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ABSTRACT

Service contracts are specifications used by interacting services to agree on
ways of interaction to achieve an intended business goal. This raises a num-
ber of interesting questions. What languages are used to express service
contracts? What are the semantics of the languages? Do the connected ser-
vices adhere to the contract and behave as expected? Are the specifications
consistent? To answer these and other questions, this work reports on a
study of service contract specification languages, define semantics of a par-
ticular language, and analyze behavioural specification of service contracts
using simulation and model checking techniques.

Chronologically, the first contribution is an automated technique to check
consistency properties across specifications. The results of the consistency
checks reveal that the derived processes from the two service contract speci-
fications (WS-CDL and BPEL) are bisimilar and trace equivalent only when
certain intricate features, e.g., fault handling, is hidden. Therefore we note
that WS-CDL can only be consistent with an abstract version of BPEL with-
out the presence of some intricate features. In the second contribution, we
derive semantic models in the form of timed automata and check the absence
of deadlock for WS-CDL and BPEL service contract specifications. We check
the property that the system is able to progress from start to termination
and for a BPEL process, we check that the methods can be executed satisfy-
ing the contracts or generating the exceptions. Other contributions include:
a classification of languages and standards based on the aspects of service
contracts they cover; a structural operational semantics of BPEL activities;
a prototype executable semantics of BPEL based on Rewriting Logic and
Maude; and a translation process that maps a BPEL process to UppAal
timed automata for automatic verification.

In conclusion, we argue that introducing (automated) analyses and ver-
ification of service contracts at the design and development phase before
testing and deployment will improve the reliability of service-based systems.
The analyses prototyped here improve our understanding of the behaviour
of connected services.





DANSK SAMMENFATNING

Servicekontrakter er specifikationer, som bruges mellem programmer i en
serviceorienteret arkitektur til at beskrive, hvordan de skal samvirke for
at opn̊a et bestemt forretnings mål. Dette rejser en række interessante
spørgsmål: Hvilke sprog anvendes til at udtrykke servicekontrakter? Hvad er
semantikken af disse sprog? Opfører de tilknyttede tjenester sig som forven-
tet i forhold til kontrakten? Er specifikationerne konsistente? For at besvare
disse og andre spørgsmål, rapporterer dette arbejde om en undersøgelse af
specifikationssprog for servicekontrakter, definerer semantik af et bestemt
sprog, og analyserer specifikationer af servicekontrakter med simulerings- og
modelcheck-teknikker.

Det første bidrag er en automatiseret teknik for at kontrollere konsis-
tens mellem specifikationer. Resultaterne af konsistenskontrollen viser at
afledte processer fra to servicekontrakt specifikationer (WS-CDL og BPEL)
kun bisimilære og sporækvivalente n̊ar visse komplekse opførsler, f. eks. fejl
h̊andtering, er skjulte. Vi kan derfor konstatere, at WS-CDL kun er ov-
erensstemmelse med en abstrakt version af BPEL uden tilstedeværelsen af
visse opførsler. I et andet bidrag udleder vi semantiske modeller i form af
tidsautomater og kontrollerer for bagl̊ase i WS-CDL og BPEL servicekon-
trakter. Vi kontrollerer ogs̊a at systemet er i stand til at bevæge sig fra
start til terminering og for at BPEL metoder opfylder kontrakter eller gener-
erer en fejlmelding. Andre bidrag er en klassificering af sprog og standarder
baseret p̊a de aspekter af servicekontrakter som de dækker; en strukturel
operationel semantik af BPEL aktiviteter; en prototype udførbar semantik
af BPEL baseret p̊a Rewriting Logic og Maude; en oversættelsesproces fra
BPEL til UppAal tidsautomater for automatisk kontrol.

Vi konkluderer at indførelse af (automatiserede) analyser og kontrol af
servicekontrakter i design og udviklingsfasen inden afprøvning og ibrugtagn-
ing vil forbedre p̊alidelighden af servicebaserede systemer. De analyserede
prototyper vil forbedre forst̊aelsen for opførslen af samvirkende tjenester.
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Chapter 1

Introduction

Software applications based on Internet services and Service Oriented Archi-
tecture (SOA) [Erl05] are growing in complexity. SOA offers a tremendous
opportunity to connect services to achieve a particular business goal, be-
cause services are inherent in many business applications such as Paypal,
E-bay, Google services as well as social network applications such as Face-
book, Myspace, etc. As an architectural style, SOA has a profound impact
on the overall service implementation, composition and integration, because
Web Services are loosely coupled and therefore can be reused easily. This
architectural approach is particularly applicable when multiple applications
running on varied technologies and platforms need to communicate with each
other. In this way, enterprises can mix and match services to perform busi-
ness transactions with less programming effort.

In Service Oriented Architecture, services are first class citizens and are
autonomous as well as distributed in nature. They can be connected to form
higher level services or applications to solve business goals. Scientifically,
these connected services could be seen as communicating sequential pro-
cesses, exhibiting certain patterns of concurrent interaction. Of course, this
concurrent interaction raises a lot of issues and problems such as managing
connected services, monitoring their interaction, analyzing the behavior of
interacting services, verifying the functionality of individual services as well
as connected services. In summary, connected services are complex because
they combine communication and concurrency and this is the main motiva-
tion for developing analysis techniques based on recent development in tools
for formal analysis such as model checkers and verification assistants.
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Examples

An example of a service-based critical system is found in The European Or-
ganization for Nuclear Research (French: Organisation Européenne pour la
Recherche Nucléaire), known as CERN. The world’s largest particle physics
laboratory has embraced SOA and BPEL orchestration for automating/de-
veloping their safety and logistic processes. Here is a quote from CERNs
Derek Mathieson [Law09].

For example, if there is an engineer who wants to come and
work in a particular area and the work that the engineer does is
welding or something like this, it may cause smoke, and then the
engineer will have to disable the fire detection systems. So there
is a business process to make sure the fire detection system is
switched off, the work is done, and then the fire alarm is switched
back on again. This is what we would call a business process. We
have to make sure that the appropriate people are informed, that
there is follow-up to make sure that when the process reaches the
expected end date that someone actually will check and make sure
the fire alarms are switched back on again, and this kind of thing.
... So the idea of having a more service-oriented architecture,
which allows us to have a standardized interface to each of the
different systems and automate everything using the BPEL-based
process engine, was a fairly nice match for us.

Here a BPEL orchestration is used to manage a fire detection system in
the Nuclear research laboratory.

An example of a system with great monetary value is an Excise Movement
(Monitoring) Control System (EMCS) [Viv09], which manages International
(28 EU member states) Cross-Border tax and revenue. The EMCS specifi-
cations are intended to be used by member nations to implement systems
that replace manual paper custom and excise processes. There are 50 or so
processes that are specified by EMCS. Process orchestration is the heart of
the system and it is based on SOA and BPEL.

Background for SOA

These examples show that BPEL based systems may be around for some
years. The emergence of SOA can be traced back to the idea of building soft-
ware from components: Component-based software engineering (CBSE), also
known as component-based development (CBD). Furthermore, a software
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component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be de-
ployed independently and is subject to composition by third parties [Szy02].
This solution points to a paradigm shift where software systems are built
from standard components rather than developed from scratch. This move
towards building systems from standard components introduces some com-
plex mechanisms as found in the major component standards such as COM,
CORBA, and EJB [EK02]. Multi-threading is one of the key mechanisms.
Multi-threading is the concept of supporting multiple sequential activities
concurrently over the same state space. This increases the complexity of
components, especially when dealing with true concurrency. For example,
if component instances execute on separate processors, then concurrent re-
quests need to be handled. Complete locking of a component instance while
one request is handled is possible, but may lead to deadlocks or poor response
time. Further, it is difficult and perhaps impossible in the general case to
specify exactly how an extension and its synchronization and concurrency
needs may interfere with those of the base system without causing unwanted
effects [Szy02].

SOA like CBD, has communication and concurrency concerns coupled
with remote access which additionally leads to an issue of trust. However,
trust cannot be guaranteed because of the combination of communication,
concurrent and remote access mechanisms found in SOA systems. Further,
the service implementation is not known to the consumer, since only the
interface is exposed for invocation. This leads to considering the notion
of service contract where the interacting parties can specify an agreed way
(protocol) of interaction to achieve a specified business goal. The potential
value of service contracts is that a form of co-ordination can be enforced on
how the composed (participating) services interact as well as measuring their
performance.

A service operates under a contract/agreement which will set expec-
tations, and a particular ontological standpoint that influences its seman-
tics [PL03]. These expectations make it increasingly important that these
services are analyzed at development time based on their contracts (for in-
stance, expected behaviour) to improve the reliability of software applications
built using such services. One obvious reason is because deploying/executing
a contract violating system consumes a lot of resources.

Service contracts deal with aspects such as behaviour, functionality, qual-
ity of service and security [OR08]. Functionality deals with what functions
the services provide. Behaviour defines the interaction protocol for collabo-
rating services. Extra-functional properties, for instance Quality of Service
(QoS), give constraints on the values acceptable for a concrete service. Secu-
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rity is often specified by a protocol (a behaviour) combined with encryption
functions. However, it is hard to create a “one size fits it all” contract where
all the aspects are embodied, because different aspects are covered by differ-
ent notations and technologies.

c o m p e n s a t e

R i s k A s s e s s o r

S e r v i c e

L o a n A p p r o v e r

S e r v i c e

C l i en t

c o m p o s e d  L o a n  S e r v i c e  p r o c e s s

Figure 1.1: A composite loan approval service.

Consider the typical service-based system illustrated in Figure 1.1. It
consists of two external services interacting to achieve a particular business
goal. The composite service interacts with the Risk Assessment and Approval
services to provide a one stop access to clients who wish to obtain loans.
There are many interactions between the composite service and the external
services, raising many concerns such as the behaviour of the composite service
particularly in the presence of faults and exceptions. In fact, it has several
concurrent interactions and hence the level of complexity is higher than a
”normal” client-server application.

We can test the system (with several kinds of testing techniques) before
deployment. However, testing the behaviour of the connected services be-
comes complicated because the order in which the operations of each service
are called must be considered. Further, another difficulty arises because of
the explosion in the number of possible paths taken by each service during
execution. There could also be a possibility of deadlocks and race conditions
when services are connected.

Consider a use case in the example shown in Figure 1.1, where there
are three services: Loan process, RiskAssessor, and LoanApprover. When
a client makes a request to the Loan process, it can invoke the operations
of RiskAssessor. This may lead to invocation of the LoanApprover where
a response from the RiskAssessor is yet to arrive. The LoanApprover will
be expecting the requested information. Thus, the Loan process waits for a
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response from RiskAssessor while LoanApprover waits for the Loan process.
This causes the services to be deadlocked. A second example is the use of call
back mechanisms. For instance, the Loan Approver invokes the Loan process
and waits. The Loan process makes a call-back to the Loan Approver and
waits for a response. In this situation, both are in a deadlock.

It is therefore desirable to complement testing with analysis techniques to
analyze the behaviour of connected services. For example, one can analyze
that there are neither deadlocks nor livelocks that may cause abnormal be-
haviour of the connected services no matter the different responses from each
of the external services. In our work, we focus on the behaviour aspects of ser-
vice contracts which define the interaction protocol of collaborating services,
because they combine communication and concurrency and are features that
are hard to test with standard testing technologies.

SOA Application Development Processes

Development of SOA applications just like other software development
go through phases or life cycle. Several approaches and methodologies
([PH06, PvdH07]) exist that utilize similar or varied phases in developing
SOA applications. A detailed survey of Service oriented methodologies can
be found in [RDS07]. We consider a few that use similar phases in order to
point where we want contribute in the development of SOA applications in
order to improve reliability.

Serv i ce -o r i en ted

A n a l y s i s

Se rv i ce -o r i en ted

D e s i g n

S e r v i c e

T e s t i n g

S e r v i c e

D e p l o y m e n t

S e r v i c e

A d m i n i s t r a t i o n

(Service and Process Analysis and Design)

S e r v i c e

D e v e l o p m e n t
(Realization) (Execution)

A n a l y s i s  

o f  B e h a v i o u r

Figure 1.2: SOA application development methodology/phases.

Figure 1.2 shows the phases adopted in [Erl05, PvdH07]. Service-oriented
analysis and design are combined into one in [PvdH07] as Service and Pro-
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cess Analysis and Design as the second step after planning. Analysis and
design phase aims at identifying, conceptualizing and rationalizing business
processes as a set of interacting Web services. The analysis and design phase
is followed by Service development called the Realization phase in [PvdH07].
This phase takes care of the implementation, coding Web services, specified
in WSDL, in any programming language; coding business processes, for in-
stance in BPEL which is compiled and input into a BPEL execution engine.
Several kinds of testing, deployment and administration follow.

As indicated in Figure 1.2, our contribution is to conceptually introduce
(automated) analyses at the design and development phase before testing and
deployment. For example, when the example of Figure 1.1 goes through the
above mentioned development stages, special programming constructs are
used. A nested scoping mechanism (called scope) is used to group several
activities. There are also exception handling mechanisms of fault handlers
and compensation handlers. The use of compensation allows the possibility
to reverse/undo successfully completed operations, see Chapter 3 and 4 for
details. All these mechanisms are part of communication and concurrency in
service-based systems and thus require the use of analysis techniques to ex-
plore certain behaviours that may be difficult to handle by standard testing.

As an example, consider a scenario in which a scope named A contains
two scopes named B and C, which both have compensation handlers. As-
sume that C has completed successfully and therefore can be compensated.
However, an activity in scope B throws a fault that propagates to a fault
handler in A:

〈A . . . 〈C . . . Ccomp〉; 〈B . . . Fault . . .〉 . . . AFaulthandler〉
If the A fault handler invokes compensation to undo the effect of the inner
blocks, it is not done, because B has not terminated successfully. Its compen-
sation handler is not active, thus its predecessor C cannot be compensated.

Traditional testing would hardly catch this scenario, because the fault
might be thrown at runtime by a dynamically connected service. Thus, there
is a clear need to employ analysis techniques at the development phase of
SOA-based systems in order to improve their reliability. The effort towards
providing analysis support at the development phase of SOA-based systems
involves answering the following questions:

1. What languages/notations are used to represent service contracts?
[OR08]

2. What are the semantics of the different language constructs? The lan-
guage supports complex exception handling mechanism through com-
pensation and fault handling constructs because one should capture
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both the normal behaviours and exceptional behaviours as part of the
contract specification. It has nested scoping coupled with the ability to
nest concurrent activities. Dependencies among these concurrent activ-
ities are managed through links construct. The links include conditions
that activates activities that will be performed [OOP09].

3. What is an appropriate formal model to use in analyzing service con-
tracts? BPEL process executes concurrently and interact with remote
services. In order to formally analyze BPEL orchestration, we must
have a formal model of the behaviour (and a potential environment)
[COR07, Oki09].

4. What are the properties to be analyzed? An example could be: Does
the system progress after a compensation is made? If there is a fault
during compensation, does the system continue abnormally or end in
a deadlock state? [COR07, COR08]

5. What analysis techniques should be used to analyze properties? The
possible techniques have different properties with respect to the com-
putational resources they require, as well as their difference in strength
when it comes to showing properties [FPO+09].

6. How do we compare different contract specifications? (operational vs
logic based) [FPO+09].

7. How should one analyze the behavioural properties of ser-
vices? [COR08].

8. How should the semantic models be derived? [COR07].

The issues mentioned above motivate the research on Analysis and Veri-
fication of Service Contracts reported in this thesis.

1.1 Problem Statement

The technical problem we address in this thesis is: specifying, analyzing
and verifying the behavioural aspects of service contracts as motivated in
Section 1. More precisely, based on a specific implementation of Web services
orchestration in standard BPEL, formalize and analyze the behaviour of such
services.

Lots of approaches abound that map BPEL to some intermediate formal-
ism. These range from a theoretical to an operational level (details given
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Contract Languages

WS − CDL BPEL SBPEL

X SX

τ δ

µ ?

?

Figure 1.3: The Service Contract Analysis Problem

in 2.4) approaches. The overall observation about these efforts is that they
all deal with three major issues: semantics definition, mapping to a target
language and applicability. In Figure 1.3, δ represents those efforts that cover
semantics definition and mostly apply Petri net simulation while µ represents
those that focus on mapping/translation to another target language.

Despite all the results, the advanced features and complexity of ser-
vice orchestration make it hard to fully understand and even develop a
reliable high quality system. We know that analysis and verification has
been successful in verifying hardware systems and safety critical software
systems [EM95, CRNMB99], to cite a few examples. We therefore aim to
formalize the (BPEL) service contract language constructs in an operational
manner, making it amenable for analysis, thus giving a better understand-
ing of the execution of services behaviour. This also means that analysis as
well as verification can be carried out naturally. We pursue this by deriving
automata models from service contracts specified in BPEL (and CDL) and
then analyze/verify some properties. We also define a translation process to
map the behaviour of services into timed automata which are expected to be
amenable to automatic analysis and verification using the Uppaal tool. In
order to achieve a semantic preserving translation/mapping, we define an op-
erational semantics for BPEL. We implement the semantics in rewriting logic
which become executable using the Maude tool. The executable semantics
is then used to test the operational semantics.

1.2 Contributions

The contributions in this thesis is part of a broader project on “Contract-
Oriented Software Development for Internet Services” (COSoDIS). The aim
of the COSoDIS project - Contract-Oriented Software Development for Inter-

22



net Services is to develop novel approaches to implement and reason about
contracts in a service oriented architecture.

The main results/contributions are summarized as follows:

1. Classification of service contract languages based on the aspects they
cover. It is documented in paper [OR08], Joseph C. Okika and An-
ders P. Ravn. Classification of SOA Contract Specification Languages.
In Proceedings of The IEEE International Conference on Web Ser-
vices (ICWS), pages 433-440, Los Alamitos, CA, USA, September 2008.
IEEE CS Press.

2. An automated technique to check consistency between behavioural as-
pects of the contracts. It is documented in journal paper [COR08],
Emilia Cambronero, Joseph C. Okika, and Anders P. Ravn. Consis-
tency Checking of Web Service Contracts. International Journal On
Advances in Systems and Measurements, 1(1):29-39, 2008.

3. A demonstration of how to use standard specifications to derive se-
mantic models in the form of automata and identification of a need
to set up a correspondence; a translation of the behaviour aspect
of service contract to an automata for model checking. It is docu-
mented in paper [COR07], Emilia Cambronero, Joseph C. Okika, and
Anders P. Ravn. Analyzing Web Service Contracts - An Aspect Ori-
ented Approach. In Proceedings of the International Conference on Mo-
bile Ubiquitous Computing, Systems, Services and Technologies (UBI-
COMM2007), pages 149-154. IEEE CS Press, November 2007.

4. An operational semantics of BPEL activities following the style of struc-
tural operation semantics. It is documented in Chapter 3 of this thesis.

5. A Formalization of the behavioural aspect of a component specifica-
tion in a contract language CL and compares logic based specification
of contracts to operational based specifications. It is documented in
paper [FPO+09], Stephen Fenech, Gordon J. Pace, Joseph C. Okika,
Anders P. Ravn, and Gerardo Schneider. On the specification of full
contracts. Electronic Notes Theoretical Computer Science - ENTCS,
253(1):39-55, 2009.

6. Modelling components and component contracts using a relational cal-
culus approach. It is documented in a book chapter [CHH+08], Zhen-
bang Chen, Abdel Hakim Hannousse, Dang Van Hung, Istvan Knoll,
Xiaoshan Li, Yang Liu, Zhiming Liu, Qu Nan, Joseph C. Okika, Anders
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P. Ravn, Volker Stolz, Lu Yang, and Naijun Zhan. Modelling with rela-
tional calculus of object and component systems-rCOS. In A. Rausch,
R. Reussner, R. Mirandola, and Frantisek Plasil, editors, The Com-
mon Component Modeling Example, volume 5153 of LNCS, Chapter 3,
pages 116–145. Springer, 2008.

7. A prototype executable semantics of BPEL based on Rewriting Logic
and Maude. It is documented in chapter 4 of this thesis and in pa-
per [OOP09], Joseph C. Okika, Olaf Owe, and Cristian Prisacariu.
Operational Semantics for BPEL Complex features in Rewriting Logic.
In Proceedings of the 21st Nordic Workshop on Programming Theory,
NWPT 09, pages 95-97, Kgs. Lyngby, Denmark, 2009. Danmarks
Tekniske Universitet.

8. A translation process to Uppaal timed automata for automatic verifi-
cation. It is documented in Chapter 4 and in paper [Oki09], Joseph
C. Okika. Analyzing Orchestration of BPEL Specified Services with
Model Checking. In Proceedings of the PhD Symposium of the 7th
International Joint Conference on Service Oriented Computing (IC-
SOC/ServiceWave), pages 1-6, 2009.

1.3 Overview

In Chapter 2, we provide background to the thesis, including a brief introduc-
tion to Service Oriented Architecture and a detailed introduction to Business
Process Execution Language (BPEL), the service contract language we have
chosen to study. The technologies and standards used in specifying one or
more aspects of service contracts are presented. These technologies include
an effort to specifying the whole interoperability stack in a one-size-fits-it-
all fashion, such as ebXML; a functionality specification such as OWL-S; a
service level agreement specification, such as WSLA among others including
the set of WS-* specifications which are still evolving. The second part of
Chapter 2 provides a state-of-the-art survey in the areas of formalizations of
service contracts, analysis and verification.

In Chapter 3, we present operational semantics for BPEL starting with
the abstract syntax, semantic domains, operational semantic rules for the
activities, including the advanced - scopes, compensation handler, fault han-
dlers, event handlers and concurrent flow. This forms the basis for the anal-
ysis part in Chapter 4.

In Chapter 4, we present an encoding of the operational semantics based
on rewriting logic and the Maude platform as indicated in Figure 1.4. Rewrit-
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ing logic equations are used to model the static part of the process while
(conditional) rewrite logic rules are used to model the dynamic behaviour.
The result is an executable operational semantics which is used to test the
semantics presented in Chapter 3.

BPEL SBPEL

RWL SRWL

semantics

given

Figure 1.4: Semantics in Rewriting Logic(RWL)/Maude

In the second part of Chapter 4, we focus on giving an outline of a
semantic-preserving mapping from BPEL to UppAal as indicated in Fig-
ure 1.5.

Languages

BPEL SBPEL

UppAal SUppAal

semantics

analysis/verification

given

Figure 1.5: Analysis and Verification Approach

Finally, Chapter 5 concludes the thesis, presenting a summary of contri-
butions and discusses some possible future work. Appendices include seven
published papers on different aspects of analysis of services and contracts.
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Chapter 2

Background and Related Work

In this chapter, we present the relevant theoretical background as well as rele-
vant technologies including Service Oriented Architecture, Internet Services,
Web Service standards, contracts and various aspects of service contracts.
In addition, we present a review of the state of the art in service contract
formalization, analysis and verification.

2.1 SOA and Internet Services

Several definitions of SOA has been given by standard bodies and in the
literature. OASIS defines SOA as a paradigm for organizing and utilizing
distributed capabilities that may be under the control of different owner-
ship domains. It provides a uniform means to offer, discover, interact with
and use capabilities to produce desired effects consistent with measurable
preconditions and expectations [MLM+06].

In [Erl05], Service-Oriented Architecture (SOA) is defined as a way of re-
organizing series of previously operational software applications and support
infrastructure into an interconnected set of services, each accessible through
standard interfaces and messaging protocols. This architectural approach is
particularly applicable when multiple applications running on varied tech-
nologies and platforms need to communicate with each other. In this way,
enterprises can mix and match services to perform business transactions with
less programming effort. A service in this context may be defined as a be-
haviour that is provided by a component for use by any other component
based on a network-addressable interface contract, generally identifying some
capability provided by the service [RAA+05]. These services can be catego-
rized into business services and Web services.

Business Services: A business service is a reusable combination of IT
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components that delivers a business-oriented service - for instance, “Get Item
Details”, to the caller, at the same time shielding the caller from any of the
implementation details of that service. At a first glance, the definition of
a business service seems similar to the general definition of a service given
above, but the key difference is the choice of granularity of business services
and the Web services.

Web Services: A Web service in the context of SOA is a software sys-
tem identified by a URI, whose public interfaces and bindings are defined
and described using XML. Its definition can be discovered by other software
systems. These systems may then interact with the Web service in a manner
prescribed by its definition, using XML based messages conveyed by Internet
protocols [W3C04]. They can be composed to form a higher level service
or an application to solve a business goal. Services express their purpose
and capabilities via a service contract as indicated in Figure 2.1 (adopted
from [W3C04]). As a result of this, a detailed contractual description of
services is important.

S e r v i c e
P r o v i d e r

S e r v i c e
C o n s u m e r

Serv i ce  

D i s c o v e r y

C l i e n t S e r v i c e
I n t e r a c t

S e r v i c e
C o n t r a c t

P u b l i s hF i n d

A service requestor and service provider interact based on the
Service Contract

Figure 2.1: Service-Oriented Architecture.

2.2 Contracts in Computing

In real life, contracts manage social interactions (social contracts and the
like), just as contracts in computing manage interaction of units of programs,
components or services. Contracts are an established part of computing in
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that, whenever programs, modules or units of program need to interact,
some form of agreement is required. Notable background works on the issue
of contracts include [BJP99, Pap03, DDK+04, Tos05].

2.2.1 Contracts for Components

As already mentioned, SOA evolved from the ideas of component based devel-
opment where the notion of contract is inherent and important in developing
components. This is evident from the work in the components domain: for
instance, in [BJP99] the following is noted about contracts:

Before we can trust a component in mission-critical applica-
tions, we must be able to determine, reliably and in advance, how
it will behave.

The above quote can be said of services even though it is not necessarily
mission-critical. Further, it poses some questions: How can you trust a
component? What if the component behaves unexpectedly, either because it
is faulty or simply because you misused or misunderstood the contract?

In [BJP99] components are seen to have different types of contracts which
are classified into four levels. The first is the basic syntactic contract that
describe the interface. The second is the behavioural contract specifying
the effect of operation executions. This is followed by the synchronization
contract, describing the dependencies between components, such as sequence
or parallelism. The fourth level is the quality of service contract, describing
requirements with respect to maximum response delay, average response,
quality of the result, etc.

There are other specifications of component contracts specifications such
as those based on Assumption and Guarantee in [GQ07]. At the beginning
of the project upon which this thesis is based, we started by investigating a
calculus for specifying components where contracts (as part of the component
specification), specifies what is needed for a component to be used in building
and maintaining a software without the need to know its design. This is
achieved through interface specifications including the static and dynamic
behaviors, interaction protocol, and tentatively timing [CHH+08].

2.2.2 Contracts for Services

Contracts are an essential part of services computing because through them,
one can specify service functionality and service interactions. In this regard,
a contract is a specification of the way a consuming service will interact with
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the service provided. A contract for a service is defined in [Erl07] as “what
establishes the terms of engagement, providing technical constraints and re-
quirements as well as any semantic information the service owner wishes to
make public“. As an example, functionality-wise, service contracts specify
pre-conditions which are constraints that must be satisfied before calling a
service, and post-conditions, corresponding properties that are true when the
call completes, and what holds about the result.

Generally, apart from the conventional legal contracts, contracts should
specify both functional and non-functional requirements as well as policies
that govern security procedures and access rights. These are briefly intro-
duced below.

Business/Legal Contracts

Business contracts are mutual agreements between two or more parties en-
gaging in various types of economic exchanges and transactions. They are
used to specify the obligations, permissions and prohibitions that the sig-
natories should be held responsible for and to state the actions or penalties
that may be taken when any of the stated agreements are not being met
[Gov05]. In other words, contracts are agreements on the patterns of be-
haviour needed to achieve mutually agreed goals, and of contingencies and
sanctions to be applied if the expected behaviour is not performed. These
contracts are governed by rules or laws established by the society concerned
[Lin05].

Functional Requirements (as contract)

Service contracts include also a description of functional requirements, spec-
ifying what a provider will give to any consumer that chooses to abide by the
terms of the contract. This may include the functions performed and the data
that it will return. An earlier treatment of contracts in an object-oriented
paradigm is Design by Contract [Mey97]. Here, the functional specification is
achieved through assertions; which consists of preconditions, post-conditions
and invariants. The framework in [Mey92] takes a pragmatic approach at
code level where the assertions are part of the language. We agree that these
functional specifications are important in order to specify a formal agree-
ment between a service provider and its clients. Thus expressing what a
client should do in order to make a service request and what the provider
will do in return.

• Preconditions are properties that must be true when the service oper-
ation is called. It is the responsibility of the caller to guarantee that
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these properties hold. If the preconditions do not hold, the operation is
allowed to behave in an arbitrary manner which may lead to incorrect
results or even non-termination.

• Postconditions are properties that a service operation guarantees will
hold when the service operation exits. Note that if the precondition
does not hold when the service operation is called, the postcondition
need not hold on exit of the service operation.

• Protocols are allowed sequences of service operation calls.

Non-functional Requirements (as contract)

Service contracts can include descriptions of non-functional QoS (Quality of
Service) requirements, specifying not what the service does, but how it goes
about it, such as follows [CNYM00, PZ08]:

• Availability: This is concerned with whether the Web service is present
or ready for immediate use.

• Accessibility: Deals with the degree of capability of serving a Web
service request.

• Integrity: Integrity is about how the Web service maintains the cor-
rectness of the interaction with respect to the source.

• Performance: Performance of a Web service is measured in terms of
throughput (number of Web service requests served at a given time
period) and latency (round-trip time between sending a request and
receiving the response).

• Reliability: This represents the degree of being capable of maintaining
the service and service quality.

• Security: Security is concerned with providing confidentiality and non-
repudiation by authenticating the parties involved, encrypting mes-
sages, and providing access control.

In this thesis we further categorize what goes into a service contract into
different aspects.
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2.2.3 Aspects of Service Contracts

In the components world, component contracts are classified into different
levels as already mentioned. We follow a similar approach to define service
contracts based on the aspects they cover. However, the security aspects of
contracts is not covered in the component domain. Service contracts con-
sist of aspects such as interface, functionality, Extra-functional requirements
(Quality of Service), Security and behaviour [OR08].

• Interface defines the syntactic communication abstraction of a piece
of software that is provided to an external system. It covers the type
system of a particular piece of software as well as linking and mar-
shaling; an early example is Interface Description Language (IDL) of
CORBA [Vin97] or the Interface declarations in Java.

• Functionality refers to what functions the services provide. It is a
set of operations and their specified properties that satisfy stated or
implied needs. Functionality can be captured as preconditions and
postconditions.

Preconditions are properties that must be true when the service op-
eration is called. It is the responsibility of the caller to guarantee that
these properties hold. If the preconditions do not hold, the operation
is allowed to behave in an arbitrary manner.

Postconditions are properties that a service operation guarantees will
hold when the service operation exits. Note that if the precondition
does not hold when the service operation is called, the postcondition
need not hold on exit of the service operation.

• Security: refers to techniques and practices that ensure confidentiality
properties for a service. Security has a special treatment because it
differs from other quality properties. It specifies the protocols and
coding mechanisms to be used, whereas other qualities tend to give
thresholds on measurable quantities.

• Extra Functional Properties A quality is measurable, that is: given
a service, there is a function that maps it to some scale that in elaborate
cases have an associated distribution function, for instance a number
between 1 and 10 (with a normal distribution around 5.5). A contract
on a quality gives constraints on the values acceptable for a concrete
service. Examples include:

Performance of a Web service is measured in terms of throughput (num-
ber of Web service requests served at a given time period) and latency
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(round-trip time between sending a request and receiving the response).
Reliability represents the degree of being capable of maintaining the ser-
vice and service quality (Mean Time between Errors) .
Availability is concerned with whether the Web service is present or
ready for immediate use (Up time).
Accessibility deals with the degree of capability of serving a Web service
request (Number of simultaneous users).

• Behaviour The behaviour of a system is a description of various sce-
narios of events, signals, messages, etc. The behaviour aspect of ser-
vice contracts specifies synchronizations between service invocations,
describing the dependencies between service operations either in se-
quence or in parallel. In other words, the behaviour aspect of service
contracts defines the interaction protocol for collaborating services.

In the next section, we present different notations that capture one or
more of the above mentioned aspects of service contracts.

2.3 Notations for Service Contracts

Several SOA standards specify or define different aspects of service contracts.
We group them into three broad families; Web Services (WS-*), Semantic
Web Services (*-S), and Electronic Business (eb-*). We present in detail
the WSDL language, because it plays a major role in service-based systems
development, and it is used or extended by some of the other languages. In
addition, we illustrate with examples, one language from each of the three
families which has either similar constructs for specifying contracts or cover
common aspects. The intention is to give an overview of what are the set
of relevant contract aspects considered by each notation, and how they are
specifiied.

Web Services (WS-*)

Web Service Definition Language (WSDL) [BL06] is an interface defi-
nition language, which has an XML grammar that describes the capabilities
of Web services. It serves as a (syntactic) contract between service providers
and service consumers. WSDL is a processable specification which has two
parts; the abstract part where interfaces and the corresponding types, mes-
sages, operations (portTypes) are specified; and the implementation or con-
crete part where the access point of the services are specified. In order to
illustrate these points, Figure 2.2 is an example taken from [Jur06].
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1 <?xml version="1.0" encoding="utf-8" ?>

2 <definitions xmlns:http="http://schemas.xmlsoap.org

3 /wsdl/http/"

4 xmlns:xs="http://www.w3.org/2001/XMLSchema" ...

5 <portType name="EmployeeTravelStatusPT">

6 <operation name="EmployeeTravelStatus">

7 <input message=

8 "tns:EmployeeTravelStatusRequestMessage"/>

9 <output message=

10 "tns:EmployeeTravelStatusResponseMessage" />

11 </operation>

12 </portType> ...

13 <message name=

14 "EmployeeTravelStatusRequestMessage">

15 <part name="employee" type="tns:EmployeeType"/>

16 </message>

17 <message name=

18 "EmployeeTravelStatusResponseMessage">

19 <part name="travelClass"

20 type="tns:TravelClassType"/>

21 </message> ...

The example WSDL document starts with a preamble specifying the XML version
and the encoding type (line 1). This is followed by the root element definitions
where all the namespaces used in the WSDL document are declared (line 2). Fol-
lowing the namespace declarations are the portType declarations (line 5). The
EmployeeTravelStatus operation consists of an input and an output message
(line 6). The input and output messages are also defined in WSDL as shown in line 13
and 17. Note that version 2.0 of WSDL uses interface for portType and endpoint for
port.

Figure 2.2: Example WSDL document.

Business Process Modeling Notation (BPMN) The BPMN [Whi04]
specification provides a graphical notation for expressing business processes
in a Business Process Diagram (BPD). The objective of BPMN is to support
process management by both technical users and business users by providing
a notation that is intuitive to business users yet able to represent complex
process semantics [Whi04]. It allows different XML-based process languages,
for instance Business Process Execution Language for Web Services (BPEL),
to be visualized using common elements. The BPMN specification also pro-
vides a mapping between the graphics of the notation to underlying the
constructs of execution languages, particularly BPEL.

Web Services Choreography Description Language (WS-
CDL) [KBR+04] allows the specification of behavioural aspects of
service contracts similar to the abstract processes of BPEL. Its major

34



purpose is to define multi-party contracts, with the externally observable
behaviour of Web services and their clients. It has an XML-language that
describes a collaboration between a collection of services in order to achieve
a common goal by capturing the interactions among participating services.
A WS-CDL choreography description is made up of definition of activities
which are performed by participants. For example, there are three types
of activities in WS-CDL, control-flow activity, workunit activity and basic
activity. Control-flow activities include, Sequence, Parallel, and Choice.
WSLA, WS-Policy, WS-Security, WS-Trust are some of the other lan-
guages in the Web Service family. A major quantitative aspect of a service
contract is researched in [KL03], the Web Service Level Agreement (WSLA).
It is targeted at defining and monitoring SLAs for Web Services. WSLA
enables service customers and providers to unambiguously define the agreed
performance characteristics and the way to evaluate and measure them. It
has an XML-based language used by both service providers and service con-
sumers to define parameters, metrics, service level objectives and guarantees.
WSLA uses WSDL in its specification. An example service level objective can
be specified in WSLA as depicted in Figure 2.3.

1 <ServiceLevelObjective name="SLO_for_AvgThroughput">

2 <soap:operation soapAction="

3 http://example.com/GetLastTradePrice"/>

4 <wsdl:input>

5 <soap:body use="literal"/>

6 </wsdl:input>

7 <wsdl:output>

8 <soap:body use="literal"/>

9 </wsdl:output> ...

The example defines an obligation for the GetLastTradePrice operation of a
Web Service with an SLA parameter SLO for AvgThroughput (average transaction
throughput).

Figure 2.3: Example Service Level Objective

WS-Policy [BBC+06], specifies the policy of a Web service provider for
the benefit of service consumers. In other words, WS-Policy defines a set
of constructs for specifying web service policies that can be communicated
to others. The specification does not define how to transport or discover a
policy. Policies may be associated with various entities and resources. The
policy may be associated with arbitrary XML elements and WSDL docu-
ments. The WS-PolicyAttachment specifications define such mechanisms.
The policy, specified in an XML document, is transmitted to the requester
using messaging specifications [BBC+06]. An example of policy definition
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taken from [BGP06] is shown in Figure 2.4. It defines a policy, which must
be satisfied when the credit card is about to be charged.

1 <wsp:Policy xml:base="http://www.bookshop.it/policies"

2 wsu:Id="BookShopPolicy"

3 xmlns:wsp="..."

4 xmlns:wsu="...">

5 <wsp:All xmlns:wsse="..."

6 xmlns:wscol="...">

7 <wsse:Confidentiality>

8 <wsse:Algorithm type="wsse:AlgSignature"

9 URI="http://www.w3.org/2000/09/xmlenc#3des-cbc"/>

10 </wsse:Confidentiality>

11 <wscol:Expression>

12 (ChargeRequest amount) <=

13 returnInt(WSDL_XPATH, applyXPATH,

14 userpref moneyCap, up.xml)

15 </wscol:Expression>

16 </wsp:All>

17 </wsp:Policy>

The BookShopPolicy specifies a confidentiality (non-functional) property. Line 9 spec-
ifies that all exchanged messages must be encrypted using 3DES as the encryption
algorithm.

Figure 2.4: Example WS-Policy definition

WS-Security [ADLH+04] is concerned with the transport of security in-
formation. For example, the information may contain a user name and pass-
word required for authentication. WS-Security standard is defined to imple-
ment security. It defines enhancements to SOAP by providing a mechanism
for associating security tokens with messages. The security token may be a
binary token, certificate, etc. The standard is fully extensible and can sup-
port many types of tokens. It provides support for multiple security tokens,
trust domains, signature formats, and encryption technologies [ADLH+04].

WS-Trust [DLDG+02] describes a framework for trust models that en-
ables Web services to inter-operate securely. The goal is to enable appli-
cations to construct trusted message exchanges. This trust is represented
through the exchange and brokering of security tokens.

Web Service Offerings Language (WSOL) [TPP02] has an XML
notation for specifying multiple classes of services for one Web service. A
service offering defines one class of service for a Web Service. As classes of
service for Web Services are determined by combinations of various proper-
ties, WSOL allows specification of extra-functional aspects as described in
Section 2.2.3. WSOL is also compatible with WSDL.
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Semantic Web Services (*-S)

OWL Web Ontology Language for Services (OWL-S) [BHL+04]
emerged recently with a coverage of both functional and non-functional as-
pects. OWL-S is OWL ontology for semantic description of web services.
The structure of OWL-S consists of a service profile for service discovery, a
process model which supports composition of services, and a service ground-
ing, which associates profile and process concepts with the underlying service
interfaces. The service profile has functional and nonfunctional properties.
Functional properties describe the inputs, outputs, preconditions and effects
of the service (IOPEs).

The OWL-S ontology consists of four main classes that specific services
should instantiate. (alternatively, service providers may create subclasses of
the OWL-S classes and instantiate those instead).
Service, defines some basic concepts that tie the parts of an OWL-S service
description together and holds a textual description of the service.
Profile, describes what it provides to clients, and what it requires of them.
More specifically, a service profile presents the inputs, outputs, preconditions
and effects of a service. This information is used for matchmaking, i.e. to
find an appropriate service based on its capabilities.
Process, describes how the service works, i.e. what happens when the ser-
vice is used. Services can be described as a collection of atomic or composite
processes, which can be connected together in various ways, and the data
and control flow can be specified.
Grounding, specifies how the service is activated, including details on com-
munication protocols, message formats, port numbers, etc. This abstract
grounding is usually tied to a concrete grounding in the form of a WSDL
interface description.

The Web Service Modeling Ontology (WSMO) [Rom05] allows
specification of extra-functional properties for each particular element of a
Web service description. It covers a large list of such properties including;
accuracy, contributor, coverage, creator, date, description, financial, format,
identifier, language, network-related QoS, owner, performance, publisher, re-
lation, reliability, rights, robustness, scalability, security, source, subject, ti-
tle, transactional, trust, type, and version. At the time of writing, these
properties are not included in the logical model of the Web Service Modeling
Language (WSML) which is a language for expressing WSMO.
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Electronic Business (eb-*)

The ebXML (electronic business XML) framework [WD06] provides a global
electronic market place where enterprises of any size, anywhere, can find each
other electronically and conduct business through exchange of XML based
business messages. It is a standardisation effort established by the United
Nations body for Trade Facilitation and Electronic Business (UN/CEFACT)
and the Organisation for the Advancement of Structured Information Stan-
dards (OASIS). ebXML consists of several technologies which are provided
in five main modules in the architecture. Some of these modules can be used
individually and they define several aspects of service contracts.

Business Process Specification Schema (BPSS) describes collabo-
ration between business partners, their roles, relationships and responsibil-
ities. It defines the choreography of business documents thus covering the
same domain abstractly as BPEL. The roles (of business partners) interact
with each other through Business Transactions. The Business Transactions
form a choreography and each Business Transaction consists of one or two
document flows. An example ebXML BPSS specification of a simple no-
tification transaction with one document flow is given in Figure 2.5. The
example is adapted from the Business Process Specification Schema docu-
ment [CCK+01].

1 <BusinessTransaction name="Notify of advanceshipment">

2 <RequestingBusinessActivity name="">

3 <DocumentEnvelope

4 BusinessDocument name="ASN"/>

5 </RequestingBusinessActivity>

6 <RespondingBusinessActivity name=""

7 </RespondingBusinessActivity>

8 </BusinessTransaction>

Figure 2.5: Example ebXML BPSS specification

ebXML BPSS defines two kinds of collaborations: binary and multi-party
collaboration. Before we illustrate further, let us first introduce how the
contracts between two parties are defined (CPA) and how the capabilities of
a company are described (CPP).

Collaboration Protocol Profile (CPP) constrains the interaction of
partners by describing the capabilities of an individual party through Busi-
ness capabilities which describe business processes and Technology capabil-
ities which describe message exchange capabilities, transport and security
constraints.

Collaboration Protocol Agreement (CPA) expresses an agreement
between partners. Usually, CPA is derived from CPPs of trading partners. It
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describes the capabilities that trading partners have agreed to use to perform
a particular business collaboration. In other words, it is a contract between
two or more trading partners. CPA is also used by trading parties to set
up a runtime environment for the exchange of business messages. Security
characteristics of business process collaboration are also defined in BPSS,
CPP and CPA as well.

As mentioned above, BPSS specifies a binary and a multi-party collabora-
tion. A binary collaboration is always between two roles. These two roles are
called Authorized Roles, because they represent the actors that are authorized
to participate in the collaboration. The CPA/CPP specification requires that
parties agree upon a Collaboration Protocol Agreement (CPA) in order to
conduct a business. A CPA associates itself with a specific Binary Collab-
oration. A multi-party collaboration is a synthesis of binary collaborations.
A multi-party collaboration consists of a number of business partner roles.
Each binary pair of trading partners will be subject to one or more distinct
CPAs. Each Business Partner Role (lines 2, 7 and 15 in Figure 2.6) performs

1 <MultiPartyCollaboration name="DropShip">

2 <BusinessPartnerRole name="Customer">

3 <Performs initiatingRole=

4 //binaryCollaboration[@name="Firm Order]

5 /InitiatingRole[@name=buyer]/>

6 </BusinessPartnerRole>

7 <BusinessPartnerRole name="Retailer">

8 <Performs respondingRole=

9 //binaryCollaboration[@name="Firm Order]

10 /RespondingRole[@name=seller]/>

11 <Performs initiatingRole=

12 //binaryCollaboration[@name=" Product

13 Fulfillment /InitiatingRole[@name=buyer]/>

14 </BusinessPartnerRole>

15 <BusinessPartnerRole name="DropShip Vendor">

16 <Performs respondingRole=

17 //binaryCollaboration[@name=" Product

18 Fulfillment

19 /RespondingRole[@name=seller]/>

20 </BusinessPartnerRole>

21 </MultiPartyCollaboration>

Figure 2.6: Example ebXML CPA specification

one Authorized Role in one of the binary collaborations, or perhaps one au-
thorized role in each of several binary collaborations. This is modeled by a
Performs element, for instance, line 3 in the example. The Performs linkage
between a Business Partner Role and an Authorized Role is the synthesis of
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Binary Collaborations into Multiparty Collaborations, line 1. Implicitly the
Multiparty Collaboration consists of all the Binary Collaborations in which
its Business Partner Roles play Authorized Roles [CCK+01].

BPEL - The Service Contract Language

BPEL has been designed to facilitate orchestration of web services. Nu-
merous commercial companies were involved in the specification and stan-
dardization process leading to its successful use in several commercial appli-
cations. Also, BPEL is a programming language to specify the behaviour
of interacting web services. It allows existing Web services to be orches-
trated into composite services thus specifying a behavioural aspect of service
contracts. BPEL uses partner link mechanisms and a number of activi-
ties to model the services interaction. Each partnerLink is characterized by
a partnerLinkType, which characterizes the conversational relationship be-
tween two services by defining the roles played by each of the services in
the conversation. It specifies the portType provided by each service to re-
ceive messages within the context of the conversation. These portTypes are
defined in a WSDL [BL06] document, and each role specifies exactly one
WSDL portType. A WSDL document of a WS-BPEL service contains only
the abstract definition of the service. The concrete part of WSDL describes
the means of messaging communication technology. This is done through
partnerLinkType elements that represent the interaction between the pro-
cess service and its client services. Figure 2.7 is an example showing the
declarations part of the BPEL process introduced in Figure 1.1.

Activities are categorized into two; basic and structured. Basic activities
(for instance invoke, receive, etc.) define the interaction capabilities of BPEL
processes whereas the structured activities are made up of constructs such
as flow (for synchronization), scope, sequence, and pick activities.

Figure 2.8 is an example of the activities part of a BPEL process, con-
taining a flow activity (line 2). The flow activity has a number of con-
structs, for instance links, receive, invoke, assign. In the example, the
process waits for a client to invoke the request operation and stores the
incoming message and parameters about the client’s loan details into the
creditInformation when started. The other constructs such as invoke,
assign, etc. are used to define the business logic of checking and approving
the loan based on the credit information provided by the client.

BPEL has a couple of advanced features. It has a compensation and fault
handling constructs because one should capture both the normal behaviours
and exceptional behaviours as part of the contract specification. Also, BPEL
has nested scoping coupled with the ability to nest concurrent activities.
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <bpel:process name="loanProcess" ...

3 xmlns:bpel="http://docs.oasis.org/wsbpel/2.0/.../executable">

4 <bpel:partnerLinks>

5 <bpel:partnerLink name="LoanProcessor"/></bpel:partnerLinks>

6 <bpel:variables>

7 <bpel:variable name="creditInformation"/>

8 <bpel:variable name="riskAssessment"/> </bpel:variables>

9 <bpel:faultHandlers>

10 <bpel:catch faultName="loanProcessFault" >

11 <bpel:reply faultName="loanprocess:unableToHandleRequest"

12 operation="request" partnerLink="LoanProcessor"/></bpel:catch>

13 </bpel:faultHandlers>

14 ...

15 </bpel:process>

The required namespaces are declared. Partner links (line 4) define different parties that
interact with the BPEL process. Each partner link is related to a specific partner link
type that characterizes it. The partner link in the example is named LoanProcessor.
Since a BPEL process is itself a service, the partner link is also defined to enable
interaction with the other external services. The two external services (not shown
in the example) participating in this orchestration are defined as RiskAssessment,
LoanApproval. Variables (line 6) are declared followed by fault handlers before the
main body of the BPEL process, containing activities.

Figure 2.7: Example declarations in a BPEL process

1 ...

2 <bpel:flow>

3 <bpel:links>

4 <bpel:link name="receive-to-assess"/> </bpel:links>

5 <bpel:receive operation="request"

6 partnerLink="LoanProcessor" variable="creditInformation">

7 <bpel:reply operation="request" partnerLink="LoanProcessor"

8 variable="approval">

9 <bpel:invoke inputVariable="creditInformation"

10 operation="check" outputVariable="riskAssessment"

11 partnerLink="RiskAssessment">

12 <bpel:assign..../>

13 </bpel:flow>

14 </bpel:process>

Figure 2.8: Example activities in a BPEL process

Dependencies among these concurrent activities are managed through link
constructs. The links include guard conditions. In Chapter 3, we give a more
detailed discussion of these activities and their operational semantics.

41





2.4 Review of Related Work

In this section, we present various efforts made by researchers to bring into
the services computing domain, the notion of contracts. In addition, we
review several results/proposals that have formalized parts of BPEL for sim-
ulation, analysis and verification purposes. All the results/proposals are
vital to understanding what BPEL is, because they all formalize one or more
aspects of BPEL. As we explore these results, we focus more on a better
understanding of the advanced features which are left out or simplified in
some of the existing results.

Since there are lots of results in the past six years centering on formalizing
service contracts (based on BPEL), we review in the second part, related
work on analysis which is our major focus. An earlier overview of semantics
foundation is given in [vBK06] but several new results have emerged, some
of which we present below.

2.4.1 BPEL (Service Contract) Formalizations

There is a large number of papers, e.g., that formalize behaviour of Web
services specified in BPEL at different levels of abstraction. Back in 2004, a
formal foundation for orchestration languages with BPEL as the case study is
introduced in [Vir04]. Here, the semantics of orchestration languages for Web
Services is studied, defining syntax and semantics of a language to derive the
interactive behaviour out of BPEL4WS specification. What makes this work
interesting is that it recognized the need and paved a way to formalize the
interactive behaviour of a business process. It covers the interaction activities
and some basic activities such as while, assign and link operations but do
not cover more complex features such as scope, and exception handling.

We could learn from their approach the semantics of activities and corre-
lations. However, a process algebraic approach, combining a computational
model with congruence rules and auxiliary operators is followed. This means
that it is difficult to translate it to operational semantics.

In [ZSGX05] two specific advanced features were addressed while defining
operational semantics to a simplified version of BPEL4WS. First, fault han-
dling, where it is assumed that any fault will be caught by the fault handler
of the immediately enclosing scope. Second, compensation handlers that are
scope-based, fault triggered and programmable. The aim of the investigation
is to use the formalization to clear up opaque points in the language and to
uncover inadequate combinations or inconsistencies. In order to achieve this,
a simple language (which they also call BPEL) is proposed, covering some
of the basic activities with fault and compensation.
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The work in [ZSGX05] forms a foundation toward formalizing the com-
plex features. It will be seen later that some of the subsequent related works
on the complex features use [ZSGX05] as a starting point. Big step oper-
ational semantics is considered with the environment (or data state) of the
execution, mapping activities to a termination status (completes or fails); a
configuration includes a process or a mark to denote the termination sta-
tus, and a compensation context. A compensation context is defined as a
sequence of compensation closures consisting of the name of a scope, com-
pensation handler and a compensation context. The semantics of a process
is also defined as a transition from a configuration (in an environment) to
a terminated configuration. Furthermore, two forms of compensation found
in BPEL are considered. They defined the compensate semantics in such a
way that they are executed in reverse order. This is possible because the
introduced compensation closures are accumulated in the front of the con-
text so that a compensate command will invoke them in reverse order of
their installation. In the second case, the compensate command looks up the
compensation closure with a given name in the current compensation con-
text. However, other advanced features such as the concurrent flow with link
dependencies are not considered. Another issue is that the adopted environ-
ment and the configuration definition need to be modified if analyses should
be carried out on a real BPEL program.

Next, the notion of fault, compensation and additional termination is ad-
dressed using an process algebraic approach in [ES08], where formal seman-
tics for BPEL 2.0 fault, compensation and termination (FCT-) mechanisms
are provided. This work builds upon the work in [ZSGX05] discussed above.
The contribution is two-fold: to provide a detailed low-level semantics for
BPEL’s FCT-handling behaviour; using the semantics to place BPEL in the
context of more abstract foundational work. The second point on founda-
tional work is dealt with by comparing the BPEL presented in the paper to
existing formal theories behind Sagas [GMS87]. Like the work in [ZSGX05],
syntax and semantics of BPELfct calculus is based on a process algebraic
approach. The semantics are given in operational style together with a set
of congruence rules. The notion of compensation context and compensation
closures are similar to what is presented in [ZSGX05] with the introduction
of a fixed compensation context. Further, the compensation closures include
mode of a closure which can be normal, faulted, compensating or terminating.
The essence of these two changes is to handle all-or-nothing semantics which
allows repeated compensations. Unlike in [ZSGX05] the scope is defined
without a name and it consists of a main activity, fault handler, compensa-
tion handler and a termination handler. Although one may say that other
basic and interaction activities can easily be added to the constructs already
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defined, one shortcoming in this approach is that concurrent flow construct
is restricted without condition links. The construct for concurrency found in
Sagas is used in defining the semantics because it is difficult to encode the
flow construct with condition links in algebraic languages like the one used
in [ZSGX05]. This means we must expect to define a different concurrency
semantics that reflects BPEL’s flow activity.

In [LPT08] a lightweight version of BPEL (called Blite) covering part-
nerlinks, termination, correlation, long running business transactions and
compensation handlers is introduced and formalized. Here, a scope activ-
ity groups a primary activity together with a fault handling activity and a
compensation handling activity. States are (partial) functions mapping vari-
ables to values. The operational semantics are defined in terms of structural
congruence and a reduction relation. The structural congruence identifies
syntactically different terms which represent the same term, defined as the
least congruence relation induced by a given set of equational laws. This
work does not consider concurrent flow activity with link conditions and
compensation of named scopes.

There is also a large number of papers on formalizing the “simple” features
(and maybe a few complex features) of BPEL. The majority of which are
based on either process algebra or Petri nets. We summarize some below.

Petri-net Approaches to BPEL Formalizations

An illustrative example which is well-explained is found in [Mar05]. It deals
with specification of both the abstract model and executable model of BPEL.
The approach is based on Petri nets where a communication graph is gener-
ated representing a process’s external visible behavior. It verifies the simula-
tion between concrete and abstract behavior by comparing the corresponding
communication graphs. Continuing with Petri net, an algebraic high-level
Petri net semantics of BPEL is presented in [Sta05]. The idea here is to use
the net patterns of BPEL activities in model checking certain properties of
BPEL process descriptions. The model is feature complete for BPEL 1.1.
Lohmann extends this work with a feature-complete net semantics for BPEL
2.0 [Loh07].

As there exists several BPEL formalizations including a comprehensive
and rigorously defined mapping of BPEL constructs onto Petri net structures
presented in [WVA+09, OVvdA+07] a detailed comparison and evaluation of
Petri net semantics for BPEL is presented in [LVOS08]. The comparison
reveals different modelling decisions with a discussion of their consequences
together with an overview of the different properties that can be verified on
the resulting models.
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Process-Algebra Approaches to BPEL Formalizations

Abouzaid and Mullins [AM08] propose a BPEL-based semantics for a new
specification language (called BP − calculus) based on the π-calculus, which
will serve as a reverse mapping to the π-calculus based semantics introduced
by Lucchi and Mazzara [LM07b]. Their mapping is implemented in a tool
integrating the toolkit HAL and generating BPEL code from a specification
given in the BP−calculus. Unlike in our approach, this work covers analysis
of BPEL specifications through the mappings while the consistency of the
new language and the generated BPEL code is yet to be considered. As a
future work, the authors plan to investigate a two way mapping.

2.4.2 Service Contract Analysis and Verification

Back in 2004, after OASIS published BPEL4WS 1.1, some efforts [FBS04a,
FBS04b, KvB04] started formalizing different parts of BPEL in order to
apply different analysis techniques such as simulation and model checking.
Although most of these results cover fragments of the language and some say
little about the underlying analysis language and automation, they pave a
way for a potential exploration of simulation and model checking techniques
toward a more promising analysis framework for services based systems de-
veloped using BPEL. We discuss some of the most related approaches below.

Operational Approaches to BPEL Formalizations

In [ZK07], a formalization of BPEL based on an extension of Mealy machines
(WSA) is presented. The reason for the use of extended Mealy machines is
to capture the data aspect which it is claimed is abstracted from existing
models. The authors noted also that the extended Mealy machine supports
message passing communication and adopts interleaving semantics. Some
of the complex features are covered such as flow, compensation and fault
handling. The results in this work show that WSA is more general than
the existing automata-based semantics in that it can model most features
of BPEL and it allows verification of BPEL control and data flows. The
verification can be done using NuSMV and SPIN model checkers.

One limitation in this work is that it did not say how the data is handled
by the model checker. Model checking systems with generally unbounded
data types are clearly not feasible. Further, WSA has no hierarchy, BPEL is
highly structured and hierarchical if one considers the nested scoping mecha-
nisms. Thus, it is not clear how the concurrent executions are captured with
the parent-child machine communication adopted in [ZK07]. Moreover, com-
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mon machine layout for all structured activities seems artificial for capturing
all the activities.

In the case of using automata as models for formalizing BPEL, a few ef-
forts are found in the literature; they focus on some fragments of BPEL con-
structs. For instance, Geguang et al. present a language µ-BPEL [PZWQ06]
where a full operational semantics using a labeled transition system is defined
for this language and maps its constructs to Extended Timed Automata.
The language constructs are mapped to a simplified version of BPEL 1.1.
In [FBS04a] a translation from BPEL to guarded automata is presented.
The guarded automata are further translated into a Promela specification
which is the language for the SPIN model checker.

In [MR08] a methodology is proposed for modeling and analyzing web
services described in the BPEL language. It formalizes BPEL semantics us-
ing Algebra of Timed Processes (ATP). The behaviour of BPEL is modeled
in discrete time transition systems. It defines a formal semantics for BPEL
in terms of process algebraic rules, taking into account the discrete-timing
aspects. An automated generation of models (state/transition graphs) from
the BPEL specifications using an exhaustive simulation based on the for-
mal semantics rules, implemented in the WSMod tool is discussed. Further,
analysis of the resulting models by using standard verification tools for con-
current systems, such as the CADP tool is also discussed. However, among
the advanced features, only the semantics of scope is defined without consid-
ering compensation which is one of the main features needed to fully define
the behaviour of a BPEL process.

Compared to existing work, the work in [MR08] is based on a translation
of BPEL directly into state/transition graphs, without using an intermediate
language such as Promela or LOTOS. It also handles both the behavioral
and the discrete-time aspects of BPEL descriptions. What we learn from this
work is that it is feasible to generate analysis models from BPEL specification
and utilize existing analysis tools for automatic verification. In our appraoch,
we complement the above work by completing the missing parts. We use a
dense (continuous) time instead of a discrete time, because we want to use a
tool which verifies continuous time models. We define the semantics of the
full BPEL activities.

Summary

Overall, the work presented in this thesis makes complementary contributions
to those discussed above. Although most of these results cover fragments of
the language and some say a little about the underlying analysis language
and automation, they demonstrate a potential exploration of simulation in
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the case of Petri net based models and several kinds of analysis for LTS
(automata) based models. The semantics defined in the above mentioned
formalisms paves a way towards underpinning the semantics of BPEL. In
addition, gives a first step to building analysis tools. We are complementing
the above related work with the missing parts, considering the scope, the
event handlers, the fault handlers, the termination handler, the compensation
handler and the other (“simple”) features of BPEL in order to complete the
formalization of the behaviour of a BPEL process.
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Chapter 3

Operational Semantics for
BPEL

As discussed in Chapter 2, formal semantics for BPEL has been under in-
tense research because the language targets an important application area
and still has ambiguity in the informal description in addition to the inherent
difficulties of comprehending some complex features. These features include
the nested concurrency model and the combination of communication, syn-
chronous and asynchronous web service calls, exception handling, and shared
resources. Apart from the common concurrency problems, such as deadlock
or race condition, one needs to consider that BPEL supports developing ap-
plications with multiple services running in parallel and equipped with a
rollback mechanism called compensation.

3.1 Some Issues with the Complex Features

A service in a BPEL orchestration does not have full knowledge of services
that it will interact with in advance. This might lead to further synchro-
nization problems. For instance, consider the following statement from the
BPEL 2.0 standard document:

Suppose two concurrent isolated scopes, S1 and S2, access a
common set of variables and partner links (external to them) for
read or write operations. The semantics of isolated scopes ensure
that the results would be no different if all conflicting activities
(read/write and write/write activities) on all shared variables and
partner links were conceptually reordered so that either all such
activities within S1 are completed before any in S2 or vice versa.
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How can one ensure that there is no conflict? This requires the precision of
formal analysis.

As already mentioned, the BPEL orchestration language includes certain
advanced features such as scope, compensation handling, fault handling, and
event handling activities, making the language more complex than the con-
ventional high-level programming languages. In addition, BPEL includes a
special kind of concurrency mechanism specified using a concurrent flow ac-
tivity as illustrated in Figure 3.1, and another mechanism to map messages
to a corresponding process instance using correlation sets.
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Figure 3.1: A conceptual view of BPEL complex features

We present these features in this section, starting with the scope activity.

Scope

As described in Section 12 of the standard document [AAA+07]: “A <scope>

provides the context which influences the execution behaviour of its enclosed
activities. This behavioral context includes variables, partner links, message
exchanges, correlation sets, event handlers, fault handlers, a compensation
handler, and a termination handler.” A scope can have variables that are
visible and usable at and within the scope level. Scopes can have both default
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and defined fault and event handling logic, and scopes can be undone, if
necessary. Undoing the work of a scope is implemented with compensation.

Flow

The flow activity handles the execution of activities in parallel together with
possible dependencies. It uses synchronization links to manage dependencies,
to make one activity wait for another one. Links synchronize concurrent
activities as defined in the links semantics of the standard; links must have
unique names in a flow within their enclosing scope. When a flow activity
is started, all the directly nested activities are started concurrently and in a
similar manner, a flow activity completes when all the nested activities are
completed. One advantage of this could be an improvement in the response
time of services.

However, concurrent execution of activities adds another level of complex-
ity to the language, for instance, how are access to global variables, partner
links and control links managed? Further, what happens to outgoing links
that are never activated? Isolated scopes as mentioned in the introduction,
are used to control access to global variables, partner links and control links
resulting from different values due to access from different activities. This en-
tails non-conflicting values among the different scopes. How can one analyze
that there is no conflicting value based on the informal description?

Fault Handlers

A fault handler allows exception handling to be specified; it catches and
handles errors within an activity. A fault handler contains an activity that
will be executed when a fault occurs. When a scope receives a thrown fault
message, it stops all its activities. In the default case, the scope stops its
activities, and then rethrows the fault to its parent and so on until the top-
level process is reached. When a scope rethrows the fault, the scope itself then
ends abnormally, and activates all its outgoing links with a negative value.
However, handlers allow any scope to intercept a fault and take appropriate
action. Once a fault is handled in a scope, the scope is not yet terminated
and proceeds with the handler activity.

Event Handler

Timed (onAlarm) events and message (onEvent) events may be introduced
to define how the process deals with events that occur independent of and
asynchronous to the process itself. They can be defined at either the process
or scope level and they remain active as long as their enclosing scope or
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process remains active. An event handler’s event is triggered when a defined
event occurs, either a message event or an alarm event. The message events
are triggered by incoming messages, whereas alarms are triggered by either
a deadline or duration.

Compensation Handler

Compensation allows (but not necessarily) undo or redo of activities per-
formed of a scope. It is placed in a compensation handler which can only be
invoked once on a successfully completed scope, from a fault, compensation
or termination handler of an immediately enclosing scope. One issue that
requires a close look is the link semantics defined in the BPEL standard docu-
ment where it states that if the enabling condition evaluates to false then the
activity is skipped and also considered completed (cf. pg 102, section 11.6 of
the standard document [AAA+07]). If this assertion holds, then considering
this in a scope enables it to be compensated. That means compensation is
activated to attempt to reverse an activity that was never performed. It is
not obvious what will happen in this situation.

Summary

Precisely identifying and formalizing the advanced features of BPEL would
allow analysis that could guarantee their correct behaviour or expose some of
the errors that might be hidden during development of an application. The
main motive behind this work emanates from previous work on analyzing
orchestration of services defined in BPEL. Here we found that it is crucial to
have a complete formal semantics for BPEL including the advanced features
to provide a better understanding of the entire language to facilitate develop-
ing rigorous tool supported analyses. The main contribution in this chapter
of the thesis is the completion of BPEL semantics with the concurrent flow;
scope with the fault handlers, event handlers, termination handler and com-
pensation handler; the correlation sets and variable declarations. We use
structural semantics since it precisely captures the order of execution of the
different activities of a BPEL process and is directly usable in the analysis
tool development of Chapter 4.

3.2 Abstract Syntax for Full BPEL Activities

BPEL is a sequential programming language so it has program variables,
expressions and statements (called activities). Table 3.1 shows the definition
of the basic terms and the syntactic sets used in the abstract syntax of BPEL
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programs. A correlation set is a set of property names with specific values.
For example, a correlation set name OrderItem may contain three properties:
ItemId, ItemQty and ItemSupplier.

Identifiers x ∈ V ar Set of variable names
p ∈ P Set of ports/partnerlinks
s ∈ S Set of scope names
f ∈ F Set of fault names
l ∈ Links Set of link names
q ∈ Q Set of property names

Expressions y ∈ Exp Set of expressions
c ∈ Cond ⊆ Exp Set of boolean conditions
n ∈ N Set of natural numbers
b ∈ bool Set of boolean values
d ∈ Time a time value

Table 3.1: Syntactic Categories

3.2.1 Declarations

In BPEL, partner links, variables, correlation sets are declared as part of the
global declarations. A partner link represents a logical connection between
the business process and a partner provided service. Variables are used to
store and maintain the data of a business process. A correlation set aggre-
gates values within a process and across several BPEL process instantiations.
We do not treat the correlation set in association with process instantiations.
Table 3.2 gives the abstract syntax of declarations. We use a boldface font
to represent terminal symbols.

decl ::= (partnerlink p | variable x | corset q)∗

Table 3.2: Declarations

3.2.2 Activities

Let AB denote basic activities; AI denote interaction activities; ASt denote
structuring activities; ACc denote activities that define concurrency; ASc

and Acomp denote scope and compensate activities respectively; A is AB ∪
AI ∪ ASt ∪ ACc ∪ ASc ∪ Acomp. Table 3.3 gives the abstract syntax of basic,
structuring, and interaction activities.
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A ::= ǫ | AB | AI | ASt | ACc | ASc | Acomp

AB ::= empty | exit | throw f | rethrow f
| wait d | assign x y | validate x

AI ::= receive p | reply p | invokeS pi pj | invokeA p
ASt ::= A ; A | if c A1 else A2 | while c A | repeat c A

| for c y y2 A | pick (p A d A)∗

proc ::= decl eventhandler∗ faulthandler∗ A

Table 3.3: Abstract Syntax for Basic, Interaction, and Structuring activities

3.2.3 Advanced Activities

Table 3.4 gives the abstract syntax of the advanced features. The flow
construct captures the concurrency aspect of BPEL. It has link declarations
to manage dependencies. The other constructs are scope and various handlers
for managing exceptions. An event handler can be a message based event
(receiving a message on a specified port p) or an alarm based event (timeout
of a specified time d). In the case of the fault handlers there can be a specific
fault (handled by a catch clause in BPEL) or a set of faults (handled by a
catchAll clause) hence the F ′ ⊆ F in the syntax definition, where F is the
set of fault names, A denotes the set of activities, and s a scope name.

ACc ::= flow (link l)∗ A∗

ASc ::= s decl eventhandlers faulthandlers
[compensationhandler]
[terminationhandler] A

eventhandlers ::= (p A | d A)∗

faulthandlers ::= (F ′ A)∗ where F ′ ⊆ F
compensationhandler ::= A
Acomp ::= compensate | compensateScope s
terminationhandler ::= A

Table 3.4: Abstract Syntax for concurrent flow, scope, and handlers
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3.3 Preliminaries and Semantic Domains

The operational semantics associates to each BPEL process, an LTS whose
configurations consist of the activity, a current scope, and a pair of envi-
ronment and store which maps locations to values. Id is the set of names
including variable names, port names, fault names, scope names:

p, f, s ∈ Id = V ar ∪ P ∪ F ∪ S

An environment Env maps Ids to locations, that stores values. The Env
keeps track of which Ids are in scope. Thus ρ[p] looks up p in environment ρ.
This makes it possible for different identifiers to refer to the same location.
This can be used to define handlers where the environment of activities, for
instance in the same scope, are needed for subsequent executions.

ρ ∈ Env : Id→ Loc

We denote basic values such as integer, boolean, strings, etc., by V al.
Store maps locations to basic values for simple variables, and for fault, event,
compensation, and termination handlers, it keeps track of the defining scope
and its environment and the associated activity. The extended structured
store is needed to keep track of scope and environment in which a particular
fault, event or compensation handler is to be executed.

Σ ∈ Store : Loc→ V al ∪ (S × Env ×A)

Thus σ[l] is the contents of a location l in store σ.

Auxiliary Functions

We introduce an auxiliary function to capture correlation sets that map
freshly declared names X to a set of properties Q (denoting name/value
XML element attributes).

corset : X → 2Q

We define some auxiliary functions used in the semantics. Let Proc de-
note a BPEL process and Env and Store be as defined above.
validate : V ar → (Env × Store) → bool - is a function that given a variable
name, checks the definededness and type consistency.
defined : Exp × (Env × Store) → bool - given an expression, evaluates
whether an expression/value is defined.
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Evaluation of Expressions
An address function is defined to select a location:

addr : Id→ (Env × Store) → Loc

and an evaluation function computes the values:

eval : Exp→ (Env × Store) → V al

where Id ⊆ Exp.
Alphabet of Actions: Actions specify operations in a BPEL process. The
action labels are:

• τ denotes internal actions. This action cannot be observed outside the
service.

• !p/?p denotes sending/receiving of messages on a specific port name.
Sending of messages is denoted by !p and receiving of a message is
denoted by ?p.

• √
and s denotes termination and exit actions respectively. We distin-

guish between the two because successful completion is indicated by a
termination in the case of a scope requiring a compensation whereas
exit is used for forceful termination.

• χ denotes time elapsing. For instance onAlarm and wait activities use
time elapsing actions.

System Configurations and transitions

The configuration consists of the BPEL activity yet to be executed, the name
of a current scope, an environment in which the activity will be executed and
a store. The operational semantics of a BPEL program is defined based on
transitions between configurations, representing a snapshot of what happens
during computation with proc representing the activity (a BPEL process)
to be executed and (ρ, σ) representing the environment and values of the
variables/identifiers respectively.

Configuration (proc, s, (ρ, σ)) ∈ C = Proc× S × (Env × Store)

There is an initial configuration C0 = (proc, s0, (ρ0, σ0)) where ρ0 = [f 7→
lf |f ∈ F ] and σ0 = [lf 7→ (s0, ρ0, implicitfh)] maps any fault name and
mapping them to an implicit fault handler. This means any process is initially
prepared to handle any fault (default fault handler in a BPEL process).
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3.3.1 Declarations

A BPEL process contains a declaration part followed by the activity part.
In the global declarations, the variable declarations, the partner link decla-
rations, and the correlation sets are declared.

The variable declaration defines the data variables used by the process:

(variable x, s, (ρ, σ, ))
τ−→ (ǫ, s, (ρ+ [x 7→ lnew], σ + [lnew 7→ ⊥]))

where a new location lnew is created for the variable x declared in a scope s
and the value of x in the store is undefined, ⊥.

A partnerLink declaration defines the different parties (port names) that
interact with the process:

(partnerlink p, s, (ρ, σ))
τ−→ (ǫ, s, (ρ+ [p 7→ lnew], σ + [lnew 7→ ⊥]))

Similar to variable declaration, a new location lnew is created for the part-
nerlink variable p declared in a scope s and the value of p - the communication
buffer in the store is undefined ⊥.

A correlation set declaration comprised of a set of properties shared by
messages. The semantics defined below, creates a new location for the name
and maps it to a set of properties.

(corset x Qa, s, (ρ, σ))
τ−→ (ǫ, s, (ρ+ [(x 7→ lxnew

)], σ + [lxnewi
7→ Qa]))

where Qa ⊆ Q are properties.

3.3.2 Basic Activities

The semantics of basic activities are shown in Table 3.5. The exit rule
evolves to an empty activity to depict a forceful termination. It also updates
the store with, for instance, an empty compensation handler ensuring that
nothing happens when a compensate command is called on the exited scope
since it is not a successful completion. An alternative would be to update
with a throw activity signaling a fault.
Note that in the assign and validate rules, f (a default fault) is thrown when
the variables are not defined since there is a dedicated fault for these kinds
of invalid variables and expressions in BPEL.

The throw activity assumes f is defined in the scope. The default is
just a rethrow. A is an arbitrary activity. We consider both relative and
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Table 3.5: Operational Semantics for BPEL - Basic Activities

Activity Semantic Rules
empty (empty, s, (ρ, σ))

√

−→ (ǫ, s, (ρ, σ))

exit (exit, s, (ρ, σ))
s
−→ (ǫ, s, (ρ, σ′)) where σ′ = σ + [ρ[s] 7→ (s, ρ, ǫ)]

throw
(throw f, s, (ρ, σ))

τ
−→ (A, s′, (ρ′, σ′)) where

eval[f ](ρ, σ) = (s′, ρ′,A) and if s′ 6= s σ′ = σ + [ρ[s] 7→ (s, ρ, ǫ)] else σ′ = σ

wait

d > 0

(wait d, s, (ρ, σ))
χ
−→ (wait (d− 1), s, (ρ, σ))

d ≤ 0

(wait d, s, (ρ, σ))
√

−→ (ǫ, s, (ρ, σ))

assign

defined(x)(ρ, σ) ∧ defined(y)(ρ, σ)

(assign x y, s, (ρ, σ))
τ
−→ (ǫ, s, (ρ, σ + [addr[x](ρ, σ) 7→ eval[y](ρ, σ)]))

¬defined(x)(ρ, σ) ∨ ¬defined(y)(ρ, σ)

(assign x y, s, (ρ, σ))
τ
−→ (throw f, s, (ρ, σ))

validate

validate x(ρ, σ)

(validate x, s, (ρ, σ))
τ
−→ (ǫ, s, (ρ, σ))

¬validate x(ρ, σ)

(validate x, s, (ρ, σ))
τ
−→ (throw f, s, (ρ, σ))

absolute time for the wait activity. Thus we can macro expand: wait a ,
wait (a − now), indicating an absolute time wait, where a is the absolute
time, now is the system time and − is a subtraction operator.

Rethrow

The rethrow activity goes to the enclosing scope as shown by the macro
expansion.

rethrow: rethrow f , endscope ; throw f

3.3.3 Service Interaction Activities

The semantics for the receive activity in Table 3.6 says: in a given scope, a
receive activity causes a message on port p to be received with p serving as
a buffer. The receive activity may update the store with a received value.
Similarly, the reply sends a message on port p.
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Table 3.6: Operational Semantics for BPEL - Service Interaction Activities

Activity Semantic Rules

receive

(receive p, s, (ρ, σ))
?p
−−→ (ǫ, s, (ρ, σ + [ρ[p] 7→ w])) where w = value received

(receive p, s, (ρ, σ))
χ
−→ (receive p, s, (ρ, σ))

reply

(reply p, s, (ρ, σ))
!p
−→ (ǫ, s, (ρ, σ))

(reply p, s, (ρ, σ))
χ
−→ (reply p, s, (ρ, σ))

Invoke

The semantic of invoke activity deals with firstly, asynchronous communica-
tion whereby the process executes one way invoke operation similar to reply;
secondly, synchronous communication involving a two-way rendezvous where
the process reduces to a sequence of a reply and receive activity. Both can
let time pass and remain the same process.

invokeA: invoke p , reply p

invokeS: invoke p1 p2 , reply p1 ; receive p2

3.3.4 Structured Activities

The BPEL language provides ways to structure and nest activities.

Sequential composition

A sequence activity is a container that arranges and executes activities in
an ordered list. This means that the first activity in a sequence executes,
and when it is finished, the second activity begins. It completes when the
last activity in the sequence has completed.

sequence:
(A1, s, (ρ, σ))

a
−→ (A′

1, s
′, (ρ′, σ′))

(A1;A2, s, (ρ, σ))
a
−→ (A′

1;A2, s′, (ρ′, σ′))

(ǫ ; A, s, (ρ, σ))
τ
−→ (A, s, (ρ, σ))

Conditional if

An if activity provides a conditional behaviour. It executes an activity based
on one or more conditions defined by the if and optional else-if elements,
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followed by an optional else element. The conditions are evaluated in order,
and the first one to evaluate to true has its activity executed.

if:
eval(c)(ρ, σ)

(if(c A1 else A2), s, (ρ, σ))
τ
−→ (A1, s, (ρ, σ))

if:
¬eval(c)(ρ, σ)

(if(c A1 else A2), s, (ρ, σ))
τ
−→ (A2, s, (ρ, σ))

if(c A) , if(c A else empty)

if(c1 A1 elseif c2 A2) , if(c1 A1 else (if (c2 A2)))

while loop

The while activity provides for repeated execution of a contained activity.
It executes an activity repeatedly until its condition evaluates to false.

while: (while c A) , if c (A; while c A)

Conditional repetition - repeatUntil

The repeat until activity executes an activity repeatedly until its condition
evaluates to true.

repeatUntil: (repeat A c) , (A; if c (repeat A c))

Conditional Repetition - forEach

The forEach activity executes multiple instances of the same activity. This
can be executed either in parallel or in sequence. We define sequential exe-
cution, since parallel execution requires a check for non-interference.

forEach: (for v yi yf A) , (assign(v, yi);assign(v2, yf );while (v < v2) {A; v := v + 1})

where v2 is a fresh variable

Selective pick

The pick activity waits for the occurrence of exactly one event from a set
of events, then executes the activity associated with that event. After an
event has been selected, the other events are no longer accepted by that pick.
Events can be triggered in two ways: message events and alarm events. Thus,
we have sets of activities: the wait set (W = {(wait d, A)...}) and the event
set (E = {(p?, A)...}).
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pick 1a:
(wait 0,A) ∈W

(pick W E, s, (ρ, σ))
τ
−→ (A, s, (ρ, σ))

pick 1b:
∀(wait d, A) ∈W : d > 0

(pick W E, s, (ρ, σ))
χ
−→ (pick W ′ E, s, (ρ, σ)) where W ′ = {wait (d− 1),Ad | (wait d,Ad) ∈W}

pick 2:
(p?, A) ∈ E

(pick W E, s, (ρ, σ))
p?
−−→ (A, s, (ρ, σ))

The semantics of pick triggered by alarm (time aware) is given in rules pick 1a
and pick 1b. The first rule handles the case when the specified time or
duration has been reached. The second rule pick 1b handles the case when
none of the timed activities have expired and thus, time can pass. Rule pick 2
captures the case when an event arrives.

3.3.5 Advanced Activities

As already mentioned, BPEL language has concurrency, nested scoping, and
special kind of exception (and compensation) handling mechanisms.

Concurrent flow

A flow activity creates a set of concurrent activities nested within it. It en-
ables synchronization dependencies between activities nested within it. This
means one can define two or more activities, such as two receive activities,
to start at the same time. The activities start when the flow starts. The
flow activity completes when all the activities it contains have completed.
We consider a generalized model for concurrent flow which handles both
point-to-point synchronization and global synchronization.

Link Definitions
Links only apply to the flow activity. In order to define the semantics, we
consider an alphabet of links as declared in BPEL, with each activity in
a flow consisting of source links, target links and their corresponding link
conditions), A(source Ls bs)(target Lt bt), where Ls, Lt denote source,
target link names, and bs, bt denote the link conditions. We specifiy the
following evaluation semantics for the source and the target links:
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source 0:
¬eval[b](ρ, σ)

(source l b, s, (ρ, σ))
τ
−→ (ǫ, s, (ρ, σ))

source 1:
eval[b](ρ, σ)

(source l b, s, (ρ, σ))
l!
−→ (ǫ, s, (ρ, σ))

target 0:
¬eval[b](ρ, σ)

(target l b, s, (ρ, σ))
τ
−→ (ǫ, s, (ρ, σ))

target 1:
eval[b](ρ, σ)

(target l b, s, (ρ, σ))
l?
−→ (ǫ, s, (ρ, σ))

This means, if either the condition of the source link or the target link is
false then ignore otherwise synchronize.

For each flow activity, we have a function:

alpha(Aflow) is the set of Links

Thus, links are part of the alphabet where we have unique names for source
and target link names. The semantics for the flow activity is then given as
follows:

flow 0:
A ∈ A (A, s, (ρ, σ))

a
−→ (A′, s, (ρ, σ′))

a /∈ Links, A′ 6= ǫ
(flow A, s, (ρ, σ))

a
−→ (flow A\{A} ∪ {A′}, s, (ρ, σ))

flow 1:
A ∈ A , A = ǫ

(flow A, s, (ρ, σ))
τ
−→ (flow A\{A}, s, (ρ, σ))

flow 2:
A = ⊘

(flow A, s, (ρ, σ))
√

−→ (ǫ, s, (ρ, σ))

flow 3:

A1, A2 ∈ A , (A1, s, (ρ, σ))
l?
−→ (A′

1, s, (ρ, σ
′)) , (A2, s, (ρ, σ))

l!
−→ (A′

2, s, (ρ, σ
′))

l ∈ Links
(flow Links A, s, (ρ, σ))

τ
−→ (flow A\{A1, A2} ∪ {A′

1, A
′
2}, s, (ρ, σ

′))

We use interleaving semantics for the concurrent flow, where the source links
move first. An activity specified in a flow can perform an arbitrary action
and can terminate as specified in rule flow 0 and flow 1 respectively. Rule
flow 2 captures the termination of a flow activity when there are no more
activities to be executed. If the condition of the source link evaluates to true,
and a corresponding condition of a target link evaluates to true, then the links
are synchronized and the associated activities are executed as indicated in
rule flow 3.
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Scope

The scope activity provides a context for a subset of activities. It can contain
fault, event, and compensation handling for activities nested within it and
can also have a set of defined variables and a correlation set. A scope can
encompass a logical unit of work, making it manageable to execute, and
then, if need be, reverse an activity. For example, if a customer cancels a
paid travel reservation, the money must be returned and the reservation must
be canceled without affecting other reservations. By enclosing activities in
a scope, one can create the structure and conditions in which to manage
activities as a unit.

The life cycle of a scope begins with an initialization sequence for
entities defined locally within the scope: initialize variables and partner
links, and install fault handlers, termination handler, and event handlers.
As specified in the standard document, we consider three cases of scope
completion - a normal (successful) completion where the activity within a
scope completes without throwing a fault, all event handlers are disabled
and the compensation handler is installed; an (unsuccessful) finish with
internal fault where a fault is thrown within the scope, all other running
activities and event handler instances are terminated and a matching fault
handler is executed; an (unsuccessful) finish with external termination
where a running scope receives a termination signal (for instance due to
external fault), and all other running activities and event handler instances
are terminated.

when E 6= ⊘ scope s decl F E C T A , scope s decl F C T flow(A pick E)

We capture the occurrence of events by macro expanding a scope with
event handlers in parallel using a pick activity. That means event and scope
proceed in parallel.

scope 0: (scope s decl F C T A, s0, (ρ, σ))
τ
−→ (decl A ; T ; endscope, s0, (ρ′, σ′))

where ρ′ = ρ+ [s 7→ (lsnew )] + [f 7→ (lfnew
)|(f,A) ∈ F ]

σ′ = σ + [lsnew 7→ (s, ρ,C)] + [(lfnew
) 7→ (s, ρ,A) | (fA) ∈ F ]

scope 1: (endscope, s, (ρ, σ))
τ
−→ (ǫ, s′, (ρ′, σ)) where s′ = ρ[s]1, ρ′ = ρ[s]2

In the first rule scope 0, when a scope is entered, it starts by executing
activity A, installs the termination handler T and endscope in order to
cater for the successful and unsuccessful completion mentioned above. A
scope obtains a new location for the outer scope, maps the current scope
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to the outer scope with its environment and then map all named faults to
their corresponding fault handlers. When the scope completes successfully,
it defines a new environment with compensation in context and then updates
the store with the compensation and fault handler mappings. endscope is
an auxiliary activity, defining what happens at the end of scope execution.
When a scope finishes executing, it will lookup and change to an outer scope
with a lookup of the old environment as well. When exit is executed within
a scope, the system changes to an outer scope with the store unchanged.
Note that nothing happens when a compensation is called in this case. It is
handled by the exit rule in Table 3.5.

Compensation

compensate is an action that calls the corresponding compensation handler.
The compensation handler is defined within a scope as shown above. When
a scope completes successfully, the compensation handler is installed with
its associated environment. Calling the corresponding compensate action
executes the activity with the compensation handler. In the case of fault
or forceful termination, no compensation handler is installed. The rules for
compensate and compensateScope (for compensating a named scope) are
given as follows:

compensate: (compensate, s, (ρ, σ))
τ
−→ (A ; compensate, s′, (ρ′, σ))

where s′ = σ[ρ[s]]1, A = σ[ρ[s]]3, ρ′ = σ[ρ[s]]2

compensateScope:

(compensateScope sc, s, (ρ, σ))
τ
−→ (A ; compensate, sc, (ρ′, σ))

where A = σ[ρ[sc]]2, scope sc’s compensation handler

Summary

We have considered the advanced of BPEL including compensation, flow,
scope, various handlers, declaration of variables, partner links and correlation
sets in defining an operational semantics for BPEL. Defining the semantics of
these features of BPEL language raised some issues that should be considered
if the intention is to analyze orchestration based on BPEL.

The semantics of the flow construct which manages concurrency require
that dependency should be considered when resources are shared. This is
handled by defining a generalized flow semantics that is able to handle both
point-to-point synchronization where the links can be handled in pairs of
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source and target; and global synchronization where the link conditions are
evaluated with a view of the overall synchronization dependencies.

A correlation set is used to associate an inbound message with a specific
process instance. They are lists of message properties (names) and associated
values that are applied when sending and receiving messages to ensure that
inbound messages are associated with the correct executing instance of a
process. Therefore we treat it as a singleton variable which are declared as
part of the global declarations and can be attached as a side condition to all
communication but activated only once.

Thus the semantics demonstrates that there are many sources of non-
deterministic interaction between the features of BPEL. These are precisely
the sore spots that analyses should discover in application programs before
they are deployed. The semantics therefore offers a basis for further explo-
ration of analysis and synthesis tools for BPEL. In the following chapter, we
explore developing analysis by existing simulation and model checking tools
utilizing the above semantics.
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Chapter 4

Towards Analysis Tools

In this chapter, we present the use of Rewriting Logic as a semantic frame-
work, taking an operational semantics approach and formalizing some of the
complex features of BPEL. The advantage of this approach is that the se-
mantics are executable in Maude, giving a direct support for testing and
experimenting with the operational semantics defined in Chapter 3. This
allows us to test BPEL process constructs using the rewrite and search tools,
a very helpful and promising tool in this particular setting. Feedbacks from
exploring the executable semantics are also very useful for clarifying some
of the ambiguities. In Section 4.4, we describe a translation process from
BPEL to UppAal. The chapter is an extended version of papers G and
F [OOP09, Oki09].

4.1 Operational Semantics in Rewriting

Logic

We introduce rewriting logic, syntax of equational systems, unsorted and
sorted equational systems, rewriting logic semantics and Maude.

4.1.1 Rewriting Logic

Rewriting Logic [Mes92, MOM02, MR07, SRM09] is an unified model of con-
currency in which several models of concurrent systems can be represented in
a common framework. Rewriting logic has certain properties (such as explicit
representation of concurrency) which makes it a good choice for developing
a semantic framework in which different systems, models of concurrency,
languages, and distributed systems can be specified and analyzed. We first

67



introduce the syntax of equational systems and then present a rewriting logic
semantics adopted from [MR04].

Syntax of Equational Systems

We use the following notations: f, g, h, ... denote function symbols; a, b, c, ...
denote constants; x, y, z, ... denote variables. Each function symbol has
an arity, a non-negative integer representing the number of arguments it
takes. A term is either a variable, a constant, or an expression of the form
f(t1, t2, ..., tn) where f is the function symbol of arity n and ti are terms. We
use r, s, t, ... to denote the terms. A term u is a subterm of t if u is t or if
t is f(t1, t2, ..., tn) and u is a subterm of ti for some i. An equation is an
expression of the form s = t where s and t are terms. An equational system
is a set of equations. An equational system E can be sorted or unsorted.
An unsorted (or one-sorted) equational system means that there is only one
sort in the specification, and that the equations are unconditional whereas
the sorted equational system can be many-sorted or order-sorted. A many-
sorted equational specification consists of a set of sorts, a set of function
symbols, and equations defining the functions. Order-sorted specifications
support subsorts.

Rewriting Logic Semantics

The semantics is defined in terms of the membership equational logic variant
of rewriting logic. A membership equational logic (MEL) [Mes98] signature
is a triple (K,Σ, S), with K a set of kinds, Σ = {Σw,k}(w,k)∈K∗×K a many-
kinded signature and S = {Sk}k∈K a K-kinded family of disjoint sets of sorts.
The kind of sort is denoted by [s]. A MEL Σ-algebra A contains a set Ak
for each kind k ∈ K, a function Af : Ak1 × ...×Akn

→ Ak for each operator
f ∈ Σk1...kn,k and a subset As ⊆ Ak for each sort s ∈ Sk, with the meaning
that the elements in sorts are well-defined, while elements without a sort
are errors. We write TΣ,k and TΣ(X)k to denote the set of ground Σ-terms
with kind k and of Σ-terms with kind k over variables in X respectively,
where X = {x1 : k1, ..., xn : kn} is a set of kinded variables. Given a MEL
signature Σ, atomic formulae have either the form t = t′ (Σ-equation) or
t : s (Σ-membership) with t, t′ ∈ TΣ(X)k and s ∈ Sk; and Σ − sentences are
conditional formulae of the form (∀X)ϕ if

∧
i pi = qi ∧

∧
j wj : sj, where ϕ is

either a Σ-equation or a Σ-membership, and all the variables in ϕ, pi, qi and
wj are in X. A MEL theory is a pair Σ, E with Σ a MEL signature and E a
set of Σ-sentences.
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Definition 1 A rewriting logic specification or a (labelled) rewriting theory
R is a 4-tuple R = (Σ, E, φ,R) with:

• (Σ, E) a membership equational theory

• φ : Σ −→ N a mapping assigning to each function symbol f ∈ Σ (with,
say, n arguments) a set φ(f) = {i1, ..., ik}, 1 ≤ i1 < ... < ik ≤ n of
frozen argument positions under which it is forbidden to perform any
rewrites; and

• R a set of labelled conditional rewrite rules of the general form

r : (∀X)t→ t′ if (
∧

i

ui = u′i) ∧ (
∧

j

vj : sj) ∧ (
∧

k

wk → w′
k)

where the variables appearing in all terms among those in X, terms in each
rewrite or equation have the same kind, and in each membership vj : sj the
term vj has kind [sj]. Intuitively, R specifies a concurrent system, whose
states are elements of the initial algebra TΣ/E specified by (Σ, E) and whose
concurrent transitions are specified by the rules R, subject to the frozeness
imposed by φ.

Given a rewrite theory, R = (Σ, E, φ,R), the sentences that it proves
are universally quantified rewrites of the form, (∀X) t −→ t′, with t, t′ ∈
TΣ,E(X)k for some kind k, which are obtained by finite application of the
following rules of deduction:

1. Reflexivity. For each [t] ∈ TΣ(X), (∀X) t −→ t

2. Equality.
(∀X) u −→ v E ⊢ (∀X) u = u′ E ⊢ (∀X) v = v′

(∀X) u′ −→ v′

3. Congruence. For each f : k1...kn −→ k ∈ Σ, with {1, ..., n} − φ(f) =
{j1, ..., jm} with ti ∈ TΣ(X)ki

, 1 ≤ i ≤ n, and with t′jl ∈ TΣ(X)kjl
, 1 ≤

l ≤ m,
(∀X) tj1 −→ t′j1 ... (∀X) tjm −→ t′jm

(∀X) f(t1, ..., tj1 , ..., tjm , ..., tn) −→ f(t1, ..., t
′
j1
, ..., t′jm , ..., tn)

4. Replacement. For each θ : X −→ TΣ(Y ) with, say, X = {x1, ..., xn},
and θ(xl) = pl, 1 ≤ l ≤ n, and for each rewrite rule in R of the form,

q : (∀X)t→ t′ if (
∧

i

ui = u′i) ∧ (
∧

j

vj : sj) ∧ (
∧

k

wk → w′
k)
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with Z = {xj1 , ..., xjm} the set of unfrozen variables in t and t′, then,

(
∧

r

(∀Y )pjr −→ p′jr)

(
∧
i(∀Y )θ(ui) = θ(u′i)) ∧ (

∧
j(∀Y )θ(vj) : sj) ∧ (

∧
k(∀Y )θ(wk) −→ θ(w′

k)

(∀Y )θ(t) −→ θ′(t′)
where for x ∈ X − Z, θ′(x) = θ(x), and for xjr ∈ Z, θ′(xjr) = p′jr , 1 ≤
r ≤ m.

5. Transitivity.
(∀X)t1 −→ t2 (∀X)t2 −→ t3

(∀X)t1 −→ t3

The Reflexivity rule says that for any state t there is an idle transition
in which nothing changes. The Equality rule specifies that the states are in
fact equivalence classes modulo the equations E. The Congruence rule is
very general form of “sideways parallelism”, so that each operator f can be
seen as a parallel state constructor, allowing its nonfrozen arguments to evolve
in parallel. The Replacement rule supports a different form of parallelism,
which could be called “parallelism under ones feet”, since besides writing
an instance of a rule’s left hand side to the corresponding right hand side
instance, the state fragments in the substitution of the rule’s variables can
also be rewritten, provided the variables involved are not frozen. Finally,
the Transitivity rule allows us to build longer concurrent computations by
composing them sequentially [MR04].

4.1.2 Maude

Maude [Mes00, CDE+07] is a tool that supports both equational and rewrit-
ing logic computation. In rewriting logic and Maude, data and state of a
system are specified as algebraic data types by means of equational spec-
ifications. New types are defined by means of the keyword sort; subtype
relations between types by subsort; operations for building values of the de-
fined types, giving the types of arguments and result by op. Operations may
be associative (assoc) or commutative (comm) for instance. Equations that
identify terms built by these operators are defined by means of the keyword
eq. Equations are assumed to be confluent and terminating, so that we can
use equations to reduce a term t to a unique, canonical form t′ that is equiva-
lent to t (they represent the same value). These specifications can be included
into a functional module, fmod ... endfm. For example, Figure 4.1 shows a
functional module including (in protecting mode) two modules STRING and
INT. The module contains part of BPEL syntax specification. It specifies new
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1 fmod BPEL-SYNTAX is

2 pr STRING . pr INT .

3 sorts Decl Activity Proc .

4 sorts Ident Varbl PortVar FaultVar ScopeVar .

5 sorts Source Target Link .

6 subsorts Source Target < Link .

7 op partnerlink_ : PortVar -> Decl .

8 op variable_ : Varbl -> Decl .

9 op _&_ : Decl Decl -> Decl [assoc comm id: nodecl] .

10 ops exit noact skipa : -> Activity .

11 op emptyact : -> Activity .

12 op throw_ : FaultVar -> Activity .

13 op rethrow_ : FaultVar -> Activity .

14 op wait_ : Exp -> Activity .

15 ...

16 op _||_ : Activity Activity -> Activity [assoc comm prec 30] .

17 op flow_/_wolf : Link FlowAct -> Activity .

18 eq skipa || A = A .

19 eq A || skipa = A .

20 ...

21 endfm

Figure 4.1: Example functional module specifying BPEL syntax.

types for declaration, activity and process in line 3. Operations such as exit
activity can be defined as specified in line 10. Equations are also specified
in a functional module. For example we can capture that running a skip
activity in parallel with another activity is the same as running that activity.
This is indicated in line 18.

The dynamic behaviour of a system is specified by rewrite rules of the
form t −→ t′, describing the local, concurrent transitions of the system. This
means, when a part of a system matches the pattern t, it can be transformed
into the corresponding instance of the pattern t′. Rewrite rules are included
in system modules, mod ... endm. Rewrite rules can take the most general
possible form in the variant of rewriting logic built on top of membership
equational logic, that is, they can be of the form

t→ t′ if (
∧

i

ui = vi) ∧ (
∧

j

wj : sj) ∧ (
∧

k

pk → qk)

with no restriction on which new variables may appear in the right hand
side or in the condition. Conditions in rules are formed by an associative
conjunction connective /\, allowing equations (both ordinary equations t

= t’, and matching equations t := t’ where new variables occurring in t

become instantiated by matching, memberships (t : s), and rewrites t =>

t’) as conditions.
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A module can also import another module by: protecting, extending

and including. protecting cannot modify declarations in imported module
while extending can add new constructors to existing sorts but cannot specify
new equations for existing operators. including can add new constructors
to existing sorts and new equations for existing operators.

Maude has certain features that come handy when executing a conditional
rule. One of such features is search. The default interpreter which is used
in this thesis supports search computations. The search command looks for
all the rewrites of a given term that match a given pattern satisfying some
condition. Details of example search based on the executable semantics of
BPEL is given in Section ??.

4.2 BPEL in Maude

In order to formalize BPEL, we consider the following from Chapter 3: the
abstract syntax, the notion of environment and store which is used to define
the configuration and the execution of the behaviour of a BPEL process
as a transition from one configuration to another. BPEL processes can be
simulated by running the operational semantics in Maude with the BPEL
processes as input. The set of all possible executions can be explored by
Maude’s search command; both breadth-first search and bounded breadth-
first search.

Having defined the structural operational semantics in the previous chap-
ter, we describe in this section, the specification of the operational semantics
of BPEL in rewriting logic. We define the semantics of BPEL (proc) in rewrit-
ing logic by specifying a rewrite theory: Rproc = (Σproc, Eproc, φproc, Rproc),
where Σproc is BPEL’s syntax and some auxiliary operators (for example,
store, environment, etc), Eproc specifies the deterministic features of BPEL
with some auxiliary semantic operations, the frozenness information φproc
specifies what arguments can be rewritten with rewrite rules for each opera-
tor, and the rewrite logic rules Rproc specify the semantics of all the dynam-
ic/concurrent features of BPEL. Since the operational semantics are such
that the transitions are between configurations, we can map directly to a
rewriting relation between terms representing the configurations. For exam-
ple, the rule for the assign activity:

defined(x) ∧ defined(e)
(assign x e, s, (ρ, σ))

τ−→ (ǫ, s, (ρ, σ + [addr[x](ρ, σ) 7→ eval[y](ρ, σ)]))

becomes a conditional rewrite logic rule of the form:
< assign (x, e), sv, (rho, sigma) > =>
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< emptyact, sv, (rho, sigma[rho(x) / eval(e, sv, rho, sigma)]) >

if defnd?(x, (rho, sigma)) .. In this way the semantic rules become (con-
ditional) rewrite rules, where the transition in the conclusion becomes the
main rewrite of the rule, and the transitions in the premises become rewrite
conditions.

We organized the specification in five modules: three functional modules
and two system modules. The first functional module BPEL-SYNTAX is a direct
formalization in Maude of the syntax of BPEL. The second functional mod-
ule EVAL defines the evaluation of arithmetic and boolean expressions using
the Maude predefined functions. The third functional module BP-ENV-STORE

models the basic rudiments of BPEL execution such as locations, values, en-
vironments and stores. The remaining two system modules EVALUATION-EXP

and BPEL-EXECUTION model the semantics. The state (configuration) of a
BPEL process is modeled as a multiset (tuple) of activities, name of en-
closing scope, environment and store as defined in the operational semantics
presented in Chapter 3.

4.2.1 Syntax

The abstract syntax of BPEL presented in the preceding chapter is defined in
a module BPEL-SYNTAX with sorts Ident Varbl PortVar FaultVar ScopeVar

.. It defines identifiers including variable names, port names, fault names,
and scope names. We use strings to represent variable identifiers and names
in BPEL. We declare them as subsort of Ident which means any scope
name, fault name, and scope name is an identifier. We define construc-
tors for the different identifiers which transform them to strings using the
syntax: op SV : String -> ScopeVar . op PV : String -> PortVar . op FV :

String -> FaultVar .

Operators for some of the auxiliaries and declarations such as variable
and partner link declarations are declared.

op nodecl : -> Decl .

op partnerlink_ : PVar -> Decl .

op variable_ : Varbl -> Decl .

op _&_ : Decl Decl -> Decl [assoc comm id: nodecl] .

Operators for the rest of the activities are declared similarly. Figure 4.2
shows a specification of some of the activities with [ctor] indicating that the
operator is a constructor.
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1 ops endscope skipa noact : -> Activity .

2 op assign : Varbl Exp -> Activity [ctor] .

3 op validate_ : Varbl -> Activity .

4 *** Syntax of INTERACTION activities

5 op receive(_,_) : PortVar Varbl -> Activity .

6 op reply(_,_) : PortVar Varbl -> Activity .

7 op invokea(_,_) : PortVar Varbl -> Activity .

8 op invokes(__,__) : PortVar Varbl PortVar Varbl -> Activity .

9 op _;_ : Activity Activity -> Activity [ctor assoc id: noact].

10 ...

11 op If_Then_Else_ : BExp Activity Activity -> Activity .

12 op while : BExp Activity -> Activity .

13 op repeat : Activity BExp -> Activity .

14 op for : BExp Exp Exp Activity -> Activity .

15 op pick__:__ : PortVar Activity Exp Activity -> Activity .

16 op _||_ : Activity Activity -> Activity [assoc comm prec 30] .

17 eq skipa || A = A .

18 eq A || skipa = A .

19 op nolink : -> Link .

20 op [_&_] : Activity Link -> FlowAct .

21 op flow_/_wolf : Link FlowAct -> Activity .

Figure 4.2: Syntax of BPEL Activities

4.2.2 Semantics

In order to specify the semantics of BPEL, we need to consider how the
configuration is represented. Based on the operational semantics defined in
Chapter 3, BPEL uses tuples, called configurations. In this subsection, we
present the components making up the tuples and some of the operations,
equations and transition rules specifying the dynamic behaviour of BPEL
processes.

Configurations

We use a four tuple configuration to manage the structure of execution; the
first component is the process code to be executed, the second is the scope
name, the third is the environment under which the code is executed, and
the fourth is the store where the values of variables are kept. We specify the
configurations as follows:

sorts Config Config2 .

op <_,_,(_,_)> : Proc ScopeVar BEnv Store -> Config [ctor] .

op {_,_,(_,_)} : Proc ScopeVar BEnv Store -> Config2 [ctor].

op surd : -> Config2 .
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The sorts Proc and ScopeVar are as declared before. The sorts Config and
Config2 are declared using syntax sorts. We specify Config2 to capture activ-
ity termination. This is followed by declaring operators using syntax op. The
first two operators are constructors (ctor) for sort Config and Config2 respec-
tively. The surd operator specifies the

√
action defined in the operational

semantics.

Environment and Store

As indicated in the configuration, we use both the environment and store
components, by binding identifiers to locations which are associated with
values in the store. The environment and store are defined in the module
BP-ENV-STORE.

sorts Location Identifier .

subsorts PortVar FaultVar ScopeVar Varbl < Ident .

sort BENV .

op mtE : -> BENV .

op _|>_ : Ident Location -> BEnv [prec 20] .

op __ : BENV BENV -> BENV [assoc id: mtE prec 30] .

op _(_) : BENV Ident -> Location .

op _[_/_] : BENV Location Ident -> BENV [prec 35] .

vars p p’ : Ident . vars L’ L’’ : Location . var rho : BENV .

eq (p |> L’ rho)(p’) = if p == p’ then L’ else rho(p’) fi .

eq rho [L’ / p] = (p |> L’) rho .

The environment, declared using syntax sort BENV . maps identifiers
to locations, declared by op |> : Ident Location -> BENV .. There can
possibly be an empty environments, declared by op mtE : -> BENV .. The
lookup and update functions are declared as well by op ( ) : BENV Ident

-> Location . and op [ / ] : BENV Location Ident -> BENV . respectively.
This is followed by equations. For instance, eq (p |> L’ rho)(p’) = if p ==

p’ then L’ else rho(p’) fi . specifies that looking up an identifier p′ in an
environment with p mapped to a location L′, if the identifiers are the same,
then it’s location is L′ otherwise lookup p′’s location.

Similarly, the Store keeps the value associated to each location. The
lookup function, op ( ) : Store Location -> BValue . returns the value as-
signed to a given location in a given store, if the given location exists. The
update function, op [ <- ] : Store Location BValue -> [Store] . updates
the given store in the given location with a given value. The specification of
store is give below.
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sort BValue .

subsort Num < Value < BValue .

subsort Boolean < BValue .

op fval : ScopeVar --- scope name

BENV --- Environment

Activity --- Fault handler

-> BValue .

sort Store .

op nothing : -> BValue .

op mtS : -> Store .

op [_,_] : Location BValue -> Store . *** [loc(5), 5]

op _|>_ : Location BValue -> Store [prec 20] .

op __ : Store Store -> Store [assoc id: mtS prec 30] .

op _(_) : Store Location -> BValue .

op _[_/_] : Store Location BValue -> Store [prec 35] .

vars L : Location . vars V’ V’’ : BValue . var sigma : Store .

eq (L |> V’ sigma)(L) = V’ .

eq ([L,V’] sigma)(L) = V’ .

eq (L |> V’ sigma)(L’) = if L == L’ then V’ else sigma(L’) fi .

eq mtS[L / V’] = (L |> V’) .

eq sigma [L / V’] = (L |> V’) sigma .

eq sigma [L / V’] = ([L ,V’] sigma) .

eq (L |> V’) sigma (L |> V’’) = (L |> V’) sigma .

eq mtS[L <- V’] = [L,V’] .

eq sigma[nil <- noval] = sigma .

Transition Rules

The execution of a BPEL process evolves by means of transitions over config-
urations. Thus, transition rules capturing the semantics of BPEL activities
are specified in Maude by rewrite (conditional) rules. Each rule has a name
to reflect the semantics of the activity it models. The ThrowR rule specifies
the semantics of the throw activity. The throwing of a fault f evolves to
a configuration below the dashed line, containing an arbitrary activity got
from evaluating f with a lookup of the environment of the fault f , (which
is the fault handler activity). The rule RethrowR expands to a sequence of
endscope and a throw activity when executed. Thus going up one level to the
enclosing scope since the current scope has ended.

crl [ThrowR] : < throw(fv); A, sv, (rho, sigma) >

=> --------------------------------

< A’, sv’, (rho’, sigma’) >

if sv’ := scopname(evalfv(fv, sv, rho, sigma)) /\

rho’ := fhenv(evalfv(fv, sv, rho, sigma)) /\
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A’ := fhact(evalfv(fv, sv, rho, sigma)) /\

sigma’ := sigma .

rl [RethrowR] : < rethrow(f); A, sv, (rho, sigma) >

=> -----------------------------------------------

< (endscope ; throw(f)); A, sv, (rho, sigma) > .

As already mentioned, the operational rules in Chapter 3 are (closely)
mapped to (conditional) rewrite rules. For example the rule below maps
to RethrowR given above.

rethrow: rethrow f , endscope ; throw f

The rule AssignR models the assign activity. The assign(x, e) evolves
to a configuration that contains the rest of the activity (which can be an
empty activity), the same scope, the same environment and an update to
the store with a new value from the evaluation of the expression e. Note the
lookup of address x in the current environment and store. The transition is
specified using a conditional rewrite rule which specifies that assignment can
only occur (in this case) only when the variable x is defined in the current
environment.

crl [AsgnR] : < assign (x, e); A, sv, (rho, sigma) >

=> -------------------------------------------

< A, sv, (rho, sigma[rho(x) / eval(e, sv, rho, sigma)]) >

if defnd?(x, (rho, sigma)) .

The sequential composition of activities executes the first activity, and
when it finishes, the second activity begins to execute. The sequence com-
pletes when the last activity has completed and a sequence of empty activity
and another activity evolves to that activity. The sequence construct (;)
are defined to be part of atomic activites. For instance, the assign activity
above is composed sequentially with another activity A which may also be
an empty activity.

The rule ParFlowR models parallel composition which allows activities to
be executed concurrently.

crl [ParFlowR] : < (A || A’); R, sv, (rho, sigma) >

=> -------------------------------------------

< (A’’ || A’’’); R, sv, (rho, sigma) >

if < A, sv, (rho, sigma) > =>

< A’’, sv, (rho, sigma) > /\

< A’, sv, (rho, sigma) > =>

< A’’’, sv, (rho, sigma) > /\

(A || A’) =/= (A’’ || A’’’) .
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The rules FlowR, FlowR3 models the execution of activities concurrently.
In rule FlowR, there is no link dependencies and thus arbitrary activities can
be executed in parallel. The second rule models the sequencing of activities
based on their link dependencies. Thus if the link condition of a source
activity evaluates to true and there is a corresponding target activity, then
the two activities are executed sequentially with the source activity executed
before the activity containing the target link.

rl [FlowR] : < (flow (A A’) wolf), sv, (rho, sigma) >

=> -----------------------------------

< (A || A’), sv, (rho, sigma) > .

crl [FlowR3] : < (flow src(id,be) tgt(id,be) /

[A & src(id’,be)] [A’ & tgt(id,be)] wolf),sv,(rho, sigma)>

=> ------------------------------------

< (A ; A’), sv, (rho, sigma) >

if id == id’ /\ lcond(src(id,be)) == T .

The rule ScopeR models what happens when entering a scope. It evolves
into a sequence of activities: scope declaration and associated activity A;
termination handler TH, endscope and updates of the environment and the
store. The changes in the environment and store include a creation of new
locations for the current scope and it’s associated fault handlers. The store
holds the compensation handler for the enclosing scope as well as the fault
handler if specified.

crl [ScopeR] : < ( scope{ sv . dc , h | A }); R, s0, (rho, sigma) >

=> --------------------------------------------------

< ((dc ; A) ; (TH ; endscope)); R, s0, (rho’, sigma’) >

if (rho[loc(1) / sv ][loc(2) / j ]) => rho’ /\

(sigma[loc(1) / (sv,rho,CH)][loc(2) / (sv,rho,FH)]) => sigma’ .

Maude platform offers tool support for execution of specified semantics, us-
ing the rewrite and search facilities. In the next section, we present the
experiments on testing the semantics with some test results.

4.3 Testing the Semantics

In the Maude platform, there exist facilities that are useful for testing
the specified semantics such as executing the system specification through
rewrite and frewrite commands. We use the rewrite facility to test the
developed semantics to see whether the resulting configurations correspond
to the given semantics. For example we can rewrite a synchronous invoke
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activity to see if the reply has a corresponding receive and that the mes-
sage involved is actually updated in the store. The resulting configuration
in Figure 4.3 shows that the semantics definition for the synchronous invoke
evolves to a reply and a receive with updates on the store as expected.

1 rew < invokes(PV("Supplier") VV("ShippingInfo"), PV("shippingPT")

2 VV("dummy")), SV("RootScope"),( PV("Supplier") |> loc(1)

3 VV("ShippingInfo") |> loc(2) PV("shippingPT") |> loc(3)

4 VV("dummy") |> loc(4), loc(1) |> 1 loc(2) |> 5 loc(3) |> 1

5 loc(4) |> 0 )

6 > (P1 ^ P2) .

rewrites: 21 in 1628036047000ms cpu (0ms real) (0 rewrites/second)

result Config: < noact,SV("RootScope"),(PV("Supplier") |> loc(1),

loc(1) |> 1)> P1 $

< noact,SV("RootScope"),(VV("ShippingInfo") |> loc(2)

PV("shippingPT") |> loc(3)

VV("dummy") |> loc(4),

loc(4) |> (mtS(mtE(VV("ShippingInfo")))) loc(2) |> 5

loc(3) |> 1)> P2

Figure 4.3: Testing Individual Activities

In a similar manner, the tests are done for other activities. Executing
a scope activity evolves to a configuration with a sequential composition of
the activity contained in scope (A), the termination handler (TH), and the
endscope actvity. dc is the declaration part of the scope while R denote the
rest of the activity.

1 rew < (scope sv . dc , h | A ); R, sv, (rho, sigma) > .

rewrites: 7 in 1628036047000ms cpu (1ms real) (0 rewrites/second)

result Config: < dc ; A ; TH ; endscope ; R, sv, (k |> loc(3)

j |> loc(2) i |> loc(1) rho, loc(3) |> ae loc(2) |> af

loc(1) |> ac sigma)>

Figure 4.4: scope Activity

The pick activity evolves to a configuration where one activity (either the
event triggered or time aware) is executed. It uses the wait activity which
we implemented as a counter to handle the alarm case.

A flow activity can evolve to a configuration where the activities are
executed sequentially (A;A′) as shown in Figure 4.6. In this case, the source
(src(id, be)) and target (tgt(id, be)) links synchronize.
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1 rew < (pick {p A : d A’}), sv, (rho, sigma) > .

rewrites: 2 in 30010ms cpu (0ms real) (0 rewrites/second)

result Config: < A’,sv,(rho,sigma)>

Figure 4.5: pick Activity

1 rew < (flow src(id,be) tgt(id,be) / [A & src(id,be)]

2 [A’ & tgt(id,be)] wolf), sv, (rho, sigma) > .

rewrites: 2 in 1628036047000ms cpu (0ms real) (0 rewrites/second)

result Config: < A ; A’,sv,(rho,sigma)>

Figure 4.6: flow Activity

A throw activity evolves to a configuration that contains the fault han-
dler (A′), in an outer scope (sv′) and a new environment (rho′). These are
obtained from the evaluation of a fault variable.

1 rew < throw (FV("Fault1")); skipa, SV("Scope2"), (FV("Fault1")|>loc(10)

2 SV("Scope2") |> loc(20), loc(20) |> 2

3 loc(10) |> fval(sv’,rho’,A’) ) > .

rewrites: 14 in 1628036047000ms cpu (0ms real) (0 rewrites/second)

result Config: < A’,sv’,(rho’,loc(20) |> 2 loc(10) |> fval(sv’, rho’, A’))>

Figure 4.7: throw Activity

Summary

We have presented a rewriting logic specification of the BPEL semantics in
the Maude platform. We have illustrated how the executable specification
can be used to test the semantics of the different constructs of the language
thus improving our understanding of the language and paving a way for a
semantic-preserving mapping for an improved analysis of interacting services.
In a previous test, we implemented a version of the semantics with a func-
tional composition of the environment and store component. This is because
the separate environment and store coupled with the complex fault value is
too complex for Maude if not flattened. Using this version with flattened
environment, we found out that there is a possibility of race conditions when
executing three concurrent invokes inside a flow. The race conditions issue
was resolved when we extended the semantics of flow activity with links where
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we assign true or false value to matching source and target links. Further, the
search tool exposed non-determinism in the example BPEL process, where
it happens that at certain executions, the client gets different approval mes-
sages with the same request. This is due to the introduction of fault handling
activity in connection with one of the invoke activities. One possible solu-
tion to some of these problems would be to restrict the use of these advanced
activities but this would certainly defeat the main purpose of the BPEL lan-
guage. However, analyses can be used to study the traces of execution that
depict the behaviour of these advanced activities as well as unexpected be-
haviour which will improve our understanding of what is happening and why
such things are happening.

4.4 Translating to UppAal

In this section, we outline a high level description of a translation process that
maps BPEL to UppAal. We introduce some of the elements in UppAal used
in the translation process such as channel, location, guard, synchronization,
etc. This is followed by the mapping of (abstract) BPEL elements to UppAal
elements.

4.4.1 UppAal

Timed automata (TA) are finite automata extended with a set of real-valued
variables [AD94, BLL+96]. The variables model the logical clocks in a sys-
tem and are initialized to zero when the system starts. TA are used for
specifying and verifying real-time and concurrent systems. For instance, a
concurrent system such as a BPEL process can be modelled by a finite set
of timed automata running in parallel. Logical clocks can model timing in
BPEL. A network of timed automata is a finite set of timed automata that
run concurrently, using the same set of variables, and synchronizing on com-
mon actions. UppAal [BLL+96] is a tool suite for modelling, simulating and
analyzing specifications based on the theory of timed automata extended
with additional features (eg. variables over finite domains). UppAal models
are usually a network of synchronizing timed automata.

Syntactically, a time automata model in UppAal is a graph with nodes
called locations and directed edges called transitions. Figure 4.8 shows an
example automaton represented graphically in UppAal to illustrate some of
the features/elements. It has four locations (Start, S1, S2, SetupComplete)
and five transitions.

Each location can be labelled with a name and invariant. An invariant
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SetupComplete

S2

time <= Setup_tb

S1Start

time >= Setup_tb

Setup_EH!

time=0

Setup_FH!

Setup_TH!

Setup_CH!

initialize()

Figure 4.8: Example graphical representation of a TA in UppAal.

expresses a condition on the value of clocks and variables that must be sat-
isfied for the automaton to stay in the location (eg. S2 has an invariant
time <= Setup tb in Figure 4.8). A state of a TA is a pair consisting of
a location and an assignment mapping all clocks and variables to values in
their domains. Each TA template must have exactly one initial location,
marking the beginning of a process. The initial location is marked by a dou-
ble circle (eg. Start). Locations may be marked as committed, indicating
that transitions from the location are taken atomically without interleaving
with transitions of other automata in the network. In committed locations
as in so called urgent locations, no time is passing (eg. Start and S1).

A transition may be assigned the following: a guard which may contain
clock values and variables (eg. time >= Setup tb in Figure 4.8); a synchro-
nization through channels, where ! denotes send and ? denotes recieve (eg.
Setup FH! and Setup CH!); and an update for updating variables and clocks
(eg. time = 0).

4.4.2 Mapping BPEL to UppAal

A BPEL process maps to a network of timed automata and for the part-
nerlinks and operation attributes, we take their values as (input/output)
channels. A port is mapped to a half duplex channel. A half-duplex channel
allows for communication in both directions, but only one direction at a time
(not simultaneously). Given a BPEL process we translate as follows:

1. Flatten any declared scope and declare channels for all specified ports,

2. Declare channels for external parallel services,

3. Declare variables for all the process variables,

4. Map each flattened scope to an automaton,
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5. Map any declared event, or compensation handler to an automaton
with a start and end location,

6. For each of the activities, map to a template as summarized in Ta-
ble 4.1,

7. Glue associated templates and compose the system (including an envi-
ronment automaton that denotes a client)

Basic activities map to UppAal templates which may contain data fields
(BPEL variables). For instance, the wait activity translate to a template
shown in Figure 4.9, consisting of three locations and two transitions with
the middle location marked with an invariant cw <= d, meaning that the
automaton may stay (wait) in the location as long as the condition is satisfied.
When the condition no longer holds, the location must be left through an
enabled transition. In the model of the flow activity shown in Figure 4.10,
synchronization actions are used to activate enclosed activities. Similarly,
updates and guards are used to keep track of active and finished activities.

W2

Wait d
cw <= d

W1

cw == d

Wait?
cw = 0

Figure 4.9: Example mapping of
wait activity.

wolf
waiting

flow

active >= 1

actCompleted[i]?

active --

active == 0

startActivity[i]!
active:= n

Figure 4.10: Flow

A mapping of the invoke, receive and reply activities to automata tem-
plates with value passing are shown in Figure 4.11 to Figure 4.14. The au-
tomaton with send channels (!) synchronizes with another automaton which
receives (?) the sent message on the same channel. Synchronization means
that two processes change location in one simulation step. A synchronization
operation is done through a channel (? and !).

This translation process presents steps to extract specifications of be-
haviour in BPEL in the form of UppAal timed automata for analyzing be-
havioural properties using the UppAal tool in addition to giving semantics to
BPEL. Thus composing the semantic function and the translation function,
gives a property preserving semantics for BPEL based on the theory of timed
automata. Hence, the semantics of BPEL consists of a collection of paral-
lel timed automata, communicating using shared variables and synchronous
communication via channels. Since the UppAal model is an abstraction,
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invoke_a_eloc

invoke_a_sloc

port!

input := imsg

Figure 4.11: Asynchronous invoke

invoke_eloc1

invoke_sloc1

invk_port1?
output := o

invk_port0!
input := i

Figure 4.12: Synchronous invoke

recv_eloc

recv_sloc

recv_port?
variable := v

Figure 4.13: Receive

repl_eloc

repl_sloc

repl_port!

variable := v

Figure 4.14: Reply

the correctness of the translation process can be established by setting up
a bi-simulation relation between the UppAal models and the operational se-
mantics presented in Chapter 3.

The next steps of the work concern implementing the translation process
and refining the UppAal models of BPEL activities to make it more suitable
for verification of a larger BPEL process with minimal manual modifications.
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BPEL UppAal Remark

process Network of TA templates abstract all value domains
port channel declaration half-duplex
correlationSet synchronization
scope TA template apply flattening
fault handlers TA template with sloc, chan, eloc
event handlers TA template with sloc, chan, eloc
compensation handler TA template with sloc, chan, eloc
Activities
receive TA template 2 locs, 1 edge
reply TA template 2 locs, 1 edge
invoke(async) TA template 2 locs, 1 edge
invoke(sync) TA template 3 locs, 2 edges
assign TA template 2 locs, 1 edge
validate TA template 2 locs, 1 edge
wait TA template with time guard
empty TA template urgent, 2 locs, 1 edge
sequence composing transitions depending on the activity
if TA template with guard, sync. action
while TA template with locs, inv, guard
repeatuntil TA template with locs, inv, guard
foreach TA template with locs, inv, guard
pick TA template with locs, inv, guard
flow TA template with sync. action

Table 4.1: BPEL to UppAal
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Chapter 5

Conclusion

The main contributions of this thesis considering the research questions raised
in the introduction are summarized as follows:

Exploring the Standards and Notations

A classification of the series of existing standard languages and notations
based on the family (Web Services, Semantic Web, Electronic Business) and
the aspects (functionality, quality, security, etc.) showed how and where they
are used. This answers the question: what languages/notations are used to
represent service contracts? The classification identifies competing languages
across aspects. It shows where a language may fit into the development of
service based applications as well as the ones that allow for desired analyses,
for instance match of functionality, protocol compatibility or performance
match. In addition, we use the classification to survey analysis approaches.

Unlike previous service contract language classification studies, we con-
sider many aspects as well as analysis techniques. In particular, we consider
families of competing languages, aspects of service contracts they cover, and
formal analysis models for different classes of the languages. The classifica-
tion has clear implications for service based system designers; it may assist
in planning of development activities, where an application involves services
with contracts that span across families. Such scenarios are to be expected
as service oriented applications spread. However, the classification is not
exhaustive as more standards and notations emerge while the existing stan-
dards extend with more aspects or even support tools.
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Consistency Across Specifications

In [COR08] we investigated an automated technique to check consistency be-
tween protocol aspect of service contracts specified in Business Process Ex-
ecution Language (BPEL) and Choreography Description Language (CDL).
The contracts are abstracted to (timed) automata and from there a simula-
tion is set up, which is checked using automated tools for analyzing simula-
tion relations. Thus providing answers to two of the the research questions:
what are the properties to be analyzed? and how should one analyze the
behavioural properties of services?

We have demonstrated through a case study that, this analysis technique
is applicable and gives a handle for automating yet another consistency check
for web services. Unlike previous studies for instance in [DPC+05, Mar05]
where either one language or one aspect of service contract is considered, we
extend their perspective. Our approach considers two languages (CDL and
BPEL) and two aspects of service contracts (behaviour and functionality).
This is because CDL has a more detailed capture of abstract processes com-
pared to the BPEL abstract processes. Further, BPEL is a programming
language to specify the behaviour of a participant in a choreography whereas
choreography is concerned with describing the message interchanges between
participants. In addition, a choreography definition can be used at design
time by a participant to verify that its internal processes will enable it to
participate appropriately in the choreography. With this, certain proper-
ties of individual services can be verified as well as verifying the consistency
between the protocols in both BPEL and CDL.

The results of the consistency checks show that the derived processes
from the two service contract specifications are bisimilar and trace equiva-
lent only when certain events (for instance fault, compensation handling in
BPEL) are hidden. For example, both specifications accept the same oper-
ation sequence; since the CDL specified the protocols, while BPEL contains
the operation names but with more information. They also accept the same
message sequence. Thus, the state that receives the message is followed by a
state that sends the message in both automata. The automaton from BPEL
may contain some internal states. Therefore we note that CDL can only
be consistent with an abstract version of BPEL where for example, fault
handlers are hidden.

A possible future work is to streamline the tool fragments developed for
these experiments, and in particular to make true the claim that the bi-
simulation can be integrated in an analysis process. It is well known that
model checking has its limits, and investigations are also being done of the-
orem proving approaches [GORS06] which may be more suitable for full
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implementation of conformance checking.

Analyzing Behavioural Properties

In [COR07] we analyzed behavioural properties for web service contracts for-
mulated in Business Process Execution Language (BPEL) and Choreography
Description Language (CDL), answering the question on how to analyze the
behavioural properties of services. The approach includes a translation of
the behavioural aspects of a service contract (in BEPL) and the functional-
ity aspect (in CDL) to a timed automata for model checking. The approach
thus covers two major aspects of contracts, and the approach lends itself
to generalization to further quantitative aspects, e.g. performance analysis
with queuing models. Here, performance would be analyzed with the model
covering functionality, and consistency checked with the other models.

A clear difference between this approach and the related previous studies
which mainly focus on either the functional aspect or the behavioural aspect
of a contract is that a multi view (functional, behavioural) of a web service
contract and a set of tools are proposed for the analysis while ensuring con-
sistency. There are some potential limitations in this study. First, the timing
aspects are not considered. Second the derivations are manually generated.
Although the timing issue is not the main direction in this investigation,
extending the models with time constraints can be naturally managed using
the same tool. Thus the use of UppAal is to some extent a practical decision.
We feel that it is well justified for the kinds of analyses that we discuss, be-
cause they are concerned with checking the properties of the service as such.
For checking implementation conformance, it may not be ideal, and a trans-
lation to JML may be much more useful, in particular since Java may be
an underlying implementation language, and JML is a formal specification
language tailored to Java. Its basic use is thus the formal specification of
the behaviour of Java program modules. This direction is, however, not the
main line of our investigation. We have developed a translation process that
maps behavioural aspects of service contracts specified in BPEL to UppAal
timed automata towards providing a solution to the second issue of manual
derivation. The translation process is discussed below.

89



Executable Semantics

We have considered an executable semantics of BPEL based on structural
operational semantics, where the operational semantics associates to each
BPEL process, an LTS whose configurations consist of a BPEL activity,
a name of a current scope, an environment in which the activity will be
executed and a store. The operational semantics of a BPEL program is then
defined based on transitions between configurations.

The semantics are directly executable in the Maude platform. The Maude
platform is supported with tools, which we used to test the implemented
semantics. In a previous test with a functional composition of environment
and store, using the search tool exposed non-determinism in an example
BPEL process containing a flow activity. This is also the case with the scope
and throw activity. However, there is a loss of dynamic scoping in this setting.
In this case, the feedback from the tests shows that we need to separate the
environment and the store and also a complex value for the fault variable. We
therefore consider three component fault value; scope name, environment and
fault handler (activity). The nested concurrency model of BPEL is captured
in a natural way by the built-in notion of concurrency together with some
rules that define interleaving. An advantage of rewriting logic is that it has
a general, built-in notion of concurrency.

In Maude, concurrency is typically based on defining multisets of units
(for example, activities), which become concurrent when several of these
units can each be rewritten independently, meaning that each of these units
changed its state (configuration). The behaviour of a system is modeled
through change of the state; hence, multiple units of a system change state
concurrently, i.e., multiple units in the system behave concurrently. We have
used the implemented semantics to test the operational semantics of the
different activities of BPEL. The feedback from the tests helps in refining the
semantic definitions as well as exposing some ambiguities in the language.
For example we refined the definition of the flow activity to contain a set of
links and a set activities which has a corresponding source/target link. Non-
determinism is inherently part of the system and this is seen when testing
communication (receive, reply, invoke activities), concurrency (flow activity)
and pick activity.

The implemented executable semantics gives a better understanding of
the semantics of the BPEL programming language, and a suitable starting
point for analyzing service contracts of both individual and connected services
based on Service Oriented Architecture (SOA).
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Translating to timed automata

As discussed in the related work, there are several issues around formalizing
the BPEL contract language and the use of the formalizations for analysis.
First, there is the issue of coverage - that is to say, how much of the lan-
guage constructs (activities) are covered? Most of the efforts using automata
covers some fragments of BPEL without the intricate features. A few of the
efforts using Petri net covers a feature-complete BPEL. Our framework is an
alternative based on automata (LTS).

Second, there is the issue of translation where one may ask: is it semantic
preserving? Mapping BPEL to timed automata (TA), defines semantics for
BPEL with a clear description of what is included and what is abstracted
in the mapping and thus considers the issues raised above. The technique
employed is systematic and can be made more rigorous by using the power
of functional languages in defining a property preserving mapping for BPEL,
the behaviour aspect of service contracts. It also provides an answer to the
research question: what is an appropriate formal model to use in analyzing
service contracts?

Following a functional approach, we could define two functions: a function
that maps BPEL to Uppaal (ie. the translation process) and another func-
tion that maps UppAal to its transition system semantics (which is given).
Composing these two functions relates BPEL to the given transition sys-
tem semantics. Thus given semantics to BPEL. In effect, having defined the
function mapping BPEL to Uppaal, we achieve a property preserving ex-
traction/translation. Specifically, we translate as presented in Chapter 4, for
example, BPEL process to a network of timed automata templates; partner-
links and ports to channel declarations; scope and all the activities to timed
automta templates. An immediate further work is the implementation of
the translation process. More precisely, defining the extraction/translation
function using a functional language.

Summary

As already mentioned, BPEL supports complex exception handling mech-
anisms through compensation and fault handling constructs because one
should capture both the normal behaviours and exceptional behaviours as
part of the contract specification. BPEL has nested scoping coupled with
the ability to nest concurrent activities in order to support good program-
ming styles.

Although BPEL is a complex language because of its semantics and ver-
bose syntax, it is an industry standard for service orchestration and more
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BPEL engine vendors are emerging. That means the major players in the
service orchestration business will still employ it for some time in the future.

BPEL looks promising when one looks at the scope feature, supporting
long running distributed transactions and the ability to do compensation.
What may be inferred from these promising features is that two distinctly
different programming paradigms could be considered. The first paradigm
will be referred to as event handler (Event). Under this paradigm, a BPEL
process can be programmed with only event handlers. This approach would
still be serializable because it does not contain the intricate activities. The
second paradigm will be referred to as communicating sequential process
(CSP). Under this paradigm, a BPEL process can be programmed as se-
quential communicating processes. The two paradigms do not mix well. For
instance, consider the mixture of compensation and event handlers. What
happens if an event handler is a step in a transaction? It will lead to complex
coding to enforce an ordering on event handlers. One can see that this sce-
nario is better managed with sequencing of activities that run to completion.
Another problem could arise due to interference in concurrent activities when
event handlers and activities such as pick are combined. In this case, analysis
tool may highlight these problems. However, when doing the analysis, we
should consider the possibility that there is a state space explosion which is
inherent in complex systems.

In conclusion, we propose that BPEL needs patterns that can be pro-
grammed by either the event handler paradigm or the communicating se-
quential process paradigm but not a combination of the two.

92



Paper A:
Classification of SOA Contract
Specification Languages1

Authors:
Joseph C. Okika

Aalborg University, Denmark

Anders P. Ravn

Aalborg University, Denmark

Abstract

There are numerous existing notations and standards in the Web service commu-

nity. These may be grouped broadly into three competing families, namely; Web

Services, Semantic Web, and Electronic Business. Although the families are com-

peting, we expect that applications will cut across them and there is a need to map

from one to another and to analyze compatibility and other properties. Therefore

we survey how they deal with different aspects. We then illustrate with examples,

the aspects of contracts captured by one language from each of the three competing

families in addition to WSDL, the core standard for Web services description. The

result is a classification based on the aspects of computations: functionality, pro-

tocol, and for instance performance covered by the languages. The classification is

used to identify similarities between semantic models and thus find potential map-

pings between the families. Furthermore, this gives a handle on analysis techniques

that may apply to the aspects in a particular family.

1This chapter is previously published in [OR08].
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1 Introduction

Service oriented software systems are becoming very popular; a recent sur-
vey [Taf07] claims that adoption of SOA by enterprises will double in the
next two years. Service Oriented Architecture (SOA) [Erl05] is a way of
reorganizing series of previously operational software applications and sup-
port infrastructure into an interconnected services, each accessible through
standard interfaces and messaging protocols. It promotes services that are
distributed, heterogeneous, autonomous and open. This approach is partic-
ularly applicable when multiple applications running on varied technologies
and platforms need to communicate with each other. In this way, enter-
prises can mix and match services to perform business transactions with less
programming effort.

With increased adoption of Service Oriented Architecture and other ser-
vice based frameworks, the use of service-based applications is permeating
in every aspect of service computing. However, the complexity of interac-
tion [LX05] between several service providers and service consumers leads to
question of who is responsible when things go wrong. That means, there has
to be a form of agreement, on the details of a service. There has to be a
contract [GORS06].

Although there are several definitions and understandings of contract, its
relevance is clear. Notable background works to the issue of contract defini-
tions include [BJP99, Pap03, DDK+04, Tos05]. When it comes to services
within SOA, we have a broader definition than the approached used in the
background works. A contract is about certain aspects of a service such as
interfaces, behaviour, functionality, and quality. A contract language ex-
presses properties of some aspects. These properties define proper services
collaborations and/or interactions.

There are many notations, languages and even standards to specify service
contracts and associated techniques that support analysis of conformance for
a specific service or compatibility between provided services and consuming
services. We group them into three broad families; those dealing with Web
services, those belonging to the Semantic Web services and those concerned
with Electronic business. Web Service Definition Language (WSDL) [BL06]
(a member of the first family), has an XML grammar that describes the ca-
pabilities of Web services through its interface descriptions. It serves as a
contract between service provider and service consumer. Also in this first
family are WS-BPEL [ACD+03], which covers the orchestration of services,
and WS-CDL [KBR+04], which covers the choreography of interacting ser-
vices. OWL-S, which describes more of functionality aspects, belongs to the
second family, whereas BPSS that describes business contracts belongs to
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the third family.

Our goal in this paper is to explore how these families cover key aspects
of service contracts. The main contribution is a classification based on the
family and the aspects. The classification identifies competing languages
across aspects. It shows where a language may fit into the development of
service based applications as well as the ones that allow for desired analyses,
for instance match of functionality, protocol compatibility or performance
match. In addition, we use the classification to survey analysis approaches.
Furthermore, the classification may assist in planning of development activ-
ities, where an application involves services with contracts that span across
families. Such scenarios are to be expected as service oriented applications
spread.

The remaining part of the paper is organized as follows: related work is
presented in Section 2. In Section 3, we introduce the different aspects of
a service contracts. Section 4 presents details of notations and standards;
we introduce major notations that capture service contracts through small
examples. Section 5 categorizes the aspects and the notation to form the
classification for service contract languages and the corresponding analysis
techniques. Conclusions are given in Section 6.

2 Related work

Several comparative works exist in service contracts specification and their
models. However, most papers compare pairs of languages without consid-
ering many aspects. For example, [MH05] presents a Web Service Choreog-
raphy Description Language (WS-CDL) a specification for describing multi-
party collaboration in conjunction with the Web Services Business Process
Execution Language (WS-BPEL). It explores a mapping between the two
languages. This deals only on the generation of BPEL from CDL thus cov-
ering the behavioural aspects of service contracts only. The paper [BHES07]
describes transformations from Ontology Web Language-Service (OWL-S)
to Business Process Execution Language (BPEL), while in [AAS06] similar
work is done on developing a mapping strategy to map BPEL processes to
OWL-S. The main focus of that paper is to overcome the semantic limitations
of BPEL.

Some specific work covers several languages. For example, [VRO+03]
presents languages such as XLANG [Tha01], BPELWS [ACD+03],
ebXML [WD06], coupled with quality and security aspects. The work notes
some similarities between BPML and BPEL. The work considers several lan-
guages and aspects but not analysis techniques.
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The business process community uses some of the languages in devel-
oping comprehensive service compositions. For example, [LGB05] presents
a survey on state of the art in modeling of Cross-Organisational Business
Processes (CBP) where aspects of CBP modeling were considered based on
the requirements satisfied by selected languages, which include; BPEL, CDL,
and ebXML also considered here in our work. The paper [tBBG06] presents a
survey on service composition approaches, where several contract languages
such as BPEL and OWL-S are compared with respect to service composition
requirements. Formalisms such as automata, Petri nets, and process algebra
are described as composition approaches that allows for analysis.

The overall observation about the above mentioned works is that they all
deal with three major issues; semantics of the languages, mappings between
languages and applicability. The main difference with our work is that we
consider families of competing languages and aspects they cover. Formal
analysis models is also considered for different classes of the languages.

3 Service Contract Aspects

In order to give a precise, but not overly formal, meaning to the different
aspects of service contracts, we will view services abstractly as a collection
of Mealy machines [HU79]. Mealy machines are state machines that takes a
string on an input alphabet and producing a string on an output alphabet.
Outputs are a function of both the present state and the input.

Input symbols correspond to actions of a service while output symbols
correspond to the results of actions. Essentially, finiteness allows for auto-
matic analysis but since we are dealing with services, both the alphabet and
the state may be infinite. For instance if we consider the actual parameters
to an operation as part of the alphabet, or when we consider a very concrete
specification of the state. In that case some form of abstraction is needed.
The two functions, from which the next state and the value of results are
determined are useful for the formulation of contracts. With this model in
mind, we discuss the different aspects.

• Interface defines the syntactic communication abstraction of a piece
of software that is provided to an external system. It covers the type
system of a particular piece of software as well as linking and mar-
shaling; an early example is Interface Description Language (IDL) of
CORBA or the Interface declarations in Java. In terms of the Mealy
machine, Interface defines the input and output alphabets.

• Functionality refers to what the service can do for a user. It is a
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set of operations and their specified properties that satisfy stated or
implied needs which for instance can be captured as preconditions and
postconditions.

Preconditions are properties that must be true when the service op-
eration is called. It is the responsibility of the caller to guarantee that
these properties hold. If the preconditions do not hold, the operation
is allowed to behave in an arbitrary manner. Preconditions are for
enabling the transition in terms of the Mealy machine.

Postconditions are properties that a service operation guarantees will
hold when the service operation exits. Note that if the precondition
does not hold when the service operation is called, the postcondition
need not hold on exit of the service operation. In terms of the Mealy
machine, Postconditions are a specification of the next state and out-
put.

On the whole, Functionality relates to the transition and output func-
tions with precondition enabling the transition and the output function
with postcondition specifying the next state and output.

• Protocol The behaviour of a system is a description of the input
events, the response to various scenarios of events, signals, messages,
etc. In the context of the Mealy machine, it can be viewed as the
language accepted by the machine.

• Security: refers to techniques and practices that ensure confidentiality
properties for a service. Security has a special treatment because it
differs from other quality properties. It specifies the protocols and
coding mechanisms to be used, whereas other qualities tend to give
thresholds on measurable quantities.

• Extra Functional Properties A quality is measurable, that is: given
a service, there is a function that maps it to some scale, for instance
a number between 1 and 10. A contract on a quality gives constraints
on the values acceptable for a concrete service. Examples include:

Performance of a Web service is measured in terms of throughput (num-
ber of Web service requests served at a given time period) and latency
(round-trip time between sending a request and receiving the response).
Reliability represents the degree of being capable of maintaining the ser-
vice and service quality.
Availability is concerned with whether the Web service is present or
ready for immediate use.
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Accessibility deals with the degree of capability of serving a Web service
request.

In the context of the Mealy machine, the above mentioned extra-
functional properties can be handled by introducing additional functions for
instance cost functions on Mealy machine or by extending Mealy machines
to stochastic processes, for instance Markov processes [KS76].

In the next section, we present the different notations and standards that
capture one or more of the above mentioned aspects of service contracts.

4 Service Contract Descriptions

Several SOA standards or other notations provide a way to describe/specify
aspects. We group them into three broad families; Web Services (WS-*),
Semantic Web Services (*-S), and Electronic Business (eb-*). We present
in detail the WSDL language, because it plays a major role in SOA de-
velopment, and it is used or extended by some of the other languages. In
addition, we illustrate with examples, one language from each of the three
families which has either similar constructs for specifying contracts or cover
common aspects. The intention is to give an overview of what are the set of
relevant contract aspects considered by each notation, how they are modeled
and how they are possibly analyzed.

Web Services (WS-*)

We consider in this subsection, WSDL, WSOL, WS-BPEL, WS-CDL, WS-
Security, WSLA, WS-Policy, and WS-Trust.

Web Service Definition Language (WSDL) [BL06], has an XML
grammar that describes the capabilities of Web services through its inter-
face. It serves as a (syntactic) contract between service providers and service
consumers. WSDL is a machine-processable specification of Web service in-
terfaces which has two parts; the abstract part where interfaces and the
corresponding types, messages, operations (portTypes) are specified; and
the implementation or concrete part where the access point of the services
are specified. In order to illustrate these points, below is an example taken
from [Jur06].

<?xml version="1.0" encoding="utf-8" ?>

<definitions xmlns:http="http://schemas.xmlsoap.org

/wsdl/http/"

xmlns:xs="http://www.w3.org/2001/XMLSchema" ...

<portType name="EmployeeTravelStatusPT">

<operation name="EmployeeTravelStatus">
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<input message=

"tns:EmployeeTravelStatusRequestMessage"/>

<output message=

"tns:EmployeeTravelStatusResponseMessage" />

</operation>

</portType> ...

<message name=

"EmployeeTravelStatusRequestMessage">

<part name="employee" type="tns:EmployeeType"/>

</message>

<message name=

"EmployeeTravelStatusResponseMessage">

<part name="travelClass"

type="tns:TravelClassType"/>

</message> ...

In the above example, the WSDL document starts with a preamble spec-
ifying the XML version and the encoding type. This is followed by the root
element definitions where all the namespaces used in the WSDL document
are declared. Following the namespace declarations are the portType decla-
rations. The EmployeeTravelStatus operation consists of an input and an
output message. The input and output messages are also defined in WSDL
as shown in the last part of the example. Note that version 2.0 of WSDL
uses interface for portType and endpoint for port.

The Business Process Execution Language for Web Services
(BPEL) specifies behavioural aspects of service contracts. It uses the part-
ner links mechanism and a number of activities to model the services in-
teraction. Each partnerLink is characterized by a partnerLinkType, which
characterizes the conversational relationship between two services by defin-
ing the roles played by each of the services in the conversation. It specifies
the portType provided by each service to receive messages within the context
of the conversation. These portTypes are defined in the WSDL document,
and each role specifies exactly one WSDL portType. A WSDL document
of a WS-BPEL process service contains only the abstract definition of the
service. The concrete part of WSDL describes the means of messaging com-
munication technology. This is done through partnerLinkType sections that
represent the interaction between the process service and its client services.

Activities are categorized into two; basic and structured. Basic activities
(for instance invoke, receive, etc.) define the interaction capabilities of BPEL
processes whereas the structured activities are made up of constructs such as
flow (for synchronization), switch, and pick in addition to the basic activities.
For example:

<?xml version="1.0" encoding="utf-8" ?>

<process name="Travel"

xmlns="http://schemas.xmlsoap.org/ws/2003/03/

business-process/"

...

<partnerLinks>
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<partnerLink name="client"

partnerLinkType="trv:travelLT"

myRole="travelService"/> ...

<partnerLink name="employeeTravelStatus"

partnerLinkType="emp:employeeLT"

partnerRole="employeeTravelStatusService"/>

...

<partnerLink name="AmericanAirlines"

partnerLinkType="aln:flightLT"

myRole="airlineCustomer"

partnerRole="airlineService"/>

<partnerLink name="DeltaAirlines"

partnerLinkType="aln:flightLT"

myRole="airlineCustomer"

partnerRole="airlineService"/>

</partnerLinks>

<!-- Variables are declared here-->

<sequence>

<receive partnerLink="client"

portType="trv:TravelApprovalPT"

operation="TravelApproval"

variable="TravelRequest"

createInstance="yes" />

...

The required namespaces are declared. Partner links define different par-
ties that interact with the BPEL process. Each partner link is related to a
specific partner link type that characterizes it. The example shows four roles.
The first partner link is called client and it is characterized by the travelLT

partner link type. In order to enable the client to invoke the business process,
we need to specify the myRole attribute to describe the role of the BPEL pro-
cess, that is, travelService. The second partner link employeeTravelStatus

is characterized by the emp:employeeLT partner link type. It is a synchronous
request/response relation between the BPEL process and the web service; we
again specify only one role. This time it is the partner role, because we de-
scribe the role of the web service, which is a partner to the BPEL process.

The last two partner links correspond to the airlines web services. Be-
cause they use the same type of web service, two partner links based on
a single partner link type, aln:flightLT is specified. Here we have asyn-
chronous callback communication, therefore we need two roles. The role of
the BPEL process myRole to the airline web service is airlineCustomer, while
the role of the airline partnerRole is airlineService. Variables are declared
as indicated in the example before the main body of a BPEL process which
contains a sequence activity. The sequence activity has a number of con-
structs, for instance receive. In the example the process waits for the client
to invoke the TravelApproval operation and stores the incoming message and
parameters about the business trip into the TravelRequest. Other constructs
such as invoke, assign, etc are declared in a similar manner.

Web Services Choreography Description Language (WS-
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CDL) [KBR+04] allows the specification of the behavioural aspect of service
contracts similar to the abstract processes of BPEL. Its major purpose is to
define multi-party contracts, which describe the externally observable behav-
ior of web services and their clients. It has an XML-language that describes
a collaboration between a collection of services in order to achieve a common
goal by capturing the interactions among participating services. A WS-CDL
choreography description is made up of definition of activities which are per-
formed by participants. For example, there are three types of activity in WS-
CDL, control-flow activity, workunit activity and basic activity. Control-flow
activities include, Sequence, Parallel, and Choice.

WSLA, WS-Policy, WS-Security, WS-Trust are some of the other
languages in the Web Service family. A major quantitative aspect of a ser-
vice contract is researched in [KL03]. The Web Service Level Agreement
(WSLA) framework [KL03] is targeted at defining and monitoring SLAs for
Web Services. WSLA enables service customers and providers to unambigu-
ously define the agreed performance characteristics and the way to evaluate
and measure them. It has an XML-based language used by both service
providers and service consumers to define parameters, metrics, service level
objectives and guarantees. WSLA references WSDL in its specification. An
example service level objective can be specified in WSLA as follows:

<ServiceLevelObjective name="SLO_for_AvgThroughput">

<soap:operation soapAction="

http://example.com/GetLastTradePrice"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output> ...

WS-Policy [BBC+06], specifies the policy of a web service provider for
the benefit of service consumers. In other words, WS-Policy defines a set
of constructs for specifying web service policies that can be communicated
to others. The specification does not define how to transport or discover a
policy. Policies may be associated with various entities and resources. The
policy may be associated with arbitrary XML elements and WSDL docu-
ments. The WS-PolicyAttachment specifications define such mechanisms.
The policy, specified in an XML document, is transmitted to the requester
using messaging specifications [BBC+06].

WS-Security [ADLH+04] is concerned with the transport of security infor-
mation. For example, the information may contain a user name and password
required for authentication. WS-Security standard is defined to implement
security. It defines enhancements to SOAP by providing a mechanism for
associating security tokens with messages. The security token may be a bi-
nary token, certificate, etc. The standard is fully extensible and can support
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many types of tokens. It provides support for multiple security tokens, trust
domains, signature formats, and encryption technologies [ADLH+04].

WS-Trust [DLDG+02] describes a framework for trust models that en-
ables Web services to securely inter-operate. The goal is to enable appli-
cations to construct trusted message exchanges. This trust is represented
through the exchange and brokering of security tokens.Web Service Offer-
ings Language (WSOL) [TPP02] has an XML notation for specifying multi-
ple classes of services for one Web service. A service offering defines one class
of service for a Web Service. As classes of service for Web Services are deter-
mined by combinations of various properties, WSOL allows specification of
extra-functional aspects as described in Section 3. WSOL is also compatible
with WSDL.

Semantic Web Services (*-S)

OWL Web Ontology Language for Services (OWL-S) [BHL+04] emerged re-
cently with a coverage of both functional and non-functional aspects. OWL-S
is OWL ontology for semantic description of the web services. The structure
of OWL-S consists of a service profile for service discovery, a process model
which supports composition of services, and a service grounding, which asso-
ciate profile and process concepts with the underlying service interfaces. The
Service profile has functional and nonfunctional properties. Functional prop-
erties describe the inputs, outputs, preconditions and effects of the service
(IOPEs).

The OWL-S ontology consists of four main classes that specific services
should be instantiated. (Alternatively, service providers may create sub-
classes of the OWL-S classes and instantiate those instead).
Service, with some basic concepts that tie the parts of an OWL-S service
description together and holds a textual description of the service.
Profile, which describes what it provides to clients, and what it requires of
them. More specifically, a service profile presents the inputs, outputs, pre-
conditions and effects of a service. This information is used for matchmaking,
i.e. to find an appropriate service based on its capabilities.
Process, which has properties used to describe how the service works, i.e.
what happens when the service is used. Services can be described as a col-
lection of atomic or composite processes, which can be connected together in
various ways, and the data and control flow can be specified.
Grounding, with properties to specify how the service is activated, includ-
ing details on communication protocols, message formats, port numbers, etc.
This abstract grounding is usually tied to a concrete grounding in the form
of a WSDL interface description.
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The Web Service Modeling Ontology (WSMO) [Rom05] allows
specification of extra-functional properties for each particular element of a
Web service description. It covers a bigger list of such properties including;
accuracy, contributor, coverage, creator, date, description, financial, format,
identifier, language, network-related QoS, owner, performance, publisher, re-
lation, reliability, rights, robustness, scalability, security, source, subject, ti-
tle, transactional, trust, type, version. However, analysis on these properties
is not possible because the properties are not included in the logical model
of WSML. The Web Service Modeling Language (WSML) is a language for
WSMO.

Electronic Business (eb-*)

The ebXML (electronic business XML) [WD06] is a framework that provides
a global electronic market place where enterprises of any size, anywhere
can find each other electronically and conduct business through exchange
of XML based business messages. It is a standardisation effort established
by the United Nations body for Trade Facilitation and Electronic Business
(UN/CEFACT) and the Organisation for the Advancement of Structured In-
formation Standards (OASIS). ebXML consists of several technologies which
are provided in five main modules in the architecture. Some of these modules
can be used individually and they define several aspects of service contracts.

Business Process Specification Schema (BPSS) describes collabo-
ration between business partners, their roles, relationships and responsibil-
ities. It defines the choreography of business documents thus covering the
same domain abstractly as BPEL. The roles (of business partners) inter-
act with each other through Business Transactions. The business transac-
tions form a Choreography and each Business Transaction consists of one
or two document flows. An example ebXML BPSS specification of a sim-
ple notification transaction with one document flow is given below. The
example is adapted from the Business Process Specification Schema docu-
ment [CCK+01].

<BusinessTransaction name="Notify of advanceshipment">

<RequestingBusinessActivity name="">

<DocumentEnvelope

BusinessDocument name="ASN"/>

</RequestingBusinessActivity>

<RespondingBusinessActivity name=""

</RespondingBusinessActivity>

</BusinessTransaction>

Consequently, ebXML BPSS defines two kinds of collaborations from the
defined business transactions, binary and multi-party collaboration. Before
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we illustrate further, let us first introduce how the contracts between two
parties are defined (CPA) and how the capabilities of a company are described
(CPP).

Collaboration Protocol Profile (CPP) constrains the interaction of
partners by describing the capabilities of an individual party through Busi-
ness capabilities which describe business processes and Technology capabil-
ities which describe message exchange capabilities, transport and security
constraints.

Collaboration Protocol Agreement (CPA) expresses an agreement
between partners. Usually, CPA is derived from CPPs of trading partners. It
describes the capabilities that trading partners have agreed to use to perform
a particular business collaboration. In other words, it is a contract between
two or more trading partners. CPA is also used by trading parties’ comput-
ing systems to set up a runtime environment for the exchange of business
messages. Security characteristics of business process collaboration are also
defined in BPSS, CPP and CPA.

As mentioned above, BPSS specifies a binary and a multi-party collab-
oration. A Binary Collaboration is always between two roles. These two
roles are called Authorized Roles, because they represent the actors that are
authorized to participate in the collaboration. The CPA/CPP Specification
requires that parties agree upon a Collaboration Protocol Agreement (CPA)
in order to transact business. A CPA associates itself with a specific Binary
Collaboration.

A multi-party collaboration is a synthesis of binary collaborations. A
multi-party collaboration consists of a number of business partner roles. Each
binary pair of trading partners will be subject to one or more distinct CPAs.

<MultiPartyCollaboration name="DropShip">

<BusinessPartnerRole name="Customer">

<Performs initiatingRole=

//binaryCollaboration[@name="Firm Order]

/InitiatingRole[@name=buyer]/>

</BusinessPartnerRole>

<BusinessPartnerRole name="Retailer">

<Performs respondingRole=

//binaryCollaboration[@name="Firm Order]

/RespondingRole[@name=seller]/>

<Performs initiatingRole=

//binaryCollaboration[@name=" Product

Fulfillment /InitiatingRole[@name=buyer]/>

</BusinessPartnerRole>

<BusinessPartnerRole name="DropShip Vendor">

<Performs respondingRole=

//binaryCollaboration[@name=" Product

Fulfillment

/RespondingRole[@name=seller]/>

</BusinessPartnerRole>

</MultiPartyCollaboration>
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Table 1: Classification of Service Contract Specification Languages.

Contracts Languages/Approaches
Aspects Web Services (WS-*) Semantic Web (*-S) Electronic Business (eb-*)

Interface WSDL OWL-S ebBSI
Functionality WS-BPEL, WSOL OWL-S (IOPE), WSMO ebBPSS
Protocol WS-BPEL, WS-CDL WSMO ebBPSS
Security WS-Security ebCPA(SecurityPolicy)

Quality

policy WS-Policy
trust WS-Trust ebCPP(XMLDSIG)
availability WSOL
performance WSLA, WSOL WSMO/WSML ebCPA

Each Business Partner Role performs one Authorized Role in one of the
binary collaborations, or perhaps one Authorized Role in each of several bi-
nary collaborations. This is modeled by use of the Performs element. This
Performs linkage between a Business Partner Role and an Authorized Role is
the synthesis of Binary Collaborations into Multiparty Collaborations. Im-
plicitly the Multiparty Collaboration consists of all the Binary Collaborations
in which its Business Partner Roles play Authorized Roles [CCK+01].

Summary: Having presented service contract languages from the three
families dealing with service based application, we now present in the next
section a classification of these languages.

5 Classification of Contract Languages

Several notations and languages that describe service contracts are presented
in the previous section. Each of the notations cover one or more aspects of
service contracts such as interfaces, functionality, behaviour, security, and
quality. Here, we propose a classification of the notations/languages based
on the aspects they cover. It is summarized in Table 1.

Each of the three families uses a set of notations/languages to specify
different aspects of service contracts. The Web Services family has the WSDL
at its core with many other languages and extensions more than the other
two families. The Semantic Web family employs two major ontology based
languages, OWL-S and WSMO thus covering many aspects in one language
unlike the many extensions of the WS-* family. In relation to the WS-*
family, OWL-S atomic processes correspond to WSDL operations and each
of the set of inputs and outputs of an OWL-S atomic process correspond
to WSDL messages. The Electronic Business family employs a number of
XML schema to capture various aspects of service contracts under a common
ebXML framework. In relation to the WS-* family, BPSS covers the same
domain as BPEL.
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All the three families agree that the aspects are needed in addition to
having an XML grammar. Each of the families seems to be viable as it
employs a set of notations to cover different aspects. The Web Services and
Electronic business family share an operational programming style whereas
the Semantic Web family has a predicative style. One may view OWL-S
as a specification language (functionality) for the others. However, working
with predicate logic is not attractive in protocols, security and performance.
This implies that there is a gap between the Semantic Web family and the
others. The WS-* family and eb-* family are modeling languages as opposed
to property languages.

Analysis Models for the Classes

Interface Aspect: These can be analyzed by standard type checking as
done by XML parsers. It is a form of matching by identity. However, there
is no concept of superclass or subclass. On the whole, the three families are
based on XML and therefore share this analysis technique.

Functionality Aspect: State machines (including Petri nets and
ASML) can be used to model functionality in WS-* and eb-* families and
properties can then be analyzed by model checking or simulation. The *-S
family which is based on predicates require an implementation in some pro-
gramming language which then can be analyzed by program verification (cf.
LOOP project [JP04] and JML/Java [LBR06]).

Protocol Aspect: Process algebra which are usually modeled by means
of labeled transition systems; concrete examples are CSP and CCS and Petri
nets apply here. In the Semantic web family, the logic based models of OWL-
S is a bit unclear with predicative and concurrency aspect. A predicative style
of analysis such as UTP [HH98] style using trace logic may apply.

Security Aspect: The security aspect as captured in WS-* family and
eb-* security tokens is prescriptive, thus might not be aimed at analysis but
on monitoring.

Quality Aspect: The quality aspect as it stands is conceptual and
similar to the security aspect and may be aimed more at monitoring.

In summary, the WS-* and eb-* families agree to an extent such that it
seems practical to build bridges between services that span them. The *-S
family is taking another direction which may indicate that it is perceived
as a higher level predicative notation. It may be able to specify essential
commonalities of contracts from other families; although that remains to be
seen.
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6 Conclusions

A classification of service contract languages including some of the aspects
of service contracts and related analysis models currently being explored in
service-based application domain is presented. Each of the three families in
the classification tries to cover the different aspects of service contracts. This
implies that they are viable. In our study, we did not find anything techni-
cal that prevents the merging of the Web Services and Electronic Business
families. The Semantic Web family is based on a predicative style and is
not operational. It is not clear how the predicative style will handle protocol
aspects. However, it is possible to have a one way mapping of some aspects,
for instance a mapping from a functional aspect specified in BPEL to OWL-S
processes. In this case model checking may apply.

Where as there is the possibility of merging the WS-* and eb-* family,
there is a gap in the *-S family. The Semantic Web family is a property
language and can be used to specify for example, functionality for the others.
Further, it is based on predicate logic which is not attractive in protocols,
security and performance.

As a basis for further work on detailed analysis, we are adopting the WS.*
family, because the eb-* family targets a smaller community. We look forward
to seeing how the Semantic Web family develops as property language.
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Abstract

Behavioural properties are analyzed for web service contracts formulated in Busi-
ness Process Execution Language (BPEL) and Choreography Description Lan-
guage (CDL). The key result reported is an automated technique to check consis-
tency between protocol aspects of the contracts. The contracts are abstracted to
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Concurrency Work Bench. The proposed techniques are illustrated with a case
study that include otherwise difficult to analyze fault handlers.
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1 Introduction

Service Oriented Architecture (SOA) [Erl05] reorganizes series of previously
operational software applications and support infrastructure into an inter-
connected set of services, each accessible through standard interfaces and
messaging protocols. It promotes services that are distributed, heteroge-
neous, autonomous and open in nature. SOA is particularly applicable when
multiple applications running on varied technologies and platforms need to
communicate with each other. With SOA, enterprises can mix and match
services to perform business transactions with less programming effort. SOA
is implemented with web service technology. Thus there is consensus today,
that a web service is a programmable component that provides a service and
is accessible over the Internet. They are based on standards like Simple Ob-
ject Access Protocol (SOAP) [LM07a, See01, KGH+07], can be standalone,
or linked together to provide enhanced functionality.

Businesses depend on web services, therefore their properties are of great
importance, and informal checking and consensus approaches to when a ser-
vice is good enough may not suffice. A business will only reluctantly use
enterprise applications offered as open web services, because of the high risks
involved in using untrusted services from unknown providers. Formal con-
tracts defining the desired properties are therefore studied intensively today,
because they are a way to manage the risks that come with the interaction
among these inter-organizational services.

Traditionally, contracts in an object oriented setting consider only the
functional aspect (pre-condition, post-condition, invariant) of an interface
specification. A pre-condition is a constraint that must be satisfied before
calling a method or operation; it checks for valid arguments. A post-condition
is a corresponding property that is true when the call completes; it is the
input-output relation. Finally, an invariant is a constraint on the state of
an object; it must hold before and after any operation, and clearly after ini-
tialization of the object. These concepts, as popularized by Meyer’s ”Design
by Contract” [Mey97], are, however, just part of the properties exhibited
by web services. Since web services are intrinsically distributed, they are
by nature concurrent programs, and thus their overall functionality depends
not only on correct implementation of the local functionality by sequential
algorithms, but even more on the interplay between local functionality and
global behavior (protocols and timing).

In this paper we focus on protocol or behavioural aspects of service con-
tracts. There are several proposals for contract specification standards for
web services, see e.g. [OR08] for an overview. Prominent among these stan-
dards are the Business Process Execution Language (WS-BPEL)[ACD+03]
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Figure 1: Analysis of Web Service Contracts

and Choreography Description Language (WS-CDL) [KBR+04]. BPEL of-
fers a programming model for specifying the orchestration of web services
whereas CDL specifies the choreography of interacting services. However,
when web service contract are specified using either BPEL or CDL, there
is no assurance that they are consistent unless verified. Though there are
efforts toward this form of analysis, there remain challenges in the area of
automated approach to checking consistency in addition to other properties.

In previous work [DPC+05] we have demonstrated a viable solution to the
problem of checking for functional and behavioural properties of individual
services. This is done through translation of the specifications to timed
automata followed by model checking for relevant properties. In [COR07] we
considered the problem of consistency across specifications and identified a
need to set up a correspondence between the individual automata. The novel
contribution in this paper is to make such a consistency check practical by
translating the automata to CCS, the input language for the Concurrency
Work Bench. As demonstrated by a case study, this technique is applicable
and gives a handle for automating yet another consistency check for web
services.

Directly Related Work

Web Service contracts is attracting a lot of attention and several researchers
propose various approaches and frameworks toward specification and anal-
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ysis. For instance [CGP07, CCLP06, DKR04, PZWQ06] looks at it from a
formal semantics viewpoint, whereas [RGWC99, PS07] propose languages for
specifying contracts. All these points to the fact that there is an important
need for contracts to be specified and analyzed.

An earlier treatment of contracts in an object-oriented paradigm is Design
by Contract [Mey97]. Similar treatment concerning components is found in
[BJP99]. Here, the functional specification is achieved through assertions;
which consists of preconditions, post-conditions and invariants. The frame-
work in [Mey92] takes a pragmatic approach at code level where the assertions
are part of the language. We agree that these functional specifications are
important in order to specify a formal agreement between a service provider
and its clients. It expresses what a client should do before making a service
request and what the provider will give as result of it.

Among the related work of Web Service contracts is [HL05]. It proposes
to visualize contracts by graph transformation rules. Apart from expressing
contracts in terms of pre- and post-conditions of operations together with
invariants, they introduced the notions of provided and required contracts.
With this, they use the provided contracts to create the test cases and test
oracles whereas the required interfaces are used to drive the simulation. We
like their treatment of functional specifications, but it needs to be supple-
mented with other aspects, and one may gain something by investigating
model checking as a supplement to testing.

Quantitative aspect are researched in [KL03, WS-04, wsa04]. The Web
Service Level Agreement (WSLA) framework [KL03] is targeted at defining
and monitoring SLAs for Web Services. WSLA enables service customers and
providers to unambiguously define the agreed performance characteristics
and the way to evaluate and measure them. We want to mention here that
WSLA complements Web Service Definition Language (WSDL) [CCMW01,
BL06], which is an XML grammar that describes the capabilities of Web
services through its interface descriptions. WSLA is used to define a contract
between service provider and service requester, but its treatment of functional
behavior is limited.

The above mentioned contributions focus on a single web service language,
and either the functional or the behavioral side of a contract. We extend
their perspective by considering the overall consistency of a service specified
in languages covering more than one aspect. Furthermore we demonstrate
how existing tools are adapted for such checks.
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Figure 2: Wind Turbine Management System Components

Overview

In Section II, we give a detailed presentation of Web Service contracts where
the aspects of contracts are described. We introduce in this section, a case
study of a Windmill Management System. Section III details the analysis
of Web Service contracts. General consistency, satisfiability, and application
specific issues are presented. A comparison with other approaches follows
and finally, we conclude in Section V.

2 Web Service Contracts

To manage the risks that come with the interaction among several services,
the service provider and a consumer must have a contract that specifies
the details of the service. As mentioned before, it is important to note,
however, that there are different aspects of contract in play when dealing
with web services. First, there is the functional aspect which describes the
functional properties, and second, there is the protocols aspect which specifies
the behaviour as a sequence of messages, events, signals, etc. There is also the
extra functional QoS (Quality of Service) requirements aspect. This is further
illustrated following the example presented in the following subsection.

Example

We consider a Windmill Management System. The system monitors and
controls wind turbines, and it has several components which are web services
located in different places. We focus on three of these components, because
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Figure 3: Wind Turbine Management System Sequence Diagram

it gives us the scenario needed to specify a web service contract. The compo-
nents are briefly described below and shown as an UML component diagram
in Figure 2. The interaction between these services are illustrated using a
RT-UML sequence diagram, shown in Figure 3. The informal requirements
for the components are:

• Wind Turbine Management: sends a report to Productivity manage-
ment every hour.

• Productivity Management: receives and analyzes the report from Wind
Turbine Management.

• Demand Management: generates a report of power needs for Produc-
tivity Management.

We look at this example from two perspectives; WS-CDL and WS-BPEL.
WS-CDL provides a definition of the information formats being exchanged
by all participants. In other words, it specifies the protocols. WS-BPEL
provides the message exchanges and functions as viewed by one participant.
It describes the functionality of a single business process offered as a service
by an enterprise.

Contract Aspects in WS-CDL

CDL offers a model for specifying a common understanding of message ex-
changes. This language describes the choreography of web services systems,
that is, the relationships between the composite services in a peer-to-peer en-
vironment. It uses the WS definition language (WSDL) to define and locate
common type definitions.
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WS-CDL is a very verbose notation, therefor the key concepts of contracts
in WS-CDL are summarized below, while a full description of the demand
management system is found in appendix A.

Interface

In WS-CDL, each interface is associated with a particular role, where a
roleType enumerates potential observable behaviors a participant can ex-
hibit when interacting with other participants. The syntax is the following:

<roleType name="DemandRoleType">

<description type="description"/>

<behaviour name="DemandBehaviour"

interface="WSDLDemandType" />

</roleType>

The behaviour element defines an optional interface attribute, which iden-
tifies a WSDL interface type.

Functional Specification: pre-conditions, post-conditions and in-
variants

In WS-CDL these elements are defined by means of workunits; which define
the constraints that must be fulfilled for making progress and describe some
activities within a choreography. The constraints are give by XPath 2.0
expressions.

XPath 2.0 supports date and time variables, so we can use these variables
in WS-CDL as well. Furthermore, XPath provides a number of functions to
manage these datatype values.

<workunit name="demand increase detected"

guard="cdl:equal(cdl:getVariable

(’tns:DemandClock’),’’,’’),’0:00’)"

block="true">

<assign roleType="DemandRoleType">

<copy name="calculateincrease"

causeException="true">

<source variable="true"/>

<target variable=

"cdl:getVariable(’detectedincreaseDone’,’’,’’)"/>

</copy>

</assign>

</workunit>

A workunit’s guard element establishes the condition, which has to be
fulfilled to perform the workunit activities. This element allows us to de-
fine pre-conditions. Postconditions and invariants can be introduced by ap-
pending a workunit with the condition as a guard at the end of the normal
workunit flow. In order to define a condition we use XPath and XML Schema
expressions.
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Protocol

A sequence of activities is modeled in WS-CDL using the ordering structure
sequence, which contains a set of activities that can perform sequentially.

A non-deterministic choice is implemented in WS-CDL using the order-
ing structure choice. The WS-CDL standard says that when two or more
activities are specified here, only one of these is selected and the other ones
are disabled. It is assumed that the selection criteria for those activities are
non-observable.

The following WS-CDL code corresponds to the fragment in which the
productivity system sends a message to the turbine system for the turbines to
be turned on or else it sends a message to the demand system to indicate that
it is not possible to satisfy the new demand. As you can see, it is modeled in
WS-CDL by a choice activity in which we have two activities, and only one
of them can be finally executed.

<choice>

<workunit name="alt_else1_if"

guard="Available == true" block="true">

<interaction name="TurbinesOn_interaction"

operation="TurbinesOn"

channelVariable=

"Productivity2WindTurbineChannel">

<participate relationshipType=

"ProductivityWindTurbine"

fromRole="ProductivityRoleType"

toRole="WindTurbineRoleType"/>

<exchange name="TurbinesOnExchange"

action="request"/>

</interaction>

</workunit>

<workunit name="alt_else1_else"

guard="Available != true" block="true">

<interaction name="Imposible_interaction"

operation="Imposible"

channelVariable=

"Demand2ProductivityChannel">

<participate relationshipType=

"ProductivityDemand"

fromRole="ProductivityRoleType"

toRole="DemandRoleType"/>

<exchange name="ImposibleExchange"

action="request"/>

</interaction>

</workunit>

</choice>

An external choice is implemented in WS-CDL using the ordering struc-
ture workunit, since it allows us to establish conditions to execute the cor-
responding activity. For that purpose, we may use the guards of workunits,
by including in a guard an expression related with the value of a variable.
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In WS-CDL, we use the workunit repeat to implement repetition. A
workunit that completes successfully must be considered again for matching
(based on its guard condition), if its repetition condition evaluates to true.

<workunit name="alt_else1_if"

guard="Available == true"

repeat="false" block="true" >

<interaction name="TurbinesOn_interaction"

operation="TurbinesOn"

channelVariable=

"Productivity2WindTurbineChannel">

<participate relationshipType=

"ProductivityWindTurbine"

fromRole="ProductivityRoleType"

toRole="WindTurbineRoleType"/>

<exchange name="TurbinesOnExchange"

action="request"/>

</interaction>

</workunit>

Timing

Lower bounds, upper bounds, explicit clocks, reset and stop operations are
handled by XPath and XML Schema.

XPath 2.0 supports date and time variables, so we can also use these
variables in WS-CDL. Actually, XPath provides a number of functions to
manage these datatype values. These variables can be used in particular to
delay the execution for a certain time, or to establish the instant at which
some actions must be executed. For that purpose, we may use the guards of
workunits, by including in a guard an expression related with the value of a
time variable.

Specifically, we use the XPath and XML Schema notation to specify the
time aspects as follows:

Explicit clocks are introduced by xs:time.

Bounds are specified inside a workunit guard. In fact, as we capture
delays or instants of execution, the specific expressions allowed are those
constructed using the operators op:time-equal op:time-less-than and
op:time-greater-than of XPath 2.0. We can also use the hasDeadlinePassed
operation, which is defined in the WS-CDL specification to manage timing.

Reset. In WS-CDL we reset a clock using an assign activity, which creates
or changes the variable defined by the target element using the expression
defined by the source element (in the same role).
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Stop. In order to model that a clock is stopped, we can capture the value of
the time, of this specific instant, in a clock variable and then, when we want
to initiate the time again, we can use the clock variable to continue from this
point. We use two assign activities to capture and change the time value.

Synchronization. The interaction WS-CDL element defines how the
parties in a web services are synchronized. An interaction activity involves
two roletypes, and an exchange of information between them. Actually, in
WS-CDL several exchanges of information are allowed in a single interaction,
and they can be either request or respond types, and these actions can be
synchronous or asynchronous, depending on the align attribute.

<interation name="The demand management system

sends increase in power demand to

the productivity system"

operation= = "sendIncreasing"

channelVariable="Demand2ProductivityC">

<description type="description">

Sending the necessary increase of demand

</description>

<participate

relationshipType= "DemandProductivity"

fromRole="DemandRoleType"

toRole="ProductivityRoleType" />

<exchange name= "CalculatedIncerasing"

informationType="Increase_demandType"

action="request">

</exchange>

<timeout

time-to-complete= "cdl:minor(cdl:getVariable

(’tns:Clock1’,’’,’’),’1:00’)">?

</interaction>

In the time-to-complete attribute the timeframe in which an interaction
must complete is specified. Then, when this time expires (after the interac-
tion was initiated) and the interaction has not completed, a timeout occurs
and the interaction finishes abnormally, causing an exception block to be ex-
ecuted in the choreography. The optional attributes fromRoleTypeRecordRef

and toRoleTypeRecordRef are XML-Schema lists of references to record ele-
ments that will take effect at both roleTypes of the interaction.

Faults

Choreographies may have one exception block, which consists of some (pos-
sibly guarded) workunits, but only one of them can be finally executed (the
first one whose guard evaluates to true). When the exception block is exe-
cuted, the choreography terminates abnormally, even if the default exception
workunit has terminated correctly. Exceptions are the following:
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Interaction failures For instance, sending of a message failed.

Timeout errors For instance, an interaction did not complete within the
alloted time.

Application failures These are for instance illegal expressions.

CDL in summary

Overall CDL is a coordination language which focuses on the communication
between agents providing the services. It is therefore very appropriate to give
it a semantics by translation into a network of communicating processes.

Contract Aspects in WS-BPEL

BPEL is a programming language to specify the behavior of a participant
in a choreography. It allows existing Web services to be orchestrated into
composite services. Choreography is concerned with describing the message
interchanges between participants.

WS-BPEL is verbose also, so we do not include full descriptions; but as
for WS-CDL, we present the WS-BPEL contract aspects below:

Interface

In WS-BPEL, the services with which a business process interacts are
modeled as partnerLinks. Each partnerLink is characterized by a
partnerLinkType, which defines the roles played by each of the services in
the conversation and specifies the portType provided by each service to re-
ceive messages within the context of the conversation. These portTypes are
defined in the WSDL document, and each role specifies exactly one WSDL
portType.

In order to utilize operations via a partnerLink, the binding and com-
munication data, including endpoint references (EPR), for the partnerLink

must be available. The fundamental use of endpoint references is to serve as
the mechanism for dynamic communication of port-specific data for services.
An example fragment of a partnerLink is:

<partnerLinks>

<partnerLink name="productivity">

partnerLinkType="as:productivityDemandMSLT"

myRole="DemandMS"

partnerRole="productivity" />

</partnerLinks>
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The endpoint references syntax is:

<service-ref reference-scheme="http://example.org">

<foo:barEPR xmlns:foo="http://example.org">

... </foo:barEPR>

</service-ref>

Functional Specification: preconditions, postconditions and invari-
ants

WS-BPEL uses several types of expressions to implement the functional part
of a web service contract:

• Boolean expressions. These expressions can appear inside a transition,
a join, a while, and an if condition.

• Deadline expressions. The WS-BPEL elements that use these expres-
sions are until-expressions of onAlarm and wait.

• Duration expressions. These appear in the for expression of onAlarm
and wait, and the repeatEvery expression of onAlarm.

• Unsigned Integer expressions, that include counter values
startCounterValue, finalCounterValue; as well as branches in a
forEach.

• General expressions inside assign activities.

Protocol: sequence, choice, and iteration

• A sequence of activities is modeled by the sequence structured activity.
It contains one or more activities that are performed sequentially, in
the lexical order in which they appear.

An example is the Productivity process which is given as a sequence as
follows:

<sequence>

<if

bpel:getVariableProperty(’x’,’time:level’)==0>

<then>

<!-Process productivity (invoke) - ->

<assign>

<copy>

<from partnerLink="productivityMS"

endpointReference="myRole" />

<to>&increaseData.productivityMSRef </to>

</copy>

</assign>
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<invoke name="increaseDemand"

partnerLink="productivity"

portType="as:productivityPT"

operation="process"

inputVariable="increaseData">

<correlations>

<correlation set="increaseIdentification"

</correlations>

</invoke>

</if>

</sequence>

• Choice. Both non-deterministic and external choice are expressed in
WS-BPEL by means of pick activities, which waits for the occur-
rence of an event and then executes the activity associated with it.
When several events occur simultaneously, an implementation depen-
dent choice is made. Thus, in analysis, the choice must be modeled as
non-deterministic.

• Conditional. WS-BPEL contains a conventional conditional statement
as well.

• Iteration. WS-BPEL uses the while and repeatUntil activities, to
model iteration.

<while>

<condition>

$numberWindTurbine < 10

</condition>

<scope> ... </scope>

</while>

<repeatUntil standard-attributes>

standard-elements

activity

<condition expressionLanguage="anyURI"?>

... bool-expr ...

</condition>

</repeatUntil>

Timing

Lower bounds, upper bounds, explicit clocks, reset and stop operations are
specified as in WS-BPEL using XPath and XML Schema.

Explicit clocks, lower and upper bounds They are defined using XML
Scheme notations, as explained before.

122



Reset In WS-BPEL we can reset the clock using an assign activity, which
copies data from one variable to another.

<assign validate="yes|no"? standard-attributes>

standard-elements

(<copy keepSrcElementName="yes|no"?>

from-spec to-spec </copy> |

<extensibleAssign>

...assign-element-of-other-namespace...

</extensibleAssign>) +

</assign>

Stop In order to model that a clock is stopped in WS-BPEL we do as in
WS-CDL.

Concurrency and Synchronizations They are implemented in WS-
BPEL using a flow activity, which provides concurrency and synchronization.
A flow completes when all of the activities enclosed by it have completed.

<flow standard-attributes>

standard-elements

<links>? <link name="NCName"> </links>

activity+

</flow>

Faults

Business processes are usually of long duration. They can manipulate data
in back-end databases and line-of-business applications. Error handling in
this environment is both difficult and business critical. The overall business
transaction can fail or be canceled after many transactions have been com-
mitted. In this cases, the partial work done must be undone or repaired as
best as possible. Error handling in WS-BPEL processes therefore leverages
the concept of compensation, that is, application-specific activities that at-
tempt to reverse the effects of a previous activity that was carried out as
part of a larger unit of work that is being abandoned. It thus provides the
means for a forward error recovery.

Specifically, WS-BPEL provides constructs to declare fault handling and
compensation.

Compensation handler WS-BPEL allows scopes to delineate that part
of the behavior that is meant to be reversible in an application-defined way
by specifying a compensation handler. A compensationHandler is simply a
wrapper for an activity that performs compensation.
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<compensationHandler>

activity

</compensationHandler>

It is invoked with compensateScope, when an explicit scope is compen-
sated, or compensate when successfully completed inner scopes are compen-
sated in reverse order. A compensation handler for a scope is available for
invocation only when the scope completes successfully.

<compensateScope target="NCName" standard-attributes>

standard-elements

</compensateScope>

<compensate standard-attributes>

standard-elements

</compensate>

Compensations may only be invoked in catch, catchAll,
compensationHandler and terminationHandler activities, where termi-
nation handlers provide the ability for scopes to control the semantics of
forced termination by disabling the scope’s event handlers and terminating
its primary activity and all running event handler instances.

Fault handling In a business process it can be thought of as a mode
switch from the normal processing in a scope. Fault handling in WS-BPEL
is designed to implement backward error-recovery in that it aims to undo
or repair the partial and unsuccessful work of a scope in which a fault has
occurred. The completion of the activity of a fault handler, even when it
does not rethrow the handled fault, is not considered successful completion
of the attached scope. Compensation is not enabled for a scope that has had
an associated fault handler invoked.

Explicit fault handlers attached to a scope provide a way to define a set of
custom fault-handling activities, defined by catch and catchAll constructs.
Each catch construct is defined to intercept a specific kind of fault, defined
by a fault QName. If the fault name is missing, then the catch will intercept
all faults with the same type of fault data. A catchAll clause can be added
to catch any fault not caught by a more specific fault handler.

<faultHandlers>

<catch faultName="QName"?

faultVariable="BPELVariableName"?

( faultMessageType="QName" | faultElement="QName" )?>*

activity

</catch>

<catchAll>? activity </catchAll>

</faultHandlers>
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There are various sources of faults in WS-BPEL. A fault response to an
invoke activity is one source of faults, where the fault name and data are
based on the definition of the fault in the WSDL operation. A throw activity
is another source, with explicitly given name and/or data. WS-BPEL defines
several standard faults with their names, and there may be other platform-
specific faults such as communication failures.

BPEL summary

BPEL is essentially a programming language. However it has some features
that are specially tailored to make it easier to build robust systems that can
recover from a variety of faults. It includes features for expressing internal
concurrent activities; they should however be used with care, because it is
not always easy to comprenhed the interaction with compensations and fault
handlers.

3 Analyzing Web Service Contract

Having described all the elements of specifications, we now present the trans-
lation to automata. In order to perform this translation, we note that WS-
CDL and WS-BPEL are XML based languages for describing Web Services.
The timed automata formalism we use is UppAal [BLL+96]; and it is repre-
sented by another XML document, thus, the translation has been developed
with XSLT [Cla98], XML Style sheets Language for Transformation, which
is a language for transforming XML documents into other XML documents.

Figure 4 shows how the translation works: we have created some XSL
style sheets, where we use XSLT instructions to extract the information from
the WS-CDL document, and then the UppAal document is automatically
generated. This document can be opened with the UppAal tool, and thus,
we can use the model-checker of UppAal to verify some properties of interest.
The tool can also run simulations of the model. We have also created some
XSL style sheets to perform the same translation for WS-BPEL documents.

For the two aspects we can check the following.

General Properties

We check the absence of deadlock for the CDL and for the BPEL; thus we
check that the system is able to progress from start to termination; in UppAal
this is easily formulated:

A[]not deadlock
This property holds for both systems.
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Figure 4: Wind Mill Management System modeled in UppAal

The system should also be useful. If there are enough available turbines
to fulfill the increase of demand, then the Productivity Management system
shall send the command to turn on some of them to the Wind Turbine
management system. This is formulated as the invariant that says that for all
computations (A) and for all states ([]), the two automata locations coincide:

A[] WindTurbineMS.AvailableT →
ProductivityMS.OrderTurnOn

This example property holds as well.

Meeting the demand

Here we check for a BPEL property that the methods can be executed sat-
isfying the contracts or generating the exceptions. For instance, when the
demand system sends a message to the productivity system, because it de-
tects an increase in the power demand (the message increase demand). Also,
the Wind Turbine Management system always sends the number of available
turbines on Productivity Management system’s demand. This is represented
in UppAal as follows:

A[] ProductivityMS.NuTurbines→
WindTurbineMS.CalculateTA

which holds as well.
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Figure 5: Wind Mill Management System modeled in UppAal - from BPEL

Model checking summary

The form of checking that has been shown above is really exhaustive testing.
Analysis of what properties to check depends on a systematic inspection of
both requirements and the design by some review process, for instance Soft-
ware Reviews, Code Inspections, and other proactive management processes
whose purpose is to eliminate or to find and remove errors in product design
as early as possible.

4 Consistency Checking - Simulation

To check whether the two individually derived models are consistent, we use
the concept of (bi-)simulation. A (bi-)simulation is an equivalence relation
between state transition systems, associating systems which behave in the
same way in the sense that one system simulates the other and vice-versa.
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The automata generated from the two contract aspects specification systems
(WS-CDL, WS-BPEL) turn out to be bi-similar in the following aspects:

• they both accept the same operation sequence; since the WS-CDL spec-
ified the protocols, while WS-BPEL contains the operation names but
with more information.

• they also accept the same message sequence. Thus, the state that
receives the message (e.g. increase demand in the example in Figure 4)
is followed by a state that sends the message (request n t) in both
automata. The automaton from WS-BPEL may contain some internal
states.

We use another model checking tool CWB-NC to check the consistency.
We first map the contract captured by both BPEL and CDL to CCS [Mil89],
one of the the design languages for CWB, which has communication similar to
UppAal; actually, UppAal was developed by people who had prior experience
with CCS and the Concurrency Workbench. With the analogous roots, we
have not found it useful to spend much time on whether this simple mapping
preserves the semantics; it is fairly obvious that it does. More languages
such as timed actions version of CCS, CSP, basic LOTOS, etc are supported
as well in the CWB tool; it performs model checking, preorder checking and
equivalence checking. As mentioned above, we focus on equivalence checking
which allows to identify the behaviourally/observationally equivalent states
in a system.

One may ask, why CWB is not used throughout the analysis, since it
includes model checking. The answer lies in the lack of state variables; CWB
can model the communication structure only, whereas UppAal supports state
variables with bounded domains as well as clocks.

Translation from Uppaal to CWB CCS (CDL)

We translate the contract specification models in UppAal to a process algebra
CCS to allow us to check consistency. The Wind Mill management system
consists of 3 processes as shown below:

proc WTMCDL = (WMC | DMC | PMC)\

{request_n_t, available_t,

noavailable, available,

increase_demand, unattended,

performsI}

Processes WMC, DMC, and PMC correspond to Windturbine manage-
ment system, demand management system and productivity management
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system respectively as modeled in Figure 5. The three processes communi-
cate through synchronization events. For instance, request n t in Windtur-
bine management and productivity management.

Translation from Uppaal to CWB CCS (BPEL)

Similar to the translation of CDL, we translate the contract specification
models in UppAal to a process algebra CCS. However, we have more processes
from the BPEL contract specifications. These additional processes are fault
handlers, compensation handlers and event handlers; but we focus on a fault
handler. One can easily add other processes without violating consistency,
since they are abstracted away when checking against CDL. In this case, the
Wind Mill management system consists of 4 processes as shown below:

proc WTMBPEL = (WMC | DMC | PMC | FH)\

{fault, reset

request_n_t, available_t,

noavailable, available,

increase_demand, unattended, performsI}

Processes WMC, DMC, and PMC correspond to windturbine manage-
ment system, demand management system and productivity management
system respectively as modeled in Figure 5. The three processes communi-
cate through synchronization events. For instance, request n t in windturbine
management and productivity management.

The simulation results

Figure 6 shows the result of bisimilarity check between CDL and BPEL.
The first check, eq -S bisim WTMCDL WTMBPEL checks that they are bisimilar.
The system has 74 states and 322 transitions. The CWB-NC reports that
the processes are bisimilar as well as trace equivalent as shown in Figure 6
A. Recall that the fault handling events are hidden. Hence the bisimilarity.
However, when the fault handler is made part of the system, the CWB-
NC reports as expected that they are not trace equivalent. The lower part
of Figure 6 B shows this result of checking that the two processes are trace
equivalent. It shows that the result is FALSE with an additional information
that WTMBPEL has trace: fault while WTMCDL does not. Therefore we
note that CDL can only be consistent with an abstract version of BPEL
where fault handlers are hidden.
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A. WTMCDL and
WTMBPEL are trace equivalent

B. WTMCDL and
WTMBPEL are trace bisimilar but not with fault handling

Figure 6: Consistency Checking using CWB-NC

5 Comparison with other approaches

Several model checking approaches has been employed to provide some form
of analysis. An illustrative example which is well-explained is [Mar05]. It
deals with specification in only BPEL where both the abstract model and
executable model are specified. The approach is based on Petri nets where a
communication graph is generated representing the process’s external visible
behaviour. It verifies the simulation between concrete and abstract behaviour
by comparing the corresponding communication graphs.

Abouzaid and Mullins [AM08] propose a BPEL-based semantics for a new
specification language based on the π-calculus, which will serve as a reverse
mapping to the π-calculus based semantics introduced by Lucchi and Maz-
zara [LM07b]. The mapping in this work is implemented in a tool integrating
the toolkit HAL and generating BPEL code from a specification given in the
BP-calculus. Unlike in our approach, this work covers the verification of
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BPEL specifications through the mappings while the consistency of the new
language and the generated BPEL code is yet to be considered. As a future
work, the authors plan to investigate a two way mapping. We expect that
our approach will be useful in this setting by taking care of the consistency
part of their approach.

In [KNT06] the authors have presented an approach different from model
checking: a state propagation approach. It uses preconditions and post-
conditions, and computes weakest execution states. The authors argue that
descriptions of preconditions and postconditions are easier and more intuitive
compared to linear temporal logic formulae for example. However, similar
to the above mentioned approaches, only one language is considered. In this
case, consistency checking of Web service function invocations using OWL-S
metadata descriptions.

Compared to our approach, the final goal is similar: that is checking of
consistency. However, there are some differences in the approach. First, our
approach considers more than one language. This is because CDL has a
more detailed capture of abstract processes compared to the BPEL abstract
processes. Further, BPEL is a programming language to specify the behavior
of a participant in a choreography whereas choreography is concerned with
describing the message interchanges between participants. In addition, a
choreography definition can be used at design time by a participant to verify
that its internal processes will enable it to participate appropriately in the
choreography. With this, certain properties of individual services can be ver-
ified as well as verifying the consistency between the protocols in both BPEL
and CDL. This can also be extended with some domain specific languages.

6 Conclusion

We have presented an approach for the analysis of web service contracts
which uses model checking as its prime tool. The analysis is kept manage-
able by separating contract aspects and analyzing them individually. The
price we pay for this aspect oriented analysis is a check for consistency be-
tween the individually derived models. However, this check by setting up
a bi-simulation between automata can perhaps be automated, because the
configurations of the two automata are systematically related through nam-
ing conventions and similarities in the WS-CDL and WS-BPEL constructs.
The ideas are illustrated with an example specification of a Wind Turbine
Management System which consists of three major components (with their
services).

In the current contribution, we demonstrate the approach using timed
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automata as used in the UppAal tool [BLL+96], but in other con-
texts [RRMP08] we have experimented with using JML [Lea06] for the func-
tional aspects. We have not touched on verification of timing aspects, al-
though this work was initiated in [DPC+05]. Thus the use of UppAal is to
some extent a practical decision. We feel that it is well justified for the kinds
of analyses that we discuss, because they are concerned with checking the
properties of the service as such. For checking implementation conformance,
it may not be ideal, and a translation to JML may be much more useful, in
particular since Java may be an underlying implementation language, and
JML is a formal specification language tailored to Java. Its basic use is thus
the formal specification of the behavior of Java program modules. This di-
rection is, however, not the main line of our investigation. The immediate
work facing us is to streamline the tool fragments developed for these ex-
periments, and in particular to make true the claim that the bi-simulation
can be integrated in a more automated analysis process. It is well known
that model checking has its limits, and investigations are also being done of
theorem proving approaches [GORS06] which may be more suitable for full
implementation conformance checking.
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Appendix A: WS-CDL Description of the De-

mand Management system

<?xml version="1.0" encoding="UTF-8"?>

<package author="SCTR Group" name="" version="1.0">

<token name="WindTurbineRef" informationType="StringType"/>

<token name="ProductivityRef" informationType="StringType"/>

<token name="DemandRef" informationType="StringType"/>

<roleType name="WindTurbineRoleType">

<description type="description"/>

<behaviour name="WindTurbineBehaviour"/>

</roleType>

<roleType name="ProductivityRoleType">

<description type="description"/>

<behaviour name="ProductivityBehaviour"/>

</roleType>

<roleType name="DemandRoleType">
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<description type="description"/>

<behaviour name="DemandBehaviour"/>

</roleType>

<relationship name="DemandProductivity">

<role type="DemandRoleType"/>

<role type="ProductivityRoleType"/>

</relationship>

<relationship name="ProductivityWindTurbine">

<role type="ProductivityRoleType"/>

<role type="WindTurbineRoleType"/>

</relationship>

<channelType name="Demand2ProductivityChannelType">

<role type="ProductivityRoleType"/>

<reference>

<token name="ProductivityRef"/>

</reference>

</channelType>

<channelType name="Productivity2WindTurbineChannelType">

<role type="WindTurbineRoleType"/>

<reference>

<token name="WindTurbineRef"/>

</reference>

</channelType>

<choreography>

<relationship type="DemandProductivity"/>

<relationship type="ProductivityWindTurbine"/>

<variableDefinitions>

<variable name="Demand2ProductivityChannel"

channelType="Demand2ProductivityChannelType"/>

<variable name="Productivity2WindTurbineChannel"

channelType="Productivity2WindTurbineChannelType"/>

<variable name="Available" informationType="xsd:boolean"

roleTypes="Productivity"/>

<variable name="WindTurbineClock"

informationType="tns:Clock" roleTypes="WindTurbine"/>

<variable name="DemandClock" informationType="tns:Clock"

roleTypes="Demand"/>

<variable name="ProductivityClock"

informationType="tns:Clock" roleTypes="Productivity"/>

<variable name="detectedincreaseDone"

informationType="tns:boolean" roleTypes="Demand"/>

</variableDefinitions>

<assign roleType="Productivity">

<copy name="Available_assign">

<source expression="true"/>

<target variable="Available"/>

</copy>

</assign>

<assign roleType="Demand">

<copy name="detectedincrease">

<source expression="false"/>

<target variable="detectedincreaseDone"/>

</copy>
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</assign>

<sequence>

<workunit name="demand increase detected"

guard="cdl:equal(

cdl:getVariable(’tns:DemandClock’),

’’,’’),’0:00’)" block="true">

<assign roleType="DemandRoleType">

<copy name="calculateincrease"

causeException="true">

<source variable="true"/>

<target variable=

"cdl:getVariable(’detectedincreaseDone’,

’’,’’)"/>

</copy>

</assign>

</workunit>

<interaction name="Demand management system"

operation="sendIncreasing"

channelVariable="Demand2ProductivityChannel">

<participate relationshipType="DemandProductivity"

fromRole="DemandRoleType"

toRole="ProductivityRoleType"/>

<exchange name="CalculatedIncreasing" action="request"/>

<timeout time-to-complete= "cdl:minor(cdl:getVariable

(’tns:DemandClock’, ’’,’’),’0:01’)"/>

</interaction>

<interaction name="RequestTurbines_interaction"

operation="RequestTurbines"

channelVariable="Productivity2WindTurbineChannel">

<participate

relationshipType="ProductivityWindTurbine"

fromRole="ProductivityRoleType"

toRole="WindTurbineRoleType"/>

<exchange name="RequestTurbinesExchange" action="request"/>

<timeout time-to-complete= "cdl:minor(cdl:getVariable

(’tns:ProductivityClock’,’’,’’), ’0:02’)"/>

</interaction>

<interaction name="AvailableTurbines_interaction"

operation="AvailableTurbines"

channelVariable="Productivity2WindTurbineChannel">

<participate

relationshipType="WindTurbineProductivity"

fromRole="WindTurbineRoleType"

toRole="ProductivityRoleType"/>

<exchange name="AvailableTurbinesExchange" action="request"/>

</interaction>

<choice>

<workunit name="alt_else1_if"

guard="Available == true" block="true">

<interaction name="TurbinesOn_interaction"

operation="TurbinesOn"

channelVariable="Productivity2WindTurbineChannel">

<participate

relationshipType="ProductivityWindTurbine"

fromRole="ProductivityRoleType"

toRole="WindTurbineRoleType"/>

<exchange name="TurbinesOnExchange"
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action="request"/>

</interaction>

</workunit>

<workunit name="alt_else1_else"

guard="Available != true" block="true">

<interaction name="Imposible_interaction"

operation="Impossible"

channelVariable="Demand2ProductivityChannel">

<participate relationshipType="ProductivityDemand"

fromRole="ProductivityRoleType"

toRole="DemandRoleType"/>

<exchange name="ImposibleExchange"

action="request"/>

</interaction>

</workunit>

</choice>

</sequence>

</choreography>

</package>

Appendix B: CCS Description of the Wind

Mill Management system in CDL and BPEL

************************************************

* This models the Wind Mill Management System

*

* CDL system is consistent with abstract BPEL

*

************************************************

**** CDL Specification Description ***********

proc WTMCDL = (WMC | DMC | PMC)\

{request_n_t, available_t,

noavailable, available,

increase_demand, unattended, performsI}

*************************************************

proc WMC =

request_n_t.’available_t.(’noavailable.WMC

+ ’available.WMC)

proc PMC =

increase_demand.’request_n_t.available_t.

(available.’performsI.PMC

+ noavailable.’unattended.PMC)

proc DMC =

increase_demand.(unattended.DMC + performsI.DMC)

************************** BPEL *******************

proc WTMBPEL = (WMC | DMC | PMC | FH)\{fault, reset

request_n_t, available_t,

noavailable, available,

increase_demand, unattended, performsI}

*****************************************************

proc FH = fault.’reset.FH
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proc WMB =

request_n_t.(’novalue.WMB + ’available_t.

(’noavailable.WMB + ’available.turbines_on.WMB))

proc PMB =

increase_demand.’request_n_t.

(’reset.PMB + (available_t.

(available.’turbines_on.’performsI.PMB

+ noavailable.’unattended.PMB)))

proc DMB =

increase_demand.(’reset.DMB +

(unattended.DMB + performsI.DMB))
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Abstract

Web services should be dependable, because businesses rely on them. For that

purpose the Service Oriented Architecture has standardized specifications at a

syntactical level. In this paper, we demonstrate how such specifications are used

to derive semantic models in the form of (timed) automata. These can be used

to model check functional and behavioural properties of a given service. Since

there might be several specifications dealing with different aspects, one must also

check that these automata are consistent, where we propose to set up a suitable

simulation relation. The proposed techniques are illustrated with a small case

study.

3This chapter is previously published in [COR07].
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1 Introduction

The interest in web services has grown in recent times as more and more
intra/inter-organizational applications use this model. Thus there is consen-
sus today, that a web service is a programmable component that provides
a service and is accessible over the Internet. They are based on standards
like SOAP [LM07a, See01, KGH+07], can be standalone, or linked together
to provide enhanced functionality. Managing Aero-Electric Wind Turbines,
buying airline tickets, accessing an on-line calendar, and obtaining tracking
information for your shipments are all business functions that are imple-
mented as web services.

Businesses depend on web services, therefore their properties are of great
importance, and informal checking and consensus approaches to when a ser-
vice is good enough may not suffice. A business will only reluctantly use
the offered enterprise applications, because of the high risks involved in us-
ing untrusted services from unknown providers. Formal contracts defining
the desired properties are therefore studied intensively today, because they
are a way to manage the risks that come with the interaction among these
inter-organizational services.

Traditionally, contracts in an object oriented setting consider only the
functional aspect (pre-condition, post-condition, invariant) of an interface
specification. A pre-condition is a constraint than must be satisfied before
calling a method or operation; it checks for valid arguments. A post-condition
is a corresponding property that is true when the call completes; it is the
input-output relation. Finally, an invariant is a constraint on the state of
an object; it must hold before or after any operation, and clearly after ini-
tialization of the object. These concepts, as popularized by Meyer’s ”Design
by Contract” [Mey97], are, however, part of the complex picture for web
services. Since web services are intrinsically distributed, they are by nature
concurrent programs, and thus their overall functionality depends not only
on correct implementation of the local functionality by sequential algorithms,
but even more on the interplay between local functionality and global behav-
ior (protocols and timing).

With SOA it is possible to have a detailed and standardized contract spec-
ification as found in WS-BPEL [ACD+03] and WS-CDL [KBR+04]. That
leaves the interesting question of how the contracts are used in web service
development. Everyone can agree that the contracts have to be satisfied by
all the parties involved, but this means that there should be a possibility to
take a contract for a web service, and

• check implementations for conformance,
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Figure 7: Analysis of Web Service Contracts

• and analyze the contract for consistency.

The contribution of this paper is a solution to these questions following
the approach in Figure 7 by

• a translation of the behavioral aspects of a contract to a timed au-
tomata for model checking,

• a translation of the functionality to another automaton,

• a check for the consistency of the two automata.

The approach thus covers two major aspects of contracts, and the ap-
proach lends itself to generalization to further quantitative aspects, e.g. per-
formance analysis with queuing models. Here, performance would be ana-
lyzed with model, and consistency checked with the other models.

Overview

In Section 2, we give a detailed presentation of Web Service contracts where
the aspects of contracts are described. We introduce in this section, a case
study of an Wind Turbine Management System. Section 3 details the analysis
of Web Service contracts. General consistency, satisfiability, consistency and
application specific issues are presented. A discussion of related work follows
and finally, we conclude in Section 5.

2 Web Service Contracts

In order to come up with a web service contract specification, different levels
of a contract are considered:
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Contract Levels/Aspects

From an Object Oriented view, an interface describes various methods sup-
ported by an object and those which can be invoked by other objects. An
Interface Definition Language (IDL) allows the definition of objects based
on their interfaces without been concerned with how those interfaces are im-
plemented. Conventionally, interface definitions specify modules and their
interface names and operation signatures. Thus, the interface definitions are
the contract.

In a service-oriented view, functionality is defined through services which
can send and receive messages. With this, applications are composed by
combining services that interact through message exchanges. This is done
by forming a contract which the interacting services must agree on. Thus,
a contract is a specification of the way a consumer of a service will interact
with the service provider. A service contract specify functional, behavioral
and other aspects. A contract thus defines a runtime dependency between
the provider and the consumer.

None of the present contract frameworks combine both the functional,
behavioral and QoS aspects, or say much about how the properties should be
analyzed. However, we have focused on two of the more popular approaches:
Business Process Execution Language (WS-BPEL) and the Web Services
Choreography Description Language (WS-CDL).

They are typical and as illustrated in the case study below, they specify
different aspects.

Example

We describe in this subsection, a case study of a Wind Turbine Management
System. The system monitors and controls wind turbines, and it has several
components which could be web services located in different places. We
focus on three of these components, because it gives us the scenario needed
to specify a web service contract. The components are briefly described below
and shown as an UML component diagram in Figure 8.

• Wind Turbine Management: sends a report to Productivity manage-
ment every hour.

• Productivity Management: receives and analyzes the report from Wind
Turbine Management.

• Demand Management: generates a report of power needs for Produc-
tivity Management.
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Figure 8: Wind Turbine Management System Components

We look at this example from two perspectives; WS-CDL and WS-PBEL.
WS-CDL provides a definition of the information formats being exchanged
by all participants. In other words, it specifies the protocols. WS-BPEL
provides the message exchanges as viewed by one participant. It describes a
business process at a high level.

Contract Aspects in WS-CDL

CDL offers a model for specifying a common understanding of message ex-
changes. The key aspects of contracts in WS-CDL is itemized below accom-
panied by the syntax.

• Interface: WSDL defines where it is possible to find different kinds of
interface types depending on the specific required web services inter-
face.

In WS-CDL, each interface is associated with a particular role, the
syntax is the following:

<roleType name="NCName">

<behavior name="NCName" interface="QName"? />+

</roleType>

• Functional Specification: pre-conditions, post-conditions and invari-
ants.

In WS-CDL these elements are defined by means of workunits ; which
are guarded activities.
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<workunit name= "demand increase detected"

guard="cdl:equal(cdl:getVariable

(’tns:Clock1’,’’,’’),’0:00’)"

block="true">

<assign roleType="tns:DemandRoleType">

<copy name="calculateincrease"

causeException=’’true">

<source variable="true"/>

<target variable="cdl:getVariable

(’detectedincreaseDone’,’’,’’)"/>

</copy>

</assign>

</workunit>

The workunit ’s guard element establishes the condition, which has to
be fulfilled to perform the workunit activities, this element allows us to
define pre-conditions. Postconditions and invariants can be introduced
by appending a workunit with the condition as a guard at the end of
the normal workunit flow. In order to define a condition we use XPath
and XML Schema expressions.

• Protocol: sequence, non-deterministic choice, external choice, itera-
tions.

– A sequence of activities is modeled in WS-CDL using the ordering
structure sequence.

– A non-deterministic choice is implemented in WS-CDL using the
ordering structure choice. The WS-CDL standard says that when
two or more activities are specified here, only one of these is se-
lected and the other ones are disabled. It is assumed that the
selection criteria for those activities are non-observable.

<choice>

Activity-Notation+

</choice>

– External choice. This element can be implemented in WS-CDL
using the ordering structure workunit, since it allows us to estab-
lish conditions to execute the corresponding activity.

– Iteration. In WS-CDL, we can furthermore use the workunit re-
peat to implement repetition.

• Time aspects: lower bounds, upper bounds, explicit clocks, reset and
stop operations are handled by using XPath and XML Schema. Specif-
ically, we use the XML Schema notation to specify the time aspects as
follows:
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– Explicit clocks are introduced by xs:time.

– Lower and upper bounds are specified inside a workunit guard,
where XML Schema uses two operations to delimit the time:
op:time-less-than and op:time-greater-than. We can also use the
hasDeadlinePassed operation, which is defined in the WS-CDL
specification to manage timing.

– Reset. In WS-CDL we reset the clock using an assign activity,
which creates or changes the variable defined by the target element
using the expression defined by the source element (in the same
role).

– Stop. In order to model that a clock is stopped, we can capture
the value of the time, of this specific instant, in a clock variable
and then, when we want to initiate the time again, we can use
the clock variable to continue from this point. We use two assign
activities to capture and change the time value.

– Synchronizations. The interaction WS-CDL element defines how
the parties in a web services are synchronized. The optional ex-
change element allows information to be exchanged during an in-
teraction. The attribute name is used to specify a name for this
exchange element.

<interation name="The demand management system

sends increase in power demand to

the productivity system"

operation= = "sendIncreasing"

channelVariable="Demand2ProductivityC">

<description type="description">

Sending the necessary increase of demand

</description>

<participate

relationshipType= "DemandProductivity"

fromRole="DemandRoleType"

toRole="ProductivityRoleType" />

<exchange name= "CalculatedIncerasing"

informationType="Increase_demandType"

action="request">

</exchange>

<timeout

time-to-complete= "cdl:minor(cdl:getVariable

(’tns:Clock1’,’’,’’),’1:00’)">?

</interaction>

Contract Aspects in WS-BPEL

BPEL is a programming language to specify the behavior of a participant
in a choreography. Choreography is concerned with describing the message
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interchanges between participants. In like manner as in WS-CDL, we present
the WS-BPEL contract aspects below:

• Interface. In WS-BPEL, the services with which a business process
interacts are modeled as partnerLinks. Each partnerLink is charac-
terized by a partnerLinkType, which characterizes the conversational
relationship between two services. It defines the roles played by each of
the services in the conversation and specifies the portType provided by
each service to receive messages within the context of the conversation.
These portTypes are defined in the WSDL document, and each role
specifies exactly one WSDL portType.

In order to utilize operations via a partnerLink, the binding and com-
munication data, including endpoint references (EPR), for the partner-
Link must be available. The fundamental use of endpoint references is
to serve as the mechanism for dynamic communication of port-specific
data for services.

An example fragment of a partnerLink is:

<partnerLinks>

<partnerLink name="productivity">

partnerLinkType="as:productivityDemandMSLT"

myRole="DemandMS"

partnerRole="productivity" />

</partnerLinks>

The endpoint references syntax is:

<service-ref reference-scheme="http://example.org">

<foo:barEPR xmlns:foo="http://example.org">

... </foo:barEPR>

</service-ref>

• Functional Specification: preconditions, postconditions and invariants.

WS-BPEL uses expressions to implement the functional part of a web
service contract. WS-BPEL uses several types of expressions, as fol-
lows:

– Boolean expressions. These expressions can appear inside a tran-
sition, a join, a while, and an if condition.

– Deadline expressions. The WS-BPEL elements that use these ex-
pressions are until-expressions of onAlarm and wait.

– Duration expressions. These appear in the for expression of on-
Alarm and wait, and the repeatEvery expression of onAlarm.
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– Unsigned Integer expressions combined with startCounterValue,
finalCounterValue, and the branches in a forEach.

– General expressions inside assign activities.

• Protocol: sequence, non-deterministic choice, external choice, itera-
tions.

– A sequence of activities is modeled by the sequence structured
activity. It contains one or more activities that are performed
sequentially, in the lexical order in which they appear.

An example of an activity in a Productivity process is given as a
sequence as follows:

<sequence>

<if

bpel:getVariableProperty(’x’,’time:level’)==0>

<then>

<!-Process productivity (invoke) - ->

<assign>

<copy>

<from partnerLink="productivityMS"

endpointReference="myRole" />

<to>&increaseData.productivityMSRef </to>

</copy>

</assign>

<invoke name="increaseDemand"

partnerLink="productivity"

portType="as:productivityPT"

operation="process"

inputVariable="increaseData">

<correlations>

<correlation set="increaseIdentification"

</correlations>

</invoke>

</if>

</sequence>

Both non-deterministic choice and external choice are expressed
in WS-BPEL by means of pick activities, which waits for the
occurrence of an event and then executes the activity associated
with that event. When several events occur simultaneously, an
implementation dependent choice is made. Thus in an analysis,
the choice must be modeled as non-deterministic.

– Conditional. WS-BPEL contains a conventional conditional state-
ment as well. Some (for instance if) is shown in the code fragment
below.

– Iteration. In WS-BPEL we can use the while and the repeatUntil
activities, to model iteration.
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<while>

<condition>

$numberWindTurbine < 10

</condition>

<scope> ... </scope>

</while>

<repeatUntil standard-attributes>

standard-elements

activity

<condition expressionLanguage="anyURI"?>

... bool-expr ...

</condition>

</repeatUntil>

• Time aspects: lower bounds, upper bounds, explicit clocks, reset and
stop operations are specified as in WS-CDL using XPath and XML
Schema.

– Explicit clocks, lower and upper bounds are defined using XML
Scheme notations, as explained before.

– Reset. In WS-BPEL we can reset the clock using an assign activ-
ity, which copies data from one variable to another.

<assign validate="yes|no"? standard-attributes>

standard-elements

(<copy keepSrcElementName="yes|no"?>

from-spec to-spec </copy> |

<extensibleAssign>

...assign-element-of-other-namespace...

</extensibleAssign>) +

</assign>

– Stop. In order to model that a clock is stopped in WS-BPEL we
do as in WS-CDL.

– Synchronizations are implemented in WS-BPEL using a flow ac-
tivity, which provides concurrency and synchronization. A flow
completes when all of the activities enclosed by it have completed.

<flow standard-attributes>

standard-elements

<links>?

<link name="NCName">+

</links>

activity+

</flow>

3 Analyzing Web Service Contracts

Having described all the elements of specifications, we now present the trans-
lation to automata. In order to perform this translation, we note that WS-
CDL and WS-BPEL are XML based languages for describing Web Services.
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Figure 9: Aero-Electric Management System modeled in UppAal

The timed automata formalism we use is UppAal [BLL+96]; and it is repre-
sented by another XML document, thus, the translation has been developed
with XSLT [Cla98], XML Style sheets Language for Transformation, which
is a language for transforming XML documents into other XML documents.

Figure 9 shows how the translation works: we have created some XSL
style sheets, where we use XSLT instructions to extract the information from
the WS-CDL document, and then the UppAal document is automatically
generated. This document can be opened with the UppAal tool, and thus,
we can use the model-checker of UppAal to verify some properties of interest.
The tool can also run simulations of the model. We have also created some
XSL style sheets to perform the same translation for WS-BPEL documents.

For the two aspects we can check the following.

General Properties

We check the absence of deadlock for the CDL and for the BPEL, we check
the property that the system is able to progress from start to termination;
in UppAal:

A[]not deadlock

If there are enough available turbines to fulfill the increase of demand, then
the Productivity Management system will send the order of turning on some
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of them to the Wind Turbine management system:
A[] WindTurbineMS.AvailableT →

ProductivityMS.OrderTurnOn

Satisfiability

Here we check for a BPEL property that the methods can be executed satis-
fying the contracts or generating the exceptions. For instance, if the demand
system always send a message to the productivity system, when it detects
an increase in the power demand (the message increase demand). Also, the
Wind Turbine Management system always sends the number of available
turbines on Productivity Management system’s demand.

This is represented in UppAal as follows:
A[] ProductivityMS.NuTurbines→

WindTurbineMS.CalculateTA

Overall Consistency

To check that the two individually derived models are consistent, we use
bi-simulation. A bi-simulation is an equivalence relation between state tran-
sition systems, associating systems which behave in the same way in the sense
that one system simulates the other and vice-versa. The automata generated
from the two contract aspects specification systems (WS-CDL, WS-BPEL)
are bi-similar in the following aspects:

• they both accept the same operation sequence; since the WS-CDL spec-
ified the protocols, while WS-BPEL contains the operation names but
with more information.

• they also accept the same message sequence. Thus, the state that
receives the message (for instance increase demand in the example in
Figure 9) is followed by a state that sends the message (request n t)
in both automata. The automaton from WS-BPEL may contain some
internal states.

Application specific

This form of checking is closer to systematic analysis of a design by some
review process, for instance Software Reviews, Code Inspections, and other
proactive management processes whose purpose is to eliminate or to find and
remove errors in product design as early as possible.
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4 Related work

Web Service contracts is attracting a lot of attention and several researchers
propose various approaches and frameworks toward specification and anal-
ysis. For instance [CGP07, CCLP06, DKR04] looks at it in a theoretical
dimension, whereas [RGWC99, PS07] propose a language for contracts. All
these points to the fact that there is an important need for contracts to be
specified and analyzed.

An earlier treatment of contracts in an object-oriented paradigm is Design
by Contract [Mey97]. Similar treatment concerning components is found in
[BJP99]. Here, the functional specification is achieved through assertions;
which consists of preconditions, post-conditions and invariants. The frame-
work in [Mey92] takes a pragmatic approach at code level where the assertions
are part of the language. We agree that these functional specifications are
important in order to specify a formal agreement between a service provider
and its clients. Thus expressing what a client should do in order to make a
service request and what the provider will do in return.

Among the related work of Web Service contracts is [HL05]. It proposes
to visualize contracts by graph transformation rules. Apart from expressing
contracts in terms of pre- and post-conditions of operations together with
invariants, they introduced the notions of provided and required contracts.
With this, they use the provided contracts to create the test cases and test
oracles whereas the required interfaces are used to drive the simulation. We
like their treatment of functional specifications, but it needs to be supple-
mented with other aspects, and one may gain something by investigating
model checking as a supplement to testing.

A different quantitative aspect is researched in [KL03, WS-04, wsa04].
The Web Service Level Agreement (WSLA) framework [KL03] is targeted
at defining and monitoring SLAs for Web Services. WSLA enables service
customers and providers to unambiguously define the agreed performance
characteristics and the way to evaluate and measure them. We want to
mention here that WSLA complements Web Service Definition Language
(WSDL) [CCMW01, BL06], an XML grammar that describes the capabilities
of Web services through its interface descriptions. It serves as contracts
between service provider and service requestor, but its treatment of functional
behavior is limited.

A remarking difference between this work and the above mentioned con-
tributions which mainly focus on either only the functional side of a contract
or only the behavioral side of a contract is that a multi view (functional,
behavioral) of a web service contract and a set of tools are proposed for the
analysis while ensuring consistency.
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5 Conclusion

We have presented an approach for the analysis of web service contracts
which uses model checking as its prime tool. The analysis is kept manage-
able by separating contract aspects and analyzing them individually. The
price we pay for this aspect oriented analysis is a check for consistency be-
tween the individually derived models. However, this check by setting up a
bi-simulation between automata can perhaps be automated, because the con-
figurations of the two automata are systematically related through naming
conventions and similarities in the WS-CDL and WS-BPEL constructs.

In the current contribution, we demonstrate the approach using timed
automata as used in the UppAal tool [BLL+96], but in other con-
texts [RRMP08] we have experimented with using JML [Lea06] for the func-
tional aspects. The ideas are illustrated with an example specification of a
Wind Turbine Management System which consists of three major compo-
nents (with their services).

We have not touched on verification of timing aspects, although this ini-
tiated this work [DPC+05, DCP+06]. Thus the use of UppAal is to some
extent a practical decision. We feel that it is well justified for the kinds
of analyses that we discuss, because they are concerned with checking the
properties of the service as such. For checking implementation conformance,
it may not be ideal, and a translation to JML may be much more useful, in
particular since Java may be an underlying implementation language, and
JML is a formal specification language tailored to Java.

Its basic use is thus the formal specification of the behavior of Java pro-
gram modules. This direction is, however, not the main line of our investi-
gation. The immediate work facing us is to streamline the tool fragments
developed for these experiments, and in particular to make true the claim
that the bi-simulation can be integrated in a more automated analysis pro-
cess. It is well known that model checking has its limits, and investigations
are also being done of theorem proving approaches [GORS06] which may be
more suitable for implementation conformance checking.
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Abstract

Contracts specify properties of an interface to a software component. We con-
sider the problem of defining a full contract that specifies not only the normal
behaviour, but also special cases and tolerated exceptions. In this paper we focus
on the behavioural properties of use cases taken from the Common Component
Modelling Example (CoCoME), proposed as a benchmark to compare different
components models. We first give the full specification of the use cases in the
deontic-based specification language CL, and then we concentrate on three par-
ticular properties in order to compare deontic and operational specifications. We
conjecture that operational specifications are well suited for normal cases, but are
less easily extended for exceptional cases. Logic based specifications are essentially
compositional, helping in the specification of exceptional cases. This hypothesis is
investigated by comparing specifications in CSP (operational) with specifications
in CL. The outcome of the experiment supports the conjecture and demonstrates
clear differences in the basic descriptive power of the formalisms.

Keywords: Contracts, CoCoME, deontic specifications, operational specifica-

tions

4This chapter is previously published in [FPO+09].
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1 Introduction

Modern software applications are built from components that are connected
either statically or dynamically, for instance using a service oriented archi-
tecture for Internet-based applications. Components are developed by dif-
ferent teams that may be distributed across countries and organisations.
With this reality, it becomes important that the interfaces and protocols
used between components are well specified, that there are some contracts
that regulate these issues. Here the concepts and techniques developed in
the formal methods community attract attention. One example is contracts
as functional specifications in terms of invariants, pre- and postconditions
which are predicates over state variables and parameters that define an in-
put, pre-state, output, post-state relation. The behaviour of components, i.e.
the acceptable sequences of method calls or signals that can be exchanged
among components, is also important to understand the overall result of con-
necting distributed, concurrently executing components for an application,
as it is done in a service oriented architecture. Here, operational specifica-
tions are quite popular; they include both automata based approaches and
language oriented process algebras. Deontic logics have not been used to
the same extent, although they would offer greater potentials for abstraction
from the actual implementations and give a constraint oriented specification
style. To some extent this is understandable, because logic formulae are more
abstract and not so easy to understand as models. However, they may have
an advantage when it comes to providing a full specification of a contract
which includes not only the normal use cases, but also special cases with
compensations, tolerance of deviations or faults, or exception handling. Here
operational models quickly become complex, because they have to specify
the compensations and alternatives by branching to different paths.

In this paper, we start by giving the specification in CL, a deontic-based
formal language for contracts [PS07], of a large case study which was devel-
oped to compare different formal approaches for the specification and analysis
of a component based system of a realistic complexity — the CoCoME (The
Common Component Modelling Example) experiment [RRMP08]. This case
study involves all the usual aspects of functionality and behaviour; but also
aspects like performance, timing constraints and even dependability. We then
investigate contract specifications using logic (CL) and operational models
(CSP [Hoa85]) by looking at a fragment of CoCoMe; and we also contrast
these with specifications in LTL and CTL [Pnu77]. Since we want to exam-
ine the particular hypothesis about operational versus logic specifications,
we limit ourselves to behaviours, where the distinction will come out. We
have furthermore isolated a particular component where interaction with hu-
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mans and external organisations come to the surface. This is where handling
exceptions and exceptional cases becomes important to capture the total be-
haviour so as to avoid unexpected cases. For example, let us consider part
of the informal specification of a supermarket cash desk: “While in express
mode (allowing only clients with less than 8 items), if no sale is currently
taking place, the cashier can choose to disable the express mode”. From
the behavioural point of view a sequence of events consisting of clients with
more than 8 items coming into an express cashier and the subsequent pay-
ment, seems to be acceptable given that the cashier can make an exception.
Any specification language whose semantics would accept such a sequence
would in principle be considered a suitable formalism. This is, however,
only partially correct, since it will depend on which kind of properties we
are interested in. Just the sequence of events does not keep the original in-
formal specification which uses expressions like “can choose”. This kind of
modalities add extra information which may be lost by simply observing the
sequence of events.

The contributions of this paper are twofold. First, we formalise the spec-
ification of the behavioural aspect of CoCoMe in CL. Second, we take 2
use cases from CoCoME to compare deontic (CL) and operational (CSP)
specifications.

The paper is organised as follows. In next section we provide a general
description of CoCoME. In section 3 we present the language CL and we
give the CoCoME specification. In section 4 we present in detail the three
properties to be specified in section 5 using CL and CSP, and we briefly
comment on the suitability of LTL and CTL as specification languages in
this context. We compare the specifications in section 6, to conclude in the
last section.

2 CoCoME

The Common Component Modelling Example (CoCoME) [RRMP08] is
based on a Trading System that handles the sales and inventory of a Store
chain. The case study is defined using 8 use cases that describe the main
processes. The use cases span from selling products at a cash desk to the ex-
change of product between stores. The use cases are described as a sequence
of actions that must occur followed by a list of exceptional behaviour if the
use case allows such behaviour.

Use Case 1 describes how a sale is processed, from the scanning of the items
to the payment, either by cash or card. In the exceptional situation that
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a card validation fails, the cashier should retry the validation process
or require that the customer pays in cash.

Use Case 2 describes how a cash desk switches to express mode which re-
stricts the total number of items the customer should have.

Use Case 3 describes how products, which are running low, are ordered.

Use Case 4 describes how to receive these orders once the suppliers have
delivered the items. In the exceptional situation where the delivery is
not correct or complete, the products are sent back to the supplier.

Use Case 5 describes how the system generates stock-related reports.

Use Case 6 describe how the system generates delivery reports.

Use Case 7 describes how the price of a product may be altered.

Use Case 8 describes how products can be exchanged from one store to
another when the product is running low in one of the stores. The
store running low on a certain product will inform the enterprise server,
which will send an update stock request to all ‘nearby’ stores. With the
fresh stock information the enterprise server will decide on which store
should exchange the goods and sends the request to send the goods.
In the exceptional situation that the enterprise server is unreachable,
the request is queued to be retried later. In the exceptional situation
that not all the ‘nearby’ stores reply to the update stock request the
enterprise server will wait for 15 min after which it will continue the
process assuming that stores that have not responded to the request
do not have the required products.

3 Specification of CoCoME using CL —Use

Cases 3-8

In this section we first present CL [PS07], a language to express contracts as
terms over obligations, permissions and prohibitions, and then we show how
to specify CoCoME in CL. CL has the following syntax:
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C := CO|CP |CF |C ∧ C|[β]C|〈β〉C|⊤|⊥
CO := OC(α)|CO ⊕ CO
CP := P (α)|CP ⊕ CP
CF := FC(δ)|CF ∨ [α]CF
α := 0|1|a|α&α|α · α|α + α
β := 0|1|a|β&β|β · β|β + β|β∗

This syntax is an extension of that given in [KPS08] where here we add
the angle brackets. The semantics of CL have been given in an extension of
µ-calculus, an intuitive explanation of which is given below.

A contract typically consists of two parts: definitions (D) and clauses (C).
We deliberately leave the definitions part underspecified in the syntax above.
D specifies the assertions (or conditions) and the atomic actions present in
the clauses. In this case, the vocabulary of Table 2. Atomic actions are
underspecified, but consist of (at least) three parts: the proper action, the
subject performing the action, and the target of (or, the object receiving) the
action. Note that, in this way, the parties involved in a contract are directly
encoded in the actions.

C is the general contract clause. CO, CP , and CF denote respectively obli-
gation, permission, and prohibition clauses. O(·), P (·), and F (·), represents
the obligation, permission or prohibition of performing a given action. ∧ and
⊕ correspond to the classical conjunction and exclusive disjunction, which
may be used to combine obligations and permissions. For prohibition clauses
CF , the operator ∨ corresponding to disjunction is used. The constraints on
which operators may be used to compose which types of clauses are intro-
duced to avoid expressing paradoxical contracts.

The α is a compound action (i.e., an expression containing one or more
of the following operators: choice “+”; sequence “·”, and concurrency “&”
— see [KPS08]), while β is a compound action which can also be made up
of the Kleene star “∗”. Note that ⊕ cannot appear between prohibitions and
+ cannot occur under the scope of F .

CL borrows from propositional dynamic logic [FL77] the syntax [α]C to
represent that after performing α (if it is possible to do so), C must be
satisfied. 〈α〉C captures the idea that the possibility exists of executing α, in
which case C must hold afterwards.

CL can be extended with the temporal operators ♦ (eventually) and �
(always), with standard semantics [Pnu77]. Thus �C can be defined as [1∗]C.
Similarly, we can define ♦C (eventually) for expressing that C holds sometime
in a future moment, as well as the U (until) and © (next) operators.

Contrary-to-duty (CTD) contracts, which specify an obligation and repa-
ration contract in case the obligation is not met, is expressed in CL as OC(α):
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obliging action α, but defaulting to contract C if it not satisfied. Similarly,
contrary-to-prohibition (CTP) contracts, specifying a prohibited action α
and its reparation clause C in case of violation, can also be expressed: FC(α).

In what follows we specify CoCoME using the contract language CL.
CoCoME specifies both behavioural and functional requirements. CL does
not yet support the specification of timing constraints natively; however, one
could encode these constraints in the definition of the actions. We have only
done this in cases where the timing constraint affected the behaviour of the
system since we are focusing on the behavioural specification. Though CL
is limited when it comes to timing constraints, it will allow us to describe
exceptional behaviour easily and concisely.

In this section we will specify use cases three to eight of the CoCoME case
study. In the following section we will focus on the most interesting parts of
use cases one and two and use them to compare deontic specification with
operational specification. In the rest of the paper we will use the action names
shown in Table 2. For a more detailed presentation of the CL specification
presented in what follows, refer to [Ste].

Specification of Use Case 3 (Order Products)

1. �[startOrderProcess]O(listItems&listLowItems)

2. �[listItems&listLowItems]P (entersAmount)

3. �[entersAmount]P (mngOrderButton)

4. �[mngOrderButton]O(placeOrder&displayOrderID)

Once the manager starts the order products process (startOrderProcess) the
system is obliged to show the full list of items and the list of items that are
running low (listItems&listLowItems). After this the manager has the per-
mission to enter the amount of items he would like to order (entersAmount)
after which he is permitted to press the order button (mngOrderButton) in
which case the system is obliged to place the order and display the order id
(placeOrder&displayOrderID). This use case does not have any exceptional
behaviour specified. Furthermore, the distinction between the system per-
mitting the manager to do certain actions (e.g. P (entersAmount)) and the
system being obliged to respond (e.g. O(placeOrder&displayOrderID)) is not
explicitly described in the CoCoME specification but rather assumed from
the common expectations.
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disableExpress Go to Normal Mode
enableExpress Go to Express Mode
conditionMet Condition to go to express mode has been met
startSale Start a new sale
enterItem Enter new item
finishSale Stop entering items and start payment procedure
cashPay Pay in Cash
cardPay Pay with Card
correctPin Pin entered is correct
incorrectPin Pin entered is incorrect
sendBack Send customer to another line
> 8 Customer has more than eight items
< 8 Customer has less than eight items
returnItems Customer forfeits items
startOrderProcess Manager initiates the start of the Order Products process
listItems The System lists all the products
listLowItems The system lists the products which are running out of stock
entersAmount The store manager chooses the product items to order and enters the cor-

responding amount
mngOrderButton The store Manager presses the Order button
placeOrder The System places the order to the appropriate supplier
displayOrderID The system displays the order identifier generated to the Store Manager
deliver Supplyer delivers the ordered stock which is identified by an order ID
completeCorrect Supplier made a complete and correct delivery. This is checked by the

Stock Manager
orderReceived Manager receives the order by pressing the button Roll in received order
updateInventory The System updates the inventory
sendBack The Stock Manager sends the products back to the supplier
enterStoreID Manager enters the store identifier and presses the button Create Report
displayReport System displaces a report including all the available stock items in the

store.
enterEnterpriseID Managerenters the enterprise identifier and presses the button Create Re-

port
displayEnterpriseReport The System generates and displays an Enterprise report
requestOverview Manager initiates the change price process by requesting the listing of all

the available products in the store
listItems The System lists all the products
selectItem The Manager Selects an Item
changePrice The Manager changes price
pressCommit The Manager commits by pressing enter
commitPriceChange The System changes the price according to the amount set by the manager
productRunsOut A product of a store runs out
lowStock The store server recognises low stock of the product.
productRequest The Store Server sends a request to the Enterprise Server
inventoryRequest The enterprise server sends an Inventory request to nearby stores
inventoryReply The store replies with the inventory information
inventoryUpdate The enterprise server updates the database and does a database look-up

for the product
storeChosen The enterprise server using an ”optimisation criterion” chooses from which

store to request the transfer
productReply The enterprise server sends a message to the receiving store.
transferRequest The enterprise server sends a message to the transferring store
queueRequest Store server queues request to enterprise.
15min 15 minutes have passed
allRequestsReceived All requests have been received

Table 2: Alphabet

Specification of Use Case 4 (Receive Ordered Products)

1. �[deliver]O
O(sendBack)

(completeCorrect)
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2. �[completeCorrect]O(mngOrderButton)

3. �[mngOrderButton]O(updateInventory)

The case study describes that that Manager is required to check that the
supplier has sent the correct and complete order. Instead of defining an action
MgrChecksOrder we defined the action completeCorrect since the obligation
is on the supplier to send the correct information. Thus here we have that
once the delivery is made (deliver) the supplier is obliged to have sent the
complete and correct delivery (completeCorrect). If however the supplier
has violated this obligation, the manager is obliged to send the order back
(sendBack), otherwise he is obliged to process the order (mngOrderButton)
and the system is obliged to update accordingly (updateInventory).

Specification of Use Case 5 (Show Stock Report)

1. �[enterStoreID]O(displayReport)

Once the manager enters the store id (enterStoreID) the system is obliged to
display the report (displayReport).

Specification of Use Case 6 (Show Delivery Report)

1. �[enterStoreID]O(displayReport)

Once the enterprise manager enters the store id (enterStoreID) the system is
obliged to display the report (displayReport).

Specification of Use Case 7 (Change Price)

1. �[requestOverview]O(listItems)

2. �[listItems]P (selectItem)

3. �[selectItem]P (changePrice)

4. �[changePrice]P (pressCommit)

5. �[pressCommit]O(commitPriceChange)

This use case shows the process of how a manager may change a price of an
item. The manager starts this process by requesting a list of available prod-
ucts (requestOverview). The system is obliged to list all the items (listItems)
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and give permission to the manager to choose items (selectItem). If the man-
ager does select an item, the system should give permission to the manager to
change the price (changePrice) after which it should give permission for the
manager to commit the price change (pressCommit). If the manager com-
mits the changes, the system is obliged to make these changes permanent
(commitPriceChange).

Specification of Use Case 8 (Product Exchange Among Stores)

1. �[productRunsOut]O(lowStock)

2. �[lowStock]O
O(queueRequest)

(productRequest)

3. �[productRequest]O(inventoryRequest)

4. �[inventoryRequest]O(inventoryReply)

5. �[inventoryReply]O(inventoryUpdate)

6. �[15min + allRequestsReceived]O(storeChosen)

7. �[storeChosen]O(productReply&transferRequest)

If a product runs out (productRunsOut) the local store server should recog-
nise that this has occurred (lowStock) and is obliged to send a request to
the enterprise server(productRequest). If this is not successful (for example
the connection is down) then the request should be queued (queueRequest).
Once such a request is received by the enterprise server, it is obliged to
send an inventory request to all nearby stores (inventoryRequest). Ev-
ery store that receives this request is obliged to reply with the inventory
information (inventoryReply). After every reply the enterprise server up-
dates the local databases (inventoryUpdate). Once the enterprise server re-
ceives all the replies from the stores or 15 minutes have passed since the
requests were sent (15min + allRequestsReceived) it chooses from where the
items should be taken and sends a reply to the original store requesting
the items and a message to the store that is going to supply the items
(productReply&transferRequest).

4 An Example of a Full Contract –Use Cases

1-2

We shall concentrate on the cash desk part of the example shown in Fig. 10
which have the following constituents:

162



Figure 10: Cash desk and its constituents

(1) Each cash desk has a Cash Box for starting and finishing a sale,
and entering received money. (2) In order to identify the products to sell,
each cash desk is equipped with a Bar Code Scanner. (3) A Card Reader is
installed at each cash desk for handling card payment. Paying by cash can be
handled by the Cash Box. (4) In addition there is a Printer for printing the
bill which is handed out to the customer at the end of the sale process. (5)
To realise the express checkout mentioned above, each cash desk is equipped
with a Light Display which signals the customers if the Cash Desk is currently
operating in an express mode. If so, the customers are only allowed to buy a
small amount of goods and must pay cash in order to keep each transaction
short. (6) Each Cash Desk has its own Cash Desk PC where the software
handles the sale process, and takes care of the communication with the Bank.
Furthermore, it integrates all devices at the Cash Desk.

We focus on the behavioural aspect of the use case, and in particular the
following 3 clauses of the contract which includes expected and exceptional
behaviours, fairness, permissions and obligations:
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cashPay

returnItems

correctPin

incorrectPin

correctPin

incorrectPin

correctPin

incorrectPin

cardPay

Figure 11: Full transition diagram for cardPay (F1)

F1 If the customer chooses to pay by cash he is obliged to swipe the card
followed by entering the correct pin number. If the pin number is
incorrect the customer has two more attempts at entering the correct
pin after which the client is obliged to pay with cash. If the client
refrains to pay with cash the client has to give up the goods. See
transition diagram in Fig. 11.

F2 While in normal mode, the cashier may choose to switch to express mode
if in the last hour 50% of the sales had less than eight items (condi-
tionMet). Once in express mode the cashier is obliged to eventually go
back to normal mode. If conditionMet holds infinitely often, then the
cashier should change to express mode infinitely often. See transition
diagram in Fig. 12.

F3 In express mode, once a sale has commenced, the cashier is obliged to
service customers with less than eight items. To service a customer,
the items need to be entered in the system, and then finish the sale.
If a customer has more than eight items then it is up to the cashier’s
discretion whether to service the client or send him back to the end of
another line. See Fig. 13.

Clause F2 includes interesting aspects as permissions, obligations and
fairness constraints. In Fig. 12 the leftmost state decorated with a black
circle indicates that the state should be visited infinitely often. This models
the part of the clause which states that the cashier is obliged to always
eventually go back to normal mode. From the normal state we can only exit
when the express condition is met, after which the cashier has the choice of
going back to normal mode or express mode. The dashed transition signifies
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disableExpress

conditionMet enableExpress

disableExpress

anyany

Figure 12: Transition diagram for Express mode (F2)

disableExpress

enableExpress

<8

enterItem

sendBack

>8

startSale

finishSale

>8

Figure 13: Transition diagram for sales process (F3)

that if this transition is taken infinitely often then the dotted transition needs
to be also taken infinitely often, modelling the part of the clause stating that
if the condition is met infinitely often then the cash desk needs to infinitely
often go into express mode.

In clause F3 the choice to serve a client with more than 8 items is up to
the cashier’s judgement, This ‘permission’ to the cashier to ‘violate’ the rule
can be seen as an allowed explicit exception.

5 Formal Specifications of Use Cases 1-2

Our first formal specification is operational, using CSP; it includes the normal
operations for the three clauses. Then follows specifications using temporal
logics, and finally the deontic logic based specifications. We use the action
names shown in Table 2.

Operational Specification

The Relational Calculus of Object and Component Systems (rCOS) is a
method for developing component based systems. Syntactically, it is rooted
in Unified Theory of Programming (UTP) [HH98] which has been adapted
for object and component based use [HLL06a]. Behavioural aspects are syn-
tactically expressed by UML diagrams. Semantically and for verification
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—
CashDesk = disableExpress→ NormalDesk

[] enableExpress→ ExpressDesk
ExpressDesk = startSale→ EnterExp(0)
NormalDesk = startSale→ EnterNormal
EnterExp(i) = i < 8 ∧

enterItem→ EnterExp(i+ 1)
[] finishSale→ cashPay → CashDesk

EnterNormal = enterItem→ EnterNormal
[] finishSale→ Finish

Finish = cashPay → CashDesk
[] cardPay → CashDesk

Table 3: Normal case specification

purposes, they are translated to CSP [Hoa85].

CSP terms define processes:

P ::= Stop | a→ P | P []P | P ⊓ P | X

where Stop denotes the deadlocked process; action prefix a → P means do
a then act as P ; external choice ([]) between processes, whichever is able to
proceed is executed; non-deterministic or internal choice (⊓), one is chosen;
and finallyX denotes a process name for a process defined in a set of mutually
recursive definitions: X = P .

The trace semantics of CSP defines a set of finite traces. For the refusal
semantics, which distinguishes the two choice operators, refer to [Hoa85,
Ros98].

The Normal Case Specification

The example scenario of sale processing which forms the basis for the ex-
ample contract is rendered as the CSP processes shown in Table 3. In this
specification, we use a bounded integer counter i which ranges from 0 to 8;
thus the specification stays within the fragment that can be analysed with a
model checker.
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Specification of F1

Here we need to modify the Finish process only:

Finish = cashPay → CashDesk [] cardPay → Card
Card = sendPin→ Check(0)
Check(i) = correctP in→ CashDesk

[] i ≥ 3 ∧ incorrectP in→ Nocard
[] i < 3 ∧ incorrectP in→ Check(i+ 1)

Nocard = cashPay → CashDesk [] returnItems→ CashDesk

This can be proved to be a refinement of the Finish process in the normal
behaviour; but note the intricate branching logic.

Specification of F2

Concerning F2, a non-deterministic switching could be added. It can be
specified as follows:

Switch = (enableExpress→ Switch) ⊓ (disableExpress→ Switch)

However, there is no guarantee of fairness or liveness, so it is left underspec-
ified.

Specification of F3

Here we have to modify the process EnterExp:

EnterExp(i) = (i < 8 → enterItem→ EnterExp(i+ 1)
[] finishSale→ CashDesk)

[] i ≥ 8 → Finalise(i)
Finalise(i) = (finishSale→ cashPay → CashDesk

[] enterItem→ EnterExp(i+ 1))
⊓ finishSale→ CashDesk

where Finalise gives the non-deterministic choice of the cashier. Note,
however, that in this case we get a process that is no longer a refinement
of the previous defined one because it allows same behaviours that were
prohibited before.

Temporal Logics Specification

Two widely used temporal logics are LTL and CTL. LTL is a linear temporal
logic which allows us to specify properties over paths. Given a set P of atomic
prepositions, the syntax of an LTL formula is
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ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Gϕ | Fϕ | Xϕ |ϕUϕ

The LTL formula Gϕ means that ϕ always hold, Fϕ that ϕ will eventually
hold, Xϕ that ϕ will hold in the next step and ϕUψ that ϕ holds until ψ
holds.

CTL is a branching time temporal logic which makes use of the same
LTL temporal operators but each temporal operator is preceded by a path
quantifier, either E or A:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | AGϕ | AFϕ | AXϕ |ϕAUϕ |
EGϕ | EFϕ | EXϕ |ϕEUϕ

E is the existential path quantifier meaning that there exists at least one
path starting from this state, which satisfies the quantified formula. A is the
universal path quantifier meaning that all the paths starting from this state
must satisfy the quantified formula.

Specification of F1

The first clause can be seen as a list of conditional statements where it is
always the case that after the card is swiped then there is a choice of either
entering the correct pin, in which case it would satisfy the formula or else it
could be satisfied in the next step. In the next step we repeat the possibility
of satisfying the formula by entering the correct pin and if not we again check
the next step. This formula can be described in both CTL and LTL:

AG(cardPay → AX (correctPin ∨ AX(correctPin ∨
AX(correctPin ∨ AX(cashPay ∨ returnItems)))))

G(cardPay → X(correctPin ∨ X(correctPin ∨
X(correctPin ∨ X(cashPay ∨ returnItems)))))

Specification of F2

The second clause cannot be described using CTL due to the fairness, unless
the logic is extended with fairness constraints. Moreover, it is not clear how
the permissions and obligations of the clause could faithfully be represented
in CTL. Fairness is expressible using LTL, however, the clause also requires
the existence of the transition leading to express mode which cannot be
represented using LTL.
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Specification of F3

For the third clause it is always the case that once we go to express mode
then we need to satisfy the express mode behaviour until we go back to
normal mode. Once a sale is started the client needs to be serviced until
the sale is finished or the client is sent to another line. If the client has less
than eight items then that implies that he should be serviced, otherwise the
cashier has to choose between either servicing the customer or sending the
customer back. We are also ensuring that there exists the possibility of both
servicing the customer and sending the customer back since this is required
by the clause. It is because of this requirement that the behaviour cannot
be expressed using LTL. However, in CTL it is:

AG enableExpress → AX(startSale →
AX((< 8 → AX(enterItemAUfinishSale)) ∧

(> 8 → AX(enterItem ∨ sendBack) ∧ EX(enterItem) ∧ EX(sendBack) ∧
AX(enterItem → enterItemAUfinishSale)))

AU disableExpress)

Deontic Specification

In this section we will present a deontic specification of the properties, using
CL.

Specification of F1

Here we make extensive use of nested CTDs, where we have a number of
options of how the client may satisfy the payment by card. Once a card is
swiped then the client is obliged to enter the correct pin (primary obligation).
However, if the pin entered is incorrect then the client may still try again two
times (secondary obligation) and in case of failure the exceptional cases of
paying by cash or returning the items must be enforced. If none is satisfied,
the contract is violated:

�[cardPay] Oψ1(correctP in)

where ψ1 = Oψ2(correctP in), with ψ2 = OO(cashPay+returnItems)(correctP in).

Specification of F2

Clause F2 starts by stating that the cashier is infinitely often obliged to go to
the normal mode: it can never stay in express mode forever. Then we state
that it is always the case that after conditionMet is observed (possibility to
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enable the express mode) then the cashier is obliged to either choose to stay
in normal mode or express:

�♦O(disableExpress) ∧
�([conditionMet] (O(disableExpress+ enableExpress) ∧ P (enableExpress) )) ∧
�♦[conditionMet] � ♦O(enableExpress)

We also enforce that once the condition is met, the cashier has the possi-
bility to go to express mode to avoid a model that only contains a return to
normal mode. We do not need to explicitly ensure that there is a possibility
to choose to stay in normal mode, similarly to what we have done with the
express mode, or that after being in express mode we have the possibility
to go back to normal mode because of the first conjunct which states that
we have to go infinitely often to normal mode. The fairness requirement is
specified in the final part of the clause where we say that if we infinitely often
observe conditionMet, then we will infinitely often be obliged to go back into
express mode.

Specification of F3

It is always the case that once we go to the express mode a certain behaviour
needs to be followed until we go back to normal mode. In the case that the
client has less than eight items, then the cashier is obliged to service the
customer. However, if the client has more than eight items the cashier is
obliged to choose to either service the customer or send back the customer
to another cash desk and both possibilities should exist. The last property
is thus specified in CL as follows:

�( [enableExpress]( [startSale](
[< 8]O(enterItem) U finishSale ∧
[> 8](O(enterItem+ sendBack) ∧ P (sendBack) ∧ P (enterItem) ∧

[enterItem]O(enterItem) U finishSale ))
U disableExpress )

6 Comparison

In Table 4 we present a summary of which formulae can be expressed by the
formalisms we used in the previous section. We elaborate in what follows on
the differences between the approaches.

The specification of the example using the different notations shows that
CTL and CSP allow the specification of exceptional behaviour aspect of
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a contract which cannot be specified in other notations such as LTL. Thus
making it possible to specify full contracts. However, model based formalisms
cannot express global properties such as fairness or liveness of a transition
system, because they essentially model the individual transitions.

CL combines both linear and branching time, with the addition of certain
deontic notions. It has not only information of what actions are to be done
to satisfy the CL clause but also prescriptive information about the action,
namely whenever the action is observable it is possible to distinguish whether
it was required to perform it (as a primary obligation), whether it was a
reparation to an obligation, or simply a permitted action.

Moreover, the expression of CTDs and CTPs in terms of basic CL goes
beyond syntactic rewriting, since it still enables a contractual view of when
obligations, permissions and prohibitions are active, have been satisfied, or
violated. The main advantage of viewing the properties as a deontic contract
is that this knowledge is preserved and can be reasoned about.

In summary, F2 seems to be relatively complex property difficult to be
captured in specifications using temporal logics and operational approaches.
Deontic specifications seem to be appropriate, whenever a right combination
of deontic operators with temporal ones is provided.

Analysis Though our aim is to compare the specification style of temporal
logics, operational and deontic specifications, we are also interested in what
we can do with those specifications, namely how easy it is to analyse them.
It is well known that both LTL and CTL are amenable to model checking
[CGP99, Hol97]. In the case of rCOS, the analysis of CSP suffices, so one
can take advantage of the existing tool FDR2 [Ltd] to do the analysis. The
model checker FDR2 may be used to check CSP refinement as well as other
properties such as deadlock freeness, trace refinement, etc. However, it is
unclear what refinement should be checked for F3 since it contains contrary-
to-duty actions, which do not blend well with ordinary refinement.

In what concerns CL, an ad-hoc algorithm for checking deontic inconsis-
tencies has recently been developed. In this way, given a CL contract, we
are able to detect whether the contract contains contradictory obligations,
or an obligation and a prohibition to do something at the same time, and
other kinds of contradictions (see [FPS08] for more details). A general model
checker for CL is currently under development, though by using a semantic
encoding into an extended µ-calculus [PS07] it is possible to model check
contracts written in CL as presented in [PPS07].

As an additional example to the 3 clauses seen in section 4, let us consider
the contract [a]O(c) ∧ [b]F (c) which is satisfiable except when the concur-
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rent action a&b is observed: we end in a state where the contract cannot be
satisfied since c is both forbidden and required to happen. We could encode
the CL trace semantics into LTL, however, the correct encoding of the de-
ontic notions as to be able to model check contract inconsistencies would be
extremely difficult. Moreover, in order to handle the above small example,
CTL and LTL should be extended with concurrent actions, and a priority
order among actions (this is built-in in CL [PS07]).

Summarising, once the specifications are written in any of the approaches
under consideration, one can apply existing tools to further analyse them.
However, only CL can be model checked against properties concerning obli-
gations, permissions, and prohibitions, as well as CTDs and CTPs.

LTL CTL CSP CL
F1 X X X X

F2 – – – X

F3 – X (X) X

Table 4: Comparisons between specifications

7 Final Remarks

In this paper we have given a specification of the CoCoME benchmark case
study using a deontic specification language. We have then presented and
examined the use of three specification styles for the description of total
contracts, contracts which not only specify normal behaviours, but also ex-
ceptional ones. Clauses of the CoCoME example have been used to illustrate
different types of contract clauses and how they can be handled using dif-
ferent specification approaches in order to identify their respective strengths
and weaknesses.

One prevailing view of contracts is that of properties which the underly-
ing system must satisfy. In the gist of this view, we have shown how they
can be expressed in terms of appropriate standard logics, CTL and LTL.
One main disadvantage of this approach is that obligations, permissions and
prohibitions are encoded in terms of the underlying logic, making it diffi-
cult, in some cases practically impossible, to relate behaviour of the system
back to these operators. The encoding also leads to loss of compositionality
of contracts for exception handling or contract violations, as in the case of
CTDs. Reasoning about CTDS and CTPs would be difficult. In particular,
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the detection of deontic inconsistencies, as explained at the end of the pre-
vious section, cannot be done in temporal logics, and quite difficult in many
operational models.

Using a process calculus approach to describe contracts enables reasoning
about the contracts in a direct manner — for instance comparing contracts up
to a simulation relation. Also, more complex composition of contracts can be
encoded in a direct manner. On the other hand, one still lacks information
about contract violation and satisfaction which would have to be encoded
directly (and thus prone to error), making the description of total contracts
less direct.

Finally, we explore the use of a deontic logic based language to describe
the contract clauses. In this approach, we note that reasoning about the
deontic state of the system is possible. Moreover, the possibility to analyse
contracts, and to express properties of contracts (such as “Whenever you
are obliged to pay, you are forbidden from leaving the store, unless you
pay”) which may refer to the deontic state of the system, is highly desirable.
Furthermore, only the analysis of deontic specification is suitable to detect
inconsistencies concerning obligations, permissions and prohibitions in full
contracts. An implementation of the inconsistency checker for CL is described
in [FPS08].

Overall, it can be argued that the appropriate specification language de-
pends on the intended use. If the contract is intended to be used simply as
a property which should be satisfied by a system, then the use of a standard
logic, with adequate expressiveness and tool support, will usually suffice. If
the use also includes the composition and comparison of contracts, the pro-
cess calculus approach gives more flexibility. If it is required to analyse and
compose full contracts including exceptional behaviour, a deontic approach
would be more appropriate.
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Abstract

This chapter presents a formalization of functional and behavioural requirements,
and a refinement of requirements to a design for CoCoME using the Relational
Calculus of Object and Component Systems (rCOS). We give a model of require-
ments based on an abstraction of the use cases described in Chapter 3.2. Then the
refinement calculus of rCOS is used to derive design models corresponding to the
top level designs of Chapter 3.4. We demonstrate how rCOS supports modeling
different views and their relationships of the system and the separation of concerns
in the development.
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5This chapter is previously published in [CHH+08].
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1 Introduction

The complexity of modern software applications ranging from enterprise to
embedded systems is growing. In the development of a system like the Co-
CoME system, in addition to the design of the application functionality,
design of the interactions among the GUI, the controllers of the hardware
devices and the application software components is a demanding task. A
most effective means to handle complexity is separation of concerns, and as-
surance of correctness is enhanced by formal modeling and formal analysis.

Separation of concerns Separation of concerns is to divide and conquer.
At any stage of the development of a system, the system is divided into a
number of views or aspects: the static structural view, the interaction view,
the dynamic view and their timing aspects. These views can be modeled sep-
arately and their integration forms a model of the whole system. Different
concerns require different models and different techniques; state-based static
specifications of functionality and their refinement is good for specification
and design of the functionality, while event-based techniques are the sim-
plest for designing and analyzing interactions among different components
including application software components, GUI components and controllers
of hardware devices.
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Figure 14: rCOS approach with views and refinements

Formalization In recent UML-based development, the static structural
view is modeled by packages of class diagrams and/or component diagrams,
dynamic behavior by state diagrams, and interactions by sequence diagrams.
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However, UML has a formal syntax only, and its semantics is not formally
definable without imposing strong restrictions.

To assure correctness, we need to incorporate semantic reasoning through
specification, refinement, verification and analysis into the development pro-
cess.

To provide formal support to multi-view and multi-level modeling and
analysis in a model-driven development process, a desirable method should

1. allow to model different views of the system at different levels of ab-
straction,

2. provide analysis and verification techniques and tools that assist in
showing that the models have the desired properties,

3. give precise definitions of correctness preserving model transformations,
and provide effective rules and tool support for these transformations.

Based on these considerations, we have recently developed a refinement cal-
culus, named rCOS, for design of object and component oriented software
systems [HLL06a, LLZ06, HLL06b, CHLZ06]. It provides a two dimensional
refinement framework, that is, consistent increments to the models for the
multiple parallel (‖) views in the horizontal dimension, and refinement, a
relation (⊑) between models at different levels of abstraction in the vertical
dimension.

Goals and scope of the component model

The key concepts in the rCOS approach are:

• A component is an aggregation of objects and processes with interfaces.
Each interface has a contract with a Hoare style functional specification
and a protocol defining the permissible traces of method invocations.

• Components can be composed hierarchically by plugging, renaming,
hiding and feedback. These operators are defined by a relational se-
mantics in the style of Hoare and He’s Unified Theory of Programming
(UTP).

• Composition is supported by required and provided interfaces

• The refinements are verifiable through UTP laws and derived theorems.
The compatibility of the compositions in the concrete example have
been checked for the protocols using the FDR tool and for the functional
specifications, some of them have been checked using JML.
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• Application aspects are dealt with in a Requirements Modeling phase.
The resulting component specifications are refined to a logical design
closer to programs.

• The logical design is refined and refactored to a specific component
architecture suitable for a given technical platform.

• The approach does not address deployment but can include implemen-
tation code to the extent that the implementation language is given
UTP semantics.

Modeled cutout of CoCoME

For the example, we have covered the following:

• The aspects of Requirements Modeling, Logical Design and Component
Architecture Design are illustrated. Deployment and testing have not
been done.

• The rCOS approach is not currently able to handle dynamic composi-
tion, deployment and testing.

• The strong parts of the treatment are formal component specifications,
refinement and multi-view consistency checks.

• The weak parts are extra-functional properties and tool support.

• We did not model the exact architecture of the CoCoME because we
focused on the systematic refinements step from requirements to a com-
ponent architecture very similar to the one of CoCoME implementa-
tion.

• The protocol and multi-view consistency was verified for the logical
design using FDR and JML respectively.

Benefit of the modeling

In a model driven development process, the rCOS approach offers:

• A formal specification and analysis of different views including static
structure interactions and functionalities.

• High level refinement rules for adding details in moving from one level
of design to another.
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• How different tools for verification and analysis of properties may be
incorporated.

Effort and lessons learned

Getting acquainted with rCOS requires three months with reasonable back-
ground in formal methods in general. In the context of the CoCoME exper-
iment, the current treatment took experienced rCOS people about 2 work
months (about 5 people over 1.5 calendar month). We estimate that a com-
plete treatment of the example to the level of a component architecture design
would require about 12 work months.

In more detail, one experienced formal rCOS expert spent one day work-
ing out the specification of UC 1, and the other six use cases took a 4-man
week of PhD students, supervised by the experienced person. The OO de-
sign of UC 1 took the rCOS expert less than one hour with writing, but the
design of the other use cases took another 4-student week. A lot of effort had
to be spent on ensuring model consistency manually. Just from the presented
design we have derived around 65 Java classes with over 4000 lines includ-
ing comments and blank lines. The packages of the classes for the resulting
component-based model are shown in App. 2.

Among the important lessons from the exercise are that after develop-
ing the functional specifications, the other tasks follow almost mechanically.
However, there is still much room in both design and implementation for
an efficient solution, taking into account for example, knowledge about the
uniqueness of keys in lookups resulting from existential quantification.

Overview

In the next section the fundamental concepts and ideas of the rCOS Com-
ponent Model are introduced. Section 3 shows an rCOS formalization of
the requirements for the common example including specifications of classes
with local protocols and functional specification. Based on the functional
specifications, an object-oriented detailed design is generated. This is re-
fined to components that are fitted into the prescribed architecture of the
exercise. Finally we discuss Extra-functional properties and related Tool
Support in Section 4. Finally, Section 5 concludes and discusses the per-
spectives and limitations of the solution. In particular we comment on how
extra-functional properties can be included through observables, and likely
approaches to extensive tool support.
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2 Component Model

We introduce the basic syntax of rCOS that we will use in the case study,
with their informal semantics. We will keep the introduction mostly informal
and minimal that is enough for the understanding of the rCOS models of
CoCoME. For detailed study, we refer the reader to our work in [HLL06a,
LLZ06, HLL06b, CHLZ06].

The Relational Calculus of Object and Component Systems (rCOS) has
its roots in the Unified Theory of Programming (UTP) [HH98].

UTP - the background of rCOS UTP is the completion of many years of
effort in the formalization of programming language concepts and reasoning
techniques for programs by Tony Hoare and He Jifeng. It combines the
reasoning power of ordinary predicate calculus with the structuring power of
relational algebra. All programs are seen as binary relations on a state space
which is a valuation of a set X of program variables or other observables.
An example of an observable is a variable ok′, which is true exactly when
a program terminates. In all generality, the partial relation for a sequential
program P is specified by a pair of predicates over the state variables, denoted
by pre(x) ⊢ post(x, x′) and called a design, where x represents the values of the
variables before the execution of the program and x′ denotes the new values
for the variables after the execution, pre(x) is the precondition defining the
domain of the relation, and post(x, x′) is the postcondition defining the relation
itself.

The meaning of the design pre(x) ⊢ post(x, x′) is defined by the predicate:
pre(x) ∧ ok ⇒ ok′ ∧ post(x, x′), asserting that if the program is activated from
a well-defined state (i.e. its preceding program terminated) that satisfies the
precondition pre(x) then the execution of the program will terminate (i.e.
ok′ = true) in a state such that the new values in this state are related with
the old values before the execution by post. For example, an assignment
x := x+ y is defined as true ⊢ x′ = x+ y.

In UTP, it is known that designs are closed under all the standard
programming constructs like sequential composition, choice, and itera-
tion. For example, D1;D2 is defined to be the relational composition
∃x0 : (D1(x0/x

′) ∧D2(x0/x)).
For concurrency with communicating processes, additional observables

are used to record communication traces; communication readiness can be
expressed by guard predicates. A major virtue of using a relational calculus
is that refinement between programs is easily defined as relation inclusion or
logical implication.

It is clear that UTP needs adaptation to specific programming paradigms,

181



and rCOS has emerged from the work of He Jifeng and Zhiming Liu to
formalize the concepts of object oriented programming: classes, object ref-
erences, method invocation, subtyping and polymorphism [HLL06a]. They
have continued to include concepts of component-based and model-driven
development: interfaces, protocols, components, connectors, and coordina-
tion [HLL06b, CHLZ06]. Thus rCOS is a solid semantic foundation for
component-based design. Also, its refinement calculus has been further devel-
oped such that it offers a systematic approach to deriving component based
software from specifications of requirements.

With a programming language like Java, OO and component-based re-
finement can effectively ensure correctness. Most refinement rules have cor-
responding design patterns and thus Java implementations. This takes re-
finement from programming in the small to programming in the large.

Object modelling in rCOS

Just as in Java, an OO program in rCOS has class declarations and a main
program [HLL06a]. A class can be public or private and declares its attributes
and methods, they can be public, private or protected. The main program
is given as a main class. Its attributes are the global variables of program
and it has a main method main(), that implements the application processes.
Unlike Java, the definition of a method allows specification statements which
use the notion of design pre ⊢ post. Notice that the use of the variables ok and
ok′ implies that rCOS is a total correctness model, that is if the precondition
holds the execution terminates correctly.

Types and notations

Another difference of rCOS from an OO programming language is that we
distinguish data from objects and thus a datum, such as an integer or a
boolean value does not have a reference. For the CoCoME case study, we
assume the following data types:

V ::= long | double | char | string | bool

Assuming an infinite set CN of symbols, called class names, we define the
following type system, where C ranges over CN

T ::= V | C | array[1..n](T) | set(T) | bag(T)

where array[1 : n](T) the type of arrays of type T, and set(T) is the type of
sets of type T. We assume the operations add(T a), contains(T a), delete(T a)
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and sum() on a set and a bag with their standard semantics. For a variable s
of type set(T), the specification statement s.add(a) equals s′ = s ∪ {a}, s.sum()

is the sum of all elements of s, which is assumed to a set of numbers. We use
curly brackets {e1, . . . , en} and the square brackets [[e1, . . . , em]] to define a set
and a bag. For set s such that each element has an identifier, s.find(id) denotes
the function that returns the element whose identifier equals id if there is one,
it returns null otherwise. Java provides the implementations of these types
via the Collection interface. Thus these operations in specifications can be
directly coded in Java.

In specifications, C o means that object o has type C, and o 6= null means
that o is in the object heap if the type of o is a class, and that o is defined
if its type is a data type. The shorthand o ∈ C denotes that o 6= null and its
type is C.

In rCOS, evaluation of expressions does not change the state of the sys-
tem, and thus the Java expression new C() is not a rCOS expression. Instead,
we take C.New(C x) as a command that creates an object of C and assigns it
to variable x. The attributes of this object are assigned with the initial values
or objects declared in C. If no initial value is declared it will be null. However,
in the specification of CoCoME, we use x′ = C.New() to denote C.New(x), and
x′ = C.New[v1/a1, . . . , ak/vk] to denote the predicate C.New[v1/a1, . . . , ak/vk](x)

that a new object of class C is created with the attributes a1 initialized with
vi for i = 1, . . . , k, and this objects is assigned to variable x.

For CoCoME, a design pre ⊢ post for a method in rCOS is written sepa-
rately as Pre pre and Post post. For the sake of systematic refinement, we
write the specification of static functionality of a use case handler class in
the following format:

class C [extends D] {
attributes T x = d, . . . ,Tk x = d
methods m(T in;V return) {

pre: c ∨ . . . ∨ c
post: ∧ (R; . . . ;R) ∨ . . . ∨ (R; . . . ;R)

∧ . . . . . .
∧ (R; . . . ;R) ∨ . . . ∨ (R; . . . ;R) }

. . . . . .
m(T in;V return) {. . . . . . }

invariant Inv
}

where

• The list of class declarations can be represented as a UML class dia-
gram.
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• The initial value of an attribute is optional.

• Each c in the precondition, is a conjunction of primitive predicates.

• Each relation R in the postcondition is of the form c ∧ (le′ = e),
where c is a boolean condition and le an assignable expression and
e is an expression. An assignable le is either a primitive variable
x, or an attribute name, a, or le.a for an attribute name a. We
use if c then le′ = e1 else le′ = e2 for c ∧ (le′ = e1) ∨ ¬c ∧ (le′ = e2) and
if c then le′ = e for c ∧ (le′ = e) ∨ ¬c ∧ skip. Notice here that the ex-
pression e does not have to be an executable expression. Instead, e is
a logically specified expression, such as the greatest common divisor of
two given integers.

We allow the use of indexed conjunction ∀i ∈ I : R(i) and indexed dis-
junctions ∃i ∈ I : R(i) for a finite set I. These would be the quantifica-
tions if the index set is infinite.

The above format has been influenced by TLA+ [Lam02], UNITY [CM88]
and Java. We also need a notation for traces; in this setting, they are given
by UML sequence diagrams and the UML state diagrams.

Refinement

In rCOS, we provide three levels of refinement:

1. Refinement of a whole object program. This may involve the change
of anything as long as the visible behaviour of the main method is pre-
served. It is an extension to the notion of data refinement in imperative
programming, with a semantic model dealing with object references. In
such a refinement, all non-public attributes of objects are treated as lo-
cal (or internal) variables [HLL06a].

2. Refinement of the class declaration section Classes1 is a refinement of
Classes if Classes1 • main refines Classes • main for all main. This means
that Classes1 supports at least as many functional services as Classes.

3. Refinement of a method of a class. This extends the theory of refine-
ment in imperative programming, with a semantic model dealing with
object references. Obviously, Class1 refines Class if the public class
names in Classes are all in Classes1 and for each public method of each
public class in Classes there is a refined method in the corresponding
class of Classes1.
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An rCOS design has mainly three kinds of refinement: Delegation of func-
tionality (or responsibility), attribute encapsulation, and class decomposition.
Interesting results on completeness of the refinement calculus are available
in [LLZ06].

Delegation of functionality. Assume that C and C1 are classes
in Classes, C1 o is an attribute of C and T x is an attribute of C1. Let
m(){c(o.x′, o.x)} be a method of C that directly accesses and/or modifies
attribute x of C1. Then, if all other variables in command c are accessible
in C1, we have that Classes is refined by Classes1, where Classes1 is obtained
from Classes by changing m(){c(o.x′, o.x)} to m(){o.n()} in class C and adding
a fresh method n(){c[x′/o.x′, x/o.x]}. This is also called the expert pattern of
responsibility assignment.

Encapsulation. When we write the specifications of the methods of a
class C before designing the interactions between objects, we often need to
directly refer to attributes of the classes that are associated with C. There-
fore, those attributes are required to be public. After designing the inter-
actions by application of the expert pattern for functionality assignments,
the attributes that were directly referred are now only referred locally in
their classes. These attributes can then be encapsulated by changing them
to protected or private.

The encapsulation rule says that if an attribute of a class C is only referred
directly in the specification (or code) of methods in C, this attribute can be
made a private attribute; and it can be made protected if it is only directly
referred in specifications of methods of C and its subclasses.

Class decomposition. During an OO design, we often need to de-
compose a class into a number of classes. For example, consider classes
C1 :: D a1, C2 :: D a2, and D :: T1 x,T2 y. If methods of C1 only call a
method D :: m(){...} that only involves x, and methods of C2 only call
a method D :: n(){...} that only involves y, we can decompose D into
D1 :: T1 x;m(){...} and D2 :: T2 y;n(){...}, and change the type of a1 in C1

to D1 and the type of a2 in C2 to D2. There are other rules for class decom-
position [HLL06a, LLZ06].

With these and other refinement rules in rCOS, we can prove a big-
step refinement rule, such as the following expert pattern, that will be
repeatedly used in the design of CoCoME.

Theorem 1 (Expert Pattern) Given a class declarations sec-
tion Classes and its navigation paths r1. . . . .rf .x, (denoted by le as
an assignable expression), {a11. . . . .a1k1 .x1, . . . , aℓ1. . . . .aℓkℓ

.xℓ}, and
{b11. . . . .b1j1 .y1, . . . , bt1. . . . .atjt .yt} starting from class C, let m() be a
method of C specified as
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C :: m(){ c(a11. . . . .a1k1
.x1, . . . , aℓ1. . . . .aℓkℓ

.xℓ)
∧ le′ = e(b11. . . . .b1s1

.y1, . . . , bts1. . . . .btst
.yt) }

then Classes can be refined by redefining m() in C and defining the following
fresh methods in the corresponding classes:

C :: check(){return′=c(a11.getπa11
x1

(), . . . , aℓ1.getπaℓ1
xℓ

())}
m(){if check() then r1.do-mπr1

(b11.getπb11
y1

(),

. . . , bs1.getπbs1
ys

())}
T(aij) :: getπaij

xi
(){return′=aij+1.getπaij+1

xi
()} (i : 1..ℓ, j : 1..ki − 1)

T(aiki
) :: getπaiki

xi
(){return′=xi} (i : 1..ℓ)

T(ri) :: do-mπri
(d11, . . . , ds1){ri+1.do-mπri+1

(d11, . . . , ds1)}
for i : 1..f − 1

T(rf ) :: do-mπrf
(d11, . . . , ds1){x′ = e(d11, . . . , ds1)}

T(bij) :: getπbij
yi

(){return′=bij+1.getπbij+1
yi

()} (i : 1..t, j : 1..si − 1)

T(bisi
) :: getπbisi

yi
(){return′=yi} (i : 1..t)

where T(a) is the type name of attribute a and πvi
denotes the remainder of

the corresponding navigation path v starting at position j.
If the paths {a11. . . . .a1k1 .x1, . . . , aℓ1. . . . .aℓkℓ

.xℓ} have a common prefix up
to a1j, then class C can directly delegate the responsibility of getting the x-
attributes and checking the condition to T(aij) via the path a11. . . . , aij and
then follow the above rule from T(aij). The same rule can be applied to the
b-navigation paths.

The expert pattern is the most often used refinement rule in OO design.
One feature of this rule is that it does not introduce more couplings by
associations between classes into the class structure. It also ensures that
functional responsibilities are allocated to the appropriate objects that know
the data needed for the responsibilities assigned to them.

An important point to make here is that the expert pattern and the rule
of encapsulation can be implemented by automated model transformations.
In general, transformations for structure refinement can be aided by transfor-
mations in which changes are made on the structure model, such as the class
diagram, with a diagram editing tool and then automatic transformations
can be derived for the change in the specification of the functionality and
object interactions [LLZ06].

Component modelling in rCOS

There are two kinds of components in rCOS, service components (simply
called components) and process components (also simply called processes).

186



Like a service component, a process component has an interface declaring
its own local state variables and methods, and its behavior is specified by a
process contract. Unlike a service component that is passively waiting for a
client to call its provided services, a process is active and has its own control
on when to call out to required services or to wait for a call to its provided
services. For such an active process, we cannot have separate contracts for its
provided interface and required interface, because we cannot have separate
specifications of outgoing calls and incoming calls. So a process only has an
interface and its associated contract (or code).

Compositions for disjoint union of components and plugging components
together, for gluing components by processes are defined in rCOS, and their
closure properties and the algebraic properties of these compositions are stud-
ied [CHLZ06]. Note that an interface can be the union of a number of inter-
faces. Therefore, in a specification we can write the interfaces separately.

The contracts in rCOS also define the unified semantic model of imple-
mentations of interfaces in different programming languages, and thus clearly
supports interoperability of components and analysis of the correctness of a
component with respect to its interface contract. The theory of refinements
of contracts and components in rCOS characterizes component substitutivity,
as well as it supports independent development of components.

Related work

The work on rCOS takes place within a large body of work [LE06] on mod-
eling and analysis techniques for object-oriented and component based soft-
ware. Some of these works we would like to acknowledge.

Eiffel [Mey97] first introduced the idea of design by contract into object-
oriented programming. The notion of designs for methods in the object-
oriented rCOS is similar to the use of assertions in Eiffel, and thus also
support similar techniques for static analysis and testing. JML [Lea06] has
recently become a popular language for modeling and analysis of object-
oriented designs. It shares similar ideas of using assertions and refinement
as behavioral subtype in Eiffel. The strong point of JML is that it is well
integrated with Java and comes with parsers and tools for UML like modeling.

In Fractal [PV02], behavior protocols are used to specify interaction be-
havior of a component. rCOS also uses traces of method invocations and
returns to model the interaction protocol of a component with its environ-
ment. However, the protocol does not have to be a regular language, although
that suffices for the examples in this chapter. Also, for components rCOS
separates the protocol of the provided interface methods from that of the
required interface methods. This allows better pluggability among compo-
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nents. On the other hand, the behavior protocols of components in Fractal
are the same for the protocols of coordinators and glue units that are mod-
eled as processes in rCOS. In addition to interaction protocols, rCOS also
supports state-based modeling with guards and pre-post conditions. This
allows us to carry out stepwise functionality refinement.

We share many ideas with work done in Oldenburg by the group of
Olderog on linking CSP-OZ with UML [MORW04] in that a multi-notational
modeling language is used for encompassing different views of a system. How-
ever, rCOS has taken UTP as its single point of departure and thus avoids
some of the complexities of merging existing notations. Yet, their framework
has the virtue of well-developed underlying frameworks and tools.

3 The Example

The requirements capture starts with identifying business processes described
as use cases. The use case specification includes four views. One view is the
interactions between the external environment, modeled as actors, and the
system. The interaction is described as a protocol in which an actor is allowed
to invoke methods (also called use case operations) provided by the system.
In rCOS, we specify such a protocol as a set of traces of method invocations,
and depict it by a UML sequence diagram (cf. Fig. 15), called a use case
sequence diagram.

In the real use of the system the actors interact with the system via the
GUI and hardware devices. However, in the early stage of the design, we
abstract from the GUI and the concrete input and output technologies and
focus on specifying what the system should produce for output after the input
data or signals are received. The design of the GUI and the controllers of
the input and output devices is a concern when the application interfaces are
clear after the design of the application software. Also, a use case sequence
diagram does not show the interactions among the domain objects of the
system, as the interactions among those internal objects can only be designed
after the specification of what the use case operations do when being invoked.
There are many different ways in which the internal objects can interact to
realize the same use case.

The interaction trace of a use case is a constraint on the flow of control
of the main application program or processes. The flow of control can be
modeled by a guarded state transition system, that can be depicted by a
UML state diagram (cf. Fig. 17). While a sequence diagram focuses on
the interactions between the actors and the system, the state diagram is an
operational model of the dynamic behavior of the use case. They must be
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Cashier

:Cashdesk

startSale()

finishSale()

enterItem(Barcode, Quantity)
loop

[1..*]loop

alt
cardPay(Card)

alt

enterItem(Barcode, Quantity)

[1..max]

cashPay(Amount, Amount)

startSale()

finishSale()

cashPay(Amount, Amount)

[not(ExMode)]

[ExMode]

loop [*]

loop [*]

enableExpress()

disableExpress()

loop [*]

Figure 15: Use case sequence diagram for UC 1 & 2

trace equivalent. This model may be used for verification of deadlock and
livelock freedom by model checking state reachability.

Another important view is the static functionality view of the system. The
requirements should precisely specify what each use case operation should do
when invoked. That is what state change it should make in terms of what
new objects are to be created, what old objects should be destroyed, what
links between which objects are established, and what data attributes of
which objects are modified. And what is the precondition for carrying out
these changes. For the purse of compositional and incremental specification,
we introduce a designateduse case controller class for each use case, and we
specify each method of the use case as a method of this controller class. Each
method is specified by its signature and its design in the form pre ⊢ post. The
signatures of the methods must be consistent with those used in the interac-
tion and dynamic views. During the specification of the static functionality of
the use case operations, all types and classes (together with their attributes)
required in the specification must be defined.
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Cashdesk

+enableExpress()

+disableExpress()

+startSale()

+finishSale()

+enterItem(c:Barcode,q:int)

+cashPay(a:double)

+cardPay(c:Card)
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+complete: bool

+total: double

+date: Date

Payment
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+quantity: int

+subtotal: double
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+barcode: Barcode

+price: double

+amount: double

CashPayment

+amount: double

+change: double

CardPayment

Store

line 1
1

store *

1

catalog
1

*

sales
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Clock

+date(): Date

clock 11
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+authorize(c:Card,a:double): bool
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card
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Figure 16: Use case class diagram for UC 1 & 2

The type and class definitions in the specification of functionality of the
methods of the use case controls forms the structure view of the system. It
can be depicted by a class diagram or packages of class diagrams (cf. Fig. 16).
The consistency and integrated semantics of the different views are studied
in [CLM07].
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Figure 17: State diagram for UC 1 and 2

190



UC 1 & UC 2: Process sale

As both the first and the second use case relate to a single sale, we handle
them in a single section. It would be possible to keep the mode change in a
separate use case, but the combination saves space.

We first model the interaction protocol that the system offers the actor,
i.e. Cashier. This is given in a use case sequence diagram in Fig. 15. As a
simplification, we assume that the Cashier controls switching between nor-
mal and express mode, in the end it makes no difference who does it. In
this sequence diagram, max denotes the maximum number of items that the
current sale can process. It is a fixed number if the use case is in the express
checkout mode and infinity otherwise.

The protocol that the sequence diagram defines is specified by the set of
traces represented by the following regular expression:

tr(SDuc1) =

( (enableExpress (startSale enterItem(max) finishSale cashPay)∗ )
+ (disableExpress (startSale enterItem∗ finishSale (cashPay + cardPay))∗ ) )∗

These traces are accepted by the state diagram given in Fig. 17 (note that the
labels of states only serve as documentation. They are not UML compliant).
We assume that the ExMode guard is initialized non-deterministically in the
Init state.

Functionality specification

We now start to analyze the functionality of each of the operations in the
use case. An informal understanding of the functionality is to identify the
classes, their properties, and to construct an initial class diagram, see Fig. 16.
For the specification of the operations we assume:

1. There exists a Store object, store : Store.

2. The object store owns a set of Product objects with their barcode,
amount, and price, denoted by store.catalog. It accesses the attribute
catalog : set(Product) (we omit other properties not directly relevant to
modelling, like product descriptions).

3. The Cashdesk object accesses the store via an association store.

4. There exists a Clock object associated with the desk via the association
clock.

5. There is a Bank class with a method
authorize(Card c,double a;bool returns), which checks a credit card
transaction with amount a and returns whether it is valid.
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We now specify the functionality of the methods in Cashdesk.

Use Case UC 1: Process Sale

Class Cashdesk
Method enableExpress()

pre: true
post: ExMode’ = true

Method disableExpress()
pre: true
post: ExMode’ = false

Method startSale()
pre: true
post: /* a new sale is created, and its line items initialized to empty,

and the date correctly recorded */
sale′ = Sale.New(false/complete, empty/lines, clock.date()/date)

Method enterItem(Barcode c, int q)
pre: /* there exists a product with the input barcode c */
store.catalog.find(c) 6= null
post: /* a new line is created with its barcode c and quantity q */
line′ = LineItem.New(c/barcode,q/quantity)
; line.subtotal′ = store.catalog.find(c).price × q
; sale.lines.add(line)

Method finishSale()
pre: true
post: sale.complete′ = true
∧ sale.total′ = sum[[l.subtotal | l ∈ sale.lines]]

Method cashPay(double a; double c)
pre: a ≥ sale.total
post: sale.pay′=CashPayment.New(a/amount, a-sale.total/change)

/* the completed sale is logged in store, and */
; store.sales.add(sale); /* the inventory is updated */

∀l ∈ sale.lines, p ∈ store.catalog • (if p.barcode = l.barcode then
p.amount′ = p.amount − l.quantity)

; store.sales.add(sale);
∀l ∈ sale.lines, p ∈ store.catalog • (if p.barcode = l.barcode then

p.amount′ = p.amount − l.quantity)

Invariants

A class invariant is established on initialization of an instance, i.e. through
the constructor. It must hold after each subsequent method call to that class.
We specify correct initialization of the cash desk as a class invariant:

Class Invariant Cashdesk : store 6= null ∧ store.catalog 6= null
∧ clock 6= null ∧ bank 6= null
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Static and dynamic consistency

When we have the constituents of the specification document: class diagram,
state diagram, sequence diagram and the functional specification, we need to
make sure that they are consistent [CLM07]. The static consistency of the
requirement model is ensured by checking that

1. all types used in the specification are given in the class diagram,

2. all data attributes of any class used in the specification are correctly
given in the class diagram,

3. all properties are correctly given as atrributes or associations in the
class diagram, and the multiplicities are determined according to
whether the type of the property is set(C) or bag(C) for some class
C.

4. each method given in the functional specification is used in the other
diagrams according to its signature, that is, the arguments (and return
values) and their types match.

5. expressions occurring as guards are (type) consistent with their func-
tional specifications, i.e., of right type, initialised before first use, etc.

Dynamic consistency

means that the dynamic flow of control and the interaction protocol are
consistent:

1. If the actors follow the interaction protocol when interacting with the
use case controller, the state diagram of the use case should ensure that
the interaction is not blocked by guards. Formally speaking, the traces
of method calls defined by the sequence diagram should be accepted
by the state machine.

2. On the other hand, the traces that are accepted by the state diagram
should be allowable interactions in the protocol defined by the sequence
diagram.

The above two conditions are formalised and checked as trace equivalence be-
tween the sequence diagram and the state diagram in FDR [Sch00, Ros98].
We point the interested reader to [RW06] and [NB03] for more detailed appli-
cations of CSP to different flavours of state diagrams. However, we note that
the reasons for having a sequence diagram and a state diagram are different:
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• the denotational trace semantics for the sequence diagram is easy to
use as the specification of the protocol in terms of temporal order of
the events,

• the state diagram has an operational semantics which is easier to use
for for verification of both safety and liveness properties.

The event-based sequence diagrams and state diagrams abstract the data
functionality away and thus make checking practically feasible—i.e., naive
model-checking of an OO program would require considering all possible
values for attributes and arguments of methods.

Detailed Design

At this point, we illustrate the refinement rules of rCOS (see Subsec. 2)
to the operations that were specified for the use cases in the previous sec-
tion. We take each operation of each use case and decompose it, assigning
functionalities to use cases according to attributes of classes. This happens
mainly through application of the refinement rule for functional decomposi-
tion, called the expert pattern.

Navigation in the functional specification will be translated to setters and
getters for attributes, and direct access for associations.

Occasionally, refinement will not directly introduce a concrete implemen-
tation, but may also lead to refinement on the functionality specification level.
For an example, observe how the handling of sets in the following examples
evolves first through further refinement before being eventually modeled in
code.

Refinement of UC 1 & 2

We successively handle the previously specified operations. The refinement
of the mode handling to code is trivial. We remind the reader that according
to the problem description changing the physical light will be handled by a
separate component.

class Cashdesk:: enableExpress() { exmode := true }
disableExpress() { exmode := false }

The startSale() operation is refined by making the Cashdesk instance invoke
the constructor of the Sale class. As the Clock is an entity located in the
Cashdesk, we have to pass the current Date as an argument. This follows the
expert pattern:
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class Cashdesk:: startSale() { sale:=Sale.New(clock.date()) }
class Sale:: Sale(Date d)

{ date := d ; complete := false; total := 0 ; lines := empty }

In Java, sets are implemented as a class that implements the interface
Collection. The constructor of the set class initializes the instance as an
empty set. The formal treatment of set operations like find(), add(), and
constructors in general is given in the existing rCOS literature. Thus, the
constructor Sale() can be further refined to the following code:

class Sale:: Sale(Date d)
{ date := d ; complete := false; total := 0 ; lines := set(LineItem).New() }

However, when design of a significant algorithm is required, such as cal-
culating the greatest common divisor of two integer attributes or finding
the shortest path in a directed graph object, the specification of the algo-
rithm instead of code can be first designed in the refinement. For operation
enterItem(), the precondition is checked by finding the product in the catalog
that matches the input bar code. From the refinement rule for the expert
pattern, the navigation path store.catalog.find() indicates the need for a method
find() in the use case handler, that calls a method find() which in turn calls the
method find() of the set catalog. Thus, we need to design the following methods
in the relevant classes:

class Cashdesk:: find(Barcode code; Product returns) { store.find(code; returns) }
class Store:: find(Barcode code; Product returns) {catalog.find(code; returns)}
Class set(Product):: Method find(Barcode code; Product returns)

Pre ∃p : Product • (p.barcode = code ∧ contains(p))
Post returns.barcode’ = code

Applying the expert pattern to the navigation paths line.subtotal,
store.catalog.find() and sale.lines.add(), we can refine the specification of
enterItem() to:

class Cashdesk:: enterItem(Barcode code, int qty) {
if find(code) 6= null then {
line:=LineItem.New(code, qty);
line.setSubtotal(find(code).price × qty);
sale.addLine(line)

} else { throw exception e() } }
class Sale:: addLine(LineItem l) { lines.add(l) }
class LineItem:: setSubtotal(double a) { subtotal :=a }
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Note that we use exception handling to signal that the precondition is violated.
This allows us to introduce more graceful error handling later through refinement.
This is different to translating the condition into an assert statement which would
terminate the application, as this would preclude refinement.

We now refine method finishSale() using the expert pattern and define a
method setComplete() and a method setTotal() in class Sale. These methods
then will be called by the use case handler class.

class Cashdesk:: finishSale() { sale.setComplete(); sale.setTotal(); }
class Sale:: setComplete() { complete:=true }

setTotal() { total :=lines.sum() }

For cashPay(), we need the total of the sale to check the precondition, accord-
ingly we define getTotal() in class Sale. To create a payment, we define a
method makeCashPay() called by the cash desk, and creates an object of type
CashPayment. For logging the sale, we define a method addSale() in class Store
that is called by the cash desk, that will use the method add() of the set of sales.

For updating the inventory, the universal quantification will be implemented
by a loop, so we defer the implementation to a helper method:

class Cashdesk:: cashPay(double amount; double return) {
if (amount ≥ sale.getTotal()) then {

sale.makeCashPay(amount; return);
store.addSale(sale);
updateInventory() /* defined separately */

} else { throw exception e(amount ≥ sale.getTotal())}
class Sale:: getTotal(; double returns) { returns := total }

makeCashPay(double amount; double returns)
{ payment :=CashPay.New(amount); returns:=getChange() }

getChange(; double returns) { returns := amount - total }
class Store:: addSale(Sale s) { sales.add(s) }

Recall the functional specification corresponding to updateInventory():

Class Cashdesk::
∀l ∈ sale.lines, p ∈ store.catalog • ( if p.barcode = l.barcode then

p.amount′ = p.amount − l.quantity)

It involves universal quantification over elements of a set. Such a specification is
usually covered by some design pattern. The solutions always require loop state-
ments, which, in an object-oriented setting, are for example covered by (Java)
iterators, or they might be implemented in a database.

A design pattern is to first define a method for changing the variables, i.e.,
to update the amount of the product in the catalog. This implies a method
update(int qty) in class Product, and then a method update(Barcode code, int qty)

196



in catalog whose type is set(Product) and which implements the loop for the quan-
tification on p (we consider the iteration over sale.lines in the next step):

class Product:: update(int qty) { amount := amount-qty }
class set(Product):: update(Barcode code, int qty) {

Iterator i := iterator();
while (i.hasNext()) {
Product p := i.next();
if p.barcode=code then p.update(qty);

}
class Store:: update(Barcode code, int qty) { catalog.update(code,qty) }

The quantification on sale.lines is then designed as another loop in the class
of the method that contains the formula in its specification:

class Cashdesk:: updateInventory() {
Iterator j := sale.lines.iterator();
while (j.hasNext()) {
LineItem l := j.next();
store.update(l.barcode,quantity)

} }

Now we can also give an equivalent, more direct encoding of the two quantifica-
tions, where the inner loop is for the objects whose state is being modified by the
specification.

class Cashdesk:: updateInventory() {
Iterator j := sale.lines.iterator();
while (j.hasNext()) {
LineItem l := (j.next();
/* inlined store.update()/catalog.update() call: */
Iterator i := store.catalog.iterator();
while (i.hasNext()) {
Product p := i.next();
if p.barcode=l.barcode then p.update(l.quantity)

} } }

In cardPay(), the precondition invokes the function authorize(Card, double)
of the Bank. We reuse addSale(sale) and updateInventory() unchanged from the
refinement for cashPay(). At this stage, where the Bank is an external class we do
not need to specify the authorize(Card, double) method.
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class Cashdesk:: cardPay(Card c) {
if (Bank.authorize(c,sale.total)) then {

payment:=CardPay.New(c);
store.addSale(sale);
updateInventory()

} else { throw exception e(c)};

The other use cases expand in a similar way. The refinement of specifications
involving universal and existential quantifications over a collection of objects/-
data to Java implementation of the Collection interface show that formal methods
should now take the advantages of the libraries of the modern programming lan-
guages such as Java. This can significantly reduce the burden on (or the amount
of) verification.

Component-Based Architecture

The component architecture is designed from the object-oriented models in the
previous sections. In contrast to the component layout in Chapter 3, where already
deployment has been taken into account for the component mapping, we will first
map the object-oriented model to logical components, and then discuss how they
are affected by deployment. Also, we have some a priori components, like the
hardware devices and the Bank.

The adaptation of the object-oriented model to a component-based model is
made to reduce system coupling, such that less related functionalities are performed
by different components. This is done according to use cases and users (i.e. actors).

Logical model of the component-based architecture

The primary use case UC 1 is performed by the the SalesHandler component,
while the composition of the handler with the components for the peripherals
yields the CashDesk. A Store component aggregates several CashDesks and an
Inventory.

For the other use cases, we obtain a similar structure with a controller and
some supporting classes (not shown in detail): Ordering stock (UC 3), handling
deliveries (UC 4), stock report (UC 5), and changing prices (UC 7) are compo-
nents within a Store.

Delivery reports (UC 6) are generated inside the Enterprise component, while
product exchange between stores (UC 8) is managed in the Exchange component,
which resides within Enterprise.

The model is called a model of the logical component-based architecture because

1. it is the model of the design for the application components,

2. the interfaces are object-oriented interfaces, that is interactions are only
through local object method invocations.
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However, it is important to note that the object-oriented functional refinement are
needed for the identification of the components and their interfaces.

We take some liberties with the design of Chapter 3: we do not model a
CashDeskLine, but only a single cash desk that accesses the inventory. Also, we
omit the CashBox as it does not contribute to the presentation. Note that in
the following, only the SalesHandler is actually derived from the requirements (as
would be the Clock, the Bank, and the Inventory).

The SalesHandler component will be the “work horse” of our cash desk. It
implements the actual Sale use case protocol and also provides the necessary API
for accessing the ongoing sale from the GUI. As a simplification, we assume that
they can happen atomically at anytime, that is, the pure keyword indicates that
the methods calls can be interleaved with those from the protocol. The provided
protocol corresponds to the trace given in the Functional Description of the UC 1.
The method invocations on the required side are derived (manually) from the
refinement of the functional specification. The multiple update call-outs stem
from the iteration when a sale is logged and the inventory updated.

component SalesHandler
required interface ClockIf { date() }
required interface BankIf { authorize(..) }
required interface StoreIf { update(..), find (..), addSale(..) }
provided pure interface SaleIf
provided interface CashdeskIf { getItem(..), getSubTotal(..), getTotal (..), getPayment() }

protocol { ( [ ?enableExpress ( ?startSale date! (?enterItem find !) (max) ? finishSale
?cardPay authorize! addSale!)∗

| ?disableExpress ( ?startSale date! (?enterItem find !)∗ ? finishSale
[ ?cardPay authorize! addSale! update!∗

| ?cashPay addSale! update!∗ ] )∗ ] )∗ }

class Cashdesk implements SaleIf, CashdeskIf

Design of the concrete interaction mechanisms

After obtaining the model of the logical component-based architecture, we can
replace the object-oriented interfaces by different interaction protocols according
to the requirement descriptions and the physical locations of the components.

There are more than one CashDesk component instance, each having its own
clock and sharing one Inventory instance per store. The interaction between them
can then be implemented asynchronously using an event channel. RMI or CORBA
can be used for interactions between a Store component and the Enterprise com-
ponent.

If we decompose the Inventory into sub-components (the three layer architec-
ture): the application layer, the data representation layer and the database, we
can

• keep the OO interface between the application layer and data representation
layer,
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Figure 18: Overall component view of the system

• implement interaction between the data representation and the database in
JDBC.

Most of these interactions mechanisms are international standards and the change
from an OO interface to any of them has been a routine practice. We believe that
there is no need for providing their formal models and analysis, though a formal
method like rCOS is able to do this with some effort. Fig. 18 gives the overall
view of the system. In the following, we discuss the detailed decomposition of the
peripherals of a cash desk.

Hardware components

The peripheral device components are modelled in rCOS only at the contract level,
that is, with regard to the protocols. We do not give their functional description or
implementation here and assume they implement their behaviour correctly. The
required protocols (call-outs with trailing exclamation mark; see [HLL05]) have
been derived from the functional specifications/refinement.

The input devices are modelled as (active) rCOS processes that call provided
methods of another component on input. For manual input, we model the cash
desk terminal as a black box (we dispense with the implementing class) with but-
tons for starting/ending a sale, and manual input of an item and its quantity.
Recall that we designed the controller class to handle both express mode changes.
Nonetheless, here we stick to the original problem description and allow the cashier
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to disable it only. Thus, the protocol is still a subset of the one induced by the
use case (we omit method signatures for conciseness of the presentation):

// define short−hand for methods
define SaleIf { enableExpress(), disableExpress(), startSale (), enterItem (..),

finishSale (), cardPay(..), cashPay(..) }

component Terminal
required interface SaleIf
protocol { ([disableExpress!] startSale ! enterItem!∗ finishSale ! [cardPay! | cashPay!])∗ }

Furthermore, we assume that the bar code scanner has the same interface (al-
though it will in practice only ever invoke the enterItem() method). To connect
both devices to the cash desk application, we have to introduce a controller which
merges input from both devices. For later composition, we introduce unique names
to the two provided interfaces of the same type and specify the class which handles
the call-ins (implementation not shown). Here, we give the combined required/pro-
vided protocol of call-ins (methods prefixed by ?)/call-outs (suffixed by !). rCOS
also permits separate protocols for a component interface, which does not reveal
any dependencies on method calls.

component InputController
required interface SaleIf
provided interface SaleIf at PortA, PortB // interleaving
protocol { ( [?disableExpress disableExpress !] ?startSale startSale ! // relay messages

// fan in from both devices:
(?enterItem enterItem!)∗

? finishSale finishSale ! [ ?cardPay cardPay! | ?cashPay cashPay!])∗ }
class Merge implements SaleIf

The cash desk display provides a way of updating the display with the current
sale. For each event, the display controller queries the cash desk’s current sale
via getter-methods and updates the screen. The interface will be provided by the
SaleHandler component. Also, we handle displaying the mode here. Note that the
GUI has a more general protocol as we do not need to take mode changes into
account for an individual sale.

component CashDeskGUI
required interface LightIf { lightExpress(), lightNormal() }
required interface CashdeskIf { getItem(..), getSubTotal(..), getTotal (..), getPayment() }
required interface ClockIf { date }
provided interface GUIIf { enterItem(..), startSale(), finishSale (), cardPay(..),

cashPay(..), enableExpress(), disableExpress() }
protocol { ( [?enableExpress lightExpress!| ?disableExpress lightNormal!] ?startSale date!

(?enterItem getItem! getSubTotal!)∗ ?endSale getTotal!
[?cardPay | ?cashPay] getPayment! )∗ }

class GUI implements GUIIf

The Printer component shall employ the same design, providing Printer and Print-
erIf.

As the system should use a bus architecture, updates have to be done in an
event-based fashion, i.e., we need a BusController component that proxies between
all devices and acts as a fan-out when an event has multiple subscribers. Contrary
to the design document, we do not employ a broadcast architecture: for example,
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Figure 19: Deployed components for a single Cashdesk

the controller makes sure that the business logic processes an enterItem event
first, and only then notifies the display. Likewise, it drives the printer.

component BusController
provided interface SaleIf // to InputController
required interface CashDeskGUI.GUIIf // elided, see above
required interface Printer.PrinterIf // ditto
required interface SaleIf // from business logic
protocol { /∗ fan−out for each call−in elided ∗/ }
class Bus implements SaleIf

We concede that this component design means that the BusController must be
modified each time a new subscriber is added to the system.

We plumb the BarcodeScanner and Terminal component into the
InputController, which we connect to the BusController. That is in turn con-
nected to the SalesHandler. We omit detailed discussion of the other interfaces;
dependent components mentioned in with-clauses are deployed automatically as
long as there are no ambiguities with regard to interfaces:

component Cashdesk
deploy CashDeskGUI with Clock, Light
deploy InputController with Barcode at PortA, Terminal at PortB
deploy BusController with InputController, CashDeskGUI, Printer
deploy SalesHandler with Clock,Bank,Inventory,CashDeskGUI,BusController

Assuming availability of the required components of the SalesHandler, the resulting
component is closed, as all required interfaces are provided. For the resulting
component diagram, see Fig. 19; the upper half indicates the peripherals, the
lower half the components derived from the use case.

With regard to formal rCOS (see e.g. [CHLZ06, HLL06b]), we note that only
components whose traces start with a call-in are rCOS-components. Those that
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have a call-out at the start of their trace, are actually rCOS-processes. For UC 1,
only the input devices used by the actor are processes.

Modelling deployment

For a consistent rCOS model, this means we must modify the existing model
to take into account the deployment boundaries, middle-ware and their effect on
communication object references.

We also note that the different failure modes of remote communication must be
taken into account and may require to revisit the Design, as for example, suddenly
functions (in the mathematical sense) may fail when they are invoked on remote
hosts. This is a field of ongoing investigation.

4 Analyses

This section outlines how to add the specification and analysis of the extra func-
tionalities given in the description document. It then continues with a description
of the actual analyses of the functional and behavioural properties that have been
carried out with tool support.

Extra-functional Properties

We specify extra functionality of a method as a property for the time interval
for the execution of the method. We use temporal variables whose value depend
on the reference time interval for the execution of methods for our specification.
Those variables could be ET m which is the duration of the execution of method
m in the worst case, or N Customers which is the number of customers in the
referenced observation time interval. From the intended meaning, the variable
ET m is rigid, its value does not depend on the reference interval. For a formula
f on the rigid and temporal variables, for a probability p, [f ]p is a formula saying
that f is satisfied with the probability p. As it is well-known in the interval logic,
the formulas φ;ψ, which corresponds to the sequential composition of formulas φ
and ψ, holds for an interval [a, b] iff there is m ∈ a..b such that φ holds for interval
[a,m] and ψ holds for interval [m, b]. Let ℓ be a temporal variable denoting the
length of the interval it applied to. Intuitively, the formula

[0 ≤ ET ScanItem < 5]0.9 ∧ [0 ≤ ET ScanItem < 1.0]0.05
says that the execution time for the operation ScanItem is within 5 seconds with
probability 0.9, and it is less than 1 second with probability 0.05.

Since the arrival and leaving rates are the same: 320/3600 arrivals per second,
and constant, with an exponential distribution,we can derive that [N Customers =
2
45ℓ]1 holds for all intervals. As another example, by estimating the average wait-
ing time for customers here we show how to include QoS analysis in our frame-
work. Let ET Service stand for the average service time for customers. It is
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easy to calculate the possibility of ET Service from the above specification, i.e.
ET Service = 32.075. Therefore, the rate of service is µ = 1/ET Service =
1/32.075 = 0.0311. Also, we have that the rate of customers arriving is λ =
N Customers/ℓ = 4/45.

Verification, Analysis and Tool support

Various verifications and analyses are carried out on different models. For the
requirement model, the trace equivalence between the sequence diagram and its
state diagram has been experimentally checked with FDR. We manually checked
the consistency between the class declarations (i.e. the class diagrams) and the
functionality specification to ensure that all classes and attributes are declared in
the class declarations. This is obviously a syntactic and static semantic check that
can be automated in a tool. We can further ensure the consistency by translat-
ing the rCOS functionality specification into a JML specification and then carry
out runtime checking and testing. Also, some of the development steps involving
recurrent patterns can be automated.

Runtime checking and testing in JML

We have not checked the correctness of the design against the requirement spec-
ification for removing possible mistakes made when manually applying the rules.
However, we have translated some of the design into JML [Lea06] and carried out
runtime testing of specifications and the validity of an implementation.

We translate each rCOS class C into two JML files, one is C.jml that contains
the specification translated from the rCOS specification, and the other is a Java
source file C.java containing a code that implements the specification. During the
translation, the variables used in the rCOS specification are taken as specification-
only variables in C.jml, that are mapped to program variables in C.java. The
translated JML files can be compiled by the JML Runtime Assertion Checker
Compiler (jmlc). Then, test cases can be executed to check the satisfaction of
the specification by the implementation. The automatic unit testing tool of JML
(jmlunit) can be used to generate unit testing code, and the testing process can
be executed with JUnit .

For example, a JML code snippet of the enterItem() design in Section 3 is
shown on the left of Fig. 20. Notice that the code in the dotted rectangle gives
the specification of the exception that was left unspecified in Section 3.

The final code implementing the enterItem() specification is shown on the
right of Fig. 20. Before getting the final code, we encountered two runtime errors
reported by the testing process. One error resulted from the implementation which
did not handle an input that falsifies the precondition. The reason for the other
error is that one invariant is false after method execution. Testing is not sufficient
for correctness. Therefore, it is also desirable to carry out static analysis, for
instance with ESC/Java [CKLP06].
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/*@ public normal_behaviour 

@  requires (\exists Object o; theStore.theProductList.contains(o); 

@          ((Product)o).theBarcode.equals(code)); … 

@  ensures  theLine != \old(theLine) && 

@   theLine.theBarcode.equals(code) &&… 

@ also 

@ public exceptional_behaviour 

@   requires !(\exists Object o; theStore.theProductList.contains(o); 

@          ((Product)o).theBarcode.equals(code)); 

@   signals_only Exception; 

@*/ 

public void enterItem(Barcode code, int  quantity) throws Exception; 
 

public void enterItem(Barcode code, int  quantity) 
 throws Exception{ 

line = new LineItem(code, quantity); 
Iterator it = store.productList.iterator(); 
boolean t = false; 
while (it.hasNext()){ 

Product p = (Product)it.next(); 
if  (p.barcode.equals(code)){ 

line.total = p.price * quantity; 
t = true; 
sale.lines.add(line); 

} 
} 
if  (!t)  throw new Exception(); 

} 

Figure 20: JML Specification and Implementation.

QVT transformation support

Our long term goal is to implement correctness preserving transformations that
support a full model driven development process. The problems we are concerned
with are the consistency among models on the same level, and the correctness
relation between models in different levels. The meaning of consistency among
models on the same level is that the models of various views need to be syntactically
and semantically compatible with each other. The meaning of correctness relation
between models on different levels is that a model must be semantically consistent
with its refinements [LMRY06].

We plan to use QVT [Gro05], a model transformation language standard by
OMG, to implement these model transformations. We have already defined the
required rCOS metamodels for object diagrams, object sequence diagrams, com-
ponent diagrams, component interaction diagrams and state machines. Pre- and
post-conditions can also be translated into the respective clauses of a QVT pro-
gram.

The refinement of the use cases on the object level through the expert pattern
is done manually now, but it can be implemented using QVT, and automated. The
correctness of the expert pattern is proved by rCOS. We have already explored
correctness preserving transformations in a object-oriented design in [YMSL06].

Then we can apply architectural design to decompose the object model into
a component model by allocating use cases, classes, associations and services to
components. The component model should be a refinement of the application
requirement model. This step can also be implemented as a QVT transformation.
The correctness of the transformation from object model to component model
should be proved in rCOS.

Verifying interaction protocols

Composition of components not only requires that the interfaces and their types
match. Also, the interaction protocols must be compatible; if two interfaces are
composed, the corresponding traces must match, i.e., the sequences of call-ins/call-
outs must align: unexpected call-ins are ignored by the callee and will deadlock
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the caller.

We automatically check protocol consistency by generating CSP processes for
each interface. Interface composition is then modelled through pairwise parallel
composition. As a composed interface is uniquely defined in the specification, we
can successively check each composition for deadlock freedom and incrementally
add successive interfaces. Model checking with FDR would indicate a deadlock if
an operation call required by some component is not provided by any of its partner
components at some moment in time.

In an application, these can also be implemented as runtime checks using ex-
tensions for aspect-oriented programming that capture temporal behaviour like
Tracematches [AAS+05] or Tracechecks [BS06].

5 Summary

We have presented our modelling of the Common Component Example in rCOS,
the Relational Calculus of Object and Component Systems. Based on the prob-
lem description, we have developed a set of interrelated models for each use case
which separately models the different concerns of control and data. The rigorous
approach ensures that we can be of high confidence that the resulting program
implements the desired behaviour correctly without having to prove this on the
generated code, which usually is very difficult or even impossible. As the problem
description is not always amenable to modelling in rCOS, we occasionally had to
simplify the model.

For each use case, a state diagram, a sequence diagram, its trace and the func-
tional specification of its operations with pre- and postconditions are provided.
These different aspects shall help all participants involved in the development pro-
cess (designers, programmers) to share the same overall understanding of the sys-
tem. Consistency of models is checked through processes that can be automated,
e.g. by type checking of OO methods and model checking of traces.

The functional specifications in rCOS are then refined to a detailed design very
close to Java code through correct rules for patterns like the Expert Pattern or
translation of quantification. The generated code can be enriched with JML anno-
tations derived from the functional specification and invariants. The annotations
can then be used for runtime checking or static analysis.

From the OO model, we then derive a more convenient component model using
Class Decomposition and grouping classes into components. The rCOS component
model allows us to reason about component interaction, defined by the traces from
the specifications, ruling out “bad” behaviour like deadlocks. We discuss issues of
(distributed) deployment and necessary middle-ware.

For extra-functional analysis, we applied the Probabilistic Interval Tempo-
ral Logic to specify extra-functional properties given in the problem description.
Then, we conducted the estimation of the average waiting time for customers.
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Apart from concrete tool support, we also point out ongoing work and research
on automating the different parts of the development process.

The generated code and additional information is available from the project
web page at http://www.iist.unu.edu/cocome/.
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1 Full CSP/FDR listing for consistency

−− $Id: cocome.fdr2,v 1.6.2.2 2007/06/25 05:58:09 vs Exp $
−− Define events:
channel enableExpress, disableExpress, startSale , enterItem, finishSale , cashPay, cardPay

−− Define the process corresponding to the regular expression:
Trace = (TraceExMode [] TraceNormalMode) ; Trace
TraceNormalMode = disableExpress −> TraceNormalSale
TraceNormalSale = startSale −> enterItem −> TraceEnterItemLoopStar

; finishSale −> ((TraceCashPay [] TraceCardPay)
; (SKIP [] TraceNormalSale))

TraceEnterItemLoopStar = SKIP [] (enterItem −> TraceEnterItemLoopStar)
TraceCashPay = cashPay −> SKIP

TraceCardPay = cardPay −> SKIP

TraceExMode = enableExpress −> TraceESale
TraceESale = startSale −> enterItem −> TraceEMode(7)

; ( finishSale −> (TraceCashPay ; (SKIP [] TraceESale)))
TraceEMode(c) = if c == 0 then SKIP

else (SKIP [] (enterItem −> TraceEMode(c−1)))

−− State Diagram:
datatype Mode = on | off
State = Init(on) [] Init ( off )
−− Resolve outgoing branches non−deterministically:
Init (mode) = (if mode == on then disableExpress −> StateNormalMode(off)

else STOP)
[] ( if mode == off then enableExpress −> StateExpressMode(on)

else STOP)
StateNormalMode(mode) = (startSale −> enterItem −> StateEnterItemLoopStar)

; finishSale −> ((StateCashPay [] StateCardPay)
; ((enableExpress −> StateExpressMode(on))

[] StateNormalMode(mode)))

StateEnterItemLoopStar = SKIP [] (enterItem −> StateEnterItemLoopStar)
StateCashPay = cashPay −> SKIP

StateCardPay = cardPay −> SKIP

StateEMode(c) = if c == 0 then SKIP

else (SKIP [] (enterItem −> StateEMode(c−1)))

StateExpressMode(mode) = startSale −> enterItem −> StateEMode(7)
; finishSale −> (StateCashPay

; ((disableExpress −> StateNormalMode(off))
[] StateExpressMode(mode)))
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bank

Bank Card Payment

CardPayment

-card: Card
-total: double

CashPayment

-amount: double

util

Barcode

-code: long

enterprise

exchangedesk

Enterprise

-stores: Set<Store>
-exchanges: Set<Exchange>

Exchange

-requestId: long
-storeId: long
-lines: Set<ExchangeItem>

ExchangeDesk

-request: Request
-exchange: Exchange

ExchangeItem

-requestId: long
-barcode: Barcode
-quantity: int

cashdesk

CashDesk

-store: Store
-exmode: boolean
-sale: Sale
-ling: LineItem

sale

Sale

-complete: boolean
-total: double
-date: Date
-lines: Set<LineItem>

LineItem

-barcode: Barcode
-quantity: int
-subtotal: double

store::productdesk

store

data

orderdesk productdesk

reportdesk requestdesk

updatedesk

Store

-id: long
-enterprise: Enterprise
-stock: Stock
-storeOrder: StoreOrder
-storeReply: StoreReply
-storeSale: StoreSale
-storeReport: StoreReport
-storeDelivery: StoreDelivery
-storeRequest: StoreRequest

Product

-name: String
-barcode: Barcode
-price: double
-amount: int

store::orderdesk

Order

-orderId: long
-date: Date
-lines: Set<OrderLine>
-complete: boolean

OrderDesk

-store: Store
-order: Order

OrderLine

-barcode: Barcode
-amount: int

Delivery

-id: int
-date: Date
-lines: Set<DeliveryLine>

DeliveryLine

-barcode: Barcode
-amount: int

ProductDesk

-store: Store
-order: Order
-delivery: Delivery
-reply: Reply

Reply

-id: int
-lines: Set<ReplyLine>

store::reportdesk

ReportDesk

-store: Store

ReportItem

-name: String
-barcode: Barcode
-amount: int
-quantity: int
-total: double

StockReport

-date: Date
items: Set<ReportItem>

ReplyLine

-barcode: Barcode
-amount: int
-reject: boolean

Figure 21: Packages

−− Check trace equivalence:
assert State [T= Trace
−−ˆ does not hold as trace abstracts from the guard,
−− permits: enableExpress −> ... −> enableExpress
assert Trace [T= State

−− Make sure both mechanisms can’t deadlock:
assert Trace :[ deadlock free [F]]
assert State :[ deadlock free [F]]

2 Packages
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store::requestdesk

RequestDesk

-store: Store
-request: Request
-exchange: Exchange

Request

-requestId: long
-storeId: long
-lines: Set<RequestItem>

RequestItem

-requestId: long
-barcode: Barcode
-quantity: int

store::updatedesk

UpdateDesk

-store: Store

store::data

Stock

-catalog: Set<Product>
-lowStockNum: int

StoreOrder

-orders: Set<Order>

StoreSale

-sales: Set<Sale>

StoreRequst

-requests: Set<Request>

StoreReply

-replies: Set<Reply>

StoreReport

-reports: Set<Report>

StoreDelivery

-deliveries: Set<Delivery>

Figure 22: Packages
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Abstract

This project investigates, implements and evaluates tool support for analysis of
SOA-Based service contracts using Model Checking. The specification language
for the contract is Business Process Execution Language (BPEL). It captures the
behavior of services and allows developers to compose services without dependence
on any particular implementation technology. A behavior specification is extracted
from a BPEL program for formal analysis. One of the key conditions is that it
reflects the intended semantics for BPEL, and in order to make it comprehensible,
it is specified in a functional language. The resulting tool suite is hosted on an
Eclipse platform.
Keywords: Analysis, Modeling checking, BPEL, Service contract, and SOA

6This chapter is previously published in [Oki09].
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1 Research Question and Its Significance

Service Oriented Architectures (SOAs) are applicable when multiple applications
running on varied technologies and platforms need to communicate with each other.
In this way, enterprises can mix and match services to perform business transac-
tions with less programming effort. However, a service operates under a contrac-
t/agreement which will set expectations, and a particular ontological standpoint
that influences its semantics [PL03]. Services are first class citizens and are au-
tonomous as well as distributed in nature. They can be composed to form higher
level services or applications to solve business goals. Of course, this raises a lot
of issues such as managing composed services, monitoring their interaction, ana-
lyzing the behavior of interacting services, verifying the functionality of individual
services as well as composed services.

So far, service development has used traditional testing which are inefficient
when dealing with distributed systems. Thus, there is a clear need to employ
and integrate successful analysis techniques like model checking in the design of
support tools for effectively solving these problems as well as in the implementation
of high quality SOA-based services. Therefore, a detailed contractual description
of services and corresponding semantics is of great importance.

BPEL offers a programming model for specifying the orchestration of web ser-
vices through several activities. Activities are categorized into two; basic and
structured. Basic activities (for instance invoke, receive, etc.) define the inter-
action capabilities of BPEL processes whereas the structured activities are made
up of constructs such as flow (for synchronization), compensate, and pick among
other activities.

Current Results In [DPC+05] we have demonstrated a viable solution to the
problem of checking for some functional and behavioural properties of individual
services. This is done through translation of the specifications to timed automata
followed by model checking for relevant properties. In [COR07] we consider the
problem of consistency across specifications and identified a need to set up a corre-
spondence between the individual automata. The novel contribution in that paper
is to make such a consistency check practical by translating the automata to CCS,
the input language for the Concurrency Work Bench. As demonstrated by a case
study, this technique is applicable and gives a handle for automating yet another
consistency check for web services.

2 Current knowledge and the existing solu-

tions

In this section, we present several efforts geared toward formalizing/analyzing ser-
vices specified using BPEL - one of the most widely used orchestration language.
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The overall observation about these works is that they all deal with three major
issues; semantics definition, mapping to an analysis language and applicability. In
Figure 23, δ represents those efforts that cover semantics definition and mostly
applying Petri net simulation while µ represents those that focus on mapping/-
translation to an analysis language.

The issue with most of these results is that they cover only fragments of the
language and for some of them, there is not explicit statement about the underlying
analysis language and possibility of automation.

BPEL SBPEL

X SX

[WVA+09, Mar05, Sta05, Loh07]

δ

[FBS04a, FBS04b, FBS05, PZWQ06]µ

?

?

Figure 23: BPEL Formalizations

Abstract state machines are used in [FR05] to define an abstract operational
semantics for BPEL for version 1.1. The work focuses on formal verification of ser-
vice implementations and resolving inconsistencies in the standard. Abouzaid and
Mullins [AM08] propose a BPEL-based semantics for a new specification language
based on the π-calculus, which will serve as a reverse mapping to the π-calculus
based semantics introduced by Lucchi and Mazzara [LM07b]. Their mapping is
implemented in a tool integrating the toolkit HAL and generating BPEL code from
a specification given in the BP-calculus. Unlike in our approach, this work covers
the verification of BPEL specifications through the mappings while the consistency
of the new language and the generated BPEL code is yet to be considered. As a
future work, the authors plan to investigate a two way mapping.

Several model checking approaches have been employed to provide some form
of analysis. An overview of most of the semantics foundation is given in [vBK06].
An illustrative example which is well-explained is [Mar05]. It deals with specifi-
cation of both the abstract model and executable model of BPEL. The approach
is based on Petri nets where a communication graph is generated representing
a process’s external visible behavior. It verifies the simulation between concrete
and abstract behavior by comparing the corresponding communication graphs.
Continuing with Petri net, an algebraic high-level Petri net semantics of BPEL is
presented in [Sta05]. The idea here is to use the Petri patterns of BPEL activities
in model checking certain properties of BPEL process descriptions. The model
is feature complete for BPEL 1.1. Lohmann extends this work with a feature-
complete Petri net semantics for BPEL 2.0 [Loh07].

As there exists several BPEL formalizations including a comprehensive and
rigorously defined mapping of BPEL constructs onto Petri net structures pre-
sented in [WVA+09, OVvdA+07] a detailed comparison and evaluation of Petri
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Net semantics for BPEL is presented in [LVOS08]. The comparison reveals differ-
ent modelling decisions with a discussion on their consequences together with an
overview of the different properties that can be verified on the resulting models.

In the case of using labeled transition systems as models for formalizing BPEL,
few efforts is found in the literature which focuses on some fragments of BPEL
constructs. For instance, Geguang et al. present a language µ-BPEL [PZWQ06]
where a full operational semantics using a labeled transition system is defined for
this language and its constructs to Extended Timed Automata. The language
constructs are mapped to a simplified version of BPEL 1.1. Fu et al. presented a
translation from BPEL to guarded automata in their work [FBS04a]; the guarded
automata is further translated into Promela specification which is the language for
the SPIN model. Similar approaches are also followed in [FBS04b, FBS05]. All
these efforts points to the fact that there is an important need for service contracts
to be specified and analyzed.

3 Proposed Ideas

As mentioned in the previous section, many theoretical results have considered
the semantics analysis of BPEL. However, there are several issues around these
semantics. First, there is the issue of coverage - that is to say, is the full BPEL
language covered or some fragments of it? Most of the efforts using automata
as presented in the previous section covers only some fragments of BPEL. A few
of the efforts using Petri net covers a feature-complete BPEL. We point this out
because it is worthwhile to have a comparison with another full coverage in a
different formalism like automata. Second, there is the issue of translation where
one may ask: is it semantic preserving? There is also the third issue of whether it
is manual, semi-automated or automated.

Figure 24 shows the proposed approach; mapping BPEL to timed automata
(TA). This defines a semantics for BPEL with a clear description of what is in-
cluded and what is abstracted in the mapping and thus answers the issues raised
above.

BPEL SBPEL

UppAal STA

sem

β

γ

given

?

Figure 24: The new Approach

BPEL UppAal STA

γ ◦ α

β γ

Figure 25: Functional Composition

Looking at Figure 24, starting from BPEL, we consider a full behavior of
BPEL syntax and define the semantics based on UppAal, SBPEL. We follow a
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functional approach where we define a function β mapping BPEL to UppAal. We
use timed automata for the formal model but with a rendering to UppAal because
it is a mature model checking tool with wider audience and supported in our
research environment. It can be a different choice (for example SPIN) in another
environment. Note that the function given which takes care of the TA semantics
is given with the UppAal tool and it’s transition system semantics. Composing
these two functions as shown in Figure 25 relates BPEL to STA. In effect, having
defined the function mapping BPEL to UppAal, we achieve a semantic preserving
extraction/translation. That is, taking the inverse of the function gives us the
result.

In [OR08] we give a classification of service contract specification languages
based on application families and aspects. The classification identifies competing
languages across aspects. It shows where a language may fit into the development
of service based applications as well as the ones that allow for desired analyses, for
instance match of functionality, protocol compatibility or performance match. In
addition, we use the classification to survey analysis approaches. Furthermore, the
classification may assist in planning of development activities, where an application
involves services with contracts that span across families. Such scenarios are to be
expected as service oriented applications spread. Another paper [COR08] focuses
on analyzing behavioral properties for web service contracts formulated in Business
Process Execution Language (BPEL) and Choreography Description Language
(CDL). The key result reported is an automated technique to check consistency
between protocol aspects of the contracts. The contracts are abstracted to (timed)
automata and from there a simulation is set up, which is checked using automated
tools for analyzing networks of finite state processes.

Figure 26: Plug-in Architecture

4 Contribution to the problem domain and

Discussion

The project offers three distinct contributions in the development of analysis and
verification tools for SOA-based services. 1) The technique employed is a rigorous
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use of the power of functional languages in defining a property preserving mapping
for the full behavior of BPEL. 2) Model checking of behavior properties of BPEL.
General properties such as those related to deadlock and reachability as well as
application specific properties are considered. Eg., services should not deadlock
even with faults and compensation. 3) A prototype Integrated tool. The support-
ing tool will allow developers to leverage the already existing IDE such as Eclipse
to design, specify and analyze SOA-based services.
Tool Development : We focus on building a theory based tool that gives devel-
opers of SOA-based services a clear understanding of BPEL processes. We are
implementing the integrated supporting tool as a plug-in in the Eclipse frame-
work. A model (UML) of the various components of the analysis tool is shown in
Figure 26.
Discussion : The main novelty is to solve the issue of semantics unrelated to anal-
ysis tools. This is achieved by defining the extraction function using a functional
language. As a side effect to this, we develop a functional XML parser/unparser
for Standard ML. As this is an ongoing work, further effort will be geared to-
ward tuning the tool. We plan to build a service based point of sale system using
ActiveVOS orchestration system to demonstrate analysis of properties.
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1 Motivation

Business Processing Execution Language (BPEL) is a core part of the Web Ser-
vices protocol and a service orchestration language for Service Oriented Archi-
tecture (SOA). Formal semantics of full BPEL is under intense research in the
SOA community because of the inherent difficulties of some complex (and im-
portant) features of BPEL. These features include the nested concurrency model
and the combination of communication, exception handling, and shared resources.
Apart from the common concurrency problems, such as deadlock or race condition,
one needs to consider that BPEL supports developing applications with multiple
services running in parallel and equipped with a transaction mechanism called
compensation. Further, a service in this setting does not have a full knowledge
of services that it will interact with in advance. These lead to synchronization
problems, e.g.: how do different services synchronize on data? How are faults
(exceptions) in nested concurrency handled?

The efforts invested into finding a formal semantics for BPEL have several
motivations: a formalization of BPEL would provide better understanding of
the language, and would facilitate building of tools for simulation, analyses, and
verification of systems with mathematical precision. Among the formalizations
found in the literature, those based on Petri nets offer support for simulation
[Loh07, OVvdA+07], whereas those based on labeled transitions systems offer sup-
port for automatic verification [FBS05, PZWQ06, MR08]. However, because the
complex features of BPEL are different from the conventional programming lan-
guages, these formalizations do not fully capture the meaning of these features.

In our work we take an operational semantics approach and formalize some of
the complex features of BPEL based on rewriting logic [Mes92]. The advantage of
this approach is that the semantics is now executable in Maude [CDE+02]. This
caters for analyses of BPEL processes using simulation and for verification using
breath-first search.

2 Complex Features of BPEL

A BPEL process models the public behavior of interacting partner services or the
private behavior of a partner service in a business interaction. It specifies when
to wait for messages, and when to send messages among other activities. BPEL
processes are programmed using the following constructs:

Declarations of process variables, partner links, correlation sets, etc. are done
at a process level, in addition to handlers (without compensation and ter-
mination). For a scope, all scope declarations apply at the scope level.

Scope declares variables similar to a process including compensation and termi-
nation handlers. It provides a context for processing these declarations and
activities.
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concurrency ::= flow A1 A2 ... An

compensation ::= compensate s | compensateScope s
scope ::= scope decl s A eventhandler∗ faulthandler∗

compensationhandler terminationhandler
bproc ::= decl eventhandler∗ faulthandler∗ A
eventhandler ::= p A | d A
faulthandler ::= F ′ A where F ′ ⊆ F
compensationhandler ::= A
terminationHandler ::= A

Table 5: Abstract Syntax for concurrent flow, process, scope and handlers

Handlers (<eventHandlers>, <faultHandlers>, <compensationHandler>,
terminationHandler) can be defined for the process or for a scope to man-
age exceptions.

Compensation is used to manage long-running transactions by reversing
successfully completed activities. Compensations can be activated by
<compensate> and <compensateScope> activities.

Activity includes the basic activities (<assign>, <validate>, <empty>, <throw>,
<rethrow>, <wait>) for data manipulation and service interaction; the struc-
turing activities (<sequence>, <while>, <if>, <repeatUntil>, <forEach>)
for organizing activities; and the concurrent activity (<flow>) for capturing
concurrency.

Among all these, the more complex and important ones that we deal with are
listed in Table 5 (in abstract syntax). The flow construct captures the concur-
rency aspect of BPEL. The other constructs are for scope and various handlers for
managing exceptions. An event handler can be a message based event (receiving
a message on a specified port p) or an alarm based event (timeout of a specified
time d). In the case of the fault handlers there can be a specific fault (handled by
a catch clause in BPEL) or a set of faults (handled by a catchall clause) hence the
F ′ ⊆ F in the syntax definition, where F is the set of fault names, A denotes the
set of activities, and s a scope name.

3 Operational Semantics Approach using

Rewriting Logic

Rewriting logic and its tool Maude provide a semantical framework and a high-
level language for defining operational semantics for languages; and have been
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used to formalize a number of modeling languages and paradigms. The facilities
for prototyping and tool support are valuable when experimenting and comparing
different semantic definitions. An advantage of rewriting logic is that it has a
general, built-in notion of concurrency and readily supports different mechanisms
for interaction, including object-oriented systems and message passing systems.
Concurrency is typically based on defining multi-sets of units, which become con-
current when the left hand sides of the rewriting logic rules concern only one unit.
Conceptually, several units are rewritten at the same time by applying the rules
to all of them independently.

In order to formalize BPEL one needs the notion of nested concurrency, em-
bedded in nested scopes of handlers, and variable declarations. Furthermore, in-
teraction is based on both events, exceptions and shared resources. These features
call for a a very general framework. In our work we will show that the Maude
concurrency model can be adapted to the setting of nested systems in a natu-
ral way. A BPEL configuration consists of an environment reflecting the scope
structure, including the binding of entities and the context of handlers, together
with a program continuation and inner configurations representing concurrent pro-
cesses at that scoping level. Event-based communication can then be formalized
with true concurrency semantics, in the sense of non-overlapping rule applications,
whereas shared resources give rise to non-deterministic interleaving of the actions
depending on a shared resource. In this way the main challenges of BPEL are
solved in a unified manner. BPEL processes can then be simulated by running
the operational semantics in Maude with the BPEL processes as input. The set of
all possible executions can be explored by the search command; both breath-first
search and bounded breath-first search.
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