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Abstract

This Ph.D. thesis is concerned with wave propagation in pipe-like shell
structures. Pipe-like shell structures are found in a wide range of practical
applications such as: Wind turbine towers, jet engines, brass instruments,
and piping systems. The thesis will in particular focus on how the curved-
ness of a thin-walled pipe, as well as a changing radius along a straight
thin-walled pipe, affects the waveguide properties. It shows that the waveg-
uide properties of curved pipes roughly can be divided into three regimes:
The curved beam regime, the cylinder regime, and the torus regime. In the
curved beam regime the waveguide properties of the pipe can be approx-
imated by classical curved beam theory while in the cylinder regime the
waveguide properties can be approximated by cylindrical shell theory. In
the torus regime, on the other hand, none of the two other regimes apply,
and a full-blown shell model, taking both the curvature and the flexibility
of the pipe-wall into account, is needed. For the straight pipe with chang-
ing radius, which is also known as the shell of revolution, it is found that
classical rod and beam theory, to some extent, can be used to approximate
the fundamental modes of the torsional, axial, and breathing wave. How-
ever, by means of the shell model some remarkable effects are predicted
when even these very fundamental waves are travelling along the shell of
revolution. The effects covers modal changes and excitation of localised
resonances and the effects are explained and predicted by relatively simple
expressions which have not been available to the public before. For modes
of higher order the model is solved numerically. By this approach similar
excitations of localised resonances are also predicted.
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Dansk Resumé

Denne Ph.D. afhandling omhandler bølgeudbredelse i rørlignende skalstruk-
turer. Rørlignende skalstrukturer findes i en bred vifte af praktiske an-
vendelser s̊asom: Vindmøllet̊arne, jetmotorer, messinginstrumenter og rør-
systemer. I afhandlingen fokuseres p̊a hvordan krumningen af et tyndvægget
rør, s̊avel som ændringen af radius langs et lige tyndvægget rør, p̊avirker
bølgeudbredelsesegenskaberne. Det viser sig at bølgeudbredelsesegenskaberne
for krumme rør i grove træk kan inddeles i tre regimer: Krumbjælkeregimet,
cylinderregimet og torusregimet. I krumbjælkeregimet kan bølgeudbredelses-
egenskaberne for røret approksimeres af klassisk krumbjælketeori mens i
cylinderregimet kan bølgeudbredelsesegenskaberne approksimeres af cylin-
derskalteori. I torusregimet, derimod, finder ingen af de to andre regimer
anvendelse, og en fuldstæ]ndig skalmodel, som tager b̊ade krumning og flek-
sibilitet af rørvæggen i betragtning, er nødvendig. For det lige rør med vari-
erende krumning, som ogs̊a er kendt som den rotationssymmetriske skal, er
det vist at klassisk stang- og bjælketeori, i nogen grad, kan benyttes til at ap-
proksimere de fundamentale torsions-, aksielle- og vejrtrækningsbølger. Ved
hjælp af skalmodellen er nogle bemærkelsesværdige effekter dog forudsagt,
som viser sig n̊ar selv disse meget fundamentale bølger vandre langs den
rotationssymmetriske skal. Effekterne p̊avirker modalformer og eksiterer
lokaliserede resonanser, og effekterne er forklaret og forudsagt af relativt
simple udtryk som ikke har været tilgængelige for offentligheden før. For
højerordnede bølger er modellen løst numerisk. Med denne metode er lig-
nende eksitasioner af lokaliserede resonanser ogs̊a forudsagt.
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Chapter 1

What is it All About?

Waves and vibrations – in a wide range of natural sciences and engineering
technologies these terms are often used as soon as a system or quantity
is oscillating periodically over time around some average configuration or
mean value. In mechanics, which is known as the science concerned with
the behaviour of physical structures and fluids subjected to forces and dis-
placements, these two terms therefore come into play when forces and dis-
placements start to oscillate over time. But frankly, what is the difference
between waves and vibrations? At first glance, not much, but there are
some good reasons to distinguish anyway. However, to illustrate one way
of distinguishing, at least within mechanics, it makes sense to establish two
fundamentally different situations: One where only waves are present and
another where only vibrations are present. Firstly, imagine a homogeneous
body, either structural or fluid-filled, which is unbounded in one, two, or
three spatial dimensions. If an oscillating source, it could be a prescribed
point force or point displacement, is acting somewhere in that body, waves
will be created around the source and transport energy towards infinity. Sec-
ondly, imagine again a homogeneous one, two, or three dimensional body,
but this time it is perfectly isolated from its surroundings by boundaries of
either zero forcing or zero displacement. If this body is also subjected to a
point source waves will just as well in this case be created. However, as time
goes the waves will reach the boundaries and be perfectly reflected back into
the body where they will create interference with those waves that are still
outgoing. As time goes towards infinity, the interference between outgoing
and ingoing waves will create and fill up the body with so-called standing
waves, which could be defined as vibrations in their purest form. Now, to
mix up this distinction again, it is fair to claim that, with these definitions
of waves and vibrations, then the vibrations in the bounded body are simply
a composition of the waves in the corresponding unbounded body. Thus,
if it possible to determine the behaviour of all waves, that a able to exist
in the unbounded body, these are the waveguide properties, it should in

1



CHAPTER 1. WHAT IS IT ALL ABOUT?

accordance to this logic be possible to represent any vibrational state by
properly taking the boundary conditions into account of the corresponding
bounded body. In other word, even though it indeed is possible to deter-
mine the vibrations in a bounded body without considering the waveguide
properties, then these vibrations will still be composed of waves that are
also supported by the unbounded body. Thus, the advantage of knowing
the waveguide properties is that it gives a general overview of all the ingre-
dients that possibly can cause the vibrations in any corresponding bounded
body. Hence, with this logic in mind, it is exactly the waveguide properties

of unbounded pipe-like structures, that are of interest in this Ph.D. thesis.
To determine the waveguide properties of pipe-like structures, the mech-

anisms governing the dynamic of such continuous bodies must be considered.
To simplify these considerations, which still turn out to be fairly complicated
anyway, the following assumptions are taken as preliminary throughout the
entire work:

• The material, from which the structure is made of, is linear elastic.

• Likewise is the material homogeneous, isotropic, and non-damping.

• Finally, the displacements associated with the wave motion are small.

Within these assumptions, the dynamics of pipe-like structures are covered
by the theory of linear elastodynamics. But before going deeper into that,
a few contextual and historical aspects of the elastodynamics of pipe-like
structures will be briefly discussed.

1.1 Contextual, Historical, and Motivational

Background

Analysis of the elastodynamical aspects of pipe-like structures is a classical
subject with many practical applications. In figure 1.1 a few examples where
pipe-like structures are involved are given. In each of these examples sound
and vibration, either structure borne or acoustical, play an important role
for performance and/or safety. Also in each example the interaction between
structure and fluid has a more or less heavy or light influence. The purpose
of the brass instruments in (a) is obviously in some way to shape the sound
produced by the lips of the musician, at the mouthpiece, and create the
desired timber which is to be transferred acoustically to the surroundings.
Within the scientific community related to that area it has been an ongoing
discussion whether or not the vibration of the brass wall makes a difference
for the far-field sound perception. However it seems like the current con-
viction is that altering the structural parameters, such as material selection
and wall thickness, do have a significant effect on the far-field sound[1]. In
itself, the fact that this discussion has kept on going over many centuries,

2



1.1. CONTEXTUAL, HISTORICAL, AND MOTIVATIONAL
BACKGROUND

(a) (b)

(c) (d)

Figure 1.1: (a) Collection of brass instruments, (b) submerged risers, (c) wind
turbines, and (d) section view of a jet engine.

indicate that this is a case of very light fluid-structure interaction (FSI).
Nevertheless, according to the current conviction, the brass instrument is
not just a rigid duct that shapes the waves in the air, but the elastodynamic
of the instrument itself also needs consideration. Risers, illustrated in (b),
which are used in the oil and gas industry, are also highly affected by vibra-
tions. One of the problems often referred to is flow induced pulsations[2].
While this phenomenon is primarily fluid dominated the elastodynamic of
the rises themselves apparently become more and more important as the
industry pushes the limit towards deeper and deeper waters[3]. Each of
the wind turbines in (c) constitutes a highly dynamical system. The wind
turbine is subjected to a broad spectrum of dynamic loads ranging over
wind loads, seismic activities, noise generated by aerodynamic turbulence,

3



CHAPTER 1. WHAT IS IT ALL ABOUT?

and noise generated internally by gears and generator and emitted from the
surfaces of the blades, nacelle, and tower[4]. Obviously the tower is a pipe-
like structure, and because it is exposed to some of these dynamic loads
its elastodynamic therefore needs attention. Hence it also becomes relevant
for the context of this Ph.D. project. Final example is the jet engine in
(d). From this section view several pipe-like components with rotational
symmetry can be spotted. Without further documentation everyone knows
that jet engines produce an enormous amount of noise. Moreover, the vi-
brations associated with the noise are of such magnitude that they must be
addressed when the reliability of the engine and its components is assessed.

1d:

E.B. Beam

Timoshenko Beam

Normals to the neutral axis remain
straight and normal during deformation.

Normals to the neutral axis remain straight
but not normal during deformation.

2d:

Thin shell

Thick shell

Normals to the mid-surface remain
straight and normal during deformation.

Normals to the mid-surface remain straight
but not normal during deformation.

3d: Theory of elasticity
Treat the pipe as an
elastic continuum.

L
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o
f
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m
p
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N
u
m
b
er

o
f
cov

ered
m
o
d
e
sh

a
p
es.

Figure 1.2: Different methods are available when modelling pipe-like structures.

From these examples, but also in general, pipes can usually be charac-
terised as long, slender objects with a circular hollow cross section. Be-
cause they are often long and slender, the apparent point of departure in
the mathematical formulation of their elastodynamics is to treat them as
one-dimensional objects. On the other hand, the hollow cross section brings
flexibility to the system meaning that the deformation of the cross section
perhaps also in some way needs consideration. Thus, depending on the
situation, pipe structures have typically been modelled either as beams, as
shells, or by means of three-dimensional theory of elasticity. The hierar-
chy of complexity of these approaches is illustrated in the chart in figure
1.2. The benefit of a more complicated model, is that more information,
here expressed as number of covered mode shapes1, can be extracted. The
beam models are valid when only the very fundamental mode shapes are ac-
tive, that covers axial waves, torsional waves, shearing waves, and bending
waves. Among beam models the two classical models based on the kine-

1As the wording says, the mode shape expresses the shape of the deformation associ-
ated with the wave. The number of degrees of freedom that are built into a model equals
the number of mode shapes that it will predict.
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1.1. CONTEXTUAL, HISTORICAL, AND MOTIVATIONAL
BACKGROUND

matic assumptions formulated by, respectively, Kirchhoff, but named after
Euler-Bernoulli, and Timoshenko are dominating. The additional degree of
freedom in the Timoshenko model, on one hand, makes it able to predict
the shearing wave, and, on the other hand, makes it able to perform ex-
ceptionally well in predicting the behaviour of the bending wave at higher
frequencies. When more complicated mode shapes need to be accounted for,
that happens typically at higher frequencies or if the flexibility of the pipe’s
cross section is more pronounced, a model which is able to attain these more
complicated shapes is needed. At first instance this calls e.g. for a cylindri-
cal shell model. Again, the choice stands between a shell theory suitable for
thin shells, which is based on Kirchhoff kinematic, or a shell theory which is
also suitable for thicker shell, which is based in Timoshenko kinematic. Due
to the increased complexity of the shell models, compared to beam models,
several more or less successful attempts have been made on simplifying the
governing equations of these theories. Hence simplified models have been
obtained either by ignoring terms of higher order of smallness, e.g. by sys-
tematically cancelling bending terms, or by taking into account that the
shell e.g. is cylindrical. Unfortunately many of these attempts turn out not
to perform well when comparing with the general un-simplified shell models.
Taking the abilities of modern symbolic manipulation software into account
it may therefore be worth to take departure in one of the general and un-
simplified shell theories, and adapt that to the specific problem instead.
Then, when things get even more complicated, and the dynamic through
the thickness of the pipe wall also becomes significant, a three-dimensional
elasticity model is needed. Although analytical solutions for very idealised
cases do exist, such three-dimensional problems usually requires some sort
of discretisation and numerical solution algorithm such as the finite element
(FE) method.

Besides the considerations about their flexibility, pipes and pipe-like
structures, like those presented above, are also typically irregularly curved
and/or may change cross sectional dimensions along their axial extension.
In the meantime the elastodynamics, and in particular the waveguide prop-
erties, of curved flexible pipes and pipes with varying cross section are not
nearly as thoroughly studied as for straight prismatic pipes. Nonetheless,
the curvedness and/or varying cross section has some effects that funda-
mentally disrupt the waveguide properties of straight prismatic pipes. As
an example, see figure 1.3. In a straight pipe, each unique wave mode,
e.g. the axial mode, the bending mode, the torsional mode, etc. are all
uncoupled. It means that if a pipe is harmonically excited by one of these
unique mode shapes, then exactly this mode shape will be preserved as the
waves travel away from the excitation. It also means that each linearly
independent mode shape can be analysed without considering the others
and they can be linearly combined to create any arbitrary mode shape. If
then the pipe is curved the mode shapes, which are linearly independent
in the straight pipe, start to couple. As illustrated, while the axial wave is

5



CHAPTER 1. WHAT IS IT ALL ABOUT?

Axial wave

Axial wave?

Bending wave

Bending wave?

Torsion wave

Torsion wave?

Figure 1.3: When the pipe is curved even the most fundamental wave modes
couple.

propagating along the curved pipe it turns into a mixture of axial, in-plane2

shearing, and in-plane bending waves. And obviously the in-plane bending
wave, or in-plane shearing wave, also turns into a mixture of the same com-
ponents. The torsion wave, on the other hand, turn into a combination
of torsion and out-of-plane bending. Likewise, but not illustrated, will the
out-of-plane shearing wave turn into a combination of torsion, out-of-plane
bending, and out-of-plane shearing. Now, imagining a corresponding static
counterpart where e.g. an axial force is balanced by an axial and shearing
reaction force along with an in-plane reaction moment. This mixture of
reactions will easily be determined by static equilibrium. But in case of
dynamics the mixture will be frequency dependent and thus not as easily
determined. Nevertheless, this will be the topic of paper A found later in
this Ph.D. thesis. Turning to the varying cross sectional dimensions, their

Figure 1.4: The coupled axial/breathing mode shifts from being dominated by
axial motion where the pipe is narrow towards being dominated by breathing
motion where the pipe is wide.

effects on the waveguide properties are perhaps not as intuitive. However
it is still related to how waves are coupled. But now the concern is instead

2In relation to the plane of the paper on which the figure is printed.
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1.2. TOOLS TO AID THE READING OF THE PAPERS

on the wave modes which are already linearly dependent, i.e. coupled, in
the straight pipe. This is e.g. the case for the axial wave and the breathing
wave. Or rather, because they are coupled in the straight pipe, and there-
fore both always will be present to some extent, they together form a mode
which can be designated as the axial/breathing mode. But as illustrated in
figure 1.4 it turns out that the amount of, respectively, axial and breathing
motion is affected by the radius of the pipe. Thus it can happen that a
wave can be dominated by axial motion in one part of the pipe, but if the
radius gradually increases, the wave will continuously shifts towards being
dominated by breathing motion. Moreover, the wave amplitude is also af-
fected. In fact, for a wave like the axial/breathing wave, but also for other
coupled wave modes, it happens that in the vicinity of where some certain
relation between the wave frequency, pipe radius, and thickness of the pipe
wall is fulfilled a rather sharp peak in amplitude arises. The interpretation
of this is that a local resonance in the pipe gets excited by the mode shape of
the wave and thereby creates large displacements in that area. A thorough
modelling and analysis of these effects are presented in paper B found later
in this Ph.D. thesis.

With this motivational background the following section of theoretical
models and mathematical tools are provided to ease the entry into the two
papers of the Ph.D. thesis.

1.2 Tools to Aid the Reading of the Papers

In the following subsections, a careful selection of theoretical tools to aid the
reading of the papers is provided. The tools perhaps seem a bit detached
from one another and the motivation for providing exactly these tool, is only
briefly explained in order not to paraphrase too much of what will be more
thoroughly explained in the papers. One way of using this tool box could
therefore be to skip it for now, but then return to it as a backup reference
while reading the papers. Alternatively, stay tuned to get prepared for what
foundation the papers are written on.

1.2.1 Thin Shell Theory

From the beginning of the Ph.D. project it has been chosen to treat the
pipe structures as thin shells. As explained in connection with figure 1.2
the shell, on one hand, can better reflect the flexibility of a hollow pipe than
a beam model, but on the other hand, the shell is simpler than treating the
pipe as a three-dimensional continuum. Therefore it seems more likely to
be able to formulate and solve, at least with a good approximation, the
governing equations analytically.

In general, when a physical three-dimensional structure is treated as a
shell, the fundamental assumption is that one of the structures dimensions is

7



CHAPTER 1. WHAT IS IT ALL ABOUT?

so small, compared to its other dimensions, that the structure can be mod-
elled as a two-dimensional surface. In this way, the two-dimensional surface
will typically approximate the mid-surface of the three-dimensional struc-
ture, while the remaining small dimension will just appear in the model as
a fixed parameter referred to as the shell thickness. For a pipe structure the
shell thickness is obviously the thickness of the pipe wall. The chosen thin
shell theory is due to Gol’denweizer-Novozhilov[5]. This theory is almost
identical to the perhaps more well-known shell theory by Flügge[6]. But
as pointed out in the textbook by Novozhilov, Flügge keeps a few smaller
terms which are beyond the accuracy of the fundamental assumptions of the
thin shell theory itself, and hence it is more consistent to skip these. The
thin shell theory of Gol’denweizer-Novozhilov is developed under the reser-
vation that the ratio between the shell thickness and the smallest radius of
curvature, at any location of the mid-surface, is no more than 1/20. Besides
that, the shell can have any arbitrary shape. Though, the shape of the shell
affects how stresses and deformations distribute throughout the shell, and
therefore it is important to properly take that into account. The informa-
tion about the shape is condensed in two, so-called, Lamé parameters, and
two radii of curvature. These, in total four, parameters are obtainable by
means of differential geometry.

1.2.1.1 Differential Geometry

A1, A2, R1, R2

α1 α1

α2

α2

n

rα1

rα2

x

y

z

r(α1, α2)

Figure 1.5: The parametrisation r(α1, α2) provides a mapping between a plane
cartesian coordinate system and a curvilinear coordinated system which is
wrapped on the three-dimensional mid-surface.

To calculate the Lamé parameters and the radii of curvature a parametrisa-
tion of the shells mid-surface is needed. Or more precisely, the starting point
is the parametrisation which provides a mapping between a two-dimensional
cartesian coordinate system, illustrated in the left-hand side of figure 1.5,
to the orthogonal curvilinear coordinates on the three-dimensionally curved
mid-surface, illustrated in the right-hand side of figure 1.5. Such parametri-
sation can take the form:
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1.2. TOOLS TO AID THE READING OF THE PAPERS

r(α1, α2) =




x
y
z


 =




f1(α1, α2)
f2(α1, α2)
f3(α1, α2)


 (1.1)

The Lamé parameters are derived from the partial derivatives of the parametri-
sation:

rαi
=

∂r

∂αi

where i = {1, 2} (1.2)

As illustrated in the figure, rαi
are tangents to the curves generated by

the curvilinear coordinates. Hence, by taking a small step in the cartesian
coordinates system, dαi, the corresponding small step in the curvilinear
system, dsi, is:

dsi =

∣∣∣∣
∂r

∂αi

∣∣∣∣ dαi (1.3)

From this, the Lamé parameters are simply defined as:

Ai ≡
∣∣∣∣
∂r

∂αi

∣∣∣∣ =

√(
∂x

∂αi

)2

+

(
∂y

∂αi

)2

+

(
∂z

∂αi

)2

(1.4)

In this way the Lamé parameters are a measure of how lengths are scaled
between the cartesian and the curvilinear coordinate systems.

Now turning towards the radii of curvature. Compared to finding the
radius of curvature of a curve, it is particularly more difficult to find it, or
rather them, for a surface. In the shell theory it is exactly the radii of cur-
vature in the principal directions which are of interest. To determine these,
a series of calculations are needed. The background for these calculations
can e.g. be found in [7], however the relevant results will be presented in
the following. Thus, by taking departure in the parametrisation of the mid-
surface, first step is to calculate the parameters of 1st and 2nd fundamental

form:

1. fundamental form 2. fundamental form

E(α1, α2) = rα1 · rα1 e(α1, α2) = − rα1×rα2

|rα1×rα2 | · rα1,α1

F (α1, α2) = rα1 · rα2 f(α1, α2) = − rα1×rα2

|rα1×rα2 | · rα1,α2

G(α1, α2) = rα2 · rα2 g(α1, α2) = − rα1×rα2

|rα1×rα2 | · rα2,α2

(1.5)

9
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Second step is to calculate the Gaussian curvature and mean curvature from
the parameters above:

K(α1, α2) =
eg − f2

EG− F 2

H(α1, α2) =
eG+ gE − 2fF

2 (EG− F 2)

(1.6)

Then in third step the principal curvatures are determined:

k1(α1, α2) = H +
√
H2 −K

k2(α1, α2) = H −
√
H2 −K

(1.7)

Last step is simply to invert the curvatures in order to obtain the radii:

Ri(α1, α2) =
1

ki
(1.8)

During the calculation of especially the radii of curvature, but also the Lamé
parameters, it is indeed possible that mistakes occur. In the meantime it
is possible to assess the consistency between the four parameters by means
of the conditions of Codazzi and Gauss. These conditions are presented in
the following subsection.

1.2.1.2 Conditions of Codazzi and Gauss

The conditions of Codazzi and Gauss are derived from the fundamental
condition that the symmetry of mixed second derivatives must also apply
for the vectors rαi

and n. Hence:

∂2n

∂αi∂αj

=
∂2n

∂αj∂αi

and
∂2rαi

∂αi∂αj

=
∂2rαi

∂αj∂αi

where i, j = {1, 2} (1.9)

By expressing these vectors in the functions A1, A2, R1, R2 of the variables
α1 and α2 the conditions of Codazzi can be derived from the mixed second
derivatives of n to:

∂

∂α1

(
A2

R2

)
=

1

R1

∂A2

∂α1

∂

∂α2

(
A1

R1

)
=

1

R2

∂A1

∂α2

(1.10)

10
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Likewise can the condition of Gauss be derived from the mixed second
derivatives of rαi

:

∂

∂α1

(
1

A1

∂A2

∂α1

)
+

∂

∂α2

(
1

A2

∂A1

∂α2

)
= −A1A2

R1R2
(1.11)

It should though be remarked that the conditions, in this form, rely on
the assumption that the curves generated by the curvilinear coordinates,
α1 and α2, coincide with the principal directions of the surface. If so,
these conditions need to be satisfied for the functions A1, A2, R1, R2 to
consistently determine a unique surface, except for its location in space [5].

1.2.2 Kinetic and Potential Energy Stored in the Shell

From the viewpoint of energies, a conservative elastodynamical system is
occupied by kinetic and potential energy. The kinetic and potential en-
ergy will oscillate over time, whereas the total mechanical energy, which is
the sum of kinetic and potential energy, will remain constant. In fact, the
constant mechanical energy is in this way represented by a, literally, har-
monic exchange between purely kinetic energy and purely potential energy.
Not surprisingly, it can be mathematically shown that for such system the
time-averaged kinetic and potential energy are identical[8]. That is:

T̂ = Û (1.12)

where:

T̂ : Time-averaged kinetic energy,

Û : Time-averaged potential energy.

The time-average is obtained by integrating with respect to time over one
full cycle, i.e. x̂ = 1

tp

∫ tp

0 xdt where tp is the time required to complete one

cycle.
Now, the kinetic and potential energy in a piece of a shell are deter-

mined by point-wise calculating the velocity and strain components and
then properly integrating them over the mid-surface of this piece of shell.
Hence the kinetic energy integrated over the surface, S, is:

T =

∫

S

ξdS =
1

2

∫

S

ρh

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dS (1.13)

where:

ρ : Density,
h : Shell thickness,
n : Vector of the shell displacements u, v, and w.

11
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while the potential energy integrated over the same surface is [5]:

U =

∫

S

υdS

=
Eh

2(1− ν2)

∫

S

(
(ε1 + ε2)

2 − 2(1− ν)

(
ε1ε2 −

γ2

4

))
dS+

+
Eh3

24(1− ν2)

∫

S

(
(κ1 + κ2)

2 − 2(1− ν)
(
κ1κ2 − τ2

))
dS (1.14)

where:

E : Young’s modulus,
ν : Poisson’s ratio,
εi : Membrane normal strain in direction i,
γ : Membrane shear strain,
κi : Change of curvature in direction i,
τ : Twist.

However, as a result of equation (1.12):

T̂ =

∫

S

ξ̂dS = Û =

∫

S

υ̂dS

m

ξ̂ = υ̂ (1.15)

Thus, the comparison between ξ̂ and υ̂ can serve as a sanity check when a
solution to a conservative elastodynamical problem of a shell is proposed.
Hence it is useful to write out these two quantities. Firstly ξ̂:

ξ̂ =
1

tp

∫ tp

0

ξdt =
1

2tp

∫ tp

0

ρh

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dt (1.16)

It is assumed that the displacements can be expressed by a separable func-
tion of the form ũeiωt where ũ is independent of time, ω is the frequency,
and i is defined as

√
−1. Moreover, the shell displacements, as well as the

kinetic and potential energies, are after all real valued field variables. Hence
u = Re

{
ũeiωt

}
. With this, the equation above can be written further out:

ξ̂ =
ρh

2tp

∫ tp

0

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dt

=
ρh

2tp

∫ tp

0

∣∣Re
{
iωũeiωt

}∣∣2 dt

12
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=
ρh

2tp

∫ tp

0

∣∣∣∣Re

{
iω

(
Re {ũ} cos(ωt)− Im {ũ} sin(ωt)+
+i (Re {ũ} sin(ωt) + Im {ũ} cos(ωt))

)}∣∣∣∣
2

dt

=
ρh

2tp

∫ tp

0

|−ω (Re {ũ} sin(ωt) + Im {ũ} cos(ωt))|2 dt

=
ρhω2

2tp

∫ tp

0

(
|Re {ũ}|2 sin(ωt)2 + |Im {ũ}|2 cos(ωt)2+
+2Re {ũ} Im {ũ} sin(ωt)cos(ωt)

)
dt

=
ρhω2

2tp

tp
2

(
|Re {ũ}|2 + |Im {ũ}|2

)

=
ρhω2

4
(Re {ũ}+ iIm {ũ}) (Re {ũ} − iIm {ũ})

=
ρhω2

4
ũũ (1.17)

where x is the complex conjugated of x. Similarly can υ̂ be written out.
Though, for simplicity, this will only be shown for (ǫ1 + ǫ2)

2, c.f. equation
(1.14):

̂(ǫ1 + ǫ2)2 =
1

tp

∫ tp

0

(ǫ1 + ǫ2)
2dt

=
1

tp

∫ tp

0

(
Re
{
ǫ̃1e

iωt
}
+Re

{
ǫ̃2e

iωt
})2

dt

=
1

tp

∫ tp

0

(
Re {ǫ̃1} cos(ωt)− Im {ǫ̃1} sin(ωt)+
+Re {ǫ̃2} cos(ωt)− Im {ǫ̃2} sin(ωt)

)2

dt

=
1

tp

∫ tp

0

(
(Re {ǫ̃1}+Re {ǫ̃2}) cos(ωt)−
− (Im {ǫ̃1}+ Im {ǫ̃2}) sin(ωt)

)2

dt

=
1

tp

∫ tp

0




(Re {ǫ̃1}+Re {ǫ̃2})2 cos(ωt)2+
+(Im {ǫ̃1}+ Im {ǫ̃2})2 sin(ωt)2−
−2

(
(Re {ǫ̃1}+Re {ǫ̃2})·
·(Im {ǫ̃1}+ Im {ǫ̃2})

)
cos(ωt)sin(ωt)


 dt

=
1

tp

tp
2

(
(Re {ǫ̃1}+Re {ǫ̃2})2 + (Im {ǫ̃1}+ Im {ǫ̃2})2

)

13
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=
1

2

(
Re {ǫ̃1 + ǫ̃2}2 + Im {ǫ̃1 + ǫ̃2}2

)
(1.18)

The entire expression for υ̂ is can be found in paper B.

1.2.3 The WKB Method

In paper B the so-called WKB (Wentzel-Kramers-Brillouin) method is used
to determine the waveguide properties of shells of revolution. In general
terms, this method is particularly useful to asymptotically solve linear dif-
ferential equations with slowly varying coefficients. The method appears to
be rather well-known in quantum mechanics and theoretical physics where
it is also known as the phase-integral method. In the meantime the method
has only in a few cases found its way to classical mechanics, and therefor, to
demonstrate how it is applied, a fundamental problem is solved below. The
concepts behind the method are briefly explained in the paper, but more
information can be found in [9]. Though still, in relation to the following
example, the initiating assumption is that within just one or a few wave
cycles the nonuniform waveguide does not change much. Therefore within
these few wave cycles the nonuniform waveguide can be approximated by
a uniform waveguide with the local properties. However, the effects of the
nonuniform waveguide still accumulate in the waves as they propagate. The
WKB method takes this accumulation into account. In the following ex-
ample the waveguide properties of axial waves in a circular rod with slowly
varying radius will be derived by means of the method. Similar example,
but for a hollow thin-walled rod, is also commented in the paper, but here
it will be presented in a lot more detail.

The partial differential equation governing the axial wave motion of a
non-uniform rod can be found in [10]:

0 =
∂

∂x∗

(
E∗A∗(x∗)

∂u∗(x∗, t∗)

∂x∗

)
− ρ∗A∗(x∗)

∂2u∗(x∗, t∗)

∂t∗2
(1.19)

where:

A∗ : Cross-sectional area,
u∗ : Axial displacement,
x∗ : Axial coordinate.

Before actually solving the partial differential equation it is essential for
the validity and robustness of the derived solution that the differential
equation, firstly, becomes reformulated into non-dimensional quantities. In
that connection dimensional quantities are, in this sub-section, marked
with ”∗”. The non-dimensionalisation is done by scaling. Thus lengths
are scaled by the radius of the rod. But as the area is a function of
the axial coordinate, so will the radius of the circular rod also be, i.e.

14
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A∗(x∗) = πr∗(x∗)2. It is in the meantime possible to express the radius
as r∗(x∗) = R∗r(x∗) = R∗R(x) where R∗ is the measurable radius of the
rod at the location x∗ = x∗

0 where r(x∗
0) = 1 and x∗ = R∗x. Moreover, like

previously, the axial displacement is assumed to be a separable function tak-
ing the form u∗(x∗, t∗) = ũ∗(x∗)eiω

∗t∗ = R∗ũ(R∗x)eiω
∗t∗ = R∗Ũ(x)eiω

∗t∗ .

The frequency is then scaled as ω∗ =
c∗0ω

R∗
=
√

E∗

ρ∗R∗2ω where c∗0 is the speed

of sound of an axial wave in a uniform rod. Making these substitutions in
the partial differential equation above the following is obtained:

0 =
1

R∗
∂

∂x

(
E∗π (R∗R(x))

2 R∗

R∗
∂Ũ(x)

∂x
eiω

∗t∗

)

− ρ∗π (R∗R(x))
2
i2

E∗

ρ∗R∗2ω
2R∗Ũ(x)eiω

∗t∗

m

0 =
∂

∂x

(
R(x)2

∂Ũ(x)

∂x

)
+R(x)2ω2Ũ(x)

=R(x)2Ũ ′′(x) + 2R(x)R′(x)Ũ ′(x) +R(x)2ω2Ũ(x)

m
0 =R(x)Ũ ′′(x) + 2R′(x)Ũ ′(x) + ω2R(x)Ũ(x) (1.20)

Then, secondly, to get hold on the slowness of the varying radius a slow-scale
parameter is introduced. By loosely defining a distance, D∗, over which the
radius changes perceivably along the rod, then the slow-scale parameter
defined as ε = R∗

D∗
will be small if the radius varies slowly. By means of this

parameter, it is possible to distinguish between a so-called fast and slow
axial coordinate:

εx = X ⇒ ∂

∂x
= ǫ

∂

∂X
(1.21)

If R and Ũ are functions of the slow coordinate, X , instead of the fast
coordinate, x, then the differential equation above becomes:

0 =R(X)ε2Ũ ′′(X) + 2ε2R′(X)Ũ ′(X) + ω2R(X)Ũ(X) (1.22)

After these manipulations the scene is set for introducing the actual WKB
solution. With inspiration from [9] the WKB solution takes the form

Ũ(X) = A(X)e
i
ε

∫

X

0
k(τ)dτ =

∑∞
n=0 ε

nAn(X)e
i
ε

∫

X

0
k(τ)dτ where An(X) are

the components of the asymptotic expansion of the amplitude function,
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A(X), and k(τ) is the wavenumber. It may here be remarked that the di-

mensional wavenumber then is: k∗(X) = k(X)
R∗

. The integral form of this
trial solution reflects the accumulation of how the non-uniform waveguide
affects the wave. In order to determine the wavenumber and the amplitude
function, at least asymptotically, this trial solution has to be substituted
into the differential equation above. Hence, it needs to be differentiated:

Ũ ′(X) =

(
A(X)e

i
ε

∫

X

0
k(τ)dτ

)′
=

(
A(X)e

i
ε
(K(X)−K(0))

)′

= A′(X)e
i
ε
(K(X)−K(0)) +A(X)

i

ε
K ′(X)e

i
ε
(K(X)−K(0))

=

(
A′(X) +A(X)

i

ε
k(X)

)
e
i
ε

∫

X

0
k(τ)dτ (1.23)

Ũ ′′(X) =

(
A′′(X) +A′(X)

i

ε
k(X) +A(X)

i

ε
k′(X)

)
e
i
ε

∫

X

0
k(τ)dτ+

+

(
A′(X) +A(X)

i

ε
k(X)

)
i

ε
K ′(X)e

i
ε

∫

X

0
k(τ)dτ

=

(
A′′(X) + 2A′(X) i

ε
k(X)+

+A(X) i
ε
k′(X)− A(X) 1

ε2
k(X)2

)
e
i
ε

∫

X

0
k(τ)dτ (1.24)

Substituting this into the differential equation, dividing through with the
exponential function, and reminding that A(X) =

∑∞
n=0 ε

nAn(X) the fol-
lowing is obtained:

0 =
(
−R(X)A0(X)k(X)2 + ω2R(X)A0(X)

)
+

+ ε

(
i (R(X) (2A′

0(X)k(X) +A0(X)k′(X)) + 2R′(X)A0(X)k(X))−
−R(X)A1(X)k(X)2 + ω2R(X)A1(X)

)
+

+O(ε2) (1.25)

Because ε is small then 1 ≫ ε ≫ ε2. Hence the above equation can be
regarded as series of individual equations separated by the order of ε. The
O(1)-equation then gives:

0 = −R(X)A0(X)k(X)2 + ω2R(X)A0(X)

⇓
k(X) = ±ω (1.26)
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This result shows that even though the rod is non-uniform then the wavenum-
ber is to the leading order simply given by the frequency anywhere along
the rod. Turning towards the O(ε)-equation it states:

−R(X)A1(X)k(X)2 + ω2R(X)A1(X)

=− i (R(X) (2A′
0(X)k(X) +A0(X)k′(X)) + 2R′(X)A0(X)k(X)) (1.27)

The left-hand side of this equation is obviously of same form as the O(1)-
equation. Thus, for any arbitrary choice of A1 the left-hand side will vanish.
The right-hand side then gives:

0 = −i (R(X) (2A′
0(X)k(X) +A0(X)k′(X)) + 2R′(X)A0(X)k(X))

⇓
0 = 2R(X)k(X)A′

0(X) + (R(X)k′(X) + 2R′(X)k(X))A0(X) (1.28)

This equation, which in fact can be recognised as a differential equation in
A0(X), has the general solution:

A0(X) = C0e
−

∫ Q(X)
P(X) dX (1.29)

where Q(X) and P (X) are the coefficients in front of, respectively, A0(X)
and A′

0(X), and C0 is an arbitrary constant. Thus:

A0(X) = C0e
−

∫ R(X)k′(X)+2R′(X)k(X)
2R(X)k(X)

dX

= C0e
−

∫

(

k′(X)
2k(X)

+R′(X)
R(X)

)

dX

= C0e
−( 1

2 ln(k(X))+ln(R(X)))

= C0e
ln

(

1√
k(X)R(X)

)

= C0
1√

k(X)R(X)
(1.30)

And because k(X) = ±ω then A0(X) ∝ 1
R(X) . In principle the O(ε2)-

equation may also provide additional information. But within the frame-
work of the WKB method, these terms are not considered. Hence, if ex-
pressed in dimensional parameters, the wavenumber is k∗ = ω∗

c∗0
and the

amplitude function is a∗(x∗) = R∗

r

(

εx∗

R∗

) .
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Chapter 2

Description and conclusions of

the papers

To round of the introduction to the two papers of this thesis, the following
chapter gives a short summary of each of them along with their conclusions
and scientific contributions. At this stage the conclusions will naturally
jump a bit out of nothing without much prior explanation. However, it
gives an idea of the outcome of the two papers. Finally a few suggestions
to future work are presented.

2.1 Paper A

2.1.1 Summary

Under the title Elastic Wave Propagation in Curved Flexible Pipes paper A
deals with the elastodynamics of an unbounded toroidal shell. Two mod-
els, describing the elastodynamics, have been developed. One is derived
analytically from classical thin shell theory while the other is a wave fine
element (WFE) model. The analytically derived model is based on the gen-
eral thin shell theory presented in [5]. The governing equations of this model
constitute a system of three partial differential equations with periodic co-
efficients to which the solution provides the displacement field of the shell.
The governing equations are formulated in non-dimensional parameters and
thereby only depend on five quantities: A thickness parameter, a curved-
ness parameter, Poisson’s ratio, and two wave-related variables which are
the wavenumber and the frequency. In order to solve the governing equa-
tions, at least approximately, a trial solution, based on assumptions about
the wave field supported by the toroidal shell, is suggested and adopted to
the equations by means of the Galerkin method. This provides an eigenvalue
problem from which the dispersion relation of the waveguide, as well as the
modal vectors, can be calculated numerically. By altering the curvedness
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of the torus and the shell thickness it is possible to study how these geo-
metrical properties affect the waveguide properties of such pipe-like shell.
Likewise can the dispersion relation be extracted from the WFE model. By
comparing the results of each model it is possible to uncover some of the
strengths and limitations of each of the two modelling approaches. Besides
comparing the two toroidal shell models they have also been compared to
curved beam theory and cylindrical shell theory.

2.1.2 Main-conclusions

• The comparisons between the models reveal that the predictions of
both toroidal shell models agree well within a rather large subspace
of curvedness, thickness, and frequency combinations.

• When comparing the toroidal shell models to curved beam theory and
cylindrical shell theory it turn out convenient to divide the waveguide
properties into three regimes:

– Curved beam regime: At very low frequencies (i.e. in the low-
frequency range), when the torus is only slightly curved, and the
shell wall is about as thick as the thin shell theory allows, then
the waveguide properties of the toroidal shell and of the curved
beam become very close. Thus, in this regime the waveguide
properties of the toroidal shell can just as well be predicted by
the curved beam theory.

– Cylindrical shell regime: At higher frequencies (and shorter
wavelengths), where the first few high order modes have be-
come propagating, the toroidal shell start to behave as a classical
straight cylindrical shell. The merging between the toroidal shell
theory and the cylindrical shell theory is only weakly affected
by the curvedness of the torus and the thickness of the shell.
Therefore, even when the torus is strongly curved, its waveguide
properties can be approximated by the cylindrical shell theory
as soon as the first few high order modes have cut on.

– Torus regime: The last regime falls in-between the two oth-
ers. In this regime the behaviour of the toroidal shell is too
complicated to be captured by the beam-approximation and the
frequency is still too low (and the waves too long) to propagate
along the torus as if it was a straight cylinder.

2.1.3 Scientific Contribution

The apparent scientific contribution of paper A is that it demonstrates two
ways of predicting the waveguide properties of unbounded toroidal shells.
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Hence it provides insight about how the curvedness of such pipe-like struc-
ture affects its waveguide properties. In addition to this, paper A demon-
strates that in many cases it is possible to approximate the waveguide prop-
erties of such a complicated structure by means of classical tools like curved
beam theory and cylindrical shell theory. But it also clearly demonstrates
that in other cases the behaviour of the torus is much too complicated to
be captured by these simpler methods. Finally, qualitative guidelines about
when the waveguide properties should be expected to fall into the curved
beam regime or the cylinder regime are provided. However, deterministic
and quantitative guidelines will depend on the specific application and error
tolerances, and are therefore not considered here.

2.2 Paper B

2.2.1 Summary

This paper is entitled A WKB Approximation of Elastic Waves Travelling

on a Shell of Revolution. Thus the concern is no longer on curved pipes,
but on straight pipes with changing radius. An example of such pipe is il-
lustrated in figure 1.4. Again the pipe is treated as a thin classical shell, but
in this paper the geometry is more loosely defined than in previous paper.
The radius of the pipe is namely just represented by an unknown function
of the axial coordinate. In this manner it is up to the reader to pick a
favourite radius function and substitute it into the results. The fundamen-
tal reservation is though that the radius function must be slowly varying.
It is explained how the dispersion relation and modal vector depend on the
radius function and how they thereby also become functions of the axial co-
ordinate. Moreover, closed-form expressions predicting how the amplitude
of torsional, axial, and breathing waves are modulated, as these fundamen-
tal waves are travelling along the shell, are derived. The validity of the
derived expressions is challenged by comparing them to classical rod and
beam theory and by calculating the associated power flow, which must be
conserved. Each of the expressions passes these sanity checks. The ampli-
tude modulation of waves of higher order may in principle also be predicted
by the prescribed method. Though, in these cases a numerical approach
is suggested and explained. To illustrate how waves can be affected by the
changing radius two characteristic radius functions are selected, and the dis-
persion relation, modal vector, and amplitude function for these examples
are studied. As explained in previous chapter, it is from classical cylindrical
shell theory known in advance that the axial wave and the breathing wave
will be coupled due to Poisson’s coupling, and this will also be the case in the
shell of revolution. In the meantime the fraction between axial and breath-
ing motion, in this coupled wave, will depend on the local radius. Hence it
is demonstrated, in the paper, how a so-called modal change can occur over
a rather short distance along the shell. On top of this, it turns out that for
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this particular coupled wave the modal change is associated with a sharp
localised amplitude increase – i.e. a localised resonance. The location of this
amplitude peak appears exactly where the local radius and the frequency of
the wave match the conditions for the ring-frequency. Thus, the structure
will be very compliant towards breathing motion at this location and at this
frequency, and therefore the coupled axial/breathing wave is able to excite
the localised resonance. Similar localised amplitude peaks, in association
with a modal change, are demonstrated for other wave modes as well, but
cases are also found where a modal change appears without any noticeable
amplitude peak.

2.2.2 Main-conclusions

• Despite the complexity of a structure like the shell of revolution its
waveguide properties for the torsional wave, and to some extend also
the axial and breathing wave, can be well approximated by classical
rod and beam theory.

• As a wave is travelling along the shell, modal changes appear and
sharp localised peaks in amplitude may arise. For the coupled ax-
ial/breathing wave the presence and location of such peak is physically
explained by means of the conditions of the ring-frequency.

• Even though these amplitude peaks are found in association with
modal changes of other waves as well, it cannot be regarded as a
general outcome of a modal change.

2.2.3 Scientific Contribution

Like in paper A the apparent scientific contribution of paper B is that it
presents a way of analytically estimating the waveguide properties of a shell
of revolution. It presents closed-form expressions for the amplitude function
for the torsional, axial, and breathing wave which have not been publicly
available before, and it explains how the amplitude modulation can be cal-
culated numerically for waves of any order. Out of the expressions jumps
the prediction of localised amplitude peaks. At first glance these peaks
may seem rather unexpected. Nevertheless a clear physical interpretation
is given which turn these peaks into rather intuitive and probable events.

2.3 Future Work

Suggestions to future work is:

• As explained in previous chapter, pipe-like structures are often found
in contact with fluids such as oil, air or water. Thus inclusion of
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fluid interaction, both internally, and externally, and with and without
mean flow, is of high relevance.

• Incorporation of boundary conditions may also be relevant. In such
case it will be possible to study the response to a forced excitation
at one end of the pipe while the other end may be clamped, free,
subjected to some kind of impedance, or so something else.

• In principle it is possible to combine the two analytical methods in
paper A and B. Thus the waveguide properties of a curved shell of rev-
olution may be determined by accounting for the curvedness by means
of the Galerkin method and the changing cross section by means of
the WKB method.

• Non-linear effects such as membrane stiffening could be of interest.
The curvature on a flexible pipe may have appeared by bending a
straight pipe within its elastic range and then more or less statically
fixing it in that curved configuration. In such case the pipe wall will
be pre-stressed by compression on the inside of the curvature and
tension on the outside (, and the cross section will be forced into an
oval shape). These pre-stresses will affect the waves travelling along
the pipe, but a non-linear analysis is required to determine how much.

• Experimental validation, in particular experimental validation of the
localised amplitude peaks in the shell of revolution will be appreciated.

2.4 Review History

Paper A – Elastic Wave Propagation in Curved Flexible Pipes

• 12. September 2014: Paper submitted to International Journal of
Solids and Structures

• 22. February 2015: Paper accepted with minor revisions.

• 18. March 2015: Paper resubmitted.

Paper B – A WKB Approximation of Elastic Waves Travelling on

a Shell of Revolution

• 22. April 2015: Paper submitted to Journal of Sound and Vibration.
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Pipe-like shell structures are found in a wide range of practical applications 
such as: Wind turbine towers, jet engines, brass instruments, and piping sys-
tems. For many of these applications, structural vibrations play an important 
role for their performance. This thesis will in particular focus on how the 
curvature on a thin-walled pipe, as well as a changing radius along a straight 
thin-walled pipe, affects the waveguide properties. It shows that the wave-
guide properties of curved pipes roughly can be divided into three regimes: 
The curved beam regime, the cylinder regime, and the torus regime. In the 
curved beam regime the waveguide properties of the pipe can be approx-
imated by classical curved beam theory while in the cylinder regime they 
can be approximated by cylindrical shell theory. In the torus regime none of 
the two other regimes apply, and a full-blown shell model is needed. For the 
straight pipe with changing radius, which is known as the shell of revolution, 
it is found that classical rod and beam theory, to some extent, can be used 
to approximate the fundamental modes of the torsional, axial, and breathing 
wave. However, by means of the shell model some remarkable effects are 
predicted when even these very fundamental waves are travelling along a 
shell of revolution. The effects cover modal changes and excitation of local-
ised resonances. For modes of higher order similar excitations of localised 
resonances are also predicted.
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