
Aalborg Universitet

Primitive Based Action Representation and recognition

Baby, Sanmohan

Publication date:
2010

Document Version
Tidlig version også kaldet pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Baby, S. (2010). Primitive Based Action Representation and recognition. Computer Vision and Media
Technology Laboratory (CVMT), Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://vbn.aau.dk/da/publications/29c746d8-1da7-482b-9424-93a4ef431183

Primitive Based Action Representation and

Recognition

A PhD dissertation

by

Sanmohan

Computer Vision and Machine Intelligence Lab

Aalborg University Copenhagen, Denmark

Email:san@cvmi.aau.dk

Abstract

The presented work is aimed at designing a system that will model and

recognize actions and its interaction with objects. Such a system is aimed

at facilitating robot task learning. Activity modeling and recognition is

very important for its potential applications in surveillance, human-machine

interface, entertainment, biomechanics etc. Recent developments in neuro-

science suggest that all actions are a compositions of smaller units called

primitives.

Current works based on primitives for action recognition uses a super-

vised framework for specifying the primitives. We propose a method to

extract primitives automatically. These primitives are to be used to gener-

ate actions based on certain rules for combining. These rules are expressed

as a stochastic context free grammar. A model merging approach is adopted

to learn a Hidden Markov Model to fit the observed data sequences. The

states of the HMM approximates local properties of a long sequence.

Observation sequences are used to learn a model expressing the data in

a structured way. Based on the learned model, recurring parts in the se-

quences are identified. Primitives that make up the observation sequences

are identified as the recurring and unique parts appearing in the sequences.

Extracted primitives are used to make a primitive graph from which a gram-

mar for the observed primitives are derived.

This method is further extended to include object context. We observe

that human actions and objects can be seen as being intertwined: we can

interpret actions from the way the body parts are moving, but as well from

how their effect on the involved object. While human movements can look

vastly different even under minor changes in location, orientation and scale,

the use of the object can provide a strong invariant for the detection of

motion primitives. Movements that produce the same state change in the

object state space are classified to be instances of the same action primitive.

This allows us to define action primitives as sets of movements where the

movements of each primitive are connected through the object state change

they induce.

Contents

Abstract iii

1 Introduction 1

2 Related Work 11

2.1 Learning without Primitives/Non-hierarchical Methods. . . . 11

2.2 Learning with Primitives/Hierarchical Methods. 12

2.3 Learning with Object Context 15

2.4 Discussion . 17

3 Mathematical Preliminaries 19

3.1 Hidden Markov Models . 19

3.2 Model Merging of Discrete HMMs 20

3.3 Model Merging of HMMs with Continuous Densities 21

3.4 Stochastic Context Free Grammar 24

3.5 Kullback-Leibler Divergence 25

4 Action Primitives 29

4.1 Summary of the Supervised Approach 30

4.1.1 Discussion . 32

4.2 Automatic Segmentation of Primitives 32

4.2.1 Model Learning from Observation Sequences 34

4.2.2 Modeling the Rest of the Data 35

4.2.3 Merging of Similar States 36

4.2.4 Finding Primitives . 38

4.2.5 Generating the Grammar for Primitives 38

4.2.6 Experimental Evaluation 42

4.2.7 Testing on Simulated Data 42

4.2.8 2D-Trajectory Data 43

4.2.9 Hand Gesture Data 47

4.2.10 Chess Movements Data 49

4.3 Discussion . 52

vi Contents

5 Primitives with Object Context 55

5.1 Modeling Object Action Interactions 56

5.2 Primitive Segmentation in the Object State Space 61

5.3 Segmentation and Grouping in the Movement Space 62

5.4 Generating the Grammar for Primitives 64

5.5 Recognition of Novel Sequences Using Primitive Paths 64

5.5.1 Detecting Primitives in Unknown Sequences 65

5.6 Experiments . 68

5.6.1 Model with Single Manipulation Action 70

5.6.2 Model with Single and Multiple Manipulation Action 74

5.6.3 Primitives with Sequential Model Building 75

5.6.4 Use of SCFG . 77

5.6.5 Effect of Parameters 77

5.6.6 Summary and Discussion 80

Bibliography 85

A Grammar for Object-Action-Dataset 97

Appendix 97

List of Figures

1.1 Imitation learning process . 2

1.2 Actions in different spaces . 3

1.3 Effect of metric in imitation 4

1.4 Meaning of some terminology used in this thesis. 5

1.5 Illustration of the action hierarchy of Bobick 6

1.6 Taxonomy of gestures . 7

1.7 Overview of approach . 8

3.1 Model merging in discrete HMM. 22

3.2 Model merging of continuous HMMs 24

4.1 HMM models of Vincente . 30

4.2 Sampling Gaussians . 34

4.3 Pseudocode for finding the longest common substring of two

strings. 39

4.4 Primitive Graph . 40

4.5 Primitive graph with three action classes 42

4.6 HMM Merging Illustration-1 44

4.6 HMM Merging Illustration-2 45

4.6 Trajectory data and covering 46

4.7 Primitives for trajectory data 46

4.8 Comparing automatic and manual primitives for one grasp

sequence . 48

4.9 Comparing primitive segmentation with ground truth data . 49

4.10 The temporal order for primitives of hand gesture data 50

4.11 Chess data trajectories . 51

4.12 Primitives for the chess data 51

5.1 Structure in the object state space 56

5.2 Overview of object context modeling approach 57

5.3 Thresholding the trajectories using a threshold 57

5.4 Covering the data with Gaussians 58

5.5 Merging Gaussians . 60

viii List of Figures

5.6 Experimental setup . 61

5.7 Illustration of primitive segmentation using LCS algorithm . 62

5.8 Data covered with Gaussians. 63

5.9 Final states in the object space after merging 63

5.10 Primitive extraction method in the object space 66

5.11 Primitive extraction using the online method 67

5.12 Segmentation result for a complex sequence with three ma-

nipulation primitives . 68

5.13 Sparsity structure of the final HMM transitions 71

5.14 Primitive path clusters . 72

5.15 Primitive paths for different actions 73

5.16 State changes when complex actions are included in the prim-

itive learning . 75

5.17 The result of our primitive extraction method when complex

actions are included in the primitive learning phase. 76

5.18 Illustration of the sequential updating of the primitives 78

5.19 grammar for actions . 79

5.20 Primitive sequence parsing using NLTK 80

5.21 Illustration of the effect of parameters 81

List of Tables

2.1 Symbol conversion table used in [1]. VL=Lower threshold for

speed, VH=Higher threshold for speed, AD=Threshold angle

for downward, AU=Threshold angle for upward. 16

4.1 Recognition results from [2] for primitives using different HMMs.

(Left) Confusion matrix for the recognition rates using HMM

model I. (Right) Confusion matrix for the recognition rates

using HMM Model II. Rows represent predicted class and

colums represent actual class. Correct results are given on

the diagonal. 32

4.2 Primitive segmentation and recognition results for Push aside

and Push Forward action. Sequences that are identified in-

correctly are marked in light gray. 50

4.3 Primitive segmentation and recognition results for Move Ob-

ject and Grasp actions. Sequences that are identified incor-

rectly are marked in light gray. 52

5.1 Summary of the new data set. 69

5.2 Primitive detection using exact inference. pr=push right,

pl=push left, pf=push forward, pd=push down, mr=move

right, ml=move left, mf=move forward, md=move down, U=unknown.

True and detected labels are along rows and columns respec-

tively. 73

5.3 Primitive detection using approximate method. pr=push right,

pl=push left, pf=push forward, pd=push down, mr=move

right, ml=move left, mf=move forward, md=move down, U=unknown

. True and detected labels are along rows and columns respec-

tively. 74

5.4 Confusion matrix for action recognition using the primitives

from online method. pr=push right, pl=push left, pf=push

forward, pd=push down, mr=move right, ml=move left, mf=move

forward, md=move down, U=unknown. True and detected

labels are along rows and columns respectively. 74

x List of Tables

5.5 Primitive detection results using exact method when com-

plex sequences are used in primitive learning. pr=push right,

pl=push left, pu=push up, pd=push down, U=unknown se-

quence . 77

5.6 Primitive detection results using the approximate method

when complex sequences are used in primitive learning. pr=push

right, pl=push left, pu=push up, pd=push down ,U=unknown

sequence . 83

5.7 Confusion matrix for action recognition on complex sequences

using the primitives from single sequences. 84

Chapter 1

Introduction

In a longer time perspective, it is envisioned that robots will move into our

home and offices. It would be necessary to have robot learning mechanisms

that would enable the robots to adapt and operate in a dynamic environment

because it would be impossible to pre-program a robot with all possible world

states that it might encounter. It would be more desirable to teach the robot

through examples. Then probably users can make a demonstration of a task

and the robot can learn to do it. For example we can think of a table setting

scenario of [3] where the robot has to learn to recognize the plates, glasses

and other objects. Then it has to learn to grasp them in a robust manner,

and transport them to the correct location on the table. The robot should

understand, from examples, that glasses can go on top of plates but plates

cannot go on top of glasses etc. It is also to be noted that the objects

could be in a different location each time. Therefore it is not enough just to

imitate the motion trajectory.

Robots can be taught to perform tasks in several ways [4, 5, 6, 7, 8, 3, 4,

9, 10, 11, 12]. According to [13], there are two diametrically opposite ways to

teach robots: tell the robot in detail what it has to do or give the robots some

learning strategy and let the robot figure out what the appropriate action is.

The former strategy was common in the beginning and the robots were pre-

programmed to operate in a specific and highly controlled environment and

perform some pre-specified tasks for which controls were specified [14]. Such

an approach is not suitable when the robot is required to learn a new task or

when it needs to adapt to changing environment. Moreover, it is difficult to

program complex tasks in detail and specify exhaustively all new situations

the robot might encounter [13]. An example of this is the Honda robot

[15, 16] that can walk, climb stairs and manipulate objects. It took nearly

10 years program the robot with these capabilities. On the other hand,

learning strategies are meant to prepare robots to deal with new situations.

2 Chapter 1. Introduction

Observe

Action

Reproduce
Action Observation

Model Model
Motor

Recognize
Action

Action Representation

Figure 1.1: Imitation learning process. An internal representation is formed
from observed actions for future recognition and reproduction. In this work,
we deal with representing and recognizing actions.

The learning techniques such as reinforcement learning [17, 18, 7] and genetic

algorithms [19] used so far have the capacity to learn anything theoretically

but in practice their learning power is limited [13, 20]. A combination of

programming and learning strategies can be found in [21] where a robot is

programmed with a set of basis behaviors and is expected to learn to use

these behaviors. This approach does not scale well in modeling higher-level

behaviors [22].

As we pointed out earlier, robots are to become common in our daily

lives. In such a scenario, a user friendly interaction and teaching method are

required to improve the performance of the robot and deal with unforeseen

circumstances. Imitation learning or learning from observation is seen as

a natural solution to this problem [23, 24, 25]. In the imitation learning

approach, the robot learns by observing an expert performing some task.

Thus it is a simple channel of communication between the robot and an

expert. The advantages of such an approach have been pointed out by

several authors in the past [26, 27, 28, 29, 9, 30, 1]. Bakker and Kuniyoshi

[13] points out adaptation, efficient communication, compatibility with other

learning systems, efficient learning and good company as some of the reasons

in endowing robots with the ability to imitate. This way even a person

without the knowledge of complex robot programming can ”program” the

3

Figure 1.2: Representation of actions in different spaces [31].

robot. The user does not need to perform a complex robot programming to

teach the robot.

Imitation learning scenario comes with a lot of challenges. Imitation de-

pends on several perceptual, cognitive and motor capabilities. The imitating

system should have perceptual capabilities to detect motion and object, mo-

tor capabilities to imitate the perceived action and cognitive capabilities to

determine what to imitate, how to imitate etc. Other challenges such as

evaluating the success of imitation, dealing with changing environment dur-

ing the execution motion are also to be dealt with. By defining a metric

of imitation, one can find an optimal controller to imitate by minimizing

this metric [32, 33]. The concept of a metric of evaluation is illustrated in

Fig. 1.3. Considering only the displacement of objects, one can evaluate

the similarity of the effect of the demonstrated task and the effect of the

imitated task using relative displacement, absolute displacement or relative

position. Examples of situations where each of these metrics become useful

can be provided [34]. The imitator might need help from a teacher or sev-

eral repetition of the same task with different configurations to choose the

correct metric of evaluation.

In imitation learning, robots are to learn from demonstrated examples,

form an internal representation of the observed action, use the representa-

tion to recognize actions, and finally reproduce the observed actions. This

process is illustrated in Fig. 1.1. Action representation plays a key role in

this cycle of imitation learning. Encoding actions using primitives has been

advocated as an efficient way to represent actions [35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 29]. Primitives are units of behavior above the level of motor or

4 Chapter 1. Introduction

Figure 1.3: Illustration of the use of metric of imitation [34] . Depending on
metric of imitation, dissimilar imitative behaviour can result from dissimilar
configuration of objects.

muscle commands [41]. The concept of primitives can be motivated from

several perspectives such as human movement hierarchies, human percep-

tion of actions and studies from neuro-science. We elaborate on each of

these below.

The first motivation for primitives comes from the different levels/layers

of hierarchy that can be used to analyze and interpret human movements.

Bobick defined one such hierarchy [45]:

� Movement: A motion which is characterized by a definite space-time

trajectory in some configuration space. For a given viewing condition,

the appearance of movements is consistent. This is a basic motion

that can be detected using low level processing of features.

� Activity: Activity describes motion consisting of a sequence of move-

ments. Activities do not refer to external elements.

� Action: Actions include the context of the motion and can be consid-

ered as the highest level of abstraction. According to Bobick, actions

are the boundary where perception meets cognition. This is because

different instances of the same action can have different interpretation

depending on the context or object being manipulated. To recognize

an action, the observed motion has to be linked to its context.

In this thesis, our taxonomy to denote movement hierarchies will be

slightly different from the one we have seen above and is given in Fig. 1.4.

At the lowest level we have primitives. Several primitives put together can

5

Simple Action: An action sequence with only one type of move-
ment in it. Eg. Pushing an object towards right.
Complex Action: An action sequence that contains more than
one type of movement. Eg. Pushing object right followed by
pushing object up.
Primitive: A segment of data consisting of one more points
from data. The points in a primitive are adjacent in the time
axis. Every action sequence can be written as a concatenation
of primitives.

Figure 1.4: Meaning of some terminology used in this thesis.

generate a simple action. A simple action sequence will contain only one

meaningful action such as move the object from A to B. Combinations of

simple actions make a complex action.

We take the table setting scenario to explain the meaning and interpre-

tation of these terms. Picking up a knife for arranging the table could be

considered as a movement, see Fig. 1.5. Picking up a knife and Placing the

knife on the table are sequences of two movements and make an activity.

Now by associating the placing of the knife with the plate, we can infer that

the action being done is ’arranging the table’. If the knife is picked up and

placed in a dish washer then the action is ’cleaning up the table’. So the

same sequence of activities describe two actions with the change of context.

The knowledge required to recognize motion at different levels of hierarchy

is different. Movements appear differently for different viewing conditions

and can be recognized by analyzing the variation of the features over time.

To recognize an activity, component movements and their statistical rela-

tions are required. To recognize action, the context of the motion is to be

known. Primitives are analogous to the movement of Bobick, but need not

be the same always. Sometimes several primitives are needed to make up a

movement [36].

Primitives can also be motivated from the way we perceive motion. Ac-

cording to [31], there are at least three different spaces in which humans

perceive an action as illustrated in Fig. 1.2. The visual space representation

allows one to recognize an observed action. The motor space representation

enables one to perform a task. The natural language space representation

6 Chapter 1. Introduction

PLATE

Figure 1.5: Illustration of the action hierarchy of Bobick[45]. Picking up a
knife is a movement. Picking up a knife and Placing knife on the table are
sequences of two movements and make an activity. Associating this activity
with the plate on the table(which gives the context), we know the action
being done is ’arranging the table’.

allows one to communicate about the action. A unifying frame work con-

necting these spaces will facilitate the building of intelligent systems that

learn through imitation and understand human actions [31]. Primitive based

representation of actions will help us to map the lower level signals to higher

level natural language.

The final motivation for primitives comes from experiments in neuro-

science. There are experimental evidences that suggest that the same part

of brain is involved when an action is performed or when the same action

is observed [46, 47, 48, 49, 50, 51] in animals. Similar results have been

observed in humans as well. Xu et al. [52] have found that auditory and

visual stimuli of the same action activate a common, left-lateralized network

of inferior frontal and posterior temporal regions in which symbolic gestures

and spoken words may be mapped onto common, corresponding conceptual

representations.

Having seen the importance of primitives, the next challenge is to seg-

ment actions into a set of primitives. It is common to define the primitives

by hand [53, 2, 41]. Hand seleceted primitives have the advantage that they

are appealing and intuitive to humans and meaningful. But it would be nice

to have learning mechanisms where these primitives could be learned from

data. Primitives detected automatically using such learning methods do not

always match with that of human defined primitives [18, 36].

Primitives vary depending on the application domain and the type of

actions that are considered. In general action recognition scenarios, whole

body motions are considered in a large amount of works. Overviews of such

approaches are given in [54, 55, 56, 57]. In the robotics field, the interest

mostly lies in gestures that are mainly used for human robot interaction. A

7

Hand/Arm Movements

Gestures Unintentional Movements

Manipulative Communicative

Acts Symbols

Mimetic Deitic Referential Modalizing

Figure 1.6: Taxonomy of hand gestures. Gestures used for manipulating
objects are separated from the gestures for communication purposes.

taxonomy of such gestures are given by [58] and is shown in Fig. 1.6. Ma-

nipulative gestures are the ones used to act on objects. We consider mainly

manipulation actions in this thesis. It is common to segment manipulative

gestures into three phases [58]:

� preparation

� nucleus(stroke [59])

� retraction

In [60] and [61, 62] hand gesture recognition is performed using different

phases of actions. In [61, 62], the retraction part is treated as a part of the

nucleus part. Our actions in this work consist of a reach part, manipulation

part and a retrieve part.

We consider a scenario similar to the one studied in [2]. In their work,

several manipulation actions were performed on an object in a table top.

Each of the manipulation actions were defined as a primitive. We attempt

to segment actions into primitives automatically for a similar scenario. At

the same time, we would like to find out how these primitives are related.

This will give us the knowledge about how these primitives are combined

to generate complex actions. We find the relation among primitives as a

8 Chapter 1. Introduction

−4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

1

2

3

4 6

5 7

8

Figure 1.7: Overview of our modeling approach. Sequence of points are
converted to sequence of states. Sequence of states are then converted to
sequence of primitives. From the sequence of primitives we get a grammar
for actions.

stochastic grammar. Our approach is tested with a publicly available data

set used in [2] and our own data set [63]. Our approach is based on the

assumption that similar actions have a common underlying hidden state

sequence. Therefore actions are first expressed as a sequence of hidden

states. Primitives are detected from these sequences by finding common

state subsequences. From the temporal continuity of primitives, a grammar

for the primitives can then be found. This is schematically represented in

Fig. 1.7.

To summarize, we learn the primitives from observed data automatically.

Actions are decomposed into primitives and a grammar that defines the

rules to combine these primitives are extracted automatically. The main

contributions of this work are:

1. Automatic extraction of primitives from observed data. Described in

Ch. 4.

2. Use of object context in learning primitives. Described in Ch. 5.

3. Extraction of grammar for primitives. Described in Ch. 4 and Ch. 5.

9

4. Incremental learning of primitives and grammar. Described in Ch. 5.

5. Detection of learned primitives in novel sequences. Described in Ch.

5.

Most of the results presented in this thesis have been published in peer

reviewed journals/conferences and are mentioned below:

1. Learning Actions from Observations, Volker Krueger, Dennis

Herzog, Sanmohan, Danica Kragic and Ales Ude, IEEE Robotics and

Automation Magazine, 17(2),30-43, June 2010.

2. Unsupervised Learning of Action Primitives, Sanmohan, Volker

Krueger and Danica Kragic, Humanoids 2010, Accepted.

3. Primitive based action representation and recognition. San-

mohan, Volker Krueger, Danica Kragic and Hedvig Kjellström, Ad-

vanced Robotics, Accepted.

4. Parametric Primitives for Hand Gesture Recognition, San-

mohan and Volker Krueger, International Conference on Intelligent

Control, Robotics, and Automation,639-642, Venice, Italy, October

28, 2009 - October 30, 2009.

5. Primitive Based Action Representation and Recognition, San-

mohan and Volker Krueger, Scandinavian Conference on Image Anal-

ysis, 2009, 31-40.

6. Automatic primitive finding for action modeling, Sanmohan

and Volker Krueger, Themis 2008, British Machine Vision Conference

Workshop Proceedings 2008, 35-43.

7. Action Primitives Using Object Context, Sanmohan, Volker

Krueger and Danica Kragic, Advanced Robotics journal submission,

under review.

The contents of Ch. 4 have been accepted by the Advanced Robotics jour-

nal(item 3 in the list above) and is currently scheduled to appear in Ad-

vanced Robotics Vol. 25 which will be published in April 2011. The con-

tents of Ch. 5 will be published in the Proceedings of the Humanoids 2010

conference(item 2 in the list above). The complete results of Ch. 5 has been

submitted to the Advanced Robotics journal and is under review.

Chapter 2

Related Work

Contents

2.1 Learning without Primitives/Non-hierarchical Meth-

ods. 11

2.2 Learning with Primitives/Hierarchical Methods. . . 12

2.3 Learning with Object Context 15

2.4 Discussion . 17

In this chapter we review some of the important works related to this

thesis. We consider mainly works that are related to learning primitives.

Primitive based learning approaches have gained much attention in imi-

tation learning but are not limited only to this field. Primitive learning

is closely connected to several hierarchical action modeling approaches in

computer vision and other related areas. Segmenting actions into primitives

could be seen as imposing some kind of structure on the data. Identifying

hidden structure in the data, one can represent actions at different levels of

a hierarchy.

2.1 Learning without Primitives/Non-hierarchical

Methods.

In this section we review some of the action recognition methods that do not

resort to higher level modeling of data. Approaches in this category fall into

two types: generative and discriminative methods. In generative models, a

model that can generate data is constructed. In discriminative methods a

decision boundary that best separates different types actions is sought. We

are more interested in generative models and hence omit a discussion on

discriminative methods.

12 Chapter 2. Related Work

Several authors have used HMMs for learning actions from demonstrated

examples [64, 65, 66]. Tso et. al [65] have used HMMs to represent and

reproduce Cartesian trajectories. They used the trajectory with the highest

likelihood in the training set for reproducing a task. Yang et. al [67] have

used HMMs for teleoperation of a robot gripper in the joint space or in

the task space using positions or velocities of the gripper. Their approach

depends heavily on prior knowledge of the task to be accomplished. They

have considered only one action, namely exchanging an Orbit Replaceable

Unit, in their experiments.

Generative models such as HMMs fit a data to the model using a train-

ing set and optimize the parameters[67, 68, 69, 70, 71]. Using the learned

model, novel sequences can be classified. By sampling from generative mod-

els, one can generate sequences and thus this type of approach is suitable for

synthesis. Some issues with HMM approaches are parameter specification

and optimization. The performance of the HMM model depends a great

deal on the number of states and state transitions. Some authors find the

best number of states by experimenting with the data. Some others have

set the parameters using an information theoretic criteria such as minimum

description length [72]. In [73], a heuristic approach to determine the topol-

ogy of HMM is described. From an initial model with high number of states

and full transitions, a final model is arrived by successively removing one

state at each iteration. For a fixed HMM topology, the the parameters of

an HMM can be optimized using the Baum-Welch re-estimation procedure

[69] which is an instance of the Expectation-maximization algorithm [74]to

find the Maximum Likelihood estimates with missing data. But a poor ini-

tialization of EM algorithm can result in convergence of the parameters at

a local maximum.

2.2 Learning with Primitives/Hierarchical Meth-

ods.

Several authors have represented actions in a hierarchical manner [45, 75,

76]. Most works require the manual modeling of atomic movements/primitives.

The contribution of our work is that we perform this segmentation auto-

matically. Expressing actions as a combination of several smaller mean-

2.2. Learning with Primitives/Hierarchical Methods. 13

ingful parts takes its inspiration from neuro-biological evidences that per-

ceiving an action and executing the same action are connected in the brain

[46, 47, 48, 49, 50, 51]. Finding a basis set of action primitives is being

considered as an important factor in developing intelligent systems with

cognitive capabilities. In [31], signs of first and second derivatives was used

to segment data into primitives. To each segment, its state, time duration

and angular displacement were recorded. Explicit time duration in the mod-

eling of primitives implies that we have well time-aligned data. This is not

true in most cases due to variability in execution of a task by various sub-

jects, measurement errors etc. In [36] primitives were found by thresholding

angular velocities. In their work human movement data was collected us-

ing sensors attached to hand (4 sensors : center of the upper arm, center

of lower arm, above writst, phalanx of the middle finger). The recorded

3D coordinates were then converted to joint angles corresponding to the 4

DOF of human arm. The four dimensional data of joint trajectories were

segmented into several segments by thresholding the magnitude of angular

velocity and the resulting segments for each of the joints were interpolated

with 100 elements in order to apply principal component analysis. Elements

of each joint were concatenated to form 400 dimensional vectors and PCA

was applied to reduce the dimension to 11 by choosing the most significant

11 eigen vectors and projecting the input data. Reproduction of the original

movement was performed by projecting points back to the input space from

the latent space. To apply this method, strong assumptions must be made

about the segmentation of the data, and the duration of the primitives. Ve-

locity thresholding gets more complicated as the number of joints increases

due to spurious zero velocity crossings. We provide a higher level abstraction

of primitives using a stochastic context-free grammar which is not possible

with the approach in [36]. Primitives found using joint angles are useful

when the primitives are to be performed but are not portable across agents

with different embodiments. This means that the primitives for the same

action would be different in another robot with different degrees of freedom.

In [77] human motions are represented as a binary tree. Actions are

recognized by finding the optimal node transitions in the tree. In their

approach, initial observations are mapped to a set of virtual markers on a

normalized virtual subject. Initially all the observations belong to the root

node. Samples belonging to a node are segmented to two parts and are

14 Chapter 2. Related Work

assigned to two leaf nodes. All the samples belong to a node are projected

to its principal component. Then a threshold value is used to segment

samples into two parts. Optimal threshold is selected using a minimum-

error thresholding technique [78]. The process is repeated until a node with

fewer than a predetermined number of frames is created. Length of all the

branches are made to be the same by attaching a copy of the leaf node to the

shorter branches. The final binary tree is used to recognize human motion,

state estimation and prediction and robot motion planning. This approach

requires time aligned sequences of same length to apply PCA. To extend

this approach for sequential learning is not straight forward. Our states in

the final HMM and the nodes in the last layer of [77] are comparable to

some extent. The observations that belong to one state are neighbours in

time in our case. In [77], frames belonging to one node are close in the

1D projected space. Takano and Nakamura [39] have also approached the

problem of finding motion primitives using HMMs. They have modeled each

actions via a discrete hidden Markov model. In their approach primitives

are assumed to be known whereas our approach learns the primitives from

the data.

In [18] subgoals are detected from trajectories by detecting regions that

the agent visits frequently on successful trajectories but not on unsuccess-

ful trajectories. A successful trajectory is defined as a path in which the

agent succeeds to attain the end state ignoring the number of steps it took.

This approach is tested in a grid world with an agent equipped with four

primitive movements: up, down, right, left. Frequently visited states were

identified using diverse density approach and the frequent states were se-

lected as subgoals. Using these subgoals, the agent is able to reduce the

number of it needs to reach the final goal. This approach is suitable for a

discretized world of states. In our approach, the states are to be learned

from continuous input signals. In [37] a dynamic systems frame work for

primitive detection using trained models is presented. They assumes that

the movement segments are known apriori. This approach is tested with

only a specific scenario. Another work where primitives are defined by hand

is [53]. They use primitives such as lines, circles, arcs in 2D.

In [79] several HMMs are used to model individual primitives. HMMs

work in parallel on the input stream. Output is fed into a stochastic gram-

mar which will remove uncertainties in the primitive detection. In this work

2.3. Learning with Object Context 15

each point in the input signal is converted to a primitive by taking maximum

over all possible starting points. The point wise conversion of primitive is

corrected by an SCFG which is specified by hand. In our case, we do not

convert single points. We convert a sequence to a sequence of primitives.

Uncertainties are handled by the model and the grammar over primitives.

Hayes and Demiris [80] taught a robot to traverse a maze by following

a teacher. The robot closely followed a teacher and whenever there was a

significant change in the movement direction of the teacher, the robot noted

the environment and type of movement executed. At the end,the robot ends

up with several symbolic rules. On left hand side(LHS) of such rules were

the description of environment in which actions occurred and the right hand

side(RHS) was the action executed(turn right, turn left or move straight).

For example if the robot observes that the teacher rotated 90 degrees and

then moved forward when there was a wall in the front and on the right, it

will generate and store the rule Walls sensed: FRONT, RIGHT→ Rotate

90 degrees and Move forward. When the robot is navigating the maze by

itself it constantly matches the perceived environment with the LHS of the

stored rules and reproduce the corresponding action on the RHS. Thus when

it senses that there are walls in the front and on the right, it will Rotate

90 degrees and Move forward. The success of this approach is due to the

limited number of simple actions involved.

2.3 Learning with Object Context

Many actions of interest involves manipulation of objects. Depending on

the data used, works on primitive segmentation fall into three categories:

a) actions involve objects. But the object state is not considered [2]. b)

actions do not involve objects [36] c) only object information is considered

[41]. The actions considered in [36] do not involve objects and are very

simple. In this work, we do not require pre-segmented information [81, 2]

to learn the primitives.

Kuniyoshi et al. [1] presented a method where the robot learns reusable

task plans by observing a human performing simple assembly task in a

tabletop environment. The movements of the human are classified as ac-

tions known to the robot such as pick, move, place etc. When the task is

completed, the robot is able to reproduce the sequence of actions. Move-

16 Chapter 2. Related Work

Value Speed Direction

:Staying v < VL —
:Moving Up VL < VH AU < a

:Moving Down VL < VH a < AD
:Moving Laterally VL < VH AD < a < AU

:Moving Fast VH < v —

Table 2.1: Symbol conversion table used in [1]. VL=Lower threshold for
speed, VH=Higher threshold for speed, AD=Threshold angle for downward,
AU=Threshold angle for upward.

ments are characterized by motion features of the hand and the relative

location of the hand with respect to the objects. For example moving down

is specified as when the speed is between a lower and upper limit and the

angle is less than the threshold for downward motion. In this case the robot

is only required to recognize actions that are already known to it. Map-

ping from observed actions to the motor level is done using symbolic labels.

Then conversion is done using a table as shown in Tab. Fig. 2.1. Once the

robot recognizes the label, it is mapped to a pre-programmed robot action

sequence.

In [82], different objects are manipulated and the order of manipulated

objects are used to predict the next probable action. In their work, objects

were labeled with IC tags. Each action sequence was immediately converted

to a symbolic form using the object label(cup, teabag , pot etc), location

of the object(cupboard,cabinet, medicine box) and the human action(taken

out, stored). For example, taking out spoon from cupboard was recorded

as spoon-a0. Prefix span algorithm [82] was then used to extract multiple

frequency patterns. Here the transformation of data from the raw signal to

symbols is treated as a simple problem. Such a simple conversion approach

is suitable in most real world application scenarios. We use a probabilistic

approach to convert the raw signal to symbols.

In [61] a graphical model is used to model actions involving objects.

They considered actions such as drinking, spraying, Answering phone, Mak-

ing a call, Pouring and Lighting. They segmented sequences into reaching

part and manipulation part and each part was modeled separately. Their

approach involves time duration in modeling primitives. Moore et. al [83]

used different layers in recognizing actions involving objects. When an ob-

ject is contacted by a person, actions are compared to the pre-trained ac-

2.4. Discussion 17

tions associated with that object. These actions are modeled by HMM.

These methods require labeled data for training individual action models.

Our learning approach does not require labeled data.

A way of learning constrains in the object space(task space) using super-

vised clustering techniques is presented in [8]. Key-frames are detected using

zero-velocity crossing . Tasks are represented as a sequence of one or more

elementary actions: reach-and-grasp(obj), transfer-and-release(obj). Us-

ing this representation assembling different workspace objects was learned.

What is interesting and challenging is learning the elementary actions with-

out human assistance.

2.4 Discussion

For primitive based action modeling the main task is in learning the primi-

tives from data rather than specifying it manually. As we pointed out earlier,

the manual specification of primitives are intuitive in most scenarios, but

since they are different for different contexts, the primitives are constrained

to one scenario. When different actions are modeled by individual models,

the same parts will be represented multiple times. The common elements

across different actions will not be detected. This is one cause of confusion

among different actions. Another feature that one require for an intelligent

system is a mechanism to increase its capabilities when needed. Most of the

works mentioned above do not have a sequential learning possibility. Our

work is aimed at contributing to these important aspects of learning. We

detect common elements across different actions, learn the primitives from

data and derive the grammar governing the primitives. Moreover our ap-

proach is sequential and more actions can be incorporated into the model

without requiring the presence of past observed data.

Chapter 3

Mathematical Preliminaries

Contents

3.1 Hidden Markov Models 19

3.2 Model Merging of Discrete HMMs 20

3.3 Model Merging of HMMs with Continuous Densities 21

3.4 Stochastic Context Free Grammar 24

3.5 Kullback-Leibler Divergence 25

In this chapter we give brief outline some of the techniques we have used

in the later chapters. This chapter is also intended to give the reader famil-

iarity with some of the notations that is to follow later. In the chapters to

follow, we will be using an HMM based approach to model data and learn

primitives. Out approach is different from traditional HMM approaches

where individual HMM parameters for different types of actions are opti-

mized using training data. Baum-Welch algorithm is normally employed

to optimize the parameters. In our approach, the parameters learned from

data automatically and the need for Baum-Welch estimation is avoided.

3.1 Hidden Markov Models

An HMM is a stochastic finite state machine, consisting of a set of states

and corresponding transitions between states. It is a popular method for

modeling stochastic sequences with an underlying finite-state structure. An

HMM is characterized by the following:

� N, the number of states in the model. The individual states are de-

noted by S1, S2, ...Sn and the state at time t as qt.

� M, the number of distinct observation symbols per state.

20 Chapter 3. Mathematical Preliminaries

� The state transition probability distribution A = (aij) where

aij = p(qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N .

� The observation symbol probability distribution in state j, B = bj(k)

where

bj(k) = p(vk at t|qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤M .

� The initial state distribution π = {πj} where

πj = p(q1 = Sj), 1 ≤ i ≤ N .

The compact notation λ = (A,B, π) is used to denote an HMM. The prob-

ability density matrices A,B, and π are determined by training. The most

commonly used method is the Baum-Welch method[69], which is an iterative

process that finds the local maximum given some starting values of A,B,

and π.

3.2 Model Merging of Discrete HMMs

`Best-first model merging´ is a general technique for dynamically choosing

the structure of a neural or related architecture while avoiding over-fitting

[84]. It is applicable to both learning and recognition tasks and often gen-

eralizes significantly better than fixed structures. An application of model

merging in the probabilistic modeling of language could be found in [85].

An initial HMM that directly encodes the training data is built at first.

Successively more general models are produced by merging HMM states. A

Bayesian posterior probability criterion is used to determine which states to

merge and when to stop generalizing.

The idea is to find the model M that maximizes the posterior probability

P (M |X). From Bayes’ law we have

P (M |X) =
P (M)P (X|M)

P (X)
. (3.1)

Since the data X is fixed, MMAP maximizes P (M)P (X|M). This could

be seen as a generalization of Maximum-likelihood estimation method, as

3.3. Model Merging of HMMs with Continuous Densities 21

the prior P (M) is combined with the usual likelihood term P (X|M).

The global prior for a model M is given by

P (M) = P (MG)
∏
q

P (M
(q)
S |MG)︸ ︷︷ ︸

structure prior

P (θ
(q)
M |MG,M

(q)
S)︸ ︷︷ ︸

parameter prior

. (3.2)

Here the product is calculated over the states q of the HMM. P (MG) is a

prior for global aspects of the model structure. The global factor P (MG)

is assumed to be unbiased, i.e we do not prefer any particular model, and

therefore ignored in the maximization. It is the parameter prior and struc-

ture prior of the model that determines which model to select.

The parameters of a state q with nqt transitions and nqe emissions contribute

a factor,

P (θ
(q)
M |MG,M

(q)
S) =

1

B(αt, ..., αt)

∏
i

θαt−1
qi

1

B(αe, ..., αe)

∏
j

θαe−1
qj

. (3.3)

Here αt and αe are the prior weights for transitions and emissions, θqi is

the transition probabilities from state q to state i, θqj is the probability of

observing j th symbol at state q.

The structural prior for a state q is computed as,

P (M
(q)
S |MG) = pnt

t (1− pt)|Q|−n
Q
t pen

q
e(1− pt)|

∑
|−nq

e . (3.4)

Here |Q| is the total number of states and |
∑
| is the total number of

observation symbols and B(.) is the beta function.

Merging is done until the model posterior is less than the previous step.

An example for merging is shown in figure 3.1. The process starts from an

HMM that models the two observed sequences ab and abab. Then different

states are merged together to end up with the final model. We extend the

merging concept to continuous HMMs in this work.

3.3 Model Merging of HMMs with Continuous Den-

sities

In Sec. 3.2 we saw that two states were merged if that increased the likeli-

hood of the model. This approach is not directly applicable in the continuous

22 Chapter 3. Mathematical Preliminaries

S

F

1 2

3 4 5 6

0.5

0.5

a b

a b a b

F5 6

b a b

S 1

a

2

S

F

2

4 5 6

b

b a b

1

a

F

b

S 1

a

2

F5

b a

S 1

a

2

Figure 3.1: Model merging in discrete HMM.

scenario. We propose a different criteria for merging states in a continuous

HMM. We will be using this approach to arrive at our HMM model for the

data used in the later chapters. The structure of the HMM will be inferred

from data and this is one of the main difference in our approach from tra-

ditional approaches where a structure is specified before hand.

3.3. Model Merging of HMMs with Continuous Densities 23

Let λA and λC be to HMMs that are to be merged together. Let us denote

the merged HMM by λM . Initially λM is a copy of λA. Then more states

are added to it or existing states are modified after comparing the states of

λM and λC . Let Sc = {s1, s2, . . . , sc} and SM = {s′1, s′2, . . . , s′M} be the set

of states of λC and λM , respectively. Then, the state set of the modified λM

will be SM ∪D1 where D1 ⊆ Sc. Each of the states si in λC affects λM in

one of the following ways:

1. If d(si, s
′
j) < θ, for some s∈Sc and some s′j ∈ SM , then si and s′j will

be merged into a single state. Here, d is a distance measure and θ is

a threshold value. We have used two different methods to modify the

output probability distribution of the state s′j . In Ch. 4 the output

probability distribution associated with state s′j in λM is modified

to be a combination of the existing distribution and bcsi(x). Thus

bMs′j
(x) is a mixture of Gaussians. In Ch. 5 the output probability

distribution associated with state s′j in λM is calculated using Eq. 5.3.

All transitions to state si in λc are redirected to state s′j in λM , and

all transitions from state si in λC will now be from state s′j in λM .

2. If for a state si ∈ Sc, d(si, s
′
j) > θ, ∀s′j ∈ SM , a new state is added

to λM . Let si be the rth state to be added from λC . Then, si will

become the (M+r)th state of λM . The output probability distribution

associated with this new state in λM will be the same as it was in λc.

Hence bMs′M+r
(x) = N (x;µsi ,Σsi). Initial and transition probabilities

of λM are adjusted to accommodate this new state. The newly added

state will keep its label n.

When two states are merged together to become a single state, transi-

tions to and from these states are to be adjusted accordingly. Consider the

scenario in Fig. 3.2 where two HMMs are depicted. Imagine that the dis-

tance between the states S12 and S22 is very small and they are to be merged

together. After the merging, the state S22 is removed and all transitions to

S22 are redirected to S12. All transitions from S22 are adjusted to be from

S12.

24 Chapter 3. Mathematical Preliminaries

S11

S21 S24

S14

S22

S12

S23

S13 S11

S21 S24

S14S12

S23

S13

Figure 3.2: Model merging of continuous HMMs. The distance between
the states S12 and S22 is very small and they are to be merged together.
After the merging, the state S22 is removed and all transitions to S22 are
redirected to S12. All transitions from S22 are adjusted to be from S12.

3.4 Stochastic Context Free Grammar

We use Stochastic Context Free Grammar for specifying the interaction be-

tween various primitives we find. A stochastic context free grammar(SCFG)

M consists of

1. a set of nonterminal symbols N

2. a set of terminal symbols Σ

3. a start nonterminal S ∈ N

4. a set of productions or rules R

5. production probabilities P (r) for all r ∈ R

The productions are of the form X → λ where X ∈ N and λ ∈ (N ∪ Σ)∗

A sentential form of M is a string ν of nonterminals and terminals, such

that either ν = S or there is a sentential form µ from which ν can be

produced by replacing one nonterminal according to a production of M ,

i.e., µ = µ1Xµ2, ν = µ1λµ2, and X → λ ∈ R. A derivation in M is

a sequence of sentential forms beginning with S each derived by a single

rule application from its predecessor, such that at each step the replaced

nonterminal X is always the left-most nonterminal in the sentential form.

We write a derivation as S ⇒ ν2 ⇒ . . . νk. The probability of a derivation

is defined by

1. P (S)=1

2. P (S ⇒ ν2 ⇒ . . . νk) = P (S ⇒ ν2 ⇒ . . . νk−1)P (X → λ)

3.5. Kullback-Leibler Divergence 25

where X → λ is the production used in the step νk−1 ⇒ . . . νk.

The probability of a string x in M is

P (x|M) =
∑

S⇒···⇒x
P (S ⇒ · · · ⇒ x)

Here the summation is over all the derivations that will end in x. The most

likely derivation for a given string is the Viterbi parse. Viterbi parses are

computed by dynamic programming. A chart is filled bottom-up, computing

for each substring of a sentence and each nonterminal the partial parse with

highest probability. Once the chart is completed, the maximum probability

parse can be traced back from the root entry.

Pure statistical methods fail when the true characteristics of underlying

pattern were structures(or shapes). Usual methods transform data into a

feature space which might destroy the underlying structure of the data. We

can employ syntactic techniques like SCFG by converting our data into sym-

bols and construct grammar to learn the relation between symbols. Another

scenario where SCFG becomes useful is illustrated in Sec. 5.4.

3.5 Kullback-Leibler Divergence

KullbackLeibler divergence is a measure of the difference between two prob-

ability distributions f and g. For continuous distributions it is defined as:

DKL(f ||g) =

∫
f(x) log

f(x)

g(x)
dx . (3.5)

K-L divergence is related to the Shannon entropy H(f) = −
∫
f(x) log f(x)

and cross entropy H(f, g) =
∫
f(x) log 1

g(x) as

DKL(f ||g) = H(f, g)−H(f) . (3.6)

In this thesis we will be using the KullbackLeibler divergence between two

multivariate normal distributions. Let f=N (x;µ1,Σ1) and g=N (x;µ2,Σ2)

be two multivariate normal distributions. Then the K-L divergence from

26 Chapter 3. Mathematical Preliminaries

N (x;µ1,Σ1) to N (x;µ2,Σ2) can be calculated as follows.

DKL(N (x;µ1,Σ1)||N (x;µ2,Σ2)) =

∫
N (x;µ1,Σ1) log

N (x;µ1,Σ1)

N (x;µ2,Σ2)
dx

= H(f, g)−H(f) .

(3.7)

H(f, g) =

∫
f(x) log

(
(2π)d/2|Σ2|1/2

e−
1
2

(x−µ2)tΣ−1
2 (x−µ2)

)
dx

= (2π)d/2|Σ2|1/2 +
1

2

∫
f(x)(x− µ2)tΣ−1

2 (x− µ2) dx

= log(2π)d/2|Σ2|1/2 +
1

2
E((x− µ2)tΣ−1

2 (x− µ2)) dx

= log(2π)d/2|Σ2|1/2 +
1

2
E(tr[Σ−1

2 (x− µ2)(x− µ2)t)]) dx

= log(2π)d/2|Σ2|1/2 +
1

2
tr[Σ−1

2 E((x− µ2)(x− µ2)t)])

= log(2π)d/2|Σ2|1/2 +
1

2
tr[Σ−1

2 E((x− µ1) + (µ1 − µ2))

((x− µ1) + (µ1 − µ2))t)])

= log(2π)d/2|Σ2|1/2 +
1

2
tr[Σ−1

2 E((x− µ1)(x− µ1)t)

+ Σ−1
2 E((x− µ1)(µ1 − µ2)t) + Σ−1

2 E((µ1 − µ2)(x− µ1)t)

+ Σ−1
2 E((µ1 − µ2)(µ1 − µ2)t)]

= log(2π)d/2|Σ2|1/2 +
1

2
tr[Σ−1

2 Σ1 + 0 + 0 + Σ−1
2 (µ1 − µ2)(µ1 − µ2)t]

= log(2π)d/2|Σ2|1/2 +
1

2
tr[Σ−1

2 Σ1] + (µ1 − µ2)tΣ−1
2 (µ1 − µ2) .

(3.8)

We have used a trick from linear algebra: atAa = tr(Aaat)

H(f) = −
∫
f(x) log f(x)dx

=
1

2
log(2π)d|Σ1|+

1

2

∫
f(x)(x− µ1)tΣ−1

1 (x− µ1) dx

=
1

2
log(2π)d|Σ1|+ E((x− µ1)tΣ−1

1 (x− µ1)) dx

=
1

2
log(2π)d|Σ1|+

1

2
E(tr[Σ−1

1 (x− µ1)(x− µ1)t] dx

3.5. Kullback-Leibler Divergence 27

=
1

2
log(2π)d|Σ1|+

1

2
tr[Σ−1

1 E((x− µ1)(x− µ1)t)]

=
1

2
log(2π)d|Σ1|+

1

2
tr[Σ−1

1 Σ1]

=
1

2
log(2π)d|Σ1|+

1

2
tr[I]

=
1

2
log(2π)d|Σ1|+

d

2
. (3.9)

Using Eq. 3.8 and Eq. 3.9 in Eq. 3.7 we get:

DKL(N (x;µ1,Σ1)||N (x;µ2,Σ2)) =
1

2

(
log
|Σ2|
|Σ1|

+ tr(Σ−1
2 Σ1)

)
+

1

2

(
(µ1 − µ2)TΣ−1

2 (µ1 − µ2)− d
)
.

(3.10)

Chapter 4

Action Primitives

Contents

4.1 Summary of the Supervised Approach 30

4.1.1 Discussion . 32

4.2 Automatic Segmentation of Primitives 32

4.2.1 Model Learning from Observation Sequences 34

4.2.2 Modeling the Rest of the Data 35

4.2.3 Merging of Similar States 36

4.2.4 Finding Primitives . 38

4.2.5 Generating the Grammar for Primitives 38

4.2.6 Experimental Evaluation 42

4.2.7 Testing on Simulated Data 42

4.2.8 2D-Trajectory Data 43

4.2.9 Hand Gesture Data 47

4.2.10 Chess Movements Data 49

4.3 Discussion . 52

In Ch. 1, we have given motivations and advantages for the use of prim-

itives in action representation especially in imitation scenario. Primitives

can be thought of as building blocks for action representation similar to

phonemes in human speech. Using primitives, one can form a unified frame

work that is suitable for action representation, recognition, planning and

synthesis [86]. In this chapter we desribe an automatic primitive learning

method in the movement space from observed data. We consider a table

top scenario where objects are being manipulated. Our approach is inspired

from a previous work [2] where primitives were manually segmented and used

for recognition. Our aim is to learn the primitives automatically from the

data. We propose a sequential learning approach where the sequences are

30 Chapter 4. Action Primitives

processed one by one and a model is learned incrementally. Input signals are

then expressed as sequence of hidden states. Common contiguous segments

are identified and segmented in the hidden state space. Using the segmented

primitives, the grammar governing the primitives are derived automatically.

The primitives extracted in this chapter depends on the location of the ob-

ject and the location of the person performing the action. When there is a

change in either of these two factors, the extracted primitives will change.

A modified approach to overcome this limitation will be presented in Ch. 5.

We start by giving a brief summary of the supervised approach [2].

4.1 Summary of the Supervised Approach

Figure 4.1: HMM models used in [2]. (Left): Structure of HMM model I
with actions as primitives; (Right): Structure of HMM II with composite
actions.

The work presented in [2] is a study of modeling and understanding of

manipulation actions performed by humans in a table top scenario. Five

actions are considered: a) pick up an object from a table, b) rotate an

object on a table, c) push an object forward, d) push an object to the side,

and e) move an object to the side by picking it up.

Each action is performed in 12 different conditions: Objects placed on

two different heights and two different locations on the table, and the demon-

strator stand in three different locations (0, 30, 60 degrees). All the actions

are demonstrated by 10 different people.

Four sensors are attached to each person and their positions in 3D co-

ordinates are measured. The sensors are located on: a) chest, b) back of

hand, c) thumb, and d) index finger. The measurements from the chest sen-

sor are used to provide a reference to the demonstrator position while the

4.1. Summary of the Supervised Approach 31

sensor at the back of the hand is used as a reference for the thumb and index

finger. The raw measurements are then preprocessed and the following 12

measurements are used for experiments:

� position of the hand relative to the chest

� position of the index finger and the thumb relative to the hand

� velocity of the hand

Primitives are manually extracted from the data and two different HMM

structures are considered for modeling the actions which are shown in Fig. 4.1

and their results are compared. In the first model, Model I (Fig. 4.1, left),

the primitives are grasp(g), rotate(r),push forward(ps), push side(ps), move

side(m), approach and remove. In the second model, Model II (Fig. 4.1,

right), the grasping part of rotate and move side primitives were consid-

ered as separate primitives. SVMs are used to recognize the primitives and

the outcome of SVMs are then fed into the HMM used for modeling the

actions. Using the outcome of SVMs as observations, the HMM parameters

are learned through standard Baum-Welch algorithm.

The results of using Model I are presented in Tab.4.1 on the left. The en-

tries on the diagonals show the rates of correctly recognized primitives. In

this model individual primitives did not yield good results due to their high

overlap.

In the HMM Model II, common parts are kept as separate primitives.

This way different primitives become very dissimilar, and the intuitive se-

lection of the primitives will give the primitives a semantic meaning as well,

which is reflected by the use of verbs for describing the primitives. One new

state, remove object, was introduced to show that this end state is different

from other cases. Each person is holding the object at the end only for the

grasp action.

Tab. 4.1 on the right presents the recognition results when using the

Model II HMM. The numbers on the diagonal give again the rate of cor-

rectly classified primitives. The results of recognizing grasp and move have

increased significantly.

32 Chapter 4. Action Primitives

HMM pf ps r g m

pf 87.50 4.17 0.00 4.17 4.17

ps 8.33 48.33 2.50 3.33 37.5

r 0.83 2.5 95 1.67 0.00

g 5.83 10 9.17 52.5 22.5

m 1.67 24.17 4.17 2.5 67.5

HMM pf ps r g m

pf 85 7.5 5 0.83 1.67

ps 9.17 47.5 4.17 2.5 36.67

r 0 0 92.5 0 7.5

g 4.17 7.5 10.83 72.5 5

m 1.67 10 6.67 0 81.67

Table 4.1: Recognition results from [2] for primitives using different HMMs.
(Left) Confusion matrix for the recognition rates using HMM model I.
(Right) Confusion matrix for the recognition rates using HMM Model II.
Rows represent predicted class and colums represent actual class. Correct
results are given on the diagonal.

4.1.1 Discussion

The work of [2] should be seen as an extensive study on the modeling of

the manipulation actions, taking into account common action in everyday

settings having different meaning but being very similar to each other. The

most important findings of the experiments could be stated as: a) sequences

of simple semantic primitives can be used in describing actions, and b) ac-

tions learned as sequences of primitives from other demonstrators can be

combined with knowledge of personal primitives to recognize new actions.

4.2 Automatic Segmentation of Primitives

From the discussions in Ch. 1 and Ch. 2, we can see that an efficient model

for actions could be made if we have the primitives at hand. Thus, it is

desired to have a mechanism to detect the primitives automatically from

action sequences.In this chapter we describe our approach to finding prim-

itives from observation sequences automatically. Sequences are processed

one by one and are covered with Gaussian. Thus the Gaussians model the

local characteristics of the data. The Gaussians will then become the hid-

den states of an HMM for that sequences. States for different sequences are

merged together if they are found to be statistically near. Finally we arrive

at a single HMM, that can model all the sequences that have been procesed.

Using the final HMM, all sequences can be expressed as sequence of hidden

states. By identifying common and uniques states in the sequences we ex-

tract the primitives. A grammar that defines the precedence rules for each of

4.2. Automatic Segmentation of Primitives 33

the primitives are then extracted automatically. The method is then tested

with motion capture data and is compared with the results from a previous

work on the same data. We conclude the chapter with a discussion on the

advantages and disadvantages of our approach. These steps are explained

in detail in the follwing sections of this Chapter.

Our approach is based on the idea of identifying common and unique

parts in sequences. Identifying re-occcuring parts in sequences and re using

them in modeling the data, we can reduce the complexity in representing the

data. Thus our hypothesis is that if we segment action sequences into parts

that are common across more than one action and parts that are unique to

each of the actions, we will arrive at a set of action primitives that can be

used for modeling and recognizing actions.

We define two sets of primitives. One set contains parts that are unique

to one type of action and another set contains parts that are common to more

than one type of action. Two sequences are of the same type if they do not

differ significantly according to some predefined metrics. Hence, we attempt

to segment sequences into parts that are common across sequences types

and parts that are not shared. Then, each sequence will be a combination of

these segments. We also want to generate grammatical rules that govern the

order of the primitives in time. Keeping this in mind we state our objectives

as:

1. Let L = {X1, X2, . . . , Xm} be a set of data sequences where each Xi

is of the form xi1x
i
2 . . . , x

i
Ti

and xij ∈ Rn . Let these observations be

generated from a finite set of sources (or states) S = {s1, s2, . . . sr}.
Let Si = si1s

i
2 . . . , s

i
Ti

be the state sequence associated with Xi. Find

a partition S ′ of the set of states S where S ′ = U ∪ V such that U =

{a1, a2, . . . , ak} and V = {b1, b2, . . . , bl} are sets of state subsequences

of Xi’s and each of the ai’s appear in more than one state sequence and

each of the bj ’s appear in exactly one of the state sequence. The set

U corresponds to common actions and the set V correspond to unique

parts.

2. Generate a grammar with elements of S ′ as symbols which will gener-

ate primitive sequences that match with the data sequences.

34 Chapter 4. Action Primitives

Figure 4.2: Left: Result of sampling from N (xi,Σl). Right: Result of
sampling from N (xil, σl). Blue curve shows the original curve. Sample
sequences on the right figure are appropriate to model the variation in the
original sequence.

4.2.1 Model Learning from Observation Sequences

Now we desribe our learning approach in more detail. An initial HMM is

modified incrementally by adding more states to it or by modifying existing

states. We start the process from the first observed sequence X1.

4.2.1.1 Modeling the First Sequence

Let X1 be the first sequence with data points x1
1x

1
2 . . .x

1
T1

. Since we have

just one data sequence to start with, we generate additional sequences as

described below.

Each xi in X1 is of the form
(
x1i x2i · · · xdi

)t
. Since our model

building approach is incremental, we want to incorporate some prior knowl-

edge on expected variations on observed sequences each time a new sequence

is processed. Let Xk be a repetition of the same motion X1 . Even though

points in Xk and X1 are different we can expect that each point yj in Xk

will be close to some point xi in P1 and yjl = xil + ηl for some ηl. If we

assume that σl is the expected variance for the l th dimension then yjl can

be considered as a sample from N (xil, σl). By sampling enough data points

from N (xil, σl) for each i and l we will be able to make an estimation of

the density of the data similar to X1. On the other hand, if we assume that

yj = xi + ηi, and sample from N (xi,Σl) where Σl is a diagonal matrix with

ηis in the main diagonal, we will be getting a poor approximation to the true

distribution. The difference is illustrated in Fig. 4.2. Approximating the

original distribution by sampling from N (xi,Σl) will require correct infor-

4.2. Automatic Segmentation of Primitives 35

mation about the variance of each of the dimensions of the data. But if we

approximate the original distribution by sampling from N (xil, σl), we only

need a an approximate guess of the variance of the data. The generated sam-

ples gives the effect of observing additional sequences of the same type that

are aligned along the time axis. Therefore, for each sequence Xi, additional

sequences are generated by sampling from N (xil, σl). Then these sequences

are segmented into approximately equal parts and each part is modeled by a

Gaussian. Each of these Gaussians correspond to a hidden state from which

the sequence was generated. Points belonging to each part is considered to

be a state and is modeled by a multivariate Gaussian. After this step, we

can consider the sequence Xi to be a sequence of states. In estimating the

parameters of the Gaussians, we do not require the EM algorithm since the

points from each segment are associated to a particular Gaussian. Hence

we use the maximum likelihood estimates of the samples of each segment

for the parameters of the Gaussian distribution modeling that segment. Let

(µ1
i ,Σ

1
i), i = 1, 2, ...k1 be the estimates so that we have an ordered coverage

of the data points. The value of k1 is such that N (x;µ1
i ,Σ

1
i), i = 1, 2, ...k1

will cover the whole data. This value is not chosen before hand and varies

with the variation and length of the data.

The next step is to make an HMM-like model λ1 = (A1, B1, π1) with k1

states where k1 is the number of Gaussians needed to cover X1. We let A1 to

be a left-right transition matrix and B1j (x) = N (x;µ1
j ,Σ

1
j). All the states

at this stage receive a label 1 to indicate that they are part of sequence type

1. We require this information to link final primitives with different types

of sequences and also for generating a grammar for primitives.

4.2.2 Modeling the Rest of the Data

We have created the model λ1 = (A1, B1, π1) that will generate the first

type of data that we have input. Now we will modify this model by adding

new states to it or by modifying the current output probabilities of states

so that the modified model λM will be able to generate new types of data

with high probability

Let n − 1 be the number of types of data sequences we have seen so

far. Let Xc be the next data sequence to be processed. Calculate P (Xc|λM)

where λM is the current model at hand. If we get a high value for P (Xc|λM)

it indicates that λM models sequences of type Xc well, and so we proceed

36 Chapter 4. Action Primitives

to the next data sequence. A low value for P (Xc|λM) indicates that the

current model is not good enough to model the data sequences of type Xc

and hence we make a new HMM λc for Xc as described in Sec. 4.2.1.1. The

newly constructed HMM λc will be used to modify λM so that the updated

λM will be able to generate data sequences of type Xc. The modification

procedure of λM using λc is described in Sec. 4.2.3. We increase the number

of types of data sequences by one at this stage. All the states in Xc will be

labeled n.

The reader might wonder at this stage what happens if a new data

sequence with a large overlap with one of the types that we have processed

earlier, and which differs significantly only in a rather small area, e.g., a

significant difference in the beginning or in the end.

We might get a high value for P (Xk|λM) for a new data sequence which

has no unique part of its own but is part of several different types of data

sequences we have seen so far. We resolve this by making use of the state

labeling we have performed during the modeling. Whenever we get a high

value for P (Lk|λM) we look at the Viterbi path of the data sequence and

examine the labels of the state sequence. If it is a new type then then there

will be two states whose labels have empty intersection. In that case we

increase the number of types of data sequences by one and append the new

type number to each of the states it is passing through.

4.2.3 Merging of Similar States

This section explains the most important part of our method: modifying

the existing model to generate a newly observed type of data. We do this

by adding new states or by modifying existing states.

Suppose we want to merge λc into the current model λM so that P (Xk|λM)

is high if P (Xk|λc) is high. We do this by either adding states to λM from

λc or by merging states of λM with states of λc. Let Sc = {s1, s2, . . . , sc}
and SM = {s′1, s′2, . . . , s′M} be the set of states of λc and λM , respectively.

Then, the state set of the modified λM will be SM ∪ D1 where D1 ⊆ Sc.

Each of the states si in λc affects λM in one of the following ways:

1. If d(si, s
′
j) < θ, for some s∈Sc and some s′j ∈ SM , then si and s′j will

be merged into a single state. Here, d is a distance measure and θ

is a threshold value. The output probability distribution associated

4.2. Automatic Segmentation of Primitives 37

with state s′j in λM is modified to be a combination of the existing

distribution and bcsi(x). Thus bMs′j
(x) is a mixture of Gaussians. We

append n to the label of the state s′j in λM . All transitions to state si

in λc are redirected to state s′j in λM , and all transitions from state si

in λc will now be from state s′j in λM .

2. If for a state si ∈ Sc, d(si, s
′
j) > θ, ∀s′j ∈ SM , a new state is added

to λM . Let si be the rth state to be added from λc. Then, si will

become the (M+r)th state of λM . The output probability distribution

associated with this new state in λM will be the same as it was in λc.

Hence bMs′M+r
(x) = N (x;µsi ,Σsi). Initial and transition probabilities

of λM are adjusted to accommodate this new state. The newly added

state will keep its label n.

We use Kullback-Leibler Divergence to calculate the distance between

two states si, sj . The K-L divergence from N (x;µsi ,Σsi) to N (x;µsj ,Σsj)

has a closed form solution given by :

DKL(N (x;µsi ,Σsi)||N (x;µsj ,Σsj)) =
1

2

(
log
|Σsj |
|Σsi |

+ tr(Σ−1
sj Σsi)

)
+

1

2

(
(µsj − µsi)TΣ−1

sj (µsj − µsi)− n
) (4.1)

Here, n is the dimension of the space spanned by the random variable

x. We use a symmetric version of the above distance given by

DKL(N (x;µsi ,Σsi)||N (x;µsj ,Σsj)) +DKL(N (x;µsj ,Σsj))||N (x;µsi ,Σsi)

2
.

(4.2)

Now we elaborate more on the addition and merging of states into the

combined model. Our aim is to make the new model compatible with the

newly observed type of data sequences. Since the states are probability dis-

tributions, if we detect that two probability distributions corresponding to

different states are very close we do not need to keep them apart. Keeping

these two states together will help us to model the observations generated

from two distributions by a single one. We use (4.1) to compute the similar-

ity between two states. We can observe that (4.1) will not handle mixture of

Gaussians. We still use this equation to evaluate component wise distances

in mixtures and check if any of the components are close to the distribution

we are testing. This can be justified because our aim is to find out if a new

38 Chapter 4. Action Primitives

state is to be embedded into another state or not.

4.2.4 Finding Primitives

Primitive searching starts when we have processed all the available data

sequences. Now using the Viterbi algorithm on the final merged model

λM , the hidden states associated with each of the sequences are generated.

Let T1, T2, . . . Tr be different Viterbi paths at this stage. The problem of

finding the contiguous state sequences that are common across different Ti

is similar to finding the longest common substring(LCS) problem [87]. The

pseudocode for finding the longest common substring of two strings is given

in Fig. 4.3. We take all paths with non-empty intersection and find the

largest common substring ak for them. Then, ak is added to U and is

replaced with a new empty string symbol ε in all the occurrences of ak in

Ti, i = 1, 2, . . . r. We continue to look for largest common substrings until

we get the symbols ε as the only common substring for any two paths. Thus,

we end up with new paths T ′1, T
′
2, . . . T

′
r where each T ′i consists of one or more

segments with ε as the separator. These remaining segments in each T ′i are

unique to Ti. Each of them are also primitives and form the members of the

set V. Our objective was to find these two sets U and V as was stated in

Sec. 4.2.

In Fig. 4.3, we have given the dynamic programming approach for finding

longest common substring of two strings and it runs in O(Ti ∗ Tj) where Ti

and Tj are the lengths of the sequences. We also note that using generalized

suffix tree approach the computational complexity can be reduced to O(Ti+

Tj) time [87]. Hence primitive finding is solvable in linear time.

4.2.5 Generating the Grammar for Primitives

Let S ′ = {p1, p2, . . . pp} be the set of primitives available to us. We wish to

generate rules of the form P (pi → pj) which will give the likelihood of occur-

rence of the primitive pj followed by primitive pi. We do this by constructing

a directed graph G which encodes the relations between the primitives. Us-

ing G we will be able to derive a stochastic context-free grammar with the

set S ′ as the alphabet.

Let G = (S ′, E) be the primitive graph where two nodes in S ′ are con-

nected if they appear together in some sequence i.e, eij = (pi, pj) ∈ E if

4.2. Automatic Segmentation of Primitives 39

Algorithm 4.2.1: Pseudocode for finding the longest com-
mon substring of two strings.

Input: String S, T
Output: Longest Common Substring ret
m=length of string S;
n=length of string T;
L= array(0 · · ·m, 0 · · ·n);
z= 0 ;
ret= {};
foreach i = 1 · · ·m do

foreach j = 1 · · ·n do
if S[i] = T [j] then

if i = 1 or j = 1 then
L[i, j] = 1

else
L[i, j] = L[i− 1, j − 1] + 1

end

end
if L[i, j] > z then

z = L[i, j];
ret = {}

end
if L[i, j] = z then

ret = ret ∪ S[i− z + 1 · · · i]
end

end

end

Figure 4.3: Pseudocode for finding the longest common substring of two
strings.

40 Chapter 4. Action Primitives

p1

p2 p3 p4 p5 p6 p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17 p18

p19

1,2

1,4

2 2 2

3

2 2

3

3
4

3

3

3

1

4

4

4

1

1

1

Figure 4.4: Directed graph for finding the grammar. This is the primitive
graph for the data described in Sec. 4.2.8

there is a primitive path Pk = · · · pipj · · · for some k. Each primitive se-

quence will be a path in this primitive graph. Each primitive is then labeled

with the class labels it belongs to. Let n be the number of movement classes

that we have processed. Then each of the primitives will have labels from a

subset of {1, 2, · · · , n}, see Fig. 4.4. By way of definition each of the states

that belong to a primitive pi will have the same label set lpi . Let lpi be the

label of node(primitive) pi. Each of the edges eij = (pi, pj) receives a label

leij which is the intersection of the labels of pi and pj . Thus leij= lpi ∩ lpj .
We wish to generate rules of the form P (pi → pj) which will give the likeli-

hood of occurrence of the primitive pj followed by primitive pi. Using G we

will derive a formal grammar for the elements in S ′. We have In Fig. 4.4 we

give the directed graph constructed for our test data described in Sec. 4.2.8.

We proceed to derive a precise Stochastic Context Free Grammar (SCFG)

from the directed graph G we have constructed. The set of primitives S ′

is the set of terminals. Let n1, n2 be the unique number of vertex and

edge labels assigned. Then generate the nonterminals B1, B2, · · ·Bn1 and

C1, C2, · · ·Cn2 . Then there is a unique mapping from the set of edge and ver-

tex labels to the set of nonterminals. Let N = S∪{Bi, Cj , i = 1, · · · , n1, j =

1, · · · , n2} be the set of all non-terminals where S is the start symbol. For

4.2. Automatic Segmentation of Primitives 41

each primitive pi that occurs at the start of a sequence and connecting to

pj define the rule

S −→ piBmCn . (4.3)

Here Bm is the non-terminal associated with vertex pi and Cn is the

non-terminal associated with the edge (pi, pj). To each of the internal nodes

pj with an incoming edge eij connecting from pi and an outgoing edge ejk

connecting to pk define the rule

BmCn −→ pjBoCp . (4.4)

For each leaf node pj with an incoming edge eij connecting from pi and no

outgoing edge define the rule

BmCn −→ pi . (4.5)

We assign equal probabilities to each of the expansions of a nontermi-

nal symbol except for the expansion to an empty string which occurs with

probability 1. Thus

P (BmCn −→ pjBoCp) =
1

|c(o)
i |

if |c(o)
i | > 0 . (4.6)

P (BmCn −→ pi) = 1if |c(o)
i | = 0 . (4.7)

where |c(o)
i | represents the number of outgoing edges from pi. Let R be the

collection of all rules given above. For each r ∈ R associate a probability

P (r) as given in the construction of rules. Then (N ,S ′, S,R, P (.)) is the

stochastic grammar that models our primitives. We have given the LHS of

the rules using two non-terminals for better readability and understanding

but they should be considered as a single non-terminal.

One might wonder why the HMM λF is not enough to describe the

grammatical structure of the observations and why the SCFG is necessary.

We illustrate the need for SCFG with an example. Consider three action

classes with the following primitive sequences:

Class1: P1, P2, P5

Class2: P1, P2, P3

Class3: P1, P4, P5, P6

42 Chapter 4. Action Primitives

1,2 2

13

3 3
P6

P3P2P1

P5P4

Figure 4.5: A primitive graph with three action classes. The three sequences
{ P1, P2, P3}, { P1, P2, P5, P6} and { P1, P4, P5, P6} belongs to Classes
1, 2 and 3 respectively. HMM approach is not sufficient to detect {P1, P2,
P5, P6} to be an invalid sequence.

The primitive graph corresponding to these three classes is shown in Fig. 4.5.

Now consider the primitive sequence P1, P2, P5, P6. This sequence does not

belong to any of the given classes. But the sequence is valid according to the

HMM structure and the sequence will have a high likelihood according to the

HMM model. But if we apply the grammar rules learned from the primitive

graph, the new sequence will be classified as an invalid sequence. For a

theoretical treatment on parsing and advantages of context free grammar

over regular grammar, we recommend [88] and [89].

4.2.6 Experimental Evaluation

We have run four experiments: In the first experiment we have used a

synthetic data set with two types of sequences. The second experiment is

motivated by the surveillance scenario of Stauffer and Grimson [75] and

shows a complex set of paths as found outside our building. The third

experiment is motivated by the work of Vincente and Kragic [2] on the

recognition of human arm movements. In the fourth experiment we learn

the movement primitives for a chess game.

4.2.7 Testing on Simulated Data

We illustrate the result of testing our method on a set of two sequences

generated with mouse clicks. We have selected 2 simple sequences to il-

lustrate the whole process. The two sequences share the initial portion as

4.2. Automatic Segmentation of Primitives 43

shown in Fig. 4.6(a). There is an intuitive segmentation with 3 parts for

these two sequences: one segment containing the shared part and two sep-

arate segments for the unique parts. Our method extracts exactly these

segments. The whole process is illustrated in Fig. 4.6. Sequence 1 with

additional sequences generated by noise addition is shown in Fig. 4.6(b).

Fig. 4.6(c) shows the result of covering these sequences with Gaussians.

Covering of sequence 2 along with the first one is shown in Fig. 4.6(d). The

sequences require 8 and 7 states respectively for covering. Hence the result-

ing individual HMMs will have 8 and 7 states respectively, see Fig. 4.6(e).

Then the distances between the states of HMM1 and HMM2 are computed

(Fig. 4.6(f)). Rows represent states of sequence 2 and columns represent

states of sequence 1. One can notice the low values for the first four ele-

ments in the diagonal. Thus we have 4 pairs to merge: S21 with S11, S22

with S12, S23 with S13 and S24 with S14. Merging is performed sequentially

as shown in Fig. 4.6(g)-Fig. 4.6(j). When the model merging took place, the

overlapping states were merged into one. The final HMM structure is shown

in Fig. 4.6(j). The state sequences for the observed sequences are shown in

Fig. 4.6(k) (Multiple occurrences are removed). Primitive segmentation will

give us three primitives p1, p2 and p3, and is shown in Fig. 4.6(l) . Using the

primitives, we can write the two sequences as primitive sequences: (p1, p2)

and (p1, p3). Primitive tree in Fig. 4.6(m) shows the structure of primitives

observed in the data. Using the primitive tree, a Stochastic Context Free

Grammar is extracted by using the method illustrated in Sec. 4.2.5 and is

shown in Fig. 4.6(n). The numbers in the brackets represent the probabil-

ity of choosing the corresponding derivation. Finally the segmentation of

original data using primitives is shown in Fig. 4.6(o).

4.2.8 2D-Trajectory Data

The second experiment was done on a surveillance-type data inspired by [75].

The paths represent typical walking paths outside of our building. In this

data there are four different types of trajectories with heavy overlap, see Fig.

4.6(left). We can also observe that the data is quite noisy. Fig. 4.6(right)

shows the result of covering with Gaussians. The result of primitive segmen-

tation is shown in Fig. 4.7. Different primitives are colored differently and

we have named the primitives with different letters. The detected common

primitives are the junctions where different trajectories intersect. As one

44 Chapter 4. Action Primitives

(a) Original Data (b) Data with additional sequences

(c) Data Covered with Gaussians (d) Covering of sequence 2

S11

S21

S14

S22

S12 S13 S15 S16 S17 S18

S23 S24 S25 S26 S27

(e) HMMs for the data

0.17 6.2 34.0 29.0 85.0 155.0 155.0 322.0
5.5 0.47 9.5 20.0 56.0 111.0 133.0 288.0
11.0 2.0 1.0 5.9 28.0 72.0 100.0 222.0
34.0 15.0 6.1 1.2 13.0 46.0 88.0 188.0
88.0 47.0 32.0 11.0 24.0 60.0 122.0 233.0
133.0 93.0 91.0 52.0 77.0 111.0 200.0 300.0
122.0 111.0 133.0 77.0 122.0 155.0 255.0 344.0

(f) Distance between states. Rows and
columns represent states of HMM2 and
HMM1 respectively

S11 S14

S22

S12 S13 S15 S16 S17 S18

S23 S24 S25 S26 S27

(g) Merging step 1. S21 is merged with
S11.

Figure 4.6: Illustration of the complete process with simulated data. Data
was generated with mouse clicks.

4.2. Automatic Segmentation of Primitives 45

S11 S14S12 S13 S15 S16 S17 S18

S23 S24 S25 S26 S27

(h) Merging step 2. S22 is merged with
S12.

S11 S14S12 S13 S15 S16 S17 S18

S24 S25 S26 S27

(i) Merging step 3. S23 is merged with
S13

S11 S14S12 S13 S15 S16 S17 S18

S25 S26 S27

(j) Merging step 4. S24 is merged with
S14

(k) State sequences of sequences

(l) Extracted primitives (m) Primitive graph

(n) Extracted grammar (o) Points as primitives

Figure 4.6: Illustration of the complete process with simulated data. Data
was generated with mouse clicks.

46 Chapter 4. Action Primitives

Figure 4.6: (Left)Trajectories from tracking data. Each type is colored dif-
ferently. Values along the axes represent pixels. Only a part of the whole
data is shown. (Right)The results of the covering procedure with the Gaus-
sian mixtures. The numbers shown are the state numbers in the final model.
Merged states are not shown. Hence some data points might appear to be
unassigned.

Figure 4.7: This figure shows the detected primitives. Each primitive is
denoted by a letter.

can see, our approach results in primitives that are intuitive. Furthermore,

our approach is very robust even with such noisy observations and lot of

overlaps.

It should also be noted at this point that this kind of merging will not

4.2. Automatic Segmentation of Primitives 47

make the intersection arbitrarily large. Merging is done only when there is

a good overlap. Also for each new type of sequences, there cannot be more

than one Gaussian that gets merged into the same state.

4.2.9 Hand Gesture Data

We have tested our approach on the dataset described in Sec. 4.1 without

annotation. Thus we use only the trajectory information for the sensors

attached to the hand. The input to our system is the raw data from the

sensors. We do not use the transformation of data described in Sec. 4.1. The

original data is available online [90]. We expect to extract a set of primitives

so that each of these sequences can be expressed as a combination of these

primitives. In the following experiments, we have consider a subset of the

data where each of the subjects perform actions from a fixed position to

a fixed position on the table. Since each of these sequences started and

ended at the same position, we expect the primitives that represent the

starting and end positions of actions will be the same across all the actions.

The result of applying our primitive segmentation for other positions of the

subjects and the object will result in additional primitives that are disjoint

from the subset we consider below.

By applying the techniques described in Sec. 4.2 to the hand gesture

data, we ended up with 9 primitives. The temporal order of primitives

for actions for different actions are shown in Fig. 4.10. One can compare

this with Fig. 4.1 and see that they are very closely related. For an easy

comparison we plot the result of converting a grasp action sequence into a

sequence of extracted primitives along with ground truth data in Fig. 4.8.

The ground truth was obtained by looking at each sequences and manually

segmenting them. This particular sequence had 119 points in it. In the

ground truth, Reach extends from t=1 to t=42, Grasp extends from t=43

to t=52 and Retrive extends from t=53 to t=119 . In our segmentation p1

and p2 combined extends from t=1 to t=44, p3 extends from t=45 to t=61

and p4 extends from t=62 to t=119. Thus we can infer from Fig. 4.10 and

Fig. 4.8 that p3 and p2 together constitute the approach primitive, p6 refers

to the grasp primitive and p6 corresponds to the remove primitive. Similar

comparison could be made with other actions using the comparison diagram

given in Fig. 4.9.

Using these primitives, a SCFG was learned as described in Sec. 4.2.5.

48 Chapter 4. Action Primitives

Reach Move Retrive

p3 p2 p6 p1

Figure 4.8: Comparing automatic segmentation with manually segmented
primitives for one grasp sequence. The horizontal axis represents the length
of the sequence. The plot compares a grasp sequence with length 119. Using
the above diagram with Fig. 4.10, we can infer that p3 and p2 together con-
stitute approach primitive, p6 refers to grasp primitive and p1 corresponds
to remove primitive.

This grammar is used as an input to the Natural Language Toolkit (NLTK,

http://nltk.sourceforge.net) which is used to parse the sequence of

primitives. This grammar is used to test the validity of the primitive se-

quence for an unknown sequence. It can also be used to predict the future

observation of a partially observed sequence.

Results of primitive segmentation for push sideways, push forward,

move, and grasp actions are shown in the tables 4.2 and 4.3. The num-

bers given in the tables represent the primitive numbers shown in Fig. 4.10.

The sequences that are identified correctly have a cyan background and the

sequences that are not classified correctly have light gray background. We

can see that all the correctly identified sequences start and end with the

same primitive as expected. In Tab:4.3 on the right, Person 1 and Person

4 are marked with a dark color to indicate that they differ in end and start

primitive respectively from the correct primitive sequence. This might be

due to the variation in the starting and end position in the sequence. We

could still see that the primitive sequence is correct for them.

http://nltk.sourceforge.net

4.2. Automatic Segmentation of Primitives 49

Grasp Move Push Forward

G
ro
u
n
d
tr
u
th

O
u
r
M
et
h
o
d G
ro
u
n
d
tr
u
th

O
u
r
M
et
h
o
d

G
ro
u
n
d
tr
u
th

O
u
r
M
et
h
o
d

Figure 4.9: Comparing primitive segmentation with ground truth data. Av-
erage comparison results are shown. Height represents sequence length.
Each of the segments in the bars represent a primitive.

4.2.10 Chess Movements Data

To further illustrate the application of our algorithm, we have tested our al-

gorithm in a chess movements learning scenario. The aim of this experiment

is to learn the different type of movements from the trajectory data. An ob-

ject was placed on a chess board and was subjected to movements similar to

that of chess pieces. We have recorded horizontal and vertical movements

for the rook and queen at different lengths and the L-shape movements by

the knight and diagonal movements for bishop. Some sample tracks are

shown in Fig. 4.11. Only 8 out of the 12 knight moves were considered. In

the collected dataset, we do not know how many types of movements are

allowed, and what are the types of movements in there. Each of the recorded

sequences were used learning the model. The extracted primitives and the

resulting structure is shown in Fig. 4.12. In this figure p1 represent moving

50 Chapter 4. Action Primitives

p3

p6

p1

p5 p7

p2

p8

p9

p4

m,g

pf,ps

g

pf

ps
pf

ps

m

g

m

m,ps

Figure 4.10: The temporal order for primitives of hand gesture data. Node
number corresponds to different primitives. All actions start with p3 and
end with p1 .

Person Push Aside

Person 1 3 2 9 4 1

Person 2 3 5 8 4 1

Person 3 3 5 8 4 1

Person 4 3 5 8 4 1

Person 5 3 5 8 4 1

Person 6 3 5 8 4 1

Person 7 3 5 8 4 1

Person 8 3 5 8 4 1

Person 9 3 2 9 4 1

Person 10 3 2 9 4 1

Person Push Forward

Person 1 3 5 7 1

Person 2 3 5 7 1

Person 3 3 5 7 1

Person 4 3 5 7 1

Person 5 3 5 7 1

Person 6 3 5 8 4 1

Person 7 3 5 7 1

Person 8 3 5 7 1

Person 9 3 5 8 4 1

Person 10 3 5 8 4 1

Table 4.2: Primitive segmentation and recognition results for Push aside and
Push Forward action. Sequences that are identified incorrectly are marked
in light gray.

one square to the right and p1-p2 represent moving two square to the right

etc. L-shaped movements for the knight are expressed as a combination of

primitives. For e.g., the sequence p1 − p25 − p11 is moving one square to

the right and moving 2 square to the top is a knight move. Note that all of

our primitives represent moving one square each. Paths along the diagonals

represent moves for a bishop.

4.2. Automatic Segmentation of Primitives 51

Figure 4.11: Some sample tracks for the chess data. Movements for rook,
bishop and knight are shown.

START P1 P2 P3

P20

P25

P11

P29

P4

P5

P21

P24

P14

P12 P30

P6

P19

P26

P15P27

P7P8

P22

P23

P16P31

P9

P10

P17

P18 P13

Figure 4.12: Extracted primitives for the chess data. Straight line paths rep-
resent moves for the rook and the queen. L-shaped paths represent moves for
the knight. Paths along the diagonals represent diagonal moves for bishop.

52 Chapter 4. Action Primitives

Person Move

Person 1 3 2 9 4 1

Person 2 3 5 8 4 1

Person 3 3 2 9 4 1

Person 4 3 2 9 4 1

Person 5 3 2 9 4 1

Person 6 3 5 8 4 1

Person 7 3 2 9 4 1

Person 8 3 2 9 4 1

Person 9 3 2 9 4 1

Person 10 3 2 9 4 1

Person Grasp

Person 1 3 2 6

Person 2 3 2 6 1

Person 3 3 5 7 6 1

Person 4 2 6 1

Person 5 3 2 6 1

Person 6 3 2 6 1

Person 7 3 2 9 4 1

Person 8 3 2 6 1

Person 9 3 2 6 7 1

Person 10 3 2 6 1

Table 4.3: Primitive segmentation and recognition results for Move Object
and Grasp actions. Sequences that are identified incorrectly are marked in
light gray.

4.3 Discussion

We have presented and tested an approach for automatically computing a set

of primitives and the corresponding stochastic context free grammar from

a set of training observations. Our stochastic regular grammar is closely

related to the usual HMMs. One important difference between common

HMMs and a stochastic grammar with primitives is that with usual HMMs,

each trajectory (action, arm movement, etc.) has its own, distinct HMM.

This means that the set of HMMs for the given trajectories are not able

to reveal any commonalities between them. In case of our arm movements,

this means that one is not able to deduce that some actions share the grasp

movement part. Using the primitives and the grammar, this is different.

Here, common primitives are shared across the different actions which results

into a somewhat symbolic representation of the actions. Indeed, using the

primitives, we are able to do the recognition in the space of the primitives

or symbols, rather than in the signal space directly, as it would be the case

when using distinct HMMs. Using this symbolic representation would even

allow to use AI techniques for, e.g., planning or plan recognition. Another

important aspect of our approach is that we can modify our model to include

a new action without requiring the storage of previous actions for it.

Our work is segmenting an action into smaller meaningful segments is

hence different from [91] where the authors aim at segmenting actions like

4.3. Discussion 53

walk and run from each other. Many authors point at the huge task of

learning parameters and the size of training data for an HMM when the

number of states are increasing. But in our method, transition, initial and

observation probabilities for all states are assigned during our merging phase

and hence the use of the EM algorithm [74] is not required. Thus our method

is scalable to the number of states. Our approach of using states have a close

connection to [92] but our method is superior in preserving the temporal

order and thus it should also be superior in terms of recognition rates.

In [36] primitives are found by thresholding angular velocities. In this

work 4 dimensional data of joint trajectories were segmented and the re-

sulting segments for each of the joints were interpolated with 100 elements.

Elements of each joint were concatenated to form 400 dimensional vectors

and PCA was applied to reduce the dimension to 11. k-means clustering

was then performed in the latent space to find the control points. Repro-

duction was performed by projecting points back to the input space. The

use of PCA was unnecessary complication in this case since the input space

was only 4 dimensional. Another disadvantage with this method is that

strong assumptions must be made about the segmentation of the data, and

the duration of the primitives. We have provided a higher level abstraction

of primitives using a stochastic context-free grammar which is not possible

with the approach in [36]. In [77] human motions are represented as a bi-

nary tree. Actions are recognized by finding the optimal node transitions in

the tree. The binary tree construction approach in [77] is not suitable for

sequential learning. Our states in the final HMM and the nodes in the last

layer of [77] are comparable to some extent. The observations that belong

to one state are neighbours in time in our case. In [77], frames belonging to

one node are close in the 1D projected space. Takano and Nakamura [39]

have also approached the problem of finding motion primitives using HMMs.

They have modeled each actions via a discrete hidden Markov model. In

their approach primitives are assumed to be known where as our approach

learns the primitives from the data. In [18] subgoals are detected from tra-

jectories by detecting regions that the agent visits frequently on successful

trajectories but not on unsuccessful trajectories. This paper addresses a

reinforcement learning scenario and appears to be quite different. They use

a diverse density approach which requires positive and negative instances.

Though the approach has its merits, it also suffers from certain limita-

54 Chapter 4. Action Primitives

tion/drawbacks. The approach works well if the subjects start the move-

ments from a fixed position and move the object to a certain distance. Even

if the subject repeats the same movement at the same scale, i.e. move ob-

ject from location A to location B, but from a different position, we will

end up with a different set of primitives. This is because we are looking

at the hand trajectories which is going to look entirely different when the

subject is moved. We propose a solution to this problem by looking at the

object context in Ch. 5. Using object context, we are able to identify all

movements from location A to location B to be the same, no matter where

the subject starts the action from.

Chapter 5

Primitives with Object

Context

Contents

5.1 Modeling Object Action Interactions 56

5.2 Primitive Segmentation in the Object State Space . 61

5.3 Segmentation and Grouping in the Movement Space 62

5.4 Generating the Grammar for Primitives 64

5.5 Recognition of Novel Sequences Using Primitive Paths 64

5.5.1 Detecting Primitives in Unknown Sequences 65

5.6 Experiments . 68

5.6.1 Model with Single Manipulation Action 70

5.6.2 Model with Single and Multiple Manipulation Action 74

5.6.3 Primitives with Sequential Model Building 75

5.6.4 Use of SCFG . 77

5.6.5 Effect of Parameters 77

5.6.6 Summary and Discussion 80

In Ch. 4, the primitives were found by segmenting the hand trajecto-

ries. This method will yield a lot of primitives when the person changes his

initial position or when the target position is changed. Moreover, the hand

trajectories will not exhibit any structure in this case. All the actions we

consider involve objects. If we look at the object trajectories, we get some

kind of structure and trajectories corresponding to different actions will be

separated. This is illustrated in Fig. 5.1. Therefore extracting primitives

in the object space and then propagate the segmentation into the action

space seems a better solution. In this chapter we will incorporate object

context and extract primitives in an efficient way. We define object space

56 Chapter 5. Primitives with Object Context

Figure 5.1: On the left, hand trajectories corresponding to actions performed
at different locations are shown. On the right the object trajectories are
shown. Clearly, the object trajectories exhibit better structure.

to be the space where the object movements are taking place and action

space/movement space to be the space where the hands are moving. We use

the object trajectories and find primitives as in Ch. 4. Primitive segmenta-

tion in the object space will induce a segmentation in the action space. This

is outlined in Fig. 5.2. We have improved the approach in Ch. 4 in several

ways here:

� Object information is used to segment primitives.

� Arc length is used to cover the data.

� When states are merged, they are not kept as mixtures as in Ch. 4.

But they are merged to form a new state.

� Online primitive segmentation is proposed instead of the batch pro-

cessing method in Ch. 4.

� Approximate primitive detection method is proposed.

� New large data set is used for extensive testing.

5.1 Modeling Object Action Interactions

We learn the primitives in the object state space by assuming that sim-

ilar object trajectories have a common underlying hidden state sequence.

Therefore object trajectories are first expressed as a sequence of hidden

states. Primitives are detected from these sequences by finding common

state subsequences. From the temporal continuity of primitives, a grammar

for the primitives can then be found.

5.1. Modeling Object Action Interactions 57

Use object info
to segment O

Segment and
group primitives
in action space

Object spaceAction space

Input features
[H O]

data using HMM
Model object space

in the object space
primitives
Find & Group

Figure 5.2: Overview of our approach. H denotes features from the action
space and O denotes features for the object. Features for the object are first
analyzed and segmented. This is then used to extract the primitives for the
action space. Magenta boxes denote analysis in the object space and cyan
box represents analysis in the action space.

0 50 100 150
0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

Figure 5.3: Thresholding the trajectories using a threshold. Time and the
magnitude of the velocity at each time are plotted along x and y axis respec-
tively. The first and last points above and below the threshold are chosen
for segmenting the trajectories. On the left a sequence with only one ma-
nipulation action is shown. On the right a sequence with several actions in
it are shown.

Let [H i
t O

i
t] represent the feature vector for i-th action sequence we

are analyzing where H and O represent features for the arm and the object

respectively. The subscript t is used for indexing time. Each of Ht and Ot are

of the form [Pt Vt] where Pt and Vt represent the position vector and velocity

vector respectively. The increase and decrease of velocity of the object is

then used to detect the starting and ending of the object movements. We

choose t1 and t2 such that |V O
t1 | > thresh and |V O

t2 | < thresh. The value of

thresh is chosen such that spurious movements due to measurement errors

will be discarded. We choose t1 such that |V O
t | < thresh for all t < t1.

58 Chapter 5. Primitives with Object Context

Figure 5.4: (Left:)A sequence with several additional sampled-sequences.
(Right:) The result of applying Alg. 5.1.1.

Similarly t2 is chosen such that |V O
t | < thresh for all t > t2. Thus t1 and t2

are the first and last time instants where the magnitude of velocity is above

the threshold. Thus if a sequence contains several manipulation actions in

it with some rest in the middle, we will still be able to segment the whole

movement part. Our aim is not segmenting each single manipulation part

at this stage. This is illustrated in Fig. 5.3. On the left the start and end

points for a single manipulation action is shown. On the right a complex

action sequence with four manipulation actions is shown. In the second case,

we are not attempting to separate each individual manipulation actions by

thresholding. The first point above the threshold and the last point below

the threshold will give us the start and end points of manipulation. We can

segment the sequence of observations for the object as shown below:

O1, O2, · · ·︸ ︷︷ ︸
A

, Ot1 , · · ·Ot2 ,︸ ︷︷ ︸
B

Ot2+1 · · ·OT︸ ︷︷ ︸
C

. (5.1)

The observations in segment B denote the act part where the object

state is changing while for the approach and remove parts A and C, no

object state changes appear. The above segmentation in the object state

space will induce a segmentation in the physical movement space:

H1, H2, · · ·︸ ︷︷ ︸
D

, Ht1 , · · ·Ht2 ,︸ ︷︷ ︸
E

Ht2+1 · · ·HT︸ ︷︷ ︸
F

. (5.2)

Since the actions can take place anywhere on the table and we want our

primitives to be independent of the location of the object/subject we perform

a transformation that will remove the location dependency of the features.

Applying the transformation Ot−Ot1 for t1 < t < t2 we can imagine that

5.1. Modeling Object Action Interactions 59

the object starts to move from the origin in each of the sequences. From

this point onwards all trajectories are assumed to begin at the origin.

We can now make use of the HMM model building approach described

in Ch. 4 to model the observed sequences. At the end of the model building

process, we will end up with a single HMM λF . Let xk
t denote the object

position at time t in kth sequence. The sequence index k will be omitted

where it is not necessary. We emphasize that our model building approach

is based on the assumption that two similar sequences have a common un-

derlying hidden sequence. By identifying this hidden sequence, we will be

able to identify similar sequences. In Ch. 4 the sequences were segmented

into approximately equal parts in an ad hoc manner. Here we propose to

divide the sequences into parts according to the arc length of the trajectory.

This is to avoid very small states with a lot of points that belong very close.

Such a situation can arise when the object is not really moving but a small

variation in object position is observed due to noise in the measurement.

The segmentaion and Gaussian estimation is explained in Alg. 5.1.1.

We first calculate the spatial variation of the sequence Pi by calculating

the arclength. The object trajectory Pi is then segmented into parts where

each part has an arclength approximately equal to a predefined value α.

Points belonging to each part is considered to be a state and is modeled by

a multivariate Gaussian. After this step, we can consider the sequence Pi

to be a sequence of states.

Algorithm 5.1.1: Algorithm for covering the data with Gaussians

Input: Observation sequence P=x1, · · ·xt, Threshold=α,

noise-level=σl

Output: Means µ and Σ for a set of Gaussians covering the

trajectory

Compute arcLen=arc length of the trajectory

Generate additional sequences by sampling from N (xil, σl)

Divide P into segments such that each part has an arc length

approximately α

foreach segment i = do
Calculate µ(i)=mean(points in segment i)

Calculate Σ(i)=covariance(points in segment i)

end

After covering a sequence X1 with Gaussians, we can think of the se-

60 Chapter 5. Primitives with Object Context

Figure 5.5: In this figure the dotted ellipse represents the covariances of two
states. The solid line represents the updated covariance using Eq.5.3 and
5.4. (Left): When ω = 0.1 the updated covariance is more like the first
covariance (Right): When ω = 0.9 the updated covariance is more close to
the second covariance.

quence to be generated by the following process: State 1 is selected with

probability 1 and a few samples are drawn from it. This is followed by se-

lecting states 2, 3, · · · in that order and samples drawn. The state transition

probability can be assumed to be uniform. In another words, the sequence

X1 is a sample generated from
∑N

i=1wiN (x,µi,Σl) where the Gaussian are

selected in incremental order.

State comparisons and merging are done as in Ch. 4. In Ch. 4, when

two states were merged together, the output probability associated with the

new state was taken to be the mixture of the two distributions associated

with the states. This means that if we train the model with a large number

of similar sequences, there will be a large number of states to be merged

together and hence the number of mixture components can be increased to

a large number. Therefore, we follow a new approach that will avoid this

situation. When two sequences are merged together the parameters of the

merged state is updated using Eq. 5.3 and Eq. 5.4 [93]:

Σ−1 = ωΣ−1
0 + (1− ω)Σ−1

1 (5.3)

µ = Σ(ωΣ−1
0 µ0 + (1− ω)Σ−1

1 µ1) (5.4)

Here ω is a parameter that controls the contribution from each of the

states. This effect is illustrated in Fig. 5.5. A value close to 0 gives im-

portance to first covariance and a value close to 1 gives importance to the

other one. We have set ω = n
n+1 where n is the number sequences used

5.2. Primitive Segmentation in the Object State Space 61

Figure 5.6: (Left:) The experimental setup for this paper. Markers are
attached to both the person and the object. Object can be moved from
any position to any other position on the table. (Right:) Object and arm
template used in Vicon for recording the data.

to create/modify a state. This prevents an outlier sequence to have a big

influence on the final states.

5.2 Primitive Segmentation in the Object State

Space

Primitive segmentation in the object state space takes place in parallel with

the HMM building. Sequences that are similar will go through the same

sequence of HMM states. These state sequences are then expressed as state

changes by removing multiple occurrences as shown below.

s1, s1, · · · s1︸ ︷︷ ︸, s2, s2, · · · s2,︸ ︷︷ ︸ · · · · · ·︸ ︷︷ ︸ sk, , sk, · · · sk︸ ︷︷ ︸
⇓

s1, s2, · · · sk .

Treating the state sequences as strings, we can use the LCS algorithm

given by Alg.4.2.1 shown in Fig. 4.3 and find the common state subsequences

across various sequences as in Ch. 4. When we have processed only the first

sequence P1, the state sequence S1 is a directed path. When the sequence P2

is processed and some states are merged with λF , the merged states are the

common parts of S1 and S2. This can be detected using the LCS algorithm.

Removing each of the common subsequences from the state sequences, we

62 Chapter 5. Primitives with Object Context

1

1

4

2

2 3 5 6 7

3 4 5 6

(a) Each row shows a sequence. States
2 and 3 in sequence 2 are to be merged
with states 1,2 in sequence 1 respec-
tively.

1

8

4

2

2 3 5 6 7

3 9 10 11

(b) State sequences after merging.
States that are not merged in sequence
two are given new state numbers.

1

8

42 3 5 6 7

9 10 11

(c) Primitives after the segmentation algo-
rithm.

1

1

4

2

5 6 7

3 4 5 6

(d) A new sequence is shown in row 2.
States 1,4 and 5 of this sequence is to be
merged with previously observed states
1,4 and 5 respectively.

1

1

4

12

5 6 7

13 4 5 14

(e) State sequence of sequence 3 after
merging

1

8

4

12

2 3 5 6 7

13 9 10 11 14

(f) Updated set of primitives after ob-
serving sequence 3.

Figure 5.7: Illustration of primitive segmentation using LCS algorithm

can extract the remaining primitives that are unique. Then for each Sk

for k > 2, the process is repeated with each of the primitives and Sk. This

process is illustrated in Fig. 5.7. After this step, we will be able to represent

the state sequences as as sequence of primitives. We refer to the iterative

approach in this section as online primitive detection approach.

5.3 Segmentation and Grouping in the Movement

Space

The modeling and segmentation method discussed so far is applied to the

data in the object state space which was denoted by B in Eq. 5.1. Once

5.3. Segmentation and Grouping in the Movement Space 63

Figure 5.8: Data covered with Gaussians. Ellipsoids show the contours of
Gaussians used to cover the data. Lengths of the trajectories indicate how
much distance the object was moved.

Figure 5.9: The final states in the object space after merging. Measurements
along the axes are in mm.

we have primitives in the object state space we can find the corresponding

segments in the movements space denoted as E in Eq. 5.2. The segment

D represents the approach object part and the segment F represents the

retrieve hand part. As both of these movements do not induce any object

state change, they are each associated with a single movement primitive.

64 Chapter 5. Primitives with Object Context

5.4 Generating the Grammar for Primitives

The grammar for the detected primitives can be generated as described in

Sec. 4.2.5. This grammar rules can be used to verify the primitive sequences.

Algorithm 5.4.1: Algorithm for action classes using primitives. Two

primitive paths belong to the same set if one is a subset of another.

Input: Set of different primitive sequences P={P1, · · ·Pn}
Output: Set of unique primitive classes

C={P1}
foreach Pk in P, k > 1 do

Compare Pk with Ci ∈ C
If Pk ⊃ Ci for some Ci ∈ C replace Ci with Pk

If Pk * Ci for all Ci ∈ C Add Pk to C

end

Algorithm 5.4.2: Algorithm for action classes using primitives. Two

primitive paths belong to the same set if they are equal.

Input: Set of different primitive sequences P={P1, · · ·Pn}
Output: Set of unique primitive classes

C={P1}
foreach Pk in P, k > 1 do

Compare Pk with Ci ∈ C
If Pk = Ci for some Ci ∈ C if |Pk| > |Ci| replace Ci with Pk

If Pk 6= Ci for all Ci ∈ C Add Pk to C

end

5.5 Recognition of Novel Sequences Using Primi-

tive Paths

Once we have identified all the primitives in the object state space, we can

represent each sequence as a primitive path. One way to identify different

type of sequences is to find all unique primitive paths. Then two observed

sequences are same if and only if they have the same primitive path. Another

way to form clusters is to make two primitive paths(and consequently the

observed sequences) in the same group if one is a subset of another. In that

case pushing in one direction at different distances will belong together.

These two types of grouping are given in Alg. 5.4.1 and Alg. 5.4.2. For

5.5. Recognition of Novel Sequences Using Primitive Paths 65

our recognition purposes in the experiments in Sec. 5.6 , we have used Alg.

5.4.1. Before sequence classification could be done, primitives have to be

identified in a novel sequence. This is explained in the next section.

5.5.1 Detecting Primitives in Unknown Sequences

Once we have built the model, we can segment an unknown sequence into

sequence of known primitives in two ways. If the sequence contain only

one manipulation action, we can compute the most probable path of the

sequence given the model using the Viterbi algorithm and then find the

primitives from the state sequence. We refer to this as the exact method.

But when we have to detect primitives from a long sequence with many

manipulation actions, we need a different procedure. When we have a long

sequence with many primitives, we cannot compute the state sequence of the

observations directly. Since the aim of primitive detection is imitation, we

only need to identify all the primitives in the sequence. An exact mapping

of each of the points to a primitive is not required. Primitive detection

in long sequences is done by first covering the sequence with Gaussians as

described in Sec. 5.1. Then the new states are compared with the states of

the final model using Kullback-Leibler divergence given in Eq. 4.1 and 4.2.

Since we have modeled each of the manipulation primitive to start from the

origin, when one primitive has ended, the states modeling the rest of the

data will be different from the states in the final model. Hence when we

encounter a state that is different from known states, the points from that

time onwards are shifted to the origin and the process is repeated. We refer

to this method as approximate method. In Fig. 5.12 we have shown the result

of segmenting a complex sequence using our model and the comparison to

ground truth is also shown. The ground truth segmentation is obtained

by manually looking at the segmentation points in the complex sequence.

The resulting segmentation is very close to the ground truth segmentation.

The approximate method can be applied to simple sequences or complex

sequences. Recognition results using these two methods are discussed in the

experiments Sec. 5.6.

66 Chapter 5. Primitives with Object Context

p
1

p
2

p
6

p
1

1

p
1

3
p

1
7

p
2

7
p

3
4

p
3

9
p

5
0

p
3

p
4

p
5

p
8

p
7

p
9

p
1

2

p
1

0

p
1

4

p
1

5

p
1

6

p
1

8

p
1

9
p

2
4

p
2

5 p
2

0

p
2

1

p
2

2

p
2

3

p
2

6

p
2

8

p
2

9
p

3
2

p
3

0

p
3

1

p
3

3

p
3

5
p

3
6

p
3

7

p
6

1

p
3

8

p
4

0
p

4
4

p
6

3

p
4

2

p
4

3

p
4

6

p
4

1

p
6

2

p
4

8

p
4

9

p
4

5

p
4

7

p
5

1
p

5
7

p
5

2
p

5
4

p
5

5

p
6

4

p
5

3

p
5

6
p

5
8

p
5

9
p

6
0

Figure 5.10: The result of our primitive extraction method in the object
space.

5.5. Recognition of Novel Sequences Using Primitive Paths 67

p
1

p
2

p
6

p
8

p
1

2
p

1
8

p
2

5

p
2

8

p
3

3

p
4

4

p
5

1

p
3

p
4

p
5

p
7

p
9

p
1

0

p
1

1

p
1

3 p
1

4

p
1

5

p
5

2
p

6
4

p
1

6

p
5

3

p
1

7

p
1

9

p
2

0

p
2

1

p
2

3

p
2

4

p
2

2

p
2

6

p
2

7
p

2
9

p
3

0

p
3

1

p
3

2

p
5

9p
5

8

p
3

7
p

3
8

p
5

6

p
3

4

p
3

5

p
4

2

p
4

3

p
3

6

p
3

9
p

4
1

p
6

1

p
4

0

p
6

0

p
4

5

p
4

8
p

4
6

p
4

9

p
6

2

p
4

7

p
5

0
p

5
5

p
5

4
p

5
7

p
6

3

Figure 5.11: The result of our primitive extraction using the online method.

68 Chapter 5. Primitives with Object Context

Push Right Push Up Push Left

Push Right Push Up Push Left

40 80 120 160 200 240

Figure 5.12: This figure shows the segmentation result for a complex se-
quence with three manipulation primitives. On the x-axis we show the
length of the sequence. Ground truth segmentation is shown at the bottom
and the segmentation using our approach is shown on top.

5.6 Experiments

We have collected a data set consisting of 13 subjects moving an object on

a table. The data was recorded using a Vicon Nexus motion capture system

[94]. A box equipped with 3 markers was used as the object to be manipu-

lated. The subjects were equipped with 14 markers on their body. Among

the 14 markers placed on each person, only the 3 markers placed on the

hand were used in our experiments in analyzing the actions under consider-

ation. The recording setup and the arm model used in Vicon are shown in

Fig. 5.6. The system is able to record the 3-D position of the markers quite

accurately. The three markers on the hand are used to calculate the posi-

tion of the hand in our experiments. Only the hand location is used since

it gives enough information for recognizing and imitating the demonstrated

movements and this has been validated experimentally in [95]. The subjects

were allowed to move the object from any position on the table to any other

position on the table. The data [H,O] used in these experiments are based

on the 3-d trajectories of the hand, and the location and orientation of the

object. The center of mass of the 3 markers on the hand was used to define

the position vector H for the hand. The center of mass and the orientation

of the object defined O. The distance moved varied each time of the repe-

tition. Our aim is to learn all movement primitives and express all actions

5.6. Experiments 69

Simple Actions Complex Actions

md 42 ml-pd 2

mf 37 pd-ml-pd 2

ml 46 pd-pl 3

mr 38 pf-pl 6

pd 49 pl-pd 5

pf 44 pl-pf 4

pl 64 pr-pd 4

pr 61 pf-pr 3

Table 5.1: Summary of the new data set. pr=push right, pl=push left,
pf=push forward, pd=push down, mr=move right, ml=move left, mf=move
forward, md=move down.

in terms of the primitives. The detected primitives will be used to identify

actions in unknown sequences.

The new data set, available online [63], is an extension of the KTH

data set [90] used in Ch. 4. In the KTH data set, object information is

not included. Our new data set includes object location and orientation.

We have also added more actions and complex actions. A summary of the

recorded data set with the actions and the number of actions is shown in

Tab. 5.1.

Each of the arm movements started from a rest position (arm resting on

the table) and ended at the same position. The recorded data is segmented

by thresholding object velocity as described in Sec. 5.2 to find the part where

the object is being moved. The segmented data for the object movement

part is then processed with Algorithm5.1.1 from Sec. 5.1 and the result is

shown in Fig. 5.8.

To illustrate the effects of building the model with different type and

number of sequences , we consider 3 kinds of experiments:

1. An experiment where the model is built with sequences that contain

single manipulation actions only. This experiment is similar the one in

Sec. 4.2.9. Our aim is learn primitives and primitives grammar from

the data and then use it to detect primitives from novel sequences.

This experiment is explained in Sec. 5.6.1.

2. An experiment where the model is built with sequences that contain

single and multiple manipulation actions. Complex sequences are in-

70 Chapter 5. Primitives with Object Context

cluded to see how the primitives change when complex sequences are

included. The order in which complex sequences are introduced to the

system do not affect the final set of primitives. This experiment is

explained in Sec. 5.6.2.

3. An experiment to illustrate the sequential learning capability of our

approach. This experiment illustrates how the model is updated se-

quentially while processing the sequences one by one. This experiment

is explained in Sec. 5.6.3.

5.6.1 Model with Single Manipulation Action

For our first experiment we consider eight movements: push object right,

push object left, push object forward, push object downwards , move object

right, move object left, move object forward and move object downwards.

The aim of the experiment is to extract the primitives for this data and test

how good is the primitive representation of the data in recognizing novel

sequences. We test the quality of our representation against the ground

truth. The ground truth is the labeled information of whether a particular

sequence is push right or push left etc.

Seventy percent of the sequences in our database is used to built an HMM

as described in Sec. 5.1. The sequences are covered using Alg. 5.1.1. This

give rise to a lot of states as shown in Fig. 5.8. States corresponding to only

twenty percent of the data are shown in the figure for a clear visualization.

The number of states are decreased after the merging process and are shown

in Fig. 5.9. The sparsity structure of the transitions in the final HMM

is visualized in Fig. 5.13. Using the constructed HMM, the observation

sequences are converted to state sequences and the primitives are identified

using the LCS algorithm described in Sec. 5.2. The primitive graph for the

detected primitives using the batch processing method in Sec. 4.2.4 is as

shown in Fig. 5.10. The primitive graph for the primitives found using the

online method in this chapter is given in Fig. 5.11. These two graphs can

be different. The difference comes from different state sequences during the

model building and after the model building. Using the primitive graph,

the SCFG for representing all the manipulation movements is derived and

parts of the grammar is shown in Fig. 5.19. The full set of rules is given

in Appendix A. It is shown that all movements start with primitive p1.

5.6. Experiments 71

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 290

Figure 5.13: Sparsity structure of the final HMM transitions.

Since all states starts at the origin, a few of the initial points are assigned

to state 1 in all the sequences. The parts D and F in Eq. 5.2 become the

approach and retrieve parts respectively in the physical movement space.

Note that the primitives in Fig.5.9 shows the primitives in the object space

and also the induced primitives in the movement space. If we consider the

primitive path p1 → p2 → p3 → p4 → p5 for Push down, the primitives

p2, p3, p4, and p5 correspond to repetitions in our training data in which

the object was pushed to right at 4 different distances.

Using this model, additional test sequences are segmented into different

classes and is compared with the ground truth segmentation. Each ground

truth group may be represented by one or more primitive paths. A new

sequence is correctly identified if its primitive path is same as one of the

primitive path for its ground truth. If the primitive path do not match with

any of the known primitive paths, it is classified as an unknown sequence.

Different primitive paths for our dataset are shown in Fig. 5.14 and Fig.

5.15. In Tab. 5.2, we give the results of our recognition test as a confu-

sion matrix. Very few sequences are misclassified. Misclassification between

push and move along the same direction can occur if the object was lifted

up while pushing. The classification results when using primitives from the

72 Chapter 5. Primitives with Object Context

−500
0

500

−1000
0

1000
−200

0

200
400

−500
0

500

−1000
0

1000
−200

0

200
400

−500
0

500

−1000
0

1000
−200

0

200
400

−500
0

500

−1000
0

1000
−200

0

200
400

−500
0

500

−1000
0

1000
−200

0

200
400

−500
0

500

−1000
0

1000
−200

0

200
400

−500
0

500

−1000
0

1000
−200

0

200
400

−500
0

500

−1000
0

1000
−200

0

200
400

Figure 5.14: Different primitive paths for different actions. Different paths
are given different colors.

online approach is shown in Tab. 5.4. We can also use the approximate

method given in Sec. 5.5.1 to recognize the actions. The result of approxi-

mate method is shown in Tab. 5.3. The results of approximate and online

methods are comparable to the results of the exact method. Primitives from

single manipulation actions can be used to detect primitives from complex

sequences. For this we have to use the approximate method described in Sec.

5.5.1. The result primitive segmentation on complex sequences is shown in

Tab. 5.7. The effect of segmenting a complex sequence into its component

primitives is shown in Fig. 5.12. As shown in the figure, there is a slight lag

in detecting the end of each of the component primitives. This is because

we need to observe some points to see that the trajectory is deviating from

the current primitive. The results shows that the approximate method is

quite good in detecting primitives.

5.6. Experiments 73

−500 −400 −300 −200 −100 0 100 200 300 400

−1000

−500

0

500

1000
−200

−100

0

100

200

300

400

Figure 5.15: Primitive paths for different actions are shown. Sequences with
the same primitive path are given the same color.

pd pf pl pr md mf ml mr U

pd 15 0 0 0 0 0 0 0 0

pf 0 18 0 0 0 0 0 0 1

pl 0 0 30 0 0 0 0 0 0

pr 0 0 0 24 0 0 0 0 1

md 1 0 0 0 16 0 0 0 5

mf 0 3 0 0 0 10 0 0 1

ml 0 0 0 0 0 0 12 0 13

mr 0 0 0 0 0 0 0 13 2

U 0 0 0 0 0 0 0 0 0

Table 5.2: Primitive detection using exact inference. pr=push right,
pl=push left, pf=push forward, pd=push down, mr=move right, ml=move
left, mf=move forward, md=move down, U=unknown. True and detected
labels are along rows and columns respectively.

74 Chapter 5. Primitives with Object Context

pd pf pl pr md mf ml mr U

pd 12 0 0 0 0 0 0 0 3

pf 3 14 0 0 0 0 0 0 2

pl 0 0 30 0 0 0 0 0 0

pr 0 0 0 23 0 0 0 0 2

md 5 0 0 0 17 0 0 0 0

mf 0 3 0 0 0 9 0 0 2

ml 1 0 0 0 0 0 18 0 6

mr 0 0 0 2 0 0 0 9 4

U 0 0 0 0 0 0 0 0 0

Table 5.3: Primitive detection using approximate method. pr=push right,
pl=push left, pf=push forward, pd=push down, mr=move right, ml=move
left, mf=move forward, md=move down, U=unknown . True and detected
labels are along rows and columns respectively.

pd pf pl pr md mf ml mr U

pd 15 0 0 0 0 0 0 0 0

pf 1 14 0 0 0 2 0 0 2

pl 0 0 30 0 0 0 0 0 0

pr 0 0 0 20 0 0 0 0 5

md 1 0 0 0 13 0 0 0 8

mf 0 0 0 0 0 8 0 0 6

ml 0 0 0 0 0 0 7 1 17

mr 0 0 0 0 0 0 0 7 8

U 0 0 0 0 0 0 0 0 0

Table 5.4: Confusion matrix for action recognition using the primitives from
online method. pr=push right, pl=push left, pf=push forward, pd=push
down, mr=move right, ml=move left, mf=move forward, md=move down,
U=unknown. True and detected labels are along rows and columns respec-
tively.

5.6.2 Model with Single and Multiple Manipulation Action

In this experiment we include all the action we have mentioned in the above

experiment. In addition we include several sequences that contain more than

one manipulation action. Two types of complex sequences are included: ob-

ject Pushed Right followed by Push Up, object Pushed Left followed by

Push Down. When complex sequences are included in the training set for

building the model, new states are generated as necessary, see Fig. 5.16.

For eg., if we have seen Push Up sequences before and observe a complex se-

5.6. Experiments 75

−500

−400

−300

−200

−100

0

100

200

300

400

500
−1000

−800
−600

−400
−200

0
200

400
600

800
1000

−500

0

500

−500

−400

−300

−200

−100

0

100

200

300

400

500
−1000

−800
−600

−400
−200

0
200

400
600

800
1000

−500

0

500

Figure 5.16: The result of including complex actions in the primitive learning
phase. On the left states for the single action sequences are shown. When
complex sequences are introduced, new states are added to the existing
states as shown on the right.

quence Push Right -Push Up, then new states for Push Up will be generated.

The result of the primitive segmentation after the model is built is shown in

Fig. 5.17. As we can see, training with additional complex sequences result

in additional primitives. A manipulation action followed by another one is

treated as a new type of sequence and additional primitives are generated

to support this type of sequences. The results of segmenting test sequences

into primitives using the exact method is shown in Tab. 5.5. Detection re-

sults using the approximate method is given in Tab. 5.6. Recognition rates

of both the methods are good. In the approximate method, the first se-

quence is identified correctly in most cases. If the ending of any component

sequence is not detected correctly in any complex sequence, it will affect the

recognition of all the following sequences. We note that the final primitives

do not change depending on the order in which complex sequences are input

to the system.

5.6.3 Primitives with Sequential Model Building

In this experiment we show the effect of our sequential model building and

primitive detection. We illustrate the sequential building using a subset of

the sequences from our dataset. First the model is built with several Push

Right sequences and the resulting primitives are shown in Fig. 5.18(a). To

update this model with additional sequences, we do not require the sequences

we have already processed. The model is then updated using several Push

Up sequences. After this step, the primitives are as shown in Fig. 5.18(b).

76 Chapter 5. Primitives with Object Context

p
1

p
2

p
6

p
1

1
p

1
8

p
2

5

p
3

5
p

4
3

p
5

1

p
6

7

p
9

5
p

1
0

0

p
3

p
9

1

p
4

p
5

p
7

p
9

p
8

p
7

9

p
1

0

p
1

2

p
1

3

p
1

4

p
2

0

p
2

1

p
1

5

p
1

6

p
1

9

p
1

7

p
2

3
p

5
8

p
6

0

p
8

3

p
2

4

p
2

2 p
5

6
p

6
3

p
6

4

p
2

6

p
3

0

p
2

7

p
2

8
p

3
3

p
3

1
p

8
7

p
2

9

p
3

4

p
7

1

p
8

2
p

3
2

p
8

6

p
3

6

p
4

0
p

6
8

p
9

8

p
3

8
p

3
9

p
3

7

p
9

2
p

4
1

p
4

2

p
4

5

p
4

6

p
4

7
p

9
4

p
4

4

p
4

8

p
5

0

p
9

3
p

9
9

p
4

9

p
5

7

p
8

8

p
5

2

p
5

4

p
5

5

p
6

1

p
5

3

p
5

9

p
6

2
p

8
9

p
6

5

p
6

6

p
7

2

p
7

6

p
9

6
p

9
7

p
6

9

p
7

0 p
7

3

p
7

4

p
1

0
2

p
7

7

p
7

5

p
1

0
1

p
7

8

p
8

0
p

8
1

p
8

4

p
8

5

p
9

0

Figure 5.17: The result of our primitive extraction method when complex
actions are included in the primitive learning phase.

5.6. Experiments 77

pd pf pl pr md mf ml mr pf-pl pl-pd U

pd 20 0 0 0 0 0 0 0 0 0 0

pf 0 15 0 0 0 3 0 0 0 0 0

pl 0 0 22 0 0 0 1 0 0 0 0

pr 0 0 0 22 0 0 0 0 0 0 0

md 1 0 0 0 15 0 0 0 0 0 2

mf 0 0 0 0 0 12 0 0 0 0 4

ml 0 0 0 0 0 0 10 0 0 0 7

mr 0 0 0 0 0 0 0 7 0 0 9

pf-pl 0 0 0 0 0 0 0 0 18 0 0

pl-pd 0 0 1 0 0 0 0 0 0 8 0

U 0 0 0 0 0 0 0 0 0 0 0

Table 5.5: Primitive detection results using exact method when complex
sequences are used in primitive learning. pr=push right, pl=push left,
pu=push up, pd=push down, U=unknown sequence

For the sequential updating we only require the current model parameters

and the current set of primitives. The result of presenting the system with

several Push Left sequences is shown in Fig. 5.18(c). The final result after

adding Push down sequences to the model is same as the one shown in Fig.

5.18(d). The final model and the primitives are independent of the order in

which different type of sequences are presented to the system.

5.6.4 Use of SCFG

The detected primitive sequences are validated by the constructed SCFG.

In this case we are assuming that the primitive detection is free of errors and

hence the probabilities associated with the rules are not very much useful.

But if there is a chance of uncertainty in the primitive detection part, the

probabilities become useful, see [79, 96].

5.6.5 Effect of Parameters

In this section we give a brief discussion on the effects of various parameters

that we have used. In Algorithm 5.1.1 we have used a threshold parameter

α. This parameter controls the size of the Gaussians for covering the data

and can affect the final primitives we end up with. This effect is best ex-

plained with the chess scenario. If we set a high value for α such that each

of the Gaussians cover 2 squares we will not know the difference between

78 Chapter 5. Primitives with Object Context

Push Right

P2 P3P1Approach

Retrive

(a) Primitives when the model is
learned with only push right move-
ments.

P
u
sh

 u
p

P10

P11

Push Right

P2 P3P1Approach

Retrive

(b) Primitives when push up
movements are added to the
model used to get Fig. 5.18(a).

Push Left

P8P9

P
u
sh

 u
p

P10

P11

Push Right

P2 P3P1Approach

Retrive

(c) Primitives when push left movements are
added to the model used to get Fig. 5.18(b).

Push Left

P8P9

P
u
sh

 D
o
w

n

P5

P6

P7

P
u
sh

 u
p

P10

P11

Push Right

P2 P3P1
Approach

Retrive

P4

(d) Primitives when push
down movements are
added to the model used
to get Fig. 5.18(c).

Figure 5.18: Illustration of the sequential updating of the primitives. Prim-
itives are added/refined as new data is observed. Data needed for learning
the primitives in Fig. 5.18(b) are not used to get the updated primitives in
this figure.

moving one square and two squares. Therefore the value should be chosen

such that it will not exceed the smallest primitive we expect to find. At

the same time if the value of α is too small, it will generate Gaussians that

cover a very small area. We will have a high number of Gaussians and se-

quences from the same class will not generate same state sequences. This

will generate additional primitives for describing the data. The effect of size

of the Gaussians in the final result can be illustrated with simulated data

that we have used in Sec. 4.2.8. Using small Gaussians results in a covering

as shown in Fig. 4.6(c). Allowing large Gaussians will result in less number

of Gaussians as shown in Fig. 5.21. In Fig. 5.21(a)-Fig. 5.21(c) the result of

a particular covering is shown. Here, we have exactly one Gaussian to cover

the shared region and 2 more Gaussians to share the rest of the data. The

5.6. Experiments 79

S->p1 B2C1 [0.125]| p1 B6C3 [0.125]| p1 B11 [0.125]|

p1 B13C11 [0.125]| p1 B17C14 [0.125]|

p1 B27 [0.125]| p1 B34 [0.125]| p1 B39C45 [0.125]

B2C45->p2 [1]

B2C1->p2 B3C1 [0.5]

B3C1->p3 [0.5]

B2C1->p2 [0.5]

B3C1->p3 B4C2 [0.5]

B4C2->p4 B5C2 [0.5]

.

.

.

B25C73->p25 B20C73 [1]

B20C73->p20 [1]

B56C66->p56 B59C67 [0.33333]

B59C67->p59 B53C74 [1]

B53C74->p53 B23C74 [1]

B23C74->p23 [1]

B20C70->p20 B22C70 [0.5]

B22C70->p22 B21C75 [1]

B21C75->p21 [1]

B20->p20 [0.5]

B20C71->p20 [0.5]

B18C69->p18 B24C69 [0.33333]

B24C69->p24 [1]

Figure 5.19: grammar for actions

final result matches the one shown in Fig. 4.6(o). Further decrement in the

number of Gaussians will fail to discover the structure in the data as shown

in Fig. 5.21(d)-Fig. 5.21(f). In this case one sequence is covered with a single

Gaussian. This sequence cannot be modeled with a single Gaussian. Thus

the size of Gaussians should be such that they do not violate the assumption

of normality for the underlying data. The Gaussians should be big enough

so that in any repetition of the same sequence, it should pass through the

same state sequence.

Another parameter of interest is θ which is the threshold for deciding

80 Chapter 5. Primitives with Object Context

Figure 5.20: Primitive sequence parsing using NLTK

if two states should be merged or not. We chose this value to be half of

average distance of adjacent pair states in a sequence. This ensures that

states with good overlap are combined and represented by a single state.

5.6.6 Summary and Discussion

In chapter we have presented an improved primitive learning method using

object information. Using the learned primitives, we are able to segment

novel sequences into known sequence of primitives. Also novel sequences

are classified using primitives. We are able to recover a primitive structure

for the actions that is similar to the natural language description for the

actions we have considered. Primitive based modeling of actions enables us

to define a hierarchy of actions by converting continuous observations into

discrete symbols. Several authors have represented actions in a hierarchical

manner [45, 75, 76].

These works require the manual modeling of atomic movements/primitives.

5.6. Experiments 81

(a) A good covering (b) resulting primitive seg-
mentation

(c) primitive
graph

(d) A bad covering (e) resulting primitive seg-
mentation

(f) primitive graph

Figure 5.21: Illustration of the effect of parameters

The contribution of our work is that we perform this segmentation automat-

ically.

The experimental results from [49] suggests that action perception and

execution of motor primitives are connected through objects. There are

also further studies from experimental psychology which confirms the role

of objects in action understanding [47, 97]. In this paper we have exploited

object information to learn action primitives.

Even though object detection and classification literature is quite large

(for overview see [98]), there are not many attempts to combine it with action

modeling [83, 61]. In [83] Hidden Markov models are combined with object

context to classify hand actions. Image, object and action-based evidence

was used to label and summarize activity and also to identify objects. They

define a generalized class model to describe objects. Actions associated

with each class were represented using trained HMMs. The states of such

HMMs were connected to the regions through which the object moved for the

particular action. Our approach learns such a model for modeling actions

automatically. A graphical Bayesian model was used in [61] for modeling

human-object interactions. Some of the conditional probabilities of this

82 Chapter 5. Primitives with Object Context

model was calculated using trained HMMs. These approaches require a

good initial training of action models for later recognition even though a

known structure is assumed. Our work goes beyond the state of the art in

this area since it exploits object knowledge in the primitive learning process.

Our work relates to the recent work of [99] where a hierarchical tree

structure is incrementally formed representing the motions learned by the

robot. One of the issues raised is that each node representing a motion

primitive may differ from those segmented in an off-line, supervised process.

By integrating the object knowledge in the learning process, the resulting

primitives are more similar to the ones generated in an off-line process.

5.6. Experiments 83

p
d

p
f

p
l

p
r

m
d

m
f

m
l

m
r

p
f-

p
l

p
l-

p
d

p
r-

p
d

m
r-

p
d

U
p

r-
p

d
-p

d
m

f-
p

d
-p

d

p
d

20
0

0
0

0
0

0
0

0
0

0
0

0
0

0

p
f

1
17

0
0

0
0

0
0

0
0

0
0

0
0

0

p
l

0
0

2
3

0
0

0
0

0
0

0
0

0
0

0
0

p
r

0
0

0
21

0
0

0
0

0
0

1
0

0
0

0

m
d

3
0

0
0

9
0

0
0

0
0

0
0

6
0

0

m
f

1
2

0
0

0
10

0
0

0
0

0
0

2
0

1

m
l

0
0

0
0

0
0

9
0

0
0

0
0

8
0

0

m
r

0
0

0
0

0
0

0
13

0
0

0
1

1
1

0

p
f-

p
l

0
5

0
0

0
0

0
0

13
0

0
0

0
0

0

p
l-

p
d

0
0

4
2

0
0

0
0

0
3

0
0

0
0

0

p
r-

p
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

m
r-

p
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

U
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

p
r-

p
d

-p
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

m
f-

p
d

-p
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

T
a
b

le
5.

6:
P

ri
m

it
iv

e
d

et
ec

ti
on

re
su

lt
s

u
si

n
g

th
e

ap
p

ro
x
im

at
e

m
et

h
o
d

w
h

en
co

m
p

le
x

se
q
u

en
ce

s
ar

e
u

se
d

in
p

ri
m

it
iv

e
le

ar
n

in
g
.

p
r=

p
u

sh
ri

g
h
t,

p
l=

p
u

sh
le

ft
,

p
u

=
p

u
sh

u
p

,
p

d
=

p
u

sh
d

ow
n

,U
=

u
n

k
n

ow
n

se
q
u

en
ce

84 Chapter 5. Primitives with Object Context

p
d

-
p

l
p

f-
p

l
p

f-
p

r
p

l-
p

d
p

l-
p

f
p

r-
p

d
m

l-
p

d
p

d
-m

l-
p

d
p

f-p
f-

p
r

p
r-p

d
-

p
d

m
l-p

d
-

p
d

p
d

-m
l-

p
d

-p
d

p
l-p

f-
p

r-p
d

p
d

-p
l

6
0

0
0

0
0

0
0

0
0

0
0

0

p
f-p

l
0

6
0

0
0

0
0

0
0

0
0

0
0

p
f-p

r
0

0
2

0
0

0
0

0
2

0
0

0
0

p
l-p

d
0

0
0

1
0

0
0

0
0

0
1

0
0

0

p
l-p

f
0

0
0

2
6

0
0

0
0

0
0

0
1

p
r-p

d
0

0
0

2
0

4
0

0
0

1
0

0
0

m
l-p

d
0

0
0

0
0

0
3

0
0

0
1

0
0

p
d

-m
l-

p
d

0
0

0
0

0
0

0
3

0
0

0
2

0

p
f-p

f-p
r

0
0

0
0

0
0

0
0

0
0

0
0

0

p
r-p

d
-

p
d

0
0

0
0

0
0

0
0

0
0

0
0

0

m
l-p

d
-

p
d

0
0

0
0

0
0

0
0

0
0

0
0

0

p
d

-m
l-

p
d

-p
d

0
0

0
0

0
0

0
0

0
0

0
0

0

p
l-p

f-
p

r-p
d

0
0

0
0

0
0

0
0

0
0

0
0

0

T
ab

le
5
.7

:
C

o
n

fu
sion

m
a
trix

for
action

recogn
ition

on
com

p
lex

seq
u

en
ces

u
sin

g
th

e
p

rim
itiv

es
from

sin
gle

seq
u

en
ces.

Bibliography

[1] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching: ex-

tracting reusable task knowledge from visual observation of human per-

formance,” Robotics and Automation, IEEE Transactions on, vol. 10,

no. 6, pp. 799–822, Dec 1994. ix, 2, 15, 16

[2] I. S. Vicente, V. Kyrki, and D. Kragic, “Action recognition and un-

derstanding through motor primitives,” Advanced Robotics, vol. 21, pp.

1687–1707, 2007. ix, 6, 7, 8, 15, 29, 30, 32, 42

[3] S. Ekvall and D. Kragic, “Robot learning from demonstration: A task-

level planning approach,” International Journal of Advanced Robotic

Systems, vol. 5, no. 3, pp. 223–234, 2008. 1

[4] R. Dillmann, “Teaching and learning of robot tasks via observation of

human performance,” Robotics and Autonomous Systems, vol. 47, no.

2-3, pp. 109–116, 2004, robot Learning from Demonstration. 1

[5] M. Kaiser and R. Dillmann, “Building elementary robot skills from hu-

man demonstration,” in Robotics and Automation, 1996. Proceedings.,

1996 IEEE International Conference on, vol. 3, Apr 1996, pp. 2700–

2705 vol.3. 1

[6] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot task

learning: instructive demonstrations, generalization and practice,” in

Proceedings of the second international joint conference on Autonomous

agents and multiagent systems. New York, NY, USA: ACM, 2003, pp.

241–248. 1

[7] P. Lima and G. Saridis, “Hierarchical reinforcement learning and deci-

sion making for intelligent machines,” in in Proceedings of 1994 IEEE

Int. Conf. Robotics and Automation, San Diego, CA, USA, 1994. 1, 2

[8] A. Chella, H. Dindo, and I. Infantino, “Learning high-level manipulative

tasks through imitation,” in The 15th IEEE International Symposium

on Robot and Human Interactive Communication, 6-8 2006, pp. 251–

256. 1, 17

86 Bibliography

[9] A. Billard and M. J. Mataric, “Learning human arm movements by imi-

tation: Evaluation of a biologically inspiredconnectionist architecture,”

Robotics and Autonomous Systems, vol. 37, no. 2-3, pp. 145–160, 2001.

1, 2

[10] J. Aleotti and S. Caselli, “Robust trajectory learning and approxi-

mation for robot programming by demonstration,” Robotics and Au-

tonomous Systems, vol. 54, no. 5, pp. 409–413, 2006, the Social Mech-

anisms of Robot Programming from Demonstration. 1

[11] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching: ex-

tracting reusable task knowledge from visual observation of human per-

formance,” Robotics and Automation, IEEE Transactions on, vol. 10,

no. 6, pp. 799–822, Dec 1994. 1

[12] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends

in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999. 1

[13] P. Bakker and Y. Kuniyoshi, “Robot see, robot do: an overview of robot

imitation,” in In AISB workshop on Learning in Robots and Animals,

1996. 1, 2

[14] S. Calinon and A. Billard, “Learning of gestures by imitation in a hu-

manoid robot,” in Imitation and social learning in robots, humans and

animals: behavioural, social and communicative dimensions, C. L. Ne-

haniv and K. Dautenhahn, Eds. Cambridge University Press, 2007.

1

[15] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of

honda humanoid robot,” in IEEE International Conference on Robotics

and Automation, 1998, pp. 1321–1326. 1

[16] K. Hirai, “Current and future perspective of honda humamoid robot,”

in International Conference on Intelligent Robots and Systems, vol. 2,

7-11 1997, pp. 500–508. 1

[17] J. Peters and S. Schaal, “Reinforcement learning for parameterized mo-

tor primitives,” in Neural Networks, 2006. IJCNN ’06. International

Joint Conference on, July 2006, pp. 73–80. 2

Bibliography 87

[18] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in

reinforcement learning using diverse density,” in ICML ’01: Proceed-

ings of the Eighteenth International Conference on Machine Learning,

Williamstown, MA, USA, 2001, pp. 361–368. 2, 6, 14, 53

[19] Y. Davidor, Genetic Algorithms and Robotics. River Edge, NJ, USA:

World Scientific Publishing Co., Inc., 1991. 2

[20] R. A. Brooks and M. J. Mataric, “Real robots, real learning problems,”

in Robot Learning, J. H. Connel and S. Mahadevan, Eds. Kluwer

Academic Press, 1993, pp. 193–213. 2

[21] P. Maes, “Behavior-based artificial intelligence,” in Proceedings of the

second international conference on From animals to animats 2 : simu-

lation of adaptive behavior. Cambridge, MA, USA: MIT Press, 1993,

pp. 2–10. 2

[22] J. K. Tsotsos, “Behaviorist intelligence and the scaling problem,” Ar-

tificial Intelligence, vol. 75, no. 2, pp. 135–160, 1995. 2

[23] S. Schaal, “Learning from demonstration,” in Advances in Neural In-

formation Processing Systems 9. MIT Press, 1997, pp. 1040–1046.

2

[24] G. Hayes and J. Demiris, “A robot controller using learning by imita-

tion,” in Proc. of the Intl. Symp. on Intelligent Robotic Systems, 1994,

pp. 198–204. 2

[25] K. Dautenhahn and C. L. Nehaniv, Eds., Imitation in animals and

artifacts. Cambridge, MA, USA: MIT Press, 2002. 2

[26] C. Breazeal and B. Scassellati, “Robots that imitate humans,” Trends

in cognitive sciences, vol. 6, no. 11, pp. 481–487, 2002. 2

[27] A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng, “Discover-

ing Optimal Imitation Strategies,” Robotics and Autonomous Systems,

vol. 47, pp. 69–77, 2004. 2

[28] V. Krueger, D. Kragic, A. Ude, and C. Geib, “Meaning of action,” Int.

Journal on Advanced Robotics, Special issue on Imitative Robotics, T.

Inamura and G. Metta (eds.), 2007. 2

88 Bibliography

[29] J. Kober, B. Mohler, and J. Peters, “Learning perceptual coupling for

motor primitives,” in International Conference on Intelligent Robots

and Systems, 2008, pp. 834–839. 2, 3

[30] W. Erlhagen, A. Mukovskiy, E. Bicho, G. Panin, C. Kiss, A. Knoll,

H. van Schie, and H. Bekkering, “Goal-directed imitation for robots:

A bio-inspired approach to action understanding and skill learning,”

Robotics and Autonomous Systems, vol. 54, no. 5, pp. 353–360, 2006,

the Social Mechanisms of Robot Programming from Demonstration. 2

[31] G. Guerra-Filho and Y. Aloimonos, “A language for human action,”

Computer, vol. 40, no. 5, pp. 42–51, 2007. 3, 5, 6, 13

[32] S. Calinon, Robot Programming by Demonstration: a Probabilistic Ap-

proach. CRC Press, 2009. 3

[33] C. L. Nehaniv and K. Dautenhahn, “Of hummingbirds and helicopters:

An algebraic framework for interdisciplinary studies of imitation and

its applications,” in Interdisciplinary Approaches to Robot Learning,

J. Demiris and A. Birk, Eds., vol. 24. World Scientific Press, 2000, pp.

136–161. 3

[34] A. Alissandrakis, C. L. Nehaniv, K. Dautenhahn, and J. Saunders,

“Evaluation of robot imitation attempts: comparison of the sys-

tem’s and the human’s perspectives,” in Proceedings of the 1st ACM

SIGCHI/SIGART conference on Human-robot interaction. ACM,

2006, pp. 134–141. 3, 4

[35] I. S. Vicente, V. Kyrki, D. Kragic, and M. Larsson, “Action recogni-

tion and understanding through motor primitives,” Advanced Robotics,

vol. 21, no. 15, pp. 1687–1707, 2007. 3

[36] A. Fod, M. J. Matarić, and O. C. Jenkins, “Automated derivation of

primitives for movement classification,” Autonomous Robots, vol. 12,

no. 1, pp. 39–54, 2002. 3, 5, 6, 13, 15, 53

[37] D. Del Vecchio, R. M. Murray, and P. Perona, “Decomposition of hu-

man motion into dynamics-based primitives with application to drawing

tasks,” Automatica, vol. 39, no. 12, pp. 2085–2098, 2003. 3, 14

Bibliography 89

[38] M. J. Mataric, Sensory-motor primitives as a basis for imitation: link-

ing perception to action and biology to robotics. Cambridge, MA, USA:

MIT Press, 2002. 3

[39] W. Takano and Y. Nakamura, “Integrating whole body motion primi-

tives and natural language for humanoid robots,” in Humanoid Robots,

2008. Humanoids 2008. 8th IEEE-RAS International Conference on,

daejon, Korea(South), Dec. 2008, pp. 708–713. 3, 14, 53

[40] D. Kulic, H. Imagawa, and Y. Nakamura, “Online acquisition and visu-

alization of motion primitives for humanoid robots,” in Robot and Hu-

man Interactive Communication, 2009. RO-MAN 2009. The 18th IEEE

International Symposium on, 27 2009-Oct. 2 2009, pp. 1210–1215. 3

[41] D. C. Bentivegna and C. G. Atkeson, “Learning from observation us-

ing primitives,” in In IEEE International Conference on Robotics and

Automation, 2001, pp. 1988–1993. 3, 4, 6, 15

[42] M. Dogar, M. Cakmak, E. Ugur, and E. Sahin, “From primitive be-

haviors to goal-directed behavior using affordances,” in International

Conference on Intelligent Robots and Systems, 29 2007-Nov. 2 2007,

pp. 729–734. 3

[43] Z. L. Husz, A. M. Wallace, and P. R. Green, “Human activity recog-

nition with action primitives,” in IEEE Conference on Advanced Video

and Signal Based Surveillance, Los Alamitos, CA, USA, 2007, pp. 330–

335. 3

[44] O. C. Jenkins and M. J. Mataric, “Deriving action and behavior primi-

tives from human motion,” in In International Conference on Intelligent

Robots and Systems, 2002, pp. 2551–2556. 3

[45] A. Bobick, “Movement, Activity, and Action: The Role of Knowledge

in the Perception of Motion,” Philosophical Trans. Royal Soc. London,

vol. 352, pp. 1257–1265, 1997. 4, 6, 12, 80

[46] R. P. Woods, M. Brass, H. Bekkering, J. C. Mazziotta, M. Iacoboni,

and G. Rizzolatti, “Coertical mechanisms of human imitation,” Science,

vol. 286, pp. 2526–2528, 1999. 6, 13

90 Bibliography

[47] K. Nelissen, G. Luppino, W. Vanduffel, G. Rizzolatti, and G. A. Or-

ban, “Observing Others: Multiple Action Representation in the Frontal

Lobe,” Science, vol. 310, no. 5746, pp. 332–336, 2005. 6, 13, 81

[48] G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, “Premotor cortex

and the recognition of motor actions,” Cognitive Brain Research, vol. 3,

no. 2, pp. 131–141, March 1996. 6, 13

[49] V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, “Action recognition

in the premotor cortex,” Brain, vol. 119, no. 2, pp. 593–609, 1996. 6,

13, 81

[50] G. Rizzolatti, L. Fogassi, and V. Gallese, “Neurophysiological Mecha-

nisms Underlying the Understanding and Imitation of Action,” Nature

Reviews, vol. 2, pp. 661–670, Sept. 2001. 6, 13

[51] ——, “Parietal cortex: from sight to action,” Current Opinion in Neu-

robiology, vol. 7, pp. 562–567, 1997. 6, 13

[52] X. Jiang, P. J. Gannon, K. Emmorey, J. F. Smith, and A. R. Braun,

“Symbolic gestures and spoken language are processed by a common

neural system,” Proceedings of the National Academy of Sciences of the

United States of America, vol. 106, no. 49, pp. 20 664–20 669, 2009. 6

[53] O. C. Jenkins, M. J. Mataric, and S. Weber, “Primitive-based move-

ment classification for humanoid imitation,” 2000. 6, 14

[54] D. M. Gavrila, “The visual analysis of human movement: a survey,”

Comput. Vis. Image Underst., vol. 73, no. 1, pp. 82–98, 1999. 6

[55] G. R. E. R. M. Lavee, “Understanding video events: A survey of meth-

ods for automatic interpretation of semantic occurrences in video,”

IEEE Transactions on Systems, Man, and Cybernetics, vol. 39, no. 5,

pp. 489–504, 2009. 6

[56] T. Moeslund, A. Hilton, and V. Krueger, “A survey of advances in

vision-based human motion capture and analysis,” Computer Vision

and Image Understanding, vol. 104, no. 2-3, pp. 90–127, 2006. 6

[57] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. U. Chellappa,

“Machine recognition of human activities: A survey,” IEEE Transac-

Bibliography 91

tions on Circuits and Systems for Video Technology, vol. 18, no. 11, pp.

1473–1488, Nov. 2008. 6

[58] V. Pavlovic, R. Sharma, and T. Huang, “Visual interpretation of hand

gestures for human-computer interaction: a review,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp.

677–695, jul 1997. 7

[59] D. McNeill and E. Levy, Conceptual representations in language activity

and gesture, ser. Speech, Place and Action : Studies in Deixis and

Related Topics. Wiley, 1982. 7

[60] M. W. Alex and R. Psarrou, “Data driven gesture model acquisition

using minimum description length,” in In Proc. British Machine Vison

Conference, 2001. 7

[61] A. Gupta and L. Davis, “Objects in action: An approach for combining

action understanding and object perception,” in IEEE Conference on

Computer Vision and Pattern Recognition, June 2007, pp. 1–8. 7, 16,

81

[62] V. Prasad, V. Kellokompu, and L. Davis, “Ballistic hand movements,”

in AMDO, 2006. 7

[63] Object Action Data Set, “http://www.cvmi.aau.dk/∼san/

objectActionDataset.” 8, 69

[64] D. Herzog, A. Ude, and V. Krueger, “Motion imitation and recognition

using parametric hidden markov models,” in Humanoids, IEEE-RAS

International Conference on Humanoid Robots, Daejeon, Korea, South,

December 1-3, 2008. 12

[65] S. Tso and K. Liu, “Hidden markov model for intelligent extraction of

robot trajectory command from demonstrated trajectories,” in Proceed-

ings of The IEEE International Conference on Industrial Technology,

1996. (ICIT ’96),, Dec 1996, pp. 294–298. 12

[66] G. Hovland, P. Sikka, and B. McCarragher, “Skill acquisition from

human demonstration using a hidden markov model,” in Robotics and

Automation, 1996. Proceedings., 1996 IEEE International Conference

on, vol. 3, Apr 1996, pp. 2706–2711 vol.3. 12

http://www.cvmi.aau.dk/~san/objectActionDataset
http://www.cvmi.aau.dk/~san/objectActionDataset

92 Bibliography

[67] J. Yang, Y. Xu, and C. Chen, “Hidden markov model approach to skill

learning and its application to telerobotics,” Robotics and Automation,

IEEE Transactions on, vol. 10, no. 5, pp. 621–631, Oct 1994. 12

[68] H. Jeung, H. T. Shen, and X. Zhou, “Mining trajectory patterns using

hidden markov models,” Data Warehousing and Knowledge Discovery,

pp. 470–480, 2007, 9th Iinternational Conference, Data Warehousing

and Knowledge Discovery. 12

[69] L. R. Rabiner, “A tutorial on hidden markov models and selected appli-

cations inspeech recognition,” Procceeding of the IEEE, vol. 77, no. 2,

pp. 257–286, 1989. 12, 20

[70] S. Eickeler, A. Kosmala, and G. Rigoll, “Hidden markov model based

continuous online gesture recognition,” in In Int. Conference on Pattern

Recognition, 1998, pp. 1206–1208. 12

[71] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-

sequential images using hidden markov model,” in Computer Vision

and Pattern Recognition, 1992, pp. 379–385. 12

[72] A. Chambaz, A. Garivier, and E. Gassiat, “A minimum description

length approach to hidden markov models with poisson and gaussian

emissions. application to order identification,” Journal of Statistical

Planning and Inference, vol. 139, no. 3, pp. 962–977, 2009. 12

[73] J. L. Sanz-Gonzalez, A. El-Jaroudi, and J. R. Boston, “An algorithm to

determine hidden markov model topology,” in Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing,

1996, pp. 3577–3580. 12

[74] A. Dempster, M. Laird, and D. Rubin, “Maximum likelihood from in-

complete data via the em algorithm,” Journal of the Royal Statistical

Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977. 12,

53

[75] C. Stauffer and W. Grimson, “Learning Patterns of Activity Using Real-

Time Tracking,” PAMI, vol. 22, no. 8, pp. 747–757, 2000. 12, 42, 43,

80

Bibliography 93

[76] N. Robertson and I. Reid, “Behaviour Understanding in Video: A Com-

bined Method,” in Internatinal Conference on Computer Vision, Bei-

jing, China, Oct 15-21, 2005. 12, 80

[77] K. Yamane, Y. Yamaguchi, and Y. Nakamura, “Human motion

database with a binary tree and node transition graphs,” in Proceedings

of Robotics: Science and Systems, Seattle, USA, June 2009. 13, 14, 53

[78] J. Kittler and J. Illingworth, “Minimum error thresholding,” Pattern

Recognition, vol. 19, no. 1, pp. 41–47, 1986. 14

[79] Y. A. Ivanov and A. Bobick, “Recognition of visual activities and in-

teractions by stochastic parsing,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 22, no. 8, pp. 852–872, 2000. 14, 77

[80] G. Hayes and J. Demiris, “A robot controller using learning by imi-

tation,” in Proc. 2nd International Symposium on Intelligent Robotic

Systems, 1994, pp. 198–204. 15

[81] N. Delson and H. West, “Robot programming by human demonstration:

Adaptation and inconsistency in constrained motion,” in Proceedings of

the IEEE International Conference on Robotics and Automation, vol. 1,

1996. 15

[82] T. Fukuda, Y. Nakauchi, K. Noguchi, and T. Matsubara, “Time se-

ries action support by mobile robot in intelligent environment,” in

Proc. IEEE International Conference onRobotics and Automation, 18-

22 2005, pp. 2897–2902. 16

[83] D. Moore, I. Essa, and M. I. Hayes, “Exploiting human actions and

object context for recognition tasks,” in CVPR 1999, vol. 1, 1999, pp.

80–86 vol.1. 16, 81

[84] S. M. Omohundro, “Best-first model merging for dynamic learning and

recognition,” in Advances in Neural Information Processing Systems,

J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds., vol. 4. Morgan

Kaufmann Publishers, Inc., 1992, pp. 958–965. 20

[85] A. Stolcke and S. M. Omohundro, “Best-first model merging for hid-

den Markov model induction,” ICSI, Berkeley, CA, 1947 Center Street,

Berkeley, CA, Tech. Rep. TR-94-003, 1994. 20

94 Bibliography

[86] V. Kruger, D. Herzog, Sanmohan, A. Ude, and D. Kragic, “Learn-

ing actions from observations,” Robotics Automation Magazine, IEEE,

vol. 17, no. 2, pp. 30–43, june 2010. 29

[87] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. Cambridge University Press, Jan-

uary 1997. 38

[88] C. H. Papadimitriou, Elements of the theory of computation. Prentice-

Hall, 1982. 42

[89] A. V. Aho and J. D. Ullman, The theory of parsing, translation, and

compiling. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1972.

42

[90] KTH Gesture Data Set, “http://www.nada.kth.se/∼danik/gesture

database/.” 47, 69

[91] J. Barbič, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hodgins, and

N. S. Pollard, “Segmenting Motion Capture Data Into Distinct Behav-

iors,” in Proceedings of Graphics Interface. London, Ontario, Canada:

Canadian Human-Computer Communications Society, 2004, pp. 185–

194. 52

[92] A. Bobick and A. Wilson, “A state-based approach to the representation

and recognition of gesture,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 19, no. 12, pp. 1325–1337, Dec 1997. 53

[93] S. J. Julier and J. K. Uhlmann, General Decentralized Data Fusion

With Covariance Intersection (CI), D. Hall and J. Llinas, Eds. CRC

Press, 2001, vol. Handbook of Data Fusion. 60

[94] Vicon Nexus Motion Capture System, “http://www.vicon.com/

products/nexus.html.” 68

[95] M. Pomplun and M. Matarić, “Evaluation metrics and results of human

arm movement imitation,” in in: Proceedings of the 1st IEEE-RAS

International Conference on Humanoid Robotics, 2000. 68

[96] A. Stolcke, “An efficient probabilistic context-free parsing algorithm

that computes prefix probabilities,” Comput. Linguist., vol. 21, no. 2,

pp. 165–201, 1995. 77

http://www.nada.kth.se/~ danik/gesture_database/
http://www.nada.kth.se/~ danik/gesture_database/
http://www.vicon.com/products/nexus.html
http://www.vicon.com/products/nexus.html

Bibliography 95

[97] D. Bub N and Michael E. J. Masson, “Gestural knowledge evoked by

objects as part of conceptual representations,” Aphasiology, vol. 20, pp.

1112–1124, 2006. 81

[98] S. Ullman, High-Level Vision: Object Recognition and Visual Cognition.

The MIT Press, 1996. 81

[99] D. Kulic and Y. Nakamura, “Scaffolding on-line segmentation of full

body human motion parameters,” in IROS, 2008, pp. 2860–2866. 82

Appendix A

Grammar for

Object-Action-Dataset

Here we give the complete grammar derived for the object action data set

we have used in Ch. 5.6. Only a part of the grammar was shown in Fig.

5.19.

S->p1 B2C1 [0.125]| p1 B6C3 [0.125]| p1 B11 [0.125]| p1 B13C11 [0.125]|

p1 B17C14 [0.125]| p1 B27 [0.125]| p1 B34 [0.125]| p1 B39C45 [0.125]

B2C45->p2 [1]

B2C1->p2 B3C1 [0.5]

B3C1->p3 [0.5]

B2C1->p2 [0.5]

B3C1->p3 B4C2 [0.5]

B4C2->p4 B5C2 [0.5]

B5C2->p5 [1]

B4C2->p4 [0.5]

B2C2->p2 [1]

B6C1->p6 [1]

B6C3->p6 B8C3 [0.5]

B8C3->p8 B7C4 [0.5]

B7C4->p7 B9C4 [1]

B9C4->p9 [1]

B11->p11 B10 [0.25]

98 Appendix A. Grammar for Object-Action-Dataset

B10->p10 B7C9 [0.5]

B7C9->p7 B9 [0.5]

B9->p9 [1]

B6->p6 [1]

B8C3->p8 [0.5]

B6C3->p6 [0.5]

B10->p10 B12C9 [0.5]

B12C9->p12 [1]

B6C9->p6 [1]

B13C11->p13 B14C11 [0.5]

B14C11->p14 B15C11 [0.5]

B15C11->p15 [0.5]

B13C11->p13 [0.5]

B14C11->p14 [0.5]

B15C11->p15 B16C12 [0.5]

B16C12->p16 [1]

B13C12->p13 [1]

B17C14->p17 B18C14 [0.5]

B18C14->p18 B19C14 [0.33333]

B19C14->p19 B20C14 [0.5]

B20C14->p20 B22C14 [0.33333]

B22C14->p22 B21C16 [0.5]

B21C16->p21 [0.5]

B20C14->p20 B21C14 [0.33333]

B21C14->p21 [1]

B17C16->p17 [1]

B22C14->p22 [0.5]

99

B17C14->p17 [0.5]

B19C14->p19 [0.5]

B20C14->p20 [0.33333]

B21C16->p21 B23C16 [0.5]

B23C16->p23 [1]

B18C14->p18 B24C14 [0.33333]

B24C14->p24 [1]

B18C14->p18 B25C14 [0.33333]

B25C14->p25 B26C70 [0.5]

B26C70->p26 [1]

B17C70->p17 [1]

B27->p27 B28 [0.5]

B28->p28 B29C22 [0.33333]

B29C22->p29 B30C23 [0.33333]

B30C23->p30 B5C24 [0.5]

B5C24->p5 [1]

B28->p28 B32C22 [0.33333]

B32C22->p32 B31C27 [1]

B31C27->p31 B30C27 [0.5]

B30C27->p30 B5 [1]

B5->p5 [1]

B27->p27 B2 [0.5]

B2->p2 [1]

B28->p28 B3C22 [0.33333]

B3C22->p3 [1]

B31C27->p31 B33C27 [0.5]

B33C27->p33 B5C30 [1]

100 Appendix A. Grammar for Object-Action-Dataset

B5C30->p5 [1]

B29C22->p29 B4C23 [0.33333]

B4C23->p4 [1]

B30C23->p30 B4C24 [0.5]

B4C24->p4 [1]

B29C22->p29 B31C23 [0.33333]

B31C23->p31 B30 [1]

B30->p30 B5 [1]

B34->p34 B35 [0.33333]

B35->p35 B10C34 [0.33333]

B10C34->p10 B8 [0.5]

B8->p8 [1]

B34->p34 B11 [0.33333]

B11->p11 B8C25 [0.25]

B8C25->p8 [1]

B11->p11 B8 [0.25]

B34->p34 B36 [0.33333]

B36->p36 B10C35 [1]

B10C35->p10 B8C35 [0.5]

B8C35->p8 [1]

B35->p35 B6C34 [0.33333]

B6C34->p6 [1]

B10C35->p10 B12C35 [0.5]

B12C35->p12 [1]

B7C9->p7 B12 [0.5]

B12->p12 [1]

B10C34->p10 B7 [0.5]

101

B7->p7 B12 [1]

B35->p35 B37C34 [0.33333]

B37C34->p37 B61C36 [0.5]

B61C36->p61 B12C37 [1]

B12C37->p12 [1]

B11->p11 B10C25 [0.25]

B10C25->p10 B7 [1]

B37C34->p37 B7C36 [0.5]

B7C36->p7 B12 [1]

B39C45->p39 B43C45 [0.33333]

B43C45->p43 B42C28 [1]

B42C28->p42 B38C28 [1]

B38C28->p38 B40C28 [0.5]

B40C28->p40 B41 [1]

B41->p41 B16 [1]

B16->p16 [1]

B39C45->p39 B42C45 [0.33333]

B42C45->p42 B38C39 [1]

B38C39->p38 B44C39 [0.33333]

B44C39->p44 B45C1 [0.5]

B45C1->p45 B15 [1]

B15->p15 [1]

B39C45->p39 B46C45 [0.33333]

B46C45->p46 B47 [0.25]

B47->p47 B40C46 [0.5]

B40C46->p40 B62 [0.5]

B62->p62 [1]

102 Appendix A. Grammar for Object-Action-Dataset

B46C45->p46 B44 [0.25]

B44->p44 B41C50 [0.5]

B41C50->p41 B16 [0.33333]

B47->p47 B45C46 [0.5]

B45C46->p45 B15C46 [1]

B15C46->p15 B16C46 [1]

B16C46->p16 [1]

B40C46->p40 B41 [0.5]

B38C39->p38 B63C39 [0.33333]

B63C39->p63 B49C56 [1]

B49C56->p49 B48C56 [1]

B48C56->p48 [1]

B44->p44 B45C50 [0.5]

B45C50->p45 B41C67 [0.5]

B41C67->p41 B16 [1]

B41C50->p41 B49 [0.33333]

B49->p49 B48 [1]

B48->p48 [1]

B44C39->p44 B41C1 [0.5]

B41C1->p41 B49C41 [1]

B49C41->p49 B48 [1]

B41C50->p41 B48 [0.33333]

B38C28->p38 B44C28 [0.5]

B44C28->p44 B45C28 [1]

B45C28->p45 B15 [1]

B46C45->p46 B38 [0.25]

B38->p38 B40 [1]

103

B40->p40 B41 [1]

B38C39->p38 B40C39 [0.33333]

B40C39->p40 B41 [1]

B45C50->p45 B15C67 [0.5]

B15C67->p15 [1]

B46C45->p46 B45 [0.25]

B45->p45 B15C52 [1]

B15C52->p15 [1]

B50C45->p50 B51C45 [0.5]

B51C45->p51 B52C14 [0.5]

B52C14->p52 B64C61 [0.5]

B64C61->p64 B60C64 [1]

B60C64->p60 B53C64 [1]

B53C64->p53 B23C64 [1]

B23C64->p23 [1]

B51C45->p51 B54C14 [0.5]

B54C14->p54 B55C14 [0.33333]

B55C14->p55 B56C66 [0.5]

B56C66->p56 B60C67 [0.33333]

B60C67->p60 B53C68 [1]

B53C68->p53 B23C68 [1]

B23C68->p23 [1]

B17C68->p17 [1]

B50C45->p50 B57C45 [0.5]

B57C45->p57 B18C69 [0.5]

B18C69->p18 B19C69 [0.33333]

B19C69->p19 [1]

104 Appendix A. Grammar for Object-Action-Dataset

B54C14->p54 B25C14 [0.33333]

B25C14->p25 B20C70 [0.5]

B20C70->p20 [0.5]

B18C69->p18 B25C69 [0.33333]

B25C69->p25 B26C69 [1]

B26C69->p26 [1]

B56C66->p56 B22C67 [0.33333]

B22C67->p22 B21 [1]

B21->p21 [1]

B54C14->p54 B19C14 [0.33333]

B55C14->p55 B58C66 [0.5]

B58C66->p58 B20C71 [1]

B20C71->p20 B22C71 [0.5]

B22C71->p22 B21C71 [1]

B21C71->p21 [1]

B52C14->p52 B55C61 [0.5]

B55C61->p55 B58C72 [1]

B58C72->p58 B20 [1]

B20->p20 B22 [0.5]

B22->p22 B21 [1]

B57C45->p57 B54C69 [0.5]

B54C69->p54 B25C73 [1]

B25C73->p25 B20C73 [1]

B20C73->p20 [1]

B56C66->p56 B59C67 [0.33333]

B59C67->p59 B53C74 [1]

B53C74->p53 B23C74 [1]

105

B23C74->p23 [1]

B20C70->p20 B22C70 [0.5]

B22C70->p22 B21C75 [1]

B21C75->p21 [1]

B20->p20 [0.5]

B20C71->p20 [0.5]

B18C69->p18 B24C69 [0.33333]

B24C69->p24 [1]

