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Abstract

Migration is the process of moving an active application from one device to
another. The objective of migration is to improve the user's experience of the
application. Migration is becoming increasingly useful as users have access to
many, di�erent computing devices (such as workstations, laptops and mobile
devices) that are able run the same applications, such as access to e-mail, edit
documents, browse the Internet or stream multi-media content. However, ap-
plication performance and migration performance depends on the state of the
underlying network. Network dynamics and resource-constraints may therefore
in�uence the user's experience of a migrating application.

Automatic triggering of migration aims at improving the user experience
quality without requiring the attention of the user when the network changes.
In order to automatically trigger automatic successfully, thorough understand-
ing is needed of the network behavior, the triggering function and the migration
orchestration procedures. This thesis presents a study of the core functions
to support automatic application migration. The migration functions are pre-
sented as a part of an overall migration platform developed in the OPEN
research project.

First, properties of network state estimation methods are studied. Ubiqui-
tous networks are dominated by mobility, varying tra�c conditions and com-
munication paths spanning wired and wireless networks. To provide reliable
service in such dynamic networks estimation is vital to trigger migration. The
thesis presents network estimation methods based on hidden Markov mod-
els and Bayesian Networks (BN) and evaluates their performance in terms of
estimation accuracy and response time to network changes.

Secondly, a migration platform is developed to automatically trigger mi-
gration based on network state estimates. The complexity of decision policy
generation is analyzed and the performance impact of taking future decisions
into account is studied. An instantaneous generation approach is compared to
a model-based Markov Decision Process (MDP)-based approach. Both gener-
ation approaches aim at optimizing the trade-o� between a high average user
experience quality and a low penalty of failed and delayed migrations. The im-
pact of in-accurate network state estimation on the performance is evaluated.
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Thirdly, the design and evaluation of a lean migration orchestration pro-
tocol for resource-constrained links is presented. The protocol is evaluated in
scenarios, resource-constrained ad-hoc links between devices are used. Per-
forming migration over such links is challenging due to throughput limitations
and the potential short time-windows during which the communication is pos-
sible. The RFID-based technology Near Field communication (NFC) is used in
a case study where the performance of the orchestration protocol is evaluated.

Fourthly, an analysis is presented of the complexities of having dynamic
elements in the migration platform, such as devices or network joining and
leaving. We investigate an extended decision framework where the decision
concerns both where to migrate and how to migrate based on available net-
works. Including many dimensions in the decision policies increase the com-
plexity of the policy generation, and we investigate methods to reduce the
complexity by means of approximation.

In summary, this thesis presents solutions to support functions in a platform
for automatic migration in scenarios with dynamic and/or resource-constrained
networks. It is shown how model-based approaches to both network estimation
and triggering can improve the user's experience of a migratory application.
Moreover, the lean migration protocol proved useful in scenarios with resource-
constrained networks which broadens the range of cases where migration can be
successfully applied. Finally, the steps toward modeling migration dynamics
demonstrated the need for approximate methods, which were shown to be
useful for automatic triggering.
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1
Introduction and problem description

The purpose of this chapter is to provide the reader with a basic understanding
of the problem domain, overview the contribution of the thesis and to describe
the structure of the thesis. Initially an introduction to the problem domain
of service migration in dynamic and resource-constrained networks is given
by examples. The bene�ts of service migration between devices are described,
followed by an overview of the necessary steps in the migration process. From
this overview, the challenges of performing migration in dynamic and resource-
constrained networks are described. The challenges lead to the problem state-
ment and the scope of the thesis, along with an overview of the thesis.
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1.1 Motivation

An important aspect of ubiquitous environments is to provide users with the
possibility to freely move about and continue interaction with applications
through a variety of interactive devices (including smart phones, PDAs, tablets,
desktop computers, digital television sets, public displays, intelligent watches,
etc.). In recent years, interactive devices are transforming from speci�c single
function devices to general execution platforms. This generalization allows for
the application clients to run on any available device, which in turn enables
the user to interact with the service through the preferred terminal and user
interface. Thus, the interaction with a speci�c service is no longer bound
to a speci�c device. However, in such environments one big potential source
of frustration is that people have to start their session over again from the
beginning at each interaction device change. Moreover, the di�erent devices
may give the user di�erent experiences with the application, and the user
may have certain preferences toward doing speci�c tasks on speci�c devices.
In addition, these di�erent devices have increased access to several di�erent
networking interfaces, both cellular long- and medium-range technologies and
ad-hoc short-range technologies. Choosing which networks to use for speci�c
applications in speci�c situations is not a trivial choice to make for the user.

Service migration can overcome these limitations and support continuous
interaction with services and applications. Migration enables the interactive
applications to follow users and adapt to context changes while preserving their
state. In particular, the knowledge of context, which is any information that
can be used to characterize a situation of an entity [1], is important to ensure
that applications are migrated at the right time and place. In addition to mov-
ing applications between devices, the migration process adapts the application
to utilize the available resources on the new device or in the new network in
order to provide an optimal user experience of a continuous application. To
summarize:

Migration = Device Change + Adaptation + Continuity.

1.2 General migration scenario

As an example, Figure 1.1 illustrates a migratory video-streaming service that
is initially run on a mobile device with a small screen and a wireless Internet
connection. The video-streaming client is migrated to a large, high resolution
display with a �xed Internet connection.
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Migration

Figure 1.1: General migration scenario.

A migration can be triggered in two ways. Manual triggers are generated by
the user. In the example, the user selects the large display in a menu of avail-
able migration targets on the mobile device. Automatic triggers are generated
by the migratory application based on changes in the context. Examples of
such context changes are when the large display is discovered in the network,
when the available network capacity degrades or if the mobile device runs low
on battery.

A migration preserves the state of the application (current point in video
playback or volume settings in the example), such that the application does
not need to be restarted on the target device and the user can continue the
work �ow after migration.

We consider client/server-based applications, as illustrated in Figure 1.2,
where an application is running on the user's device (the client) connected to
the remote service (the server) that is provided via the Internet. Examples
of this application type are: mail service, document editing, web browsing,
multimedia streaming, real-time communication (audio/video) and gaming.
The migration moves and adapts the client between devices that are available
to the user. It is as such only the client that is considered migratory in this
work. In order to support existing services, the migration has to be transparent
as seen from the remote server.

1.3 Migration platform

We propose a middleware with migration functions between the migratory
application and the device. The purpose of the migration middleware is to
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Figure 1.2: The migrating services considered in this work are provided
through the Internet. The migration of the clients must be transparent to
the provider.

encapsulate and unify functions that are common between migratory applica-
tions. This allows the application developer to focus on giving the user the
best application experience and not focus on implementing migration func-
tions in each application. The functions contained in the middleware have the
following responsibilities.

• Collect context information

• Automatically trigger migration upon context changes

• Orchestrate the migration between devices, i.e. move the application
state

• Adapt application to �t target device and new context

• Make migration transparent toward remote servers

• Ensure security in migration

1.4 Challenges of migration

The primary focus is on the performance of the decision problems included in
an automatically triggered migration. For a migration to succeed, the following
decision functions need to be included.
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Figure 1.3: The devices have several available methods to connect to the Inter-
net. The methods have di�erent properties in terms of resources and behavior.

• when to migrate (context change detection)

• where to migrate (target device selection)

• how to migrate (orchestration method selection)

• what to migrate (application component selection)

• how to adapt (application adaptation)

The two last points are included for generality only and are not considered
in this work, as we de�ne applications as atomic entities. If applications are
constructed by components, a choice can be made where to migrate individual
application components to multiple devices.

Common to all of the three considered decision problems is that the sets of
choices (context states, available target devices, available orchestration meth-
ods) become very large in scenarios with several users, devices and migratory
applications. Furthermore, the availability of a choice may be dynamic, for
instance, caused by user mobility or device resource-constraints. This may
potentially cause the models that form the basis for the decision problems to
be intractable by the middleware. Hence, for each decision problem, it must
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be considered how the decision problem complexity can be kept low, which is
a focus of this work.

1.4.1 When to migrate

To decide when to migrate, context information needs to be collected to esti-
mate the state of the network, to detect when it changes. Many parameters
may in�uence the performance of the application, however, in this work, we
focus on the time dynamics of the network connections between user devices
and between application client and server. The end-to-end connection between
client and remote server may span several di�erent network technologies with
di�erent properties. The remote server is provided through the Internet. The
Internet access may be provided via both wired and wireless links. This is
illustrated in Figure 1.3. Wireless network connections are dynamic by na-
ture, since they are based on shared medium access. User mobility can cause
instability of the wireless links and other wireless users and noise can cause
the links to be unreliable, resulting in dropped packets. In addition, devices
may be directly interconnected via ad-hoc short- to medium range wireless
technologies. Such links may be more stable and reliable, since they are used
by fewer users simultaneously, but they also typically provide less capacity and
shorter connectivity windows, since connectivity is based on physical closeness
of devices.

The state of the network is not always directly observable, so estimation
methods need to be applied in order to obtain a representation of the network
state. Due to dynamics, estimation will be inaccurate and take time, which
may impact the other decisions that depend on the network state.

1.4.2 Where to migrate to

To decide where to migrate to, the decision mechanism needs to understand
what device give the best user experience of the application. Therefore, a
model is needed of the quality of the user experience delivered by an appli-
cation on a speci�c device in a certain state of the network. This model is
based on information about application requirements, device capabilities and
application behavior within a dynamic network. A part of this model is called
a con�guration. The con�guration speci�es on which device the application
runs. When a speci�c con�guration is active, a certain user experience is de-
livered, depending on the network state. The model of the user experience
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quality speci�es how the user experience quality behaves in the dynamic net-
work state in di�erent con�guration. When the network state changes it is
evaluated through the model if another con�guration delivers a better user
experience. If so, a migration to the new con�guration must be triggered.

1.4.3 How to migrate

To decide how to migrate, a model is needed of the migration process and
its performance in dynamic and resource-constrained networks. Since the mi-
gration is performed over the similar types of networks as the application is
running, network dynamics may also a�ect the performance of the migration
process. As seen in Figure 1.3, multiple networks may be available for the
migration, so the model is used to decide which migration method performs
the best in the current state of the network. Furthermore, some ad-hoc net-
work links may only have connectivity for a limited time. This is the case,
for instance, when physical closeness is required to obtain a link. In this case,
the chosen orchestration method should be optimized to succeed within the
allotted window of time.

1.5 Problem statement and objectives

Based on the previously described challenges of performing automatic migra-
tion in dynamic and resource-constrained networks, we address the following
problem in this dissertation:

How to design estimation, decision and orchestration functions in migration
middleware to deliver maximum application user experience quality in

dynamic and resource-constrained networks?

As the networks between the devices have an important role both in the
application performance and in the migration performance, we focus on the set
of problems that are related to dynamics in the network state. The following
sub-problems are addressed in the following chapters of this dissertation.

• How to make accurate network state estimation in migration scenarios?

• How to collect network state information at decision enforcement points?

• How to model user experience quality and impact of network dynamics?
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• How to choose between multiple con�gurations and orchestration meth-
ods with inaccurate networks state estimation?

• How to orchestrate migration when network is resource-constrained?

The objectives and scope of this dissertation are summarized below:

• Develop a migration platform that can perform automatic migration

• Analyze how the properties of dynamic networks a�ect network state
estimation performance; develop speci�c estimation methods for the mi-
gration framework

• Analyze how the properties of dynamic networks a�ect migrations trig-
gering policies and analyze how state estimation inaccuracy in�uences
the triggering policies

• Develop a lean migration orchestration protocol for resource-constrained
networks

• Analyze how dynamics of available migration target devices and orches-
tration methods cause by network dynamics in�uence triggering policies

Delimitations

To focus the scope of this dissertation, we make the following delimitations:

Central architecture A fundamental design decision in developing the mi-
gration platform is the architecture type which can be either centralized
or distributed. We choose to only focus on the centralized architecture,
as it demonstrates the required functionalities of a migration platform,
without introducing additional complexities, which are in this scope un-
necessary.

Security Secure migration is a vital part of the migration concept, and func-
tions must be included in the framework to solve issues such as identi�ca-
tion, authorization, trust management and con�dentiality, etc. However,
as the performance of such security functions is not directly in�uenced
by network dynamics, they are considered out of our scope.

Mobility management Since the users may choose to migration applica-
tions between networks, both vertically and horizontally, mobility solu-
tions must be included in the migration platform. We do not focus on
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the mobility solutions, as they have been addressed in other publications,
which are referenced as solutions in the mobility management design.

User experience modeling The performance of the migration functions is
measured by the average quality of the user experience when using the
migratory application. In this work, the quality is de�ned on an abstract
scale, but can be compared to subjective quality scales such as the Mean
Opinion Score (MOS) scale.

1.6 Summary of contributions

Trigger management

(Chapter 5)

Next configuration (c’)

State estimation

(Chapter 4)

Network state

estimates (s)
Dynamic network observations (o)

Orchestration

(Chapter 6)
Migration

Orchestration method ( )

Trigger management

(Chapter 7)

Configuration (c’)

Orchestration method ( 0)

{
Estimation accuracy, Acc

Response time, rt

{ User experience

quality, u

{
Migration delay, D

Success probability, ps

Next configuration (c’)

Orchestration method ( ) {
User experience

quality, u

Current configuration (c)

Target configurations (C)

Orchestration methods ( )

Network state estimate (s)

Reward functions (R)

Current configuration (c)

Target configurations (C)

Dynamic orchestration methods ( )

Network state estimate (s)

Reward functions (R)

Figure 1.4: Overview of the migration functions and how they are described
in this thesis.

Figure 1.4 depicts the organization of the chapters of this thesis based on
the core functions of the migration platform. The contributions of each chapter
are summarized below.

Chapter 3 Design of the migration platform as a middleware. The application-
platform interface and user-platform interface are speci�ed. The result is
a �exible middleware platform that can handle migration of applications
across devices and networks - both triggered manually and automatically
based on collected context information.

Chapter 4 Analysis of methods for collecting network context information
and design of a model-based state estimation component for the migra-
tion platform. In particular the challenges of estimating hidden states
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of the network based on observable parameters are addressed. Several
methods are studied in terms of estimation accuracy and response time,
including simple threshold-based heuristics, Hidden Markov Models and
Bayesian Networks. Based on a scenario with both hidden and observ-
able network parameters, the trade-o� is investigated between the accu-
racy and the response time of a state estimation function. We employ
Bayesian Networks to model the mapping between the parameters

Chapter 5 Analysis of methods to trigger migration automatically to opti-
mize the user experience in dynamic networks. We design a decision
framework for the migration platform that can account for both the
quality of the user's experience and the penalty of waiting during orches-
tration. Based on this framework, we investigate methods to generate
optimal triggering policies that balance this trade-o�, in order to make
decisions in dynamically changing environments. The migration trigger-
ing process is modeled using a Markov Decision Process (MDP), to make
decisions that maximize the long-term experience quality.

Chapter 6 We develop a lean orchestration protocol for an ad-hoc resource-
limited network connection. An NFC connection is used as case study
as is has a short connectivity window. Based on experimental perfor-
mance measurements of an NFC link, we study how much application
state information can be transferred in a connectivity window. The lean
orchestration protocol is developed to make the most use out of the avail-
able time for orchestration. The evaluation shows how big amounts of
state data can be transferred during orchestration in scenarios where
only the NFC link is available.

Chapter 7 We investigate a scenario with several orchestration methods. The
complexity of the decision problems increases rapidly as more orchestra-
tion methods are introduced. Furthermore, the orchestration methods
have dynamic availability such that they may appear and disappear over
time. We study how the interplay between trigger management and
orchestration can handle this dynamic availability. We compare two pol-
icy generation approaches. The �rst one includes all dimensions of the
scenario and can be generated o�ine before running the system so de-
cisions can be enforced fast. The second one is calculated online and
includes only the available orchestration methods at the time when the
choice is made. We compare the trade-o� between the accurate but com-
plex o�ine world model and the less accurate but less complex online
subset model. The results show that the subset model can be utilized
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successfully when adapted to the dynamics of the orchestration method
availability.

A list of names of the used symbols in the thesis is found on page 129. The
contributions described in the chapters have been presented in the following
publications:

• Anders Nickelsen, Rasmus L. Olsen, Hans-Peter Schwefel � "Model-based
decision framework for autonomous application migration", in prepara-
tion
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2
Background and state of the art

This chapter describes existing approaches to migration platforms. First ex-
isting solutions for service migration are described, ranging from traditional
agent based systems to new service migration frameworks. Context informa-
tion is a large part of autonomous migration and so the background of context
management is studied as well. Finally, available methods to model stochastic
parameters are described, as they are used for both estimation and decision
making in this work.
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2.1 Migratory applications and frameworks

2.1.1 Dynamic, adaptive and recon�gurable systems

Applications and systems may not always operate in the conditions they were
designed to be in. Users may alter run-time conditions deliberately or the evo-
lution of new technologies may supersede the evolution of the application or
system. From this realization originates the concept of dynamic, adaptive and
recon�gurable systems [14] [1]. In such a system, an application is composed
of blocks of components, which can be recon�gured to suit new purposes or
adapt to new conditions. They can adapt dynamically, with activation and
deactivation of components. Still, they do not speci�cally target application
state preservation, so the application may need to be re-initialized upon recon-
�guration. The systems are based on CORBA [23] or OSGI [2], which are both
service/component management framework. Each dynamic, adaptive system
is self-contained, such that it can make the con�gurations itself. There is no
common infrastructure, which on one hand is bene�cial when deploying sys-
tems in new domain because they do not depend on infrastructure presence.
On the other hand, none of the applications can take the others into account
in the decision making, so any decisions made can at most be optimal for the
application, which is not necessarily optimal for the user, which may have a
couple of applications running, or an operator, which have many applications
running. The dynamic, adaptive systems are context-aware, such that they
can adapt to changes in the context of the user or the system. However, in
most cases, the decision about which con�guration to use next is taken either
manually by the user or the developer [8], or heuristically by the system, by
choosing to use the most recent set of components to compose the application
[14].

2.1.2 Proxy-based UI/web adaptation

Migration of user interfaces is also an emerging research �eld. Based on similar
motivations as this work, namely that the user has increased access to termi-
nal, user interface migration solutions pursues this realization by utilizing the
terminals as application-client-size view-ports to a server-side application. Mi-
gration between terminal then becomes a matter of adapting the view-port to
the capabilities of the terminal [25] [19] [24]. Typically, the client-side applica-
tion is hosted in a cross-platform browser, in order to support cross-platform



2.1. Migratory applications and frameworks 17

adaptability. The application itself is then hosted from a web-service. Adap-
tation is performed by intercepting the communication between server and
client at a proxy, restructuring the elements of the web application according
to some policy and relaying the result on to the client to be presented to the
user. The restructuring policies are statically de�ned to match distinct ter-
minal types and the restructuring process is performed by reverse engineering
data objects within the application content (typically HTML). Connectivity-
wise, this approach is attractive because it operates transparently as seen from
the server-side, and requires no adaptation of existing services. Its limitation
is the reverse engineering process, since the adaptation requires full access to
the application-level content (the HTML) and complete understanding of the
content (the ontology of HTML objects). Also, clearly, this method of user
interface migration only applies to web applications written in HTML.

2.1.3 Mobile agents

Mobile agents are independent programs moving between devices and platform
to achieve a prede�ned goal. [3]. There exists di�erent types of mobile code;
remote evaluation, code on demand and mobile agents [9]. The reference so-
lutions is client-server, where a client component communicates with a server
component, which has the know-how to reach the goal and the resources. Both
the remote evaluation and the code on demand solutions employ two compo-
nent; in remote evaluation, the client has the know-how and the server has the
resources, which is vice versa in code on demand, where the client has the re-
sources and the server the know-how. With mobile agents, only one component
exists, which has know-how of the goal and is transmitted between resources,
until the goal is met. In all cases, the component with the know-how moves
between platforms of resources. With migration, the concept is opposite. In
migration, the user is the ultimate resource, and the applications have to move
to where the user is present. If the current terminal, through which the user is
interacting with the application, is di�erent from the previous, adaptation is
required. Know-how about adaptation has to be present where it is performed,
that is, either on the terminal, or on a dedicated adaptation/recon�guration
entity.

The authors of the seminal paper on code mobility [3] evaluated the impact
of the paradigm 10 years later, and concluded that code did not move as
much around as anticipated [4]. The main reason, they conclude, is that the
paradigm was too complex to completely take over the role of client-server
based communication. The cost of overcoming the complexity of developing,
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managing mobile agents and keeping them secure did not prove worth the
bene�t of mobility.

Strong vs. weak agent migration In agent terminology, two categories
of migration have been de�ned; strong migration and weak migration [7] [12].
Strong migration is de�ned as the procedure where everything is migrated
between devices - in particular code and state. The entire code and state need
to be migrated for the migration to be strong. Weak migration is de�ned as
any migration that is not strong. Details of the de�nitions are illustrated in
Figure 2.1. In this work, the migration is characterized as weak, as it is only
the application state that is migrated between device between to instances of
the application code.

Agent systems standards The Foundation for Intelligent Physical Agents
(FIPA) is a body for developing and setting computer software standards for
heterogeneous and interacting agents and agent-based systems [6]. FIPA spec-
i�cations represent a collection of standards which are intended to promote
the interoperation of heterogeneous agents and the services that they can rep-
resent. The speci�cations can be viewed in terms of di�erent categories: agent
communication, agent transport, agent management, abstract architecture and

Figure 2.1: De�nition of strong migration after [12]. weak migration is de�ned
as anything not being strong.



2.2. Context management 19

applications. Of these categories, agent communication is the core category at
the heart of the FIPA multi-agent system model.

Java Agent Development Environment (JADE) JADE is a develop-
ment framework for distributed, multi-agent systems that complies to the FIPA
standards [13]. It is a graphical user-interface (GUI) based integrated devel-
opment environment (IDE) that creates software containers for agents. A set
of containers is de�ned as a platform. The JADE framework contains agent
support functions such as agent management and directory containers. The
JADE framework is a candidate system for the deployment of the migration
platform described in this work, since it contains solutions to many of the com-
munication and management functions needed within the platform. However,
it provides neither context management or decision functions necessary for our
analysis, and can therefore not serve as a reference solution.

2.2 Context management

The context management framework employed in this work is called CMF and
was developed in the course of the MAGNET and MAGNET Beyond projects
[27] and the OPEN project [26]. The CMF handles gathering and management
of context information in a distributed system [34]. Through standardized in-
terfaces, providers of context information can insert pieces of information into
the system where consumers of context information can query for them. Dis-
semination of data in the CMF can be optimized to reduce overhead in the
communication channels in the same way as ad-hoc routing backbones are op-
timized for broadcasting of messages [18].
The CMF supports both proactive and reactive retrieval schemes. In proactive
mode, a noti�cation to a consumer is sent whenever a value of a context infor-
mation is changed and in reactive mode, the consumer queries whenever recent
context information is needed. A detailed analysis of the context management
system has revealed that the probability of a mismatch between the reported
value and the actual value of a piece of context information depends on the
delay in the network [22] [21]. This is an important property when interacting
with the context management system, however, it is not considered directly in
this work. We focus on how inaccurate state estimates a�ect decision perfor-
mance in a case-study of network parameter estimation. Also considering the
mismatch probability as an inaccuracy source would be possible in the scope
of the estimation framework in future work.
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2.3 Stochastic modeling approaches

The primary challenge of this work is to make decisions about migration under
uncertainty. The network state is not always observable, and must be inferred
from observable parameters that have a stochastic relation to the network
state. The hidden Markov model and Bayesian Network modeling approaches
in described in the following are widely recognized and used methods to infer
hidden parameters from observable parameters. The Markov Decision Process
is models the e�ect of making choices in stochastic model, which is relevant
for the decision problems in migration.

2.3.1 Hidden Markov models

A hidden Markov Model is a Markov chain where the observed state (Yt)
may not be equal to the true state (Xt) [29]. The parameters of the model
are the initial state distribution, π(i) = P (X1 = i), the transition model,
A(i, j) = P (Xt = j,Xt−1 = i), and the observation model P (Yt, Xt). By infer-
ence, a sequence of observations can be used to estimate a true state sequence.
For inference, a Forward-Backward algorithm can be used. The Forward-
Backward algorithm produces as a byproduct the a posteriori Marginal distri-
bution, which leads to Marginal Posterior Mode estimate, which is the most
probable state of Xt, given the observed sequence Y until t [32]. We will use
the hidden Markov model approach to continuously estimate the most likely
state of hidden network parameters from network observations in Chapter 4,
5 and 7.

HMMs have been widely used for estimation of hidden states. The most
recognized application case is the speech recognition example presented in [29].
More related to network, the HMMs have been to estimate end-to-end loss na-
ture in hybrid wired/wireless networks [17], model an internet communication
channel for performance analysis [32], network tra�c categorization [36], net-
work delay prediction [37] and fault prediction and diagnosis [33] [5].

2.3.2 Bayesian Networks

Bayesian Networks is a graphical model that unite probability theory and
graph theory. Probabilistic graphical models are graphs in which nodes rep-
resent random variables, and the (lack of) arcs represent conditional inde-
pendence assumptions. Hence they provide a compact representation of joint
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probability distributions. Using BNs to estimate hidden state under uncer-
tainty has been studied and applied in industrial control systems [11] [38] and
medical diagnosis [20] [15]. In general, good state estimation accuracy can
be achieved and the BNs provide a useful framework for modeling complex
systems based on learning data and expert knowledge. Compared to deter-
ministic rule-based systems (e.g. [16]) BNs are accentuated by their ability to
cope with unreliable observations [38] [35] while achieving useful performance
typically requiring less training data than other popular AI methods like neural
network methods [39] [38]. Ongoing research in BNs is focused on applying,
often application speci�c, approximate inference methods while maintaining
accuracy [30] [35].
BN fault diagnosis has also gained attention in network management. In work
of [35] [31] the diagnosis strengths of the BN methods has been applied in
diagnosis of faults in complex network infrastructures based on correlation of
network fault noti�cations. The authors in [10] train a BN to learn the nor-
mal state of a network based on observations of network tra�c in a network
routing device. They show how the trained BN is capable of detecting network
anomalies but do not diagnose their cause. Similar to [10] our BN approach
is based on observations drawn from network tra�c as opposed to explicit
context change noti�cations.

2.3.3 Markov Decision Processes

A Markov Decision Process is a discrete time stochastic control process, based
on a Markov chain [28]. At each time step, the process is in some state s,
and the decision maker may choose any action a that is available in state s.
The process responds at the next time step by randomly moving into a new
state s′, and giving the decision maker a corresponding reward Ra(s, s

′). The
probability that the process chooses s′ as its new state is in�uenced by the
chosen action. Speci�cally, it is given by the state transition function Pa(s, s

′).
Thus, the next state s′ depends on the current state s and the decision maker's
action a. But given s and a, it is conditionally independent of all previous
states and actions; in other words, the state transitions of an MDP possess the
Markov property.

The core problem of MDPs is to �nd a policy for the decision maker: a
function π that speci�es the action π(s) that the decision maker will choose
when in state s. Note that once a Markov decision process is combined with
a policy in this way, this �xes the action for each state and the resulting
combination behaves like a Markov chain. The goal is to choose a policy π∗
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that will maximize some cumulative function of the random rewards, typically
the expected discounted sum over a potentially in�nite horizon.

The standard family of algorithms to calculate this optimal policy requires
storage for two arrays indexed by state: value V, which contains real values,
and policy p which contains actions. At the end of the algorithm, p will contain
the solution and V(s) will contain the discounted sum of the rewards to be
earned (on average) by following that solution from state s. The algorithm has
the following two kinds of steps, which are repeated in some order for all the
states until no further changes take place. They are

π(s) := argmax
a

{∑
s

Pa(s, s
′)(Ra(s, s

′) + γV (s′))

}

V (s) :=
∑
s

Pπ(s)(s, s
′)
(
Rπ(s)(s, s

′) + γV (s′)
)

where γ is the discount rate and satis�es 0 > γ > 1. It is typically close to 1.

A calculation approach called value iteration, which will be used in this
work, combines the steps into one calculation

V (s) = max
a

{∑
s

Pa(s, s
′)(Ra(s, s

′) + γV (s′))

}

This update rule is iterated for all states s until it converges with the left-hand
side equal to the right-hand side.
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3
Service migration framework

This chapter describes the details of a migration scenario that are used to
create a model of a migratory application, a model of the migration process,
a migration platform and its deployment. Details of the migration scenarios
from Chapter 1 are elaborated. The chapter provides an overview of the spe-
ci�c features characterizing a migratory application. Furthermore, it describes
the necessary functions to perform migration, how they are de�ned in a migra-
tion platform and how the platform is realized as middleware in a migration
infrastructure. The work described in this chapter is joint work carried out as
a part of the EU FP7 research project called OPEN (Open Pervasive Environ-
ments for iNteractive migratory services � see ww.ict-open.eu or [6] for more
information about the project).
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3.1 Migration scenario

A user is viewing a video-stream of a news cast on a mobile device. The
video is streamed from an Internet service. The mobile device is connected
to the Internet through a wireless LAN connection. The user's experience of
watching the video on the mobile device has a certain quality. The experienced
quality is in�uenced by the continuity of the stream, the size of the display
and the allowed mobility of the device. At one point a problem in the network
causes glitches in the video stream because packets are lost due to the network
problem. Glitches are annoying which causes a reduction in the quality of the
user experience. However, a large display in close range of the user is able
to handle packet losses better, since is has better processing capabilities. The
large display is not as mobile as the mobile device, but is has a larger screen to
display the video stream on. Because the user prefers continuity over mobility
in news video streams, the migration platform infers that the large display will
give a better quality user experience when there are problems with the network.
Moreover, since the type of network problem is expected to last longer than
the news cast, it is even worth to wait for a migration to complete from the
mobile device to the large display. Based on this information, the migration
platform decides to trigger the migration. The user experiences that the video
on the mobile device pauses. A short while after, the video continues on the
large display from the position on the mobile device and the video player on
the mobile device closes.

3.2 Model of a migratory application

In the following, the concepts of a migratory application are described. Fig-
ure 3.1 illustrates how the concepts are related. A migratory application
is speci�ed by 1) the functions it provides, for instance, video output and
touch-based input, 2) its internal business logic and 3) its state. Functions
are abstract representations of application functionality. In the example in
Figure 3.1, the functions are network, display and input. An application is
speci�ed by a set of functions. Functions may depend on other functions in
order to run. If a function cannot be implemented, the application cannot
run. Functions are implemented by components and several components may
implement the same function, for instance, video output on a mobile device
is implemented by a component that may be di�erent to one that implements
video output on a �xed large screen. Similar to function interdependencies,
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Figure 3.1: Example of a migratory applications, that is de�ned by functions,
which are implemented by components. Con�gurations specify which com-
ponents implement which functions, and several con�gurations of the same
application may exist.

components can depend on other components. For instance, the display com-
ponent for the mobile device may require a speci�c component to implement a
network function. A part of the component speci�cation is the location of the
component, i.e. which device it runs on. Components also have requirements
to the device and the context that must be met to allow the component to run.
Requirements can be about speci�c contextual parameters, such as a minimum
size of an available screen on a device.
Con�gurations specify which functions are implemented by which components
and de�ne the quality of user experience the combination will produce. One
application can be realized in several di�erent con�gurations, where the set
of functions are implemented by di�erent components. A utility function for
each con�guration quanti�es the user experience quality in the speci�c con-
text conditions, for instance, for di�erent values of network packet loss or for
di�erent locations the user may be in.

When an application instance is running, it may change its state. Every
migratory application includes an interface to export an object that contains
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enough information about the application state to allow the object to be im-
ported in another application instance and let that instance resume from the
state of the original application.

3.3 The migration process

User Application Device 1 Device 2
Migration 

service platform

start start

 register application

register device

register

migrate to 

device 2
trigger migration to device 2

pause application

retrieve application state

send state

initialise application

continue in original state

migration

done

redirect

network traffic

paused
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context management

adapt application state (UI/logic)

migration orchestration

state adaptation

trigger management

migration orchestration

migration orchestration

mobility support

migration orchestration

resume application

start application

start

stop 

application

Figure 3.2: Migration procedure involving the user, the application, the two
devices that the application migrate between and the underlying migration
service platform.

The procedure for a migration is described in Figure 3.2. Initially, all
devices and applications are registered, including device and network capabili-
ties as well as application's requirements to devices and networks. Registration
only occurs once, also for multiple migrations. Then, migration can be trig-
gered, either manually by the user or automatically by the application or as
a reaction to contextual changes. After the trigger, the original application
instance is paused to enable state retrieval to maintain state persistence be-
tween application instances. The application state is adapted to suit the target
device or network. Then, a new application instance is started on the target
device, the adapted state is inserted, and the new application instance can
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continue the session of the original. Any persistent network connections to
remote servers are redirected to the target device.

Model of the migration process

As a general reference for this dissertation, a model is de�ned of the migration
process. The de�nitions are illustrated in Figure 3.3. The context is de�ned
discretely as a set of N states, S = {s1, ..., sN}. The states are abstractions
of the network parameters, which are considered relevant if they impact the
performance of the application or the migration process. The network state
estimate is represented by ŝ. The best con�guration of the application is au-
tomatically evaluated periodically by the migration middleware. A set of M
con�gurations, C = {c1, ..., cM}, constitutes the set of possible next con�gu-
rations. The middleware has to decide which con�guration c′ to change to
from the current con�guration c. Moreover, a set of K orchestration methods,
Ω = {ω1, ..., ωK} de�nes the set of available choices for orchestration. One con-
�guration must be available and chosen in order for the migration to proceed.
If c ̸= c′, a migration c → c′ using ω, is attempted. The migration duration,
D, is random and characterized by a distribution fD,c→c′,ω(τ) that depends
on the size of the state object that needs to be transferred, the properties
of the network type of ω and the network state. If the migration is success-
ful, the application is in con�guration c′ after time D. If the migration fails,
with probability (1 − ps), (ps is migration success probability) the duration
until the system returns to con�guration c may be characterized by a di�erent
distribution ffail,c→c′(τ).

Migration delay Migration delay, D, is the time it takes to orchestrate the
steps during migration (pause source, extract state from source, insert state
in target, start target, stop source). The primary component of D is the time
it takes to transfer the application state object between the devices and the
server. The application state is transferred over the network and therefore
D is in�uenced by network state. D is assumed geometrically distributed
over the network states with parameter pd. Di�erent orchestration methods
may have di�erent delay distributions depending on the capabilities of the
used technology. For instance, the mean delay of an ω using a WLAN 802.11
connection may be much smaller than the mean delay of an ω using an NFC
connection, due to the bandwidth di�erences of the technologies.
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Figure 3.3: Time-line of a migratory system. Network states (s) are estimated
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Figure 3.4: Migration elements and network state impact migration delay, D
and success probability, ps.

A di�erence of ω, besides network technologies, can be di�erent application
state sizes to be transferred. A smaller application state object may be trans-
ferred faster. However, a smaller application state object may compromise
the continuity of the application work �ow, since the user may have to redo
some steps after migration is complete to re-initialize the application into its
original state, since not all state information was transferred. The application
re-initialization delay must be considered part of the migration, but a part
that is not a�ected by network state, as opposed to the state transfer delay.
It can be considered a constant value of time that is added to the transfer
delay that is dependent on the transferred application state size instead of the
network state.
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Migration success probability The migration success probability describes
for each ω the probability of the migration succeeding for each of the network
states. A failure is modeled as one of the steps of an orchestration not succeed-
ing. For instance, if the messages in a step are communicated using XML-RPC
over TCP, a migration failure happens if one of the TCP connections fail, for
instance if SYN packets are not successfully transmitted. Then, the success
probability, ps is calculated as the probability of not loosing any TCP SYN
packets during the orchestration, ps(ploss,s) = (1− p5loss,s)

5 (assuming one SYN
packet per protocol step, and 5 retransmissions of SYN packets) If ω uses non-
standard migration protocols, as in the case of NFC, ps is modeled di�erently,
since the number of TCP connections may be di�erent, or the orchestration
method may use a di�erent protocol than TCP. In this case, it may be mod-
eled by a connectivity window, where the migration fails if the duration of the
window is shorter than the time required to transfer the state.

3.4 Design of migration support platform

To perform automatic migration successfully, several tasks must be performed
by the migration platform. Components to solve these tasks are included in the
migration platform, as seen in Figure 3.5 and the interactions during migration
between the ones addressed in this work are seen in Figure 3.6. The tasks and
corresponding components are described in the following.

1. Discover and register applications, con�gurations and devices that sup-
port migration (context management)

2. Collect network context information, e.g. performance measurements
from devices and networks, and network capabilities of available devices
(context management).

3. Estimate the state of the network based on collected information and
estimate the quality of the user experience of the application in each
con�guration (network estimation in context management).

4. Infer which con�guration gives the best user experience in the current
context and trigger migration if the best con�guration is di�erent from
the current one (trigger management).

5. Find available methods to orchestration the migration and choose the
optimal given the current context and the inferred target con�guration
(trigger management)
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6. Orchestrate the migration to move and adapt the application between
the devices (migration orchestration)

7. Adapt application state during migration (application state adaptation)

8. Redirect network tra�c from source to target in order to support mobility
(mobility support)

Note that steps 4 and 5 can be performed jointly or in sequence. In this work
they are performed jointly by the trigger management component, see Chapter
5 for more details.

Migration platform

Migration 

orchestration

Trigger 

management

Mobility support

Context 

management

Application state 

adaptation

Migratory applications

Devices Networking

Figure 3.5: Architecture of the migration platform.

3.4.1 Primary components

In the following are descriptions of the components in the platform that are
treated in this work. Their input and performance parameters are depicted in
Figure 3.7.

Context management

The context of the user describes the user, the user's activity, the network
state or devices. Context information indicates when and where to migrate
and is the basis for the decisions in the trigger management component. The
context management component in the platform ensures access for other mod-
ules, applications and services to distributed, dynamic information of various
types within the network, and o�ers search, discovery, access and distribution
functionality of context information. In the migration middleware, an existing
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Figure 3.7: Inputs and outputs of the functions in focus in this work. The
state estimation function represents the context management component, as
this is the main focus in terms context management in this work.

context management framework (CMF) [1] is used. Information is collected by
context agents installed on involved entities and collected in a storing and pro-
cessing unit on the migration server. The CMF provides an interface to both
query context information when needed and subscribe to changes, such that,
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e.g., the decision function can be noti�ed when a relevant change in context
occurs, in order to react to the change.

The context management component delivers estimates of the network state
to the decision function in the trigger management component. Two metrics,
estimation accuracy and response time (to context changes) de�ne the perfor-
mance of the estimator. This is described in detail in Chapter 4.

Trigger management

The purpose of the trigger management component is to decide the best con-
�guration of the applications in order to ful�ll the requirements of the user
and the application. The component chooses a con�guration from a set of
con�gurations based on a decision policy. The con�gurations are registered
in the context management system by the applications on the devices when
they join the migration domain. The decision policy can either be generated
before the entire migration system is run or generated during run-time based
on available con�gurations. As the trigger management component makes de-
cisions to improve the quality of the user experience, the performance of the
trigger management component is measured in the average experience quality
delivered to the user during an application run. Details of the component are
described in Chapter 5.

Migration orchestration

During the orchestration process, the application is paused to maintain con-
sistency of the state of the application. This means that the user cannot
interact with the application during migration. Therefore, the orchestration
process has to be fast for the migration to be least intrusive to the user's ex-
perience. The process also has to transfer the entire state of the application,
such that the user does not need to repeat steps in the application work �ow.
However, in some scenarios, the methods available for orchestration may be
resource-limited, and a trade o� between a fast orchestration process and a
consistent state is present; either the orchestration is completed quickly, but
the amount of transferred state information is reduced, forcing the user to
repeat steps in the work �ow, or enough state information is transferred to
allow a continuity in the work �ow, but the orchestration process takes longer
time. The performance of the orchestration component is de�ned by these two
metrics; migration delay and success probability. These are described in detail
in Chapter 5 and analyzed in detail in Chapter 6.
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The orchestration component is responsible for:

• Registration and de-registration of application components.

• Receive the migration trigger and perform the migration.

� Manage the application instances on source and target device (start,
pause, stop).

� State persistence: retrieves and transfers the state to the target
device;

The interaction between the application and the orchestration component
is managed using a protocol on the device where the application is running.

3.4.2 Secondary components

The following components are required in the migration platform but not
treated further in this work. Background on the solutions can be found in
deliverables of the OPEN project [6].

Application state adaptation

The platform supports adaptation of both the user interface and the appli-
cation logic during migration. When migration is triggered to an interactive
device other than a desktop, the migration server adapts the application user
interface by building the corresponding logical description through a reverse
engineering process and using it as a starting point for creating the implemen-
tation adapted to the accessing device. Adaptation of the application logic
is done by changing the internal wiring of the components. For instance, if
the target device of migration includes the possibility of decoding video in
hardware, instead of software, an additional or a di�erent component may be
utilized for decoding after migration. The orchestrator component instructs
the adaptation component(s) when to adapt the application components and
state.

Mobility support

In scenarios where devices or applications change network as a part of the mi-
gration process the change must be transparent to the application server (and
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client) in order for them not to require a recon�guration of e.g. IP addresses.
The network may be changed during run-time for several reasons, including
congestion in the current network or device mobility between networks. As
described in Chapter 1, the migration procedure must be transparent to any
remote service, in order to support existing remote services that do not sup-
port migration. To solve this, the migration procedure is made transparent by
using a mobility function in the migration platform. The mobility function is
deployed as a mobility anchor point in the application data stream as SOCKS-
based proxy server [2] to redirect data during migration. The orchestrator
component instructs the mobility anchor point when to redirect which tra�c
�ows.

3.5 Deployment of the migration middleware

The migration platform is realized as a middleware between the migratory ap-
plication and the execution platforms, i.e. devices and networks. The platform
contains functionality to enable migratory applications to migrate between dif-
ferent execution platforms. By realizing the platform as middleware, the mi-
gration function can be shared between multiple migratory applications, such
that the application developers can focus on application development and not
migration development.

The platform employs a client/server infrastructure to centralize informa-
tion collection and decision making. The deployment of the middleware server,
the mobility anchor point (for mobility support) and the client parts is illus-
trated in Figure 3.8. The migration server contains the shared functions and is
the point where most decisions are made, since the server is the central point
of information. The server instance may reside on any device, so long as it
is reachable by the clients. Typical deployment cases are in the user's home,
in an enterprise or operator's infrastructure or it may even be accessible via
the Internet as a public web-service. The migration client is typically the end
user terminal (but may also be a large public display), on which migratory
applications are running. The client-side middleware implements the part of
the migration functionality that is common across applications, and interact
with migration server. Applications interact with the middleware through a
speci�cally de�ned interface (see details in [3]). For example, an application
can implement the application-side functions and publish them as XML-RPC
methods and call the middleware-side functions through XML-RPC as well. By
using a general framework like XML-RPC to implement the interface, the plat-
form does not pose any requirements to the technology that the applications
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Figure 3.8: The migration middleware deployment; a client part resides on the
user terminal where also the application client-part is running and a server-
part resides in a central migration server within the migration domain. Tra�c
is tunneled through a mobility anchor point to make the migration seamless
for the application server.

are implemented. The platform can as such support any kind of technology
that can publish XML-RPC methods.

The platform is deployed as a centralized architecture as this type of ar-
chitecture can handle the collection of information about the available devices
and their capabilities as well as access to context information such as network
performance and alike. Without a common platform to handle information
collection, the applications need to implement it themselves. Moreover, they
each need to implement capabilities to manage migration triggers and orches-
trate migration. On one hand, the centralized architecture faces many relevant
challenges of migration in dynamic and resource-constrained networks with-
out having to deal with additional coordination and dynamics challenges as
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introduced by a distributed architecture without a dedicated central control-
ling entity. On the other hand, the need for a central controlling entity limits
the scenarios in which the middleware can support migration. We assume that
scenarios with a central entity are su�cient to study the migration properties
and therefore consider the distributed architecture out of scope of this work.
Full ecosystems of the hardware and the software that would enable the pro-
posed architecture are becoming increasingly available. In the market today,
large companies develop themselves many devices and software platforms that
can facilitate a centralized architecture. By introducing the migration plat-
form in their ecosystem, they will be able to control the interaction between
the devices. The developers are then in a position to provide a optimal migra-
tion experience, as they do not have to rely on involvement from other parties.
Examples of such companies and their ecosystems are listed in Table 3.1.

Company Products
Apple iPhone, iPad, Apple TV, MacBook, iMac
Google Android, Chrome, Google Phone
Microsoft Windows, Windows Mobile, Windows Phone
Samsung mobile devices, TVs and set-top boxes, laptops, netbooks
Sony mobile devices, TVs, netbooks, home entertainment

Table 3.1: Examples of players able to provide migration features with-in their
own product ecosystem.

.

A prototype of the migration platform has been implemented in an ex-
perimental setup to make measurements for the work reported in [2]. In the
experimental setup, an link emulator was used to emulate wireless network
properties such as packet loss and delay in dynamic network topologies [4].
The measurements were of migration delays and success probabilities, which
can be used directly as input in the models presented in this dissertation. The
emulator emulates link properties based on a pre-generated link models, as de-
�ned by a scenario with prede�ned mobility. The emulator has been extended
to support real-time, online generation of link models, based on the case where
changes in communication caused by link properties may change mobility pat-
terns [5]. This features has not been used in migration scenarios yet, but could
be used to evaluate performance of the migration platform in situations where
slow or failed migration a�ect the user's mobility pattern. One use-case would
be if a migration fails due to network problems and the user moves to �nd
better network and retry the migration. The emulator supports experimental
evaluation of such a use-case.
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3.6 Dynamics in the migration domain

Dynamics in the application execution environment occur in the following di-
mensions:

Context parameters Many dynamic context parameters can a�ect the per-
formance of the migratory application or the migration process. Network
state is the example of context in this work, but device resources like
processing power or remaining battery time are also relevant dynamic
context parameters.

Device availability A device may join and leave the migration domain. When
a device enters the domain, device capabilities and available components
are registered with the migration server.

Component availability Components may be available or unavailable de-
pending on whether the resources they require are available from a de-
vice. One component using a resource may render another component
unavailable because it depends on the same resource. In this way the
context in�uences the component availability.

Con�guration availability As new device type and thereby new compo-
nents may be introduced into the migration domain, new con�gurations
may as well, specifying how an application can make use of the new
device type. A new con�guration is installed directly in the existing
con�guration set of an application which is installed in the migration
domain.

Application availability New applications may be installed in the migration
domain or un-installed by users or operators

Due to the dynamics described above, the migration system must be able to
handle dynamics in the execution environment and be scalable in terms of
available con�gurations and applications.

3.7 Summary

This chapter described the proposed migration platform that contains support
functions for migratory applications. The functions are collected in a common
platform to relieve the application developers of the task of developing migra-
tion abilities for each application. The platform enables automatic triggering
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of migratory applications based on context changes. The functions in the plat-
form are realized as middleware in a network infrastructure. The infrastructure
contains the devices running the applications, a migration server to coordinate
and orchestrate the migration process and adapt the migratory application to
suit the device capabilities, and a mobility anchor point to redirect network
connections when migrating between di�erent networks. The middleware can
be used by migratory applications during the migration process or the appli-
cations can implement subsets of the migration functions themselves. To use
the middleware functions, migratory applications use a speci�cally de�ned in-
terface to the platform. For analysis in the following chapters, models were
presented of a migratory application and the migration process.
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4
Probabilistic network state estimation

This chapter presents the solutions to the context management component in
the migration framework, with particular focus on functions to estimate net-
work state. Dynamic networks are unreliable, which challenges state estima-
tion. The chapter �rst motivates the need for network state estimation in
migration scenarios. Then a scenario is described to illustrate the challenges
of making accurate and fast state estimation. Two approaches are analyzed as
solution candidates. A Hidden Markov model-based and a Bayesian Network-
based approach are investigated as case studies. Finally, their performance is
evaluated by simulation of a migration scenario.
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4.1 Motivation

The decisions made during migration, such as automatic triggering and choice
of orchestration method, are reactions to context changes. Context as a general
concept means any piece of information that can be used to describe the current
situation of the user and/or the application. In this work, we focus on context
information about the state of the network, i.e. parameters that describe
the state of the network. As we assume that the migratory applications are
client-server based and thus utilize one or more networks to make an end-to-
end connection, the state of the network in�uences the performance of the
application. Such in�uence must be considered when making decision about
the migration, and therefore context information has to be available to the
decision maker.

Estimating network state is complicated as observations from network traf-
�c may be unreliable i.e. missing, obsolete, noisy and ambiguous [12]. An ap-
proach to overcome unreliable observations and provide robustness to changes
is to use and correlate several observations across multiple protocol stack lay-
ers. This is, however, not trivial as more observations can lead to contradicting
observations and increased ambiguity. To target these challenges we perform a
study of estimation methods to apply in the migration framework. We employ
two model-based methods, namely Hidden Markov models and Bayesian Net-
works, as they are able to correlate multiple observations to multiple network
state parameters. We compare their performance in terms of accuracy to a
simpler threshold based heuristic method called the optimal threshold (OT)
where observations and network states are directly mapped.

Most migration decisions are made centrally on the migration server, so
network state information has to be available at the migration server at the
time a decision is made. Network tra�c is not routed through the migration
server, which makes it di�cult to observe the state of the network directly on
the server. As described in Chapter 3, the migration framework utilizes the
context management component to

• Estimate the state of context information on entities involved in the
migratory application

• Deliver context information to where it is needed, in particular trigger
management on the migration server

We use a state-of-the-art system for the context management component
called the Context Management Framework (CMF) (cf. Chapter 2). The
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CMF handles delivery of context information such that the decision makers
can query the CMF for network state information when needed. The focus
is on the problems of retrieving and estimating the network state before it is
distributed via the CMF. An overview of external interfaces of the estimation
function is illustrated in Figure 4.1. The performance metrics are estimation
accuracy and the time it takes to detect a change in context, called response
time. These are used both for comparison of estimation methods and further
as input parameters to the decision maker in the later chapters to analyze how
di�erent settings a�ect migration performance.

State estimation
Network state

estimates (s)
Dynamic network observations (o) {

Estimation accuracy, Acc

Response time, rt

Figure 4.1: Chapter overview.

4.2 Scenario

The scenario represents domain knowledge and de�nes a set of hidden network
parameters and available observations. The scenario used in this chapter is
based on the migration scenario described in Chapter 3. The details of the
scenario are illustrated in Figure 4.2.

The migratory application uses TCP to establish an end-to-end connection
between the application client and the remote server. The performance of an
application that uses TCP is sensitive to packet loss, which causes a drop in the
connection throughput, because of TCP congestion control mechanisms. TCP
reacts strongly to packet loss as it infers congestion of the network route and,
due to its congestion avoidance mechanisms, reduces the transmission rate to
maximize the throughput. In the scenario, the end-to-end connection spans
wireless and wired networks. Here, packet loss can be caused by either conges-
tion in a router due to excessive cross-tra�c or by a low quality of the wireless
link due to radio interference or mobility. These are the two causes of packet
loss considered in this work. It is these two parameters that are estimated
by the estimation function. In the end-node, observation points based on net-
work tra�c are identi�ed that contain information useful to infer about the
hidden network state. The TCP end-point of an application connection o�ers
several potential observations which are all a�ected by the network state. In
this work, the focus is delimited to consider round-trip time (RTT), packet
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retransmission rate and frame retransmission rate as observable vari-
ables. Packet loss cannot be avoided and therefore in�uence on application
performance must be mitigated by avoiding the causes of packet loss. In this
scenario the recovery action decided by trigger management is to migrate to
another device that has better abilities to handle packet loss.

Figure 4.2: Scenario overview. The devices involved in the migration connect
to the infrastructure using wireless and wired links connections. Packets may
be lost on the end-to-end connection due to congestion which may occur in a
router or due to an unreliable wireless link.

4.3 Network state model

We consider a discrete state-based model of the network, as illustrated in Fig-
ure 4.3. The state space is de�ned based on the parameters that in�uence the
application performance. The application depends on throughput of the TCP
connection. The throughput can either be su�cient or insu�cient. This bi-
nary perspective on the state space is inspired from the fault tolerance domain,
where a network fault is either present or not present. This fault perspective
on the parameter states allows us to limit the state space of the parameters
that in�uence TCP throughput, in particular congestion and the quality of
the wireless link. We de�ne the route (R) parameter by two states; normal or
congested. Packets are dropped in the router in both states, but the packet
loss rate varies. The packet loss rate in the congested state causes insu�cient
throughput. The state space of the wireless link (WL) parameter is de�ned as
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Figure 4.3: State space of the paramaters considered in the network state
model.

good or poor, also with the poor state causing insu�cient throughput for the
application.

We de�ne both the observed frame retransmission ratio (FRR) and packet
loss (PL) by two states; low and high. The round-trip time (RTT) is a con-
tinuous parameter that is discretized into a set of more states than two. In all
cases the thresholds are de�ned by the speci�cs of the scenario, and in case of
the round-trip time, also the number of states.

4.4 Estimation function in migration framework

The detailed structure of the estimation function is illustrated in Figure 4.4.
The function consist of a observation processing step and an estimation step
before it is delivered using the CMF.
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Figure 4.4: Overall estimation framework.

4.4.1 Observation processing step

The Bayesian networks and the threshold approaches are not inherently capa-
ble of handling causality in (in�nite) time. Instead, functions for processing
observations and extracting timely features are utilized in the estimation com-
ponent. Examples of such functions are simple mean or variance estimates
or more advanced auto-regressive functions [3]. In this work mean estimators
are used, sampled in discrete steps using a moving average. In this way, an
observation may be missing if network measurements, e.g. acknowledgments
for RTT, are not available within the time window. It is assumed that mean
estimates in this approach can provide useful statistics to infer about network
states.

4.4.2 State estimation step

The state estimation step calculates the most likely state of the hidden network
parameters based on the processed observations. The estimation performance
is directly determined by how e�ciently a method can estimate the state of
the network.

A state estimate may either be true or false related to the true network
state. The mapping between state estimates and the true network state is
depicted in Figure 4.5 and enable de�nition of the two metrics: Accuracy
(Acc) is the amount of correct estimates relative to all estimates. Reactivity
time (RT) measures the reaction time in milliseconds from a state change
occurs in the network until it is correctly estimated.
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4.4.3 Context delivery

The delivery step is handles by the CMF and can be performed in several ways;
proactive or reactive. In proactive mode, the state estimate is pushed to the
decision maker in the form of a noti�cation upon a change. In reactive mode,
the decision maker polls for the most recent estimate of the state when needed
for a decision. In this work, the trigger management component operates
periodically and therefore context estimates is assumed polled in a reactive
manner.

4.5 State estimation approaches

In the following, the three estimation approaches are described and their per-
formance is evaluated in speci�c scenarios.

4.5.1 Optimal threshold state estimator

To estimate network states a simple alternative to the model-based methods is
to use single optimal thresholds on observations. In its simplest form, the opti-
mal threshold (OT) approach does not combine multiple observations and thus
only direct mappings between observations and hidden variables are possible.

We de�ne the optimal thresholds γrtt, γpl and γfrr (see Table 4.3 for the spe-
ci�c values used). The criterion used in this work is to de�ne and parametrize
the optimal thresholds is based on the minimum probability of error (MPE)
decision rule. This rule ensures optimal thresholds that minimize the amount
of wrong state estimates. This approach is chosen as we do not consider any
aspects that would give reason to weigh false positives di�erent from false
negatives (see Figure 4.5). Knowledge of the penalty from initiating an unnec-
essary migration could require another decision rule. This is, however, outside
the scope of this work.
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The threshold estimator is used as reference and compared to the perfor-
mance of the HMM and the BN in the following sections.

4.5.2 Hidden Markov model

The hidden Markov model (HMM) models the behavior of an unobservable
parameter and the stochastic relation between this behavior and any observable
parameters. The HMM can in general be used to model any number of hidden
and observable parameters with an arbitrary state space size. We assume the
state of the hidden route parameter (normal/congested) to behave according
to a �rst-order Markov model. This allows us to model the relation between
the route state and the observed packet loss using the Hidden Markov model.
From this model, it is then possible to estimate the state of the hidden route
parameter using an observed sequence of packet losses measurements.

Design of hidden Markov model state estimator

The HMM used as a case study for performance evaluation is illustrated in
Figure 4.6. The environment is de�ned by the route parameter and thereby
as the set of the two states, S = {s1 = N, s2 = C}. We model the behavior
of the environment as a Markov model. P (si, sj) denotes the probability of a

Normal Congestedp

1-p

1-q
Network parameter:

Route (R)

Observation:

Packet loss (PL)

Low High Low High

Figure 4.6: Hidden Markov model of the hidden route state and the observable
packet loss state
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transition from state si at time t to state sj at time t+ 1. The probability of
staying in a state in time-step (P (si, si)) is de�ned for the normal state by p
and for the congested state by q. For network observations we use packet loss
ratio with two possible states (low, high), representing measurable packet loss
in a congested network, obs = {o1 = L, o2 = H}. The separation between o1
and o2 is de�ned by γpl. During run-time, the Forward-Backward algorithm is
used to calculate the probability distribution over the set of states given the
sequence of previous and current observations. By using a Marginal Posterior
Mode (MPM) estimate [10] (without look-ahead window), the most likely state
of the environment can be calculated. Transition probabilities of the HMM are
the same as the environment model P . Observation probability distributions,
P (obs|S), depend on how the environment a�ects the observable parameters.
Concrete values for both matrices are speci�ed later in the evaluation example.

Performance evaluation results and analysis

We limit the analysis to two sub-scenarios of the overall scenario. In scenario
1, we simulate a network that has a low rate of state changes. In scenario 2, we
simulate a network with a high rate of changes. The di�erences between the
two networks are expressed in the state transition probabilities. In scenario
1, the probability of changing state is very low (0.1-0.5 changes per second
on average). We simulate with a estimation time interval of 100ms, and the
transition probabilities are seen in Table 4.1. In scenario 2, it is opposite, such
that the probability of changing state is very high (9.5-10 changes per second
on average), as seen in Table 4.2.

s(t) → s(t+ 1) N C
N 0.99 0.01
C 0.05 0.95

Table 4.1: Transition probabilities
P1(s(t), s(t+ 1)) (scenario 1)

s(t) → s(t+ 1) N C
N 0.01 0.99
C 0.95 0.05

Table 4.2: Transition probabilities
P2(s(t), s(t+ 1)) (scenario 2)

The probability distributions of the observations in each network state, b,
(observation matrix) are de�ned as (columns = low/high packet loss, row 1 =
normal route, row 2 = congested route):

b =

[
0.9 0.1
0.3 0.7

]
The distributions re�ect the situation where high packet loss is primarily ob-
served when the network is congested.
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Since the threshold approach assumes a slowly changing environment, it is
expected to perform well with in the �rst scenario and poorly in the second.
We simulated 30 runs in 10000 steps and obtained sequences of true network
states s(t) and observations o(t) from the HMM, and estimated network states
ŝ(t) from the OT and HMM estimators. The performance results are shown in
Figure 4.7. From the �gure we see that overall the HMM has a better accuracy,
and that a high rate of state changes impact the estimation accuracy of both
approaches. An ideal state estimator is shown for reference.
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Figure 4.7: Accuracy of the estimators, including the theoretical ideal estima-
tor.

4.5.3 Bayesian Network

A BN [8] describes causal probabilistic relations and enables inference of hidden
states under uncertainty. Our BN model is derived from the basic network
model in Figure 4.3. The BN estimation performance has been evaluated,
in simulation, by the metric of estimation accuracy. Even as a basic BN is
considered, our results show how utilizing multiple observations in the BN
has the potential to improve performance compared to the OT. Finally, we
evaluate the robustness of the BN toward changed network conditions. These
results show how the BN using multiple observations is more robust to changes
in network delay compared to the OT.
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Design of Bayesian Network state estimator

A Bayesian Network (BN) is a graphical model that relates stochastic variables
of a domain by their causal relations. Formally, a BN N = (G,P) consists of
two basic entities [4]: a directed acyclic graph (DAG) G = (X,E) where X
is a set of nodes X = {X1, . . . , Xn} and E is a set of edges connecting the
nodes. P is a set of conditional probability distributions (CPD). Each node
Xi represents a variable with a �nite set of states and each edge represents a
causal relation between two variables. A strength of BNs is that independence
between variables can be utilized such that only a part of the conditional
probabilities present in P (X) needs to be speci�ed in P. This makes it practical
to construct and parametrize such models. Most importantly, BNs also make
inference in P(X) computationally feasible for large models [13]. More on the
background of BNs may be found in Chapter 2 and [4].

Developing a BN for state estimation is a three-step process: (1) obtaining
domain knowledge, (2) developing a BN structure and (3) obtaining probabili-
ties. This process is described in the following sections where we also introduce
the optimal threshold approach for comparison to the BN.

Intermediate model To construct the BN structure G, variables and their
causal relations are mapped from the scenario to a graphical representation.
In general, good patterns for construction and methods for veri�cation are still
an open issue in the research domain of BNs [9]. The approach in this work has
been to construct an intermediate model describing basic system components
and in which order these components in�uence each other, i.e. their causal
relations. Next, the intermediate model has been formed into a BN. The
intermediate model is depicted in Figure 4.8 and has been speci�ed from the
following structured method: (1) Variables have been identi�ed that represent
system components where the network parameters originate. E.g., congested
is a state of the route component where route is the end-to-end route. (2)
Next, observable variables have been identi�ed where useful information about
the states of the unobservable system components can be obtained. These
are RTT and packet/frame retransmission rate as described previously. (3)
Intermediate variables have been speci�ed that describe system behavior and
relations between observations and the system components. As an example
the condition of the component wireless link a�ects the observation packet-
retransmission rate through the intermediate variables packet loss. (4) Finally,
variables are represented as nodes in G and edges are identi�ed from causal
relations between variables. In the following a short description of intermediate
nodes are given. More details can be found in [6] and [7].
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Cross tra�c load - The cross-tra�c load is the load on the bottleneck drop
tail queue router (R1 in Figure 4.10) which is assumed to have a constant
service rate.
Upstream - The transmitted data is modeled by Upstream, that represents
the actual rate of outgoing packets from the sender. It is assumed that there
is always data to be sent from the application.
TCP - The TCP node covers the transmission rate control mechanisms of
TCP. TCP controls the upstream based on RTT and detection of packet loss.
Throughput - The rate of successfully acknowledged data.

Unconnected nodes in the model are interpreted as causally independent
variables. Some important independence assumptions are:
Upstream→Cross tra�c load - It is assumed in this model, that Upstream
≪ Cross tra�c load. Thus, load on the bottleneck link is not signi�cantly
in�uenced by the upstream of the sending application. This also means that
the in�uence of Upstream on Congestion is considered insigni�cant.
Wireless link→Route - The two components of the network have no (sig-
ni�cant) in�uence on each other, thus the nodes are regarded as being inde-
pendent.

Bayesian Network model of a TCP connection The model in Fig-
ure 4.8 cannot be characterized as a BN, as it clearly contains a cycle Up-
stream→Packet loss → TCP → Upstream. For this type of problem a dy-
namic BN could be introduced (see [5]). However, the focus in this work is to
use a regular BN and thus the cycle must be eliminated. Moreover, some of
the intermediate nodes may be disregarded for simplicity. The main steps to
achieve this are:

TCPUpstream

Cross 

traffic load

RTT

Wireless 

Link
Route

Throughput

PR-Rate

FR-Rate

Packet 

Loss

Legend:

Fault

Observable 

Intermediate

Nodes

Figure 4.8: Intermediate model.
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1) The TCP -node is removed to eliminate the cycle. This means that the
impact from the congestion and �ow control mechanisms of TCP are left un-
modeled.
2) Being controlled by TCP the Upstream-node is eliminated from the model
by converting packet retransmission rate and frame retransmission rate
( retransmissions

s
) into ratios ( retransmissions

all−transmissions·s) between sent and retransmitted
packets/frames (PRR and FRR). Thus, upstream is contained in these obser-
vations.
3) Maintaining Throughput as an observation is an option. However, imme-
diate TCP actions (e.g. reducing window size) can have a delayed impact on
throughput observations. As the BN does not express such causal relations in
time having throughput as an observation can be di�cult.
4) The state of the route is directly de�ned by the Cross tra�c load node.
Thus, these two nodes are joined.
5) To maintain the relation that both route congestion and a poor wireless link
lead to packet loss, the intermediate variable representing packet loss remains
in the model.

The �nal outcome is the BN of Figure 4.9 de�ned as the basic model. PRR
is de�ned by high, medium and low. Compared to FRR (which only depends
on wireless link conditions) the additional state enables di�erent expressions
of when a single or two faults have occurred. For an overview of the states see
Table 4.3.
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Figure 4.9: The basic model BN.
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Realization of the BN Data is needed to parametrize the BN and the
OT to perform estimation. The components have been realized in an ns-2
simulation environment that implements the network model of Figure 4.10.

Initially, data from the observation points can be generated by simulation
as done in this work, or in practice, read from a network log �le or monitored
real-time from a communication process. Next, the observation point data is
processed into evidence e. After processing, the evidence is propagated in the
BN and network state estimates are inferred. For the OT the same processed
observations are used and state estimates are given directly from evidence.

Inference in the BN is done by calculating the posterior probabilities P (R|e)
and P (WL|e). Posterior probabilities enable an estimate of which state a vari-
able is in and we assume that a fault state is diagnosed if P (R = fault-state|e) >
0.5. Inference can be performed using either exact inference [13], which is NP-
hard or alternatively approximate inference methods [11]. The small BN model
considered, implies only little computational overhead. Based on 9000 infer-
ence cases the average inference time is 0.5 ms (standard laptop running Linux)
and thus exact inference is applied.

4.5.4 Case study

In the case study scenario, as displayed in Figure 4.10, TCP source 1 transmits
data to TCP sink 1 over a wireless link and a wired network. We de�ne πloss
to represent the loss rate of the wireless link. Congestion in the bu�er of R1 is
induced by cross-tra�c from TCP source 2. We de�ne λload to represent the
rate of a Poisson process generating incoming connections to TCP source 2.
The incoming connections correspond to �le transfers with sizes according to a
Pareto distribution (µ = 10KB, β = 1.5 [1]). The two network model param-
eters πloss and λload are used to de�ne the two parameters in the networking
scenario. First, a normal state has been de�ned as a starting point, where the
delivered throughput of the TCP connection is su�cient for the application.
Next, the parameters have been tuned empirically in a simulation environment
to cause a 50% throughput reduction, which then represent fault states. Both
fault states are de�ned to be permanent once they are entered.

The state-spaces of the individual observation nodes have been de�ned
based on the optimal thresholds γrtt and γfrr. This is done to pursuit good
observations for the BN and ensure comparability with the OT approach. As
the OT approach does not specify a threshold for PRR, for consistency, opti-
mal thresholds based on the MPE decision rule have been applied for γprr as
well.
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Figure 4.10: Network model of scenario 2.

The optimal thresholds are derived from two marginal distributions of each
observation; one distribution where no fault occurs and one where it does. As
all observation nodes have a di�erent number of states, the optimal thresholds
are applied di�erently for each observation node in the BN. The RTT has 12
states. The granularity has been found experimentally from minimum and
maximum expected RTT values by evaluating which number of states give the
best separation of the distributions. In this case, γrtt is separating state 3
and 4, based on Route fault occurrences. In the PRR case, the observation is
in�uenced by both faults which can be generalized into representing 0, 1 or 2
faults occurring (3 states). Thus, these states are separated by two optimal
thresholds, γprr,1 and γprr,2. To obtain these, an additional marginal distribu-
tion is used for PRR when both faults occur. The FRR observation node has
two states separated by γfrr based on Wireless Link fault occurrences.

The conditional probability distributions (CPDs) in the BN are elicited
based on learning. By using the Expectation-Maximization (EM) algorithm
it is possible to estimate the parameters of a probabilistic model [2]. In the

States Thresholds
RTT 12 62-105 ms Interval: 4.3
PRR low/medium/high 0.02, 0.05
FRR low/high 0.029
PL low/high
R P(R) 0.5
WL P(WL) 0.5

Table 4.3: BN node and parameter setup.
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BN, the parameters are the speci�c probabilities of the causal relations, e.g.
P (RTT | R).

Two approaches can be used when learning with EM-algorithm; online and
o�ine learning [5]. O�ine learning uses pre-recorded sets of data to estimate
�xed parameters of the model. In online learning, the parameters are continu-
ously estimated when the BN is in operation. This makes it possible to adapt
the model to local network conditions [3]. As o�ine learning is considered in
this work, handling di�erent network scenarios depends on the BN's robustness
to such changes.

Data sets for learning have been generated from the simulation containing
information from both observations and network states. The probabilities of
the network states, i.e. route and wireless link, represent the prior belief of
parameter behavior. Here, they have been speci�ed equally as 50%/50% as we
assume to have no prior belief of whether normal states are more dominant than
fault states. All basic model con�guration parameters are shown in Table 4.3.
Learned conditional probabilities are depicted in Table 4.4 and Figure 4.11.

Performance evaluation results

This section presents the results from evaluating the BN in comparison to
the OT approach for networks state estimation. Performance is evaluated by
comparison of relevant metrics using a basic setup. Robustness is evaluated by
comparing metrics when introducing unmodeled changes in the setup in the
following section.

For the performance evaluations the following sub-scenarios were used.
Congested route scenario (1): A transition from normal to fault state in
the route, the wireless link remains in normal state.

P(PL | R, WL) P(PRR | FRR, PL) P(FRR | WL))

Low High Low Medium High Low High
0,0 0.96 0.04 0.76 0.21 0.03 0 0.83 0.17
1,0 0.39 0.61 0.36 0.05 0.59 1 0.46 0.54
0,1 0.56 0.44 0.14 0.51 0.35
1,1 0.10 0.90 0.21 0.10 0.69

0 → low, 1 → high

Table 4.4: CPDs for PL, PRR and FRR.
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Figure 4.11: CPD for RTT.

Poor wireless link scenario (2): A transition from normal to fault state in
the wireless link, the route remains in normal state.
The BN was trained o�ine with learning data from all normal and fault states
where one and both faults occurred simultaneously. The data sets used for
training were independent and dedicated for training purposes. Each scenario
was simulated 30 times using ns-2. The accuracy metric was calculated as
one mean of all estimates from all 30 runs, whereas the remaining metrics are
averages per run. In general, the OT approach may have a slightly smaller
amount of estimates than the BN in a run (cf. Section 4.5.4).

Both the BN and the OT approaches were evaluated based on the same set
of observations provided by observation processing. Observation processing
window sizes were �xed to ensure comparable reactivity times. The size of the
window for the mean estimators is set to 300 ms equally for all observations.
Fixing this value is done to decrease the size of the parameter space and ensure
that state estimation is provided within hundreds of milliseconds. It should be
noted that the value of the window size in�uences the performance of the BN
based estimation signi�cantly [6]. Collecting observations and performing state
estimation is done periodically. The choice of sampling period is determined
by the dynamics of the observations. In this work, sampling is done with a
sampling period of T = 100 ms. From early simulation and test results, this
setting proves reasonable to capture the dynamics of RTT and retransmission
ratios. The simulation results are listed in Table 4.5.

As seen from accuracy, the approaches were similar in performance when
estimating the route state, and the BN was more accurate when estimating
the wireless link state. In the following we consider the cases where the same
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Acc. [%] RT [ms] Scenario

OT 87 (±1.6) 413 (±102)
1

BN 86 (±0.6) 397 (±30)

OT 73 (±1.4) 323 (±83)
2

BN 77 (±0.7) 323 (±30)

Table 4.5: Performance results (Ci=95%).

observations yielded di�erent diagnoses outcomes for the BN and the OT, �rst
illustrated by an example comparing a single estimation case.

An observation of RTT state equal to 4 yields R = congested from the OT
due to the de�nition of γrtt. As the OT does not use the additional observa-
tions, this holds for all evidence where RTT state is 4. The BN, however, makes
use of all observations. For the evidence state vector e = [RTT = 4, PRR =
1, FRR = 0] a FRR in low state suggests that the observed medium packet
loss is caused by R = congested. The BN makes this conclusion in correspon-
dence with the OT. However, for e = [4, 1, 1] (high FRR) the BN estimates R
= not congested as the medium packet retransmission ratio is more likely to be
caused by observed events on the wireless link. This illustrates the impact of
additional, unrelated observations. The BN is said to explain away the RTT
observation [4].

In both scenarios, multiple evidence vectors were observed that caused a
estimation contradiction between the BN and the OT. We investigated how
often this evidence occurred and the amount of true estimates in relation to
false estimates for the BN and correspondingly the OT. The results for the
poor wireless link scenario are shown in Figure 4.12 with �-1� corresponding
to a missing observation in the evidence (i.e. the moving average window was
empty at sample time).

From the �gure we see that in most cases the 3 evidence vectors that cause
contradicting estimates help the BN to estimate the true state (more white
than black space). For instance, in two of these cases the BN makes use of
low RTT observation (< γrtt) to infer that a high PRR must be caused by a
poor WL although a low FRR is currently observed. Altogether, these results
explain the increased wireless link state estimation accuracy in Table 4.5. We,
however, also see that the vectors do not occur very often, only 6.3% in total
(568 out of 9012 cases). Clearly, it is the occurrence probability of these vec-
tors that determines the improvement of the BN over the OT.



4.5. State estimation approaches 63

[−1,2,0] [3,2,0] [2,2,0]
100

0

100

200

300

Evidence vector [RTT,PRR,FRR]

N
o.

 o
f d

ia
gn

os
es

BN:[WL=poor] vs. OT:[WL=good]

 

 

BN true
BN false

Figure 4.12: Occurrences of e that lead to contradicting wireless link state
diagnoses.

Considering similarly the congested route scenario, the occurrence of the con-
tradicting evidence vectors is 1.8% which is also indicated by the similar accu-
racy for the BN and OT. Here, only the two vectors e = [3, 2, 0] and e = [4, 1, 1]
lead to contradicting estimates. The vector e = [3, 2, 0] was also seen in the
poor wireless link scenario which means that the BN estimates both R =
congested and WL = poor. While a scenario with both parameters causing
throughput drop has not been studied it has been included in the training set.
These results suggests this evidence set is likely when both state-changes occur
simultaneously.

The contradicting cases show that the constructed BN based on its struc-
ture and leaned probabilities is capable of using additional observation to im-
prove estimation performance. In�uence of additional observations in the BN
is obtained when RTT is in the range of 2-4 and some medium or high FRR
is observed. In other, and clearly a dominating amount of cases, low or high
observations of RTT and FRR alone are strong enough to make correct esti-
mates and the added observations provide no additional useful (or harmful)
information for the BN.
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Robustness evaluation results

The probability of evidence occurring is clearly dependent on the networking
environment of the estimation component. Commonly, network properties
may change due to mobility, long term changes in the infrastructure network
tra�c load etc. To introduce such changes, the delay on the link R1↔R2 (cf.
Figure 4.10) was changed in the congested route scenario (2.1). The delay was
respectively increased (∆d1 = 4.3 ms) and decreased (∆d2 = −4.3 ms). These
changes were introduced without re-training the BN or OT. Recall that the BN
RTT state interval is 4.3ms, meaning that the mapping between observation
value and node state was shifted. Results for the two cases are shown in
Table 4.6.

From the table we see that the change degraded the accuracy of both ap-
proaches, as expected. Most impact was seen from the increased delay. The
probability of false positives show that for ∆d1 OT estimated R=congested
constantly. Although the BN also produced many false positive, it was less
than the OT. This illustrates that the BN is more robust than the OT to
network changes, due to the use of additional observations. However, as em-
phasized in the previous section, RTT observations strongly in�uence the BN
estimation performance as well. A similar tendency is indicated when the de-
lay is decreased. The results demonstrate how the multiple observations also
can be useful to increase robustness to changes from the learned network con-
ditions. Moreover, they show the basic BN as su�ciently general to be used in
other scenarios. Increasing BN complexity may yield better performance but
may lower robustness as the BN becomes more speci�c to the learned scenario.
Investigating this trade-o� is left for future research.

Missing Observations The BN di�ers from the HMM and OT in one other
important property; it can utilize prior belief and additional observations to
make an estimate even when observations in the evidence are missing. The OT,
only using one observation, cannot provide an estimate without an observation

Acc. [%] Scenario

OT 49 (±0.35)
∆d1 (1)BN 52 (±0.004)

OT 79 (±1.4)
∆d2 (1)BN 80 (±0.7)

Table 4.6: Performance results (Ci=95%).
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sample. Potentially, the previous estimated value could be used again or the
normal state could be selected by default. In this work no assumptions have
been made on what would be the best approach, as this may be dependent
on the cost of making a wrong estimate. Consequently, cases where the OT
does not lead to an estimate have simply not been included in the statistics of
Table 4.5 and Table 4.6. This may be disadvantageous to the BN in terms of
accuracy. In our results, nonetheless, the BN performance bene�ts from the
property. This is seen in both performance scenarios, where the BN estimates
route congestion correctly in 130 out of 150 cases without an RTT observation,
and poor wireless link in 6 out of 7 cases without an FRR observation.

4.6 Conclusion

Automatic migration triggering depends on having access to information about
the network state. The network state is not always directly observable, and
therefor solutions to infer the network state from observable parameters have
to be developed in the migration platform. The state estimation function in the
context management component was developed to obtain and process observa-
tions. From the processed observations two model-based estimation methods
are used to estimate states of hidden context parameters in the network.

A hidden Markov model (HMM) was adapted to the migration framework
and used to demonstrate how the estimation function can operate. It was
shown how to measure estimation performance in the form of estimation accu-
racy. The designed HMM is used in the subsequent chapters as an integrated
part of the migration framework.

As one step further in the investigation, we propose to use a Bayesian Net-
work that is capable of inferring the state of multiple network parameters from
multiple network observations. We presented how a BN model of a heteroge-
neous communication network enables state estimation of a congested router
and a poor wireless links hidden in the network. The estimation based on mul-
tiple observations of round-trip time, packet and frame retransmission ratios.
The model uses discrete observation statistics and does not consider temporal
relations between faults and/or observations. Through comparison to a sim-
ple estimation heuristic, using an optimal threshold on a single observation,
the e�ects of having multiple observations was demonstrated. Improvements
in accuracy are seen when estimating wireless link state. Additionally, the
BN's ability to handle missing observations was discussed. Finally, the BN
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was shown to be more robust to deviations in the network as an e�ect of using
multiple observations.

As a general abstraction for evaluating the migration performance, the esti-
mation methods could be abstracted into the described estimation performance
parameters. In this manner, a general function could model the estimation
methods in migration framework by their estimation properties. This would
enable evaluation of the migration performance bene�ts and tradeo�s of both
estimation methods.
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5
Automatic migration trigger

management

This chapter presents the challenges of making trigger decisions in the migra-
tion framework. Decisions are made periodically about target con�gurations
and orchestration methods. The decisions are made based on the estimated
network state, described in Chapter 4. We propose a decision framework for
making decisions based on estimated network state and investigate two di�erent
approaches to decision making. One, instantaneous approach that maximizes
the immediate user experience of the application and one, model-based that
takes the e�ect of future decision into account to maximize long-term appli-
cation experience. Their performances, in terms of average long-term user
experience quality, are compared, and the e�ect of estimation inaccuracy on
migration performance is investigated.
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5.1 Motivation

Automatic triggering is necessary in situations where the user cannot trigger
migration manually. This can be the case when there is only a short win-
dow of time to make the decision, for instance, in a mobility scenario, where
the application fails if it is not migrated before the user moves out of net-
work range. Another case can be when the decision space is too complex for
the user to handle, and the best choice is not obvious to the user from the
available context information. In this chapter, we investigate how to generate
automatic migration triggers based on the state of the network with the aim
to automatically migrate to con�gurations that improve the user's experience.

Trigger management

Next configuration (c’)

Orchestration method ( )

Current configuration (c)

Target configurations (C)

Orchestration methods ( )

{ User experience

quality, u

Network state estimate (s)

Reward functions (R)

Figure 5.1: Input and output of the trigger management component in the
migration framework.

The challenges of the trigger management component are illustrated in Fig-
ure 5.1. When running, the component receives as input a set of con�gurations,
C, reward functions for the con�gurations, R(c, s), a set of orchestration meth-
ods, Ω, the current con�guration, c and the estimated network state, ŝ. From
this input, the task of the component is to choose the next con�guration c′ and
the orchestration method, ω. The performance of the component is de�ned by
the average quality of the user experience, u, of the chosen con�gurations in
the dynamic network.

The network state is dynamic and changes in�uence which con�guration is
currently the best. Also, orchestration of the migration process takes time and
interrupts the user's work-�ow while in progress. The triggering function must
balance the trade-o� between choosing con�gurations that provide improved
user experience and are fast and successful to avoid waiting on migration. Also,
as described in Chapter 4, the network state is not always directly observable,
and the triggers are therefore based on the estimated network state. If the
state estimation is inaccurate, unnecessary migrations may be triggered, which
interrupts the user and may end up in a worse con�guration than originally.

The decision making part of the component is achieved by decision policies.
A decision policy, c′, ω = π(c, s), de�nes the best next con�guration given the
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current con�guration and network state. We use two di�erent approaches as
case studies:

• a greedy, instantaneous approach (INS) that optimizes the user experi-
ence until the next decision is made

• a Markov Decision Process (MDP)-based approach which predicts the
e�ect of future decisions and optimizes for the long-term average expe-
rience quality.

Based on a simulated migration scenario, we evaluate the e�ect on the
average experience quality of: 1) the estimation approach, 2) the policy gener-
ation approach and 3) the network dynamics. The estimators are based on the
threshold and Hidden Markov model approaches from Chapter 4. From the
evaluation we analyze the dependencies between the performance of the deci-
sion framework and the estimation approach, the policy generation approach
and the extent of the interruption of the migration procedure. Through anal-
ysis of the performance results, we illustrate the usefulness of taking future
decisions into account as done by the MDP approach.

In this chapter we assume only one orchestration method in Ω, called ω0.
In Chapter 7 we use a set of multiple orchestration methods up to ωK that
can be dynamically available.

5.2 Design of trigger management

The trigger management component contains two functions to trigger migra-
tion automatically based on decision policies; policy generation and policy
enforcement, as illustrated in Figure 5.2. Policy generation is used before the
migration platform runs, and the policy enforcement is used to enforce the
generated decision policies when running the platform.

Trigger management

c’, 

C, R, , S Policy generation

Policy enforcementc, s

offline

online

Figure 5.2: Overview of the functions of trigger management.
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5.2.1 Policy generation

Scenario Trigger management

Policy generation

INS

MDP

Network state prediction

C, R(c,s)

Network model S, Ps

Application model

D( ), ps( s)Orchestration model

INS(c,s)

MDP(c,s)

Figure 5.3: Policy generation function of trigger management. In this work,
the generation step is done o�ine, before running the migratory system.

The policy generation function is illustrated in Figure 5.3. The function
takes the migration model parameters de�ned in Chapter 3 as input. Then it
generates a decision policy to be used when the migration platform is running.
The decision policy is generated before the system is running, also refered to
as o�ine generation. We use a decision policy that jointly determines both
target con�guration and orchestration method. This enables the choice of
either parameter to in�uence the other and the function is thereby able to
generate the combined optimal choices of both parameters.

The two policy generation approaches evaluated in this work are examples.
The MDP method predicts future decision based on a predicted network state.
The INS methods does not predict the network state inherently since it does
not consider future decisions. We include a prediction step in the INS method
to allow the method to optimize for the predicted network state after the
migration delay.

5.2.2 Policy enforcement

Context 

management
Trigger management

Policy enforcement

(c,s)s c',
Migration

orchestration

c

Network state

estimation
^

Figure 5.4: Policy enforcement function of trigger management.

The structure of the policy enforcement function is illustrated in Figure 5.4.
To enforce any decision policy online, the enforcement function needs to know
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the policy, the current con�guration of the application c and the estimated
network state ŝ. When the system is online, the network state, ŝ, is estimated
in the state estimation component delivered by the context management com-
ponent.

5.2.3 Reward

The quality of the user's experience is modeled by reward functions that map
physical properties into quality of experience. Derivation of reward functions
has already been covered in detail in existing literature, so this is not covered
in this work. Examples of reward functions mapping network properties into
quality of multi-media applications can be studied in [4] [2] [5]. Reward is de-
�ned as a combination of the satisfaction of experiencing a certain application
quality and the dissatisfaction of the interruption from migration.
Reward of an application con�guration in a certain system state is character-
ized by R(c, s). R(c, s) is given by the application developer as a distribution
of reward of the network state space.

The dissatisfaction is characterized by two parameters of an orchestration
method ω; the migration success probability, ps and the migration delay, D.
These two parameters in�uence the user experience negatively and can there-
fore be used to characterize how performing a migration should be penalized.
We represent the penalty of migration by a function of the waiting time η(D).
The function can have di�erent shapes (linear, logarithmic, quadratic, expo-
nential) representing di�erent user dissatisfaction patterns. In our work, we
de�ne the function linearly as η(D) = −α ·D, where α is a constant and rep-
resents the reduction in reward per time-step experienced by the user while
waiting on the migration to �nish. A linear function is simple to include in the
mathematical models, and represents a fairly realistic user behavior in terms
of dissatisfaction when waiting for migration to complete.

5.3 Policy generation functions

We evaluate and compare the performance of the di�erent estimation meth-
ods and policy generation approaches by simulating the migration framework.
First, we systematically analyze the di�erences between two policy generation
methods to learn where they are di�erent, and how the di�erences impact the
decision quality. Then, we analyze two example scenarios of the entire frame-
work to learn how the di�erent parameters of the full framework impact the
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decision quality. We evaluate the three state estimation methods of Chapter 4
methods combined with the two policy generation approaches in two di�erent
scenarios, which re�ect two di�erent network conditions.

Since only one orchestration method is considered in this chapter, such that
Ω = ω0, the decision polices do not include choice of w.

5.3.1 Instantaneous decision policy generation

The instantaneous approach chooses the con�guration c′ that generates the
highest expected reward for the predicted state estimate after the migration
c → c′, such that

πINS(c, ŝ(t+D)) = argmax
c′∈C

E[r(c, c′, ŝ(t+D))]. (5.1)

Because of the migration delay, D, the state estimate at time t+D is pre-
dicted based on the currently estimated state to allow the policy generation
methods to account for migration delay. Recall, D is the random migration
delay in discrete time-steps distributed according to the probability mass func-
tion fD,c→c′(τ). We denote the predicted state estimate after a migration that
lasts for D time-steps as ŝ(t+D). To predict the most likely estimated state
at time t + D, the behavior of the Markov model (that models the network
behavior) is used, such that

ŝ(t+D) = Π · PD

where Π is an 1xN vector, where all elements are zero, except element i that
is equal to one if si is the most likely state.

The reward expression r(·) represents the reward of migrating from c to c′

when the predicted state after migration is ŝ(t+D). The expression includes
the migration success probability and migration delay as follows

E [r(c, c′, ŝ(t+D))] =

ps

∞∑
τ=0

[R(c′, ŝ(t+ τ))− η(τ)] fD,c→c′(τ) +

(1− ps)
∞∑
τ=0

[R(c, ŝ(t+ τ))− η(τ)] ffail,c→c′(τ)
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The INS approach is greedy. It is also conservative, in the sense that it
maximizes the reward for the immediate state after migration (positive), but
accounts for all migration penalty during migration (negative).

5.3.2 Markov Decision Process (MDP) decision policy
generation

The MDP approach can calculate an optimal decision policy, πMDP (c, s). The
MDP approach predicts the e�ect of future decisions on the long-term average
reward and generate a policy with the decisions that optimize that. We use
value iteration with a �nite window of 1000 future decisions to �nd the optimal
policy. The window size value was found through experiments and is large
enough for the generated policies to converge, meaning that a larger window
will only a�ect computation time, but not change the policy. See Chapter 2 or
[3] for more details on the MDP framework, dynamic programming and value
iteration.

sjsj-1 sj+1

ci-1

ci

R(ci-1, s)

ci+1

R(ci, s)

R(ci+1, s)

Figure 5.5: A model of the system without the ability to migrate between
con�gurations.

The general form of the Markov model used in the MDP approach is de-
picted in Figure 5.5. For each available con�guration a reward function R(c, s)
is assigned that maps a reward value to each network state for a given con�g-
uration. There exist di�erent reward functions for the di�erent con�gurations.

In Figure 5.6 the scenario of migrating between con�gurations c → c′ is
depicted (with one possible orchestration method). The actions of the MDP
map directly to the available con�gurations, which can be chosen at each
epoch. To model the orchestration process, an intermediate delay state is
introduced between the con�gurations. When the migration is triggered, the
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c

c’

fail, 1-ps
success, ps

delay, pd

Figure 5.6: Model of the migratory system which shows how a migration c →
c′ may change the active con�guration and thereby the reward function if
successful.

system enters the delay state with probability 1. The reward model of the
delay state is de�ned by η(D), which means that in the linear case of this
framework, the reward of the delay state is simply α. In the delay state
the migration may be further delayed with probability pd, fail back to c with
probability (1−ps) · (1−pd) or succeed to c′ with probability ps · (1−pd). The
de�nition of pd is based on the migration delay D. When D is geometrically
distributed then pd = 1− 1

D̄+1
, where D̄ is the mean migration delay.

5.4 Case studies and numerical results

5.4.1 Simulation model

The network is modeled as a network with two states, representing a normal
and a congested network, S = {N,C}. P, the transition behavior within S,
is speci�ed by p, the probability of a transition from N to N, and q, the
probability of the transition from C to C, as speci�ed in Table 5.1. The
application is a video streaming application with two available con�gurations
on two di�erence devices; D1) high de�nition on large display device, and D2)
standard de�nition on mobile device with smaller screen), C = {D1, D2}. The
reward values of the two con�gurations, R, are listed in Table 5.1. These values
express that the user gets a higher perceived quality with increasing resolution
on the large display device (i.e. R=4 for (c,s)=(1,1) compared to R=3 for
(c,s)=(2,1)). Moreover, the impact of packet loss is larger when c = D1 than
c = D2 because the higher resolution requires more available bandwidth on
the large display.
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For migration penalty values, we use ps = 0.9 and use a geometrically
distributed delay D with parameter pd = 0.95. This characterizes a mean mi-
gration delay of 2 seconds, when time-unit per time-step is 100ms (equal to
D̄ = 20). The success probability and delay mean are sampled from experi-
mental work on migration prototypes, described in detail in [1].

For the dissatisfaction function η(D) = α ·D, we use α = 0.01, which has
been determined a reasonable value through experiments, as it depends on a
combination of the scale of the rewards and the mean delay. The parameter
values are summarized in Table 5.1.

For network state estimation, we use the observation models and HMM
state estimator as described in Chapter 4.

block description name value

network model transition probabilities
p 0.01...0.99
q 0.01...0.99

policy generation

reward R(c,s)

[
4 1
3 2

]
waiting penalty α 0.01
mean delay D̄ 20

success probability ps 0.9
MDP window size w 1000

Table 5.1: Model parameters of the di�erent components used in the evalua-
tion.

We generated policies based on the di�erent models and for each policy
simulated 30 runs of the system model in 10000 steps and obtained sequences
of con�gurations, of true and estimated network states ŝ. From this the overall
user experience quality was calculated using the reward functions.

5.4.2 Policy generation approach impact on policies

To understand the di�erences between the INS and the MDP approached,
we analyze which policies they generate under same conditions. We use the
full parameter spectrum of the network states, de�ned by p and q in P (cf.
Table 5.1), since it represents the scope of network parameters of the example
that characterize external, uncontrollable network state behavior. In order to
analyze the relative performance of the methods we compare the MDP and
INS approaches in the full spectrum. We use a forward prediction step in the
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INS approach for the comparison, to be able to use p and q in both policy
generation approaches.

Figure 5.7 plots indexes (of the 16 uniquely generated policies) as z-values
over the full spectrum of p and q for both approaches in the case of ideal
migration (D̄ = 0, ps = 1). There exist many regions in the parameter space
where the policies are not equal. As an example, z=1 is the policy

π(c, s) =

[
1 1
1 1

]
which means that c′ = 1 is chosen for any con�guration (vertical) in any
network state (horizontal).

With INS (Figure 5.7, top), the regions are divided into four quadrants at
p = 0.5 and q = 0.5. At the upper left (z=16) and lower right (z=1) quadrants,
the policies specify to go and stay in D2 or D1 con�gurations, respectively,
indi�erent of the system state. To the lower left (z=11), the policy speci�es
to choose D1 con�guration when in congested network state and D2 when in
normal network state. The upper right region (z=6) chooses opposite to the
lower left.

With the MDP (Figure 5.7, lower), the regions are separated by the line
p = q. Below this line (p > q), the decision is to either to change to D1 always
(z=1) or in some cases (z=2) to stay in D2 when in congested network state.
Above the line (p < q), several di�erent policies are used that will eventually
all change to D2 always (z=8,12,16). In the small region (p > 0.9 and q > 0.9)
the MDP behaves similar to the INS by choosing D1 in normal network state
and D2 in congested network state (z=6).

The di�erences in the overall policy distributions is due to the way the
two policy generation methods optimize their policies. Even though they both
optimize for utility, the INS methods only regards one future decision, whereas
the MDP regards many. The di�erent distributions show that it has an impact
on the policy whether the future decisions are considered.

Figure 5.8 shows the policies over the full spectrum of p and q for both
approaches in the case of non-ideal migration (D̄ = 20, ps = 0.9). The INS
policy distribution clearly changes compared to ideal migration. Instead of 4
quadrants, now 9 regions exist, with the original 4 regions still existing though
smaller. In a square-formed region in the center, a new policy is seen (z=4),
which is the policy that chooses to stay in the current/initial con�guration at
all times. The additional 4 new policies between each pair of former quadrants
are combinations of the original policy pairs. For example, this means that
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Figure 5.7: Decision policies generated by INS and MDP approaches for dif-
ferent network parameter settings with zero migration penalty.
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Figure 5.8: Decision policies generated by INS and MDP approaches for dif-
ferent network parameter settings with non-zero migration penalty.



5.4. Case studies and numerical results 81

the policy in the middle lowest square (z=3) combines choosing D1 always
(the policy to the right, z=1) and choosing D2 in normal network state (the
policy to the left, z=11) in the way that it chooses D1 always except if in
D2 and normal network state. The MDP policy distribution is very similar
to the non-ideal case, except that the small region upper right is gone and
there is a new region around p = q, that contains the same policy as the
center square (z=4) in the INS �gure, namely not to change con�guration
when network state changes. The no-change policy is found in both INS and
MDP distributions when the migration is non-ideal which can be explained by
the added success probability and long migration delay, which decreases the
expected average utility that both methods optimize for. In the border-line
regions of both cases, a higher penalty means a higher probability of decreased
utility when migrating, and as a consequence, migration is not chosen in the
speci�c cases.

5.4.3 Policy generation approach impact on performance

To understand the impact on the quality of the di�erent policies, we simu-
lated runs of the decision framework using all policies from both approaches
in the entire parameter space, for ideal (zero penalty) and non-ideal migra-
tion respectively. For each approach we calculated the average utility in each
simulation with a speci�c policy, and calculated means over the repetitions.
In these simulations we used an ideal state estimator. The di�erence in mean
average quality between the approaches at each point (p, q) is shown in Fig-
ure 5.9 for ideal migration and in Figure 5.10 for non-ideal migration. Black
means no di�erence (because INS and MDP policies are the same) and the
brighter the tone, the larger the di�erence. The range of average utility varies
between 1.6 and 4 for the di�erent points (p, q). We repeated simulations to
obtain signi�cant di�erences within 95% con�dence intervals.

In the ideal migration case of Figure 5.9, we see that in two regions (p < 0.5
and q < 0.5) and (p > 0.5 and q > 0.5) the policies of the MDP approach
generate higher average utility values than the policies of the INS approach. In
the non-ideal migration case, as shown in Figure 5.10, di�erences are detected
in 2 regions; in the lower left and upper right regions. The corner regions are
similar to those in ideal migration, but smaller in area and with larger average
utility di�erences.

The evaluation results from the example show that in some cases the use of
the MDP approach gives an advantage. The advantage depends on the penalty
of the migration, which is a key property of the MDP method.
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Figure 5.9: Average utility di�erence between policies generated by INS and
MDP for di�erent settings of p and q, with zero penalty and ideal state esti-
mation.

5.4.4 Inaccurate state estimation impact on performance

We evaluate the performance of the combined state estimation and decision
algorithms by calculating the average quality achieved during a simulation run
and the number of con�guration changes. We use the two speci�c scenarios
of (p, q) described in Chapter 4 to be able to compare performance between
approaches.

In scenario 1, we simulate a network that has a low rate of state changes.
In scenario 2, we simulate a fast-changing network with a high rate of changes.
The di�erences between the two networks are expressed in the state transition
probabilities. In scenario 1, the probability of changing state is very low (0.1-
0.5 changes per second on average), which is seen in Table 5.2. In scenario 2,
it is opposite, such that the probability of changing state is very high (9.5-10
changes per second on average), as seen in Table 5.3.

We use both scenarios for evaluation to illustrate the robustness of the
model-based approach. To get a clear understanding of the impact of state
estimation inaccuracy, we used the instantaneous approach without state pre-
diction, denoted INS', in this evaluation.
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Figure 5.10: Average utility di�erence between policies generated by INS and
MDP for di�erent settings of p and q, with non-zero penalty and ideal state
estimation

s(t) → s(t+ 1) N C
N 0.99 0.01
C 0.05 0.95

Table 5.2: Transition probabilities
P1(s(t), s(t + 1)) (scenario 1) (copy of
Table 4.1)

s(t) → s(t+ 1) N C
N 0.01 0.99
C 0.95 0.05

Table 5.3: Transition probabilities
P2(s(t), s(t + 1)) (scenario 2) (copy of
Table 4.2)

The policy of the instantaneous approach is the same in both scenarios as
it only depends on the reward distribution and not the transition probabilities.
The policy is de�ned as

πINS′(c, s) =

[
1 2
1 2

]
.

The interpretation of the policy is that if normal network state is observed
(column 1) then c′ = D1 is decided. If high packet loss is observed (column 2)
then c′ = D2 is decided.

The optimal policy generated by the MDP in scenario 1 is

πMDP,s1(c, s) =

[
1 2
1 2

]
.
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The output of this policy is equal to that of the instantaneous approach, as
it will choose the con�guration with the maximum quality for each network
state. This can be seen when comparing to the reward-values in Table 5.1. For
scenario 2, the MDP generates a policy opposite to the previously used

πMDP,s2(c, s) =

[
2 1
2 1

]
.

Figure 5.11: Average utility comparison between the three estimation methods
and the two policy generation methods in both network scenarios.

Based on the sequences of chosen con�gurations and true states, we cal-
culated the average utility achieved during the simulation runs. The mean
average utilities in both scenarios are shown in Figure 5.11, where also the
theoretical ideal estimator is shown. The di�erence are signi�cant in all cases
within a 95% con�dence interval. In scenario 1, only the state estimation
method makes a di�erence since the policies are equal. In scenario 2, the
policies are opposite. Since the MDP policy is optimal, the average quality
increases with increasing estimation accuracy. However, the instantaneous pol-
icy is opposite the optimal and always makes the worst decision. This explains
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the decrease in average quality with the increasing estimator accuracy. The
fact, that the INS approach produces the lowest average utility with the ideal
estimator in scenario 2 is due to the behavior of the INS policy. In scenario
2, the choices of the INS policy are exactly opposite of the optimal policy and
therefore INS performance bene�ts from any inaccuracy in the state estimator.

5.5 Conclusion

We have proposed a model-based policy generation approach for the migratory
platform based on a Markov Decision Process (MDP). The MDP-approach gen-
erates an optimal decision policy while considering the penalty of performing
the migration (success probability and delay). One key property of the MDP
approach is the ability to consider the e�ect of future decisions into the current
choice. With the MDP-approach, decisions are made based on the state of the
network. As the state is not always observable, we apply the HMM described
in Chapter 4 for network estimation based on observable parameters.

An example system was simulated to evaluate the model-based approach
by comparison to a simpler instantaneous approach. The comparison using a
model of a slowly changing network showed that the introduction of the HMM
alone gives bene�ts, as the average quality achieved during was slightly higher
for the MDP-approach than the instantaneous approach. As the network
model changed to include more rapid changes, the MDP-approach also per-
formed better than the instantaneous approach. Also here the MDP-approach
produced the highest quality and followed the dynamics of the network more
precisely. The average user experience quality of the policy generation ap-
proach was compared to a simple instantaneous approach that does not con-
sider future decisions. With our results we are able to quantify the gain in
performance of considering future decisions.
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6
Optimized orchestration over

resource-constrained links

In this chapter we analyze how resource-constrained ad-hoc network links be-
tween devices can be used in the migration process. Migration over such ad-hoc
links is challenged by link properties such as being short-lived and having low
bandwidth. We use Near Field Communication (NFC) as a case study and
present a design of a lean orchestration protocol that utilizes an NFC link
for orchestrating the migration. We present experimental analysis of the NFC
throughput performance and study how that impacts the migration performance,
measured by migration completion time.
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6.1 Motivation

The migration framework assumes to have resourceful network links (Ethernet,
WLAN or GPRS/UMTS) and a central server available to orchestrate the mi-
gration process (cf. Chapter 3). However, using ad-hoc network links between
devices and in particular RFID based Near Field communication (NFC) can
be advantageous for multiple reasons: (1) The physical closeness required to
create an NFC link can be interpreted as migration trigger; (2) binding the mi-
gration to the physical closeness can increase the user-trust in the migration
procedure, as hijacking of sessions by remote devices can be prevented; (3)
fast connection setup times and low interference probability due to its short
range can be advantageous; (4) low power consumption can make NFC the
technology of choice in migration scenarios triggered by low battery of the
source device. In addition, migrating via the NFC link may be the only op-
tion in scenarios of interruption of coverage of mid- to long-range (cellular)
technologies.

Migration over ad-hoc NFC links is however challenged by throughput limi-
tations and the potential short time-windows during which the communication
is possible. Preliminary experiments have shown that users expect the entire
migration process to �nish within 3-5 seconds when using NFC. These results
are based on scenarios assuming the user is familiar with the use of RFID and
NFC, as for instance door locks or ticketing (which require a small window to
complete). In the scenarios, the users were not guided as to how the migra-
tion process was progressing. Such guidance may increase the allotted window
of time for migration, however, this aspect is not investigated further in this
work. The consequence is that NFC may only be feasible for small application
state sizes, and we propose a protocol targeted at maximizing the feasible state
size.

Orchestration Migration
Configuration (c’)

Orchestration method ( ) {
Migration delay, D

Success probability, ps

Figure 6.1: Input and output of the orchestration component in the migration
framework.

In this chapter, we propose a migration protocol optimized for resource-
constrained links, such as NFC. This migration protocol is in general viewed
as another orchestration method that can be chosen by the trigger manage-
ment component as input for the orchestration component, as illustrated in
Figure 6.1. Based on a model of the orchestration process, the orchestration
component can estimate orchestration performance metrics such as migration
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duration and success probability. In this work, we derive the performance
metrics experimentally for the proposed migration protocol.

From an experimental implementation of the protocol, we determine the
range of state sizes that can be transferred within the available communication
windows. From this investigation, we present general performance measure-
ments, which are also applicable in other contexts than service migration. In
addition, we determine the potential of using multiple wireless technologies
simultaneously for orchestration. By use of the lean orchestration protocol,
we compare orchestration scenarios with both WLAN and NFC available, to
study if use of two simultaneous technologies provide increased throughput or
whether they interfere with each other in the test setup. In the test setup,
we did not �nd frequency interference between the two technologies. However,
we did �nd that the mobile device seems to be challenged by managing two
network links simultaneous, causing the aggregated throughput to degrade to
lower than when only using WLAN.
As we focus on what performance implications NFC has on migration, a de-
tailed security analysis and investigations of complex user interactions are out
of the scope of this work.

We present a migration scenario in Section 6.2 to illustrate how use of NFC
links challenges the migration architecture. Performance results of NFC usage
are presented in Section 6.5.2 to obtain approximate magnitudes of boundary
conditions using NFC for migration. In Section 6.4 the proposed protocol for
using NFC in migration is described and implementation and evaluation of the
protocol are presented in Section 6.5.

6.2 Scenario and orchestration model

Figure 6.2 illustrates a migration scenario which includes an additional ad-hoc
link, compared to the general scenario presented in Chapter 3. The migration
scenario from the mobile device (source) to the large display (target) includes
the following activities:

1. the user puts the mobile device within NFC connection range of the large
display to trigger the migration.

2. the middleware triggers the migration based on the connection event and
orchestrates the migration procedure, which includes

(a) pausing the application on the mobile device
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(b) extracting state information

(c) transferring the state from the source device to the migration server

(d) initializing the middleware components on the target device

(e) transferring the state to the target (large display in Figure 6.2)

(f) inserting the state into a new application instance

(g) resuming this application in the original state

3. the middleware terminates the original paused application on the source
device.

Access point: IEEE 802.11g WLAN

LAN

LAN

Internet
Migration 

server

Bac
k-bo

ne W
LAN

 con
nec

tion

NFC ad-hoc connection

Application 

server

Mobile device

Large display

User

Figure 6.2: A scenario of migrating the client-part of the application from the
mobile device to the large display.

In case of a video streaming application, the required state information to
be transferred is a URL, a time o�set and potentially media relevant informa-
tion regarding codecs, etc. which were received/negotiated in the beginning
of the stream, for instance as a session description protocol (SDP) pro�le [6].
Because the video stream is not re-initialized when migrated, such information
is not re-exchanged between client and server, and must thus be transferred
as state. A SDP-pro�le is exchanged in clear-text, and its size can range from
230 bytes for a compressed video pro�le [14], over 860 bytes for a raw audio
pro�le [5] and upward for more complex sessions.

6.3 Near-Field Communication background

Traditional RFID communication consists of a passive RFID tag and an active
RFID reader. The reader generates a radio frequency (RF) �eld to request a
response from the tag and the tag uses the energy in the reader's RF �eld
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to respond. One NFC entity integrates both RFID tag and reader and thus
allows two NFC entities to communicate peer-to-peer. The NFC speci�cation
([4]) allows for entities to work as traditional passive RFID tag and reader
for compatibility, however, only the peer-to-peer mode is considered here, in
active mode, where all entities generate RF �elds.

NFC devices must be prepared for neighbor discovery, similar to the inquiry
phase of Bluetooth and the frequency scanning phase of ad-hoc mode WLAN.
An NFC device can have one of two roles; initiator or target. The initiator
uses its RF �eld to contact targets. The target only senses for initiator RF
�elds and does not turn on its own RF �eld unless requested by an initiator
as part of communication. A protocol using NFC must include at least one
initiator and one target to have successful communication.

NFC has previously been studied as a part of di�erent application types; for
service discovery in Smart Spaces [1], for tracking habits in home health-care
[7] or as information carrier in marketing such as in All-I-Touch [9] and [8].
Similarly, NFC performance parameters are mostly user-experience oriented;
trustworthiness [11] and usability [2] [12]. Likewise, [13] and [10] look into the
security implications of NFC communications.

6.4 Design of lean orchestration protocol

The scenario for the lean orchestration protocol is depicted in Figure 6.2. Some
time period before the user puts the mobile device close to the large display
to activate NFC neighbor discovery, the WLAN connection disappears so that
migration needs to be performed via the NFC link. The lifetime of the NFC
link is limited by the window of time the user holds the mobile device close to
the large display. The goal of the proposed migration protocol is to maximize
the probability that the application state can be successfully transferred within
the available time window. In order to maximize use of the time window, the
protocol aims at starting the transfer as early as possible. When the devices
have discovered each other, the state is prepared in the source device and the
size of the state is exchanged at �rst. After that, the state is transferred.
Finally, when the state has been transferred successfully, the application in
the source device is terminated.

In a scenario with a back-bone connection (such as WLAN), migration deci-
sions are made by the migration server and therefore clients spend much time
waiting before transferring the state due to communication with the server.



92 Optimized orchestration over resource-constrained links

Mobile device

(Migration source

NFC target)

Large display

(Migration target

NFC initiator)

Migration server

Identify to migration server

Identify to migration server
WLAN connection lost

to migration server

Contacted by NFC initiator? Scan for NFC targets

NFC target in range on NFC initiator

Trigger migration

Request application state size

Send state

Prepare application in 

received state

Terminate application

Acknowledge termination

Run application

N
F
C
 i
n
v
o
lv
e
m
e
n
t 
in
 m
ig
ra
ti
o
n

WLAN

NFC Fixed connectivity

Send state size

Request application state frames

Trigger migration

Prepare application state

Notify successful migration

(State decryption)

Figure 6.3: Fast and low-overhead migration procedure utilizing the NFC link.
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Also, when migration is controlled by the server, the transfer of the state in-
troduces overhead as the transfer is split into an upload from the source device
to the server followed by a download from the server to the target device. In
our scenario where the WLAN connection has disappeared, there cannot be
direct communication between source device and server. This would have to
be relayed by the target device, which would be even more time consuming
than normally.

In order to optimize the state transfer, delay and overhead must be reduced
and interactions between source device and server cannot be performed. This
requires that the decision to transfer the state needs to be made solely on the
target. Moreover, the amount of signaling messages between the target and
the source must be kept low due to the NFC round-trip delay. Our proposed
protocol to achieve this optimization is illustrated in Figure 6.3 and works
as follows. Both devices are assumed to have registered previously with the
migration server via the WLAN connection to establish a trust relationship.
The large display is con�gured as NFC initiator and the mobile device as NFC
target. The large display actively searches for the mobile device. When the
user swipes the mobile device close to the large display to trigger migration,
the NFC initiator detects the NFC target and triggers the migration procedure
on the large display.

The large display requests the application state size from the mobile de-
vice. To deliver this result, the mobile device must know which application to
migrate and its state size. Several selection schemes can be employed, such
as choosing the application which has the active/focused window, or the user
can have selected an application to migrate manually before the swipe, e.g.
when noti�ed about the loss of connectivity. The assumption here is that the
mobile device knows which application to migrate and that the application
state size is known. The large display then downloads the state object from
the mobile device via the NFC link. Once the download has �nished, the large
display sends a termination command to the mobile device, which terminates
the original application. To activate the application on the large display the
application must be resumed in the downloaded state. In summary, our lean
protocol relies on decentralization of decisions from the server to the migration
target. The major decisions that have been decentralized are:

• Trigger the migration when 'NFC-in-range' event is detected

• Use NFC for the migration protocol and state transfer

• Use pre-de�ned rules or user-interaction to allow the source device to
identify which application to migrate
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As the role of a device in the NFC communication must be set before
communication, a role selection algorithm must be in place. Selection could be
based on static rules, where all devices select a certain role or have pre-assigned
roles. The rule in a given scenario must ensure that roles are distributed
in order to allow communication. The selection could also be based on a
random-hopping scheme, where devices hop between the two roles and listen
for presence of opposite roles; initiators request target responses and targets
listen for initiator requests. Due to the scarceness of time in the scenario, we
employ a static selection decided by the device type: Mobile devices are NFC
targets and static devices are NFC initiators. The rationale is that mobile
devices are typically power-constrained where as static devices are assumed to
have an external power supply is in the case of the large display. As the target
role requires less power than an initiator the target role is assigned to the most
power-constrained device.

6.5 Experimental results

This section presents an experimental performance study of an NFC link in
order to obtain ranges of several performance metrics. These ranges are im-
portant for the design of the migration protocol for resource-constrained links.
We investigate relevant migration parameters: neighbor discovery time, trans-
mission delay (round-trip), and throughput. The neighbor discovery time di-
rectly subtracts from the time budget available for orchestrating migration and
transferring state. The round-trip time message delay impacts duration of ex-
changing messages during orchestration. The throughput is used to estimate
how much state data can be transferred during the remaining time budget.

6.5.1 Experimental setup

The setup consisted of two HTC 3600 smart phones running Windows Mobile
5 and with an 'SDiD 1010' NFC dongle [3] attached. The NFC dongles were
con�gured in active mode with 424 kbit/s PHY data rate. A �le transfer
application was deployed on both devices and one application instant acted as
NFC initiator while the other acted as NFC target. Since the maximum frame
size was 186 bytes, fragmentation was implemented. All experiments were
repeated 30 times and the results are shown with 95% con�dence intervals.



6.5. Experimental results 95

6.5.2 NFC performance measurements and analysis

Neighbor discovery time was measured by placing the devices in range and let
the initiator search for targets. The initiator blocks execution while searching
for targets. The measured interval indicates the blocking time from the mo-
ment the application started searching until the target was discovered and the
initiator could continue. The mean discovery time was measured to be 59±0.8
ms.

Transmission delay was measured by sending the smallest possible frame
size (16 bytes header, no payload) back and forth between the NFC entities.
The delay is de�ned as a round-trip delay, i.e. as the time from starting the
send procedure on one device until receiving the response on the same device.
For two nodes, the average delay was measured to be 106± 1.8 ms.

Throughput was measured by sending multiple frames continuously to
mimic a large application state object. The total size of the transferred �le
was varied between 10-660 bytes and the time was measured from the �rst
event until the �nal acknowledgment was received. Results from the experi-
ment for di�erent �le sizes are shown in Figure 6.4. The �gure shows that the
throughput increases rapidly with increasing �le sizes on the left end and then
it converges to a value around 3.26 kbit/s for values above 300 bytes. The
throughput degradation for small �le sizes is expected as the ratio between
overhead and payload is relatively high.

6.5.3 Orchestration protocol results

To evaluate the feasibility of the lean migration protocol, it was implemented
on the device described in the setup. One of the mobile phones acted as the
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Figure 6.4: Throughput measurements over NFC link
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large display. The goal of the study was to quantify how much time is available
for actual state transfer during the lean migration protocol. An additional goal
was to understand how much state information can be transferred within a typ-
ical swipe, by comparing the bandwidth results described above with the time
results. The proposed migration orchestration messages GET_STATE_SIZE,
GET_STATE and TERMINATE were implemented as simple string messages
and the transferred state size was varied similar to the throughput measure-
ments. The results of one experiment for each application state size in the
range between 1 and 700 bytes are shown in Figure 6.5.

The results for the migration duration show a linear behavior over state
size S; a least-squares �t yields the relation delay = 2.1 ms

byte
· S + 386ms which

is also depicted in Figure 6.5. The minimum delay at S = 0 is due to the
required 3 message exchanges in the protocol. This can be seen as signalling
overhead. A detailed analysis of the time stamps shows that each exchange
requires 106ms plus some processing delay. The inverse of the slope of the line
1
2.1

bytes
ms

= 3.8kbit/s is in the same order of magnitude as the throughput values
observed in Section 6.5.2.
The observed linear behavior can be used to estimate the limit on state sizes
that are feasible to transfer in a certain time window. For instance, assuming
a maximum time window of 5 seconds for the transfer, the relation yields a
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maximum S=2197. Based on this upper limit, the migration framework can
decide whether to initiate migration when only the NFC link is available as
orchestration method. We consider this orchestration method decision prob-
lem an extension to the con�guration decision problem analyzed in Chapter 5.
Chapter 7 presents analyses of added model complexity and migration perfor-
mance when choosing both target con�guration and orchestration method in
each decision epoch in the trigger management component.

6.5.4 Using multiple, diverse wireless links for orchestra-
tion

In the scenario above, the assumption is that only one of the wireless links is
available for orchestration at any time. In some cases, though, it may be that
both technologies are available simultaneously. Then two options apply; either
the platform uses both links for orchestration, or chooses one of them. In this
section we test the hypothesis, that aggregating a WLAN link and an NFC
link will provide more throughput than just WLAN alone. In Chapter 7 we
also study the impact of choosing between dynamically available orchestration
methods.

To evaluate the potential throughput gain of combining WLAN and NFC
for orchestration, we construct a scenario where both are available simultane-
ously and transfer data using both connections simultaneously. We used the
same experimental scenario as described above, and considered the following
parameters:

• Without or with NFC communication; to evaluate only WLAN or com-
bined WLAN+NFC

• Data origin; whether the �les where downloaded from the mobile device
(direct download) or from the migration server (indirect download)

The average throughput obtained over 10 repetitions of the experiments
for the di�erent combinations of the parameters are plotted in Figure 6.6.
The �gure shows that the throughput when downloading directly from the
mobile device is slightly lower than when downloading from the migration
server. It also shows that the throughput is nearly halved when the NFC link
becomes active, and that the throughput of the combined links also su�er when
downloading directly.
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Figure 6.6: Average obtained throughput (kB/s) during data transfer over
diverse wireless link, for di�erent settings of the NFC link (on/o�) and the
state object origin (server/mobile device). 10 repetitions.
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These results show that the expected throughput gain of aggregating the
diverse wireless links cannot be obtained by using them independently. The
handling of multiple wireless interfaces challenges the mobile device enough
to reduce the throughput instead of maintaining or increasing it. Preliminary
experiments have not shown radio interference between the used frequency
domains. The consequence of this result is that combination of wireless tech-
nologies should be designed carefully, if a throughput gain is expected. The
throughput gain maybe achieved by using the fast setup-time of the NFC link
to negotiate optimal communication parameters for the WLAN link, such that
a data transfer over WLAN may start sooner. It is, however, not recommended
to use the two technologies in simultaneous, independent combination in the
experimental platform.

6.6 Conclusion

This chapter presents a solution for orchestrating migration over resource-
constrained links, with the speci�c example of RFID based near-�eld commu-
nication (NFC) technology. The main challenge of migrating an application
over resource-constrained links is to make best use of the limited time in which
the link is available. The primary steps of migration that can be optimized
time-wise are device discovery, decision to trigger and message exchange dur-
ing orchestration, including transferring the actual state of the application
from the source device to the target device. In a general migration scenario,
all these steps are coordinated by a central migration server in the network.
Through an experimental setup we have shown that in some cases, migration
over ad-hoc NFC links is possible and feasible. This is achieved by the primary
migration decisions and control of orchestration procedure from the server to
the target device. By measuring the overhead of the optimized migration or-
chestration protocol and the performance of NFC it is shown that the platform
can be used for migrating application state sizes up to 2000 bytes within an
NFC swipe window of 5 seconds.
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7
Interplay between trigger management

and orchestration

The previous chapters have addressed the challenges of automatic migration
triggering between multiple devices. In both chapters one network was assumed
available for orchestrating the migration. The purpose of this chapter is to
present an extended analysis that combines the parameters of the previous sce-
narios and solutions. The chapter analyzes the migration performance when
the number of available orchestration methods in the trigger management func-
tion is increased beyond one. Furthermore, the orchestration methods cannot
be assumed to be permanently available, i.e. their availability is considered dy-
namic. Since it is the task of the migration orchestration component to know
which methods are available, the purpose of the analysis is to understand how
this knowledge from the orchestration component can be utilized in the trigger
management component to improve overall migration performance.
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7.1 Motivation

Chapter 5 presented the analysis of how knowledge about an orchestration
method is used in the trigger management component when generating decision
policies that improve performance of the overall migration system in a dynamic
network. The assumptions of Chapter 5 are:

• one orchestration method always available for migration

• orchestration parameter values, i.e. success probability and migration
delay, are known before generating decision policies

Chapter 6 presented a design and a performance analysis of an optimized
orchestration method speci�cally targeted at resource-constrained networks,
with NFC as the case-study. One of the properties of the scenario was that
multiple orchestration methods were available at di�erent times; at one point
a WLAN-method and at another point an NFC-method.
The availability of multiple orchestration methods at di�erent time poses a
new dimension of challenges to the decision framework. Not only does it need
to decide which con�guration to use, it must also consider how to achieve this,
i.e. what orchestration method to apply.

Trigger management

Current configuration (c)

Dynamic orchestration methods ( )

Network state estimate (s)

Target configurations (C) Next configuration (c’)

Orchestration method ( ) {
User experience

quality, u

Figure 7.1: Focus is on the set of orchestration methods as input to the trigger
management component and how their dynamic availability a�ect the user
experience of the migratory system.

This chapter presents an analysis of interplay between trigger management
and migration orchestration to understand how to include multiple orches-
tration methods in the decision framework and how to use knowledge about
available orchestration methods while the system is running. This perspec-
tive on the trigger management component is illustrated in Figure 7.1. We
show how the complexity of the o�ine policy generation approach increases
in the decision framework as more orchestration methods and their availabil-
ity are introduced. The results show that by only using the available subset
of orchestration methods when generating a policy, as opposed to including
all possible orchestration methods, the complexity of the models is reduced
without a�ecting decision performance.
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7.2 Scenario

Figure 7.2 illustrates a reference migration scenario for this chapter with
multiple con�gurations and multiple orchestration methods. The applica-
tion is running in con�guration c and can be migrated to multiple con�g-
urations (devices), C ′ = {c′1, c′2, ..., c′M}. Multiple orchestration methods,
Ω = {ω1, ω2, ..., ωK}, are available to carry out the migration.

Multiple networks types (NFC, WLAN, ...) can be available for migration.
Furthermore, the application may be able to use di�erent state-persistence
techniques (checkpointing, shared memory/variables, complete application state
extraction, virtualization). ω represents speci�c migration parameters for mi-
gration, e.g. network type, state size, etc. At each decision epoch, the deci-
sion framework determines the optimal con�guration and orchestration method
given the current network conditions. All con�gurations are assumed available,
and since the availability of the orchestration methods is dynamic, the input
to the decision framework is the entire set of target con�gurations, C ′, and the
subset of available orchestration methods, Ωss ∈ Ω. The output of the decision
framework is then the tuple (c′, ω).

A speci�c example of the above reference scenario can be explained by
extending the scenario from Chapter 6. The user is running the client-part
of an application on a mobile device, while a server side is running on an
Internet server. The client-side application is, before migration, using the
WLAN to connect to the server-side. The mobile device and the application

c'1

...

c'M

c

1

2

K

...

1

2

K

...

Figure 7.2: Example of scenario featuring migration from con�guration c to
c′ with multiple possible orchestration methods. The individual methods may
not always be available.
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are registered on the migration server located within the migration domain. A
large display device is also registered with the migration server and available
to receive migrations. At one point, the user holds the mobile device close to
the large display and trigger an NFC discovery event. At this point the set of
available orchestration methods changes to include both the WLAN and the
NFC links.

7.3 Challenges and contributions

From the reference scenario we identify the following problems, which are ad-
dressed in this chapter.

• How to include multiple orchestration methods in the MDP model to
generate decision policies?

• How to handle dynamic orchestration method availability when generat-
ing policies?

The contributions of this chapter are as follows.

• Adaptation of the decision framework to generate decision policies with
multiple orchestration methods.

• Identi�cation of the increased complexity of the models used to generate
decision policies, when using multiple orchestration methods and their
dynamic availability.

• Reduction of complexity by adapting the policy generation function to
work with subsets of choices.

• Performance comparison between two policy generation approaches, all
choices vs. subsets.

Available orchestration methods are assumed able to migrate to any target
con�guration. With for instance NFC this is an approximation, since it can
most likely only be used to migrate between the two devices connected by
NFC. This assumption can be relaxed by considering combinations of orches-
tration methods and target con�gurations as available/unavailable, instead of
just orchestration methods. This enables the exclusion of speci�c combina-
tions of orchestration method and target con�guration to mimic more realistic
scenarios. For example, combinations of the NFC orchestration method and
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con�gurations on other devices than connected to via NFC would be perma-
nently unavailable. Such an extension is not considered in this work.

In Chapter 5, orchestration properties were assumed independent of the
network state in the sense that the migration delay had the same distribution
when the network was in normal state as when the network was in congested
state. This assumption is rather strong. For instance, in the case where the
con�guration is changed because the network performance degrades and the
migration is performed over the network. The degraded network performance
will also in�uence the migration delay and success probability. In this chapter
we rede�ne the success probability to be in�uenced by network state. We
assume this is satisfactory to demonstrate the contribution of this chapter
regarding dynamics of multiple orchestration methods.

7.4 Modeling approaches

The level of model complexity depends on how many dimensions are modeled.
In the following, two types of models are described; a general model that
includes all states in all dimensions and a more speci�c model that considers
some of the state-space dimensions �xed.

7.4.1 World model

A world model models every relevant aspect of the migratory system. The
world model must include

• every possible con�guration that can be experienced when running the
system

• every possible orchestration method that can be experienced when run-
ning the system

• con�guration availability

• orchestration method availability

• network impact on reward in a certain con�guration or when migrating
using a certain orchestration method

Each of the above parameters adds a dimension to the world model state space,
summing to 5 dimensions. In the general form, the number of states, |S|, in the
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world model of all parameters above can be calculated by state-space products
as

|S| = N · 2M2 · 2K.

where N is the number of networks states, M is the number of con�gurations
and K is the number of orchestration methods. Already with a simple scenario
(as used later, cf. Section 7.6) with 2 con�gurations, 3 orchestration methods
and 4 network states, the state space of the world model contains 192 states.
This shows, that even for a simple scenario with few choices in each dimension,
the state space gets large when considering availability of con�gurations and
orchestration methods. The size of the transition matrix used in the MDP also
quickly explodes. In real migration scenarios, the amount of choices is much
larger than the above simple example, and in principle in�nite, as all possible
target con�gurations ought to be considered, meaning that any device capable
of acting as target device should be included. Hence, a method is needed
to reduce the number of con�gurations and orchestration methods to include
when generating the decision policy.

7.4.2 Subset model

By making some assumptions of the availability of the con�gurations and the
orchestration methods, it is possible to reduce the number of states in the
model in small scenarios. A small scenario is a scenario, where the number
of possible con�gurations and orchestration methods are known beforehand,
bounded and available during the use of the system. Examples are for instance
a home domain or an o�ce domain.

The most speci�c partial model only includes a subset of available orches-
tration methods. This is the smallest model, in terms of state number, and
also the most restricted, in the sense that it assumes only the subset of orches-
tration methods to be available during the use of the system. This means that
it is not possible to choose unavailable orchestration methods, even though
they may become available after a speci�c policy is activated.

7.4.3 Applied approximation approach

In this work, we use a combination of the two above model types to investigate
the trade-o� of using subset models. The motivation is that all possible choices
cannot be known when the system is designed, and as such, the system needs
to be able to adapt and make decisions based on the currently available choices,
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which may then change in the future, either because of network dynamics or
changes in the scenario (a new user enters, new applications are installed, new
networks are set up, etc). Moreover, the time it takes to generate the policies
increases exponentially with the number of con�gurations and orchestration
methods, since all possibilities have to be accounted for in all future steps to
generate the optimal decision policy. Therefore, a reduction of the number
of states by reducing the number parameters will improve both o�ine and in
particular online policy generation performance.

We compare two approaches to policy generation that do not model or-
chestration availability, i.e. they are not full world models. One approach,
called the world model approach, uses a model that includes all orchestration
methods in the scenario, and assumes them to be available at all times. The
other approach, called the subset model approach, uses a set of subset models,
which each consider a combination of available and unavailable orchestration
methods (for details, see Figure 7.7).

The interplay element of the analysis is added in the policy enforcement
function. In the world model approach, the one policy is applied always, in-
dependent of the set of available orchestration methods. In the subset model
approach, the policy is changed to match the set of available orchestration
methods, as reported by the orchestration component. In principle, the sub-
set policies should be regenerated whenever the set of available orchestration
methods changes, however, we pre-generate all policies (as it is possible in the
small case study scenario) and just select the appropriate policy accordingly
during run.

7.5 Integration of trigger management and mi-

gration orchestration

This section presents the design of the extended MDP decision framework
where the choice contains a target con�guration and an orchestration method.
From the reference scenario, the relevant problem are identi�ed and the solu-
tions are described subsequently.
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7.5.1 Extended decision framework

The extended decision functions are is shown in Figure 7.3 (policy generation)
and Figure 7.4. Compared to the functions of Chapter 5, the extended ver-
sions include generation of subset policies and interactions between migration
orchestration and trigger management.

Scenario Trigger management

Policy generation

Extended MDP

C, R(c,s)

Network model S, Ps

Application model

Orchestration model
world(c,s)

subset(c,s, ss)

Figure 7.3: The extended policy generation function, where a set of orchestra-
tion methods, Ω, as delivered as input for o�ine generation of two types of
policies: world policy πworld and subset policy πsubset.

Context 

management
Trigger management

Policy enforcement

(c,s)s c',
Migration

orchestration

C, ss

Network state

estimation
^

Figure 7.4: The extended policy enforcement function, where the orchestration
components delivers the set of available orchestration methods when running
the platform, such that the matching πsubset can be used.

The interaction between the migration orchestration component and the
trigger management component contains an interface to exchange knowledge
about available orchestration methods. These are initially collected in the
orchestration component, since this component needs the knowledge on how
to apply them. Based on a model of the orchestration process, the orchestration
component is able to deduce the properties of each orchestration method that
are relevant for the trigger management component and deliver these as a
collection of K orchestration methods, Ω = {ω1, ω2, ..., ωK}.

The migration orchestration component contains an availability estimation
function that keeps Ωss updated, so when an orchestration method becomes
unavailable, it is also removed from the set and the set is re-sent to the trigger
management component. The estimation process is performed in the migration
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orchestration component and delivered as an input to the decision policy en-
forcement function in trigger management. In practice, estimation can neither
be accurate nor instantaneous (cf. Chapter 4), as the orchestration component
needs to monitor the status of each device and network by exchanging mes-
sages (like heart-beat monitoring). However, it is assumed that the availability
estimation is ideal (accurate and instantaneous).

7.5.2 Multiple orchestration methods in the MDP

The MDP state space is constructed as combinations of current con�guration
(c), target con�guration (c′), orchestration method (ω) and network state (e).
As an optimization, the states that have c = c′ can be interpreted as/joined
into one state, in which no migration occurs. This is also the only type of state
where migration can be triggered, since migration will be ongoing in all other
states (from c to c′ using ω). The general representation of the MDP is seen
in Figure 7.5.

The possible actions to take in the non-migrating states are extended com-
pared to Chapter 5 such that an action is de�ned by target con�guration and
orchestration method as A = {c′, ω}.

Subset policies are generated by solving the MDP with a limited transition
matrix, where transitions probabilities have been adopted to not trigger a
migration if an unavailable orchestration method is used. Such a transition
matrix is generated for each combination of the orchestration methods.

7.6 Performance evaluation

A simulation setup in MATLAB is used to evaluate the performance di�erence
in of the two modeling approaches to decision making. Whereas in Chapter 5,
the migration behavior was analyzed for a full spectrum of di�erent network
parameters (p, q), here we choose one network scenario to analyze. In order to
study the e�ect of orchestration properties on migration, we require a scenario
with many migrations, such that the orchestration methods are used often, and
their di�erences are possible to measure. Many of the scenarios from Chapter
5 are not relevant, because they only contain one or two initial migrations,
before settling into one con�guration for the rest of the run. Therefore, in the
design of the scenario we must ensure that

• multiple migrations occur
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Figure 7.5: General model of the MDP extended with multiple orchestra-
tion methods. Compared to the original MDP, two decision have to be made
upon migration; which target con�guration c to select and which orchestration
method ω to use for migrating to c. The reward, R, represents the quality of
the user's experience of using a migratory application. R depends on whether
the application is in a certain con�guration or whether the application is being
migrated and if, then which migration orchestration method is used.

• all con�gurations are visited

• all orchestration methods make sense to use at some point

Another di�erence from the scenarios in Chapter 5 is the changing avail-
ability of the orchestration methods. We simulate this as a two-state Markov
chain for each orchestration method, the two state representing available or
unavailable, respectively. Given a speci�c number of orchestration methods,
their availability states are combined into one Markov chain, where each state
is a unique combination of (un)available orchestration methods. We use this
modeling technique to ensure that the behavior of the availabilities are inde-
pendent of any other behavior in the system.
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7.6.1 Methodology

We compare the performance of the two approaches by simulating di�erent
settings of the mean ω sojourn time µω, which in�uences how often the set
of available orchestration methods changes. A large µω means slow changes,
and a small µω fast changes. Comparing the decision performance for di�erent
settings of µω is interesting as orchestration method availability is not modeled
by any of the decision approaches. The MDP generates a decision policy based
on the assumption that the available orchestration methods remain available
in the future, which is controlled by the size of the look-ahead window, w.
With a small µω, the availability changes fast, which causes an MDP with a
large w to generate policies based on wrong assumptions, since it assumes the
currently available Ωss to be available for too long.

The world model policy assumes all orchestration methods available at all
times. The faster the availability changes, the better the world model policy
makes decisions, as slow changes means a high probability of wrong decisions.

The active subset model policy is changed when the set of available orches-
tration methods changes, where it is assumes to be the optimal policy based on
a �nite window of future decisions. The MDP assumes that the model is sta-
tionary during all decision epochs of the future window. The window is large
enough for the starting state not to in�uence the policy (cf. Section 7.6.3) -
the policy has converged. However, the smaller µω becomes, the less accurate
is the stationarity assumption of the MDP, and the performance is expected
to degrade.

The following method is applied to perform the evaluation:

• Specify system model with multiple orchestration methods

• Calculate transition matrix (world model)

• Create transition matrices for each subset of ω availability, Ωss, by dis-
abling migration using unavailable orchestration methods (migration tran-
sitions are redirected to original state)

• Solve MDPs for all subsets to generate subset policies

• Simulate migration scenarios with dynamically available ω subset with
the two di�erent decision strategies

� World model policy: Always use policy calculated from Ω

� Subset model policies: Change policy according to Ωss.
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• Calculate average reward and compare performance

7.6.2 System model

To meet the requirement speci�ed above, the scenario is designed as follows.

• 4 network states, S = {s1, s2, s3, s4}

• 2 con�gurations, C = {c1, c2}

• 3 orchestration methods Ω = {ω1, ω2, ω3}

The network model has 4 states compared to 2 states of the network models
used previously. 4 states are necessary to make all orchestration methods
optimal choices at some point. This kind of model could model the scenario of
the BN evaluation, with route and wireless link as parameters. 4 states then
corresponds to S = {no faults, congestion, poor wireless link, two faults}. The
model is assumed to have uniformly distributed steady-state probabilities. We
use 3 orchestration methods to retain a choice when the availability is dynamic.
If only two are used, there is no choice to make when only one orchestration
method is unavailable. The resulting MDP is seen in Figure 7.6. In total, this
scenario results in 48 states.

C2
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c2-c1

1

c2-c1

2

c2-c1
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c1-c2

1

c1-c2

2
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c2-c2

2

c2-c2

3

c1-c1

1

c1-c1

2

c1-c1

3

Figure 7.6: MDP of the evaluation scenario with 4 network states, 2 con�gu-
rations, 3 orchestration methods.
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The reward of a con�gurations depends on the network state, de�ned by

R(c, s) =

[
4 1 1 1
3 2 2 2

]
The above matrix ensures that the generated policies will contain migrations in
both directions (c1 → c2 and c2 → c1). In state s1 the policy is the to migration
to c1 and in states s2, s3, s4 the policy is to migrate to c2. To ensure that every
orchestration method is used, the success probabilities are also dependent on
the network state, such that

Ps(ω, e) =

0.8 0.9 0.8 0.8
0.8 0.8 0.9 0.8
0.8 0.8 0.8 0.9


This success probability matrix makes ωi most suitable in environment

state si+1. Note that state s1 is the only one in which migration c2 → c1
occurs. For this migration only one orchestration method is used, and when
the success probabilities are equal, ω1 is always used, because of the lowest
index.

The migration delay of all ω is modeled by µd and pd = 1 − ( 1
1+µd

).All
migration delay distributions are equal and with a non-zero mean. Having all
mean delays equal means that the delay will not impact the choice of orches-
tration method, however, it will in�uence the tendency to trigger a migration
(since the mean delay is not zero). The delay is used to include the penalty of
migration, but to simplify control over the choice of the orchestration methods,
and leave this control to the success probability parameters.

The penalty to the reward from the migration procedure is modeled by
η(D̄) = −αD̄. In this scenario, D̄ = µd and α = 0.01 for all orchestration
methods. It is possible to have di�erent penalties for di�erent orchestration
methods, e.g. ηω, but this is not considered in this work.

parameter description default value
µe mean environment state sojourn time 300
µd mean migration delay 30
µω mean ω combination duration 300
t simulation steps 800000
n number of experiments 128

Wmdp MDP window size 3000

Table 7.1: Parameters and default values of the interplay simulation setup.
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The availability of the 3 orchestration methods (ω) is modeled using the
Markov chain depicted in Figure 7.7. The Markov chain model all possible
combinations of the 3 orchestration methods and their availability, and it is
assumed that only one method can change availability at a time. The subsets
of available ωs are

Ωss =



[0 0 0]
[0 0 1]
[0 1 0]
[0 1 1]
[1 0 0]
[1 0 1]
[1 1 0]
[1 1 1]


The behavior of the orchestration method availability is modeled such that

only one change can happen at a time. The mean time between changes is
the same for all orchestration methods, µω, which results in equal transition
probability, 1 − pω, where the relation between µω and pω is modeled as a
geometric distribution.

[ 0 0 0 ]

[ 0 0 1 ] [ 0 1 0 ][ 1 0 0 ]

[ 1 0 1 ] [ 1 1 0 ][ 0 1 1 ]

[ 1 1 1 ]

Figure 7.7: Markov chain of the availability of ω. Each state represents a
unique combination of available ωs, when 3 methods exist, and assuming that
only one method can change availability at time.
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7.6.3 Results and analysis

Policy convergence

The optimal policies generated by an MDP are in�uenced by w, which deter-
mines how many future decisions to take into account when solving the MDP.
Therefore, also the time it takes to solve the MDP is in�uenced and increases
with an increased w. In order to understand where the convergence level is
of the policies (i.e. which window size can be used consistently between all
subset-policies during the performance evaluation), the scenario was simulated
with increasing values of w. The results are shown in Figure 7.8.

The results show that all subset-policies are in�uenced by the size of w and
that they have di�erent convergence speeds. Based on the results, w = 3000
is chosen as the default value for all subset-MDPs in order to ensure that all
subset-policies converge.

System behavior

The entire system Markov chain has 48 states for this scenario, so in order to
depict the behavior sensibly, the states have been aggregated into a smaller
state space.

In Figure 7.9, a slice of a simulation run is illustrated with the smaller state
space distributed over three sub-�gures. From this it is possible to observe how
the system behaves during a run. The upper sub-�gure shows the migratory
system state. The states here distinguish between being in a con�guration
(c1, c2) or being in a migrating state. If the system is in a migrating state, this
is characterized by the triple {c, c′, ω}. The middle �gure show the realization
of the network state and the lower �gure shows the realization of Ωss.

Figure 7.9 allows us to interpret that the system is exercised in most of its
states during this relatively short slice of the simulation (total simulation time
run is 800000). Several migrations occur using several di�erent orchestration
methods. Only ω1 is not used in this slice. It is, however, used at other
times in the simulation run. It is also seen that the migration occurs after an
environment state change, e.g. just after t=59100, where a migration from C2
to C1 is triggered by a change in environment state. The quick state change
between t=59500 and t=59600 where a migration from C1 to C2 is triggered,
but the system goes back into C1 is the display of a migration failure. Since the
system state has not changed during migration, a new migration is triggered
immediately and successfully completed after a new delay period. In this case,
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Figure 7.8: Analysis of the MDP w impact on policy generation to show when
the policies converge, and thereby determine a sensible size of w.
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ω2 is used for migration, as it is the only one available, so even though it may
not be the globally optimal choice given the environment state of the system,
it is the locally optimal choice in this speci�c decision epoch.

This can be observed just before 59900, where another migration from C1
to C2 is seen. Since ω3 is available it is chosen by the decision policy as a
better choice than ω2 that failed previously.

Performance comparison

The results of the performance measurements are depicted in Figure 7.10. The
�gure shows the mean average reward gained by the two approaches respec-
tively for values of µω from 10 to 1000 (in steps of 50). The �gure shows
an increasing performance di�erence between the two approaches with the in-
crease in µω. This is as expected, as the increased µω reduces the dynamic of
the orchestration method availability and thus makes the assumption of the
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Figure 7.10: Results from varied µω with the two decision policy approaches:
Subset model has speci�c policies for combinations of available omegas, world
model has only one policy, assuming all omegas are available all the time.
Comparison metric is the average reward generated during a run of a migrat-
ing application, migrating between two con�gurations with up to 3 di�erent
omegas to choose from.
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subset-MDP less approximate. Similarly, the reduced dynamic makes the error
of the world model worse. This is the consequence of the situations where the
optimal orchestration method becomes unavailable. Then the world model pol-
icy will constantly specify to use the unavailable orchestration method, and no
migration occurs. With an increased µω, the duration of the period increases
where the world model policy makes this error and thus the mean average
reward degrades.

7.7 Conclusion

In many migration scenarios, several network connections will be available
to orchestrate the migration. As the underlying network connections may be
unstable, the availability of the orchestration methods may change dynamically
in a migration scenario. The MDP policy generation approach can be extended
to handle multiple dynamically available orchestration methods, however, a
world model that includes every dynamic dimension becomes intractable for
any real-life scenarios. By generating decision policies that only include a
subset of orchestration methods, and enforcing the policy that matches the set
of available orchestration methods, the complexity of the decision policies can
be made feasible. From an example scenario, we have shown that when using
the subset policies the performance of the decision framework is better than
when using a world model policy.





8
Conclusions and outlook

In this chapter, a short summary of the key points of each chapter is given,
and a conclusion is provided with respect to the problem statement. Further-
more, the chapter provides an outlook of what will be the next step of the work
presented and other perspectives with respect to migratory applications and the
migration framework.
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8.1 Summary

Service migration enables interactive applications and services to move between
devices, while they preserve their state, so user's work �ow is uninterrupted. By
reacting to changes in the context of the application and adapting to them, the
quality of the user experience of the application can be enriched by migration.
In many situations, migration is triggered manually by the user. However, in
scenarios with dynamic context the time available to trigger a migration may
be too short for the user to react to, or the amount of information needed
to make an informed choice may be too much for the user. Therefore, the
migration needs to be triggered automatically in these scenarios. In this work,
we focus on automatically triggered service migration within dynamic and
resource constrained network scenarios. Network scenarios are important as
network state dynamics in�uence both the application performance and the
migration process and it is often di�cult to control network properties in favor
of migratory applications or the migration process.

Chapter 3 describes a centralized migration framework to enable automatic
triggering and migration orchestration in scenarios with dynamic context. The
framework includes core migration functions to

• estimate the network state as example of context information

• generate decision policies for choosing target device of migration and
procedure for performing the migration

• enforce the decisions and orchestrate the migration

The speci�c method to orchestrate migration is also presented.

Chapter 4 describes solutions to the problem of estimating the state of
the network under uncertainty. Through simulation evaluations, we show
how model-based estimation approaches such as hidden Markov Models and
Bayesian Network enable accurate, fast and robust network state estimation
in migration scenarios. The platform enables delivery of context information,
in this case network state information, and migration elements such as con-
�gurations and descriptions of orchestration methods, to where decisions are
enforced, which is necessary for successful migration.

In Chapter 5 the estimated network state is used to decide which con�g-
uration the migratory application should be in. This decision is a trade-o�
between choosing application con�gurations and orchestration methods that
a) deliver a good user experience and b) ensure fast and successful migration.
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By applying model-based decision approaches such as the Markov Decision
Process (MDP) to generate decision police, we show by simulation how the
overall user experience is improved. Moreover, it is shown that inaccurate
state estimation in�uences the resulting decision policies.

Chapter 6 describes a lean orchestration protocol for resource-constrained
networks. It is investigated how well a resource-constrained network type such
as Near-Field Communication (NFC) performs for orchestrating the migration.
The performance of the protocol is evaluated experimentally and the results
show that migration over an NFC link is possible for small application state
sizes.

In Chapter 7 it is investigated how the migration framework performs when
elements of the framework are a�ected by network dynamics. This is exem-
pli�ed by introducing dynamic availability of the orchestration methods. The
extension increases the complexity of the models used to generate policies, and
two approaches are investigated to reduce the complexity. Both approaches
ignore dynamics in policy generation, but one handles the dynamics in policy
enforcement by using policies based on subsets of available orchestration meth-
ods. By simulation it is shown that changing the policy to match the available
set of orchestration methods improves the user experience quality, compared
to a model which assumes that all orchestration methods are available.

8.2 Conclusions

Migration triggering is a complex process involving network state estimation,
choice of target con�gurations and orchestration methods and potentially ap-
plication adaptations. Automatic triggering is bene�cial in migration scenar-
ios that include dynamic and resource-constrained networks, as performance
of both application and migration depends on network state. In addition, net-
working scenarios are important as they demonstrate well the challenges of
other dynamic behaviors that may characterize the context of the migratory
applications.

There are three main user types that interact with the migration platform:
application users, application developers and platform developers. The prob-
lems studied in this work are mainly faced by platform developers. However,
the choice of solutions directly a�ect application users, as the results show, so
the choices must balance the trade-o� of implementation complexity and user
experience.



126 Conclusions and outlook

Platform developers need much system knowledge to construct the mod-
els for state estimation and policy generation. With simple scenarios (small
network, few con�gurations and orchestration methods) the e�ort invested
in gathering domain knowledge to build the models may not be justi�ed in
enriched user experience. Simple heuristics are therefore enough to achieve
su�cient performance.
In static scenarios, where new migration elements (con�gurations, orchestra-
tion methods) are not added, the world-model policy generation approach (in-
cluding availability) may be the best choice for accurate decisions. As shown,
the state space will quickly grow, so automatic methods to generate the models
will be needed. When the state-spaces become very large, even if generated
with automatic methods, the solution time and the storage size of the policies
will be an obstacle. On the other hand, if migration elements can be added
during the system lifetime, the subset-model approach must be used, in order
to (over time) generate policies that include the added artifacts.

Furthermore, it is shown how estimation accuracy heavily in�uences mi-
gration performance. It is recommended to use the model-based approaches
in scenarios where multiple hidden network parameters, such as route conges-
tion and wireless link quality, may in�uence the application performance. In
particular, when there is access to multiple observable parameters that are
related to the hidden parameters, it is recommended to use the model-based
methods, as they are shown to improve estimation performance, to improve mi-
gration performance. The results show that using multiple observations makes
the models robust to parameter inaccuracies, so it is recommended to use the
Bayesian Network in particular when multiple observations are available and
if it is di�cult to get accurate parameters.

The bene�t of the model-based policy generation approach depend very
much on the predictability of the network state and the relation between the
network state dynamics and the migration procedures. Taking future decisions
into account improves the migration performance only if such decisions are to
be made. If the network dynamics are too fast for a migration procedure to
complete as a reaction to a state change, then a migration will never be trig-
gered, and the modeling e�ort is wasted. Therefore, it is recommended to
use the MDP approach in migration scenarios where network state (in gen-
eral environment dynamics) changes with longer interval than the migration
procedure takes to complete, at minimum.

Performance of the orchestration procedures is shown to impact the mi-
gration experience. Optimization of the duration and success probability of
the procedure is important in order to deliver a good migration experience.
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We have shown how the procedures can be optimized in scenarios with only
resource-constrained link available for migration, extending the domain where
successful migrations can be delivered. The trade-o� is the continuity of the
application, as only small amounts of state information may be successfully
transferred during migration, which may require the user to repeat steps in
the application work �ow. In order to keep applications continuous, the rec-
ommendation is to use the lean orchestration protocol in scenarios where the
mobile device would otherwise be disconnected.

Overall, the proposed migration platform supports migratory applications
in the described scenarios. These scenarios are general enough to show a broad
scope of application types that can be migrated. In the end, the framework
has some limitations. Access to the migration server is required, which means
that the framework can only be deployed in settings with some sort or existing
network infrastructure. Moreover, the decision policies are generated o�ine,
which means that all applications, devices and networks need to be known
beforehand. This is a challenge, in particular for large deployments, as for
instance corporate domains. Moreover, the o�ine generated policies are based
on reward models of the user experience with an application under certain
network conditions. Methods to obtain such models have been studied in the
literature, however, the perceived experience is very subjective, which is very
tied to both applications, network properties and the particular users and
their preferences. The fact that such models have to be known beforehand
by application developers may limit the level of model details, as they may
use very speci�c models to be able to deploy any applications at all. This will
reduce the bene�t of migrating applications, when not all context changes that
a�ect application performance can be reacted to. Nevertheless, the framework
supports the whole spectrum of details, and when more detailed reward models
are derived, such that new context events can be considered in the decision
policies, the migration framework can be upgraded accordingly.

8.3 Outlook

Migration framework Orchestration methods are chosen centrally at the
migration server. However, when orchestrating over a resource-constrained
link the choice of orchestration method has to be made locally on the
device. In the studied case of NFC, time for orchestration is so short
that the choice never will be made centrally. However, there clearly exist
border-line cases, where the di�erence between making the choice locally
and centrally impacts migration performance.
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Also scenarios with multiple applications and users are interesting be-
cause they will share the device resources and thereby introduce a new
decision trade-o� where the best user experience may cover the average
experience of many users and their applications instead of just one of
each as studied here.

State estimation This work is based on network state as the context in�u-
encing the application performance. Other context parameters such as
other resources, mobility and other users are interesting extensions of the
scope.
Moreover, the delivery process in the context management framework
may itself cause inaccurate state estimates, called mismatch probability.
The e�ect and optimization of this factor should be studied and imple-
mented in the estimation approaches.

Decision making In this work, migration elements such as con�guration and
orchestration methods are assumed known beforehand. This may not al-
ways be the case. Online learning of reward models, orchestration meth-
ods properties should be studies as a part of adaptive policy generation.
Also, it is assumed in the policy generation that the network states are
observable, and then the estimation task was separated into the estima-
tion function. Partially observable MDPs can solve the same problem
jointly in one function. The trade-o� between added accuracy vs. in-
creased model complexity should be studied as policy generation opti-
mization.

Interplay Interplay between migration orchestration and trigger management
components were studied to optimize the enforcement part of trigger
management. In the same manner interplay with other controllable parts
of the platform, e.g. QoS policies in the network or performance moni-
toring schemes, should be studies for optimization of the overall platform
performance.



List of Symbols

.

a : Actions

s : Network state

ŝ : Estimated network state

o : Observation

c : Current con�guration

c : Next con�guration

ω : Orchestration method

N : Number of network states

S : Set of network states

O : Set of observation

M : Number of con�gurations

C : Set of con�gurations

K : Number of orchestration methods

Ω : Set of orchestration methods

A : Set of actions

α : Migration penalty

ps : Migration success probability

pd : Parameter of geometric migration delay distri-

bution

R(c, s) : Reward function

D̄ : Mean migration delay

p, q : Network model transition probabilities

π(c, s) : Decision policy

w : MDP look-ahead window size


