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Summary

The thesis studies three important applications of random matrices to infor-
mation processing. Our main contribution is that we consider probabilistic
systems involving more general random matrix ensembles than the classical
ensembles with iid entries, i.e. models that account for statistical dependence
between the entries. Specifically, the involved matrices are invariant or fulfill
a certain asymptotic freeness condition as their dimensions grow to infin-
ity (large-system limit). Informally speaking, all latent variables contribute
to the system model in a democratic fashion – there are no preferred latent
variables in the system.

The thesis consists of one introductory chapter, a chapter providing a
background on random matrices (Chapter 2), followed by three chapters ad-
dressing specific applications of random matrix theory (Chapters 3-5). The
derivations of the results are collected in four appendices. Conclusions and
an outlook are presented in Chapter 6.

The background on random matrices provided in Chapter 2 is meant to
introduce the concepts, properties, and results that will be used in the appli-
cations addressed in the next chapters. This chapter also contains some novel
results, such as fundamental integral formulas involving the R-transform and
S-transform in free probability.

In Chapter 3 we investigate how the capacity of multiple-input–multiple-
output (MIMO) communication systems scales when the number of transmit
or receive antenna is altered. While doing this, we restrict ourself to the
transmission scenario where transmit antennas of the system send equal sig-
nal powers. In particular, for a system with R receive and T transmit antennas
and T < R, we showed the following universal capacity law: By removing
as many receive antennas as to get a square system, the maximum resulting
loss of capacity over all signal-to-noise-ratio (SNR)s does not depend on the
singular values of the channel. It only depends only on R, T and the left
singular vectors of the (initial) channel matrix. Assuming the matrix of left
singular vectors to be Haar, the ergodic rate loss can be expressed in terms
of the digamma function. As the system dimensions tend to infinity with
the ratio φ = T/R kept fixed, the rate loss normalized by R converges to the
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binary entropy function of the aspect ratio φ. We also unveil two integral
formulas involving the S-transform that fundamentally relate the capacity to
its affine approximation at high SNR.

In Chapter 4 we consider the signal recovery problem where the input
signal vector is mapped via a linear transformation to a vector that is then
passed through an output channel. We extend approximate message passing
(AMP) techniques to a general class of random matrices by combining two
frameworks: approximate inference based on expectation propagation and
free probability theory of random matrices. In particular, we obtain a set of
fixed point equations for solving the approximate inference problem. When
the entries of the transformation matrix are drawn iid with zero mean and
vanishing variance (in the large-system limit), these equations yield the fixed
points of AMP (or generalized AMP – GAMP). The generalization is simple;
it involves the R-transform (and/or S-transform) of the limiting eigenvalue
distribution of the Gramian of the transformation matrix.

In Chapter 5 we introduce a theoretical framework – on the basis of dy-
namical functional analysis – for iteratively solving the TAP fixed-point equa-
tions of the Ising model with general invariant random coupling matrices. In
particular, our method enables to construct a system of dynamical equations
that expresses the implicit memory terms which depend on the magneti-
zations at previous iteration steps. We can cancel these implicit memory
terms in such a way that the iterative algorithms depend only on Gaus-
sian distributed fields. By doing so we expect to get convergent algorithms.
Our framework allows to describe/analyze such iterative algorithms with a
single-variable trajectory in the large-system limit.



Resumé

Afhandlingen studerer tre vigtige anvendelser af tilfældige matricer indenfor
informationabehandling. Vores vigtigste bidrag er, at vi anser stokastiske
systemer der involverer mere generelle ensembler af tilfældige matricer, end
de klassiske ensembler med iid indgange, dvs. modeller der tager højde for
den statistiske afhængighed mellem indgangene. Konkret er de involverede
matricer invariante eller opfylder en bestemt asymptotisk frihedstilstand når
deres dimensioner vokser til uendeligt (stor-system grænsen). Uformelt set
bidrager alle latente variable i system modellen på demokratisk vis – der er
ingen foretrukne latente variable i systemet.

Afhandlingen bestaår af et indledende kapitel, et kapitel der introducerer
baggrundsviden om tilfældige matricer (Kapitel 2), efterfulgt af tre kapitler
der omhandler specifikke anvendelser af tilfældig matrix teori (Kapitel 3-
5). Udledning af resultaterne er samlet i fire bilag. Konklusioner og videre
perspektiver presenteres i Kapitel 6.

Baggrunden om tilfældige matricer, der fremføres i Kapitel 2, introducerer
de begreber, egenskaber og resultater som anvendes i de følgende kapitler
kapitler. Dette kapitel indeholder også nogle nye resultater, såsom grund-
læggende integralformler der involverer R-transformen og S-transformen i
fri sandsynlighed.

I Kapitel 3 undersøger vi, hvordan kapaciteten af multiple-input-multiple-
output (MIMO) kommunikationssystemer skalerer, når antallet af sende- eller
modtageantenner ændres. Vi begrænser os selv til et scenario, hvor sende an-
tennerne har den samme sendestyrke. For et system med R modtage og T
sendeantenner med T < R, finder vi følgende universelle kapacitets lov: Ved
at fjerne modtage antenner indtil der er lige mange modtage og sende anten-
ner, er der største resulterende tab af kapacitet over alle signal-til-støj forhold
(SNR) uafhængigt af kanalens singulærværdier. Det afhænger kun af R, T og
de venstre singulær vektorer af kanalmatricen. Antages matricen af vens sin-
gulær vektorer at være Haar, kan det ergodiske rate tab udtrykkes ved hjælp
af digamma funktionen. Som systemets dimensioner går mod uendeligt med
forholdet φ = T/R fastholdt, vil rate tabet normaliseret med R konvergere til
den binære entropi funktion evalueret i forholdet φ. Vi fremviser også to in-
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tegral formler via S-transformationen. De relaterer kapaciteten til dets affine
approksimation ved højt SNR.

I Kapitel 4 betragter vi det signal genskabelses problem, hvor indgangs
signal vektoren afbildedes via en lineær transformation til en vektor, som
derefter føres gennem en udgangskanal. Vi udvider approximate message
passing (AMP) teknikker til en generel klasse af tilfældige matricer ved at
kombinere to metoder: approksimativ inferens baseret på expectation propa-
gation og fri sandsynlighedsteori af tilfældige matricer. Herved opnås et sæt
fixpunkt ligninger til løsning af det approksimative inferens problem. Når
indgangene i transformations matricen trækkes iid med middelværdi nul og
forsvindende varians (i stor-system grænsen), opnås fixpunkt ligningerne for
AMP (eller generaliseret AMP – GAMP). Generaliseringen er simpel; den
involverer R-transformationen (og/eller S-transformationen) af grænse egen-
værdidistributionen af Gramianen af transformations matricen.

I Kapitel 5 introducerer vi en teoretisk metode - baseret på dynamisk
funktionel analyse - for iterativ løsning af TAP fastpunkt ligningerne af Ising
modellen med generelle invariante tilfældige koblingsmatricer. Vores metode
gør det muligt at konstruere et system af dynamiske ligninger, der udtrykker
de implicitte hukommelses termer – som afhænger af forrige iterations mag-
netiseringer. Vi kan annullere disse implicitte hukommelses termer, således
at de iterative algoritmer kun afhænger af Gaussisk distribuerede felter; vi
forventer således at opnå konvergente algoritmer. Via vores metodik kan
sådanne iterative algoritmer beskrives og analyseres via en enkelt-variable
sporing i stor-system grænsen.



This thesis is dedicated to my family and my future wife.
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Chapter 1

Introduction
Section 1 of this chapter directly, or indirectly, uses the material in Section II of
Burak Çakmak, Manfred Opper, Bernard H. Fleury and Ole Winther, “Self-averaging
expectation propagation,” arXiv preprint arXiv: 1608.06602, August 2016.

Due to the recent technological advances, the demand for techniques
capable of processing large amount of information data has dramatically
grown. Within this context, large systems – which operate with large dimen-
sional input and output information – are becoming increasingly important
research subjects in the information processing community. In particular,
accurately performing analysis and inference of such systems is often chal-
lenging because a large number of (latent, typically) variables are coupled to
each other.

Statistical mechanics precisely studies large systems consisting of many
constituents, e.g. electrons, molecules, etc., which interact with one another
[1], [2]. While the theory starts with the microscopic laws of physics – that
explain the behavior of the constituents of the system – it eventually brings
answers to macroscopic quantities, such as temperature and pressure. The
theory does not care about the impact of a particular constituent of the sys-
tem; it rather provides an understanding as a whole. Statistical mechanics
typically uses the Hamiltonian formalism. A so-called Hamiltonian function
describes the total energy of the system as a function of the state of all its
constituents. Vaguely speaking, it is implicitly assumed that there is no pre-
ferred constituent in the Hamiltonian, i.e. all constituents contribute to the
total energy of the system in a “democratic fashion" – a phrase suggested
by A. D. Jackson [3] to explain the so-called invariance property of a certain
class of random matrices.

Our conceptual view to deal with large information processing systems is
similar to that adopted in statistical mechanics. In a word, we require the sys-
tem to obey a democratic order. The system does not include preferred latent
variables. We consider that this restriction is important if one needs to accu-
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rately describe the system via some macroscopic quantities without making
reference to some specific variables. For systems that involve an asymmetry,
i.e. some variables have more (or less) impact than others, the description
should reflect the impact of each variable individually. But, deriving such a
description is typically infeasible when the system is large. We next present
a mathematical argumentation for a general probabilistic system model that
clarifies our intuitive rationale presented above.

1 Systems Obeying a Democratic Order

By design or through the physical description of the system, the input vector
is often coupled via a matrix. This is the case when the input vector x is
first linearly transformed as z = Hx and then the vector z is mapped to
the output vector y. For the sake of simplicity, we assume that all variables
are real-valued. The extension of our discussion to the complex-valued case
is straightforward. Here we consider a probabilistic system and describe
the mapping z → y with the conditional probability density function (pdf)
f (y|z). Furthermore, we adopt the Bayesian philosophy and assign a prior
pdf f (x) to the input vector. Moreover, we consider the typical assumption
that the prior pdf and the conditional pdf are both separable, i.e. f (x) =

∏k fk(xk) and f (y|z) = ∏n fn(yn|zn). The joint posterior pdf of the latent
variables (x, z) is given by

f (x, z|y, H) =
1
Z

f (x)δ(z− Hx) f (y|z) (1.1)

where Z denotes a normalization constant. We now borrow the conceptual
view of statistical mechanics: We define a Hamiltonian function of the system
and restrict it in such a way that the latent variables equally contribute to the
Hamiltonian in a statistical sense. For mathematical convenience, we will
work on a slightly amended form of the pdf (1.1):

fτ(x, z|y, H) =
1
Z

f (x)N(z|Hx, τI) f (y|z) (1.2)

=
1
Z

eHτ(x,z|y). (1.3)

We obtain the pdf (1.1) by taking the limit τ → 0. HereHτ is the Hamiltonian
function of the system. It is given by

Hτ(x, z|y) , ∑
k

ln fk(xk) + ∑
n

ln fn(yn|zn)−
1
τ
(x, z)† J(x, z)− N

2
ln 2πτ

(1.4)
where N is the dimension of z and we define

J ,
(

H† H H†

H I

)
. (1.5)
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Thereby, with (1.4) we have obtained a probabilistic representation of the
system whose form is typical in statistical mechanics. For example, we can
associate the Hamiltonian Hτ in (1.4) with the total energy of the electrons
and nuclei in a molecule in quantum chemistry [4]. Specifically, we interpret
ln fk(xk) as the kinetic energy of the position of nucleus xk, ln fn(yn|zn) as the
kinetic energy of the position of electron zn and (x, z)† J(x, z) as the potential
energy of the electrons and nuclei.

We now restrict the probabilistic system to obey a democratic order. Basi-
cally, we constrain the Hamiltonian function to reflect the fact that the sys-
tem does not contain preferred latent entries in x and z in a statistical sense.
Mathematically speaking, let U and V be (uniformly distributed) indepen-
dent random permutation matrices. Then we say that the system obeys a
democratic order when its Hamiltonian fulfills the symmetry property

Hτ(x, z|y) ∼ Hτ(Ux, Vz|Vy) (1.6)

where X ∼ Y implies that random variables X and Y are identically dis-
tributed. Note that by writing (1.6) we treat H as a random matrix. Property
(1.6) is fulfilled if the following conditions hold:

(i) fk(x) = fl(x) for all k 6= l;

(ii) fn(y|z) = fm(y|z) for all n 6= m;

(iii) H ∼ UHV , i.e. the probability distribution of H is invariant under
multiplications from left and right with an independent random per-
mutation matrix.

Conditions (i) and (ii) are commonly made assumptions in practice. As
regards condition (iii) two points are worth stressing: In case H arises as the
result of a description of a physical system and gives similar weights to the
interactions between the variables, then (iii) is a reasonable assumption. In
case H is specified by design, it is reasonable to restrict the system model such
that condition (iii) holds. Moreover, depending on the particular application
some of the restrictions above may not apply. For example, it might be the
case that we only need

Hτ(x, z|y) ∼ Hτ(Ux, z|y) (1.7)

which is fulfilled if condition (i) holds and H ∼ UH.

1.1 Haar-type bases

Condition (iii) is still mathematically not convenient to work with in general.
In the sequel, we present a convenient random matrix model for H that fulfills
(iii). We start with the singular value decomposition

H = LSR (1.8)
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where L is an orthogonal matrix whose columns are the left singular vectors
of H, R is an orthogonal matrix whose columns are the right singular vectors
of H and the non-negative diagonal entries of S are the singular values of
H. Condition (iii) holds if (presumably, if, and only if) L, S and R are inde-
pendent and L and R are invariant under multiplication with independent
random permutation matrices, e.g. L ∼ UL. This implies that “There are no
preferred left or right singular vectors.” Put simply “There is no preferred basis of
the left and right singular vectors.” Specifically, the orthogonal matrices L and R
are invariant under multiplication with any independent orthogonal matrix.
A random matrix whose distribution is invariant under multiplication of the
matrix with any orthogonal matrix is called a Haar matrix [5]1. In summary,
we assume that L, S and R are independent of each other and L and R are
Haar matrices. Equivalently, for orthogonal matrices U and V independent
of H we have H ∼ UHV . For short we will say that H is invariant from left
and right.

It is common to assume that the entries of H are independent identically
distributed (iid) Gaussian random variables with zero mean. The pdf of
Gaussian random matrix can be written in the form

fH(H) ∝ exp

(
− 1

2σ2 ∑
n,k

H2
n,k

)
(1.9)

= exp
(
− 1

2σ2 tr(H† H)

)
(1.10)

with σ2 denoting the components’ variance. Notice that for any orthogonal
matrices U and V we have fH(UHV) = fH(H). Moreover, the Jacobian of
mapping X → UX is one if U is orthogonal [11]. Thereby, the Gaussian
random matrix H is invariant from left and right [12].

Without a clear physical or mathematical motivation, the iid assumption
on the entries of H can be artificial. For example, it can be more suitable to
design H to be a so-called random row-orthogonal matrix [9], [10] in which
case H has statistically dependent entries but is invariant from left and right.
It is the goal of this thesis to investigate systems that involve matrices that
are drawn from some invariant ensemble under multiplication with indepen-
dent orthogonal, or unitary, matrix from left (and/or right). Basically, we
do not assume a specific distribution for the singular values of H but for
the matrix of left singular vectors. This specific distribution is Haar. In the
large-system limit, this assumption can also be relaxed to certain Haar-like
matrices such as “fake Haar” matrices [13]. In general, we expect that the

1Haar matrices were already addressed in the mean-field theory of spin glasses [6], the re-
ceiver design for code-division multiple access communication channels [7] and the informa-
tion theoretical analysis of vector precoding for Gaussian channels [8] and compressed sens-
ing [9], [10].
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analysis of Haar-type bases may provide good approximations for systems
obeying the democratic order (1.6), i.e. the contributions of individual latent
variables to the observation model are statistically identical.

2 Contributions of the Thesis

The random matrix framework underlined in the previous section applies to
a broad class of research problems. We consider three applications that have
drawn significant attention in the information processing community. In the
sequel, we shortly introduce these problems and describe our contributions
to them.

2.1 Capacity scaling in MIMO systems

Channel capacity – introduced by Shannon [14] – quantifies the maximum
data rate which can be transmitted reliably over the channel. To warm up
let us first consider a basic communication system with a single transmit and
receive antenna and the input-output relationship described by

y = hx + n (1.11)

where x is a zero mean random input signal with variance σ2
x , h is the gain of

the channel, y is the output signal and n is zero-mean circularly-symmetric
complex Gaussian noise with variance σ2

n . When the receiver (transmitter) is
aware of the realization of the channel gain h, we say that perfect channel
state information is available at the receiver (transmitter). Available perfect
channel state information means full knowledge about the channel gain h.
Under the assumption of perfect channel state information at the receiver the
(ergodic) capacity (in bits per second per channel use) of channel (1.11) is
given by 〈

log2(1 + SNR|h|2)
〉

h
. (1.12)

Here, the expectation is taken over the probability distribution of the channel
gain h and SNR denotes the signal-to-noise ratio, i.e.

SNR =
σ2

x
σ2

n
.

We now extend the scalar-valued communication system (1.11) to a vector
valued communication system with T transmit antennas, R receive antennas
and the input-output relationship described by

y = Hx + n (1.13)
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where x is the T-dimensional input signal vector, y the R-dimensional out-
put signal vector and n is an R-dimensional noise vector with circularly-
symmetric complex Gaussian entries. Moreover, H is the multiple-input
multiple-output (MIMO) channel matrix with entries Hr,t representing the
channel gain from transmit antenna r to receive antenna t. All quantities in
(1.13) are complex-valued. The entries of x and n are assumed to be iid with
zero mean and variances σ2

x and σ2
n , respectively. In the thesis, we primarily

consider the capacity of (1.13) when the transmit antennas are restricted to
send equal signal power [15]:〈

log2 |I + SNRH† H|
〉

H
. (1.14)

As a matter of fact (1.14) is the mutual information of the communication
link (1.13) when the input signal is Gaussian distributed.

When H has full-rank, the capacity (1.14) can be written in the form [16]

min(T, R) log2 SNR + O(1) (1.15)

where O(1) is a bounded function of the SNR that does depend on T and R, in
general. Since the term O(1) is a bounded function of the SNR, the expression
(1.15) has frequently led to the two following misinterpretations:

(i) for any variation of T or R with min(T, R) being fixed the capacity
would not vary at high SNR;

(ii) the capacity would grow linearly with min(T, R) at high SNR.

Misinterpretation (i) is studied by [17] when H is the classical matrix ensem-
ble with zero-mean iid Gaussian entries. We elucidate both misinterpreta-
tions (i) and (ii) for arbitrary invariant matrices. As for (i), we obtain an ex-
pression for the variation of the capacity that is not a function of the singular
values of H. It only depends on the number of transmit and receive antennas
before and after the variation. As for (ii), we quantify how the capacity as a
function of the system dimensions deviates from the assumed linear growth.
We derive remarkable properties of this deviation. Our results on the varia-
tion of the capacity are valid in the asymptotic SNR limit. However, they also
provide least upper bounds on the variation of the capacity over all SNRs.
This property gives these bounds a universal character.

2.2 Self-averaging expectation propagation

We consider the problem of Bayesian inference for a general class of obser-
vation models. A K-dimensional real, or complex, input vector x – generated
according to a prior pdf f (x) – is transformed with an N×K real, or complex,
matrix as z , Hx. Then, the vector z is operated according to a conditional
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pdf f (y|z) to produce the output vector y of the system. We assume that the
prior and the conditional pdfs are both separable i.e.

f (x) =
K

∏
k=1

fk(xk) (1.16)

f (y|z) =
N

∏
n=1

fn(yn|zn). (1.17)

As a first example, we consider a direct-sequence binary phase shift-keying
code-division multiple access (CDMA) communication system with K users
where each user sends a sequence of independently, uniformly distributed
bits xk = ∓1 over a single communication channel to a base station. The
input bits are linearly coded as Hx where H is designed in an efficient way
to mitigate the effect of interference between the users’ signals. For details we
refer the reader to e.g. [18], [19]. At the base station, we have the observation

y = Hx + n (1.18)

where n is classical additive white Gaussian noise. From the above, the prior
and the conditional pdfs are given by

fk(xk) = 0.5 δ(xk + 1) + 0.5 δ(xk − 1) (1.19)

fn(yn|zn) = N (yn; zn, 1/β) . (1.20)

The second example is classical in compressed sensing. The linear obser-
vation model is the same as (1.18) with the prior distribution of xk being
Bernoulli-Gaussian. The last example is borrowed from classification [20]
with a nonlinear observation model of the form

y = sign(Hs) (1.21)

where sign(·) is the sign function: sign(x) = x/|x| if x 6= 0 and sign(0) = 0.
In this case, we have fn(yn|zn) = u(ynzn) where u(·) is the unit step function.

Message passing techniques for dense graphs with Thoules-Andersen-
Palmer (TAP) like fixed-point equations have gained widespread use to de-
sign accurate algorithms for signal recovery in machine learning. The so-
called expectation propagation (EP) algorithm [20], [21] has cubic complexity
in the system size but makes no assumptions on the matrix ensemble. The
approximate message passing (AMP) algorithm [22–25] – derived from ap-
plying the heuristic belief propagation (BP) on dense graphs – has quadratic
complexity but assumes zero–mean iid elements of the transformation ma-
trix.

In this contribution, we investigate the problem of applying EP for ap-
proximate Bayesian inference on large systems. Our method – that we call
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self-averaging EP – attempts to overcome the computational complexity of
EP due to the inversion of large matrices. When the transformation matrices
are asymptotically free – a concept defined in random matrix theory – the EP
cavity variances exhibit an asymptotic self-averaging property as the system
dimensions grow large. They can be approximated by using the R- and S-
transforms in free probability, which do not require matrix inversions. Our
approach extends the framework of AMP to a general class of random matrix
ensembles. The generalization is via a simple formulation of the R-transform
or S-transform of the limiting eigenvalue distribution of the Gramian matrix
of transformation matrix. We demonstrate the self-averaging effect and com-
pare the performance of self-averaging EP with that of standard EP for two
ensembles of transformation matrices in a nonlinear signal recovery problem
from compressed sensing.

2.3 Dynamical aspects of the TAP equations

The TAP fixed-point equations for a general class of system models can be
obtained in a systematic way by combining the frameworks of EP and free
probability theory (Chapter 4). However, it is not necessarily clear how the
resulting system of nonlinear equations can be solved efficiently. This is pre-
cisely the third contribution of the thesis, namely to introduce a method for
solving TAP fixed-point equations iteratively. While doing this, we will con-
sider the standard Ising model of spin glass theory [26, 27] for which the
original TAP fixed-point equations were introduced.

For the sake of clarity of our argumentations, we next base our discussion
on a specific example. We recall the CDMA system described in (1.18) with
the prior and the conditional pdfs given in (1.19) and (1.20), respectively.
Moreover, let the entries of H be iid with zero mean and variance 1/N. For
convenience, we define h , βH†y and the coupling matrix J = J† such as

Jij ,
{
−β[H† H]ij i 6= j

0 i = j
. (1.22)

The TAP fixed-point equations of the CDMA model (1.18) can be written in
the form

m = tanh
(

h + Jm− β2α(1− q)
1 + βα(1− q)

m
)

(1.23)

with q , m†m/K and α , N/K. Above the so-called Almedia-Thouless
(AT) [28] line of the stability condition it is generally assumed that

m ' 〈x〉 f (x|y). (1.24)

Thereby, a nearly optimum detector simply needs to solve (1.23). A promi-
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nent way of doing this is via the AMP algorithm [22]

m(t + 1) = tanh(z(t) + R(t)m(t)) (1.25)

z(t) =
R(t)

β
(h + (J − βI)m(t)) + α(1− q(t))R(t)z(t− 1) (1.26)

R(t) ,
1

1/β + (1− q(t))α
, q(t) ,

1
K

m(t)†m(t). (1.27)

The fixed points of the AMP algorithm (1.25)-(1.27) solve (1.23). AMP is de-
rived as an asymptotic limit (when the system dimensions grow large) of
heuristic loopy BP on dense graphs. It only yields the correct TAP equations
for two random coupling matrix models of J [29]: (i) J is given as in (1.22)
with the entries of H iid with zero mean and asymptotically vanishing vari-
ance; (ii) J = J† has vanishing diagonal entries and iid off-diagonal entries
with zero mean and asymptotically vanishing variance. The first and second
models are variants of respectively the Hopfield model and the SK model in
statistical physics [26, 27]. Even the simplest case where J is an orthogonal
matrix invalidates the AMP technique because this case leads to incorrect
TAP fixed-point equations in this case. This strongly indicates that there is a
need for a well-defined framework to solve the TAP equations.

In this contribution, we introduce a theory on the basis of dynamical func-
tional analysis [30–32] for solving the TAP equations with arbitrary invariant
random matrices. We consider the standard Ising model introduced in spin
glass theory [26, 27] where the external field is hi = h ∀i and h does not de-
pend on coupling matrix J. For example, the CDMA system model is an Ising
model, but the external field h is random via J. We show that our method
reproduces previous “convergent” algorithms (i.e. the AMP algorithm) for
the Hopfield model [22] and the SK model [33]. While we only consider a
deterministic external field in this contribution, our theory can be extended
to a random external field and also to more general probabilistic models.

3 Outline of the Thesis

The thesis is organized as follows. In Chapter 2 we provide some background
on random matrices and introduce the tools that will be used in the three ap-
plication chapters that follow. In Chapter 3 we present the contribution on
the capacity scaling of MIMO systems as briefly introduced in Subsection 2.1.
In Chapter 4 we introduce the method of self-averaging EP that is briefly
mentioned in Subsection 2.2. Chapter 5 addresses the dynamical functional
analysis for solving TAP equations of which a brief account is given in Sub-
section 2.3. Conclusions and outlook are presented in Chapter 6. Technical
derivations are deferred to the Appendix.
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Chapter 2

Elements of Random
Matrices

Random matrices have appeared in a notable variety of areas such as math-
ematical statistics [34], nuclear physics [35], spin glasses [26], communica-
tion theory [36] and computational biology [37]. This chapter provides an
overview of random matrices and prepares the reader to the random matrix
methods used in the application chapters thereafter. We will not go into the
details of the exciting mathematics of random matrices for which we refer
to [5], [12]. During our discussions, we assume that the reader is familiar
with the standard elements of probability theory and linear algebra.

1 Eigenvalue Distribution Functions

The most studied symmetric, or Hermitian, random matrices have a matrix
of eigenvectors that is uniformly distributed in the space of orthogonal, or
unitary, matrices, i.e. they are Haar. Informally, this implies that there is no
preferred basis of eigenvectors. The matrix of eigenvectors does not involve
relevant information and therefore, the primary interest in such random ma-
trices lies in studying their eigenvalues.

Notation 1. Given an N × N random matrix X = X†, we denote by FN
X the em-

pirical eigenvalue distribution function of X, i.e. [38]

FN
X (x) =

1
N
| {xi ∈ L : xi ≤ x} | (2.1)

with L and | · | denoting the set of eigenvalues of X and the cardinality of a set,
respectively. Moreover, if for N → ∞ X has a limiting eigenvalue distribution
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(LED) almost surely, its distribution function is denoted by FX
1.

We are often interested in a mathematical quantity that depends on a
matrix via an integral over its eigenvalue distribution. As an example, let us
consider the (differential) entropy

h(F) , −
∫

RN
ln F′(x) dF(x) (2.2)

where F′(x) , dF(x)/dx is the pdf associated with F for an N-variate Gaus-
sian probability distribution with mean µ and positive covariance matrix X.
We have [15]

h(F) =
N
2

ln(2πe) +
1
2

ln |X|. (2.3)

Thus, we merely need to calculate ln |X|, which can be reformulated as

ln |X| = ln ∏
xi∈L

xi (2.4)

= ∑
xi∈L

ln(xi) (2.5)

= N
∫

ln(x) dFN
X (x). (2.6)

We may also encounter a so-called degenerate Gaussian distribution where
X has rank K < N. In this case, the pdf is of the form [39]

F′(x) =
1√
|2πX|+

exp
(
−1

2
(x− µ)†X+(x− µ)

)
(2.7)

where X+ denotes the pseudo inverse of X and |X|+ denotes the pseudo
determinant. The pseudo determinant can be expressed as

|X|+ = lim
ε→0
|ε

K
N (I + εX)|. (2.8)

One can easily show that

h(F) =
K
2

ln(2πe) +
K
2

∫
ln(x) dF̃N

X (x) (2.9)

where F̃N
X represents the distribution function of the non-zero eigenvalues of

X. The explicit definition of this distribution function is given as follows.

1Eigenvalue distribution functions are uniquely associated with a distribution (or measure)
on R with total mass one. In the text, we will use both terms “distribution functions” and
“distributions” interchangeably. Which other one is meant when one term is used will be clear
from the context. Integrals over any distribution associated with an eigenvalue distribution
function will, however, always be expressed in terms of the distribution function.
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Definition 2.1. For an N × N non-negative definite matrix X 6= 0, we define the
normalized rank of X as

αN
X , 1− FN

X (0) (2.10)

and the distribution function of non-zero eigenvalues of X as

F̃N
X (x) ,

1
αN

X

{(
αN

X − 1
)

u(x) + FN
X (x)

}
. (2.11)

2 Random Matrices

In this section, we shortly introduce the classical random matrices studied
in the literature. These are the Haar, Wishart, Wigner and Jacobi matrices.
Then, we examine in detail general invariant matrix ensembles.

2.1 Haar matrices

An orthogonal, or unitary, matrix that is uniformly distributed over the space
{X : X†X = I} is called a Haar matrix. Haar matrices play a fundamental
role in random matrix theory because the matrices of singular vectors of the
classical random matrices are often Haar.

To better understand Haar matrices we first provide an implicit but in-
sightful definition of them: An orthogonal, or unitary, random matrix U is
Haar if, and only if, U ∼ VUW for any orthogonal, or unitary, matrices V ,
W independent of U. In other words, the matrix is Haar if, and only if, it is
orthogonal, or unitary, and rotationally invariant.

Definition 2.2. [40] Let the entries of an N × N random matrix X be indepen-
dent and real, or circularly-symmetric complex, Gaussian with zero mean and unit
variance. Then, the N × N Haar matrix can be defined as

U = X(X†X)−
1
2 . (2.12)

Calculation of the moments of the entries of Haar matrices has attracted
substantial interest in the literature. For example, from Definition 2.2 one
can show that 〈Uij〉 = 0 and 〈|Uij|2〉 = 1/N, ∀i, j. However, the moments
of higher orders are difficult to calculate by using standard probability cal-
culus. The so-called Weingarten calculus [41] provides a systematic way for
calculating these moments. The interested reader is referred to [41], [42]. In
particular, we have the following result on the fourth-order moments.

Lemma 2.1. Let U be an N × N Haar matrix. Then we have〈
|Uin|2|Uik|2

〉
=

{ N+1
N(N+β)(N+3−2β)

n 6= k
1+β

N(N+β)
n = k

(2.13)

where β = 2 and β = 1 when U is real and complex, respectively.
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For U being unitary, this result is presented in [12]. For U being orthogonal,
the result can be easily inferred from [42, Theorem 2.1, Example 3.1].

2.2 Wishart matrices

Random matrices were first introduced in the context of statistics by Wishart
who investigated the behavior of sample covariance matrices of independent
Gaussian random vectors [34]. Such sample covariance matrices are called
Wishart matrices.

Definition 2.3. [34] Consider an N×K random matrix H whose rows are indepen-
dently drawn from a K-variate Gaussian distribution with zero mean and covariance
Σ. The K× K random matrix X = H† H is called a (central) Wishart matrix.

A particularly important case is that where Σ = I/K, i.e. the entries of H are
iid. In this case, the Gram matrix X is often called a null-Wishart matrix.

The LED of a null-Wishart matrix is the Marc̆enko-Pastur distribution.
Specifically, let the entries of an N × K matrix H be iid with zero mean and
variance 1/N. Moreover, let X = H† H. Then, as K → ∞ with the aspect ratio
φ = K/N fixed, the empirical distribution of the eigenvalues of X converges
almost surely to a non-random distribution whose density is

F′X(x) =
(

1− 1
φ

)+

δ(x) +
√
(x− λ−)+(λ+ − x)+

2πφx
(2.14)

where λ∓ = (1∓√φ)2.

2.3 Wigner matrices

Wigner matrices are the first random matrices that appeared in the physics
literature [35]. They are still popular because they are mathematically simple
and convenient to work with.

Definition 2.4. [35] Let the entries of an N × N matrix H be iid with zero mean
and variance 1/N. The matrix X , (H + H†)/

√
2 is called a Wigner matrix.

Moreover, X is called a Gaussian Wigner matrix if the entries of H are real, or
circularly-symmetric complex, Gaussian.

As N → ∞, the empirical eigenvalue distribution of a Wigner matrix con-
verges almost surely to a non-random distribution with density [35]

F′X(x) =
1

2π

√
(4− x2)+. (2.15)

This distribution is usually referred to as the semi-circle law.
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2.4 Jacobi matrices

Jacobi matrices are relatively less known. Nonetheless, they play an impor-
tant role in random matrix theory, see e.g. [5], [43]. Worth noting is their
relevant application in information theory [44], [45]. A Jacobi matrix can be
defined via two independent Wishart matrices or a Haar matrix. The for-
mer approach is rather complicated; therefore, we adopt the latter. We first
introduce a convenient projection operator.

Definition 2.5. An N-dimensional projector Pβ with β ≤ 1 is a βN × N matrix
with entries (Pβ)ij = δij, ∀i, j, where δij denotes the Kronecker delta.

A Jacobi matrix can be constructed from a matrix obtained by removing cer-
tain fractions of rows and columns of a Haar matrix [43]. The removal of
rows and columns of a matrix can be conveniently defined via the multipli-
cation of the matrix with rectangular projector matrices from left and right.

Definition 2.6. [43] Let U be an N × N Haar matrix. Furthermore, let Pβ and
Pφ be N-dimensional projectors. Let V , PβUP†

φ, i.e. V is the βN× φN upper-left
corner of U. The Gramian X = V †V is called a Jacobi matrix.

The empirical eigenvalue distribution of a Jacobi matrix converges almost
surely to a non-random distribution whose density reads

F′X(x) =
φ−min(φ, β)

φ
δ(x)+

(φ + β− 1)+

φ
δ(x− 1)+

√
(x− λ−)+(λ+ − x)+

2πφx(1− x)

where λ∓ = φ + β− 2φβ∓
√

4φβ(1− φ)(1− β) [46], [47].
Here, we draw the attention of the reader to the following striking point:

Let the random matrix Ṽ be obtained by randomly and independently removing
certain fractions of rows and columns of a discrete Fourier transform (DFT)
matrix. Then, the LED of Ṽ †Ṽ is the same as that of the Jacobi matrix [48].

2.5 Invariant random matrices

Classical random matrices, such as Haar, null-Wishart, Gaussian Wigner, and
Jacobi matrices are invariant under multiplications with an independent uni-
tary (orthogonal) matrix and its conjugate from right and left, respectively. A
random matrix that exhibits this property is called invariant.

Definition 2.7. [12] A square random matrix X is invariant if X ∼ V†XV for
any orthogonal, or unitary, matrix V independent of X.

Equivalently, invariant random matrices admit the decomposition

X = U†ΛU (2.16)

where U is a Haar matrix independent of the diagonal matrix Λ [12].
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Chapter 2. Elements of Random Matrices

Dyson’s Coulomb-gas analogy

Dyson’s Coulomb gas analogy [49] provides a beautiful view of the statistics
of the eigenvalues of the classical invariant ensembles. We briefly present
this analogy; for more details we refer the reader to [5], [49].

Consider a gas of N point charges (or particles) with positions x1, · · · , xN .
The charges are free to move on the straight line −∞ < x < ∞ under the
influence of forces emanating from the energy H which is given by

H(x) ,
1
2

N

∑
k=1

V(x2
i )−

1
N

N

∑
i=1

∑
j<i

ln |xi − xj|. (2.17)

The term V is referred to as the harmonic potential which attracts each charge
independently towards the point x = 0. Moreover, − ln |xi − xj| represents
an electronic repulsion. Thus, the charges repel each other with a logarithmic
potential depending on the distance |xi − xj|. Let these charges be in ther-
modynamical equilibrium at a fixed temperature T. In this equilibrium, the
probability distribution of their positions admits a Boltzmann distribution as

dFN(x) =
1

ZN
V

e−β̃NH(x)dx

where β̃ = 1/kT and k is the Boltzmann constant. The term ZN
V which en-

sures
∫

dF(x) = 1 is referred to as the partition function.
The probability distribution of an N×N symmetric, or Hermitian, invari-

ant matrix is typically of the form [5]

dFX(X) ∝ e−
β
2 NtrV(X)dX (2.18)

where the function V(x) is a power series in x. Moreover, β = 1 and β =
2 when X is Hermitian and symmetric, respectively. The expression (2.18)
implies that the probability distribution of the classical invariant matrices
are determined via a single-valued polynomial function V. For example, if
X is Gaussian Wigner, then we have V(x) = x2. Note also that we have
the decomposition X = U†ΛU, where U is a Haar matrix independent of
the diagonal matrix Λ. Integrating over U in (2.18) yields the probability
distribution of the eigenvalues collected in vector x = (x1, · · · , xN) [5], [49]

dFN
X (x) =

1
ZN

V
e−βNH(x)dx (2.19)

whereH is as in (2.17). In a word, the probability distribution of the eigenval-
ues of a classical invariant matrix is identical to the thermodynamical equi-
librium probability distribution of the positions of N point particles that are
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2. Random Matrices

free to move on the real line under the influence of forces emanating from
the energy H in (2.17) [49].

The statistical properties of the eigenvalues can be obtained from the log-
partition function ln ZN

V . We next summarize a significant large deviation
result in this regard [12], [50]. First, for a probability distribution function F,
we introduce the energy functional

H(F) ,
∫

V(x) dF(x) +
∫∫

ln |x− y| dF(x)dF(y). (2.20)

Moreover, let us define the distribution function

FN
x (x) ,

1
N
| {xi ∈ L : xi ≤ x} | (2.21)

with L = {x1, · · · , xN}. Thereby, we can write H(x) = NH(FN
x ). In particu-

lar, the log-partition function can be written in the form

ln ZN
V = ln

∫
e−βN2H(FN

x )dx. (2.22)

Under a certain technical assumption on V (see [12, Eq. 5.4.5]), we have the
limit [12, Theorem 5.4.3]

lim
N→∞

1
βN2 ln ZN

V = inf H(F). (2.23)

The equilibrium distribution, namely the distribution that minimizes the
functional H(F), coincides with the LED of X. Besides, assuming that the
LED is known and has a compact support [a, b], we can obtain the potential
function V from the formula [12]

1
β

V′(ω) = PV
∫ b

a

dFX(x)
ω− x

a < ω < b (2.24)

where PV stands for the Cauchy principal value.

Diagonal elements of invariant matrices

Diagonal elements of symmetric, or Hermitian, invariant matrices have a
fundamental property: under some weak assumptions they converge almost
surely to the same deterministic limit as the matrix dimensions tend to infin-
ity.

Theorem 2.1. Let an N × N random matrix X = X† be invariant. Moreover,
as N → ∞ let the quantities 〈Tr(X)2〉X and 〈Tr(X2)〉X converge to some (finite)
limits and 〈Tr(X)〉X − Tr(X) → 0 almost surely. Then, we have almost surely
Xii → φ(X), ∀i as N → ∞.

Proof. See Appendix A.1
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Chapter 2. Elements of Random Matrices

3 Stieltjes Transform

So far, we have provided a presentation of the classical random matrix en-
sembles in the literature. Yet, we have not referred to a specific method (or a
theory) on how to deal with the operations on random matrices such as sum
and product. Indeed, a direct analysis of the sum and/or the product of ran-
dom matrices through their eigenvalue distributions is typically intractable.
We need a sophisticated method to resolve such difficulties. In this regards,
the Stieltjes transform plays a key role.

The Stieltjes transform of a probability distribution function F on the real
line is the analytic function

G(s) ,
∫ dF(x)

s− x
, s ∈ C\supp(F) (2.25)

where supp(F) denotes the support of F defined as [51, pp. 10]2

supp(F) , {x : F(x + ε)− F(x− ε) > 0, ∀ε > 0} . (2.26)

The probability distribution function can be retrieved from its Stieltjes trans-
form via the so-called Stieltjes inversion formula. In particular, if F has a
continuous derivative F′ = dF/dx we have [12]

F′(x) = − lim
y→0+

1
π
=G(x + iy). (2.27)

Thereby, the Stieltjes transform “packs” the distribution function in a way
that can be conveniently manipulated with the tools of complex analysis [52].
Extensive mathematical methods developed in this direction can be found
in [53], [54]. These methods have also proved fruitful in practice [55].

When the support of the distribution is in [0, ∞), it is enough to consider
the restriction of the Stieltjes transform to (−∞, 0) as this restriction uniquely
specified (2.25) by analytic continuation. The restriction is a decreasing func-
tion with range (−χ, 0). Here χ is the inverse mean of F:

χ =
∫ dF(x)

x
(2.28)

where by convention χ = ∞ if F(0) 6= 0. The restriction of the Stieltjes
transform to (−∞, 0) is related to practical quantities and functions, e.g. the
so-called η-transform and Shannon transform introduced in communication
theory [36].

2Note that supp(F) is also the support of the underlying probability distribution. In the
sequel, we will interchangeably refer of the support of a probability measure or of the associated
distribution function.
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3. Stieltjes Transform

Often, we deal with compactly supported distributions. It is well-known
that a probability distribution with compact support is uniquely determined
by its moments. Therefore, the moment–based analysis turns out to be a
generic and fruitful approach for the characterization of compactly supported
eigenvalue distribution of random matrices. If the distribution has its support
in [a, b], its Stieltjes transform can be described by a Laurent series of its
moments on the disk {s : |s| > max(|a|, |b|)}

G(s) =
1
s

∫ ∞

∑
n=0

xn

sn dF(x) (2.29)

=
1
s

∞

∑
n=0

1
sn

∫
xndF(x) (2.30)

=
1
s

∞

∑
n=0

mn

sn . (2.31)

In (2.31) mn =
∫

xndF(x) is the nth-order moment of F. In this case one can
obtain the Stieltjes transform without the need to perform the integration in
(2.25), by merely calculating the moments of the distribution and using (2.31).
This property has been instrumental in the method of moments [56, 57].

The Marc̆enko-Pastur theorem

Obtaining the Stieltjes transform in closed-form is often intractable. In fact,
there are many important random matrix models considered in the literature
for which no closed-form expression of their eigenvalue distribution func-
tions is known yet. Instead, implicit equations that involve the sought Stielt-
jes transforms and uniquely determine them can be found. The Marc̆enko-
Pastur theorem is the most famous result in this respect.

Theorem 2.2. [58] Let the entries of H ∈ CN×K be iid with zero mean and variance
1/N. Let the aspect ratio φ = K/N be fixed as K → ∞. Furthermore, let the
K × K matrix X = X† and the N × N real diagonal matrix Λ have almost surely
LED functions FX and FΛ, respectively as K → ∞. Moreover, let X, H and Λ be
independent. Define

Y = X + H†ΛH. (2.32)

Then, as K → ∞ FK
Y converges almost surely to a LED function FY whose Stieltjes

transform GY (s) satisfies

GY (s) = GX

(
s−

∫ x dFΛ(x)
1− xφGY (s)

)
(2.33)

with GX denoting the Stieltjes transform of the LED function FX .
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Chapter 2. Elements of Random Matrices

If the entries of H are restricted to Gaussian, H becomes invariant from left
(and right), i.e. for the unitary matrix V independent of H, H ∼ V H. Thus,
when H is Gaussian, the theorem is still valid for Λ = Λ† being non-diagonal
with its eigenvectors independent of its eigenvalues.

4 R-transform

The R-transform was originally introduced by Voiculescu [59] in the context
of free probability – a theory that deals with non-commutative random vari-
ables such as random matrices.

Let F be a probability distribution function on the real line and G its Stielt-
jes transform (2.25). Then, the R-transform of F is obtained from the inverse
(with respect to the composition of functions) of the Stieltjes transform as [60]

R(ω) , G−1(ω)−ω−1. (2.34)

When we write G−1 we implicitly assume that G is restricted to a domain, say
D, in which it is univalent, to ensure that G−1 is well-defined. The domain of
R is then G(D)/{0}. We refer the reader to [60] where the authors introduce
a suitable restriction of G and the corresponding domain of R for an arbitrary
distribution. If the distribution has a compact support its Stieltjes transform
is invertible in a neighborhood of ∞ and R is analytical in a neighborhood of
0.

Before providing a discussion on the role of the R-transform in random
matrix theory we would like first to mention some important properties of it.

4.1 R-transform of distributions with non-negative support

We now investigate the R-transform of probability distributions with support
on [0, ∞). In this case, the definition domain of the Stieltjes transform of F
can be restricted to (−∞, 0), and thereby its range becomes (−χ, 0) with
χ ,

∫
x−1 dF(x). Thus, it is enough to restrict (2.34) to (−χ, 0).

We have the following characterization of the R-transform of distributions
with non-negative support.

Lemma 2.2. Let F be a distribution function supported on [0, ∞) and R be its R-
transform and let χ ,

∫
x−1 dF(x). Then, unless the distribution is a Dirac mea-

sure, R is strictly increasing on (−χ, 0). We have limω→−χ+ R(ω) = χ−1.

Lemma 2.2 can be easily proved by following the arguments in [61, pp. 446].
Notice that we also have limω→0− R(ω) =

∫
x dF(x) [38].

Moreover, this study can be extended to any probability distribution func-
tion F with support in [−a, ∞), a > 0. It suffices to first investigate the R-
transform of the “shifted” distribution function Fa(x) = F(x − a) and then
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4. R-transform

apply the simple transformation

R(ω) = Ra(ω)− a (2.35)

with R and Ra denoting the R-transform of F and Fa, respectively.

4.2 Free cumulants

When F has a compact support on the real line its R-transform admits the
power expansion

R(ω) =
∞

∑
n=1

cnωn−1 (2.36)

where cn is called the nth free cumulant of distribution function F. By inserting
(2.31) and (2.36) to (2.34) one can show the following explicit relationship
between the free cumulants and the moments of F.

Theorem 2.3. [62] Consider a probability distribution function F defined on the
real line with its moments {mn} and free cumulants {cn} for n ≥ 1. The moments
can be expressed in terms of the free cumulants as

mn = cn +
n

∑
k=2

1
k

(
n

k− 1

)
∑

Qn(k)
cq1 · · · cqk (2.37)

where q1, · · · , qk are positive integers and Qn(k) , {(q1, · · · , qk) : ∑k
j=1 qj = n}.

Conversely, the free cumulants can be expressed in terms of the moments as

cn = mn +
n

∑
k=2

(−1)k−1

k

(
n + k− 2

k− 1

)
∑

Qn(k)
mq1 · · ·mqk . (2.38)

The first two free cumulants are the mean and variance of the underlying
distribution, respectively, i.e. c1 = m1 and c2 = m2 −m2

1. Free cumulants of
higher order are more involved expressions of the moments, see [63]:

c3 = m3 − 3m2m1 + 2m3
1 (2.39)

c4 = m4 − 4m3m1 − 2m2 + 10m2m2
1 − 5m4

1 (2.40)

c5 = m5 − 5m4m1 + 15m3m2
1 + 15m2

2m1 − 35m2m3
1 − 5m3m2 + 14m5

1. (2.41)

Calculating the free cumulants via the moments can be important in practice.
In particular, we may encounter the case where no closed-form expression of
the R-transform of the underlying eigenvalue distribution function is known.
In fact, the distribution function itself might be even unknown. In such a
case, provided the underlying matrix is known, we can calculate the moments
directly and thus the free cumulants as well. Thereby, we obtain a method
to approximate the R-transform via the free cumulants of the distribution
function up to a certain order.
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Chapter 2. Elements of Random Matrices

4.3 Revisiting the Marc̆enko-Pastur theorem

To better understand the role of the R-transform in random matrices, we re-
visit the famous Marc̆enko-Pastur theorem, i.e. Theorem 2.2. Let us consider
the random matrix model Y = X + H†ΛH in (2.32). Recall the expression of
the Stieltjes transform of the LED of Y , i.e. (2.33) and let insert s = G−1

Y (ω)
in this equation. Then, by the definition of the R-transform we easily obtain

RY (ω) = RX(ω) +
∫ x dFΛ(x)

1− xφω
. (2.42)

This trivial reformulation of the Marc̆enko-Pastur theorem yields the follow-
ing important results: Firstly, for X = 0 (2.42) yields

RH†ΛH(ω) =
∫ x dFΛ(x)

1− xφω
. (2.43)

Secondly, we have
RY (ω) = RX(ω) + RH†ΛH(ω). (2.44)

Thus, the Marc̆enko-Pastur theorem essentially states nothing but the addi-
tivity of the R-transforms of the LED of the summands in Y = X + H†ΛH.
This may give the impression that the R-transform of the LED of a sum of
arbitrary independent symmetric, or Hermitian, random matrices is the sum
of the R-transforms of the respective LEDs of these matrices. This is correct
in general if the “independence” property in the statement is replaced by the
so-called “asymptotic freeness” property.

4.4 Asymptotic freeness

The matrices X = X† and Y = Y† are asymptotically free if for all k ≥ 1 and
for all integers n1, m1, · · · nk, mk ≥ 1 we have [64]

φ

(
k

∏
i=1

(Xni − φ(Xni )I)(Ymi − φ(Ymi )I)

)
= 0. (2.45)

In other words, the normalized trace of any product of powers of X and Y
centered around their normalized trace vanishes asymptotically3. We give a
well-known example: Let U be an N × N Haar matrix and Λ1 and Λ2 be
two real diagonal matrices of dimensions N × N. Moreover, let Λ1 and Λ2
have uniformly bounded spectral norms or compactly supported LEDs in the
limit N → ∞. In the latter case additionally assume that U, Λ1 and Λ2 are
independent. Then, Λ1 and U†Λ2U are asymptotically free [12, 41, 61].

3By replacing operation φ(·) in (2.45) with operation Tr(·), we get the definition of freeness
in finite dimensions. Notice that any matrix and the identity matrix are free. However, this is
presumably the only case of free matrices.
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4. R-transform

4.5 Additive free convolution

In classical probability theory, for independent random variables, say X and
Y, the cumulant generating function of the distribution of X + Y is given by

ln〈eit(X+Y)〉X,Y = ln〈eitX〉X + ln〈eitY〉Y. (2.46)

Conceptually, the R-transform is the counterpart in random matrix theory to
the cumulant generating function in classical probability theory.

Theorem 2.4. [60] If X = X† and Y = Y† are asymptotically free, then

RX+Y (ω) = RX(ω) + RY (ω) (2.47)

where R(·) denotes the R-transform of the LED of the matrix given in the subscript.

This result is usually referred to as the additive free convolution.

4.6 A Fourier view of the R-transform

Since the R-transform is the conceptual counterpart in random matrix the-
ory of the cumulant generating function in classical probability theory, for a
given symmetric, or Hermitian, random matrix X independent of a matrix
Q = UΛU† with U and Λ being an orthogonal, or unitary, matrix and a di-
agonal matrix, respectively, it is natural to ask how the so-called asymptotic
Itzykson-Zuber integral [65]

IX(Q) , lim
N→∞

1
N

ln〈e
β
2 Ntr(QX)〉X (2.48)

is related to the R-transform of the LED of X. Here, and in the following
β = 2 (β = 1) for X complex-(real-)valued.

Theorem 2.5. [65], [66], [61], [67] Let an N× N symmetric, or Hermitian matrix
X be invariant and independent of the N × N matrix Q = UΛU† with U and Λ

being an orthogonal, or unitary, matrix and a diagonal matrix, respectively. Assume
that as N → ∞ Q has bounded spectral norm and rank and X has a bounded spectral
norm and a LED almost surely. Then, we have

IX(Q) =
β

2

∞

∑
n=1

cn

n
tr(Qn) (2.49)

whenever the right-hand side of (2.49) exists. In (2.49), cn denotes the nth order free
cumulant of the LED X.

It is worth mentioning some sufficient condition for the existence of the
right-hand side of (2.49). To this end, we first recall that the R-transform
of the LED function FX (with a compact support) can be written as the for-
mal power series (2.36). Let r be the radius of convergence of (2.36). Since
dIX(ω) = β

2 RX(ω)dω, the radius of convergence of IX is r as well, see [68, pp.
39]. This implies that the power series in (2.49) converges if ‖Q‖2 < r.
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4.7 The log det relationship

Though we have not yet studied a particular application of random matri-
ces, the reader should have the impression so far that the R-transform is an
important tool in random matrix theory as is the Fourier transform in prob-
ability theory. However, the computation of the R-transform is cumbersome,
and it is sometimes difficult to obtain it in an analytical form. In this sec-
tion, we show a fundamental relationship between the log det operation for
a symmetric, or Hermitian, matrix and the R-transform of its eigenvalue dis-
tribution.

Theorem 2.6. Consider the distribution function F with support in [0, ∞) and let
R be its R-transform. Moreover, let χ ,

∫
x−1 dF(x). Let a ∈ (0, χ) and define the

positive quantity ε , a−1 − R(−a). Then, we have∫ a

0
R(−ω) dω = 1 + ln a− εa +

∫
ln(ε + x) dF(x). (2.50)

Proof. See Appendix A.2.

The variable ε in Theorem 2.6 can be uniquely defined through the iden-
tity a = −G(−ε). This implies that for any ε ∈ (0, ∞) Theorem 2.6 can be
equivalently represented as∫

ln(ε + x) dF(x) = −(1 + ln a) + εa +
∫ a

0
R(−ω) dω (2.51)

where the range of a = −G(−ε) is (0, χ). In particular, recall that −G(−ε)→
χ as ε→ 0. Thereby, we obtain the following compact corollary.

Corollary 2.1. Let the distribution function F have its support in [0, ∞) and R be
its R-transform. Moreover, let χ ,

∫
x−1 dF(x). Then, for χ < ∞ we have∫

ln(x) dF(x) = −(1 + ln χ) +
∫ χ

0
R(−ω) dω. (2.52)

We can substitute F with the eigenvalue distribution function of an N × N
positive definite matrix, say X. Then, we can write

1
N

ln |X| = −(1 + ln χN
X ) +

∫ χN
X

0
RN

X (−ω) dω (2.53)

where we introduce χN
X , Tr(X−1).
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4. R-transform

4.8 Compression of random matrices

This subsection introduces a stunning property of the R-transform in connec-
tion to “compression” of random matrices. To be more specific let us consider
an N × N matrix X, e.g. with N = 4:

X =


X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34
X41 X42 X43 X44

 . (2.54)

Let Pβ be an N-dimensional projector, see Definition 2.5. For example, for
N = 4 and β = 1/2 we obtain the 2× 2 upper-left corner of X as

P 1
2
XP†

1
2
=

(
X11 X12
X21 X22

)
. (2.55)

The question is how to relate the eigenvalue distribution of X to the eigen-
value distribution of its corner PβXP†

β. For random matrices that are asymp-
totically free of the projector, the answer is simple in terms of the R-transforms
of their LEDs.

Lemma 2.3. [69] Let X = X† have dimension N×N and Pβ be an N-dimensional
projector. Let X have a LED (i.e. as N → ∞). Assume that X and P†

βPβ are
asymptotically free. Then, we have almost surely

RPβXP†
β
(ω) = RX(βω). (2.56)

As a quick application of Lemma 2.3, we next calculate the R-transform
of the LED of a Jacobi random matrix, see Definition 2.6.

Example 2.1. Let X , V †V where V , PβUP†
φ with U being a Haar matrix and

Pβ, Pφ projectors of appropriate dimensions. Note that

FP†
φPφ

(x) = (1− φ)u(x) + φu(x− 1). (2.57)

Then, one can easily show that [9]

RP†
φPφ

(ω) =
ω− 1 +

√
(ω− 1)2 + 4φω

2ω
. (2.58)

Thus, from Lemma 2.3 the R-transform of the LED of the Jacobi matrix X reads

RX(ω) =
βω− 1 +

√
(βω− 1)2 + 4βφω

2βω
. (2.59)
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5 S-transform

Voiculescu introduced the S-transform in free probability to handle the prod-
uct of free random matrices [70] . Specifically, consider the product XY where
X = X† and Y† = Y . Furthermore, let these matrices have non-vanishing
asymptotic normalized traces, i.e. φ(X) 6= 0 6= φ(Y). Moreover, let X and Y
be asymptotically free, see Definition 2.45. Then, we have

SXY (z) = SX(z)SY (z) (2.60)

where S(·) denotes the S-transform of the LED of the matrix given in the
subscript.

Let G be the Stieltjes transform of a probability distribution function F,
see (2.25). Define

Ψ(s) , s−1G(s−1)− 1 (2.61)

=
∫ sx dF(x)

1− sx
. (2.62)

Clearly the function Ψ is well defined and analytic on a domain in C that
includes {s : =s > 0}. Let assume that the restriction of Ψ to a sub-domain,
say D, is univalent. For any element in the two classes of probability dis-
tributions that we consider such a domain exists. For any distribution with
non-negative expectation and compact support, D is a neighborhood of 0.
For any distribution with non-vanishing expectation and non-negative sup-
port, D is a neighborhood of (−∞, 0). The S-transform of F is obtained from
the inverse function Ψ−1 as [71]

S(z) ,
z + 1

z
Ψ−1(z). (2.63)

5.1 The relationship between the S- and R- transforms

From the definition (2.61) one can observe that

Ψ−1(z) =
1

G−1(zΨ−1(z))
. (2.64)

Hence, by the definitions of the S- and R-transforms, (2.64) implies that [71]

R(zS(z))S(z) = 1 = S(ωR(ω))R(ω). (2.65)

This straightforward observation is important as it allows us to bypass the
Stieltjes transform for finding the R-transform of the underlying distribution
function via the S-transform and vice-versa. We next examine this identity
for two specific random matrix models.
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5. S-transform

Example 2.2. Consider the random matrix A = A2 A1 where the entries of N × L
matrix A2 and L × K matrix A1 are iid with zero mean and variances 1/N and
1/L, respectively. For convenience, define X , A† A, α , N/K and β , L/K. As
K → ∞ with the ratios α and β fixed, the S-transform of the LED of X is given (in
the almost sure sense) as [72]

SX(z) =
1

(z/α + 1)(z/β + 1)
. (2.66)

Then, by invoking (2.65) we obtain the R-transform of the LED of X:

RX(ω) =
α(β−ω)− βω−

√
α2β2 − 2αβω(α + β) + ω2(α− β)2

2ω2 . (2.67)

In the second example, we show how to transform a result involving the R-
transform into a result involving the S-transform. Specifically, we compute
the S-transform of the LED of the Jacobi matrix from its R-transform.

Example 2.3. Let X , PβUP†
φPφU†P†

β where U is a Haar matrix, and Pβ, Pφ are
projectors of appropriate dimensions. Then, by invoking (2.66) and (2.59) we obtain
that

SX(z) =
1 + φz
β + φz

. (2.68)

5.2 S-transform of distributions with non-negative support

In practice, we often encounter Gramians, which have their eigenvalue dis-
tribution functions confined on [0, ∞). In the rest the section, we present
some recent technical results for the S-transform of such distributions. Let F
be a probability distribution function with support in [0, ∞). Moreover, let
α , 1− F(0) 6= 0. In this case it is enough to restrict the definition domain
of the Stieltjes transform in (2.25) to (−∞, 0). Then, one can show that Ψ(s)
is a strictly increasing function of s ∈ (−∞, 0) with range (α− 1, 0). So the
S-transform of F is well defined on (−α, 0) [73].

Lemma 2.4. [73, Lemma 2 & Lemma 4] Let F be a probability distribution function
with support in [0, ∞) and S its S-transform. Furthermore, let α , 1− F(0) 6= 0.
Moreover, let F be not a Dirac distribution. Then, S is strictly decreasing on (−α, 0).
In particular, we have

lim
z→0−

S(z) =
(∫

x dF(x)
)−1

(2.69)

lim
z→−α+

S(z) =
∫ 1

x
dF(x) (2.70)

where by convention 1/0 = ∞ in (2.70) when F(0) > 0.
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In particular, the inverse-mean characterization (2.70) provides an interest-
ing flavor to the S-transform in the large-system limit: Let X and Pβ be an
N × N positive definite matrix and an N-dimensional projector, respectively.
Moreover, let X and P†

βPβ be asymptotically free. Then, by invoking (2.56) to
(2.65), we have

SPβXP†
β
(ω) = SX(βω). (2.71)

Then, combining (2.70) with (2.71) we get

SX(−β) =
∫ 1

x
dFPβXP†

β
(x), 0 < β < 1. (2.72)

5.3 The log det relationship

In analogy to the log det relationship involving the R-transform in Subsec-
tion 4.7 we provide a similar relationship that involves the S-transform. Since
the S-transform of the LED of product of asymptotically free matrices is the
products of the respective S-transforms of the LEDs of these matrices, we
investigate the logarithm of the S-transform.

Theorem 2.7. Let F be a probability distribution function with support in [0, ∞)
and S its S-transform. Furthermore, let α , 1− F(0) 6= 0. Moreover, let 0 < a < α
and

ε ,
1− a

aS(−a)
∈ (0, ∞). (2.73)

Then, we have∫ a

0
ln S(−z) dz = H̃(a) + (1− a) ln ε−

∫
ln(ε + x) dF(x) (2.74)

where H̃(x) , (x− 1) ln(1− x)− x ln(x) for x ∈ [0, 1] with convention 0 ln 0 = 0.
Moreover,

∫
| ln x| dF̃(x) is finite if, and only if,

∫ α
0 | ln S(−z)|dz is finite. If either

of these integrals is finite, we have∫ α

0
ln S(−z) dz = H̃(α)− α

∫
ln(x) dF̃(x). (2.75)

Here F̃ is defined by substituting F̃N
X and αN

X for F and α respectively in (2.11).

Proof. See Appendix A.3.

By the definition of the S-transform, the variable ε in Theorem 2.7 is uniquely
defined by the equation a = −Ψ(−1/ε) where the function Ψ is given in
(2.61). Thus, for a given γ ∈ (0, ∞), we can recast (2.74) as∫

ln(γ + x) dF(x) = H̃(a) + (1− a) ln ε−
∫ a

0
ln S(−z) dz (2.76)
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where for short we wrote a = −Ψ(−1/ε).
For F(0) = 0, the result (2.75) was proven in [73]. More specifically,

Haagerup and Möller in [73] showed that in this case the integral
∫
| ln x|dF(x)

is finite if, and only if,
∫ 1

0 | ln S(−z)|dz is finite and if either of these integrals
is finite, then ∫ 1

0
ln S(−z) dz =

∫
ln(x) dF(x). (2.77)

The proof of Theorem 2.7 follows by using an approach similar to that used
in [73].

6 Discussion

We have focused our attentions on the essential tools of free probability that
we will use in the subsequent chapters. For the sake of keeping the discussion
simple and compact, we intentionally did not drown the reader with the
details. Some of these details, such as the scaling property of R- and S-
transforms, are well known, see e.g. [38], [36] and [55]. However, we chose
deliberately not to introduce this kind of standard aspects of random matrices
in this chapter.

In practice, there are some important non-invariant random matrices for
which the asymptotic freeness holds. In particular, one can define a random
matrix whose eigenvectors are determined via a uniformly randomized DFT
matrix instead of a Haar matrix. This type of random matrices plays a fun-
damental role in compressed sensing [74]. In [13], the authors showed the
following interesting results: Let Λ1 and Λ2 be an N×N real matrices and U
be the N × N DFT matrix. Assume that the entries of Λ1 and Λ2 are asymp-
totically bounded when N → ∞. Moreover, let π be a uniformly distributed
random permutation of the sequence (1, · · ·N) and Pπ be the N×N random
permutation matrix corresponding to the random permutation π. Define the
so-called “fake Haar” matrix:

Uπ , PπUP†
π . (2.78)

Then, Λ1 and UπΛ2U†
π are asymptotically free [13].
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Chapter 3

Capacity Scaling in MIMO
Systems
This chapter is based directly on
Burak Çakmak, Ralf Müller and Bernard H. Fleury, “Capacity scaling for MIMO
systems with general unitarily invariant random matrices,” arXiv preprint arXiv:
1306.2595, December 2015.

1 Introduction

In this chapter, we investigate how the capacity of a MIMO communication
system scales as a function of the system dimensions as briefly described
in Subsection 2.1 of Chapter 1. We start with recalling the general ergodic
capacity expression of a MIMO system with perfect channel state information
at the receiver [16]:

min(T, R) log2 SNR + O(1). (3.1)

Here T and R denote the number of receive and transmit antennas, respec-
tively, and O(1) is a bounded function of the SNR that does depend on T
and R in general. The scaling term min(T, R) is often referred to as the mul-
tiplexing gain. The explicit expression for the capacity scaling when T or R
varies is difficult to calculate. Closed-form expressions can be obtained only
in few particular cases, e.g. for a channel matrix of asymptotically large size
with iid zero-mean entries [75].

In order to better understand capacity scaling in MIMO channels with
more complicated structures, such as correlation at transmit and/or receive
antennas, related works use either implicit solutions, e.g. [76], or consider
asymptotically high SNR and express the capacity in terms of the multiplex-
ing gain, e.g. [18]. However, implicit solutions do not provide intuitive in-
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sight into the capacity scaling and the multiplexing gain is a crude measure
of capacity.

We study the capacity of MIMO systems when the transmit antennas are
restricted to send equal signal power, i.e. the mutual information. This trans-
mission scenario is typical when the channel state information is available at
the receiver only. In particular, we consider an affine approximation to the
mutual information at high SNR. We investigate how mutual information
varies when the numbers of antennas (at either receiver or transmitter side)
is altered. Our affine approximation to the mutual information is a gener-
alization of the multiplexing gain which we call the multiplexing rate. Such
an approximation was formerly addressed in [16], which was the baseline of
many published works, e.g. [17, 77, 78].

We investigate the variation of the multiplexing rate when the number
of antennas either at the transmit or receive side varies. The variation of the
number of antennas is formulated by utilizing a convenient (linear) projection
operator. This formulation allows us to assess the mutual information at high
SNR in insightful and explicit closed form. Specifically, our sole restriction is
that the matrix of left, or right, singular vectors of the channel matrix of the
reference system from which antennas are removed is Haar distributed when
the number of receive, or transmit, antennas is varied. Informally speaking,
this implies that the channel matrices involve symmetry (or invariance) with
respect to the antennas. An individual antenna contributes in a “democratic
fashion” to the mutual information. There are no preferred antennas in the
system. In fact, such an invariance assumption is rather essential for the mu-
tual information to depend on T and R only, but not on the specific antennas
in the system.

Since the term O(1) in (3.1) is a bounded function of SNR, the expression
(3.1) has more than once led to misinterpretations in the wireless communi-
cations community: (i) for any variation of T or R with min(T, R) being fixed
the ergodic mutual information would not vary at high SNR; (ii) the ergodic
mutual information would grow linearly with min(T, R) at high SNR. In [17],
the authors addressed misinterpretation (i) for the zero-mean iid Gaussian
matrix ensemble. In this contribution, we debunk both misinterpretations (i)
and (ii) by considering arbitrary invariant matrix ensembles. As regards (i),
we derive a universal expression for the variation of the ergodic multiplex-
ing rate that results when the number of antennas is altered in a controlled
way such that min(R, T) is kept fixed. This expression is not a function of
the singular values of the channel matrix. It solely depends on the number
of transmit and receive antennas before and after the variation and can be
expressed in terms of the digamma function. Moreover, in the large-system
limit, the expression only involves the binary entropy functions evaluated
at the aspect ratios of the channel matrices before and after the alteration
of the system. As regards (ii), we quantify how the multiplexing rate as a
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function of the number of antennas deviates from the approximately linear
growth versus the minimum of the system dimensions. We derive remark-
able properties of this quantity. The aforementioned results on the variation
of the multiplexing rate provide least upper bounds on the variation of the
mutual information over all SNRs. These bounds are exact in the high SNR
limit. Finally, we derive new formulas for the mutual information and the
multiplexing rate, which fundamentally relate these two quantities via the
S-transform.

The chapter is structured as follows. In Section 2, we present the details
of the system model. In Section 3, we introduce new integral formulations of
the mutual information and the multiplexing rate in terms of the S-transform.
Sections 4 and 5 are dedicated to lift misinterpretations (i) and (ii), respec-
tively. Conclusions are outlined in Section 6. The technical lemmas and the
proofs are located in Appendix B.

2 System Model

Consider the MIMO system
y = Hx + n (3.2)

where H ∈ CR×T , x ∈ CT×1, y ∈ CR×1, n ∈ CR×1 are respectively the channel
matrix, the input vector, the output vector, and the noise vector. The entries
of x and n are assumed to be independent circularly-symmetric complex
Gaussian with zero mean and variances σ2

x and σ2
n , respectively. The transmit

SNR is defined as

γ ,
σ2

x
σ2

n
, 0 < γ < ∞. (3.3)

For notational convenience, we define the two possible Gramians of the chan-
nel matrix as

J , H† H and J̃ , HH†. (3.4)

The mutual information per transmit antenna of the communication link (3.2)
is given by [15]

I(γ; FT
J ) ,

∫
log2(1 + γx) dFT

J (x). (3.5)

Similarly, I(γ; FR
J̃ ) is the mutual information per receive antenna of (3.2).

2.1 Antenna removal via projector

In the sequel, we formulate the variation of mutual information when the
number of antennas either at the transmit or receive side of reference system
(3.2) changes. This variation is achieved by removing a certain fraction of
antennas at the corresponding side of the system. We formulate this removal
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process via a multiplication of the channel matrix with a rectangular projector
matrix, see Definition 2.5.

We distinguish between two cases: the removal of receive antennas and
the removal of transmit antennas. In the first case, the system model resulting
after removing a fraction 1− β of receive antennas in (3.2) reads

yβ = Pβ(Hx + n) (3.6)

= Pβ Hx + nβ. (3.7)

The βR×R matrix Pβ is an R-dimensional projector which removes a fraction
1− β of receive antennas in reference system (3.2) and nβ = Pβn. For the sake
of notational compactness, we introduce

Jβ , H†P†
βPβ H. (3.8)

The mutual information of MIMO system (3.7) is equal to

TI(γ; FT
Jβ
). (3.9)

Similarly, removing a fraction 1− β of transmit antennas in (3.2) yields the
R× βT system

ỹ = HP†
βxβ + n. (3.10)

Here, xβ is the vector obtained by removing from x the (1− β)T entries fed to
the removed transmit antennas, i.e. xβ = Pβx with Pβ being a T-dimensional
projector. Similarly to (3.8), let us introduce

J̃β , HP†
βPβ H†. (3.11)

The mutual information of system (3.10) reads

RI(γ; FR
J̃β
). (3.12)

2.2 Unitary invariance

For channel matrices that are invariant from left, i.e. H ∼ UH for any uni-
tary matrix U independent of H, it does not matter which receive antennas
are removed. Only their number counts. The same applies to channel ma-
trices that are invariant from right for the removal of transmit antennas. For
channel matrices that involve an asymmetry with respect to the antennas,
i.e. some antennas contribute more to the mutual information than others,
it must be specified which antennas are to be removed and the mutual in-
formation will depend (typically in a complicated manner) on the choice of
the removed antennas. We restrict the considerations to cases where only the
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number of removed antennas matters since this leads to explicit closed-form
expressions.

For asymmetric channel matrices, one could obtain antenna-independent
scaling laws if all antennas with equal contributions to mutual information
are grouped together and all those groups were decimated proportionally.
Doing so would heavily complicate the formulation of the antenna removal
by means of multiplication with projector matrices. However, we can uti-
lize the fact that for the channel in (3.2), mutual information is invariant to
right- and left-multiplication with any unitary matrices U and V . Since the
channel matrix UHV is bi-invariant for all random unitary matrices U and V
independent of H, and thus has the same mutual information as H, we can
assume without loss of generality that H is invariant from left for receive and
from right for transmit antenna removal, respectively, and keep the projector
formulation of Subsection 2.1 as it is.

The multiplication with a random unitary matrix followed by a fixed se-
lection of antennas has statistically the same effect as a random selection of
antennas. It provides the symmetry required to make performance (e.g. mu-
tual information) only depend on the number of removed antennas and not
on which antennas are removed.

3 Mutual Information and Multiplexing Rate

The normalized mutual information in (3.5) can be decomposed as

I(γ; FT
J ) = αT

J

∫
log2(γx) dF̃T

J (x)︸ ︷︷ ︸
I0(γ;FT

J )

+

αT
J

∫
log2

(
1 +

1
xγ

)
dF̃T

J (x)︸ ︷︷ ︸
∆I(γ;FT

J )

. (3.13)

Here, F̃T
J represents the distribution function of the non-zero egienvalues of

J, see Definition 2.1. We refer to the first term I0(γ; FT
J ) as the multiplexing

rate per transmit antenna. Note that the factor αT
J is the multiplexing gain

normalized by the number of transmit antennas. The second term ∆I(γ; FT
J )

is the difference between the mutual information per transmit antenna and
the multiplexing rate per transmit antenna. To alleviate the terminology, in
the sequel we skip the explicit reference to the normalization by the number
of transmit antennas when we refer to the three functions defined in (3.13)
and αT

J . Whether the quantities considered are absolute or normalized will be
clear from the context. The same convention applies when we later normalize
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by the number of receive antennas. We have

lim
γ→∞

∆I(γ; FT
J ) = 0. (3.14)

For example, if J is invertible we have

I0(γ; FT
J ) =

1
T

log2 |γJ| (3.15)

∆I(γ; FT
J ) =

1
T

log2

∣∣∣I + (γJ)−1
∣∣∣ (3.16)

with I denoting the identity matrix.
The multiplexing rate corresponds to the affine approximation of the mu-

tual information at high SNR introduced in [16], see also [17, Eq. (9)] for a
compact formulation of it.

We show now that both the mutual information and the multiplexing
rate can be formulated conveniently in terms of the S-transform of FT

J . This
result makes use of the minimum-mean-square-error (MMSE) achieved by
the optimal receiver for (3.2) normalized by the number of transmit antennas:

ηT
J (γ) ,

∫ dFT
J (x)

1 + γx
. (3.17)

The MMSE is a strictly decreasing function of the SNR with range (1− αT
J , 1)

[36]. Reformulating, Theorem 2.7 in Chapter 2 in terms of mutual infor-
mation, MMSE and multiplexing rate, we obtain the following fundamental
result in our context.

Theorem 3.1. We introduce

f J(x) , H(x)−
∫ x

0
log2 ST

J (−z) dz, 0 ≤ x ≤ αT
J . (3.18)

Here H denotes the binary entropy function, i.e.

H(x) , (x− 1) log2(1− x)− x log2 x, x ∈ [0, 1] (3.19)

where by convention 0 log2 0 = 0. Then, we have

I(γ; FT
J ) = f J(1− ηT

J ) + (1− ηT
J ) log2 γ (3.20)

I0(γ; FT
J ) = f J(α

T
J ) + αT

J log2 γ. (3.21)

For short we wrote ηT
J for ηT

J (γ) in (3.20).

Note that by definition the function f J in (3.18) may involve αT
J via the S-

transform ST
J . We have the following implications of Theorem 3.1: (i) the
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mutual information can be directly expressed as a function of the (normal-
ized) MMSE; ii) for any expression of the mutual information as a function
of the MMSE ηT

J the multiplexing rate results by direct substitution of ηT
J

for 1 − αT
J ; iii) the converse of ii) is not always true: given an expression

of the multiplexing rate as a function of αT
J , substituting αT

J for 1− ηT
J does

not always yield the mutual information. This is precisely the case when
the expression for ST

J involves αT
J . An intermediate step is required here to

guarantee that the converse holds: the expression needs first to be recast as
a function of f J . Then substituting αT

J for 1− ηT
J in the latter function yields

the mutual information.
Note that, if any probability distribution function with support in [0, ∞),

say F, is substituted for FT
J in (3.13) the formulas (3.20) and (3.21) remain valid

provided I(γ; F) is finite and log(x) is absolutely integrable over F̃, respec-
tively1. The absolute integrability condition holds if, and only if, I(γ; F) and
∆I(γ; F) are finite. In the sequel, we substitute FJ for FT

J to calculate the inte-
grals I(γ; FJ) and I0(γ; FH). In particular, in Appendix B.1 we provide some
sufficient conditions that guarantee the almost sure convergence of I(γ; FT

J )

and I0(γ; FT
J ) to I(γ; FJ) and I0(γ; FJ), respectively, in the large-system limit.

We conclude by assuming that this asymptotic convergence is reasonable in
practice. For the details, we refer the reader to Appendix B.1.

Recall that the S-transform of the LED of the product of asymptotically
free matrices is the product of the respective S-transforms of the LEDs of
these matrices. Therefore, Theorem 4.1 provides a means to calculate the
large-system limit of the mutual information and the multiplexing rate for
MIMO channel matrices that involve a compound structure. We next address
two relevant random matrix ensembles that exhibit this structure.

Example 3.1. We consider the concatenation of the vector-valued fading channel
described in [79]. Specifically we assume that the channel matrix H factorizes ac-
cording to

H = XN XN−1 · · ·X2X1 (3.22)

where the entries of Kn × Kn−1 matrix Xn are iid with zero mean and variance
1/Kn for n ∈ [1, N]. Moreover let Kn → ∞ with the ratios ρn , Kn/K0 fixed
for n ∈ [1, N]. By invoking Theorem 4.1 we obtain the following expression for the
large-system limit of the mutual information:

I(γ; FJ) = H(ηJ) + (1− ηJ)(log2 γ− N log2 e)+

(1− ηJ)

[
N

∑
n=1

ρn

1− ηJ
H
(

1− ηJ

ρn

)
+ log2

1− ηJ

ρn

]
. (3.23)

1Here F̃ is defined by substituting F̃T
J for F in (2.11).
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In this expression, ηJ denotes the large-system limit of MMSE ηT
J . This result pro-

vides an explicit expression for I(γ; FJ) in terms of the (asymptotic) MMSE. An
explicit expression of the MMSE as a function of SNR is difficult to obtain in gen-
eral. However, for a given value of the SNR, one can solve the MMSE from the
fixed-point equation (see [79, Eq. (21)])

ηJ

1− ηJ

N

∏
n=1

ηJ + ρn − 1
ρn

= γ. (3.24)

As regards the multiplexing rate, we have the following explicit expression

I0(γ; FJ) =H(αJ) + αJ(log2 γ− N log2 e)+

αH

[
N

∑
n=1

ρn

αJ
H
(

αJ

ρn

)
+ log2

αJ

ρn

]
(3.25)

with αJ = min(1, ρ1, · · · , ρN).

Example 3.2. We consider a Jacobi matrix ensemble, see e.g. [46], [43], which has
recently found an application in the context of optical MIMO communications [44],
[45]. Accordingly, the channel matrix H factorizes as

H = Pβ2UP†
β1

(3.26)

where U is an N × N Haar matrix. From Theorem 4.1 we obtain

I(γ; FJ) =H(ηJ) + (1− ηJ) log2 γ−
H(β1(1− ηJ))

β1
+

β2

β1
H
(

β1

β2
(1− ηJ)

)
(3.27)

where ηJ = ηJ(γ) is given by

ηJ(γ) = 1 +
−(1 + κγ) +

√
(1 + κγ)2 − 4β1β2γ(1 + γ)

2β1(1 + γ)
(3.28)

with κ , β1 + β2. Moreover we have

I0(γ; FJ) =H(αJ) + αJ log2 γ−
H(β1αJ)

β1
+

β2

β1
H
(

β1

β2
αJ

)
(3.29)

with αJ = min(1, β2/β1).

The proofs of (3.23)-(3.25) and (3.27)-(3.29) are given in Appendix B.2.
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4 The Universal Rate Loss

In Section 1 we underlined the following misinterpretation of (3.1): when the
number of antennas (at either the transmit or receive side) varies, while the
minimum of the system dimensions is kept fixed, the ergodic mutual infor-
mation does not vary at high SNR. In this section, we provide an analysis
of the variation of multiplexing rate versus such variation of the system di-
mensions that lifts this misinterpretation2. To do so, we need to distinguish
between two cases as to system (3.2): (i) T ≤ R; (ii) T ≥ R. In the former,
or latter, case we consider the removal of receive, or transmit, antennas. In
both cases, the reduction of antennas is constrained in a way that keeps the
minimum of the numbers of antennas at both sides fixed.

4.1 Case (i) – Removing receive antennas

We remove a fraction (1− β) of receive antennas in system (3.2) to obtain sys-
tem (3.7). We constrain the reduction such that β ≥ φ , T/R to ensure that
min(T, βR) = T. This reduction of the number of receive antennas causes a
loss in mutual information given by TI(γ; FT

J )− TI(γ; FT
Jβ
), see (3.8). Nor-

malizing this loss to the number of transmit antennas yields

I(γ; FT
J )− I(γ; FT

Jβ
). (3.30)

Assuming Jβ is almost surely full rank, (3.30) converges to

χT
J (R, βR) , I0(γ; FT

J )− I0(γ; FT
Jβ
), β ≥ φ (3.31)

as the SNR tends to infinity, see (3.14). Here the full-rank assumption is
essential. Otherwise (3.31) may depend on the SNR and diverge as the SNR
tends to infinity.

Lemma 3.1. Assume that Jβ has almost surely full rank. Let the R × R unitary
matrix U be the eigenvector matrix of J. Then, we have

χT
J (R, βR) = − 1

T
log2 |PφU†P†

βPβUP†
φ|. (3.32)

Proof. See Appendix B.3.

Thus, the rate loss χT
J (R, βR) solely depends on the matrix of left singular

vectors of the channel matrix H, i.e. U, and the number of antennas be-
fore and after the removal of antennas. We now assume that U to be Haar
distributed. Doing so allows us to calculate both the ergodic rate loss, i.e.
〈χT

J (R, βR)〉J , and the large-system limit of the rate loss.

2In [17] the authors unraveled this misinterpretation for the iid Rayleigh fading channel.
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Theorem 3.2 (Universal Rate Loss). Assume that J has almost surely full rank
and J is unitarily invariant. Then, we have

〈χT
J (R, βR)〉J =

log2 e
T

T−1

∑
l=0

ψ(R− l)− ψ(βR− l) (3.33)

with ψ(·) denoting the digamma function. Moreover, we have almost surely

χT
J (R, βR)→ H (φ)

φ
− β

φ
H
(

φ

β

)
(3.34)

as R, T → ∞ with the ratio φ = T/R fixed.

Proof. See Appendix B.3.

The name Universal Loss Theorem refers to the fact that neither the premises
nor the results stated in the theorem refer explicitly to the singular values of
the channel matrix. Moreover, interestingly, the large-system limit of χT

J , i.e.
(3.34), involves only the binary entropy function evaluated at the two aspect
ratios φ and β/φ of the channel matrices (the one before and the one after
the removal of the antennas). This motivates us to coin this limit the binary
entropy loss. Later in the section, we show by simulation that the binary en-
tropy loss provides a good approximation already for systems with moderate
dimensions.

If we remove as many antennas as needed to obtain a square system, i.e.
βR = T, and we normalize the mutual information to the number of receive
antennas before the removal instead of the number of transmit antennas, we
have the following particularly striking case of (3.34).

Remark 3.1. Assume that J has almost surely full rank and is invariant. Let T < R.
Then, for sufficiently large T and R, removing as many receive antennas in (3.2) to
obtain a square system results in a mutual information loss normalized by R that is
arbitrarily close to H(φ) in the high SNR limit.

Next, we show that Theorem 3.2 holds for the supremum of the mutual
information loss (3.30) over the SNR range. Note that both quantities in (3.30)
increase with SNR. It is shown in Appendix B.3 that their difference, i.e.
(3.30), increases with the SNR too. Hence, the Universal Rate Loss Theorem
also provides the least upper bound on the mutual information loss (over the
SNR range).

Corollary 3.1. Let the random matrix J be defined as in Theorem 3.2. Furthermore,
let Pβ be the R-dimensional projector with β ≥ φ. Then by removing a fraction
(1 − β) of the receive antennas in system (3.7) the maximum amount of mutual
information loss in the ergodic sense per receive antenna over all SNRs, i.e.

sup
γ

〈
I(γ; FT

J )− I(γ; FT
Jβ
)
〉

J
, (3.35)
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is equal to the right-hand side of (3.33). Moreover, (3.35) converges to the binary
entropy loss (3.34) as R, T → ∞ with the ratio φ fixed.

It turns out that Theorem 3.2 also holds when the multiplexing rates in (3.31)
are replaced by the respective capacities in the high SNR limit. Let us con-
sider the class of T-dimensional positive definite Hermitian matrices. Let the
trace of any element, say Q, of this class be equal to T. Then we denote the
ergodic capacity of (3.7) as

C(γ; FT
Jβ
) , max

Q:tr(Q)=T

〈
I(γ; FT

QJβ
)
〉

J
(3.36)

with tr(·) denoting the trace operator.

Corollary 3.2. Let the random matrix J be defined as in Theorem 3.2. Furthermore,
let Pβ be the R-dimensional projector with β ≥ φ. Then by removing a fraction
(1− β) of the receive antennas in system (3.7) the amount of capacity loss per receive
antenna in the high SNR limit, i.e.

lim
γ→∞

{
C(γ; FT

J )− C(γ; FT
Jβ
)
}

, (3.37)

is equal to the right-hand side of (3.33). Moreover, (3.37) converges to the binary
entropy loss (3.34) as R, T → ∞ with the ratio φ fixed.

Proof. See Appendix B.3.

4.2 Case (ii) – Removing transmit antennas

We remove a fraction (1− β) of transmit antennas in (3.2) to obtain system
(3.10). We limit the reduction of receive antennas by β ≥ 1/φ = T/R to
ensure min(βT, R) = R. Reducing the number of transmit antennas results
in a loss of mutual information equal to RI(γ; FR

J̃ )−RI(γ; FR
J̃β
). Normalizing

this loss with the number of receive antennas gives

I(γ; FR
J̃ )− I(γ; FR

J̃β
). (3.38)

Assuming that J̃β has almost surely full rank, (3.38) converges to

χ̃R
J̃ (T, βT) , I0(γ; FR

J̃ )− I0(γ; FR
J̃β
), β ≥ 1/φ (3.39)

as the SNR tends to infinity. Again the full rank assumption is essential here.
Otherwise (3.39) may depend on the SNR and diverge when the SNR tends
to infinity.
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Corollary 3.3. Assume that J̃ is almost surely full rank and is invariant. Then, we
have

〈χ̃R
J̃ (T, βT)〉 J̃ =

log2 e
T

R−1

∑
l=0

ψ(T − l)− ψ(βT − l). (3.40)

Moreover, we have almost surely

χ̃R
J̃β
(T, βT)→ H

(
1
φ

)
− βH

(
1

φβ

)
(3.41)

as R, T → ∞ with the ratio φ = T/R fixed.

Note that the right-hand side in (3.41) is obtained by formally replacing φ
with φ−1 in the right-hand side of (3.34). This substitution is valid for any
result that refers to mutual information, e.g. as in Corollary 1. However, it
does not apply in general to capacity related results, such as in Corollary 2,
due to the placement of the projection operator on the transmitter side.

4.3 Discussions of the universal rate loss

In the sequel, we discuss the property and behavior of the universal rate loss.
For the sake of keeping the discussion simple, we only consider the antenna
removal process specified in Remark 3.1. For convenience we define

χ(R, T) ,
log2 e

T

T−1

∑
l=0

ψ(R− l)− ψ(T − l). (3.42)

This quantity is equal to the right-hand side of (3.33) for β = φ.
Discussion 1: We consider first a 4× 2 MIMO system that is stripped off

two of its four receive antennas. For full-rank channel matrices that are in-
variant from left Theorem 3.2 gives the exact ergodic loss in the high SNR
limit equal to 4χ(4, 2) = 3.37 bit. This is depicted in Figure 3.1 for a Gaussian
channel. The asymptotic loss (3.34) is 4H(2/4) = 4 bit.

Note also that (3.42) is the supremum of the mutual information loss over
all SNRs. From Figure 3.1 we may conclude that (3.42) yields an accurate
approximation of mutual information loss when the SNR is around 20dB
and above.

Discussion 2: We illustrate the universality of the rate loss and the tightness
of the approximation provided by the binary entropy loss, i.e. RH(T/R),
already for small system dimensions. To this end, we study the ergodic rate
loss in the high SNR limit for three different channel models that are invariant
from the left: (i) the channel matrix H = UΛ where U ∈ CR×T is uniformly
distributed over the manifold of complex R× T matrices such that U†U = I
and Λ ∈ RT×T is a positive diagonal matrix that represents the power profile
at the transmitter. This is a typical channel model in the context of massive
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Fig. 3.1: Ergodic mutual information (continuous lines) and ergodic multiplexing rate (dashed
lines) versus SNR of a zero-mean iid circularly-symmetric complex Gaussian MIMO channel
with T = 2 transmit antennas and a number of receive antennas decreased from R = 4 (blue
curves) to R = 2 (red curves).

MIMO, i.e. T � R. Here we point out that Λ does not impact the rate loss
due to the identity

det Λ2U†P†
βPβU = det Λ2 det U†P†

βPβU. (3.43)

Therefore for convenience, we set Λ = I. (ii) the channel matrix H = X with
the entries of X being zero-mean iid complex-valued Gaussian with finite
variance; (iii) the channel matrix H = X2DX1. Here X1 ∈ CS×T represents
the propagation channel from the transmit antennas to scatterers with the
corresponding power profile represented by the S× S positive diagonal ma-
trix D. The matrix X2 ∈ CR×S represents the propagation channels from the
scatterers to the receive antennas. The entries of X1 and X2 are assumed
to be zero-mean iid circularly-symmetric complex Gaussian with finite vari-
ance. This random matrix ensemble models the channel under the assump-
tion of propagation via one-bounce scattering only [72]. In order to fulfill the
full-rank condition, we restrict to the case S ≥ T. The amounts of ergodic
mutual information loss in the high SNR limit is depicted in Figure 3.2 for
the three channel matrix ensembles. From this figure we conclude that the
binary entropy loss yields an accurate approximation even for small system
dimensions.

Discussion 3: We show a symmetry property of the universal rate loss.
First let us consider two separate MIMO systems, one of dimensions 3× 2 and
one of dimensions 3× 1. Let the antenna removal processes be 3× 1→ 1× 1
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Fig. 3.2: The maximal ergodic mutual information loss over the SNR range: The entries of
X ∈ C4×T , X1 ∈ CS=4×T and X2 ∈ C4×S=4 are zero mean iid circularly-symmetric complex
Gaussian. The matrix U ∈ C4×T is uniformly distributed over the manifold of complex 4× T
matrices fulfilling U†U = I. The S× S matrix D is positive diagonal. Its diagonal entries are iid
and uniformly distributed.

for the former system and 3× 2→ 2× 2 for the latter. Thus, in both cases two
communication links are removed from the reference systems. Furthermore,
let the channel matrices of the reference systems fulfill the conditions stated
in Theorem 3.2 (i.e. full-rank and unitary invariance). The binary entropy
loss amounts to 3H(1/3) = 3H(2/3) = 2.75 bit. We have the symmetric
behavior for the exact (ergodic) losses as well: 3χ(3, 1) = 3χ(3, 2) = 2.17 bit.
Indeed, it is shown in Appendix B.4 that

χ(R, φR) = χ(R, (1− φ)R), φ ≤ 1. (3.44)

Identity (3.44) has the following interpretation: let the channel matrix be in-
variant from left (or right for the antenna removal process at the transmitter)
and have almost surely full-rank. Then (3.44) implies that the ergodic rate
loss in the high SNR limit does not actually depend on the number of trans-
mit (or receive) antennas of the reference system. Only the total number of
communication links removed from the reference system matters.

5 Deviation from Linear Growth

In this section, we clarify the second misinterpretation underlined in Sec-
tion 1. Specifically, we analyze the variation of the multiplexing rate when
either the number of receive or the number transmit antennas varies while
their maximum is kept fixed.
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For a channel matrix having orthogonal columns when the number of
transmit or receive antennas varies, the linear growth of mutual information
is obvious. However, for a channel matrix with e.g. iid entries, a crosstalk
arises due to the lack of orthogonality of its columns. The effect of this
crosstalk onto mutual information is non-linear in the number of antennas.

The mutual information scales approximately linearly in the minimum of
the numbers of transmit and receive antennas. For a tall rectangular channel
matrix that becomes wider and wider, the mutual information can only grow
approximately linearly until the matrix becomes square. The same holds for
a wide rectangular channel matrix growing taller and taller. Therefore, we
have to distinguish between two cases: (i) the number of receive antennas
is smaller than the number of transmit antennas, i.e. a wide channel matrix,
and (ii) the converse of (i), i.e. a tall channel matrix. Since case (ii) can be
easily treated by replacing the channel matrix with its conjugate-transpose,
we restrict our investigations to case (i).

The linear growth cannot continue once the channel matrix has grown
square. Thus, it makes sense to constrain the matrix of reference system (3.2)
to be square; i.e. we assume that the channel matrix H in (3.2) is N × N i.e.
N = R = T.

The exact mutual information of (rectangular) system (3.10) of size βN ×
N, β ≤ 1 is

NI(γ; FN
Jβ
). (3.45)

The mutual information (3.45) scales approximately linearly with the number
of receive antennas if it is close to

βNI(γ; FN
J ). (3.46)

Thus, in the high SNR limit, the deviation from the linear growth normalized
by N (the deviation from linear growth for short) is given by

∆L(β; FN
J ) , I0(γ; FN

Jβ
)− βI0(γ; FN

J ) (3.47)

where J is assumed to be full-rank almost surely, so that αN
Jβ

= βαN
J . Note

that the full-rank assumption is necessary, otherwise (3.47) depends on the
SNR and diverges as the SNR tends to infinity.

Example 3.3. Let H be unitary. Then, we have

∆L(β; FN
J ) = 0. (3.48)

The large-system limit consideration

The deviation from linear growth (3.47) differs from the quantity χT
J defined

in (3.31) only by the factor β scaling the second term. Unlike χT
J , ∆L does
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depend on the singular values of the channel matrix. This makes the anal-
ysis somehow intractable. However, it is well-known that results obtained
for asymptotically large systems provide a good approximation already for
systems of moderate dimensions, i.e. typically consisting of a dozen on an-
tennas. This motivates us to conduct a large-system analysis of the deviation
from linear growth. In doing so we employ the following assumption:

Assumption 3.1. The Gramian matrix J has full rank almost surely. Furthermore,
J is unitarily invariant and has a compactly supported LED almost surely, as N →
∞. Moreover, the integral ∆I(1; FJ) is finite.

We carry out the analysis on the basis of the LED function FJβ
. Specifically,

we consider
∆L(β; FJ) = I0(γ; FJβ

)− βI0(γ; FJ). (3.49)

However, in the numerical investigations with considering the ergodic coun-
terparts of these quantities. To still be able to relate the theoretical results
with the numerical results we assume that the ergodic multiplexing rate con-
verges for any β ≤ 1:

lim
N→∞

〈I0(γ; FN
Jβ
)〉J = I0(γ; FJβ

). (3.50)

It is easy to show that the convergence (3.50) is a mild assumption for β <
1: Since the LED of J is assumed to have a compact support, the LED of
Jβ has a compact support too, see [69, Corollary 1.14]. Note also that a
compactly supported probability distribution can be uniquely characterized
by its moments. We now relax the compactly supported LED property of Jβ

by assuming that the maximum eigenvalue of Jβ converges to a finite limit.
Thus, Jβ has uniformly bounded spectral norm. This fact allows us to use the
machinery provided in Proposition B.1. Specifically, supN〈

∫
x−1dF̃N

Jβ
(x)〉J <

∞ is sufficient for (3.50) to hold since∫ 1
x

dF̃Pβ H(x), 0 < β < 1 (3.51)

is strictly increasing with β, see (2.72).

Example 3.4. Let the entries of the random matrix H be iid with zero mean and
variance σ2/N. Then, as N → ∞ we have almost surely

∆L(β; FJ) = (β− 1) log2(1− β), 0 < β ≤ 1 (3.52)

where by convention 0 log2 0 = 0.

Proof. See Appendix B.5.
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Fig. 3.3: Ergodic multiplexing rate and corresponding linear growth (A) and (ergodic) deviation
from linear growth (B) versus number of receive antennas βN. The entries of H ∈ C5×5 are iid
circularly-symmetric complex Gaussian with zero mean and variance 1/5. The SNR is γ = 20 dB.

In other words, at high SNR the normalized mutual information of a MIMO
system with zero-mean iid channel entries grows approximately linearly with
the minimum of the numbers of transmit and receive antennas up to 1st
order and the deviation from the linear growth is close to (β − 1) log2(1−
β) as illustrated in Figure 3.3. This result can be obtained from previous
capacity results, e.g. [17, Proposition 2]. We obtained it as a special case of
the following lemma.

Lemma 3.2. Let H fulfill Assumption 3.1. Then, as N → ∞ we have almost surely

∆L(β; FJ) = −β
∫ 1

0
log2

SJ(−βz)
SJ(−z)

dz. (3.53)

Proof. See Appendix B.6.

Alternatively, we may bypass the need for using the S-transform by invoking
(2.72), i.e.

SH(−t) =
∫ 1

x
dF̃Jt(x), 0 < t < 1. (3.54)

The result in (2.72) also provides a convenient means to calculate the de-
viation from linear growth in the large-system limit. The right-hand side
of (2.72) is nothing but the asymptotic inverse spectral mean of the channel
matrix PtH.
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From Figure 3.3 we conclude that for the zero-mean iid matrix ensemble
the deviation from linear growth is notable but not significant. In fact we
have the following general property:

Remark 3.2. Let H fulfill Assumption 3.1. Furthermore let FJ be not a Dirac dis-
tribution function. Then, the quantity

I(γ; FJβ
)− βI(γ; FJ) (3.55)

increases with the SNR. Thus, we have

∆L(β, FJ) = sup
γ

{
I(γ; FJβ

)− βI(γ; FJ)
}

. (3.56)

Proof. See Appendix B.7.

The result (3.56) leads us to expect that the linear growth may provide a
reasonable approximation of the mutual information at moderate SNR region
in practice. We also draw the attention to another remarkable property of the
deviation from linear growth:

Remark 3.3. Let X = X† and Y = Y† be independent random matrices in CN×N .
Moreover let X and Y fulfill Assumption 1. Then, we have

∆L(β; FXY ) = ∆L(β; FX) + ∆L(β; FY ). (3.57)

Proof. See Appendix B.8.

We can exploit this result to show that the deviation from linear growth in-
creases with the amount of correlation between the entries of a channel matrix
in a particular setting.

Example 3.5. Consider a random matrix defined as

H =
M

∏
m=1

Am (3.58)

where the N × N matrices Am, m = 1, . . . , M, are independent, have iid entries
with zero mean and variance σ2/N. Then, we have

∆L(β; FJ) = M∆L(β; FA†
1 A1

) (3.59)

= M(β− 1) log2(1− β). (3.60)

where by convention 0 log2 0 = 0.

The entries of the product of two matrices with iid entries are not iid any-
more, but correlated. As M in (3.58) increases, so does the correlation be-
tween the entries of H, and therefore the deviation from the linear growth.
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6 Conclusions

We have addressed the problem of capacity scaling in MIMO communica-
tion systems when the transmitters send with equal signal power. We have
showed that a variation of the number of antennas in a MIMO system with
invariant channel matrix affects the capacity at asymptotically large SNR in
the following way: If the minimum number of antennas at transmitter and
receiver sides stay unaltered, the change of capacity depends only on the
system dimensions, but not on the singular values of the channel matrix. In the
large-system limit, this change of capacity can be expressed in a compact
closed form involving only the binary entropy functions of the two aspect
ratios of the channel matrices (the one before and the one after the variation
of the number of antennas). Moreover, capacity grows only approximately
linearly with the minimum of the system dimensions even at high SNR. The
deviation from the linear growth, i.e. the deviation of the linear approxi-
mation, does depend on the singular values of the channel matrix. It can
be quantified and has the following remarkable property in the large-system
limit: For certain MIMO channel matrices that can be factored, it is the sum of
the respective deviations associated with the factor matrices. The results are
derived for the asymptotic SNR regime. However, they provide least upper
bounds over the whole SNR range. Finally, a fundamental relation between
capacity and its affine approximation (the multiplexing rate) was unveiled.
This relation can be conveniently described via the S-transform.
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Chapter 4

Self-Averaging Expectation
Propagation
This chapter is based directly on
Burak Çakmak, Manfred Opper, Bernard H. Fleury and Ole Winther, “Self-averaging
expectation propagation,” arXiv preprint arXiv: 1608.06602, August 2016.

1 Introduction

Expectation propagation [21], [20] (EP) is a typically highly accurate method
for approximate probabilistic and Bayesian inference which is applicable to
both discrete and continuous random variables as well as hybrid models. Es-
pecially Gaussian EP which approximates intractable posterior distributions
by multivariate Gaussian densities was found to give excellent approxima-
tions not only to posterior marginal moments but also to the free energy (i.e.
the negative logarithm of the marginal pdf of the observed variables) [80].

Unfortunately, the advantage of Gaussian EP – which takes dependencies
between variables into account over other methods which are based on sim-
pler approximations with factorizing densities – becomes a problem when
the number of random variables is large. This stems from the fact that EP
requires frequent matrix inversions related to the update of variance param-
eters, called cavity variances, of the Gaussian approximations. This makes a
direct application of EP to large systems problematic.

On the other hand, there are other approaches to approximate inference
which explicitly take advantage of the fact that the number of random vari-
ables in the model is large. Central limit theory arguments applied to lin-
ear combinations of random variables have frequently been used to facili-
tate approximate inference [22], [23], [25]. This idea is also very much at
the heart of the so-called TAP approach originally developed in the field
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of statistical physics [26] and also frequently applied to probabilistic infer-
ence [20], [81], [82]. These approaches lead to Gaussian approximations
but with a typically simpler parameterization that avoids costly matrix in-
versions, see also the method of “diagonal restricted” expectation consis-
tency [83]. This idea has been used e.g. to develop tractable approximations
to loopy BP when the connectivity of the graphical model becomes large.
The so-called AMP technique – originally developed in the context of CDMA
communication problem [22] – has been successfully applied to problems in
compressed sensing [23–25]. This approach relies on statistical assumptions
on data matrices, assuming that they are random matrices with zero-mean
iid entries and vanishing variances (as the system dimensions tend to infin-
ity). Under this assumption, the variance parameters of the Gaussian random
variables become asymptotically non-fluctuating and are the same for each
variable. This self-averaging value can be explicitly computed for the simple
random matrix ensemble with zero-mean iid entries and vanishing variances.

In this chapter, we show that under certain statistical assumptions on the
transformation matrix, the cavity variances computed by EP become self-
averaging and can be computed without costly inversions when the matrix
dimensions grow large. The novel aspect of the subsequent work is to go
beyond the simple iid case based on which AMP is derived and allows for
more general types of dependencies between the entries of the matrices. We
develop expressions for the cavity variances of EP in terms of specific gen-
erating functions of the matrix statistics via the R- and S-transforms in free
probability. Our approach is based the concept of asymptotic freeness of ran-
dom matrices, see Chapter 2. The asymptotic regime considered here is that
when both the numbers of rows and columns of the transformation matrix
grow to infinity with their ratio (the matrix aspect ratio) kept fixed. More-
over, we are also not concerned with specific iterative algorithms that solve
the EP fixed-point equations. Instead, we focus our analysis on the properties
of EP fixed points.

Essentially, our technical assumptions imply that all latent variables con-
tribute to the data equally in a statistical sense. In fact, such assumption is
important for EP to operate effectively, because EP approximates the so-called
cavity fields by Gaussians, i.e. it implicitly assumes a central limit theorem to
hold. This is again assuming the same kind of everything contributes equally.
Hence, we expect that in the cases where EP works well the self-averaging
assumption will also be justified.

The chapter is organized as follows: Section 2 introduces the inference
problem and its EP fixed-point equations. Section 3 presents a brief summary
of the concepts of random matrix theory needed for our approach together
with our main mathematical result. Section 4 uses this result to define the
self-averaging EP method. In Section 5 we demonstrate the performance of
self-averaging EP on a signal recovery problem from nonlinear compressed

52



2. Inference Problem and EP Approximation

sensing and compare it with that of standard EP. Conclusions are outlined in
Section 6. The technical lemmas and the proofs are located in Appendix C.

2 Inference Problem and EP Approximation

We apply approximate Bayesian inference to the general observation model
described in Subsection 2.2 of Chapter 1. For the sake of completeness, let us
recall the observation model: a K-dimensional real, or complex, input vector
x – which is generated according to a prior pdf f (x) – is linearly transformed
with an N × K real, or complex, matrix as z , Hx. Then, the vector z is
mapped to the output vector y of the system. This mapping is characterized
by the conditional pdf f (y|z). We assume that the prior and the conditional
pdfs are both separable and symmetric, i.e.

f (x) =
K

∏
k=1

f (xk) (4.1)

f (y|z) =
N

∏
n=1

f (yn|zn). (4.2)

As a matter of fact, the separability and symmetry assumptions regarding
these pdfs are irrelevant in the derivation of the EP fixed-point equations.
However, they are necessary assumptions in our “self-averaging ansatz” which
requires the system model to obey the democratic order introduced in Chap-
ter 1. In other words, the latent variables contribute equally to the system in
a statistical sense.

To apply EP to this problem, it is useful to introduce the variable Hx as
an auxiliary variable z and study the joint posterior pdf of vector s , (x, z)
as

f (s|y, H) ∝ f (s)δ(z− Hx) (4.3)

where f (s) , f (x) f (y|z). EP approximates the posterior pdf f (s|y, H) in
(4.3) with a Gaussian pdf by substituting the typically non-Gaussian factor
f (s) with a separable Gaussian term. Doing so yields the approximation

q(s) ∝ e−
β
2 s†Λs+βR{γ†s} δ(z− Hx) (4.4)

where Λ is diagonal and β = 1 when the signal model is real-valued and
β = 2 when it is complex-valued. The parameters γ and Λ are computed
in an iterative way such that for all i the first and second moments of the
marginal qi(si) of the Gaussian pdf q(s) agree with those of the tilted pdf, say
q̃i(si), which results from replacing in (4.4) the Gaussian factor

exp
(
− β

2
Λii|si|2 + βR{γisi}

)
(4.5)
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with the (non-Gaussian) pdf fi(si) and integrating over all variables but si:

q̃i(si) ∝ fi(si)
∫

e
β
2 Λii |si |2−β<{γisi}q(s) ds\i

∝ fi(si) exp
(
− β

2

Λ

ii|si|2 + βR{ρisi}
)

. (4.6)

Here

Λ

ii is referred to as the cavity variance of the cavity distribution1. Note
also that (4.6) implies

qi(si) =
∫

q(s) ds\i (4.7)

∝ exp
(
− β

2
(Λii +

Λ

ii)|si|2 + βR{(ρi + γi)si}
)

. (4.8)

For notational convenience, we write the diagonal matrices Λ and Λand the
vectors γ and ρ in the forms

Λ =

(
Λx 0
0 Λz

)
, γ = (γx, γz) (4.9)

Λ

=

( Λ

x 0
0 Λ

z

)
, ρ = (ρx, ρz). (4.10)

By using standard Gaussian integral identities [84] we obtain

q(x) = N(x|µx, Σx) (4.11)

q(z) = N(z|Hµx, HΣxH†) (4.12)

where we introduce

Σx , (Λx + H†ΛzH)−1 (4.13)

µx , Σx(γx + H†γz). (4.14)

Then, by equating the first- and second-order moments of the pdfs qi(si) and
q̃i(si), we obtain the fixed-point equations of EP for (4.3):

ηi =
γi + ρiΛ

ii + Λii
=

{
[µx]ii Λii = [Λx]ii

[Hµx]jj Λii = [Λz]jj
(4.15a)

χi =
1

Λii +

Λ

ii
=

{
[Σx]ii Λii = [Λx]ii

[HΣxH†]jj Λii = [Λz]jj
. (4.15b)

The terms ηi and χi are the mean and the variance, respectively, of the pdf q̃i(si) in
(4.6). By solving for ηi via (4.15) for each i we obtain an approximate of the
minimum mean-square error estimator of si, i.e. 〈si〉 f (s|y,H) ≈ ηi.

1Specifically, following [81] one can introduce a cavity pdf f (hi) through the relationship
f (si |y, H) = 1

Z fi(si)
∫

exp(sihi) f (hi)dhi .
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2.1 TAP-like equations

One can design numerous fixed-point algorithms that solve (4.15). In this
work we restrict our attention to TAP-like algorithms, see e.g. [20, 22, 23,
25, 81]. Specifically, we appropriately re-parameterize (4.15) whose form is
similar to the TAP-like fixed-point equations. This is essentially carried out
by bypassing the need for the vector γ in (4.15). We leave (4.15b) unchanged
and keep the variables η and χ because these variables are expressed through
the variables ρ, Λ, Λ only. Moreover, from (4.15a) we note that µx = ηx with
η = (ηx, ηz). Hence, we solely need to bypass γ in the expression of ρ as a
function of the other parameters. Combining (4.13) and (4.14) we write

γx = −H†γz + (Λx + H†ΛzH)µx. (4.16)

The first equality in (4.15a) for all Λii = [Λx]ii is equivalent to γx + ρx =
(Λx +

Λ

x)µx. Inserting (4.19) we solve for ρx:

ρx = H†γz − (Λx + H†ΛzH)µx + (Λx +

Λ

x)µx (4.17)

= H†(γz −ΛzHµx) +

Λ

xµx (4.18)

= H†m +

Λ

xµx with m , γz −ΛzHµx. (4.19)

The second equality in (4.15a) for all Λii = [Λz]jj is equivalent to γz + ρz =
(Λz +

Λ

z)Hµx. With this identity we recast m as

m = (Λz +

Λ

z)Hµx − ρz −ΛzHµx (4.20)

=

Λ

zHµx − ρz. (4.21)

Combining (4.19), (4.21) and the identities ηx = µx and ηz = Hµx (see (4.15a))
we obtain

ρz =

Λ

zHηx −m (4.22a)

m =

Λ

zηz − ρz (4.22b)

ρx =

Λ

xηx + H†m. (4.22c)

Here one may argue that the characterization of ρz provided by (4.22) via the
identity ηz = Hηx may not be unique. However, for any i [ηz]i is a strictly
increasing function of [ρz]i and thereby is bijective. Hence, the characteriza-
tion is unique. The TAP-like form of the EP fixed-point equations consists of
(4.22) and (4.15b).

2.2 The AMP algorithm

The AMP algorithm was originally derived in the context of CDMA [22].
It re-appeared later in the context of compressed sensing [23]. Later on, it
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was generalized for the model (1.1) [25]. Essentially, the AMP algorithm is
obtained as a large-system limit of heuristic loopy BP where the central limit
theorem can be applied when the underlying measurement matrix has iid
entries with zero mean and variance 1/K. The AMP algorithm proceeds the
following iterative equations

ρz(t) =

Λ

z(t)Hηx(t)−m(t− 1) (4.23)

m(t) = Λ

z(t)ηz(t)− ρz(t) (4.24)

ρx(t + 1) = Λ

x(t)ηx(t) + H†m(t). (4.25)

Here η(t) , (ηx(t), ηz(t)) denotes the mean vector of the pdf

q̃t(s) ∝ f (s)
(
− β

2
s† Λ

(t)s + R{s†ρ(t)}
)

(4.26)

where ρ(t) = (ρx(t), ρz(t)) and the diagonal matrix Λ

(t) is the proper con-
jugation of the diagonal matrices Λ

x(t) and Λ

z(t), see (4.10). The cavity vari-
ances are updated according to Λ

x(t) = vx(t)I and Λ

z(t) = vz(t)I where

vx(t) =
α(1− vz(t)〈χz(t)〉)

〈χx(t)〉
(4.27)

vz(t) =
1

〈χx(t)〉
. (4.28)

Here α , N/K and χ(t) , (χx(t), χz(t)) (with χx(t) of dimension K) denotes
the variance of q̃t−1(s) .

2.3 Summary of the fixed-point equations of AMP and EP

AMP and EP share the fixed-point equations (4.22). The fixed-point equations
of the cavity variances, differ however. Those of AMP read Λ

x = vxI and

Λ

z = vzI where

vx =
α(1− vz〈χz〉)
〈χx〉

(4.29)

vz =
1
〈χx〉

. (4.30)

Those of EP are given by (4.15b), which we recast in a more explicit form

χi =
1

Λii +

Λ

ii
=

{
[(Λx + H†ΛzH)−1]ii Λii = [Λx]ii

[H(Λx + H†ΛzH)−1H†]jj Λii = [Λz]jj
. (4.31)

Hence, from an algorithmic point of view, the most expensive operations re-
quired in EP are related to the computation of the vector of cavity variances

Λin terms of Λ from (4.31). As we will see in the next section, we can over-
come this difficulty by using the concept of asymptotic freeness of random
matrices.
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3 Random Matrix Treatment

We will use the fact that the equations (4.15b) are obtained as the stationary
points of the objective function

CH(Λ) = ln |Λx + H†ΛzH| − ln |Λ +

Λ|. (4.32)

Under certain asymptotic freeness assumptions on the matrices, we will de-
rive an asymptotic limiting expression for the first term in (4.32) which de-
pends only on certain random matrix transforms. These involve the LED of
HH†. The transforms can be precomputed before iterating the EP algorithm
if the random matrix ensemble is explicitly given. In other cases, an approx-
imation based on the empirical eigenvalue distribution of H can be used.
Assuming that the deviation from the asymptotic objective function can also
be neglected when we minimize (4.32) by taking derivatives, we will end up
with a type of self-averaging EP that entirely avoids matrix inversions.

3.1 The asymptotic result

To approximate the term ln |Λx + H†ΛzH| in the objective function CH(Λ)
in (4.32), we employ additive and multiplicative free convolutions. We will
assume that Λx and H†Λz H have LEDs, are asymptotically free and use the
result

RΛx+H†Λz H(ω) = RΛx(ω) + RH†Λz H(ω). (4.33)

The R-transform of the LED H†Λz H is still analytically intractable. If Λz and
H† H are asymptotically free, we can resolve these difficultly by making use
of

SΛz HH†(z) = SΛz(z)SHH†(z). (4.34)

Assumption 4.1. In the large-system limit, let the matrices Λx, Λz and H†H have
compactly supported LEDs, the LED of Λz have its support in [0, ∞) and H have
uniformly bounded spectral norm. Furthermore, let φ(Λx) < ∞, φ(Λz) < ∞ and
φ(Λx + H†Λz H)−1 < φ(H†Λz H)−1 where by convention φ(X−1) = ∞ if X is
singular. Moreover, (4.33) and (4.34) hold.

The restriction of non-negativeness of Λz can be relaxed in the analysis. How-
ever, based on numerical evidence and the so-called AT line of stability anal-
ysis in Appendix C.2 we conjecture that in practice any effective solution
fulfills this condition when the dimensions are sufficiently large. Typically,
α = N/K < 1 and thereby φ(H†ΛzH)−1 = ∞, so that the last but one condi-
tion is fulfilled. As regards the final condition two points are worth noting.
Firstly, if H is invariant from right and left, then (4.33) and (4.34) always
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hold provided the matrices in Assumption 4.1 have compactly supported
LEDs [41]. Secondly, depending on the application some of the matrices Λx,
Λz, HH† might be proportional to the identity matrix. For instance, in the
context of (non)linear compressed sensing H might be row-orthogonal, i.e.
HH† = I and thereby (4.34) always holds.

Theorem 4.1. Let the matrices Λx , Λz and H fulfill the conditions stated in As-
sumption 4.1 and (Λx + H†Λz H) be positive definite. Then, for sufficiently large
N, K there exist positive quantities χa, va and λa for a ∈ {x, z} such that

ln |Λx + H†Λz H| = ln |Λx + vxI|+ ln |Λz + vzI|
+ ln |λxI + λzH† H|+ K ln χx + N ln χz + ε (4.35)

where ε = O(1) is a bounded function of N. The quantities in (4.35) are uniquely
characterized by the implicit equations

vx = λzRK
H† H(−λzχx) (4.36)

vz = λxSN
HH†(−λzχz) (4.37)

where χa = Tr(Λa + vaI)−1 and λa = χ−1
a − va for a ∈ {x, z}. Moreover, we have

the limiting approximations χx ' Tr(Λx + H†Λz H) and

vx ' λzRH† H(−λzχx) (4.38)

vz ' λxSHH†(−λzχz). (4.39)

Proof: See Appendix C. 1.

4 Self-Averaging EP Framework

To characterize the cost function (4.32) with respect to {Λii}, we use Theo-
rem 4.1 as follows:

∂ ln |Λx + H†ΛzH|
∂Λii

=
1

Λii + v
+

∂ε

∂Λii
+ Kχx

∂vx

∂Λii
+ Nχz

∂vz

∂Λii
+ Kχx

∂λx

∂Λii

+Nχz
∂λz

∂Λii
+ K

1
χx

∂χx

∂Λii
+ N

1
χz

∂χz

∂Λii︸ ︷︷ ︸
=0

(4.40)

where by abuse of notation we write v = vx for Λii = [Λx]ii and v = vz
for Λii = [Λz]jj. The fact that the sum of the last six terms vanishes is an
immediate consequence of the definition of the variables χa, λa for a ∈ {x, z}
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in Theorem 4.1. Taking the partial derivative of the left-hand term in (4.40)
and making use of (4.15b) we obtain

1
Λii +

Λ

ii
=

1
Λii + v

+
∂ε

∂Λii
. (4.41)

An explicit analysis of the derivative of the asymptotic correction term ∂ε
∂Λii

requires an extensive random matrix study. Instead, we consider the fol-
lowing heuristic argument: Firstly, we recall approximation χx ' Tr(Λx +
H†Λz H)−1 of Theorem 4.1. Thereby, we have

∑
i

∂ε

∂[Λx]ii
= O(1). (4.42)

Then, we consider the implicit assumption that “everything contributes in a
democratic fashion”, specifically there is no dominant individual term in the
sum (4.42). So, we have

∂ε

∂[Λx]ii
= O

(
1
N

)
. (4.43)

Secondly, from (4.43) and using Theorem 4.1 one can show that

χz ' Tr(H(Λx + H†Λz H)−1H†). (4.44)

Thereby, we have

∑
j

∂ε

∂[Λz]jj
= O(1). (4.45)

Similarly, we assume that “everything contributes in a democratic fashion”, specif-
ically there is no dominant individual term in the sum (4.45). Thus, we have

∂ε

∂[Λz]jj
= O

(
1
N

)
. (4.46)

In summary, we conclude that we have Λ

x ' vxI and Λ

z ' vzI. This means
that the diagonal elements of Λ

x and Λ

z are asymptotically self-averaging.

4.1 Summary of self-averaging EP

For convenience, we first factorize the tilted pdf q̃(s) = ∏i q̃i(si) in (4.6) as
q̃ = q̃x · q̃z where

q̃x(x) ∝ f (x)e−
β
2 vxx†x+βR{x†ρx} (4.47)

q̃z(z) ∝ f (y|z)e−
β
2 vzz†z+βR{z†ρz}. (4.48)

Moreover, for a ∈ {x, z} let ηa and χa be the mean and variance vectors
of the pdf qa, respectively. Thus, we have χa ' 〈χa〉 where χa is given in
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Theorem 4.1. Thereby, from (4.22) the self-averaging EP fixed-point equations
are given by

ρz = vzHηx −m (4.49a)

m = vzηz − ρz (4.49b)

ρx = vxηx + H†m (4.49c)

vx = λzRH† H(−λz〈χx〉) (4.49d)

vz = λxSHH†(−λz〈χz〉) (4.49e)

λx = 1/〈χx〉 − vx (4.49f)

λz = 1/〈χz〉 − vz. (4.49g)

Also, one can alternatively consider the characterization of vx in (4.49d) as
(see Appendix C.1)

vx =
α(1− vz〈χz〉)
〈χx〉

. (4.50)

When the analytical expression of either the R-transform or the S-transform
in the above expressions is known, while the other is unknown, we can use
(2.65) to express the cavity variances as a function of the known transform.
For example, by using (2.65) we can write (4.49e) in the form

vz =
λx

RHH†(−vz(1− vz〈χz〉)/λx)
. (4.51)

It might be the case that the analytical expressions of both the R-transform
and the S-transform are unknown. In fact, the LEDs themselves might be
even unknown. In such cases, the simplest approach would be to use the R-
transform RK

H† H
and S-transform SN

HH† of the empirical eigenvalue distribution
of the matrices H† H and HH†, respectively. Using the definitions of the
transforms, this leads to the fixed-point equations

〈χa〉 =
1

λa + va
=

{
Tr(λxI + λzH† H)−1 a = x
Tr(H(λxI + λzH† H)−1H†) a = z

. (4.52)

We can iteratively solve these fixed-point equations without the need for a
matrix inversion. The singular values of H, which are required in the itera-
tions, are precomputed. Finally, it is also important to note that the resulting
solutions for λx and λz in self-averaging EP should be positive. Otherwise,
they may lead to an instability of the algorithm and yield incorrect solutions
for the cavity variances.
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5 Numerical Results

To illustrate our analysis we consider a signal recovery problem from one-
bit compressed sensing, see [85] and the references therein. Specifically, the
signal model reads

y = sign(Hx) (4.53)

where the entries of x are drawn independently from a standard Bernoulli-
Gaussian, specifically, with a prior pdf of the spike and slab form

f (x) = (1− ρ)δ(x) + ρN (x|0, τI). (4.54)

We restrict ourselves to simulated data. We consider two classical random
matrix models in compressed sensing:

(i) the entries of H ∈ RN×K are iid Gaussian with zero mean and variance
1/K;

(ii) a random row-orthogonal model [9, 10, 74], where the rows of H are
drawn from a randomly permuted discrete cosine transform (DCT) ma-
trix. Specifically, H = Pα(PπΨP†

π) where Pα ∈ {0, 1}N×K with ones on
the diagonal and zeros elsewhere, Pπ is a K × K permutation matrix
associated with the permutation π which is drawn uniformly from the
set of permutations (1, · · · , K) → (1, · · · , K) and Ψ is the K × K DCT
matrix.

To solve the EP and self-averaging EP fixed-point equations we consider
AMP-like iterative equations. Specifically, the iterative equations (4.23)-(4.25)
are common to EP and self-averaging EP. The iterative equations for the cavity
variances [

Λ

x(t)]ii and [

Λ

z(t)]jj in EP are readily obtained from (4.31), see
Appendix E. The cavity variances in self-averaging EP, i.e. [

Λ

x(t)]ii = vx(t)
and [

Λ

z(t)]jj = vz(t), are updated according to

vz(t) =
(

1
〈χx(t)〉

− vx(t− 1)
)

SHH†

(
−vx(t− 1)〈χx(t)〉

α

)
(4.55)

vx(t) =
α(1− vz(t)〈χz(t)〉)

〈χx(t)〉
. (4.56)

For random matrix model (i) we have

SHH†(z) =
1

1 + αz
(4.57)

and thereby vz(t) = 1/〈χx(t)〉. Hence, we have exactly the AMP algorithm,
see (4.28). For random matrix model (ii) we have H†H = I and thereby

SHH†(z) = 1. (4.58)
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Fig. 4.1: Empirical cumulative distribution function of the cavity variances. The dimensions of
H are K/3× K, ρ = 0.1 and τ = 1. Blue curves are for K = 1200 and red curves are for K = 9600.
The quantities vx and vz are obtained from the stable solutions of self-averaging EP.

Figure 4.1 illustrates the convergence of the empirical distributions of the
cavity variances i.e. the diagonal entries of Λ

x and Λ

z, e.g.

F Λ

x(x) =
1
K
|{v ∈ {[ Λ

x]ii : ∀i} : v ≤ x}| , (4.59)

as the dimensions of the system increase. The numerical results show that
the cavity variances converge towards their self-averaging EP values as the
system dimensions increase.

In Figure 4.2, we compare the performance of EP and self-averaging EP
through their mean square error in predicting the signals. The results show
that both algorithms provide the same performance, but the latter is out-
standingly less complex than the former.

The provided algorithm for EP is naive and it has poor convergence be-
cause it requires a proper iterative scheme for solving a large number of vari-
ables, i.e. the diagonal entries of Λx and Λz, instead of two scalars as in
self-averaging EP, i.e. λx and λz. One may need to adaptively select the ini-
tialization of the EP algorithm to the given parameter values of the system
model. On the other hand, self-averaging EP shows excellent convergence
for both random matrix models. This can be explained as follows. Recall
first that self-averaging EP for random matrix model (i) coincides with AMP,
which is known to have fast convergence. Moreover, we can consider that
random matrix model (ii) asymptotically behaves as an N × K corner of a
(real) Haar matrix with N, K → ∞. It is known that the entries of a Haar ma-
trix have zero mean with variance 1/K, but they are (weakly) correlated, see
Lemma 2.1. In other words, random matrix model (ii) has statistical charac-
teristics approximately similar to those of model (i). Figure 4.2 also confirms
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Fig. 4.2: Mean square error of EP and self-averaging EP (SAEP) versus number of iterations: H
has dimensions α1200× 1200, ρ = 0.1 and τ = 1. The reported figures are empirical averages
over 100 and 1000 trials for α ∈ {1/3, 1/2} and α = 2/3 respectively. C.I. denotes the confidence
interval in dB.

this similarity: both algorithms show similar performance for both models.
Thereby, it is reasonable to expect that self-averaging EP for matrix model (ii)
with iterative equations similar to AMP exhibits a good convergence behav-
ior as well. A similar trick is used in a linear compressed sensing problem in
our contribution [86].

6 Conclusions

We have investigated the problem of approximate inference using EP for
large systems. EP applied to large systems requires tremendous compu-
tational complexity. We have introduced a theoretical framework – called
self-averaging EP – that transforms the large-system challenge into an oppor-
tunity provided the underlying transformation matrix fulfills certain asymp-
totic freeness conditions. Self-averaging EP extends AMP – whose optimality
is valid only for the classical iid random matrix ensemble – to a general class
of random matrix ensembles. We have restricted ourselves to cases where the
random matrix ensemble is known explicitly. This is typically the case for
applications in compressed sensing. But we expect that self-averaging EP can
be applied to a large class of models in which latent variables equally con-
tribute in a statistical sense to the data. It would then be important to have
an estimator of the R-transform (or the S-transform) that is computationally
more efficient than the simple one in (4.52). This estimator could e.g. be
based on spectral moments Tr((H† H)k) up to some order, see Subsection 4.2
of Chapter 2.
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Chapter 5

A Theory of Solving the TAP
Equations for the Ising
Model
This chapter is based directly on
Manfred Opper, Burak Çakmak and Ole Winther, “A theory of solving TAP equa-
tions for Ising model with general invariant random matrices,” Journal of Physics A:
Mathematical and Theoretical, vol. 49, no. 11, February 2016, c©2016 IOP Publish-
ing Ltd.

1 Introduction

While the TAP fixed point equations can be derived in a systematic way by
combining EP and free probability frameworks, it is not necessarily clear how
the resulting system of nonlinear equations can be solved efficiently. A naive
algorithm based on a simple iteration of the equations usually fails to achieve
convergence. This problem has been addressed in a paper by Bolthausen
for the case of the SK model [33]. He has analyzed the dynamics of the
iterations rigorously and shown how the iterations can be altered to achieve
exponential convergence (above the AT line of stability). Other ideas to arrive
at a convergent method are based on taking the asymptotic limit of dense
coupling matrices in BP algorithms, see [22], [23], and [24], (for rigorous
analyses [87] and [88]). Unfortunately, in this approach, it is necessary to
augment the original variables by auxiliary ones, such that the interactions
in the new model are independent. For example, the Hopfield model can be
represented by a bipartite graph of Ising spins and continuous variables. It
is not clear how such a method should be set up for a matrix of interactions
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with more general statistical dependencies. Also, AMP – which is valid for
problems involving a sparse coupling matrix – will not always lead to the
correct algorithms for dense coupling matrices. Here we will construct a
theory for the dynamics of iterative algorithms using dense coupling matrices
as the starting point.

In this chapter, we will address the problem of solving TAP equations for
the Ising model with an arbitrary invariant random coupling matrix. Our
analysis is based on the dynamical functional theory which allows for study-
ing the dynamics of iterative algorithms in the large-system limit by a suit-
able average over the coupling matrix ensemble. It turns out that by includ-
ing certain memory terms in the iteration, the effective field in the dynamics
becomes a simple Gaussian random variable suggesting that the algorithm
might converge. The explicit form of the memory terms depends on the
coupling matrix ensembles. We show that our method reproduces previous
convergent algorithms for SK and Hopfield models. We also work out the
details of our theory for the spin model with orthogonal random coupling
matrix [6], [66]. Simulations of the resulting algorithms show exponential
convergence above a line of stability which can be identified with the so-
called AT line.

The chapter is organized as follows. In Section 2 we introduce the general
random matrix formulation for the TAP equations. In Section 3 we present
the results of the dynamical functional theory. In Section 4, we introduce
“the single-step memory construction” based iterative algorithm for solving
the TAP equations. Section 5 is devoted to the derivation of the AT stability
condition. Conclusions are outlined in Section 6. Lengthy technical deriva-
tions are deferred to Appendix D.

2 Invariant Random Matrices

We consider the standard Ising model with pairwise interactions given by the
Gibbs distribution for the spins x = (x1, . . . , xN) (see e.g. [26, 27])

f (x) =
1
Z

exp

[
N

∑
i<j

Jijxixj + h
N

∑
i=1

xi

]
(5.1)

with Z denoting the normalization constant. We are interested in the case,
where Jij, i < j are random and identically distributed but not necessarily
independent. A mathematically simple way for defining such entries is via
invariant matrix ensembles: let the N × N matrix J̃ = J̃† be invariant. Then,
we define the random coupling matrix J with entries

Jij =

{
β J̃ij i 6= j
0 i = j

. (5.2)
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In (5.2) we have included an inverse temperature factor β in the definition.
The coupling matrices of the standard SK and Hopfield models can be de-
fined as above: in the first case − J̃ is the Gaussian Wigner matrix, in the
second case − J̃ is the null Wishart matrix. We assume that J̃ has uniformly
bounded spectral norm and a LED in the large-system limit. Thereby, the
diagonal elements of J̃ converge to the same deterministic limit as N → ∞,
see Theorem 2.1. This implies that we can treat J as asymptotically invariant.

2.1 The asymptotic Itzykson-Zuber integral

We will later need the asymptotic Itzykson-Zuber integral

lim
N→∞

1
N

ln
〈

e
N
2 tr(QJ)

〉
J
=

1
2

∞

∑
n=1

cn

n
tr(Qn) (5.3)

whenever the right-hand side of (5.3) exists, see Subsection 2.5 of Chapter 2.
Here, Q = UΛU† is N × N dimensional with the matrices U and Λ being
orthogonal and diagonal, respectively, and has an asymptotically finite rank.
Moreover, cn is the nth order free cumulant of the LED of J. To keep the
notation short, in this chapter we denote the R-transform (see Section 4 of
Chapter 2) of the LED of J by R. At this stage we first point out the simple
identity

R(ω) = βR̃(βω)− βc̃1. (5.4)

In this expression R̃ denotes the R-transform of the LED of J̃ and c̃1 = R̃(0).
We next provide the explicit form of R(ω) for the SK, Hopfield and random
orthogonal [6] models:

(i) SK model: J̃ is a Gaussian Wigner matrix, i.e. its entries are iid Gaussian
with zero mean and variance β2/N. In this case, we have φ( J̃) = 0, so
that R(ω) = R̃(ω) = β2ω [12].

(ii) Hopfield model: J̃ = −H† H where H is an (N/α)× N matrix whose
entries are iid and Gaussian with zero mean and variance α/N, i.e. (− J̃)
is a null Wishart matrix whose LED is the Marc̆enko-Pastur distribu-
tion. By invoking the R-transform of the Marc̆enko-Pastur distribution,
we then have

R(ω) =
β2αω

1 + βαω
. (5.5)

(iii) Random orthogonal model: J̃ = O†ΛO. The diagonal entries of the
diagonal matrix Λ are composed of ±1 such that φ(Λ) = 0. One can
easily show that

R(ω) =
−1 +

√
1 + 4β2ω2

2ω
. (5.6)
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2.2 TAP equations for general invariant coupling matrices

TAP equations form a set of self-consistent equations for the vector of mag-
netizations m = 〈x〉 where the brackets denote expectation with respect to
the Gibbs distribution (5.1). For invariant ensembles, they have been conjec-
tured in [6]. Note also that in Chapter 4 we generalized the TAP equations
for the general probabilistic model (4.3) by combining EP and free probability
framework. The resulting TAP equations for the Ising model (5.1) read [6]

m = tanh(ψ) (5.7a)

ψ = h + Jm− R(1− q)m (5.7b)

where q , 1
N m†m and hi = h, ∀i1 is the non-random external field. Note, that

the only dependency on the random matrix ensemble is via the R-transform
R(1− q) in the so-called Onsager term which is a correction to the naive mean
field term Jm. One can show that ψ is the vector of means of the cavity field.
Furthermore, following the calculations of [81] one finds using a “replica-
symmetric ansatz” that ψi is Gaussian distributed (in the large-system limit)
with respect to the (random) coupling matrix J with mean h and variance〈

(ψi − h)2
〉
' qR′(1− q). (5.8)

Hence, subtracting the Onsager term R(1 − q)m from the mean field Jm
makes the difference Gaussian. We will next transfer the idea of a Gaussian
field from the static solutions to the dynamics of an algorithm.

3 Results from Dynamical Functional Theory

Dynamical properties of disordered systems can be computed by the method
of dynamical functionals [30]. In the large-system limit (in the thermody-
namic limit, more precisely) this method provides us with exact results for
the marginal distribution of the trajectory of a single variable (in our case
a magnetization mi(t)) when we define a dynamical system that solves the
TAP equations. As a typical result of such a calculation, one finds that the
“field” Jm(t) becomes a sum of a Gaussian term and a memory term which
includes the magnetizations at all previous times. This memory often makes
the dynamical disordered systems highly complex allowing e.g. for a per-
sistent dependency on the initial conditions and thus a failure to converge
to a unique fixed point. Hence, we propose to introduce explicit memory
terms which are chosen to cancel the implicit memory terms derived from
the dynamical functional theory. In such a way, at each time step, the up-
date of the magnetization computed by the algorithm involves a Gaussian

1As a matter of fact in our derivations we do not consider the restriction hi = h, ∀i.
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distributed random field only and we expect that we might obtain good con-
vergence results. This Gaussian property of the effective dynamical field was
already shown for a Hopfield model in [22] and [23] (and proved in [87])
and reappeared in Bolthausen’s iterative construction of solutions to the TAP
equations for the SK model in [33].

We start with defining a set of dynamical equations which could serve as
a candidate algorithm for solving the TAP equations (5.7). For τ = 0, . . . , t let
us define

m(t) = ft

(
{γ(τ), m(τ)}t−1

τ=0

)
(5.9a)

γ(t) = h + Jm(t). (5.9b)

Clearly, m(t) depends on the field Jm(t) and the previous local magnetiza-
tions m(τ). Here ft is an appropriate sequence of nonlinear scalar functions.
Our goal is to get the statistics of a single trajectory of (5.9), when J is a
random matrix with generating function (5.3). To do so, we make use of the
dynamical functional theory as described in [31, 32] which is a discrete time
version of the method of [30]. We also refer the reader to [89] where the
dynamical functional theory was used to analyze the AMP algorithm in the
context of the CDMA communication.

We introduce the generating functional corresponding to the dynamical
equations (5.9) as

Z({l(t)}) =
∫ T−1

∏
t=0

{
δ
(

m(t)− ft

(
{γ(τ), m(τ)}t−1

τ=0

))
δ(γ(t)− h− Jm(t))eiγ(t)†l(t) dm(t)dγ(t)

}
. (5.10)

Notice that Z({l(t) = 0}) = 1. Thus, the statistics of the variables can be
computed from the averaged generating functional 〈Z({l(t)})〉J . By mak-
ing use of the asymptotic Itzykson-Zuber integral (5.3) and the saddle-point
method (see [90, Section 4.3]) we obtain in Appendix D.1 that

〈Z({l(t)})〉J =
N

∏
n=1

∫
dN ({φn(t)}; 0, Cφ)

T−1

∏
t=0

{
δ(mn(t)− ft {mn(τ), γn(τ)}t−1

τ=0)

δ

(
γn(t)− hn −∑

s<t
Ĝ(t, s)mn(s)− φn(t)

)
eiγn(t)ln(t)+O(N−1) dmn(t)dγn(t)

}
.

(5.11)

This result shows that as N tends to infinity, the trajectories can be treated
as independent stochastic dynamical processes described by the following
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equations

m(t) = ft

(
{γ(τ), m(τ)}t−1

τ=0

)
(5.12)

γ(t) = h +
t−1

∑
τ=0
Ĝ(t, s)m(τ) + φ(t) . (5.13)

Here φ(t) is a vector of independent Gaussian random variables with covari-
ance matrix Cφ given by

Cφ =
∞

∑
n=1

cn

n−2

∑
k=0
GkC(G†)n−2−k (5.14)

where G and C are the T × T response and correlation matrices, respectively.
With slight abuse of notation, their (t + 1, τ + 1)th entries are given by

G(t, τ) =
1
N

N

∑
i=1

〈
∂mi(t)
∂φi(τ)

〉
φi

(5.15)

C(t, τ) =
1
N

N

∑
i=1
〈mi(t)mi(τ)〉φi

. (5.16)

The random matrix ensemble J enters the right-hand terms in (5.15) and
(5.16) through the free cumulants cn, and the memory matrix Ĝ

Ĝ = R(G). (5.17)

So far we have not yet referred to the TAP equations in the dynamical func-
tional theory analysis. Instead, we have considered a somewhat general dy-
namical system with disorder and memory. Such a formulation gives us
enough freedom to construct convenient dynamical equations which asymp-
totically converges to the solution of the TAP equations. We will define the
dynamical equations to be of the form

m(t + 1) = tanh(ψ(t)) (5.18)

where the variables ψi(t) must be chosen to become independent Gaussian
fields in the resulting effective single variable dynamical equations (5.13).
There are actually various methods for doing this. In the sequel, we will limit
our attention to a method that we call the single-step memory construction.

4 Single-Step Memory Construction

In the single-step memory algorithm, we construct the update in such a way
that the resulting memory matrix (5.17) satisfies the equation

Ĝ(t, τ) = 0, ∀τ 6= t− 1. (5.19)
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Hence, if (5.19) holds, then using (5.13) we find that the vector

γ(t)− Ĝ(t, t− 1)m(t− 1) = φ(t) + h (5.20)

becomes a Gaussian field. We will choose the field ψ(t) in (5.18) to be a linear
combination of the Gaussian fields φ(τ), τ = 1, . . . , t, i.e.

ψ(t) =
t

∑
τ=0
A(t + 1, τ)(φ(τ) + h). (5.21)

We have to construct the non-random terms A(t + 1, τ) to make the dynami-
cal order parameters consistent with the single-step memory condition (5.19).
From (5.18) we obtain for the response function (5.15)

G(t, τ) =
1
N ∑

i

〈
(1−m2

i (t))
∂ψi(t− 1)

∂φi(τ)

〉
(5.22)

= (1− q(t))A(t, τ) (5.23)

with q(t) , 1
N m(t)†m(t). Thus we have the explicit result

A(t, τ) =
G(t, τ)

1− q(t)
. (5.24)

Finally, using (5.17) we get an explicit result for the response function in terms
of the memory terms Ĝ(t, t− 1). Note that by construction of the single-step
memory matrix Ĝ (5.19) we can write (5.17) as

G(t, τ) = at−τ

t

∏
s=τ+1

Ĝ(s, s− 1) (5.25)

where the coefficients an are obtained from the power series expansion of the
composition inverse of the R-transform of the LED of J:

R−1(z) =
∞

∑
n=1

anzn. (5.26)

By definition the trace of J is zero, i.e. R(0) = 0. Hence, the power series
expansion in (5.26) starts from the first order term.

To complete the specification of the single-step memory construction we
only need to specify Ĝ(t, t− 1). This will be done in such a way the method
is asymptotically consistent with the static TAP equations. Specifically, from
(5.7b) we have

lim
t→∞
Ĝ(t, t− 1) = R(1− q). (5.27)
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We choose the explicit form

Ĝ(t, t− 1) =
1− q(t)

1− q(t− 1)
R(1− q(t− 1)). (5.28)

By assuming q(t)→ q as t→ ∞, (5.28) leads to (5.27) as t→ ∞. This form has
also the advantage that in (5.24) an unwanted factor 1− q(t) – which would
make ψ(t− 1) depending on the future state m(t) – cancels.

4.1 Summary

Putting everything together the single-step memory algorithm for t ≥ 0 is
defined as follows:

m(t + 1) = tanh(ψ(t)) (5.29)

ψ(t) = Q(t)
t

∑
τ=0

at+1−τu(τ) (5.30)

u(t) =
h + Jm(t)− Ĝ(t, t− 1)m(t− 1)

Q(t− 1)(1− q(t))
(5.31)

where the coefficients an are obtained from the power series (5.26) and we
introduce

Q(t) =
t

∏
τ=0

R(1− q(τ)) = Q(t− 1)R(1− q(t)) (5.32)

such that Q(−1) = 1. The memory term Ĝ(t, t− 1) is given by (5.28). More-
over, the algorithm initializes with m(t) = 0 for t ∈ {−1, 0}.

4.2 Asymptotic consistency with the TAP equations

We next show that if the single-step memory algorithm (5.29)-(5.31) con-
verges, it solves the TAP equations (5.7). Let us first assume that m(t) → m
as t → ∞. To have the convergence to the TAP equations we solely need to
show that the sum in (5.30) converges to the proper limit. From (5.21) and
(5.24) we must have

Q(t)
t

∑
τ=0

at+1−τ

(1− q(τ))Q(τ − 1)
=

1
1− q(t + 1)

t

∑
τ=0
G(t + 1, τ)→ 1. (5.33)

We make the so-called weak long-term response assumption [91] that

lim
t→∞
G(t, τ) = 0, ∀ finite τ. (5.34)
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Thus, for sufficiently large t and τ′ < t while t/τ′ = O(1), we can write

t

∑
τ=0
G(t + 1, τ) '

t

∑
τ=τ′
G(t + 1, τ) (5.35)

'
t

∑
τ=τ′

at+1−τR (1− q)t+1−τ (5.36)

'
∞

∑
n=1

anR(1− q)n (5.37)

= R−1(R(1− q)) = 1− q. (5.38)

Next we provide the details of the single-step memory algorithm for the SK,
Hopfield and random orthogonal models.

4.3 Example 1 – SK model

Recall that, for the standard SK model we have R(ω) = β2ω so that R−1(z) =
z/β2. Hence, a1 = 1/β2 and an = 0 for n > 1. Thus, the single-step memory
algorithm may be written as

m(t + 1) = tanh(ψ(t)) (5.39)

ψ(t) = h + Jm(t)− β2(1− q(t))m(t− 1). (5.40)

At first glance, these dynamical equations are similar but not exactly equal
to those proposed by Bolthausen [33]. The difference is that instead of the
dynamical order parameter q(t) the fixed point solution of q appears. Using
the explicit form of the covariance of the field ψi(t) given by (5.54) in the next
section, one finds for the field variance 〈(ψi(t)− 〈ψi(t)〉)2〉 = β2q(t). Hence,
if we start the iteration (as in [33]) with mi(1) =

√
q such that q(1) = q, then

we find that in the large N limit, we also have q(t) =
〈

tanh2(ψi(t− 1)
〉
= q

for all times t and we get the agreement with [33].

4.4 Example 2 – Hopfield model

For the Hopfield model from (5.5), we have

R−1(z) =
1

βα

z
β− z

. (5.41)

Thus, the memory coefficients are given as an = 1/(αβn+1) for n ≥ 1. In
the sequel we show that the single-step memory algorithm for the Hopfield
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model coincides with the AMP algorithm [22, 23]. From (5.30) we first write

ψ(t) =
Q(t)
αβ2 u(t) +

Q(t)
αβt+2

t−1

∑
τ=0

βτu(τ) (5.42)

=
Q(t)
αβ2 u(t) +

1
β

R(1− q(t))ψ(t− 1). (5.43)

For convenience we introduce

A(t) ,
R(1− q(t))
βα(1− q(t))

=
β

1 + βα(1− q(t))
. (5.44)

Notice that from (5.31) we may write (5.43) in the form of

ψ(t) =
1
β

A(t)[h + Jm(t)] + α(1− q(t))A(t)[ψ(t− 1)− A(t− 1)m(t− 1)].

(5.45)

Then, defining z(t) , ψ(t) − A(t)m(t), we write the single-step memory
algorithm as

m(t + 1) = tanh(z(t) + A(t)m(t)) (5.46)

z(t) =
1
β

A(t)[h + (J − βI)m(t)] + α(1− q(t))A(t)z(t− 1) (5.47)

where I is the identity matrix of appropriate dimension. Note, that (I −
J/β) asymptotically coincides with the null-Wishart matrix (see Section 2).
Thereby, we exactly obtain the AMP algorithm as introduced in [22]. We also
refer the reader to the related works [87] and [89], where the dynamics of the
AMP algorithm is analyzed by means of dynamical functional theory and
Bolthausen’s conditioning technique [33], respectively.

Bolthausen’s conditioning technique for the SK model [33] and the Hop-
field model [87] are based on the assumption that the entries of the under-
lying coupling matrix are defined via zero-mean iid and Gaussian distributed
random variables, see Subsection 2.1. Recently, it has been shown in [88] that
the same analyses can be obtained with the Gaussian distribution assumption
relaxed by a sub-Gaussian tail condition on the distribution. Indeed, by in-
voking the central limit theorem, one can show that the generating function
(5.3) also yields the same result regardless of whether the Gaussian distribution
assumption is considered or not, see [92, Section 5].
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4.5 Example 3 – Random orthogonal model

For the random orthogonal model from (5.6) we have R−1(z) = z/(β2 − z2).
This yields the memory coefficients

an =

{
1

βn+1 n is odd

0 n is even.
(5.48)

In Figure 5.1 and Figure 5.2 we illustrate the convergence of the single-
step memory algorithm for the random orthogonal model obtained by run-
ning simulations. Notice that after few iteration steps the convergence be-
comes exponentially fast. The flat lines around (−300)dB, i.e. 10−30, are the
consequence of the machine precision of the computer which was used.

The convergence improves with increasing temperature parameter 1/β.
On the other hand, for large enough β, the algorithm fails to converge. To
estimate the critical value of β, we study the inverse decay time measured by
the angle θ as illustrated in Figure 5.3 and extrapolate the simulational data
to θ = 0 using a suitable range of β. One might expect that the critical value
of β would coincide with the one obtained from the Almeida-Thouless (AT)
stability condition. The AT line is given by the equation (see (C.34))

αR′(1− q) = 1 with α ,
1
N

N

∑
i=1

〈
(1− tanh2(ψi))

2
〉

(5.49)

where the random variable ψi is Gaussian with mean hi and variance qR′(1−
q). In Figure 5.3 we present a comparison between the simulation results
and (5.49). The observed coincidence can be understood from a dynamical
point of view by analyzing the stability of the dynamics close to the fixed
point. The details are postponed to Section 5. Finally, it also worth noting
that the trajectories of the algorithm show a self-averaging behavior above the
AT line. On the other hand, we find that below the AT line, there are strong
sample-to-sample fluctuations. However, by averaging the dynamical order
parameters over many samples, we get a good agreement with the theory.

4.6 Field covariance matrix

In order to compare simulation results with analytical results obtained from
the dynamical functional theory approach and to study the stability of the
TAP fixed points, we have to perform expectations over the Gaussian random
variables ψi(t), see (5.21). Specifically, we write

1
N
〈‖m(t)−m(t− 1)‖2〉J ' q(t) + q(t− 1)− 2C(t, t− 1) (5.50)
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Fig. 5.1: Convergence of the single-step memory algorithm: Random orthogonal model with
β ∈ {1, 3, ..., 9, 11}, hi = 1 and N = 214. Here e.g. θ ∈ {θ3, θ5} represents the respective linear
decay time (in the log-domain), i.e. the convergence is faster the larger θ is.
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Fig. 5.2: Convergence of the single-step memory algorithm: Random orthogonal model with
β ∈ {1, ..., 5, 7}, hi = 2 and N = 214. The inverse temperature β = 6.9 gives the AT line.
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h
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β

5

5.5
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6.5

7
αR′(1− q) = 1

θ → 0

Fig. 5.3: Consistency of the diverging decay time with the AT line: Each simulated point is based
on an average over ten realizations of J with N = 214.

where the order parameter C is given by

C(t + 1, t′ + 1) =
1
N

N

∑
i=1

∫
dF(x, y) tanh(〈ψi(t)〉+ x) tanh(〈ψi(t′)〉+ y).

(5.51)
Here F is a two-dimensional Gaussian distribution with zero mean. The mean
of the field ψi(t) follows from (5.21) to be

〈ψi(t)〉 =
{

Q(t)
t

∑
τ=0

at+1−τ

(1− q(τ))Q(τ − 1)

}
hi. (5.52)

Hence, we need to compute the corresponding covariance matrix which is
defined as

Cψ(t, t′) =
〈
(ψi(t)− 〈ψi(t)〉)(ψi(t′)−

〈
ψi(t′)

〉
)
〉

. (5.53)

In Appendix D. 2 we derive the expression

Cψ(t, t′) = Q(t)Q(t′) ∑
l≤t,m≤t′

Coxt+1−l yt′+1−m [A(x, y)]C(l, m)

(1− q(l))(1− q(m))Q(l − 1)Q(m− 1)
. (5.54)

In this expression, for a power series f (x, y) = ∑n,k≥0 anbkxnyk, we have
introduced the symbol Coxnyk [ f (x, y)] , anbk for its coefficients. Moreover
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the function A is defined as

A(x, y) ,
(

1
R−1(x)

− 1
R−1(y)

)−1
(y− x). (5.55)

The function A has a relatively simple form for the three random ma-
trix ensembles considered in this chapter. For the SK and Hopfield mod-
els A(x, y) = xy/β2 and A(x, y) = xy/(β2α), respectively. For the random
orthogonal model, from R−1(x) = x/(β2 − x2) we have Coxnyk [A(x, y)] =

δnk(−1)n+1/β2n. We next compare our simulation results with theoretical
results. We used the initializations m(t) = 0 for t ∈ {0, 1}, hence we as-
sign C(1, 0) = 0. In Figures 5.4 and 5.5 we show such a comparison above
the AT line. Note, that no averaging over coupling matrices was used for the
simulations. The integration over a two-dimensional correlated Gaussian dis-
tribution used to calculate C(t, t− 1) was performed numerically. However
the accuracy of the numerical method limits us from getting very precise
results as t grows. In Figure 5.4 we illustrate the theoretical prediction of
1
N m(t)†m(m − 1) by the order parameter C(t, t − 1) for a large range of t.
Below the AT line, the single-step memory algorithm diverges and simulated
trajectories show strong sample-to-sample fluctuations. However, by taking
an average over a large number of trajectories we obtain a good agreement
with the theory (see Figure 5.6).

4.7 Asymptotic consistency with the cavity variance

In Subsection 4.2 we have demonstrated the convergence of the single-step
memory algorithm to the TAP equations. In a similar way, one can show
that (5.54) converges to the variance of the static field variance in (5.8) as t
and t′ tend to infinity. Specifically, by invoking the weak long-term response
assumption (5.34) in (5.14) and following similar steps as in Appendix D.2,
for sufficiently large t, τ < t, t′ and τ′ < t′ with τ/t = O(1) and τ′/t′ = O(1),
one can show that

Cψ(t, t′) ' q
(1− q)2 ∑

τ≤t,τ′≤t′
Coxt+1−τyt′+1−τ′ [A(x, y)]R(1− q)t+1−τR(1− q)t′+1−τ′

(5.56)

' q
(1− q)2 ∑

n,k≤1
Coxnyk [A(x, y)]R(1− q)nR(1− q)k (5.57)

=
q

(1− q)2 A(R(1− q), R(1− q)). (5.58)

In this expression, by abuse of notation, we denote limy→x A(x, y) by A(x, x).
Its explicit form is given by

lim
y→x

A(x, y) = (R−1(x))2 1
(R−1(x))′

= (R−1(x))2R
′
(R−1(x)). (5.59)

78



4. Single-Step Memory Construction

t

1 2 3 4 5 6 7 8 9 10
-29

-28

-27

-26

10 log10
(

1
N
‖m(t)−m(t− 1)‖2

)

10 log10 (q(t) + q(t− 1)− 2C(t, t− 1))

Fig. 5.4: The field covariance matrix above the AT line: Comparison of theoretical and simulation
results for β = 20 and hi = 1, N = 214.
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Fig. 5.5: The field covariance matrix above the AT line: Comparison of theoretical and simulation
results for β = 20 and hi = 1, N = 214.
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Fig. 5.6: The field covariance matrix below the AT line: Comparison of theoretical and simulation
results for β = 10 and hi = 2, N = 212. 〈·〉J is obtained from 5× 103 realizations of J.

Hence we have

lim
t,t′→∞

Cψ(t, t′) =
q

(1− q)2 (R
−1(R(1− q)))2R

′
(R−1(R(1− q))) (5.60)

= qR′(1− q). (5.61)

5 Stability of the TAP Fixed Points

In order to analyze the stability of the fixed points of the single-step algo-
rithm, we resort to a linear stability analysis. We add Gaussian white noise
to the dynamical equations, i.e. we set ψi(t)→ ψi(t) + εi(t) with 〈εi(t)2〉 = ε
and discuss the limit ε → 0. If the static TAP fixed points are stable, then
the system should asymptotically show only small stationary fluctuations
around the static solution so we can work in the Fourier domain. Hence, we
assume

C(t, t′) =
1

2π

∫
dω Ĉ(ω)eiω(t−t′) (5.62)

Cψ(t, t′) =
1

2π

∫
dω Ĉψ(ω)eiω(t−t′). (5.63)
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Inserting into (5.54), for large t and t′ we can write (see (5.56)-(5.58))

Ĉψ(ω) ' ∑
l≤t,m≤t′

Coxt′+1−lyt′+1−m [A(x, y)]Ĉ(ω)eiω(l−t−(m−t′))

(1− q)2R(1− q)l−t−1R(1− q)m−t′−1 (5.64)

' A(e−iωR(1− q), eiωR(1− q))
(1− q)2 Ĉ(ω). (5.65)

For small noise ε → 0, the assumption of stability translates into small fluc-
tuations around the static solution and we can write

Ĉ(ω) ' 2πqδ(ω) + εĉ(ω) (5.66)

Ĉψ(ω) ' 2πqR′(1− q)δ(ω) + εĉψ(ω) (5.67)

where we have separated fluctuations into static and dynamical parts. We
analyze the dynamical part next, but note, that also the static q will have
contributions from ε. Thus for ω 6= 0 we have

ĉψ(ω) = ĉ(ω)
A(e−iωR(1− q), eiωR(1− q))

(1− q)2 (5.68)

where now the value of q is computed for ε = 0. We next express ĉ(ω) in
terms of ĉψ(ω) for small ε. The calculation in Appendix D.3 is based on the
expansion

C(t + 1, t′ + 1) =
1
N ∑

i

〈
tanh(u(t) + hi) tanh(u(t′) + hi)

〉
u (5.69)

up to first order in ε. The brackets denote expectations over the two dimen-
sional Gaussian field (u(t), u(t′)) with 〈u(t)u(t′)〉 ' s0 + ε(s(t− t′)+ δt,t′) for
ε → 0, where s0 = qR′(1− q) and s(t− t′) = cψ(t, t′). For t = t′ the integral
is over a single Gaussian only. The calculation shows that

ĉ(ω) = α(1 + ĉψ(ω)) (5.70)

with α defined as in (5.49). Combining this relationship with (C.34) we have

ĉ(ω) ' α

(
1− αA(e−iωR(1− q), eiωR(1− q))

(1− q)2

)−1

. (5.71)

In fact, for the SK, Hopfield and random orthogonal models we have

Coxnyk [A(x, y)] = 0, ∀n 6= k. (5.72)

Therefore (5.71) is actually independent of ω and from (5.59) we explicitly
have

ĉ(ω) =
α

1− αR′(1− q)
. (5.73)
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In general, the right-hand side of (5.71) must be non-negative to have a
valid representation as a Fourier-transform of a time-dependent correlation
function. While the term A(e−iωR(1− q), eiωR(1− q)) is always positive, see
(5.65), the second term is small and positive for sufficiently small β. But it
changes sign and diverges. One expects that the divergence will occur first
for the long-range fluctuations, i.e. for the limit of low frequencies. Taking
the limit yields

lim
ω→0

ĉ(ω) =
α

1− αR′(1− q)
. (5.74)

The condition
αR′(1− q) = 1 (5.75)

for the onset of instability agrees with the AT stability criterion.

6 Conclusions

We have presented a theoretical approach to the design of iterative algorithms
for solving the TAP equations for the Ising model with random coupling
matrix drawn from invariant ensembles. We were guided by the idea that
one needs to subtract terms from the internal field which depend on the
values of the magnetizations at previous times. Using dynamical functional
theory we have shown that in such a way, memory terms can be canceled out
and one arrives at a Gaussian distributed field, which eventually converges
to the cavity field provided that a stability condition is fulfilled. We have
presented a specific method which we have called the single-step memory
construction. Our approach may be extended in several ways. For example,
other subtraction methods are possible. One might design an alternative
scheme, where the response function is required to be zero after one time step
leading to a somewhat different algorithm and we will give details elsewhere.
It would be interesting to see in which cases the explicit memory terms in the
subtraction method can be simplified by introducing auxiliary variables, as
is possible for the Hopfield model. Other extensions of our method can be
to more general probabilistic models beyond the simple Ising case. This can
include continuous random variables and other forms of interactions.
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Chapter 6

Conclusions and Outlook

This chapter provides conclusions and an outlook of the thesis from a general
perspective. We refer the reader to Section 6 of Chapters 3, 4 and 5 where
conclusions related to the specific applications and problems considered in
the thesis are presented.

We have addressed three new random matrix problems for information
processing. While doing this, we have restricted the considered systems in
such a way that their latent variables contribute equally to their Hamiltonian
in a statistical sense. Furthermore, for mathematical convenience, we have
limited our attention to invariant random matrices or random matrices that
admit certain asymptotic freeness conditions when their dimensions grow
to infinity. These restrictions have allowed us to understand and/or control
the system via certain macroscopic quantities, i.e. quantities which do not
make reference to specific variables in the systems. In a word, the many-
body problems1 have been reduced to one-body problems and thereby, the
resulting characterizations have turned out to be simple and insightful, yet
(apparently) sufficient.

The concept of asymptotic freeness has frequently been used in informa-
tion theoretical analysis of wireless communication channels. In this contri-
bution, we have shown that asymptotic freeness is a useful and fruitful con-
cept for deriving/designing algorithms as well. We believe that the concept of
asymptotic freeness will become a standard tool in the machine learning and
signal processing communities for deriving and designing low-complexity
algorithms for large systems.

The numerical validations of our framework have been carried out on the
basis of simulated data. Therefore, it is an important task to test these results
through real data. In particular, this is a significant issue when the random

1The many-body problem is a name for physical problems addressing certain properties of
microscopic systems with a large number of interacting particles [93].
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matrix ensemble models a physical entity. In this case, the real question, of
course, is whether the random matrix ensemble accurately models the phys-
ical reality. Such a question can only be answered by means of a numerical
validation based on real data. We did not address this issue in the thesis and
leave it as future work.

From a purely mathematical point of view, the concept of asymptotic
freeness may be limiting, since many derivations in which this concept is
assumed also require that the involved matrices are invariant and have com-
pactly supported LEDs and/or uniformly bounded empirical eigenvalue dis-
tributions. These may be fairly restrictive in practice. However, the ulti-
mate goal in invoking assumptions that imply asymptotic freeness is to apply
the additive and multiplicative free convolutions. We also expect that these
free convolutions should typically provide accurate approximations for more
general random matrices which have practical significance and are mathe-
matically convenient. Therefore, we would like to stress the importance of
gaining insight into the theoretical frameworks of additive and multiplicative
free convolutions. For instance, we refer the reader to the elegant derivations
presented in [94] and [95]. In particular, by using such clear derivations and
invoking some advanced random matrix techniques, as in [94] and [95], we
expect that techniques will be developed in a near future which will allow for
quantifying the approximations provided by the free convolutions when they
are applied to more general classes of random matrices of practical relevance.
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Appendix A

Proofs – Chapter 2
Sections 2 and 3 of this appendix are based on parts of the materials of respectively
Manfred Opper, Burak Çakmak and Ole Winther, “A theory of solving TAP equa-
tions for Ising model with general invariant random matrices,” Journal of Physics A:
Mathematical and Theoretical, vol. 49, no. 11, February 2016, c©2016 IOP Publish-
ing Ltd,
Burak Çakmak, Ralf Müller and Bernard H. Fleury, “Capacity scaling for MIMO
systems with general unitarily invariant random matrices," arXiv preprint arXiv:
1306.2595, December 2015.

1 Proof of Theorem 2.1

From (2.16) we have

Xii =
N

∑
n=1

λn[(UnU†
n)]ii =

N

∑
n=1

λn|Uin|2 (A.1)

where Un is the nth column vector of Haar matrix U and λn = Λnn. By the
law of total variance we have

Var[Xii] = 〈Var[Xii|Λ]〉+ Var[〈Xii|Λ〉]. (A.2)

Here and in the following, for the random variables X and Y, Var[X] and
Cov[X, Y] denote the variance X and the covariance of X and Y, respectively.
We have

〈Xii|Λ〉 =
N

∑
n=1

λn

〈
|Uin|2

〉
= Tr(X) (A.3)

Var[Xii|Λ] =
N

∑
n=1

λ2
nVar[|Uin|2] + 2 ∑

n<k
λnλkCov[|Uin|2, |Uik|2] (A.4)
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with nothing that
〈
|Uij|2

〉
= 1/N, ∀i, j. Since we assume that Tr(X) becomes

self-averaging as N → ∞, Var[〈Xii|Λ〉] vanishes as N → ∞. Thereby, for the
proof we basically need to show that 〈Var[Xii|Λ]〉 vanishes as N → ∞. To do
this we make use of Lemma 2.1:〈

|U2
in||U2

ik|
〉
=

{ N+1
N(N+β)(N+3−2β)

n 6= k
1+β

N(N+β)
n = k

(A.5)

where β = 2 and β = 1 when U is real and complex, respectively. For
simplicity, we consider the case β = 2; the proof for β = 1 follows similarly.
Using this result, we obtain for the variance in (A.4)

Var[Xii|Λ] =
2(N − 1)

N2(N + 2)

N

∑
n=1

λ2
n+

4
N2(N + 2)(N − 1) ∑

n<k
λnλk. (A.6)

Note that we assume that 〈Tr(X2)〉 and 〈(Tr(X))2〉 converge to some finite
limits as N → ∞. This is sufficient for 〈Var[Xii|Λ]〉 to vanish as N → ∞. This
completes the proof.

2 Proof of Theorem 2.6

For the proof, we use the so-called η-transform: η(γ) ,
∫
(1 + γx)−1dF(x),

for γ ∈ (0, ∞). In particular, we underline the following identity [36]∫ γ

0

1− η(t)
t

dt =
∫

ln(1 + γx) dF(x). (A.7)

Moreover, we have the relationship [36]

R(−γη(γ)) =
1− η(γ)

γη(γ)
. (A.8)

Let a = γη(γ). Then, applying the substitution ω = tη(t) in the following
integral we write∫ a

0
R(−ω) dω =

∫ γ

0

η(t) + tη′(t)
tη(t)

[1− η(t)] dt (A.9)

=
∫ γ

0

η′(t)
η(t)

(1− η(t)) dt +
∫ γ

0

1− η(t)
t

dt (A.10)

= ln η(γ) + 1− η(γ) +
∫ γ

0

1− η(t)
t

dt (A.11)

= ln η(γ) + 1− η(γ) +
∫

ln(1 + γx) dF(x) (A.12)

= ln a + 1− η(γ) +
∫

ln(γ−1 + x) dF(x). (A.13)
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3. Proof of Theorem 2.7

In other words, by setting ε = 1/γ we have (2.50). Moreover, from (A.8) we
have ε = a−1 − R(−a). This completes the proof.

3 Proof of Theorem 2.7

For convenience let us define

I(ε; F) =
∫

ln(ε + x) dF(x). (A.14)

By using identity [73, Eq. (5)] we can write

I(ε; F) = −ε
∫ 1

0
ln(s)∂Ψ(−εs) ds (A.15)

where ∂Ψ(ω) , dΨ(x)
dx

∣∣∣
x=ω

with Ψ defined as in (2.62). At this stage we point
out that

lim
x→0−

Ψ(εx) = 0. (A.16)

Now we apply the variable substitution z , Ψ(−εs) + 1 in the integral in
(A.15). Notice that with this substitution the upper and lower limits of this
integral are Ψ(−ε) + 1 and 1, respectively. As a result (A.15) is recast in the
form

I(ε; F) =
∫ Ψ+1

1
ln
(
−1

ε
Ψ−1(z− 1)

)
dz. (A.17)

Then, by the definition of the S-transform, see (2.63), and Lemma A.1 below,
we obtain

I(ε; F) = Ψ ln ε +
∫ Ψ+1

1
ln

1− z
z

dz +
∫ Ψ+1

1
ln S(z− 1) dz (A.18)

= Ψ ln ε + H̃(−Ψ) +
∫ Ψ+1

1
ln S(z− 1) dz (A.19)

= Ψ ln ε + H̃(−Ψ)−
∫ −Ψ

0
ln S(−z) dz (A.20)

where Ψ = Ψ(−ε) and H̃ denotes the binary entropy function with the natu-
ral logarithm. Hence, we obtain (2.76), and thereby (2.74).

As regards to (2.75), let S̃ denote the S-transform of F̃. By using [36,
Theorem 2.32] we write

S̃(z) =
z + 1

z + 1/α
S(αz), −1 < z < 0. (A.21)
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Then, by invoking [73, Proposition 1] (i.e. (2.77)) and Lemma A.1 below we
have

α
∫

ln(x) dF̃(x) = −α

1∫
0

ln S̃(−x) dx (A.22)

= −α

1∫
0

ln
1− x

1/α− x
S(−αx) dx (A.23)

= H̃(α)− α

1∫
0

ln S(−αx) dx (A.24)

= H̃(α)−
α∫

0

ln S(−x)dx. (A.25)

This completes the proof of the theorem.

Lemma A.1. Let p ∈ [0, 1]. Then we have
p∫

0

ln
1− z
p− z

dz = H̃(p). (A.26)

Proof. We first recast (A.26) into the equivalent identity

lim
x→p

x∫
0

ln
1− z
x− z

dz = H̃(p). (A.27)

To prove (A.27), we first apply a variable substitution

x∫
0

ln
1− t
x− t

dt = x
1∫

0

log
x−1 − z

1− z
dz (A.28)

and decompose the right-hand side of (A.28) as

x
1∫

0

ln(x−1 − z)dz− x
1∫

0

ln (1− z)dz. (A.29)

Define u , ln(x−1 − z) and v = z. Applying the integration by part rule, we
obtain for the first integral:

1∫
0

ln
(

x−1 − z
)

dz = uv|10 −
1∫

0

vdu (A.30)

= x−1H̃(x)− 1. (A.31)
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3. Proof of Theorem 2.7

Using (A.31), we compute the second integral:

1∫
0

ln (1− z)dz = lim
x→1

1∫
0

ln(x−1 − z)dz = 1. (A.32)

This completes the proof.
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Appendix B

Proofs – Chapter 3
This appendix is based directly on the appendix of
Burak Çakmak, Ralf Müller and Bernard H. Fleury, “Capacity scaling for MIMO
systems with general unitarily invariant random matrices,” arXiv preprint arXiv:
1306.2595, December 2015.

1 Convergence of Mutual information and Multi-
plexing Rate

In this section we provide some sufficient conditions that guarantee the con-
vergence of the mutual information (3.5) and multiplexing rate (see (3.13)), in
the large-system limit.

Proposition B.1. As R, T → ∞ with the ratio φ , T/R fixed let J = H† H have a
LED function FJ . Furthermore, let

sup
T

∫
xdFT

J (x) < ∞ a.s. . (B.1)

Then, we have almost surely

lim
T→∞

I(γ; FT
J ) = I(γ; FJ). (B.2)

Moreover, if in addition

sup
T

∫ 1
x

dF̃T
J (x) < ∞ a.s. (B.3)

we have almost surely
lim

T→∞
I0(γ; FT

J ) = I0(γ; FJ). (B.4)
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The proof is postponed after the discussion of this proposition.
Condition (B.1) is reasonable in practice. Otherwise the power amplifi-

cation per dimension of the MIMO system explodes as its dimensions grow
to infinity. One can show that for rectangular and unitarily invariant chan-
nel matrices, condition (B.3) is reasonable too, see (3.51) and the discussion
therein. However, it might not hold when the channel matrix is square. As an
example, consider a channel matrix H whose entries are iid with zero mean
and variance σ2/T. Then, condition (B.3) holds if φ 6= 1, but is violated if
φ = 1. Indeed the latter case turns out critical for the convergence of the
multiplexing rate, see e.g. [96], [36]. Nevertheless, both [97, Proposition 2.2]
and numerical evidence lead us to conjecture that (B.4) holds when φ = 1 as
well. Thus, we conclude that the asymptotic convergence of the multiplexing
rate, i.e. (B.4), is a mild assumption in practice.

Proof of Proposition B.1

We first provide a preliminary result that is required for the proof.

Theorem B.1. For n ∈N+ , {1, 2, ...} let Fn be probability distribution functions
on [0, ∞). Furthermore let 1− Fn(0) = α > 0, ∀n ∈ N+. Moreover let Sn denote
the S-transform of Fn. Then, if Fn converges weakly to a distribution function F as
n→ ∞, we have

lim
n→∞

Sn(z) = S(z), −α < z < 0 (B.5)

where S is the S-transform of F.

Proof. Let us consider the function (see (2.62))

Ψn(z) ,
∫ zx

1− zx
dFn(x), −∞ < z < 0. (B.6)

The function zx
1−zx is bounded and continuous with range (0, 1). Thus the

weak convergence of Fn implies that

lim
n→∞

Ψn(z) = Ψ(z), −∞ < z < 0. (B.7)

Since Ψn(z) is a strictly increasing homeomorphism of (−∞, 0) onto (−α, 0)
[73] we have (see e.g. [98, Proposition 0.1])

lim
n→∞

(Ψn)−1(z) = Ψ−1(z), −α < z < 0. (B.8)

This completes the proof.

For the sake of readability of the proof, whenever we consider a limit
when the number of transmit antennas T tends to infinity, we implicitly as-
sume that the ratio φ = T/R is fixed. For convenience, we define

Y , I + γJ. (B.9)

92



1. Convergence of Mutual information and Multiplexing Rate

Obviously, FT
Y (0) = 0 so that from (2.77) we have

I(γ; FT
J ) = −

0∫
−1

log2 ST
Y (z)dz. (B.10)

The function ST
Y is strictly decreasing on (−1, 0) if, and only if, FT

Y is not a
Dirac distribution, see Lemma 2.4. If FT

Y is a Dirac distribution then ST
Y is

a constant function. Without loss of generality, we assume that FT
Y is not a

Dirac distribution function. Then, by invoking Lemma 2.4 we have

T/tr(Y) < ST
Y (z) <

1
T

tr(Y−1) − 1 < z < 0. (B.11)

For convenience, we define the random variable

M , sup
T

∫
xdFT

J (x) s.t. φ =
T
R

. (B.12)

Since the upper bound in (B.11) is smaller than one we have

| log2 ST
Y (z)| = − log2 ST

Y (z) (B.13)

< log2
1
T

tr(Y) (B.14)

≤ log2(1 + γM). (B.15)

Because of (B.15), we can apply the Lebesgue’s dominated convergence the-
orem [99, Theorem 10.21]:

lim
T→∞

I(γ; FT
J ) = −

0∫
−1

lim
T→∞

log2 ST
Y (z) dz. (B.16)

Then, by invoking Theorem B.1 we complete the proof of (B.2):

lim
T→∞

log2 ST
Y (z) = log2 lim

T→∞
ST

Y (z) (B.17)

= log2 SY (z). (B.18)

To proof (B.4), we apply the same argumentation as used above. In par-
ticular, by invoking Lemma 2.4 again we can write∫

x dF̃T
J (x) < S̃T

J (z) <
∫ 1

x
dF̃T

J (x), −1 < z < 0 (B.19)

with S̃T
J denoting the S-transform of F̃T

J . Unlike (B.11), the right-hand integral
in (B.19) is not bounded in general, so we need the additional assumption
(B.3). This completes the proof.
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2 Proofs of Equations (3.23)–(3.25) and (3.27)–(3.29)

2.1 Proof of equations (3.23)–(3.25)

Consider the random matrix model defined in (3.22). With a convenient re-
parameterization of [79, Eq. (19)] we write

SJ(z) =
N

∏
n=1

ρn

z + ρn
. (B.20)

From Theorem 4.1 we have

I(γ; FJ) = H(ηJ) + (1− ηJ) log2 γ

+
N

∑
n=1

∫ 1−ηJ

0
log2(1−

z
ρn

) dz. (B.21)

We can write the integrals in (B.21) as∫ 1−ηJ

0
log2(1−

z
ρn

) dz =

log2
1− ηJ

ρn
+
∫ 1

0
log2(

ρn

1− ηJ
− z) dz (B.22)

for n ∈ {1, . . . , N}. By invoking the identity in (A.31) we obtain (3.23).
From the linearity property of the Lebesgue integral, it is easy to show

that
∫ 1

0 | log2 S̃J(−z)dz| is finite, which implies that
∫
| log(x)|dF̃J(x) is fi-

nite too and vice-versa [73]. Thus, the multiplexing rate is obtained by re-
placing the term (1− ηJ) in (3.23) with αJ (due to Lemma 4.1). This leads
to (3.25). Finally, we note that if αJ < 1 the S-transform SJ(z) diverges as
z → (−αJ), see Lemma 2.4. Thus, from (B.20) the unique solution of αJ is
αJ = min(1, ρ1, ρ2, . . . , ρN).

2.2 Proof of equations (3.27)–(3.29)

From (2.68) we have

SJ(z) =
1 + β1z
β2 + β1z

. (B.23)

Moreover, notice that αJ = 1− FJ(0) = min(1, β2/β1). For convenience, let
a , 1− ηJ(γ) < αJ . Then, we have∫ a

0
log2 SJ(−z) dz = a

∫ 1

0
log2

1− β1at
β2 − β1at

dt (B.24)

=
H(β1a)

β1
− β2

β1
H
(

β1

β2
a
)

(B.25)
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where (B.25) follows from (A.31). We obtain (3.27) from (3.20) with (B.25)
inserted in (3.18). Moreover, by the definition of the S-transform we have

β1(1− z)Ψ2
J(z) + (1− (β1 + β2)z)ΨJ(z)− β2z = 0. (B.26)

Note that 1 + ΨJ(−γ) = ηJ(γ). Thus, (B.26) has two solutions for ηJ(γ).
Only one fulfills the properties of ηJ(γ) stated in [36, pp. 41]. Specifically,
from the property ηJ(γ)→ 1 as γ→ 0 we conclude that (3.28) is this solution.
Finally it is also easy to show that

∫ 1
0 | log2 S̃J(−z)| dz is finite in this case.

This implies that
∫
| log(x)|dF̃J(x) is finite too. Thus, the multiplexing rate

is obtained by replacing the term (1− ηJ) in (3.27) with αJ , which leads to
(3.29).

3 Proof of Lemma 3.1, Theorem 3.2, Corollary 3.1
and Corollary 3.2

3.1 Proof of Lemma 3.1

Consider the singular value decomposition of the channel matrix

H = U[Σ|0]†V (B.27)

where U and V are respectively R × R and T × T unitary matrices, Σ is a
T × T (almost surely) positive diagonal matrix and 0 is the (R − T)× T all
zero matrix. Remark that (B.27) can be written as

H =UP†
φΣV . (B.28)

For notational compactness, let us define S , ΣV and Zβ , PφU†P†
βPβUP†

φ.
Then, we can write

Jβ = S†ZβS. (B.29)

Note that S†ZβS and ZβSS† have the same eigenvalues. Thus we have

log2 |Jβ| = log2 |Zβ|+ log2 |Σ
2|. (B.30)

Since Jβ for β ≥ φ are assumed to have almost surely full rank, Σ and T × T
matrix Zβ have also full rank. Hence, the rate loss reduces to (see (3.15))

χT
J (R, βR) =

1
T

log2 |Z1| −
1
T

log2 |Zβ| (B.31)

= − 1
T

log2 |Zβ| (B.32)

where we note that Z1 is the identity matrix. This completes the proof.
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3.2 Theorem 3.2: Proof of equation (3.33)

Note that J is assumed to be unitarily invariant and have full rank. Therefore,
the eigenbasis matrix of J is Haar (unitary). Moreover, one can show that Jβ

has full rank for β ≥ φ.
Now let us consider an auxiliary random matrix X ∈ CR×T whose entries

are iid zero-mean circularly-symmetric complex Gaussian and φ = T/R ≤ 1.
Then, from Lemma 3.1 we have that

χT
X†X(R, βR) =

1
T

(
log2 |X

†X| − log2 |X
†P†

βPβX|
)

(B.33)

= − 1
T

log2 |PφŨ†P†
βPβŨP†

φ| (B.34)

where Ũ is the eigenbasis matrix of X†X which is also a Haar matrix. In
other words, χT

X†X
and χT

J obey the same probability distribution. Thus, we
have 〈

χT
J (R, βR)

〉
J
=
〈

χT
X†X(R, βR)

〉
X

. (B.35)

Without loss of generality we can assume that the entries of H are iid complex
Gaussian with zero mean and variance 1/R. In this way, we can use the
explicit expression for the ergodic “log det" of the Gaussian ensemble [36,
Eq.(2.12)]. Doing so leads directly to (3.33).

3.3 Theorem 3.2: Proof of equation (3.34)

We first show that

lim
R→∞

χT
J (R, βR) = −

∫
log2(x) dFZβ

(x) (B.36)

almost surely. The random matrix Zβ = PφU†P†
βPβUP†

φ is a Jacobi matrix,
Definition 2.6. Following the notations of [46], Zβ is distributed according to
JφR(βR, (1− β)R, C). For β ≥ φ, [46, Eq. (4.23)] is equivalent to (B.36) (with
the minus scaling). Then, from (3.29) it is immediate that

−
∫

log2(x) dFZβ
(x) =

1
φ

H(φ)− β

φ
H
(

φ

β

)
. (B.37)

This completes the proof.

3.4 Proof of Corollary 3.1

For the proof we first recall the following well-known result.

Lemma B.1. [100] Let A and A + B be invertible and B have rank 1. Furthermore
let g , tr(BA−1) 6= −1. Then, we have

(A + B)−1 = A−1 − 1
g + 1

A−1BA−1. (B.38)
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We point out the relationship [36]

d{I(γ; FT
J )− I(γ; FT

Jβ
)}

dγ
=

ηT
Jβ
(γ)− ηT

J (γ)

γ log 2
. (B.39)

Thus, to proof Corollary 3.1 we simply need to show that

tr
{
(I + γJβ)

−1 − (I + γJ)−1
}
≥ 0 (B.40)

where the equality holds when β = 1. To prove (B.40) it is sufficient to
consider the removal of a single receive antenna, i.e. β = (R − 1)/R. It is
immediate that

J = Jβ + h†
RhR (B.41)

with hR ∈ C1×T representing the Rth row of H. Then, (B.40) follows directly
from Lemma B.1.

To show the convergence in mean of χT
J we make use of identity (B.35).

Without loss of generality we can assume that the entries of H are iid Gaus-
sian with zero mean and variance 1/R. Then, the “log det" convergence in
mean for the iid Gaussian ensemble [17, Proposition 2] implies that

lim
R→∞

〈
χT

J (R, βR)
〉

J
= −

∫
log2(x) dFZβ

(x) (B.42)

where Zβ = PφU†P†
βPβUP†

φ. Hence, (3.37) converges to (3.34) in the large-
system limit. This completes the proof.

3.5 Proof of Corollary 3.2

Note that Jβ is almost surely non-singular. Hence, we can write〈
I0(γ; FT

QJβ
)
〉

J
(B.43)

= log2 γ +
1
T

〈
log2 |QJβ|

〉
J

(B.44)

= log2 γ +
1
T

〈
log2 |Jβ|

〉
J
+

1
T

log2 |Q|. (B.45)

Due to the constraint tr(Q) = T, Q = I maximizes (B.45). So far we have
shown that

C0(γ; FT
Jβ
) , max

Q:tr(Q)=T

〈
I0(γ; FT

QJβ
)
〉

J
(B.46)

=
〈
I0(γ; FT

Jβ
)
〉

J
. (B.47)
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It follows from the definitions in (3.36) and (B.46) that

lim
γ→∞

C0(γ; FT
Jβ
)− C(γ; FT

Jβ
) ≥ 0. (B.48)

On the other hand we have

C0(γ; FT
Jβ
) =

〈
I0(γ; FT

Jβ
)
〉

J
<
〈
I(γ; FT

Jβ
)
〉

J
≤ C(γ; FT

Jβ
). (B.49)

Hence, the limit in (B.48) must be zero.

4 Proof of Equation (3.44)

It is sufficient to proof the result for 1/2 < φ < 1. From (3.33), Tχ(R, φR) can
be written as

(1−φ)R−1

∑
l=0

ψ(R− l) +
φR−1

∑
l=(1−φ)R

ψ(R− l)

−
R(2φ−1)+1

∑
l=0

ψ(φR− l)−
φR−1

∑
l=R(2φ−1)

ψ(φR− l) (B.50)

by noting that φR ≥ (1− φ)R + 1, since φR is integer and φR > (1− φ)R.
Note that we can write

φR−1

∑
l=(1−φ)R

ψ(R− l) =
R(2φ−1)+1

∑
l=0

ψ(φR− l) (B.51)

φR−1

∑
l=R(2φ−1)

ψ(φR− l) =
(1−φ)R−1

∑
l=0

ψ((1− φ)R− l). (B.52)

Thus, χ(R, φR) = χ(R, (1− φ)R). This completes the proof.

5 Solution of Example 3.4

Note that we do not assume that H has Gaussian entries. However it is
well known that for any distribution of the entries of H, the distribution
function FN

Jβ
converges weakly and almost surely to the Marc̆enko-Pastur

distribution. In other words, we get the same asymtotic results regardless of
whether we restrict the entries of H to be Gaussian or not. Thus, without loss
of generality we can assume that the entries of H are Gaussian, so that J is
unitarily invariant. We have SJ(z) = (1 + z)−1 [36]. Then, we immediately
obtain (3.52) from Lemma 3.2.
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6 Proof of Lemma 3.2

Note that αJβ
= β. Since F̃Jβ

= FPβ JP†
β
,

I0(γ; FJβ
) = βI0(γ; F̃Jβ

) = βI0(γ; FPβ JP†
β
). (B.53)

Furthermore, from identity (2.71) we have

S̃Jβ
(z) = SJ(βz) (B.54)

where S̃Jβ
is the S-transform of F̃Jβ

. In the sequel we first show that

1∫
0

∣∣∣log2 S̃Jβ
(−z)

∣∣∣ dz =

1∫
0

∣∣log2 SJ(−βz)
∣∣ dz < ∞. (B.55)

To do so, it is sufficient to show that
1∫

0

∣∣log2 SJ(−z)
∣∣ dz < ∞. Since FH has

a compact support, I(γ; FJ) is finite. Now we show that log x is absolutely
integrable over FJ if, and only if, I(1; FJ) and ∆I(1; FJ) are finite [73]:

∞∫
0

|log2(x)| dFJ(x) =
1∫

0

log2

(
1
x

)
dFJ(x)

+

∞∫
1

log2(x) dFJ(x). (B.56)

Thus, we have

1∫
0

log2

(
1
x

)
dFJ(x) < ∞ ⇐⇒ ∆I(1; FJ) < ∞, (B.57)

∞∫
1

log2(x) dFJ(x) < ∞ ⇐⇒ I(1; FJ) < ∞. (B.58)

with ⇐⇒ denoting the logical equivalence. Hence, (B.56) is finite. This

implies that
1∫

0

∣∣log2 SJ(−z)
∣∣ dz is finite too. Then, by invoking (2.77), (B.53)

and (B.54) we have

I0(γ; FJβ
) = β log2 γ− β

∫ 1

0
log2 SJ(−βz) dz. (B.59)
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Due to (B.55), it follows from the linearity property of the Lebesgue integral
that

∆L(β; FJ) = I0(γ; FJβ
)− βI0(γ; FJ) (B.60)

= −β
∫ 1

0
log2

SJ(−βz)
SJ(−z)

dz. (B.61)

This completes the proof.

7 Proof of Remark 3.2

For the sake of notational simplicity we introduce

Y β , I + γPβHH†P†
β (B.62)

= Pβ(I + γHH†)P†
β (B.63)

= PβY1P†
β (B.64)

where I denotes the identity matrix. The matrix Y1 is unitarily invariant since
HH† is. Furthermore, since HH† has a compactly support LED so does Y1.
Thus, Y1 is asymptotically free of P†

βPβ [12]. Then, with the identity (2.71)
we have in the limit N → ∞

SY β
(z) = SY1(βz). (B.65)

Here, we note that SY β
(z) is strictly decreasing on (−1, 0) if, and only if, FY β

is not a Dirac distribution function, see Lemma 2.4, or equivalently due to
(B.65) FJ is not a Dirac distribution function.

We recall the following property of ηJ(γ) (see (3.17)) first [36]:

d{I(γ; FJβ
)− βI(γ; FJ)}
dγ

=
1− ηJβ

− β(1− ηJ)

γ log 2
, (B.66)

where for convenience we write ηJ as short for ηJ(γ). Hence, in order to
prove the remark it is sufficient to show that

(1− β) + βηJ − ηJβ
≥ 0 (B.67)

where the equality holds when β = 1. Furthermore, by using [36, Lemma
2.26] we have

ηJβ
= (1− β) + βηPβ JP†

β
. (B.68)

Thus, the right-hand side of (B.67) is equal to β(ηJ − ηPβ JP†
β
). Therefore, we

are left with proving ηJ ≥ ηPβ JP†
β
. Firstly, remark that

ηPβ JP†
β
=
∫ 1

x
dFY β

(x). (B.69)
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Then, by using (2.4) and (B.65) we obtain

ηPβ JP†
β
= lim

z→−1+
SY β

(z) (B.70)

= lim
z→−1+

S√Y1
(βz) (B.71)

= SY1(−β) , 0 < β < 1 (B.72)

which is strictly increasing with β, see Lemma 2.4. This completes the proof.

8 Proof of Remark 3.3

The matrices X, Y and P†
βPβ are asymptotically free [12]. Then, from Lemma

3.2 and the linearity property of the Lebesgue integral we have

∆L(β; FXY ) = −β

1∫
0

log2
SX(−βz)SY (−βz)

SX(−z)SY (−z)
dz (B.73)

= ∆L(β; FX) + ∆L(β; FY ). (B.74)
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Appendix C

Proofs – Chapter 4
This appendix is based directly on the appendix of
Burak Çakmak, Manfred Opper, Bernard H. Fleury and Ole Winther, “Self-averaging
expectation propagation,” arXiv preprint arXiv: 1608.06602, August 2016.

1 Proof of Theorem 4.1

From the assumptions of the theorem we have φ(X) < ∞ and φ(X−1) < ∞
for X = Λx + H†ΛzH. Thus, from Proposition B.1 we have

lim
K→∞

1
K

ln |Λx + H†ΛzH| =
∫

ln(x) dFΛx+H†Λz H(x) (C.1)

where the ratio α = N/K is fixed. Then, invoking successively Corollary 2.1
and the additive free convolution (4.33) we have∫

ln(x) dFΛx+H†Λz H(x) =
∫ χx

0
RΛx+H†Λz H(−ω) dω− ln χx − 1 (C.2)

=
∫ χx

0
RΛx(−ω) dω +

∫ χx

0
RH†Λz H(−ω) dω− ln χx − 1 (C.3)

where χx = φ(Λx + H†ΛzH)−1. Here for convenience, we introduce

vx , RH†Λz H(−χx) (C.4)

λx , RΛx(−χx). (C.5)

Then, by invoking Lemma 2.2 we can write χx = 1/(λx + vx). Moreover, with
the conditions stated in Assumption 4.1 that χx < φ(A†Λz A)−1 and FH†Λz H
is supported on [0, ∞), it turns out that both quantities λx and vx are positive.
At this stage we also note that λx can be interpreted via the “scalarization”

φ(Λx + H†Λz H)−1 = φ(λxI + H†Λz H)−1. (C.6)
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Note that the support of FΛx is not necessarily in [0, ∞) but it is assumed
to be compact. Hence, we can define an auxiliary positive definite matrix
Λε , Λx + εI, such that there exists a positive ε < ∞ with φ(Λ−1

ε ) < χx.
Doing so we can write∫ χx

0
RΛx(−ω) dω = −χxε +

∫ χx

0
RΛε(−ω) dω. (C.7)

In this way both integrals in (C.3) are recast in a form suitable for applying
Lemma 2.6 from which we easily obtain∫

ln(x) dFΛx+H†Λz H(x) =
∫

ln(x + vx) dFΛx(x) +
∫

ln(x + λx) dFH†Λz H(x).

(C.8)
This result still involves difficult terms via the product H†ΛzH. We will
resolve these difficulties by means of multiplicative free convolution. We first
perform a convenient transformation∫

ln(x + λx) dFH†Λz H(x) = (1− α) ln λx + α
∫

ln(x + λx) dFHH†Λz
(x).

(C.9)
We simplify the integral in the right-hand side of (C.9) by invoking succes-
sively (2.76), the multiplicative free convolution (4.34) and (2.74):∫

ln(x + λx) dFHH†Λz
(x) =

∫ χ

0
ln SHH†Λz

(−z) dz + H(χ) + (1− χ) ln λx

= −
∫ χ

0
ln SHH†(−z) dz−

∫ χ

0
ln SΛz(−z) dz + H(χ) + (1− χ) ln λx

=
∫

ln(x + va) dFHH†(x) +
∫

ln(x + vz) dFΛz(x) + (1− χ) ln
λx

vavz
− H(χ).

(C.10)

Here, we define

χ , φ

{
I−

(
I +

1
λx

HH†Λz

)−1
}

. (C.11)

Moreover, from (2.73) we write

λx =
1− χ

χSHH†Λz
(−χ)

(C.12)

=
1− χ

χSHH†(−χ)SΛz(−χ)
(C.13)

va =
1− χ

χSHH†(−χ)
(C.14)

vz =
1− χ

χSΛz(−χ)
. (C.15)
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Thus, we get the identity

λx =
χ

1− χ
vavz (C.16)

and thereby (1− χ) ln λx
vavz
− H (χ) = ln χ. Combining this with (C.10) and

(C.9) yields∫
ln(x + λx) dFH†Λz H(x)

=
∫

ln(x + va) dFA† A(x) +
∫

ln(x + vz) dFΛz(x) + ln χ + (α−1 − 1) ln
λx

vs
(C.17)

where we use the transformation∫
ln(x + va) dFHH†(x) = (1− α−1) ln va +

∫
ln(x + va) dFH† H(x). (C.18)

We highlight the following facts:

• From (C.14) and (C.16) we have

vz = λxSHH†(−χ). (C.19)

• From (C.6) and (C.11) we have

χ = α−1φ

{
I−

(
I +

1
λx

H†ΛzH
)−1

}
(C.20)

= α−1φ

{
I− λx

(
λxI + H†ΛzH

)−1
}

(C.21)

= α−1vxχx. (C.22)

• By the scaling property of the R-transform we have

vx = RH†Λz H(−χx) ⇐⇒ 1 = R 1
vx H†Λz H(−vxχx). (C.23)

We express this identity in terms of the S-transform via (2.65). Doing
so yields

1 = S 1
vx H†Λz H(−vxχx) (C.24)

= S 1
vx H† H(−vxχx)SΛz(−vxχx/α) (C.25)

=
1

λz
S 1

vx H† H(−vxχx) (C.26)

= S λz
vx H† H(−vxχx) (C.27)
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where we define λz , 1/SΛz(−vxχx/α) and (C.27) follows from the
scaling property of the S-transform. We now obtain the scaling factor
λz and express the result in terms of the R-transform. Solving for vx
yields

vx = Rλz H† H(−χx). (C.28)

Moreover, note that χ = vxχx/α. Thus, from (C.15) we have

λz = 1/SΛz(−χ) =
vzχ

1− χ
. (C.29)

• From (D.4) we have va = λx/λz.

• Now, we introduce the auxiliary variable χz = φ(Λz + vzI). Then, it
follows from the definition of the S-transform and (C.15) that χ = λzχz
by noting that λz , 1/SΛz(−χ).

By invoking the facts above and (C.17), we finally obtain

lim
K→∞

1
K

ln |Λx + H†ΛzH| =
∫

ln(x + vx) dFΛx(x) + α
∫

ln(x + vz) dFΛz(x)+

+
∫

ln(λx + λzx) dFH† H(x) + ln χx + α ln χz

(C.30)

where χz = φ(Λz + vzI)−1, λz = χ−1
z − vz, vx = λzRH† H(−λzχx) and

vz = λxSHH†(−λzχz). Recall that φ(Λx) < ∞ and φ(Λz) < ∞ are assump-
tions in the theorem. Furthermore, χx and χz are finite as well. Moreover,
because we assume that H has uniformly bounded spectral norm, we have
RK

H† H
(ω) → RH† H(ω) as K → ∞, see [12, Lemma 3.3.4]. This property turns

out to be sufficient for representing the quantity vz in terms of a finite size
representation of the S-transform. In summary, from Proposition B.1 for suf-
ficiently large N, K we can consider a finite size representation of (C.30) by
three convenient log det terms in a way that each term converges to one of
the integrals in (C.30). In this way we obtain Theorem 4.1.

2 The AT Line of Stability

The AT line of stability [28] is a fundamental concept in spin glass theory. It
determines a region where the TAP approach or the so-called “replica ansatz”
can provide valid (physical) results [101]. For example, it is known that
below the AT line of stability, the “replica ansatz” predicts the entropy as a
negative quantity for the standard Ising model [102], [26]. In this section we
extend the concept of AT line of stability to our TAP approach. Basically, we
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introduce the AT line of stability conditions that dictate that the two matrices
(Λx + H†Λz H) and Λz are positive definite.

In order to derive the AT line of stability we follow the conventional ap-
proach [103] [27] which consist in investigating the divergence of the so-called
total susceptibility

χ
(2)
x , lim

K→∞

1
K ∑

n,k
(Λx + H†Λz H)−1

n,k (C.31)

= lim
K→∞

1
K ∑

k
(Λx + H†ΛzH)−2

k . (C.32)

Under Assumption 4.1 we show in Appendix C.3 that

χ
(2)
x =

αx

1− αxR′
λz H† H

(−χx)
. (C.33)

Here we have the self-averaging EP quantities in their asymptotic form, i.e.
χa = φ (Λa + vaI)−1, λa = 1/χa − va for a ∈ {x, z} where va is given in the
form (4.49d) and (4.49e) with the replacement 〈χa〉 → χa. Moreover, αx =

φ (Λa + vaI)−2. Here we point out that from the analysis of self-averaging EP
in Section 4 of Chapter 4 we can consider the approximation αx ' χ†

xχx/K
where χx is the variance of the pdf q̃x in (4.47). The total susceptibility χ

(2)
x

diverges at
1− αxR′

λz H† H(−χx) = 0. (C.34)

This is the AT line of stability which dictates that the matrix (Λx + H†ΛzH) is
positive definite. It extends the previous AT line of stability results, e.g. [81],
to the general model (4.3).

The positive definiteness of the matrix (Λx + H†ΛzH) implies in our
derivation that the matrix (Λ−1

z + 1
λx

HH†)Λz is positive definite too (asymp-
totically). Therefore, Λz is positive definite if (Λ−1

z + 1
λx

HH†) is positive
definite. Hence, we now introduce the total susceptibility as

χ
(2)
z , lim

N→∞

1
N ∑

n,k
(Λ−1

z +
1

λx
HH†)−1

n,k . (C.35)

To calculate χ
(2)
z in addition to Assumption 4.1 we assume that Λ−1

z and
HH† are asymptotically free. This is indeed a mild assumption due to (4.34).
Following the derivation of (C.33) in Appendix C.3 one can show that

χ
(2)
z =

αm

1− αmR′ 1
λx

HH†(−χm)
. (C.36)
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Here we define χm , vz(1− vzχz) and αm , φ
(

Λ−1
z + v−1

z I
)−2

. Moreover,
from the analysis of self-averaging EP in Section 4 of Chapter 4 we can con-
sider the approximation

αm '
1
N ∑

i
(vz(1− vz[χz]i))

2 (C.37)

where χz is the variance of the pdf q̃z in (4.48). The total susceptibility χ
(2)
z

diverges at
1− αmR′ 1

λx
HH†(−χm) = 0. (C.38)

We thereby complete the AT line of analysis for the positive definiteness of
(Λx + H†Λz H) which is (C.33), and the positive definiteness of Λz which is
(C.33) and (C.38).

3 Proof of Equation (C.33)

In order to calculate the susceptibility χ
(2)
x we introduce

χx(ω) , φ(Λx + H†Λz H −ωI)−1, ω ∈ (−∞, 0).

Then, we have

χ
(2)
x = lim

ω→0

∂

∂ω
χx(ω) (C.39)

= lim
ω→0

∂

∂ω
φ(Λx + {RH†Λz H(−χx(ω))−ω}I)−1 (C.40)

= φ
(

Λx + RH†Λz H(−χx)I
)−2 [

1 + χ′x(0)R
′
H†Λz H(−χx)

]
(C.41)

= φ
(

Λx + Rλz H† H(−χx)I
)−2 [

1 + χ′x(0)R
′
λz H† H(−χx)

]
(C.42)

where for short we wrote χx = χx(0) and χ′x(ω) = ∂χx(ω)/∂ω. The results
(C.40) and (C.42) are the consequence of (4.33) and (4.34), respectively. With
a convenient reformulation of the right-hand side of (C.42) we obtain (C.33).

4 Updating the EP Cavity Variances

The update equations (4.23)–(4.25) are common to EP and self-averaging EP.
The update equations for the cavity variances Λ

x(t) and Λ

z(t) in EP are ob-
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tained from (4.31) as

[Λz(t)]ii = 1/[χz(t− 1)]i − [

Λ

z(t− 1)]ii (C.43)

Σx(t) = (Λx(t− 1) + H†Λz(t)H)−1 (C.44)

[

Λ

z(t)]ii = 1/[(HΣx(t)H†)]ii − [Λz(t)]ii (C.45)

[Λx(t)]ii = 1/[χx(t)]i − [

Λ

x(t− 1)]ii (C.46)

[

Λ

x(t)]ii = 1/[(Σx(t))]ii − [Λx(t)]ii. (C.47)

The provided EP algorithm is naive and it has a poor convergence, in partic-
ular for large α = N/K. One may need to adaptively select the initialization
of the algorithm to the given parameter values.
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Appendix D

Proofs – Chapter 5
This appendix is based directly on the appendix of
Manfred Opper, Burak Çakmak and Ole Winther, “A theory of solving TAP equa-
tions for Ising model with general invariant random matrices,” Journal of Physics A:
Mathematical and Theoretical, vol. 49, no. 11, February 2016, c©2016 IOP Publish-
ing Ltd.

1 Derivation of Results from Dynamical Functional
Theory

For the sake of notational compactness, let us define

g({m(τ), γ(τ)}t
τ=0) , δ(m(t)− f

(
{γ(τ), m(τ)}t−1

τ=0

)
). (D.1)

By using the Fourier representation of the Dirac delta function we write

Z({l(t)}) =
∫ T−1

∏
t=0

dm(t)dγ(t)dγ̂(t) g({m(τ), γ(τ)}t
τ=0)×

× eiγ̂(t)†(γ(t)−h−Jm(t))eiγ(t)†l(t). (D.2)

The derivation is split into two parts: i) computing the disorder average; ii)
applying the saddle-point method.

1.1 Computation of the disorder average

For convenience, let us introduce N× T matrices X and X̂ with Xnt =
mn(t+1)√

N

and X̂nt =
γ̂n(t+1)

i
√

N
. We need to evaluate〈

e−
i
2 ∑t{γ̂(t)† Jm(t)+m(t)† Jγ̂(t)}

〉
J
= eO(1)+ N

2 ∑n≥1
cn
n tr(Qn) (D.3)
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with Q = X̂X† + XX̂†. Here (D.3) follows from (5.3). We next evaluate

tr(Qn) = tr
(
(X̂X† + XX̂†

)n
)

(D.4)

in terms of the matrices (D.4)

G , X†X̂ (D.5)

C , X†X (D.6)

C̃ , X̂†X̂. (D.7)

Then, by using cyclic invariance of the trace we obtain the expression

tr(Qn) = 2tr(Gn) + ntr
n−2

∑
k=0

{
GkC(G†)n−2−kC̃

}
+ I(G, C, C̃) (D.8)

where the function I satisfies

∂I(G, C, C̃)
∂C̃

∣∣∣∣
C̃=0

= 0. (D.9)

This means that I contains more than one factor C̃ and thus – at the saddle–
point value – C̃ = 0 does not contribute to the saddle-point equations.

1.2 The saddle-point calculation

We write as

〈Z({l(t)})〉J '
∫

dGdCdC̃ eO(1)+ N
2 ∑n≥1

cn
n (2tr(Gn)+ntr ∑n−2

k=0{GkC(G†)n−2−k C̃}+I(G,C,C̃))

∫ T−1

∏
t=0

{
dm(t)dγ(t)dγ̂(t) g({m(τ), γ(τ)}τ≤t)e

iγ̂(t)†(γ(t)−h)eiγ(t)†l(t)
}

∏
t,s

δ
(

iNG(t, s)−m(t)†γ̂(s)
)

δ
(

NC(t, s)−m(t)†m(s)
)

δ
(

NC̃(t, s) + γ̂(t)†γ̂(s)
)

.

(D.10)

By the Fourier representation of the Dirac delta function we write the last
line of (D.10) as

c
∫

dĜdĈd ˆ̃C exp

∑
(t,s)

iĜ(t, s)
(

iNG(t, s)−m(t)†γ̂(s)
)
+

+iĈ(t, s)
(

NC(t, s)−m(t)†m(s)
)
− ˆ̃C(t, s)

(
NC̃(t, s) + γ̂(t)†γ̂(s)

))
.

(D.11)
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Here c is a constant irrelevant for the saddle-point calculation. We define the
auxiliary “single-site" partition function

Z̃n(ln, Ĝ, Ĉ, ˆ̃C) ,
∫ T−1

∏
t=0
{dmn(t)dγn(t)dγ̂n(t) g({mn(τ), γn(τ)}τ≤t)

eiγ̂n(t)(γn(t)−hn)eiγn(t)ln(t)}

e−∑(t,s) [iĜ(t,s)mn(t)γ̂n(s)+iĈ(t,s)mn(t)mn(s)+ ˆ̃C(t,s)γ̂n(t)γ̂n(s)].
(D.12)

In this way we can write (D.10) as

〈Z({l(t)})〉J =
∫

dGdĜdCdĈdC̃d ˆ̃C

eO(1)+ N
2 ∑n≥1

cn
n (2tr(Gn)+ntr ∑n−2

k=0{GkC(G†)n−2−k C̃}+I(G,C,C̃))

eN ∑(t,s) [−Ĝ(t,s)Gt,s+iĈ(t,s)C(t,s)− ˆ̃C(t,s)C̃(t,s)]+∑n log Z̃n(ln ,Ĝ,Ĉ, ˆ̃C).
(D.13)

In the large-system limit we can perform the integrations over G, Ĝ, C, Ĉ, C̃, ˆ̃C
with the saddle-point methods. Doing so yields

G(t, s) = − i
N ∑

n
〈mn(t)γ̂n(s)〉Z̃n

(D.14)

C(t, s) =
1
N ∑

n
〈mn(t)mn(s)〉Z̃n

(D.15)

C̃(t, s) = − 1
N ∑

n
〈γ̂n(t)γ̂n(s)〉Z̃n

(D.16)

with 〈 〉Z̃n
denoting the average with respect to the single-site partition func-

tion. Here the quantity (D.16) has only the trivial solution C̃t,s = 0. Other
solutions may violate the normalization Z({l(t) = 0}) = 1. Furthermore,
this solution leads to Ĉ = 0. By invoking (D.8) we have

Ĝ = R(G) (D.17)

ˆ̃C = 1
2

∞

∑
n=1

cn

n−2

∑
k=0
GkC(G†)n−2−k. (D.18)

Thus, we get the factorization of the generating function

〈Z({l(t)})〉J =
N

∏
n=1

∫ T−1

∏
t=0

{
dmn(t)dγn(t) g({mn(τ), γn(τ)}τ≤t)e

iγn(t)ln(t)+O(N−1)

eiγ̂n(t)(γn(t)−hn−∑s Ĝ(t,s)mn(s))e−∑s
ˆ̃C(t,s)γ̂n(t)γ̂n(s)

}
.

(D.19)
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We linearize the quadratic terms in γ̂n(t) by introducing auxiliary Gaussian
random fields φn(t) which are iid with zero mean and covariance Cφ(t, s) ,
2 ˆ̃C(t, s) , 〈φn(t)φn(s)〉. In this way, we can write

e−∑t,s
ˆ̃C(t,s)γ̂n(t)γ̂n(s) =

〈
e−i ∑t φn(t)γ̂n(t)

〉
φn

. (D.20)

Doing so (D.19) is recast as follows:

〈Z({l(t)})〉J =
N

∏
n=1

∫
dN ({φn(t)}; 0, Cφ)

T−1

∏
t=0

{
δ(mn(t)− ft {mn(τ), γn(τ)}t−1

τ=0)

δ

(
γn(t)− hn −∑

s<t
Ĝ(t, s)mn(s)− φn(t)

)
eiγn(t)ln(t)+O(N−1) dmn(t)dγn(t)

}
.

(D.21)

Finally, notice that −i〈mn(t)γ̂n(s)〉φn = 〈 ∂mn(t)
∂φn(s)

〉φn . Thus, G equals the
response function (5.15). This completes the derivation.

2 Proof of Equation (5.54)

First note that from (5.21) and (5.24) we have

Cψ(t− 1, t′ − 1) =
(GCφG†)(t, t′)

(1− q(t))(1− q(t′))
(D.22)

where Cφ is defined as in (5.14). For the sake of compactness, let f (x) =

R−1(x). By elementary combinatorics and using G = f (Ĝ) we show that any
power of the matrix G can be written as

Gk =
∞

∑
n=1

Coxn( f (x)k)Ĝn (D.23)

where for any power series f (x) = ∑n anxn we write ak , Coxk ( f (x)). This
means that we have

Gk(t, τ) = Coxt−τ ( f (x)k)
t−1

∏
s=τ

Ĝ(s + 1, s). (D.24)

Hence we also get

(Gk+1C(G†)n−1−k)(t− 1, t′ − 1) = ∑
l<t,m<t′

(
t−1

∏
s=l
Ĝ(s + 1, s)

)(
t′−1

∏
s=m
Ĝ(s + 1, s)

)
× C(l, m)Coxt−l yt′−m( f (x)k+1 f (y)n−1−k)

(D.25)
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where we write Coxnyk [ f (x, y)] , anbk for double power series

f (x, y) = ∑
n,k≥0

anbkxnyk. (D.26)

Summing up the geometric series, we have

n−2

∑
k=0

Coxt−l yt′−m( f (x)k+1 f (y)n−1−k) = Coxt−lyt′−m

(
f (y)n−1 − f (x)n−1

[ f (y)− f (x)]/[ f (x) f (y)]

)
(D.27)

and

∞

∑
n=1

cnCoxt−l yt′−m

(
f (y)n−1 − f (x)n−1

[ f (y)− f (x)]/[ f (x) f (y)]

)
(D.28)

= Coxt−lyt′−m

(
y− x

[ f (y)− f (x)]/[ f (x) f (y)]

)
. (D.29)

Putting everything together completes the proof.

3 Proof of Equation (5.70)

For the sake of compactness, without loss of generality, we may set hi = h.
Using the representation of the Gaussian density in terms of the characteristic
function we have the expansion for t 6= t′〈

tanh(u(t) + h) tanh(u(t′) + h)
〉

u '
∫

du1du2dk1dk2

× exp
[

i(k1u1 + k2u2)−
1
2
{s0 + ε(s(t, t) + 1)}(k2

1 + k2
2)− {s0 + εs(t, t′)}k1k2

]
×

× tanh(u1 + h) tanh(u2 + h)

' q− ε

2

∫
du1du2dk1dk2 exp

[
i(k1u1 + k2u2)−

s0

2
(k2

1 + k2
2 + 2k1k2)

]
×

× tanh(u1 + h) tanh(u2 + h)
{
(s(t, t) + 1)(k2

1 + k2
2) + 2s(t, t′)k1k2

}
= q + ε(s(t, t) + 1)

〈
tanh(u + h)

∂2 tanh(u + h)
∂u2

〉
+ εs(t1, t2)

〈(
∂ tanh(u + h)

∂u

)2
〉

.

(D.30)

The last line is obtained by representing k1, k2, ... by means of derivatives with
respect to u1 and u2. Repeating the same procedure leading to the above
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expansion we get

〈
tanh2(u(t) + h)

〉
u
= q +

ε

2
(s(t, t) + 1)

〈
∂2 tanh2(u + h)

∂u2

〉
=

= q + ε(s(t, t) + 1)

〈
tanh(u + h)

∂2 tanh(u + h)
∂u2 +

(
∂ tanh(u + h)

∂u

)2
〉

.

(D.31)

Both expansions can be represented in the single equation

d 〈tanh(u(t) + h) tanh(u(t′) + h)〉u
dε

= (s(t, t) + 1)
〈

tanh(u + h)
∂2 tanh(u + h)

∂u2

〉
+ (s(t, t′) + δt,t′)

〈(
∂ tanh(u + h)

∂u

)2
〉

.

(D.32)

Note that only the second term contributes to the dynamic part of the fluctu-
ations. Hence, by taking the Fourier transform and noting that ∂ tanh(u+h)

∂u =

1− tanh2(u + h) we obtain (5.70).
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The thesis studies three important applications of random matrices to infor-
mation processing. Our main contribution is that we consider probabilistic 
systems involving more general random matrix ensembles than the classical 
ensembles with iid entries, i.e. models that account for statistical dependence 
between the entries. Specifically, the involved matrices are invariant or fulfill 
a certain asymptotic freeness condition as their dimensions grow to infinity.
Informally speaking, all latent variables contribute to the system model in 
a democratic fashion – there are no preferred latent variables in the system.
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