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and colleague Rafał Wiśniewski, for his continued support during my writing
of the thesis. I also greatly acknowledge the assistance from my other col-
leagues within the Ørsted group: Søren Abildsten Bøgh, and Roozbeh Izadi-
Zamanabadi. Thank you also to Martin Bak, who read through the manuscript
before I submitted it.

I also acknowledge the Ørsted Satellite Project and the Danish Research
Council (STVF) under contract number 456/9601158 for financial support dur-
ing my work.

August 1999, Aalborg, Denmark
Thomas Bak

iii





Summary

This thesis describes the development of an attitude determination system for
spacecraft based only on magnetic field measurements. The need for such sys-
tem is motivated by the increased demands for inexpensive, lightweight solutions
for small spacecraft. These spacecraft demands full attitude determination based
on simple, reliable sensors. Meeting these objectives with a single vector mag-
netometer is difficult and requires temporal fusion of data in order to avoid local
observability problems. In order to guaranteed globally nonsingular solutions,
quaternions are generally the preferred attitude specifier.

This thesis makes four main contributions. The first is the development of a
quaternion based Kalman filter, which is linearized using an exponential map of
the correction quaternion. The state space is reduced in dimension, and a covari-
ance singularity is avoided. The second contributions is a detailed study of the
influence of approximations in the modeling of the system. The quantitative ef-
fects of errors in the process and noise statistics are discussed in detail. The third
contribution is the introduction of these methods to the attitude determination
on-board the Ørsted satellite. Implementation of the Ørsted filter is discussed
and the predicted results are presented.

Finally the Kalman filter/smoother is applied to magnetometer data from the
Freja satellite. Data is processed off-line, which enables us to estimate a high
fidelity dynamic model of the spacecraft. Combined with a careful detection of
field perturbations, the result is an significant improvement in accuracy when
compared to previous results. The results allow researchers to fully utilize the
electric field science measurements.
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Synopsis

Denne Ph.D.-afhandling beskriver udviklingen af et retningsbestemmelsessys-
tem til brug i forbindelse med satellitter. Systemet er baseret på anvendelsen af
magnetometre som eneste retningssensor. Brugen af sådanne systemer er mo-
tiveret af de forøgede krav til billige, lette løsninger for små satellitter. Disse
kræver fuld retningsinformation baseret på simple, pålidelige sensorer. For at
kunne garantere globale ikke-singulære løsninger, kræves generelt quaternions
til beskrivelsen af retningen. At møde disse krav er vanskeligt med et enkelt vek-
tor magnetometer instrument, og kræver tids fusion af data for at undgå proble-
mer med lokal observerbarhed.

Denne afhandling har fire hovedbidrag. For det første udvikles et quaternion
basseret Kalman filter, som lineariseret ved hjælp af et exponentielt map af filter
korrektionen. Tilstandsrummet bliver reduceret i dimension and en kovariance
singularitet undgåes. Det andet bidrag er et detaljeret studie af inflydelsen fra
tilnærmelser i modelleringen af systemet. Den kvantitative effekt af fejl i process
og støjbeskrivelserne diskuteres i detalje.

Det tredie bidrag er en introduktion of ovenstående metoder i forbindelse med
retningsbestemmelse ombord på Ørsted satellitten. Implementation af Ørsted
filtret bliver diskuteret og de forudsagte resultater præsenteres. Endvidere eval-
ueres resultater opnået med flight systemet fra Ørsted.

Endelige bliver et Kalman filter/smoother anvendt på magnetometer data fra
Freja satellitten. Data processeres off-line, hvilket muliggør estimering af en
meget nøjagtig dynamisk model of rumfartøjet. Dette har i kombination med
med omhyggelig detektion af felt perturbationer, muliggjort en bestemmelse af
retningen af Freja med hidtil uset nøjagtighed.
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Terminology

Apogee is the point at which a satellite in orbit around the Earth
reaches its farthest distance from the Earth.

Attitude of a spacecraft is its orientation in a certain coordinate
system.

Altitude is the distance from a reference geoid to the satellite.
Ecliptic is the mean plane of the Earth’s orbit around the Sun.
Eclipse is a transit of the Earth in front of the Sun, blocking block-

ing all or a significant part of the Sun’s radiation.
Geoid is an equipotential surface that coincides with mean sea

level in the open ocean.
Ionosphere The region of the atmosphere from about 80 to 480 kilo-

meters above the Earth. The ionosphere has layers of ions
formed from atmospheric gasses that have been ionized
by ultraviolet radiation from the Sun.

Latitude is the angular distance on the Earth measured north or
south of the equator along the meridian of a satellite lo-
cation.

Longitude is the angular distance measured along the Earth’s equa-
tor from the Greenwich meridian to the meridian of a
satellite location.

Mean Anomaly is the angle from the perigee to the satellite moving with
a constant angular speed (orbital rate �D� ) required for
a body to complete one revolution in an orbit. Mean
anomaly, � , is � � j M , where

j M is the time since last
perigee passage.

Orbital rate is the mean angular velocity of the satellite rotation about
the Earth.

Pitch, Roll, Yaw are the angle describing satellite attitude. Pitch is referred
to the rotation about the x-axis of a reference coordinate
system, roll to the y-axis, and yaw to the z-axis.

Perigee is the point at which a satellite in orbit around the Earth
most closely approaches the Earth.

Vernal Equinox is the point where the ecliptic crosses the Earth equator
going from south to north.

Zenith is a unit vector in the Control Coordinate System along
the line connecting the satellite centre of gravity and the
Earth centre pointing away from the Earth.





Chapter 1

Introduction

This thesis describes the design, analysis and development of estimation algo-
rithms to an attitude determination system based on magnetic field measure-
ments. The work has primarily been motivated and supported by the Ørsted
satellite project.

Magnetometers are inexpensive, reliable instruments included in the sensor
complement of most three-axis stabilized spacecraft designed for near-Earth or-
bit. The difference between computed and measured magnetic field components
is a function of the spacecraft attitude. This makes magnetometer measurements
attractive for use in an attitude determination system on small spacecraft. This
thesis approaches the problem from an engineering point of view, and practical
experience from two case studies forms the basis of the investigation.

1.1 Background and Motivation

Attitude information is required for nearly all space missions. Without reliable
attitude estimates mission objectives may be severely compromised. As space-
craft move towards higher levels of autonomy, the demands on spacecraft reli-
ability generally increase. Attitude determination is a key component of most
missions and improvements in its accuracy and reliability contribute directly to
the success of the mission.

Magnetometers are inexpensive, lightweight, and highly reliable sensors that
are carried on most low Earth orbit spacecraft. As they provide us with infor-
mation about the attitude of the spacecraft they become interesting for small
satellite systems. The reliability of magnetometers is demonstrated by the fact
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that, only one failure of a magnetometer has ever been reported on missions
supported by NASA’s Goddard Space Flight Center (Deutchmann et al. (1998)).
Another example of the use of magnetometers for attitude determination is given
by the Earth Radiation Budget Satellite (ERBS). In July 1987 ERBS went into
a tumble, which made Sun and Earth sensors unreliable and the gyro telemetry
saturated, so that the three-axis magnetometer became the only useful attitude
sensor (Challa et al. (1997)).

The Earth’s magnetic field is primarily a dipole generated largely by currents
in the Earth’s fluid core. The Earth’s magnetic field interacts with and shields us
from the solar wind. Coronal mass ejections from the Sun cause changes in the
magnetosphere shape and local field strength. These fluctuations are the cause
of phenomena like the Aroura Borealis and the Van Allen Radiation Belts. Such
perturbations to the main field limit the accuracy of magnetometer based solu-
tions. They are, however, still attractive for missions with relative low accuracy
requirements, which require simple inexpensive sensors. Alternatively, missions
desiring an inexpensive backup method for a more complex attitude and rate
estimation packages may use a magnetometer solution.

In 1998 the Gurwin-II Techsat was launched. The platform was stabilized
based on attitude information from a magnetometer only. The coarse cruise
algorithms has an expected accuracy of 5 deg.. In the fine cruise phase, the
use of an extended Kalman filter is expected to provide an accuracy of 1-2 deg.
(Oshman (1999)).

Two case studies have motivated this work, and the results are presented in
two case study chapters.

1.1.1 The Ørsted Case

The first case is defined by the Danish Ørsted Satellite. Ørsted is a small satellite,
which was launched by a Delta II launch vehicle February 23, 1999. The primary
science objective is to measure the main geomagnetic field, and a magnetometer
is carried as part of the science payload (see Figure 1.1).

For low-budget space experiments like Ørsted we desire to provide as much
data as possible regarding the dynamics while satisfying severe constraints on
the size, weight, power, and cost of the instrumentation package. Attitude de-
termination is therefore based on a gyro-less configuration with a star imager
as the primary instrument. Fault tolerance is obtained, through attitude deter-
mination based on the science magnetometer as a backup. The backup attitude
algorithm for Ørsted has been a primary motivation for the work presented in this
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Figure 1.1: The magnetometer used on the Ørsted satellite (right photo). The
magnetometer is mounted on an instrument platform with a star cam-
era (left photo).

thesis. The focus is not only on developing an estimation algorithm, but also on
the system design and implementation. Reliability is a key issue, and integrity
monitoring and supervision of the attitude determination system are important
issues.

1.1.2 The Freja Case

The other case study deals with the Swedish/German Freja satellite. The Freja
attitude is needed in off-line science investigations related to electric and mag-
netic field studies. The attitude has previously been determined once or twice
per orbit using a combination of an Earth horizon sensor and a Sun sensor. This
approach does not, however, allow attitude determination in eclipse, as thermally
induced inertia variations prevent simple extrapolation. Through the use of mag-
netometers this thesis will show how attitude estimates can be reconstructed with
the required accuracy also during eclipse, where no reliable attitude was previ-
ously available. Using the measured magnetic field data in an attitude solution
attributes any long periodic changes in the observed field to changes in the atti-
tude of the spacecraft. As the main scientific interest is related to short periodic
structures, the use of the same data for attitude estimation should not signifi-
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cantly affect the science measurements.

1.1.3 Other Examples

An example of the usefulness of miniature magnetometers may indicate what
the future will bring in terms of the use of magnetometers for spacecraft atti-
tude determination. Researchers at the Jet Propulsion Laboratory have proposed
a mission where a single larger satellite ejects several spinning hockey puck
sized, disposable, free flying satellites in order to make simultaneous spatially
distributed measurements. Each pico-sat carry a miniature 3-axis fluxgate mag-
netometer and a transmitter. After launch from the main satellite, the picosats
transmit sensor readings back to the main satellite where the data is available
for retrieval. After the battery discharges completely, the pico satellite dies, and
eventually burns up in the atmosphere. The on-board magnetometer supports
the science objectives, and provides attitude dynamics information for use in
evaluation of the science data (Clarke et al. (1996)).

1.2 Overview of Existing Methods

In 1965, Wahba (1965) posed the problem of finding a proper orthogonal (rota-
tion) matrix given a number ( ��� ) of vector measurements (see Chapter 2 for a
more detailed discussion). Numerous solutions to the problem posed by Wahba
has been proposed over the years (e.g. Lerner (1978), Shuster and Oh (1981),
Markley (1993)). These point estimation algorithms do, however, require at least
two vector measurements, and therefore fail when only one vector measurement
(e.g. magnetometer measurement) is available. The problem is related to observ-
ability. A single three-axis magnetometer measurement can give only two-axes
worth of attitude information. At any given time point the rotation about the
reference vector can not be resolved.

Under the right circumstances the attitude can be determined using measure-
ments of a single reference vector (Psiaki et al. (1990)) by using recursive es-
timation algorithms and dynamic models. The measurements are processed se-
quentially and retain the information content of past measurements, thereby re-
ducing the observability problem by temporal fusion with past data. The most
commonly used technique for attitude estimation is the Kalman filter (Kalman
(1960)).

Very few (if any) on-board attitude determination systems have attempted to
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use only magnetometer data to estimate attitude. This is most likely due to the
apparent low accuracy of the measurements. The accuracy of a magnetometer
based attitude solution is mainly limited by:

Calibration Magnetometers are inherently nonlinear devices and an accurate
in-flight calibration of the magnetometer is required to get to the specified
accuracy.

Magnetic cleanliness The spacecraft has to be magnetically clean to minimize
disturbances in the observations and well as disturbances in terms of
torques acting on the spacecraft.

Accurate timing In order to correlate the measurements and the reference field
vectors, accurate timing of the measurements is needed.

Perturbations to the main field Perturbations to the main field may vary in
magnitude from fractions of a nT to thousands of nT (Langel (1987)).
This inaccuracy in the knowledge of the Earth’s field model easily pro-
duces errors of 0.4 deg. about each axis.

Furthermore the complexity of spherical harmonics models of the Earth’s mag-
netic field as well as the complexity of the attitude estimator, may prevent the
use of magnetometer based attitude solutions.

1.3 Objectives and Contributions

The main contributions of this thesis are as follows:

– The issue of temporal fusion of data is addressed. It is shown how tempo-
ral fusion of data may supplement locally unobservable measurement in a
way such that the system is observable over time.

– It is argued that most practical implementations of estimators require ap-
proximations. The quantitative effects of the approximation errors in the
process and noise statistics are discussed in detail.

– The covariance singularity resulting from the quaternion constraint is
demonstrated and the use of quaternions in the extended Kalman filter
addressed.
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– The role of the quaternion in the Kalman filter update is addressed based
on a power series of an exponential map.

– A significant contribution of this thesis is the complete design, implemen-
tation, and test of an attitude determination system for the Ørsted satel-
lite. The Ørsted magnetometer based solution solved the initial problem
of providing attitude during all mission phases and in case of star camera
dropout.

– The demonstration of the Ørsted attitude determination based on results
from on–board attitude determination system. Magnetometer based results
are compared with star camera attitude as a reference. The magnetome-
ter based solution has been used frequently since the start of the Ørsted
operation due to frequent star camera dropout.

– The demonstration of an attitude reconstruction algorithm working flight
data from the Freja spacecraft. The attitude reconstruction algorithm
solved the initial science problem, getting attitude during eclipse to the
specified accuracy. The accuracy was enhanced significantly by detecting
and avoiding perturbations to the field model.

– It is demonstrated how a single three-axis magnetometer provides a great
deal of information when the data are appropriately processed.

While this thesis focuses on the specific problem of magnetometer based atti-
tude determination the techniques have much wider potential in the design of
navigation/attitude estimators.

1.4 Thesis Outline

The thesis is organized as follows:

– Chapter 2, Attitude Determination in Perspective This chapter provides
an overview of the diverse field of attitude determination. A brief overview
of attitude sensors most commonly used in attitude determination systems
are given with special emphasis on the measurements obtained from a flux-
gate type magnetometer. A brief introduction to deterministic and recur-
sive approaches to attitude estimation are provided.
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– Chapter 3, Attitude and Spacecraft Motion Models This chapter intro-
duces a number of attitude representations with the focus on quaternions.
An exponential map formulation is presented, which allow an series ex-
pansion of the quaternion in terms of ����� skew symmetric matrices.
Satellite motion models are derived and the dominant disturbance torques
described.

– Chapter 4, Attitude Estimation This chapter considers estimation based
on extended Kalman filtering. Its structure and operation is described,
and the application to nonlinear systems is examined. It is shown how
the Kalman filter predictions allow temporal fusion of the measurements
thereby avoiding a local observability problems, which arise when using
magnetometers as the only reference sensor. The issue of approximate
models is also addressed and the effects on the noise statistics quantified.
The issue of preserving the norm of the quaternion in the Kalman filter
as well as covariance singularity problems related to a full state estimator
are discussed. Finally an attitude estimator solution based on a quaternion
vector update is outlined.

– Chapter 5 Ørsted Attitude Estimation The first application, the Ørsted
satellite is described. Two different process models are described and their
noise statistics discussed in detail. The chapter summarizes and evaluates
the performance of the two algorithms. An algorithm is selected and fur-
ther analyzed, and the predicted performance of the Ørsted attitude algo-
rithm is presented.

– Chapter 6 Implementation and Results from Ørsted It is well–known
that the Kalman filter in its original formulation is sensitive to numerical
inaccuracy and potential instability. The numerical behaviour of the algo-
rithm is therefore addressed and a brief description of the issues related to
a fixed point Ada implementation for Ørsted is given. Finally results from
the on-board estimator are presented. The results from the magnetome-
ter based attitude solution are compared to star camera attitudes thereby
providing an assessment of the absolute accuracy.

– Chapter 7 Freja Attitude Estimation The second application, the Freja
satellite is described. The chapter summarizes and evaluates the perfor-
mance of the attitude reconstruction algorithm applied to Freja data. The
required accuracy and the implications on the estimator design are dis-
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cussed. The solution approach is addressed and reconstruction results are
presented. Periods with disturbed magnetic field measurements are de-
tected using a statistical test.

– Chapter 8 Conclusion This chapter gives concluding remarks and recom-
mendations for future work.



Chapter 2

Attitude Determination in
Perspective

Obtaining accurate attitude information is a fundamental aspect of most space
missions. Without reliable estimates of the spacecraft attitude, the ability to con-
trol the spacecraft and send data back to Earth, or meet other mission objectives
may be jeopardized.

Sensor information is generally combined in an attitude determination sys-
tem to provide the best possible estimates at all times. Depending on the require-
ments of the mission, the attitude determination may be performed in real-time
on-board, or alternatively processed in batches on the ground based on informa-
tion down-linked from the spacecraft.

Attitude determination systems are a diverse field, but fundamentally they
all require a measurement system that includes sufficient sensors to enable that
attitude information is extracted with the necessary accuracy. Section 2.1 gives a
brief overview of attitude sensors most commonly used in attitude determination
systems. Special emphasis is put on the measurements obtained from a fluxgate
type magnetometer. Section 2.2 introduces different solution approaches that
have been investigated over the last decades.

2.1 Attitude Sensors

This section provides a general overview of present attitude sensor technology.
Only salient features are highlighted and the section is intended to be informative
rather than complete. It should also be noted, that sensors evolve rapidly, and

9



10 Attitude Determination in Perspective

new more precise and lighter sensors are continuously developed.
There are basically two classes of sensors commonly used in attitude deter-

mination systems

– Inertial sensors

– Reference sensors

The two classes of sensors are in most practical implementations used to comple-
ment each other in a measurement system. Reference sensors typically provides
noisy vector observations at a low frequency. Rate information from the iner-
tial sensor (e.g. gyroscopes) is often fed forward through a state estimator as
a prediction to be corrected by observations from the reference sensor, thereby
complementing the reference sensor. Recent advances in reference sensors has
prompted for gyroless attitude determination systems which are very interesting
for inexpensive small satellite missions, such as Ørsted.

2.1.1 Inertial sensors

Inertial sensors consists of sensors that measure rotation and/or translational ac-
celeration relative to an inertial frame. The sensors are subject to random drift
and bias errors, and as a result, the errors are not bounded. In order to provide
an absolute attitude, regular updates are performed, based on references such as
the Sun, stars, or the Earth. Traditional inertial reference units are mounted in
a multi axis gimbal assembly. While accurate, gimballed units are mechanically
complex, heavy, and use more power than the increasingly popular strapdown
units. Strapdown units are typically composed of an orthogonal three-axis set of
inertial angular rate sensors and accelerometers. The inertial sensors are directly
mounted (strapdown) to the spacecraft structure. Today, strapdown accuracies
compare to gimballed units (Larson and Wertz (1992)). Strapdown units often
use rate gyros which measure only changes in attitude. A number of new solid-
state concepts have become available in recent years, such as fiber optic and
piezo electric quartz gyros, resulting in decreased size, weight, and cost. Gyros
typically have a drift rate of down to 0.002 deg./hour.

2.1.2 Reference Sensors

A reference sensor measures the direction of a known vector e.g. the Sun point-
ing vector. The vector measurement is a function of spacecraft attitude, making
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it attractive for attitude determination. The direction of a known vector is typi-
cally measured as (i) all three vector components, or (ii) only a direction (line of
sight). The vector magnetometer is a typical example of the first type, whereas
sun sensors represent the latter.

One sample from a reference sensor does not provide full attitude informa-
tion; a Sun sensor cannot detect any rotation of spacecraft about the Sun vector,
for example. Two vector directions, ideally orthogonal are needed for complete
attitude information. The uncertainty of a reference sensor is made up of two
parts, the accuracy of the sensor itself and the accuracy of the reference it uses.
Stars provide the most accurate sources, with the Sun and Earth being progres-
sively less accurate references.

Sun sensors The Sun provides a well defined unambiguous reference vector.
Sun sensors are visible light detectors, which measure one or two angles between
their mounting base and incident sunlight. Sensors range from analog presence
detectors to digital instruments which measure the sun direction to an accuracy
down to one arc-minute.

Sun sensors are popular, accurate and reliable, but require clear fields of view.
Since most low-Earth orbits include eclipse periods, the attitude determination
system must provide some way of handling the regular loss of Sun reference.
Typical sun sensor accuracy range from 0.005 deg. to 4 deg. (Larson and Wertz
(1992)).

Star sensors Star sensors can be trackers or scanners, the latter being mainly
used on spinning spacecraft. Charged-Coupled Device (CCD) sensors or Active
Pixel Sensors (APS) provides a relatively inexpensive way to image the sky and
extract information about stellar locations. Any vehicle motion will show up as
a shift of the stars in the field of view.

A star camera measures the elevation of the line of sight to a star as projected
onto mutually perpendicular planes which contain the sensor boresight axis. The
locations of two or more stars on the sensor, along with their locations in inertial
coordinates are sufficient to determine the attitude of the camera with respect
to an inertial frame of reference. The star camera is generally sensitive to large
angular velocities of the spacecraft as this causes a smearing of the star images
on the sensor. Current trends in star sensor technology are treated in Padgett et
al. (1997). Typical accuracy range from arc seconds to arc minutes (Larson and
Wertz (1992)). For the Ørsted mission the star camera was developed and built
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by the Department of Automation at the Technical University of Denmark. The
instrument recognizes star patterns in its field of view in any arbitrary direction
using on-board star databases. The camera is highly intelligent and autonomous,
yet lightweight and low power consuming. The star camera on Ørsted has an
accuracy of 5-20 arc seconds ( Liebe (1995), Jørgensen (1995)).

Horizon sensors Horizon sensors are infrared devices that detect the contrast
in temperature between space and the Earth’s atmosphere. Some nadir-pointing
spacecrafts use a wide field-of-view fixed head sensor, which views the entire
Earth disk and centers the spacecraft on it, see Reigber (1996). The direct Earth-
relative information obtained from Horizon sensors may simplify on-board pro-
cessing on Earth pointing spacecraft. Typical accuracies for systems using hori-
zon sensors are 0.1 to 0.25 deg., with some applications approaching 0.03 deg.
(Larson and Wertz (1992)).

Global Positioning Sensors A novel use of the Global Positioning System
(GPS) or Navstar is to adapt it for use in spacecraft attitude determination (see
Melvin and Hope (1993) and Cohen (1992)). Measurements of carrier phase
differences of the GPS signal measured by two antennas separated by a baseline
fixed in the spacecraft allow the relative range of the two antennas to be deter-
mined (except for an integer ambiguity). Reference vectors may be inferred from
the GPS satellite ephemerides readily available in the receiver. GPS receivers are
now becoming more common on spacecraft for timing and precise orbit deter-
mination. Differential carrier receivers are more sophisticated (and expensive)
than traditional space receivers, but the benefits from an attitude solution may
very well make them common over the next decade.

A GPS attitude determination experiment flown on the radar calibration
(RADCAL) spacecraft (Lightsey et al. (94)) indicates accuracies of about 0.5 -
1.0 deg. for relatively small baselines (< 1 meter). The dominating disturbance
in these high precision applications is related to multipath as described by Bak
and Bayard (1997). Most efforts have been in the use of GPS for attitude de-
termination, but a similar radio frequency system for deep space missions (the
autonomous formation flying sensor) was addressed by Bak (1997).

Magnetometers Magnetometers are simple, reliable and lightweight sensors
carried on most spacecraft as part of the attitude control system. The combina-
tion of three sensor elements mounted on an orthogonal base make up a vector
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sensing system. A three axis magnetometer measure directly the direction and
intensity of the local magnetic field expressed in the sensor frame. The use of
magnetometers for attitude determination is limited to regions with a strong and
well known field, e.g. Low Earth orbits. The attitude is determined from mag-
netometer by comparing the measured geomagnetic field with a reference field
determined by a reference model.

The accuracy of magnetometers is not as good as that of star or horizon ref-
erences due to factors such as:

– Disturbance fields due to spacecraft electronics,

– Model errors in the reference field model,

– External disturbances such as ionospheric currents.

The magnetic field at any location near the Earth can be attributed to a com-
bination of sources located respectively in the Earth’s core and crust, and in the
Earth’s ionosphere and beyond. By far the largest in magnitude is the field from
the core, or the main field. Near dipolar in nature, the strength of the main field is
approximately 60.000 nT (nano Tesla) at the poles and approximately 30.000 nT
at the equator.

The field model most often used is the International Geomagnetic Reference
Field (IGRF) (Langel (1987)) which is the empirical representation of the Earth’s
main magnetic field recommended for scientific use by the International Asso-
ciation of Geomagnetism and Aeronomy (IAGA). The IGRF models represent
the main field without external sources and they are established as the weighted
mean of models developed by a number of agencies. According to Primdahl and
Jensen (1984) the field is predicted to within approximately 100 nT. A represen-
tation of the IGRF field model is given in Figure 2.1. For a discussion of the
field model, see Section B.3.

The temporal variations of the field are slow, with a maximum of about 1%
per year. External current systems are time-varying on a scale of seconds up to
days, and the resulting near-Earth fields can vary in magnitude from fractions of
a nT to thousands of nT. The external current systems are located in the mag-
netosphere, and in the Earth’s ionosphere. The strength and location of these
currents vary considerably between magnetically quiet and disturbed times.

The main geomagnetic field has direction as well as magnitude. Given that
the main field is curl free, allows a representation of � as the gradient of a scalar
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Figure 2.1: The reference models of the Earth magnetic field represent the main
(core) field without external sources. Magnetic field intensity at the
Earth’s surface in ��� based on International Geomagnetic Refer-
ence Field (IGRF) model to order 10 for the year 1995.

potential, �
�������(� (2.1)

It is, however, known that currents flow within the ionosphere and into and out
of the ionosphere along magnetic field lines so that, strictly speaking, Equa-
tion (2.1) is not valid in the region above about 95 kilometers, where satellite
data are acquired. If we write

��� �¢¡�£¤�¦¥V£§�©¨ (2.2)

where �ª¡ is from sources strictly internal to the Earth, ��¥ , is from sources
strictly external to the region where data are acquired, and �¦¨ is from sources
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within the region where data are acquired, then �«¡¬£��¦¥ , can be represented by
a scalar potential. In practice, the data used to determine � are selected so as
to minimize �¨ and the resulting � is assumed to be a good representation of�ª¡�£§�¦¥ .

External disturbances to the core field, are mainly a problem in the outer
magnetosphere and in the polar regions where field aligned currents (Birkeland
currents) and ionospheric currents produce magnetic fields perpendicular to the
core field (Langel (1987)).

For the Ørsted mission a magnetometer was developed and built by the De-
partment of Automation at the Technical University of Denmark. The instrument
is a high performance three axis ringcore fluxgate magnetometer based on a high
mu metallic glass sensor. As the Ørsted magnetometer is part of the science
mission the accuracy is estimated to 0.5 nT peak-to-peak.

The measurements of the fluxgate sensor are based on an excitation of the
core in the sensor by a symmetric current waveform. If no external field is
present, the core is driven symmetrically into saturation and the magnetic flux
generated in the core contains only odd harmonics. If, however, an external field
is present, the magnetic flux generated in the core will be non-symmetrical and
even harmonics are generated. In a linear sensor the size of the even harmonics
is proportional the external field. A pick-up coil surrounding the excitation coil
makes it possible to measure the generated flux and hence measure the magnetic
field by detection the contents of second- or higher even harmonics (see Prim-
dahl and Jensen (1984)). The fluxgate ringcore sensor is the preferred design in
modern magnetometer design.

2.1.3 Sensor Summary

The choice of attitude sensors for a specific mission is likely to depend mainly on
the required orientation of the spacecraft and the required accuracy. Other factors
include the given financial resources, the requirements to mass, redundancy, fault
tolerance, and data rates. Typical performance and physical characteristics are
summarized in Table 2.1.

For full three-axis single point attitude knowledge, at least two reference vec-
tor measurements are required. Sensors like GPS and star camera generally pro-
vide two or more reference vector measurements at any one time instance.

Frequently, the sensor measurements are made in frames other than the frame
of interest for the control system (e.g. local vertical local horizontal (LVLH)),



16 Attitude Determination in Perspective

Table 2.1: Summary of typical attitude determination sensors. Performance,
weight, power and characteristics are listed (based data extracted
from ISSD (1999)).

Sensor Performance Weight Power Characteristics
[Kg] [Watt]

Inertial sensors
Gyroscopes Drift:

0.002 deg/hr
– 1 deg/hr

3–25 10–200 Normal use involves period-
ically resetting the reference
position to avoid the effects of
drift

Reference sensors
Horizon sensors 0.05 deg – 1 deg

(LEO)
2–5 0.3-10 Horizon uncertainties domi-

nate accuracy. High accuracy
units use scanning.

Sun sensors 0.005 deg – 4 deg 0.5–2 0–3 Typical field of view 60 deg,
coarse sensor uncertainty
dominated by Albedo

Star sensors 1 arc sec – 1 arc
min

3–7 4–20 Typical field of view 15 deg,
limited angular rates

Magnetometers 0.5 deg–5 deg 0.6–1.2 <1 Magnetic field uncertainty is
the dominating error source.

GPS 0.5 deg–1 deg 3 3.5–10 Main uncertainty due to mul-
tipath and errors in carrier
phase tracking.

and the spacecraft ephemerides data are required in order to convert measure-
ments to the desired frame. The data is usually up-linked to the spacecraft from
ground tracking, but with the advent of GPS, autonomous navigation systems
are increasingly used on satellites.

Table 2.1 indicates the low accuracy of magnetometers relative to high pre-
cision sensors such as star sensors. The magnetometer, however, still has an
important role to play in attitude determination problems where accuracy re-
quirements are limited. Magnetometers are reliable and almost always available
for attitude determination without additional cost.

2.2 Attitude Determination Methods

During the last three decades considerable research effort has been put into the
problem of spacecraft attitude determination and numerous solutions to the prob-
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lem have been established. In general the solutions fall into two groups:

– Deterministic (point-by-point) solutions, where the attitude is found based
on two or more vector observations from a single point in time,

– Filters, recursive stochastic estimators that statistically combine measure-
ments from several sensors and often dynamic and/or kinematic models in
order to achieve an estimate of the attitude.

2.2.1 Deterministic (point-by-point) solutions

Three-axis point-by-point solutions, that is, solutions that utilize only the vec-
tor measurements obtained at a single time point, are widely used in spacecraft
application.

The TRIAD algorithm (Lerner (1978)) provides a simple deterministic solu-
tion for the attitude. The solutions are based on two vector observations given in
two different coordinate systems. TRIAD only accommodates two vector obser-
vations at any one time instance. The simplicity of the solution make the TRIAD
method interesting for on-board implementations (see Flatley et al. (1990)). Bar-
Itzhack and Harman (1997) has presented an optimized TRIAD algorithm which
provides a weighted result of two TRIAD solutions which is more accurate than
the best of the two individual TRIAD solutions that are the basis of the algorithm.

In Wahba (1965), the point estimation problem was posed as the constrained
minimization of a loss function

®°¯²±´³¶µ�·
�
¸¹
¨�º¼»�½ ¨¬¾*¿�¨À�

±(Á ¨�¾ÃÂ Ä3�Å� (2.3)

where
±ÇÆ�È°ÉÊ¯²Ë�³

(see Section 3.1 for an explanation of
È¶É3¯²Ë�³

) is a proper
orthogonal rotation matrix and ½ ¨ are weights assigned to each vector set. The
unit vectors

Á ¨ ÆÍÌ¶Î
are given in the reference frame, and the unit vectors¿ ¨ Æ¢Ì¶Î are the corresponding vectors in the body frame. If the vectors are noise

free and the true attitude matrix
±ÏÑÐWÒ ¥ is assumed invariant, then

±´ÏÑÐWÒ ¥ Á ¨l�Ó¿Ô¨
for all Ä and the loss function is zero.

Equation (2.3) may be transformed into

®°¯²±¢³ � ·
�
¸¹
¨�º¼»�½ ¨À� tr

¯²± �´Õ ³*Ö where �×�
¸¹
¨�º¼»�½ ¨-¿E¨

Á Õ¨ (2.4)
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It is clear that
®°¯²±¢³

may be minimized by maximizing tr
¯²± � Õ ³ under an or-

thogonality constraint on the attitude matrix.
Numerous methods of attitude determination have developed over the last

three decades based on minimizing the Wahba loss function. These point esti-
mation algorithms do, however, require at least two vector measurements, and
therefore fail when only one vector measurement is available, or when the obser-
vations are parallel. As these solutions are relative simple and as most spacecraft
have at least two reference vector measurements available, single frame solutions
are widely used. They are, however, not easily adapted to handle faults or peri-
ods of poor observability. Some of the more widely used solutions to Wahba’s
problem are discussed in the following.

Davenport’s q-method parameterize the rotation matrix by a quaternion and
Equation (2.4) may be rewritten as an eigenvalue problem. The optimal quater-
nion may be found as the eigenvector corresponding to the largest eigenvalue
(Wertz (1978)). Several robust (but also complex) general eigenvalue routines
exists for solving this problem. The algorithm provides a solution to the mini-
mization problem if such a solution exists.

Methods also exist that compute the attitude matrix
±

directly. One of
these is the Singular Value Decomposition (SVD) Method that was proposed
in Markley (1988). The matrix � is Equation (2.4) is decomposed into singular
values, leading directly to an optimal attitude solution. Given a robust and effec-
tive SVD routine, the SVD method provides a simple solution to the problem.
Both eigenvalue and SVD routines are relative complex but robust numerical
algorithms exist for implementation.

The QUEST (QUaternion ESTimator) algorithm (Shuster and Oh (1981)) is
a fast and popular implementation of the q-method which avoids solving the
eigenvalue problem explicitly. In QUEST the eigenvalue problem is reformu-
lated as a problem of solving a characteristic equation. The solution is normally
found using Newton-Raphson iteration. The QUEST algorithm was first used for
the MAGSAT mission in 1978. A modified recursive algorithm, Filter QUEST
( Shuster (1989)) and REQUEST (Bar-Itzhack (1996)) are attempts to include
all past measurements in a propagation of the � matrix. Filter QUEST and RE-
QUEST are not really point estimation solutions as they use information form
past measurements in the solution. Both Filter QUEST and REQUEST require
exact knowledge of the angular velocity and therefore rely on the exactness of a
gyro based rate estimate or a dynamic model.

Another alternative is the Fast Optimal Attitude Matrix (FOAM) solution
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(Markley (1993)), which provides an iterated solution that avoids the explicit
solution of the eigenvalue problem. Instead Newton’s method for solving the
eigenvalue problem is employed. In contrast to QUEST, FOAM solves for the
attitude matrix directly. The comparison study in Markley (1993) compare
the efficiency of QUEST and FOAM. The efficiency of the two algorithms is
comparable, but FOAM is more robust in some of the cases investigated. In
addition FOAM has fewer tuning parameters, which is important in practical
implementations.

All of the solutions above provide relatively efficient point solutions to
Wahba’s problem. In an attempt to extend the methods to situations with only
one vector measurement at any given time instance, Challa et al. (1997) pre-
sented an approach utilizing batches of magnetometer observations and the time
derivative of these as the basis for a TRIAD solution. With unknown angular ve-
locity the solution must be supplemented by dynamic equations. The algorithm
has been applied to data from the SAMPEX satellite and the accuracy was found
to be around 5 deg. (Natanson (1993)). The algorithm is sensitive to errors in
the dynamical model and to high spacecraft rates.

The single point estimation algorithms discussed above are summarized in
Table 2.2.

Table 2.2: Summary of common point estimation attitude algorithms.

Methods Characteristics
TRIAD Geometric method, require two non-collinear vector mea-

surements
Q-method Closed form robust solution based on eigenvalues. May be

rather slow due to the required eigenvalue solution.
SVD Robust solution based on SVD. May be rather slow due to

the required SVD solution.
QUEST An iterated solution that avoids explicitly to solve for the

eigenvalues as in the q-method.
FOAM An iterated solution that avoids explicitly to solve for the

eigenvalues as in the q-method.
Filter QUEST, REQUEST Filtered versions of the quest method. Both methods require

exact knowledge of the angular velocity.
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2.2.2 Recursive Estimation Algorithms

While many of the above point solutions provide efficient algorithms for on-
board implementation, there are a number of shortcomings. First of all, they
all require at least two reference vector measurements. Alternatively they need
noise sensitive temporal derivatives combined with measurements from a single
sensor reading.

Secondly, they do not provide complete state information. Most practical im-
plementations of satellite attitude control systems rely on rate estimates, which,
in combination with the point estimation algorithms, may be obtained from gy-
roscopes. Recent advance in sensor technology and the need for reliable, inex-
pensive, and lightweight systems for small satellites, however, call for gyroless
configurations.

The third shortcoming is that the point estimation algorithms (filter QUEST
and REQUEST exempted) only utilize the vector measurements obtained at a
single time point to determine the attitude at that time point, and thereby infor-
mation contained in past measurements is lost. A final shortcoming is that the
point estimation algorithms do not provide a consistent setting for estimating
stochastic disturbances, biases on gyros etc..

When these shortcomings are undesirable, the increased computational bur-
den and complexity, imposed by estimation algorithms, generally has to be ac-
cepted. Recursive estimation algorithms for attitude determination have there-
fore been investigated intensely.

Kalman Filtering A frequently used technique in attitude estimation is the
Kalman filter (Kalman (1960)). The Kalman filter utilizes an internal state-space
model of the system combined with a statistically model of the error associated
with the internal model and the measurements. The noise is assumed to be mod-
eled by zero-mean Gaussian processes with known covariance. The Kalman
filter minimizes the trace of the error covariance between the estimated and true
state. The measurements are processed sequentially and retain the information
content of past measurements and thereby effectively filter noisy measurements.

Kalman filters in various forms have proved useful for attitude estimation us-
ing a combination of reference vectors and gyro measurements (see the survey
paper by Lefferts et al. (1982)). In Bar-Itzhack and Oshman (1985) a variant of
the Kalman filter was used to estimate the attitude assuming an additive correc-
tion.

Under the right circumstances the attitude can be determined without rate
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measurements. This approach has been used in a Real-Time Sequential Filter
(RTSF) algorithm which propagates state estimates and error covariances using
dynamic models (Challa (1993)). High bandwidth star tracker measurements
were used in Gai et al. (1985) to drive the estimation of attitude and attitude
rates. In Fisher et al. (1989) a Kalman filter was designed that takes attitude
input computed by the QUEST algorithm.

One of the main problems in relation to the Kalman filter is the need for
accurate models, process and measurement models as well as stochastic models.
Spacecraft parameters e.g. moments of inertia, external disturbance torques and
momentum wheel dynamics are typically uncertain and the problem has been
addressed by several authors. In Psiaki et al. (1990) attitude and attitude rate
were determined using only one set of vector measurements. The attitude was
propagated using an accurate dynamic model augmented by external torques
modeled as a random walk process.

Batch estimators and smoothers based on a Minimum Model Error (MME)
approach have recently been proposed by Crassidis and Markley (1997a). This
approach requires no a priori statistics on the model error as this is determined as
part of the solution. Another approach was addressed in Crassidis and Markley
(1997b), named Predictive Filtering. This approach allows real-time filtering
while avoiding the Gaussian state noise assumptions of the Kalman filter. Similar
to the MME approach, the predictive filter determines the model-error trajectory
as part of the solution.

Nonlinear observers have in recent years received a lot of research interest,
see Nijmeijer and Fossen (1999). The main advantage of nonlinear observer
theory is that global convergence and stability can be established via Lyapunov
techniques for particular classes of nonlinear systems. A large variety of open
problems concerning nonlinear observers, however, still exist.

2.3 Summary

This chapter addressed the problem of attitude determination. The basis for any
attitude determination is the sensor suite given on the spacecraft. Section 2.1
presented a wide range of sensors commonly used in attitude determination sys-
tems. Special focus was given to a presentation of the magnetometer. Finally,
Section 2.2 briefly introduced a number of point estimation and recursive attitude
determination techniques developed over the last three decades.





Chapter 3

Attitude and Spacecraft Motion
Models

In order to describe the motion of a rigid body in space it is convenient to start
with a description of its possible orientations. Unlike position, orientation is
relatively hard to represent, and a large number of representations are available.
This chapter starts by addressing the subject of orthogonal transformations and
the fundamental properties of rotations are outlined. Section 3.2 gives are brief
review of some of the most commonly used representations. Section 3.3 focuses
on the quaternion representation which is used throughout this thesis. An ex-
ponential map is introduced that will later be applied in approximations of the
spacecraft dynamics. Finally, Section 3.4 presents a description of satellite mo-
tion models commonly used in attitude estimation.

3.1 Rotations and Orthogonal Matrices

The development of attitude representations can be found in many books on clas-
sical mechanics and on attitude control including Hughes (1986), Wertz (1978),
and Shuster (1993).

The objective is to describe rotations of a rigid body in
ÌÀÎ

which has one
fixed point but is otherwise free to rotate about any axis through the fixed point.
A rigid body is by definition a configuration of points for which the mutual
distances are preserved during movement and a rotation of a rigid body must
therefore preserve distance. Intuitively, rotations must also preserve the natural
orientation of

Ì Î
, i.e. right-handed coordinate systems must be transformed into

23
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right-handed coordinate systems.
Consider a set of three mutually orthogonal vectors ( Ø¼» Ö Ø Â Ö Ø Î ) that are of

unit length fixed in the point Ù of a rigid body. As these three vectors span the
vector space

Ì°Î
and are linear independent, they form a basis or a coordinate

system. Given three other vectors
¯ ØÛÚ » Ö Ø�ÚÂ

Ö Ø�ÚÎ ³ originating at Ù and fixed in the
body. The basic problem of attitude determination is to process vectors repre-
sented in these two frames and then solve for the transformation between the two
coordinate systems. This is illustrated in Figure 3.1.

Figure 3.1: The attitude representation problem: Solve for the transformation
between the reference coordinate system ( Ø<» Ö Ø Â Ö Ø Î ) and the body
fixed coordinate system defined by the vectors ( Ø�Ú » Ö Ø�ÚÂ

Ö Ø¬ÚÎ ).

Orthogonal transformations are defined as the group of linear invertible
transformations (Jakubczyk and Respondek (1999))

�ÝÜ Ì ÎQÞß Ì Î
(3.1)

that preserve the standard scalar product

à ��á Ö ��â´ã¶� à á Ö â¢ã (3.2)

for any á , â ÆäÌ Î
. As the standard scalar product1 induces distance in

Ì Î
,

orthogonal transformations preserve the distance between any two points. Equa-
tion (3.2) also implies that an orthonormal basis remains orthonormal under

1 åÛæ with the standard scalar product, çÑè�é²ê�ë�ìè�íîê defined is in fact an Euclidian space
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transformation. Rotations are now defined as those orthogonal transformations
that also preserve the orientation of

ÌJÎ
.

The body fixed basis vectors
¯ Ø Ú » Ö Ø ÚÂ

Ö Ø ÚÎ ³ in Figure 3.1 may now be expressed
in the reference frame using coordinates (which is also orthonormal and thereby
satisfying the invariance condition in Equation (3.2))

�ïØ Ú¡ �
Î¹
¨*º¼» ½ ¡ð¨ Ø ¨

Öòñ � · Ö � ÖÃË (3.3)

The transformation � is therefore uniquely described by the
Ë � Ë rotation matrix± �×óõô°»öô Â ô Î¶÷ (3.4)

where ô�¨��ùø ½ »p¨
Ö
½ Â ¨
Ö
½ Î ¨�ú Õ are column vectors. As the vectors are orthonormal

the matrix
±

satisfies the following conditions

ô Õ ¡ ô�¨û� ü�¡ð¨ Öòñ�Ö Äý� · Ö � ÖÃË (3.5)

where ü�¡ð¨�� · for
ñ �þÄ Ö and ü�¡ð¨ÿ��� otherwise. These conditions can be

reformulated in the form ± Õ ± ��� (3.6)

where � is the identity matrix. From Equation (3.6) it follows that����� ¯²± Õ ³ �	��� ¯²±¢³ � ����� ¯²±´³ Âû� ·
and by that

����� ¯²±´³ ��
 · . Preservation of orientation leads to the following
additional condition �	��� ¯²±´³ � · (3.7)

The space of matrices satisfying Equations (3.6) and (3.7) is called the special
orthogonal group and is denoted by

È¶ÉÊ¯²Ë�³
.

Equation (3.5) implies six constraints on
±

matrix leaving at most three de-
grees of freedom. This means that there are six redundant elements among the
nine components of matrix

±
. A number of alternative representations are there-

fore frequently used to parameterize the rotation matrix.
At the beginning of this section, it was stated that physical rotations intu-

itively would have to preserve distance as well as natural orientation. Using the
scalar product on two column vectors á Ö â Æ¢ÌoÎ

à ± á ÖÃ± â´ã¶� ¯²± á ³ Õ ± â � á Õ ± Õ ± â � á Õ âÍ� à á Ö â´ã (3.8)
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it is clear that applying a rotation matrix to a vector does not change its length.
In addition, Equation (3.8) says that the angles between vectors does not change
under rotation. To verify the preservation of orientation the following vector
product relation is true

¯Z± á ³ � ¯²± â ³ � ±Ó¯ á«�¢â ³ (3.9)

The basis for a more physical understanding of rotation is Euler’s theorem
that states that: the general displacement of a rigid body with one point fixed is
a rotation about an axis through that point (Goldstein (1950)). The concept is
illustrated in Figure 3.2. The rotation angle is � , and the axis of rotation is given
by the unit vector  in three-dimensional space.

Figure 3.2: The general displacement of a rigid body with one point fixed is a
rotation ( � ) about an axis (  ) through that point.

With the help of vector algebra it is possible to derive a transformation that
describe the rotation in Figure 3.2. The result is the rotation formula (Goldstein
(1950))

Á�� ������� ¯ � ³�Á £ ¯ · ������� ¯ � ³t³ � Õ Á ������� ¯ � ³  � Á (3.10)

which transforms
Á

into
Á �

.
Now define the skew symmetric matrix

ø áû� ú µ
�� � ��� Î � Â� Î � ��� »��� Â �î» �

� 
(3.11)
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Applied to a vector it yields the same result as the standard vector cross product,
i.e. ø á'� ú>â � á �¤â . The transformation in Equation (3.10) may hence be
written in terms of the rotation matrix defined by

± ¯ �� ³ ������� ¯ � ³ �P£ ¯ · �!����� ¯ � ³t³ �JÕ¢�"����� ¯ � ³ ø ý� ú (3.12)

where the notation
± ¯ �� ³ represents the fact that the rotation matrix is parame-

terized in terms of � and  .
The result in Equation (3.12) may also be expressed in terms of an exponen-

tial map as defined by Chevalley (1946). Any orthonormal matrix
± Æ¤È¶ÉÊ¯²Ë�³

may be expressed in terms of a series of
Ë � Ë skew symmetric matrices defined

in Equation (3.11)

± ¯ �# ³ � ��$&% ¯ ø ��ý� ú ³ �('¹) º+* ·Ù-, ø ��ý� ú ) (3.13)

After some tedious manipulation of the power series, Equation (3.13) may in fact
be brought into the form in Equation (3.12).

3.2 Attitude Representations

The problem of parameterizing
È¶É3¯²Ë�³

has been of interest since 1776, when
Euler first showed that

È¶ÉÊ¯²Ë�³
only has dimension three (Stuelpnagel (1964)).

Representations involving more than three parameters are therefore subject to
constraints. It was, however, demonstrated by Stuelpnagel (1964) that no three-
parameter set can be both global and nonsingular. In order to specify any global
attitude at least four parameters are needed.

The attitude representations most commonly used besides the rotation matrix
are vectors of three and four components. Table 3.1 gives a partial list of the most
common parameters and provides a quick comparison of the various means of
representing rotations.

The rotation matrix composition follows standard matrix multiplication and
represents attitude without any singularities. Apart from analytical studies and
for transforming vectors, this representation is little used due to its high dimen-
sion and problems in maintaining orthogonality.

The Euler angles, because of their minimum dimension and clear physical
interpretations are often convenient for describing or analyzing local motion of



28 Attitude and Spacecraft Motion Models

Table 3.1: Parameterization of the rotation group
È¶É3¯²Ë�³

. Common parameters
used in attitude control systems.

Representation Par. Characteristics Applications
Rotation matrix 9 – Inherently nonsingular

– Intuitive representation
– Difficult to maintain orthogonal-

ity
– Expensive to store
– Six redundant parameters

Analytical studies and
transformation of vectors.

Euler angles 3 – Minimal set
– Clear physical interpretation
– Trigonometric functions in rota-

tion matrix
– No simple composition rule
– Singular for certain rotations
– Trigonometric functions in kine-

matic relation

Theoretical physics, spin-
ning spacecraft and atti-
tude maneuvers. Used in
analytical studies

Axis-azimuth 3 – Minimal set
– Clear physical interpretation
– Often computed directly from

observations
– No simple composition rule
– Computation of rotation matrix

very difficult
– Singular for certain rotations
– Trigonometric functions in kine-

matic relation

Primarily spinning space-
craft.

Rodriguez (Gibbs) 3 – Minimal set
– Clear composition rule
– Singular for rotations near .ýì/10
– Simple kinematic relation

Often interpreted as the
incremental rotation vec-
tor.

Quaternions 4 – Easy orthogonality of rotation
matrix

– Bilinear composition rule
– Not singular at any rotation
– Linear kinematic equations
– No clear physical interpretation
– One redundant parameter
– Simple kinematic relation

Widely used in simula-
tions and data processing.
Preferred attitude repre-
sentation for attitude con-
trol systems.
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a body. Nonlinear composition rules and singularities when representing global
attitude limit their usefulness.

The axis-azimuth representation has been used primarily for spinning space-
craft as the parameters can often be computed directly from observations. This
representation is similar to the Euler angles, and experiences many of the same
problems.

The Rodriguez parameters (Gibbs vector) finds little use and may can be seen
as an intermediate step before the quaternion.

The quaternion representation is widely used in simulation, since its kine-
matic equations are linear and offer none of the analytical problems (singulari-
ties) of representations of smaller dimensions. The parameterization of

È¶ÉÊ¯²Ë�³
is

simple as it only involves quadratic terms of the quaternion components, and the
quaternion unit norm provides an easy way of maintaining orthogonality of the
rotation matrix. Composite rotations are expressed in terms of quaternion mul-
tiplication. Quaternions are therefore the preferred parameterization for many
modern attitude control systems.

3.3 Quaternions

In this section the representation of rotations in terms of quaternions is discussed.
Such a representation is not just concise and elegant but also yields a very ef-
ficient way of handling compositions of rotations. The mathematical theory of
quaternions was first developed by Hamilton (1866). Quaternions are also known
as hypercomplex numbers and denoted by 2 . Two different representation of
quaternions are used in this thesis.

First it is convenient to think of quaternions as complex numbers with a scalar
real part, 3 , and a three-dimensional imaginary part, 4 2. Now define a quaternion
by 5

��3À£63�»87 £63 Â:9 £63 Î�; (3.14)

where 7 Ö 9 Ö ; are mutually perpendicular unit vectors spanning the space orthog-
onal to the real part 3 . For short we write5

� ¯ 3'£<4 ³ (3.15)

2Note that the imaginary part is written in bold italic, whereas the full quaternion is written
using upright boldface.
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In fact the real part, 3 , is the projection onto a unit vector Ø in four dimensional
Euclidian space =?> , and the vectors 7 Ö 9 Ö ; are unit vectors in = , the orthogonal
complement to the vector space spanned by Ø . In this way quaternions are an
extension of the imaginary numbers.

The second representation is suitable for applications of matrix algebra.
Quaternions are expressed simply as a four-dimensional column vector5

�A@ 43CB (3.16)

A quaternion with a null real part ( 3 �D� ) will be used to represent three di-
mensional vector in

ÌoÎ
. Likewise, we identify a scalar with a quaternion having

vanishing vector part.
Define a left and right operator acting on the quaternion EFHG µ @ Ù1���Åø Il� úJI�KI Õ Ù B and L G µ @ Ù-�l£ ø IP� úMI�NI Õ Ù B (3.17)

The quaternion product operation is then defined asE 5 µ FHG 5 or E 5 µ LPO#E (3.18)

where E Ö 5 Æ 2 and the multiplication on the left hand side is a quaternion prod-
uct, whereas the right hand side multiplication is a normal matrix product. It is
obvious from Equation (3.18) that the quaternion product rule is only commuta-
tive when the vector parts for the two quaternions are parallel so that the cross
product in Equation (3.18) vanish. However, multiplication by a purely scalar
quaternion (

5
�Q3'£SR ) is always commutative.

The quaternion conjugate is defined similar to the complex numbers as EUTÀ�¯ Ùw�VI ³ or alternatively in vector notation E T � ø �KI Õ Ù�ú Õ . The quaternion norm
is defined as

¾WEû¾ Â � Ù�Ùw£XI Õ I/��E T E (3.19)

which is analogous to the Euclidean vector norm. A unit quaternion is a quater-
nion with norm 1, which may be interpreted geometrically as points on the unit
3-sphere,

È{Î
. The normalization is easily enforced usingE ¸ � ¯ E T E ³WY »[Z Â�E
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The remainder of this section will focus on the representation of rotation
by the unit quaternion. The symmetric operation on a vector represented as a
quaternion with zero real part, \ Æ 2 by\ � � 5 \ 5 T (3.20)

where

5
is a unit quaternion defines the orthogonal transformation of the vectorá as represented by the quaternion \ .

By applying successive quaternion product operations (Equation (3.18)), the
vector á is transformed into

á � � ¯ 3 Â ��4 Õ 4 ³ á3£¤�]4 ¯ 4 Õ á ³ � �]3]4 �¢á (3.21)

The correspondence between the quaternion and the rotation matrix
±

is there-
fore

± ¯
5
³ � ¯ 3 Â ��4 Õ 4 ³ �l£¤�]4^4 Õ �ÿ�]3¬ø 4J� ú (3.22)

It is clear that for any quaternion representation of a point in
È¶ÉÊ¯²Ë�³

,
± ¯
5
³ �± ¯ �

5
³
, that is, two antipodal points

5
and �

5
in
È Î

represents the same rotation
in
È¶ÉÊ¯²Ë�³

.
By comparison of the result in Equation (3.22) with the result in Equa-

tion (3.12) it is clear that the quaternion may be expressed as5
������� ¯ �&_ � ³ £6����� ¯ �&_ � ³  (3.23)

where  is a unit vector representing the axis of rotation, and � is the rotation
angle. ����� ¯ �C_ � ³ represents the real part of the quaternion, and ���`� ¯ �&_ � ³  is the
imaginary (vector) part. The division by two in the angle of rotation reflects the
fact that

5
appears twice in Equation (3.20).

Similar to the rotation matrix in Equation (3.13) the quaternion may also be
expressed in terms of an exponential map. Given a rotation by an angle of �]�
about the vector  , the quaternion exponential is defined as5

¯ � Ö  ³ � ��$&% ¯ �# ³ � '¹) º+* ·Ù?, ¯ �� ³ ) (3.24)

where �� on the right hand side is interpreted as a quaternion with zero scalar
part. Note that, as a quaternion product,  Â � � · . By manipulation of the
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power series, we find��$a% ¯ �� ³ � '¹) º+* ·¯ �*Ù ³ , ¯ �# ³ Â ) £ '¹) º+* ·¯ �*Ùý£ · ³ , ¯ �� ³ Â )cb »
� '¹) º+* ·¯ �*Ù ³ , ¯ �d��Â ³ ) £ '¹) º+* ·¯ �*Ùý£ · ³ , ¯ �e��Â ³ ) ¯ �� ³
� '¹) º+* ¯ � · ³ )¯ �*Ù ³ , � Â ) £f'¹) º+* ¯ � · ³ )¯ �*Ùý£ · ³ , � Â )cb » 
� ����� ¯ � ³ £6�W��� ¯ � ³  (3.25)

This is the same result that was achieved in Equation (3.23). The exponential
map associated with the attitude matrix was given by a series of

Ë � Ë of skew
symmetric matrices in Equation (3.13). The quaternion map in Equation (3.24) is
very similar in that it represents a series �'�P� skew symmetric matrices when the
quaternion product rule is interpreted in terms of Equation (3.18). This under-
standing of the quaternions is used in the next section to formulate the kinematic
equation for the quaternion.

3.4 Equations of Motion

Thus far, we have examined the general properties of rotations and identified
several possibilities for representing them. The next problem to be addressed is
rotations that evolve over time, that is a curve on

È°ÉÊ¯²Ë�³
representing the various

orientations. In the following the equations of motion are presented. The kine-
matic equations provide the relations between the time derivative of the attitude
representation and the angular velocity, while the dynamics (or kinetics) describe
the development of angular velocities under influence of external moments.

This section makes use of body (principal) and inertial frames. For a detailed
definition of the coordinate frames see Appendix A.

3.4.1 Attitude Kinematics

Before discussing attitude kinematics the useful concept of infinitesimal rota-
tions must be introduced. Infinitesimal rotations are rotations by an infinitesimal
small angle of rotation, g , about a unit vector,  . Using the exponential map
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from Equation (3.24) the corresponding quaternion is given by5
¯ ·
� g Ö  ³ � · £ ·

� g��� ·h g Â £ji�i�i (3.26)

When composed with a quaternion as

5
¯ »Â g Ö  ³ 5 the series may be understood

as a sum of quaternion products alternatively as a series of products with skew
symmetric matrices parameterized by the parameters in the sum, and defined by
the composition rule, Equation (3.18). As we will see in the following this is
in good agreement with an understanding of the tangent plane being a space of�3�� skew symmetric matrices.

If the attitude is changing with time, then

5
¯lk £nm k�³ , the quaternion at timek £<m k , will differ from

5
¯lk�³

, the quaternion at time
k
, and5

¯lk £<m k�³ � 5 ¯ ·� g ¯lk�³*Ö  ¯lk�³t³ 5 ¯lkt³ (3.27)

Under the assumption that the rotation is small, the series in Equation (3.26)
is truncated to first order, which results in

·m k 5 ¯lk £Sm kt³ � ·m kpo · £ ·
� g ¯lkt³  ¯lk�³rq 5 ¯lk�³ £Ss ¯ ¾tgWw¾ Â ³

� ·m kpo?�P£ ·
� @ �dg ¯lkt³ ø  ¯lk�³ � úug ¯lk�³  ¯lk�³�dg ¯lk�³  ¯lk�³ Õ � B q 5 ¯lkt³ (3.28)

£vs ¯ ¾tg�w¾ Â ³
where the main product in the first line is a quaternion product and the second
line product is the equivalent matrix product.

Defining the angular velocity w ¯lkt³ asw ¯lkt³{µ x ��yz Ï`{ * g ¯lk�³  ¯lkt³m k (3.29)

and taking the limit as m k ß � Equation (3.28) results in|| k 5 ¯lk�³ � ·
�~} ¯lk�³ 5 ¯lkt³ (3.30)

where } ¯lk�³ is a skew symmetric �Ê�´� matrix defined as

} ¯lk�³{µ @ �Qø w´� ú�w�ew Õ ��B Ö (3.31)
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These equations are the basis for the integration of attitude. They imply that
if we know the history of the angular velocity w ¯lk�³ , we may integrate and find
5
¯lk�³

, that is, the attitude history given some initial value of

5
¯lk * ³ .

The transformation described by the quaternion above determines the inter-
pretation of the angular velocity as defined in Equation (3.29). Given a quater-
nion describing the rotation from an inertial to a body frame, the angular velocity
will necessarily be defined in the body frame as the infinitesimal rotation g� is
defined as the rotation from the body frame at time

k
to the body frame at timek £<m k .

Using similar reasoning on the rotation matrix leads to the following kine-
matic equation || k ± ¯lk�³ ���wø w ¯lk�³ � ú ± ¯lk�³*Ö (3.32)

which is useful when looking at the rate of change of vectors in rotation coordi-
nate systems.

3.4.1.1 Differentiation of Rotating Vectors

The rate of change of a vector as seen by two observers in different reference
frames generally differ. Using the product rule for differentiation on á�� ± á �
yields | á ¯lkt³| k �

| ±«¯lkt³| k á � ¯lk�³ £ ± ¯lkt³ | á � ¯lkt³| k (3.33)

Applying the result from Equation (3.32), we have| á ¯lk�³| k ����w ¯lkt³ �¢á ¯lkt³ £ ± ¯lk�³ | á � ¯lk�³| k (3.34)

3.4.2 Dynamics

The total system angular momentum � Ú ¯lk�³ÀÆ¦Ì Î of a rigid body with respect to
its center of mass is given by (see Kane et al. (1983)):� Ú ¯lk�³ ��� Á Ú ¯lk�³ �¢á Ú ¯lk�³ |�� �Q�dw Ú ¯lkt³*Ö (3.35)

where � Æ«Ì Îc��Î is the moment of inertia matrix of the body about its center of
mass. The vectors

Á Ú and á Ú are the position and velocity of a point mass. All
vectors are given with respect to the body frame as indicated by the subscript � .
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Suppose the rigid body is subject to external torques. If �"¡ ¯lk�³�Æ«Ì Î denotes
the angular momentum in the inertial frame and �¡ the external torques in the
inertial frame, then the momentum balance equation yields|| k��V¡ ¯lk�³ ��"¡ ¯lk�³
Using the results from Equation (3.34) this equation is transformed to the body
frame resulting in || k � Ú ¯lk�³ ����w ¯lk�³ ��� Ú ¯lkt³ £6 Ú ¯lkt³*Ö (3.36)

or � || k�w Ú ¯lk�³ �Ý��w Ú ¯lkt³ � ¯ ��w Ú ¯lk�³t³ £6 Ú ¯lk�³ (3.37)

which is the well–known Euler equation (Goldstein (1950)). The term  Ú is the
total of control and external torques.

3.4.3 External Torques

The torque input in Equation (3.37) is dominated by control torques, aerody-
namic drag torques, gravity gradient torques, and torques due to residual mag-
netic dipole moments. Apart from control torques which generally are well de-
scribed, the latter two dominates in low Earth orbits as seen in Figure 3.3.

For very low orbits the interaction between the aerodynamic drag torques and
gravity gradient torques become interesting as described in Bak and Wisniewski
(1996) and Bak et al. (1996b).

Control Input and Residual Magnetic Moment The control torque input on
Ørsted is generated by electromagnetic coils (magnetorquers) and the control
input torque is hence given by�� ÏÑÐ8� ¯lk�³ ��� ¯lk�³ �ª¿ ¯lkt³ (3.38)

where � ¯lkt³
is the magnetic moment generated by current in the torquers, and¿ ¯lkt³ is the local magnetic field in the body frame. A residual magnetic moments

enters into the dynamics in the same way as the control torque, but is not con-
trolled actively.
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Figure 3.3: Typical torques on a small spacecraft as a function of orbital altitude
above Earth’s surface (Bryson (1994)).

Gravity Gradient One of the dominating external torques acting on a space-
craft in low earth orbit is the gravity gradient. This torque can be explicitly
modeled as (see Wertz (1978))U��� ¯lk�³ � Ë��� ¯lk�³ Î ¯]� Ú ¯lk�³ ��� � Ú ¯lk�³�³ (3.39)

where
� Ú Æ¤Ì{Î is the unit zenith vector in the body frame, � is the distance to

the Earth center and
�

is the Earth gravitational constant.

Aerodynamic Drag Aerodynamic drag is caused by the impact of the atmo-
sphere molecules on the satellite’s surfaces. They induces forces and torques
about the center of mass. Assuming that the energy of the molecules is totally
absorbed on impact the force

|&�N� ¥ Ð8� acting on one surface element
|#�

is de-
scribed by (see Wertz (1978)):|#� � ¥ Ð8� ��� ·���U�N� � Â ¯c��P� �\ Ú ³��\ Ú |#� (3.40)

where
|#�

is a surface element,
� is an outward normal to the surface,

�á Ú is a unit
vector in the direction of the translational velocity in the body frame. The � is
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the atmospheric density, and � � is the drag coefficient. The total aerodynamic
force is determined by integrating over the spacecraft surface.

By approximating the a satellite structure by a collection of simple geomet-
rical elements the aerodynamic torque can be found as the vector sum of the
torques on the individual elements composing the satellite surface � ¥ Ð:� �  ¹ ¡Nº¼» Á ¡V�P¡ý¡ Ö (3.41)

where
Á ¡ is the vector from the spacecraft center of mass (CM) to the center of

pressure (CP) of the ith element. The ¡ ¡ results from an integration of Equa-
tion. (3.40) over the individual elements.

To simplify the expression in Equation. (3.41) assume that the satellite is
modeled as a number of plane surfaces. Equation (3.41) then becomes � ¥ Ð8� � ·

��� � � ��Â¢ ¹ ¡Ñº¼» � ¡ ¯ �"¡ � �á Ú ³ �á Ú � Á ¡ (3.42)

where
� ¡ is the surface areas.

In the absence of modeling errors and unknown disturbances, Equa-
tions (3.30) and (3.37) propagate the vehicle attitude perfectly for all time (as-
suming that the initial conditions are known).

3.5 Summary

This chapter focused on the representation and description of the motion of a
rigid body in space. Section 3.1 described the subject of orthogonal transfor-
mations and addressed some of the fundamental properties of rotations. Sec-
tion 3.2 reviewed some of the most commonly used representations of rotations.
Section 3.3 focused on the quaternion, which provides a globally nonsingular
representation of the rotation group

È°ÉÊ¯²Ë�³
. An overview of the properties of

quaternion algebra was given and an exponential map was presented that may
be used in approximations. Based on a quaternion attitude representation, the
equations of motion for a rigid spacecraft were derived in Section 3.4.





Chapter 4

Attitude Estimation

This chapter considers nonlinear estimation based on Kalman filtering. Attitude
determination is an estimation problem, and the estimation algorithm determines
how the states are estimated from the sensor information. The attitude determi-
nation algorithms in this thesis are based on the Kalman filter. The Kalman filter
is based on a structure where predictions made using a model of the system are
adjusted using available measurements. This requires accurate models. On the
other hand it allows a temporal fusion of data, which is required in order to avoid
local observability problems when using magnetometers as the only reference
sensor.

The basic assumptions behind the Kalman filter are discussed in Section 4.1
and Section 4.2 give an overview of the filter structure and operation. The appli-
cation of the filter to nonlinear systems is examined in Section 4.3. This leads
to the extended Kalman filter (EKF), which is the most widely used extension of
the linear Kalman filter to nonlinear problems.

In Section 4.4 the tradeoff between accurate measurements and an accurate
process model is addressed. It is shown how predictions and observations are
treated equally in the Kalman filter and an approach to model selection is pro-
posed. It is argued that most practical estimators require approximations. The
quantitative effects of errors in the process and noise statistics are discussed in
detail.

Section 4.6 addresses the issue of preserving the norm of the quaternion in
the Kalman filter as well as covariance singularity problems related to a full
state estimator. Finally, Section 4.7 presents a quaternion based Kalman filtering
solution, which is later applied in Chapters 5 and 7.

39
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4.1 The Kalman Filter

The Kalman filter has been one of the most widely used estimation algorithms
since it was first introduced in Kalman (1960). It has successfully been applied
to numerous applications. Given a linear system and observation models as well
as a statistical description of the uncertainties associated with these, the Kalman
filter is the optimal linear minimum mean-square-error estimator.

The popularity of the Kalman filter arises from a number of important and
well-known properties. These include (Grewal and Andrews (1993); Jazwinski
(1970); Maybeck (1979a)):

– Optimality. The filter is an unbiased, optimal (in the sense of minimum es-
timation error covariance) estimator for linear systems driven by Gaussian
noise.

– Recursiveness. The filter combines all available measurements in a recur-
sive data processing algorithm, which allow estimates to be made on-line.

– Covariance Modeling. Uncertainties are explicitly modeled using stochas-
tic processes. This provides a technique to deal with uncertainty in the
sensors and models, and provides a confidence measure in the estimates.

Figure 4.1: Kalman filter flow. Measurements, £   Y » are used to update the esti-
mate

�¤   Y »W¥   Y » . An a priori estimate,
�¤   ¥   Y » , for the next measure-

ment instance is found based on a process model .



4.1 The Kalman Filter 41

Figure 4.1 shows the basic operation of the filter. It is first initialized— an
initial state of the system and an associated covariance matrix are specified. The
filter then operates recursively. Each iteration consists of two stages: prediction
in time followed by measurement update. With a new measurement at

k   Y » , the
state estimate is updated to

�¤   Y »W¥   Y » (the a posteriori estimate). The prediction
stage then calculates the a priori estimate for the next sample instance

�¤   ¥   Y » .The prediction is based on a process model describing the evolution of the sys-
tem. At time

k   a new estimate is formed as a weighted linear combination of
the a priori state and a correction based on the measurement. The weights are
found such that the mean-squared estimation error is minimized.

4.1.1 Process and Observation Models

The background for the Kalman filter formulation is a state space description
of the system. The state of the system at any time

k
is expressed using a �

dimensional state space vector ¤ ¯lk�³ . The components of this vector may for
example include the attitude and velocity of the spacecraft, and possibly rele-
vant parameters to be estimated. Uncertain parameters include environmental
torques, components of the inertia tensor for the satellite and possibly sensor
calibration coefficients. The state of the spacecraft changes through time due to
its dynamics, which are described using a continuous-time stochastic differential
equation | ¤ ¯lk�³ � � ¯ ¤ ¯lk�³*Ö�¦�¯lk�³*Ö8k�³ | k £ |�§ ¯lk�³ (4.1)

where
¦�¯lk�³

is a vector of deterministic control inputs, and
§ ¯lkt³

is a Brownian
motion with diffusion ¨ ¯lkt³ . The current time

k
is included in the process model

to allow it to be time-varying.
This equation may also be written in the less rigorous but for most engineers

more familiar (white noise) notation,|| k ¤ ¯lk�³ � � ¯ ¤ ¯lkt³*Ö�¦P¯lkt³*Ö8k�³ £�á ¯lk�³ (4.2)

where á ¯lk�³ is a vector of stochastic disturbances and contains all perturbations,
which act on the system that are not described deterministically by the process
model. The á ¯lkt³ is assumed to be a zero mean Gaussian noise process with
intensity ©«ª

á ¯lkt³W¬ �QR Ö ©«ª
á ¯lkt³ á Õ ¯lk £® ³W¬ ��¨ ¯lk�³ ü ¯  ³ (4.3)
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where ¨ ¯lkt³ is a positive semi definite matrix and ü ¯lk�³ is the delta function. The
initial conditions from Equation (4.2), ¤ * is assumed to be Gaussian with mean�¤ * and covariance ¯°* .

The measurements are acquired at discrete time points,
k   , and are aggregated

into a
�

-dimensional observation vector £   . The values are related to the state
of the system according to the sensor model£   �Q� ¯ ¤   Ö8k   ³ £ÿâ   (4.4)

where the observation noise â   encompasses all the unmodeled effects, which
act on the observations, but not on the underlying state of the system itself. The
noise term is assumed to be a white Gaussian discrete-time sequence with©«ª

â(¡ ¬ ��R Ö ©±ª
â(¡ â Õ¨ ¬ ��² ¯5ñ�³ ü�¡ð¨ (4.5)

where ü ¡ð¨ is the Kronecker delta function. For simplicity is will also be assumed
that â   is independent of the process noise á ¯lk�³ .
4.2 Operation of the Filter

The filter estimates the state by combining measurements taken from the ac-
tual system with information embedded in the system model and the statisti-
cal description of uncertainty. Let ³ ¨ be a sequence of observations ( ³ ¨ �ª £V» Ö £ Â Ö i�i�it£�¨ ¬ ) and define

�¤ ¡´¥ ¨ and ¯ ¡´¥ ¨ to be the conditional mean and covari-
ance, respectively �¤ ¡´¥ ¨ µ

©«ª ¤ ¡8µ¶³<¨ ¬ (4.6)¯ ¡´¥ ¨ µ
©«ª
¯ ¤ ¡ � �¤ ¡·¥ ¨ ³�¯ ¤ ¡ � �¤ ¡·¥ ¨ ³ Õ µ¶³ ¨ ¬ (4.7)

Consider a single iteration, which propagates an estimate from time step
k   Y » to

time step
k   . At

k   Y » the estimate of the system state is
�¤   Y »W¥   Y » with covariance¯   Y »W¥   Y » . The new estimate is

�¤   ¥   with covariance ¯   ¥   . The change in the
state during the interval between

k   Y » and
k   is modeled by the process model

in Equation (4.2), which is integrated to predict the state forward in time. The a
priori state vector at time

k   is
�¤   ¥   Y » . The error in the prediction is defined by¸¤   ¥   Y » µ ¤   � �¤   ¥   Y » (4.8)
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and the covariance of the prediction is¯   ¥   Y » �
©«ª ¸¤   ¥   Y » ¸¤ Õ   ¥   Y » µ¶³   Y » ¬ (4.9)

The predicted observation is defined by�£   ¥   Y » �
©«ª £   µ¶³   Y » ¬ (4.10)

which leads to a definition of the innovation given by¹   µ £   � �£   ¥   Y » (4.11)

and as measurements become available at time
k   they are incorporated into the

predicted state by finding the weighted sum of the a priori estimate,
�¤   ¥   Y » and

the innovation vector, �¤   ¥   � �¤   ¥   Y » £<º   ¹   (4.12)

where º   is the filter gain matrix (Kalman gain). The error in the observation
updated estimate is ¸¤   ¥   � ¤   � �¤   ¥  � ¤   �¼» �¤   ¥   Y » £Sº   ¹  �½ (4.13)

� ¸¤   ¥   Y » �®º   ¹   (4.14)

Taking outer products and expectations we get the a posteriori covariance,¯   ¥   �Q¯   ¥   Y » ��¯¿¾ÁÀ  º Õ   ��º   ¯¿ÀÂ¾  £<º   ¯°À�À  º Õ   (4.15)

where the superscripts on ¯ indicate the cross-covariance matrices.
The weighting matrix º   , is chosen so that the trace of ¯   ¥   (the mean

squared error) is minimized. The solution was first given by Kalman (1960),º   ��¯ ¾ÁÀ  ¯ ¯ À�À  ³ Y » (4.16)

By using the computed gain in Equation (4.16) we get the Kalman update
equations �¤   ¥   � �¤   ¥   Y » £6º   » £   � �£   ¥   Y » ½¯   ¥   � ¯   ¥   Y » �"º   ¯ À�À  º Õ  The covariance prediction from Equation (4.9) determines how information
from previous measurements is incorporated into the new estimate.
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4.2.1 Linear Models

When the system and observation models are linear, there is an exact closed form
solution to the problem. This solution is generally referred to as the Kalman fil-
ter. The Kalman filter exists in both continuous, discrete, and continuous/discrete
versions. The latter is based on a continuous linear process model and a discrete
observation model || k ¤ ¯lk�³ � ¡ ¯lkt³ ¤ ¯lkt³ £�á ¯lk�³ (4.17)£   � Ã   ¤   £�â   (4.18)

The Kalman filter prediction equations are then given by (Maybeck (1979a))|| k �¤ ¯lkt³ � ¡ ¯lk�³#�¤ ¯lk�³ (4.19)|| k ¯ ¯lkt³ � ¡ ¯lk�³ ¯ ¯lk�³ £<¯ ¯lk�³ ¡ Õ ¯lk�³ £<¨ ¯lk�³ (4.20)

The cross-covariances matrices are given by¯ ÀÂÀ  � Ã   ¯   ¥   Y » Ã Õ   £<² ¯´Ä�³ (4.21)¯ ¾ÁÀ  � ¯   ¥   Y » Ã Õ  
which leads to the familiar observational update equationsº   � ¯   ¥   Y » Ã Õ   » Ã   ¯   ¥   Y » Ã Õ   £S² ¯´Ä�³ ½ Y » (4.22)�¤   ¥   � �¤   ¥   Y » £<º   »Å£   �"Ã   �¤   ¥   Y » ½ (4.23)¯   ¥   � ¯   ¥   Y » �"º   Ã   ¯   ¥   Y » (4.24)

4.3 Estimators for Nonlinear Systems

For nonlinear systems or non-Gaussian noise, the optimal estimator can only be
calculated if the entire density function for the state conditioned on the observed
measurements is known (Maybeck (1979b)). Since it has no general form, an in-
finite number of parameters are required. In practice high order nonlinear filters
are difficult to realize, and virtually all filters, which have been implemented use
approximations of some kind. The simplest and most widely used approach is
the extended Kalman filter (EKF) (Jazwinski (1970)).



4.3 Estimators for Nonlinear Systems 45

4.3.1 The Extended Kalman Filter

The basic assumption behind the EKF is that the process and observation models
are linear on the scale of the error in the estimated state. By re-linearization
about each new estimate, the validity of the linearity assumption is less likely to
be violated.

Consider a Taylor series expansion of Equation (4.2) about a nominal trajec-
tory defined by ¤ ¸ ¯lk�³Æ¤ ¯lk�³ � Æ¤ ¸ ¯lk�³ �ÈÇ � ¯ ¤ ¯lk�³*Ö�¦�¯lk�³*Ö8k�³Ç ¤ ÉÉÉÉ ¤ º ¤~Ê�Ë Ï`Ì ¯ ¤ ¯lk�³ � ¤ ¸ ¯lkt³t³£ h.o.t. £�á ¯lkt³ (4.25)

where “h.o.t.” are terms of powers greater than one in
¯ ¤ ¯lkt³ � ¤ ¸ ¯lkt³t³ . The result

is a first order linear approximation to Equation (4.25)|| k�m ¤ ¯lk�³ �Q¡ ¯ ¤ ¸ ¯lk�³*Ö�¦ï¯lk�³*Ö8kt³ m ¤ ¯lkt³ £�á ¯lkt³ (4.26)

where m ¤ is a first order approximation to the state perturbation, and ¡ ¯ � ³ is the
matrix of partial derivatives of

� ¯ � ³ with respect to the state (Jacobian matrix),
evaluated along the nominal state and input variables. Truncation of the series
introduces second and higher-order errors but, by assumption, the effect of this
approximation is negligible (the strength of á ¯lk�³ may be increased to account for
this assumption).

In a similar way the measurement perturbation model is defined bym±£   ¥   ��Ã ¯Í�¤   ¥   Ö8k   ³ m ¤   ¥   £�â   (4.27)

where Ã ¯ � ³ is the Jacobian of � ¯ � ³ , evaluated along the estimated state.
Comparing Equations (4.26) and (4.27) with Equations (4.17) and (4.18), it

is clear that the linear filter is applicable to the linearized system provided the
Jacobian matrices exist. The output of such a filter would be the optimal estimate
of m ¤   ¥   denoted Î m ¤   ¥   . This estimate is combined with the propagated full
state estimate

�¤   ¥   Y » to establish an estimate of the total state�¤   ¥   � �¤   ¥   Y » £<Îm ¤   ¥   (4.28)

After the incorporation of the estimated perturbation in the full state estimate
the process and measurement models are re-linearized about the new full state.
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The perturbation Î m ¤   ¥   is reset to zero, and the predicted perturbation Î m ¤   b »W¥  is thus also identically zero.
The best estimate of the state between observations is the full state, which is

propagated using the original nonlinear function starting from the initial condi-
tion

�¤   ¥   with á ¯lk�³ �Ï� . The new a priori estimate is then used to re-linearize
the filter at time

k   b » , which is used in the measurement update equations.
The covariance prediction follows the linear Kalman filter covariance prop-

agation in Equation (4.20) based on process and observation models linearized
about the estimate

�¤   ¥   .Given Î m ¤   b »W¥   �QR , the extended Kalman filters measurement update incor-
porates the measurements by means ofÎ m ¤   b »W¥   b » �Qº   b » » £   b » �"� ¯ �¤   b »W¥   Ö8k   b » ³ ½ (4.29)

where º   b » is computed using ¯   b »W¥   and Ã   b » evaluated along the propa-
gated full state estimate. The full state is then determined by Equation (4.28).

The basic operation of the EKF is summarized as follows. The filter is sup-
plied with initial information, including the measurement error covariance, and
estimates of the initial state and associated error. These are used to calculate
a gain matrix. The error between the state estimate and the measured data is
determined and multiplied by the gain matrix to update the state estimate and
covariance. The updated covariance and state are used as input to a nonlinear
model of the spacecraft dynamics, to predict the projected covariance and state
at the next time instance.

Initially, when the state is only a rough estimate, the gain matrix ensures
that the measurement data is highly influential in estimating the state. Then, as
confidence in the accuracy of the state grows with each iteration, the gain matrix
values decrease, causing the influence of the measurement data in updating the
state and associated errors to lessen.

Problems Associated with the EKF The EKF allows us to incorporate nonlin-
earities in the filter process and observation models while still exploiting linear
estimation techniques. However, there are a number of significant problems with
the EKF

– The assumption that the second and higher order errors might not be neg-
ligible and linearization can introduce significant errors. In practice the
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inconsistency is often resolved by introducing additional stabilizing noise
terms, which increase the size of the transformed covariance.

– The need to evaluate analytically the Jacobian matrices of the process and
observation models. The Jacobian is not guaranteed to exist and there may
be considerable implementation difficulties when the system is composed
of many states and is highly nonlinear.

– The properties of optimality and stability of linear Kalman filters is not
guaranteed for EKF. The modeling errors may cause a filter failure mode
in which the filter covariance estimates become inconsistent, which may
lead to filter divergence.

A number of higher order analytical and numerical filters have been devel-
oped. Many analytical methods achieve greater accuracy by explicitly including
more terms in the expansion of Equation (4.25). Second Order Gauss filters
(Maybeck (1979b)), for example, assume that the system is locally quadratic
and includes both first and second order terms. However, the implementation of
these filters for even simple systems can be very difficult because it is necessary
to calculate the Hessian as well as the Jacobian. Jazwinski (1970) presents a
local iteration schemes. The measurement state update is iterated until there is
no significant change in consecutive iterates. The iterated solution may reduce
the effects on the performance of the EKF due to measurement nonlinearities.
Higher order filters and iterated solutions are only considered in cases of ex-
treme system nonlinearities as they are computational more complex than the
standard EKF.

Numerical methods are able to address both the performance and implemen-
tation difficulties. Rather than approximate the model by arbitrary terms in the
Taylor Series, they approximate the prior distribution of ¤   Y » by choosing a
number of samples drawn at random. The model is applied to each sample, and
the statistics of the transformed samples are used. One approach is Monte Carlo
methods as demonstrated by Handschin (1970). The convergence rates are, how-
ever, very slow and a large number of samples are required. In Schei (1997) a
new linearization method based on a central point finite-difference approxima-
tion was presented. This method avoids explicit evaluation of the Jacobian.

The last problem manifests itself as an inconsistency in the covariance esti-
mate ¯ ¡´¥ ¨ � ©«ª ¸¤ ¡´¥ ¨ ¸¤ Õ ¡´¥ ¨ µ¶³ ¨ ¬ÑÐ � (4.30)
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where ¯ ¡·¥ ¨ is the covariance maintained by the filter, whereas the error vector¸¤ ¡´¥ ¨ is the actual mean-squared error. The inequality in Equation (4.30) is under-
stood as a negative definite difference. In other words, the filter believes that it
knows the state more accurately than it really does. As a consequence the gain
is lower than appropriate. When propagated across over time this may result in
an estimation error that becomes progressively worse.

This type of error is often compensated for by modifying the process noise.
Increasing ¨ ¯lkt³ will increase the gain, and thereby reduce the effect of modeling
errors. It will, however, increase the sensitivity to errors in the sensor modeling
and the sensor noise. Selecting ¨ ¯lkt³ so that the estimated covariance remains
high, but at the same time low enough to ensure proper filtering is far from easy.
The issue is discussed in further detail in Section 4.5.1.

Ljung (1979) discusses the convergence properties of parameter estimation
for linear discrete stochastic systems. An EKF is applied to the problem of
estimating states in a linear system model as well as parameters. The reason for
divergence is shown to be that the effect on the Kalman gain from parameter
changes is not handled properly. Ljung (1979) shows that global convergence of
the EKF as a parameter estimator may be achieved by including an extra term
in the cross coupling between parameters and states. The term included in the
cross coupling is the partial derivative of the Kalman gain with respect to the
parameters times the innovations. It is also proposed to parameterize the steady
state Kalman gain directly in the filter, rather than the covariance matrices, which
leads to the innovations representation.

In Zhou and Blanke (1989) the innovations representation is extended
to identifying parameters and states of nonlinear state space system models.
Second–order terms (bias correction terms) are used in the state expectation and
state predictions in order to allow significant nonlinearities. Both discrete and
continuous–discrete versions of the algorithm are investigated.

Given these problems with the EKF, it is, however, well–known that extended
Kalman filters can be made to operate properly in many practical systems.

4.4 Temporal Fusion of Data

The process model is used to predict the future state of the system. Using the pro-
cess model the prediction summarizes all the previous observation information.
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The estimate at
k   is thus not restricted to using the information contained in £   .The prediction allow temporal fusion with data from all past measurements.

The temporal fusion of data is best appreciated by considering the informa-
tion form (Maybeck (1979a)) of the prediction. The amount of information
maintained in an estimate

�¤ is defined to be the inverse of its covariance ma-
trix. The covariance prediction in Equation (4.24) may be rewritten as¯   ¥   � ¯   ¥   Y » �"º   Ã   ¯   ¥   Y » (4.31)¯   ¥   ¯ Y »  ¥   Y » � ���"º   Ã   (4.32)

Using this result in combination with the Kalman gain in terms of the predicted
covariance, (Maybeck (1979a))º   �Q¯   ¥   Ã Õ   ² ¯´Ä�³WY » (4.33)

the state measurement update may be written as�¤   ¥   ��¯   ¥  ÓÒ ¯ Y »  ¥   Y » �¤   ¥   Y » £<Ã Õ   ² ¯´Ä�³ Y » £  cÔ (4.34)

A similar expression can be found for the predicted information matrix¯ Y »  ¥   �Q¯ Y »  ¥   Y » £SÃ Õ   ² ¯´Ä�³WY » Ã   (4.35)

The estimate in Equation (4.34) is therefore a weighted average of the predic-
tion and the observation. Intuitively the weights must be inversely proportional
to their respective covariances. Seen in the light of Equation (4.34) predictions
and observations are treated equally by the Kalman filter. It is therefore possible
to consider the prediction as an observation,

�¤   ¥   Y » with covariance ¯ Y »  ¥   Y » .Since the prediction and the observation are equivalent, there is a tradeoff
between the propagation model and the sensors. The importance of the tempo-
ral fusion is demonstrated by the problem of observability in the magnetometer
situation. Although the system is not observable about the magnetic field mea-
surements at any single point in time the filter is able to estimate the orientation
of the spacecraft due to an accurate prediction of the system state.

4.4.1 Information Flow

Theoretically the Kalman filter forms its estimates from the total amount of col-
lected observation information, ³   . As the state of the system evolves over time
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Figure 4.2: Kalman filter information flow schematic.

earlier measurements, however, provides less information about the current state
of the system. Process noise enter, and uncertainties in the estimates increase
through time.

Figure 4.2 depicts a single iteration of the Kalman filter and the flow of in-
formation which occurs. On the left, the current estimate is used to predict the
future state of the system. As the future state is predicted noise enters the system
in two ways

– Diffusion. Previous information tends to become diffused over time. For
example, if there is some uncertainty in the rate of the satellite then predic-
tions of the future attitude of the spacecraft must include this uncertainty.

– Process noise. The system does not evolve according to the deterministic
system model, the discrepancy is process noise.

These two effects can be clearly seen in the (linearized) covariance prediction¯   ¥   Y » �jÕ ¯lk   b » Ö8k   ³ ¯   Y »W¥   Y » Õ ¯lk   b » Ö8k   ³ Õ £<¨ ¯´Ä�³ (4.36)

The first term corresponds to information diffusion while the second term is the
contribution of process noise. A good process model makes an accurate pre-
diction and looses very little information. This is reflected by the fact that the
prediction covariance is small. However, a poor dynamic model makes inaccu-
rate predictions, leading to a larger covariance.

After the prediction has been made, the estimate is determined through the
update. This is an injection of new, current information into the filter. From
Equation (4.35) it can be shown that for a given amount of sensor information,
the updated covariance is minimized if the prediction covariance is minimized.
Therefore, optimal performance is only achieved if the information in the pre-
diction is maximized.
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4.5 Model Selection

The analysis in the previous section shows that the dynamic model should be
chosen to maximize the information in the prediction. Intuitively it must closely
approximate the way that the true system behaves. The order of the true system
is, however, generally high and the system may sometimes not be described by
a finite dimension.

The true system takes account of all the effects, which act on the spacecraft.
These include states, which are directly relevant to attitude determination (such
as attitude and angular velocity), states, which are indirectly related (for exam-
ple, changing atmospheric density) and states, which have only a very slight
relevance (for example, vibration modes in the boom).

Even if the dynamic model were perfectly known and could be described
with sufficiently few states that it could be implemented, there is an additional
problem, known as the bias/variance tradeoff. As a model becomes more com-
plex, it becomes a better description of the true system, and the bias becomes
progressively smaller. However, a more complex model includes more states.
Given that there is only a finite amount of noisy data, the result is that the infor-
mation has to be spread between the states and the variance on the estimates of
all of the states increase.

These problems mean that the core issue in designing an attitude estimator
is to find a suitable balance between a detailed dynamic model and an accurate
sensor suite. The guiding principle is that the dynamic model should be the least
complex model (parsimonious (Ljung (1987))), which is capable of describing
the most significant features of the true system .

4.5.1 Modeling Errors

As mentioned above most practical estimators cannot use a model which de-
scribes the true system precisely. Approximations must be made in order to
achieve a computational efficient algorithm. This section analyze the problem of
approximate system models in greater detail and the effects of modeling errors
is quantified. The effect of an approximate system model in the covariance pre-
diction context is first analyzed and next the effect of incorrect noise statistics is
examined.
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4.5.1.1 Covariance Prediction

As discussed in Section 4.3.1 modeling errors are often compensated for in the
EKF by increasing the process noise, ¨ ¯lk�³ . The objective in the following is to
set up a bound on the minimum value of the process noise that takes modeling
errors into account.

For simplicity, we assume that the process noise is additive and that there
is no control input. The true system then evolves according to the stochastic
differential equation | ¤ Õ ¯lkt³ � � Õ ¯ ¤ Õ ¯lk�³t³ | k £ |�§ Õ ¯lk�³ (4.37)

where ¤ Õ ¯lk�³ is the state of the true system,
|�§
Õ
¯lk�³

is the process noise, and�
Õ
¯ � ³ is the true system model.
Given the true state vector at time

k   , ¤ Õ ¯lk   ³ . The true system may be of
high order, and approximations are therefore made in the estimator design. It is
assumed that there is a structural relationship between the states of the approxi-
mate system and the true system given by the projection of the true system state¤ Õ ¯lk   ³ onto the approximate system state spaceÖ¤ ¯lk   ³¶µØ×°¯ ¤ Õ ¯lk   ³t³ (4.38)

where
Ö¤ ¯lk   ³ is the projection of the true state onto the approximate state space.

The projection into the approximate state space,
Ö¤ ¯lk   ³ represents the true system,

but in approximate state space. In the case of zero estimation error,
Ö¤ ¯lk   ³ would

be our estimate of the true state. The dimension of the approximate system
state space may be smaller than the dimension of the true state space. In the
analysis here,

×°¯ � ³ need not be explicitly defined unless exact optimum results
are required.

The actual prediction error of the approximate system at time
k   is then given

by ¸¤ ¯lk   ³{µ Ö¤ ¯lk   ³ � �¤   ¥   Y » (4.39)

and the actual mean-squared error prediction error is thus given byÖ¯   ¥   Y » �
©±ª ¸¤ ¯lk   ³]¸¤ Õ ¯lk   ³ µ¶³   Y » ¬ (4.40)

To ensure consistency of the estimator, the process noise parameters ¨ must be
selected such that ¯   ¥   Y » � Ö¯   ¥   Y » (4.41)
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which means that the predicted error estimate is larger than the actual error.
Based on Equation (4.37) the projection of the true system is governed by the

stochastic differential equation| Ö¤ ¯lkt³ ��Ù ¯lkt³ � Õ ¯ ¤ Õ ¯lkt³t³ | k £SÙ ¯lkt³ |�§ Õ ¯lkt³ (4.42)

where the Ù ¯lk�³ and Ù ¯lk�³ is the Jacobian of
×°¯ � ³ with respect to ¤ Õ ¯lk�³ . The

model
�
Õ
¯ � ³ describe the evolution of the true system, and

|�§
Õ
¯lkt³

is the true
additive process noise.

The first term in Equation (4.42) describe the evolution of the true system
state without noise, which is projected onto the approximate system space. It is
assumed that this may also be written as the evolution of

Ö¤ ¯lkt³ using the approx-
imate dynamics and an additive modeling error term, which is a function of the
true state | Ö¤ ¯lk�³ � � ¯ Ö¤ ¯lkt³t³ | k £SÙ ¯lk�³ |�§ Õ ¯lkt³ £<Ú ¯ ¤ Õ ¯lkt³t³ | k (4.43)

where Ú ¯ ¤ Õ ¯lkt³t³ is the modeling error, which describes the error committed by
assuming the approximate dynamicsÚ ¯ ¤ Õ ¯lk�³t³ | k ��Ù ¯lkt³ � Õ ¯ ¤ Õ ¯lkt³t³ | k � � ¯ Ö¤ ¯lk�³t³ | k (4.44)

The estimate and error states are now substituted into Equation (4.43), which
is then linearized about the estimated system state| Ö¤ ¯lk�³ � � ¯��¤ ¯lkt³ £ ¸¤ ¯lkt³t³ | k £SÙ ¯lk�³ |�§ Õ ¯lkt³ £SÚ ¯ ¤ Õ ¯lkt³t³ | k (4.45)Û � ¯ �¤ ¯lkt³t³ | k £<¡ ¯lk�³ ¸¤ ¯lk�³ | k £SÙ ¯lk�³ |�§ Õ ¯lkt³ £<Ú ¯ ¤ Õ ¯lkt³t³ | k
where ¡ ¯lk�³ is the Jacobian of the approximate dynamics evaluated at the state
estimate

�¤ ¯lk�³ . The evolution of the estimated state is controlled by| �¤ ¯lk�³ � � ¯ �¤ ¯lkt³t³ | k
Subtracting the estimated dynamics from Equation (4.45) results in the fol-

lowing error dynamics| ¸¤ ¯lkt³ ��¡ ¯lk�³ ¸¤ ¯lkt³ | k £<Ù ¯lkt³ |�§ Õ ¯lkt³ £SÚ ¯ ¤ Õ ¯lk�³t³ | k (4.46)

The first term in Equation (4.46) accounts for the propagation of estimation
error whereas the second term describe the process noise. These two terms are
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explicitly maintained by the Kalman filter. The third term is an additional error
introduced by the approximate system modeling.

In order to arrive at a discrete covariance propagation, Equation (4.46) is
integrated over the interval from

k   to
k   b »¸¤ ¯lk   b » ³ �jÕ ¯lk   b » Ö8k   ³ ¸¤ ¯lk   ³ £�á Õ ¯´Ä £ · ³ £SÚ   b » (4.47)

where Õ ¯lk   b » Ö8k   ³ is the state transition matrix. The á Õ ¯´Ä £ · ³ is the true discrete
process noise projected onto the approximate space and given by

á Õ ¯´Ä £ · ³ ��� Ï`Ü:ÝaÞÏ`Ü Õ ¯lk   b » Ö  ³ Ù ¯  ³ |�§ Õ ¯  ³
The Ú   b » is the contribution from the modeling error and defined byÚ   b » � �

Ï`Ü:ÝaÞ
Ï`Ü Õ ¯lk   b » Ö  ³ Ú ¯ ¤ Õ ¯  ³t³ | 

The prediction covariance in Equation (4.40) is now found by taking outer
products and expectations of Equation (4.47)Ö¯   b »W¥   � Õ ¯lk   b » Ö8k   ³ Ö¯   ¥   ÕPÕ ¯lk   b » Ö8k   ³ £<¨ Õ ¯´Ä�³£ßÕ ¯lk   b » Ö8k   ³ ¯ ¾Áà  ¥   £ ¯ ¯ ¾Áà  ¥   ³ Õ Õ Õ ¯lk   b » Ö8k   ³ £S¯ à�à  (4.48)

The first two terms are well known from the Kalman filter covariance prediction.
The last three terms are cross correlation terms that are included as a conse-
quence of modeling errors. The ¯ ¾Áà  ¥   is the correlation between the error in the
a posteriori state estimate and the modeling error introduced by predicting fromk   to

k   b » . The last covariance term is ¯ à�à  , which is the mean squared value of
the modeling error term. In case of a very inaccurate approximate model ¯ à^à may not be finite and the process noise is thus unbounded.

The analysis above leads to the following condition on the selection of the
process noise parameters¨ ¯´Ä�³ � ¨ Õ ¯´Ä�³ £6Õ ¯lk   b » Ö8k   ³ ¯ ¾Áà  ¥  £ ¯ ¯¿¾Áà  ¥   ³ Õ Õ Õ ¯lk   b » Ö8k   ³ £S¯¿à�à  á k   (4.49)

This analysis has shown that using an approximate system model introduces a
performance penalty. Modeling errors introduce discrepancies in the covariance
prediction, which must be compensated for by increasing the process noise in
order to ensure a consistent estimate. The minimum value of noise is given by
Equation (4.49). In most practical systems the actual noise and the modeling
error function are not known and the selection of ¨ ¯´Ä�³ is not trivial.
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4.5.1.2 Covariance Update

The observational update in the Kalman filter is based on the innovation, which
represented in terms of the true state is given by¹   �Q� Õ ¯ ¤ Õ ¯lk   ³*Ö8k   ³ £�â Õ ¯´Ä�³ �"� ¯ �¤   ¥   Y » Ö8k   ³ (4.50)

Assuming that there are no structural errors in � ¯ � ³ , the true observation is lin-
earized about the estimated state� Õ ¯ ¤ Õ ¯lk   ³*Ö8k   ³ �Q� ¯��¤   ¥   Y » Ö8k   ³ £6Ã   ¸¤   ¥   Y » (4.51)

where Ã   is the Jacobian of � ¯ � ³ evaluated at
�¤   ¥   Y » .Substituting this result into Equation (4.50) and applying the Kalman obser-

vational update (Equation (4.23)) to the error state we get¸¤   ¥   � ¤ Õ ¯lk   ³ � �¤   ¥  � ¤ Õ ¯lk   ³ �¼» �¤   ¥   Y » £<º   ¹  Í½� ¯ ����º   Ã   ³~¸¤   ¥   Y » £<º   â Õ ¯´Ä�³ (4.52)

Taking outer products and expectations, the true mean squared error of the esti-
mate is Ö¯   ¥   � ¯ ���"º   Ã   ³ Ö¯   ¥   Y » ¯ ���"º   Ã   ³ Õ£<º   ² Õ ¯´Ä�³ º Õ   (4.53)

which is similar the Joseph form (Bucy and Joseph (1968)) of the normal Kalman
filter covariance update. In the approximate filter knowledge about the true co-
variance

Ö¯   ¥   Y » or observation noise ² Õ ¯´Ä�³ is not available, and the update is
hence given by¯   ¥   � ¯ ���®º   Ã   ³ ¯   ¥   Y » ¯ �Q�"º   Ã   ³ Õ £<º   ² ¯´Ä�³ º Õ  fá k   (4.54)

Subtracting Equation (4.54) from Equation (4.53) leads to¯   ¥   � Ö¯   ¥   � ¯ ���"º   Ã   ³b¯ ¯   ¥   Y » � Ö¯   ¥   Y » ³�¯ ���"º   Ã   ³ Õ£6º   ¯ ² ¯´Ä�³ �®² Õ ¯´Ä�³t³ º Õ   (4.55)

and in order to ensure consistency we require that ¯   ¥   � Ö¯   ¥   �âR . A suffi-
cient condition to ensure that the difference is positive semi definite is (Jazwinski
(1970)) ¯   ¥   Y » � Ö¯   ¥   Y » �nR and ² ¯´Ä�³ �"² Õ ¯´Ä�³ �nR á k   (4.56)
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The two conditions state that both the covariance prediction and the observa-
tion noise statistics must be consistent. The modeling errors associated with the
covariance prediction must be compensated for by increasing the process noise.
A bound on the process noise was established (Equation (4.49)) but it was argued
that in most practical systems the bound cannot be calculated. The second con-
dition in Equation (4.56) states that the approximate systems observation noise
must exceed the noise of the true system.

4.6 The Quaternion in the Kalman Filter

In Chapter 3 the use of quaternions to represent a rotation in
È°ÉÊ¯²Ë�³

was outlined.
The quaternion was chosen as the attitude representation on the Ørsted satel-

lite. The main reasons being the nonsigularity of the representation, the easily
enforced orthogonality (by preserving unit norm), which is important from an
implementational point of view, and finally properties that make it ideal for con-
troller design (see Wisniewski (1997)).

Before applying the EKF to the attitude estimation problem two problems
must be addressed. Both are related to the quaternion state

– Covariance Singularity. The unit norm constraint on the quaternion leads
to a constrained error vector, and the associated covariance matrix is there-
fore singular.

– Quaternion unity. The filter should preserve the unit norm of the attitude
quaternion in order to maintain orthogonality in the rotation. The standard
EKF update is based on unconstrained additive corrections, and the result
is not an attitude quaternion as the quaternion has no group structure under
addition.

In the following, alternative forms of the EKF are presented that are norm pre-
serving within a linear approximation and numerical round-off, while avoiding
the covariance singularity issue.

4.6.1 Covariance Singularity

As discussed previously, the Kalman filter is designed to minimize the trace of
the error covariance. That is, suppose

�5
is some estimate of the quaternion, and

5
is the true attitude. The goal of the Kalman filter algorithms is then to minimize
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the trace of the covariance matrix for the quaternion state, ¯äã:ã , which is defined
as a �3�´� matrix ¯ ã:ã � ©±ª ¯Â¸4©� ©±ª ¸4 ¬E³b¯t¸4©� ©«ª ¸4 ¬E³ Õ ¬ (4.57)

where
¸4 is the difference between true and estimated attitude¸4 µ 5 � �5 (4.58)

Assuming that the true quaternion is in a small neighborhood of the estimated
quaternion, Equation (4.58) may be rewritten using the exponential power series
in terms of the rotation vector,¸4´�åo · £ ·

� g��� ·h g�Â°£ni�i�i q �5 � �5
� o ·� g��� ·h g Â £ji�i�i q �5 (4.59)

and with the definition in Equation (3.18)¸4��LSæO @ »Â gW��B £Ss ¯ ¾tgWw¾ÃÂ ³ (4.60)

With

©±ª gW ¬ �MR the full quaternion covariance may to first order be approxi-
mated by ¯¿ã:ã Û ·

�
© o�LSæOç@ g��HB ó gW Õ � ÷ L´Õ æO q (4.61)Û ·
� LSæO @ ¯¿è·è�RR Õ ��B L´Õ æO (4.62)

where ¯ è·è � ©«ªÍé�é
Õ ¬ is the attitude error covariance. It follows immediately

that the �l� � covariance matrix is singular. Preserving this singularity is numer-
ically difficult and may lead to a inconsistent filter solutions and divergence. In
order to preserve the singularity it hence necessary to take the normalization con-
straint into account explicitly, or reduce the problem to one of lower dimension
(i.e. three).

The former approach is generally difficult as the operations performed in the
standard EKF assume independent state variables and therefore do not preserve
the unit norm. Several authors (Bar-Itzhack and Oshman (1985); Bar-Itzhack
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et al. (1991)) have, however, performed numerical investigations and achieved
good results by basically ignoring the constraint on the quaternion and using
the standard EKF unconstrained update equations on all four quaternion compo-
nents.

Lefferts et al. (1982) suggested deleting one of the quaternion components in
the state error vector (the component with largest magnitude) in order to achieve
a truncated covariance matrix. This approach maintains proper rank of the co-
variance matrix and quaternion unity, but the full state transition matrix still has
to be computed each time.

Alternatively Lefferts et al. (1982) suggests a more efficient algorithm based
on a body referenced quaternion correction. Defining the error quaternion as the
correction that has to be composed with the estimated quaternion in order to get
the true state the error state dimension may be reduced.

Using the exponential map from Equation (3.24) we may parameterize a
neighborhood of

�5
by 5

� ��$&% ¯ ·
� �� ³ �5

� o · £ ·
� gW�� ·h g Â £�i�i�i q �5 (4.63)

Assuming that the exponential correction in Equation (4.63) is small and
truncating the series to first order we get5 Û o · £ ·

� gW q �5 (4.64)

The estimated quaternion
�5

represents the rotation from the reference frame to
the estimated body frame. The correction in Equation (4.64) then represents a
rotation from the estimated to the true body frame. This is in fact equivalent to
the body referenced correction described in Lefferts et al. (1982).

The truncated series corresponds to a quaternion with unit real part and three
free variables. The basic idea is now only to estimate the three free variables,
which are aggregated into a 3 vector such that m«4ª� »Â g� . The error state to be
estimated is then given by Î m ¤   ¥   �Èêaëm±4   ¥  ëm±ì   ¥  

í
(4.65)

One independent parameter has been removed from the error state. If ì   has
dimension � , then the state error vector has dimension

¯ �P£ Ë�³ , whereas the state
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vector has dimension
¯ �w£ � ³ . The reduced representation preserves proper rank

of the reduced covariance matrix while simplifying the computation.

4.6.2 Quaternion Unity

The problem of maintaining orthogonality (unit norm) of the filter attitude solu-
tion is part of all numerical attitude estimation algorithms due to round off. In
the Kalman filter the problem is, that each time a new estimate is formed, by
adjoining new measurements, the constraint on the quaternion must be enforced
in order to stay on the quaternion 3-sphere. In Bar-Itzhack et al. (1991) sev-
eral quaternion normalization algorithms were compared, and it was found that
normalization improved filter convergence and accuracy.

With the reduced error state, the EKF full state update becomes�5   ¥   �Èê ëm«4   ¥  · í �5   ¥   Y » (4.66)

which is equivalent to a traditional additive update given by�5   ¥   � ¯ · £ ëm±4   ¥   ³��
5
  ¥   Y » (4.67)

� �5   ¥   Y » £åê ëm±4   ¥  � í �5   ¥   Y » (4.68)

The error state thus represents a correction in the body frame, and not a general
correction to

�5   ¥   Y » as would be the case in a traditional Kalman filter.
The multiplicative form in Equation (4.66) has the advantage that the unit

norm of the correction easily is enforced by using the following altered update
rule �5   ¥   � ê ëm«4   ¥  î · � ¾ ëm±4   ¥   ¾ Â

í �5   ¥   Y » (4.69)

and the unit norm of the a posteriori estimate is thus preserved in the update. This
basically corresponds to estimating only the projection of the quaternion into
coordinate axes in

ÌoÎ
and then using the constraint to calculate the remaining

coordinate.
The error covariance update was adjusted to reflect the normalization. A

first order linearization of Equation (4.69) around the estimated error state was
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applied and a correction of the estimated covariance performed. The resulting
covariance was then truncated to a

Ë � Ë matrix and used in the filter prediction.
As there was no significant change in the estimated covariance or the filter per-
formance, it was decided to avoid this additional step. One may argue that the
assumptions made in the linearization of the covariance prediction will prevent
us from benefiting from a more accurate covariance update.

4.7 Quaternion Vector Filter

Based on the quaternion error representation discussed in Section 4.6 this section
presents the background for the algorithms developed for implementation in the
on-board software for the Ørsted satellite. Details of the implementation and
development are left for Chapter 5.

4.7.1 Filter State

The three-dimensional quaternion error state and the update rule in Equa-
tion (4.69) are the basis for the attitude representation used in the quaternion
filter. Besides the quaternion, the filter state also include the angular velocity of
the spacecraft relative to the inertial coordinate system. The angular velocity is
required by the controller but also enables modeling of the dynamics.

The angular velocity update is define by simple addition�w   ¥   � �w   ¥   Y » £ Îm±w   ¥   (4.70)

The perturbation and full state vectors are therefore given bym ¤   � @ m±4  mÓw   B and ¤   � @ 4  w   B (4.71)

The state vector m ¤   describe perturbations to the nominal state whereas the ¤  is the full state. The full state is required to represent the time evolution of the
system and it is the state used in the controller feedback. The perturbation state is
only an internal estimator state, which is used in the filter update and covariance
equations. The state vector defined here is sufficient for the discussion in this
chapter, but augmented state vectors will be treated in Chapter 5 and 7. In the
Ørsted case, the quaternion state estimate must represent a rotation from the local
orbit frame (LVLH) to the body frame (SCB), whereas the desired representation
of the angular velocity is relative to the inertial frame (ECI). The Freja attitude
is defined relative to ECI.
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4.7.2 Filter Propagation

The propagation of the full filter state between measurement updates uses the
kinematic and dynamic relations defined in Equations (3.30) and (3.37), which
may be solved using numerical integration.

Spacecraft dynamic models are inherently uncertain and it may be argued
that replacing the dynamic model by a stochastic process model would be a bet-
ter approach. For satellites like Ørsted, the dominating torque input is due to
gravity gradient, which is well modeled if the moments of inertia of the satellite
are known. A dynamic model has hence been included in this presentation. In
Chapter 5 the issue will be discussed in more detail.

The propagation of the error covariance requires a linearization of the error
state kinematic and dynamic about a nominal (the a posteriori) state estimate,
which in the following is denoted by a bar.

Linearized Kinematics With the definition of the quaternion correction from
Equation (4.66) the deviation from the nominal state

Ö5 ¯lk�³
may be written asm 5 ¯lkt³ � 5 ¯lkt³ Ö5 ¯lk�³ T (4.72)

By representing the angular velocity in terms of a quaternion with zero scalar part
the dynamics in Equation (3.30) may be rewritten in quaternion form. Applying
the chain rule, the following differential equation describes how the quaternion
error evolve over time|| k m 5 ¯lkt³ � ·

�-ï ¯lk�³ 5 ¯lk�³ Ö5 ¯lkt³ T £ 5 ¯lkt³ ·� ¯ Öï ¯lk�³ Ö5 ¯lkt³t³ T (4.73)

� ·
�
¯ Öï ¯lk�³ m 5 ¯lk�³ �"m 5 ¯lk�³ Öï ¯lkt³t³ £ ·

� m ï ¯lk�³ m 5 ¯lk�³ (4.74)

Neglecting second order terms results in the linearized kinematic equation ex-
pressed in the quaternion error|| k�m±4 ¯lk�³ ��� Öw ¯lk�³ ��m±4 ¯lkt³ £ ·

� mÓw ¯lkt³ and
|| k�m±3 ¯lk�³ ��� (4.75)

There is one final remark to Equation (4.75). The angular velocity estimated by
the filter is relative to the inertial frame, whereas the angular velocity in Equa-
tion (4.75) necessarily is relative to the local orbit frame (LVLH) in the Ørsted
case. The term

Öw ¯lkt³ therefore has to be interpreted as the nominal angular veloc-
ity relative to LVLH. Using

Öw Ú � as the body referenced angular velocity relative
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to LVLH, w Ú ¡ the angular velocity relative to the inertial frame, and
Öw � ¡ as an-

gular velocity of the LVLH frame relative to inertial frame, we getÖw Ú � ¯lk�³ � Öw Ú ¡ ¯lkt³ � ±«¯ Ö5 ³ Öw � ¡ (4.76)

The angular velocity
Öw � ¡ is near constant for orbits close to circular. The influ-

ence from mÓw ¯lk�³ is modified according tomÓw ¯lkt³ ��mÓw Ú ¡ ¯lk�³ � ��ø Öw � ¡��ýúðm±4 (4.77)

where mÓw Ú ¡ ¯lkt³ is the velocity correction estimated by the filter and having used
that

± ¯ m±4 ³ � ¯ ��� ��ø¶m±4"� ú ³ to first order. When substituting Equations (4.76)
and (4.77) into the expression in Equation (4.75) the effect of changing the ref-
erence frame cancels out. The results is thus the linearized dynamics in Equa-
tion (4.75).

Linearized Dynamics First we linearize the control input torque. The lin-
earized version of the input torque given by Equation (3.38) ism±U� ÏÑÐ8� ¯lk�³ � ��ø � ¯lk�³ � ú	ø Ö¿ ¯lkt³ �{úðm±4 (4.78)

where
Ö¿ ¯lkt³ � ± ¯ Ö5 ¯lk�³t³ ¿ ¯lkt³ is the nominal geomagnetic field in the body frame.

The gravity gradient depend explicitly on the attitude of the spacecraft and
the linearization is hence carried about the nominal quaternion. From Equa-
tion (3.39) we get ��� ¯lk�³ � Ë��� Î ¯Z± ¯ m 5 ¯lk�³t³ Ö�'¯lkt³ �P� ± ¯ m 5 ¯lk�³t³ Ö�À¯lkt³t³ (4.79)

where
Ö�

is the nominal zenith vector in the body frame. Ignoring second order
terms, the linearized gravity gradient is given bym±ñ��� ¯lk�³ � ò �� Î ¯ ø Ö�J¯lk�³ � úð�{ø Ö�"¯lkt³ � ú1�Åø Ö�J¯lk�³ � ú	ø¶� Ö�"¯lkt³ � ú ³ m±4 (4.80)

where it was assumed that the � Î is approximately constant. i.e. a close to circu-
lar orbit.

The remaining part of the dynamics are found using a standard first order
Taylor series and the combined dynamics are therefore|| k�mÓw ¯lk�³ � � Y » ¯ ø¶� Öw ¯lkt³ � ú1� Öw ¯lkt³ �ç� ³ mÓw ¯lk�³ (4.81)

£ó� Y » ¯ m«ñ� ÏÑÐ:�:� ¯lk�³ £<m«N�W� ¯lkt³t³
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Combined Linear Model The combined linearized model is now a 6th order
system and may be described by a matrix of sensitivities due to attitude and rate
perturbations || k m ¤ ¯lkt³ �Q¡ ¯lk�³ m ¤ ¯lk�³ (4.82)

where ¡ ¯lkt³ � @ �Qø Öw ¯lkt³ � ú »Â ���� Y » » Ä ¡«� ¯lkt³ £äø � ¯lk�³ � ú	ø Ö¿ ¯lkt³ �{ú ½ � Y » ¡3¥ ¯lk�³ B (4.83)

where
Ä � Ë�� _ � Î and ¡«� ¯lk�³ represents the coupling in Equation (4.80) due

to gravity gradient. The ¡©¥ ¯lkt³ matrix represents the gyroscopic coupling from
Equation (4.81).

Given body axes aligned with the principal axes (i.e. zero products of inertia
the matrices) the matrices ¡V� ¯lkt³ and ¡3¥ ¯lk�³ are given by

¡ � ¯lkt³ � �� ¯ Öô ÂÂ � Öô ÂÎ ³�¯·õ ÂtÂ � õ ÎtÎ ³ � Öô » Öô Â ¯·õ ÂtÂ � õ ÎtÎ ³ Öô Â Öô » ¯·õ ÂtÂ � õ ÎtÎ ³Öô » Öô Â ¯·õ ÎtÎ � õ »t» ³ ¯ Öô ÂÎ � Öô Â» ³�¯·õ ÎtÎ � õ »t» ³ � Öô Î Öô Â ¯·õ ÎtÎ � õ »t» ³� Öô » Öô Î ¯·õ »t»¶� õ ÂtÂ ³ � Öô Â Öô Î ¯·õ »t»¶� õ ÂtÂ ³ ¯ Öô Â» � Öô ÂÂ ³�¯·õ »t»°� õ ÂtÂ ³
� 

and ¡3¥ ¯lk�³ � �� � Öö Î ¯·õ ÂtÂ � õ ÎtÎ ³ Öö Â ¯·õ ÂtÂ � õ ÎtÎ ³Öö Î ¯·õ ÎtÎ � õ »t» ³ � Öö » ¯·õ ÎtÎ � õ »t» ³Öö Â ¯·õ »t»¶� õ ÂtÂ ³ Öö » ¯·õ »t»¶� õ ÂtÂ ³ �
� 

where
õ »t» Ö�õ ÂtÂ Ö and

õ ÎtÎ are principal moments of inertia. The time index is left
out for simplicity.

Covariance Propagation The covariance propagation may now be carried out
by solving the Riccati equation|| k ¯ ¯lk�³ �Q¡ ¯lkt³ ¯ ¯lkt³ £6¯ ¯lkt³ ¡ýÕ ¯lkt³ £S¨ ¯lk�³ (4.84)

Similar to the dynamics and kinematics propagation, the error covariance,¯   ¥   Y » may be solved using numerical integration. For simple numerical im-
plementation the discrete time equivalent of Equation (4.84) is most often used.
The covariance prediction is then given by (Jazwinski (1970))¯   ¥   Y » ��Õ ¯lk   Ö8k   Y » ³ ¯   ¥   Õ Õ ¯lk   Ö8k   Y » ³ £<¨   Y » (4.85)
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where Õ ¯lk   Ö8k   Y » ³ is the state transition matrix, and ¨ ¯´Ä�³ is the discrete state
noise covariance. The Õ ¯lk   Ö8k   Y » ³ matrix is found based on the Jacobian, ¡ ¯lk�³
found above. The discrete noise in Equation (4.85) is defined by¨ ¯´Ä � · ³ ��� Ï ÜÏ ÜW÷CÞ Õ ¯lk   Ö  ³ ¨ ¯  ³ Õ Õ ¯lk   Ö  ³ |  (4.86)

4.7.3 Filter Update

In order to process the measurements in the filter, a measurement model, and a
linearization about the a priori state is required.

Measurement Processing The physical measurements are the magnetic field
vector projected onto the three sensor axes. In the case of magnetometer mea-
surements the model maintained by the filter is based on a reference field model.
This takes the form £   � � ¯ ¤   Ö8k   ³ £�â  � ± ¯

5
¯lk   ³t³ ¿   £�â   (4.87)

where
± ¯
5
¯lk   ³t³ is the rotation from the reference frame to the sensor frame,

and ¿   is the true local magnetic field in the reference frame. The noise term â  accounts for effects due to e.g. thermal noise in sensor components and sampling
resolution. The sensor noise is assumed to be a zero mean Gaussian discrete
process, with covariance ²°ø ¯´Ä�³ .

The processing of the measurement observation model, requires the use of a
reference field model vector generated by a magnetic field model. The reference
vector is corrupted by noise due to model errors and errors in the position esti-
mates used to derive the model vectors. To compensate for these errors additional
noise is added to the noise model. The model noise is modeled as a zero mean
white Gaussian sequence with covariance ² Ú ¯´Ä�³ which is uncorrelated with the
sensor noise. The total noise model used in relation to Equation (4.87) is hence
given by ² ¯´Ä�³ �Q² ø ¯´Ä�³ £ ± ¯Á�5   ¥   Y » ³ ² Ú ¯´Ä�³W±«¯Á�

5
  ¥   Y » ³ Õ (4.88)

In order to process the noise models, the nonlinear measurement in Equa-
tion (4.87) is next linearized about the a priori state estimate. Using

Ö¿   �
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± ¯ �5   ¥   Y » ³ ¿   as the nominal magnetic field in the body frame. The result is
a measurement equation given by�£   ¥   Y » � Ã ¯ �¤   ¥   Y » Ö8k   ³ Î m ¤   ¥   Y » (4.89)

� ó ��ø Ö¿   � úåR ÷ Îm ¤   ¥   Y » (4.90)

The matrix Ã ¯ � ³ has only rank two, which reflects the fact that the measurement
of one unit vector contains no information about rotation around that vector.

Update Given the previous discussion, we may now turn back to the filter
update stage. The estimator gain matrix is now calculated following Equa-
tion (4.22) º   �Q¯   ¥   Y » Ã Õ   »ÅÃ   ¯   ¥   Y » Ã Õ   £<² ¯´Ä�³ ½ Y »
Direct update using this result is known to be numerically unstable and numerous
representations exist that overcome this problem. This issue is addressed in more
detail in Chapter 6.

Finally the measurement updated estimate of the perturbation state isÎ m ¤   ¥   �Qº   »ù£   �"� ¯��¤   ¥   Y » Ö8k   ³ ½ (4.91)

This is used to update the full state estimate as described in the beginning
of this section. After incorporating m ¤   ¥   into the current attitude and rate esti-
mates, the error states are re-initialized to zero.

In summary the Kalman filter algorithm is given by Table 4.1.

4.8 Summary

This chapter has addressed problems related to the issue of estimation of space-
craft attitude using extended Kalman filtering. In Section 4.1 the basic assump-
tions behind a discussion of the Kalman filter were outlined. Section 4.2 sepa-
rated the Kalman filter into a prediction and an update step and the equations for
the linear Kalman filter were presented.

In Section 4.3 the extension of the Kalman filtering to nonlinear problems
was explored. This lead to the extended Kalman filter (EKF). A number of prob-
lems associated with the use of the EKF were discussed, including inconsistency.
Section 4.4 presented a formulation of the Kalman filter in terms of information
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Table 4.1: Summary of Kalman filter. Linearizations and transition matrix are
defined in the text above.

State prediction úú�û�üý+þ ûÅÿ ì�� þ üý�þ ûÅÿ é�� þ ûÅÿ é ûÅÿ
Covariance prediction � Ü�� ÜW÷&Þ ì�� þ û Ü é û Ü�÷&Þ ÿ � Ü�� Ü � í þ û Ü é û Ü�÷&Þ ÿ
	�� ÜW÷CÞ
State update  � ý Ü�� Ü ì�� Ü����#Ü���� þ üý Ü�� ÜW÷CÞ é û Ü ÿ��

ü� Ü�� Ü ì � ���� Ü�� Ü�  ��! ���� Ü"� Ü !$#&% ü� Ü�� ÜW÷CÞ
ü' Ü�� Ü ì ü' Ü"� ÜW÷&Þ 	 � ' Ü"� Ü

Covariance update � Ü�� Ü ì � Ü�� ÜW÷CÞ � � Ü�(�Ü � Ü�� Ü�÷&Þ
Kalman gain � Ü ì � Ü"� ÜW÷&Þ ( í Ü*) ( Ü � Ü�� ÜW÷CÞ ( í Ü 	�+ þ-, ÿ/. ÷&Þ

matrices which demonstrates the temporal fusion of data. The role of the pro-
cess model was examined. It was shown that the process model allow data from
previous measurements to be incorporated into the current estimate, thereby al-
low temporal fusion of data. It was shown how predictions and observations are
treated equally in the Kalman filter, and it was argued that an accurate process
model may supplement sensors. In this way local observability problems may
be avoided.

In practical implementations the prediction model, always represent a com-
promise between accuracy and complexity. Section 4.5.1 thus analyzed the ef-
fects of approximate models. A new simple description of the errors committed
by approximation was introduced, and the influence on the noise statistics was
quantified.

In Section 4.6 the problems of preserving normalization of the quaternion and
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covariance singularity were addressed. It was argued that a conventional EKF
approach is problematic due to a covariance singularity. The covariance singu-
larity was demonstrated using the exponential series in the quaternion, which
was truncated to first order. The first order approximation was finally used in
Section 4.7, which presented a filter, which avoids the covariance singularity by
using a three dimensional first order approximation to the correction quaternion
calculated by the Kalman filter. The correction represents a rotation in the body
frame.





Chapter 5

Ørsted Attitude Estimation

The original motivation for the work presented in this thesis was given by the
attitude control system (ACS) for the Ørsted small satellite. The Ørsted mis-
sion requires Earth-pointing three-axis control, which in turn demands that the
spacecraft attitude determination system (ADS) provides accurate attitude of the
vehicle. This chapter presents the design and evaluation of the ADS developed
for Ørsted. Results from the on-board implementation are discussed in Chap-
ter 6. The main results in this chapter have been published in Bak (1996), Bak et
al. (1996a), and Bak (1998a).

The chapter is divided into six sections plus conclusions. Section 5.1 presents
the motivation for addressing the Ørsted problem and describes the underlying
problems. Section 5.2 addresses the requirements to accuracy and fault toler-
ance. The implications for estimator design are discussed. Section 5.3 takes
the first step in the development of the ADS. A simulation model is described
that simulate the motion of the satellite as accurately as possible over a set of
test cases. Section 5.4 discusses the estimator design, and two different process
models are presented. Section 5.5 presents the results for a set of scenarios rang-
ing from a nominal pointing to a fault situation. Finally, Section 5.6 presents an
error budget which combines the effects of a number of systematic errors into an
estimate of the predicted performance of the magnetometer based ADS.

5.1 Motivation and Related Work

Low-cost launch opportunities and technological advancements make small
satellites interesting for doing space experiments within an affordable cost and

69
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schedule envelope.
Few if any small satellite missions to date have been able to demonstrate the

ability to perform high profile science missions. One of the main obstacles is
the lack of proper attitude determination and control. Free tumbling spacecraft
have only few useful mission capabilities. Passive methods such as gravity gra-
dient, solar and aerodynamic stabilization have successfully been used on small
satellite missions but do not provide the needed accuracy to facilitate mainstream
scientific missions.

The Danish Ørsted small satellite mission is the first Danish attempt to built
a satellite. The plan is to conduct relevant science within a limited budget while
including basic services such as attitude control. In terms of functionality and
science scope the objectives are high. In order to minimize ground control the
attitude control subsystem must be inherently fault tolerant and support a number
of mission modes. On the other hand a simple ACS design is desired in order to
keep within a low budget and limited computational resources.

For simplicity the attitude estimation is based on the available science mea-
surement package. Traditional gyro packages are omitted relying on increased
on-board processing capability for integration of the equations of motion.

5.1.1 Introduction to the Ørsted Satellite

The Ørsted satellite was launched by a Delta II launch vehicle February 23, 1999
from Vandenberg Airforce base in California, USA. The main science mission
is related to a precise global mapping of the Earth’s magnetic field. Science
operation is planned for a period of 14 months.

The science measurements will be used to improve the existing models of
the Earth’s magnetic field and to determine the changes of the field. Equivalent
measurements have been made by the American MAGSAT satellite (1979-80).
With the new data from Ørsted it will be possible for the first time ever to obtain
a global survey of the changes of the field.

Variations of the strong field from inside the Earth are included in the studies.
Also the weaker, rapidly varying, field resulting from the interaction between the
ion/particle streams from the Sun (the solar wind) and the Earth’s magnetosphere
are studied. The transfer of energy from the solar wind to the magnetosphere and
further down to the lower layers of the atmosphere will also be studied. All of
these studies will benefit not only from the magnetic field measurements but also
from the measurements of the flow of energetic particles around the satellite.

The Ørsted budget for development and operation was 120 million Danish
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Figure 5.1: The Ørsted satellite. The main body is 600 � 450 � 300 mm and the
total weight is 62 kg. Instruments are placed on the 8 meter boom.
The vector magnetometer is placed in the gondola.

Kroner or equivalently 18 million USD (this amount exceeds typical small satel-
lite projects because it includes a relatively large amount of basic research). The
fundamental operational parameters of Ørsted are summarized in Table 5.1.

The ACS is an integrated part of the satellite bus and implemented in the
general command and data handling of the satellite. Two 16 MHz 80C186
processors provide on-board data handling with partial redundancy. The ACS
software is running on one of the computers and is not redundant on the other
one. Attitude control actuation is provided by three perpendicular two-redundant
electro-magnetic coils, called magnetorquers.

A science package consisting of a star camera and a magnetometer are
mounted on an instrument boom six meters from the satellite main body. The
boom is deployed after an initial detumbling phase and the three-axis attitude is
maintained with the boom zenith pointing. For a more detailed discussion of the
mission phases see Bak et al. (1996a).
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Table 5.1: Operational parameters of the Ørsted satellite. Ørsted was launched
on February 23, 1999.

Orbit Inclination 96.62 deg.
Ascending node 14:39 Local time (drifting towards noon)
Argument of perigee 224 deg.
Apoapsis 850 km
Periapsis 600 km
Nodal period 99.15 minutes
Expected lifetime 425 days

Attitude Stabilization Active three-axis and gravity gradient stabilized
Control Magnetic
Orientation Aligned with local vertical, yaw reference following

Sun
Mass Total 62 kg

Payload 13 kg (including booms and antennas)
Telemetry Downlink stations Copenhagen and Aalborg, Denmark

Transmitter S-band transmitter (2.2 GHz) and receiver (2.0 GHz)
Downlink rate 4 or 256 kbits/sec
Downlink time/orbit 6 minutes (average)

Power Nominal Power 31 W provided by GaAs solar panels
Payload usage 12 W (20.5 W with TurboRouge GPS)

Computer Main computer Two 80C186/16 Mhz CPUs
On-board storage 16 Mbyte, 13 hours of science of measurements
Software Ada developed based on formal methods

5.1.2 Measurement Package

The attitude determination is based on the measurements from the science pay-
load as summarized in Table 5.2.

The Ørsted science instruments are located on platforms separated from the
satellite main body as seen in Figure 5.1 in order to minimize the electrical in-
terference. The magnetometer, the star camera, and the Sun sensor are used
directly in the attitude determination and are addressed in more detail below.
The GPS receiver provides position fixes, which are used indirectly in updating
an on-board orbit propagation model.

The Vector Magnetometer The precision magnetometer for Earth’s field
mapping on-board Ørsted is the Compact Spherical Coil (CSC) vector mag-
netometer developed at the Technical University of Denmark. The instrument
consists of the spherical tri-axial sensor unit and an electronics box containing
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Table 5.2: Overview of the Ørsted Instruments package.

Instrument Characteristics
Vector magnetometer Compact Spherical Coil (CSC) three-axis fluxgate type

magnetometer. Stable within 0.5 nT over time spans of sev-
eral days. The instrument is build at the Technical Univer-
sity of Denmark

Star camera CCD based star sensor. Provides attitude with 2 arc-sec
pointing accuracy and 20 arc-sec accuracy about the bore-
sight. The sensor is build at the Technical University of
Denmark.

Overhauser magnetometer Measure the strength of the magnetic field. Accuracy < 5nT.
Used for calibration of the vector magnetometer. The in-
strument is supplied by the French Space Agency, CNES.

Particle sensors Measure the flux of fast electrons (0.03-1 MeV), protons
(0.2-30 MeV), and alpha-particles (1-100 MeV) around the
satellite. The instrument is build at the Danish Meteorolog-
ical Institute.

GPS Turbo-Rogue and Trimble GPS receivers provide position
information. The Turbo-Rouge is also used scientifically
to investigate the atmospheric pressure, temperature, and
humidity. The Turbo-Rouge receiver is build by the Jet
Propulsion Laboratory and supplied by NASA

Sun sensors Two sets of coarse Sun-sensors provide information about
the Sun direction. The sensors are build at Aalborg Univer-
sity.

the sensor excitation driver, the three analog magnetometer channels, sigma-
delta ADC’s and interface. The magnetometer has three sets of orthogonal coils,
which are used to compensate the ambient field to be measured. A set of three
orthogonal null field indicators sense the deviation from zero field inside the
sphere. The feedback currents to the magnetometer field cancelling coils are
measured with 18 bit resolution ADC’s and represents the field components. The
magnetometer has a linear range of 
 65.536 nT (Nielsen et al. (1990)). Mag-
netometer bias and misalignments are determined by calibration prior to launch
(and also through in-flight calibration) and available for on-board processing.
The predicted peak-to-peak noise is less than 0.5 nT.

The Star Camera The star camera (the Ørsted Advanced Stellar Compass) is a
low weight, low power CCD detector unit developed at the Technical University
of Denmark (Liebe (1995), Jørgensen (1995)). The instrument consists of a
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camera head unit with a commercial CCD detector, and a data processing unit
equipped with an Intel 486 type processor. The processing unit contains two
large star databases, which enable autonomous acquisition and tracking mode
attitude determination. In tracking mode, the tracking is based on a spherical
least squares fit between two consecutive images. The acquisition is based on
pattern recognition of the stars in the field of view. Typically 65 stars in the
field of view are used for tracking. The camera field of view is 16 � 22 deg. and
the CCD has 752 � 582 pixels. The attitude is updated at approximately 0.8 Hz
and give the attitude relative to the ECI inertial frame. The camera’s limit of
operation is an angular rate of 10 deg./minute. Sun/Moon/Earth exposure may
also cause temporary loss of attitude information. The instrument is mounted on
the boom next to the magnetometer in order to provide the highest accuracy in
the magnetometer attitude relative to the star camera. The predicted accuracy is
2 arcsec (1 sigma) perpendicular to the boresight and 20 arcsec (1 sigma) about
the boresight (Eisenman et al. (1996))

The Wide-Angle Sun Sensor A low accuracy Sun sensor provides Sun posi-
tion sensing over a near 4 0 steradian operating range. The instrument is build
at Aalborg University. The Sun sensors are comprised of eight independent
GaAs cells, each operated in short circuit mode. The cells are mounted on the
main structure in two three-axis assemblies and two single axis assemblies. The
mounting of the sensors overcomes the field of view limitations otherwise im-
posed by separation mechanism and antennas. Each of the eight Sun sensor
heads has two-redundant cells and termistors for thermal compensation. Field of
view limitations and Earth albedo make the Sun sensors fairly nonlinear and the
expected accuracy of the calibrated sensors is about 4 deg. (1 sigma) about all
three axes.

5.1.3 The Attitude Control Subsystem

The Ørsted attitude control is implemented using magnetorquers as the sole con-
trol devices. The attitude is estimated on-board using the available science sensor
suite. The nominal pointing requirements are derived from power optimization
as well as the operational cone and rate sensitivity of the star camera.

The control objectives of the ACS are related to

– Detumbling. Initially, after release from the launcher the satellite will ex-
perience a tumbling motion. The objective of the ACS is to reduce the
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kinetic energy. The satellite should be aligned with the local magnetic
field, ready for boom deployment.

– Three-axis stabilization. After detumbling the boom is deployed and the
satellite should be three axes stabilized during the remainder of the mis-
sion. The reference attitude is aligned with local vertical with boom zenith
pointing. The angular deviation from vertical should be maintained within
a 
 10 deg. (1 sigma) accuracy. The yaw reference is changing with lo-
cal solar time and should be maintained within 
 20 deg. (1 sigma). The
angular velocity is required below 10 deg./minute at all time.

– Contingencies. A number of contingency situations are foreseen, includ-
ing a boom down and a high spin rate mode. The ACS should handle these
cases autonomously and re-acquire the satellite.

– Autonomy A philosophy for the development of fault-tolerant control has
been adopted in the design of the ACS (Blanke (1995)). Autonomy is
achieved through development of attitude determination and control al-
gorithms that are reconfigurable in real time. This makes it possible to
accommodate changed mission phases, faults, and contingencies. An on-
board supervisor (Bøgh et al. (1995)) monitors the spacecraft status and
reconfigures ACS algorithms accordingly, to optimize the performance
of the system. All on-board autonomous transitions can be controlled
through up-linked, time-tagged telecommands. Further operational flex-
ibility is provided by allowing adjustments of flight software by upload as
a last resort.

A number of ACS operational modes have been identified as reflected in the
Ørsted ACS architecture illustrated in Figure 5.2.

The initial rate detumbling relies entirely on the magnetometer measurement
as a reference for damping the kinetic energy. After boom deployment the at-
titude is stabilized in three axes and three axis attitude and rate information is
determined by the ADS. The available input is data from the star camera, the
Sun sensor, and the magnetometer. An orbit model is dynamically updated from
ground based on information from the GPS receiver. The attitude control algo-
rithm determine a desired control torque that is used to compute the coil currents
based on the measured geomagnetic field direction. A general introduction to
attitude determination and control of the Ørsted satellite is provided in Bøgh et
al. (1997). Details on the fault tolerant approach to ACS design and the atti-
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Figure 5.2: The attitude control system configuration. The main components are
sensors, attitude determination, attitude control, and actuators.

tude control using magnetic actuation are given in the two Ph.D. theses by Bøgh
(1997) and Wisniewski (1997), respectively.

5.2 The Attitude Estimation Problem

The presented system seeks to increase fault tolerance by supplementing star
camera attitude estimates with attitude estimates based on magnetometer and
Sun sensor data. Estimates are provided even during anomalous periods (i.e.
camera blackouts, eclipse or sensor faults). Combined with detection algorithms
the attitude determination algorithms introduces a significant degree of auton-
omy since fault can be handled without ground interaction. Derived from the
control objectives three different estimation approaches are taken:

– Rate Estimation. The initial detumbling control law relies on the time
derivative of the magnetometer measurements in order to decrease the ki-
netic energy of the spacecraft. The attitude estimation in this mode is
hence simple estimation of the rate of change of the geomagnetic field.

– Normal Operation. After boom deployment and during science observa-
tion, the attitude and rates are estimated based on the star camera quater-
nions. In order to provide an orbit referenced attitude to the controller,
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the cameras inertial attitude estimates are transformed with orbit position
information into local attitude and rate estimates. The pointing require-
ments translate into requirements to the on-board attitude knowledge. The
pitch/roll requirement is 2 deg. (1 sigma). The yaw requirement is 4 deg.
(1 sigma). The error in the rate estimates should be below �ai h � · � Y >
rad/sec (1 sigma). With the star camera accuracy these modest require-
ments are not a problem.

– Secondary Operation. For contingency situations where the star camera
attitude is not available, a secondary operation mode is available. Situa-
tions may include high angular rates, a boom down situation and camera
blackouts due to bright objects in the field of view. The secondary opera-
tion is based on measurements from the Sun sensor and the magnetometer.
The measurements are filtered by an EKF that computes attitude and rate
estimates from the measured magnetic field and Sun vector together with
model vectors of the geomagnetic field and the Sun direction.

After boom deployment the star camera estimates the attitude with unique
accuracy provided the operational constraints of the camera are satisfied. Prior to
boom deployment and in situations with faults or temporary blackout, alternative
sources of information are needed to maintain adequate attitude information for
control.

Rather than using sensor fusion techniques where all sensors are combined in
one algorithm, the problem was separated into two parallel problems. The nor-
mal operation problem based on the star camera, and the secondary operation
problem where the attitude estimates are based on the Sun sensor and magne-
tometer.

This decision has several consequences:

– Reduced complexity. In the nominal situation where the star camera is pro-
viding the attitude, the on-board computation is simplified significantly.
The complex Kalman filter algorithm is only a backup.

– Parallel development. The two different algorithms may be developed in
parallel. As design and tests of the nominal situation were scheduled prior
to the different backup solutions, a simple normal operation mode was
desirable.

– Two independent on-board estimates. Two estimates are available on-
board for fault detection and integrity monitoring.
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– Decreased accuracy. A decrease in the achievable accuracy of the sec-
ondary algorithm must be foreseen when compared to a fused solution,
where the accurate star camera updates could have been used to maintain
an accurate filter model.

The tradeoff has been between decreased accuracy of the attitude solution and
the advantage of having two redundant algorithms.

This thesis in particular focus on the secondary operation attitude estimator,
and on the situation with only magnetometer data.

5.2.1 System Design - Secondary Operation

As outlined in the previous chapters an attitude estimator based on magnetometer
measurements is a complex algorithm. Besides the core estimator algorithm, a
number of support functions are required as outlined in Figure 5.3.

Figure 5.3: Conceptual diagram of the Ørsted attitude estimation in secondary
operation. Besides the core estimation algorithms in observational
update and propagation, additional support functions are required.
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Integrity Monitoring Faulty measurements and possible non-convergence of
the filter must be detected autonomously on-board in order to achieve as high a
level of autonomy as possible with simple means.

The variance of the Kalman filter innovation sequence is assumed zero mean
and the variance is given by the elements of ø¶Ã   ¯   Ã Õ   £�² ¯´Ä�³ ú . This is ex-
ploited for the practical purposes of sensor failure detection and outlier detection
of the measurement data. During operation of the filter, the innovation sequence
is monitored and compared to this description. If the description is violated con-
sistently, the filter process is declared faulty.

Innovation monitoring is also used for outlier checking of the measurements
before they are processed by the filter. If a measurement residual is greater than
the 3 1 value computed by the filter, it is not processed. However, if this happens
frequently, the cause may be either a sensor failure or a filter divergence problem.
In the latter case, it is critical not to reject large residuals, since they are the only
means of correcting the divergence. In the Ørsted control system, an approach
has, however, been taken based on the simple 3 1 in order to simplify the detector.
The test levels may be modified from ground as flight experience is gained. A
more elegant approach would be based on an online statistical test as outlined in
Section 7.4.1.1 but this was rejected as part of a general software reduction.

Orbit Model Ørsted is equipped with on-board GPS receivers, which, in the
nominal situation, determines a state vector, consisting of position and velocity.
The raw GPS measurements are osculating elements and hence not suited for
simple propagation, which is based on mean elements. Test have shown that
using raw GPS measurements in the orbit propagation resulted in errors of 12 km
after just 16 hours (Bak (1995)).

An orbit model concept is therefore adopted based on the assumption that
the GPS is not directly available for on-board ACS processing. The orbit prop-
agation on-board is based on simple Kepler propagation with mean elements
uploaded from ground every seven days. The model incorporates the primary

® Â
gravitational perturbational effect on the orbit plane, which is represented by a
constant drift rate for the ascending node and the apsidal line as a function of
time.

The upload parameters are estimated on ground using a least square fit over
seven days of propagated orbit positions from the high accuracy ground prop-
agation model. The model provides an estimated accuracy of 15 km (1 sigma)
over a seven day period (See Appendix B).
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Sun-Line Model The Sun-line reference model follows the same rational as
the orbit position modeling with the Earth as an object rotating about the Sun.
A unit vector pointing towards the Sun center is given in the local orbit frame.
New elements may be uploaded from ground but this is not foreseen as the drift
in the elements is insignificant.

Magnetic Field Model The on-board magnetic field model is a spherical har-
monics approximation to the Earth main magnetic field. The model is of order
eight, based on IGRF coefficients updated to epoch 1999 (see Appendix B). As
new magnetic field models become available as part of the Ørsted science mis-
sion, new parameters may be uploaded and used in the on-board field model.

Sensor Alignment and Preprocessing The sensor measurements are prepro-
cessed before being used in the estimator. The Sun sensors are calibrated using
a five-point calibration curve to reduce nonlinearities in the sensor cosine. The
calibration is based on the mean cosine error and it does not remove inaccuracies
in the mounting of the detector cell on the sensor head. The result is a normalized
Sun-line vector.

A linear compensation of the magnetometer is carried out that effectively
removes axis non-orthogonality, sensor bias and sensitivity. The sensor prepro-
cessing also includes outlier removal, fault detection, and alignment of the dif-
ferent sensor sources. A schematic overview of the instrument alignment relative
to the principal frames is given in Figure 5.4.

It is clear from the figure that the alignment of the Sun sensor is relatively
fixed, as it is mounted directly on the spacecraft main structure. The magnetome-
ter, however, is mounted on the gondola, and a transformation from gondola to
main body is needed. Alignment of the instruments relative to the main body is
determined prior to launch within 1 deg..

An in-flight calibration of the gondola rotation relative to the main body is
planned. Assuming that the gondola to body rotation is unknown, but fixed,
measurements from the Sun sensor and the star camera may be used to solve
for the gondola rotation. Given Sun sensor measurements with a large enough
angular separation and the corresponding directions based on the star camera
measurements the relative rotation of body relative to gondola may be found by
solving Wahba’s problem (Wahba (1965)) using eg. the SVD method.

Mass properties are calibrated prior to launch with an accuracy of
1 % (2 sigma) for the satellite configuration with the boom stowed.
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Figure 5.4: Ørsted alignment tree.

The next section begins the task of developing and analyzing the ADC
through the identification of a simulation model.

5.3 Simulation Models

An accurate simulation (or truth) model is significant for the development of an
ADS. The simulation model replaces the real physical system with a simula-
tion, which realistically models the behavior of the satellite system. It yields the
appropriate observations, which would be acquired by a given sensor. Within
this methodology, a candidate system is designed, tuned and its performance as-
sessed with respect to the simulation model. Since the data is simulated the true
state of the spacecraft is known and the filter statistics can be easily calculated.
With an accurate simulation model, the results obtained from it should apply to
the actual spacecraft with a high degree of confidence.

Results from computer simulations integrating models of the sensors, the
spacecraft, and its on-orbit environment are presented to demonstrate projected
performance capability. Figure 5.5 gives an overview of the simulation model
developed for Ørsted.

The simulation model is a powerful tool for system design only if it models
the behavior of the true system with a high degree of accuracy. Sections 5.3.1 and
5.3.2 describe the properties of respectively the dynamics and sensor models. A
description of the environmental models used in the simulation model are given
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Figure 5.5: Conceptual diagram of the Ørsted simulation model.

in Appendix B.

5.3.1 Spacecraft Truth Model

The spacecraft simulation model includes the attitude dynamics and kinemat-
ics as described in Chapter 2. The dynamics are based on moments of inertia
that may be changed in order to simulate different scenarios. The nominal (cali-
brated) principal inertias are given by

� ¸ � ø � �� � ·32 i � � �� � ·32 i ò �� � · i54�� h 4
� 

(5.1)

External disturbance torques include gravity gradient, magnetic disturbances,
and aerodynamic drag. Moreover, control inputs are simulated. The spacecraft
as a flexible body was addressed in (Bak et al. (1995)) and it was concluded that
with a nominal boom, the lowest boom vibration mode would be 1.5 Hz. As this
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is well outside the bandwidth of the ACS the satellite has been simulated as a
rigid body.

Overall the modeling provides relevant disturbance torques and significant
stochastic errors. The simulation model also enable tests of the effects of sys-
tematic errors in the filter model.

5.3.2 Sensor Model

The sensor simulation model simulates the observations, which are made by a
sensor fitted to the spacecraft. The properties of these sensors are chosen to
closely agree with the sensors used on the actual spacecraft.

The Sun vector is computed from the Sun sensor measurements where the
temperature dependency has been compensated using a temperature measure-
ment. The simulation of the Sun sensors also include the effect of Earth albedo
and the nonlinearities introduced by the field of view limitations and cosine de-
viations of the sensor elements. The model is based on the results from the
calibration that was carried out prior to launch.

The errors associated with the magnetometer are modeled using the instru-
ment data. The star camera measurements were assumed ideal.

5.3.2.1 Geomagnetic Field Truth Model

A simulation model of the magnetic field is important for the modeling of mag-
netometer measurements. In order to get realistic predictions of the estimator
accuracy and performance the field model must reflect the magnetic environ-
ment with a certain degree of accuracy. The issue is not so much the accuracy
of the simulation model itself, but the relative accuracy of the on-board refer-
ence model and the simulation model. We want the errors in the comparison
of the magnetic field measurements generated by the simulation model and the
on-board reference vectors to reflect the situation in space.

An obvious first choice when selecting a simulation model would be a high
order IGRF. It is, however, possible with flight data, to show that such a model
does not necessarily represent the true situation.

In order to analyze the problem it is assumed that measurements from Freja
(see Chapter 7) represent a situation similar to what will be experienced by
Ørsted. Freja data allow us to investigate the accuracy of an on-board 8th or-
der reference model relative to the true field. In order to avoid using attitude
information, the analysis is carried out based on magnitude data. In addition to
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Figure 5.6: Magnitude discrepancies between IGRF field models. (a) Freja data
and results from an 8th order model. (standard deviation 86 nT). (b)
Discrepancy between 8th and 10th order models (standard deviation
28 nT).

comparing the eight order model with true data, we also make a comparison with
an IGRF model of higher order (10th order) to see if such a model would be an
appropriate simulation model. The results are shown in Figure 5.6.

It is clear from the discrepancies in Figure 5.6 that a higher order model not
necessarily represent the best simulation model when compared to the 8th order
model used in the ADS implementation. The variance of the discrepancy in
Figure 5.6.a is significantly higher than the variance in Figure 5.6.b. In addition
the correlation time is changed. When comparing the two results, it is important
to note that in the comparison of the 8th order model with the Freja data, errors
in the prediction of the orbital position is included. The comparison of the 8th
order and 10th order IGRF is based on the same orbit position.

Due to the clear difference in errors, the 10th order IGRF model has not
been used in the modeling of the geomagnetic field in the simulation model.
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The simulation model used in the Ørsted estimator design, is based on an 8th
order model, but it is augmented with a noise representation of the discrepancy
in Figure 5.6.a.

To generate an error model for the results in Figure 5.6.a the errors were
analyzed by looking at the auto-correlation and corresponding power spectral
density (PSD). The PSD plot is shown in Figure 5.7.
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Figure 5.7: Power spectral density plot for the magnitude error in Figure 5.6.a.

The power spectral density curve in Figure 5.7 is approximated by a second-
order Markov sequence, which provides a model of the oscillatory random phe-
nomena in Figure 5.6.a. Data are fitted using subspace identification (Overschee
and Moor (1996)). The result is a colored noise model of the form¤ » ¯´Ä £ · ³ � ¡» ¤ » ¯´Ä�³ £ØÙª»�6 ¯´Ä�³ (5.2)7 » ¯´Ä�³ � ÃÓ» ¤ » ¯´Ä�³ (5.3)

where ¡´» ÆÓÌ Â � Â , Ù¦» ÆÓÌ Â � » Ö Ã » ÆÓÌ » � Â , and 6 ¯´Ä�³ is a white Gaussian
noise sequence with

©±ª 6Ô¡86ÃÄ Õ ¬ � ü�¡[¨ . The output of the noise model, 7 » ¯´Ä�³ ,
represents the magnitude disturbance, which must be added to the output from
the field model in order to reconstruct the (magnitude) error characteristics of
Freja data.

It is assumed that the magnitude errors are representative for the errors also
perpendicular to the field vectors. Two additional noise sequences, 7 Â ¯´Ä�³*Ö 7 Î ¯´Ä�³
similar to Equation (5.2) are constructed and added perpendicular to the IGRF
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field vector. The result is a field simulation model described by

¿ Ï ø ¯´Ä�³ �ö¿�¡ ¯´Ä�³ £ ¿�¡ ¯´Ä�³
¾*¿ ¡ ¯´Ä�³ ¾ 7 » ¯´Ä�³ £ ¿�¡ ¯´Ä�³ �ç7

¾*¿ ¡ ¯´Ä�³ ¾ 7 Â ¯´Ä�³
£ ¿�¡ ¯´Ä�³ �ª¿�¡ ¯´Ä�³ �ç7

¾*¿�¡ ¯´Ä�³ ¾ Â 7 Î ¯´Ä�³ (5.4)

where ¿�¡ is the output from the 8th order IGRF model, and 7 is a basis vector in
the ECEF coordinate frame.

The result is a simulation model vector (Equation (5.4)) that preserve magni-
tude noise characteristics to first order while adding angular errors of the same
magnitude and noise characteristic as the original magnitude error from Freja.
Figure 5.8 shows the typical discrepancy and angular error between the simula-
tion model vector and an 8th order model.
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Figure 5.8: Discrepancy IGRF 8th order model and simulation model. (a)-(c) x,
y, z components of error in ECEF coordinates (standard deviation:
50 nT). (d) Angular error (standard deviation: 0.08 deg.).

The last section has described the simulation model, which has been used to
design, develop and test different ADS designs. The rest of this chapter considers
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the development of the ADS. The core estimation algorithms have already been
discussed and it remains to discuss the details in the implementation, and to
demonstrate and test the capabilities of the attitude estimation

5.4 Estimator Design

In this section the design of the estimator is established and its performance
is evaluated with respect to the simulation model. The development process is
iterative and requires a large amount of simulation and evaluation of models.
The presentation here, highlights some of the more important steps taken in the
design

– Process model. Two different process models are evaluated. The process
model and the corresponding noise model are treated. The tradeoff be-
tween model complexity and performance is discussed.

– Sensor model. The white Gaussian assumption on the sensor noise is dis-
cussed on the basis of an analysis of magnetic field models.

– Evaluation. The estimator designs are evaluated and the performance pre-
dicted.

The estimator design will focus on the ADS based on magnetometer measure-
ments only. Inclusion of Sun vector measurements was discussed in Bak (1994).

5.4.1 Process Models

The model selection plays an integral role in the design of a model based
estimator. The main problem is the difficulty of obtaining an accurate spacecraft
dynamic model. The dynamic model presented in Chapter 3 is sensitive to
uncertainty in the spacecraft moments of inertia and the external torque input.
This problem has been recognized in previous work. Psiaki et al. (1990)
suggested modeling the external torques as a random-walk process while Gai
et al. (1985) used a first-order Markov process to model rate disturbances. In a
recent paper (Oshman and Markley (1999)) the dynamic model was completely
omitted, but the spacecraft angular acceleration was modeled as a first-order
Markov process.

The choice of process model for Ørsted was based on the following observa-
tions
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– The satellite is gravity gradient stabilized. The influence from gravity gra-
dient may be small at the reference (zenith pointing), but when the satellite
moves away from local vertical, the influence from the restoring gravity
torques becomes significant. For large angular deviations from local ver-
tical, the gravity torque is larger than the possible control torques.

– The main uncertainty associated with explicit dynamic modeling is due to
the uncertainty in the moments of inertia. The inertias are calibrated prior
to launch to an accuracy of 1 % (2 sigma). Only the satellite configuration
with boom stowed is calibrated, and the boom deployed inertias are thus
more uncertain.

– An in-flight calibration of the moments of inertia based on star camera
attitude in combination with a control torque excitation is planned. The
dynamic model may be adjusted accordingly in-flight.

– As Ørsted is a geomagnetic research satellite, the residual magnetic mo-
ment in the structure is tightly controlled, and the dominating external
torques, after the gravity gradient, is that caused by aerodynamic drag.
The uncertainty involved in modeling of the drag is significant due to the
complex structure of the boom and the uncertainty of atmospheric density.

Following the observations above, the process model is designed with explicit
dynamic models, which include gravity gradient. The problem remaining is to
model external torques and inertia uncertainty. Selecting a filter model which
yields optimal results is not a trivial process, as a more complex filter model with
more states might not lead to better performance because of the bias/variance
tradeoff discussed in Chapter 4. This motivates an approach where two models
are examined:

– P1 model. This model includes the gravity gradient explicitly, but all ex-
ternal disturbances and inertia uncertainties are modeled as a white noise
process. A purely Gaussian model of the disturbance is selected, more
because of its mathematical convenience, than its ability to accurately de-
scribe the estimation errors.

– P2 model. In addition to explicit modeling of the gravity gradient torque,
this process model includes a stochastic modeling of the external torques
as a Markov process. Based on an investigation of the typical disturbance
torques environment, the disturbance is modeled as an exponentially cor-
related process driven by zero-mean Gaussian noise.
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The first of the two models is clearly an advantage from an implementation point
of view, as it reduces the complexity of the filter. The penalty is that the process
noise must be increased to account for unmodeled disturbances.

The P1 model The P1 process model follows the equations of motion as de-
scribed by the Equations (3.30), (3.37) and (3.39) and the perturbation state vec-
tor is given by m ¤ ) »o�A@ m±4mÓwdB (5.5)

No explicit modeling of the aerodynamic drag disturbance is included due to the
complexity of such a model. This may lead to reduced accuracy, but the price
may be acceptable as long as the results are within specifications, and the filter
is consistent. The selection of process noise associated with P1 is discussed in
Section 5.4.2.

The P2 model This model augment the state vector with extra states to allow
the filter to estimate the influence of the aerodynamic drag torque input. The
investigation of the drag torque environment is based on a series of simulations
with the simulation model. A typical example of the aerodynamic drag torque
is shown in Figure 5.9. For comparison the rate influence from gravity gradient
is approximately (Wertz (1978))

Î:9Ð æ ¯·õ »t»o� õ ÎtÎ ³ � Û Ë i h � · � Y > Nm at a �Ê� · �
deg. offset from local vertical.

As the satellite body coordinate system in Figure 5.9 is approximately aligned
with LVLH frame, the disturbance, � ¾ (pitch torque) dominates, which is not
surprising as this represents the torque resulting from aerodynamic drag on the
boom structure. Due to the relative low inertia about the ; axis, also the torque�=< is significant. The disturbance in 7 is small as this axis is nominally aligned
with the velocity vector. The periodic component of the signals is correlated with
the orbital period and caused by the increase in atmospheric density at perigee.

The aerodynamic drag disturbance is dependent on the attitude of the satel-
lite. Given a 90 deg. rotation in yaw, the dominating disturbance would be in7 rather than > . To allow for this attitude dependence to be expressed in the
model, the aerodynamic drag is modeled in the orbit frame. The aerodynamic
model output is rotated to the body frame using the a posteriori estimate of the
attitude prior to inclusion in the dynamic model. Allowing the attitude to dis-
tribute the drag along different axis does not include the changes in the drag
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Figure 5.9: Aerodynamic drag torque in the spacecraft body frame. The con-
trol system keeps the satellite within 
?4 deg. from local vertical with
a maximum yaw deviation of 20 deg.. The > axis is approximately
perpendicular to the orbit plane.

torque due to changing ram surface. The flexibility of the estimation process
will allow tracking of these changes to a certain degree.

Given the low value of the torque component along the velocity vector, this
component is assumed zero, and is omitted from the model.

The aerodynamic drag disturbance is clearly not Gaussian. As a first ap-
proximation the rate disturbance is modeled as a low frequency disturbance rep-
resented by an exponentially correlated process driven by zero mean Gaussian
noise. Using this approach the following first-order decoupled Markov process
model is established || k  � ¯lk�³ ���A@ Y »  � ¯lkt³ £�á � ¯lk�³ (5.6)

where @ Æ¢Ì Â � Â is a diagonal matrix of positive time constants@ µ
diag

¯ �V» Ö � Â ³ (5.7)

where ��¡ is the correlation times for the orbit referenced components of aero-
dynamic drag model. The á � is a zero-mean white Gaussian noise vector with
power spectral density defined by ¨ � �ä�CB�@ (5.8)

where B � diag
¯ 1 Â� » Ö 1 Â� Â ³ . The parameters �b¡ and 1 � ¡ are determined based on

an analysis of the autocorrelation for a number of Monte Carlo simulations of
the aerodynamic drag in the orbit frame.
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It is clear that for large angular deviations from local vertical, the aerody-
namic torques will change significantly, and it is hence necessary to restrict the
analysis to a set of scenarios, which are close (<20 deg.) to local vertical. These
all represent realistic situations for the satellite in normal operation.

Different yaw references would also influence the drag model, and in such
cases new parameters might be up-linked. This representation is of cause some-
what restricted and it will slowly degrade and problems may arise when large
angular motion is considered.

The two states described by Equation (5.6) are augmented to the state vector
and the estimates of  � are added in the dynamic equation. The augmented state
vector for the P2 model is given bym ¤ ) Â � �� m±4mÓw �

� 
(5.9)

which has dimension eight. Adding two extra states adds to the complexity of the
filtering process, and the tradeoff remains between accuracy and complexity. A
more complex second order Markov model has been investigated, but was found
not to give satisfactory results.

This section has described two different process models for the system. The
P1 model assumes a simple six dimensional state space representation, which
does not explicitly include aerodynamic drag. The P2 model include estimation
of the aerodynamic drag influence by augmenting the state vector with two extra
states.

5.4.2 Process Noise Models

Process noises take account of all the discrepancies between the nominal process
model and the actual behaviour of the spacecraft. They can be classified as two
different types

– Disturbances which act as input and include errors in the coil currents and
aerodynamic drag.

– Noises that act on satellite parameters (in this case moments of inertia) as
a result of the actual value of the parameters being unknown.

– Stabilizing noises. These are used to compensate for other unmodeled
error sources like linearization. Often these noises have no clear physical
basis but are required to ensure successful filter operation.
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The process noise models are for the two process models are described in the
following.

Input Noise The coil currents in the torquer coils are measured directly and the
measurements are assumed corrupted by additive, zero mean uncorrelated noise
sources, which have a Gaussian distribution. The corruption is due to sampling
and resistor tolerances. Misalignment of the coils is difficult to quantify, and is
assumed negligible as the coils are an integral parts of the satellite structure.

The influence of aerodynamic drag in the P1 model is compensated for by
increasing the input noise variance. In this way the simplicity obtained by not in-
cluding explicit aerodynamic modeling is traded against increased process noise.
The noise on the three angular velocity components is assumed uncorrelated and
the spectral density given by¨�D � diag

¯ 1 ÂD » Ö 1 ÂD Â Ö 1 ÂD Î ³ (5.10)

As the P2 process model include the aerodynamic drag effects explicitly, the
required injection of input noise is lower as for the P1 model. Under the assump-
tion that the aerodynamic modeling is perfect, the P2 input noise set to zero.

Parameter Noise The second type of process noise affects the spacecraft pa-
rameters. The only parameters in the process model, which are uncertain are the
moments of inertia in the dynamics, and the correlation time in the aerodynamic
modeling. The modeling error due to errors in the moments of inertia has an
effect on the satellite dynamics propagation. The influence is analyzed in the
following.

The moments of inertia are calibrated prior to launch to an accuracy of 1%
(2 sigma) in all three axes. The inertias for the satellite configuration with boom
deployed is then extrapolated based on inertia information for all structural ele-
ments. It is assumed that this will result in an increase in the uncertainty to 2%
(2 sigma).

Assuming that the angular velocity is represented in the principal frame, and
leaving out control input, the dynamics (Equation (3.37)) may be rewritten in
scalar form as Æö »o�FE�» ö Â ö Î � Ä E�» ô Â ô Î £®� D »Æö Â �FE Â ö Î ö » � Ä E Â ô Î ô »V£®� D ÂÆö Î �FE Î ö » ö Â � Ä E Î ô » ô Â £®� D Î
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where � D ¡ is process noise contaminating the process,
Ä � Ë�� _ � Î is the gravity

constant and E » � õ ÂtÂ � õ ÎtÎõ »t» E Â � õ ÎtÎ � õ »t»õ ÂtÂ E Î � õ »t»¶� õ ÂtÂõ ÎtÎ (5.11)

where
õ ¡ ¡ are the principal moments of inertia.

As a result of the uncertainty in the calibration of the moments of inertia, theEÔ¡ parameters used in the filter process model will deviate from the true parame-
ters. Systematic errors like this cannot directly be modeled using Gaussian white
noise processes. One possibility is to estimate them as part of an augmented state
vector (see the Freja case in Chapter 7). In the Ørsted case, the systematic ef-
fects due to the E ¡ parameter errors are attempted compensated by increasing the
variance of the process noise. Combined with a possible in-flight calibration of
the inertias, this reduces the complexity of the model.

The translation from a systematic error in the inertia parameters into covari-
ance is not really well defined. The 2% variance on the inertia matrix diagonal
elements is transformed into the corresponding variance the for the 1 ¡ parame-
ters, and a square matrix describing the squared uncertainties in the parameters
is defined by ¨HG � Ä
I diag

¯ mJE Â » Ö mJE ÂÂ Ö mKE ÂÎ ³ (5.12)

where
Ä I

is a tuning parameter. Once the variance has been established on the
inertias, the noise acting on the angular rate state is then obtained by a transfor-
mation into the state space using the noise input matricesÙ¥ � diag

¯ ö Â ö Î Ö ö Î ö » Ö ö » ö Â ³ (5.13)Ù � � diag
¯ � ô Â ô Î Ö � ô Î ô » Ö � ô » ô Â ³ (5.14)

The spectral density of the rate noise due to uncertainty in the inertias is then
given by ¨ D ¡ � Ù¥W¨ I Ù©Õ¥ £ØÙ �c¨ I Ù©Õ � (5.15)

The noise description in Equation (5.15) is dependent on the actual state of the
system. Intuitively the error committed in the state propagation must be small
for small rates while larger for faster motion of the satellite. This intuition is
reflected in the covariance in Equation (5.15).
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Stabilizing Noise Finally it is necessary to inject additional stabilizing noise
terms onto the attitude and rate states of the spacecraft. There is no physical
basis for introducing a quaternion noise term, but it is included to compensate
for inadequacies in the propagation of the state.

The combined noise descriptions for the P1 and P2 process models are now
given by ¨ ) » � @ ¨ I ã �� ¨ D ¡ £<¨ D £6¨ D I B (5.16)

¨ ) Â �
�� ¨ I ã � �� ¨ D ¡ £6¨ D I �� � �CB�@

� 
(5.17)

where ¨ I ã and ¨ D I are diagonal stabilizing process noise parameters. These
parameters are found empirically, selected so that the ADS yields consistent es-
timates across a wide range of operational scenarios. The intention is to choose
the minimum value of process noise such that the filter is consistent across all
the scenarios produced by the simulation model (whose properties vary from
low rate tumbling to stiff three-axis stabilization). The scenarios also include
simulation of the systematic errors (inertia errors).

Monte Carlo simulations were set up focusing on the start of mission sce-
nario, which restricts the orbital plane, the aerodynamic density and the refer-
ence attitude. The following systematic effects were included in the simulation
model

– Inertia variations, 2% (2 sigma) variation in the simulation model inertias.

– Active control disabled/enabled.

– Initial attitude 90 yaw 
 · � deg. (1 sigma), nadir pointing 
 · � deg. (1
sigma).

– Aerodynamic drag, 10% deviations (1 sigma) from nominal atmospheric
density.

– Mean anomaly and perigee was randomly chosen to allow all local geo-
magnetic fields and time of day to be simulated.

– Residual magnetic moment, 
 �ai54 Am Â (1 sigma).

– Control moment rotation, 
l� deg. (1 sigma).
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Different realization of the stabilizing process noise were tested on 20 Monte
Carlo simulations based on the input above, and the process noise parameters
were chosen that gave the best and consistent results over all 20 scenarios. The
number of Monte Carlo simulations has been kept low in order to simplify the
simulation time. This reduces the confidence in the results. The simulations are
only are used for filter noise parameter adjustment and the number of Monte
Carlo simulations reflects the confidence in the simulation model. The noise
parameters may have to be adjusted according to the real flight environment.

The resulting noise parameters are summarized in Table 5.3. The focus in
the selection of the noise parameters was not on initial convergence. This was
addressed in separate simulations as presented below. As the process noise pa-
rameters were determined based on start of mission scenarios, re-adjustment may
be required during the mission to allow for e.g. changes in the reference attitude.

5.4.3 Sensor Model

The sensor model is adopted from Section 4.7.3£   � � ¯ ¤   Ö8k   ³ £�â  � ± ¯
5
  ³ ¿   £¤â   (5.18)

The Kalman filter assumes that measurement noise is zero-mean and Gaussian.
If this is not the case then a shaping filter must be constructed whose input is
white noise and whose output is the observed colored noise. This filter could be
obtained by experimentally obtaining a power spectral density for the measure-
ment errors on the assumption that the true states were known.

This technique was, however, used in constructing the simulation model and
using a similar technique here would most likely remove the colored noise on the
measurements. It is problematic to carry the assumptions made in the simulation
model over into the filter design, as this would result in a filter fitted to the
simulation model. A simple approach is therefore taken that assumes zero-mean
white noise on the measurements as well as on the model error. The covariances
are given by the three by three diagonal matrices, ² ø �L1 Âø � , where 1 ø � � nT,
and ² Ú �F1 ÂÚ � , where 1 Ú �NM�� nT. The variance on the model error is somewhat
raised compared to the variance observed in Figure 5.6 to account for some of
the errors introduced by the simplified white noise model.

The final noise strengths are summarized in Table 5.3.
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Table 5.3: Parameters defining the spectral densities of the process and noise for
the two models P1 and P2 and the measurement noise covariance.

P1 Parameter UnitO
1 2 3j ~ a 0.014 0.014 2.022 kgm 
_�� � &QP )P�(&*) �SR &TP )ï�©&�) �VU &QP )P�(&*) �SR_�� W P )P�(&*) �SR &TP )ï�©&�) �VU W P )ï�(&*) ���Z rad/sec 
_���� W P )ï�(&*) ���Z &TP )P�©&�) ���B W P )ï�(&*) ���8X rad/sec 
4 � 0.3 - -0 n Y ) 
 Y ) 
 Y ) 
 nT 
0 � W 
 W 
 W 
 nT 


P2 Parameter Unitj ~ a 0.014 0.014 2.022 kgm 
_�� � &QP )P�(&*) �SR &TP )ï�©&�) �VU &QP )P�(&*) �SR_���� W P )ï�(&*) ���Z &TP )P�©&�) ���B W P )ï�(&*) ���8X rad/sec 
4 � 0.3 - -� a 900 900 - secZ z a &QP Y �(&*) ���Z &TP Y �©&�) ���&[ - Nm 
0 n Y ) 
 Y ) 
 Y ) 
 nT 
0 � W 
 W 
 W 
 nT 


5.5 Performance Analysis for Secondary Operation

The filter described in the preceding sections was tuned so that it yields consis-
tent estimates across the required range of operation. A number of these sce-
narios are presented in the following to give an indication of expected flight
performance.

The presentation below focus on selected scenarios:

– Nominal performance. Typical nominal attitude estimation performance
with satellite under control and close to nadir pointing.

– Slow yaw spin. A situation likely to occur whenever the active control is
disabled due to aerodynamic drag torques in the ; direction.

– Convergence from large initial errors. A typical scenario occurring during
satellite commissioning and after computer resets.

– Fault Scenario. Scenario where the primary source of attitude information
(the star camera) temporarily is unavailable.
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The net effects of all modeled error sources is investigated by comparing
the simulation model quantities to the corresponding estimates generated by the
filter. The difference between the estimated value and its corresponding simula-
tion model value is the actual estimation error for this quantity. As an additional
check, the errors generated in this type of analysis are compared to the standard
deviations predicted by the filter.

5.5.1 Nominal Attitude

The nominal attitude scenario focus on a situation where the spacecraft is under
active control. The attitude is initially offset by 10 deg. in pitch. The pitch angle
is gradually damped by the control system as shown in Figure 5.10.

The yaw reference in this scenario is 90 deg. (start of mission reference atti-
tude), which results in the 7 axis being approximately perpendicular to the orbit
plane. The angular velocities are nominally zero in > and ; , while the nominal
rate about the 7 -axis is approximately · � · � Y Î rad/sec.

P1 Model Typical nominal attitude estimation performance for the P1 model
is shown in Figure 5.11.

The error in attitude estimates, represented by pitch, yaw and roll angles as
well as errors in the angular velocity are shown. Standard deviation (2 sigma)
bounds are calculated by taking the square root of the diagonals of the estimated
covariances and multiplying the result by two. Providing the filter is consistently
tuned, the state errors should lie within these bounds at least 2 4]\ of the time.

As a result of the tuning philosophy that focus on achieving consistent results
for all scenarios, the results in Figure 5.11 do not represent the best achievable
results for that specific scenario, but represents a compromise over a number of
cases.

The state errors in Figure 5.11 are approximately zero mean and bounded by
the two standard deviation curves and the covariance estimate is thus compatible
with the actual errors. The accuracy of the yaw estimate is lower than the esti-
mates of pitch and roll. This is due to the relative lower ; -axis inertia, and the
aerodynamic drag disturbance.

The periodic nature of the standard deviation profiles in Figure 5.11 are due
to the periodic changes in the magnetic field vector. As an example look at the
yaw errors. As the field is close to parallel to the ; -axis (over pole and south
pole) the system is not observable in yaw, resulting in an increase in the yaw
covariance estimate, see Figure 5.12.
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Figure 5.10: Nominal performance – aligned with nadir by the control system.
Pitch/roll/yaw relative to the local LVLH frame. Angular velocity
relative to inertial frame. The nominal angular velocity in > , and ;
is zero, while the 7 component is approximately · � · � Y Î rad/sec.

The aerodynamic disturbance combined with poor observability drives the es-
timation error away from zero. The relationship between aerodynamic drag and
poor observability is demonstrated in Figure 5.12. The influence of aerodynamic
drag is reduced as the attitude converges towards the 90 deg. attitude reference
where the outward normal to the > surface is approximately perpendicular to the
translational velocity vector.

The periodic variation in covariance is not as visible in the ö Â (pitch velocity)
component as in the other two directions. This is due to the fact that the 7
component of the field measurements is perpendicular to the orbit plane in this
attitude. As the field approximately rotates in the orbit plane, the variation in the
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Figure 5.11: Nominal performance. Pitch/roll/yaw and angular velocity estima-
tion error for the P1 process model. Two standard deviation profiles
are based on diagonal elements from the estimated covariance ma-
trix (dotted lines).

7 component is not as closely coupled with the orbital period as it is the case for
the > and ; components of the measurements.

The accuracy of the solution presented in Figure 5.11 is approximately;
pitch: 0.1 deg. (RMS), roll: 0.1 deg. (RMS) and yaw: 0.32 deg. (RMS).
The angular velocity estimates deviates from the simulation model with ö » Ö ö Â :�ai^M � · � Y`_ rad/sec (RMS), and ö Î : · i 2 � · � Y`_ rad/sec (RMS).

A more formal test of the consistency of the estimator is demonstrated in
Figure 5.13.

Figure 5.13 shows the normalized state estimation error (Bar-Shalom and
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Figure 5.12: Nominal performance. (a) yaw error for P1 model with standard
deviation envelope. (b) corresponding aerodynamic drag torque in
body frame, ; direction. (c) angular distance between geomagnetic
field vector and the body ; axis.
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Figure 5.13: Nominal performance. Normalized state error .
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Fortmann (1988)) a
¯´Ä�³ � ¸¤ Õ   ¥   ¯ Y »  ¥   ¸¤   ¥   (5.19)

where
¸¤   ¥   is the error in

�¤   . Under the hypothesis that the estimated covariance
and the true covariance match, the

a
¯´Ä�³

is a b Â distribution with � degrees of
freedom. The � is the state dimension. If the filter is consistent then, by the
properties of this distribution

©«ª a
¯´Ä�³W¬ �Í� . The hypothesis is accepted with

95% confidence when the normalized error is below 12.6 since for a six degree
of freedom b Â random variable c ª b Âed · �&i ò ¬ ���ai 2 4 .Figure 5.13 plots the normalized error for the nominal performance filter run
with the P1 model. Only 2.5% of the samples are outside the confidence limit at
12.6, and it is therefore concluded that the filter is consistent.

Figure 5.13 also shows that the average value lies below the line indicating
that the filter is conservative – the estimated covariance is larger than the actual
mean-squared error of the estimate. This is a direct result of the tuning policy:
a conservative design ensures that the filter is robust and consistent. The covari-
ance matrix overestimates the errors and so underestimates the accuracy of the
filter. However, it was found that adjusting the noise levels to make the filter
more accurate in this particular case led to inconsistencies in other runs.

The innovations are plotted in Figure 5.14. They are zero mean and bounded
by the standard deviations. They are clearly not white, which is a result of the
simplified noise modeling. Periodic field model errors were introduced, but the
noise model assumed a white noise discrepancy. The relative small 7 component
is a result of a generally small 7 component of the geomagnetic field in the orbit
frame.

P2 Model Results with the augmented P2 model on the same scenario are
given in Figure 5.15. The errors in yaw and pitch are reduced as a result of
the aerodynamic modeling. The reduced stabilizing state noise on the angular
velocity results in lower variance bounds and thereby more confidence in the
dynamic model.

The errors in Figure 5.15 are approximately pitch: 0.07 deg. (RMS), roll: 0.1
deg. (RMS) and yaw: 0.28 deg. (RMS). The rate errors are ö » : �ai^M<� · � Y`_ rad/sec
(RMS), ö Â : �ai Ë �'� · � Y`_ rad/sec (RMS), and ö Î : · i[�û� · � Y`_ rad/sec (RMS). The
angular velocity error are hence reduced especially in ö Â and ö Î , which are the
two axis that are most affected by aerodynamic drag.

The two estimated components of the aerodynamic drag in the LVLH are
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Figure 5.14: Nominal performance. Innovation sequence for the P1 process
model. Standard deviation profiles are based on diagonal elements
from Ã   ¯   ¥   Y » Ã Õ   ² ¯´Ä�³ (dotted lines).

given in Figure 5.16. After an initial convergence the errors are approximately
zero mean and bounded by the standard deviation bounds. The � ¾ component is
negative due to the forces acting on the boom structure, which forces the boom
backwards in the orbit plane. The error in � ¾ is · i � � · � Y`f (RMS) and the� < error is �&i Ë � · � Yhg (RMS). This corresponds to approximately 6% of the
simulated peak-to-peak aerodynamic drag torque.

It is clear from the results above that the augmented P2 process model per-
forms better in terms of accuracy than the P1 model. The model has, however,
proved to be somewhat sensitive to the aerodynamic modeling. The Ørsted re-
quirements in term of accuracy of the on-board estimator are modest, (2 deg.
(1 sigma) in roll/pitch, and 4 deg. (1 sigma) in yaw), and the P1 model is within
these requirements. One of the main problems associated with the on-board fil-
ter has been the complexity of the algorithm. The reasons included very limited
memory space and implementation in fixed point arithmetic. It was therefore
decided to proceed with the P1 model, paying the price of reduced accuracy.
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Figure 5.15: Nominal performance. Pitch/roll/yaw and angular velocity estima-
tion error for the P2 process model. Two standard deviation profiles
are based on diagonal elements from the estimated covariance ma-
trix (dotted lines).

5.5.2 Slow Drift

This scenario represents a typical situation, which is expected for Ørsted. The
attitude control is disabled resulting in a slow spin of the satellite about the ; -axis
due to the influence of aerodynamic drag.

The attitude and velocity time histories are show in Figure 5.17. The satellite
is initially offset 10 deg. in pitch and rotates slowly about the boom axis with a
rate of �&i 2 � · � Y Î rad/sec. The spin exceeds the star camera constraint, and no
star camera attitude would therefore be available in such a situation.

The performance of the P1 filter, in the slow spin case is demonstrated in
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Figure 5.16: Nominal performance. Aerodynamic drag torques in the LVLH
frame. (a), (c) estimated and true � ¾ and �=< drag torques. (b), (d)
estimation error. Standard deviation profiles are based on diagonal
elements from the estimated covariance matrix (dotted lines).

Figure 5.18, which plots the state error. The filter is clearly able to track the
spinning satellite after a short convergence period. The shape of the covariance
bounds change dramatically due to the spin of the spacecraft and the resulting
rotation of the geomagnetic field in the body frame > 7 plane. A similar effect is
naturally not seen in the ; components.

The approximate accuracy is reduced to; pitch: 0.26 deg. (RMS), roll: 0.23
deg. (RMS) and yaw: 0.8 deg. (RMS), which may be attributed to the increase in
state noise induced by the inertia uncertainty modeling. The angular rate errors
are increased to ö » Ö ö Â : �&i 2 � · � Y`_ rad/sec (RMS), and ö Î : �&i^Mý� · � Y`_ rad/sec
(RMS).

5.5.3 Large Initial Error

The ability of the filter to converge from large initial attitude knowledge errors
was investigated. This scenario will naturally occur during commissioning of the
satellite, but also during the mission whenever the ADS is temporarily disabled
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Figure 5.17: Slow spin – the satellite spins slowly about the ; -axis.
Pitch/roll/yaw relative to local LVLH frame. Angular velocity rela-
tive to inertial frame.

due to computer reset or similar events.
The initial knowledge errors were set to 40, 30 and 60 deg. in the three axes,

and the rate error was · � · � Y > rad/sec in ö Î . The time history for attitude and
rate are shown in Figure 5.19. The control system is enabled with an attitude
reference of 0 deg. yaw.

The estimation results are show in Figure 5.20. After approximately half an
orbit the error is within the 2 sigma bounds in attitude, while the rate convergence
is a little slower. The accuracy after convergence is comparable to the accuracies
achieved in the nominal attitude reference case described in Section 5.5.1.

Figure 5.20 shows errors larger than the covariance which imply that the
initial covariance is too small. The initial covariances have been selected based
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Figure 5.18: Pitch/roll/yaw and angular velocity estimation error for the P1 pro-
cess model. Two standard deviation profiles are based on diagonal
elements from the estimated covariance matrix (dotted lines).

on a b Â test for the individual initial estimation errors, such that¸>�¡ ¯ � µ � ³ Õ c¼¡ ¯ � µ � ³ Y » ¸>�¡ ¯ � µ � ³ dji (5.20)

where i is a constant representing the upper limit of the 95% confidence region
from the b Â distribution with one degree of freedom. The

¸>D¡ ¯ � µ � ³ is the assumed
deviation from the true initial state variable

ñ
, and c¶¡ ¯ � µ � ³ is the associated co-

variance.
The simulations carried out during the filter design showed convergence

problems in a few cases with angular rates above 0.05 rad/sec. This is higher
than the satellite is ever expected to experience.
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Figure 5.19: Large initial error – the satellite is offset 40, 30 and 60 deg. in the
three axes. Pitch/roll/yaw relative to local LVLH frame. Angular
velocity relative to inertial frame.

5.5.4 Fault Scenario

Numerous simulations have been performed to test a wide range of attitude- and
fault conditions. As an example, combined attitude control and estimation results
are shown in Figure 5.21 for a situation with star camera blackout.

The initial attitude is offset from local vertical by 15 deg. in pitch. The star
camera halts after two orbits (200 min). In Figure 5.21.a the control system is
reconfigured, and the magnetometer based ADS estimate is used as a basis for
control. Figure 5.21.b shows the same situation but in this case no on-board
reconfiguration is performed and the satellite starts rotating about the boom axis
due to the aerodynamic drag. This case clearly demonstrates the ability of the
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Figure 5.20: Convergence of the P1 process model. The estimate converges from
an initial knowledge error of 40, 30 and 60 deg. in the three axes.
The approximate convergence time is 0.5 orbit.

control system to reconfigure and adopt to fault situations.

5.6 Error Analysis

In order to quantify the effects of different systematic errors on the ADS per-
formance an error budget has been established. The results are obtained by
introducing a systematic error in the simulation model. All other systematic
errors are set to zero. The filter is then simulated 20 times in a Monte Carlo
simulation similar to the results in Figure 5.10 with varying initial state and or-
bital position. The RMS error is then calculated across the 20 simulations. The
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Figure 5.21: Fault scenario - camera blackout after 200 minutes. In plot a) re-
configuration is performed. In b) the attitude determination is not
reconfigured.

number of Monte Carlo simulations is again limited to 20 in order to reduce sim-
ulation time. Given that the estimated variances are normal and independently
distributed, they may be assumed to follow a b Â distribution such that

·
�
¸¹
¡Ñº¼»

�1 Â¡ Æk1 Â
� b Â ¯ � ³ (5.21)

where � is the number of Monto Carlo simulations,
�1 Â¡ is the estimated variance

of each simulation, and 1 Â is the variance of the estimates variances. As the vari-
ance of the b Â ¯ � ³ is �E� , the relative standard deviation of the estimated variance
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may be found as î GQl¸ # �E�1 Â �nm �
� (5.22)

For �ª� �]� the result is a 30% relative standard deviation.
Table 5.4 summarizes the results from six different scenarios.

Table 5.4: Error analysis, systematic errors in the simulation model.

RMS value RMS value
deg. &*) �SX rad/sec

Error source Roll Pitch Yaw � � � 
 � 
2% inertia error 0.08 0.07 0.45 0.97 0.74 1.88
Inertia axis skew 2 deg. 0.22 0.24 1.26 2.70 2.78 3.75
Atmospheric density (110%) 0.11 0.14 0.48 0.77 1.07 2.03
0.5 Am 
 residual moment 0.23 0.10 0.79 1.90 0.85 2.39
Field model error (10th) 0.09 0.08 0.44 0.86 0.82 1.92
Control moment skew 2 deg. 0.09 0.16 0.41 0.79 1.14 2.32
RSS Error 0.37 0.35 1.73 3.72 3.48 6.05

The filter is relatively insensitive to errors in the 2% error in inertias, which
is attributed to the fact that the noise covariance matrix has been increased to
include this error on the principal elements. The second item in Table 5.4 is
a rotation of the principal axis of 2 deg.. This is the main contributor to the
RSS error. Off diagonal elements in the inertia were not accounted for by the
filter and hence has a large effect on the filter state propagation. In a flight
application this effect may be reduced by an in-flight calibration of the inertias.
The 10% increase in atmospheric density does not affect the filter performance
significantly.

A 0.5 Am Â magnetic residual moment was applied in the 7 axis (pitch). This
has no effect on pitch accuracy as the torque lies in the >o; –plane. The effect of
this systematic error is observed in roll and yaw. The calibration of the Ørsted
residual moment prior to launch showed that a 0.5 Am Â residual is not likely to
occur.

In order to simulate the effect of a different field reference model the simu-
lation model was modified to a 10th order IGRF model. The use of a 10th order
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model seems to have little effect on the filter performance. As it was seen in
Figure 5.6 the variance of the 10th order model compared to the 8th order model
is lower than the variance of the field model discrepancies used in the nominal
simulation model. From this it is clear that the current measurement noise cov-
ers the systematic error introduced by using the 10th order model. The analysis
shows that filter is not sensitive to the changes in frequency of the reference field
model.

Finally a 2 deg. rotation was applied to the control moment vector, which
only has limited effect on the accuracy. This is mainly due to the relative low
magnetic control moment ( � � ÏÑÐ:� d �ai ò Am Â ) generated during the scenario in
Figure 5.10.

The root square sum (RSS) in Table 5.4 indicate an expected accuracy of
approximately 0.37 and 0.34 deg. in pitch and roll and 1.73 in yaw. The RSS
errors in angular velocity are approximately

Ë i^M �©� · � Y`_ rad/sec in ö » , Ë i[� h �· � Y`_ rad/sec in ö Â and finally error is ò i �p4� · � Y`_ rad/sec. This result is well
below the specifications in angles and marginally below the specification in the
angular rates. Even with the 30% relative standard deviations on the results does
not violate specifications.

5.7 Summary

The objective of this chapter has been to develop an ADS for estimation of three-
axis spacecraft attitude and rate information, based solely on three-axis magne-
tometer measurements.

A system for estimating three-axis spacecraft attitude and rates by Kalman
filtering of magnetometer data has been described. The Kalman filter estimates
are supplementing star camera based estimates. The two estimation algorithms
operate in parallel providing fault tolerance towards Sun sensor and star camera
blackouts. Combined with detection algorithms the presented attitude determi-
nation introduces a significant degree of autonomy.

Section 5.1 presented the motivation and problems associated with the ADS,
which has been incorporated in the attitude control system for the Ørsted satel-
lite. Section 5.2 addressed the requirements to the ADS while Section 5.3 de-
scribed the simulation model which is the basis for tests of the estimator design.
Two process models were presented in Section 5.4 and their noise parameters
specified.

In Section 5.5 the simulated results of the actively controlled, zenith pointing
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spacecraft demonstrated the ability of the estimation algorithm. With the sys-
tem described, sufficient in-flight attitude estimation accuracy is maintained for
attitude control purposes. Finally Section 5.6 presented an error budget which
combines the effects of a number of systematic errors. The attitude determi-
nation based on magnetometer data only was found effective and the obtained
accuracies were 0.37-0.34 deg. in pitch/roll, 1.73 deg. in yaw. The angular rate
accuracies were found to be ö » : Ë i^M �3� · � Y`_ rad/sec, ö Â : Ë i[� h � · � Y`_ rad/sec,
and finally ö Î : ò i �p4(� · � Y`_ rad/sec. A 30% standard deviation is estimated on
these results.



Chapter 6

Implementation and Results
from Ørsted

It is well–known that the Kalman filter in its original formulation is sensitive to
numerical inaccuracy and the extended Kalman filter has potential instability. As
the Kalman filter described in the previous chapter is developed for implementa-
tion in the on-board computer of the Ørsted satellite the numerical behaviour of
the algorithm has to be addressed. Section 6.1 gives a brief description of the is-
sues related to a fixed point Ada implementation for Ørsted. Section 6.2 presents
results from the on board ADS. The results from the magnetometer based esti-
mation of attitude are compared to star camera attitudes thereby providing an
assessment of the absolute accuracy.

6.1 Implementation

Up to this point the discussion has focused on a theoretical performance of the
Kalman filter using given truth models for simulations. It is, however, well–
known that the Kalman filter in its original formulation may predict results that
differ from observed behaviour. This difference or divergence may be caused
by: modeling errors, poor state observability, and numerical inaccuracy. This
section focuses on the numerical issue.

The Ørsted on-board software and thereby the control system was imple-
mented using the Ada programming language. This choice was not necessarily
wise when considering numerical intensive algorithms, but Ada provide other
software engineering benefits like readability, maintainability, portability, etc.

113
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that were important for the project development.
The Kalman filter is evaluated in the on-board processor as a real time pro-

cess, implying that the filter has to perform the necessary calculations between
samples. As the sampling time is relative low (10 seconds) this is not a severe
constraint. The main practical constraints were caused by the fixed point arith-
metic and the code size.

6.1.1 Core Numerical Algorithms

The main problem with a fixed point implementation is the reduced dynamic
range imposed by the arithmetic, which may lead to divergence of the filter.
The internal data flow in the Kalman filter consists basically of two estimation
loops. The estimated mean (state estimate) is propagated around one loop, and
the covariance in another.

– In the state estimation loop, errors in the estimated mean introduced by
roundoff and noise are compensated by feedback through the weighted
(Kalman gain) innovation.

– The covariance loop is not stabilized by feedback, and as a result, errors
propagate and accumulate. This may lead to errors in the mean estimate
and divergence of the filter. The computations involved in the covariance
prediction must therefore be addressed.

Implementation methods for reducing the effects of roundoff errors in the co-
variance loop have been intensely studied since the numerical difficulties with
the Kalman filter were first addressed in the mid seventies. The most success-
ful and numerical stable implementations are based on the idea of propagating
symmetric products of triangular factors for the covariance matrix, rather that
the covariance matrix itself (Grewal and Andrews (1993)).

The Ørsted ADS employs a covariance formulation, which is based on a
modified Cholesky decomposition (UD decomposition) of the covariance ma-
trix. This formulation provides adequate covariance matrix precision with single
precision fixed-point arithmetic.

The measurement update is done using Bierman’s Square Root Free square
root observational update (Bierman (1977)), and the covariance time update
is based on Thornton’s modified weighted Gram-Schmidt algorithm (Thornton
(1976)). These methods belong among the most numerically stable algorithms
for Kalman filter implementation (Grewal and Andrews (1993)).
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6.1.1.1 Observation Update

On Ørsted, the observational update realization is based on modified Cholesky
(UD) decomposition of the covariance matrix. The UD decomposition of a sym-
metric positive definite square matrix q is a decomposition into products ofr

and s such that q � r s r Õ , where
r

is unit upper triangular and s is
diagonal with non-negative elements.

Recall (Equation (4.24)) that the observational covariance update is given by¯   ¥   �Q¯   ¥   Y » �"¯   ¥   Y » Ã Õ   » Ã   ¯   ¥   Y » Ã Õ   £<² ¯´Ä�³ ½ Y » Ã   ¯   ¥   Y » (6.1)

Being a symmetric positive definite square matrix, ¯ may be factorized using
the UD factorization ¯   ¥   µ r   ¥   s   ¥   r Õ  ¯   ¥   Y » µ r   ¥   Y » s   ¥   Y » r Õ   Y »
With these definitions and by introducing t   µur Õ   Y » Ã Õ   , Equation (6.1) may
be rewritten as¯   ¥   � r   ¥   Y » @ s   ¥   Y »�vs   ¥   Y » t   »&t Õ   s   ¥   Y » t   £S² ¯´Ä�³ ½ Y » t Õ   s   ¥   Y » B r Õ   ¥   Y » (6.2)

Now regard the unfactored expression within the brackets in Equation (6.2).
Bierman (1977) showed how this term may also be UD factorized in the forms   ¥   Y » �ws   ¥   Y » t   »xt Õ   s   ¥   Y » t   £S² ¯´Ä�³ ½ Y » t Õ   s   ¥   Y » � ¸r ¸s ¸r Õ (6.3)

and therefore r   ¥   s   ¥   r Õ   � r   ¥   Y » ¸r ¸s ¸r Õ r Õ   ¥   Y »Since the product of unit upper triangular matrices is unit upper triangular it
follows that r   ¥   � r   ¥   Y » ¸r and s   ¥   � ¸s
The UD factors of the a posteriori covariance ¯   ¥   may thus be computed di-
rectly from the UD factors of the a priori covariance ¯   ¥   Y » given that Equa-
tion (6.3) is factored. The algorithm of Bierman (Bierman (1977)) provide a
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numerically stable and efficient method for factorization of the expression in
Equation (6.3). The Bierman algorithm is surprisingly simple and does not in-
volve square roots in the implementation. It requires little more computation
than the conventional Kalman update and the Kalman gain is recoverable from
partial results in the algorithms.

By performing the update through the UD factors as described above, the
positive semi-definite structure of the covariance matrix is preserved. In fact the
covariance is never calculated in the filter, thereby reducing the required range of
the variables. The implemented version of the Bierman update uses 32 bit fixed
point precision for representing the UD factored results.

Scalar Measurement Processing Recall that the measurement noise descrip-
tion discussed in Section 4.7.3 results in a full measurement noise covariance
matrix, ² ¯´Ä�³ defined by² ¯´Ä�³ �Q² ø ¯´Ä�³ £ ± ¯Á�5   ¥   Y » ³ ² Ú ¯´Ä�³W±«¯Á�

5
  ¥   Y » ³ Õ (6.4)

where ²¿ø and ² Ú describe the sensor noise and geomagnetic field model errors
respectively.

Significant reduction in the computational complexity may, however, be
achieved by having a diagonal (uncorrelated) observation noise covariance ma-
trix in Equation (6.3). The vector measurement can thus be processed serially as
scalars, which reduces the computational complexity significantly. This decorre-
lation may be achieved through UD decomposition of ² ¯´Ä�³ . This redefines the
measurement vector such that the components are uncorrelated.

Given the current selection of ²çø and ² Ú as diagonal matrices, and specifi-
cally ² Ú as a multiple of the identity, Equation (6.4) is diagonal and sequential
processing of scalars without the need for an additional UD decomposition is
thus possible.

6.1.1.2 Time Update

The covariance time update is based on Thornton’s modified weighted Gram-
Schmidt algorithm (Thornton (1976)). By working directly on the UD factors
the temporal update is ideally suited in combination with the Bierman update.
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Discrete Covariance Prediction The update works based on a discrete time
covariance prediction, that is¯   ¥   Y » ��Õ ¯lk   Ö8k   Y » ³ ¯   ¥   Õ Õ ¯lk   Ö8k   Y » ³ £<¨   Y » (6.5)

which was defined in Equation (4.85). As the sampling interval m k is small com-
pared to the eigenvalues of ¡ ¯lk�³ at any given instant in time, it may adequately
be represented as a constant over a sampling interval (of the filter) and the state
transition matrix may approximated by a truncated matrix exponentialÕ ¯lk   Ö8k   Y » ³ Û �ï£<¡ ¯lk   Y » ³ m k £ ·

� ¡ Â ¯lk   Y » ³ m k Â (6.6)

As significant approximations have already been made in modeling of the
process noise ¨ ¯lkt³ the discrete equivalent is only approximated to first order¨   Y » Û ¨ ¯lk   Y » ³ m k (6.7)

Update of UD Factors The time update uses triangularization of the ¨   Y »matrix through an UD decomposition¨   Y » � r ã ¯´Ä � · ³ s®ã ¯´Ä � · ³"r ã ¯´Ä � · ³ Õ
where s"ã ¯´Ä � · ³ is a diagonal matrix. When the UD factors of ¯   ¥   Y » , ¯   ¥   ,and ¨   are introduced, the time update in Equation (4.85) may be transformed
to ¯   ¥   Y » � ± Õ � s D ± � (6.8)

where

± ��� @ r Õ   ¥   Õ Õ ¯lk   Ö8k   Y » ³r ã ¯´Ä � · ³ B and s D � @ s   ¥   RR s ã ¯´Ä � · ³ B
Weighted Gram-Schmidt orthogonalization (Grewal and Andrews (1993)) of

± �
with respect to the weighting matrix s D defines a unit lower triangular matrixy

such that
± ��� � y and

� Õ s D ���Fs Ú (6.9)
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where s Ú is a diagonal matrix representing the fact that the column vectors of� are orthogonal with respect to s D 1. Using the result of the weighted Gram-
Schmidt orthogonalization, Equation (6.8) may be reformulated as¯   ¥   Y » � y Õ¼�¢Õ�s D � y

� y Õ�s Ú y (6.10)

As UD factorization is unique, and
y

is unit lower triangular and s Ú diagonal
the temporal update of the UD factored covariance is given byr   ¥   Y » � y Õ and s   ¥   Y » �Fs Ú (6.11)

This is used directly in the measurement update outlined above. The covariances
are thus never directly calculated in the real-time implementation. The combined
covariance prediction implemented on Ørsted is shown in Figure 6.1.

Figure 6.1: Schematically overview of the covariance prediction implemented on
Ørsted. Bierman’s square root free measurement update is combined
with Thornton’s temporal update .

1The vectors ý and z are said to be orthogonal with respect to {J| if the weighted inner
product ý íC{}|Vz�ì�~ .
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6.1.2 Reference Field Implementation

Another computationally complex algorithm is the IGRF reference field model
required for the measurement update. A 16 bit fixed point Ada implementation
was established based on a standard IGRF Fortran model. The algorithm was
tested over a wide range of possible orbital positions and the results compared
with results from a floating point implementation in Matlab. The errors commit-
ted by this low accuracy implementation were found to be approximately 30 nT
(RMS) as shown in Figure 6.2. This is acceptable as the modeling error inher-
ent to the IGRF model was found in Section 5.3.2.1 to be approximately 83 nT
(RMS) when compared to data from Freja.

0 10 20 30 40 50 60 70 80 90 100
−100

−50

0

50

100
Discrepancy Ada/Matlab

nT

Samples

Figure 6.2: On-board geomagnetic field model. Three components of the refer-
ence field in orbital positions distributed over 24 hours. Discrepancy
between Ada fixed point implementation and Matlab 8th order model.

6.1.3 ADS Implementation in Software

The Ørsted ADS has been implemented as a task running on one of the two on-
board computers. The ADS software is executed as part of the central control
level task. The interaction of the control level task with other ACS tasks is shown
in Figure 6.3.

The control level task runs at a 10 second cycle that can be interrupted by
a synchronous rendezvous with reconfiguration commands from a parallel run-
ning supervisor task. The preprocessed magnetometer readings are generated
after an interrupt from the control level task and are transferred synchronously
through rendezvous with an input dispatcher task that handles the interface to
the other subsystems. The variables required for integrity monitoring and fault
detection are transferred asynchronously from the control task to the supervisor
task through a variable pool that is protected by a semaphore. The internal pa-
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Figure 6.3: Context diagram for the ACS main tasks.

rameters of the ADS system are stored in a parameter pool inside the control
level task and are available for modification through the supervisor.

The code size has been a major limiting factor in the development of the
Ørsted ACS. Only 256 kbytes is available in a single on-board computer and
only 65 kbytes were allocated for ACS. The code size of the specific modules
relevant for the magnetometer based solution make up about 22% of the total
ACS software as seen in Table 6.1.

Table 6.1: Implementation - code size Ørsted ADS modules. The total magne-
tometer related ADS code is responsible for 22% of the total ACS
code.

Module Code Size
[kbyte]

Attitude determination OBCS 1.46
Observational update 2.17
Time update 3.75
State prediction 2.22
Reference field model 2.24
Utilities 2.18
Total 14.02 22%
Total ACS software 64.60
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The module Attitude determination OBCS (Object Control Structure) exe-
cutes the overall control of the ADS, which involves transitions between sec-
ondary (magnetometer) and primary sensors (star camera). The main burden is
associated with the time update which involves the modules time update and state
prediction. The module utilities provided services such as multiplication to the
other modules. The total execution time of the ACS control task, which involve
the attitude determination has been measured to 1.788 sec (Bøgh (1996). With
a nominal cycle time of 10 seconds the ACS is hence responsible for about 18%
of the computational load on the computer where the ACS software is running.

6.2 Results from Ørsted

With the launch of Ørsted on February 23, 1999, data are available for evaluation
of the on-board estimation algorithm. Investigation are still ongoing, and the
results presented here are considered preliminary.

As with most other satellites a number of difficulties have been discovered in
relation to the flight configuration, many of which are yet unsolved. Of primary
concern to evaluation of the ADS are the following

– Boom distortion. After deployment of the Ørsted boom significant dis-
crepancy was found between the expected gondola and actual gondola ori-
entation. A calibration based on Sun sensor and star camera data showed
a 45 deg. rotation of the gondola relative to nominal. The ADS gondola to
body rotation has been adjusted according to the calibration. The accuracy
of the calibration is, however, limited due to the limited accuracy of the
Sun sensors. This uncertainty is transferred to the ADS as uncertainty in
the moments of inertia, and the control torque input. No explanation for
this unexpected rotation has yet been found.

– Boom flexibility. When torques are applied to the satellite by the con-
trol system boom oscillations have been experienced at a frequency much
lower than expected. Thermal effects also have an apparent influence. On
the day side of the orbit boom oscillations are generated. Each upset of the
boom (boom quake) is associated with a change in the boom stiffness, as
seen on the eigenfrequency of the associated torsional vibrations (Bauer
(1999)). Boom oscillations apparently cause star camera vibrations, and
loss of star camera availability for a period of 20–40 sec. This phenom-
ena may be coupled to the boom distortion and has so far not been fully
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understood.

– Star camera timing. Timing problems with the star camera complicates
the use of the star camera quaternion as a reference for evaluating the
ADS. The timing problem has been solved, but data were only available
for a very limited part of the mission at the time of writing. The analysis
presented here is based on raw star camera attitude estimates.

– Control system torques. Current spikes in the magnetorquers combined
with rapid changes in the current demands resulted in input torques that
were problematic for the star camera. In combination with the boom os-
cillation phenomena the torque input caused the star camera to generate
degraded estimates and eventually fall out. The problem was minimized
by adjustments of star camera sensitivity and control system parameters,
in particular the maximal allowed control current.

– Unknown input torque. The behaviour of the control system before boom
deployment and during normal operation indicates some unknown distur-
bance torques. This assumption is supported by the analysis of the estima-
tor performance discussed below.

The issues above all make the attitude determination task more difficult and
the results presented in the next section are thus expected to be slightly worse
than could be achieved. As the problems above are solved, the on-board filter
will be adjusted accordingly and the errors may decrease somewhat.

6.2.1 Attitude Time Histories

Two different sets of orbits have been selected for an evaluation of the ADS per-
formance. During the first six month of operation only approximately 30% good
star camera data were available and the control of the satellite hence depended
on the magnetometer based solution for a large part of the time.

The two sets presented here have been selected so that star camera data were
available for comparison of the results. The first set represents a typical situation
where the satellite is rotating slowly about the ; axis, whereas set two represents
the situation as it has been after some adjustments in late August 1999.

Orbits 2535-2538 The attitude estimated by the magnetometer based solution
is compared with available star camera data. The results presented in Figure 6.4
are based on four orbits 2535-2538 (August 18 1999 UTC: 12:34:38).
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Figure 6.4: Ørsted results from orbits 2535-2538 (August 18 1999 UTC:
12:34:38). Pitch/roll/yaw estimates from the star camera (left) and
the estimates based on data from the magnetometer (right). The atti-
tude is given relative to LVLH.

The star cameras Sun and rate constraints are violated frequently causing
gaps in the available star camera estimates. The control system converges to-
wards the reference attitude of -90 deg. yaw. The rate of convergence may seem
slow, but it is actually close to the 10 deg./min rate constraint of the star camera
and clearly demonstrates the sensitivity of the star camera. The control gain in
this specific case is reduced in order not to violate the star camera constraint.

The angular discrepancies between the ADS attitude and the star camera atti-
tude associated with the attitude trajectories in Figure 6.4 are show in Figure 6.5.

The periodic components of the error trajectories are coupled to the periodic
nature of the magnetic field. The errors in the three angles are determined to
pitch: 1.5 deg. (RMS), roll: 1.5 deg. (RMS) and yaw: 3.7 deg. (RMS). The es-
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Figure 6.5: Ørsted results from orbits 2535-2538 (August 18 1999 UTC:
12:34:38). Pitch/roll/yaw discrepancies between star camera and
magnetometer based estimates of the attitude.

timation is thus less accurate than predicted in Chapter 5 but they are still within
specifications. Some of the error is, however, attributed to the inaccuracies de-
scribed above. The hope is with adjustment of the filter noise parameters to
reduce the errors in the estimator. In addition, more accurate analysis of the star
camera reference will be carried out in order the get a more accurate assessment
of the absolute accuracy.

The satellite motion in Figure 6.4 is far from the reference and the rates are
close to maximum for the star camera. From the truth model analysis in Chap-
ter 5 we know that the error is larger, the larger the rates. The next set has
therefore been selected to represent a situation where the attitude is close the
reference.

Orbits 2539-2542 A typical situation, where the attitude control maintains a
near -90 deg. attitude is given in Figure 6.6. The satellite pitch and roll angles
are clearly within the 10 deg. specification and the ; axis spin has stopped.

The corresponding error trajectories are found in Figure 6.7. The accuracy
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Figure 6.6: Ørsted results from orbits 2539-2542 (August 18 1999 UTC:
19:07:56). Pitch/roll/yaw estimates from the star camera (left) and
the estimates based on data from the magnetometer (right). The atti-
tude is given relative to LVLH.

for this more controlled situation improves a little. The errors in the three angles
are determined to pitch: 0.9 deg. (RMS), roll: 1.2 deg. (RMS) and yaw: 3.1 deg.
(RMS).

The accuracy of the rate estimate has not been addressed yet, as timing prob-
lems with the star camera prevents accurate reference estimates of the star cam-
era based rate.

Although the accuracy of the magnetometer based ADS solution is somewhat
lower than anticipated it is within specifications and it has proved valuable at
numerous occasions. One of the problems encountered during the first 6 month
of Ørsted operation has been the sensitivity of the star camera to attitude control
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Figure 6.7: Ørsted results from orbits 2539-2542 (August 18 1999 UTC:
19:07:56). Pitch/roll/yaw discrepancies between star camera and
magnetometer based estimates of the attitude.

action as described above. After a boom quake initiated loss of star camera data,
the eventual close down and later re-activation of the ACS generated torques that
resulted in a slow spin of the satellite. This has now been adjusted in the ACS. At
spin rates above 10 deg./min the magnetometer based attitude estimate was the
only available attitude and rate source. The controller has effectively stabilized
the satellite and lowered the rates using the magnetometer based ADS estimates.

6.3 Summary

This chapter addressed the numerical implementation of the core algorithms in
the Ørsted ADS and presented flight results from Ørsted. In Section 6.1 a fac-
torized version of the Kalman filter equations was presented. The measurement
update was based on Bierman’s Square Root Free square root observational up-
date, which was combined with Thornton’s modified weighted Gram-Schmidt al-
gorithm for time update. A short introduction to the software development was
given. It was argued that the code directly related to the magnetometer solution
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is responsible for less than 22% of ACS code.
Finally Section 6.2 presented preliminary results from the Ørsted ADS. The

magnetometer based ADS was evaluated by comparison with available attitude
estimates from the star camera. The accuracy was found to be lower than ex-
pected, but the hope is with adjustment of the filter noise parameters and more
accurate analysis to get results that are more in line with the predicted results.
The preliminary results from Ørsted do, however, meet the 2 deg. pitch/roll and
4 deg. yaw (1 sigma) error specification.





Chapter 7

Freja Attitude Estimation

The second application described in this thesis is an attitude estimation algorithm
for the Freja satellite. The attitude is needed by the science mission to make off-
line compensations of motion induced disturbances. At the present time only
coarse, low rate attitude knowledge is available. A relatively high accuracy is
required in order to fully utilize the science measurements.

This chapter presents the result of an effort to explore the use the extended
Kalman filtering algorithms described in the previous chapters. The algorithms
are applied to magnetometer flight data and attitude data reconstructed. A num-
ber of new issues had to be addressed in order to achieve the required accu-
racy. The solution presented here provides attitude estimates also during eclipse,
where no reliable attitude was previously available. The results in this chapter
were published in Bak (1998b), and Bak (1998a).

The chapter is divided into five sections and a summary. Section 7.1 gives
the motivation for addressing the Freja problem and outlines the previous attitude
estimation attempts and their limited usefulness. Section 7.2 address the required
accuracy and the implications for a potential estimator design. Section 7.3 deals
with the solution approach and Section 7.4 gives a brief description the filter
design, batch interval selection and filter tuning. Finally, Section 7.5 discusses
the perspective for attitude reconstruction applied to the satellite Astrid-2.

7.1 Motivation and Related Work

The Freja spacecraft was launched on October 6, 1992, and delivered approxi-
mately 200 megabytes of data each day until science observation ended in June

129
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1995. The main scientific objective was related to the auroral acceleration pro-
cesses. The satellite images the aurora and measures particles and fields in the
upper ionosphere and lower magnetosphere (Andre (1993)). The Swedish Space
Corporation (SSC) was the prime contractor to the Swedish National Space
Board. The seven instruments on-board were built by groups in Sweden, Ger-
many, Canada and the United States. Of particular interest here are the Auroral
imager, the thee-axis magnetometer, the sun sensor and the electric field probe
wire booms, all depicted on Figure 7.1.

Figure 7.1: The Freja satellite.

The fundamental operational parameters of Freja are summarized in Ta-
ble 7.1. As seen in Table 7.1 Freja is spin stabilized using the well–known
quarter–orbit magnetic torquing attitude control method (Wertz (1978)) in or-
der to track the Sun. The actuation is based on two torquer rods with a max-
imum dipole moment of 140 Am Â . One rod is aligned with spin axis, and the
other is in the spin plane thereby allowing precession and spin control respec-
tively. A nutation damper is used to dissipate the nutational energy, and thus
reduce the nutation angle. To meet the attitude control pointing requirements
( 
 Ë � deg. Sun angle) the attitude was determined once or twice per orbit us-
ing deterministic methods based on the Sun sensor and attitude magnetometer.
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Table 7.1: Operational parameters of the Freja satellite. Freja was launched on
October 7, 1992.

Orbit Inclination 63.0 deg.
Apoapsis 1764 km
Periapsis 596 km
Epoch start date 1992.281 (07 Oct.)
Eccentricity 0.08000
Orbital period 109 minutes

Attitude Stabilization Spin stabilized
Nominal spin period 10 RPM
Control Magnetic
Orientation Sun oriented (+/- 30 deg.)

Mass Launch time 256 kg
Payload 73.1 kg (including 21.6 kg booms and antennas)

Telemetry Downlink stations Esrange (Sweden), Prince Albert (Canada), Syowa
(Antarctica)

Downlink time/orbit < 30 minutes at each station
On-board storage None

Power Maximum power 137 W
Payload usage 66.1 W

The attitude information was processed by the ground station and corrections to
the spin vector, if necessary, were performed by telecommands. This solution
proved sufficient in order to meet attitude control requirements.

7.1.1 Electric Field Experiment

The Swedish Alfvén Laboratory built the instrument measuring the electric field.
The main scientific objective is related to the study the complicated phenomena
of the electric fields in the ionosphere-magnetosphere transition region. Of spe-
cial interest is the auroral region and in particular the night side auroral features.
The basic quantity measured by the electric field experiment is the electric field,
which is measured as the potential difference between opposing probes. Since
the probes are in the spin plane an electric field is induced by the satellite spin.
The induced electric field �l¡Q�D\ �v� where \ is the velocity of the probe,
and � is the local magnetic field. This motion induced disturbance must be sub-
tracted from the raw data before any analysis can be applied. In order to do so,
the satellite spin axis pointing or attitude has to be known to an accuracy better
than 0.2 deg. (1 sigma), (Blomberg, L. private communication, 1997).
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The accuracy of the present single frame solution is unclear. More important,
however, the single frame solution fails during eclipse when the Sun reference is
not available. This is a major difficulty as a number of interesting phenomena in
the polar ionosphere take place in the night-side auroral oval.

Determining the attitude based on interpolation of the single frame attitude
solution before and after eclipse has proved problematic. The passage of the
spacecraft in and out of eclipse complicates the problem. The decrease in tem-
perature during orbit night cause the coil booms to shrink, shortening the booms
radial distance to the spacecraft center of mass, thereby decreasing the moments
of inertia.

An alternative solution is therefore needed that allow the estimation of a com-
plete attitude time history during the polar cap passage. One approach that has
been applied was based on the UV-imager. The ultra violet CCD camera was
pointed towards the stars and a star identification algorithm combined with an
attitude determination was applied. The results deviated significantly from atti-
tude estimated for attitude control purposes. The UV-imager based attitude is,
however, only available for six selected orbits.

7.1.2 A Magnetometer based Approach for Freja

Although the Freja satellite is fundamentally different from Ørsted, some of the
same attitude estimation methods may still be applied. As demonstrated in the
previous chapter, a single three axis magnetometer may provide us with valu-
able information about the spacecraft attitude state also during eclipse. Using
the measured magnetic field data in an attitude solution will attribute any long
periodic changes in the observed field to changes in the attitude of the spacecraft.
As the main scientific interest is related to short periodic structures, the use of
the same data for attitude estimation will not significantly affect the science mea-
surements.

7.1.2.1 The Magnetic Field Experiment

Freja also flies a magnetic field experiment. The magnetometer is a triaxial core
fluxgate sensor (Ballard and Hayes (1992) and Andre (1993)) mounted on a
2 meter boom, seen on the left in Figure 7.1.

The fluxgate type instrument senses all three components of the magnetic
field with range of 
 ò 4&i ����� nT and provides a resolution of 2 nT. The magnetic
field vector is sampled at 128 Hz. Data is already part of the post processing of
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the electric field measurements and thus available for attitude estimation.

A number of issues are new in the Freja problem compared to what
was described in Chapter 5. The main challenge is the need for accuracy
(0.2 deg. (1 sigma)) over the entire science observation interval. This accuracy
requirement changes some of the issues discussed in relation to the Ørsted design
and a number of the assumptions have to be re-addressed.

7.2 The Attitude Problem

The Freja problem is to estimate the three-axis attitude time history

5
¯lkt³

during
science observation. The attitude quaternion parameterizes the transformation
from inertial coordinates to spacecraft body coordinates. The basic input is the
science magnetometer measurement. As science data is investigated off-line in
batches, the attitude estimation may be treated as a smoothing problem. The
attitude estimate at a given instant can hence be based on data that fall both
before and after that time.

7.2.1 Magnetometer Calibration

Calibration of the magnetometer may possibly be carried out directly as part of
the estimation process, but off-line parameter identification of sensor sensitivity,
bias, orthogonality, misalignment may help simplify the estimator design signif-
icantly. Moreover all these issues have previously been addressed in the as part
of the magnetic field experiment (Luehr (1997)) and we could take advantage of
these earlier results.

Magnetometers are inherently nonlinear devices and an accurate calibration
of the magnetometer is required to get to the specified accuracy (Freja 2 nT).
The calibration converts the raw engineering units measured by the instruments
into field components in nT along three orthogonal Cartesian coordinate axes.
The calibration may be carried out in a coil facility prior to launch. Stress dur-
ing launch and operation in the space environment may, however, significantly
change the instrument transfer function, and an in-flight calibration is therefore
normally required.

Luehr (1997) has showed that a complex non-linear in-flight calibration of
the magnetometer is necessary in order to get to the 2 nT noise level. This
noise level is well below the 0.2 deg. accuracy requirement and a simple linear



134 Freja Attitude Estimation

approach has been taken. The result is a calibration according to� �F� ¯���r £w� ³ (7.1)

where � is the measured field in nT, q is the
Ë � Ë orthogonality and sensitivity

correction matrix,
���

is the raw measurement vector in engineering units, and¿ is a bias vector in engineering units. All parameters are estimate based on a
least square fitting.

The magnetic field vector measurement is made in the magnetometer assem-
bly coordinate system, where the z-axis was designed to be parallel to the satel-
lite spin axis and the other two axes lie in the spin plane. It was found, however,
that a correction on the order of a few tenths of a deg. was necessary for the
alignment of the instrument.

This correction was implemented as follows: First, the > - and 7 - axis mea-
surements were fitted with a sinusoidal wave with a shifted baseline and a
linearly-varying envelop. The satellite spin period is determined from the os-
cillation period of these two components, whereas the cross-component phase
lag gives the information about the angle between the > and 7 axes. The ratio
between the > / 7 -component offset to the ; -component measurement provides an
inclination of the ; -axis from the satellite spin axis.

Based on those results the measured magnetic field vector is rotated from the
instrument assembly frame to the spacecraft body frame.

7.2.2 Reference Model Accuracy

While the calibration is carried out off-line and thereby simplifying the estimator
design, the accuracy of the reference model has to be addressed directly in the
estimator design.

One of the science objectives of Freja and of the electric field experiment
in particular is the investigation of field aligned currents that are present in
the auroral region. The field aligned currents results in magnetic perturbations
perpendicular to the main field. As the Freja orbit goes through the auroral
oval these perturbations may significantly vary in magnitude from fractions of
a nT to thousands of nT Langel (1987). When using the magnetometer data in
an attitude solution, periods with large perturbations must be avoided as these
perturbations would otherwise influence the attitude estimates. As it will be
shown later in this chapter, perturbations in the order of 300 nT may occur,
which if attributed to attitude changes, would result in attitude errors as large
as ���W� � ��� ¯²Ë ���#_ Ë �ai ����� ³ ���ai ò deg..
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In order to avoid this contamination of the attitude estimation, these pertur-
bations to the field must be detected by the attitude determination system and
the measurements must be rejected or corrected before being applied in the atti-
tude estimator. When measurements are rejected the propagation will have to be
based on an accurate dynamic model between measurement updates as no gyros
are available.

7.2.3 Accuracy of Dynamic Model

The need for 0.2 deg. accuracy combined with possible propagation over con-
taminated data gaps emphasizes the need for an accurate dynamic model. Pas-
sage of the spacecraft in and out of eclipse further complicates the problem. Pre-
sumably the temperature change cause the coil booms to shrink when they cool
down during orbit night shortening the booms radial distance to the spacecraft
center of mass, thereby decreasing the moments of inertia. An simple propaga-
tion of the spin frequency through the day/night transition will hence not work.
Assuming zero torques on the spacecraft, the angular momentum is known to
be constant during such a transition, and any change in spin frequency may be
referred to the a change in the moments of inertia about the spin axis.

An additional effect to shrinking of the booms, is that heat dissipation in the
booms due to bending will cause the system to lose energy. This drift is, assumed
negligible during the relative short time intervals considered here.

The inherent magnetic residual in the spacecraft was minimized during de-
sign, to reduce disturbances on the measurements. Magnetically induced torques
are therefore assumed negligible.

7.3 Estimator Design

The attitude reconstruction problem has been solved using an estimator similar
to the one developed for Ørsted. The estimator maintains an accurate dynamic
model of the spacecraft, which is used to propagate the attitude and angular ve-
locity estimates through the data gap. The dynamic model propagation is based
on estimates of the on-orbit spacecraft inertias. The thermally induced changes
in the moments of inertia are estimated through a parameter in the filter, thereby
conserving angular momentum. Updates of the model are performed whenever
reliable magnetometer data are available. The data gaps are identified using the
a residual monitoring algorithm described below.
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The general outline of the solution is given in Figure 7.2.

Figure 7.2: Attitude determination solution. Inertial magnetic field vectors from
the IGRF model are combined with measured vectors in a forward
filtering pass. The state estimate is improved by backward smoothing
of the covariance and state.

The spacecraft position is estimated using ephemerides data from standard
NORAD two line elements. The IGRF model provides an estimate of the Earth’s
magnetic field given the satellite position in the ECEF frame. An IGRF main
field model of order 10 was used, for the year as given in the navigational data.

Forward filtering was performed on the reference and measurement data com-
bined with estimates of the measurement covariances, the process noise and ini-
tial states. The filter also uses input about eclipse transition in order to control
the inertia estimation. Data is subsequently run through a smoothing algorithm.

7.3.1 Smoothing

The smoothing problem consists of the construction of the best estimate of the
state of the satellite over a time period using all reliable measurements in that
interval.
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Let an estimate of the initial state at
k * be given and denote it by

�¤ * . The
error in this initial estimate is assumed to be Gaussian with zero mean and co-
variance ¯°* . The filtered estimate at time

k ¨ is designated by ¤��¨ . Given is a set
of discrete measurements

ª £   µ Ä � · Ö i i i�� ¬ , we process the measurements se-
quentially forward in time and produce the sequence

ª �¤ �  Ö ¯ �  ÖWÄ � · Ö i�i�i Ö � ¬ .
The smoothing algorithm produces the sequence

ª �¤��  Ö ¯ �  ÖWÄ �F� Ö i�i�i Ö · ¬ , with
the initial smoothed estimate at � being provided by the filtered estimate at � .

Forward Filtering Pass The magnetic field observations are processed in a
forward pass using the Kalman filter described in Chapter 4.

The thermally induced variations in moments of inertia are known to be cor-
related with the day/night and night/day transitions. In order to allow the filter
to track these inertia changes, the noise model is synchronized with the eclipse
transitions. After an eclipse transition, the inertia covariance is reset to its origi-
nal value and a new constant bias is estimated.

Backward Smoothing The smoothing algorithm is based on the Rauch-Tung-
Striebel (R-T-S) fixed interval smoothing algorithm (Rauch et al. (1965)).

During the forward filtering the intermediate results
�¤   ¥   , ¯   ¥   , �¤   ¥   Y » ,¯   ¥   Y » and Õ Õ ¯lk   Ö8k   Y » ³ are stored at each time

k   . The smoothing pass runs
backward in time from the time

k"�
of the last measurement, computing the

smoothed state estimate from the intermediate results. The smoothed state esti-
mate and its covariance are initialized with the a posteriori values�¤ I� � �¤ � ¥ � (7.2)¯ I� � ¯ � ¥ � (7.3)

The smoothed estimates are then computed recursively usingº   � ¯   ¥   Õ Õ ¯lk   Ö8k   Y » ³ ¯ Y »  b »W¥   (7.4)�¤ I  � �¤   ¥   £<º   » ¤ I  b » � �¤   b »W¥   ½ (7.5)

7.3.2 Process Model

The filter error state vector is composed of the vector part of the inertial to body
attitude quaternions and the three angular rate corrections. To account for ther-
mally induced perturbation to the maximum moment of inertia, a perturbation to
the spin axis moment of inertia is included in the state vector
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The result is a 7 dimensional perturbational state vectorm ¤�� ��ó m±4�ÕHm±wûÕ õ Î�÷ Õ (7.6)

where w are the inertial body rates represented in the body frame. The full
quaternion 4 parameterize the rotation from inertial to the body frame.

õ Î is the
maximum (spin axis) moment of inertia. The perturbation to the maximum prin-
cipal moment of inertia is used to model the thermally induced inertia variations.
Such a model automatically conserve angular momentum and it was found to be
required in order to propagate the attitude and rate estimates accurately through
data gaps.

The vehicle attitude process model follows the equations derived in Chapter 3
with small modifications due to the inclusion of the extra inertia state and the fact
that the Freja attitude is given relative to inertial space.

The variable
õ Î is estimated using a bias model that is a random constant

generated as the output of an integrator with no input, thus|| k õ Î ¯lkt³ �Q� (7.7)

The initial condition is specified by the mean
õ Î * and the variance cV¡ * . The

selection of this kind of model is based on the assumption that the inertia is
unknown but constant over the interval under investigation. The filter will use
initial data to estimate the constant and eventually disregard all later measure-
ments. After an eclipse transition, the filter is reset, and the filter will use the
new measurements to converge to a new constant value, which hopefully repre-
sents the modified moment of inertia. The measurement formulation follows the
Ørsted measurement model.

The initial full state estimates are derived from the coarse attitude data avail-
able in the present attitude history files, and is set equal to4 * � ø �e�ai[� ò � 2 Ö �ai � h M Ë�Ö �e�ai^M�M Ë 2 Ö �ai[��� Ë�Ë úÑÕ (7.8)w * � ø � Ö � Ö · i � h ·�· ú Õ (7.9)�^*Ç�

�� 2 4&i Ë 2 � � �� h · i Ë�Ë 4 �� � · 4 2 i ò M 2
� 

(7.10)

The measurement noise model has been addressed previously in Sec-
tion 5.3.2.1 while the process noise intensity were found empirically to obtain
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filter/smoother measurement residuals that are consistent with the sensor accu-
racies. The Ørsted P1 process noise model (see Section 5.4.1) has been adopted,
while omitting the inertia uncertainty. In this case the inertias are calibrated in-
flight. The final noise strengths and parameters defining the Freja process and
measurement models are summarized in Table 7.2.

Table 7.2: Parameters defining the spectral densities of the process noise as well
as the measurement noise covariance for Freja.

Parameter UnitO
1 2 3_ � )
P !��(&*) �SU )pP[!ï�©&�) �VU W P )ï�(&*) �SU_�� &TP Y �(&*) ���Z &TP Y �(&*) ���B &TP W �(&*) ���8� rad/sec 
� a5� 1.0 - - kgm 
0 n W ) 
 W ) 
 W ) 
 nT 
0 � W 
 W 
 W 
 nT 


7.4 Performance Analysis

The starting point for analysis of the Freja data is raw magnetometer data from
an orbit interval. The interval was selected by the researchers at Alfvén labora-
tory as especially interesting. The measurements are collected during a passage
through the auroral oval, as seen in by the ground track plot in Figure 7.3.

Data available from this specific pass are illustrated in Figure 7.4. Data is
preprocessed as part of a magnetometer calibration described above.

In orbit 7281, the spacecraft attitude is nicely aligned with the spin axis,
perpendicular to the field lines. The field vector hence rotates in the spacecraft> 7 plane. During this specific data interval the satellite is in eclipse, while the
latest deterministic attitude was estimated in the Sun. The spin inertia is thus
expected to have decreased, resulting in a faster satellite spin than estimated in
the attitude files.

Figure 7.4 indicates some of the problems when using the magnetic field as
a reference vector. The field is clearly disturbed in the part of the orbit from ap-
proximately 05:17 to 05:22. The phenomenon is caused by field aligned currents
that generate a perturbation to the field perpendicular to the main field (Luehr
(1997)). The field strength is clearly not influenced. Freja first encounters a
downward current associated when it enters the auroral region at approximately
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Figure 7.3: Freja passage over the auroral oval. Orbit 7281, data from Prince
Albert and Esrange ground stations.
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Figure 7.4: Magnetic field measured by Freja F2 magnetometer, orbit 7281. The
figures show the magnetic field projected onto the > , 7 and ; axis of
the magnetometer and the field strength.
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05:17. At approximately 05:19 it encounters a discontinuity, at which the field
signature changed rapidly. The discontinuity occurs within a region of upward
current. Finally Freja leaves the auroral oval at approximately 05:21.

Applying the filter directly the measured field with an error of 300 nT results
in an error of approximately atan

¯²Ë ���#_ Ë ������� ³ ���ai ò deg.. The problem is solved
selecting a batch interval outside this region. The result is a data gap, where the
state estimation will have to be based on integration of the equations of motion
of the spacecraft.

Assuming that field aligned currents cause the phenomena seen in Figure 7.4
the disturbance to the main field is mainly perpendicular to the spin axis. In the
case in Figure 7.4 this would leave the > and 7 components of the measurements
invariant, and they could be used in the filter. The attitude is, however, not always
as nicely aligned as in Figure 7.4 and the estimator is hence designed with no
measurement updates in the disturbed region.

It is evident that in order to automate the estimation process and at the same
time get the required accuracy, disturbance detection is necessary. A simple test
based on the log-likelihood ratio is proposed and applied in the following.

7.4.1 Attitude Reconstruction Results

The filter/smoother output includes several types of data that illustrate its per-
formance. The measurement residual time histories indicate the filter/smoothers
ability to fit the data. The attitude time histories illustrate the general state esti-
mate.

Figure 7.5 shows the estimated and measured field measurements for the
7281 orbit.

Measurement Residual Time Histories The measurement residual vector is£   �j� ¯ �¤ I  ¥   Ö8k   ³ . The result should be a noise sequences with a RMS values
less than or equal to the diagonal elements of the measurement noise covariance,² . If the process noise intensity were very small, then the measurement resid-
ual sequences would be almost white noise with RMS values approaching the
diagonal elements of ² .

Figure 7.6 shows the estimated F2 measurement residual time history.
The attitude is propagated from 05:16–05:24. The measurement residuals

outside the data gap has RMS values are around 20 nT in the > and 7 compo-
nents, which is in good agreement with the observation noise. A 20 nT error in
the field components approximately correspond to an angular error of 0.04 deg.
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Figure 7.5: Orbit 7281 – Estimated and measured magnetic field measurements.

(RMS) in the determination of the spin phase. The error in the ; -component is
in around 2 nT (RMS) outside the data gap. The ; component clearly demon-
strates the perturbations to the main field, which is of interest for the magnetic
field science investigators and they may be directly attributed to field aligned
currents.

Around 05:30 the increased error indicate a perturbation to the field. This
may very well be attributed to the morning auroral electrojet. Reasonable RMS
noise levels indicates that the process noise is probably tuned correctly.

Note that the residuals in Figure 7.6 are not directly used in the magnetic field
study. The important part is the state estimation, which is used in the correction
of the motion induced electric fields.

7.4.1.1 Disturbance Detection

As mentioned above an automation of the disturbance detection is required in
order to reject perturbed field measurements and thereby preserve accuracy. The
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Figure 7.6: Measurement residual time histories.

results above are obtained using a CUSUM test outlined in the following.

The Detection Algorithm An increasing number of optimal likelihood func-
tion methods or ad hoc techniques for event detection are becoming available.
Basseville and Nikiforov (1993) presents a very useful algorithm for detecting
outliers called cumulative sum test (CUSUM). Essentially, the innovations are
examined to determine whether they differ significantly from the statistical de-
scription of their values that assumes no failures.

If the innovations are assumed to be a set of Gaussian random variables the
following hypothesis may be formulated2 * Ü � ¯lk�³oÆK�Ó¯l� * Ö 1 Â* ³2P» Ü � ¯lk�³oÆK�Ó¯l� » Ö 1bÂ» ³
where 2�* represents fault free case and � ¯lk�³ are residuals. 1 Â* is the estimate of
the variance of the

Ä
th residual value based on the assumption that no failures

have occurred. The value of · _�1 Â* can be evaluated as the
Ä

th diagonal term
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of ø¶Ã   ¯   ¥   Y » Ã Õ   £Q² ¯´Ä�³ ú Y » , which has already been calculated in the filter
algorithm.

Statistical hypothesis testing theory indicates that a good choice of likelihood
function for event detection is of the form of the log likelihood ratio. Let Ù1* be
the probability density of the residuals under hypothesis 2 * . A Sequential Prob-
ability Ratio Test (SPRT) between 2�» and 2d* is a comparison of the likelihood
ratio È   � x � ÙD» ¯ � ¯ � ³*Ö ����� Ö � ¯lk   ³t³Ù�* ¯ � ¯ � ³*Ö ����� Ö � ¯lk   ³t³against a threshold. Assuming an independent residual sequence, i.e.Ù�¡ ¯ � ¯ � ³*Ö ����� Ö � ¯lk   ³t³ ���  ¸ º+* Ù�¡ ¯ � ¯lk ¸ ³t³ , the log-likelihood ratio term at time

k  may now be written asE ¯lk�³ � x � o 1 *1b» q £ ·
��1 Â*�� � ¯lk�³ � � *�� Â � ·

��1 Â»�� � ¯lk�³ � � »�� Â (7.11)

which is equivalent to a SPRT test based on
È   �N   ¸ º+* E ¯lk ¸ ³ . This will show a

negative drift before change, and a positive drift after change.
The following decision function can now be calculated recursively

¡ ¯lk   ³ � ¢£¤ £¥
¡ ¯lk   Y » ³ £¦E ¯lk   ³ if ¡ ¯lk   ³NÐ¨§bÖ§

if ¡ ¯lk   ³ � §
detection

Ö� if ¡ ¯lk   ³NÐ �ai (7.12)

where ¡ ¯ � ³ is a cumulative sum initialized to zero, and
§

is a threshold. In other
words decide 2�» whenever ¡ ¯lk   ³ exceeds

§
, and 2d* otherwise. This is a simple

yet effective event detection algorithm.

Detection Results The threshold value was set to
§ � · ��� and both hypothesis

are assumed zero mean. The variance of the 2 * (no fault) is set to 10 nT, whereas
the 2 » variance is set to 100 nT. The ; axis innovations and associated detection
is shown in Figure 7.7.

The same fault detection scheme is also carried out on the > and 7 compo-
nents, but as discussed previously the field aligned currents are mainly perpen-
dicular to the field, and they are hence not as easily detected in © ¾ and ©]ª .
State Time Histories Plots of the attitude quaternion estimates are not very
useful due to the rapid motion of the satellite. More useful are plots of the spin
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Figure 7.7: Detection of magnetic disturbance by CUSUM log-likelihood test.

vector direction versus time. The attitude is presented by the azimuth and decli-
nation of the spin axis in ECI. The results for orbit 7281 are given in Figure 7.8.
The results are in good agreement with the estimated azimuth and declination
given in the last Freja attitude file as shown in Table 7.3. There is a small drift in
both azimuth and declination.

In addition to attitude information Figure 7.8 also presents the estimated
inertia. The deviation from previous estimates made in the Sun is signifi-
cant. The inertia converges rapidly from an initial estimate of 159.679 kgm Â
to 153.43 kgm Â . This is in good agreement with an increase in the spin of ap-
proximately 0.04 rad/sec.

Table 7.3: Freja attitude information.

Parameter Attitude File Estimated
Date 1994-04-08 1994-04-11
Time 04:30 05:10
Orbit 7254 7281
Azimuth 18.9 deg. 18.0 deg.
Declination 34.0 deg. 33.3 deg.
Spin rate 9.94 RPM 10.32 RPM«  159.679 kgm 
 153.43 kgm 


The effect of smoothing the estimates is most clearly seen by observing the
estimated covariances in Figure 7.9. Figure 7.9.a presents the 2 times squared
error covariance for the third quaternion element from the forward filtering of
data. The covariance grows during the data gap, and it is reduced again as soon
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Figure 7.8: Freja orbit 7281. Estimated spin axis azimuth and declination in
ECI. Estimated spin axis inertia .

as observations become available at 05:24. Figure 7.9.a illustrates the same situ-
ation after smoothing with data after the data gap. The results are clearly better,
the covariance is reduced significantly during the data gap.

7.5 Perspective

The algorithm presented here is specially designed for the Freja mission and
addresses some of the special issues related to Freja. The usefulness of the al-
gorithm is, however, not limited to Freja, and another version of the algorithm
is being worked on for the Swedish Astrid-2 mission. Astrid-2 was launched in
December 1998. Due to problems with the star camera, an alternative magne-
tometer based algorithm is required that will allow the Electric field data to be
extracted. Automation of an algorithm derived from the Freja results presented
above is currently being implemented at the Danish Meteorological institute.
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Figure 7.9: Freja orbit 7281. Squared covariance estimate on 3 Î . (a) covariance
after forward pass; (b) covariance after backward smoothing.

7.6 Summary

The full use of Freja data electric field data required spacecraft attitude state
estimates during the complete science observation phases. The motivation and
problems associated with Freja were discussed in Sections 7.1 and 7.2.

Section 7.3 addressed the filter/smoother development and solution approach.
The two main problems in the attitude reconstruction have been: 1) the lack of
reliable magnetometer data during part of the orbit, when the science data is
corrupted by the phenomena under investigation, and 2) thermal effects on the
spin axis inertia, resulting in uncertainty in the spin rate.

Section 7.4 gave a brief description of the results achieved by processing
Freja magnetometer data in a Kalman filter. In summary, the Freja attitude re-
construction algorithm has solved the initial science problem, getting accurate
attitude estimates during eclipse. The filter is based on magnetometer data only
combined with an accurate dynamic model. The field disturbances were detected
using a CUSUM test and the attitude propagated during interval with perturba-
tions to the main field.

Finally Section 7.5 discussed the use of a similar algorithm on data from
Astrid–2.





Chapter 8

Conclusion and
Recommendations

This thesis considered a number of aspects related to spacecraft attitude determi-
nation. The problem of estimating the attitude based on magnetometer measure-
ments only was studied in detail. This chapter summarizes the work presented in
this thesis. The main results are review and directions for further investigations
are identified.

8.1 Conclusion

Theory and application was combined in this thesis. First some basic theoretical
problems were addressed and at the end two real flight cases were investigated
in detail. Results demonstrate the usefulness of magnetometer based solutions
to attitude estimation, as a backup on small satellites demanding coarse attitude
knowledge, or as a batch-processing reconstruction algorithm used in connection
with a science mission.

The following conclusions are drawn on the accomplishments and contribu-
tions of this thesis:

– A general discussion of attitude representation was presented and the ad-
vantages of using a four component quaternion as rotation group specified
was outlined. The quaternion provides a globally nonsingular two-to-one
mapping of the rotation group. A unit norm constraint limits the number
of independent parameters to one. An exponential series expansion of the
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quaternion was presented, which may easily be truncated in linearization.
It was argued that the series may be interpreted as a series of �(�¦� skew
symmetric matrices.

– An introduction to nonlinear attitude estimation based on Kalman filter-
ing was given. It was demonstrated how temporal fusion of measurements
makes full three-axis attitude determination possible with only one refer-
ence sensor.

– Consistency of the estimator in the presence of modeling errors was inves-
tigated. Given knowledge of the true system, limits on the noise statistics
were established that prevents inconsistency of the estimator.

– The problems of preserving normalization of the quaternion and covari-
ance singularity were demonstrated by use of the exponential quater-
nion series. The covariance singularity is numerically problematic, and
a quaternion error approach was therefore taken that avoids the singular-
ity by only estimating the three independent parameters in a first order
approximation of the exponential series.

– An ADS design, where the magnetometer attitude estimate was used as
a backup algorithm was presented. The result is a fault tolerant system,
which enhance the autonomy of the Ørsted small satellite. Intense simula-
tions based on a truth model has been carried out demonstrating the ability
of the system to estimate attitude and rates with the required accuracy.

– Flight results from Ørsted demonstrates how a single magnetometer may
provide us with valuable information about the state of the spacecraft. The
use of a simple magnetometer combined with an attitude estimator has
complemented the more sophisticated star camera and provided estimates
of rate and attitude when the star camera constraints were violated. Due
to boom oscillations and other problems this has frequently been the case
over the first months of operation.

– Finally the Freja problem was addressed. The solution approach was out-
lined and the results evaluated against available reference data. The result-
ing estimator solved the problem of estimating the attitude during eclipse
and data gaps. The filter state was augmented with an inertia state in order
to facilitate accurate propagation during periods with perturbed field data.
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Perturbations to the field were automatically detected by use of a statisti-
cal test. The accuracy of the solution solved the initial problem posed and
enabled the compensation of motion induced disturbances on the electric
science field measurements, thereby enhancing the Freja science mission.

8.2 Recommendations

The following topics are not covered in this work but it is believed that future
investigations could be beneficial:

– With the advent of modern microprocessors, it has become increasingly
possible to produce smart sensors in which the state estimation process is
moved inside the sensor box. A typical example is the user segment of the
GPS in which the receiver and navigation software are usually integrated
into a single processor. The implementation of an attitude estimator with
the magnetometer could be an interesting new application of the magne-
tometer based attitude determination.

– The Ørsted data give us valuable new data and a high accuracy reference,
which will allow additional studies of magnetometer based solutions on
real flight data. Problems with the Ørsted data are being addressed but a
few problems related to the star camera timing and the boom oscillations
remain open.

– The areas of nonlinear observers and differential geometry has in recent
years received a lot of research interest. The results in these areas could
possibly be transferred to the attitude estimation problem, yielding solu-
tions (quaternions) that evolved on the

ÈoÎ
manifold and thereby avoid the

normalization problem entirely.





Appendix A

Coordinate Systems

This section describe the various coordinate systems applicable to this thesis:

Earth Centered Inertial (ECI) Coordinate System Origin in the Earth’s cen-
ter. The xy-plane is parallel with the Earth’s equatorial plane, the +x-axis is fixed
in the direction of vernal equinox. +z is normal to the xy-plane in the direction
of the north pole, and the 7 axis is formed by the cross product of z- and x-axes.

(a) ECI (b) ECEF

Figure A.1: Earth Centered Inertial (ECI) and Earth Centered Earth Fixed
(ECEF) coordinate systems.
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Spacecraft Body (SCB) Coordinate System Origin is defined in the space-
craft structure and the frame is fixed to the spacecraft. The > 7 plane is defined
by the interface plane where the satellite attaches to the launcher. The ; axis is
normal to the > 7 plane with the +z axis in the direction of the Ørsted boom, or
the “boresight” of the solar array in the Freja case. The Ørsted 7 axis is per-
pendicular to the long side of the main body, while the Freja 7 axis is along the
magnetometer booms with + 7 defined in the direction of the F2 magnetometer.
The > axis completes the orthogonal coordinate system. The Ørsted SCB system
is given in Figure A.2(a) and the Freja SCB system in Figure A.2(b)

(a) Ørsted SCB (b) Freja SCB

Figure A.2: Ørsted and Freja SCB coordinate systems.

Principal (PCS) Coordinate System Origin is in the center of mass of the
spacecraft. The axes are defined by the principal axes of the spacecraft with
the ; axis aligned with the spin axis of the spacecraft. The > and 7 axes are
perpendicular to the ; axis. The rotation from SCB to P is implicit in this thesis.

Earth-Centered-Earth-Fixed (ECEF) Coordinate System Origin is at the
center of mass of the Earth. The xy-plane coincide with the Earth’s equatorial
plane, the +x-axis is fixed by the Greenwich Prime Meridian (GPM). +z is nor-
mal to the xy-plane in the direction of the north pole, and the 7 axis is formed
by the cross product of z- and x-axes, i.e. the 7 axis points 90 deg. to the east of
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GPM.

Figure A.3: Local Vertical Local Horizontal coordinate system.

Local-Vertical-Local-Horizontal (LVLH) Coordinate System Origin is at
the center of mass of the spacecraft. The + ; axis (local vertical) is parallel to the
radius vector, negative from the spacecraft center of mass to the center of Earth.
The + > axis is pointed in the direction of the angular momentum vector (perpen-
dicular to orbit plane). The 7 axis (local horizontal) completes the orthogonal
coordinate system. The + 7 lies in the orbit plane in the direction of the negative
velocity vector (only identical to the velocity vector for perfectly circular orbits).
Note that this definition of LVLH deviates from traditional definitions.





Appendix B

Satellite and Space
Environmental Models

B.1 Atmospheric Density Model

The Mass-Spectrometer-Incoherent-Scatter (MSIS-86) model describes the neu-
tral temperature and densities in the upper atmosphere (above about 100 km). It
is used to model the large periodic changes in the atmospheric density. MSIS-86
model an empirical model based on the extensive data compilation and analysis
work of Hedin (1987) and his colleagues.

B.2 Orbit Propagation Models

General perturbations element sets generated by NORAD are used to predict
position and velocity of the satellites. To do this one must be careful to use a
prediction method which is compatible with the way in which the elements were
generated.

Only ideal orbits describe true ellipses and have constant orbital elements.
Real orbits experience both periodic and secular effects in their elements. Be-
cause of this, there are various ways of describing orbital elements. One way
is to use osculating or instantaneous orbital elements, that is, the instantaneous
values of each element at the specified epoch. The other is to use mean orbital
elements.

NORAD maintains general perturbation element sets (Two Line Elements
(TLE’s) on all resident space objects. These element sets are periodically refined
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so as to maintain a reasonable prediction capability on all space objects. In turn,
these element sets are provided to users. The NORAD element sets are mean
elements obtained by removing periodic variations in a particular way. In order
to obtain good predictions, these periodic variations must be reconstructed in the
same way they were removed by NORAD. Hence, inputting NORAD element
sets into a different model (even though the model may be more accurate or even
a numerical integrator) will result in degraded predictions. The NORAD element
sets must be used with one of the models described in this report in order to retain
maximum prediction accuracy.

The Special General Perturbation (SGP4) model generate predictions based
on NORAD TLE’s and at the same time allow quick calculations. The procedure
to compute position and velocity state vectors for any desired time using SGP4
is well understood and detailed in Hoots and Roehrich (1980).

The basic perturbations that cause a satellite’s path to deviate from an ideal
Keplerian orbit result from

1. The non-spherical mass distribution of the Earth.

2. Atmospheric drag.

SGP4 apply these perturbational effects to orbits by the technique known
as variation of parameters, where the parameters being changed are the orbital
elements. If these effects were ignored and the orbit were propagated using 2-
body (i.e., Keplerian) orbit theory, the error in the predictions would be apparent
within the span of 2-3 hours.

The geopotential deviations from an ideal spherical mass distribution result
in predictable changes to the orbit. The primary gravitational perturbational ef-
fects are on the orbital plane and the orientation of the orbit’s apogee-perigee (or
apsidal) line. The primary effects are "secular" in nature as they represent con-
stant drift rates for the ascending node and the apsidal line as a function of time.
The constant drift rates are a function of the semimajor axis, eccentricity, and
inclination of the orbit. The secondary effects are periodic in nature and consist
of both long- and short-term effects. The long term periodics are superposed
on the secular effects. The short-term periodics, in turn, are superposed on the
long-term periodic effects.

SGP4 uses a 4th order geopotential model which includes the equatorial
bulge (2nd order) and the greater amount of mass in the southern hemisphere
(3rd order). An additional mass deviation is included that is smaller than the
second and third order deviations.



B.2 Orbit Propagation Models 159

SGP4 use static methods to model the effects of atmospheric drag on satel-
lite orbits. SGP4 models the density of the Earth’s upper atmosphere using the
fourth power of the orbital altitude. SGP4 applies drag effects to the orbit using
a pseudo ballistic coefficient, normalized to the orbital altitude and current atmo-
spheric density profile. The drag coefficients are usually empirically-fit (based
on long-term behavior) in the orbit determination process.

B.2.1 Precision

The precision of the orbit propagation was verified against state vectors from the
Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) spacecraft.
The prediction based on mean elements stay well below 20 km error over a
15 days prediction interval when compared to the SAMPEX state vectors. The
results of an example orbit are shown in Figure B.1.

0 5 10 15 20 25 30
−40

−20

0

20

40
Discrepancy btw SGP4 and Sampex data

0 5 10 15 20 25 30
−10

−5

0

5

10

E
rr

or
 [k

m
]

0 5 10 15 20 25 30
−40

−20

0

20

40

Time [days]

Figure B.1: Discrepancy between SPG4 prediction based on TLE and actual
state vectors from SAMPEX.

The precision of the orbit prediction model, has only minor significance when
used in the truth model. The analysis is, however, important when considering
the on-board orbit model. The SAMPEX orbital state vectors were provided by
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courtesy of H. Hoffmann, NASA Goddard Space Flight Center.

B.3 Geomagnetic Reference Field Model

As shown by Gauss in 1839, the main geomagnetic field (i.e., magnetic potential)
can be represented by a spherical harmonic series, the first term being the simple
dipole term. A gradient of the potential determines the magnetic vector field. The
Earth’s real magnetic field is the sum of several contributions including the main
(core) field, the crustal (anomaly) field, and the external source (magnetospheric)
fields.

The principal data sources for the main geomagnetic field modeling are the
following:

– Permanent (standard) magnetic observatories worldwide

– Global satellite magnetic measurements

– Magnetic surveys from the aircraft and ships

Satellite data (MAGSAT and Dynamic Explorer 2) have also helped to evalu-
ate the crustal (anomaly) fields at individual observatories and regions and have
thus greatly enhanced the accuracy of observatory data for the main field mod-
eling. Temporal variations of the internal field have been modeled by expanding
the coefficients in a Taylor series in time. Most models include only the constant
and first time derivative (secular variation) terms.

The International Geomagnetic Reference Field (IGRF) model is the em-
pirical representation of the Earth’s magnetic field recommended for scientific
use by the International Association of Geomagnetism and Aeronomy. The
IGRF model represents the main (core) field without external sources. They
employ the usual spherical harmonics expansion of the scalar potential in geo-
centric coordinates. The IGRF model coefficients are based on all available data
sources including geomagnetic measurements from observatories, ships, aircraft
and satellites.
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