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Abstract

Wireless communication is omnipresent today, but this development has led to frequency
spectrum becoming a limited resource. Furthermore, wireless devices become more and
more energy-limited, due to the demand for continual wireless communication of higher
and higher amounts of information. The need for cheaper, smarter and more energy-
efficient wireless devices is greater now than ever. This thesis addresses this problem
and concerns the application of the recently developed sampling theory of compressive
sensing in communication systems.

Compressive sensing is the merging of signal acquisition and compression. It allows
for sampling a signal with a rate below the bound dictated by the celebrated Shannon-
Nyquist sampling theorem. In some communication systems this necessary minimum
sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the
limit of what the current technology can manage. Even if the sampling rate is within
the bounds of what is currently possible, the electrical components for acquiring highly
oscillating signals are very expensive and energy demanding. Compressive sensing may
mitigate this challenge by lowering the bound on the sample rate. The compressive
sensing research area is still in its infancy and has so far been mainly a theoretical
field. However, hardware implementations and actual application examples in current
communication technologies have begun to emerge.

The approach in this thesis has been to attack some of the current challenges with
using compressive sensing in communication systems. The main contribution of this
thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum
signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms
for parameter estimation for the class of translation-invariant signals, which outper-
form the current state-of-the-art algorithms for frequency and time delay estimation.
Though the proposed methods and algorithms in this work have been designed for use
in communication systems, they are also relevant outside this area.
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Resumé

Trådløs kommunikation er allestedsnærværende i dag, men denne udvikling har ført til
at frekvensspektret nu er en begrænset ressource. Derudover bliver trådløse enheder
mere og mere energi-begrænsede, på grund af efterspørgslen efter kontinuerlig trådløs
kommunikation af større og større mængder information. Behovet for billigere, smartere
og mere energi-effektive trådløse enheder er større end nogensinde før. Denne afhandling
adresserer dette problem og omhandler anvendelsen af den ny-udviklede samplingsteori
compressive sensing i kommunikationssystemer.

Compressive sensing er sammenlægningen af signal akkvisition og komprimering.
Dette tillader at måle et signal med en hastighed under den nedre grænse dikteret
af den velkendte Shannon-Nyquist samplingsteori. I nogen kommunikationssystemer er
den nødvendige samplingsrate, som dikteret af Shannon-Nyquists samplingsteori, så høj
at den er på grænsen af det mulige med nutidens teknologi. Selv hvis samplingsraten
er indenfor grænserne af det mulige er de elektriske komponenter, der skal til for at
måle stærkt oscillerende signaler, meget dyre og meget energi-ineffektive. Compres-
sive sensing kan være en løsning på dette problem ved at sænke den nedre grænse for
samplingsraten. Compressive sensing forskningsfeltet er stadig ungt og har indtil videre
primært været et teoretisk felt. Dog begynder der nu at fremkomme hardware implemen-
tationer og reelle applikationseksempler indenfor nutidige kommunikationsteknologier.

Tilgangen i denne afhandling har været at angribe nogle af de nutidige udfordringer
indenfor anvendelsen af compressive sensing i kommunikationssystemer. Hovedbidraget
i denne afhandling består af to dele: 1) en ny compressive sensing hardware struktur
til spread spectrum systemer, som er simplere end den nutidige state-of-the-art og 2)
en række af algoritmer til parameterestimering til translationsinvariante signaler, som
udkonkurrerer de nutidige state-of-the-art algoritmer til frekvens- eller tidsforsinkelses-
estimering. Selvom de foreslåede metoder og algoritmer i denne afhandling er designet
til brug i kommunikationssystemer er de også relevante indenfor andre felter.
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Compressive Sensing in
Communications Systems
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Chapter 1

Introduction and Thesis
Overview

The world around us is an analog one. Most natural phenomena we can analyze may
be in an infinite number of states, depending on temperature, density, velocity, voltage,
etc. However, our processing platform of choice is often a digital unit, which cannot
represent an infinite number of states. Hence we must sample and quantize natural
phenomena. Sampling is a transition from an analog signal to a digital signal. From
a continuous signal with an infinite number of possible values to a finite number of
samples. This sampling is achieved using an Analog-to-Digital Converter (ADC), which
is an electronics component present in any digital device that process an analog input
signal. Furthermore, the ADC must quantize the input signal, meaning that every
sample must be represented by a value from a finite set of possible values. To visualize
this see Fig. 1.1 where the picture to the left is a close approximation of an analog
picture — as humans we cannot clearly discern the discretization. However, the picture
is actually just a refined version of the figure to the right. There we see the discrete
matrix of colored squares or pixels, representing the actual image representation. Each
pixel is only allowed to take on values from a finite set of possible colors. This is an
example of how ADCs take measurements of an analog process and discretize it. In
most cases a good approximation of the analog process is sufficient, so the ADC should
take enough measurements, such that the amount of obtained information is sufficient
for the task at hand. Similarly, ADCs are used to acquire speech or audio signals,
communication signals or any other type of signal.

The ADC technology is very mature and has become a key corner stone in our
infrastructure. However, the technology is limited with respect to some key parameters.
There are limits to how fast an ADC may sample a signal and how well each sample may
be quantized, i.e. how large a set each sample value may be represented from. There
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4 Chapter 1. Introduction and Thesis Overview

(a) How we see an image. (b) How the image is actually composed.

Fig. 1.1: Example of sampling process.

are also other parameters but in this work, the focus is on these two. As described
in [55, 98] the sample and quantization rate is improving but not as fast as the industry
needs it. Especially Ultra-Wideband (UWB) radio may require very high sampling rate
in the gigahertz range. Even though it may be possible to implement such ultra high
sampling ADCs, such devices are expensive and consume a lot of energy, compared to
similar devices with lower sampling rate and quantization rate [53]. To determine the
necessary sample rate of a system the celebrated Shannon-Nyquist theorem is used,
which gives a bound on the necessary sample rate to enable exact reconstruction of an
analog signal from its discrete samples. However, the Shannon-Nyquist theorem, which
is defined more clearly in the next section, is a very broad theorem, which holds for
all bandlimited signals. If more a-priori knowledge about the signal is available it is
possible to reduce the sample rate further. In [95] the authors show that it is possible
to lower the necessary sampling rate and still attain a desired level of information if
the information rate is much lower than the actual signal dimensionality. In this work
the newly developed theory of Compressive Sensing (CS) [17, 30] is used to lower the
sampling rate, while still attaining the relevant information in a given signal. CS may
be used if the desired signals may be assumed sparse in some domain, which is the case
in many scenarios.

In this work the focus has been on attacking some of the problems currently relevant
in the CS field of research and on using the developed techniques for communication
systems. The published and submitted papers show how CS may be used to lower
the necessary sample rate in two different areas in communication: 1) spread spectrum
systems and 2) parameter estimation which may be used for e.g. UWB-based communi-
cation and Frequency Modulated (FM) signals. We propose a new hardware structure
for spread spectrum signals, highlight the problem of noise folding and demonstrate that
quantization may make this problem less significant. Furthermore, several algorithms
are proposed for parameter estimation for the class of translation-invariant signals, which
outperform the current state-of-the-art algorithms for frequency and time delay estima-
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CS Reconstruction,
Section 2.3

Compressive Signal
Processing, Section 2.4

CS Acquisition

Recovery Guarantees,
Section 2.1

Analog Acquisition
Systems, Section 2.2

Applications of CS in
Communication Systems,
Chapter 3

Fig. 1.2: Thesis chapters overview. The arrows signify the processing flow, from the various commu-
nication signal applications, to the acquisition of the analog signal and finally the reconstruction or
processing of the acquired signal.

tion, when the signal of interest is generated with a parametric signal model, rather
than a dictionary-based one.

An overview of the structure of the two main introduction chapters is shown in
Fig. 1.2. The remainder of this chapter rounds off with a small review of the Shannon-
Nyquist sampling theorem, followed by a definition of the mathematical notation used
in this work. In Chapter 2 an extensive summary of the main points in CS theory
up until now is given. CS theory mainly consists of two aspects: signal acquisition
and signal reconstruction and/or processing. Signal acquisition is split in two parts:
one that treats the mathematical foundation for stable signal acquisition and the other
which treats actual hardware structures for acquiring a signal. At the end of Chapter 2
some of the current challenges in CS which are addressed in this work are discussed.
Then, in Chapter 3, examples of the use of CS in communications are given, especially
for the two use cases listed in the above. The novelty and contribution of the individual
papers presented in this Ph.D. thesis are listed in Chapter 4 and are summarized as
follows:

• Paper A and Paper B concern the application of CS to spread spectrum sys-
tems for data decoding. The main contribution of these papers is the discovery
that for spread spectrum systems it is possible to simplify the hardware front end.
We propose the general Compressive Spread Spectrum (CSS) hardware design.
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Another important contribution of these papers is that the numerical experiments
indicate that taking quantization into account may remedy the drop in perfor-
mance induced by noise folding.

• Paper C, Paper D and Paper E concern parameter estimation. We show that
an interpolation scheme based on polar interpolation outperforms other state-of-
the-art frequency and time delay estimation algorithms. The main novelty and
contribution of the papers are a hybrid greedy and convex optimization based
algorithm and the discovery in the numerical experiments that even though the
reconstruction of a signal suffers from noise folding, the estimation of its parame-
ters are not as heavily affected.

Finally, the paper is concluded in Chapter 5 and some possible directions for future
work is given.

1.1 Shannon-Nyquist Theorem
What is denoted here as the Shannon-Nyquist Theorem was actually derived by several
people, including Shannon and Nyquist. For more historical background on the theorem
see [62]. Let f(t) be a time domain function which is bandlimited in the frequency
domain. Fourier analysis tells us that any such frequency domain function may be
represented as a sum of exponentials, i.e. its Fourier series. This is the centerpiece in
the theorem published by Shannon on the necessary sample rate of analog signals: If a
function f(t) contains no frequencies higher than W Hertz, it is completely determined
by giving its ordinates at a series of points spaced 1/(2W ) seconds apart. [85]

The proof of this theorem relies on f(t) being bandlimited in frequency. Let F (ω)
be the spectrum of f(t) so that:

f(t) = 1
2π

∫ W

−W
F (ω)ejωtdω, (1.1)

because F (ω) is zero outside [−W,W ]. Then, define the sampling instants as:

t = n

2W , n ∈ Z. (1.2)

The samples of f(t) then becomes:

f
( n

2W

)
= 1

2π

∫ W

−W
F (ω)ejω n

2W dω (1.3)

With this formulation the right hand side may be recognized as the Fourier series ex-
pansion of F (ω). This means that the samples f

(
n

2W
)
are identical to the Fourier
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coefficients in the expansion. These coefficients almost always uniquely represent the
function and therefore retain all the information in the signal.

However, it can be shown that one must actually use a higher sampling rate than
stated by Shannon, due to a few special cases. Define the signal:

f(t) = ej2πWct, (1.4)

and let Wc = Ws
2 and Ts = 1

Ws
. Then:

f(nTs) = ej2π
Ws
2 n 1

Ws = ejπn = (−1)n (1.5)

With this sampling frequency the ability to distinguish between −Wc and Wc is lost. If
the signal is real, e.g. a sinusoid with a given frequency Wc and Wc = Ws

2 it may also
happen that the signal is sampled exactly at the zero-crossings, which would lead to the
zero vector as the sampled version of the sinusoid.

Therefore, the Shannon-Nyquist sampling theorem is often given as:

Theorem 1.1
If a bandlimited signal f(t) has non-zero bandwidth B Hertz it is necessary to sample
the signal with more than 2B Hertz.

This theorem is so powerful because of the assumption of bandlimitation. The fact
that the signal is bandlimited in the frequency domain does not limit this theorem to
be useful for signals analysed only in the Fourier domain. Instead, this bandlimitation
only states the rate of change allowed in the discrete representation.

Any signal may be analyzed with respect to rate of change. In an image this cor-
responds to the resolution. The resolution is the measure for how many pixels are
dedicated to represent the image. The more pixels dedicated, the better variations in
the image are captured. This is one form of rate of change and any type of signal may
be analyzed with respect to its rate of change by using the Fourier domain.

If a sampling system violates the Shannon-Nyquist theorem and samples a signal
with a lower sampling rate than required, the system will experience aliasing, i.e. any
frequency content higher than half the sampling rate may get aliases or images at lower
and higher frequencies. This happens because when sampling a continuous function
x(t), with Fourier transform Xc(f), the spectrum of the sampled signal Xs(f) consists of
periodically repeated copies of the Fourier transform of Xc(f). These copies are shifted
by integer multiples of the sampling frequency [70]. This is visualized in Fig. 1.3.

It is worth noting that the Shannon-Nyquist theorem is mainly a mathematical
theorem. It holds for bandlimited functions that are assumed to be infinite.
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Xc(f)

f−W W

Xs(f)

f−W W

Ts <
1

2W

Xs(f)

f−W W

Ts >
1

2W

Fig. 1.3: Example of aliasing. In the top figure Xc(f) is the spectrum that is sampled. In the middle
figure Xs(f) is the spectrum of the sampled signal when Ts ≤ 1

2W
, i.e. follows the Shannon-Nyquist

sampling theorem. Notice that the replicated versions are well-separated. In the bottom figure Xs(f)
is again the spectrum of the sampled signal, but now Ts ≥ 1

2W
, i.e. the Shannon-Nyquist theorem is

not followed. Here the spectrum slices are overlapping and aliasing occurs.

1.2 Notation
Before starting the introduction to CS the notation used throughout this work is intro-
duced. Any continuous function is represented by a lower-case letter and its continuous
parameters enclosed in parentheses, e.g. f(t), where f is the function name and t is its
parameter. For discrete functions brackets are used: f [t], where t is now an index from
a discrete set. When denoting the spectrum of a signal f(t) this refers to the Fourier
transform F (W ) of that signal, unless otherwise stated.

Vectors and matrices are denoted using lower- and uppercase bold letters x and
X, respectively. Individual entries in vectors are written as lowercase letters with a
subscript signifying individual indexes: xi which corresponds to the ith entry of the
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vector x. Similarly, for matrices, individual column vectors are written as lowercase
bold letters with a subscript signifying the column index: xi corresponds to the ith
column of X. The only exception is when the subscript is used on sets of indices, i.e.
XS is a matrix composed of the columns from X corresponding to the indices in the set
S and xS is a vector composed of the entries from x corresponding to the indices in the
set S. Operations on matrices include the transpose XT , the Hermitian transpose XH ,
the inverse X−1 and the Moore–Penrose pseudo inverse X†.

Different norm functions are used throughout this work and are defined as a function
that associates a length to a given vector in some vector space. Here the notion of `p-
norms is used, which are defined as follows:

‖x‖p =
(

N∑
n=1
|xn|p

)1/p

for p ≥ 1 (1.6)

At times a quasinorm such as `0 is also used, which cannot be used in the above formula,
but which corresponds only to counting all the non-zero entries in the vector x.

Vectors and matrices are defined as possible points in vector spaces such as x ∈ RN
for a vector in a real N -dimensional vector space or X ∈ CN×M as a matrix in the
complex vector space with dimensions N ×M .
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Chapter 2

Compressive Sensing

Compressive Sensing (CS) is a relatively new field in signal processing. It was first
proposed by Candes et al. [17] and Donoho [30] in 2004 and represents a new paradigm
for sampling signals. The problem that CS attacks is based on the fact that many
current signal acquisition systems consists of two essential, sequential steps: acquisition
and compression, see Fig. 2.1. First an analog signal f(t) is acquired by using some

Sampling and
quantization Compression

f(t) f y

(a) Classical acquisition and compression systems.

CS acquisition
f(t) y

(b) Compressive sensing acquisi-
tion.

Fig. 2.1: Classical and compressive sensing acquisition and compression systems.

sampling kernel such as a matched filter or a Dirac comb, resulting in the Nyquist
sampled f . In this work sampling kernels are always linear functions of some input
data. If the signal of interest is highly oscillatory the amount of acquired data may
become difficult to acquire, store and process quickly. Also, in many applications the
information rate of the signal is actually much lower than the Nyquist rate mandated
by the Shannon-Nyquist theorem [95]. Therefore, compression often follows acquisition
so that only the desired information is extracted from the signal, stored and processed,
here denoted by the measurements y. In CS the acquisition and compression step is
combined into one step, hence the name: compressive sensing. This is often stated

11
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mathematically as:

y = Af , (2.1)

where y ∈ CM×1 is the acquired, compressed measurement vector, A ∈ CM×N , M ≤ N
denotes a measurement matrix or sampling kernel and f ∈ CN×1 signifies the signal of
interest sampled at the Nyquist rate. If M < N A is dimensionality reducing or
compressing. Here it should be noted that the notion of compression in CS is not always
identical to the classical notion of compression in information theory. In information
theory compression relates to the number of bits required to store the signal and methods
for encoding such that a signal may be represented using as few bits as possible. The
encoding may be either lossy or lossless. In CS the compression is often a dimensionality
reduction, rather than a reduction in the number of bits. However, some recent work has
merged CS and quantization to reduce the number of bits as much as possible [14, 15, 52].

The measurement matrix should model the analog front end and the sampling op-
eration by the ADC, i.e. an analog component that outputs discrete measurements. To
be able to reconstruct the actual transmitted signal, the task for an RF engineer is
therefore to design a dual pair consisting of an analog front end and a discrete measure-
ment matrix A, such that the analog front end measures the signal so that the output
discrete measurements y correspond to the result of the matrix-vector operation with A
in Eqn. (2.1). If this is achieved, it is possible to reconstruct the Nyquist-rate sampled
version of f(t), f , which is known by the Shannon-Nyquist theorem to contain all the
information from the analog signal. An example is the matched filter, which is often
used in communications when the transmitted signal is known, but its position in time
is not. Then the analog implementation is filters that implement the matched filter
followed by an ADC, while the measurement matrix consists of rows, where each row is
the discrete version of the matched filter shifted in time, corresponding to the sampling
rate of the ADC in the analog implementation.

In many classical systems the measurement matrix A is square and invertible. The
CS measurement matrix A has fewer rows than columns, may be rank-deficient and does
not constitute an isometry for all input vectors x. However, near-isometry is possible
if only a subset of input vectors is allowed. In CS this is achieved by assuming sparsity
in some domain. Classically, the sparsity assumed by CS is dictionary-based, identical
to what is known as transform coding in compression theory. An example of this is the
following: Assume a signal f must be compressed. Often a signal may be represented
as:

f = Dx, (2.2)

where D ∈ CN×N denotes a dictionary matrix and x ∈ CN×1 is the transform repre-
sentation of f . If x is sparse for some dictionary D and for all possible choices of f ,
i.e. only K � N entries are non-zero, the signal f may be compressed by only storing
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(b) The signal in the DFT domain.

Fig. 2.2: Example of transform coding with an inverse DFT dictionary matrix D.

the non-zero entries and their positions in the sparse transform domain representation
x. This is the fundamental principle behind many forms of compression, e.g. JPEG
for images. An example of transform coding for an inverse DFT dictionary matrix D
is shown in Fig. 2.2. Classical CS requires this form of sparsity, but other techniques
exist to handle cases with other kinds of sparsity, e.g. manifold models [9] or parametric
models with a few parameters [44].

CS comprises methods for acquiring signals that are sparse in some known domain,
such that the measurement matrix A constitutes an near-isometry for the class of sparse
signals. However, Eqn. (2.1) only concerns the acquisition of the signal. Often there
will also be a reconstruction stage. With the Shannon-Nyquist theorem the reconstruc-
tion is achieved by sinc interpolation which is a relatively simple operation. In CS one
must instead solve an underdetermined system of linear equations, which may be as-
sumed sparse. This is done using non-linear methods, but this may be a very heavy
computational task.

The following sections first elaborates on the requirements on the measurement ma-
trix A for CS to guarantee a unique mapping from the signal domain to the measure-
ments domain, i.e. A must represent a stable embedding. Then a review of current
dual pairs of analog front ends and discrete measurement matrices A that satisfy these
requirements are given. This is followed by an overview of different reconstruction
algorithms used for recovering the original Nyquist rate signal from the compressed
measurements. Then the related field of Compressive Signal Processing is introduced,
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CN CN

(a) Linear operator with full column
and row rank.

x1

x2

x3

y1

y2

CN CM

(b) Linear operator with less than full
column rank and non-empty null-space.

Fig. 2.3: Linear operation by matrix A.

where the signal is not reconstructed but instead processed directly in the compressed
domain. Finally some of the current challenges in CS which are addressed in this col-
lection of papers are described, e.g. quantization, noise folding and signals that are not
sparsely representable in any specific dictionary matrix, but instead is sparse in some
other model.

2.1 Recovery Guarantees
In this section the requirements for the measurement matrix A to form a near-isometry
for sparse signals are examined. However, before talking of CS measurement matrices,
that are underdetermined and constitute an ill-posed problem, a review is given of the
properties of a well-defined system of linear equations: y = Ax, A ∈ CN×N . In such
cases, if y and A are given and A has full rank, x is obtained by solving the system
of linear equations, which is equivalent to multiplying y with the inverse of A denoted
A−1. In this section the dictionary matrix is assumed to be the identity matrix D = I or
that the measurement matrix is the matrix-matrix product of the measurement matrix
and the dictionary matrix. That the matrix A has full rank also means that its columns
are linearly independent and span an N dimensional subspace. Therefore, the matrix
A may be used to represent all possible signals in CN and each signal has one unique
representation by A, i.e. A constitutes a bijective function. This is visualized in Fig. 2.3a
where any vector x in CN is mapped to a unique vector y also in CN . Such problems
are often termed well-posed when they satisfy three conditions:

• A solution to the problem exists,
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• The solution is unique, and

• Small changes in the input results only in small changes in the output.

When a problem does not fulfill these requirements it is termed ill-posed. Ill-posed prob-
lems are often encountered in inverse problems and is often separated into two groups:
underdetermined and overdetermined systems of linear equations. In overdetermined
systems of linear equations there are more equations than unknowns, which means there
may be no solution to the problem, whereas in underdetermined systems of linear equa-
tions there are fewer equations than unknowns, so that there are potentially infinitely
many solutions. Overdetermined problems may be solved using least squares to find the
best fit of the data. Underdetermined problems, i.e. when the matrix A is fat and has
more rows than columns has potentially infinitely many solutions. This is visualized in
Fig. 2.3b, where the point y1 has two possible solutions: x1 and x3. This is the problem
addressed by CS.

Let N (A) = {z : Az = 0} denote the null space of A. To ensure recovery of all pos-
sible signals x ∈ CN from the measurements y = Ax it is important that for any pair of
vectors x, x̂ ∈ CN , x 6= x̂ their images must also be different, i.e. Ax 6= Ax̂. Otherwise
it is impossible to uniquely return to the original signal from the measurements. This
can be defined using the null space by noting that if Ax = Ax̂ then A(x− x̂) = 0, i.e.
the signal x− x̂ is in the null space of A. If it can be ensured that no possible set x, x̂
exists, such that A(x− x̂) = 0, unique recovery is ensured.

If restrictions are put on the possible input vectors x it is possible to make an
underdetermined system well-posed for that limited set of input vectors. This is the
basis for CS. First, assume that x ∈ CN is exactly K-sparse or less, i.e. only K or less
out of the N entries of x are nonzero. Let ΛK = {x : ‖x‖0 ≤ K} signify the set of
K-sparse vectors and define the Spark of a matrix as:

Definition 2.1 (Reproduced from Definition 1.1 in [41])
The spark of a given matrix A is the smallest number of columns of A that are
linearly dependent.

Then the condition on the null space may be relaxed to only hold for vectors in ΛK
and it can be shown that:

Theorem 2.1 (Reproduced from Corollary 4 in [31])
For any vector y ∈ CM , there exist at most one signal x ∈ ΛK ⊂ CN such that
y = Ax if and only if Spark(A) > 2K.
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Proof. The assumption that Spark(A) > 2K means that for any h = x− x̂, x, x̂ ∈ ΛK
h can at most have 2K nonzero entries and hence cannot pick any linearly dependent
set of columns from A. Therefore h cannot be in the null space of A unless h = 0,
which implies x = x̂.

Since Spark(A) ∈ [2,M + 1] there is a restriction on the minimum number of mea-
surements M ≥ 2K for K-sparse signals using Theorem 2.1.

The above holds only for exactly K-sparse signals, which cannot always be assumed.
Instead the signals will be compressible, meaning that the signal is well approximated
by a K-sparse signal. To treat such vectors the null space property is used. First, define
two sets: a subset of indices Λ ⊂ {1, 2, . . . , N} corresponding to the non-zero entries in
a vector and the remaining indices Λc ⊂ {1, 2, . . . , N}\Λ. Hence, when writing xΛ this
signifies a length N vector with all entries indexed by Λc set to zero. Then define the
following:

Definition 2.2 (Reproduced from Definition 1.2 of [41])
Amatrix A satisfies the null-space property (NSP) of orderK if there exists a constant
C > 0 such that,

‖hΛ‖2 ≤ C
‖hΛc

‖1√
K

(2.3)

holds for all h ∈ N (A) and for all Λ such that |Λ| ≤ K.

The NSP ensures that vectors in the null space of A do not have their energy
concentrated on only a few entries. One important example to note is the NSP for
K-sparse signals in the null space of A. If h is exactly K-sparse then ‖hΛc

‖1 = 0.
This implies that hΛ = 0 as well, due to Eqn. (2.3). This means that if A satisfies the
NSP the only exactly K-sparse vector in N (A) is h = 0. However, this still does not
show why the NSP is important for general compressible signals. The NSP is used to
estimate performance of reconstruction algorithms for general non-sparse signals. Define
the following:

‖∆(Ax)− x‖2 ≤ C
min

x̂∈ΣK

‖x− x̂‖1
√
K

(2.4)

for all x and where x̂ ∈ ΣK ⊂ CN is any exactly K-sparse vector and ∆(·) : CM → CN
is a reconstruction algorithm. Then the following is true:
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Theorem 2.2 (Reproduced from Theorem 3.2 in [22])
Let A : CN → CM denote a measurement matrix and ∆ : CM → CN denote a specific
reconstruction algorithm. If the pair (A,∆) satisfies Eqn. (2.4) then A satisfies the
NSP of order 2K.

This theorem then sets a bound on the error by an arbitrary reconstruction algo-
rithm. The bound ensures exact recovery of exactly K-sparse signals and ensures some
robustness for compressible signals that directly corresponds to how well the compress-
ible signal is approximated by an exactly K-sparse signal.

Thus, the NSP tells us something about the bound on the reconstruction error for a
given measurement matrix and an arbitrary reconstruction algorithm.

2.1.1 Restricted Isometry Property
The NSP may be used for exactly K-sparse and compressible signals in the noise-free
setting. If noise is included in the signal model it is necessary to use another model,
which is called the Restricted Isometry Property:

Theorem 2.3 (Reproduced from Definition 1.1 in [18])
A matrix A satisfies the Restricted Isometry Property (RIP) of order K if there exists
a δK such that

(1− δK)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δK)‖x‖22 (2.5)

holds for all x ∈ ΣK .

This theorem is very important because it means that if a matrix A can be found
that satisfies the RIP of order 2K it will approximately preserve the distance between
any pair of K-sparse input vectors with respect to some constant δK . This is more
clear if the RIP is defined using the difference vector h = x− x̂ where x and x̂ are two
arbitrary K-sparse vectors in ΣK . Therefore, h is 2K-sparse or less. Using h the RIP
becomes:

(1− δ2K)‖x− x̂‖22 ≤ ‖Ax−Ax̂‖22 ≤ (1 + δ2K)‖x− x̂‖22 (2.6)

Here it is clearly shown that the RIP signifies a distance preservation between any pair
of K-sparse vectors before and after multiplication with the A matrix. This RIP then
states that the distances does not change arbitrarily much as long as the matrix satisfies
RIP of order 2K. It is also important to note that if A satisfies RIP of order K with
constant δK it also satisfies RIP of any order K ′ < K with constant δK′ < δK . The
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constant δK is very important and unless it is bounded somehow, the RIP cannot really
be used for anything. This bound is further defined in Section 2.3. Using probabilistic
analysis it has been shown that many forms of random matrices satisfy the RIP, such
as Gaussian random matrices [18].

Furthermore, the RIP may also be used to find a necessary number of measurements
to take for the RIP to hold.

Theorem 2.4 (Reproduced from Theorem 3.5 in [25])
Let A be an M ×N matrix that satisfies the RIP of order 2K with constant δ2K ∈
(0, 1

2 ]. Then

M ≥ CK log
(
N

K

)
(2.7)

where C = 1
2 log

(√
24 + 1

)
≈ 0.28.

2.1.2 An example of the null space condition, NSP and RIP
To better exemplify the effect of the NSP and the RIP an example is given: Define the
measurement matrix as follows:

A =
[
1 0

√
1/2

0 1
√

1/2

]
(2.8)

and assume that the signal of interest x is 1-sparse and that the dictionary matrix is
the identity matrix D = I.

This matrix has Spark(A) = 3 which is clearly more than 2K and hence fulfills
Theorem 2.1. The NSP may then be used to find the reconstruction error for any
compressible signal, i.e. if the input vector is not exactly 1-sparse, but is instead x =[
1 0.2 0.1

]
then the reconstruction error is upper bounded by:

‖∆(Ax)− x‖2 ≤ C
min

x̂∈ΣK

‖x− x̂‖1
√
K

≤ C 0.3√
1

= 0.3C (2.9)

Here the nominator is found as minx̂∈ΣK
‖x − x̂‖1 = 0.3 with x̂ =

[
1 0 0

]
the best

sparse approximation of x. This shows that the less sparse the signal is, the worse is the
approximation with a K-sparse signal in the nominator at capturing the energy of the
signal and the higher is the reconstruction error. For the noisy case the RIP is used to
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Fig. 2.4: The transform from R3 to R2 by A.

verify whether the matrix A preserves distance for some choice of δ2K . However, even
for such a small matrix, this is not possible because it is not possible to test all possible
choices of h = ax − bx̂. This is not possible as it would require testing for all possible
choices of a and b, which are continuous variables. This illustrates the problem with
the RIP, in that it is almost always impossible to verify, except through probabilistic
analysis. The transform by A is visualized in Fig. 2.4.

2.1.3 Phase-Transition Plots
While the RIP is an important theoretical result, its practical appliance is not so straight
forward, as demonstrated in the above. Verification that a given matrix satisfies the
RIP must be done by probabilistic analysis and can often not be done for a specific
instantiation, since it would require to test all possible combinations ofK-sparse vectors.
Furthermore, the RIP has been shown to give a less precise and more conservative
boundary between reconstruction success and failure than other bounds, see e.g. the
discussions in [11, 32]. Instead, Donoho-Tanner phase-transition or just phase-transition
diagrams [32, 33] may be used to demonstrate empirically for which levels of sparsity
a specific dictionary and (class of) measurement matrix are applicable. An example
of a phase transition plot is shown in Fig. 2.5 which is a figure from Paper B. The
parameters of the two-dimensional plot are the subsampling ratio δ = M/N and the
sparsity ratio ρ = S/M , where S = K. Each curve in the plot is found from a surface
plot of the rate of success based on Monte Carlo simulations. In each surface plot, a
clear transition curve is evident and to condense the results only the transition curve
where the probability of error crosses 0.5 is plotted. Each surface plot is generated so
that new simulations are conducted until the mean square error between the ith and
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Fig. 2.5: Phase Transition Diagram from Paper B for three different measurement matrices
(Rademacher, Random Demodulator and Compressive Spread Spectrum measurement matrix). The
black line is the phase transition line for the Tuned Two Stage Thresholding (TST) algorithm from [60].

the (i− 1)th plot is less than 10−5. For each parameter set and in each simulation, an
experiment is a success (1) if the mean squared error between the reconstructed and the
received signal is less than 10−6 and a failure (0) otherwise. The three measurement
matrices used are as follows:

• A Rademacher distributed measurement matrix, with a dense structure where
entries are either −1 or 1,

• A Random Demodulator [54, 91] measurement matrix, with a banded structure,
where entries are either −1 or 1 on the band and 0 outside, and

• A Compressive Spread Spectrum measurement matrix as proposed in Paper B.

The black line is for validation and is based on data from [60]. For more details on
this specific phase transition plot we refer to Paper B. A phase transition plot then
signifies two regions: a region below and to the right of the transition line, where the
reconstruction is successful and a region above and to the left of the transition line,
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where the reconstruction fails. This may be used to evaluate for which levels of sparsity
CS may be used in a given scenario and what is the empirically found lower bound on
the number of measurements.

2.1.4 Coherence
Another often used metric for evaluating whether a given matrix or class of matrices
are applicable for CS is coherence.

Definition 2.3 (Reproduced from Definition 1.5 in [41])
The coherence of a matrix A, µ(A), is the largest absolute inner product between
any two columns ai,aj of A:

µ(A) = max
1≤i<j≤N

|〈ai,aj〉|
‖ai‖2‖aj‖2

. (2.10)

Using this definition the following upper bound on the sparsity is defined:

Theorem 2.5 (Reproduced from Theorem 12 in [31])
If

K <
1
2

(
1 + 1

µ(A)

)
(2.11)

then for each measurement vector y ∈ CM there exists at most one signal x ∈ ΣK ⊂
CN such that y = Ax.

This cannot directly give any notion of how many measurements must be taken,
but does contain information about the allowable signals for a given matrix A. The
important aspect of this theorem is that the columns of A should be as incoherent as
possible.

When using coherence in the example from Section 2.1.2 the bound on sparsity is:

K ≤ 1
2

(
1 + 1

0.7071

)
= 1.207, (2.12)

which again shows that the measurement matrix A in that example constitutes a stable
embedding.

The RIP and coherence is connected by the following theorem:
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Theorem 2.6 (Reproduced from Lemma 1.5 in [41])
If A has unit-norm columns and coherence µ = µ(A), then A satisfies the RIP of
order K with δK = (K − 1)µ for all K < 1/µ.

2.2 Analog Acquisition Systems
Until now the measurement system y = Ax or y = Af has been modelled by the
measurement matrix A, a discrete linear operator on the Nyquist rate sampled signal
f . However, the main benefit of CS is to reduce the necessary sampling rate of a system
and hence, the Nyquist-rate sampled signal should never be directly acquired. Instead,
analog front end designs are developed that directly maps the analog signal to a subspace
that may be sampled at a low rate (compared to the Nyquist rate). In this section two
CS analog sampling structures are reviewed:

• Random Demodulator

• Modulated Wideband Converter

However, first the mathematical framework for analog to digital conversion is intro-
duced. Let f(t) be an analog signal of interest and let hi(t) denote a sampling kernel
function corresponding to the ith measurement of f(t). Then discrete measurements
y = [y1, y2, . . . , yM ] are obtained as:

yi =
∫ ∞
−∞

f(t)hi(t)dt (2.13)

Two examples of sampling kernels is the Dirac comb and the matched filter. The Dirac
comb sampling kernel is defined as:

yi =
∫ ∞
−∞

f(t)δ(t− iTs)dt (2.14)

where Ts = 1/fs with fs the sampling frequency at more than Nyquist rate. This cor-
responds to sampling according to the Nyquist rate and the Shannon-Nyquist theorem
states that with this form of sampling the infinite, perfectly bandlimited analog signal
is reduced to a finite representation without losing any information. If the signal is not
perfectly bandlimited, the reconstruction experiences aliasing, which means that some
energy from the higher frequencies above half the sampling frequency is brought down
into the signal bandwidth. Therefore it is important to filter the signal before sampling,
such that this energy is small compared to the in-band signal energy.
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Fig. 2.6: Random Demodulator hardware structure.

In communications systems the matched filter [77] is often employed to maximize
the SNR. When the transmitted signal is generated according to a known waveform,
often to conform to some standard, the sampling kernel filter should be matched to that
waveform, i.e. a time-reverse, conjugated version of the same waveform. In that case
the matched filter is the optimal linear filter for maximizing SNR in the presence of
additive white Gaussian noise. The matched filter is one way of reducing the sampling
rate and is indeed the optimal way if only detection of a known waveform is desired.
A single sample over the interval in which the waveform may be transmitted suffices
to determine whether the waveform is there or not. We couple the concept of matched
filters with CS in Papers A and B.

However, when there are more degrees of freedom, such as which waveform is sent
or the waveform may have varying parameters, the matched filter may no longer be the
optimal choice and Nyquist sampling is employed instead. However, if the number of de-
grees of freedom is small compared to the dimensions of the Nyquist-rate sampled signal,
CS may enable a lower sampling rate without losing information in the conversion.

To incorporate CS into analog sampling the design task is to construct sampling
kernel functions hi(t) such that the outputs yi correspond to the linear operator y = Af
with some measurement matrix A and f the Nyquist-rate sampled version of f(t). In
the following two examples of such designs are given.

2.2.1 Random Demodulator
One of the first and simplest analog CS front ends is the Random Demodulator (RD)
[54, 91]. It is based on multiplying the signal with a known pseudo-random noise
sequence h(t), which oscillates between −1 and 1. The output of the multiplier is
integrated using a low-pass filter and sampled at a low rate TR, as shown in Fig. 2.6.
In the frequency domain this may be understood as smearing the signal out across the
spectrum followed by low-pass filtering. The signal is therefore aliased down into the low
end of the spectrum and sampled. In [91] the RD is described mathematically using the
two matrices D and H. First, let h = [h1, h2, . . . , hN ] ∈ {±1}N be the chipping sequence
sampled at the Nyquist rate of the signal f(t). The linear operation Df signifies the
modulation with the chipping sequence, where D is the diagonal matrix D = diag{h}.
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Second, the H matrix denotes the accumulate-and-dump action performed after mixing.
Let M denote the number of samples taken and assume here that M divides N . Then
each sample is the sum of N/M consecutive entries of the demodulated signal. The
matrix performing this sampling action may therefore be defined as an M ×N matrix,
with N/M consecutive unit entries in the rth row starting in column rN/M +1 for each
r = 0, 1, . . . ,M − 1. An example with M = 3 and N = 6 is:

H =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 . (2.15)

The RD is therefore designed to sample an analog signal, so that in a discrete represen-
tation this is the equivalent to:

y = HDf , (2.16)

where f is the Nyquist sampled input signal and y is the compressively measured output
signal. Notice that though f refers to the received signal sampled at the Nyquist rate,
the signal f(t) is never actually sampled at that rate - f(t) is sampled at a lower rate
and f may then be reconstructed using CS so that it is equal to the vector that would
be obtained if the signal had been sampled at the Nyquist-rate.

2.2.2 Modulated Wideband Converter
A problem with RD is that the signal components must lie on the grid specified by the
dictionary. If the dictionary elements are not able to sparsely represent f the recon-
struction performs poorly [21, 36, 65, 69].

This is a general problem for dictionary-based CS, i.e. CS acquisition and reconstruc-
tion systems that assume the presence of a finite dictionary. These systems assume that
the signal of interest lies on the grid specified by the dictionary and if this assumption
is violated the performance may be severely degraded.

An alternative CS structure is the Xampling framework [65] which uses a model
called Union of Subspaces (UoS) instead of a dictionary. This model assumes that the
signal lies in an infinite union of finite-dimensional subspaces. The finite-dimensionality
comes from having knowledge of the number of generating parameters and the infinite
union is due to those parameters being drawn from continuous intervals.

One example of an analog front end for Xampling is the Modulated Wideband Con-
verter (MWC) [64] shown in Fig. 2.7. This hardware structure has P channels and uses
P TR-periodic signals h1(t), h2(t), . . . , hP (t) to mix the input signal. These signals are
often matched to the signal model of f(t), meaning that they may be adaptive. Fur-
thermore, their analog implementation may be more complex than the pseudo-random
noise sequence generator from the RD. After multiplying the input signal with the mix-
ing signals, each channel integrates and samples the signal over a period larger than the
Nyquist rate period of the signal.
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Fig. 2.7: Modulated Wideband Converter hardware structure.

After acquisition the Xampling framework performs additional signal processing in
the digital domain, sometimes without performing reconstruction. If only information
or parameter estimation based on the signal is necessary, reconstruction is often not
necessary.

The Xampling framework is advantageous when compared to the RD because it does
not rely on a grid. However, the RD is a far simpler hardware implementation than
the MWC because there is only one channel. A more in-depth comparison between the
RD and MWC hardware structures is given in [56]. In our work we use the RD due to
its simple structure and we attempt to alleviate some of its shortcomings. In Papers A
and B we show that for spread spectrum systems the pseudo-random noise generator
is not necessary and in Papers C, D and E we show how interpolation may remedy the
problem of off the grid dictionary elements for dictionary-based CS algorithms.

2.3 Reconstruction Algorithms
Similarly to the Shannon-Nyquist theorem, successful acquisition is determined based
on the ability to reconstruct the original analog signal from the taken measurements.
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However, the actual analog signal is not reconstructed. Instead the Nyquist samples of
the signal is reconstructed, since the Shannon-Nyquist theorem states that from these,
the full bandlimited analog signal may be reconstructed perfectly.

In CS there are a multitude of reconstruction algorithms that take as input the mea-
surements and some knowledge about the signal or system and then reconstructs the
Nyquist samples f . The reconstruction algorithms are often separated into two distinct
groups: `1-minimization using convex optimization and greedy, iterative algorithms.
The convex optimization algorithms often offers the best reconstruction performance
for the lowest number of measurements, but suffer from potentially heavy computa-
tional complexity. The greedy algorithms on the other hand are often very fast and
computationally light, but cannot always attain the same performance. In the fol-
lowing the first and most commonly used `1-minimization problem is described along
with four different greedy algorithms: Matching Pursuit, Orthogonal Matching Pursuit,
Compressive Sampling Matching Pursuit and Subspace Pursuit.

Another type of reconstruction algorithm, which is gaining fame is message passing
algorithms, especially the Approximate Message Passing (AMP) algorithm [34]. These
algorithms use belief propagation from graphical models to achieve performance com-
parable to that of `1-minimization algorithms, but with the computational complexity
comparable to greedy algorithms. Because this field is still fairly new and has not been
used in any of the papers supporting this thesis the message passing algorithms are not
described in more detail.

For further details and analysis of reconstruction algorithms we refer to [41, 60, 93].

2.3.1 `1-synthesis and -analysis
As written in Section 2.1 to solve the ill-posed linear system of equations y = Af sparsity
may be assumed. In the underdetermined, but sparse case, the following problem is
posed:

x̂ = argmin
x̂∈CN

‖x̂‖0 s.t. y = ADx̂ (2.17)

Here the `0-norm objective function is used to enforce sparsity, while the constraint is
used to make the model fit the measurements. The `0-norm is a quasinorm, since it does
not fulfill the mathematical definition of an `p-norm, see Section 1.2. The `0-norm is of
interest because it minimizes exactly the number of nonzero entries. However, with the
`0-norm Eqn. (2.17) is an NP-hard program [67]. Instead, the sparsity-enforcing objec-
tive is replaced by the `1-norm. This norm is convex resulting in a linear programming
problem. The incentive for using this norm, rather than e.g. the `2 norm is because it
is also sparsity enforcing, which is demonstrated in Fig. 2.8. The figure demonstrates
the behavior of five different `p norms and quasinorms when minimizing an objective
function on the unit sphere in R2. The red line signifies the image by an underdeter-
mined matrix A. The objective function is then to find the sparsest solution among
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Fig. 2.8: Some `p norms on the unit sphere in R2.

the possible solutions on the line by expanding the spheres until they intersect the line.
The `0 norm shows the desired solution — only the sparse solutions are allowed, where
the sparse solution is a solution that runs along one of the axes in Fig. 2.8. `1/2 and `1
also promote sparsity, whereas `2 and `∞ do not find the sparse solution. Since `1 is
the only convex relaxation of the `0 norm that still promotes sparsity, this is the best
choice for CS. The minimization problem to solve for noise-free recovery is therefore:

x̂ = argmin
x̂∈CN

‖x̂‖1 s.t. y = ADx̂ (2.18)

This optimization problem is denoted Basis Pursuit (BP) [20] and has the following
error bound:

Theorem 2.7 (Reproduced from Theorem 1.1 in [19])
Suppose that A satisfies the RIP of order 2K with δ2K <

√
2 − 1 and we obtain
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measurements of the form y = ADx. Then the solution x̂ from Eqn. (2.18) obeys

‖x̂− x‖2 ≤ C
min

x̃∈ΣK

‖x− x̃‖1
√
K

, (2.19)

for all x and where C = 2 1−(1−
√

2)δ2K

1−(1+
√

2)δ2K
and x̂ ∈ ΣK ⊂ CN is any K-sparse vector.

This is an important theorem that states that it is possible to recover K-sparse
signals exactly provided that A obeys the RIP. Furthermore, it gives a bound on the
constant δ2K . In the noisy case BP cannot be used. Instead the following optimization
problem is solved:

x̂ = argmin
x̂∈CN

‖x̂‖1 s.t. ‖y−ADx̂‖22 ≤ ε (2.20)

where ε is a bound on the noise. Alternatively, the Basis Pursuit Denoising (BPDN) [20]
formulation is used:

x̂ = argmin
x̂∈CN

1
2‖y−ADx̂‖22 + λ‖x̂‖1, (2.21)

where λ is a sparsity/fidelity trade-off parameter.
There are also worst-case performance bounds on the recovery in the noisy case:

Theorem 2.8 (Reproduced from Theorem 1.1 in [19])
Suppose that A satisfies the RIP of order 2K with δ2K <

√
2−1 and let y = ADx+w

where ‖w‖2 ≤ ε. Then the solution x̂ from Eqn. (2.20) obeys

‖x̂− x‖2 ≤ C1

min
x̃∈ΣK

‖x− x̃‖1
√
K

+ C2ε, (2.22)

for all x and where C1 = 2 1−(1−
√

2)δ2K

1−(1+
√

2=)δ2K
, C2 = 4

√
1+δ2K

1−(1+
√

2)δ2K
and x̂ ∈ ΣK ⊂ CN is

any K-sparse vector.

The BP and BPDN algorithms and similar convex optimization algorithms are often
solved using e.g. CVX [46, 47]. There are other solvers available for specialized problems,
but CVX is the most general and most widely used.
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2.3.2 Greedy algorithms
An alternative to the `1 optimization algorithms is the plethora of greedy algorithms for
CS. The term greedy is due to the hard decision made by the algorithms each iteration
to only include some atoms. In recent years there have been many proposed greedy
algorithms, but here the focus is only on a few popular choices:

• Matching Pursuit (MP),

• Orthogonal Matching Pursuit (OMP),

• Compressive Sampling Matching Pursuit (CoSaMP),

• Subspace Pursuit (SP)

The drawback of greedy algorithms is that they are not as easy to derive general perfor-
mance bounds for. However, they are most often significantly faster and may rival the
recovery performance of `1-minimization algorithms in many cases. Furthermore it is
fairly easy to incorporate further structure, beyond dictionary-based sparsity, into the
reconstruction with greedy algorithms than it is to do so with convex optimization al-
gorithms [36]. Another significant difference between `1-based optimization and greedy
algorithms is that greedy algorithms often assume known sparsity K. The sparsity may
be estimated or assumed known, but this is nonetheless a drawback.

2.3.2.1 Matching Pursuit

The Matching Pursuit (MP) algorithm [61] was the first general algorithm for decom-
posing signals into linear expansions of waveforms from some dictionary. The algorithm
is shown in Algorithm 1. The input to the algorithm is a set of measurements y, a mea-
surement matrix A, a dictionary D and the size of the linear expansion, i.e. the sparsity
K. The first step of the MP algorithm is the same for the other three algorithms as well:
generate a proxy p for the signal. A proxy is a rough estimation of the sparse vector x.
It is used to choose the atom indexed by in from the dictionary that explains the most
of the signal in the current iteration. The proxy is the correlation of the signal with each
atom in the dictionary. The atom that has the highest absolute correlation is picked
out. This atom’s approximated linear expansion coefficient pin is added to the vector
x̂ which is constructed one atom per iteration. After adding the found atom expansion
coefficient to x̂ a residual is updated. The residual contains the remaining energy of
the received signal, after removing the signal components found so far. The residual
then becomes the input for the following iteration. This continues until some stopping
criterion is met, e.g. when the residual contains less energy than what corresponds to
the noise floor. Notice that in the algorithms shown here the measurement and dic-
tionary matrices A and D are assumed unit normalized. A drawback of MP is that if
the received signal is not exactly sparsely representable on the dictionary grid used in
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Algorithm 1 Matching Pursuit algorithm.
INPUT: y,A,D,K
INITIALIZE: r0 = y, x̂0 = 0, n = 0
repeat

p = |(AD)Hrn|
in = argmax

j∈{1,2,...,N}
pj

x̂n+1
in

= x̂nin + pin
rn+1 = rn −Adin
n = n+ 1

until Stopping criterion is met
OUTPUT: rn, x̂n

MP, the algorithm may end up picking the same atoms again and again, because each
iteration generates a large residual. This means there is no guaranteed convergence.

2.3.2.2 Orthogonal Matching Pursuit

An improvement over MP is the Orthogonal Matching Pursuit (OMP) [27, 28, 73, 92],
which generates the estimate of the linear expansion coefficients based on information
about all currently found atoms. The projection or approximation x̂ is updated every
iteration by projecting y orthogonally onto the columns of A that belong in the set
Tn+1. This step means that OMP never picks the same atom in subsequent iterations
and that the residual in any given iteration is always orthogonal to all the currently
selected atoms. The OMP algorithm is shown in Algorithm 2.

Algorithm 2 Orthogonal Matching Pursuit algorithm.
INPUT: y,A,D,K
INITIALIZE: r0 = y, x̂0 = 0, T 0 = ∅, n = 0
repeat

p = |(AD)Hrn|
in = argmaxj∈{1,2,...,N} pj
Tn+1 = Tn ∪ in
x̂n+1 = (ADTn+1)†y
rn+1 = y−ADx̂n+1

n = n+ 1
until Stopping criterion is met
OUTPUT: rn, x̂n
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2.3.2.3 Compressive Sampling Matching Pursuit

One drawback with MP and OMP is that once an atom has been included into the sup-
port set it cannot be removed again, if a better set of coefficients are found. This may be
solved if the hard decision to pick only the atom with the highest absolute correlation in
each iteration is replaced by a thresholding operation. This type of algorithm is some-
times referred to as a thresholding algorithm instead of a greedy algorithm. One such
algorithm is the Compressive Sampling Matching Pursuit (CoSaMP) [68]. In CoSaMP
the function supp(x,K) is used to find the K absolute largest entries in the vector x.
The support set Tn is initialized as theK absolute largest elements from the proxy. Then
the support set is updated in two rounds in each iteration: First, the current support
set is augmented by the 2K absolute largest elements from the proxy generated from
the residual. This intermediate support set is used in a least-squares problem, where the
measurements are fitted to the atoms corresponding to the 3K found strongest coeffi-
cients. The remaining coefficients are set to zero, where the notation Tn+0.5 signifies all
possible indices except those in Tn+0.5. Based on the approximation of x̂ the support
set is again updated to contain only K entries. The CoSaMP algorithm is shown in
Algorithm 3.

Algorithm 3 Compressive Sampling Matching Pursuit algorithm.
INPUT: y,A,D,K
INITIALIZE: T 0 = supp(AHy,K), x̂0 = 0, n = 0
repeat

p = (AD)H(y−ADx̂n)
Tn+0.5 = Tn ∪ supp(p, 2K)
x̂n+0.5
Tn+0.5 = (ADTn+0.5)†y, x̂n+0.5

Tn+0.5 = 0
Tn+1 = supp(x̂n+0.5,K)
x̂n+1
Tn+1 = x̂n+0.5

Tn+1 , x̂n+1
Tn+1 = 0

n = n+ 1
until Stopping criterion is met
OUTPUT: rn, x̂n

2.3.2.4 Subspace Pursuit

Finally, the Subspace Pursuit (SP) [24] algorithm is very similar to CoSaMP but solves
two least squares problems per iteration and only takes inK new atoms in each iteration,
so that the possible solution set in the first least squares problem is smaller. The
SP algorithm was shown in [60] to perform better than the CoSaMP algorithm. The
algorithm is shown in Algorithm 4. The stopping criterion used in SP is different from
the others and was also proposed in [24]. It guarantees stability for the algorithm even
when the RIP does not hold.
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Algorithm 4 Subspace Pursuit algorithm.
INPUT: y,A,D,K
INITIALIZE: T 0 = supp(AHy,K), x̂0 = (ADT 0)†y, n = 0
repeat

p = (AD)H(y−ADx̂n)
Tn+0.5 = Tn ∪ supp(p,K)
x̂n+0.5
Tn+0.5 = (ADTn+0.5)†y, x̂n+0.5

Tn+0.5 = 0
Tn+1 = supp(x̂n+0.5,K)
x̂n+1 = (ADTn+1)†y
n = n+ 1

until ‖y−ADx̂n−1‖2 ≤ ‖y−ADx̂n‖2
OUTPUT: rn−1, x̂n−1

2.4 Compressive Signal Processing
Most CS literature concerns the reconstruction of the Nyquist-rate sampled signal. How-
ever, as was shown in [26] reconstruction is not always desired. In that work the authors
introduce the concept of compressive signal processing, in which signals are processed
in their compressed domain. The authors show how detection, classification, estimation
and filtering may be performed in the compressed domain without ever reconstructing
the original Nyquist-rate signal.

Detection is defined as the problem of distinguishing between two hypotheses:

H0 : y = Am,

H1 : y = A(f + m), (2.23)

where A is the measurement matrix, f the signal to detect and m is AWGN. If the
signal f is known beforehand, the solution to this problem is to use a matched filter,
which maximizes the SNR while minimizing the sample rate. However, if the signal
may change over the lifetime of the device that is measuring it, the matched filter
cannot be implemented in hardware. In such cases it may be better to use CS, which is
non-adaptive and signal independent.

In classification the task is to distinguish between L hypotheses:

Hi : y = Afi, i ∈ {1, 2, . . . , L}, (2.24)

where fi is one of L possible Nyquist-rate signals. This may be used in data decoding,
where the decoding corresponds to looking up in a dictionary to determine the sent
symbol or information. We treat this problem in Paper A and Paper B.

Estimation is defined in [26] as the estimation of a linear function of the Nyquist-
rate signal 〈l, f〉, where l is some fixed test vector. The authors show that in some cases
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it is possible to assume 〈Al,y〉 = 〈l, f〉, i.e. the estimated function may be determined
directly in the compressed domain. This approach is limited to only 1-dimensional linear
functions. The problem of estimation in CS is also attacked in Paper C, Paper D and
Paper E. However, the approach used in those works is not limited to 1-dimensional
linear functions.

Finally, filtering is defined as measuring the following signal:

y = A(fD + fI), (2.25)

where fD is the desired signal and fI is an interfering signal. The goal of compressive
filtering is then to remove the contribution of fI from y. This is mainly achieved by
assuming that fI lies in a known subspace and a measurement matrix A may be designed
which has this subspace in its null space.

2.5 Challenges in Compressive Sensing
The concept of CS is still a new field of research that began only around 2004. Many
researchers have worked on implementing CS in actual signal acquisition devices, but
the main body of work is still conducted as numerical simulation experiments. These
numerical experiments sometimes use a signal model which fits the CS concept very
well, but oversimplifies the actual signal model significantly. This section looks as three
such simplification problems: quantization, noise folding and off the grid components.

Quantization is the mapping from a measurement yi in the real or complex domain
R or C to a new measurement qi from a finite set or codebook Ω, see Fig. 2.9. The
Shannon-Nyquist theorem states that when sampling above the Nyquist frequency the
analog signal may be reconstructed exactly, however this is not true if the signal is
first quantized. Quantization is a lossy conversion since the signal is mapped from a
continuous to a finite domain. Quantization in CS was originally treated as a kind
of noise, i.e. the difference between a quantized signal and the true analog signal was
modelled as a stochastic variable.

Another potential problem in CS is that the signal model employed often considers
measurement noise only. This means that the signal model is:

y = Af + n, (2.26)

where n ∈ CM is e.g. AWGN. However, in e.g. communication systems, the signal noise
is of equal importance, sometimes even more important. In this case the signal model
should be:

y = A(f + m) + n = Af + Am + n, (2.27)

where m ∈ CN might also be AWGN. If the latter signal model is the most accurate
then the noise is also multiplied onto the measurement matrix. This corresponds to a
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Fig. 2.9: Quantization effect.

noise folding effect which may decrease performance significantly. In [5, 90] the authors
show that noise folding decreases the SNR of the signal by 3 dB per halving of the
sampling rate. In [90] it is proposed to combat noise folding with quantization. The
authors of that paper postulate that if a CS receiver may employ an ADC that samples
at half the sample rate, this ADC may be assumed to quantize the signal better. If this
assumption holds, there may be cases where the quantization noise would decrease the
performance of the non-CS receiver more than noise folding decreases performance for
the CS receiver. An example of such a case is given in Paper B.

A third assumption that is actually the foundation of CS is that the signal is gen-
erated according to a discrete dictionary and is sparse in that dictionary. However, as
also described in Section 2.2.2, this assumption is challenged when the signal is better
represented by a parametric model:

f =
K∑
i=1

aig(t, bi), (2.28)

where ai is the amplitude coefficient, bi is some other parameter, e.g. delay or frequency
that must be estimated and g(t, bi) is some parametric function. Such signals are sparse,
in that there are only 2K unknown parameters, but they may not be sparse in a given
dictionary. To solve such problems it is necessary to use knowledge of the signal’s
parametric model in e.g. high resolution algorithms such as MUSIC or ESPRIT or
to use interpolation on the dictionary atoms. Problems such as these are treated in
Paper C, Paper D and Paper E.
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Applications of Compressive
Sensing in Communication
Systems

Compressive Sensing was developed by mathematicians without any one application in
mind, but rather with the general concept of subsampling as the goal. However, CS has
afterwards been used in many areas such as medical imaging [29, 58], astronomy [12, 99],
general imaging and video [37, 59]. For other general examples of applications of CS
we refer to the references in Section 1.1 in [41] or the Compressive Sensing Resources
page of Rice University http://dsp.rice.edu/cs. In this chapter the focus is on the
application of CS in communications systems. A review is given of some of the different
areas in communications where researchers have shown that CS may be applied with
success. Finally, we show how the contributions of this Ph.D. thesis extend the current
state-of-the-art.

The examples of CS in communications explained here are as follows:

• Sparse Channel Estimation,

• Wideband Sensing,

• Wireless Sensor Networks,

• Spread Spectrum Communications,

• Ultra-Wideband Communications,

• Radar Imaging, and

35
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• General parameter estimation

This list is not exhaustive, but represents a broad slice of current research areas.

3.1 Sparse Channel Estimation
Channel estimation concerns the estimation of a channel impulse response. The im-
pulse response is of interest in communications, because it may be used to equalize a
received signal, so that e.g. intersymbol interference is limited. The channel estimation
is often based on a transmitted pilot-sequence, which precedes the actual information
transmission. Since a receiver knows the transmitted signal and the received signal,
the channel impulse response is the only unknown and may be estimated. Often the
channel impulse response may be assumed to be sparse [23, 74, 75]. In [23] the au-
thors show how Matching Pursuit may be used to estimate a channel response, when
the response is assumed sparse. In [8, 10] the authors show how this may be coupled
with CS so that the channel impulse response may be reconstructed using less energy.
Furthermore, [10] also states that an overcomplete dictionary may be better able to rep-
resent the channel impulse response sparsely. This is related to the problem of off the
grid components, mentioned in Section 2.5 and to solve such problems the interpolation
techniques proposed in Paper C, Paper D and Paper E may also be applicable.

3.2 Wideband Sensing
Wideband sensing is one of the main application areas for CS, since many researchers
started looking into CS due to a solicitation from the US Defense Advanced Research
Projects Agency (DARPA) for an ultra wideband analog-to-information RF converter.
Such a receiver would be useful for e.g. cognitive radio. Both the analog radio front ends
proposed in Section 2.2 were developed for this use [54, 65, 91]. Wideband sensing is a
challenging task because in classical systems it would require either a very large filter
bank, which each handles a small narrowband segment of the entire band of interest or
a very fast ADC with very high dynamic range, i.e. a large number of quantization bits,
to successfully acquire the signal. Currently it is not possible to produce ADCs that are
fast enough for such a task. It is possible to create a filter bank for the task, but this
is expensive and the required number of banks grows very large. In many scenarios the
desired spectrum is actually sparse and hence researchers try to apply CS to lower the
required sample rate or the required number of filter banks. A popular approach to this
problem is to treat the CS problem as a Multiple Measurement Vector problem [66],
which corresponds to using multiple filter banks to acquire a signal, rather than one
fast ADC. Many researchers have worked on modifying and evaluating CS algorithms
to work better for this type of problems [4, 48, 86]. A slightly related field is the work
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in [76], which exploits similar sparsity in the frequency domain to incorporate CS. This
allows for less demanding filter requirements in direct down-conversion receivers.

3.3 Wireless Sensor Networks
Another area of research in CS is wireless sensor networks, where CS is used for data
fusion and collection. Here, the aim is not to lower the sampling rate of a given ADC,
but rather to limit the amount of sensors that must be "sampled", so that less energy
is spent on transmissions between sensors. This is also called distributed compressive
sensing [38, 39] and is developed to exploit both intra and inter sensor structure or
correlation. This research area is tightly coupled with sensor fusion, encoding strategies
and network coding [43]. Other notable works include [6, 78].

3.4 Spread Spectrum Communications
CS for spread spectrum systems is of interest as spread spectrum techniques are used
in some wireless sensor technologies, such as the IEEE 802.15.4 standard, which is
the physical layer standard for the Zigbee protocol stack. Spread spectrum techniques
are also used in the Global Positioning System (GPS) to broadcast data to mobile
terminals around the world. These systems do not operate at an extreme sampling rate
and hence do not suffer from problems with getting a sufficiently fast ADC. Instead, it
is of interest to lower the sampling rate of the ADC to reduce the monetary cost or the
power requirements of the ADC component.

In the spread spectrum area, some researchers have studied the general use of CS
for spread spectrum communication systems [1]. However, their work is mainly focused
on using CS for fast multi-user detection, rather than subsampling. Another example
is in [57], where the authors use CS to decrease the sampling rate of a GPS receiver by
exploiting sparsity in the number of possible signal components at the receiver. Their
receiver structure is based on possibly complicated hardware filters, which may make
their implementation very difficult considering the impact of hardware filters to CS
performance [71]. In [3] the authors treat a similar topic where they design spread
spectrum codes to enable a base station to perform multi-user detection on a large
number of users, of which only a few are active at a time. Their work focuses on simple
on-off signalling, i.e. the existence of nodes, rather than communication with them, and
solves the multi-user detection problem using an adapted convex optimization algorithm.
Their motivation is on increasing the number of active users in a network, rather than
decreasing the sampling rate of the ADC. In [100] the authors also solve a multiuser
detection problem using compressive sensing, but in their work the focus is on the
design of possibly complex analog filters. A comparison of different greedy algorithms
for reconstruction of CS sampled Code Division Multiple Access (CDMA) signals is
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given in [82]. In [87] the authors investigate the sparsity trade-off point in CDMA
communications between using CS or classical sampling.

Paper A is based on a signal model used in the IEEE 802.15.4 standard [89], in which
a baseband signal with a Nyquist frequency of 200kHz must be sampled. In Paper B
our motivation is not only to reduce the monetary cost, but also that by taking fewer
samples we may be able to conserve power in the receiver, as can be seen in e.g. Eqn.
13 in [53].

3.5 Parameter Estimation
The final example of applications for CS is the very broad topic of parameter estimation
in parametric models, which has uses in multiple fields. Two examples of parameter
estimation problems are Time Delay Estimation (TDE) and Frequency Estimation (FE).
TDE of one or more known signal waveforms from sampled data is of interest in several
fields such as radar [7, 49], ultrasound [94, 97] and Ultra-Wideband (UWB) [45, 63, 72,
101]. The TDE problem is often defined as receiving a known signal with an unknown
delay and amplitude coefficient that must be estimated. Similarly, FE concerns the
estimation of the frequency components of a received sum of exponentials, which is of
interest in audio, speech and music processing, frequency tracking in communications
[84], radar and sonar [94].

One problem in parameter estimation problems, when using a parametric model, is
that the parameters for the model are often drawn from a continuous space. This causes
reduced performance by the classical dictionary-based CS algorithms, as described in
Section 2.5.

Some researchers have shown that this may be solved by using overcomplete frames,
instead of a basis, as a dictionary. This allows for more degrees of freedom for the
reconstruction algorithms. However, it also introduces ambiguity, since the coherence
between atoms increases.

It was shown in [16] that as far as the recovery of signal f , rather than the sparse
vector x, the coherence condition of the dictionary is not necessary, provided that the
matrix DHD is sufficiently sparse.

Alternatively, one can take advantage of structured sparsity in spectral CS recovery
by using a coherence inhibition model [35]. The resulting algorithm can recover the
frequency-sparse signal with a DFT frame by avoiding dictionary elements with high
coherence. A variation of this method uses a band-exclusion function to achieve the
same avoidance [42].

More recently, it has been shown that one can recover a frequency-sparse signal from
a random subset of its samples using atomic norm minimization [88].

Other work on the problem of sparsity in parametric dictionaries includes [51, 79],
which uses a gradient descent approach to approximate solutions off the grid for a
generic greedy algorithm. Another common method is to use parabolic or polynomial



3.5. Parameter Estimation 39

interpolation on a sampled autocorrelation function to increase the precision for sampled
data [2, 13, 50]. The simplest and most often used polynomial interpolation is fitting
a parabola around the correlation peak. Such an estimator is easily implemented in a
greedy algorithm, where an estimate of the discrete autocorrelation is readily available
as the signal proxy. In some cases, it is possible to improve the estimation using different
polynomial interpolation techniques for different problems, see, e.g. the references in
[96]. Interpolation-based algorithms improve the estimation precision but suffer from
interference problems if the signal components are not orthogonal to each other. The
polynomial interpolation approach is similar to one of the two algorithms proposed
in [40], one using a first- and second-order Taylor expansion, the other a form of polar
interpolation. The authors show that polar interpolation outperforms Taylor expansion.

Another approach to time delay estimation is to use FFT-based methods, where the
problem is converted to a frequency estimation problem and solved using line spectral
estimation approaches such as the Multiple Signal Classification (MUSIC) algorithm [83]
or the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)
algorithm [80]. This approach exploits the fact that the dictionary matrix is cyclic.
In [81], the TDE problem is converted to an FE problem and solved by means of the
ESPRIT algorithm. A similar method has also been implemented using analog filters
and using CS in [44].

The work in Paper C, Paper D and Paper E proposes three novel algorithms for
estimating a translation parameter in a received signal. This translation parameter may
be either time delay or frequency. The proposed algorithms are shown to outperform
the current state-of-the-art algorithms in numerical experiments.
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Chapter 4

Contributions

The contributions of this thesis work lie more in the field of compressive signal process-
ing, rather than classical compressive sensing. In none of the papers supporting this
thesis has the main focus been on reconstruction of the signal. Instead, the papers have
always concerned some information processing from the signal. In Paper A and Paper B
the main focus is data decoding, rather than reconstruction and in Paper C, Paper D
and Paper E parameter estimation is the main motivation. The contributions of the
individual papers are described in short below.

• Paper A concerns the application of compressive sensing to an IEEE 802.15.4
receiver for data decoding. The IEEE 802.15.4 PHY layer uses Direct Sequence
Spread Spectrum (DSSS) codes, designed to limit the effect of interference from
other wireless technologies. The redundancy introduced by this scheme may be
exploited to reduce the required sample rate in the receiver. The numerical results
verify that the DSSS signal may be subsampled and still accurately decoded,
but also demonstrates the problem of noise folding, as introduced in Section 2.5.
The main contribution of this paper, however, is the discovery that for spread
spectrum systems it is possible to simplify the hardware front end. A Random
Demodulator structure is used, which already is one of the simpler acquisition
hardware structures, but because spread spectrum codes already spread the signal
prior to transmission, the otherwise required psuedo-random noise generator may
be excluded from the receiver’s front end.

• Paper B builds upon the discovery in Paper A that in spread spectrum systems
the hardware front end may be simplified. In this paper we propose the general
Compressive Spread Spectrum (CSS) hardware design, which is a simplification
of the Random Demodulator and can be used for all kinds of spread spectrum
signals. In this paper we use Gold codes to show that the CSS measurement
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matrix is viable for subsampling, by generating Donoho-Tanner phase transition
diagrams. Another important contribution of this paper is that the numerical
experiments clearly show the effect of noise folding, but in one of the experiments
it is shown that when quantization is taken into account, CS performs better than
classical sampling [90].

• Paper C concerns parameter estimation, more specifically frequency estimation.
In this paper we show that a new interpolation scheme based on polar inter-
polation [40] may be successfully adapted for use in CS and outperform other
state-of-the-art frequency estimation algorithms, when the signals are corrupted
with additive white Gaussian noise. The main novelty and contribution of the
paper is a hybrid greedy and convex optimization based algorithm, which attains
good performance comparable to the convex optimization algorithm from [40], but
significantly faster.

• Paper D applies the same polar interpolation as in Paper C but for the TDE prob-
lem. The main novelty of this work is the proposal for a purely greedy algorithm
based on polar interpolation, which is shown to outperform current state-of-the-art
TDE algorithms.

• Paper E summarizes and extends the work from Paper C and Paper D. This
paper generalizes the parameter estimation framework to hold for all translation-
invariant signal classes and proposes a simple way of testing whether a given class is
eligible for use in the proposed framework. Furthermore, the convex optimization
algorithm from [40] is improved upon, such that more general classes of signals
are allowed and also the hybrid algorithm from Paper C is replaced by a better
version, which handles overlapping signals better. Another contribution of this
work is a numerical experiment which shows that even though the reconstruction
of a signal suffers from noise folding, the estimation of its parameters is not as
heavily affected.



Chapter 5

Conclusion

This thesis has proposed a new hardware structure for spread spectrum signals, high-
lighted the problem of noise folding, but also shown that when quantization is taken
into account, this problem may be less significant. Furthermore, several algorithms
have been proposed for parameter estimation for the class of translation-invariant sig-
nals, which outperform the current state-of-the-art algorithms for frequency and time
delay estimation when the signal of interest is generated with a parametric signal model,
rather than a dictionary-based one. The approach in the thesis has been to attack the
problems of CS as listed in Section 2.5 for various signal classes relevant in communica-
tion systems. However, the developed methods and algorithms are also relevant outside
the area of communications.

In the CS research area most of the focus still remains on the dictionary-based,
reconstruction oriented approach, where only measurement noise is assumed. However,
as the field matures, the field of compressive signal processing will probably also gain
more momentum and as more researchers use CS in laboratory experiments, the effect
of noise folding and quantization will have to be addressed, as well as signals that follow
parametric models, rather than a dictionary-based one.

While the work in this thesis has relied mainly on numerical experiments and synthe-
sized signals, the natural next step is to evaluate the proposed methods on real systems
and signals. This would verify whether the noise folding effect is modelled correctly
and also highlight how robust the proposed algorithms are towards model inaccuracies.
Furthermore, the polar interpolation approach should be further explored. The current
convex optimization formulation, denoted CCBP in Paper E is very cumbersome and
we believe it is possible to come up with a simpler, faster convex optimization problem
formulation. Furthermore, the field of estimation theory within compressive sensing
is still fairly unexplored. A natural next step would also be to compare the proposed
estimation algorithms in this work with the Cramer Rao lower bound.
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A.1. Introduction 57

Abstract
We show that to lower the sampling rate in a spread spectrum communication system
using Direct Sequence Spread Spectrum (DSSS), compressive signal processing can be
applied to demodulate the received signal. This may lead to a decrease in the power con-
sumption or the manufacturing price of wireless receivers using spread spectrum tech-
nology. The main novelty of this paper is the discovery that in spread spectrum systems
it is possible to apply compressive sensing with a much simpler hardware architecture
than in other systems, making the implementation both simpler and more energy effi-
cient. Our theoretical work is exemplified with a numerical experiment using the IEEE
802.15.4 standard’s 2.4GHz band specification. The numerical results support our theo-
retical findings and indicate that compressive sensing may be used successfully in spread
spectrum communication systems. The results obtained here may also be applicable in
other spread spectrum technologies, such as Code Division Multiple Access (CDMA)
systems.

A.1 Introduction
The concept of compressive sensing [1, 2] is attracting more and more attention in the
signal processing community. Where the classical Shannon-Nyquist sampling theorem
requires a signal to be sampled at twice its signal bandwidth, compressive sensing sam-
ples the signal at its information rate, which may be much lower. Compressive sensing
is used to reconstruct a signal to a full Nyquist rate representation, but if only infer-
ence about information in the signal is desired, compressive signal processing is better
suited [3]. Compressive signal processing is used when inference about information in
a signal is of interest, rather than the reconstruction of the signal itself. Compressive
sensing and compressive signal processing samples the signal using a sampling scheme
with typically a randomized structure and then exploits sparsity in the signal to en-
able subsampling. In DSSS systems the sparsity is in the selection of a code used for
transmission of a given data sequence. In this work we show how compressive signal
processing may be applied to a spread spectrum receiver to lower the sampling rate at
the receiver. This may lower the overall energy consumption of the device and/or lower
the price of the Analog to Digital Converter (ADC). To exemplify this consider the fol-
lowing: This work is based on a signal model used in the IEEE 802.15.4 standard [4], in
which a baseband signal with a Nyquist frequency of 200kHz must be sampled. To show
the benefit of lowering the sampling rate, we compare two ADCs from Analog Devices1:
The AD7819 and the AD7813. The AD7819 is an 8-bit ADC with a maximum through-
put of 200 kilosamples per second, whereas the AD7813 is an 8- or 10-bit ADC with a
maximum throughput of 400 kilosamples per second. We are aware that 400 kilosamples

1http://www.analog.com

http://www.analog.com
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per second is the Nyquist rate of the system and the sampling rate should be higher than
this to comply with the Shannon-Nyquist sampling theorem. However, we use these two
ADCs as they are almost identical in every aspect except for the sampling rate, making
them perfect for comparison. In present IEEE 802.15.4 compliant receivers, an ADC
similar to the AD7813 must be used to comply with Shannon-Nyquist, but if compres-
sive signal processing is able to lower the sampling rate by a factor of two, the AD7819
may be used instead. These two particular ADCs use the same amount of power so
there are no energy savings, but where the AD7813 costs 2.98$, the AD7819 only costs
2.29$.

Previous work has studied the use of compressive sensing in Ultra-Wideband (UWB)
systems for channel estimation where the sparsity of the signal lies in the time do-
main [5, 6]. Some researchers have studied the use of compressive sensing for spread
spectrum communication systems [7]. However, this work is mainly theoretical and
relies on second order Reed-Muller codes, which would be difficult to implement in
hardware. A more practical approach is given in [8] where compressive sensing is used
to decrease the sampling rate of a GPS receiver by exploiting sparsity in the number
of possible signal components at the receiver. However, this approach also suffers from
a complicated hardware implementation. In both works the receiver must use compli-
cated hardware filters, which may make their implementation very difficult, considering
the impact of hardware filters on compressive sensing performance [9]. In this work
we apply compressive signal processing to a general DSSS system. We show that in a
spread spectrum system it is possible to use simply a repeated version of the matched
filter used in classic receivers instead of using a complicated filter structure to acquire
random measurements. This greatly simplifies the implementation and makes compres-
sive sensing feasible for implementation in spread spectrum wireless receiver systems.
Our approach is not limited to DSSS but may also be applied in other spread spectrum
technologies, such as CDMA.

One major obstacle in applying compressive sensing to any wireless system is the
presence of noise folding, which occurs because the noise is not measurement noise, but
noise added before measuring the signal. This severely impacts the receiver performance,
which is also evident in our numerical experiments. We discuss how to mitigate this in
Section A.6.

In the following we first define classic transmitter and receiver structures in Sections
A.2 and A.3, respectively. Then we show how the classic receiver structure must be
modified to incorporate compressive signal processing in Section A.4. Our theoretical
work is exemplified with a numerical experiment using the IEEE 802.15.4 standard in
Section A.5 followed by a discussion and conclusion in Section A.6.
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Fig. A.1: Transmitter and receiver structure for QPSK modulation/demodulation. The items drawn
using dotted lines are hardware components that must be modified to enable compressive sensing.

A.2 Transmitter Structure
In both the transmitter and the receiver structure we treat the signal symbol-by-symbol,
where each symbol may be a single bit of information or a block of bits. Let bk ∈
{±1}N×1 be a binary vector, signifying the kth symbol to be transmitted and consisting
of N information bits. Now define a binary pseudo-random noise (PRN) sequence as
ck ∈ {±1}C×1. These two binary vectors are the discrete equivalents of an information
signal and a PRN signal, bk(t) and ck(t), respectively as shown in Fig. A.1 and are
defined as:

bk(t) =
N−1∑
n=0

bk[n]rect
(
t− nTb
Tb

)
, 0 ≤ t < NTb, (A.1)

ck(t) =
C−1∑
c=0

ck[c]rect
(
t− cTc
Tc

)
, 0 ≤ t < CTc, (A.2)

where Tb and Tc are the bit and chip duration, respectively, and NTb = CTc. We define:

rect(t) =
{ 1 if 0 ≤ t < 1,

0 otherwise. (A.3)

When multiplied, they form the spread spectrum data signal, dk(t) = bk(t)ck(t), 0 ≤
t < NTb.

The notation used in the above may in some cases be simplified, as the choice of
a PRN sequence might be implemented as a mapping from one bit or a block of bits
directly to a given sequence of chips, as done in e.g. IEEE 802.15.4 [4]. In the following,
the signal model we define is based on the IEEE 802.15.4 standard’s 2.4 GHz band
specification. This means the encoding using DSSS may be written as a matrix-vector
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product, with M = 2N possible data signals:

dk(t) = Ψ(t)αk, where (A.4)

Ψ(t) =


d1(t)
d2(t)
...

dM (t)


T

, 0 ≤ t < NTb, (A.5)

where Ψ(t) is a dictionary of possible data signals and αk ∈ {0, 1}M×1 is a sparse vector
with only one non-zero entry, namely the entry that selects a given PRN sequence from
the dictionary. It may also be considered a symbol vector as it corresponds to the kth
symbol being transmitted. The sparsity of αk is what enables us to use compressive
sensing for demodulation. The sparsity of the signal lies in which PRN sequence is
chosen for transmission.

The IEEE 802.15.4 2.4 GHz band specification is based on QPSK and therefore the
output sequence is split up, so that even-indexed chips in dk(t) are transmitted in the
in-phase path and odd-indexed chips in the quadrature-phase path. In the following we
only state the equations for the in-phase path, but similar expressions may be derived
for the quadrature-phase part. The resulting data signals are then used to modulate
some pulse shape function, g(t):

sIk(t) = ΨI(t)αk, where (A.6)

ΨI(t) =



∑
c∈S

d1(t)g (t− cTc)∑
c∈S

d2(t)g (t− cTc)

...∑
c∈S

dM (t)g (t− cTc)



T

, S = {0, 2, . . . , C} (A.7)

Here the dictionary matrix has been recast into an in-phase version, with pulse shape
function included. Notice that g(t) here and as depicted in Fig. A.1 is assumed to be a
half-sine pulse, which is the pulse shaping function used in IEEE 802.15.4. This pulse
shape has limited support in the time domain, which is not true for e.g. a raised cosine
pulse shape. The equations in this work are defined for the half-sine pulse shape, but
are easily changed to apply to other pulse shape functions.
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A.3 Classic Receiver Structure
Before introducing our compressive sensing receiver structure, we first define a classic
Nyquist sampling receiver structure. At the receiver, the received signal is:

rk(t) = sk(t) + n(t), (A.8)
where n(t) is additive white Gaussian noise.

The in-phase and quadrature-phase analog signals are sampled according to the chip
rate using a matched filter to the pulse shape used at the transmitter and an ADC.
Here, we assume a coherent receiver with perfect synchronization, performed prior to
data decoding using e.g. a pilot sequence. The sampling may be represented using a
measurement matrix, Θ1(t):

yIk[`] =
∫ (`+1)Tc

`Tc

θ`(t)rIk(t)dt, where (A.9)

Θ1(t) =


θ0(t)
θ1(t)
...

θC−1(t)

 , θi(t) = g(t− iTc),
0 ≤ t < CTc

(A.10)

The measurement matrix is denoted Θ1 because it samples every Tc/1, i.e. at Nyquist
rate.

This means that for every received symbol 2C samples must be taken for the in-phase
and quadrature-phase signals in total. These samples then form the received signal
vectors, yIk and yQk , which are used to demodulate the signal and find an estimate of
the transmitted symbol, represented as αk, using a least squares estimator.

Due to the simple design of this signalling scheme and the matched filter, it is possible
to perform the demodulation process as a least squares estimation with simple purely
binary versions of the analog dictionary and measurement matrices, ΨI(t),ΨQ(t) and
Θ1(t), respectively.

Define yk = yIk+jyQk and defineM signal candidates as sm = Θ1
(
ΨIαm + jΨQαm

)
,

where Θ1 = I is now simply the C× C identity matrix and ΨI ∈ {±1}C×M and
ΨQ ∈ {±1}C×M are the discrete in-phase and quadrature-phase dictionary matrices
with each entry signifying either a positive (1) or negative (−1) pulse in the analog
versions of the dictionary matrices. With these definitions in order the least squares
estimate can be found as:

α̃k,idx = argmin
m

(
yk − sm

)H(
yk − sm

)
(A.11)

where (·)H denotes Hermitian transpose, α̃k,idx is the estimate of the index in the αk
vector which is non-zero, i.e. the index corresponding to the symbol that has been
transmitted.
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A.4 Compressive Sensing Receiver Structure
In hardware compressive sensing sampling structures, such as the Random Demodulator
[10], a PRN sequence is mixed with the received signal followed by low-pass filtering. Due
to the presence of a PRN sequence in a spread spectrum transmitter, which spreads the
data signal, a compressive sensing-enabled receiver may merely use a repeated version of
its matched filter, subsample the received signal and still demodulate the information.
Before sampling, the matched filter must be modified to contain not only a single chip
pulse shape but as many chip pulse shapes as shall be contained per sample. This
received signal vector may then be written as:

yIk[`] =
∫ (`+1)Tc/κ

`Tc/κ

θ`(t)rIk(t)dt, where (A.12)

Θ1/κ(t) =


θ0(t)
θ1(t)
...

θL−1(t)

 , θj(t) =
(j+1)/κ∑
c=j/κ

g(t− cTc),

0 ≤ t ≤ CTc
(A.13)

Here each value of ` = 0, 1, . . . , L signifies a collection of chips due to the subsampling
where L = Cκ is the number of samples taken per symbol. κ = L

C ∈ ]0, 1] is the
undersampling ratio in the compressive sensing system and signifies the ratio between
taken samples and Nyquist samples. In this work we limit ourselves to scenarios where
1/κ is an integer number, i.e. only an integer number of Nyquist samples are compressed
together into one sample.

To verify that the use of an additional PRN sequence at the receiver is unnecessary,
we may look at the outcome of the subsampling ADC in Fig. A.1. Assuming a noise-free
setting (n(t) = 0), the outcome becomes:

yIk[`] =
(`+1)/κ∑
c=`/κ

∫ (c+1)Tc

cTc

rIk(t)pPRN(t)dt

=
(`+1)/κ∑
c=`/κ

∫ (c+1)Tc

cTc

C/2−1∑
c′=0

bk(t+ c′Tc)ck(t+ c′Tc)

· g(t− nTc)pPRN(t)dt (A.14)

Notice that the up and down-conversions have been assumed perfect and pPRN(t) is a
new PRN sequence, added at the receiver as is done in the Random Demodulator receiver
structure [10]. The symbol c′ denotes a chip picked out in dk(t) at the transmitter and
used to avoid confusion with c, the chips added together into a sample at the receiver.
The special indexing with Tc in connection with bk(t) and ck(t) is to pick out the chips
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in the in-phase path only, similar to what was done in (A.7). Because everything is
multiplicative, it can be seen that ck(t + nTc) and pPRN(t) are synchronized and have
the same chip rate, i.e. they may be viewed as a single PRN sequence. It follows that
the multiplication of a PRN sequence at the receiver is unnecessary here.

Because we wish to demodulate a signal, which is equivalent to a classification prob-
lem, it is not necessary for us to reconstruct the full original signal as is done in com-
pressive sensing. Instead we use the recently introduced concept of compressive signal
processing [3] to perform classification in the compressed domain. By classification, we
mean to classify which of the signal candidates in the dictionary ΨI and ΨQ has been
transmitted. This does not require reconstruction of the signal itself and may therefore
be done with less computational complexity by using compressive signal processing,
rather than classic compressive sensing algorithms, that reconstruct the full signal.

To demodulate the data at the receiver using the two subsampled chip sequences,
yIk and yQk , the classification rule in (A.11) is used again with Θ1/κ ∈ {0, 1}L×C instead
of Θ1 ∈ {0, 1}C×C. In [3] a prewhitening matrix, W, is introduced to counter noise
coloring by the measurement matrix. However, as our proposed measurement matrix,
Θ1/κ, has no overlapping rows, the noise remains white in our case. This prewhitening
matrix is therefore not necessary here, but if e.g. a Gaussian or Bernoulli measurement
matrix is used instead, it must be included.

A.5 Numerical Results
To demonstrate the performance of our proposed receiver structure, we have performed
a numerical experiment in which we compare the Bit Error Rate (BER) of a classical
receiver to that of a compressive sensing-enabled receiver. This is done for a range of
Signal-to-Noise-Ratio (SNR) levels. The system used for this experiment is our MAT-
LAB implementation of the physical layer of the IEEE 802.15.4 2450MHz OQPSK radio
band specification [4]. Each block of four bits is mapped into one of 16 binary chip se-
quences2, according to the mapping in [4]. The chip sequence is then modulated using
Offset Quadrature Phase Shift Keying (OQPSK). This standard has been chosen due
to its widespread use, having been deployed already in many applications around the
world and because it is a known standard to many scientists and engineers.

The experiment is repeated for a range of SNRs or more specifically energy per bit
per noise spectral density (Eb/N0). The noise is added in a bandwidth corresponding to
that of the baseband signal, i.e. 2MHz [4]. Our experiment is conducted by transmitting
randomly generated data packets of length 127 × 8 = 1016 bits each (the maximum
size of an IEEE 802.15.4 data packet). For each of the two tested methods and for
each Eb/N0 level, bits are transmitted until at least 1000 bits have been received in
error. All MATLAB code developed for this paper is published following the principle

2In the published version of this paper we write 32. The correct number is 16.
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Fig. A.2: The BER versus Eb/N0 for a classical receiver implementation using least squares compared
to that of a compressive sensing enabled receiver with κ = 0.5. The full black curve signifies theoretical
BER per Eb/N0 for coherent MFSK and the dashed curve is theoretical BER per Eb/N0 for non-
coherent MFSK.

of Reproducible Research [11] and is freely available at
http://www.sparsesampling.com/cspdsss2012.

To validate the implementation of the compressive sensing framework, we have con-
ducted a numerical experiment in which we added a constant to the transmitted signal,
rather than additive white Gaussian noise (AWGN). The results for both the classical
least squares and the compressive sensing implementation follow the expected results as
found through mathematical calculations, thereby indicating that the implementation
performs as expected.

The result of the BER versus Eb/N0 experiment with AWGN is shown in Fig. A.2.
Also shown is the theoretical BER versus Eb/N0 for coherent MFSK [12], numerically
evaluated:

Pb = 8
15

1√
2π

∫ ∞
−∞

[
1− (1−Q(x))15

]
e−

(
x−

√
8

Eb
N0

)2

2 dx. (A.15)

We have also included the theoretical curve for non-coherent MFSK, as it is stated in
the IEEE 802.15.4 standard [4]:

Pb = 8
15

1
16

16∑
m=2

(−1)m
(

16
m

)
e4 Eb

N0 ( 1
m−1) (A.16)

http://www.sparsesampling.com/cspdsss2012
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The classical implementation does not follow the theoretical bound exactly because the
PRN sequences in [4] are not orthogonal and due to the short code lengths.

For κ = 0.5 the compressive sensing receiver performs worse than a classical receiver
by ≈ 4-5 dB, which is supported by the results on noise folding in [13].

A.6 Discussion and Conclusion
We have shown that compressive sensing enables subsampling of a DSSS signal. This
has been demonstrated by means of IEEE 802.15.4 2.4GHz OQPSK signals, which we
successfully subsampled with half the Nyquist rate. This subsampling may lead to a
decrease in energy consumption or a lowering of the manufacturing price. The penalty
is the expected drop in performance due to noise folding. This penalty has not been
further treated in this work but in [13] the authors suggest to incorporate the effect
of quantization, which should favor compressive sensing over a classical receiver as a
compressive sensing enabled receiver is able to quantize the signal at a higher resolution,
due to the lower sample rate.

An undersampling of κ = 0.5 is not a large undersampling rate. This is mainly due to
the effect of noise folding and because the IEEE 802.15.4 standard spread spectrum codes
are only 16 chips long in each channel (I and Q). For more complex spread spectrum
systems with longer chipping sequences (and therefore more potential sparsity) and
multiple users and if quantization is included in the signal model, we strongly believe
there are cases where the sampling rate may be decreased, while still attaining the same
or better BER performance than a classical receiver. This would make compressive
signal processing in such systems more attractive.

The main result of this paper is the observation that in a spread spectrum receiver it
is possible to use compressive sensing without generating a PRN sequence and mixing it
with the received signal. This is possible because a spread spectrum signal has already
been spread by the transmitter.
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Abstract
With the advent of ubiquitous computing there are two design parameters of wireless
communication devices that become very important: power efficiency and production
cost. Compressive sensing enables the receiver in such devices to sample below the
Shannon-Nyquist sampling rate, which may lead to a decrease in the two design pa-
rameters. This paper investigates the use of Compressive Sensing (CS) in a general
Code Division Multiple Access (CDMA) receiver. We show that when using spread spec-
trum codes in the signal domain, the CS measurement matrix may be simplified. This
measurement scheme, named Compressive Spread Spectrum (CSS), allows for a simple,
effective receiver design. Furthermore, we numerically evaluate the proposed receiver in
terms of bit error rate under different signal to noise ratio conditions and compare it
with other receiver structures. These numerical experiments show that though the bit
error rate performance is degraded by the subsampling in the CS-enabled receivers, this
may be remedied by including quantization in the receiver model. We also study the
computational complexity of the proposed receiver design under different sparsity and
measurement ratios. Our work shows that it is possible to subsample a CDMA signal
using CSS and that in one example the CSS receiver outperforms the classical receiver.

B.1 Introduction
As wireless communication devices are becoming more and more widespread and ubiq-
uitous, the need for power efficiency and low production cost becomes paramount. A
power costly operation in wireless communication is the conversion from analog to digital
signals - the Analog to Digital Converter (ADC). The classic ADC uses the Shannon-
Nyquist sampling theorem to represent an analog signal in digital form. The Shannon-
Nyquist sampling theorem states that to perfectly represent an analog signal, it must be
sampled at a frequency higher than twice the signal’s bandwidth. When this theorem is
obeyed, the original analog signal may be reconstructed perfectly from its sampled rep-
resentation. The Shannon-Nyquist sampling theorem has been the foundation of digital
signal processing for more than half a century and is considered a fundamental building
block of digital signal processing systems. Recently, a new concept termed Compressive
Sensing (CS) [1, 2] has been attracting more and more attention in the signal process-
ing community as it provides an exception to the lower bound on the sampling rate by
exploiting sparsity in the signal. If a signal is sparse in some arbitrary basis, it may be
sampled at a rate lower than the Nyquist frequency. Sparsity in CS is when a signal is
comprised of only a few atoms from a given basis. The sampled signal must be acquired
through some linear measurement scheme. Examples of these are random Gaussian,
Bernoulli and Rademacher measurement schemes, as well as the Random Demodulator
(RD) [3, 4] and the Modulated Wideband Converter [5].
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Compressive sensing has primarily been studied in the general signal processing area,
and relatively few researchers have looked into its application in communication systems.
In [6, 7] the authors examine the use of CS in Ultra-Wideband (UWB) communication
systems for channel estimation where the sparsity of the signal lies in the time domain.
Others have used compressive sensing for source coding in communication networks,
together with network coding [8]. In the spread spectrum area, some researchers have
studied the general use of CS for spread spectrum communication systems [9]. However,
their work is mainly focused on using CS for fast multi-user detection, rather than
subsampling. Another example is in [10], where the authors use CS to decrease the
sampling rate of a GPS receiver by exploiting sparsity in the number of possible signal
components at the receiver. Their receiver structure is based on possibly complicated
hardware filters, which may make their implementation very difficult considering the
impact of hardware filters to CS performance [11]. In [12] the authors treat a similar
topic where they design spread spectrum codes to enable a base station to perform
multi-user detection on a large number of users, of which only a few are active at a
time. Their work focuses on simple on-off signalling, i.e. the existence of nodes, rather
than communication with them, and solves the multi-user detection problem using an
adapted convex optimization algorithm. Their motivation is on increasing the number of
active users in a network, rather than decreasing the sampling rate of the ADC. A more
applied approach is taken in [13] where compressive signal processing [14] is applied
to enable subsampling of an IEEE 802.15.4 Direct Sequence Spread Spectrum (DSSS)
signal. In [15] the authors also solve a multiuser detection problem using compressive
sensing, but in their work the focus is on the design of possibly complex analog filters.
For this paper we focus on keeping the analog part as simple as possible and process
the signals in the digital domain instead.

In our work we apply CS to a general CDMA system. We show that a RD implemen-
tation may be used to subsample the CDMA signal, but we also develop a simplified
version of the RD which performs equally well for CDMA signals but is simpler and
cheaper to implement. Our motivation is that by taking fewer samples we may be able
to conserve power in the receiver, as can be seen in e.g. Eqn. 13 in [16]. We show the per-
formance of the proposed receiver structure for the simple discrete case, when compared
to a classic receiver structure and an RD receiver structure. Then we extend our results
to a full RF numerical simulation and demonstrate that the performance is identical in
this setting. Due to noise folding the CS approach suffers a penalty for downsampling,
but we show that if quantization is taken into account CS outperforms the classic re-
ceiver in some cases. We finally investigate the complexity of the developed algorithms
and compare the computational cost of the numerical experiments with the theoretically
calculated computation cost. Following the paradigm of Reproducible Research [17], all
our results and code are made available at http://www.sparsesampling.com/css.

To define our notation, let all vectors and matrices be denoted using lower and
upper case letters in bold, x and X, respectively. The Penrose-Moore pseudo-inverse is

http://www.sparsesampling.com/css
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denoted as X†, the transpose of a real matrix as XT and the conjugate transpose of a
matrix as X∗. The expectation operator is denoted by E[·].

In the following, we first develop a simple signal model in Section B.2, based on a
dictionary of Gold sequences. We then elaborate on what CS is and which reconstruc-
tion algorithm we use in the numerical experiments in Section B.3. Furthermore, we
define a novel measurement matrix design for spread spectrum receivers and demon-
strate numerically how this measurement matrix performs with a Gold dictionary and
the Subspace Pursuit reconstruction algorithm. This performance is compared to that
of a Rademacher measurement matrix and a RD measurement matrix. This is followed
by Section B.4, which includes a simple numerical experiment of the different receiver
structures. In Section B.5 we extend the experiment to a full RF simulation with and
without quantization. We then analyze the computational complexity of the proposed
method in Section B.6, after which we conclude the paper in Section B.7.

B.2 Signal Model
First, we consider a purely discrete model of a spread spectrum communication system.
Uncoded information bits are sent in a slotted fashion, with each slot containing a single
CDMA signal. The system is assumed to be synchronized, which may be obtained by
e.g. having a central node or base station transmit beacons, which signify the beginning
and end of slots. This is how mobile phone networks and some wireless sensor networks
operate. The receiver is considered non-coherent, as information is encoded in the phase,
but we do assume that there is no carrier frequency offset between the transmitter and
receiver oscillators. This is of course not a realistic assumption but it is done to keep
the system simple. Future work should investigate the impact of oscillator drift on
performance. Each slot contains an independent CDMA signal and the slots are decoded
sequentially and independently of each other.

For one slot, define a discrete QPSK baseband signal, x ∈ CN×1 as:

x = Ψα, (B.1)

where Ψ ∈ SΨ ⊂ {±1}N×N is an orthogonal or near-orthogonal dictionary, containing
spreading waveforms for transmission, SΨ is the subset of {±1}N×N that contains or-
thogonal or near-orthogonal dictionaries and α ∈ {±1± j, 0}N×1 is a sparse vector, that
selects which spreading waveform(s) and what QPSK constellation point(s) to send. α
is a vector here because we only process one slot at a time and we assume that within
a slot, the signal amplitude for each user is constant. That α is assumed to be sparse
is justified in some scenarios, which is demonstrated shortly.

An example of a system using the above signal model could be a wireless sensor
network in which one node must gather information from any possible neighbors. Each
node has a unique CDMA sequence assigned, which it uses to transfer information and
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each node does not know which neighbors it has, but it knows all possible CDMA
sequences. Note that in this signal model α is defined so that all users have identical
amplitude. This is not realistic as the distance between nodes might vary a lot, resulting
in differences between amplitude in the received signal components. We choose this
simplification here but the reconstruction algorithm is not limited by this and also
works for sparse vectors with different amplitude components.

In cases where the number of active nodes or users in a network is smaller than
the total number of possible users, the vector α may be assumed sparse, which is the
enabling factor for CS . Cases such as these arise in e.g. mobile phone networks and
wireless sensor networks, where the number of surrounding nodes may be large, but is
often small.

At the receiver the following signal is observed:

y = Θ (x + w) = ΘΨα+ Θw, (B.2)

where Θ is a measurement matrix, which we shall treat later, and w ∈ CN×1 is Additive
White Gaussian Noise (AWGN) . Notice here that we take into account noise folding
as the noise is folded down into the compressed domain together with the signal. This
makes the noise colored and has an impact on the demodulation performance, because
each time the sampling rate is reduced by one half, the Signal to Noise Ratio (SNR) is
decreased by 3 dB [18, 19].

B.2.1 Spread Spectrum Dictionary of Gold Sequences
In spread spectrum signals, a possible dictionary Ψ is a set of Gold sequences, as used
in e.g. GPS technology [20]. A set of Gold sequences is a special dictionary of binary
sequences with very low auto and cross-correlation properties [21]. To generate a Gold
dictionary, two maximum length sequences must be generated by two linear feedback
shift registers (LFSR). A maximum length sequence is often denoted an m-sequence (it
has m elements), and is a special kind of pseudo-random noise sequence generated by
a LFSR, such that it is periodic and produces a sequence of length 2m − 1. It is called
a maximum length sequence as its period is at maximum length. The reason for the
length being 2m − 1 rather than 2m is that the state where all cells are zero must be
avoided. To obtain an m-sequence, the LFSR must be carefully chosen as there is no
algorithm for ensuring maximum length. However, there are many known LFSR setups
for varying choices ofm. Furthermore, the twom sequences must be chosen so that their
periodic cross-correlation is three-valued and takes on only the values {−1,−t, t − 2},
where:

t =
{

2(m+1)/2 + 1 for odd m and
2(m+2)/2 + 1 for even m.

(B.3)



B.3. Compressive Sensing 73

The set of Gold sequences are then generated using two m-sequences: g1 and g2,
both of length N = 2m − 1. Each Gold sequence in the set is generated as g1 ⊕ gi
(exclusive or), where gi is g2 cyclically shifted by the parameter i. As i can take on
values between 1 ≤ i ≤ 2m − 1, each shift constitutes a candidate for the set, resulting
in a dictionary as follows: Define a N ×N dictionary of Gold sequences as Ψ, with each
column signifying a possible code sequence.

When using such a CDMA dictionary, the received signal must be sampled at a rate
corresponding to the chip rate, where a chip is one entry in the received Gold sequences.
If α is sparse the information rate of the signal is much lower and it may be possible to
decrease the sampling rate by using CS.

In this paper, we use three Gold dictionary sizes: m = 5,m = 7 and m = 10. The
m-sequence feedback sets used to generate these are:

• m = 5: X5 + X2 + 1 and X5 + X4 + X3 + X2 + 1
• m = 7: X7 + X6 + 1 and X7 + X4 + 1
• m = 10: X10 + X3 + 1 and X10 + X9 + X8 + X6 + X3 + X2 + 1

The chosen polynomials may be validated by calculating the auto and cross-correlation
of the generated dictionaries and verifying that they follow the structure listed in the
above.

B.3 Compressive Sensing
CS is a novel sampling scheme, developed to lower the number of samples required to
obtain some desired signal. At the heart of CS is the linear sampling scheme, called the
measurement matrix. In classic receivers the measurement matrix Θ may be modelled
as the identity matrix, such that x is sampled at the chip rate of each channel (I
and Q). Here, we shall denote a classic receiver using Θ1 = I, where the subscript
1 denotes no subsampling and I is the identity matrix of size N × N. In CS another
measurement matrix is used. Denote by Θκ ∈ RM×N a CS measurement matrix, where
κ ∈ N1 is the subsampling ratio when compared to the Nyquist rate and M = N/κ (If
κ does not divide N , M is rounded to the nearest integer). This measurement matrix
is then responsible for mapping the N -dimensional signal x to a M -dimensional signal
y. Normally this would make it impossible to recover the original signal, but under the
assumption that x is sparse in some basis, it is possible to reconstruct the original signal
from the sampled, M -dimensional signal y [1, 2].

Notice that we are not interested in the reconstructed signal, x, but in the sparse
vector α, which allows us to demodulate the data in the signal. We may obtain an esti-
mate of α by reconstructing the signal from y. Such a reconstruction may be obtained
using e.g. a convex optimization problem solver or a greedy algorithm. For this work,
we choose the greedy algorithm Subspace Pursuit [22]. This algorithm is chosen due
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to its good performance in terms of both reconstruction accuracy and running time, as
shown in Section B.3.2.

Before explaining the reconstruction algorithm, we return to the measurement matrix
and introduce a new measurement scheme which is enabled by the use of CDMA. This
new measurement scheme is easier to implement than the RD, but performs almost
identically for spread spectrum systems. We call this a Compressive Spread Spectrum
(CSS) measurement matrix and explain it further in the following.

B.3.1 Compressive Spread Spectrum Measurement Matrix
In most CS literature a choice of measurement matrix or structure must be made. The
Bernoulli or Rademacher distributed measurement matrix is often seen in the theoretical
literature, but it is not well suited for practical implementation in a wireless receiver.
The Random Demodulator (RD) sampling structure [3, 4] is one of the most well-known
measurement matrix structures developed, which is well suited for practical implemen-
tation. In the RD a Pseudo-Random Noise (PRN) sequence is mixed with the received
signal followed by low-pass filtering. Because a spread spectrum transmitter has already
spread the signal before transmission, we show that the RD structure can be improved
so that the mixing with a PRN sequence at the receiver may be skipped. This is similar
to what is done in [13] with IEEE 802.15.4 signals, which uses Direct-Sequence-Spread-
Spectrum (DSSS) signals. These can be viewed as a special class of CDMA signals,
which are used to counter interference from blockers in the same frequency band, rather
than to distinguish between users or signals.

The proposed measurement matrix may therefore be defined similarly to the defini-
tion of the RD matrix in [4]. In their work, the measurement matrix is based on two
matrices, D and H. First, let ε0, ε1, . . . , εN ∈ {±1} be the chipping sequence used in the
RD for a signal of length N . The mapping x→ Dx signifies the demodulation mapping
with the chipping sequence, where D is the diagonal matrix:

D =


ε0

ε1
. . .

εN

 . (B.4)

Second, the H matrix denotes the accumulate-and-dump action performed after
mixing. Let M denote the number of samples taken and assume here that M divides
N . Then each sample is the sum of N/M consecutive entries of the demodulated signal.
The matrix performing this sampling action may therefore be defined as an M × N
matrix, with N/M consecutive unit entries in the rth row starting in column rN/M + 1
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for each r = 0, 1, . . . ,M − 1. An example with M = 3 and N = 6 is:

H =

1 1
1 1

1 1

 . (B.5)

The RD is therefore designed to sample an analog signal, so that in a discrete represen-
tation this is the equivalent to:

y = HDx, (B.6)

where x is the Nyquist sampled input signal and y is the compressively sampled output
signal.

The reason for applying a chipping sequence is to spread the signal across the fre-
quency spectrum, so that information is aliased down into the lower frequency area,
which is left untouched by the low-pass filtering. In the proposed receiver this mix-
ing is unnecessary because the signal has already been spread at the transmitter. The
proposed receiver may therefore be simplified to:

y = Hx. (B.7)

This is significantly simpler to implement in hardware than the RD. Comparing to
the notation introduced for the measurement matrix in Section B.2 we therefore have:
Θκ = H.

To justify the use of no PRN sequence in the measurement matrix, consider the
following. The use of a CDMA dictionary introduces a random-like dictionary matrix,
which spreads the signal out so that each sample contains a little bit of the original in-
formation signal. This is similar to what the measurement matrix does in CS. Therefore,
the sampling process may be rewritten as:

y = Hx = HΨα = ΘIα. (B.8)

Here, the measurement matrix becomes Θ = HΨ, i.e. the subsampling matrix and the
CDMA codes. The dictionary then becomes the identity matrix. When viewed like this,
it is clear that Θ and I are incoherent as the identity matrix only takes out one element
in Θ. Another common mathematical tool for verifying the validity of a measurement
scheme for compressive sensing is Restricted-Isometry-Property (RIP). However, the
RIP gives a less precise and more conservative boundary between reconstruction success
and failure than other bounds, see e.g. the discussions in [23, 24]. Instead, phase-
transition diagrams [23] may be used to demonstrate empirically for which levels of
sparsity the dictionary and measurement matrix are applicable. In the following, we
first define the Subspace Pursuit algorithm and then use phase-transition diagrams to
show that the proposed CSS measurement matrix has transitions that are very close to
those of the Rademacher and RD measurement matrices for dictionary matrices using
Gold sequences.
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B.3.2 Subspace Pursuit
To reconstruct the signal a reconstruction algorithm must be chosen. Many different
approaches have been developed, but two main classes of reconstruction algorithms are
in widespread use: `1 minimization and greedy algorithms. Often, `1 minimization
provides the best solution, but if the matrices Ψ and Θ are very large, it is much more
efficient to use the simpler greedy algorithms [25]. Therefore, we choose to use greedy
algorithms in this work.

In [25] an extensive numerical comparison between reconstruction algorithms is per-
formed based on phase transition plots. Their results show that the best performance
is attained using `1 (at least theoretically). Second best is the least angle regression
(LARS) algorithm. However, as shown in Table VII in [25], the LARS algorithm is quite
slow. A better choice is a Tuned Two Stage Thresholding algorithm, which has good per-
formance and is very fast. In [25], two algorithms in particular are mentioned: CoSaMP
and the Subspace Pursuit algorithm. The Subspace Pursuit algorithm from [22] is shown
to perform best of the two.

Recall that Θκ is a measurement matrix with N columns and N/κ rows and define
A = ΘκΨ. Then we define the Subspace Pursuit algorithm as in Algorithm 51. In each
algorithm iteration, the pseudo-inverse is calculated as the least-squares solution as this
is less computationally demanding.

To demonstrate the performance of the Subspace Pursuit algorithm with the Gold
dictionary, we have performed numerical experiments to find the phase transition in the
noise-less case for various choices of measurement matrices. The size of Gold dictionary
used ism = 10, i.e. the dictionary matrix Ψ is of size 1023×1023. The results are shown
in Fig. B.1. For each curve, we generate a surface plot of the rate of success, based on
Monte Carlo simulations. In this surface plot, a clear transition curve is evident and
to condense the results we only plot the transition curve where the probability of error
crosses 0.5. Each surface plot is generated so that new simulations are conducted until
the Mean Squared Error (MSE) between the ith and the (i − 1)th figure is less than
10−5. For each parameter set and in each simulation, an experiment is a success (1)
if the MSE between the reconstructed and the received signal is less than 10−6 and a
failure (0) otherwise. The three measurement matrices used are as follows:

• A Rademacher distributed measurement matrix, with a dense structure where
entries are either −1 or 1,

• A RD measurement matrix, with a banded structure, where entries are either −1
or 1 on the band and 0 outside, and

1In the first initialization step we choose to take the transpose of A, rather than the Penrose–Moore
pseudo-inverse. If instead the Penrose–Moore pseudo-inverse is used, the performance at high values
of δ and ρ is increased in Fig. B.1, but so is the computational complexity. This issue is not treated in
more detail here, since our problems are assumed to always have low ρ.
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Algorithm 5 Subspace Pursuit Algorithm [22]
Input:
Sparsity S, measurement and dictionary matrices combined A and received, sampled
signal y
Initialization:
T 0 = {indices of the S largest absolute magnitude entries

in the vector ATy}
y0
r = y−AT 0AT

T 0y
` = 0
repeat
`← `+ 1
T̃ ` ← T `−1 ∪ {indices of the S largest absolute magnitude

entries in the vector ATy`−1
r }

T ` ← {indices of the S largest absolute magnitude
entries in the vector A†

T̃ `y}
y`r ← y−AT `A†

T `y
until ‖y`r‖2 > ‖y`−1

r ‖2, ` ≥ S

• the proposed CSS measurement matrix.

To validate the above results, we have inserted the phase transition line for the
Tuned Two Stage Threshold (TST) algorithm from [25] in Fig. B.12. As can be seen
our implementation corresponds well with their results and it is clear that the proposed
CSS measurement matrix performs close to identically to the RD measurement matrix
and that, as previously argued, the D matrix is unnecessary. Notice also the clear
horizontal line in the graph around δ = 0.9 and ρ = 0.5. We analyze this irregularity
more in Section B.6.

B.4 Discrete Numerical Experiment
In the above analysis, we have focused on the noise-less case and have shown that
the presented dictionary and measurement matrix setup does enable CS for certain
levels of sparsity. We therefore now return to the original signal model in Eqn. (B.2)
and investigate the noisy case by carrying out Bit Error Rate (BER) experiments. In
Fig. B.2 a flow chart of the numerical experiment is shown. First, we encode a randomly
generated bit sequence b to form the sparse vector α from Eqn. (B.1). The non-zero
positions are chosen randomly from a uniform distribution. Each non-zero position
contains a QPSK symbol. Then, α is used to create a CDMA signal using the Gold

2Data from http://sparselab.stanford.edu/OptimalTuning/main.htm

http://sparselab.stanford.edu/OptimalTuning/main.htm
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Fig. B.1: Phase Transition Diagrams for the three different measurement matrices (Rademacher, RD
and CSS measurement matrix) with dictionary size m = 10. The black line is the phase transition line
for the Tuned Two Stage Thresholding (TST) algorithm from [25].

dictionary as x = Ψα. This signal is then corrupted by additive white Gaussian noise,
generated according to a chosen SNR value. Here, SNR is defined as follows:

SNR = E
[
‖x‖22
‖w‖22

]
= ‖x‖

2
2

Nσ2 , (B.9)

where w ∼ N (0, σ2I) with σ2 the variance of the noise.
At the receiver, the sampling is modelled as in Eqn. (B.2) with multiplication by a

measurement matrix. In the simulations we use κ = 2 or κ = 4. As is shown in the
phase transition plots previously, the method also works for other choices of κ in the
noise-less case. However, to clearly demonstrate that our implementation produces the
expected 3 dB drop in performance per doubling of κ due to noise folding, we have
chosen these two values. A measurement matrix based on samples obtained from a
Rademacher distribution introduces colored noise. This decreases the performance, un-
less the signal is prewhitened before the reconstruction algorithm. This coloring occurs
because the rows in the Rademacher matrix are not orthogonal. In the RD and CSS
measurement matrices the rows are orthogonal and prewhitening is therefore unneces-
sary. The prewhitening is achieved by multiplying the received y vector with a new
matrix P to obtain ỹ = Py. By setting P = C−1, where C is e.g. the Cholesky factor-
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Fig. B.2: Flow chart of the discrete numerical experiment.

ization (CCT = ΘκΘT
κ ), the variance of the noise term w̃ = PΘκw from Eqn. (B.2)

becomes:

E[PΘκwwTΘT
κPT ] = σ2C−1CCT (C−1)T = σ2I. (B.10)

After prewhitening, we reconstruct the sparse vector α̂ using the Subspace Pursuit
algorithm, which now also must include the P matrix, i.e. A = PΘκΨ. It is clear that
this extra step increases complexity, but note that this step is only performed for the
Rademacher measurement matrix. The A matrix must be generated anew for each slot
because a new measurement matrix Θκ is generated. The RD and CSS measurement
matrices skip this step as their rows are orthogonal. After obtaining the sparse vector
α̂, we are able to decode the original bit sequence, b̂.
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(a) m = 5, κ = 2.
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Fig. B.3: BER versus SNR for different dictionary sizes and choices of κ. CS here is the Rademacher
measurement scheme. Simulations were run until 100 bit errors were found for each SNR point.

To validate the obtained results, we compare the numerical results with the theoret-
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ical performance for non-coherent MFSK [26]:

Pb = N

2(N − 1)
1
N

N∑
k=2

(−1)k
(
N

k

)
·

exp
(
N · SNR

(
1
k
− 1
))

, (B.11)

where SNR is the signal to noise ratio. We use the non-coherent formula because the
CDMA codes are QPSK modulated. This corresponds to a phase shift of the original
codes, which makes the receiver non-coherent. Furthermore, for the above result to
hold, we must fix S = 1, i.e. the CDMA signal is 1-sparse. Then, instead of performing
reconstruction of the sparse α, we may instead perform classification as in [13, 14]. This
would replace the Subspace Pursuit algorithm with a simpler estimation framework.
However, to conserve generality and because we use S = 10 later, we continue using the
general CS framework and the Subspace Pursuit algorithm.

As dictionary we use Gold sequences with m ∈ {5, 10}. This reveals the performance
for different dictionary sizes and especiallym = 10 is interesting as it is the LFSR length
used in e.g. GPS. The results of the numerical experiments are shown in Fig. B.3.

As can be seen, for m = 5 both the Rademacher, RD and especially the CSS mea-
surement matrix seems to perform poorly. For high SNR values there is more than the
expected 3 dB loss per octave due to noise folding. At m = 10 the loss is almost exactly
3 dB per halving of the sampling rate. For m = 10 we have also included the result for
κ = 4 to show the performance when the sampling rate is reduced to a quarter of the
Nyquist sampling rate. Again, the curve follows the previous results for noise folding, as
the performance degrades by approximately 3 dB more for all the CS-enabled receiver
structures. These results show that the CSS measurement matrix, though simpler than
all the other measurement matrices, performs equally well in the above experiments for
m = 10. For small dictionary sizes, its performance is worse.

B.5 RF Numerical Experiment
To obtain more realistic communication-relevant results, we have extended the above
discrete numerical experiment to a full transmitter/receiver simulation with RF up and
down-conversion and with root raised cosine pulse shaping and matched filter. This we
have done to demonstrate that the results from Fig. B.3 translate to a realistic trans-
mitter/receiver system. The construction of the experiment is visualized in Fig. B.4.
This conceptual flow chart also visualizes how the ADC process must be incorporated in
a receiver structure to implement the proposed CSS method. The experiment we have
conducted is based on a QPSK signal with a chip rate of 106 chips per second using a
root raised cosine pulse shaping filter with a roll-off factor of 1. This signal is repre-
sented in the simulation as sampled at 10 times that rate, to emulate an analog signal.
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The signal is up-converted to an RF frequency of 3 MHz, i.e. 3 times the chip rate.
The RF signal is sampled at 12 MHz, again to emulate an analog signal. Here, AWGN
is added followed by down-conversion again. The down-conversion is implemented as
perfect direct down-conversion. This is accomplished by first multiplying with a com-
plex exponential, followed by taking an FFT of the signal. In the output from the FFT,
all values above the chip rate are set to 0, after which the inverse FFT is taken. At
baseband, the sampling is done by a matched filter based on the same root raised cosine
that is used for pulse shaping. The samples are then input to the Subspace Pursuit
algorithm, similar to the discrete numerical experiment.
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Fig. B.4: Conceptual flow chart of the RF numerical experiment. Note that all continuous variables
here are only conceptual. In the numerical experiments they are represented as discrete, oversampled
sequences. Here, MF is a matched filter and LPF is a low–pass filter. Dark boxes signify components
that must be changed compared to a traditional architecture to enable the CS subsampling described
in this work.

The results of the experiment are shown in Fig. B.5. The theoretical curve is calcu-
lated using a modified version of the non-coherent MFSK equation used before:

Pb = M

2(M − 1)
1
M

M∑
k=2

(−1)k
(
M

k

)
·

exp
(
log2(4)Eb

N0

(
1
k
− 1
))

, (B.12)

where Eb/N0 is the energy per bit per noise spectral density and we multiply Eb/N0 with
log2(4) because there are 4 constellation points in QPSK. As can be seen, the results
here are close to identical with those for the simpler discrete numerical experiment.
Noise folding still gives rise to a penalty, which makes CS a trade-off between sampling
rate and BER performance. However, previous work has suggested that quantization
may shift the trade-off point, so that CS obtains both the low sampling rate and a better
performance than a classical receiver [18]. We investigate this in the following.
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Fig. B.5: BER versus Eb/N0 for different dictionary sizes. CS here is the Rademacher measurement
scheme. Simulations were run until 100 bit errors were found for each Eb/N0 point.

B.5.1 RF Numerical Experiment with Quantization
In [18], it is proposed to combat noise folding with quantization as a CS receiver is able
to quantize the sampled signal better, since it takes fewer measurements. By better
quantization we mean that if the CS receiver takes half as many samples, it may quantize
twice as well at no additional cost. We have investigated this by applying uniform
quantization to the RF experiment performed in the previous section. However, as
simple QPSK modulation is used, only the sign matters for demodulation and therefore
quantization has no effect in the simple case of S = 1 used so far. Therefore, we
investigate S = 10 instead and used 2 bits of quantization per sample (i.e. 4 bits of
quantization for CSS as κ = 2). This is merely intended as an example study to show
that when taking into account quantization, CS may perform better than a classical
receiver. The result of the numerical experiment is shown in Fig. B.6. As can be seen,
quantization makes CS a better alternative in this scenario. The CS approach becomes
significantly better for high Eb/N0 values, because the classical receiver is not able to
quantize the signal properly. For comparison, we have also included the same result for
a classical receiver with 4 bits of quantization, i.e. the same level of quantization as the
CSS receiver. Then it becomes clear that the classical receiver again is the best choice,
but remember that it operates at twice the sampling frequency. A CS-enabled receiver
can therefore be seen as a trade-off point between sampling rate and dynamic range.
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Fig. B.6: BER versus Eb/N0 for a classical receiver and a CSS receiver, both with quantization.
m = 7, S = 10, κ = 2 and 100 errors found for each Eb/N0 point. The dotted line is for a classical
receiver with 4 bits of quantization per sample.

B.6 Complexity Analysis
To evaluate the Subspace Pursuit algorithm, we investigate the computational complex-
ity of the algorithm, shown in Tab. B.1, where K is the number of iterations used in the
Subspace Pursuit algorithm, S is the sparsity, M is the number of measurements taken
and N is the number of Nyquist samples.

Table B.1: Computational cost of the Subspace Pursuit algorithm.

Action Approx. cost
Initialization:
• 1 computation of ATy 4MN
• 1 computation of y−AT 0AT

T0
y 2M + 8MS

Loop:
• K computations of ATy 4KMN

• K least squares problems (A†
T̃
y) K(2M(2S)2 + 11(2S)3)

• K computations of y−AT 0A†T0
y K(2M + 4MS + 2MS2 + 11S3)

Total: 99KS3 + 4(K + 1)MN
+2(K + 1)M + 4(K + 2)MS + 10MKS2

The matrix A is real, but since y is complex this affects the matrix-vector com-
putations. A matrix-vector product then costs 4MN and calculating a residual costs
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2M + 8MS.
The pseudo-inverse is never calculated, instead a linear least-squares problem is

solved using the Singular Value Decomposition (SVD). Solving a least-squares problem
with S variables and M observations using the SVD costs [27]:

CostLS with SVD ∼ 2MS2 + 11S3. (B.13)

Notice that the first least square problem in the loop takes in 2S atoms from the
dictionary. The cost of sorting and locating entries is not taken into account here, as
those algorithms are more memory then computationally demanding.

It is also important to notice that the problem sizes involved here are very small.
Compressive sensing only works for sparse signals, so S is often small compared to M
and N . In the examples given here, N = 1023 is the largest dimension we have worked
with. Because of this, the mathematical model in Tab. B.1 is not adequate, as the
computational complexity is instead dominated by programming language overhead,
such as the cost of calling different functions. Therefore, it is important to include an
extra term: cK, where K is the number of iterations performed and c is some constant
that depend on system and programming language overhead.

It is of interest to investigate the required number of iterations, K, of the Subspace
Pursuit algorithm, to better understand the cost of using CSS . In Fig. B.7 we show
the number of iterations used to generate the results in Fig. B.1. The horizontal line
through ρ = 0.5 is interesting and unexpected. If we change the input sparsity to the
Subspace Pursuit algorithm from S to 2S, the line moves from ρ = 0.5 to ρ = 0.25,
which means it is related to the number of atoms available to the Subspace Pursuit
algorithm in each iteration. It is not related to the dictionary type, as we have obtained
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Fig. B.7: Number of Subspace Pursuit iterations for the CSS measurement matrix and Gold Dictionary
size m = 10.
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Fig. B.8: Computational cost of the Subspace Pursuit algorithm for the CSS measurement matrix and
Gold Dictionary size m = 10. The figure to the left shows measured execution time in seconds from the
numerical experiment conducted in Fig. B.1 and the figure to the right is generated using the formula
for the total computational cost found in Tab. B.1 plus the term cK with c = 3 · 109. For the figure to
the right, the number of iterations of the Subspace Pursuit algorithm, K, is taken from Fig. B.7 and
the numbers are normalized.

exactly the same phase transition diagrams and iteration counts with a Haar wavelet
packet dictionary. Furthermore, it is not due to a "lucky" initial guess, as the line first
emerges in the third iteration of the algorithm. It seems to be an overlooked property
of the algorithm, which has gone unnoticed so far because the line in Fig. B.7 lies in the
region of Fig. B.1, where the algorithm cannot find the correct solution anyway.

Finally, we have measured the computation time for running the Subspace Pursuit
algorithm for the CSS numerical experiment in Fig. B.1. These are compared to the
theoretical values obtained by using Tab. B.1. The constant c has been set to 3 · 109,
which is a value found to give a good accordance with the numerically found values. It is
important to note that this choice of c is very much a function of the algorithm, problem
size, programming language and the machine on which the experiment is conducted and
should therefore not be seen as a general choice. The result is shown in Fig. B.8. The
values in the figure on the right are normalized to one, as they are completely dependent
on machine power and are only shown here to visualize how much the computational
requirements change with the parameters. As can be seen, the numerically obtained
computation times seem to correspond fairly well to the mathematical model. Each
point in the above numerical experiment has been run as a simulation on 1 out of 16
threads on computation nodes with 2x Intel Xeon X5570 CPUs and 48GB memory.
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B.7 Conclusion
In this work we apply CS to a general CDMA system and we show that it is possible
to use a very simple measurement scheme at the receiver side to enable subsampling
of the CDMA signal. We show that the performance of the proposed receiver scheme
is affected negatively in BER performance, similar to other CS schemes. However, we
also show that when taking quantization into account, the proposed receiver model
performs better in our example than a classical receiver with the same quantized bit
rate. Finally, we investigate the complexity of the developed algorithms and compare
the computational cost of the numerical experiments with the theoretically calculated
computation cost.

Our work here has shown that CS used in spread spectrum receivers allows for a
simplified front-end compared to other state-of-the-art CS sampling designs. Further-
more, we have shown that the problem of noise folding may be remedied in some cases
by using quantization. Future work should investigate further which scenarios may ben-
efit from CS and also perform laboratory experiments with the CSS receiver structure.
Furthermore, the premise of this work is that taking fewer samples conserves power.
This must be validated through laboratory experiments and the power efficiency of the
CSS receiver structure should be better evaluated.

References
[1] E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and

inaccurate measurements,” Communications on Pure and Applied Mathematics,
vol. 59, no. 8, pp. 1207–1223, 2006.

[2] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[3] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud,
and R. Baraniuk, “Analog-to-information conversion via random demodulation,”
in IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software,
Oct. 2006, pp. 71–74.

[4] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Be-
yond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Transactions
on Information Theory, vol. 56, no. 1, pp. 520–544, Jan. 2010.

[5] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-nyquist sampling of
sparse wideband analog signals,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 4, no. 2, pp. 375–391, Apr. 2010.



87

[6] J. Paredes, G. Arce, and Z. Wang, “Ultra-wideband compressed sensing: Channel
estimation,” IEEE J. Sel. Topics Signal Process., vol. 1, no. 3, pp. 383–395, Oct.
2007.

[7] P. Zhang, Z. Hu, R. Qiu, and B. Sadler, “A compressed sensing based ultra-
wideband communication system,” in Proc. 2009 IEEE International Conf. on
Communications, Piscataway, NJ, USA, 2009, pp. 4239–4243.

[8] S. Feizi and M. Medard, “A power efficient sensing/communication scheme: Joint
source-channel-network coding by using compressive sensing,” in 49th Annual Aller-
ton Conf. on Communication, Control, and Computing, Sep. 2011, pp. 1048–1054.

[9] V. Aggarwal, L. Applebaum, A. Bennatan, A. Calderbank, S. Howard, and
S. Searle, “Enhanced CDMA communications using compressed-sensing reconstruc-
tion methods,” in 47th Annual Allerton Conf. on Communication, Control, and
Computing, Sep. 2009, pp. 1211–1215.

[10] X. Li, A. Rueetschi, Y. C. Eldar, and A. Scaglione, “GPS Signal Acquisition via
Compressive Multichannel Sampling,” Physical Communication, vol. 5, no. 2, pp.
173–184, 2012.

[11] P. Pankiewicz, T. Arildsen, and T. Larsen, “Sensitivity of the Random Demodu-
lation Framework to Filter Tolerances,” in 19th European Signal Processing Conf.
(EUSIPCO), Barcelona, Spain, Aug. 2011.

[12] L. Applebaum, W. U. Bajwa, M. F. Duarte, and R. Calderbank, “Asynchronous
code-division random access using convex optimization,” Physical Communication,
vol. 5, no. 2, pp. 129–147, 2012.

[13] K. Fyhn, T. Arildsen, T. Larsen, and S. H. Jensen, “Demodulating subsampled
direct sequence spread spectrum signals using compressive signal processing,” in
Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Aug.
2012, pp. 2556–2560.

[14] M. Davenport, P. Boufounos, M. Wakin, and R. Baraniuk, “Signal processing with
compressive measurements,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp.
445–460, Apr. 2010.

[15] X. Xie, Y. C. Eldar, and A. Goldsmith, “Reduced-dimension multiuser detection,”
2011, submitted for IEEE Transactions on Information Theory, available on arXiv:
http://arxiv.org/abs/1109.6303.

[16] P. Kenington and L. Astier, “Power consumption of A/D converters for software
radio applications,” IEEE Transactions on Vehicular Technology, vol. 49, no. 2, pp.
643–650, Mar. 2000.



88 Paper B.

[17] P. Vandewalle, J. Kovacevic, and M. Vetterli, “Reproducible research in signal
processing – What, why, and how,” IEEE Signal Processing Magazine, vol. 26,
no. 3, pp. 37–47, May 2009.

[18] J. Treichler, M. A. Davenport, J. N. Laska, and R. G. Baranuik, “Dynamic range
and compressive sensing acquisition receivers,” in Defense Applications of Signal
Processing (DASP), Coolum, Australia, Jul. 2011.

[19] E. Arias-Castro and Y. C. Eldar, “Noise folding in compressed sensing,” IEEE
Signal Process. Lett., vol. 18, no. 8, pp. 478–481, Aug. 2011.

[20] P. Misra and P. Enge, Global Positioning System: Signals, Measurements and
Performance, 2nd ed. Ganga-Jamuna Press, 2010.

[21] R. Gold, “Optimal binary sequences for spread spectrum multiplexing (Corresp.),”
IEEE Trans. Inf. Theory, vol. 13, no. 4, pp. 619–621, Oct. 1967.

[22] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal recon-
struction,” IEEE Transactions on Information Theory, vol. 55, no. 5, pp. 2230–2249,
May 2009.

[23] D. L. Donoho and J. Tanner, “Precise undersampling theorems,” Proceedings of
the IEEE, vol. 98, no. 6, pp. 913–924, Jun. 2010.

[24] J. Blanchard, C. Cartis, and J. Tanner, “Compressed sensing: How sharp is the
restricted isometry property?” SIAM Review, vol. 53, no. 1, pp. 105–125, 2011.

[25] A. Maleki and D. L. Donoho, “Optimally tuned iterative reconstruction algorithms
for compressed sensing,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp.
330–341, Apr. 2010.

[26] B. Sklar, Digital Communications: Fundamentals and Applications, ser. Prentice
Hall Communications Engineering and Emerging Technologies Series. Prentice-
Hall PTR, 2001.

[27] L. N. Trefethen and D. Bau, Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, 1997.



Paper C

Spectral Compressive Sensing with Polar Interpolation

Karsten Fyhn, Hamid Dadkhahi, Marco F. Duarte

The paper has been published in the
Proceedings of the 38th International Conference on Acoustics, Speech, and Signal

Processing (ICASSP) Vancouver, Canada, 2013.



c© 2013 IEEE
The layout has been revised.



C.1. Introduction 91

Abstract
Existing approaches to compressive sensing of frequency-sparse signals focuses on signal
recovery rather than spectral estimation. Furthermore, the recovery performance is lim-
ited by the coherence of the required sparsity dictionaries and by the discretization of the
frequency parameter space. In this paper, we introduce a greedy recovery algorithm that
leverages a band-exclusion function and a polar interpolation function to address these
two issues in spectral compressive sensing. Our algorithm is geared towards line spectral
estimation from compressive measurements and outperforms most existing approaches
in fidelity and tolerance to noise.

C.1 Introduction
One of the most popular thrusts in compressive sensing (CS) research has focused on the
recovery of signals that are spectrally sparse (i.e., that have a sparse frequency-domain
representation) from a reduced number of measurements [1–5]. Such frequency-sparse
signals bring up a novel issue in the formulation of the CS recovery problem: frequency-
domain representations have a continuous parameter space, while CS is inherently rooted
on discretized signal representations.

Aiming for an increasingly dense sampling of the frequency parameter space intro-
duces performance issues in sparsity-leveraging algorithms. In particular, increasing the
resolution of the parameter sampling worsens the coherence of the dictionary that pro-
vides sparsity for relevant signals. This both prevents certain algorithms from finding
the sparse representation successfully and introduces ambiguity on the choice of rep-
resentations available for a signal in the dictionary. Initial contributions address such
issues by modifying the sparsity prior, the recovery algorithm, or both, to be tailored
to the intricacies of the signal representation [5–8].

Interestingly, CS recovery of frequency-sparse signals can be formalized in two dif-
ferent ways: recovery of the signal samples, and recovery of the signal’s component
frequencies. Previous contributions have almost exclusively focused on the former; their
performance for the latter goal is limited by the representation leveraged during CS.
Particularly, the required discretization of the parameter space explicitly limits the per-
formance of compressive frequency estimation.

In this paper, we improve over existing approaches by introducing interpolation
steps within CS recovery algorithms that break the discretization barrier implicit in
CS and are able to improve the quality of frequency parameter estimation. While
such interpolation is considered briefly and integrated to a simple recovery algorithm
in [5], we introduce a novel polar interpolation approach that leverages the fact that
frequency-sparse signals are translation-invariant in the frequency domain. We couple
polar interpolation with a more sophisticated CS greedy recovery approach to improve
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the performance of spectral CS over existing algorithms. We provide experimental
evidence that shows improved frequency estimation performance against approaches
previously proposed for spectral CS signal recovery: in some cases, our estimates are
more precise than those from the baseline approaches, while in other cases we match
the precision of the baseline with greatly reduced computational complexity.

C.2 Background and Related Work
Compressive sensing (CS) is a technique to simultaneously acquire and reduce the dimen-
sionality of sparse signals in a randomized fashion. More precisely, in the CS framework,
a signal f ∈ CN is sampled by M linear measurements of the form y = Af , where A is
an M ×N sensing matrix and M � N . In practice, the measurements are acquired in
the presence of noise z, in which case we have y = Af + z.

In many applications, the signal f is not sparse but has a sparse representation
in some dictionary D. In other words, we have f = Dx, where x is K-sparse (i.e.
||x||0 ≤ K). Under certain conditions on the matrix A [9, 10], we can recover x from
the measurements y through the following `1-minimization problem (which we refer to
as `1-synthesis):

x̂ = min
x̃∈CN

||x̃||1 s.t. ||ADx̃− y||2 ≤ ε, (C.1)

where ε is an upper bound on the noise level ||z||2. Note that optimal recovery of x from
the optimization in (C.1) is feasible only when the elements of the dictionary D form
an orthonormal basis, and thus are incoherent [1, 11]. However, in many applications,
the signal of interest is sparse in an overcomplete dictionary or a frame, rather than in
a basis.

This paper focuses on frequency-sparse signals, which can be modeled as a super-
position of K complex sinusoids with arbitrary frequencies ω̃ = {ω1, ω2, . . . , ωK}. The
signal f =

[
f1 f2 . . . fN

]T is given by

fn =
K∑
k=1

xke
j2πω̃kn, ω̃k ∈ [0, 1], n ∈ {1, 2, . . . , N}. (C.2)

Such signals are sparse in the discrete-time Fourier transform (DTFT), when defined
using an infinite dictionary. In practice, a finite-length representation of the signal is
required, and the transform of choice is the discrete Fourier transform (DFT). Unfortu-
nately, the DFT coefficients for such a frequency-sparse signal are sparse only when the
frequencies of the constituent sinusoids are integral. One way to remedy this problem
would be to employ a dictionary corresponding to a finer discretization of the Fourier
representation. We call such a dictionary a DFT frame of redundancy c ∈ N, containing
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P = c ·N elements, defined as:

D =
[
d(ω1) d(ω2) · · · d(ωP )

]
, ωp = p

P
,

d(ωp) =
[
d1(ωp) d2(ωp) . . . dN (ωp)

]T
, (C.3)

where dn(ω) = 1√
N
ej2πωn. However, the DFT frame violates the incoherence require-

ment for the dictionary [5].
It has recently been shown in [6] that as far as the recovery of signal f (instead of the

sparse coefficient vector x) is concerned, the coherence condition of the dictionary is not
necessary, provided that the matrix DHD is sufficiently sparse, where (·)H designates
the Hermitian operation. In this case, the signal f can be recovered via `1-analysis.
However, the matrix DHD is not sufficiently sparse for DFT frames.

Alternatively, one can take advantage of structured sparsity in spectral CS recov-
ery by using a coherence inhibition model [5]. The resulting structured iterative hard
thresholding (SIHT) algorithm can recover the frequency-sparse signal with a DFT
frame by avoiding dictionary elements with high coherence. A variation of this method
uses a band-exclusion function to achieve the same avoidance [8]. We can define the
η-coherence band of the index set S as

Bη(S) =
⋃
k∈S

{i | µ(i, k) > η}, i ∈ {1, 2, . . . , P}, (C.4)

where µ(i, k) = |〈d(ωi),d(ωk)〉| is the coherence between two atoms in the dictionary.
The authors use the band-exclusion function to avoid selecting coherent dictionary el-
ements in various greedy algorithms, including Band-excluded Orthogonal Matching
Pursuit (BOMP).

More recently, it has been shown that one can recover a frequency-sparse signal from
a random subset of its samples using atomic norm minimization [7]. The atomic norm
of f is defined as the size of the smallest scaled convex hull of a continuous dictionary of
complex exponentials. Thus, the recovery procedure searches over a continuous dictio-
nary rather than a discretized one. The atomic norm minimization can be implemented
as a semidefinite program (SDP), which can be computationally expensive. In addition,
this formulation does not account for measurement noise, and it is not clear if guar-
antees can be given for arbitrary measurement settings. Nonetheless, [7] motivates our
formulation of algorithms that push past the discretization of the frequency parameter
space.

C.3 Polar Interpolation for Frequency Estimation
One way to remedy the discretization of the frequency parameter space implicit in CS
is to use interpolation. In [12], a polar interpolation approach for translation-invariant
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signals has been derived. Such signals can be written as a linear combination of shifted
versions of a waveform. In a nutshell, the interpolation procedure exploits the fact that
translated versions of a waveform form a manifold which lies on the surface of a hyper-
sphere. Thus, any sufficiently small segment of the manifold can be well-approximated
by an arc of a circle, and an arbitrarily-shifted waveform can be closely approximated
by a point in such arc.

The complex exponentials that compose a DFT frame also form a manifold over a
hypersphere, and thus can be approximated by an arc of a circle. This is motivated
by the fact that complex exponentials have translation-invariant Fourier transforms,
which correspond to an isometric rotation of the time-domain vectors. In this case,
the DFT frame samples the frequency parameter space with a steps size ∆ = 1/c,
and we approximate a segment of the manifold d(ω̃i) : ω̃i ∈ [ωp − ∆

2 , ωp + ∆
2 ] by a

circular arc containing the three exponentials {d(ωp − ∆
2 ),d(ωp),d(ωp + ∆

2 )}. Making
use of trigonometric identities, the polar interpolator approximates exponentials d(ω̃i),
ω̃i ∈ [ωp − ∆

2 , ωp + ∆
2 ], using linear combinations of the three exponentials [12]:

d(ω̃i) ≈ c(ωp) + r cos
(

2ω̃
∆ θ

)
u(ωp) + r sin

(
2ω̃
∆ θ

)
v(ωq),c(ωp)T

u(ωp)T
v(ωp)T

 =

1 r cos(θ) −r sin(θ)
1 r 0
1 r cos(θ) r sin(θ)

−1 d(ωq − ∆
2 )T

d(ωp)T
d(ωp + ∆

2 )T

 ,
where r is the `2 norm of each element of the dictionary and θ is the angle between d(ωp)
and d(ωp − ∆

2 ). In order to extend the above approximation to sums of J exponentials
with frequencies Ω = {ω1, ω2, . . . , ωJ}, we define:

f̃ = C(Ω)α−U(Ω)β −V(Ω)γ, (C.5)

C(Ω) =
[
c(ω1) c(ω2) · · · c(ωJ)

]
,

U(Ω) =
[
u(ω1) u(ω2) · · · u(ωJ)

]
, (C.6)

V(Ω) =
[
v(ω1) v(ω2) · · · v(ωJ)

]
,

where α represents the amplitude of the signal and β and γ controls the frequency trans-
lations. The three coefficient vectors can be estimated using the following constrained
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convex optimization problem [12]:

(α,β,γ) = T(y,A,Ω) (C.7)

= argmin
α,β,γ

1
2σ2 ||y−Af̃ ||22 + ||α||1

s.t.


αj ≥ 0,√

β2
j + γ2

j ≤ α2
jr

2,

αjr cos(θ) ≤ βj ≤ αjr,

 for j = 1, . . . , J,

where A is the measurement matrix, and y is the received compressed signal. The
constraints for the optimization problem ensure that the solution consists of points on
the arcs used for approximation. The first constraint ensures we have only nonnega-
tive signal amplitudes. The second enforces the trigonometric relationship among each
triplet αj , βj , and γj . The last constraint ensures that the angle between the solution
and d(ωj) is restricted to the interval [0, θ]. It is necessary to scale β and γ after the
optimization problem [12]:

(βj , γj)←

 βjαjr√
β2
j + γ2

j

,
γjαjr√
β2
j + γ2

j

 . (C.8)

This is because the inequality of the second constraint should in fact be an equality.
However, the equality would violate the convexity assumption of the optimization. After
this normalization, we obtain the signal estimate from (C.6) and the frequency estimates
using the one-to-one relation

αjc(ωj) + βju(ωj) + γjv(ωj) = αjd
(
ωj + ∆

2θ tan−1( γj

βj
)
)
. (C.9)

The optimization (C.7), when applied with all parameter values used in the dictionary
D, is named continuous basis pursuit (CBP) in [12]:

(α,β,γ) = T(y,A,ΩCBP ), (C.10)

where ΩCBP = {ω1, ω2, . . . , ωP } is the set of all frequencies that appear in the DFT
frame for our application of interest. As posed, CBP has a high computational complex-
ity: it operates on matrices of size 3N , whereas other CS algorithms operate on matrices
of size N . However, its interpolation step has one important advantage: translation-
invariance and interpolation enables CBP to reconstruct arbitrary frequency-sparse sig-
nal while requiring only a small subset of the corresponding dictionary. This makes
it possible to incorporate the convex optimization solver into a greedy algorithm that
quickly finds a rough estimate, which is then improved upon by a convex optimization
solver.
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C.4 Band-Excluded Interpolating Subspace Pursuit
We incorporate the convex optimization (C.7) and band-exclusion (C.4) in a Subspace
Pursuit algorithm [13]. We call this algorithm Band-Excluded Interpolating Subspace
Pursuit (BISP), which is shown in Algorithm 6.

In the algorithm initialization, the best K correlating atoms are found and stored
in Sn by generating a proxy for the sparse signal. The K atoms are found iteratively,
which deviates from the original Subspace Pursuit algorithm where the K atoms are
found in one step. In each iteration, we trim the proxy based on the found atom and
the band exclusion function Bη(S), as defined in (C.4). In the main loop, we find the
K best atom indices and add them to Sn. From Sn, we form a set Ω consisting of
all frequencies corresponding to the indices in Sn along with all adjacent indices. This
is necessary because the frequencies present in y may not be sufficiently incoherent
and may therefore skew the peaks of the proxy estimate. Therefore, as a precaution, we
include the closest neighbors on each side. The set Ω is input to the convex optimization
in (C.7) along with the measurement matrix and the received signal.

In practice, we found that for noisy measurements it is often preferable to move
the minimization objective ||y −Af̃ ||22 in (C.7) into a constraint. Moving this fidelity
measure from the objective function to a constraint causes the optimization to return
the sparsest set of coefficients that yields measurements within the noise range of the
observation. If the output is non-existent or trivial, we move the fidelity metric from
the objective function to the constraint (or vice versa).

C.5 Numerical Experiments
To evaluate Algorithm 6, we have performed two numerical experiments.1 We generated
frequency-sparse signals of length N = 100 containing K = 4 complex sinusoids with
frequencies selected uniformly at random. We used a DFT frame with c = 5 (∆ =
0.2Hz), and considered well-separated tones so that no two tones are closer than 1Hz of
each other. We performed Monte Carlo experiments and averaged over 30 experiments.
As measurement matrix2 we used a Gaussian matrix A ∈ RM×N . We set M = κN ,
where κ ∈ (0, 1] is the CS subsampling rate. We compare our proposed Algorithm 6
with six state-of-the-art methods: `1-synthesis, `1-analysis, SIHT, SDP, BOMP, and
CBP. As performance measure, we use the Hungarian algorithm [15, 16] to find the best
matching between the estimated and true frequencies. For the algorithms that return a
dense DFT coefficient vector or a reconstructed signal (`1-synthesis, `1-analysis, SIHT,

1The documentation and code for these experiments are made freely available at http://www.
sparsesampling.com/scspi, following the principle of Reproducible Research [14].

2For the SDP algorithm we used a random subsampling matrix, as the algorithm is only defined
for such a measurement matrix. The authors would like to thank Gongguo Tang for providing the
implementation of SDP.

http://www.sparsesampling.com/scspi
http://www.sparsesampling.com/scspi
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Algorithm 6 BISP
INPUTS: Compressed signal y, sparsity K, measurement matrix A and spacing
between dictionary elements ∆.
OUTPUTS: Reconstructed signal f̃ and frequency estimates ω̃.
INITIALIZE: Φ = AD, i = 1, S0 = ∅
while i ≤ K do
S0 = S0 ∪ arg maxi |〈y,Φi〉|, i 6∈ B0(S0), i = i+ 1

end while
y0
r = y−ΦS0Φ†S0y, n = 1

LOOP:
repeat
i = 1, Sn = Sn−1

while i ≤ K do
Sn = Sn ∪ arg maxi |〈y,Φi〉|, i 6∈ B0(Sn), i = i+ 1

end while
a = (ΦSn)†y
Sn = supp(thresh(a,K))
Ω = ∪{∆(s− 1),∆s,∆(s+ 1)|s ∈ Sn}
From T(y,A,Ω) obtain f̃ and ω̃ using (C.9) and (C.6)
ynr = y−Af̃ , n = n+ 1

until ||ynr ||2 > ||yn−1
r ||2 ∨ n ≤ K

and SDP), we apply the MUSIC algorithm [17] on the reconstructed signal to estimate
its frequencies. In the BISP and BOMP algorithms, we exclude atoms with coherence
η > 0.25 using (C.4).

For the first experiment, we explore a range of subsampling ratios κ with noiseless
measurements to verify the level of compression that allows for successful estimation.
We set ε = 10−10 for the relevant algorithms. The result of the numerical experi-
ment is shown in Figure C.1. In the noiseless case, SDP obtains the best result. The
polar interpolation algorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation error. When the number of
measurements M is sufficiently small, CBP outperforms `1-synthesis. The performance
of BOMP and SIHT is worst among the algorithms tested. Surprisingly, while the DFT
coefficients x found by `1-synthesis are not sparse and do not match the original fre-
quencies, the signal f is still reconstructed accurately, and so the MUSIC algorithm
recovers the frequencies adequately.

For the second experiment, we include measurement noise in the signal model. We
fix κ = 0.5 and vary the signal-to-noise ratio (SNR) from 0 to 20 dB. In the noisy case,
the polar interpolation algorithms perform best. This is because their interpolation
step relies less on the sparsity of the signal and more on the known signal model and
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Fig. C.1: Frequency estimation performance in noise-less case. The legend is shown in Fig. C.2.

Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table C.1: Average computation times in seconds.

the fitting to a circle on the manifold. Additionally, the presence of noise renders the
measurements non-sparse in the dictionaries used by the non-interpolating algorithms,
hindering their performance.

The computation time of the algorithms is also of importance, and we have listed
the average computation times in Table C.1. We observed that most algorithms exhibit
computation time roughly independent of M , with the exception of `1-synthesis and
CBP3. The table shows that the excellent performance of SDP in Figure C.1 is tempered
by its high computational complexity, as well as its lack of flexibility on the measurement
scheme. Moreover, the relaxation in BISP that accounts for the presence of noise reduces
its computation time, increasing its performance advantage over SDP and CBP.

3See results at http://www.sparsesampling.com/scspi.

http://www.sparsesampling.com/scspi
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Fig. C.2: Frequency estimation performance in noisy case.
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Abstract
We show that compressive sensing (CS) applied to time delay estimation (TDE) simul-
taneously enables a reduction in the sampling frequency and preserves good estimation
precision. With CS, we seek to recover signals and parameters from an under-determined
system of linear equations by assuming sparsity in a known dictionary. A common prob-
lem in CS is that the observed signals may not be sparsely representable in the dictionary.
This problem also occurs in TDE as the delay parameter is a continuous parameter. We
remedy this issue by combining CS with interpolation.

D.1 Problem Formulation
Let the received time-domain analog signal be defined as

f(t;α, τ ) =
K∑
i=1

αi · g(t− τi) + n(t), (D.1)

where α = {α1, α2, · · · , αK} are the unknown signal amplitudes, τ = {τ1, τ2, · · · , τK}
are the unknown signal delays in time, g(t) is a known signal waveform and n(t) is the
noise. The task of the estimation algorithm is then to estimate α and τ from a sampled
version of Eqn. (D.1). Depending on the bandwidth of g(t), the required sampling rate
to estimate the delays to a desired precision may be high. If we assume that only a
few signal components are active, i.e. K is small, we may use CS to achieve the desired
precision at a lower sampling rate. With a CS receiver the received signal is y = Φf ,
where f ∈ CN is the Nyquist sampled version of Eqn. (D.1), y ∈ CM is the received
signal and Φ ∈ RM×N is the CS measurement matrix.

To enable reconstruction CS requires a sparsifying dictionary Ψ ∈ CN×N . In the
case of TDE the dictionary is a circulant matrix of delayed waveforms. Since the delay
parameter is continuous the received signal may not be sparsely representable by the
dictionary, which may lower performance.

Our contribution is bridging the work on CS and interpolation to improve estima-
tor precision in TDE while keeping the sampling frequency low. This is achieved by
incorporating an interpolation step in a greedy algorithm. In each iteration of the algo-
rithm, after finding the strongest correlating atom in the dictionary, we propose to use
an interpolation function to improve the estimation precision. There are many possible
choices of interpolation functions. In this work we compare two such functions: second
order polynomial and polar interpolation based on a manifold model.
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D.2 Numerical Simulations
We compare five delay estimators: 1) BOMP is an existing greedy algorithm without
interpolation, 2) PaIBOMP adds to BOMP parabolic interpolation, 3) PoIBOMP uses
polar interpolation, 4) TDE MUSIC reconstructs the signal using `1-minimization and
then estimates the delays using the MUSIC algorithm, and 5) TDE MUSIC/subsample
directly downsamples the signal by a factor of N/M and estimates the delays using
the MUSIC algorithm. The last algorithm shows that direct downsampling fails due to
aliasing.

In the first experiments we assume a noise-free signal and vary the number of mea-
surements M = κN , where κ ∈ [0, 1) is the CS subsampling rate. Fig. D.1 shows the
performance of the five estimators by computing the time delay mean squared error
(τ -MSE) between the true and estimated value of the time delay. This corresponds to
the sample variance of the estimators and is a measure of estimator precision. All four
CS estimators allow for subsampling while maintaining good estimation precision. TDE
MUSIC performs best for low κ, while the interpolation algorithms perform best as κ
increases.

For the second experiment we include additive white Gaussian measurement noise
in the signal model. We fix κ = 0.5 and vary the signal-to-noise ratio (SNR). Fig. D.2
shows that the algorithms are affected by noise, but as SNR increases they converge
towards the results for κ = 0.5 in Fig. D.1.

These numerical results show that CS coupled with interpolation enables subsam-
pling while maintaining a desired estimation precision. For full details, see our technical
report [1] and our website www.sparsesampling.com/tde.

www.sparsesampling.com/tde
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E.1. Introduction 109

Abstract
We propose new compressive parameter estimation algorithms that make use of polar
interpolation to improve the estimator precision. Moreover, we evaluate six algorithms
for estimation of parameters in sparse translation-invariant signals, exemplified with the
time delay estimation problem. The evaluation is based on three performance metrics:
estimator precision, sampling rate and computational complexity. We use compressive
sensing with all the algorithms to lower the necessary sampling rate and show that it is
still possible to attain good estimation precision and keep the computational complexity
low. The proposed algorithms are based on polar interpolation and our numerical ex-
periments show that they outperform existing approaches that either leverage polynomial
interpolation or are based on a conversion to an frequency-estimation problem followed
by a super-resolution algorithm. The algorithms studied here provide various tradeoffs
between computational complexity, estimation precision and necessary sampling rate.
The work shows that compressive sensing for the class of sparse translation-invariant
signals allows for a lower sampling rate and that the use of polar interpolation increases
the estimation precision.

E.1 Introduction
Compressive sensing (CS) is a technique to simultaneously acquire and reduce the di-
mensionality of sparse signals in a randomized fashion. More precisely, in the CS frame-
work, a signal f ∈ CN is sampled by M linear measurements of the form y = Af , where
A ∈ CM×N is a sensing matrix andM < N . In practice, the measurements are acquired
in the presence of additive signal and measurement noise n and w, respectively, in which
case we have y = A (f + n) + w.

In many applications, the signal f is not sparse but has a sparse representation in
some dictionary D ∈ C. In other words, we have f = Dx, where x ∈ C is K-sparse (i.e.
‖x‖0 ≤ K). Under certain conditions on the matrix A [1, 2], we can recover x from the
measurements y through the following `1-minimization problem (which we refer to as
`1-synthesis):

x̂ = min
x̃∈CN

‖x̃‖1 s.t. ‖ADx̃− y‖2 ≤ ε, (E.1)

where ε is an upper bound on the noise level ‖An + w‖2. Note that optimal recovery
of x from the optimization in Eqn. (E.1) is guaranteed only when the elements of the
dictionary D form an orthonormal basis, and thus are incoherent [3, 4]. However, in
many applications, the signal of interest is sparse in an overcomplete dictionary or a
frame, rather than in a basis.

Classic CS requires sparsity in some matrix dictionary to work, but in many cases
a signal may be sparse with respect to some parametric model instead. Previous work
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has shown that CS may experience problems in such cases, when using the tradi-
tional dictionary-based approach [5]. One such class of signals is sparse translation-
invariant signals. Here, translation invariance or translation symmetry refers to the
Euclidean norm of the signal, which must remain the same after translation. Let
g(bi) = Mg(bi), g(bi) ∈ CN denote a point in the signal manifold Mg(·) parame-
terized by a translation parameter bi. A function g(bi) is translation-invariant if it
fulfills two requirements: 1) preservation of the `2-norm under translation, ‖g(b1)‖2 =
‖g(b2)‖2,∀b1, b2, and 2) locally constant (symmetrical) curvature of the signal manifold,
‖g(b− g(b−∆))‖2 = ‖g(b− g(b+ ∆))‖2,∀b, where ∆ is some sufficiently small change
in the parameter.

Two examples of estimation problems with translation-invariant signals are Time
Delay Estimation (TDE) and Frequency Estimation (FE). TDE of one or more known
signal waveforms from sampled data is of interest in several fields such as radar, sonar,
wireless communications, audio, speech and medical signal processing. The TDE prob-
lem is often defined as receiving a known signal with an unknown delay and amplitude
coefficient that must be estimated. Similarly, FE concerns the estimation of the fre-
quency components of a received sum of exponentials, which is of interest in seismology,
audio, speech and music processing, radar and sonar.

For this type of estimation problems there can be different parameters and per-
formance metrics. In this work, we focus on three important performance metrics:
estimation precision, computational complexity, and necessary sampling rate to acquire
the analog signal. We use CS to lower the necessary sampling rate while still providing
good estimation precision. The algorithms we evaluate vary in computational complex-
ity and, not surprisingly, the most computationally heavy algorithms perform the best.
In some cases the difference between the best and worst algorithms’ estimation precision
performance is four orders of magnitude, while the computational complexity is two or-
ders of magnitude larger. It follows that this becomes a design trade-off for individual
problems.

We propose two algorithms that leverage polar interpolation to improve the estima-
tion precision. Interpolation is necessary because of the required discrete dictionary in
CS systems. With a dictionary matrix, we assume the delay or frequency parameter
takes values from a finite set only:

D =
[
g(b1) g(b2) · · · g(bN )

]
. (E.2)

In reality, the parameter is drawn from a continuous interval. One way to overcome
this is to increase the number of atoms in the dictionary; however, this increases the
coherence. Instead, the proposed algorithms feature a dictionary that can sparsely rep-
resent any sparse translation-invariant signal with a parameter drawn from a continuous
interval.

In a recent paper, it was shown how polar interpolation may be utilized for FE in the
case where the amplitude coefficients are real and non-negative [6]. In this paper, we



E.2. Previous Work 111

will show that if both positive and negative complex amplitude coefficients are allowed,
the coherence introduced by the FE dictionary to enable interpolation does not allow
for a unique, sparse solution. We postulate that this broader problem may be solved
with stronger constraints or a different convex optimization formulation, but we do not
focus on this extension. Instead we have our main focus on the use of interpolation and
CS to solve the TDE problem where such coherence is not an issue.

The contribution of this paper consists of mainly two points: 1) Two proposed
algorithms that outperform other TDE algorithms, but may also be used for other
sparse translation-invariant signals and 2) An evaluation of different TDE algorithms’
performance when coupled with CS.

In the next section, we present previous work in the area of interpolation between dic-
tionary elements and TDE estimation on a continuous parameter space. In Section E.3
we review the polar interpolation technique and introduce an advanced convex optimiza-
tion formulation to handle coefficient vectors that are not real and non-negative. This
is followed by Section E.4 in which we introduce an iterative, greedy algorithm based on
interpolation. In Section E.5 we evaluate the proposed algorithms and compare them to
other state-of-the-art TDE algorithms. We investigate their performance for well-spaced
pulses and for overlapping pulses, and we evaluate the estimators’ performance under
varying levels of measurement noise and signal noise. Finally, Section E.6 concludes the
paper.

E.2 Previous Work
Prior work on the problem of sparsity in parametric dictionaries includes [7, 8], which
uses a gradient descent approach to approximate solutions off the grid for a generic
greedy algorithm. Another common method is to use parabolic or polynomial inter-
polation on a sampled autocorrelation function to increase the precision for sampled
data [9–11]. The simplest and most often used polynomial interpolation is fitting a
parabola around the correlation peak. In [10] it is proposed to use a Direct Correlator
function for parabolic interpolation:

bi = −∆
2

R̂f [n+ 1]− R̂f [n− 1]
R̂f [n+ 1]− 2R̂f [n] + R̂f [n− 1]

+ n∆,

where bi is the translation parameter to estimate, ∆ is the spacing in time between
samples of the discrete autocorrelation function:

R̂f [m] =
N∑
l=1

f [l] · f [l −m], (E.3)

and n is the index of the largest absolute entry in R̂f . This estimator is easily im-
plemented in a greedy algorithm, where an estimate of the discrete autocorrelation is
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readily available as the signal proxy. In some cases, it is possible to improve the estima-
tion using different polynomial interpolation techniques for different problems, see, e.g.,
the references in [12]. Interpolation-based algorithms improve the estimation precision
but suffers from interference problems if the signal components are not orthogonal to
each other. The polynomial interpolation approach is similar to one of the two algo-
rithms proposed in [13], one using a first-order Taylor expansion, the other a form of
polar interpolation. The authors show that polar interpolation outperforms Taylor ex-
pansion. In our work we extend upon the polar interpolation approach. In [14–16], the
authors use coherence rejection to better estimate a solution. Additionally, [15] uses
polynomial interpolation. In [16] the coherence rejection is implemented as functions
that inhibit coherent atoms in the recovery algorithms. This function is used in greedy
algorithms to trim the proxy before selecting the strongest correlating atom. Based on
the coherence between a subset S of atoms from the dictionary and its complement, we
can define the η-coherence band of the index set S as

Bη(S) =
⋃
k∈S

{i | µ(i, k) > η}, i ∈ {1, 2, . . . , P}, (E.4)

where µ(i, k) = |〈g(bi),g(bk)〉| is the coherence between two atoms, g(bi) and g(bk) in
the dictionary D. The authors use the band exclusion function to avoid selecting coher-
ent dictionary elements in various greedy algorithms. When applied to the Orthogonal
Matching Pursuit (OMP) algorithm, the resulting enhanced algorithm is called Band-
excluded Orthogonal Matching Pursuit (BOMP) [16].

Another approach to time delay estimation is to use FFT-based methods, where the
problem is converted to a frequency estimation problem and solved using line spectral
estimation approaches such as the Multiple Signal Classification (MUSIC) algorithm [17]
or the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)
algorithm [18]. This approach exploits the fact that the dictionary matrix is cyclic.
In [19], the TDE problem is converted to an FE problem and solve it by means of the
ESPRIT algorithm. This is done by pre-multiplying the matrix product G−1F on the
received signal vector, f = Dx:

y = G−1Ff = G−1FDx = G−1GFx = Fx, (E.5)

where G is a diagonal matrix with the Fourier transform of the first column of D on the
diagonal and zero elsewhere and F is the DFT matrix. Because D is a cyclic matrix, it is
diagonalized by the DFT matrix, i.e. FD = GF. Then y contains a sum of exponentials
and we may then use a super-resolution algorithm to estimate the frequencies, which can
be directly mapped to delays. However, this method has certain pitfalls. As mentioned
in [20, 21] the spectrum of the pulse in G must be nonzero everywhere and the noise
can no longer be assumed white, due to the multiplication with the inverse of the known
spectrum. The signal used in this work spans the entire spectrum in which we sample
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and therefore does not suffer from the first problem. The noise will be colored, but in
our numerical experiments this does not seem to decrease the performance much.

A similar method has also been implemented using analog filters and using CS in [22];
however, it has limitations similar to those of the approach in Eqn. (E.5). The method
relies on filters that are tailored to the Fourier transform of the signal, similarly to the
G matrix used in the above. These filters must be stably invertible, which becomes
a problem if the spectrum is zero or close to zero at some frequencies. Furthermore,
these filters must also result in a coloring of the noise. The method in [19] may also be
used with CS by first reconstructing the signal using e.g. `1 synthesis as in Eqn. (E.1)
followed by estimation.

E.3 Polar Interpolation
One way to remedy the discretization of the parameter space implicit in CS is to use
interpolation. In [13], a polar interpolation approach for translation-invariant signals has
been derived. Such signals can be written as a linear combination of shifted versions of
a waveform. In a nutshell, the interpolation procedure exploits the fact that translated
versions of a waveform form a manifold which lies on the surface of a hypersphere. Thus,
any sufficiently small segment of the manifold can be well-approximated by an arc of a
circle, and an arbitrarily-shifted waveform can be accurately approximated by a point
in one such arc connecting dictionary elements.

Define the signals of interest as:

f(a,b) =
K∑
k=1

akg(bk), (E.6)

where K is the number of signal components, a =
[
a1 a2 . . . aK

]
∈ C1×K is a vec-

tor of complex amplitude coefficients, g(b) is a translation-invariant parametric signal,
parameterized by a translation parameter from b =

[
b1 b2 . . . bK

]
∈ R1×K .

In this case, the dictionary D from Eqn. (E.2) samples the translation parameter
space with step size ∆, and we approximate each segment of the manifold {Mg(bn), bn ∈
[bp−∆

2 , bp+
∆
2 ]} by a circular arc containing the three exponentials {g(bp−∆

2 ),g(bp),g(bp+
∆
2 )}. Making use of trigonometric identities, the polar interpolation approximates the
waveform g(bn) using the arc containing bp, where bp = JbnK = round

(
bn

∆
)

∆, so that
bn = bp + ∆n, ∆n ∈ (−∆

2 ,
∆
2 ). Here, bp = JbnK signifies the selection of the closest atom
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in the dictionary bp to the input parameter bn. This arc is parametrized as follows [13]:

g̃(bn) = c(bp) + r cos
(

2∆n

∆ θ

)
u(bp) + r sin

(
2∆n

∆ θ

)
v(bp),c(bp)T

u(bp)T
v(bp)T

 =

1 r cos(θ) −r sin(θ)
1 r 0
1 r cos(θ) r sin(θ)

−1 g(bp − ∆
2 )T

g(bp)T
g(bp + ∆

2 )T

 , (E.7)

where r is the `2 norm of each element of the dictionary and θ is the angle between
g(bp) and g(bp − ∆

2 ):

r = ‖g(bp)‖2,

θ =
Re{〈g(bp),g(bp − ∆

2 )〉}
‖g(bp)‖2 · ‖g(bp − ∆

2 )‖2

for all p ∈ {1, 2, . . . , P}. In order to extend the above approximation to include multiple
waveforms, we introduce three dictionaries that sample the parameter space JΩJK =
{Jb1K, Jb2K, . . . , JbJK}:

f̃(ΩJ) = C(JΩJK)α+ U(JΩJK)β + V(JΩJK)γ,
C(ΩJ) =

[
c(Jb1K) c(Jb2K) · · · c(JbJK)

]
∈ CN×J ,

U(ΩJ) =
[
u(Jb1K) u(Jb2K) · · · u(JbJK)

]
∈ CN×J ,

V(ΩJ) =
[
v(Jb1K) v(Jb2K) · · · v(JbJK)

]
∈ CN×J , (E.8)

where α represents the amplitude of the signal and β and γ controls the parameter
translations.

E.3.1 Simple convex optimization problem
The three coefficient vectors, α,β and γ, can be estimated using the following con-
strained convex optimization problem from [13], which is a variant of the classical Basis
Pursuit Denoising algorithm [23]:

(α,β,γ) = T(y,ΩJ) (E.9)

= argmin
α,β,γ

1
2σ2 ‖y− f̃(ΩJ)‖22 + λ‖α‖1

s.t.


αj ≥ 0,√

β2
j + γ2

j ≤ αjr,
αjr cos(θ) ≤ βj ≤ αjr,

 for j = 1, . . . , J,
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where y is the received compressed signal and σ2 is the squared norm of the measure-
ment and signal noise. Here, λ is used as a weighting factor between sparsity and fidelity.
The constraints for the optimization problem ensure that the solution consists of points
on the arcs used for approximation. The first constraint ensures we have only nonnega-
tive signal amplitudes. The second enforces the trigonometric relationship among each
triplet αj , βj , and γj . The last constraint ensures that the angle between the solution
and g(bp) is restricted to the interval [−θ, θ]. It is necessary to scale β and γ after the
optimization problem [13]:

(βj , γj)←

 βjαjr√
β2
j + γ2

j

,
γjαjr√
β2
j + γ2

j

 , ∀j. (E.10)

This is because the inequality of the second constraint should in fact be an equality.
However, the equality would violate the convexity assumption of the optimization. After
this normalization, we obtain the signal estimate from Eqn. (E.8) and the frequency
estimates using the one-to-one relation:

αnc(bp) + βnu(bp) + γnv(bp) ≈ ang
(
bp + ∆

2θ tan−1( γn

βn
)
)
, (E.11)

where the argument of g(·) is the estimate of bn. The change in index from j to n is
because only the K absolute largest entries in α and the corresponding entries in β
and γ are used for estimation, as they represent the active atoms. The authors in [13]
have named this algorithm Continuous Basis Pursuit (CBP). However, their formulation
assumes non-negative real values for the amplitude coefficients a, which precludes many
real-world settings. Additionally, their choice of fidelity/sparsity trade-off in the convex
optimization formulation does not distinguish between noise and approximation error
in the polar interpolation. To address these issues, we propose an improved convex
optimization formulation in this section.

E.3.2 Advanced convex optimization problem
One of the contributions of this paper is an improved convex optimization formulation
of Eqn. (E.9). To achieve this we first introduce a metric for the approximation noise,
which is used together with the signal and measurement noise σ2 as a measure of uncer-
tainty in the fidelity of the solution in the optimization problem. The reason for these
approximation errors is that the fitting of a circle to the manifold is rarely perfect. This
approximation error δ is a function of the choice of waveform g(·), spacing ∆, and the
translation parameter bn. Let bn = bp + ∆n be an arbitrary parameter value, defined
using an atom in the dictionary bp and the translation variable ∆n ∈ (−∆

2 ,
∆
2 ). The

interpolation is based on the assumption that the ratio between ∆/2 and the arbitrary



116 Paper E.

translation variable ∆n is equal to the ratio between θ and the angle θn between g(bp)
and g(bn). Define the ratio of angles as:

θn
θ

=
Re{〈g(bp),g(bn)〉}‖g(bp)‖2 · ‖g(bp + ∆

2 )‖2
Re{〈g(bp),g(bp + ∆

2 )〉}‖g(bp)‖2 · ‖g(bn)‖2
(E.12)

= Re{〈g(bp),g(bn)〉}
Re{〈g(bp),g(bp + ∆

2 )〉}
, (E.13)

as the Euclidean norm of any of the vectors on the manifold is equal to r. Therefore,
define the following bound:∣∣∣∣∣ Re{〈g(bp),g(bn)〉}

Re{〈g(bp),g(bp + ∆
2 )〉}

∣∣∣∣∣ ≤
∣∣∣∣ ∆n

∆/2

∣∣∣∣+ δ (E.14)

This bound cannot be calculated in closed form for all classes of waveforms g(·), but it
may be numerically simulated for choices of ∆ and bn. Assuming that the manifold is
smooth, it is possible to find the approximation error δ as a function of ∆ and ∆n for all
possible choices of bp. Then, by finding the maximum value of that function, we obtain
the worst-case bound on the interpolation error. To compute this bound ζ, we find the
distance between the actual vector on the manifold and the approximated vector, based
on the value of b that gives the maximum error:

ζ = ‖g(b̂)− g̃(b̂)‖2,

b̂ = argmax
b̂

∣∣∣∣∣ Re{〈g(bp),g(b̂)〉}
Re{〈g(bp),g(bp + ∆

2 )〉}
− ∆n

∆/2

∣∣∣∣∣ (E.15)

This value may then be input into the convex optimization solver. The reason why the
error is found on the signal g̃(b̂), rather than on the parameter estimate b̂, is because
the fidelity constraint in the convex optimization formulation is based on the function
reconstruction error.

To include the approximation error and extend the optimization problem to also
allow for arbitrary complex amplitude coefficients, we reformulate the problem formu-
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lation from Eqn. (E.9) using variable substitution:

α = αr,p −αr,n + j(αi,p −αi,n), α ∈ C1×J

β = βr,p − βr,n + j(βi,p − βi,n), β ∈ C1×J

γ = γr,p − γr,n + j(γi,p − γi,n), γ ∈ C1×J

xα =
[
αr,p αr,n αi,p αi,n

]
, xα ∈ C1×4J

xβ =
[
βr,p βr,n βi,p βi,n

]
, xβ ∈ C1×4J

xγ =
[
γr,p γr,n γi,p γi,n

]
, xγ ∈ C1×4J

x =
[
xα xβ xγ

]T
,

E(ΩJ) =
[
C(ΩJ) −C(ΩJ) jC(ΩJ) −jC(ΩJ) U(ΩJ) −U(ΩJ) · · · −jV(ΩJ)

]
.

(E.16)

We then use x as the optimization variable, together with another variable, t, which is
used in a mixed `1 − `2 norm to control the sparsity. Then, the convex optimization
problem becomes:

x = T(y,A,ΩJ) = min
x,t
‖y−AE(ΩJ)x‖22 + λ

2(σ2 + ζ)‖t‖1

s.t.
{ √

xβ(j)2 + xγ(j)2 ≤ xα(j)r,
xα(j)r cos(θ) ≤ xβ(j) ≤ xα(j)r,

}
for j = 1, . . . , 4J,{

t(j) ≥
√
αr,p(j)2 +αr,n(j)2 +αi,p(j)2 +αi,n(j)2

}
for j = 1, . . . , J,

(E.17)

Here we have included the CS measurement matrix A, which was not part of the work
in [13]. This formulation allows for both complex and negative amplitudes. This opti-
mization formulation, when applied with all parameter values used in the dictionary D,
we name Complex Continuous Basis Pursuit (CCBP):

(x) = TCCBP(y,A,ΩCCBP ), (E.18)

where ΩCCBP = {b1, b2, . . . , bP } is the set of all translation parameters that appear in
the dictionary for the application of interest. Parameter estimates are then obtained
using Eqns. (E.10-E.11). CCBP has a high computational complexity; it operates on
matrices of size 12N , whereas other CS algorithms operate on matrices of size N . How-
ever, its interpolation step has one important advantage: translation-invariance and
interpolation enables CCBP to reconstruct arbitrary translation invariant sparse sig-
nals while requiring only a small subset of the N parameters to be contained in the
corresponding dictionary. This makes it possible to incorporate the convex optimiza-
tion solver into a greedy algorithm that quickly finds a rough estimate, which is then
improved upon by a convex optimization solver.
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E.4 Interpolating Band-excluded Orthogonal Match-
ing Pursuit

To be able to leverage both the accuracy of the convex optimization solvers and the
speed of a greedy algorithm, we propose a greedy algorithm, which may improve upon
its estimate using the convex optimization in (E.17). In [6] it is shown how the Subspace
Pursuit algorithm [24] may be utilized for this purpose. However, in that work the
frequencies to estimate are well separated, whereas in this work, we also evaluate the
algorithms for overlapping pulses with the band exclusion function disabled. In that
case the Subspace Pursuit algorithm may pick an incorrect dictionary element that is
coherent with a strong signal component rather than the correct dictionary element for a
weak signal component. This happens because the Subspace Pursuit algorithm attempts
to find all the pulses in the signal in one iteration. Instead, we utilize the BOMP
algorithm with interpolation, termed Interpolating Band-excluded Orthogonal Matching
Pursuit (IBOMP). This is a greedy algorithm with an optional convex optimization
problem. The algorithm improves upon the BOMP algorithm by using interpolation
in each iteration to enhance the estimate of the translation parameter. The IBOMP
algorithm is shown in Algorithm 7. First, the best correlating atom index in is found
by generating a proxy for the sparse signal. This proxy is trimmed based on the band
exclusion function Bη(S), as defined in Eqn. (E.4). The selected atom, in, is then
input to an interpolation function, T(·). This function outputs an estimated translation
parameter, which is used to create a new atom for a signal dictionary, B, by using the
original parametric signal model. This new signal dictionary is used to find the basis
coefficients a using least squares. Then, a new residual is calculated and n and S are
updated. This loop runs K times, i.e. once for each pulse in the signal. After the greedy
algorithm is done the estimates may be improved upon by running the CCBP algorithm
on a limited parameter set based on the current parameter estimates. When exiting the
loop the estimates found by the greedy algorithm are put into a new set, Ω, together
with ξ adjacent indices. This is necessary because the parameter values generating
y may not be sufficiently incoherent and may therefore skew the peaks of the proxy
estimate. Therefore, as a precaution, we include the closest neighbors on each side. The
set Ω is input to the convex optimization in (E.17) along with the measurement matrix
and the received signal. The output from the CCBP algorithm is used to generate new
estimates of the reconstructed signal f̃ and the parameter vector b̃.

In this work we use two interpolation functions: parabolic interpolation and polar
interpolation.

Parabolic Interpolation Function
We define the parabolic interpolation function based on Eqn. (E.2) as follows:

TPa(yres,A, in) = −∆
2

R̂[in + 1]− R̂[in − 1]
R̂[in + 1]− 2R̂[in] + R̂[in − 1]

+ in∆, (E.19)
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Algorithm 7 Interpolating Band-excluded Orthogonal Matching Pursuit (IBOMP)
INPUTS: Compressed signal y, interpolation function T(·), dictionary D, measure-
ment matrix A and number of adjacent indicies to include in the CCBP algorithm ξ.

OUTPUTS: Reconstructed signal f̃ and parameter estimates b̃.
Initialize: yres = y, B = ∅, n = 1 and Sn = ∅.
while n ≤ K do
in = arg maxi |〈yres,ADi〉|, i 6∈ B0(Sn−1)
b̂n = T(yres,A, in)
Include sampled version of f(t− b̂n) as new atom in B
a = (AB)†y
yres = y−ABa
n = n+ 1
Sn = Sn−1 ∪ {in}

end while
Ω = ∪{∆(s− ξ),∆s,∆(s+ ξ)|s ∈ Sn}
Use T(y,A,Ω) from Eqn. (E.17) to obtain x
Obtain f̃ and b̃ using (E.11) and (E.8)

where R̂[m] is defined as:

R̂[m] =
N∑
l=1

yres[l] ·Ag[l −m], (E.20)

In the IBOMP algorithm there is no reason to calculate the R̂[m] function as it is
identical to the proxy in the greedy algorithm.

Polar Interpolation Function
The polar interpolation function is based on Eqn. (E.7). We reformulate those equations
to a linear least squares problem:

yres,n ≈ A
[
g(bp − ∆

2 ) g(bp) g(bp + ∆
2 )
]
1 r cos(θ) −r sin(θ)

1 r 0
1 r cos(θ) r sin(θ)

−1

T

x,

x =

 ai
air cos

( 2∆nθ
∆
)

air sin
( 2∆nθ

∆
)
 . (E.21)

In this formula, a rotation matrix rotates the three g vectors to form a new, general
basis for the circle arc and x scales the vectors in that basis to estimate the received
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signal. Given a signal or residual yres,n and the atom g(bp) in the dictionary that
correlates the strongest with the residual, we may solve Eqn. (E.21) as a linear least
squares problem with x as the unknown. From the estimate x̂ = {x̂1, x̂2, x̂3}, we may
obtain an estimate of bn = bp + ∆n as:

bn = bp + arctan
(
x̂3

x̂2

)
∆
2θ . (E.22)

We term the interpolation function in Eqn. (E.21) TPo(yres,A, in), where in is the index
in the dictionary for g(bp).

The IBOMP algorithm finds one estimate of a pulse using either parabolic inter-
polation as in Eqn. (E.19) or polar interpolation as in Eqn. (E.21) and then removes
that estimated waveform from the residual yres,n, after which it continues to work on
the residual. After the greedy algorithm has found a number of promising estimates,
we may improve upon these with the CCBP algorithm. Another solution would be
to use CCBP in each iteration of the BOMP algorithm. However, this increases the
computational complexity and in our experiments we have not found that this improves
performance.

For the band exclusion function, we set η = 0 if we know that the pulses are well
spaced (i.e. orthogonal). In that case, the band exclusion does not inhibit two pulses
from interfering, but inhibits the algorithm from finding the same pulse again due to a
large remaining residual. Otherwise, if we are only interested in identifying pulses with
a given spacing, we may adjust η to reflect this. If we cannot make any assumption to
the spacing, we set η = 1.

In the numerical experiments, we investigate the effect of the optional CCBP algo-
rithm after the greedy algorithm. To distinguish between the IBOMP algorithm with
and without this optional step, we write IBOMP+CCBP if the algorithm uses the CCBP
algorithm and IBOMP if it does not. Furthermore, to distinguish whether parabolic in-
terpolation or polar interpolation is used, we use PaIBOMP and PoIBOMP instead of
IBOMP.

E.5 Numerical Experiments
To evaluate the proposed algorithms, we first must find good parameter values for
the convex optimization problem. The two parameters ζ and λ signify approximation
error and sparsity trade-off, respectively. This analysis shows why the FE problem
is more complex than the TDE problem when assuming both positive and negative
complex amplitude coefficients. The analysis is followed by experiments for the TDE
problem that evaluate the proposed algorithms in different scenarios. We investigate
their performance for well-spaced pulses and for overlapping pulses and we investi-
gate the performance when the signal experiences signal noise instead of measurement
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noise. All the code along with the results and figures in this paper is available at
www.sparsesampling.com/cpe following the principle of Reproducible Research [25].

Before explaining the experiments further, we define the two types of signals and the
dictionaries that are used in all the following experiments. For both types, the general
signal model is as defined in Eqn. (E.6).

For the TDE numerical experiments, we let the pulse model g(t) be a chirp signal
defined as

g(t, bn) = 1√
Eg
· ej2π(f0+ ∆f

2T (t−bn))(t−bn) · p(t− bn),

p(t) =
{
T
2 (1 + cos(2πt/T )), t ∈ (0, T )

0, otherwise , (E.23)

where f0 = 1MHz is the center frequency, ∆f = 40MHz is the sweeped frequency , and
T = 1µs is the duration of the chirp in time. The chirp is limited in time by a raised
cosine pulse and normalized to unit energy. We generate a sampled time signal, g(bn)
by sampling the pulse function:

g(bn) =
[
g1(bn) g2(bn) · · · gN (bn)

]
, gi(bn) = g(t− (i− 1)Ts, bn) (E.24)

Here, Ts is the sampling period. We sample the signal at 50MHz, since the corresponding
bandwidth of the signal contains more than 99% of its energy. For each signal we take
N = 500 samples. The dictionary D for the TDE problem is a circulant matrix with
shifted versions of g(bn):

DTDE =
[
g(b1) g(b2) · · · g(bN )

]

=


g[0] g[N − 1] · · · g[1]

g[1] g[0]
. . . g[2]

...
...

. . .
...

g[N − 1] g[N − 2] · · · g[0]

 , (E.25)

where g(0) =
[
g[0] g[1] · · · g[N ]

]T . This means that the spacing between atoms in
this dictionary is equal to the sampling rate, Ts.

For the FE numerical experiments we generate frequency-sparse signals of length
N = 100 containingK complex sinusoids with frequencies selected uniformly at random.
The continuous signal function then becomes:

g(t, bn) = 1√
N

expj2πbnt/N . (E.26)

The basic dictionary for this signal is a DFT matrix with spacing 1Hz between atoms.

www.sparsesampling.com/cpe
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Fig. E.1: Polar estimation approximation error analysis.

E.5.1 ζ and λ analysis
We first investigate the approximation error parameter, ζ. We have conducted numerical
experiments on the bound in Eqn. (E.15). These experiments are conducted for both
the TDE and FE problem, to show that the approximation error is problem-specific.

The approximation error from Eqn. (E.15) depends on the specific signal model
and the dictionary spacing ∆. For each of the two signal models, we have performed
numerical experiments for a range of spacings. For the TDE problem, the spacing is
defined as ∆ = Ts

c , where c is called the redundancy factor and is used as the experiment
variable. For the FE problem, the spacing is defined as ∆ = 1

c . In each experiment, we
pick a center atom in the dictionary and uniformly sample the parameter space around
that atom using 100 samples. Each sample constitutes a parameter value b to input into
the equations in Eqn. (E.15). The result of the experiment is shown in Fig. E.1. In the
figure, the approximation error is compared to the maximum approximation noise from
BOMP, i.e. the approximation error when a parameter lies exactly in between two atoms
in the dictionary. As can be seen, the FE signals suffer from a higher approximation
noise than the TDE case. For the TDE problem, good performance is achievable without
any redundancy in the dictionary, i.e. for c = 1, whereas for FE a higher redundancy
factor is needed. This, however, increases computation time significantly and introduces
coherence.

When the coherence of the dictionary increases, it becomes less likely to find a
unique, sparse solution to the problem. This is because of the coherence of the redun-
dant dictionary and the looseness of the fidelity constraint in Eqn. (E.17), due to the
approximation error. This is best illustrated using the Spark of the dictionary. Given
a matrix D we define σ = Spark(D) as the smallest possible number such that there
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exists a subgroup of σ columns from D that are linearly dependent [26]. The Spark is
computationally heavy to compute, but an upper bound can be found [26]. Define a
sequence of optimization problems, i = 1, . . . , N :

x̃0
i = min

x∈CN
‖x‖0 s.t. Dx = 0̄, xi = 1, (E.27)

Spark(D) = min
1≤i≤N

‖x̃0
i ‖0 (E.28)

The optimization problem is however not computationally feasible due to the `0 term.
Instead, we use a `1 norm, which is solvable in polynomial time using standard solvers.
Because ‖x̃0

i ‖0 ≤ ‖x̃1
i ‖0, we obtain the upper bound on the Spark:

x̃1
i = min

x∈CN
‖x‖1 s.t. Dx = 0̄, xi = 1, (E.29)

Spark(D) ≤ min
1≤i≤N

‖x̃1
i ‖0 (E.30)

Using the two dictionaries defined for the TDE and FE problems, we have found this
upper bound on the Spark. For the TDE problem Spark(DTDE) ≤ N , because all the
columns are linearly independent. There is no redundancy and the matrix has full rank.
Hence, coherence is not a problem in the TDE case. For the FE problem with c = 5 we
have Spark(DFE) ≤ 101. This problem seems to contradict the results from [6], where
polar interpolation works well for the FE problem. However, in that work the amplitude
coefficients are real and non-negative. If we find the spark with those assumptions i.e.,
solve the following optimization problem:

x̃1
i = min

x∈RN
‖x‖1 s.t. Dx = 0̄, xi = 1, x ≥ 0̄, (E.31)

Spark+(D) ≤ min
1≤i≤N

‖x̃1
i ‖0, (E.32)

the upper bound becomes Spark+(DFE) ≤ N even though the matrix D does not have
full rank.

The first result shows that polar interpolation is easier to apply to the TDE problem,
at least with the signal model chosen for this work, than to the FE problem. It does not
mean that polar interpolation cannot be applied to the FE problem, but it will require a
different convex optimization formulation in which the constraints are tightened further,
to shrink the solution set. This may be possible in the case where the problem allows for
some specific assumptions, e.g. some symmetry in the spectrum which can be formulated
as constraints in the optimization problem.

In the following we limit our focus to the TDE problem and show the estimator
performance in different scenarios. First, however, we must investigate what the other
optimization variable, λ, shall be. This is no trivial task as its optimal value changes
depending on the function g(t), the subsampling ratio κ, the SNR, etc. To visualize this
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Fig. E.2: λ analysis for CCBP. Left figure is with SNR 1000 and right figure is with λ = 1. The z-axis
is the mean squared error of the parameter estimate b-MSE. The scaling on the z-axis is microseconds
squared on a logarithmic scale.

and to find a good candidate for λ for later experiments, we have evaluated different
choices of λ for the TDE problem, while also varying κ and the SNR. The estimator
performance is evaluated in terms of the mean squared error (MSE) on the b parameter,
termed the b-MSE. This corresponds to the sample variance of the estimators and is
a measure of estimator precision. We perform Monte Carlo experiments to get an
average result on the error. In each experiment, we generate a time signal with one
pulse (K = 1) by sampling the signal function in Eqn. (E.6). The real and imaginary
part of the amplitude coefficient a are drawn from a uniform distribution between 1
and 10. As shown in Fig. E.1 there is no need for a redundant dictionary matrix for
the TDE problem, so we use c = 1, i.e. the dictionary has size 500 × 500. The results
are shown in Fig. E.2. The colorbar signifies the b-MSE in microseconds squared on
a logarithmic scale. As λ increases the `1-norm of the solution vector x decreases and
eventually becomes the zero-vector. When this happens the CCBP algorithm falls back
to the BOMP algorithm. As can be seen, λ = 1 is a good choice for TDE estimation.

E.5.2 Performance Evaluation of the estimators
Now the optimization variables for the TDE problem have been chosen and the next
experiment shall evaluate the estimation performance of the three proposed algorithms
versus other TDE algorithms when CS is applied. We evaluate the estimators in three
different scenarios:
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• Case A: Experiments for well-spaced pulses with and without measurement noise

• Case B: Experiments for overlapping pulses with and without measurement noise

• Case C: Experiments for overlapping pulses with signal noise

The two first cases evaluate how much the signal may be subsampled using CS and
still attain good estimation precision. The last case evaluates the effect of noise folding,
when the noise is added before the measurement matrix A is multiplied on.

For all the experiments we use a Random Demodulator CS measurement matrix [27],
Ψ ∈ {−1, 0, 1}M×N . We setM = κN , where κ ∈ [0, 0.5) is the CS subsampling rate. We
evaluate the performance of the three estimators by computing the translation parameter
mean squared error (b-MSE) between the true value of the time delay and the estimated
value. Each point in the plot is the result of more than 100 Monte Carlo experiments.
The algorithms we evaluate are as follows:

• BOMP - a greedy algorithm proposed in [16] with no interpolation,

• TDE-MUSIC - an algorithm that reconstructs the received signal using Eqn. (E.1)
after which the problem is converted to a frequency estimation problem that is
solved using the MUSIC algorithm, as explained in Eqn. (E.5),

• PaIBOMP - BOMP with parabolic interpolation,

• CCBP - The CCBP algorithm in Eqn. (E.18),

• PoIBOMP - BOMP with polar interpolation, and

• PaIBOMP+CCBP - BOMP with parabolic interpolation, where the estimates
are refined using the CCBP algorithm.

The reason why we use parabolic interpolation in the PaIBOMP+CCBP algorithm,
instead of polar interpolation is that the parabolic interpolation is more stable when
the pulses are overlapping. This is shown in the numerical experiments. For the PaI-
BOMP+CCBP algorithm we set ξ = 0, as we have rarely observed that the greedy
algorithms chooses the wrong atom for the TDE problem.

Case A: Well-spaced pulses

This experiment is performed with K = 3 well-spaced pulses, i.e. η = 0. The minimum
separation between pulses is set to 10−6 seconds, i.e. exactly the width of a pulse. This
means there is no overlap anywhere between pulses. The result of our comparison is
shown in Fig. E.3. As shown, the polar interpolation algorithms outperform all the other
algorithms. With ξ = 0 PaIBOMP+CCBP has the same computational complexity as
TDE-MUSIC, whereas CCBP is significantly more computationally heavy.
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Fig. E.3: The estimator precision with non-overlapping pulses for the TDE problem. The left figures
are noise-less experiments for varying choices of subsampling ratios, κ, while the right figures are for
κ = 0.4 and with varying SNR levels. The top figures is signal reconstruction quality, the middle row
is translation parameter estimation precision and the bottom row is average computation time.
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Fig. E.4: The estimator precision with overlapping pulses for the TDE problem. The left side is the
noise-less case with varying subsampling ratios and the right side is with κ = 0.4 and varying SNR
levels.

Also note that PoIBOMP outperforms both CCBP and PaIBOMP+CCBP while
also being significantly less computational complex. This is because the pulses are well
separated. In the next experiment, we use overlapping pulses which affects the purely
greedy algorithms more than the pure and hybrid convex optimization algorithms.

Case B: Overlapping pulses

For this experiment we use the same parameter values, except that the minimum pulse
separation is now set to 5·Ts, i.e. five times the sampling rate. The reason why we do not
set the separation to 0 is that if two identical pulses are received, there is no possibility
of correctly decoding these without introducing further assumptions. Therefore, we
introduce this minimum spacing. We set η = 1, i.e. we disable the band exclusion,
such that there is no restriction on which dictionary atoms are used in each iteration.
The result is shown in Fig. E.4.1 As can be seen the greedy algorithm are heavily
affected by this, especially BOMP and PoIBOMP. The PaIBOMP+CCBP algorithm is
also affected in that it requires a little higher κ before it attains the same performance

1In the experiment generating the figure to the right we have removed one spurious experiment
from the results. For κ = 0.5 in one out of 118 Monte Carlo simulations the generated signal and
the instantiation of the Random Demodulator correlated in such a way that the proxy in the greedy
algorithms contained two peaks instead of one. This resulted in a significant estimation error, but to
illustrate that this happened in only one individual experiment, we have removed it from the plots.
The original data set is available for inspection at www.sparsesampling.com/cpe.

www.sparsesampling.com/cpe
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as CCBP than in Fig. E.3. This figure also shows why we use parabolic interpolation
in the PaIBOMP+CCBP algorithm, instead of the polar interpolation from PoIBOMP.
When the pulses are overlapping the polar interpolation has erratic instability issues.
It is important to note that the irregularities for PoIBOMP in Fig. E.4 are due to a
single Monte Carlo simulation in which the estimation fails. Polar interpolation relies
on the value of all N dimensions of the signal for the hypersphere assumption and
when pulses are overlapping this assumption is incorrect. As shown in Eqn. (E.22)
the translation estimate for PoIBOMP relies on finding the inverse tangent and if x̂2
is erroneous this may result in a large error. In contrast, the parabolic interpolation
uses only three points from the cross correlation function. Hence, with overlapping
pulses the PoIBOMP algorithm suffers more from the interference from other pulses
than PaIBOMP.

Case C: Noise folding

In our final numerical experiment we investigate the effect of signal noise in the received
signal, rather than measurement noise. Signal noise introduces noise folding [28, 29],
which decreases reconstruction performance. Signal noise occurs when the signal models
is: y = A(Dx + n) + w, where n is the signal noise and w is the measurement noise. In
the experiments so far we have only considered measurement noise, but now we focus
on the signal noise and set the measurement noise to zero. The estimator performance
for κ = 1, i.e. no subsampling, and κ = 0.4 is shown in Fig. E.5. As can be seen in
the top two figures all the estimators’ signal reconstruction are affected by noise folding
when CS is used. However, in the bottom two figures we see that for the parameter
estimation some of the algorithms are still able to estimate the translation parameter
at a similar precision as without subsampling. The greedy algorithms are most heavily
affected by the noise folding, whereas the convex optimization based algorithms are less
affected. As shown in [29] noise folding may be remedied by using quantization. In that
work, the authors postulate that when a receiver uses e.g. half as many samples as a
classical receiver, it may instead use twice as many bits for quantization. This is also
demonstrated in [30] for a spread spectrum receiver.

E.6 Conclusion
With our numerical experiments, we show that the proposed CCBP and, with high
enough sampling frequency, PaIBOMP+CCBP algorithm outperform all the other al-
gorithms in terms of estimation precision. If the pulses are known to be well separated,
the PoIBOMP algorithm attains the best estimation precision, while having very low
computational complexity. If the pulses cannot be assumed well separated it is better
to use the pure convex optimization algorithm CCBP or the hybrid PaIBOMP+CCBP
to attain the best estimation precision. At lower subsampling ratios the algorithms that
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Fig. E.5: The function error and estimator precision with overlapping pulses and noise folding for the
TDE problem. The left side is for κ = 1 and the right side is for κ = 0.4.
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achieve the best performance are CCBP or TDE-MUSIC. In our experiments CCBP
attained the best estimation precision; however, it is also significantly more compu-
tationally complex. It may be possible to reduce this complexity through a more ju-
dicious formulation of solvers for the proposed optimization. The proposed modified
optimization problem introduces many new variables to be able to capture the full sig-
nal information, but it may be possible to decrease this number with a smarter problem
formulation.

In the last numerical experiment, we investigated the estimators’ performance when
the observations feature signal noise instead of measurement noise. This results in noise
folding which has been shown before to severely affect signal reconstruction. In our
experiments we see that the greedy algorithms are highly sensitive to such noise folding,
while TDE-MUSIC, CCBP and PaIBOMP+CCBP are less sensitive.

The work shows that compressive sensing for the class of sparse translation-invariant
signals allows for a lower sampling rate and that the use of polar interpolation increases
the estimation precision. The cost in terms of computational complexity is a trade-off
in terms of the desired estimation precision and whether it is known if the signal pulses
are well-separated or not.
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