > σy

(6)

where σy is the yield stress of the material and n the hardening parameter. From this
relation the tangentmodulus Et is found, and subsequently the values of Lc

ijkl.

In the kink-band simulations in the present paper, yielding only occurs in the matrix mate-
rial, and thus the fibers are treated as linear elastic.

2.3 ABAQUS implementation.

The user subroutine UMAT in ABAQUS is used to implement the material behavior of the
composite. In this routine, stresses in fibers and matrix are updated within each increment,
and the elastic-plastic moduli are calculated by mixture of the properties of the constituents.
The moduli Lijkl are determined from equation 4 and this value is returned to ABAQUS
from UMAT. ABAQUS uses an updated Lagrangian formulation.

The model is implemented as a plane strain model, but can also be formulated for plane
stress situations. In the present study, the fiber volume fraction is assumed to remain
constant throughout the deformation.

Further details regarding the implementation of a constitutive model in ABAQUS can be
found in Dunne and Petrinic (2005).

3. RESULTS

In this section, results for simulation of kink-band formation, and the response of com-
pression of a single element, are presented. In the simulations, a rectangular block of fiber
reinforced material, as shown in Fig. 1, is analyzed. The block is loaded under plane strain
conditions, and has the dimensions L = 10 and H = 3 with the fiber direction outside the
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X
1

X
2

bH

L

f

b

Fig. 1: Kink band geometry

kink band coinciding with the x1-axis. Furthermore, the displacements u1 and u2 satisfy
the boundary conditions

u1 = 0 on x1 = −L
2

(7)

u2 = 0 on (x1, x2) =
(

−L
2
,−H

2

)

(8)

The width of the imperfection is b and β is the angle of the kink band. Inside the kink band
the fibers are assumed to be at an angle φ, and this imperfection is given by the expression:

φ (x1, x2) = 1

2
φm

[

cos

(

2π cos β

b
(x1 + x2 tan β)

)

+ 1

]

(9)

where φm is the value of the angle in the middle of the kink-band. In all simulations, the
values b = 2 and β = 5◦ are used.

The material parameters used in these simulations are found in Kyriakides et al. (1995),
with superscripts f and m denoting fiber and matrix respectively:

νf = 0.263, νm = 0.356,
σf

y

Ef
= 0.019,

σm
y

Em
= 0.013 (10)

In all simulations, a fiber volume fraction of cf = 0.6 is being used. The hardening
parameters are chosen to be nm = 4.5 and nf = 2.5, so the power-law curve closely
resembles the Ramberg-Osgood curve used in Jensen and Christoffersen (1997), and results
are obtained for Ef/Em = 35 and Ef/Em = 100.

The dotted green curve in Fig. 2 shows the material response under compression of an
element of the fiber reinforced material. In Fig. 2, the plastic deformation of the matrix
material is suppressed. The material response is modeled using one 4-node element with
2 × 2 Gauss integration points. The fibers are given a small initial homogenous inclination
of 1◦. During the compressive deformation the fiber inclination will increase, resulting in
a lower overall stiffness of the composite material. Nevertheless, for a stiffness ratio of the
fiber/matrix system given by Ef/Em = 35 the behavior is rather linear, whereas a stiffness
ratio of Ef/Em = 100 will result in a much more pronounced non-linear material response.
However, even for this stiffness ratio the material will not experience a material softening
behavior. Therefore, a localized deformation state in the rectangular block (Fig. 1) is not
expected and is not found. Instead of a localized deformation state, an imperfection insen-
sitive overall Euler buckling mode is developed as shown in Fig. 3. The red curve in Fig. 2
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Fig. 3: Contourplot of imperfection

shows the corresponding load versus shortening curve for a rectangular block, indicating a
maximum load carrying capacity of approximately F/ (AEm) = 0.42. In addition to the de-
formed mesh, Fig. 3 shows a contourplot of the initial prescribed misalignment of the fibers,
with a maximum value of φm = 0.0176 rad at the center of the kink band, corresponding to
an imperfection of φm = 1◦.

In Fig. 4, the load-displacement curves for one single element, Fig. 4a, and for a block of
material, Fig. 4b, are given for the stiffness ratio of the fiber/matrix system Ef/Em =
35. In contrast to Fig. 2, plastic yielding occurs in the following simulation in the matrix
material. During compressive loading it can be seen from Fig. 4a, that the smeared out
model show extensive material softening and actually also snap-back behavior. Consequently
the deformation state in the rectangular block localizes into a kink-band as shown in Fig.
5. The load-displacement curves are linear until a kink stress is reached and for sufficiently
small angles of fiber misalignment, the phenomenon of snap-back occurs. From Fig. 4 it
can be seen that the critical stress is very sensitive to the initial fiber-misalignment. For
instance, for the kink-band formation in the block of material the critical stress almost
doubles when the maximum angle of fiber-misalignment φm is reduced from 5◦ to 2◦.

A contour plot of the effective plastic strains in the matrix material during kink band
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Fig. 5: Contour plot of effective plastic strain in the matrix material
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Fig. 6: Plastic deformation Ef/Em = 100

formation is shown in Fig. 5.

The load-displacement curves for one single element and for a block of material, are shown
in Fig. 6 for the stiffness ratio of the fiber/matrix system Ef/Em = 100. These curves
demonstrate a behavior similar to the one where Ef/Em = 35. The implementation
of the constitutive model does not include a material length-scale, and consequently the
solutions show strong mesh dependency. This is illustrated in Fig. 7 which shows the
load-displacement curves using four different meshes. All curves are found using the fiber
misalignment variation (9) with φm = 8◦. Similar to what is obtained by e.g. (Pamin, 1994)
a more brittle post-localization behavior are obtained when the mesh is refined. From Fig. 8
it can be seen that the kink-band formation occurs in one row of elements. Not only the
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post-necking behavior, but also the load carrying capacity is seen to be influenced by the
mesh size.
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Fig. 7: Load versus deflection curve for 4 different meshes

Fig. 8: Kink band mesh dependency

4. DISCUSSION

A plane constitutive model for fiber reinforced composites is implemented in ABAQUS as a
user subroutine. It is demonstrated that the model qualitatively produces similar behavior
as a micro-mechanical model, with regards to kink band development.The implementation
of the model in ABAQUS does not include a material length-scale and therefore the kink-
band will show strong mesh dependency. The implementation of the smeared-out composite
material model in a finite element model has some immediately future applications, for
instance kink-band development in more complex structures, such as a plate with a hole
subject to compression. Other possible application is simulation of competing compressive
failure mechanisms such as buckling and kink-band development in large fiber composite
structures.
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Abstract

A constitutive model for fiber reinforced composite materials has
been implemented in ABAQUS. The model has been developed to
study kink band formation, and applications to cases where this forma-
tion occurs are used as examples to demonstrate the model, although
this is not a general restriction. The development of the user subrou-
tine for implementing the model in ABAQUS is discussed in detail.
Special emphasis is placed on the performance of ABAQUS with the
model with respect to mesh dependence of the results.

1 Introduction

Fiber composites loaded in compression parallel to the fibers may fail by
localization of strains into kink bands. Structural components based on
composite materials, which are subject to changing load histories, are of-
ten designed with this failure mode as the most critical. Fig. 1 shows an
idealization of the kink band geometry.

The formation of kink bands was initially studied in geology. One of the
first papers on kink band formation in fiber composites was Rosen (1965)
where a linear elastic analysis was carried out treating the fiber/matrix
interaction by a planar model of beams on an elastic foundation. The critical

1
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Figure 1: Idealization of kink band geometry with kink band orientation β
and fiber rotation φ.

stress for kink band formation was estimated as

σ11 = G (1)

where G is the elastic shear modulus of the composite material. Later Argon
(1972) formulated a planar model, which emphazised the importance of two
effects not taken into account in Rosen’s analysis: Misalignments of fibers
relative to the direction of loading, and plastic deformation of matrix mate-
rial. Budiansky (1983) unified the approaches of Rosen (1965) and Argon
(1972), which allowed for later extensions to multi axial loading conditions
etc. see for instance Fleck and Budiansky (1991) and Slaughter et al. (1993).
The critical stress for kink band formation was obtained as

σ11 − σ22 + G + 2σ12 tan β + ET tan2 β = 0 (2)

where ET is the transverse modulus of the composite. The works of Ar-
gon (1972), Budiansky (1983) and Fleck and Budiansky (1991) had shown
that fiber misalignments and plastic deformation was important for kink
band formation and a constitutive model was developed in Christoffersen
and Jensen (1996), which allowed for these effects. The conditions for kink
band formation were modelled as loss of ellipticity of the governing incre-
mental equilibrium equations Rice (1976). In the limit of infinitely stiff
fibers, an exact solution for the critical stress for kink band formation could
be obtained, which when specialised to β = 0 results in

σ11 − σ22 +
1

cm

(

Lm
1212 −

σm
11

− σ22

2

)

= 0 (3)

where Lijkl are incremental moduli for the matrix material relating Jaumann
rates of Kirchhoff stresses to strain rates as explained in greater detail in
the following section.
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Figure 2: Block of planar composite material with alternating layers of
matrix and fiber material.

2 Constitutive Model and Implementation

2.1 The Constitutive Model

A planar model is formulated for the composite material in Fig. 2 based
on the assumptions that the fibers and the matrix material are described
by time-independent plasticity theories relating Jaumann rates of Kirchhoff
stresses τ̂ij to strain rates εij (εij = 1

2
(vi,j + vj,i) with vi as displacements

and a comma denoting partial differentiation) in the form

τ̂ f
ij = Lf

ijklε
f
kl or εf

ij = Mf
ijklτ̂

f
kl and

τ̂m
ij = Lm

ijklε
m
kl or εm

ij = Mm
ijklτ̂

m
kl

(4)

where the superscripts refer to fibers or matrix material, and in the following
constitutive properties without a superscript denote composite properties.
In (4), Lijkl denotes the tensor of instantaneous moduli and Mijkl denotes
the tensor of instantaneous compliances, and furthermore, the summation
convention is adopted for repeated index. In the applications we set Kirch-
hoff stresses equal to Cauchy stresses and thus assume that local changes in
density due to elastic deformations are negligible.

Two classical models for calculating the constitutive response of the com-
posite material for small strain and small rotations are obtained by assuming
identical strains in the fibers and matrix (the Voigt model) or by assuming
identical stress is the fiber and the matrix (the Reuss model) leading to

Lijkl = cfLf
ijkl + cmLm

ijkl (Voigt)

Mijkl = cfMf
ijkl + cmMm

ijkl (Reuss)
(5)

where cf and cm denote relative volume fractions of fibers and matrix ma-
terial. For unidirectional fiber composites, the Voigt model is reasonable for
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properties in the fiber direction, while the Reuss model is reasonable in the
perpendicular direction.

When introducing the constitutive relations, which the present work is
based on, valid for finite strains and rotations, it is convenient to formulate
the constitutive relations as the relationship between nominal stress rates
and displacement gradient vi,j (with a comma denoting partial differentia-
tion) in the form

ṡij = Cijklvl,k, i, j, k, l ∈ {1, 2} (6)

The following relations hold between Lijkl and Cijkl

Lijkl = Cijkl +
1

2
δilσkj + 1

2
δikσlj + 1

2
σilδkj − 1

2
σikδlj , i, j, k, l ∈ {1, 2} (7)

Here, σij denotes the Cauchy stress tensor. Let us introduce the following
alternative notation for the constitutive equations (6).

ṡα = Cαβv,β, α, β ∈ {1, 2} (8)

so that the vectors ṡα and v contain the componenets of the nominal stress
rates and the displacements according to

ṡ1 =

(

ṡ11

ṡ12

)

, ṡ2 =

(

ṡ21

ṡ22

)

, v =

(

v1

v2

)

(9)

and the matrices Cαβ are given by

C11 =

(

C1111 C1112

C1211 C1212

)

C12 =

(

C1121 C1122

C1221 C1222

)

C21 =

(

C2111 C2112

C2211 C2212

)

C22 =

(

C2121 C2122

C2221 C2222

)
(10)

The fibers are aligned with the x1-axis as indicated in Fig. 2. A compro-
mise between the assumptions in the Voigt and Reuss models is introduced
by assuming that material lines parallel with the fibers are subject to a
common stretching and rotation, and planes parallel with the fibers trans-
mit identical tractions. According to this,

v
f
,1 = v

m
,1 = v,1

ṡ
f
2

= ṡ
m
2 = ṡ2

(11)

Furthermore,

cf
v

f
,2 + cm

v
m
,2 = v,2

cf
ṡ

f
1

+ cm
ṡ

m
1 = ṡ1

(12)
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It was shown in Christoffersen and Jensen (1996) that equations (11) and
(12) along with (8) for the constituents allowed the composite moduli to be
written in the form

Cαβ = cf
C

f
αβ + cm

C
m
αβ − cf cm

(

C
f
α2

− C
m
α2

)

C
∗−1

22

(

C
f
2β − C

m
2β

)

(13)

where
C

∗

22 =
(

cm
C

f
22

+ cf
C

m
22

)

(14)

It was also shown that the moduli Lijkl in (7) with Cijkl given by (13) satisfy
the symmetries

Lijkl = Ljikl = Lijlk (15)

as required by objectivity, and that Betti symmetry is preserved by the
model, i.e.

Cf
ijkl = Cf

klij and Cm
ijkl = Cm

klij ⇒ Cijkl = Cklij (16)

The constitutive relations given by (13) form the basis for the present
study. Note that the first two terms in (13) can be considered as a general-
isation of the Voigt model (5) to finite strains, and that the last term is a
correction to this due to the static conditions in (11) and (12).

Each constituent may now be described by arbitrary time-independent
plasticity theories. Here, J2-flow theory is used to model the behavior of
both constituents. Experimental results in Kyriakides et al. (1995) showed
indications of relative weak fiber nonlinearities. The effects of this were
investigated in Jensen and Christoffersen (1997) showing some influence on
the critical stress for kink band initiation. The J2-flow theory for the matrix
can be formulated as the following incrementally linear relation between Jau-
mann rates of Kirchhoff stresses and strains (McMeeking and Rice (1975))

τ̂ij = Lijklεkl

Lijkl = G (δikδjl + δilδjk) +
(

K − 2

3
G

)

δijδkl − 4

3
(G − Gt)mijmkl

(17)

where superscript ()m for the matrix has been omitted and δij denotes the
Kronecker delta. In (17), G and K are the elastic shear modulus and bulk
modulus and Gt is the shear tangent modulus, which along with mij are
given by

G =
E

2 (1 + ν)
, K =

E

3 (1 − 2ν)
,

1

Gt
=

3

Et
− 1 − 2ν

E
(18)

and

mij =
1

2σeq

(

σij −
1

3
δijσkk

)

(19)
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Here, Et is the uniaxial tangent modulus, which requires a uniaxial true
stress vs. logarithmic strain to be specified. This is given by

ε =











σ

E
, σ ≤ σy

σy

E

[

1

n

(

σ

σy

)n

− 1

n
+ 1

]

, σ > σy

(20)

Furthermore, in (18) the effective von Mises’ stress is given by

σeq =

√

3

2
σijσij −

1

2
σiiσjj (21)

In the following section the implementation of the model in ABAQUS
is described. This implementation is an alternative to the application of
the model in Pane and Jensen (2004) and to the individual discretization of
fiber and matrix material described in Hsu et al. (1998).

2.2 User Subroutine UMAT

For a more detailed description on how to implement a constitutive model
in ABAQUS, see Dunne and Petrinic (2005).

The subroutine UMAT (User MATerial) is written in FORTRAN and
is used to define the constitutive behavior of a material. ABAQUS pro-
vides the deformation gradient, total strains and strain increments and the
subroutine must then return the material Jacobian matrix ∂∆σ/∂∆ε for the
constitutive model along with updated stresses. In this case the material be-
havior of the composite is simulated by mixing the properties of 2 materials
each described by a powerhardening law.

The UMAT subroutine used in the present work contains the following
steps:

1. Calculate the gradient of velocity from deformation gradient. The
deformation gradient F is provided by ABAQUS and the velocity gra-
dient, which describes the spatial rate of the velocity, is found from
vi,j = ḞikF

−1

kj

2. Calculate the effective von Mises’ stress for matrix and fiber according
to (21)

3. Calculate tangent modulus from the uniaxial true stress vs. logarith-
mic strain curve, see (20)

4. Calculate Lf
ijkl and Lm

ijkl according to (17)

5. Calculate Cijkl from (7) and (13)
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6. Calculate stress increments, see Jensen and Christoffersen (1997)

σ̇ij = Cijklvl,k − σijvk,k + vi,kσkj (22)

7. Update stresses

8. Update yield stress

9. Update plastic strains

10. Return state variables, see the following subsection

11. Return material Jacobian matrix ∂∆σ/∂∆ε

All variables are updated using a forward Euler procedure.

2.2.1 List of Solution-dependant variables

The solution-dependant variables are variables that are updated as the
analysis progresses. For instance, in order to be able to return the ma-
terial Jacobian and to update the overall stresses in the composite material,
it is necessary to keep track of the individual stresses in the fiber and ma-
trix material. The UMAT utilizes a total of 16 state variables, passed from
ABAQUS through the array STATEV(NSTATV), each containing imforma-
tion about every integration point. The state variables are:

• The updated yield stresses of the fiber and matrix materials - both
modelled as power hardening materials

• The effective plastic strain in fiber and matrix

• βf and βm - two variables which will have the value 1 or 0 depending
on if the material yields or not

• The stresses in the matrix material, σm
11

, σm
22

, σm
33

, σm
12

• The stresses in the fiber material, σf
11

, σf
22

, σf
33

, σf
12

• The initial direction of the fibers and the current rotation

2.2.2 List of Material Constants

To the matrix and fiber material 9 material properties are associated: 2
Young’s moduli, Em and Ef , 2 Poisson’s ratios, νm and νf , 2 initial yield

stresses, σm
y and σf

y , 2 hardening parameters, nm and nf and finally the fiber

volume fraction cf . These properties are passed to UMAT by ABAQUS in
the array PROPS(NPROPS). In the input-file, the keyword *USER MA-
TERIAL is used to specify material constants. In the present study, the
fiber volume fraction is assumed to remain constant cf = 0.6 throughout
the deformation.
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2.2.3 User Subroutine ORIENT

The ABAQUS user subroutine ORIENT is used for defining local material
directions. In the kink band analysis described in the following section, pa-
rameters describing the geometry of the kink band are placed in a datafile
which is being read from the ORIENT subroutine. In ORIENT these para-
meters, B, φm, α and β are subsequently used to calculate the initial local
fiber direction. The subroutine is called by ABAQUS at the start of the
analysis at each material point.

3 Results

The constitutive model described in the previous section has been used to
simulate the formation of kink bands in fiber reinforced composites. It is
important to note that here, the fibers are assumed elastic.

H

L

b

α

β

φm + α
x1

x2

Figure 3: Kink Band Geometry.

The kink band geometry is sketched in Fig. 3. A block of material, see
Fig. 2, is subject to compressive stresses under plane strain conditions. The
block has the dimensions height H = 3 and length L = 10 and in a band
of width b and at an angle β the direction of the fibers is given a small
imperfection. The direction of the fibers outside the band is given by the
angle α and inside the kink band the fibers are assumed to be at an angle
φ, and this angle is given by the expression:

φ (x1, x2) = 1

2
φm

[

cos

(

2π cos β

b
(x1 + x2 tan β)

)

+ 1

]

+ α (23)

so that a small imperfection is added to the fiber angle α inside the band,
and φm is the value of the imperfection in the middle of the kink band.
Furthermore, the displacements u1 and u2 satisfy the boundary conditions

u1 = 0 on x1 = −L
2

(24)
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u2 = 0 on (x1, x2) =
(

−L
2
,−H

2

)

(25)

In the following, the width of the kink band has the value b = 2, and in all
simulations the fiber volume fraction is 0.6. Futhermore, analysis has been
restricted to two different fiber/matrix stiffness ratios, Ef/Em = 35 and
Ef/Em = 100, which qualitatively correspond to a glass-fiber reinforced
polymer and a carbon-fiber reinforced polymer, respectively.

P

P

Figure 4: Deformation of a Single Element.

First of all, the deformation of a single element is investigated. The
element is a 4 node plane strain element (CPE4) and the initial fiber angle
is constant throughout the element. Load vs. displacement curves for one
single element are shown in Fig. 5. Curves are shown for various angles
α of the fiber misalignment and for the two different stiffness ratios of the
fiber/matrix system. For sufficiently small fiber misalignments the response
is linear until a critical load is reached after which material softening and
snap-back behavior is observed.

The maximum loading capacity is summarized in Fig. 6. Even though
both constituents are modelled as hardening materials, the composite shows
extensive softening behavior after the maximum loading capacity is reached
with snap-back behavior for small initial fiber inclinations as shown in Fig. 5.
The snap-back behavior is in the finite element code ABAQUS modelled us-
ing the Riks method. In experimental measurements a snap-back material
behavior would manifest as a dynamic material response. A detailed de-
scription of the Riks method can be found in Crisfield (1991).

The observed overall composite material softening which is required for
strain localization in structural components is caused by an interaction of
the non-linear response of the matrix material with an increasing rotation of
the fibers during compression as indicated in Fig. 6. I.e., during compression,
the block of material will, in addition to increasing axial compression, show
an increasing shearing tendency in the direction of increasing fiber rotation.
For the cases studied here, if the matrix material plasticity is suppressed
so both composite constitutes follow a linear elastic material response, the
fiber rotation itself does not cause material softening.

The development of the deformation of one element is further illustrated
in Fig. 7. This figure shows the vertical displacement u2 vs. the horizontal
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Figure 5: Plastic Deformation of 1 Element.
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Figure 6: Peak Load, 1 Element.

displacement u1 for node No. 2 (the lower right corner) in Fig. 4 for the
case where the fiber angle is α = 1◦ and Ef/Em = 100). The results
show a shift in the direction of the displacement vector from initially equal
amounts of the two displacement components towards displacement mainly
in the vertical direction.

Figure 7: u2 vs. u1.

This concludes the study based on the performance of a single element.
The following calculations are performed using at first 6*20 8-node plane
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strain (CPE8) elements. In Fig. 8 normalized load vs. end shortening curves
are shown for the low fiber to matrix ratio, i.e. glass fibers above and
the high ratio, i.e. carbon fibers below. Calculations are carried out for
different values of the fiber imperfection angle φm and outside the band the
fibers are aligned with the x1-axis, i.e. α = 0. As also shown in previous
studies, the peak load is highly sensitive to the misalignment of the fibers.
At a sufficiently large imperfection angle, the peak load disappears and
the composite fails by another mechanism. After the peak load material
softening occurs and the curves eventually converge and the previous load
history has insignificant effects.
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Figure 8: Plastic deformation, Kink Band Formation.

A contourplot of the plastic strain in the kink band for the case Ef/Em =
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35 is shown in Fig. 9. The figure shows the tendency for strains to localize
into a band inclined relative to the load and fiber direction. The deforma-
tions remain almost homogeneous outside the localized band.

(Ave. Crit.: 75%)
SDV3

-2.564e-02
+3.972e-02
+1.051e-01
+1.704e-01
+2.358e-01
+3.012e-01
+3.665e-01
+4.319e-01
+4.973e-01
+5.626e-01
+6.280e-01
+6.933e-01
+7.587e-01

Figure 9: Contourplot of plastic strain.

The peak load is sensitive to a number of parameters. The sensitivity to
the misalignment has been demonstrated and the non-linear response of the
matrix material can also play a role. In Fig. 10 the load vs. end shortening
curve is shown for a linear elastic response of the matrix, corresponding to
nm = 1.

 0
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Figure 10: Load vs. end shortening curve. The matrix material is assumed
to be linear elastic.

It is seen that a peak load results also in this case, and load vs. end
shortening curves are shown in Fig. 11 for different values of the hardening
exponent nm for the matrix. In Fig. 10 and 11 a mesh consisting of 12*40
CPE8 elements is used, fiber imperfection angle is φm = 3◦ and Ef/Em =
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Figure 11: Load vs. end shortening curves for different values of matrix
hardening parameter nm.

The peak stress and the post critical response is seen to be sensitive to
the hardening exponent in certain regimes. The peak stress as a function
of the hardening exponent nm and φm = 3◦ is shown in Fig. 12, where the
peak load initially drops by a large amount until convergence towards an
elastic-perfectly plastic response of the matrix is achieved.

The peak load is less sensitive to the kink band inclination angle, β.
In Fig. 13, the critical load as a function of β is shown for three different
misalignment angles. The peak stress is seen to vary only moderately with
the angle, β, while the angle φm plays a more significant role. Again, the
mesh is 12*40 CPE8 elements.

The effect of the applied load not being in the same direction as the
fibers is studied by changing the value of α. Load-deformation curves for
various α are given in Fig. 14. The fiber angle is φ = 2◦, Ef/Em = 35
and the mesh consists of 6*20 CPE8 elements. It is seen that the snap-back
effect only exists for small angles and that the load-deformation curves cease
to have a peak value when the value of α increases.

A material length-scale is not included in the implementation of the
constitutive model and as a consequence, the width of the kink band is un-
determined and mesh dependent. As a result of this, the rate of convergence
of load vs. end-shortening curves, see Fig. 15, with decreasing element size
in the mesh is somewhat slow, especially in the immediate post kinking
regime. The peak stress and the response far into the post critical regime
seem to converge faster.

Fig. 16 shows contourplots of the effective plastic strain in the 4 different
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Figure 12: Peak load vs. hardening parameter nm.
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meshes used in the mesh-dependency studies. It is seen how the width of
the localized band decreases as the size of the elements decreases.

Figure 16: Four different deformed meshes with contour plot of effective
plastic strains included.

Up until this point all results have been produced using a mesh consisting
of rectangular elements. To investigate how a ’distorted’ mesh affects the
results, a mesh as shown in Fig. 17 is introduced. The elements (12*40
CPE8R elements) are aligned with the initial imperfection at an angle of
β = 8◦. The results are shown in Fig. 18 and Fig. 19 where the load-
deformation curves for a ’regular’ and a ’distorted’ mesh are compared.

Figure 17: Distorted mesh.

In Fig. 18 the fiber angle is φ = 4◦ and Ef/Em = 35, in Fig. 19 the fiber
angle is φ = 5◦ and Ef/Em = 100. The critical load is apparently unaffected
by the change of the mesh but the immidiate post-kinking behavior is seen
to be different.
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Figure 18: Load vs. deformation for regular and distorted mesh.
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Figure 19: Load vs. deformation for regular and distorted mesh.
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4 Discussion and Conclusion

A plane constitutive model for fiber reinforced composites has been imple-
mented in ABAQUS as a user subroutine. The model has been tested under
cases where failure by kink band formation is a relevant mechanism. At first
it is verified that the model predicts a reasonable behavior for a single finite
element. The behavior of a rectangular block of material divided into a
number of finite elements is then investigated. The focus in this study is on
the performance of the model when implemented in ABAQUS with respect
to reliability and rate of convergence. In agreement with previous results, it
is seen that the critical stress for kink band formation is rather insensitive to
the initial kink band orientation and that the kink band undergoes a distinct
rotation in the post critical regime. In the model, a continuous field may be
specified for the initial fiber orientation. This field can vary with the spatial
components to mimic real defects in the production of laminated structures.
The imperfection of the composite material applied in the present study is
an assumed band of material of a specified width in which the fiber orienta-
tion gradually changes from the orientation outside the band to a maximum
deviation from this and back to the original orientation again. The band
may be arbitrarily oriented relative to the fiber direction. No variation of
fiber rotations has been assumed in the direction of the band although this
is not a general restriction in the model.

The constitutive model has no intrinsic length scale and consequently the
width of the kink band is undetermined and mesh dependent. As a result
the rate of convergence of load vs. end-shortening curves with decreasing
finite element mesh size is somewhat slow especially in the immediate post
kinking regime. The peak stress and the response far into the post critical
regime seem to converge faster. It is demonstrated that an initial alignment
of the finite element mesh in the direction of the orientation of the kink
band may have the effect of increasing the rate of convergence.

The model is applied in a study of the effect of initial misalignment of
the fiber and load direction. This effect has previously been studied in an
approximate manner by imposing a fixed linear combination of compressive
and shear stresses out side the kink band. The effect of initial misalignments
is very distinct on the peak stress where the critical stress at 10◦ misalign-
ment is reduced to roughly 1/4 the critical stress for compression in the fiber
direction at a fixed band of imperfections. At a misalignment of 15◦ and
above the peak in the stress vs. end shortening response vanishes and the
composite structure fails by another mechanism.

The model is expected to have some immediate applications such as
kink band formation in plates with holes or other, more complex, structural
components. Also, the model can be used to study competing compres-
sive failure mechanisms such as buckling and kink band formation in fiber
composite based structures.
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