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Abstract

On-Line Analytical Processing (OLAP) is an approach widely used for data
analysis. OLAP is based on the multidimensional (MD) data model where
factual data are related to their analytical perspectives called dimensions and
together they form an n-dimensional data space referred to as data cube.
MD data are typically stored in a data warehouse, which integrates data
from in-house data sources, and then analyzed by means of OLAP opera-
tions, e.g., sales data can be (dis)aggregated along the location dimension.
As OLAP proved to be quite intuitive, it became broadly accepted by non-
technical and business users. However, as users still encountered difficulties
in their analysis, different approaches focused on providing user assistance.
These approaches collect situational metadata about users and their actions
and provide suggestions and recommendations that can help users’ analysis.
However, although extensively exploited and evidently needed, little atten-
tion is paid to metadata in this context. Furthermore, new emerging tenden-
cies call for expanding the use of OLAP to consider external data sources and
heterogeneous settings. This leads to the Exploratory OLAP approach that es-
pecially argues for the use of Semantic Web (SW) technologies to facilitate the
description and integration of external sources. With data becoming publicly
available on the (Semantic) Web, the number and diversity of non-technical
users are also significantly increasing. Thus, the metadata to support their
analysis become even more relevant.

This PhD thesis focuses on metadata for supporting Exploratory OLAP.
The study explores the kinds of metadata artifacts used for the user assistance
purposes and how they are exploited to provide assistance. Based on these
findings, the study then aims at providing theoretical and practical means
such as models, algorithms, and tools to address the gaps and challenges
identified. First, based on a survey of existing user assistance approaches
related to OLAP, the thesis proposes the analytical metadata (AM) frame-
work. The framework includes the definition of the assistance process, the
AM artifacts that are classified in a taxonomy, and the artifacts organization
and related types of processing to support the user assistance. Second, the
thesis proposes a semantic metamodel for AM. Hence, Resource Descrip-
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tion Framework (RDF) is used to represent the AM artifacts in a flexible
and re-usable manner, while the metamodeling abstraction level is used to
overcome the heterogeneity of (meta)data models in the Exploratory OLAP
context. Third, focusing on the schema as a fundamental metadata artifact
for enabling OLAP, the thesis addresses some important challenges on con-
structing an MD schema on the SW using RDF. It provides the algorithms,
method, and tool to construct an MD schema over statistical linked open
data sets. Especially, the focus is on enabling that even non-technical users
can perform this task. Lastly, the thesis deals with queries as the second most
relevant artifact for user assistance. In the spirit of Exploratory OLAP, the the-
sis proposes an RDF-based model for OLAP queries created by instantiating
the previously proposed metamodel. This model supports the sharing and
reuse of queries across the SW and facilitates the metadata preparation for
the assistance exploitation purposes. Finally, the results of this thesis provide
metadata foundations for supporting Exploratory OLAP and advocate for
greater attention to the modeling and use of semantics related to metadata.



Resumé

On-Line Analytical Processing (OLAP) er en bredt anvendt tilgang til data-
analyse. OLAP er baseret på den multidimensionelle (MD) datamodel, hvor
faktuelle data relateres til analytiske synsvinkler, såkaldte dimensioner. Tilsam-
men danner de et n-dimensionelt rum af data kaldet en data cube. Multi-
dimensionelle data er typisk lagret i et data warehouse, der integrerer data
fra forskellige interne datakilder, og kan analyseres ved hjælp af OLAP-
operationer. For eksempel kan salgsdata disaggregeres langs sted-dimensionen.
OLAP har vist sig at være intuitiv at forstå og er blevet taget i brug af ikke-
tekniske og forretningsorienterede brugere. Nye tilgange er siden blevet ud-
viklet i forsøget på at afhjælpe de problemer, som denne slags brugere dog
stadig står over for. Disse tilgange indsamler metadata om brugerne og deres
handlinger og kommer efterfølgende med forslag og anbefalinger, der kan
bidrage til brugernes analyse. På trods af at der er en klar nytteværdi i meta-
data (givet deres udbredelse), har stadig ikke været meget opmærksomhed
på metadata i denne kotekst. Desuden lægger nye fremspirende teknikker
nu op til en udvidelse af brugen af OLAP til også at bruge eksterne og uen-
sartede datakilder. Dette har ført til Exploratory OLAP, en tilgang til OLAP,
der benytter teknologier fra Semantic Web til at understøtte beskrivelse og
integration af eksterne kilder. Efterhånden som mere data gøres offentligt
tilgængeligt via Semantic Web, kommer flere og mere forskelligartede ikke-
tekniske brugere også til. Derfor er metadata til understøttelsen af deres
dataanalyser endnu mere relevant.

Denne ph.d.-afhandling omhandler metadata, der understøtter Exploratory
OLAP. Der foretages en undersøgelse af de former for metadata, der benyttes
til at hjælpe brugere, og af, hvordan sådanne metadata kan udnyttes. Med
grundlag i disse fund søges der løsninger til de identificerede problemer
igennem teoretiske såvel som praktiske midler. Det vil sige modeller, algo-
ritmer og værktøjer. På baggrund af en afdækning af eksisterende tilgange
til brugerassistance i forbindelse med OLAP præsenteres først rammevær-
ket Analytical Metadata (AM). Det inkluderer definition af assistancepro-
cessen, en taksonomi over tilhørende artefakter og endelig relaterede pro-
cesseringsformer til brugerunderstøttelsen. Dernæst præsenteres en seman-
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tisk metamodel for AM. Der benyttes Resource Description Framework (RDF)
til at repræsentere AM-artefakterne på en genbrugelig og fleksibel facon,
mens metamodellens abstraktionsniveau har til formål at nedbringe uen-
sartetheden af (meta)data i Exploratory OLAPs kontekst. Så fokuseres der
på skemaet som en fundamental metadata-artefakt i OLAP, og afhandlin-
gen tager fat i vigtige udfordringer i forbindelse med konstruktionen af
multidimensionelle skemaer i Semantic Web ved brug af RDF. Der præsen-
teres algoritmer, metoder og redskaber til at konstruere disse skemaer sam-
menkoblede åbne statistiske datasæt. Der lægges særlig vægt på, at denne
proces skal kunne udføres af ikke-tekniske brugere. Til slut tager afhandlin-
gen fat i forespørgsler som anden vigtig artefakt inden for bruger-assistance.
I samme ånd som Exploratory OLAP foreslås en RDF-baseret model for
OLAP-forespørgsler, hvor førnævnte metamodel benyttes. Modellen under-
støtter deling og genbrug af forespørgsler over Semantic Web og fordrer
klargørelsen af metadata med øje for assistance-relaterede formål. Endelig
leder resultaterne af afhandlingen til fundamenterne for metadata i støttet
Exploratory OLAP og opfordrer til en øget opmærksomhed på modellerin-
gen og brugen af semantik i forhold til metadata.



Resum

El processament analític en línia (OLAP) és una tècnica ampliament utilitzada
per a l’anàlisi de dades. OLAP es basa en el model multidimensional (MD)
de dades, on dades factuals es relacionen amb les seves perspectives analí-
tiques, anomenades dimensions, i conjuntament formen un espai de dades
n-dimensional anomenat cub de dades. Les dades MD s’emmagatzemen típi-
cament en un data warehouse (magatzem de dades), el qual integra dades
de fonts internes, les quals posteriorment s’analitzen mitjançant operacions
OLAP, per exemple, dades de vendes poden ser (des)agregades a partir de
la dimensió ubicació. Un cop OLAP va ser provat com a intuïtiu, va ser
ampliament acceptat tant per usuaris no tècnics com de negoci. Tanmateix,
donat que els usuaris encara trobaven dificultats per a realitzar el seu anàlisi,
diferents tècniques s’han enfocat en la seva assistència. Aquestes tècniques
recullen metadades situacionals sobre els usuaris i les seves accions, i propor-
cionen suggerències i recomanacions per tal d’ajudar en aquest anàlisi. Tot
i ésser extensivament emprades i necessàries, poca atenció s’ha prestat a les
metadades en aquest context. A més a més, les noves tendències demanden
l’expansió d’ús d’OLAP per tal de considerar fonts de dades externes en es-
cenaris heterogenis. Això ens porta a la tècnica d’OLAP exploratori, la qual
es basa en l’ús de tecnologies en la web semàntica (SW) per tal de facilitar la
descripció i integració d’aquestes fonts externes. Amb les dades essent públi-
cament disponibles a la web (semàntica), el nombre i diversitat d’usuaris no
tècnics també incrementa signifícativament. Així doncs, les metadades per
soportar el seu anàlisi esdevenen més rellevants.

Aquesta tesi doctoral s’enfoca en l’ús de metadades per suportar OLAP
exploratori. L’estudi explora els tipus d’artefactes de metadades utilitzats per
l’assistència a l’usuari, i com aquests són explotats per proporcionar assistèn-
cia. Basat en aquestes troballes, l’estudi preté proporcionar mitjans teòrics i
pràctics, com models, algorismes i eines, per abordar els reptes identificats.
Primerament, basant-se en un estudi de tècniques per assistència a l’usuari
en OLAP, la tesi proposa el marc de treball de metadades analítiques (AM).
Aquest marc inclou la definició del procés d’assistència, on els artefactes
d’AM són classificats en una taxonomia, i l’organització dels artefactes i ti-
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pus relacionats de processament pel suport d’assistència a l’usuari. En segon
lloc, la tesi proposa un metamodel semàntic per AM. Així doncs, s’utilitza el
Resource Description Framework (RDF) per representar els artefactes d’AM
d’una forma flexible i reusable, mentre que el nivell d’abstracció de meta-
model s’utilitza per superar l’heterogeneitat dels models de (meta)dades en
un context d’OLAP exploratori. En tercer lloc, centrant-se en l’esquema com
a artefacte fonamental de metadades per a OLAP, la tesi adreça reptes im-
portants en la construcció d’un esquema MD en la SW usant RDF. Propor-
ciona els algorismes, mètodes i eines per construir un esquema MD sobre
conjunts de dades estadístics oberts i relacionats. Especialment, el focus rau
en permetre que usuaris no tècnics puguin realitzar aquesta tasca. Final-
ment, la tesi tracta amb consultes com el segon artefacte més rellevant per
l’assistència a usuari. En l’esperit d’OLAP exploratori, la tesi proposa un
model basat en RDF per consultes OLAP instanciant el metamodel previ-
ament proposat. Aquest model suporta el compartiment i reutilització de
consultes sobre la SW i facilita la preparació de metadades per l’explotació
de l’assistència. Finalment, els resultats d’aquesta tesi proporcionen els fon-
aments en metadades per suportar l’OLAP exploratori i propugnen la major
atenció al model i ús de semàntica relacionada a metadades.
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Chapter 1

Introduction

1 Background and Motivation

Business Intelligence (BI) is an area focusing on tools and techniques for data
analysis to support decision-making [83]. Traditionally, data in BI systems
come from in-house data sources and are integrated in a data warehouse
(DW) [64] that keeps their history and supports their analysis. In a DW,
data are conformed to the multidimensional (MD) model [53] where factual
data (i.e., facts) relate to one or more analytical perspectives (i.e., dimensions)
comprising the n-dimensional space typically referred to as data cube. Dimen-
sions are hierarchically structured enabling that fact measures (i.e., numerical
data) are (dis)aggregated along hierarchical elements representing different
granularity levels. The MD model is the foundation for On-Line Analytical
Processing (OLAP) [2], an approach where data cubes are navigated (e.g.,
data granularity is changed) via user-friendly interface of OLAP tools (e.g.,
to discover the sales value for a certain region over a time period). Hence,
OLAP became widely spread and popular among business and non-technical
users for data analysis and decision-making [2].

Novel trends in recent years bring challenges to the traditional BI systems
and OLAP. The big data phenomena with its 3+ Vs causes the rapid data
size growth (i.e., volume), speed of data generation (i.e., velocity), and di-
versification of data formats (i.e., variety) [50, 110] among others (e.g., verac-
ity [50,99]). Furthermore, the abundance of new publicly available data (e.g.,
see the Open Data initiative1) requires that BI settings and OLAP include
non-controlled, heterogeneous, and volatile data sources in an on-demand
manner so that end users can include them in their analysis [1]. For instance,
considering average salaries from public statistics together with the internal
sales results may help making further decisions. More than just data-related

1http://okfn.org/opendata/

1
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challenges, novel settings spring up new and diverse (often non-skilled) users
on the Web that want to analyze data in a similar fashion (e.g., data enthusi-
ast users - educated but non-technical users [44]). All these and other factors
call for novel BI and OLAP solutions as discussed in Ad-hoc and Collabora-
tive BI [20], Self-Service BI [1], Live BI [24], On-Demand BI [31], Open BI [74],
Situational BI [71], Exploratory OLAP [4] and other approaches focusing on
one or more tasks in this spectrum. Throughout this thesis, these innovative
solutions are denoted as next generation BI systems and the focus on OLAP in
these settings is referred to as Exploratory OLAP.

To deal with data variety and external data sources, next generation BI
systems turn to the Semantic Web (SW) technology stack [19]. Using the Re-
source Description Framework (RDF) [28] as the SW backbone to represent
data in terms of triples comprising a graph where each triple has semantics
(contained in its edge, and one or both nodes definitions) opens new possibil-
ities for addressing data sharing, reuse, and integration on the Web. This is
especially promoted with the Linked Data initiative [21,45] defining the prin-
ciples on how to publish and interlink the data on the SW so that the existing
semantics is reused and extended. Furthermore, the semantics enables rea-
soning and supports automatic data processing. The Linked Data and Open
Data initiatives also bring plenty of publicly available data (e.g., European
statistics) that are referred to as Linked Open Data. Thus, the SW both pro-
vides the technological means and motivates data publishing. Well-known
OLAP analysis can facilitate the user analysis of SW data and vice-versa, SW
data can give semantics to and/or enrich existing data cubes. In the con-
text of external, non-controlled, and heterogeneous data sources, a special
attention is on performing OLAP directly over the SW data by using the
MD semantics defined in dedicated RDF vocabularies, namely the RDF Data
Cube (QB) [27] and QB4OLAP [33]. Data modeled according to QB4OLAP
can be automatically queried with traditional OLAP operations [34] and thus
explored in familiar fashion by the broad group of OLAP users. Yet, many
challenges remain as we discuss in the sequel.

Although OLAP facilitates user’s data analysis, users still encounter dif-
ficulties when analyzing data cubes [15]. Thus, different user assistance ap-
proaches for query (e.g., [15, 38]) and query session (e.g., [10]) recommenda-
tions, results visualization (e.g., [18]), and exploration using human language
(e.g., [75]) were proposed among others for traditional BI and OLAP. These
assistance approaches typically collect situational metadata about the user
and/or system and use different user assistance algorithms to process them.
The need for user assistance is even more emphasized with the novel ten-
dencies such as Exploratory OLAP [4] which promote that non-expert users
should be able to navigate the existing data cubes as well as extend them
with external data without the help of technical support colleagues. Hence,
Exploratory OLAP demands even more complex and advanced approaches
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so that metadata become a first-class citizen decoupled from assistance al-
gorithms. Nevertheless, although evidently needed, the metadata for user
assistance are still addressed in an ad-hoc manner so that the identification
of relevant metadata artifacts and their systematic modeling, management,
and processing are typically neglected.

2 The Metadata Lifecycle

The metadata are the fuel for user assistance algorithms in traditional BI
as well as next generation BI and other systems. Thus, the way how the
metadata are represented directly influences the assistance possibilities. The
metadata can enable that both the metadata and assistance algorithms can
be reused among different systems, especially if metadata refer to the same
application domain, e.g., OLAP. Nonetheless, there are several phases in the
metadata lifecycle that need to be performed to achieve this goal. The phases
are illustrated in Figure 1.1 and we further explain each of them.

Phases of the metadata lifecycle:

• Metadata definition. The lifecycle starts with the metadata definition
phase where all the necessary metadata artifacts need to be identified.
The artifacts depend on the application domain and exploitation goals.

• Metadata modeling. After defining the metadata artifacts, the next phase
is their modeling. It needs to define the level of abstraction, the level of
detail, the modeling notation, and related design decisions.

• Metadata management. Once the metadata are defined and modeled,
the implementation details about which technology to be used for the
creation of the metadata repository should be made. This enables sys-
tematic metadata management as opposed to ad-hoc means like text
files and logs.

• Metadata population. Having the metadata repository prepared, the next
phase includes the process(es) for its population. The complexity of
these techniques can range from simple ones where metadata instances
are explicitly defined to very complex processes that monitor the system
and/or user to generate the metadata.

• Metadata exploitation. Finally, once the metadata repository is (being)
populated, they should be exploited to bring benefits, i.e., assist the
user. Furthermore, the metadata (e.g., user actions) can be processed
to generate additional metadata (e.g., user profiles derived from user
actions) that facilitate the final exploitation (i.e., user assistance).

3
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Definition

Modeling

Management

Population

Exploitation

Fig. 1.1: The lifecycle of Analytical Metadata

We next discuss the research questions related to metadata for supporting
Exploratory OLAP so that the user can perform her analysis in the easiest
way possible. These research questions are considered with respect to the
different phases of the metadata lifecycle. We focus on the following research
questions that are addressed in this thesis.

What metadata are needed? Existing user assistance approaches in the OLAP
context mainly focus on the user assistance algorithms and their results, i.e.,
the kinds of assistance that the user receives. Little attention is devoted to
the metadata and considering of the typical metadata artifacts used in OLAP
systems. The resulting pitfall of this situation is that many metadata arti-
facts which can be used for the user assistance are often overlooked in the
OLAP context. For instance, the user demographic information that are typ-
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ically used in web recommender systems are rarely considered, although
they could be highly beneficial for collaborative recommendations and sim-
ilar cases. Thus, the identification of all metadata artifacts that can be used
for supporting Exploratory OLAP are essential to enable more advance user
assistance, yet this remains missing. This research question relates to the
metadata definition phase.

How to model the metadata? Even with metadata artifacts defined and the
same artifacts used in different systems, their modeling is still being over-
looked. For instance, OLAP queries are typically kept in query logs in raw
format, i.e., without being modeled at all. The lack of modeling hinders the
processing in the same manner as storing of data in a plain text file instead
of using a database. In the OLAP context, this drawback can especially be
avoided thanks to the OLAP semantics (e.g., the MD schema and OLAP oper-
ations) that can be used for their representation. Furthermore, even if using a
model, the metadata reuse among different systems can be further facilitated
by using modeling formalisms that support sharing (e.g., RDF). This has been
shown with the QB4OLAP representation of MD schema, yet poorly (if at all)
exploited for other metadata artifacts such as queries. Thus, a semantic meta-
data model is needed for the Exploratory OLAP context. Finally, due to the
heterogeneity of models used in next generation BI systems, there is a need
for a flexible modeling approach that captures the shared semantics while
still enabling flexible modeling for specific systems. This research question
relates to the metadata modeling phase.

How to automate the metadata collection and discovery as much as possible?
There are two ways to collect metadata. Either the user needs to state them
explicitly (e.g., age) or the metadata should be collected as automatically as
possible. Thus, the systems need to provide techniques, methods, and algo-
rithms to generate metadata from available (meta)data and user’s interaction
with the system. Furthermore, the Linked Data settings open a new oppor-
tunity for the discovery of additional (meta)data from other sources linked
to the current one. Thus, focusing on semantic metadata for supporting Ex-
ploratory OLAP brings up new tasks for building the metadata corpus. This
research question relates to the metadata population phase.

How to exploit the metadata? The main goal of metadata exploitation for Ex-
ploratory OLAP is the user assistance. The semantic metadata for this context
can be reused by existing assistance algorithms or used for developing novel
ones. The semantic metadata can enable user assistance for OLAP on the SW
which has not been much exploited by the existing approaches. This research
question relates to the metadata exploitation phase.

Starting from the identified research questions in managing the semantic
metadata for Exploratory OLAP lifecycle, this PhD thesis further aims at
addressing these research questions and providing methods and tools for
facilitating different phases of the lifecycle.
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3 Thesis Overview

In this section, we provide an overview of each chapter in the thesis and
outline the overall contributions. An overview of how the chapters build on
and relate to each other is illustrated in Figure 1.2. Chapter 1 introduces the
thesis and Chapter 6 concludes the thesis. Chapters 2 to 5 present the main
content and contributions of the thesis. Appendices A and B are published
papers that directly relate to and are mostly covered by specific chapters
of the main content. The following subsections provide more details about
Chapters 2 to 5 and Appendices A and B.

Chapter 1 Chapter 2

Appendix B

Appendix A Chapter 3

Chapter 4

Chapter 5 Chapter 6

Fig. 1.2: Thesis content overview

3.1 Chapter 2: Towards Next Generation BI Systems: The
Analytical Metadata Challenge

As data about data, metadata can refer to very diverse spectrum of concepts.
For some concepts it is clear what metadata are, e.g., data describing textual,
music, and video files. However, for other context it is not always unequivo-
cal. For instance, user information can be considered as data to be analyzed
or metadata describing users that analyze data (e.g., sales), which the system
stores. Furthermore, not all metadata are relevant in all contexts. Thus, in
order to elaborate on the topic of metadata, the context needs to be set first.

Chapter 2 introduces the context and presents the vision of metadata for
user assistance in next generation BI systems. It defines the analytical meta-
data framework describing the metadata artifacts, related processes, and their
role for the user assistance. The key idea in the chapter is that the set of
metadata artifacts called analytical metadata should be considered and han-
dled as a first-class citizen in user-centric BI systems in order to support the
user data analysis such as OLAP. Furthermore, as next generation BI sys-
tems include external and heterogeneous data sources, analytical metadata
should be semantic-aware and machine-processable so that different systems
can automatically process them.

The settings envisioned for next generation BI systems are aligned with [1]
and background given in Section 1. To identify analytical metadata artifacts,
the chapter presents the results of a survey of user assistance approaches
in OLAP and database contexts mainly focusing on query recommendation
approaches. The approaches are analyzed with respect to an assistance pro-
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cess that considers the input revealing the metadata artifacts (e.g., queries),
the paradigm describing the abstraction level at which the artifacts are pro-
cessed (e.g., query syntax level), the scope defining the profiling of artifacts
needed for the assistance (e.g., user profiling as correlating of artifacts related
to a user), and the assistance goal (e.g., query recommendations). The results
specify the metadata artifacts used and types of user assistance provided,
while outlining the need of considering user characteristics and feature-based
paradigm (e.g., MD semantics as feature) for the user assistance. Moreover,
the system profiling is identified as opening possibilities other than just user
assistance.

With the metadata artifacts identified, this chapter further defines the
analytical metadata taxonomy by taking an existing business oriented taxon-
omy [36], extending it with an additional category, and defining the technical
interpretation of each of the 5 categories, namely definitional, data quality,
navigational, lineage, and ratings. Then, the metadata artifacts, including
the new ones to support automation, are classified into the categories. The
metadata artifacts are the vocabulary, schema, characteristics, profiling meta-
data, query, query log, session, traceability metadata, preferences, and statis-
tics. Finally, the framework discusses the processing techniques for analytical
metadata with the specific emphasis on the automation possibilities where
metadata artifacts are classified into explicit, inferred, and structural, while
processing techniques are base processing, derivative processing, and goal-
oriented processing. Overall, while the existing DW metadata solutions focus
on a specific piece of metadata, e.g., Common Warehouse Metamodel [79] fo-
cusing mostly on DW schema, the analytical metadata framework provides
a unified view of the metadata artifacts needed for supporting the user an-
alytical tasks such as OLAP. Thus, it sets a base and opens new research
challenges on metadata for the user assistance in next generation BI where
Exploratory OLAP is one of the main data analysis approaches.

3.2 Chapter 3: Analytical Metadata Modeling for Next Gen-
eration BI systems

Once the analytical metadata artifacts are defined, the next task is their mod-
eling. The metadata modeling brings the same benefits as the data modeling
does in traditional data management systems versus, for example, keeping
data in plain-text files. However, since analytical metadata need to be con-
sidered as a first-class citizen, managed in a dedicated repository [62], and
represented in a flexible and reusable manner, their modeling requires sig-
nificant attention. This is where the SW technologies can help and provide
means to address this task. In this context, a comprehensive discussion and
outlook on how SW technologies can benefit the Exploratory OLAP is given
in [4]. In the same spirit, we propose the use of RDF to represent analyti-
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cal metadata as it supports sharing, re-usability, and provides the necessary
flexibility. Indeed, some metadata models related to certain analytical meta-
data artifacts already use RDF. For instance, the MD schema for OLAP can be
modeled using QB/QB4OLAP vocabularies (see Chapter 4 for more details)
while SPARQL queries can be represented with the LSQ data model [88].
Furthermore, the heterogeneity of next generation BI systems brings an addi-
tional challenge for analytical metadata modeling. Instead of a fixed univer-
sal model, analytical metadata should capture the common semantics while
enabling the coexistence of different metadata models. Thus, we propose that
the analytical metadata are represented at the metamodel abstraction level.
In this direction, RDF also provides support as it can be used for ontological
metamodeling (see [14]).

Hence, Chapter 3 proposes SM4AM: A Semantic Metamodel for Analyti-
cal Metadata as a metamodel of analytical metadata formalized in RDF. The
chapter introduces the running example and the necessary background ex-
plaining analytical metadata, RDF, and ontological metamodeling. Then, the
metamodel is presented and the metamodel elements are mapped to the ana-
lytical metadata artifacts. Each metamodel element is explained using the ex-
amples illustrating the metamodel, model, and instance abstraction levels. To
support the proper use of the metamodel, the chapter also proposes a method
on how it should be instantiated. The benefits of using SM4AM are showed
on a use case considering two real-world data sets on the SW. In the use
case, the schema and query analytical metadata artifacts are used to reduce
the resulting search space when exploring external data sources and enable
a metamodel-driven (meta)data exploration. Hence, in this chapter we show
the practical benefits of using SM4AM. Our approach aims to harmonize
the (meta)modeling as a well-established software engineering practice with
the more recent SW settings that support flexible and reusable (meta)data
representation, so that analytical metadata can bring maximal value for Ex-
ploratory OLAP and next generation BI systems.

3.3 Chapter 4: Dimensional Enrichment of Statistical Linked
Open Data

The fundamental metadata artifact for enabling Exploratory OLAP is the
schema. As discussed in Section 1, the schema needs to conform to the MD
model and as the SW technologies are supporting Exploratory OLAP [4], this
leads to representing schema as semantic metadata via QB4OLAP vocabu-
lary [33]. QB4OLAP extends the RDF Data Cube (QB) vocabulary [27] with
the necessary metadata concepts to be fully compliant with OLAP. Never-
theless, extending an existing QB data set with additional QB4OLAP meta-
data is a tiresome, labor-intensive, and error-prone process. More than just
straight-forward transformation from QB to QB4OLAP semantics, this pro-
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cess requires the discovery and/or definition of novel concepts for enriching
the QB data set. Thus, the maximal possible automation of this process is
required, especially considering that, in the spirit of Exploratory OLAP and
next generation BI systems, end users should be able to perform this task on
their own.

Chapter 4 presents the details on how to create a QB4OLAP data set
starting from a QB one. In this context, it first introduces the necessary
prerequisites for understanding QB and presents a running example used
throughout the paper. Then, a detailed discussion on the QB limitations
related to OLAP and how QB4OLAP remedies them is provided. The dis-
cussion outlines the benefits of additional metadata (i.e., schema) constructs
that QB4OLAP brings. There is already a significant number of QB data sets
on the SW, mostly published as statistical linked open data. Hence, to enable
OLAP over these data sets, they should be enriched with QB4OLAP seman-
tics. As this is a cumbersome task, the enrichment needs to be achieved as
automatically as possible. Thus, the chapter further elaborates on the au-
tomation challenges related to the semantics and data. In this context, two
techniques are proposed related to the additional QB4OLAP semantics, one
for defining the aggregate functions of the measures and the other for the
detection of candidate concepts for the construction of the dimension hierar-
chies. Then, the chapter presents a method defining the necessary steps for
enriching a QB data set with QB4OLAP metadata (i.e., semantics) using the
previous techniques for its automation. For the sake of comprehension, the
steps are formulated as SPARQL queries. Furthermore, the chapter presents
a tool called QB2OLAPem that is implemented for the enrichment process.
The tool is used to evaluate our approach in the experiments with 25 users
that needed to perform the same enrichment tasks with and without the
tool. The results show that the tool facilitates and speeds-up the enrich-
ment process, while in practice guarantees the correctness of the MD (i.e.,
QB4OLAP) schema produced. Using QB2OLAPem, even the non-technical
users can perform the enrichment task and prepare a data set for the analysis
with OLAP querying tools that can work over QB4OLAP data sets. As such,
the approach presented in Chapter 4 represents a significant step towards
Exploratory OLAP. Finally, while the introduced method presents the main
enrichment tasks to facilitate the understanding, the chapter’s appendix pro-
vides a fully formalized methodology using set theory. The methodology
specifies the enrichment steps in terms of pre-conditions, post-conditions,
and transformations performed that do not depend on the implementation
decisions made.

Overall, the approach presented in Chapter 4 addresses the important
challenges of MD modeling on the SW related to the schema metadata arti-
fact. Moving towards the vision of fusion cubes [1] and empowered by the
SW technologies, the presented approach supports the user in creating cor-
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rect MD schemata in a user-friendly manner. Furthermore, it paves the path
to having a stack of real-world data sets with their schemata around which
other semantic metadata artifacts can be added to extend the support for
Exploratory OLAP.

3.4 Chapter 5: SM4MQ: A Semantic Model for Multidimen-
sional Queries

Once data are conforming to an MD schema on the SW, the next analytical
metadata artifact to be considered for supporting Exploratory OLAP is the
query. MD data are typically navigated via OLAP operations used in MD
queries. Currently, most of the efforts in this context are devoted to OLAP
algebras, however the query modeling is still overlooked. This gap becomes
even more relevant when considering the initiatives like Open Data where
plenty of publicly available data are analyzed by very diverse and mostly
non-technical users. These users can certainly benefit from query reuse and
sharing, and this is hardly achievable without a common query representa-
tion. Moreover, MD queries can also become the focus of analysis and, if
made publicly available, be used for different exploitation purposes.

Thus, Chapter 5 proposes SM4MQ: A Semantic Model for Multidimen-
sional Queries that is an RDF-based formalization of MD queries. The model
is designed around QB4OLAP used for the representation of MD data on the
SW. In particular, the model represents the set of most popular OLAP op-
erations used in [34] where related algebraic formalization is also provided.
In particular, the included OLAP operations are ROLL-UP, DRILL-DOWN,
DICE, and SLICE. We model these operations and related MD queries with
RDF to support their sharing and reuse on the SW. In this direction, the pieces
of the model representing the OLAP operations include some additional con-
cepts with respect to [34] to further facilitate sharing. For instance, ROLL-UP
operation includes both from and to levels, while in principle the from level
could be discovered from the sequence of OLAP operations. Furthermore,
DICE and SLICE operations are split into two types, one using dimensions
and other using measures, to provide atomicity and thus again facilitate shar-
ing. Finally, the model captures the semantics of OLAP operations at the
conceptual level as discussed in [34] and [29].

Moreover, the chapter also proposes a method to automate the exploita-
tion of SM4MQ queries by means of SPARQL. The method is then exempli-
fied on a use case to transform queries from SM4MQ to a vector representa-
tion. The vector representation can be used to compare queries using typical
similarity functions (e.g., cosine similarity). To evaluate our approach, we
developed a prototype that automatically transforms queries from SM4MQ
to a vector representation and computes the similarities between queries. In
this context, we used a set of 15 MD queries related to the chapter’s running
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example data set. We showed that their transformation to vectors can be auto-
mated thanks to SM4MQ while the vectors support their further exploitation.
Thus, based on these results, the chapter recapitulates on the necessary user
efforts and shows that even non-technical users can perform this task, as op-
posed to typical settings where system-specific query parsing can hardly be
achieved without the support of IT people. Overall, this chapter shows that
there are multiple benefits of semantic representation of MD queries for Ex-
ploratory OLAP that also opens the new possibilities for their exploitation on
the SW.

3.5 Appendices A and B

The content of Appendix A is mostly already covered by Chapter 3 while
Appendix B brings slightly more details about the tool proposed in Chapter 4.
They are included in the thesis for completeness, as they have been published
as separate papers. Appendix A presents the initial version of the SM4AM
metamodel that was significantly extended in Chapter 3. Appendix B is a
demo paper presenting the tool provided in Chapter 4 combined with other
modules for enabling OLAP on statistical linked open data.

4 Structure of the Thesis

The results of this PhD thesis are reported inside the four main chapters of
this document (i.e., Chapter 2 - Chapter 5). Each chapter is self-contained,
corresponding to an individual research paper, and hence it can be read in
isolation. There can be some overlaps of concepts, examples, and texts in
the introduction and preliminaries sections of different chapters as they are
formulated in relatively similar kind of settings. Due to different timelines
in which these works have been done, as well as the research teams in which
we have worked, there may also be some discrepancies in the terminology for
some of the concepts. However, the terminology and notation used in each
of the works have been clearly defined and formalized in each particular
chapter.

The papers included in this thesis are listed below. Chapter 2 is based
on Paper 1, Chapter 3 is based on Paper 2, Chapter 4 is based on Paper
3, Chapter 5 is based on Paper 4, Appendix A is based on Paper 5, and
Appendix B is based on Paper 6.

1. Jovan Varga, Oscar Romero, Torben Bach Pedersen, Christian Thom-
sen. Towards Next Generation BI Systems: The Analytical Metadata
Challenge, DaWaK 2014: 89-101

11



Chapter 1. Introduction

2. Jovan Varga, Oscar Romero, Torben Bach Pedersen, Christian Thom-
sen. Analytical Metadata Modeling for Next Generation BI systems.
Submitted to a journal.

3. Jovan Varga, Alejandro A. Vaisman, Oscar Romero, Lorena Etcheverry,
Torben Bach Pedersen, Christian Thomsen. Dimensional Enrichment
of Statistical Linked Open Data. Web Semantics: Science, Services and
Agents on the World Wide Web, 2016, vol. 40, p. 22-51

4. Jovan Varga, Ekaterina Dobrokhotova, Oscar Romero, Torben Bach Ped-
ersen, Christian Thomsen. SM4MQ: A Semantic Model for Multidimen-
sional Queries. To be submitted to a conference.

5. Jovan Varga, Oscar Romero, Torben Bach Pedersen, Christian Thom-
sen. SM4AM: A Semantic Metamodel for Analytical Metadata. DOLAP
2014: 57-66

6. Jovan Varga, Lorenan Etcheverry, Alejandro Vaisman, Oscar Romero,
Torben Bach Pedersen, Christian Thomsen. QB2OLAP: Enabling OLAP
on Statistical Linked Open Data. ICDE 2016: 1346-1349

12



Chapter 2

Towards Next Generation BI
Systems: The Analytical
Metadata Challenge

The paper has been published in the
Proceedings of the 16th International Conference on Data Warehousing and Knowl-
edge Discovery, pp. 89-101 (2014). The layout of the paper has been revised.
DOI: http://dx.doi.org/10.1007/978-3-319-10160-6_9

Springer copyright/ credit notice:
Proceedings of the 16th International Conference on Data Warehousing and
Knowledge Discovery, Towards Next Generation BI Systems: The Analyti-
cal Metadata Challenge, 2014, pp. 89-101, Jovan Varga, Oscar Romero, Tor-
ben Bach Pedersen, and Christian Thomsen
L. Bellatreche and M.K. Mohania (Eds.): DaWaK 2014, LNCS 8646, pp. 89–101,
2014. c© Springer International Publishing Switzerland 2014
With permission of Springer

Abstract

Next generation Business Intelligence (BI) systems require integration of heteroge-
neous data sources and a strong user-centric orientation. Both needs entail machine-
processable metadata to enable automation and allow end users to gain access to
relevant data for their decision making processes. Although evidently needed, there
is no clear picture about the necessary metadata artifacts, especially considering user
support requirements. Therefore, we propose a comprehensive metadata framework
to support the user assistance activities and their automation in the context of next
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generation BI systems. This framework is based on the findings of a survey of cur-
rent user-centric approaches mainly focusing on query recommendation assistance.
Finally, we discuss the benefits of the framework and present the plans for future
work.

1 Introduction

Next generation BI systems (BI 2.0 systems) shift the focus to the user and
claim for a strong user-centric orientation. Through automatic user support
functionalities, BI 2.0 systems must enable the user to perform data analysis
tasks without fully relying on IT professionals designing/maintaining/evolv-
ing the system. Ideally, the end user should be as autonomous as possible
and the system should replace the designer by providing maximal feedback
with minimal efforts. This is even more important if we consider heteroge-
neous data sources. However, this scenario is yet far from being a reality. A
research perspective on this new scenario can be found in [1]. As discussed
in the paper, BI 2.0 systems should provide a global unified view of differ-
ent data sources. To address new requirements, such as dynamic exploration
of relevant data sources at the right-time, it is outlined that automatic infor-
mation exploration and integration is a must. These characteristics raise the
need for semantic-aware systems and machine-processable metadata.

Metadata in BI 2.0 systems are needed to support query formulation, rel-
evant source discovery, data integration, data quality, data presentation, user
guidance, pattern detection, mappings of business and technical terms, vi-
sualization, and any other automatable task that are to be provided by the
system. However, current approaches address specific metadata needs in an
ad-hoc manner and using customized solutions. A unified global view of the
metadata artifacts needed to support the user is yet missing. In this paper
we perform a survey to identify what user assistance functionalities should
be supported and by means of which metadata artifacts their automation
should be enabled. Identifying such metadata is mandatory to enable their
systematic gathering, organization, and exploration.

Contributions. We propose a comprehensive metadata framework that
supports user assistance activities and their automation in the context of
BI 2.0 systems. Specifically, we describe the additional process of the user-
system interaction so that the system does not only answer queries but sup-
ports the user during the interaction. We identify the main user assistance
activities to be supported and the metadata artifacts to be gathered, mod-
eled, and processed to enable the automation of such tasks. These results are
based on a survey of specific approaches devoted to provide user assistance
on activities like querying and visualization. Finally, we categorize the meta-
data artifacts to support the user assistance and their processing to enable
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automation.
The rest of the paper is organized as follows. Section 2 discusses the re-

lated work. Section 3 presents a survey of user-centric approaches. Then,
Section 4 defines the metadata framework according to our findings and fi-
nally, Section 5 concludes the paper and provides directions for future work.

2 Related Work

The main challenges of user assistance are highlighted in [62]. This paper out-
lines the increasing need for system support for user analytical tasks in the
settings of fast growing, large-scale, shared-data environments. To assist the
user with query completion, query correction, and query recommendations,
the authors propose meta querying paradigms for advanced query manage-
ment and discuss the challenge of query representation and modeling. This
challenge motivated our research for metadata capturing queries and other
related metadata artifacts for user assistance purposes.

Indeed, as discussed in [36], metadata are important for data warehousing
users. The article gives a perspective about the metadata benefits for end
users’ understanding and usage of data warehouse and BI systems, especially
for inexperienced ones. The authors present an end user metadata taxonomy
consisting of definitional, data quality, navigational, and lineage categories. This
is a first attempt to characterize end user metadata in BI systems that we aim
at extending for a BI 2.0 context.

With the expansion of the Web, analytical data requirements have ex-
ceeded traditional data warehouse settings and now entail the incorporation
of new and/or external data sources with unstructured or semi-structured
data. In this environment, user assistance and its automation are even a
greater need but also a challenge. By analyzing the architectural solutions
provided in BI 2.0 systems, in the next paragraphs we discuss that metadata
are to be one of the key resources for such task.

Some architectural solutions have been recently presented for BI 2.0 (e.g.,
[1] and [71]). These systems focus on supporting source discovery, data inte-
gration, and user guidance for large and often unstructured data sets. How-
ever, they do not provide much details about specific metadata artifacts.

[74] proposes the creation of a knowledge base to support data quality-
awareness for the user assistance. This knowledge base is to be represented
by means of metadata. Furthermore, in the BI Software-as-a-Service deploy-
ment model presented in [31], one of the essential business intelligence ser-
vices is a meta-data service. It defines the business information to support
information exchange and sharing among all other services. For metadata
handling, these two approaches refer to a specific metadata framework [79].

Finally, the vision of next-generation visual analytics services is presented
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in [76]. The challenges of visualization and data cleaning, data enrichment
and data integration naturally match the goals of next generation BI sys-
tems. The authors analyze these challenges for structured data sets but they
note that unstructured and semi-structured data represent even greater chal-
lenges. As discussed, these tasks raise the need for a common formalism.
The metadata are to address such requirements.

Overall, BI 2.0 systems focus on end-to-end architectural solutions and
typically pay little attention to describe how they deal with metadata. In-
deed, most of these systems just mention the crucial role of metadata for
the system overall success. As mentioned, [31] and [74] suggest the usage
of Common Warehouse Metamodel (CWM) [79]. Nevertheless, CWM is a
standard for interchange of warehouse metadata that provides means for de-
scribing data warehouse concepts but the support provided is incomplete for
the BI 2.0 metadata artifacts discussed in the following sections (which we re-
fer to as analytical metadata). In this line, the Business Intelligence Markup
Language (BIML) Framework [70] presents the automation achieved by using
metadata for tasks like data integration, but it does not cover the user assis-
tance perspective. Hence, in order to gain insight on the needed artifacts,
in the next section we focus on approaches addressing user assistance tasks,
such as query recommendation, and describe in more detail their metadata
needs and management.

3 A Survey of User-centric Approaches

As mentioned in the previous section, we subsequently discuss the approaches
providing user support functionalities (typically, query recommendation),
and primarily focusing on the metadata artifacts used and their exploitation.
Thus, we focus on analytical metadata meant to support the user analytical
tasks.

3.1 Methodology

As our work is motivated by [62], the search for relevant references started
with it and the papers citing it / cited by it. We iteratively followed the ref-
erences found looking for relevant approaches (on journals and conferences)
and detecting the most relevant authors in this field. This search was com-
plemented by the keyword searches on the main research related engines.
Soon, the area of query recommendation proved to be the most related one
and we repeated and refined our searches for relevant papers on this topic.
During our search, our primary focus was to detect metadata artifacts used
for the user assistance. Therefore, we selected those papers proposing con-
crete solutions (implementations and/or theoretical foundations for the user
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assistance) providing enough details about the detection and definition of
metadata artifacts. Due to the space limitation, we present a subset of papers
representing the whole set of papers found.

3.2 Classification of the Surveyed Approaches

In the typical user-system interaction, the user poses a query, the system
processes the query and returns the query result to the user. Throughout
this process the user often needs assistance. In the reviewed approaches, we
encountered various forms of user support. Figure 2.1 describes the addi-
tional process flows triggered to provide such support and refers to the main
metadata artifacts collected and exploited.

Fig. 2.1: Assistance Process

The system first gathers the needed input to be processed in order to
achieve the ultimate goal of the user support (e.g., query recommendation).
We further classify this process according to the level of abstraction or para-
digm used to process the input data (syntactic, feature-based or data-based
approaches) and the process scope (profiling the user, the system or both).
Table 2.1 shows how the reviewed approaches were classified.

The input includes metadata artifacts that are defined in Table 2.2. As
illustrated in Figure 2.1, we distinguish between explicit and implicit input.
Explicit input represents data currently produced by the user that triggers the
user assistance process of the system, whereas implicit input refers to input
that was previously gathered (and stored in the metadata repository), either
coming from the system or the user, as well as further metadata inferred
from both. Explicit input detected in our survey are queries, preferences, and
user characteristics. Implicit input are previously logged queries, typically
stored in the sequence they were posed (i.e., sessions), stored user profiles,
automatically inferred user preferences, detected system statistics, and the
system schema.

Queries are the main input considered in all surveyed approaches. Pro-
cessing queries is primarily performed at three abstraction levels or paradigms:
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Table 2.1: Classification of the reviewed approaches

Approach
Explicit
Input

Implicit
Input

Paradigm Scope Goal
Assistance
Techniques

SQL QueRIE Recommendations
[9]

Query
Query Log,
User Session

Syntax, Data
User
Profiling

Querying Collaborative

Similarity Measures for OLAP
Sessions [11]

Query
User Session,
Schema

Syntax, Feature
(Schema)

/ Querying Content-based

Predicting Your Next OLAP
Query Based on Recent Analyt-
ical Sessions [15]

Query
Query Log,
Schema

Syntax, Feature
(Schema)

System
Profiling

Querying Content-based

A Personalization Framework
for OLAP Queries [18]

Query, Pref-
erences

User
Profile

Feature (Pref-
erences)

User
Profiling

Visualization Content-based

Query Recommendations for
Interactive Database Explo-
ration [26]

Query
Query Log,
User Session

Data
User
Profiling

Querying Collaborative

Expressing OLAP Preferences
[40]

Query, Pref-
erences

Schema
Feature (Pref-
erences)

User
Profiling

Querying Content-based

myOLAP: An Approach to Ex-
press and Evaluate OLAP Pref-
erences [41]

Query, Pref-
erences

Schema
Feature (Pref-
erences)

User
Profiling

Querying Content-based

SnipSuggest: Context-Aware
Autocompletion for SQL [63]

Query Query Log Syntax
System
Profiling

Querying Content-based

The Meta-Morphing Model
Used in TARGIT BI Suite [75]

Query
Statistics,
Preferences,
Schema

Feature (Pref-
erences, Statis-
tics)

User
Profiling

Querying, Vi-
sualization

Content-based

“You May Also Like” Results in
Relational Databases [94]

Query
Query Log,
Schema

Data, Feature
(Schema)

User
Profiling,
System
Profiling

Querying
Content-based,
Collaborative

Recommending Join Queries
via Query Log Analysis [108]

Query Query Log Syntax
System
Profiling

Querying Content-based

A Framework for Recommend-
ing OLAP Queries [38]

Query
Query Log,
User Session

Syntax
System
Profiling

Querying Content-based

Meet Charles, Big Data Query
Advisor [92]

Query Statistics
Feature (SDL,
Statistics)

System
Profiling

Querying Content-based

at the syntax level, at the data level, or modeled according to a certain feature.
According to [62], syntactic processing happens when the syntactic structure
of the query is the main facet to be explored (e.g., to combine fragments and
propose new queries). For example, [15] presents a framework for recom-
mending OLAP queries based on a probabilistic model of the user’s behav-
ior, which is computed by means of query similarities at the syntactic level.
Data-based processing describes the query in terms of the data it retrieves. For
example, in [26] the user queries are characterized by the retrieved tuples. Al-
ternatively, feature-based processing models and stores the query in terms of a
certain feature. Features encountered in the reviewed approaches are schema
information, user preferences (and visual constraints), statistics, and ad-hoc
languages to capture semantic fragments from the queries (e.g., the Segmen-
tation Description Language in [92]). Interesting conclusions can be drawn
for each paradigm. Syntactic approaches lack semantics and suffer from sev-
eral drawbacks. First, differently formulated queries returning the same data
cannot be identified as equivalent. Second, the natural interconnection be-
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Table 2.2: Analytical Metadata Artifacts

Metadata
Artifact

Definition Example

Query
The user inquiry for certain data, disregarding the form
it takes

What is the total quantity per product and location?

Preferences
The result set selection and/or representation prioritiza-
tion

Preferred results of sales where amount is in between 1000
and 5000 range; Preferred representation is a pie chart

User
characteristics

Explicitly stated data characterizing the user Job position, department, office location

Query log The list of all queries ever posed {Query 1, query 2, query 3, query 4, ..., query N}

User session
Automatically detected sequence of queries posed by the
user when analyzing or searching for certain data

<Query 1, query 3, query 7>

User profile The set of user characteristics and preferences
Characteristics: User id – ’1’, job position – ’manager’
Preferences: Preferred monthly over quarter overview

Statistics Automatically detected data usage indicators Product id ’P’ searched in 23% (12345) of cases

System schema The data model of the system
Dimension Tables: ProductDimension, DateDimension, Lo-
cationDimension
Fact Tables: SalesFact

tween a series of queries in a single analytical session is lost (or cannot be
easily represented). Third, the data granularity produced cannot be detected
(as in general, a pure syntactic approach is performed). All in all, exploita-
tion is limited due to the usage of recorded syntactic artifacts only. Data-based
approaches characterize queries according to the data they retrieve, which
entails similar deficiencies due to the lack of semantics gathered. Similar
queries returning disjoint results due to some filtering conditions or data ag-
gregation cannot be identified. Also, their interconnection cannot be easily
represented. Nevertheless, the main deficiency of this paradigm is its ques-
tionable feasibility in the context of BI 2.0 systems, which typically consider
Big Data settings with large amounts of data.

None of the two previous paradigms are powerful and flexible enough to
fully capture the intention of the user and detect similar queries in a broader
sense. This is the main goal behind the last paradigm, which opens new
possibilities for addressing this challenge. The concept of a feature focuses on
modeling the input query to gain additional semantics representing mean-
ingful information that previous paradigms miss. Several current approaches
can be classified according to these terms. For example, [11], [15], and [94]
represent the queries in terms of the schema. Moreover, [75] proposes the
use of the multidimensional model to both model the system schema and
the queries posed. For recommendations, it uses recorded user actions and
preferences or predefined settings. However, the recommendation potential
based on multidimensional semantics such as hierarchical dimension orga-
nization is not fully exploited. Finally, other approaches such as [40, 41] in-
troduce the means for the user to explicitly express her preferences when
querying the data. However, the user is assumed to manually express the
preferences.
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The process scope defines the profiling need for user assistance purposes.
We consider two scope types, user profiling that correlates (input) metadata
artifacts with the user and system profiling that creates a general set of (input)
metadata artifacts about the system. While metadata generated in both cases
are then used for multiple user assistance purposes, most approaches focus
on user profiling and few pay attention to system profiling, which opens new
interesting possibilities, such as self-tuning systems.

The ultimate goal and the final step in the assistance process is the con-
crete user assistance produced. There are multiple forms of user assistance
related to the different phases of user-system interaction. We generalize them
into two major categories. The first category is querying assistance which
covers various forms of user support when querying a database. The most
typical querying assistance is query recommendation, but other tasks such as
query completion, result selection, result recommendations, and join recom-
mendations are identified in our survey. The second major category of user
assistance is visualization. This assistance refers how to represent the query
output in the most satisfactory way for the user. Although undoubtedly cru-
cial for BI 2.0, little attention has been paid to this issue.

An orthogonal aspect to the two categories just discussed are the assis-
tance techniques used to provide support. We typically talk about collabo-
rative techniques, which entail assistance generation based on the metadata
gathered for similar users, and content-based techniques, which only exploit
the metadata related to a certain user for providing support.

Finally, since many ideas for database recommendation systems come
from web solutions we aim at completing our survey by briefly positioning
web recommender systems (e.g., see [6]) in terms of our classification. For
generating personalized recommendations, web recommendation approaches
typically rely on user profiles. They process user queries at the data level, i.e.,
according to the results retrieved, and profile users and, to some extent, sys-
tems. On this base, they provide content-based, collaborative, or hybrid rec-
ommendations. Additionally, as suggested in [6] and thoroughly elaborated
in [7], current web recommendation systems should take into account con-
text information for generating context-aware recommendations. In terms of
our classification, the context is generally covered by either user characteristics
and user preferences, or by data itself (e.g., in BI, the time/location informa-
tion are typically covered by appropriate dimensions). Relevantly, web-based
recommender systems strongly rely on user characteristics (mostly ignored in
the database field) and profiles.

As result, by analyzing the described user assistance process (Figure 2.1), we
identified currently used metadata artifacts (Table 2.2), outlined the importance
of a feature-based approach for gathering and modeling metadata artifacts,
remarked that system profiling can be used for more than just user assistance
and highlighted the importance of user characteristics and profiling metadata.
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4 The Analytical Metadata Challenge

The survey presented currently used metadata artifacts, their handling, and
exploitation potential. Nevertheless, in the context of BI 2.0 systems there is
a need for the automation of user assistance activities. Therefore, in this sec-
tion, we propose a comprehensive framework to address this challenge. First,
we present the metadata artifacts to be gathered in the Analytical Metadata
(AM) repository and then we discuss how to gather, model, and process them
in order to automate their management.

4.1 Analytical Metadata

AM are the set of metadata artifacts entailed by BI 2.0 systems to support the
user decision making process. To clarify these artifacts we extend the end
user metadata taxonomy from [36] as illustrated in Figure 2.2. The original
taxonomy includes definitional, data quality, navigational, and lineage metadata
categories that are business oriented and do not refer to technical artifacts.
We define the technical interpretation of these categories, add a new category,
and classify concrete metadata artifacts accordingly. The definitional category
defines the integration schema, user characteristics, and a vocabulary of busi-
ness terminology. The data quality category describes data set characteristics.
The navigational category keeps evidence about how the user explores and
navigates data. The lineage category captures the origin of data including
data sources, transformations, and mappings. The ratings category covers
metadata artifacts about user interests and data usage statistics.

Fig. 2.2: Analytical Metadata Taxonomy

The schema, characteristics, query, session, query log, preferences, and
statistics artifacts were introduced in Section 3. In this section, we classify
these artifacts and introduce new ones to enhance automation. The metadata
artifacts may refer to the system (e.g., schema), the user (e.g., characteristics)
or both (e.g., a query defines user interests and refers to the schema struc-
ture).
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Definitional. The vocabulary and schema artifacts are fundamental for all
the other categories, i.e., all other metadata artifacts should be defined in
terms of them. Vocabulary defines business terms, their relationships, and
their mappings to the integration schema. Its primary role is to act as a ref-
erence terminology where to map all gathered metadata artifacts. It can effi-
ciently be represented with an ontology [93] that is machine-processable and
enables the automatic reasoning needed for the automation of user support.
Next, in the context of BI systems, we propose the schema to be represented
by means of the multidimensional (MD) model [64]. As discussed in [80],
the MD model is mature and well-founded and has key applicability in data
warehousing, on-line analytical processing (OLAP), and increasingly in data
mining. It captures analytical perspectives by means of facts and dimensions.
In this context, it defines necessary constraints and is covered by the MD alge-
bra [84] that together determine potential user actions. For example, if a user
analyzes data on a Month level, just based on the schema she can be suggested
to change the granularity to the Day or Year level even if no one performed
this analysis before. Lastly, the user characteristics artifact is borrowed from
web recommender systems and defines the user by capturing explicitly as-
serted information that cannot be automatically detected (e.g., job position,
age, etc.). It is typically stored as unstructured data and if defined in terms
of the vocabulary it can be used for metadata processing, e.g., as parameter
for recommending algorithms, pattern detection, etc.

Data quality. To tackle data quality from a technical point of view, we pro-
pose metadata profiling processes (e.g., as explained in [77]) to gain insight
into data. Profiling metadata characterize data sets like value range, number
of values, number of unique values, sparsity, and similar metrics. This way
data can be automatically annotated so that domain experts are provided
with quality evidences for the data used. For example, inaccurate analytical
results might come from data sparsity, i.e., a non-representative data sample.

Navigational. In compliance with the MD representation suggested for
the schema, we propose the MD model as modeling feature (see previous sec-
tion for further details) used to capture queries, logs, and sessions. Moreover,
to better capture the user intentions, we propose to represent queries as ETL
flows. As elaborated in [55], a query can be represented as a directed graph
of operators. In turn, each operator is characterized as its input and out-
put schema, which should follow the MD principles. This solution is more
generic than a typical query definition and enables representation of more
complex transformations (e.g., rollup), supports lineage, and can be repre-
sented as a graph that facilitates manipulations in comparison to declarative
queries. Although more powerful, managing such a complex representation
is more demanding (e.g., computing similarities or containment between ETL
flows) and remains as an open challenge.

Lineage. For lineage, we propose the traceability metadata artifact that must
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capture the information about data sources, transformations performed when
migrating data from the sources, and mappings to the integration schema (e.g.,
see [55, 57]). This way the system may provide the user with explanations
about how an analytical value is computed and from what sources.

Ratings. The user preferences artifact can be manually stated, e.g., using
a preference algebra [41]. Although this option might suit advanced users,
whenever possible, it is preferable to automatically detect them by appro-
priate processing techniques over other metadata artifacts. For example, we
may infer from the queries gathered that the user systematically applies some
filtering predicates when navigating the data. Finally, the statistics artifact
represents data usage indicators that can be considered as a kind of query
profiling, i.e., to keep evidence about what data are more explored, as well
as more complex indicators (e.g., the most popular combinations of fact and
dimension tables [75]).

4.2 Automation and Processing

For the efficient management and storage of the AM we alternatively catego-
rize its artifacts into the categories illustrated in Figure 2.3. These categories
elaborate on how to gather each artifact, its level of processing automation,
and exploitation purposes. This categorization must be used to guide the
AM storing organization.

Fig. 2.3: Analytical Metadata Processing Categories

In the categorization, we talk about structural, explicit, inferred, and de-
rived metadata. As discussed earlier, the schema and vocabulary artifacts are
fundamental for all the other artifacts and for this reason we refer to them
as structural artifacts. Typically, the system designers define and maintain
these artifacts. Explicit artifacts (i.e., user preferences and characteristics) are
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those explicitly stated by the user and not automatically detected by the sys-
tem. Contrary, inferred artifacts are automatically gathered by the system
and thus, they can be automatically detected and stored without the explicit
help of the user. This category mainly refers to query logs and sessions, but also
to automatically detected preferences, data usage statistics, as well as the profil-
ing and traceability metadata artifacts. Inferred artifacts are feature-based, i.e.,
either modeled according to the MD schema or in terms of the definitional vo-
cabulary. The structural, explicit, and inferred categories jointly represent the
minimal set of information about user actions and interests to be gathered
for automating user assistance within the system. For this reason, we refer to
these three categories as the base metadata, which determine the exploitation
possibilities of the AM.

The remaining derived metadata category results from processing base
metadata according to certain exploitation purposes (typically user and/or
system profiling). The produced user/system profiles are materialized pieces of
derived metadata typically aimed at improving the performance of the algo-
rithms used to provide user assistance. For example, a collaborative recom-
mending system requires to compute similar users. Computing similar users
must be performed from base metadata artifacts and it can be previously
materialized as derived metadata (i.e., user profiling) in order to improve
the response time of the recommending system. Note that system profiling
opens new possibilities for system self-tuning capabilities.

Automation implies processing flows (denoted as arrows in Figure 2.3) to
populate and exploit the AM artifacts. Our goal here is not to define concrete
algorithms but to point out the metadata management and processing flows
to be considered when implementing the metadata repository. Consequently,
we talk about base, derivative, and goal-oriented processing. The base pro-
cessing populates the base metadata (i.e., the structural, explicit, and inferred
artifacts) by interacting with the BI system. Specifically, the explicit metadata
is stated by the user, whereas inferred artifacts are automatically detected
and gathered from the system. Structural metadata is typically maintained
by the system administrator. Contrary, the derivative processing populates
the derived metadata from the base metadata gathered (i.e., derivative pro-
cessing happens within the AM repository). Finally, goal-oriented processing
exploits both the base and derived metadata in order to give concrete user
assistance. It represents the purpose of the AM storage and exploitation. The
aims of goal-oriented processing are, for example, query recommendations or
visualization techniques, whereas final products are recommended queries,
graphs/charts, and potentially self-tuning database actions for database op-
timizations (e.g., data usage statistics can serve to trigger indexing of some
frequently used attribute).

All in all, due to the expected large volumes of metadata in these sys-
tems and the demanding processing capabilities described, the AM reposi-
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tory should be implemented in a dedicated subsystem.

5 Conclusions and Future Work

We have presented a comprehensive metadata framework to support user
assistance and its automation in the context of BI 2.0 systems. The framework
is based on the findings of a survey of existing user-centric approaches where
we describe the user assistance process and identify assistance activities and
metadata artifacts needed. It proposes an AM repository by categorizing
the metadata artifacts to support the user assistance and their processing
to enable automation. By introducing the subsets of automatically inferred
and derived metadata artifacts with corresponding processing techniques,
our framework motivates and directs the automation of the user assistance
process which is one of the key requirements of BI 2.0 systems. As metadata
artifacts are described on a high abstraction level, the framework is a base
to support user assistance features over BI 2.0 heterogeneous data sources.
Moreover, since AM also capture the information about the system usage,
they can serve for other purposes typically overlooked, such as system self-
tuning and optimization.

In our future work, we plan to define the metamodel of AM and provide
an implementation of the AM support for query recommendation.
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Chapter 3

Analytical Metadata
Modeling for Next
Generation BI Systems

The paper is submitted to a Journal. This paper is an extended version of our
previous workshop paper [103], which is presented in Appendix A.

Abstract

Business Intelligence (BI) systems are extensively used as in-house solutions to sup-
port decision-making in organizations. Recent trends in this context advocate for
exploiting different metadata artifacts (e.g., schema and queries) to assist the user
in data analysis. However, as the metadata management and organization of such
artifacts are typically overlooked, the Analytical Metadata (AM) framework has been
proposed defining the needed metadata. This framework especially applies in the set-
ting of next generation BI (BI 2.0) systems, which integrate traditional in-house with
external sources.

In this paper, we discuss the relevance and benefits of the AM modeling. We pro-
pose SM4AM, a Semantic Metamodel for Analytical Metadata that is an RDF-based
representation of AM. In these settings, we claim for ontological metamodeling as
the proper solution, instead of a fixed universal model, due to the (meta)data models
heterogeneity in BI 2.0, while RDF supports sharing and flexible metadata represen-
tation. Furthermore, we provide a method to instantiate our metamodel. Finally, we
present a use case from the Semantic Web domain and discuss how SM4AM, and the
schema and query artifacts, can help traversing different models instantiating our
metamodel and enable innovative means to explore external repositories in what we
call metamodel-driven (meta)data exploration.
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1 Introduction

Traditional BI systems enable data analysis to support decision-making. Data
are typically extracted from operational (and controlled) sources, transformed,
and loaded into a data warehouse (DW). In the DW, data are usually or-
ganized according to a schema conforming to the multidimensional (MD)
model [64] and analyzed by user-friendly OLAP front-ends. Following the
spirit of OLAP, which enables data analysis for non-technical users, recent
trends advocate for the exploitation of schema and other metadata artifacts
(e.g., queries) to assist the user when exploring the wealth of data contained
in the DW. However, the modeling, organization, and management of these
metadata artifacts are typically not systematically addressed and handled in
system-specific manners. As a first step to remedy this, the Analytical Meta-
data (AM) framework [104] has been proposed and, based on a survey of
the current state-of-the-art, it defines the user assistance process, the needed
metadata artifacts as well as their processing to enable automatic user assis-
tance when exploring and analyzing the DW. The AM framework is espe-
cially defined for the context of next generation BI (BI 2.0) systems where
external sources need to be incorporated and the use of Semantic Web (SW)
technologies is encouraged.

BI 2.0 aims to expand the analysis scope beyond traditional settings where
users query prepared data from already known data sources. Publicly avail-
able data on the web (e.g., Open data1) are to be analyzed in the same fashion
(e.g., with a pivot table) as in typical BI settings. These data are explored
either per se or used to enrich traditional sources. The SW technologies fur-
ther provide means to represent these data in a machine-readable format to
support their automatic processing based on their semantics [4]. In these set-
tings, the number and diversity of users are also constantly growing. Unlike
traditional BI systems where data are typically analyzed by trained profes-
sionals, new possibilities attract an increasing number of individuals and
groups of non-expert users (e.g., [1, 62]). Thus, the AM artifacts also need to
be shared/reused and automatically processed to enable user assistance for
BI 2.0.

Data and metadata modeling approaches are widely applied in software
engineering and database domains to enable systematic data organization
and automation. For example, conforming data to the MD model enables
automatic data aggregations [53]. Likewise, modeling of AM is necessary
and highly desired, especially considering the SW context. Indeed, some re-
cent approaches already model certain AM artifacts. For instance, instead of
keeping queries in logs, [88] represents queries according to a query metadata
model and stores them in a common repository. However, strict modeling is

1https://okfn.org/opendata/
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hardly applicable for the BI 2.0 context due to a high heterogeneity of mod-
els and sources, e.g., relational and graph data models. Thus, in the present
paper we present a metadata modeling approach to capture the semantics of
AM artifacts in an RDF-based metamodel. We use the metamodel abstraction
level due to the models heterogeneity and RDF [28] to support sharing and
reuse necessary for BI 2.0 settings. Initiatives such as Linked Data (see [21])
promote that data are published in RDF and interlinked with other sources
in order to facilitate data re-usage. We claim that this approach can also
be used for AM. Moreover, the RDF Schema vocabulary [23] built on top of
RDF enables representation of different ontological modeling layers (see [65]).
Hence, our approach is ontological metamodeling [14] and it includes a method
defining steps to instantiate a metamodel with models that likewise have in-
stances. We discuss its applicability and benefits based on a use case for two
real-world data sets.

Contributions. Overall, the main contributions of our work are as follows:

• We present a Semantic Metamodel for Analytical Metadata (SM4AM),
an RDF-based metamodel for AM. The metamodel formalizes both sys-
tem and user related metadata artifacts needed to enable user assistance
in BI 2.0 systems.

• Given the challenge of metamodeling in RDF, we provide a method
defining detailed steps on how to use the metamodel for instantiating
system-specific metadata models.

• We present a use case from the SW domain with two real-world data
sets related to countries that shows the benefits of using SM4AM to
reduce the (meta)data search space in a metamodel-driven (meta)data
exploration.

The present paper is a significant extension of an earlier workshop pa-
per [103]. We extended and simplified the metamodel, added a detailed
method for the metamodel instantiation, and presented a use case to show
the practical benefits of SM4AM.

The rest of the paper is organized as follows. Section 2 explains the nec-
essary prerequisites to understand our approach and presents a running ex-
ample. Then, the complete metamodel is presented in Section 3. Section
4 defines a method comprising of steps for instantiation of an ontological
metamodel and Section 5 elaborates on the application level examples. Fi-
nally, related work is discussed in Section 6 while Section 7 concludes the
paper.
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VOCABULARY
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TRACEABILITY 
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ANALYTICAL METADATA

Fig. 3.1: Analytical Metadata Artifacts

2 Background and Running Example

In this section, we introduce the background necessary for understanding
of our approach. In particular, we provide details about AM, RDF, and on-
tological metamodeling. Moreover, we present the running example used
throughout the paper.

2.1 Analytical Metadata

The AM framework is presented in [104] where we explain the role of AM for
the user assistance in BI 2.0 systems. It includes the AM taxonomy, defined
according to a survey, that represents a set of metadata artifacts for this con-
text. Figure 3.1 illustrates the AM artifacts classified into system and/or user
related artifacts that are defined as follows. Vocabulary defines business terms,
their relationships, and their mappings to the integration schema. Schema
represents the data model (i.e., integration schema) while profiling metadata
capture technical characteristics of the data set. Traceability metadata describe
information about data sources, performed transformations, and mappings
to the integration schema. Further, query represents a user inquiry for cer-
tain data (disregarding the form it takes), query log is a list of all queries ever
posed, and session is a sequence of queries posed by the user performing a
certain analysis. Preferences refer to the user preferences about the result set
selection (e.g., the year of analysis) and/or representation prioritization (e.g.,
visualization chart). Finally, statistics captures data usage indicators (e.g.,
most queried piece of data) while characteristics capture the explicitly stated
information about the users (e.g., name, job position, etc.).

Due to a high diversity of BI 2.0 systems, the metadata models between
systems are heterogeneous and volatile. Thus, there is a need for a common
yet flexible solution that enables identification of similar and correlation of
related concepts while maintaining a high degree of customization entailed
by specific systems. For these reasons, we formalize AM in RDF and, follow-
ing good habits in software engineering, at the metamodel abstraction level.
We next explain both choices.
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2.2 Resource Description Framework

The means for flexible (meta)data representation range from XML2 that in
principle only tags the (meta)data elements, to semantically rich but compu-
tationally complex approaches such as the OWL3 ontology language. In this
spectrum, we follow the principle of least power (see [97]) and our choice
is RDF as it provides an acceptable expressivity regardless of its simplicity.
RDF is very flexible for capturing data semantics as most information can be
naturally represented as RDF triples. A triple consists of a subject, a predi-
cate, and an object, and represents a directed binary relationship (a predicate)
between two resources (a subject and an object) or a resource (a subject) and
a literal (an object). The subject and predicate are typically represented with
IRIs4 that enable their unique identification, while the object can be an IRI
or a literal value. The set of triples is usually grouped into an RDF graph.
Furthermore, RDF vocabularies are typically used to define the semantics of
IRIs and enable their (re)use across the (Semantic) Web. As discussed in [21],
RDF is a standardized data model where data access is simplified as data
are self-describing, thus supporting the same concepts reuse in independent
systems.

A particularly important vocabulary for modeling in RDF is RDF Schema
(RDFS) [23], which is an extension of the RDF vocabulary. Although quite
simple, RDF and RDFS (jointly referred as RDF(S)) represent formalisms
that can be used for data integration, mappings of business and technical
terms, incorporation of external and heterogeneous sources, and other. In
the context of metadata, we particularly outline the typing possibilities via
the rdf:type property. As in an RDF graph both data and metadata with
their classes and instances are stored together, the typing is convenient to
semantically distinguish the metadata and data instances. Indeed, novel ap-
proaches such as [109] use rdf:type to reduce the search space and extract
the schema from data. Moreover, as types (i.e., classes) are kept together
with the instances, the RDF models are extensible to include new types and
their instances. RDF5 graphs can be queried with the SPARQL query lan-
guage [82]. It applies pattern matching techniques to retrieve sub-graphs
(i.e., set of triples) that fit the pattern (i.e., the query). Furthermore, SPARQL
supports federated queries6 for retrieving results from more than one data
source. It provides a powerful framework for working with RDF graphs.

All previous features motivate our choice of RDF for the modeling of
metadata in a diverse environment such as BI 2.0. Even existing non-RDF

2http://www.w3.org/XML/
3http://www.w3.org/TR/owl2-overview/
4http://en.wikipedia.org/wiki/Internationalized_resource_identifier
5For the sake of simplicity, note that from here on RDF should be read as RDF(S).
6http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/
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metadata repositories can be included if an RDF middleware is created. Fur-
thermore, RDF is widely applied in the Linked Data initiative which is ac-
cepted by a significant number of participants including the industry, e.g.,
Swirrl7, and public government institutions, e.g., the European Union in the
case of Linked Open Data8. Linked Data represent a valuable wealth of in-
formation as many types of data including geographical, media, government,
education, retail and commerce, user generated content and social media, are
a part of the Web of Data represented in RDF (see [45]). An overview of
Linked Data and RDF can be found in [21]. The user assistance metadata
relate to Linked Data in two ways. First, Linked Data sources are typically
non-controlled and AM can support user assistance for their analysis. Sec-
ond, Linked Data interlinking principles can also be applied to correlate the
metadata of different systems and thus enhance the user assistance possibil-
ities. For instance, the profiles of the same user in different systems can be
identified based on the same user characteristics and used for the person-
alization of user interaction with all of them. Notice that RDF is already a
mean for capturing different types of metadata (e.g., describing music, im-
ages, videos, etc.)9.

2.3 Ontological Metamodeling

As explained in [51] where typical modeling abstraction levels (metamodel,
model, and instance levels) are discussed, the metamodel is convenient for
the settings where heterogeneous models can be created as instances of a
metamodel. Indeed, as discussed in [104], existing BI approaches use similar
metadata artifacts for user assistance typically representing them in ad-hoc
manners (e.g., logs). Even if metadata models exist, the heterogeneity of BI
2.0 hinders the use of a single model. Thus, our idea is to represent the AM
artifacts at the metamodel abstraction level capturing the common seman-
tics. Then, the system-specific metadata models can be defined as instances
of the metamodel elements, both when creating new models or enriching the
existing ones. The common semantics enables that the metadata elements
of different models sharing the semantics (i.e., having the same metamodel
type) can be automatically detected via the metamodel. For instance, we can
automatically identify query models in different systems and prepare them
for the alignment. Once identified, the full alignment can be achieved manu-
ally as models are typically small (in comparison to the volume of instances)
or in (semi-)automatic ways via entity matching and/or ontology alignment
techniques (e.g., [98]). Hence, the metamodeling abstraction level enables the
reduction of the metadata search space and facilitates the alignment of the

7http://www.swirrl.com/
8http://ec.europa.eu/digital-agenda/en/open-data-0
9http://dublincore.org/
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metadata models. In case of AM that directly extends the user assistance
possibilities.

The use of ontologies and SW technologies for metamodeling is already
applied for capturing of context information in Web 3.0 as presented in [30]
and a detailed survey on the relation between ontologies and metamodels is
found in [46]. As we also use RDF in this context, our approach can be con-
sidered as ontological metamodeling aiming to define meta types for a certain
domain (see [14]). Meta types are to be instantiated with types of the specific
model, which in turn will have its instances. In the present paper, we use the
terms meta class for meta type and class for type. In RDF, the class-instance
relation between a meta class and a class, and of a class with a class instance
can be defined with the rdf:type property. As discussed in [65], this way we
can distinguish between ontological metamodel layers. In RDF modeling there
is no restriction that an instance cannot be a class at the same time. For exam-
ple, in Figure 3.2 we can express that MDLevel (i.e., a level in an MD schema)
is a class and an instance at the same time. In the figure, we use an unnamed
namespace for custom concepts.

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

2
3 :MDLevel rdf:type :SchemaComponent .

4 :refArea rdf:type :MDLevel .

Fig. 3.2: Class and Instance Concept Example

In the context of BI 2.0, an especially important characteristic of RDF mod-
els is their extensibility. Novel concepts can easily be incorporated and the
metamodel can evolve according to the needs. This mechanism is already
used in SW environments and BI 2.0 systems can strongly benefit from it. Fur-
thermore, when having several metadata models related to the metamodel
we can more efficiently sample metadata as the search space for the same
elements is significantly reduced (see [3]) when starting from the metamodel
types. This eliminates the need for classical sampling that is too computa-
tionally expansive for the large metadata volumes expected in BI 2.0.

2.4 Running Example

The World Bank provides financial and technical support for developing
countries around the world. It publishes data about its projects, indica-
tors about the countries in development, and related information as World
Bank Open Data on its website. The data are also available for download via
the World Bank API and they were used for the creation of the World Bank
Linked Data (WBLD)10 data set. In the spirit of Linked Data, WBLD is also

10http://worldbank.270a.info/.html
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linked with other data sets (e.g., DBpedia11). Throughout the paper we build
the examples around the Population (Total)12 indicator data set from WBLD.
This data set contains data about the populations of countries per year. It
is modeled according to the RDF Data Cube (QB) vocabulary [27] and can
be enriched with additional QB4OLAP concepts to enhance OLAP analysis
(see [106]). The schema with QB4OLAP semantics is illustrated in Figure 3.3.

indicators:structure

sdmx-dimension:refArea
qb:component

qb4o:level

sdmx-dimension:refPeriod
qb:component

qb4o:level

sdmx-measure:obsValue
qb:component

qb:measure

property:indicator
qb:component

qb4o:level

qb4o:Sum

qb4o:aggregateFunction

Fig. 3.3: QB4OLAP Schema of the Running Example Data set

For the ease of understanding, the figure only illustrates the elements
relevant for the examples. The schema structure is defined by the indica-

tors:structure element. It further relates to the four components (one mea-
sure with an aggregate function and three levels), sdmx-measure:obsValue with
qb4o:Sum, sdmx-dimension:refPeriod, sdmx-dimension:refArea, and property:indi-

cator. Note that these components are linked with the data set structure via
blank nodes (see [28]). This structure and organization originate from the use
of QB(4OLAP) for the data representation. Data instances conforming to this
schema are created as instances of qb:Observation (see [106] for more details)
and an example of population of Serbia for year 2011 is illustrated Figure 3.4.

obs:SP.POP.TOTL/RS/2011

country:RS
sdmx-dimension:refArea

year:2011sdmx-dimension:refPeriod

"7258745"
sdmx-measure:obsValue

indicator:SP.POP.TOTL
property:indicator

Fig. 3.4: Data Example of the Running Example Data set

3 The SM4AM Metamodel

In this section we present SM4AM, a metamodel of AM formalized in RDF.
We first explain the general design principles of the metamodel followed by

11http://wiki.dbpedia.org/
12http://worldbank.270a.info/dataset/SP.POP.TOTL.html
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the detailed elaboration of the metamodel elements.

3.1 The Metamodel Design

SM4AM formalizes the AM artifacts in a unified metamodel. Our aim is to
capture atomic building elements for the artifacts. Thus, the AM artifacts are
captured either directly, i.e., by a one-to-one mapping of an artifact to the
metamodel element, or indirectly where an artifact is represented with more
than one metamodel element. As some artifacts are more coarse grained
than others (e.g., session vs. query), we also define complex metamodel el-
ements that organize some of the atomic building elements into structurally
organized collections (e.g., a schema organizing schema components). This
way, different system-specific metadata models can be created by instanti-
ating atomic elements that can be combined into an instance of a complex
element. The complete metamodel is illustrated in Figure 3.5.

sm4am:usesSchema

sm4am:usesSchemaComponent

sm4am:UserCharacteristic

sm4am:DataExplorationActionsm4am:PreferenceEvidence

sm4am:Evidence

sm4am:UserAction sm4am:UAList

sm4am:User

sm4am:UserGroup

sm4am:DataPreference

sm4am:PresentationPreference

sm4am:groupWith

sm4am:userWith

sm4am:belongsTo

sm4am:containsUA

sm4am:byUser

sm4am:isConnectedTo

sm4am:ManipulationAction

sm4am:PresentationAction

sm4am:System

sm4am:VocabularyTerm

sm4am:StatisticalRecord

sm4am:DataProperty sm4am:TraceabilityEvidence

sm4am:DataSource sm4am:TraceOperation

sm4am:Schema sm4am:SchemaComponent

sm4am:containsSchemaComponent

sm4am:attribute

sm4am:mapsTo

sm4am:relatesToSE

sm4am:connectedToSC

sm4am:SECollection

sm4am:containsSE

Fig. 3.5: SM4AM: A Semantic Metamodel for Analytical Metadata

As explained in Section 2.1 (see also Figure 3.1), AM artifacts are related
to the system, user, or both system and user. Therefore, the metamodel is
designed around pieces of evidence about the system, user, or both. A piece
of evidence is represented with the sm4am:Evidence abstract meta class that
is the super class for all pieces of evidence. This abstract meta class is fur-
ther sub categorized into two (also abstract) meta classes, sm4am:System rep-
resenting a piece of evidence related to the schema and sm4am:UserAction

capturing both elements about explicit user actions over the schema (e.g.,
queries) and elements inferred from these actions (e.g., user preferences).
Each piece of evidence is related to the schema while only sm4am:UserAction

related ones also affiliate to the user. The sm4am:UserAction element is linked
to sm4am:System via sm4am:relatesToSE (i.e., relates to the system evidence) in
order to capture situations when a user action relates to the system element,
e.g., a preference over a vocabulary term.

Importantly, each piece of evidence can have attributes (i.e., sm4am:attri-
bute) which is how we model the situation where a property links a class
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with a datatype. They are intended for relating different values with a piece
of evidence (e.g., a value of a certain statistical record). Concrete proper-
ties and datatypes will be defined/specified at the model level. In the next
subsections, we explain the remaining metamodel elements starting with the
schema and user related elements, and then discussing all the pieces of ev-
idence. The metamodel elements are related to the corresponding AM arti-
facts (see Section 2.1) to enhance the understanding and semantics of each
metamodel element. Table 3.1 summarizes how AM artifacts are covered by
SM4AM. Note that in the examples we use sm4am namespace for the meta-
model elements, while the @prefix ex: <http://www.example.org/> prefix and
others are used for the model and instance element examples. In the exam-
ples, we visually separate the metamodel, model, and instance levels.

Table 3.1: Capturing AM artifacts with SM4AM elements

AM Artifact SM4AM element System/User related

Vocabulary sm4am:VocabularyTerm System

Schema
sm4am:Schema
sm4am:SchemaComponent

System

Profiling metadata sm4am:DataProperty System

Traceability metadata
sm4am:DataSource
sm4am:TraceOperation

System

Query log sm4am:UAList System

Query
sm4am:PresentationAction
sm4am:ManipulationAction
sm4am:UAList

Both

Session sm4am:UAList Both

Preferences
sm4am:PresentationPreference
sm4am:DataPreference

Both

Statistics sm4am:StatisticalRecord Both

Characteristics
sm4am:UserCharacteristic
sm4am:User
sm4am:UserGroup

User

3.2 Schema and User Related Elements

Schema Related Elements The schema AM artifact is modeled with the fol-
lowing two meta classes: sm4am:SchemaComponent represents schema com-
ponents and sm4am:Schema refers to the schema as a whole organizing the
components. Each piece of evidence (i.e., sm4am:Evidence) relates to these
meta classes via sm4am:usesSchemaComponent and sm4am:usesSchema prop-
erties, respectively. The sm4am:containsSchemaComponent property links the
schema (i.e., sm4am:Schema) with schema components (i.e., sm4am:Schema-
Component), while sm4am:connectedToSC interlinks the schema components
(i.e., sm4am:SchemaComponent). This design is a generalization of a typical
case where a complete integration schema, e.g., a database schema or an
RDF graph consists of components that can be mutually connected, e.g., in-
terlinked tables of a relational database or nodes of an RDF graph.

For the running example data set, the schema metadata are represented
with the QB4OLAP vocabulary (see Section 2.4). Figure 3.6 illustrates a por-
tion of QB4OLAP elements at the model level instantiating SM4AM and the
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qb4o:AggregateFunction

qb4o:Sum

qb:DataStructureDefinition qb:ComponentSpecification

qb:componentRequired:boolean
qb:componentAttachment:rdfs:Class
qb:order:xsd:int

qb:component

qb:ComponentProperty

qb:componentProperty

qb:MeasureProperty

qb:measure

qb4o:level

qb4o:aggregateFunction

qb4o:LevelProperty

sm4am:Schema sm4am:SchemaComponent
sm4am:containsSchemaComponent

rdf:type
rdf:type

Metamodel

Model

indicators:structure
sdmx-dimension:refArea

qb:component

qb4o:level

sdmx-dimension:refPeriod

qb:component

qb4o:level

sdmx-measure:obsValue

qb:component

qb:measure

property:indicator

qb:component

qb4o:level

rdf:type

rdf:type

rdf:typerdf:type

sm4am:connectedToSC

qb4o:aggregateFunction

rdf:type

Instance

Fig. 3.6: Schema Elements

corresponding portion of the Population data set schema at the instance level.
The same way as QB4OLAP is used in the example, other vocabularies and
models of different systems representing schema can be related to SM4AM.

User Related Elements The (user) characteristics AM artifact is modeled
with the following meta classes. First, sm4am:UserCharacteristic stands for a
specific user characteristic. Second, sm4am:UserGroup models a group of users
with the characteristics to which it is linked via sm4am:groupWith. Third, a
user is represented with the sm4am:User meta class. She can have several char-
acteristics linked via sm4am:userWith, she can be connected to other users via
sm4am:isConnectedTo, and can belong to a user group via sm4am:belongsTo.
By now, user characteristics have typically been overlooked in the BI area.
Existing approaches mostly focus on the user actions (e.g., queries). Inspired
by the web recommender systems we believe that user characteristics are nec-
essary to enable better user assistance possibilities in BI 2.0 [104]. Moreover,
different social networks emphasize the need for keeping track of the user
interconnections. The BI 2.0 systems need to follow this direction and benefit
from these metadata for the user assistance features.

Figure 3.7 exemplifies a simple model for the user metadata and its in-
stances as two journalists exploring the running example data set. In particu-

37



Chapter 3. Analytical Metadata Modeling for Next Generation BI Systems

lar, the model element examples are designed for the members (ex:Organiza-
tionMember instantiating the sm4am:User meta class) of non-profit organiza-
tions (ex:NonPro�tOrganization instantiating the sm4am:UserGroup meta class)
that are interested in exploring the countries’ populations. A member has an
ID (i.e., ex:ID), a profession (i.e., ex:Profession), and a country of origin (i.e.,
ex:CountryOfOrigin) as instances of the characteristics (i.e., sm4am:UserChara-
cteristic). On the other hand, a non-profit organization gathers members that
are of certain professions and from certain countries. All model elements
are interlinked with the related properties as illustrated in the figure. This
model example has as instances two persons (i.e., ex:Person1 and ex:Person2)
with their IDs (i.e., ex:ID1 and ex:ID2, respectively) and countries of origin
(i.e., ex:Spain and ex:Denmark, respectively), who are both journalists (i.e.,
ex:Journalist). These persons belong to a European journalist organization
(i.e., ex:EuropeanJournalists) that gathers the journalists from Spain and Den-
mark.

ex:Professionex:OrganizationMember

ex:NonProfitOrganization
ex:memberProfession

ex:profession

ex:isMemberOf

ex:coMember

Metamodel

Model

Instance

sm4am:UserCharacteristicsm4am:User

sm4am:UserGroup
sm4am:groupWith

sm4am:userWith

sm4am:belongsTo

sm4am:isConnectedTo

ex:CountryOfOrigin

ex:ID
ex:hasID

ex:fromCountry

ex:participatingCountry

rdf:type

rdf:type

rdf:type

ex:Person1

ex:Person2

ex:EuropeanJournalists

ex:ID1

ex:ID2

ex:Journalist

ex:Spain

ex:Denmark

ex:coMember ex:coMember

ex:isMemberOf

ex:isMemberOf

ex:fromCountry

ex:fromCountry

ex:hasID

ex:hasID

ex:memberProfession

ex:memberProfession

ex:participatingCountry

ex:participatingCountry

ex:memberProfession

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

Fig. 3.7: User Elements
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3.3 User Action Related Elements

Data Exploration Action Related Elements Several AM artifacts are mod-
eled by sub classes of the sm4am:UserAction meta class as we explain in the
sequel. All user action related elements can be related to a user via sm4am:by-

User. The query, session, and query log AM artifacts are considered as data ex-
ploration actions representing the explicit user actions when analyzing data
(e.g., an operation in a query). As these artifacts are of different granulari-
ties (e.g., a query log consists of queries) and we focus to capture the atomic
elements that can be composed in more complex structures, the sm4am:Data-

ExplorationAction meta class with its subclasses represent the atomic elements
that can be organized in a user action list (i.e., sm4am:UAList). The subclasses
are sm4am:ManipulationAction capturing the actions for data handling (e.g.,
change of data granularity) and sm4am:PresentationAction describing the
actions for data presentation (e.g., a diagram type selection). In general, what
is to be considered as atomic elements depends on the model instantiating
the metamodel (e.g., an MD operation can be part of an MD query).

Figure 3.8 illustrates the atomic data exploration elements and examples
of model instance levels. Note that we include sm4am:SchemaComponent with
its instances to make the example more comprehensive. Moreover, for sim-
plicity reasons we do not explicitly show the links from a data exploration
action to a schema component and to a user performing the action (at the
metamodel level they are sm4am:usesSchemaComponent of the sm4am:Evidence
meta class and sm4am:byUser of the sm4am:userAction meta class shown in
Figure 3.5). In Figure 3.8, we capture a situation where a journalist query-
ing the Population data set of the running example performs a selection over
year 2011 and chooses to visualize the results with a certain chart instance.
Therefore, the model level contains ex:SelectionOperation that is an instance of
sm4am:ManipulationAction. The ex:SelectionOperation element has the ex:pro-

cessingTime property linking it with the number of milliseconds taken for
its processing that is expressed with xsd:decimal13. Moreover, ex:SelectionO-
peration also has ex:sValue property linking it with the xsd:integer datatype
that defines the value for the selection over qb4o:LevelProperty that is linked
to ex:SelectionOperation via ex:sLevel. In this case, the ex:processingTime and
ex:sValue properties are instances of sm4am:attribute of the metamodel, while
ex:sLevel is an instance of sm4am:usesSchemaComponent of the metamodel (see
Figure 3.5). More details on how to instantiate attributes and properties are
provided in Section 4. The rest of the model demonstrates an example of a
sm4am:PresentationAction instance that is ex:ChartSelection with the ex:dwellTi-
me and ex:chartIRI properties that link the class with the number of millisec-
onds that the user spends on analyzing the chart captured with xsd:decimal,
and an IRI defining the chart type as xsd:anyURI. As illustrated in Figure

13http://www.w3.org/TR/rdf11-concepts/
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3.8, the metadata instances of this model are the concrete ex:Selection1 over
sdmx-dimension:refPeriod for year 2011 that was processed for 50 milliseconds,
and the ex:ChartSelect1 operation instance for a certain (i.e., http://exa...) IRI
where the user spent 30000 milliseconds in analyzing the chart.

sm4am:DataExplorationAction

sm4am:ManipulationAction sm4am:PresentationAction
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Fig. 3.8: Data Exploration Action Elements

Preference Related Elements The preferences AM artifact is modeled with
preferences evidence (i.e., sm4am:PreferenceEvidence) category capturing pieces
of evidence for the personalization of the user data analysis that can either
be stated explicitly, or that can be implied from explicit user actions. They
capture the pieces of evidence that enable personalization of the user inter-
action with the system. We divide them into the following two categories,
sm4am:PresentationPreference capturing preferences regarding the data pre-
sentation, typically visualization affinities, and sm4am:DataPreference mod-
eling the information about the data interests that can be exploited for the
result personalization and similar purposes.

Figure 3.9 depicts the preference related elements of the metamodel with
examples of model and instance levels. The same remarks about sm4am:Sche-
maComponent and sm4am:byUser apply here as in the data exploration exam-
ple. We capture a situation where a journalist analyzing the Population data
set from the running example states her preference for the year 2011 over
other years while the system detects her preference (i.e., implicit preferences)
for a certain chart type as implied from her previous data exploration. Hence,
the model level defines a data ordering preference expression (i.e., ex:DOPre-
ferenceExpression). This expression defines a preference over qb4o:LevelPro-

perty to which it is linked via ex:pLevel similarly to the previous example.
It has the ex:inferred, ex:priority, and ex:prefValue properties that link it with
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the boolean value true if the preference is inferred, a decimal value defining
the priority of the preference important for the ranking of the preferences,
and a value that is preferred for the analysis, respectively. All properties
are instances of sm4am:attribute as in the previous example. Furthermore,
the instance level example illustrates an instance of this preference for the
year 2011 over the reference period level which is not inferred and has the
priority 5. The figure also includes similar examples for the instantiation of
sm4am:PresentationPreference and the corresponding properties.

sm4am:PreferenceEvidence
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ex:inferred
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Fig. 3.9: Preference Evidence Elements

User Action List Element After explaining the atomic elements of user ac-
tions, we now provide more details about the sm4am:UAList (i.e., user action
list) meta class for composing them into ordered lists that represent different
concepts. For instance, a query can be represented as an ordered list of: i) one
or more sm4am:ManipulationActions, ii) optionally one or more sm4am:Prefe-

renceEvidence, and iii) one or more sm4am:PresentationActions. At the model
level, the instances of user action elements should instantiate attributes (e.g.,
the ordering) to determine their organization inside of an instance of user
action list. Furthermore, sm4am:UAList can be instantiated (at the model
level) to model sessions, query logs, and exploration patterns (e.g., querying
patterns) depending on the exploitation needs (e.g., query recommendation).
The models depend on the concrete systems.

Figure 3.10 illustrates the use of user action list meta class and examples
of model and instance levels. We also use additional meta classes introduced
above. We capture a situation where a journalist analyzing the Population
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data set from the running example wants to retrieve the population of coun-
tries for the year 2011 where result values are formatted with two decimal
places. At the model level, this query is defined as ex:Query that is an in-
stance of sm4am:UAList. It illustrates the instances of the previous two user
action elements in a complex structure. In this particular case, it includes
ex:SelectionOperation, ex:ProjectionOperation, and ex:FormattingExpression with
their attributes and the necessary schema elements. Furthermore, the in-
stance level shows an example of the metadata instances for this particular
case.
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Fig. 3.10: User Action List Element

3.4 System Related Pieces of Evidence

Traceability Related Elements The traceability metadata AM artifact is mod-
eled with two subclasses of the sm4am:TraceabilityEvidence meta class that
represent atomic metamodel elements. The first one is sm4am:DataSource cap-
turing the source where the data come from. The second one is sm4am:Trace-
Operation and it represents an operation that can be performed over data or
metadata before reaching the data/metadata repository. Note that the use of
sm4am:attribute at the model level is useful for indicating if the data source
is internal/external and trusted/not-trusted. Moreover, it can be used to link
to the particular data values for the integration schema.

Figure 3.11 illustrates the example of the meta classes with the model and
instance level examples. We capture DBpedia as a Linked Open Data source
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instantiating sm4am:DataSource and the adding of the region level as an op-
eration performed over the Population data set schema from the running ex-
ample. The ex:LinkedDataSource class instantiates the sm4am:DataSource meta
class. For the instantiation of the sm4am:TraceOperation meta class, we use a
model example inspired by [57] where integration operations (ex:Integration-
Operation) are modeled as metadata and the insert level (ex:InsertLevel) is one
of them. The ex:InsertLevel class has a property ex:levelIRI that links it to the
xsd:anyURI datatype. This property is created as an instance of sm4am:attri-
bute as in previous examples. The instance level includes ex:DBPedia as an
instance of ex:LinkedDataSource and ex:InsertRegion1 as an instance of ex:In-
sertLevel that is linked with an IRI representing the region.

sm4am:DataSource

Metamodel

ex:IntegrationOperation

ex:DBPedia

rdf:type

Model

Instance

 

ex:LinkedDataSource

ex:InsertRegion1

sm4am:TraceOperation
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rdf:type

rdf:typerdf:type

ex:levelIRI
http://reg...

xsd:anyURI

ex:levelIRI

Fig. 3.11: Traceability Evidence Elements

Profiling Related Elements The profiling metadata AM artifact is modeled
with the sm4am:DataProperty meta class representing technical quality char-
acteristics (e.g., cardinality values). These metadata are typically obtained
from data profiling processing in order to enhance the user understanding
of the data set. Specific data properties are then defined at the model level
depending on the particular system.

Figure 3.12 illustrates the example of model and instance levels for the
sm4am:DataProperty meta class. We capture the cardinalities between two
levels, namely reference area (i.e., country) and region, in the Population data
set schema from the running example. We again include sm4am:SchemaCom-

ponent and its model and instance elements to enhance the understanding.
The model defines the ex:Cardinality class that relates to the qb4o:LevelProperty
class twice, one for the child (i.e., from) and other for the parent (i.e., to) level.
The instance level example includes instances of these classes, where ex:Card-

Inst1 has the values 240 on the child (i.e., from) side and 10 on the parent (i.e.,
to) side, for the pair of sdmx-dimension:refArea and ex:Region levels.
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Fig. 3.12: Data Property Element

Vocabulary Related Element The vocabulary AM artifact is modeled with
the sm4am:VocabularyTerm meta class that represents a vocabulary entry as
a building block for vocabulary construction. Moreover, the sm4am:maps-

To property links two vocabulary terms and defines the mapping between
them (e.g., a synonym relation). The sm4am:VocabularyTerm meta class is
instantiated at the model level with the concrete vocabulary entry types and
their links that, in turn, have their instances.

Figure 3.13 depicts examples of model and instance levels of sm4am:Voca-
bularyTerm. We capture a situation where the terms “Place” and “Location”
are used as business terms for the sdmx:dimension:refArea schema element of
the Population data set schema from the running example. As before, we
include the sm4am:SchemaComponent meta class with its instances to make
the example more comprehensive. In particular, the model level defines the
concept of business term, i.e., ex:BusinessTerm, that can have its synonyms
via ex:synonym, and relates to qb4o:LevelProperty via the ex:relatesTo property.
Instances of this model are ex:Place and ex:Location that are synonyms and
that relate to sdmx:dimension:refArea from the Population data set from the
running example.

Statistics Related Element The statistics AM artifact is modeled with sm4am:-

StatisticalRecord as an atomic element for constructing statistics. As before,
sm4am:attribute should be instantiated for linking statistical records with their
values. Then, the model level should be used to define the class representing
type of statistical indicators that are related to the specific numerical datatype
as their value, while the instance level keeps track of the indicator instances
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Fig. 3.13: Vocabulary Term Element

and their value. Note that the values for the sm4am:StatisticalRecord related
metadata should come from system monitoring.

Figure 3.14 presents the example of model and instance levels for sm4am:-
StatisticalRecord. We capture the usage counter of the cases where the ob-
served value measure and the referenced area level combination of the Pop-
ulation data set from the running example are used together. As before, we
include sm4am:SchemaComponent with its model and instance elements to
enhance the understanding. As the model example, the ex:LevelMeasurePair

class instantiates sm4am:StatisticalRecord. It is linked to the two instances
of sm4am:SchemaComponent, particularly qb4o:LevelProperty and qb4o:Mea-

sureProperty that are the elements of the QB4OLAP schema at the model
level. Moreover, the ex:LevelMeasurePair class is linked with xsd:decimal via
the ex:value property that is an instance of sm4am:attribute. The instances of
this model example are the usage counter (i.e.,ex:UsageCounter1) for the pair
of sdmx-measure:obsValue and sdmx:dimension:refArea that has the value 190.

Complex System Related Elements After explaining the atomic system re-
lated elements, we provide more details about the sm4am:SEList (i.e., system
evidence list) meta class for composing them into ordered lists that represent
different concepts. Atomic elements are composed into a complex structure
via the sm4am:containsSE property. The attributes (i.e., sm4am:attribute) at
the model level should be used to determine structural organization (e.g., or-
dering). For instance, we can have a complex trace composed of data sources
and traceability operations aligned in an ordered trace structure. Similarly,
we can also have a vocabulary composed of vocabulary terms, statistics com-
posed of statistical records, and a data profile composed of data properties.

Figure 3.15 illustrates an example where the elements from Figure 3.11
are aligned in the ordered trace structure. We capture the trace about the
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Fig. 3.14: Statistical Record Element

adding of the region level from the World Bank Linked Data source to the
Population data set schema from the running example. In particular, the
sm4am:SEList meta class is instantiated with the ex:MDIntegration class (also
inspired by [57]). This class is then linked with both classes from the previous
example, i.e., ex:LinkedDataSource via the ex:source property and ex:Integrati-

onOperation via the ex:operation property. All these classes are then instanti-
ated in a concrete trace evidence where ex:RegionIntegration describes a trace
where ex:DBPedia is a source and ex:InsertRegion1 is the traceability operation
performed. The example also includes the same property from the previous
example.

4 A Method for Instantiating SM4AM

One of the challenges when using an RDF metamodel is to ensure that it
is used in a proper and consistent way for the creation of system-specific
metadata models. This is a lesson learned from our experience with other
RDF-based vocabularies (e.g., [106]) where we noticed that they can be used
in inconsistent manners. Thus, the precise steps about how SM4AM should
be instantiated must be defined, especially considering the context of RDF
(meta)modeling. Hence, this method can be used as basis to implement
other metamodeling solutions. The ultimate goal is to enable as uniform
as possible use of a metamodel and thereby better integration and exploita-
tion possibilities of different models. We first consider the modeling steps
after which we provide additional considerations and elaborate on how to
extend a metamodel if needed.
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Fig. 3.15: Trace Element

4.1 Modeling Guidelines

In the metamodel we talk about meta classes, properties, and attributes. For
creating a model, these elements should be instantiated as follows.

Metamodel class usage guidelines All meta classes in SM4AM are defined
as instances of rdfs:Class. The definition of traceability related meta classes
from Figure 3.15 is shown in Figure 3.16.

1 # Metamodel level

2 sm4am:SEList rdf:type rdfs:Class .

3 sm4am:TraceabilityEvidence rdf:type rdfs:Class .

4
5 sm4am:DataSource rdfs:subClassOf sm4am:TraceabilityEvidence .

6 sm4am:TraceOperation rdfs:subClassOf sm4am:TraceabilityEvidence .

Fig. 3.16: Example of Meta Class Definitions

For instantiating a meta class at the model level the step is:

• Create a triple ex:ModelClass rdf:type sm4am:MetaClass, where ex:Model-

Class is the new class at the model level, sm4am:MetaClass is the SM4AM
meta class that is to be instantiated, and the rdf:type property links the
previous two in an instance-type relation.

The example triples instantiating the previously defined meta classes are il-
lustrated in Figure 3.17.
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1 # Model level

2 ex:MDIntegration rdf:type sm4am:SEList .

3 ex:LinkedDataSource rdf:type sm4am:DataSource .

4 ex:IntegrationOperation rdf:type sm4am:TraceOperation .

5
6 ex:InsertLevel rdfs:subClassOf ex:IntegrationOperation .

Fig. 3.17: Example of Classes Instantiating Meta Classes

Then in turn, model classes have their instances. For instantiating a class
at the instance level the step is:

• Create a triple ex:ClassInstance rdf:type ex:ModelClass, where ex:Class-

Instance is an instance of ex:ModelClass and the rdf:type property links
the previous two in an instance-type relation.

The example triples instantiating the previously defined model classes are
illustrated in Figure 3.18.

1 # Instance level

2 ex:RegionIntegration rdf:type ex:MDIntegration .

3 ex:DBPedia rdf:type ex:LinkedDataSource .

4 ex:InsertRegion1 rdf:type ex:InsertLevel .

Fig. 3.18: Example of Class Instances

Metamodel property usage guidelines The situation with properties at the
metamodel level is a bit more complex. To be consistent with the RDF seman-
tics and enable property typing between metamodel and model levels, each
property in SM4AM is considered as both rdf:Property and rdfs:Class. This
way, at the metamodel level it is used as property to link the meta classes
and at the same time it can be instantiated at the model level with a prop-
erty. Note that examples of similar property formulation can be found in the
QB [27] and QB4OLAP [106] vocabularies. For the ease of distinction between
properties at the metamodel from the model level, in the rest of this section
we refer to a property at the metamodel level as a meta property. Furthermore,
we refer to a property at the model level only as a property and to an instance
of a property at the metadata instance level as a property instance.

Hence, all meta properties in SM4AM are defined as instances of rdf:Pro-
perty and instances of rdfs:Class. Moreover, as they are properties we also de-
fine their domain and range meta classes using the rdfs:domain and rdfs:range

properties respectively. The definition of the sm4am:containsSE meta property
from Figure 3.5 is shown in Figure 3.19.

As a property should be an instance of a meta property, its domain and
range classes (at the model level) are to be instances of the domain and range
meta classes of the meta property. For instantiating any of the meta properties
at the model level the steps are:
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1 # Metamodel level

2 sm4am:containsSE rdf:type rdfs:Class, rdf:Property;

3 rdfs:domain sm4am:SEList;

4 rdfs:range sm4am:System .

Fig. 3.19: Example of Meta Property Definition

• Create a triple ex:modelProperty rdf:type rdf:Property, where ex:model-

Property is the new property at the model that is created, rdf:Property is
the concept of concept of property from RDFS, and the rdf:type property
links the previous two in an instance-type relation.

• Create a triple ex:modelProperty rdf:type sm4am:MetaProperty, where ex:-

modelProperty is the new property at the model that is created, sm4am:-
MetaProperty is any of the meta properties of SM4AM, and the rdf:type

property links the previous two in an instance-type relation.

• Create a triple ex:modelProperty rdf:domain ex:ModelClass, where ex:-

modelProperty is the new property at the model that is created, ex:Model-

Class is a class at the model level instantiating the domain meta class of
the meta property, and the rdfs:domain property links the previous two
in a property-domain class relation.

• Create a triple ex:modelProperty rdf:range ex:ModelClass, where ex:model-

Property is the new property at the model that is created, ex:ModelClass

is a class at the model level instantiating the range meta class of the
meta property, and the rdfs:range property links the previous two in a
property-range class relation.

The example triples instantiating the previously defined meta property are
illustrated in Figure 3.20.

1 # Model level

2 ex:source rdf:type rdf:Property, sm4am:containsSE;

3 rdfs:domain ex:MDIntegration;

4 rdfs:range ex:LinkedDataSource .

5 ex:operation rdf:type rdf:Property, sm4am:containsSE;

6 rdfs:domain ex:MDIntegration;

7 rdfs:range ex:IntegrationOperation .

Fig. 3.20: Example of Properties Instantiating a Meta Property

Then in turn, instances of the model properties have their instances. For
instantiating any of the properties at the instance level the step is:

• Create a triple ex:ClassInstance1 ex:modelProperty ex:ClassInstance2, where
ex:ClassInstance1 is an instance of the model class that corresponds to
the property domain, ex:ClassInstance2 is an instance of the model class
that corresponds to the property range, and the ex:modelProperty prop-
erty links the previous two in a relation with the semantics defined by
the property at the model level.
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The example triples instantiating the previously defined model properties are
illustrated in Figure 3.21.

1 # Instance level

2 ex:RegionIntegration ex:source ex:DBPedia .

3 ex:RegionIntegration ex:operation ex:InsertRegion1 .

Fig. 3.21: Example of Property Instances

Metamodel attribute usage guidelines As briefly explained in Section 3,
the concept of attribute in SM4AM represents a meta property that links a
meta class with a data type. The concrete data type should be defined at the
model level and, therefore, this meta property defines only the domain while
the range remains undefined. The definition of sm4am:attribute is related to
the sm4am:Evidence meta class in SM4AM. Hence, sm4am:attribute is defined
with the triples presented in Figure 3.22.

1 # Metamodel level

2 sm4am:attribute rdf:type rdfs:Class, rdf:Property;

3 rdfs:domain sm4am:Evidence .

Fig. 3.22: Metamodel Attribute Definition

When it is instantiated with a property at the model level, the domain
of the property should be a class that is an instance of the subclass of the
sm4am:Evidence meta class (that is the domain of the attribute at the meta-
model level). Furthermore, the range of the property refers to the class of
a particular data type. For instantiating an attribute at the model level the
steps are:

• Create a triple ex:modelProperty rdf:type rdf:Property, where ex:model-

Property is the new property at the model that is created, rdf:Property is
the concept of property from RDFS, and the rdf:type property links the
previous two in an instance-type relation.

• Create a triple ex:modelProperty rdf:type sm4am:attribute, where ex:model-
Property is the new property at the model that is created, sm4am:attribute
is the attribute concept of SM4AM, and the rdf:type property links the
previous two in an instance-type relation.

• Create a triple ex:modelProperty rdf:domain ex:ModelClass, where ex:model-
Property is the new property that is created at the model level, ex:Model-

Class is a class at the model level instantiating one of the sm4am:Evidence
subclasses, and the rdfs:domain property links the previous two in a
property-domain class relation.
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• Create a triple ex:modelProperty rdf:range ex:DataType, where ex:model-

Property is the new property at the model that is created, ex:DataType
is a class defining the data type at the model level (e.g., referring to the
one of the RDF-compatible XSD types [28]), and the rdfs:range property
links the previous two in a property-range class relation.

The example triples instantiating the previously defined attribute are illus-
trated in Figure 3.23. Continuing the previous examples, in Figure 3.23 we
define the ex:levelIRI attribute for the ex:InsertLevel that has the xsd:anyURI
datatype (see [28]) and indicates the IRI of a new level that will be added to
the schema.

1 # Model level

2 ex:levelIRI rdf:type rdf:Property, sm4am:attribute;

3 rdfs:domain ex:InsertLevel;

4 rdfs:range xsd:anyURI .

Fig. 3.23: Example of Properties Instantiating an Attribute

Having the model defined, the instance level will contain the class in-
stance linked by the property instance with a related (datatype) value. For
instantiating an attribute at the instance level the step is:

• Create a triple ex:ClassInstance1 ex:modelProperty value, where ex:Class-

Instance1 is an instance of the model class that corresponds to the prop-
erty domain, value is a value of the datatype that corresponds to the
property range, and the rdf:modelProperty property links the previous
two in a relation with the semantics defined by the property at the
model level.

The example triples that instantiate the previously defined attribute as the
model properties are illustrated in Figure 3.24.

1 # Instance level

2 ex:InsertRegion1 ex:levelIRI <http://regionIRIexample...> .

Fig. 3.24: Attribute Instantiation

4.2 Additional Considerations

Rather than just instantiating a metamodel with a new model, the use of RDF
enables linking of existing models with the metamodel as shown in Section 5.
This can be done by revert order of the previous steps. Furthermore, automa-
tion of the related tasks is crucial to enable stable populating of the metadata
repository which is necessary for the user assistance exploitation tasks. The
metadata modeling is a starting point for addressing the automation. Note
that even though the automation is desired, in certain cases the user might
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still want to state some of these metadata manually, e.g., the expert user can
formulate her preferences manually, and if so this should be enabled by the
system.

Regarding the metamodel extension, if changes to the metamodel are in-
evitable, SM4AM can be easily extended since it is RDF-based and the meta-
model elements are kept together with their instances. The new elements
can be added to the metamodel just by creating the new concepts (i.e., nodes
and properties) and linking them to the existing ones, i.e., creating new RDF
triples. Whenever possible, as a good practice for this context, we strongly
recommend that the new elements should be added as subclasses of the ab-
stract metamodel classes (e.g., sm4am:Evidence). This will maintain compat-
ibility with the existing approaches while extending SM4AM.

In addition to the elements explicitly captured in SM4AM, more metadata
are contained implicitly. For instance, the statistics about the user actions
can be retrieved by counting metadata instances and processing them. We
consider this kind of metadata as derived metadata and it is up to the specific
systems how to exploit this possibility [104].

5 Application Level Use Case

Unlike traditional BI systems that use closed in-house solutions for handling
metadata (if any), BI 2.0 settings call for working with external sources and
metadata in a reusable and flexible manner. In the sequel, we illustrate how
ontological metamodeling of AM can support the reduction of (meta)data
search space in a metamodel-driven (meta)data exploration. Thus, we present
a use case of using SM4AM with two real-world data sets on the SW and
their metadata. First, we describe the use case settings. Then, we explain
the following benefits of using SM4AM: using the schema and query AM
artifacts to reduce the metadata search space, and using the query AM artifact
to reduce the data search space. Finally, we summarize the overall benefits of
SM4AM for the use case. The use case shows that SM4AM can be used not
only with new metadata models but also with already existing ones.

5.1 Use Case Settings and Example Scenario

For the use case settings, we consider two Linked Data sources on the SW.
The first data source is WBLD introduced in Section 2.4. It includes data
sets whose schemata are modeled according to the QB vocabulary [27]. Note
that in contrast to Section 2.4, for the use case we focus directly on the ini-
tial QB representation of the data sets and explain its relation to SM4AM. A
user querying WBLD and analyzing different statistics about countries (e.g.,
countries population as in the running example) first faces the challenge of
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learning how the data are organized, i.e., learning the schemata of the data
sets. Furthermore, the user would like to learn more about these countries.
The additional information such as countries’ description, names, geograph-
ical coordinates, are available in DBpedia that is an RDF representation of
data published on Wikipedia, the free encyclopedia on the web, and covers
very wide range of topics. However, instead of getting all the available in-
formation about countries that can be overwhelming, the user is interested
in what other users searched (i.e., queried) about countries. A portion of
SPARQL queries over DBpedia is available in the LSQ data set [88] and they
are modeled according to the LSQ data model. However, the user again faces
a challenge of finding only the queries that relate to countries. Here, to facil-
itate the analysis, the user can reduce the metadata and data search space if
using SM4AM as illustrated in Figure 3.25. In the figure, the schema metadata
of WBLD and the query metadata of LSQ are linked to SM4AM. The schema
related links enable direct discovery of schema metadata of the WBLD data
sets. Furthermore, the query related links, together with DBpedia country
IRIs obtained from WBLD, enable discovering only those queries from LSQ,
and thereby only those data from DBpedia related to these countries. The
details about the benefits achieved this way are discussed in Sections 5.2 to
5.4.

SM4AM

WBLD

QB schema LSQ query

schema query

LSQ

DBpedia

RDF 
links

Legend SPARQL 
endpointQuery Metadata

Fig. 3.25: Use Case Settings

Furthermore, Figure 3.26 illustrates the metadata metamodel, model, and
instance levels and exemplifies data for the use case settings. For the sake of
simplicity, sp:Query with its subclasses can instantiate sm4am:UAList. How-
ever, note that more elements of the LSQ data model can be related to several
SM4AM elements. In particular, sd:Feature and lsqv:JoinVertex with its sub-
classes can instantiate sm4am:ManipulationAction, lsqv:Execution can instanti-
ate sm4am:StatisticalRecord, and all the properties relating any of the pre-
vious classes with xsd datatypes can instantiate sm4am:attribute. The use of
rdfs:Resource – the top meta element for all the resources on the SW – in LSQ is
an example of use of metamodel and model classes in an RDF model support-
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ing our claims. However, rdfs:Resource should not instantiate any SM4AM el-
ement, and instead the properties linking it with sp:Query and lsqv:Execution

indicate that it can be replaced with the instances of sm4am:SchemaComponent
in case of lsqv:mentionsObject, lsqv:mentionsPredicate, and lsqv:mentionsSubject,
sm4am:Source in case of sd:endpoint, and sm4am:User in case of lsqv:agent.
Note that all the prefixes related to LSQ data model elements can be found
in [88]. Moreover, data sets in WBLD are modeled according to the QB vo-
cabulary and Figure 3.26 also shows the linking of QB concepts with SM4AM.
Considering these settings, we next explain how using SM4AM for metamodel-
driven (meta)data exploration.

lsqv:mentionsSubject

qb:DataStructureDefinition

qb:ComponentSpecification

qb:componentRequired:boolean
qb:componentAttachment:rdfs:Class
qb:order:xsd:int

qb:component

qb:ComponentProperty

qb:componentProperty

qb:MeasureProperty

qb:measure

qb:dimension

qb:DimensionProperty

sm4am:Schema sm4am:SchemaComponent
sm4am:containsSchemaComponent

rdf:type rdf:type

indicators:structure
sdmx-dimension:refArea

qb:component

qb:dimension

sdmx-dimension:refPeriod

qb:component

qb:dimension

sdmx-measure:obsValue

qb:component

qb:measure

property:indicator

qb:component

qb:dimension

rdf:type

rdf:type

rdf:type

sm4am:connectedToSC

rdf:type

Legend

sm4am:UAList

sp:Query

lsq:DBpedia-
q464995

rdf:type

rdf:type

sp:Select

obs:SP.POP.TOTL/RS/2011

year:2011

sdmx-dimension:refPeriod

country:RS
sdmx-dimension:refArea

indicator:SP.POP.TOTL
property:indicator

"7258745"

sdmx-measure:obsValue

dbr:Serbia
owl:sameAs

SM4AM WBLD LSQ DBpedia
Metadata
Metamodel

Metadata
Model

Metadata
Instance

Data subclass

Fig. 3.26: Use Case Internals
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5.2 Using Schema to Reduce the Metadata Search Space

To analyze a data set on the SW, the user typically needs to get familiar
with the data organization. This is typically done by learning about schema
models or ontologies, i.e., instances of the AM schema artifact. However,
retrieving only the schema related triples can be a tedious task if the user
does not know where to start exploring. For example, Table 3.2 shows the
numbers of triples for WBLD.14

Table 3.2: WBLD Triple Numbers

Total number of triples 174M
Metadata number of triples 280K
Number of data sets >9K
Number of schemata 59
Total number of dimensions 81
Total number of measures 70

The total number of triples indicates that non-guided exploration is a
burdensome task. Even if focusing on all available metadata (that include
non-AM artifacts), the task still requires significant manual efforts as the non-
technical user does not know how to discover schema related triples (i.e., the
triples related to qb:DataStructureDe�nition in WBLD). However, these efforts
can be significantly reduced if the schemata have additional semantics linking
to SM4AM such that schema and schema components can be automatically
retrieved. In case of the QB vocabulary used in WBLD, this can be achieved
by defining that the schema is an instance of sm4am:Schema and that the di-
mension and measure are instances of sm4am:SchemaComponent as illustrated
in Figure 3.27.

1 qb:DataStructureDefinition rdf:type sm4am:Schema .

2 qb:DimensionProperty rdf:type sm4am:SchemaComponent .

3 qb:MeasureProperty rdf:type sm4am:SchemaComponent .

Fig. 3.27: Triples Adding SM4AM Semantics to QB

Thus, additional semantics requires the creation of only 3 triples and en-
ables automatic retrieval of schema, dimensions, and measure comprising
210 IRIs – 59 for schemata, 81 for dimensions, and 70 for measures (see Table
3.2). Furthermore, these IRIs can be automatically retrieved with Query 1
retrieving schemata and Query 2 retrieving dimensions and measures. Note
that the number of schemata is much smaller than the number of data sets, as
different data sets reuse the same schema. This way, the search space is nar-
rowed from 174 millions of total triples (280 thousands of metadata triples)
to 210 IRIs related to directly discovered schemata and their components.

14The values are rounded and come from WBLD website
(http://worldbank.270a.info/about.html) or are retrieved by querying the WBLD SPARQL
endpoint.
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Moreover, this can be done for any data set which has a schema linked to
SM4AM. Furthermore, a schema can typically be visualized and explored in
user-friendly tools, e.g., the QB schema can be automatically redefined to
QB4OLAP and visualized with QB4OLAP explorer15 as explained in [102].

Query 1
Retrieve All Schemata

1 SELECT DISTINCT ?schema

2 WHERE {

3 ?schema a ?modelLevelSchema .

4 ?modelLevelSchema a sm4am:Schema .

5 }

Query 2
Retrieve All Components of Schemata

1 SELECT DISTINCT ?schemaComponent

2 WHERE {

3 ?schemaComponent a ?modelLevelSchemaComponent .

4 ?modelLevelSchemaComponent a sm4am:SchemaComponent .

5 }

5.3 Using Query to Reduce the Metadata Search Space

As statistics about countries are the main focus of WBLD, countries represent
the main analytical perspective of these statistics. WBLD keeps track of 214
countries and provides their IRIs in both WBLD and DBpedia via owl:sameAs

links (identifying the same resources) that can be retrieved with Query 3.
Thus, the user can retrieve additional data (i.e., triples) about countries from
DBpedia using the DBpedia IRIs. However, this can still be overwhelming as
illustrated in Table 3.3 where the total number of country related triples, as
well as average, maximum, and minimum number of triples per country are
shown for these 214 countries on the DBpedia SPARQL endpoint.

Query 3
Retrieve WBLD Countries

1 SELECT DISTINCT ?c ?cc

2 WHERE {

3 ?c a <http://dbpedia.org/ontology/Country> .

4 ?c <http://www.w3.org/2002/07/owl#sameAs> ?cc .

5 FILTER regex ( str(?cc), 'dbpedia.org')

6 }

Table 3.3: DBpedia Country Related Triple Numbers

#triples Value

Total 2,358,094
Average 11,019.13
Max 467,819
Min 1

Thus, instead of exploring all the available triples related to a country, the
user may be interested in what other users were interested in, i.e., may want

15https://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/explorer
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to reuse some of the other user queries. A portion of queries over DBpedia is
available in the LSQ data set. However, the data set includes more than a mil-
lion queries where approximately 740,000 are over the DBpedia endpoint that
can likewise be overwhelming if the user is not familiar with the LSQ data
model of queries. Nevertheless, if the LSQ data model is linked to SM4AM
there are two important benefits. First, the user can reduce the search space
for finding the relevant queries. Second, the SM4AM semantics supports cor-
relation of schema metadata in WBLD with query metadata in DBpedia (i.e.,
LSQ). In our use case settings (see Section 5.1), this can be achieved with a
single triple stating that sp:Query is an instance of sm4am:UAList (see Figure
3.28).

1 sp:Query rdf:type sm4am:UAList .

Fig. 3.28: A Triple Adding SM4AM Semantics to LSQ

Query 4 illustrates how SM4AM metadata can automatically be exploited
in metadata models where query artifact is linked to SM4AM. Note that
“?parameter?” represents an IRI parameter that is used for the filtering of
queries and in our use case settings should be replaced with the DBpedia
country IRI.

Query 4
Retrieving Queries Related to an IRI

1 SELECT DISTINCT ?query

2 WHERE {

3 ?query ?p ?parameter? .

4 ?query a ?modelLevelQuery .

5 ?modelLevelQuery a sm4am:UAList .

6 }

This way, 1908 queries can be retrieved for 214 countries and Figure 3.29
illustrates the number of queries per country. The maximum number of
queries per country is 98 for Germany, the average is approximately 9 queries,
while there are only 10 countries with no related queries. The top 20 coun-
tries with the highest number of queries are presented in Table 3.4. These
queries include searches like what are the country description, names, ge-
ographical coordinates, language, homepage, images, DBpedia class types,
etc. Thus, the use of SM4AM and metadata supports reducing of the query
search space from the total of 740,000 of queries to approximately 9 queries
per country in average.

5.4 Using Query to Reduce the Data Search Space

Furthermore, we next discuss how the query (i.e., metadata) search space re-
duction supports the reduction of the data search space. Thus, we analyze
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Fig. 3.29: Number of Queries per Country

Table 3.4: Number of Queries per Country

Country IRI #Queries Country IRI #Queries

http://dbpedia.org/resource/Germany 98 http://dbpedia.org/resource/South_Africa 32
http://dbpedia.org/resource/United_States 97 http://dbpedia.org/resource/Canada 30
http://dbpedia.org/resource/Moldova 61 http://dbpedia.org/resource/South_Korea 30
http://dbpedia.org/resource/Italy 57 http://dbpedia.org/resource/Oman 26
http://dbpedia.org/resource/United_Kingdom 50 http://dbpedia.org/resource/Argentina 24
http://dbpedia.org/resource/Greece 43 http://dbpedia.org/resource/Japan 24
http://dbpedia.org/resource/Malta 42 http://dbpedia.org/resource/Philippines 24
http://dbpedia.org/resource/Poland 39 http://dbpedia.org/resource/Spain 23
http://dbpedia.org/resource/France 38 http://dbpedia.org/resource/Netherlands 22
http://dbpedia.org/resource/Hong_Kong 35 http://dbpedia.org/resource/Ireland 21

the result size for the queries previously retrieved. The LSQ data model con-
siders four types of SPARQL queries – SELECT, ASK, DESCRIBE, and CON-
STRUCT. Out of the 1908 retrieved queries, 1719 are SELECT, 143 are ASK,
and 46 are CONSTRUCT (there are no DESCRIBE queries). CONSTRUCT
queries create triples and thus are typically not used for analysis purposes.
On the other hand, SELECT and ASK queries are typically used for data
analysis but the latter ones only retrieve a boolean value per query. Thus,
we further discuss the result sizes of the remaining 1719 SELECT queries.
Similar as in the LSQ data model, by the result size we consider the number
of results for the SELECT clause of the query and Figure 3.30 illustrates the
percentage of queries for different result size ranges.

51.71611402

14.89237929

14.77603258

8.144269924

5.410122164
5.061082024

0-10

11-20

21-50

51-1000

1001-9999

>10000

Fig. 3.30: Percentage of Countries per Result Size Range

The experiment results show that half of the queries return 10 or less
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results, while there are approximately 15% of the queries both in case of 11
to 20 results as well as 21 to 50 results. Thus, 80% of the queries retrieve 50
or less results and only 5% retrieve 10,000 or more results (note that 10,000
results per query is the default limit on DBpedia SPARQL endpoint). The
results illustrate that in the great majority of cases the volume of query results
are small and can easily be manually analyzed by the user. Thus, more than
just reducing metadata search space, the use of SM4AM in this case also
reduces the data search space.

For instance, a user who runs Query 5 to search for the population of
Serbia over years in the running example data set, can use the DBpedia
IRI for Serbia (i.e., http://dbpedia.org/resource/Serbia) available in WBLD (via
owl:sameAs and retrieve 9 queries related to Serbia from LSQ (see Query 4).
The predicates used in these queries and their result size are presented in
Table 3.5.

Query 5
Retrieve Population of Serbia over Years

1 Select ?year ?population

2 Where {

3 ?o a qb:Observation .

4 ?o qb:dataSet <http://worldbank.270a.info/dataset/SP.POP.TOTL> .

5 ?o sdmx-dimension:refArea <http://worldbank.270a.info/classification/country/RS> .

6 ?o sdmx-dimension:refPeriod ?year .

7 ?o sdmx-measure:obsValue ?population .

8 }

Table 3.5: LSQ Queries with their Predicates and Result Size for Serbia

Query IRI Predicate(s) #Results

http://lsq.aksw.org/res/DBpedia-q464995 http://dbpedia.org/ontology/abstract 1 (1 predicate)
http://lsq.aksw.org/res/DBpedia-q560256 http://dbpedia.org/property/officialLanguages 1 (1 predicate)

http://lsq.aksw.org/res/DBpedia-q628022
rdfs:comment
foaf:depiction
foaf:homepage

3 (3 predicates)

http://lsq.aksw.org/res/DBpedia-q1054262 rdf:type 34 (1 predicate)
http://lsq.aksw.org/res/DBpedia-q588873 rdf:type 34 (1 predicate)
http://lsq.aksw.org/res/DBpedia-q1034866 rdfs:label 12 (1 predicate)

http://lsq.aksw.org/res/DBpedia-q250234
rdfs:comment
foaf:depiction
foaf:homepage

3 (3 predicates)

http://lsq.aksw.org/res/DBpedia-q964249
rdfs:label
wgs84_pos:lat
wgs84_pos:long

12 (3 predicates)

http://lsq.aksw.org/res/DBpedia-q1073992 http://dbpedia.org/property/redirect 0

5.5 Use Case Summary

Overall, the use case shows that even basic use of SM4AM facilitates and
automates the search for metadata concepts in the data set. Consequently, it
further supports both metadata and data exploration by means of narrowing
the scope of metadata and data that user needs to analyze (i.e., query). A
summary of the optimizations in each step is shown in Figure 3.31. Finally,
SM4AM provides semantics that can be used for combined use of metadata
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artifacts from different data sets. The use case illustrates the benefits of sim-
ple SM4AM use with existing metadata models for different metadata arti-
facts and greater gains could be achieved in several ways. For example, the
queries with empty or excessive results can be removed in pre-processing and
even query recommendations algorithms can be applied. Moreover, SM4AM
can be used to identify the same metadata artifacts represented with different
metadata models that can then be aligned manually or by applying ontology
matching and/or entity resolution techniques.

WBLD all->schema LSQ Dbpedia queries narrowing Dbpedia Triples

All triples 174,000,000 All DBpedia queries740,000 Countries related triples2,358,094

Schemata IRIs (with SM4AM) 210 Queries per country average (with SM4AM)9 Max result size in 80% of the cases (with SM4AM)50
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Fig. 3.31: Search Space Reductions with SM4AM

6 Related Work

The AM artifacts captured in SM4AM are only partially covered in the exist-
ing metadata solutions related to the BI area. Therefore, we discuss below
a number of representative approaches in terms of query, query log, (user)
session, (user) preferences, schema, statistics, traceability, vocabulary, user charac-
teristics, and profiling metadata that are the AM artifacts explained in Section
2.1. Furthermore, we consider if any of the solutions are RDF-based like
SM4AM. Note that more detail on AM, RDF, and ontological metamodeling
are already discussed in Section 2.

As BI 2.0 solutions do not elaborate on the concrete metadata artifacts
needed for the user assistance, some more insights on this matter can be
found in the existing goal oriented (e.g., query recommendation) approaches
providing such support in the classical database and BI settings. Moreover,
we consider the metadata modeling solutions in these traditional settings.
Therefore, we discuss three groups of approaches and discuss representative
papers of each group.

The first group are classical database user assistance approaches. For in-
stance, [63] and [26] that assist the user in the exploration of very large data
sets via SQL. Typically, these approaches use queries, query logs, and user ses-
sions. They analyze the queries based on their syntax and/or result data,
compare query sessions in the search for the next potential query, and ex-
plore query logs to discover queries and sessions relevant for the recommen-
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dations. The lack of semantics in this case limits the assistance possibilities.
For instance, differently formulated similar queries cannot be match due to
the syntax mismatch, or similar queries that only differ in filtering conditions
will not be found mutually related due to the result differences. Addition-
ally, approaches in this group use user preferences. For example, in [66] user
preferences are applied over atomic query conditions and their complex com-
binations in SQL queries. Overall, this group mainly focuses on the metadata
related to the user actions.

Because of it is analysis-oriented nature, the DW and OLAP fields are two
significant contributors providing user assistance. Thus, the second group
includes OLAP user assistance approaches. Similarly to the previous group,
some of these approaches like [15, 38] also use queries, query logs, and user
sessions. Additionally, other approaches also use user preferences in OLAP
settings, e.g., for the visualization assistance with OLAP queries as in [18].
However, compared to the previous group, the OLAP user assistance group
includes approaches that additionally apply user preferences over the schema
as in [41] or use the schema for guiding natural language processing [75]. Fur-
thermore, [75] also exploits various statistics for the user assistance features.
Although this group extends the scope of the metadata artifacts used in tra-
ditional relational approaches, the traceability, vocabulary, user characteristics,
and profiling metadata still remain generally unexploited. It is important to
notice that none of the two groups discussed by now provide many details
about the metadata used. Solutions like these model the metadata in a pro-
prietary and ad-hoc manner, that is not easily reusable nor extensible, and to
the best of our knowledge none of the approaches is RDF-based.

The third group focuses on general metadata modeling approaches. Com-
pared to the previous two groups, these approaches are aim at gathering
metadata and provide details about the metadata artifacts modeled. The
most complete solution in this group is the Common Warehouse Metamodel
(CWM) [79], which is a standardized solution for metadata modeling and
management. However, as it is mostly intended for the interchange of meta-
data in data warehousing settings, it only partially covers the AM artifacts.
Namely: the schema, traceability, and vocabulary metadata. Furthermore, the
CWM is not RDF-based which requires significantly greater efforts for the
correlation with the models instantiating it and much less flexibility for the
changes. Another metamodel solution is presented in [72] that focuses on the
traceability between the data sources and the target schema and their rela-
tion with the user requirements in the data warehouse context. Likewise, this
solution represents a specialized metamodel that only covers the traceability
metadata. Again, it is intended for data warehousing while the AM focus on
providing assistance during the data analysis task. Finally, an approach to
model user preferences is proposed in [68] that is again not RDF-based and
captures only the user preferences and schema metadata. Table 3.6 illustrates
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the comparison of all previous approaches with SM4AM. Unlike any of the
earlier approaches, SM4AM supports all of the AM metadata artifacts.

Table 3.6: Related Work Comparison
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SnipSuggest [63]
√ √ √

DB Explore [26]
√ √ √

Personalize DB [66]
√ √

Recommend OLAP [38]
√ √ √

Predict OLAP [15]
√ √ √

Personalize OLAP [18]
√ √

myOLAP [41]
√ √ √

Meta-Morphing [75]
√ √ √ √

Preference Metamodel [68]
√ √

Trace Metamodel [72]
√

CWM [79]
√ √ √

SM4AM
√ √ √ √ √ √ √ √ √ √ √

7 Conclusions

Motivated by the need to better support and assist the user experience in
the context of BI 2.0 systems, in this paper we have presented SM4AM: an
RDF-based metadata metamodel. Using ontological metamodeling, SM4AM
has been designed as a flexible solution that can be easily shared among het-
erogeneous BI 2.0 systems. Being represented in a semantic-aware format it
supports the metadata processing automation. Furthermore, the creation of
the system-specific metadata models is supported by the proposed method
for metamodel instantiation. The practical benefits of SM4AM for narrowing
the (meta)data search space in a metamodel-driven (meta)data exploration
are shown on a use case with two real-world data sets. Therefore, our ap-
proach provides foundations for the metadata modeling and organization
needed for the user assistance engines in BI 2.0 systems that was missing
until now. As discussed in the related work, to the best of our knowledge no
previous approach captures all AM in a single unified metamodel.

The contributions of this paper open up several research lines for devel-
oping novel user-centric approaches. The next step in our future work is to
create a metadata model by instantiating SM4AM and implement the meta-
data repository of our own BI 2.0 solution described in [56]. Then, we will
develop the metadata processing techniques for gathering the metadata in-
stances (e.g., by monitoring) and devise our own solutions for user assistance.
We will also explore the creation and exploitation of derived metadata con-
cepts from the ones existing in the repository.
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1 Prefixes

Prefixes (other than sm4am) used throughout the paper are specified in Figure
32.

1 @prefix ex:<http://www.example.org/>

2 @prefix qb:<http://purl.org/linked-data/cube#>

3 @prefix qb4o:<http://purl.org/qb4olap/cubes#>

4 @prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

5 @prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>

6 @prefix indicators:<http://worldbank.270a.info/dataset/world-bank-indicators/structure>

7 @prefix sdmx-measure:<http://purl.org/linked-data/sdmx/2009/measure#>

8 @prefix sdmx-dimension:<http://purl.org/linked-data/sdmx/2009/dimension#>

9 @prefix property:<http://worldbank.270a.info/property/>

10 @prefix obs:<http://worldbank.270a.info/dataset/world-bank-indicators/>

11 @prefix year:<http://reference.data.gov.uk/id/year/>

12 @prefix coutnry:<http://worldbank.270a.info/classification/country/>

13 @prefix indicator:<http://worldbank.270a.info/classification/indicator/>

14 @prefix xsd:<http://www.w3.org/2001/XMLSchema#>

15 @prefix lsq:<http://lsq.aksw.org/res/>

16 @prefix sp:<http://spinrdf.org/sp#>

17 @prefix lsqv:<http://lsq.aksw.org/vocab#>

18 @prefix dbr:<http://dbpedia.org/resource/>

19 @prefix foaf:<http://xmlns.com/foaf/0.1/>

20 @prefix wgs84_pos:<http://www.w3.org/2003/01/geo/wgs84_pos#>

Fig. 32: Prefixes
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Abstract

On-Line Analytical Processing (OLAP) is a data analysis technique typically used
for local and well-prepared data. However, initiatives like Open Data and Open Gov-
ernment bring new and publicly available data on the web that are to be analyzed
in the same way. The use of semantic web technologies for this context is especially
encouraged by the Linked Data initiative. There is already a considerable amount
of statistical linked open data sets published using the RDF Data Cube Vocabulary
(QB) which is designed for these purposes. However, QB lacks some essential schema
constructs (e.g., dimension levels) to support OLAP. Thus, the QB4OLAP vocab-
ulary has been proposed to extend QB with the necessary constructs and be fully
compliant with OLAP. In this paper, we focus on the enrichment of an existing QB
data set with QB4OLAP semantics. We first thoroughly compare the two vocabu-
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laries and outline the benefits of QB4OLAP. Then, we propose a series of steps to
automate the enrichment of QB data sets with specific QB4OLAP semantics; being
the most important, the definition of aggregate functions and the detection of new
concepts in the dimension hierarchy construction. The proposed steps are defined to
form a semi-automatic enrichment method, which is implemented in a tool that en-
ables the enrichment in an interactive and iterative fashion. The user can enrich the
QB data set with QB4OLAP concepts (e.g., full-fledged dimension hierarchies) by
choosing among the candidate concepts automatically discovered with the steps pro-
posed. Finally, we conduct experiments with 25 users and use three real-world QB
data sets to evaluate our approach. The evaluation demonstrates the feasibility of our
approach and shows that, in practice, our tool facilitates, speeds up, and guarantees
the correct results of the enrichment process.

1 Introduction

On-Line Analytical Processing (OLAP) is a well-established approach for data
analysis to support decision making that typically relates to Data Warehouse
(DW) systems. It is based on the multidimensional (MD) model which places
data in an n-dimensional space, usually called a data cube. In this way, a
user can analyze data along several dimensions of interest. For instance, a
user can analyze sales data according to time and location (dimensions). The
simplicity of the MD model specially fits the business users who navigate and
analyze the MD data by means of OLAP operations (typically via a graphical
user interface).

A large number of MD models in the literature are based on the data
cube metaphor [42, 47, 107]. Historically, DW and OLAP have been used as
techniques for data analysis within an organization, using mostly commer-
cial tools with proprietary formats. However, initiatives like Open Data1

and Open Government2 are pushing organizations to publish MD data us-
ing standards and non-proprietary formats. Although several open source
platforms for business intelligence (BI) have emerged in the last decade, an
open format to publish and share cubes among organizations is still missing.
The Linked Data [45] initiative promotes sharing and reusing data on the web
using semantic web (SW) standards and domain ontologies expressed in the
Resource Description Framework (RDF) as the basic data representation layer
for the SW [28], or in languages built on top of RDF (e.g., RDF-Schema [23]
and OWL3).

Two main approaches can be found in the literature concerning OLAP
analysis of SW data. The first one consists in extracting MD data from the

1http://okfn.org/opendata/
2http://opengovdata.org/
3http://www.w3.org/TR/owl2-overview/
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web and loading them into traditional data management systems for OLAP
analysis. The second one explores data models and tools that allow publish-
ing and performing OLAP analysis directly over MD data on the SW. We
discuss both approaches in detail in Section 7 and in this paper we follow the
second one.

Statistical data sets on the SW are usually published using the RDF Data
Cube Vocabulary4 (also denoted as QB), the current W3C standard. There is
already a considerable amount of data sets published using QB. However, as
we explain later, QB lacks (among other shortcomings) the structural meta-
data needed to automate the translation of OLAP operations into the under-
lying technology storing the MD data. For example, DWs have been typically
implemented using relational technology and the definition of a well-formed
MD schema allows the automatic translation of OLAP operations into SQL
queries. To address this challenge, a new vocabulary, denoted as QB4OLAP,
has been proposed [33]. QB4OLAP allows reusing data already published in
QB just by adding the needed MD schema semantics (e.g., the hierarchical
structure of the dimensions) and the corresponding instances that populate
the dimension levels. Thus, the main task that we address in this paper is the
enrichment of an existing QB data set with additional QB4OLAP semantics. Once
a data cube is published using QB4OLAP, users will be able to operate over
it, not only through queries written in SPARQL [82] (the standard query lan-
guage for RDF), but also by using a high-level OLAP query language [102].
Such a language allows OLAP users to query data cubes directly on the SW,
without any knowledge of SPARQL or RDF, since OLAP queries and opera-
tions can be automatically translated into SPARQL, taking advantage of the
structural metadata provided by QB4OLAP5. In addition, a language like this
makes it easier to develop graphic tools, typically used to exploit data cubes.

Enriching an existing QB data set with QB4OLAP semantics implies a
labor-intensive, repetitive, and error-prone task. Thus, it must be performed
as automatically as possible. For instance, hierarchical structures of the di-
mensions can be discovered from the source data and metadata, and from
external data. Once discovered, the structure must be populated with the
members of hierarchy levels. In this paper, we present a method and a tool
to facilitate the enrichment process. The method minimizes the user effort,
by automatically detecting new potential semantics and performing other-
wise time-consuming tasks, leaving to the user the task of providing the MD
semantics that cannot be inferred.

Contributions. Our main contributions are:

• An in-depth comparison between the QB and QB4OLAP vocabularies,
outlining the novel benefits of the latter.

4http://www.w3.org/TR/vocab-data-cube/
5 A prototype is available at http://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/
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• Techniques to automate (a) the association between measures and ag-
gregate functions, by means of metadata; and (b) the discovery of dimension
hierarchy schema and instances, based on an algorithm that detects implicit
MD semantics.
• A method defining the steps described as SPARQL queries to semi-

automatically enrich data already published in QB with dimensional (meta)-
data compliant with the QB4OLAP vocabulary.
• QB2OLAPem, a tool that in an iterative fashion implements the method

and the algorithm for the detection of implicit MD semantics. The tool en-
ables the user to semi-automatically produce a QB4OLAP description of a
QB data cube with minimal manual effort.
• An evaluation of our approach based on the experiments conducted

with 25 users and the use of three real-world QB data sets. The evaluation
shows that our approach is feasible and that, in practice, QB2OLAPem re-
duces the enrichment time and user efforts and guarantees that the QB4OLAP
schema created is correct.

The remainder of the paper is organized as follows. Section 2 explains
the basic concepts used throughout the paper. Section 3 discusses the limi-
tations of the QB vocabulary, with respect to its capability to represent MD
data. This section also presents the QB4OLAP vocabulary, which addresses
these limitations. Section 4 studies the automation challenges and provides
possible solutions for the two most important ones. Section 5 describes the
proposed enrichment method while Section 6 presents the approach evalu-
ation. Finally, Section 7 discusses related work and we conclude in Section
8.

2 Preliminaries

In this section we present the basic concepts on OLAP and SW data models
followed by a detailed elaboration on QB based on the running example used
throughout the paper.

2.1 OLAP

In OLAP, data are organized as hypercubes whose axes are called dimensions.
Each point in this MD space is mapped into one or more spaces of measures,
representing facts that are analyzed along the cube’s dimensions. Dimen-
sions are structured in hierarchies that allow analysis at different aggregation
levels. The actual values in a dimension level are called members. A Dimension
Schema is composed of a non-empty finite set of levels. We denote by ‘→’ a
partial order on these levels, with a unique bottom, and a unique top, the lat-
ter being a distinguished level denoted as All, whose only member is called
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all. We denote by ‘→∗’ the reflexive and transitive closure of ‘→’. Levels can
have attributes describing them. A Dimension Instance assigns a set of dimen-
sion members to each dimension level in the dimension schema. For each
pair of levels (lj, lk) in the dimension schema, such that lj → lk, a relation
(denoted as rollup) is defined, associating members from level lj with mem-
bers of level lk. In a rollup relationship, lj is called the child level and lk the
parent level. In practice, to guarantee the correct aggregation of the measure
values, rollup relations actually become functions. Cardinality constraints on
these relations are then used to restrict the number of level members related
to each other [101]. A Cube Schema is defined by a set of dimensions and a
set of measures, and for each measure a default aggregate function is specified.
Each dimension is represented by a level, defining the granularity of the cube.
The cube composed by the bottom levels of each dimension is called a base
cube. All other cubes are called cuboids. A Cube Instance, corresponding to
a cube schema, is a partial function mapping coordinates from dimension
instances (at the cube’s granularity level) into measure values.

A well-known set of operations can be defined over cubes [29]. For ex-
ample, given a cube C, a dimension D ∈ C, dimension levels ll , lu ∈ D such
that ll →∗ lu, and an aggregate function Fagg, RollUp(C, D, lu, Fagg) returns a
new cube where measure values are aggregated along D, from the current
level ll up to a level lu, using Fagg. Analogously, DrillDown(C, D, ll , Fagg)
disaggregates previously summarized data, from the current level lu down
to a level ll and can be considered the inverse of RollUp. Note that we do
not need to use the starting levels as parameters of these operations, be-
cause we assume that they are applied over the ‘current’ aggregation level
of the cube, thus they would be redundant, since the cube ‘knows’ the cur-
rent aggregation level for dimension D. Slice(C, D, Fagg) receives a cube C, a
dimension D ∈ C, and an aggregate function Fagg, and returns a new cube,
with the dimension D removed from the original schema, such that measure
values are aggregated along D up to level All before removing the dimen-
sion, using Fagg. Note that in all cases, Fagg could be omitted if the default
aggregate function is used. Finally, given a cube C, and a first order formula
σ over levels and measures in C, Dice(C, σ) returns a new cube with the same
schema, and whose instances are the instances in C that satisfy σ. For exam-
ple, given a Sales data cube, with dimensions Time and Location, the query
“Total sales by region, in December 2015” can be expressed with the follow-
ing sequence of operations: C1 := Dice(Sales, Time.month = ”12 − 2015”);
C2 := Rollup(C1, Location, Location.region). The first operation takes as input
the Sales data cube, and produces another data cube C1, whose cells contain
only sales data corresponding to December, 2015; C1 is then summarized by
geographical region.
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2.2 RDF and the Semantic Web

The basic construct of RDF is a triple, of the (s, p, o) form, where s stands for
subject, p for predicate, and o for object. In general, s, p, and o are resources,
identified with internationalized resource identifiers (IRIs). An object can
also be a data value, denoted as a literal in RDF, or a blank node, typically
used to represent anonymous resources. Subjects can also be represented
by blank nodes. A set of RDF triples is called an RDF graph. An RDF data
set is a collection of RDF graphs, comprising one default RDF graph with
no name, and zero or more named graphs (a named graph is a graph with a
name, typically an IRI or a blank node). Graph names must be unique within
an RDF data set.

In addition, the RDF Schema (RDF-S) [23] is composed by a set of reserved
keywords which define classes, properties, and hierarchical relationships be-
tween them. For example, the triple (r, rdf:type, c) explicitly states that r
is an instance of c, and it also implicitly states that object c is an instance of
rdfs:Class. Many formats for RDF serialization exist. In this paper we use
Turtle [17].

SPARQL 1.1 [82] is the W3C standard query language for RDF. The query
evaluation mechanism of SPARQL is based on subgraph matching: RDF
triples are interpreted as nodes and edges of directed graphs, and the query
graph is matched to the data graph, instantiating the variables in the query
graph definition. The selection criteria is expressed as a graph pattern in
the WHERE clause. Relevant to OLAP queries, SPARQL 1.1 supports aggregate
functions and the GROUP BY clause, a feature not present in previous versions.

From here on we assume that the reader is familiar with RDF and SPARQL
concepts.

2.3 QB: The RDF Data Cube Vocabulary

As mentioned before, QB is the W3C recommendation to publish statistical
data and metadata in RDF. QB is based on the main components of the SDMX
information model [91], proposed by the Statistical Data and Metadata eX-
change initiative (SDMX)6 for the publication, exchange, and processing of
statistical data. The elements with white background in Figure 4.1 depict the
QB vocabulary. Capitalized terms represent RDF classes and non-capitalized
terms represent RDF properties. Capitalized terms in italics represent classes
with no instances. An arrow with black triangle head from class A to class
B, labeled rel means that rel is an RDF property with domain A and range
B. White triangles represent sub-classes or sub-properties. The range of a
property can also be denoted using “:”. For better comprehension, we next

6http://SDMX.org
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Fig. 4.1: QB (cf. [27]) and QB4OLAP vocabularies

introduce the running example that is used to explain the QB elements and
then followed throughout the paper.

We use data published by the World Bank7, a financial institution support-
ing developing countries, basically through loans for strategic projects. Free
and open access to data about these countries is provided through the World
Bank Open Data (WBOD), that includes a collection of indicators8 measured
for different countries and regions across time. Data are available in tabular,
RDF, and many other formats depending on the particular portion of the data
set. World Bank Linked Data (WBLD) is a Linked Data data set created from
WBOD data via its rdf-ization (where needed) and it is annotated with the QB
vocabulary. The WBLD is organized in four subsets, stored in different files,
including demographic and financial indicators, projects and operations, and
climate data. Additionally, there is a VoiD9 file which contains metadata
that describe the data sets. Moreover, a SPARQL endpoint10 is also available
to query the WBLD. Our running example is based on the “Market capital-
ization of listed companies (current US$)” indicator (CM.MKT.LCAP.CD)11,
where market capitalization refers to the share price times the number of
shares outstanding. Each indicator is provided as a QB data set, i.e., as an
instance of the class qb:DataSet.

The schema of a QB data set is specified by means of the data structure
definition (DSD), an instance of the class qb:DataStructureDefinition. This

7http://www.worldbank.org
8http://data.worldbank.org/indicator
9http://semanticweb.org/wiki/VoID

10http://worldbank.270a.info/sparql
11http://data.worldbank.org/indicator/CM.MKT.LCAP.CD
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specification is composed of a set of component properties, instances of sub-
classes of the qb:ComponentProperty class, representing dimensions, measures,
and attributes. Component properties are not directly related to the DSD:
the qb:ComponentSpecification class is an intermediate class typically in-
stantiated as RDF blank nodes, that allows specifying additional attributes
for a component in a DSD (e.g., a component may be tagged as required
(i.e., mandatory), using the qb:componentRequired property). The differ-
ent components that belong to a component specification are linked using
specific properties that depend on the type of the component: qb:dimension
for dimensions, qb:measure for measures, and qb:attribute for attributes.
Component specifications are linked to DSDs via the qb:component property.
Note that a DSD can be shared by different QB data sets (and each QB data
set is linked to its DSD) by means of the qb:structure property. Example 1
presents the triples that represent the DSD of our running example.

Example 1
The DSD of the running example is defined in the file meta.rdf12 and looks
as follows.

1 @pre�x qb: <http://purl.org/linked−data/cube#> .
2 @pre�x xsd: <http://www.w3.org/2001/XMLSchema#> .
3 @pre�x sdmx−dimension: <http://purl.org/linked−data/sdmx/2009/dimension#> .
4 @pre�x sdmx−measure: <http://purl.org/linked−data/sdmx/2009/measure#>.
5

6 <http://worldbank.270a.info/dataset/world−bank−indicators/structure>
7 a qb:DataStructureDe�nition ;
8 qb:component [
9 a qb:ComponentSpeci�cation ;

10 qb:dimension <http://worldbank.270a.info/property/indicator> ;
11 qb:order "1"^^xsd:int],
12 [
13 a qb:ComponentSpeci�cation ;
14 qb:dimension sdmx−dimension:refArea ;
15 qb:order "2"^^xsd:int],
16 [
17 a qb:ComponentSpeci�cation ;
18 qb:dimension sdmx−dimension:refPeriod ;
19 qb:order "3"^^xsd:int],
20 [
21 a qb:ComponentSpeci�cation ;
22 qb:measure sdmx−measure:obsValue ;
23 qb:order "4"^^xsd:int] .

This DSD is composed of three dimensions: <http://worldbank.270a.info/property/
indicator> (lines 9-11), representing an indicator, sdmx-dimension:refArea (lines
13-15) which represents the geographical reference area, and sdmx-dimension:refPer-

iod (lines 17-19) which represents the time period. The measure of the data set is the
generic sdmx-measure:obsValue predicate (lines 21-23).

Instances of the running example data set are described in an RDF graph

12http://worldbank.270a.info/data/meta/meta.rdf
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contained in the file CM.MKT.LCAP.CD.rdf.13 Such instances are called obser-
vations in the QB vocabulary. Observations (in OLAP terminology, facts) are
instances of the qb:Observation class and represent points in an MD data
space indexed by dimensions. They are associated with data sets (instances of
the qb:DataSet class), through the qb:dataSet property. Each observation
can be linked to a value in each dimension of the DSD via instances of the
qb:DimensionProperty class; analogously, values for each observation are
associated to measures via instances of the qb:MeasureProperty class; and
instances of the qb:AttributeProperty class are used to associate attributes
to observations. Example 2 presents the triples of an observation from our
running example.

Example 2
The triples representing an observation corresponding to the market capital-
ization for Serbia in 2012 (we do not repeat prefixes previously defined).

1 @pre�x property: <http://worldbank.270a.info/property/> .
2 @pre�x indicator: <http://worldbank.270a.info/classi�cation/indicator/>.
3 @pre�x country: <http://worldbank.270a.info/classi�cation/country/> .
4 @pre�x year: <http://reference.data.gov.uk/id/year/> .
5

6 <http://worldbank.270a.info/dataset/world−bank−indicators/
7 CM.MKT.LCAP.CD/RS/2012> a qb:Observation ;
8 qb:dataSet <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> ;
9 property:indicator indicator:CM.MKT.LCAP.CD ;

10 sdmx−dimension:refArea country:RS ;
11 sdmx−dimension:refPeriod year:2012 ;
12 sdmx−measure:obsValue 7450560827.04874 .

Note that each of the RDF properties defined as components of the data set DSD
(Example 1) is used here to link the observation with either dimension members or
measure values. In particular, the recorded value for CM.MKT.LCAP.CD indicator is
linked to the observation via the sdmx-measure:obsValue predicate (line 12), and the
semantics of this measure is given by the indicator linked to the observation via the
property:indicator predicate (line 9).

To give further semantics to the components of a DSD, they may be as-
sociated with concepts in an ontology. For this, we can make use of the
property qb:concept, to link components in a DSD, with instances of the
class skos:Concept defined in the SKOS vocabulary.14 More specifically, this
property can be used to link component properties (i.e., dimensions or mea-
sures), with standard concepts defined in the SDMX guidelines (e.g., refer-
ence area, frequency, etc.) [90]. We illustrate this in Example 3, to define the
dimension sdmx-dimension:refPeriod.

13http://worldbank.270a.info/data/world-development-indicators/CM.MKT.TRAD.CD.

rdf
14http://www.w3.org/TR/skos-reference/
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Example 3
An excerpt of the triples that define the dimension sdmx-dimension:refPeriod,
and associate it with the SDMX concept sdmx-concept:refPeriod (a SKOS
concept) is shown below.

1 @pre�x sdmx−concept: <http://purl.org/linked−data/sdmx/2009/concept#> .
2 @pre�x rdf: <http://www.w3.org/1992/02/22−rdf−syntax−ns#> .
3 @pre�x rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4 @pre�x skos: <http://www.w3.org/2004/02/skos/core#> .
5

6 sdmx−dimension:refPeriod a qb:DimensionProperty, rdf:Property ;
7 rdfs:range rdfs:Resource;
8 qb:concept sdmx−concept:refPeriod ;
9 rdfs:label "Reference Period"@en ;

10 rdfs:comment """The period of time or point in time to which the
11 measured observation is intended to refer."""@en .
12

13 sdmx−concept:refPeriod a sdmx:Concept, skos:Concept ;
14 rdfs:label "Reference Period"@en ;
15 rdfs:comment """The period of time or point in time to which the
16 measured observation is intended to refer."""@en;
17 skos:inScheme sdmx−concept:cog .

Linking the dimension sdmx-dimension:refPeriod with the concept sdmx-concept:-
refPeriod (line 8) allows to give semantics to this dimension.

Finally, slices, as defined in QB, represent subsets of observations, not as
operators over an existing cube, but as new structures and new instances (ob-
servations) in which one or more values of dimension members are fixed. The
structure of a slice is defined using a DSD and an instance of the qb:SliceKey
class. The class qb:Slice allows grouping the observations that correspond
to a particular slice (using the qb:observation property) and the structure
of each slice is attached using the qb:sliceStructure property.

3 Representing Multidimensional Data in RDF

Although appropriate to represent and publish statistical data, QB has a set of
limitations when it comes to represent an MD model for OLAP. Thus, in this
section we elaborate on these limitations of QB, introduce the QB4OLAP vo-
cabulary that extends QB with the necessary concepts, discuss some QB4OLAP
design decisions, and provide hints about the use of QB4OLAP.15

3.1 Limitations of QB

Lack of support for an OLAP dimension structure Although QB allows
representing hierarchical relationships between level members in the dimension

15Parts of the material in this section have previously appeared in [33, 100]. However, the
contents of [33] have been updated and now refer to newer versions of QB4OLAP. Further, the
examples based on WBLD are new. Finally, we remark that [100] is a tutorial on QB4OLAP,
produced for the 2015 edition of the Business Intelligence Summer School.
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instances, it does not provide a mechanism to represent an OLAP dimen-
sion structure (i.e., the dimension levels and the relationships between lev-
els). That means, QB allows stating that Serbia is a narrower concept than
Europe, but not that Serbia is a Country, Europe is a Continent, and that
countries aggregate to continents. To represent hierarchical relationships be-
tween dimension members, the semantic relationship skos:narrower should
be used, with the following meaning: If two concepts A and B are such that
A skos:narrower B, B represents a narrower concept than A (e.g., continent
skos:narrower country).

Additional information that can be used to build dimension instances is
scattered across many graphs. For example, we can obtain information about
country:RS (Serbia) from the graph in the file countries.rdf.16 Example 4
shows the triples that can be obtained about Serbia.

Example 4
The triples about the dimension member Serbia, obtained from countries.rdf.

1 @pre�x dbpedia: <http://dbpedia.org/resource/> .
2 @pre�x geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
3 @pre�x foaf: <http://xmlns.com/foaf/0.1/> .
4 @pre�x dcterms: <http://purl.org/dc/elements/1.1/> .
5 @pre�x region: <http://worldbank.270a.info/classi�cation/region/> .
6 @pre�x income: <http://worldbank.270a.info/classi�cation/income−level/> .
7 @pre�x lending: <http://worldbank.270a.info/classi�cation/lending−type/> .
8

9 <http://worldbank.270a.info/classi�cation/country> skos:hasTopConcept
10 country:RS .
11

12 country:RS
13 a skos:Concept, <http://dbpedia.org/ontology/Country> ;
14 skos:inScheme <http://worldbank.270a.info/classi�cation/country> ;
15 skos:topConceptOf <http://worldbank.270a.info/classi�cation/country> ;
16 skos:notation "RS" ;
17 skos:exactMatch country:SRB ;
18 skos:prefLabel "Serbia"@en ;
19 property:region region:ECS ;
20 property:admin−region region:ECA ;
21 property:income−level income:UMC ;
22 property:lending−type lending:IBD ;
23 dbpedia:capital "Belgrade"@en ;
24 geo:lat "20.4656"^^xsd:�oat ;
25 geo:long "44.8024"^^xsd:�oat ;
26 foaf:page <http://data.worldbank.org/country/RS> ;
27 ...
28 dcterms:created "2012−02−29T00:00:00Z"^^xsd:dateTime ;
29 dcterms:issued "2013−11−04T13:37:18Z"^^xsd:dateTime .
30

31 country:SRB skos:exactMatch country:RS ; skos:notation "SRB" .

Some of the triples provide information that can be used to define dimension hierar-
chies, when producing the QB4OLAP representation. Line 13 states that country:RS
is a country as it says that this IRI is of type <http://dbpedia.org/ontology/Country>.
Lines 19 and 20 state that Serbia belongs to two different regions17: region:ECS (Eu-

16http://worldbank.270a.info/data/meta/countries.rdf
17http://worldbank.270a.info/classification/region
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country

region

lending-type

income

all

Fig. 4.2: Dimension levels and hierarchies with bottom level country.

rope & Central Asia (all income levels)) and region:ECA (Europe & Central Asia (de-
veloping only)), respectively. Lines 21 and 22 provide information about the income
level and the type of lending Serbia is eligible for, respectively.18

We have said that a typical OLAP user explores data, e.g., performing ag-
gregations along dimension hierarchies. For example, she would like to com-
pute the total capitalization by region, income level, or lending type, given
that these data are available in the data set, as Examples 1 through 4 show.
However, we can also see that these data are given at the instance level, that
means, no hierarchical structure is defined for the refArea dimension. This
is because QB does not allow to define aggregation paths. Nevertheless, it
is clear that from the information available, we could infer and build a di-
mension hierarchy. A possible structure for a geographical dimension (like
refArea) is shown in Figure 4.2. We can see that there are five levels, namely
country (i.e., initial refArea), region, lending-type, income, and, following tradi-
tional MD design, a distinguished level All which has only one level member,
denoted as all. These levels are organized into three hierarchies: a geographical
hierarchy country → region → All, a lending type hierarchy country → lending-

type→ All, and an income hierarchy country → income→ All.

Lack of support for aggregate functions QB does not provide native sup-
port to represent aggregate functions. Many OLAP operations change the
granularity level of the data represented in a data cube (e.g., a rollup over
the Time dimension from the Month level up to the Year level). This involves
aggregating measure values along dimensions, using the aggregate function
defined for each measure. These aggregate functions depend on the nature

18These concepts are defined in http://worldbank.270a.info/classification/

income-level and http://worldbank.270a.info/classification/lending-type.
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of the measure (i.e., additive, semi additive, non additive [101]). The abil-
ity to link each measure with an aggregate function is therefore crucial and,
although present in OLAP tools, it is not considered in QB.

Lack of support for descriptive attributes In the MD model, the instances
(members) of each dimension level usually contain a set of real-world con-
cepts with similar characteristics. Further, the schema of each level is com-
posed of a set of attributes that describe the characteristics of their members
(e.g., the level country may have the attributes countryName, surface, etc.) and
one or more identifiers [101]. QB does not provide a mechanism to associate
a set of attributes with a dimension level. This affects the expressiveness and
efficiency of some OLAP operations, in particular, Dice, which filters a cube
according to a Boolean condition. For example, to obtain a cube containing
just data about Serbia, without descriptive attributes we would need to fil-
ter such data using the IRI representing Serbia, instead of the proper string.
This would not only be unnatural for a user, but also highly inefficient. Note
that the qb:AttributeProperty class, used in QB to associate attributes to
observations as mentioned before, differs from descriptive level attributes as
defined in QB4OLAP, and cannot be used in the way explained in the exam-
ple above. Section 3.4 illustrates the use of descriptive attributes in a Dice
operation.

3.2 The QB4OLAP Vocabulary

QB4OLAP19 extends QB with a set of RDF terms and the rationale behind
QB4OLAP includes:

• QB4OLAP must be able to represent the most common features of the
MD model. The features considered are based on the MultiDim model [101].
• QB4OLAP must allow to operate over already published observations

which conform to DSDs defined in QB, without the need of rewriting the
existing observations. Note that in a typical MD model, observations are the
largest part of the data while dimensions are usually orders of magnitude
smaller.
• QB4OLAP must include all the metadata needed to automatically gen-

erate SPARQL queries implementing OLAP operations. In this way, OLAP
users do not need to know SPARQL (which is the case of typical OLAP users)
and even wrappers for OLAP tools can be developed to query RDF data sets
directly (we give an example of this in Section 3.4).

The elements with gray background in Figure 4.1 depict the QB4OLAP
vocabulary. Moreover, original QB terms are prefixed with “qb:”; QB4OLAP

19http://purl.org/qb4olap/cubes
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terms are prefixed with “qb4o:”. In addition to the QB graphical notation,
QB4OLAP introduces ellipses representing class instances and dashed arrows
representing rdf:type relationships.

As already mentioned, dimension hierarchies and levels are first-class cit-
izens in an MD model for OLAP. Therefore, QB4OLAP focuses on their rep-
resentation and several classes and properties are introduced to this end.
QB4OLAP represents the structure of a data set in terms of levels and mea-
sures, instead of dimensions and measures (which is the case of QB), thus
allowing us to specify the granularity level considered for each dimension.
Dimension levels are represented in QB4OLAP in the same way that QB rep-
resents dimensions: as classes of properties. The class qb4o:LevelProperty

represents dimension levels. Declaring it as a sub-class of qb:ComponentPro-
perty allows specifying the schema of the cube in terms of dimension lev-
els, using qb:DataStructureDefinition. To represent aggregate functions the
class qb4o:AggregateFunction can be used. The property qb4o:aggregate-

Function associates measures with aggregate functions, and, together with
the concept of component sets, allows a given measure to be associated with
different aggregate functions in different cubes. Given the structure described
above, in QB4OLAP, fact instances (observations) map level members to mea-
sure values. It is also worth noting that, in general, each fact is related with at
most one level member, for each level that participates in the fact. However,
there are cases where this restriction does not hold, yielding so-called many-
to-many dimensions [101]; thus, to support these dimensions, the property
qb4o:cardinality can be used to represent the cardinality of the relationship
between a fact and a level.

Example 5 shows how the cube in our running example would look like
in QB4OLAP (we explain how we came up with this schema in Section 5).
Figure 4.3 presents the definition of the prefixes (not included in the examples
so far) that we use in the sequel.

1 @pre�x classi�cation: <http://worldbank.270a.info/classi�cation/> .
2 @pre�x dataset: <http://worldbank.270a.info/dataset/> .
3 @pre�x qb4o: <http://purl.org/qb4olap/cubes#> .
4

5 #QB4OLAP schema and instances
6 @pre�x schema:
7 <http://www.�ng.edu.uy/inco/cubes/schemas/world−bank−indicators#> .
8 @pre�x instances:
9 <http://www.�ng.edu.uy/inco/cubes/instances/world−bank−indicators#> .

Fig. 4.3: RDF prefixes to be used in the examples

Example 5
The new DSD for the running example data cube defined using QB4OLAP.
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1 schema:QB4O_CM_MKT_LCAP_CD
2 a qb:DataStructureDe�nition ;
3 qb:component [ qb:measure sdmx−measure:obsValue;
4 qb4o:aggregateFunction qb4o:Sum ] ;
5 qb:component [ qb4o:level property:indicator ] ;
6 qb:component [ qb4o:level sdmx−dimension:refArea ] ;
7 qb:component [ qb4o:level sdmx−dimension:refPeriod ] .
8

9 property:indicator a qb4o:LevelProperty.
10 sdmx−dimension:refArea a qb4o:LevelProperty.
11 sdmx−dimension:refPeriod a qb4o:LevelProperty.
12 sdmx−measure:obsValue a qb:MeasureProperty.
13

14 dataset:CM.MKT.LCAP.CD qb:structure
15 schema:QB4O_CM_MKT_LCAP_CD.

The DSD is defined in terms of dimension levels such that the dimension properties of
the original QB cube are declared as instances of qb4o:LevelProperty and considered
the lowest levels in the dimension hierarchy. Thus, we avoid rewriting the observa-
tions. Readers familiar with OLAP technology may note that property:indicator
refers to the MDX’s Measures dimension. MDX is a de facto standard language for
OLAP (see [101] for details).

To represent dimension hierarchies the qb4o:Hierarchy class is introduced.
The relationship between dimensions and hierarchies is represented via the
property qb4o:hasHierarchy and its inverse qb4o:inDimension. To support
the most common conceptual models, we need to allow declaring that a level
may belong to different hierarchies, and that each level may have a differ-
ent set of parent levels. Also, the relationship between level members may
have different cardinality constraints (e.g., one-to-many, many-to-many, etc.).
The class qb4o:HierarchyStep allows this by means of the reification of the
parent-child relationship between two levels in a hierarchy. Each hierarchy
step is linked to its two component levels using the qb4o:childLevel and the
qb4o:parentLevel properties, respectively, and is attached to the hierarchy it
belongs to, using the qb4o:inHierarchy. The qb4o:pcCardinality property
allows representing the cardinality constraints of the relationships between
level members in this step, using members of the qb4o:Cardinality class,
whose instances are depicted in Figure 4.1. Example 6 illustrates the above.

Example 6
The definition of the geographical dimension schema:geoDim according to
Figure 4.2.

1 schema:geoDim a qb:DimensionProperty ;
2 rdfs:label "Geographical dimension"@en;
3 qb4o:hasHierarchy schema:geoHier, schema:lendingHier,
4 schema:incomeHier.

We now define each hierarchy, declare to which dimension it belongs, and which
levels it traverses. We have three hierarchies in our schema, namely schema:geoHier,

79



Chapter 4. Dimensional Enrichment of Statistical Linked Open Data

schema:lendingHier, and schema:incomeHier. We just show the first of them, the
other ones are analogous.

1 schema:geoHier a qb4o:Hierarchy ;
2 rdfs:label "Geographical Hierarchy"@en ;
3 qb4o:inDimension schema:geoDim;
4 qb4o:hasLevel sdmx−dimension:refArea, schema:region, schema:geoAll.

Next, we define the base (i.e., finest granularity) level for the geographical dimension,
that means, the one whose instances compose the observations, and the upper levels
in each hierarchy. Note that the former are defined to be compatible with QB, but
as levels instead of dimensions. The example shows only the geographical dimension
while construction of other dimensions is analogous where only the All level is added
to each of them.

1 # Base levels
2 sdmx−dimension:refArea a qb4o:LevelProperty;
3 rdfs:label "country level"@en.
4

5 #Upper hierarchy levels
6 schema:region a qb4o:LevelProperty;
7 rdfs:label "Geographical regions"@en.
8 schema:lendingtype a qb4o:LevelProperty;
9 rdfs:label "Lending type level"@en.

10 schema:income a qb4o:LevelProperty;
11 rdfs:label "Income level"@en.
12 schema:geoAll a qb4o:LevelProperty;
13 rdfs:label "All reference areas"@en.

Finally, the hierarchy steps (i.e., parent-child relationships) are defined. Again, we
just show the ones corresponding to the schema:geoHier hierarchy.

1 _:hs1 a qb4o:HierarchyStep;
2 qb4o:inHierarchy schema:geoHier;
3 qb4o:childLevel sdmx−dimension:refArea;
4 qb4o:parentLevel schema:region;
5 qb4o:pcCardinality qb4o:ManyToOne.
6

7 _:hs2 a qb4o:HierarchyStep;
8 qb4o:inHierarchy schema:geoHier;
9 qb4o:childLevel schema:region;

10 qb4o:parentLevel schema:geoAll;
11 qb4o:pcCardinality qb4o:ManyToOne.

To represent level attributes, QB4OLAP provides the class of properties
qb4o:LevelAttribute, linked to qb4o:LevelProperty via the qb4o:hasAttri-
bute property. Instances of this class are used to link level instances with
attribute values. Example 7 shows the definition of an attribute for the
sdmx-dimension:refArea dimension level.
Example 7
Definition of a level attribute.

1 sdmx−dimension:refArea qb4o:hasAttribute
2 schema:capital.
3 schema:capital a qb4o:LevelAttribute;
4 rdfs:range xsd:string .
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We assume that we add the attribute schema:capital to the sdmx-dimension:refArea
dimension level.

At the instance level, dimension level members are represented as instances
of the class qb4o:LevelMember, which is a sub-class of skos:Concept. Mem-
bers are attached to the levels they belong to, using the property qb4o:member-

Of, which resembles the semantics of skos:member. Rollup relationships be-
tween members are expressed using the property skos:broader, conveying
the idea that hierarchies of level members should be navigated from finer
granularity concepts up to coarser granularity concepts. Example 8 shows
some examples of dimension members for the dimension schema:geoDim.

Example 8
The details for the dimension members corresponding to Serbia.

1 country:RS a qb4o:LevelMember ;
2 qb4o:memberOf sdmx−dimension:refArea ;
3 skos:broader lending:IBD ;
4 skos:broader income:UMC ;
5 skos:broader region:ECS ;
6 skos:prefLabel "Serbia"@en .
7

8 lending:IBD a qb4o:LevelMember ;
9 qb4o:memberOf schema:lending ;

10 skos:broader instance:geoAll ;
11 skos:prefLabel "IBRD"@en .
12

13 income:UMC a qb4o:LevelMember ;
14 qb4o:memberOf schema:income ;
15 skos:broader instance:geoAll ;
16 skos:prefLabel "Upper middle income"@en .
17

18 region:ECS a qb4o:LevelMember ;
19 qb4o:memberOf schema:region ;
20 skos:broader instance:geoAll ;
21 skos:prefLabel "Europe & Central Asia (all income levels)"@en .
22

23 instance:geoAll a qb4o:LevelMember ;
24 qb4o:memberOf schema:geoAll ;
25 skos:prefLabel "Geo ALL"@en .

Note that, for attribute instances, we need to link IRIs corresponding to level mem-
bers, with attribute values. In our example for the geographical dimension:

1 country:RS schema:capital "Belgrade"^^xsd:string .

3.3 Discussion: From QB observations to QB4OLAP

Let us now comment on some decisions underlying the QB4OLAP design.
As we have already mentioned, observations in QB are specified as dimen-
sion properties, while in QB4OLAP they are specified as level properties, to
allow defining hierarchies, as usual in OLAP. Therefore, in order to be able
to work with existing QB observations, a new DSD is defined in terms of

81



Chapter 4. Dimensional Enrichment of Statistical Linked Open Data

QB4OLAP dimension levels. This saves the cost that would imply adding, for
each observation, triples for linking the observation with level members using
newly defined level properties. We thus propose to define, in the new DSD,
a level property for each dimension property in the existing DSD, and consider
the former as the bottom level of each corresponding dimension in the new
DSD. Of course, as a consequence, the same elements that in QB are consid-
ered dimensions, in QB4OLAP play the role of dimension levels, as in the case
of sdmx-dimension:refPeriod and sdmx-dimension:refArea.

Further, instead of defining a new concept in QB4OLAP to represent di-
mensions, QB4OLAP uses the QB class qb:DimensionProperty. This does
not produce a semantic contradiction, given that the QB specification states
that this class is “The class of component properties which represent the
dimensions of the cube”, a definition that still holds in the QB4OLAP inter-
pretation. In addition, since level members in QB4OLAP are instances of the
class skos:Concept, we can use existing QB dimension members to populate
QB4OLAP dimension levels. To accomplish this, IRIs that represent dimen-
sion members have to be linked with level members via the qb4o:memberOf

property.

3.4 Using QB4OLAP

We have mentioned that one of the main advantages of using QB4OLAP
instead of QB to represent MD data on the SW, is that QB4OLAP allows
us to write high-level OLAP queries and automatically translate them into
SPARQL. This way, OLAP users may exploit MD data directly over the web,
and query them without any knowledge of SPARQL, or without the need of
exporting these data to a relational repository. The obvious consequence is an
enhancement of the usability of data published on the web. Giving complete
details of how this can be achieved is beyond the scope of this paper, but we
would like to at least convey the main idea through an example query.

Let us consider the query “Total market capitalization of listed companies,
grouped by income level, in the period [2010,2012].” This is a typical OLAP
query involving two main operations, as described in Section 2.1: First, a
selection of the values corresponding to the years mentioned in the query (a
Dice operation). Second, an aggregation, using the SUM aggregate function,
along the geographical dimension, using the schema:incomeHier up to the
schema:income level. This can be expressed, in a high-level, cube-based, con-
ceptual algebra like the one proposed in [29] (using the operations defined in
Section 2.1), as follows:

1 $C1 := DICE (<http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD>,
2 (timeDim.refPeriod.yearNumber >= 2010) AND
3 (timeDim.refPeriod.yearNumber <= 2012) );
4 $C2 := ROLLUP ($C1, geoDim, geoDim.income);
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In the syntax above, we use the notation dimension.level.attribute, to represent
the dimension’s structure. Also, to be concise, we omitted the Fagg parameter
in the expression for ROLLUP (as indicated in Section 2.1), because we assume
it is the only one defined for this cube in the DSD. Finally, the variables C1
and C2 store the results of the operations in the right hand sides of the ex-
pressions. With the help of QB4OLAP metadata (which, e.g., describes the
hierarchical structure), this query can be automatically translated to the fol-
lowing SPARQL expression:

1 SELECT ?year ?income SUM(xsd:integer(?measureValue)) AS ?sumMeas
2 FROM <http://www.�ng.edu.uy/inco/cubes/schemas/wbld>
3 FROM <http://www.�ng.edu.uy/inco/cubes/instances/wbld>
4 WHERE {
5 SERVICE <http://worldbank.270a.info/sparql>
6 {?o a qb:Observation ;
7 qb:dataSet <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD>;
8 sdmx−dimension:refArea ?country;
9 sdmx−dimension:refPeriod ?year;

10 sdmx−measure:obsValue ?measureValue.
11 }
12 ?country skos:broader ?income.
13 ?income qb4o:memberOf schema:income.
14 ?year schema:yearNumber ?yearNum
15 FILTER (?yearNum >= 2010 && ?yearNum <= 2012 )
16 }
17 GROUP BY ?year ?income

4 Automating Metadata Definition

Considering that QB4OLAP brings benefits in terms of additional schema
constructs that are necessary for state-of-the-art OLAP analysis, we next dis-
cuss the possibilities for introducing these enhancements into existing QB
data sets. Currently, a considerable number of data sets are published in
QB. Thus, in this section we elaborate on how to define and/or discover new
concepts (e.g., dimension levels) that can be used for enriching existing QB
data sets. As this can be a very cumbersome, error-prone, and labor-intensive
task, we especially focus on its maximal possible automation such that it in-
volves the least possible user intervention. To achieve that, we take advantage
of the semantics that is explicitly or implicitly present in the data set or in
external data sources. Once discovered, these concepts are used for the en-
richment method explained in the next section. In this section, we discuss the
automation challenges and how far they can be solved in a semi-automatic
way, followed by solutions that we propose for the two most relevant tasks,
namely the definition of aggregate functions and the discovery of the dimension
hierarchy schema and instances.
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4.1 Automation Challenges

The enrichment tasks needed to turn a QB into a QB4OLAP data set must
be done at the metadata (e.g., the cube schema concepts) and data (e.g., the
cube instances) levels. Simply stated, we need to build the hierarchical struc-
ture of the dimensions involved (i.e., metadata enrichment) and populate
this structure with actual data (i.e., data enrichment). Further, the enrich-
ment includes associating aggregate functions with measures which is also a
metadata-related task.

Exploiting the existing QB semantics (i.e., metadata) and the analysis of
the data set instances (i.e., data) enable the automatic discovery of poten-
tially new metadata concepts (e.g., new dimension levels). These metadata
concepts can be suggested to the user that needs to select the concepts of her
interests and, if needed, provide the minimum possible input about missing
semantics and specific situations (e.g., data conflicts). The new metadata then
support the rest of the enrichment process. For instance, in Example 4 we can
see that a country is related to a region via the property:region property.
When this property is identified as a parent-child relationship between two
levels in a dimension, the rollup instances can be automatically created for
all country and region instances (using the skos:broader property).

Performing OLAP analysis directly over SW data in the RDF and Linked
Data settings is likely to bring certain challenges. This is due to the fact that,
unlike in the traditional DWs settings where data are prepared by a well-
defined and complex ETL process, the Linked Data settings do not guarantee
clean and formatted data. On the contrary, working in a Linked Data en-
vironment typically involves external data sources where it is not rare to
find incomplete and imperfect data. These problems directly influence the
automation possibilities and user involvement is typically required to fully
enrich a data set. The user needs to choose and/or to add semantic informa-
tion to the data set, or to manage problems that can be present in the data
sets. The less these situations occur, the higher level of automation can be
achieved and vice versa. Next, we describe these challenges starting with the
semantic-related challenges – partial and imperfect semantics – and then we
address data-related challenges–partial and imperfect data.

Partial semantics This challenge arises when the data set does not contain
enough schema information for the enrichment tasks. For instance, a data set
may lack information about the aggregate functions that can be applied over
measures or the semantics for building the dimension hierarchies.

This challenge is the most relevant for our approach and needs to be
tackled. The problem can be addressed either by enrichment from external
sources, or by manual user intervention. In the next subsections we discuss
two possible approaches for defining the additional semantics needed for
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enrichment tasks.

Imperfect semantics This challenge comprises different cases that occur
when semantics obstructs automation. For instance, when the same seman-
tics is represented with different concepts, the same concepts have different
semantics, and other conflicts that may arise in schema comparison [52]. This
is called semantic heterogeneity [43]. For example, we may have different cur-
rencies, different measure units, etc. As other cases of imperfect semantics,
we can mention incorrectly defined semantics (e.g., when a continent is lo-
cated in a city), and outliers, i.e., unexpected semantic concepts that cannot
be aligned with the rest (e.g., cantons as a geographical concept that is not
used in most of the cases).

This problem should be addressed by detecting the potential deviations
in semantics (e.g., the same concept playing different roles) and enabling the
user to address these cases. These situations are typically solved in the data
set cleaning and transformation stages [52] while our approach focuses on
semantic enrichment.

Partial data Partial data may affect aggregation, a key task in OLAP anal-
ysis. Missing data may raise many challenges. For example, aggregating
data to the continent level depends on the availability of data about all the
belonging countries.

To tackle this problem, missing data can possibly be imported from ex-
ternal sources. However, since it is often the case that the data set in hand
contains the only available data (e.g., only some countries in the EU are cov-
ered), we focus on constructing the cube on top of the available pieces of data.
In the case that it is possible to detect the problems caused by missing data,
the user should be notified (e.g., marking the aggregated values as incom-
plete/partial in case of missing values).

Imperfect data Many different cases can illustrate this problem, where data
instances cause difficulties to achieve automation. One of these cases is data
heterogeneity where not all data are well formatted or do not satisfy explicit
or implicit constraints. For example, in RDF it is impossible to impose data
instances to satisfy MD integrity constraints (see Section 4.3). Imperfect data
may also include data errors and data instances that do not satisfy constraints
but still represent correct information.

This challenge generates a wide spectrum of cases and we focus on cardi-
nality detection based on data analysis. Other cases, like the detection of the
data instances that do not match their type(s) (e.g., instead of an expected
integer we find a string), out-of-range values, and similar cases should be
detected and reported to the user. Then, the user can discard or, if possible,
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fix these cases. In this context, an extensive overview of methodologies for
data quality assessment and improvement can be found in [16].

4.2 Associating measures with aggregate functions

To enable automatic navigation along dimension hierarchies, each measure
in the data cube needs to have an associated aggregate function. Since QB
does not allow to provide this information, the QB data set must be enriched
with a mapping of measures to aggregate functions. We call this mapping
MAggMap. Not every aggregate function can be applied to a measure and
give a valid result. Defining the appropriate aggregate function depending
on the measure type is a well-known problem in the literature related to the
summarizability problem in OLAP and statistical databases [69]. In that con-
text, measure types are flow (e.g., monthly sales value), stock (e.g., inventory
of a product), and value-per-unit (e.g., product item price). For instance,
while it makes sense to compute the sum of the monthly sales by year, it
does not make sense to sum a product’s unit price over time. This summa-
rizability condition is called type compatibility, i.e., the compatibility between
the measure type (i.e., its semantics), the measure category (i.e., temporal or
non-temporal), and the aggregate function’s type. This condition, together
with disjointness and completeness (see next section), is necessary to guarantee
correct data summarization [69].

The large variety of measure and aggregate function types makes the com-
patibility check a tedious task that can hardly be fully automated. Even in
such a case, the user would still need to choose among different options.
Therefore, the user must be involved in this process. However, this involve-
ment can be guided and semi-automated based on the compatibility defini-
tion presented in [69]. We address the interested reader to [104] for further
details.

In this paper, we assume that the user explicitly provides the MAggMap
mapping, which is a needed input for our enrichment tasks (see Section 5).
We define it as [measure IRI, aggregate function IRI] pairs. For example,
[sdmx-measure:obsValue, qb4o:Sum]. In our current implementation (see
Section 6), we suggest a default aggregate function (e.g., sum) but it can
be changed by the user.

4.3 Discovering dimensional data

Dimensional concepts consist of dimensions, hierarchies, levels, and level
attributes. Briefly, dimensions contain different levels of aggregation (i.e., di-
mension levels), which are organized in hierarchies (in short, each hierarchy
corresponds to a path of rollup relationships) and may contain attributes (see
Section 2.1). Enriching a QB data set with dimensional data implies properly
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identifying all these constructs and annotating them according to QB4OLAP.
Current OLAP state-of-the-art identifies dimensional concepts from func-
tional dependencies (FDs) [37]. Arranging the dimensional concepts accord-
ing to FDs guarantees the summarizability disjointness and completeness
and these are necessary conditions to guarantee the summarizability correct-
ness. Accordingly, FDs must be guaranteed between facts and dimensions
(e.g., between market capitalization and geographical dimension) and be-
tween the levels forming dimension hierarchies (e.g., between the country

and region levels). [87] discusses the role of FDs for automatic MD model-
ing and how to discover them for Description Logics (DL). To discover FDs,
the most widespread technique consists of sampling data to identify func-
tional properties that fulfill the underlying many-to-one20 cardinality of the
relationship. Briefly, many-to-one (i.e., m:1) cardinalities require that every
child level instance is related to one parent level instance (e.g., Serbia is re-
lated to the Europe & Central Asia (ECS) region), while each parent level
instance can be related to one or more child level instances and these sets
(e.g., countries and regions) do not mutually overlap [73]. These guarantee
completeness and disjointness. A comprehensive and detailed overview of
the summarizability challenges in MD modeling is presented in [73]. Dimen-
sion hierarchies whose properties satisfy many-to-one cardinalities guaran-
tee a correct summarizability as the aggregate values at parent levels (e.g.,
region) include all related child level instances (e.g., countries) and no par-
ent level instance is without child level instance(s).21 Furthermore, there is
no double-counting of child level instances at the parent levels. Many-to-one
cardinalities enable the automation of the MD design [86] where the potential
new levels can be discovered by detecting these cases in data instances.

In some expressive languages, such as the OWL 2 RL profile22 based on
DL-Lite [13], it is possible to state that a property is functional. However,
most available RDF data sets omit such definitions. Therefore, in the spirit
of [86], we analyze the instances to identify FDs from data. To avoid the
inherent computational complexity discussed in [54], we benefit from the
QB semantics by considering the QB dimensions as the initial set of dimen-
sion levels from which to start building richer dimensional structures. Thus,
the QB dimensions serve as the starting point from where to discover pos-
sible new dimension levels, hierarchies, and level attributes based on FDs.
Given the relevance of this step for MD modeling, we provide an algorithm
for the detection of implicit FDs by discovering functional properties (i.e.,
satisfying a many-to-one cardinality) for dimension levels. Moreover, one-to-
one (i.e., 1:1) cardinalities are identified to detect potential dimension level

20Note that “many” stands for “one or more instances”.
21Note that we do not consider the special case of non-covering dimensions where there could

exist parent level instances with no child level instances.
22https://www.w3.org/TR/2008/WD-owl2-profiles-20081008/#OWL_2_RL
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attributes. We only consider linear hierarchies since, in practice, complex
hierarchies (see [81] for more details) with many-to-many cardinalities are
typically transformed to linear hierarchies with many-to-one cardinalities.
The pseudo code is presented in Algorithm 1. The algorithm runs over an
implicit RDF graph.

Algorithm 1: Detect implicit MD semantics
Input: L, minCompl, minCard; // initial levels set (i.e., former QB dimensions), minimum

completeness, and minimum cardinality parameters, respectively

Output: allL, allP, allHS, allLLA; // all levels, all properties, all hierarchy steps, and

all level-level attribute pairs, respectively

1 begin
2 allL = L;
3 allP = ∅;
4 allHS = ∅;
5 allLLA = ∅;
6 foreach level ∈ allL following a bottom-up order do
7 foreach property ∈ getProperties(level) do
8 if getCardinality(level, property, minCompl, minCard) = m : 1 then
9 parentLevel = getObjectElement(level, property);

10 if noCycles(level, parentLevel) then
11 allL ∪= parentLevel;
12 allP ∪= property;
13 allHS ∪= (level, property, parentLevel);

14 else if getCardinality(level, property, minCompl, minCard) = 1 : 1 then
15 levelAttribute = getObjectElement(level, property);
16 allLLA ∪= (level, levelAttribute);

The algorithm starts from the set of original QB data set dimensions (L),
which from now on we call initial levels. Moreover, it also takes the minCompl
and minCard parameters, which are later discussed in Algorithm 2. The out-
put of the algorithm are the sets of all levels (allL), rollup properties (allP), all
hierarchy steps (allHS), and all [level, level attribute] pairs (allLLA) available
in the input QB data set. The set of all levels is initially populated with the
initial levels set (line 2), while the other sets are initially empty (see lines 3 to
5). For each level (line 6), e.g., the country level, we check all of its properties
(line 7), e.g., the region property, and infer their cardinalities. We iterate over
the levels by following a bottom-up approach; i.e., we start from the finer
(e.g., the country level) and later visit coarser granularity levels (e.g., the
region level). Details on how to retrieve the property cardinality are shown
in Algorithm 2. If a property yields a many-to-one cardinality (line 8) its object
(i.e., the RDF property range) is considered as a potential coarser granularity
level to rollup to. Therefore, a potential new parent level is retrieved in line
9. Importantly, to guarantee the MD integrity constraints, before adding this
new parent level to the set of all levels, we check that this addition does not
produce cycles (line 10), i.e., that the current level cannot be reached from the
newly identified parent level (e.g., that there is no direct or indirect rollup
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relationship from region to country). If there are no cycles, we add the new
parent level to the set of all levels (line 11). Then, in lines 12 and 13, the
property and the hierarchy step triples are added to the corresponding sets.
Otherwise, if the property cardinality is one-to-one (line 14), the new concept
is considered as a level attribute (e.g., label), and it is added to the set of
[level, level attribute] pairs (lines 15 and 16). The output sets of Algorithm 1
are later consumed as inputs in our enrichment tasks (see Section 5).

Algorithm 2: Get cardinality for a property
Input: l, p, minCompl, minCard; // level, property, minimum completeness, and minimum

cardinality parameters

Output: cardinality; // cardinality of the property p for the level l

1 begin
2 to− oneFromChild = 0; // number of to-one property instances from the child side

3 to− oneFromParent = 0; // number of to-one property instances from the parent side

4 to−manyFromParentSet = ∅; // set of parent level instances for to-many property

instances from the parent side

5 foreach li ∈ getInstances(l); // li - level instance

6 do
7 if countSubjectPropertyInstances(li, p) = 1 then
8 to− oneFromChild ++;
9 parentLI = getObjectElement(li, p);

10 if countObjectPropertyInstances(parentLI, p) = 1 then
11 to− oneFromParent ++;

12 else if countObjectPropertyInstances(parentLI, p) > 1 then
13 to−manyFromParentSet ∪= parentLI ;

14 if to− oneFromChild ≥ getInstanceNumber(l) * minCompl then
15 if to− oneFromChild / minCard ≥ to−manyFromParentSet.Size() then
16 cardinality = m : 1

17 else if to− oneFromParent ≥ getInstanceNumber(l) * minCompl then
18 cardinality = 1 : 1

19 else
20 cardinality = m : m; // other cardinality value

Algorithm 2 determines a property cardinality using simple SPARQL
queries to retrieve the number of property instances related to a subject (line
7) or an object (lines 10 and 12). This algorithm takes as input the level (e.g.,
the country level) and the property (e.g., the region property) for which it
must retrieve the cardinality. Moreover, it also needs the minimum com-
pleteness and disjointness minCompl and the minimum cardinality minCard
parameters as inputs. The former defines the minimal required percentage
of to− one relationships for the total number of level instances, e.g., a value
0.90 means that at least 90% of countries need to have one and only one re-
gion property. This way, there might be some level instances that have none
or more than one property instances. Although non-complete / non-disjoint
properties stand against the conditions discussed earlier in the present sec-
tion, this is needed to identify conceptual FDs that, due to imperfect and /or
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partial data, do not hold for all the data. Following the idea presented in [96],
by means of these two parameters we identify quasi-FDs (which is often the
case in Linked Data and RDF data sets). We say that a property is a quasi-FD
if most of the data satisfy the FD (e.g., 98% of level instances are associated to
exactly one property instance). The second parameter, minCard, defines the
minimum average number of child level instances per parent level instance
(e.g., minCard = 5 meaning at least 5 countries per region). The values for
these parameters should be empirically defined depending on the domain
and data set quality (see Section 6).

The algorithm proceeds as follows. The local variable to− oneFromChild
(line 2) holds the number of to − one properties from child to parent in-
stances (e.g., the number of cases where there is only one region property
per country); analogously, to− oneFromParent (line 3) holds the number of
to− one properties from parent to child instances (e.g., the number of cases
where for a region instance there is only one region property from a country

instance to that region instance), and to−manyFromParentSet (line 4) holds
the set of parent instances that are in to−many relationships (e.g., the region

instances that are related to more than one country via the region property).
For all instances of a given level (line 6), e.g., all country instances, we count
the ones that have only one instance of a given property (line 8), e.g., the
region property. In this case, the algorithm retrieves the level instance on the
other side of the property (e.g., the region instance) and checks its cardinal-
ity (lines 10 and 12). Note that this check differs from the first one (line 7),
since here the level instance (e.g., the region instance) is used as a property
object while in the first one, the input level instance is used as a subject. In
case of to− one property instances (lines 10 and 11), we count them; in case of
to−many instances, we add them to the set (lines 12 and 13) so that we can
count them at the end (line 15), since the property instances will be repeated
for child instances with the same parent instance (e.g., several country in-
stances are related to the same region instance). Finally, we determine the
cardinality in lines 14 – 20.

We next show how Algorithm 2 can be implemented with the following
SPARQL queries. We consider that the queries use an RDF graph that con-
tains a QB4OLAP level (e.g., ?levelIRI? a qb4o:LevelProperty) and a set
of QB4OLAP level members (e.g., levelMemberIRI1 a qb4o:LevelMember)
belonging to this level (i.e., levelMemberIRI1 qb4o:memberOf ?levelIRI?).
Furthermore, we use the following parameter values minCompl = 100 and
minCard = 2. Hence, all properties for the level members can be retrieved
with Query 1. The query takes the graph and level IRIs as parameters. Note
that the elements between two ’?’ in the queries represent parameters that
should be replaced with the corresponding IRI values and the prefixes used
in queries are following:
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1 pre�x qb: <http://purl.org/linked−data/cube#>
2 pre�x qb4o: <http://purl.org/qb4olap/cubes#>

Query 1
Get properties for level members.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI, and
2 # ?levelIRI? − the level IRI
3

4 SELECT DISTINCT ?p
5 FROM ?qb4oGraphIRI?
6 WHERE {
7 ?levelMember ?p ?o .
8 { SELECT DISTINCT ?levelMember
9 FROM ?qb4oGraphIRI?

10 WHERE {
11 ?levelMember a qb4o:LevelMember .
12 ?levelMember qb4o:memberOf ?levelIRI? . } } }

For a chosen property, we first need to check if it is a to − one property,
i.e., each level member is related to one and only one instance of the property.
Query 2 performs this check. In addition to the previous ones, the query also
takes the property IRI as parameter.

Query 2
Check if the property is to-one.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?levelIRI? − the level IRI, and
3 # ?propertyIRI? − the property IRI
4

5 ASK { {
6 SELECT (COUNT (?levelMember) AS ?lmWithUniqueObject )
7 FROM ?qb4oGraphIRI?
8 WHERE { { #get #unique object per level member for the input property
9 SELECT ?levelMember (COUNT (DISTINCT ?obj) AS ?uniqueObjNum)

10 FROM ?qb4oGraphIRI?
11 WHERE {
12 ?levelMember ?propertyIRI? ?obj .
13 {SELECT ?levelMember
14 FROM ?qb4oGraphIRI?
15 WHERE {
16 ?levelMember a qb4o:LevelMember .
17 ?levelMember qb4o:memberOf ?levelIRI? .}}
18 } GROUP BY ?levelMember }
19 FILTER ( ?uniqueObjNum = 1) } }
20 { #get the total #level members for a level
21 SELECT (COUNT (DISTINCT ?lm) AS ?totalLevelMemberNumber)
22 FROM ?qb4oGraphIRI?
23 WHERE {
24 ?lm a qb4o:LevelMember .
25 ?lm qb4o:memberOf ?levelIRI? . } }
26 FILTER (?lmWithUniqueObject = ?totalLevelMemberNumber) }

If Query 2 returns true, the property is to− one and we can check if it is
1:1 or m:1 with Queries 3 and 4, respectively. The parameters are the same as
for the previous query.
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Query 3
Check if the property is 1:1.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?levelIRI? − the level IRI, and
3 # ?propertyIRI? − the property IRI
4

5 ASK { { #get the #object per level member for the input property
6 SELECT (COUNT (DISTINCT ?levelMember) AS ?totalLevelMemberNumber)
7 (COUNT (DISTINCT ?obj) AS ?uniqueObjNum)
8 FROM ?qb4oGraphIRI?
9 WHERE {

10 {SELECT ?levelMember
11 FROM ?qb4oGraphIRI?
12 WHERE {
13 ?levelMember a qb4o:LevelMember .
14 ?levelMember qb4o:memberOf ?levelIRI? . } }
15 ?levelMember ?propertyIRI? ?obj . } }
16 FILTER (?uniqueObjNum = ?totalLevelMemberNumber) }

Query 4
Check if the property is m:1.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?levelIRI? − the level IRI, and
3 # ?propertyIRI? − the property IRI
4

5 ASK { { #get the #object per level member for the input property
6 SELECT (COUNT (DISTINCT ?levelMember) AS ?totalLevelMemberNumber)
7 (COUNT (DISTINCT ?obj) AS ?uniqueObjNum)
8 FROM ?qb4oGraphIRI?
9 WHERE {

10 {SELECT ?levelMember
11 FROM ?qb4oGraphIRI?
12 WHERE {
13 ?levelMember a qb4o:LevelMember .
14 ?levelMember qb4o:memberOf ?levelIRI? . } }
15 ?levelMember ?propertyIRI? ?obj . } }
16 FILTER (?uniqueObjNum < ?totalLevelMemberNumber/2)
17 { #check that objects are not literals
18 SELECT (COUNT (DISTINCT ?obj2) AS ?notLiteralObj)
19 FROM ?qb4oGraphIRI?
20 WHERE {
21 {SELECT ?lm
22 FROM ?qb4oGraphIRI?
23 WHERE {
24 ?lm a qb4o:LevelMember .
25 ?lm qb4o:memberOf ?levelIRI? . } }
26 ?lm ?propertyIRI? ?obj2 .
27 FILTER isIRI(?obj2) } }
28 FILTER (?uniqueObjNum = ?notLiteralObj) }

Our algorithms consider settings where the input QB data set contains
implicit MD semantics, i.e., where the levels have properties that link them
with coarser granularity levels inside the data set. If this is not the case,
we can use existing IRIs or look for external IRIs (e.g., the IRI for Serbia
on DBpedia23) to search for the necessary semantics from external data sets.

23http://dbpedia.org
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If this is not possible, the user should define these IRIs manually. Further,
we assume that in the input QB data set, all observations are at the same
level of granularity for each dimension which is the case most of the time.
Then, on top of these levels we build new dimension hierarchies. Special
situations, where there might exist observations at different granularities,
must be treated manually in a data preparation step. This situation can be
detected with Algorithm 1 if it identifies a rollup property between instances
of an initial level.

5 Enrichment Method

Taking advantage of the QB4OLAP vocabulary and the algorithms intro-
duced in Section 4.3, we now propose a method to enrich an input QB graph24

with additional MD semantics. This method presents a set of detailed en-
richment steps. For the sake of comprehension, each step is described as a
SPARQL query showing the precise enrichment and transformations. The
queries take the specified parameters, use an input QB graph and incremen-
tally create the new QB4OLAP graph by generating the necessary triples.
Since this method requires some user actions, the overall enrichment process
is semi-automatized. The method consists of two phases:

1. Redefinition phase which syntactically transforms the input QB graph
into QB4OLAP constructs and, given the required input (see Section 4.2),
specifies aggregate functions for measures.

2. Enrichment phase which, given a set of required inputs (see Section 4.3),
enriches the QB4OLAP graph generated by the redefinition phase with addi-
tional MD semantics.

For the ease of understanding, this section introduces the main ideas for
the enrichment tasks to be accomplished. In addition, 1 provides a fully
formalized, more general, and detailed enrichment methodology, which is
agnostic of the implementation decisions made and further specifies the pre-
conditions, post-conditions, and transformations to be conducted by each
step in terms of set theory. Thus, the method presented in this section can be
considered as a possible solution to cover the steps defined by the methodol-
ogy. In this section, we first introduce some preliminaries for understanding
the method. Next, each phase is defined in terms of queries to be performed
that taking the input parameters produce the output triples. Finally, we pro-
vide some additional considerations.

24For simplicity of presentation, we assume that all triples related to the input QB data set are
in a single RDF graph.
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5.1 Method Preliminaries

The method uses two RDF graphs, namely the QB graph (i.e., the set of triples
defining the QB cube structure and instances) and the QB4OLAP graph (anal-
ogous to the QB graph definition). These graphs are assumed to be compliant
with the QB and QB4OLAP vocabularies, respectively. According to the QB
and QB4OLAP definitions, we further identify two sets of RDF triples in each
graph: the set of triples describing the QB or QB4OLAP cube schema and the
set describing the cube instances.

According to the QB definition (see Section 2), the QB cube schema consists
of the triples involving the following classes and related properties: the QB
dataset25 (i.e., qb:DataSet), structure (i.e., qb:DataStructureDefinition), di-
mensions (i.e., qb:DimensionProperty), and measures (i.e., qb:MeasureProperty).
Following QB’s notation, the cube structure is defined as a set of dimensions
and measures via the cube components (i.e., qb:ComponentSpecification).
An example of QB cube schema extracted from our running example (see
Section 2.3) is presented in Example 9.

Example 9
QB cube schema triples.

1 <http://worldbank.270a.info/dataset/world−bank−indicators/structure>
2 a qb:DataStructureDe�nition ;
3 qb:component [ qb:dimension sdmx−dimension:refArea ] ;
4 qb:component [ qb:measure sdmx−measure:obsValue ] .
5 sdmx−dimension:refArea a qb:DimensionProperty .
6 sdmx−measure:obsValue a qb:MeasureProperty .
7 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet ;
8 qb:structure
9 <http://worldbank.270a.info/dataset/world−bank−indicators/structure> .

Lines 1 – 4 relate to the QB cube structure, line 5 to dimensions, line 6 to measures,
and line 7 to the dataset. The dataset is related to the cube structure in lines 8 – 9.

QB cube instances contain triples related to the QB dimension instances (ex-
tracted from the observations with Query 9 as explained later) and obser-
vations (i.e., qb:Observation). As discussed before, observations represent
measure values for the fixed dimension instances determined by the cube
structure. An example of QB cube instances is presented in Example 10.

Example 10
QB cube instance triples.

1 data:world−bank−indicators/CM.MKT.LCAP.CD/RS/2012
2 a qb:Observation ;
3 sdmx−dimension:refArea country:RS ;
4 sdmx−measure:obsValue 7450560827.04874 ;
5 qb:dataSet <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> .

25Note that in the present section the term “dataset” refers to qb:DataSet.
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Line 1 – 2 define an observation. Line 3 specifies a dimension instance and line
4 defines a measure value of the observation. The observation relates to the cube
schema structure indirectly (see lines 7 – 9 of Example 9) via qb:dataSet in line 5.

Analogously, we next define the QB4OLAP cube schema and instances.
The QB4OLAP cube schema consists of the triples involving the following
classes and related properties:

• dataset (i.e., qb:DataSet),
• structure (i.e., qb:DataStructureDefinition),
• dimensions (i.e., qb:DimensionProperty),
• measures (i.e., qb:MeasureProperty),
• dimension levels (i.e., qb4o:LevelProperty),
• dimension level attributes (i.e., qb4o:LevelAttribute),
• dimension hierarchies (i.e., qb4o:Hierarchy),
• hierarchy steps (i.e., qb4o:HierarchyStep),
• predefined set of aggregate functions (i.e., qb4o:AggregateFunction),

and
• predefined set of possible cardinalities (i.e., qb4o:Cardinality).

The QB4OLAP cube instances contain the triples related to the QB4OLAP cube
level instances, rollup relationships between child and parent level instances
(represented with skos:broader), observations (i.e., qb:Observation), and
level attribute values (being literals or IRIs).

Examples of the QB4OLAP cube schema and instances are presented be-
low in the method definition. The examples are based on the running exam-
ple (see Section 2.3). We consider the scenario where the input graph contains
implicit MD semantics (e.g., a country is linked to a region but this is not ex-
plicitly stated as a rollup relationship since this cannot be described in QB).
Other scenarios are discussed in Section 5.4. For the sake of simplicity, we
define the steps as SPARQL INSERT queries assuming that from the original
input QB graph we build a new QB4OLAP graph (which is implicitly created
with the first SPARQL INSERT query). Note that the elements between two
’?’ in the queries represent parameters that should be replaced with the IRI
values specified at each step. Moreover, all the examples of the query re-
sults follow up on one another. In addition to the prefixes introduced in the
previous section, the queries also use the following prefix:

1 pre�x skos: <http://www.w3.org/2004/02/skos/core#>

5.2 Redefinition Phase

Redefinition of a cube schema. We start by building the new QB4OLAP cube
schema. We proceed incrementally and first we perform a syntactic trans-
formation from QB to QB4OLAP constructs, while the complete QB4OLAP
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cube schema is formed after the Enrichment phase (see Section 5.3). The QB
cube schema triples defining the cube dataset, structure, dimension levels,
and measures are added to the QB4OLAP cube schema in the following way.
First, dimensions are redefined as levels in the QB4OLAP cube schema. Next,
we copy the measures from the QB graph to the QB4OLAP one. Then, we
define the new cube schema structure, assign to it both levels and measures,
and add it to the QB4OLAP cube structure. Finally, we copy the dataset
definition to the QB4OLAP cube schema and assign the new cube schema
structure to it. This transformation can be performed with Query 5. The
inputs for this task are the QB4OLAP graph IRI, the QB graph IRI, the QB
dataset IRI, and the new QB4OLAP structure IRI.

Query 5
Redefinition of a cube schema.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 #?qbGraphIRI? − the input QB graph IRI,
3 #?dsIRI? − the dataset IRI, and
4 #?dsdIRI? − the data structure de�nition IRI
5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?dsIRI? a qb:DataSet .
8 ?dsIRI? qb:structure ?dsdIRI? .
9 ?dsdIRI? a qb:DataStructureDe�nition .

10 ?dsdIRI? qb:component ?bl . ?bl qb4o:level ?d .
11 ?dsdIRI? qb:component ?bm . ?bm qb:measure ?m .
12 ?d a qb4o:LevelProperty .
13 ?m a qb:MeasureProperty . }
14 FROM ?qbGraphIRI?
15 WHERE {
16 ?dsd a qb:DataStructureDe�nition .
17 ?dsIRI? qb:structure ?dsd .
18 ?dsd qb:component ?bl . ?bl qb:dimension ?d .
19 ?dsd qb:component ?bm . ?bm qb:measure ?m . }

Thus, at this point, we have obtained the initial QB4OLAP cube schema.
An example of a QB4OLAP cube schema is shown in Example 11 which
illustrates the result of Query 5. Note that we use the newG namespace for
the new QB4OLAP graph.

Example 11
Resulting triples of Query 5.

1 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet;
2 qb:structure newG:newDSD .
3 newG:newDSD a qb:DataStructureDe�nition ;
4 qb:component [ qb4o:level sdmx−dimension:refArea ] ;
5 qb:component [ qb:measure sdmx−measure:obsValue ] .
6 sdmx−dimension:refArea a qb4o:LevelProperty .
7 sdmx−measure:obsValue a qb:MeasureProperty .

Lines 1 and 2 illustrate the triples related to the cube dataset. Results in lines 3, 4, and
5 define the new cube schema structure and add a level and a measure as components
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to it. Line 6 redefines the dimension from Example 9 as a QB4OLAP level, while line
7 illustrates the measure from Example 9 copied to the new QB4OLAP graph.

Specification of an aggregate function. Next, we need to specify an ag-
gregate function per measure. Note that possible aggregate functions are
predefined by QB4OLAP. The inputs for this task are the QB4OLAP graph
IRI, the QB dataset IRI, and the MAggMap mapping; i.e., the [measure IRI,
aggregate function IRI] pair (see Section 4.2). The aggregate function is spec-
ified as a triple that relates the aggregate function IRI with the component
of the cube schema structure related to the measure. This triple is added to
the QB4OLAP cube schema and it can be performed with Query 6. In case
of more than one measure, the query should be run for each measure.

Query 6
Specification of an aggregate function.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?dsIRI? − the dataset IRI, and
3 # ?measureIRI?
4 # ?aggregateFunctionIRI? − the aggregate function IRI
5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?comp qb4o:aggregateFunction ?aggregateFunctionIRI? }
8 FROM ?qb4oGraphIRI?
9 WHERE {

10 ?dsd a qb:DataStructureDe�nition .
11 ?dsIRI? qb:structure ?dsd .
12 ?dsd qb:component ?comp .
13 ?comp qb:measure ?measureIRI? . }

An example of the updated QB4OLAP cube schema is presented in Ex-
ample 12.

Example 12
Resulting triples of Query 6.

1 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet;
2 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> qb:structure newG:newDSD .
3 newG:newDSD a qb:DataStructureDe�nition ;
4 qb:component [ qb4o:level sdmx−dimension:refArea ] ;
5 qb:component [ qb:measure sdmx−measure:obsValue ;
6 qb4o:aggregateFunction qb4o:Sum ] .
7 sdmx−dimension:refArea a qb4o:LevelProperty .
8 sdmx−measure:obsValue a qb:MeasureProperty .

Line 6 presents the aggregate function that is assigned to a measure by the grouping
mechanism via a blank node. In this case, the SUM (i.e., qb4o:Sum) aggregate function.

Definition of a dimension. As part of the automatic redefinition, to build
QB4OLAP-compliant dimension hierarchies, a new dimension for each initial
level needs to be defined. As explained in Section 3, QB4OLAP reuses the
qb:DimensionProperty, however with different semantics than in QB: while
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in the latter a dimension represents a point at a fixed granularity, QB4OLAP
considers a dimension to contain points at different level granularities. There-
fore, in QB4OLAP, a QB dimension becomes a dimension level (see Query 5)
and a dimension represents a set of levels that are hierarchically organized.
The inputs for this task are the QB4OLAP graph IRI and the dimension IRI,
and it can be performed with Query 7 that should be run for each dimension.

Query 7
Definition of a dimension.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI and
2 # ?dimensionIRI? − the dimension IRI
3

4 INSERT INTO ?qb4oGraphIRI? {
5 ?dimensionIRI? a qb:DimensionProperty . }

An example of the triple added to the updated QB4OLAP cube schema is
presented in Example 13.

Example 13
Resulting triple of Query 7.

1 newG:geoDimension a qb:DimensionProperty .

The triple presents a dimension for the sdmx-dimension:refArea initial level.

Definition of a hierarchy. Once the dimensions are created, we need
to create a hierarchy for each dimension. A hierarchy represents the set
of hierarchically ordered levels in the dimension. Once created, it needs
to be linked with the corresponding dimension and the initial level. Thus,
the inputs for this task are the QB4OLAP graph IRI, the hierarchy IRI, the
dimension IRI, and the level IRI. This can be performed with Query 8 that
should be run for each hierarchy.

Query 8
Definition of a hierarchy.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?hierarchyIRI? − the hierarchy IRI,
3 # ?dimensionIRI? − the dimension IRI, and
4 # ?levelIRI? − the level IRI
5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?hierarchyIRI? a qb4o:Hierarchy .
8 ?dimensionIRI? qb4o:hasHierarchy ?hierarchyIRI? .
9 ?hierarchyIRI? qb4o:inDimension ?dimensionIRI? .

10 ?hierarchyIRI? qb4o:hasLevel ?levelIRI? . }

An example of the triples added to the updated QB4OLAP cube schema
is presented in Example 14.
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Example 14
Resulting triples of Query 8.

1 newG:geoHierarchy a qb4o:Hierarchy .
2 newG:geoDimension qb4o:hasHierarchy newG:geoHierarchy .
3 newG:geoHierarchy qb4o:inDimension newG:geoDimension .
4 newG:geoHierarchy qb4o:hasLevel newG:region .

Line 1 illustrates a new hierarchy being created. Triples in lines 2 and 3 link the
hierarchy with a dimension, and to a level in line 4.

Populating level members of an initial level. Finally, at the end of the
redefinition phase, we populate level members for the initial levels of the
QB4OLAP graph schema. The inputs for this task are the QB4OLAP graph
IRI, the QB graph IRI, the level IRI, and the QB dataset IRI. This can be
performed with Query 9 that should be run for each initial level.

Query 9
Populating level members of an initial level.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?qbGraphIRI? − the input QB graph IRI,
3 # ?levelIRI? − the level IRI, and
4 # ?dsIRI? − the dataset IRI
5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?levelMember a qb4o:LevelMember .
8 ?levelMember qb4o:memberOf ?levelIRI? . }
9 FROM ?qbGraphIRI?

10 WHERE { {
11 SELECT DISTINCT ?levelMember WHERE {
12 ?o a qb:Observation .
13 ?o qb:dataSet ?dsIRI? .
14 ?o ?levelIRI? ?levelMember . } } }

An example of level member triples added to the QB4OLAP graph in-
stances is presented in Example 15.

Example 15
Resulting triples of Query 9.

1 country:RS a qb4o:LevelMember .
2 country:RS qb4o:memberOf sdmx−dimension:refArea .

Line 1 illustrates a level member extracted from the observations and line 2 links it to
the level it belongs to.

5.3 Enrichment Phase

Once the cube schema is redefined in terms of QB4OLAP, we next focus on
its enrichment with new dimensional concepts to construct richer hierarchies.
At this point, we assume that a pre-process to discover potential new levels
and level attributes has been carried out. For example, this could be done
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Fig. 4.4: Three-level Hierarchies Construction

with the algorithms proposed in Section 4.3. Starting from an initial dimen-
sion level we explain the construction of two three-level hierarchies. This
scenario is illustrated in Figure 4.4. Starting from the refArea level that be-
longs to the hierarchy H1 we first add a new level - region. For this we need
to add the region level to the hierarchy H1, create the hierarchy step S1, add
both levels to S1 (refArea as child and region as parent), and add S1 to H1.
Then, we add one more level, income-level, on top of refArea. As concep-
tually the new level belongs to a new hierarchy (i.e., it does not belong to the
same rollup path as region), we need to create a new hierarchy H2, create a
new step S2, add refArea (as child) and income-level (as parent) to S2, and
add S2 to H2. Moreover, H2 needs to be added to the same dimension that
H1 already belongs to. This notation is fixed by QB4OLAP. Finally, we create
the mandatory All level for the dimension and accordingly link the region

and income-level levels to it via two new hierarchy steps S3 and S4 that are
created and added to H1 and H2, respectively. The process is as follows.

Creating, populating, and linking a new parent level. First, we need to
create a new level (e.g., region) and add it as a parent level to the child level
(e.g., refArea). Moreover, we need to link all the members of the child level
with the corresponding members of the new parent level. The inputs for this
task are the QB4OLAP graph IRI, the QB graph IRI, the child level IRI, and
the new parent level (i.e., property) IRI. This can be performed with Query
10. To build the hierarchy illustrated in Figure 4.4, the query should be run
for both region and income-level levels that are added as parent levels for
the refArea level.
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Query 10
Creating, populating, and linking a new parent level.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?qbGraphIRI? − the input QB graph IRI,
3 # ?levelIRI? − the existing level IRI, and
4 # ?propertyIRI? − the property IRI (i.e., new level)
5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?propertyIRI? a qb4o:LevelProperty .
8 ?obj a qb4o:LevelMember .
9 ?obj qb4o:memberOf ?propertyIRI? .

10 ?levelMember2 skos:broader ?obj2 . }
11 WHERE { {
12 SELECT DISTINCT ?obj
13 FROM ?qbGraphIRI?
14 WHERE { {
15 SELECT ?levelMember
16 FROM ?qb4oGraphIRI?
17 WHERE {
18 ?levelMember a qb4o:LevelMember .
19 ?levelMember qb4o:memberOf ?levelIRI? . }}
20 ?levelMember ?propertyIRI? ?obj . }}
21 { SELECT ?levelMember2 ?obj2
22 FROM ?qbGraphIRI?
23 WHERE {
24 {SELECT ?levelMember2
25 FROM ?qb4oGraphIRI?
26 WHERE {
27 ?levelMember2 a qb4o:LevelMember .
28 ?levelMember2 qb4o:memberOf ?levelIRI? . }}
29 ?levelMember2 ?propertyIRI? ?obj2 .
30 } GROUP BY ?levelMember2 ?obj2 } }

An example of triples for two new levels, their level members, and linking
of the level members of the new parent levels with the level members of the
child level added to the QB4OLAP graph is presented in Example 16.

Example 16
Resulting triples of Query 10.

1 newG:region a qb4o:LevelProperty .
2 region:ECS a qb4o:LevelMember .
3 region:ECS qb4o:memberOf newG:region .
4 country:RS skos:broader region:ECS .
5

6 newG:income−level a qb4o:LevelProperty .
7 income:UMC a qb4o:LevelMember .
8 income:UMC qb4o:memberOf newG:income−level .
9 country:RS skos:broader income:UMC .

Line 1 illustrates the new level definition for the region level. Lines 2 and 3 exemplify
a new level member and its linking to the region level, respectively. Then, line 4
links a child level member (i.e., country:RS) to the new parent level member (i.e.,
region:ECS) and this way creating a rollup relationship between them. Finally, lines
6-9 reflect the same definition for income-level.

Definition of a hierarchy step in an existing hierarchy. Having a new
parent level defined and added to the QB4OLAP graph (both schema and
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instance parts), we next need to create a hierarchy step that determines the
order of these levels in a hierarchy. In this context, we explain two particular
cases. The first, simpler, case is to add a new parent level to a level that is
either the only level in a hierarchy or that is the last (i.e., coarsest) parent
level in the hierarchy. The inputs for this task are the QB4OLAP graph IRI,
the child level IRI, the new parent level (i.e., property) IRI, the hierarchy IRI,
and the hierarchy step IRI. This can be performed with Query 11. To build
the hierarchy illustrated in Figure 4.4, the query should be run for the region

level that is added as parent level to the refArea level.

Query 11
Definition of a hierarchy step in an existing hierarchy.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?levelIRI? − the existing level IRI,
3 # ?propertyIRI? − the property IRI (i.e., new level),
4 # ?hierarchyIRI? − the hierarchy IRI, and
5 # ?hsIRI? − the hierarchy step IRI (typically blank node)
6

7 INSERT INTO ?qb4oGraphIRI? {
8 ?hsIRI? a qb4o:HierarchyStep .
9 ?hsIRI? qb4o:inHierarchy ?hierarchyIRI? .

10 ?hsIRI? qb4o:parentLevel ?propertyIRI? .
11 ?hsIRI? qb4o:childLevel ?levelIRI? .
12 ?hsIRI? qb4o:pcCardinality qb4o:ManyToOne .
13 ?hierarchyIRI? qb4o:hasLevel ?propertyIRI? .}

Example triples for creating a hierarchy step in an existing hierarchy are
presented in Example 17.

Example 17
Resulting triples of Query 11.

1 _:newHierarchyStep a qb4o:HierarchyStep .
2 _:newHierarchyStep qb4o:inHierarchy newG:geoHierarchy .
3 _:newHierarchyStep qb4o:parentLevel newG:region .
4 _:newHierarchyStep qb4o:childLevel sdmx−dimension:refArea .
5 _:newHierarchyStep qb4o:pcCardinality qb4o:ManyToOne .
6 newG:geoHierarchy qb4o:hasLevel newG:region .

Line 1 defines the new hierarchy step and lines 2 – 5 link the hierarchy step with its
hierarchy, parent level, child level, and cardinality, respectively. Finally, line 6 adds
the new parent level to the existing hierarchy.

Definition of a hierarchy step while creating a new hierarchy. The sec-
ond, more complex, case is to add a parent level to a child level that already
has a parent level (in one or more hierarchies). In this case, for each hierarchy
where there is a parent level, create a new hierarchy. Then, replicate the hier-
archy steps and add the corresponding levels such that the child level is the
only or the last (i.e., coarsest) parent level in the hierarchy. Finally, add the
new parent level to the new hierarchy and create a new hierarchy step with
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the child level. In case that identical (i.e., duplicate) new hierarchies would
be created from different existing hierarchies, only one new hierarchy should
be created. Thus, in the context of Figure 4.4, adding the income-level level
as parent to the refArea level (i.e., S2 in H2) can be performed with Query
12. The inputs for this task are the QB4OLAP graph IRI, the QB graph IRI,
the child level IRI, the new parent level (i.e., property) IRI, the hierarchy IRI,
and the hierarchy step IRI. Note that if there was a longer sequence of levels
(and hierarchy steps) to be replicated, Query 12 would need to be extended.

Query 12
Definition of a hierarchy step with creating a new hierarchy.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?qbGraphIRI? − the input QB graph IRI,
3 # ?levelIRI? − the existing level IRI,
4 # ?propertyIRI? − the property IRI (i.e., new level),
5 # ?hierarchyIRI? − the hierarchy IRI, and
6 # ?hsIRI? − the hierarchy step IRI (typically blank node)
7

8 INSERT INTO ?qb4oGraphIRI? {
9 ?hierarchyIRI? a qb4o:Hierarchy .

10 ?hierarchyIRI? qb4o:inDimension ?d .
11 ?d qb4o:hasHierarchy ?hierarchyIRI? .
12 ?hsIRI? a qb4o:HierarchyStep .
13 ?hsIRI? qb4o:inHierarchy ?hierarchyIRI? .
14 ?hsIRI? qb4o:parentLevel ?propertyIRI? .
15 ?hsIRI? qb4o:childLevel ?levelIRI? .
16 ?hsIRI? qb4o:pcCardinality qb4o:ManyToOne .
17 ?hierarchyIRI? qb4o:hasLevel ?propertyIRI? .
18 ?hierarchyIRI? qb4o:hasLevel ?levelIRI? }
19 FROM ?qbGraphIRI?
20 WHERE {
21 ?h a qb4o:Hierarchy .
22 ?h qb4o:hasLevel ?levelIRI? .
23 ?h qb4o:inDimension ?d .
24 ?d a qb:DimensionProperty .
25 }

Example triples for creating a hierarchy step in a new hierarchy are pre-
sented in Example 18.

Example 18
Resulting triples of Query 12.

1 newG:incomeHierarchy a qb4o:Hierarchy .
2 newG:incomeHierarchy qb4o:inDimension newG:geoDimension .
3 newG:geoDimension qb4o:hasHierarchy newG:incomeHierarchy .
4 _:newHierarchyStep2 a qb4o:HierarchyStep .
5 _:newHierarchyStep2 qb4o:inHierarchy newG:incomeHierarchy .
6 _:newHierarchyStep2 qb4o:parentLevel newG:income−level .
7 _:newHierarchyStep2 qb4o:childLevel sdmx−dimension:refArea .
8 _:newHierarchyStep2 qb4o:pcCardinality qb4o:ManyToOne .
9 newG:incomeHierarchy qb4o:hasLevel sdmx−dimension:refArea .

10 newG:incomeHierarchy qb4o:hasLevel newG:income−level .

Lines 1 – 3 define the new hierarchy and link it with the existing dimension. Then,
lines 4 – 8 create a new hierarchy step and link it with its hierarchy, parent level,
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child level, and cardinality, respectively. Finally, lines 9 and 10 add both levels to the
hierarchy.

In any case, when adding a hierarchy step, cycles need to be avoided in
the hierarchy definition and this can be achieved following the rationale of
Algorithm 1.

Definition of the All level and its level member. Finally, the mandatory
All level with its all level member must top all the dimension hierarchies.
Thus, we first need to add the All level to each dimension. The inputs for
this task are the QB4OLAP graph IRI, the All level IRI, and the all level
member IRI. This can be performed with Query 13.

Query 13
Definition of the All level and its level member.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?allLevelIRI? − the All level IRI, and
3 # ?allLevelMemberIRI? − the all level member IRI
4

5 INSERT INTO ?qb4oGraphIRI? {
6 ?allLevelIRI? a qb4o:LevelProperty .
7 ?allLevelMemberIRI? a qb4o:LevelMember .
8 ?allLevelMemberIRI? qb4o:memberOf ?allLevelIRI? .}

Example triples for creating the All level and its all level member are
presented in Example 19.

Example 19
Resulting triples of Query 13.

1 newG:geoALL a qb4o:LevelProperty .
2 newG:geoALLmember a qb4o:LevelMember .
3 newG:geoALLmember qb4o:memberOf newG:geoALL .

Line 1 illustrates the new level definition of the all level for the geographical dimen-
sion. Line 2 defines its level member and line 3 links the member to the level.

Linking of the all level member with the lower level members. After
creating the All level and its all level member for a dimension, all the coars-
est levels of each hierarchy belonging to the dimension, must be linked to
the All level. Furthermore, their level members must be related to the all

level member. The inputs for this task are the QB4OLAP graph IRI, the All

level IRI, and the child level IRI. This can be performed with Query 14. In
the context of the hierarchy illustrated in Figure 4.4, the query should be run
for both region and income-level that need to be linked to the All level.

Query 14
Linking of the all level member with the lower level members.
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1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?levelIRI? − the child level IRI, and
3 # ?allLevelMemberIRI? − the all level member IRI
4

5 INSERT INTO ?qb4oGraphIRI? {
6 ?levelMember skos:broader ?allLevelMemberIRI? . }
7 FROM ?qb4oGraphIRI?
8 WHERE {
9 ?levelMember a qb4o:LevelMember .

10 ?levelMember qb4o:memberOf ?levelIRI? . }

Example triples that link the child level members with the all level mem-
ber are presented in Example 20.

Example 20
Resulting triples of Query 14.

1 region:ECS skos:broader newG:geoALLmember .
2 income:UMC skos:broader newG:geoALLmember .

Lines 1 and 2 illustrate linking of the region and income-level level members with
the all level member in the geographical dimension, respectively.

Once the All levels (one per dimension) and their all level members are
created and linked, we can use Query 11 to link both region and income-level

to the All level. This way we can create the S3 and S4 hierarchy steps in Fig-
ure 4.4. The addition of the All levels for the remaining two dimensions is
analogous.

Definition of a level attribute and its linking to a level. Additionally
to the construction of the dimension hierarchies, the levels may have level
attributes that can also be discovered with Algorithm 1. Thus, level at-
tributes can be added to the QB4OLAP graph. The inputs for this task are
the QB4OLAP graph IRI, the QB graph IRI, the level IRI, and the attribute
IRI. This can be performed with Query 15.

Query 15
Definition of a level attribute and its linking to a level.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?qbGraphIRI? − the input QB graph IRI,
3 # ?levelIRI? − the level IRI, and
4 # ?propertyIRI? − the property IRI (i.e., the attribute)
5

6 INSERT INTO ?qb4oGraphIRI? {
7 ?propertyIRI? a qb4o:LevelAttribute .
8 ?propertyIRI? qb4o:inLevel ?levelIRI? .
9 ?levelIRI? qb4o:hasAttribute ?propertyIRI? .

10 ?levelMember ?propertyIRI? ?obj . }
11 FROM ?qbGraphIRI?
12 WHERE {
13 {SELECT ?levelMember
14 FROM ?qb4oGraphIRI?
15 WHERE{
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16 ?levelMember a qb4o:LevelMember .
17 ?levelMember qb4o:memberOf ?levelIRI? . } }
18 ?levelMember ?propertyIRI? ?obj . }

Example triples of a level attribute, its linking with a level, and specifying
the value for a level member are presented in Example 21.

Example 21
Resulting triples of Query 15.

1 skos:prefLabel a qb4o:LevelAttribute .
2 skos:prefLabel qb4o:inLevel sdmx−dimension:refArea .
3 sdmx−dimension:refArea qb4o:hasAttribute skos:prefLabel .
4 country:RS skos:prefLabel ``Serbia''@en .

Line 1 defines a level attribute and lines 2 and 3 link the level attribute and the
corresponding level. Then, line 4 exemplifies the value of the attribute for country:RS.

Copying of observations. The output of the previous steps (i.e., queries)
is the complete QB4OLAP schema graph and partial QB4OLAP instance
graph. To complete the latter one, the observations need to be copied to
the QB4OLAP graph. The inputs for this task are the QB4OLAP graph IRI,
the QB graph IRI, and the QB dataset IRI. This can be performed with Query
16.
Query 16
Copying of observations.

1 # INPUT: ?qb4oGraphIRI? − the new QB4OLAP graph IRI,
2 # ?qbGraphIRI? − the input QB graph IRI, and
3 # ?dsIRI? − the dataset IRI
4

5 INSERT INTO ?qb4oGraphIRI? {
6 ?oIRI a qb:Observation .
7 ?oIRI ?prop ?val . }
8 FROM ?qbGraphIRI?
9 WHERE {

10 ?oIRI a qb:Observation .
11 ?oIRI qb:dataSet ?dsIRI? .
12 ?oIRI ?prop ?val . }

Example triples of a QB observation copied to the QB4OLAP graph are
presented in Example 22.

Example 22
Resulting triples of Query 16.

1 <http://worldbank.270a.info/dataset/world−bank−indicators/
2 CM.MKT.LCAP.CD/RS/2012>
3 a qb:Observation ;
4 qb:dataSet dataset:CM.MKT.LCAP.CD ;
5 property:indicator indicator:CM.MKT.LCAP.CD ;
6 sdmx−dimension:refArea country:RS ;
7 sdmx−measure:obsValue 7450560827.04874 ;

Lines 1-3 define an observation and the rest of the triples link observation with the
dataset, levels, and measure value for country:RS.
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5.4 Additional considerations

We want to position our approach with respect to two QB concepts that might
be considered relevant in our context, namely qb:AttributeProperty and
qb:Slice. The former refers to the attributes describing the observations
(e.g., the type of the measure). We consider these attributes as metadata
rather than elements of the schema. Our proposal is to capture this infor-
mation, by means of analytical metadata (e.g., the SM4AM analytical meta-
data [103]). For instance, different attributes can be defined as instances (via
rdf:type) of sm4am:DataProperty and kept as additional metadata. Regard-
ing the latter, qb:Slice, we focus on the base cuboid, without considering
higher level cuboids, since they are derivable from the base cuboid.

For the creation of the IRIs of the new objects, we recommend to use the
W3C best practices.26

A final consideration relates to whether or not the QB4OLAP enrichment
should entail the construction of a new graph. For simplicity of presenta-
tion, we assume so far that the method steps always build a new graph.
Nevertheless, the newly created QB4OLAP data cube schema can be used
for the exploration of the existing observations. As the existing QB dimen-
sion properties used in the observations are now redefined as QB4OLAP
dimension level properties, the new schema that defines dimension struc-
tures and includes the aggregate functions for measures can be used to in-
terpret observations and aggregate measure values. Moreover, the existing
graph can be changed such that its qb:DataSet points only to the newly de-
fined qb:DataStructureDefinition representing the QB4OLAP data cube
schema.

6 Evaluation

To evaluate our approach, we have built the tool called QB2OLAP Enrichment
Module (QB2OLAPem) that redefines a QB data set in terms of the QB4OLAP
vocabulary. The resulting QB4OLAP data set can then be enriched as dis-
cussed in the previous section by relating measures with aggregate functions
and by discovering new potential dimensional concepts that can then be used
to extend the MD knowledge described in the QB4OLAP data set. To do so,
QB2OLAPem follows the steps described in the method. Our tool was used
in a set of experiments aimed at validating our approach and in this section
we present the results. We first briefly introduce QB2OLAPem. Then, we
explain the evaluation setting and rational. Finally, we present the evaluation
results for the applicable quality characteristics of the Quality in use and the
Product quality models of the ISO/IEC 25000 [49].

26http://www.w3.org/2011/gld/wiki/223_Best_Practices_URI_Construction
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6.1 QB2OLAP Enrichment Module

QB2OLAPem is developed in Java using JRE 1.8.0_60, Apache Jena 2.13.0 for
working with RDF graphs, SWT27 for the GUI, and Windows 8.1 as OS. It im-
plements the algorithm to discover implicit dimensional concepts from Sec-
tion 4 and the enrichment method from Section 5. The enrichment steps are
performed in an iterative and interactive fashion. QB2OLAPem automatically
retrieves potentially new dimension levels and level attributes, lists them to
the user who can choose the ones of her interest, and automatically enriches
the data set based on the user choices. The user can also configure an aggre-
gate function for each measure. QB2OLAPem visualizes the cube structure
for the user and enables her to automatically generate the QB4OLAP triples
once the enrichment is finished. This way, QB2OLAPem enables user-friendly
and (semi-)automatic enrichment of QB data sets with additional QB4OLAP
semantics. Furthermore, the output triples produced by QB2OLAPem can
be straightforwardly loaded into an SW-based OLAP engine and allow tradi-
tional OLAP analysis (i.e., by means of a high-level interface in terms of an
MD algebra that automatically translates these high-level operators in terms
of SPARQL). Thus, it lowers the entry barrier for data analysis on SW data
for non-expert users (e.g., traditional OLAP users). For further details, [102]
reports on how to connect QB2OLAPem with an OLAP engine. From here
on we focus on QB2OLAPem, whose process flow is presented in Figure 4.5.
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Fig. 4.5: QB2OLAP Enrichment Module Process Flow

The figure illustrates three kinds of external processes, as well as the
QB2OLAPem internal process flow. The first kind of external process is the
user–system interaction, where the user is guided by the Interface element to
iteratively perform the semi-automatic enrichment using the QB2OLAPem

27https://www.eclipse.org/swt/
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Fig. 4.6: QB2OLAP Enrichment Module Screenshot

GUI. The second kind of external process is the system–SPARQL endpoint
interaction where QB2OLAPem queries external triple stores to identify im-
plicit potential MD concepts that could be used for the enrichment. The last
kind of external process is the generation of the QB4OLAP triples that can
then be used in other tools (e.g., an OLAP engine, a SPARQL endpoint, etc.).
These three kinds of external processes are coordinated by the QB2OLAPem
internal process flow as follows. In the user–system interaction, the user initi-
ates the enrichment process by specifying the SPARQL endpoint, the QB data
set IRI, and possibly additional fine-tuning parameters in the Enrichment Pa-
rameterization activity. Then, the Querying element triggers the SPARQL
queries to retrieve the RDF triples specifying the initial QB cube structure.
This structure is then redefined in terms of QB4OLAP (see Section 5.2). The
results are then visualized to the user in the Visualization activity. Moreover,
the Querying element also runs the queries to discover candidate enrichment
concepts (see Section 4.3). The user can then again set the fine-tuning pa-
rameters and optionally restart the process, perform the enrichment in the
Enrichment activity, or decide to generate triples in the Triple-generation ac-
tivity, where she can optionally first set the fine-tuning parameters for triple
generation in the Triple-generation Parameterization activity. After each en-
richment, the Querying element again runs the necessary SPARQL queries to
discover new candidate enrichment concepts if any. The enrichment process
finishes when the user decides to generate the QB4OLAP triples as the final
result. The QB2OLAPem GUI is illustrated in Figure 4.6 and more details
about the tool can be found in [102].
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6.2 Evaluation Setting and Rational

For the evaluation of our approach, we adopt quality characteristics from the
Quality Model of the ISO/IEC 25000 – System and Software Quality Require-
ments and Evaluation (SQuaRE) series of standards [49] that are applicable
to our usage scenario. It includes the Quality in use model and the Product
quality model that specify quality characteristics and subcharacteristics for
which we define metrics specific for our tool. Table 4.1 presents the details.

The main target group of users for our tool is OLAP practitioners that are
well familiar with the data cube abstraction paradigm (see Section 2.1). Typ-
ical OLAP users are not proficient in, for example, SQL or other query lan-
guages. Instead, they analyze data using graphical user interfaces of different
OLAP engines. Such high-level automation is enabled by the definition of a
correct MD schema (see Section 2.1), which allows OLAP users to abstract
their actions from data manipulation languages (such as SQL or SPARQL)
and use high-level interfaces based on an MD algebra not demanding IT ex-
pertise [101]. In the same spirit, our tool supports OLAP users to enrich the
QB schema with a graphical environment. Thus, more than just analyzing
data as in traditional OLAP settings, QB2OLAPem enables OLAP users to
participate in discovering interesting analysis perspectives and construct the
MD schema according to their requirements / needs. Moreover, although
the users with both SW and OLAP skills could perform this manually, our
tool lowers the barrier such that the users non-familiar with SW technolo-
gies and even non-technical users can perform the enrichment. Therefore,
we conduct the experiments with 25 users including 4 OLAP experts, 4 SW
experts, and 17 users having some knowledge of both. The expert users are
PhD students28 and a master student29 doing research in the OLAP and SW
areas. The non-expert users include a PhD student familiar with both areas
and students of a UPC-BarcelonaTech master30 that includes a Data Ware-
housing / OLAP course and a Semantic Web course. All of them had a 20
minutes tutorial in QB / QB4OLAP and some recall on DW / OLAP to facili-
tate the understanding of the template SPARQL queries provided to perform
the manual enrichment as well as the overall objective.

For the experiments with the users we consider the running example data
set. The users should perform the enrichment according to a predefined
scenario. Currently, the alternative to using our tool is that the user man-
ually explores a QB data set, discovers enrichment concepts, and constructs
the QB4OLAP graph by using SPARQL while, also manually, storing and
defining RDF triples. Thus, we compare this case as an alternative to using
the tool for the same tasks. The users are asked to both use the tool and

28https://it4bi-dc.ulb.ac.be/
29http://it4bi.univ-tours.fr/it4bi/
30http://www.fib.upc.edu/en/masters/miri.html
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Table 4.1: Quality Characteristics, Subcharacteristics, and Metrics

Model Characteristics Subcharacteristics Metrics

Quality in use -
The evaluation
of the
interaction with
a system

Effectiveness - Accuracy
and completeness with

which users can enrich a
schema

/

The percentage of users
producing (not) complete
and (not) sound schemata
according to a predefined
scenario, both with and

without the tool

Efficiency - The actions
that the user needs to
perform to enrich the

schema

/

The number of user actions
and time contributing to
redefinition/enrichment

tasks according to a
predefined scenario, and
the total number of user

actions and total time
Satisfaction - How much
is the user satisfied with

using the tool

Usefulness - How
useful does the user

consider the tool
Survey statistics

Product quality
- The software
product quality
properties

Functional suitability -
The functions specified by
the tool

Functional
completeness -

Functions that cover
the specified tasks

The percentage of cases
where the user produces a

complete schema
according to the

underlying QB data set
and a predefined scenario

Functional
correctness -

Correctness of the
tool results

The percentage of cases
where the user produces a
sound schema according to

the MD model

Performance efficiency -
The amount of resources
used for the enrichment

Time-behavior - The
processing time

(i) Redefinition time to: a)
Retrieve the initial cube
structure, b) Retrieve the
level members, and (ii)

Enrichment time: a)
Properties / Level

members retrieval time

Capacity - The limits
of the tool

The number of
observations

(characterizing the data set
size) that can be handled

by the tool

Usability - How much can
a tool be used for the
enrichment with
effectiveness, efficiency,
and satisfaction

Learnability - Degree
to which specified

users can learn to use
the system with

effectiveness,
efficiency, and

satisfaction

Statistics about how many
different types of users are
able to use all (or partial)

tool functions (e.g.,
redefinition, adding new

level, etc.)

Operability - The
attributes of the

system that make it
easy to operate and

control the
enrichment

The time that the user
takes for performing the

actions in the tool
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Table 4.2: The Schema Transformation

Data set #dimensions tschema
(s) #observations #members tmembers

(s) #properties tproperties
(s)

Market
Capitalization 3 0.91 2360 146 0.04 2364 1.08

Renewable
Energies 6 1.18 537447 155 1.05 786 1.05

Asylum
seekers 7 0.94 499369 286 1.4 796 1.90

follow a guided tutorial that provides template SPARQL queries to manu-
ally perform the enrichment. They are provided with detailed guidelines in
both cases. Moreover, the order of the cases is alternated among users. Af-
ter the enrichment, the users deliver the results and their feedback. Later,
for the evaluation of the tool performance, we consider two more data sets
from another Linked Data source and of different sizes. All the data sets are
loaded into a local endpoint after a cleaning process in which observations
with pre-aggregated and zero measure values are removed. Moreover, we
applied additional transformations, e.g., conversion from literals to IRIs to
enable further search for new levels. The local SPARQL endpoint is provided
by a Virtuoso 7 server running on an Intel Core i5 CPU at 2.6 GHz and 8
GB of RAM machine with Windows 8.1 OS. The details and results of the
experiments are presented in the following subsections.

6.3 Quality in Use Evaluation

The quality in use metrics are evaluated over the “Market Capitalization”
QB data set from our running example. It is an indicator data set of 1.9 MB
in size extracted from the WBLD source. All the WBLD indicator data sets
have the same cube structure and the average size is of approximately 1.15
MB. Thus, “Market Capitalization” is considered as a representative data
set for WBLD. Table 4.2 includes its main features such as the number of
dimensions in the schema (#dimensions), the number of observations which
in fact characterizes the size of the data set (#observations), and the total
number of dimension members for all dimensions (#members), along with
other data sets and results relevant for the next subsection.

The scenario that the users need to perform is to redefine the schema
according to the QB4OLAP vocabulary, check if certain properties can be
considered as candidates for the enrichment, create three-level hierarchies
(i.e., hierarchies consisting of the initial QB level, one new level on top of the
initial one, plus the All level) for two different dimensions and optionally
add a level attribute to a level. Figure 4.4 summarizes the enrichment to be
done for each of these dimensions: define levels, a hierarchy for each rollup
path, hierarchy steps for each adjacent pair of nodes in the same path, and
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Table 4.3: Effectiveness Results

Option / Case Manual Tool
Sound & Complete 16% 84%

Incomplete and/or
Not Sound

84% 16%
Incomplete 100% Incomplete 100%
Not sound 47.62% Not sound 0%

a dimension wrapping all of them (see Section 5). The evaluation guidelines
provide a predefined scenario and thus, ask the participants to enrich the data
set with some specific levels. The quality in use characteristics specified in
Table 4.1 focus on the user efforts to perform these tasks with and without the
tool. Detailed guidelines for both i) the manual and ii) tool enrichment were
given31. The guidelines include i) the set of predefined SPARQL queries with
the parameters that need to be used and ii) the specification of tool actions
with the parameters that need to be used, respectively. The users have one
hour and a half to perform the manual enrichment and half an hour with the
tool.

Effectiveness. The results of the metrics for the effectiveness character-
istics are presented in Table 4.3. The table presents the percentage of users
producing sound and complete schemata with and without the tool. In this
context, completeness refers to whether the user managed to complete all the
tasks required to fulfill the requirements in the guidelines within the time
available, while soundness indicates whether the schema produced is correct
in terms of MD modeling (see Section 6.4 for details). The results show that,
even with very detailed guidelines, only 4 (including just 2 SW experts) out of
25 users managed to manually create a sound and complete schema. The rest
of users did not manage to manually complete all the tasks and almost half
of them also created errors in this process undermining the schema sound-
ness. These errors are typically a consequence of copy/paste actions and
include the same concept defined as both level and level attribute, or hierar-
chy and hierarchy step, adding the same level to different dimensions (and
their hierarchies), adding the same level members to several levels, adding
duplicate hierarchies, etc. Oppositely, 4 users did not complete the task but
the partial output produced was correct (i.e., generated sound but incomplete
schemata). The results are much better when using the tool. 21 participants
created sound and complete schemata. Out of the 4 not completing the task,
none produced an incorrect schema. This shows that in practice the tool guar-
antees the schema soundness.

Efficiency. Regarding the efficiency characteristic of the Quality in use
model, the results of our experiments with users are presented in Table 4.4.
The table represents the average number of effective actions (i.e., queries or

31The guidelines given to the evaluation participants can be found at: http://www.essi.upc.
edu/~jvarga/qb2olapem.html
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Table 4.4: Efficiency Results

Task / Parameter Redefinition Enrichment
Manual Tool Manual32 Tool

Effective Actions 11.2 5.6 14 9.28
Total Actions 17 6.32 17 9.92

Effective Time (min) 30.02 4.18 43.32 7.15 (3.75)
Total Time (min) 45.5 4.72 52.38 7.64 (3.75)

Ratio of Effective and Total Actions 65% 89% 82% 94%

tool interactions) contributing to the task (i.e., redefinition/enrichment) and
the total number of actions (which include unnecessary actions to complete
the task, such as errors). Moreover, the table illustrates the average effective
and total time. At the bottom, the table shows the ratio between the effective
and total actions, and it is used for the calculation of the effective time with
respect to the total time. Furthermore, note that the time for the manual en-
richment only refers to the 4 users who finished (thus, it does not consider
the 21 users who did not finish the enrichment task). In this context, we
added in brackets the values referring to these four users when performing
the enrichment with the tool (since they were among the most skilled ones).
Thus, Table 4.4 illustrates that the tool reduces the necessary time for the redefi-
nition and enrichment by at least 7 times even when users are provided with
detailed guidelines for manually performing these tasks.

Satisfaction. Finally, we discuss the results of a survey answered by the
users that provide insights about the satisfaction characteristic of the Quality
in use model33. The average user rating of how much they like the tool, how
easy it is to use the tool, how useful the tool is, and if they would use it in
the future, are all over 4 in a scale from 1 to 5. The average user rating on the
helpfulness of the manual and tool guidelines is 3.98 and 4.1, respectively.
However, only 5 users (including 2 SW experts) consider that they would be
able to formulate the queries without guidelines with a certainty of 4 or 5.
However, this is proven wrong since even with the guidelines only 4 users
were able to generate a sound and complete schema as discussed earlier. In
an open-ended question section, more than 10 users, including an SW expert,
stated that the manual part is too repetitive, error-prone, and hard to perform
even with the guidelines. Thus, QB2OLAPem was appreciated and considered
needed and helpful. The main reason for this is that generating a QB4OLAP
data set from an available QB data set does not consist of purely syntacti-
cal transformations but requires triggering queries to identify and validate
potential new dimensional concepts (i.e., levels). Such queries need to guar-
antee the MD integrity constraints and also require a solid OLAP knowledge

32The values refer to the 4 users finishing the manual enrichment. The other 21 users did not
finish.

33The survey can be found at: http://www.essi.upc.edu/~jvarga/qb2olapem.html
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to avoid making mistakes. Additionally, the users also pointed out some
improvements to be done in our tool. Mainly interface enhancements, e.g.,
changing the way of choosing new concepts and adding the capacity to delete
/ remove concepts (which is not currently present). We plan to make the
changes / add these features to QB2OLAPem in the future.

6.4 Product Quality Evaluation

The product quality evaluation focuses on the tool properties. In the follow-
ing paragraphs we discuss the results for each of the characteristics with its
subcharacteristics.

Functional suitability. The functional suitability is measured in terms of
the completeness and correctness subcharacteristics. In our context, the func-
tional completeness refers to the tool capacity to transform a QB data set
into a QB4OLAP one as well as its capacity for extending the QB4OLAP data
set with relevant dimensional data from all the available potential dimen-
sional concepts. The functional correctness refers to the correctness of the
QB4OLAP data set produced, i.e., in the MD context, if the underlying MD
schema produced satisfies the MD integrity constraints discussed in Section
4.3. Next, we explain how both criteria are met via QB2OLAPem.

The correctness of an MD schema has been exhaustively studied in the
DW/OLAP community (e.g., [73]). Based on these findings, the MD integrity
constraints were identified and, in turn, several methods to automatically
model diverse data (following a given data model) in terms of the MD model
have been proposed (the reader is addressed to [85] for a detailed survey on
this topic). The automatic identification of factual data (i.e., facts and mea-
sures) still results challenging for many domains. However, there is a clear
consensus on discovering dimensional data based on FDs. Arbitrarily look-
ing for FDs in the MD context is known to be computationally expensive [54].
In our case, QB2OLAPem exploits the QB semantics and uses the QB dimen-
sion concept as valid starting point of analysis from where to look for FDs.
To do so, QB2OLAPem follows a traditional approach but adapted to the
SW technologies [4]: it looks for many-to-one relationships by applying the
algorithms presented in Section 4.3. However, like most automatic modeling
approaches, instead of detecting and constructing all possible dimension hi-
erarchies, the detection of new dimension levels and attributes is performed
in an iterative fashion each time the user selects a new level to be added. In
MD terms, QB2OLAPem applies a hybrid data-driven and requirement-driven
approach [85]; i.e., effectively combining the discovery of MD knowledge
hidden in the available data set (i.e., FDs are identified for all the initial QB
dimensions) with the interest of the user (from there on, the user is able to
enrich the MD schema with dimensional data that are semantically mean-
ingful and of her interest). This approach is widely acknowledged as the
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most appropriate way to proceed in automatic MD modeling. For example,
in our running example, the region level is meaningful to be added on top
of the reference area (referring to country) level to conform a richer hier-
archy within the same dimension (and thus, the user most probably would
choose this enrichment), while this is probably not the case for the creator

level even though it is identified as an FD and proposed by our tool as a
potential rollup relationship from reference area. With the default settings
(next we discuss how to relax them), possible new levels are only available
for the reference area. Out of the total 20 outbound distinct properties, 6
satisfy the many-to-one cardinality and only two are a meaningful choice for
the construction of hierarchies, namely, region and income level. Although
there are some properties that are candidates for the next coarser granularity
level for these two new levels, none of them would be meaningful from the
user point of view. These enrichment possibilities are based on the data avail-
able in the data set and more meaningful enrichment concepts can be found
by exploring external sources (e.g., DBpedia can provide more concepts that
are meaningful for constructing coarser levels for countries).

Additionally, due to imperfect data (see Section 4.1) it might happen that
some properties are not proposed as FDs (e.g., due to incorrect data) when
conceptually they should be. This issue, typical from the SW and similar sce-
narios, has also been studied in the recent past (e.g., [4]). To deal with these
situations, we also consider quasi FDs (see Section 4.3). In any case, selecting
a quasi FD to enrich the schema requires cleaning the data set to meet the
FD. Otherwise, the resulting MD schema would not guarantee a correct data
summarization (see [86]). In the case of our running example, Figure 4.7 il-
lustrates the effect of reducing the percentage of instances that must satisfy
the many-to-one cardinality for the reference area. When the percentage
is reduced to 80% (i.e., the minCompl parameter in Algorithm 2), there is an
additional candidate property (lending type), that is also meaningful for the
construction of a new hierarchy. This is a consequence of imperfect data as
not all members of the reference area level are countries. Removing these
errors, lending type turns out to be a functional property and thus a rollup
candidate. Accordingly, these errors must be addressed to guarantee correct
data aggregations if this level is chosen. The next potentially meaningful level
is found at 40% but it surely does not make sense to build a hierarchy where
massive cleaning should be done. Therefore, the value of 80% represents an
empirically based threshold for the discovery of new levels in the case of our
running example. Overall, the running example shows a good quality for the
construction of dimension hierarchies as the first two properties completely
satisfy the many-to-one cardinality and the third one does so for at least 80%
of the cases.

Accordingly, we say that QB2OLAPem is functionally correct because all di-
mensional data proposed are based on FDs. This is guaranteed by the SPARQL
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queries internally triggered by QB2OLAPem (see Section 4.3). This is shown
in Table 4.3 where no incorrect schema is produced using the tool. Note
this is one of the main advantages of our tool in front of the manual enrich-
ment. The tool guarantees the overall correctness of all the enrichment steps
(queries) triggered, which cannot be guaranteed in the manual enrichment.

The completeness of the MD schema produced is guaranteed by several
means. The first step is a syntactical transformation from QB to QB4OLAP
constructs (i.e., the redefinition phase). There, the QB dimension concept is
redefined in terms of QB4OLAP constructs, i.e., as a level within a hierar-
chy and belonging to a dimension. The basic QB4OLAP structure is then
enriched by relating each measure with an aggregate function (see Section
5.2) and with relevant dimensional data selected by the user from that auto-
matically discovered by the tool. The additional dimensional data added are
conformed according to QB4OLAP and thus, to the good MD modeling prac-
tices (in terms of levels, hierarchies, dimensions, and dimension attributes).

We say that QB2OLAPem is functionally complete because all relevant MD data
from the QB data set are included in the QB4OLAP one, all measures are related
to an aggregate function, and all the available FDs are discovered and proposed to
the user as potential dimensional enrichment. As discussed in Section 5.2, for
each QB data structure QB2OLAPem retrieves all the initial QB measures
and dimensions and all of them are redefined in terms of QB4OLAP. Also,
QB2OLAPem guarantees that each QB4OLAP measure is associated with an
aggregated function (if none is selected, SUM is used by default). About the
enrichment phase (see Section 5.3), the dimensional enrichment is based on
the detection of many-to-one cardinalities based on the analysis of instances
(see Section 4.3). QB2OLAPem guarantees that all the instances are covered
by the newly defined levels (i.e., every level instance is member of a level)
and that all potential functional properties, i.e., all potential new levels, are
identified and proposed to the user. This is done in two steps, QB2OLAPem
exhaustively finds all FDs for the initial dimension levels (i.e., the former QB
dimensions). Later, for each additional level chosen by the user, QB2OLAPem
exhaustively searches for new potential FDs starting from it.

Thus, we say QB2OLAP is complete with regard to the available data and the
user requirements stated (as hybrid automatic MD modeling tools do). Note
that the manual enrichment proposed guarantees the same degree of com-
pleteness since the SPARQL template queries provided exhaustively search
for FDs and it depends on the user to properly use them. The only difference
in this respect is that QB2OLAPem guarantees an aggregate function will be
linked to each measure, whereas the manual enrichment cannot guarantee
so. Also, that in a given time frame the user is able to complete more tasks
(this is shown in Table 4.3 where the degree of incompleteness with regard
to the requirements given in the guidelines is lower when using the tool).

Performance efficiency. To evaluate the tool’s performance, we conducted
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Fig. 4.7: Reference Area Candidate Properties

the experiments considering two more data sets in addition to the one used in
the previous section. In particular, we include “Asylum statistics”34(of 1.2 GB
of size) and “Renewable energies (wind, solar, hydro, tidal, wave and ocean,
geothermal energy, energy from biomass)”35(660 MB) from Eurostat Linked
Data. In addition to the characteristics explained in the previous subsection,
Table 4.2 shows the following characteristics relevant for the performance
measurement: the time to retrieve the QB schema (tschema), the time to retrieve
level members (tmembers), the total number of properties retrieved for level
members (#properties), and the time to retrieve these properties (tproperties).

The time-behavior subcharacteristic relates to the tool performance for
two main tasks, the schema redefinition and enrichment. Thus, for the
schema redefinition (see Section 5.2) we measure the QB schema retrieval
time and the time for acquiring dimension members. As shown in Table 4.2,
the schema retrieval time is approximately the same for all data sets and it
does not depend on the number of observations (i.e., the data set size). This
advantage originates from the fact that the QB schema typically represents
a small part of the entire data set. The schema can be retrieved with a sim-
ple query where the central schema node (i.e., schema structure definition) is
linked to a dimension or a measure via a component node, i.e., with only two
hops (see Query 5). This maps to a path join [89] and can be efficiently solved
with indexing and index-based join operations [37]. Furthermore, acquiring
the level members depends on the number of observations from where they
are retrieved (see Query 9). Nevertheless, as shown in Table 4.2, even for large
data sets (e.g., half a million observations and 286 level members) the retrieval
time is still small (around 1 sec), demonstrating the scalability. Additionally,
Table 4.5 shows that, inside a single data set, the time for acquiring level mem-

34http://eurostat.linked-statistics.org/data/migr_asyappctzm
35http://eurostat.linked-statistics.org/data/nrg_107a.rdf
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Table 4.5: Level Member Statistics

Data set Level #Members tmembers (s) #Properties tproperties(s)
Market Capitalization indicator 1 0.01 16 0.01
Market Capitalization refArea 120 0.02 2348 0.91
Market Capitalization refPeriod 25 0.01 0 0.16

Renewable Energies indic_nrg 81 0.15 486 0.54
Renewable Energies freq 1 0.22 0 0.01
Renewable Energies product 15 0.18 90 0.08
Renewable Energies geo 34 0.15 204 0.25
Renewable Energies unit 1 0.14 6 0.01
Renewable Energies refPeriod 23 0.21 0 0.16

Asylum seekers citizen 157 0.25 620 1.00
Asylum seekers freq 1 0.14 0 0.01
Asylum seekers geo 34 0.12 132 0.23
Asylum seekers asyl_app 2 0.28 8 0.02
Asylum seekers age 6 0.25 24 0.04
Asylum seekers refPeriod 83 0.13 0 0.59
Asylum seekers sex 3 0.25 12 0.02

bers is similar regardless of their number. Again, this is the result of indexing
techniques used by triple stores.

Furthermore, regarding the schema enrichment (see Section 5.3), Table
4.2 shows the total number (#properties) and the retrieval time (tproperties) for
all the properties related to the level members of all the initial levels of the
previously introduced data sets. Moreover, Table 4.5 provides more details
about the number of properties related to the level members of a level in each
data set. All values refer to the initial schemata. From the tables we can note
that the retrieval time does not depend on the number of observations but on the
number of level members and their properties. Our tool runs a query for each
level member to retrieve its properties. Thus, the complexity of such queries
is that of adjacency queries [12,67] and in our case, in the worst case, it directly
depends on the out degree of each level member (LevelMemberOutDegree)
of each level; i.e.:

Σlevels
1 Σmembers

1 LevelMemberOutDegree

When retrieving the properties, the tool acquires the property range ob-
jects that automatically become new level members (if the property is chosen
by the user). The tool then automatically iterates in the same way for these
new level members. Thus, there is no need for additional queries to retrieve
new level members. In the worst case, if the user chooses all potential func-
tional properties identified by the tool, the total number of properties for the
3 data sets would be 47, 23, and 18, respectively. Nevertheless, the user is
the last responsible for choosing relevant properties for creating new levels.
Table 4.6 shows a real scenario for the running example data set. There, the
user chooses to enrich the data set with three new levels (the bottom three
rows) out of the seven proposed by the tool as functional properties.
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Table 4.6: Market Capitalization Levels Statistics

Level #Members tmembers (s) Avg Out-degree #Properties tproperties (s)
indicator 1 0.01 16.00 16 0.01
refArea 120 0.02 19.57 2348 0.91

refPeriod 25 0.01 0.00 0 0.16

income-level 5 0.07 0.00 0 0.03
lending-type 4 0.07 0.00 0 0.02

region 7 0.07 0.00 0 0.04

Table 4.7: QB2OLAPem Usability Results

Tasks/User Group SW OLAP Non-experts
Redefinition 100% 100% 100%
Enrichment 100% 75% 81.25%

Redefinition (min) 1.88 1.5 6.15
Enrichment (min) 2.75 4.75 9.47

The capacity subcharacteristic is measured by the number of observations
(characterizing the size of the data set) that the tool can handle. Table 4.2
illustrates that the tool can process data sets of different sizes. Thus, the schema
transformation is feasible and efficient even for large data sets by benefiting
from indexing techniques to deploy efficient access on SPARQL endpoints
[22].

Usability. In this context, we focus on the learnability and operability
subcharacteristics. The results come from the experiments with users ex-
plained in Section 6.3. The learnability is measured with the percentage of
different users who managed to use different tool functionalities. The first
two rows of Table 4.7 show the percentage of users who successfully per-
formed the redefinition and enrichment tasks with the tool, respectively. All
the users successfully performed the redefinition. One OLAP expert and
three non-expert users missed to perform the complete enrichment, although
all of them performed at least one enrichment action. Thus, all the users were
capable of using both types of tool functionalities. Moreover, the operability sub-
characteristic is shown in the bottom two rows of the table that illustrate the
average time that the different user types took for redefinition and enrich-
ment, respectively. We can note that with higher expertise the necessary time
for performing the tasks is reduced. Nevertheless, in all cases the redefinition
and enrichment are at least 7 times faster than with the manual approach (see
Section 6.3) showing a high operability degree.

Overall, the evaluation showed that QB2OLAP facilitates the enrichment
and it is appreciated and considered needed and helpful by different users.
The tool speeds up the enrichment process and guarantees the schema sound-
ness and completeness in practice.
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7 Related Work

As mentioned in Section 1, there are two main lines of research addressing
OLAP analysis of SW data, namely (1) extracting MD data from the SW
and loading them into traditional MD data management systems for OLAP
analysis; and (2) performing OLAP-like analysis directly over SW data, e.g.,
over MD data represented in RDF. We next discuss them in some more detail.

Relevant to the first line (and also in some sense related to the method-
ology we present in this paper) are the works by Nebot and Llavori [78] and
Kämpgen and Harth [58]. The former proposes a semi-automatic method
for on-demand extraction of semantic data into an MD database. In this
way, data could be analyzed using traditional OLAP techniques. The authors
present a methodology for discovering facts in SW data, and populating an
MD model with such facts. They assume that data are represented as an
OWL ontology. The proposed methodology has four main phases: (1) De-
sign of the MD schema, where the user selects the subject of analysis that
corresponds to a concept of the ontology, and then selects potential dimen-
sions. Then, she defines the measures, which are functions over data type
properties; (2) Identification and extraction of facts from the instance store
according to the MD schema previously designed, producing the base fact
table of a DW; (3) Construction of the dimension hierarchies based on the
instance values of the fact table and the knowledge available in the domain
ontologies (i.e., the inferred taxonomic relationships) and also considering
desirable OLAP properties for the hierarchies; (4) User specification of MD
queries over the DW. Once queries are executed, a cube is built. Then, typical
OLAP operations can be applied over this cube.

Kämpgen and Harth [58] study the extraction of statistical data published
using the QB vocabulary into an MD database. The authors propose a map-
ping between the concepts in QB and an MD data model, and implement
these mappings via SPARQL queries. There are four main phases in the pro-
posed methodology: (1) Extraction, where the user defines relevant data sets
which are retrieved from the web and stored in a local triple store. Then,
SPARQL queries are performed over this triple store to retrieve metadata on
the schema, as well as data instances; (2) Creation of a relational represen-
tation of the MD data model, using the metadata retrieved in the previous
step, and the population of this model with the retrieved data; (3) Creation
of an MD model to allow OLAP operations over the underlying relational
representation. Such model is expressed using XML for Analysis (XMLA)36,
which allows the serialization of MD models and is implemented by several
OLAP clients and servers; (4) Specification of queries over the DW, using
OLAP client applications.

36http://xmlforanalysis.com
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The proposals described above are based on traditional MD data man-
agement systems, thus they capitalize the existent knowledge in this area
and can reuse the vast amount of available tools. However, they require the
existence of a local DW to store SW data. This restriction clashes with the
autonomous and highly volatile nature of web data sources as changes in
the sources may lead not only to updates on data instances but also in the
structure of the DW, which would become hard to update and maintain. In
addition, these approaches solve only one part of the problem, since they do
not consider the possibility of directly querying à la OLAP MD data over the
SW.

The second line of research tries to overcome the drawbacks of the first
one, exploring data models and tools that allow publishing and performing
OLAP-like analysis directly over SW MD data. Terms like self-service BI [1],
Situational BI [71], on-demand BI, or even Collaborative BI, refer to the capability
of incorporating situational data into the decision process with little or no
intervention of programmers or designers. The web, and in particular the SW,
is considered as a large source of data that could enrich decision processes.
Abelló et al. [1] present a framework to support self-service BI, based on the
notion of fusion cubes, i.e., MD cubes that can be dynamically extended both
in their schema and their instances, and in which data and metadata can be
associated with quality and provenance annotations.

To support the second approach mentioned above, the RDF Data Cube vo-
cabulary [27] aims at representing, using RDF, statistical data according to the
SDMX information model. Although similar to traditional MD data models,
the SDMX semantics imposes restrictions on what can be represented using
QB. Etcheverry and Vaisman [33] proposed QB4OLAP, an extension to QB
that allows to represent analytical data according to traditional MD mod-
els, also presenting a preliminary implementation of some OLAP operators
(RollUp, Dice, and Slice), using SPARQL queries over data cubes specified
using QB4OLAP. These two approaches have been thoroughly discussed in
Sections 2 and 3. In [48], Ibragimov et al. present a framework for Ex-
ploratory OLAP over Linked Open Data sources, where the MD schema of
the data cube is expressed in QB4OLAP and VoID. Based on this MD schema
the system is able to query data sources, extract and aggregate data, and
build an OLAP cube. The MD information retrieved from external sources is
also stored using QB4OLAP.

Kämpgen et al. [59, 60] attempt to override the lack of structure in QB,
discussed in Section 3, defining an OLAP data model on top of QB and other
related vocabularies, e.g., some proposed ISO extensions to SKOS.37. They
propose to represent each level as an instance of a class skosclass:Class-

ificationLevel and organize levels in hierarchies via stating the depth of

37http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS
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each level in the hierarchy using the skosclass:depth property. The pro-
posed representation restricts levels to participate in only one hierarchy and
does not provide support for level attributes. They also propose a mech-
anism for implementing some OLAP operators over these extended cubes,
using SPARQL queries, but restricting to data cubes with only one hierarchy
per dimension.

Related to the SKOS extensions mentioned above, and realizing that SKOS
is insufficient to represent the needs of statistical classifications and concept
management, a new proposal to address those needs was issued, and denoted
as XKOS.38 XKOS attempts to capture the main semantic relationships like
generalization, specialization, part-of, among other ones, with properties like
xkos:generalizes, xkos:specializes, xkos:isPartOf, respectively. At the
time of writing the present paper, this proposal is in a preliminary status.

For an exhaustive study of the possibilities of using SW technologies for
OLAP, we refer the reader to the survey by Abelló et al. [4].

8 Conclusion

The approach presented in this paper opens new possibilities for performing
OLAP analysis in Linked Data and SW contexts. After thoroughly elaborat-
ing on the significant benefits that QB4OLAP brings in terms of additional
schema constructs that are necessary for the state-of-the-art OLAP analysis,
we have elaborated on how to, as automatically as possible, introduce these
enhancements into an existing QB data set. We have proposed the use of
metadata to automate the association between measures and aggregate func-
tions, and the algorithm for the detection of implicit MD semantics to auto-
mate the discovery of dimension hierarchy schema and instances, since these
are the two most relevant semantic enhancements of QB4OLAP. The enrich-
ment task is formalized in a semi-automatic method that defines steps de-
scribed as SPARQL queries to create a new enriched QB4OLAP graph. More-
over, we have presented QB2OLAPem implementing the method and the
algorithm for the detection of implicit MD semantics. QB2OLAPem enables
the user to enrich a QB data set with minimal user efforts. Finally, the eval-
uation of our approach using three real-world QB data sets of different sizes
demonstrates its feasibility in practice. Furthermore, the experiments con-
ducted with 25 users show that, in practice, QB2OLAPem facilitates, speeds
up, and guarantees the correct results of the enrichment process.

In the future, we plan to extend our approach to automatically identify
the data heterogeneity cases and inspired by [57] explore the possibilities to
integrate different QB schemata into a single QB4OLAP schema.

38http://rdf-vocabulary.ddialliance.org/xkos.html
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1 Enrichment Methodology

Here, we provide a fully formalized, more general, and detailed enrichment
methodology, which is agnostic of the implementation decisions made. The
methodology specifies the pre-conditions, post-conditions, and transforma-
tions to be conducted by each step in terms of set theory. The method pre-
sented in Section 5 is an instantiation of it.

The methodology considers the inputs listed below. These inputs can
be generated from the outputs of Algorithm 1 (i.e., allL, allP, allHS, and
allLLA) as follows. We can construct the dimension hierarchies (i.e., build
structures like the one in Figure 4.2) and generate the inputs needed by the
methodology by following the detected hierarchy steps (the allHS output of
Algorithm 1). Each of these structures is considered a dimension (from here
on, dimension structure) that has a name assigned to it, e.g., derived from the
initial level name. A bottom-up traversal of the paths in this structure defines
the hierarchies. On top of each dimension structure, the All level should be
automatically added as the highest granularity level for all hierarchies. Thus,
we obtain the inputs required for the enrichment methodology as follows.

• NewLevSet, the set of the new level IRIs (e.g., schema:region), generated
as the difference between the set of all levels and the set of initial levels.
• DimSet, the set of dimension IRIs (e.g., schema:geoDim), generated to

include an element for each dimension structure.
• HierSet, the set of hierarchy IRIs (e.g., schema:geoHier), generated for

each distinct traversal path in the dimension structures.
• LAttSet, the set of new level attribute IRIs (e.g., schema:capital), ex-

tracted from the allLLA output of Algorithm 1.
• HStepSet, the set of hierarchy step IDs, i.e., IRIs or blank node identifiers

(e.g., _:hs1), generated for each occurrence of a hierarchy step in hierarchies.
• MapLAttribute2L, a mapping of level attribute IRIs to level IRIs (e.g.,

(schema:capital, sdmx-dimension:refArea)), generated from the allLLA out-
put of Algorithm 1, as pairs of IRIs.
• MapH2D, a mapping of hierarchy IRIs to dimension IRIs (e.g., (schema:-

geoHier, schema:geoDim)), extracted from the dimension structure as pairs
of IRIs.
• MapH2L, a mapping of hierarchy IRIs to level IRIs (e.g., (schema:geoHier,

schema:region)), extracted from the dimension structure as pairs of IRIs.
• MapHStep2ParentL, a mapping of hierarchy step IDs to parent level IRIs

(e.g., (_:hs1, schema:region)), extracted from the dimension structure as
pairs of IRIs.
• MapHStep2ChildL, a mapping of hierarchy step IDs to child level IRIs

(e.g., (_:hs1, sdmx-dimension:refArea)), extracted from the dimension struc-
ture as pairs of IRIs.

125



Chapter 4. Dimensional Enrichment of Statistical Linked Open Data

• MapHStep2H, a mapping of hierarchy step IDs to hierarchy IRIs (e.g.,
(_:hs1, schema:geoHier)), extracted from the dimension structure as pairs of
IRIs.
• MapHStep2C, a mapping of hierarchy step IDs to cardinality IRIs (e.g.,

(_:hs1, qb4o:ManyToOne)), extracted from the dimension structure as pairs of
IRIs.
• MapChild2Parent, a mapping of child level member IRIs to parent level

member IRIs (e.g., (country:RS, region:ECS)), extracted from the data set(s)
as pairs of IRIs according to the hierarchy step structures.
• MapLInstance2L, a mapping of level member IRIs to level IRIs (e.g.,

(country:RS, sdmx-dimension:refArea)), extracted from the data set(s) as
pairs of IRIs for all levels.
• MapLInstance2LAInstance, a mapping of level member IRIs to the level

attribute IRI–level attribute value (that is IRI or literal) pairs (e.g., (country:RS,
(schema:capital, �Belgrade�8sd:string))), extracted from the data set(s)
based on the MapLAttribute2L mapping as, IRI–a pair of IRIs, or, IRI–an IRI
and literal pair, pairs.

Taking advantage of the QB4OLAP vocabulary, we next propose a method-
ology to enrich a QB data set. The methodology defines the steps that need
to be performed for the input QB data set in order to produce an output data
set that is enriched with QB4OLAP semantics (e.g., dimension hierarchies).
The methodology steps are fully automatized considering that the inputs dis-
cussed above are provided. Taking into account that the inputs generation in-
volves some user actions, the overall enrichment process is semi-automatized.
The methodology steps are:

1. Redefinition of the cube schema.
2. Specification of the aggregate functions.
3. Definition of the dimension hierarchies.
4. Annotation of the cube instances.

In this section, we first introduce preliminaries for the formal definition
of each step. Then, each step is defined in terms of the input, tasks to be
performed, and output that it produces.

1.1 Methodology Preliminaries

We first formally define a QB graph.

Definition 1
A QB graph Gqb is a set of RDF triples, i.e., an RDF graph, defined as follows.

• Gqb = Sqb ∪ Iqb, where Sqb and Iqb are sets of triples that define the QB
cube schema and instances, respectively.
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• Sqb = DSqb ∪DSDqb ∪Dqb ∪Mqb, where DSqb, DSDqb, Dqb, and Mqb are
subsets of triples that define the cube data set, the cube structure, the cube
dimensions, and the cube measures, respectively. Following QB’s notation,
the cube structure (i.e., DSDqb) is defined as a set of dimensions and measures
(in QB terminology, the cube components).
• Iqb = DIqb ∪Oqb, where DIqb is the subset of triples that defines all di-

mension instances, while Oqb is the subset of triples that defines the obser-
vations. As discussed before, observations represent measure values for the
fixed dimension instances determined by DSDqb related to the data set DSqb.

The considered elements of the QB graph are the ones needed in our
approach to create a QB4OLAP graph while the other ones are omitted. Triple
examples of Sqb that are extracted from the running example (see Section 2.3)
are presented in Example 23.

Example 23
Sqb triples.

1 <http://worldbank.270a.info/dataset/world−bank−indicators/structure>
2 a qb:DataStructureDe�nition ;
3 qb:component [ qb:dimension sdmx−dimension:refArea ] ;
4 qb:component [ qb:measure sdmx−measure:obsValue ] .
5 sdmx−dimension:refArea a qb:DimensionProperty .
6 sdmx−measure:obsValue a qb:MeasureProperty .
7 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet ;
8 qb:structure
9 <http://worldbank.270a.info/dataset/world−bank−indicators/structure> .

Lines 1 - 4 belong to DSDqb, line 5 to Dqb, line 6 to Mqb, and line 7 to DSqb. The data
set DSqb is related to the cube structure DSDqb in lines 8 – 9 and this triple belongs to
DSqb.

Triple examples of Iqb are presented in Example 24.

Example 24
Iqb triples.

1 data:world−bank−indicators/CM.MKT.LCAP.CD/RS/2012
2 a qb:Observation ;
3 sdmx−dimension:refArea country:RS ;
4 sdmx−measure:obsValue 7450560827.04874 ;
5 qb:dataSet <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> .

Lines 1 – 5 define an observation Oqb. Line 3 specifies a dimension instance that
belongs to DIqb and line 4 defines a measure value of Oqb. Note that this observation
relates to the cube schema structure (i.e., DSDqb) indirectly (see lines 7 – 9 of Example
23) via qb:dataSet in line 5.

Analogously, we next define the output QB4OLAP graph Gqb4o in terms
of sets of triples.
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Definition 2
A QB4OLAP graph Gqb4o is defined as follows.

• Gqb4o = Sqb4o ∪ Iqb4o, where Sqb4o and Iqb4o are sets of triples that define
the QB4OLAP cube schema and instances, respectively.
• Sqb4o = DSqb4o∪ DSDqb4o∪ Dqb4o∪Mqb4o∪ Lqb4o∪ LAqb4o∪ Hqb4o∪ HSqb4o∪

AFqb4o∪ Cqb4o, where the subsets of triples are:

– DSqb4o defining the cube data set;
– DSDqb4o defining the cube structure;
– Dqb4o defining the cube dimensions;
– Mqb4o defining the cube measures;
– Lqb4o defining the dimension levels;
– LAqb4o defining the dimension level attributes;
– Hqb4o defining the dimension hierarchies;
– HSqb4o defining the hierarchy steps;
– AFqb4o a predefined set of aggregate functions; and
– Cqb4o a predefined set of possible cardinalities.

• Iqb4o = LIqb4o ∪Oqb4o ∪ LAIqb4o, where LIqb4o is the subset of triples that
defines level instances and rollup relationship instances between child and
parent level instances, Oqb4o is the subset of triples that defines the observa-
tions, and LAIqb4o is the subset of triples that defines level attribute values.

Patterns of triples and examples of QB4OLAP sets are presented below
in the methodology step definitions. The examples are based on the running
example (see Section 2.3). By using this formalization we define our method-
ology considering the scenario where the input data set contains implicit MD
semantics (e.g., a country is linked to a region) that is not explicitly stated,
i.e., without the semantics that this is a rollup relationship in an MD hierar-
chy between a country level and a region level. Other scenarios are discussed
in Section 5.4.

1.2 Redefinition of the cube schema

We start by building the new cube schema Sqb4o. For simplicity of presenta-
tion, when defining the steps we assume that from the input QB graph Gqb,
we build a new QB4OLAP graph Gqb4o. We proceed incrementally and in
the first step we build the schema S1

qb4o (the complete cube schema Sqb4o is

the output of Step 3). S1
qb4o contains the sets DSqb4o (defining the cube data

set), DSDqb4o (defining the new cube schema structure), Lqb4o (defining the
QB4OLAP dimension levels), and Mqb4o (defining the measures). We popu-
late these sets from Sqb, starting from the dimensions in Dqb that are redefined
as levels in Lqb4o. Next, we copy the measures from Mqb to Mqb4o. Then, we
define the new cube schema structure, assign it both levels and measures,
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and add it to the DSDqb4o. Finally, we copy the data set definition to DSqb4o
and assign the new cube schema structure to it. The details of the step are
presented below.

Step 1. Redefinition of the cube schema:
INPUT: Sqb

OUTPUT: S1
qb4o

Step 1.1. Redefine input dimensions as levels:

• Lqb4o ∪= {createLevel(d), d ∈ Dqb}, where createLevel is a function redefin-
ing a dimension d as a level l, i.e., taking as argument a triple defining a
qb:DimensionProperty, and producing a triple defining a qb4o:LevelProperty.

Triples pattern added to Lqb4o:
qbDimensionIRI a qb4o:LevelProperty, where qbDimensionIRI is the ex-
isting IRI of the QB dimension redefined as a QB4OLAP level. For instance,
a triple related to the running example:

1 sdmx−dimension:refArea a qb4o:LevelProperty .

Step 1.2. Copy input measures:

• Mqb4o ∪= {m, m ∈ Mqb}, where m is a measure triple in Mqb that is
added to Mqb4o. These triples are defining instances of the class qb:Measure-
Property.

Triples pattern added to Mqb4o:
qbMeasureIRI a qb:MeasureProperty, where qbMeasureIRI is the existing
IRI of the QB measure copied. For instance, a triple related to the running
example:

1 sdmx−measure:obsValue a qb:MeasureProperty .

Step 1.3. Define the new cube schema structure and add to it levels and measures
as components:

• DSDqb4o ∪= {createDSD()}, where createDSD is a function that creates a
new cube schema structure triple, i.e., defining a new qb:DataStructureDefinition.

Triples pattern added to DSDqb4o:
dsdIRI a qb:DataStructureDefinition, where dsdIRI is the newly defined
IRI of the new schema structure definition. For instance, a triple related to
the running example:

1 newG:newDSD a qb:DataStructureDe�nition .

• DSDqb4o ∪= {createComponent(lm), lm ∈ Lqb4o ∪Mqb4o}, where createCom-
ponent is a function that creates a schema structure component (in this case,
a blank) node to which a level or measure is related. It receives a triple lm
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defining a qb4o:LevelProperty or a qb:MeasureProperty and produces a triple c
defining a qb:ComponentProperty.

Triples pattern added to DSDqb4o:
dsdIRI qb:component [qb4o:level qbDimensionIRI]; dsdIRI qb:compon-
ent [qb:measure qbMeasureIRI]. Here, dsdIRI, qbDimensionIRI, and qbMe-

asureIRI are the IRIs previously introduced. Note that we include dsdIRI for
better understanding. For instance, triples related to the running example:

1 newG:newDSD qb:component [ qb4o:level sdmx−dimension:refArea ] ;
2 qb:component [ qb:measure sdmx−measure:obsValue ] .

Step 1.4. Create the QB4OLAP cube schema:
• S1

qb4o = DSqb4o ∪DSDqb4o ∪ Lqb4o ∪Mqb4o. Initially, we add to DSqb4o the
data set definition triple and the triple linking the data set to the DSD. Then,
S1

qb4o represents a union of DSqb4o and the previous sets (i.e., DSDqb4o, Lqb4o,
and Mqb4o) with no additional triples pattern.

Triples pattern added to DSqb4o:
dsIRI a qb:DataSet and dsIRI qb:structure dsdIRI, where dsIRI and
dsdIRI are the IRIs of the data set and the new schema structure definition,
respectively. For instance, triples related to the running example:

1 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet;
2 qb:structure newG:newDSD .

Thus, at this point, we have obtained S1
qb4o.

Triple examples of S1
qb4o are summed up in Example 25 to illustrate the

overall result of Step 1. Note that we use the newG namespace for the new
graph Gqb4o.

Example 25
Resulting triples of Step 1.

1 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet;
2 qb:structure newG:newDSD .
3 newG:newDSD a qb:DataStructureDe�nition ;
4 qb:component [ qb4o:level sdmx−dimension:refArea ] ;
5 qb:component [ qb:measure sdmx−measure:obsValue ] .
6 sdmx−dimension:refArea a qb4o:LevelProperty .
7 sdmx−measure:obsValue a qb:MeasureProperty .

Lines 1 and 2 illustrate the output of Step 1.4. Step 1.3. results in lines 3, 4, and 5
define the new cube schema structure and add a level and a measure as components
to it. Line 6 redefines the dimension from Example 23 as a QB4OLAP level (result of
Step 1.1.), while line 7 illustrates the measure from Example 23 copied in Step 1.2.

1.3 Specification of the aggregate functions

In this step we perform the first QB4OLAP enrichment by specifying an ag-
gregate function for each measure. Note that possible aggregate functions
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are predefined by QB4OLAP. The inputs of this step are S1
qb4o and a mapping

MAggMap from a measure m ∈ Mqb4o to an aggregate function a ∈ AFqb4o (in-
troduced in Section 4.2). The aggregate function is specified as a triple that
relates a with the component of the cube schema structure related to m. This
triple is added to DSDqb4o and this enrichment is represented as the updated
cube schema S2

qb4o that is the step output. The details of the step are presented
below.

Step 2. Specification of the aggregate functions
INPUT: S1

qb4o, MAggMap

OUTPUT: S2
qb4o

Step 2.1. Specify an aggregate function for each measure component of the cube
schema structure:

• DSDqb4o ∪= {addAggFunction(getComponent(m), MAggMap(m)), m ∈
Mqb4o}, where:

– getComponent is a function that, given a measure m, returns the schema
structure component c related to it (i.e., m is a triple defining a qb:MeasurePro-
perty and c is a triple defining a qb:ComponentProperty (typically a blank
node)).

– MAggMap is a mapping function from an input measure m (same as
above) to the aggregate function a (i.e., a is a triple defining a qb4o:Aggregate-
Function (a predefined QB4OLAP aggregate function)).

– addAggFunction is a function that links an aggregate function a to the
corresponding component c (a and c are the ones defined above).

Triples pattern added to DSDqb4o:
dsdIRI qb:component [qb:measure qbMeasureIRI; qb4o:aggregateFunct-

ion afIRI], where dsdIRI and qbMeasureIRI are the IRIs previously in-
troduced and afIRI is the IRI of the aggregate function. Note that only
qb4o:aggregateFunction afIRI is new in the pattern while the rest of the
pattern refers to the earlier defined triples. For instance, triples related to the
running example:

1 newG:newDSD qb:component
2 [ qb:measure sdmx−measure:obsValue ;
3 qb4o:aggregateFunction qb4o:Sum ] .

Step 2.2. Create new partial cube schema:

• S2
qb4o = DSqb4o ∪DSDqb4o ∪ Lqb4o ∪Mqb4o. S2

qb4o represents a union of up-
dated DSDqb4o and the DSqb4o, Lqb4o, and Mqb4o sets with no additional triples
pattern.

Triple examples of S2
qb4o are presented in Example 26. It is a follow-up of

the previous example (i.e., Example 25).
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Example 26
Resulting triples of Step 2.

1 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet;
2 <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> qb:structure newG:newDSD .
3 newG:newDSD a qb:DataStructureDe�nition ;
4 qb:component [ qb4o:level sdmx−dimension:refArea ] ;
5 qb:component [ qb:measure sdmx−measure:obsValue ;
6 qb4o:aggregateFunction qb4o:Sum ] .
7 sdmx−dimension:refArea a qb4o:LevelProperty .
8 sdmx−measure:obsValue a qb:MeasureProperty .

Line 6 presents the aggregate function that is assigned to a measure by the grouping
mechanism via a blank node. We use the SUM (i.e., qb4o:Sum) aggregate function as
an example, while in general it depends on the input mapping (i.e., MAggMap).

1.4 Definition of the dimension hierarchies

We now construct the dimension hierarchies. As explained in Section 3,
QB4OLAP reuses the qb:DimensionProperty, however with different seman-
tics than in QB: while in the latter, a dimension represents a point at a fixed
granularity, QB4OLAP considers a dimension to contain points at different
granularities. Therefore, in QB4OLAP, a QB dimension becomes a dimension
level (see Step 1) and a dimension represents a set of levels that are hierarchi-
cally organized. Thus, the final cube schema Sqb4o is created by updating S2

qb4o
and adding of additional sets of triples defining the new semantics. For their
definition we use certain additional inputs about the structure of dimensions
(e.g., about new dimension levels and dimension hierarchies). In the preface
of this Appendix we have shown how to compute the inputs to this step.

The general process is as follows. First, we update the set of levels Lqb4o
obtained in Step 1, with the new levels that will define the dimension hier-
archies. These new levels are specified in NewLevSet as a set of IRIs. Each
level can have one or more level attributes defined in the LAqb4o set of triples
(see Definition 2) added to the final cube schema Sqb4o. They are specified
by the input set of IRIs LAttSet. Once we have all the levels and their at-
tributes, we use the input DimSet (a set of dimension IRIs) to create the new
set of dimensions Dqb4o in the complete cube schema Sqb4o. Then, the set of
hierarchies Hqb4o that represents the hierarchically ordered levels in the di-
mensions is added to Sqb4o. For this, the input HierSet (a set of hierarchy
IRIs) is used. Finally, we add to Sqb4o the set of hierarchy steps HSqb4o that
represents parent-child relationships between two levels. For this, we use the
input HStepSet, a set of hierarchy step IDs.

Once levels, level attributes, dimensions, hierarchies, and hierarchy steps
are defined, we must correlate them using the QB4OLAP properties. For this,
we use the mappings MapLAttribute2L through MapHStep2C in the input list
(see the Appendix preface). The MapLAttribute2L mapping associates level
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attributes with levels (defining both, the “direct” association, and its “in-
verse”, e.g., telling that a level has an attribute, and that an attribute belongs
to a dimension level, respectively); MapH2D links hierarchies with dimen-
sions; MapH2L links hierarchies with levels; MapHStep2ParentL associates a
hierarchy step with its parent level, while MapHStep2ChildL does the same
with its child level. Finally, MapHStep2H associates a hierarchy step with
the hierarchy and MapHStep2C links a hierarchy step with its corresponding
cardinality.

The output of this step is the complete cube schema Sqb4o. The details of the
step are presented below.

Step 3. Definition of the dimension hierarchies
INPUT: S2

qb4o, NewLevSet, DimSet, HierSet, LAttSet, HStepSet, MapLAttribute2L,
MapH2D, MapH2L, MapHStep2ParentL, MapHStep2ChildL, MapHStep2H,
MapHStep2C
OUTPUT: Sqb4o

Step 3.1. Define new levels:

• Lqb4o ∪= {createNewLevel(newL), newL ∈NewLevSet}, where createNewLe-
vel is a function that, for each level IRI in NewLevSet, produces the corre-
sponding triple using the qb4o:LevelProperty.

Triples pattern added to Lqb4o:
lIRI a qb4o:LevelProperty, where lIRI is the IRI of the new level. For
instance, a triple related to the running example:

1 newG:region a qb4o:LevelProperty .

Step 3.2. Define level attributes:

• LAqb4o ∪= {createLevelAttribute(attr), attr ∈ LAttSet}, where createLevel-
Attribute is a function that, for each attribute IRI in LAttSet, produces the
corresponding triple using the qb4o:LevelAttribute.

Triples pattern added to LAqb4o:
laIRI a qb4o:LevelAttribute, where laIRI is the IRI of the new level at-
tribute. For instance, a triple related to the running example:

1 newG:label a qb4o:LevelAttribute .

Step 3.3. Define dimensions:

• Dqb4o ∪= {createDimension(dim), dim ∈ DimSet}, where createDimension
is a function that, for each dimension IRI in DimSet, produces the corre-
sponding triple using the qb:DimensionProperty.

Triples pattern added to Dqb4o:
dIRI a qb:DimensionProperty, where dIRI is the IRI of the new dimension.
For instance, a triple related to the running example:
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1 newG:geoDimension a qb:DimensionProperty .

Step 3.4. Define hierarchies:

• Hqb4o ∪= {createHierarchy(hier), hier ∈ HierSet}, where createHierarchy is
a function that, for each hierarchy IRI in HierSet, produces the corresponding
triple using the qb4o:Hierarchy.

Triples pattern added to Hqb4o:
hIRI a qb4o:Hierarchy, where hIRI is the IRI of the new hierarchy. For
instance, a triple related to the running example:

1 newG:geoHierarchy a qb4o:Hierarchy .

Step 3.5. Define hierarchy steps:

• HSqb4o ∪= {createHStep(hStep), hStep ∈ HStepSet}, where createHStep is
a function that, for each hierarchy step ID in HStepSet, produces the corre-
sponding triple using the qb4o:HierarchyStep. Since QB uses blank nodes for
representing reification, we follow the same principle and use blank node
identifiers for hierarchy steps in the examples.

Triples pattern added to HSqb4o:
hsID a qb4o:HierarchyStep, where hsID is the ID of the new hierarchy step.
For instance, a triple related to the running example:

1 _:newHierarchyStep a qb4o:HierarchyStep .

Step 3.6. Associate dimension levels with level attributes:

• Lqb4o ∪= {linkLevelWithAttr(MapLAttribute2L(la), la), la ∈ LAqb4o}, whe-
re linkLevelWithAttr is a function that receives a pair (l, la), where l is an
instance of qb4o:LevelProperty and la is an instance of qb4o:LevelAttribute, and
produces a triple lla telling that the level l has the level attribute la. MapLAttri-
bute2L is a mapping that, given a level attribute, returns the level to which
the level attribute belongs.

Triples pattern added to Lqb4o:
lIRI qb4o:hasAttribute laIRI, where lIRI and laIRI are the IRIs of the
level and level attribute, respectively. For instance, a triple related to the
running example:

1 newG:region qb4o:hasAttribute newG:label .

• LAqb4o ∪= {linkAttrWithLevel(la, MapLAttribute2L(la)), la ∈ LAqb4o}, whe-
re linkAttrWithLevel is a function that receives a pair (la, l), where la and l have
the same meaning as above, and produces a triple lal telling that the level at-
tribute la belongs to the level l.

Triples pattern added to LAqb4o:
laIRI qb4o:inLevel lIRI, where laIRI and lIRI are the IRIs of the level
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attribute and level, respectively. For instance, a triple related to the running
example:

1 newG:label qb4o:inLevel newG:region .

Step 3.7. Associate dimensions with hierarchies:

• Dqb4o ∪= {linkDimWithHier(MapH2D(h), h), h ∈ Hqb4o}, where linkDim-
WithHier is a function that receives a pair (d, h), where d is an instance of
qb:DimensionProperty and h is an instance of qb4o:Hierarchy, and produces a
triple dh telling that the dimension d has the hierarchy h. MapH2D is a map-
ping that, given a hierarchy, returns the dimension to which the hierarchy
belongs.

Triples pattern added to Dqb4o:
dIRI qb4o:hasHierarchy hIRI, where dIRI and hIRI are the IRIs of the di-
mension and hierarchy, respectively. For instance, a triple related to the run-
ning example:

1 newG:geoDimension qb4o:hasHierarchy newG:geoHierarchy .

• Hqb4o ∪= {linkHierWithDim(h, MapH2D(h)), h ∈ Hqb4o}, where linkHier-
WithDim is a function that receives a pair (h, d), where h and d have the
same meaning as above, and produces a triple hd telling that the hierarchy h
belongs to the dimension d.

Triples pattern added to Hqb4o:
hIRI qb4o:inDimension dIRI, where hIRI and dIRI are the IRIs of the hi-
erarchy and dimension, respectively. For instance, a triple related to the
running example:

1 newG:geoHierarchy qb4o:inDimension newG:geoDimension .

Step 3.8. Associate hierarchies with levels:

• Hqb4o ∪= {linkHierWithL(h, MapH2L(h)), h ∈Hqb4o}, where linkHierWithL
is a function that receives a pair (h, l), where h is an instance of qb4o:Hierarchy
and l is an instance of qb4o:LevelProperty, and produces a triple hl telling that
the hierarchy h has the level l. MapH2L is a mapping that, given a hierarchy,
returns the level(s) it contains.

Triples pattern added to Hqb4o:
hIRI qb4o:hasLevel lIRI, where hIRI and lIRI are the IRIs of the hier-
archy and level, respectively. For instance, triples related to the running
example:

1 newG:geoHierarchy qb4o:hasLevel newG:region .
2 newG:geoHierarchy qb4o:hasLevel sdmx−dimension:refArea .

Step 3.9. Associate hierarchy steps with the hierarchy, levels, and cardinalities:
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• HSqb4o ∪= {linkHStepWithH(hs, MapHStep2H( hs)), hs ∈ HSqb4o}, where
linkHStepWithH is a function that receives a pair (hs, h), where hs is an in-
stance of qb4o:HierarchyStep and h is an instance of qb4o:Hierarchy, and pro-
duces a triple hsh telling that the hierarchy step hs belongs to the hierarchy
h. MapHStep2H is a mapping that, given a hierarchy step, returns the related
hierarchy.

Triples pattern added to HSqb4o:
hsID qb4o:inHierarchy hIRI, where hsID and hIRI are the hierarchy step
ID and the hierarchy IRI, respectively. For instance, a triple related to the
running example:

1 _:newHierarchyStep qb4o:inHierarchy newG:geoHierarchy .

• HSqb4o ∪= {linkHStepWithParentL(hs, MapHStep2ParentL(hs)), hs ∈
HSqb4o}, where linkHStepWithParentL is a function that receives a pair (hs, pl),
where hs is an instance of qb4o:HierarchyStep and pl is an instance of qb4o:Level-
Property, and produces a triple hspl telling that the hierarchy step hs has pl
as parent level. MapHStep2ParentL is a mapping that, given a hierarchy step,
returns the related parent level.

Triples pattern added to HSqb4o:
hsID qb4o:parentLevel plIRI, where hsID and plIRI are the hierarchy
step ID and the parent level IRI, respectively. For instance, a triple related
to the running example:

1 _:newHierarchyStep qb4o:parentLevel newG:region .

• HSqb4o ∪= {linkHStepWithChildL(hs, MapHStep2ChildL(hs)), hs ∈ HSqb4o},
where linkHStepWithChildL is a function that receives a pair (hs, cl), where hs
is an instance of qb4o:HierarchyStep and cl is an instance of qb4o:LevelProperty,
and produces a triple hscl telling that the hierarchy step hs has cl as child
level. MapHStep2ChildL is a mapping that, given a hierarchy step, returns the
related child level.

Triples pattern added to HSqb4o:
hsID qb4o:childLevel clIRI, where hsID and clIRI are the hierarchy step
ID and the child level IRI, respectively. For instance, a triple related to the
running example:

1 _:newHierarchyStep qb4o:childLevel sdmx−dimension:refArea .

• HSqb4o ∪= {linkHStepWithC(hs, MapHStep2C( hs)), hs ∈ HSqb4o}, where
linkHStepWithC is a function that receives a pair (hs, c), where hs is an instance
of qb4o:HierarchyStep and c is an instance of qb4o:Cardinality, and produces a
triple hsc telling that the hierarchy step hs has c as cardinality. MapHStep2C
is a mapping that, given a hierarchy step, returns the related cardinality.

Triples pattern added to HSqb4o:
hsID qb4o:pcCardinality cIRI, where hsID and cIRI are the hierarchy
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step ID and the cardinality IRI, respectively. For instance, a triple related
to the running example:

1 _:newHierarchyStep qb4o:pcCardinality qb4o:ManyToOne .

Step 3.10. Create the complete cube schema:

• Sqb4o = DSqb4o ∪DSDqb4o ∪Dqb4o ∪Mqb4o ∪ Lqb4o ∪LAqb4o ∪Hqb4o ∪HSqb4o
∪AFqb4o ∪ Cqb4o. Sqb4o represents a union of all its subsets with no additional
triples pattern. Note that AFqb4o and Cqb4o are predefined by QB4OLAP.

As we have already said, the output of this step is the complete cube
schema Sqb4o. Triple examples of new triples in Sqb4o are summed up in
Example 27.

Example 27
Resulting triples of Step 3.

1 #Create a level, a level attribute, a dimension, a hierarchy,
2 #and a hierarchy step
3 newG:region a qb4o:LevelProperty .
4 newG:label a qb4o:LevelAttribute .
5 newG:geoDimension a qb:DimensionProperty .
6 newG:geoHierarchy a qb4o:Hierarchy .
7 _:newHierarchyStep a qb4o:HierarchyStep .
8

9 #Link the level and level attribute
10 newG:region qb4o:hasAttribute newG:label .
11 newG:label qb4o:inLevel newG:region .
12

13 #Link dimensions and hierarchies
14 newG:geoDimension qb4o:hasHierarchy newG:geoHierarchy .
15 newG:geoHierarchy qb4o:inDimension newG:geoDimension .
16

17 #Link the hierarchy and levels, and hierarchy step
18 # with all related instances
19 newG:geoHierarchy qb4o:hasLevel newG:region .
20 newG:geoHierarchy qb4o:hasLevel sdmx−dimension:refArea .
21 _:newHierarchyStep qb4o:inHierarchy newG:geoHierarchy .
22 _:newHierarchyStep qb4o:parentLevel newG:region .
23 _:newHierarchyStep qb4o:childLevel sdmx−dimension:refArea .
24 _:newHierarchyStep qb4o:pcCardinality qb4o:ManyToOne .

Line 3 shows a triple defining a new level, as a result of Step 3.1. Analogously, line
4 shows a triple defining a new level attribute as a result of Step 3.2. Lines 5 and 6,
define a dimension and a hierarchy, resulting from applying Step 3.3. and Step 3.4.,
respectively. Then, line 7 defines a hierarchy step as a result of Step 3.5. Lines 10
– 11 link a level and a level attribute as the product of Step 3.6., and lines 14 – 15
link a dimension and a hierarchy showing the result of Step 3.7. Finally, lines 19 –
20 associate a hierarchy with its levels as results of Step 3.8. while lines 21 – 24 link
a hierarchy step and its hierarchy, levels, and cardinality as the triples produced in
Step 3.9.
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1.5 Annotation of the cube instances

Once the new cube schema is defined, we need to link the level members
with their schema definitions, i.e., populate the dimension level instances.
Moreover, we link the level members with their level attribute instances and
copy the observations to the new QB4OLAP graph. The first input of the
step is MapChild2Parent that maps child level members to their parent level
members. Next input is MapLInstance2L that maps level members to their
levels. The MapLInstance2LAInstance input maps level members and level
attribute instances. Then, the set of cube instances Iqb = DIqb ∪Oqb, where
DIqb defines dimension instances and Oqb defines observations. The last input
is the complete new cube schema Sqb4o. The output of the step is the set of
new cube instances Iqb4o = LIqb4o ∪Oqb4o ∪ LAIqb4o. The details of the step are
presented below.

Step 4. Annotation of the cube instances
INPUT: MapChild2Parent, MapLInstance2L, MapLInstance2LAInstance, Iqb, Sqb4o
OUTPUT: Iqb4o

Step 4.1. Copy dimension instances from Gqb as base level instances in Gqb4o:

• LIqb4o ∪= {copyAsLevelInstance(di), di ∈ DIqb}, where copyAsLevelInstance
is a function that receives a triple di representing a dimension instance in QB
and returns a triple li defining the subject (i.e., an IRI) of the triple di as a
level instance in QB4OLAP, using the qb4o:LevelMember property.

Triples pattern added to LIqb4o:
liIRI a qb4o:LevelMember, where liIRI is the IRI of the level instance ob-
tained from di. For instance, a triple related to the running example:

1 country:RS a qb4o:LevelMember .

Step 4.2. Add coarser granularity level instances:

• LIqb4o ∪= {MapChild2Parent(li), li ∈ LIqb4o}, where MapChild2Parent is a
mapping that, for a given dimension level instance, returns its corresponding
parent level member. This object is then defined as a level instance, using the
qb4o:LevelMember property.

Triples pattern added to LIqb4o:
liIRI a qb4o:LevelMember, where liIRI is the IRI of the new level instance,
returned by MapChild2Parent. For instance, a triple related to the running
example:

1 region:ECS a qb4o:LevelMember .

Step 4.3. Copy observations:

• Oqb4o ∪= {o, o ∈ Oqb}, where o is an observation from Oqb that is added
to Oqb4o.
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Triples pattern added to Oqb4o:
oIRI a qb:Observation, oIRI qb:dataSet dsIRI, oIRI lIRI liIRI, and
oIRI mIRI mvalue, where oIRI, dsIRI, lIRI, liIRI, and mIRI are the IRIs
of the observation, data set, level, level instance, and measure, respectively,
while mvalue is a literal representing measure value. For instance, triples
related to the running example:

1 <http://worldbank.270a.info/dataset/world−bank−indicators/
2 CM.MKT.LCAP.CD/RS/2012>
3 a qb:Observation ;
4 qb:dataSet dataset:CM.MKT.LCAP.CD ;
5 property:indicator indicator:CM.MKT.LCAP.CD ;
6 sdmx−dimension:refArea country:RS ;
7 sdmx−measure:obsValue 7450560827.04874 ;

Step 4.4. Specify the level for each level instance:

• LIqb4o∪ = {linkToLevel(li, MapLInstance2L(li)), li ∈ LIqb4o}, where linkTo-
Level is a function that receives a pair (li, l), where li is an instance of qb4o:Level-
Member and l is an instance of qb4o:LevelProperty, and produces a triple lil
telling that the level member li belongs to the level l. MapLInstance2L is a
mapping that, given a level instance, returns the level it belongs to.

Triples pattern added to LIqb4o:
liIRI qb4o:memberOf lIRI, where liIRI and lIRI are the IRIs of the level
member and level, respectively. For instance, a triple related to the running
example:

1 country:RS qb4o:memberOf sdmx−dimension:refArea .

Step 4.5. Specify rollup (i.e., parent–child) relationships between level instances:

• LIqb4o∪ = {linkRollUps(MapChild2Parent(li), li), li ∈ LIqb4o}, where link-
RollUps is a function that receives a pair (pli, cli), where pli and cli are in-
stances of qb4o:LevelMember, and produces a triple pcli telling that cli rolls-up
to pli using the skos:broader property.

Triples pattern added to LIqb4o:
cliIRI skos:broader pliIRI, where cliIRI and pliIRI are the IRIs of the
child and parent level instances, respectively. For instance, a triple related to
the running example:

1 country:RS skos:broader region:ECS .

Step 4.6. Add level attribute instances:

• LAIqb4o ∪= {addLevelAttInstance(li, MapLInstance2LAInstance(li)), li ∈
LIqb4o}, where addLevelAttInstance is a function that receives li and a pair
(la, lai), where li is an instance of qb4o:LevelMember, la is an instance of qb4o:Le-
velAttribute, and lai is a level attribute value (IRI or literal), and produces a
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triple lilalai telling that li has an attribute la with the value lai. MapLInstance2-
LAInstance is a mapping that, for a given dimension level instance, returns its
level attribute–level attribute value pair(s).

Triples pattern added to LAIqb4o:
liIRI laIRI laiIRI or liIRI laIRI laiLiteral, where liIRI, laIRI, and
laiIRI are the IRIs of the level instance, level attribute, and level attribute
value, respectively, and laiLiteral is a literal representing level attribute
value. For instance, a triple related to the running example:

1 country:RS schema:capital ``Belgrade''^^xsd:string .

Step 4.7. Create new cube instances:

• Iqb4o = LIqb4o ∪Oqb4o ∪ LAIqb4o. Iqb4o represents a union of LIqb4o (i.e., the
level members), Oqb4o (i.e., observations), and LAIqb4o (i.e., the level attribute
instances) with no additional triples pattern.

The output of this step is Iqb4o. Triple examples of Iqb4o are summed up in
Example 28. This example follows our running example and is an extension
of previous ones.

Example 28
Resulting triples of Step 4.

1 country:RS a qb4o:LevelMember .
2 region:ECS a qb4o:LevelMember .
3 <http://worldbank.270a.info/dataset/world−bank−indicators/
4 CM.MKT.LCAP.CD/RS/2012>
5 a qb:Observation ;
6 qb:dataSet dataset:CM.MKT.LCAP.CD ;
7 property:indicator indicator:CM.MKT.LCAP.CD ;
8 sdmx−dimension:refArea country:RS ;
9 sdmx−measure:obsValue 7450560827.04874 ;

10

11 country:RS qb4o:memberOf sdmx−dimension:refArea .
12 country:RS skos:broader region:ECS .
13 country:RS schema:capital ``Belgrade''^^xsd:string .

Result examples of Step 4.1. and Step 4.2. are illustrated in lines 1 and 2, respectively.
Lines 3 – 9 illustrate copying of the part of observation from Example 2 as result
example of Step 4.3. Then, line 11 presents the result example of Step 4.4. Finally,
line 12 illustrates the result example of Step 4.5. and line 13 the result example of
Step 4.6.

140



Chapter 5

SM4MQ: A Semantic Model
for Multidimensional
Queries

The paper is to be submitted to a conference.

Abstract

On-Line Analytical Processing (OLAP) is a data analysis approach to support decision-
making. On top of that, Exploratory OLAP is a novel initiative for the convergence
of OLAP and the Semantic Web (SW). This convergence enables the use of OLAP
techniques on external data, such as the SW, to analyze the publicly available data
in a user-friendly manner. Moreover, OLAP approaches exploit different metadata
artifacts (e.g., queries) to assist the user with the analysis. However, modeling and
sharing of most of these artifacts are typically overlooked. Thus, in this paper we focus
on the query metadata artifact in the Exploratory OLAP context. As OLAP is based
on the underlying multidimensional (MD) data model we denote such queries as
MD queries and propose SM4MQ: A Semantic Model for Multidimensional Queries.
SM4MQ is an RDF-based formalization of MD queries and it captures semantics of
the related OLAP operations at the conceptual level. Thus, it enables sharing and
reuse of these queries on the SW. Furthermore, we propose a method to automate the
exploitation of queries by means of SPARQL (the standard query language for RDF).
We apply our method to a use case of transforming a query from SM4MQ to a vector
representation that enables computing of their similarities (e.g., using cosine similar-
ity). For this use case, we also developed a prototype and used a set of MD queries to
perform an evaluation. This way, we exemplify practical benefits of using SM4MQ
to automate exploitation of MD queries. Overall, this paper provides foundations
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for the modeling and sharing of MD queries on the SW that as well facilitate their
further processing, e.g., for user assistance purposes.

1 Introduction

On-Line Analytical Processing (OLAP) is a well-established approach for data
analysis to support decision-making [2]. Due to its wide acceptance and suc-
cessful use by non-technical users, novel tendencies endorse broadening of
its use from solutions working with in-house data sources to analysis consid-
ering external and non-controlled data. A vision of such settings is presented
as Exploratory OLAP [4] promoting the convergence of OLAP and the Se-
mantic Web (SW). The SW provides a technology stack for publishing and
sharing of data with their semantics and many public institutions, such as
Eurostat, already use it to make their data publicly available. The Resource
Description Framework (RDF) [28] is the backbone of the SW representing
data as directed triples that form a graph where each triple has its semantics
defined. Querying of RDF data is supported by SPARQL [82], the standard
query language for RDF.

To facilitate data analysis, OLAP systems typically exploit different meta-
data artifacts (e.g., queries) to assist the user with analysis. However, al-
though extensively used, little attention is devoted to these metadata arti-
facts [104]. This originates from traditional settings where very few (meta)-
data are open and/or shared. Thus, [104] proposes the Analytical Metadata
(AM) framework, which defines AM artifacts such as schema and queries
that are used for user assistance in settings such as Exploratory OLAP. In
this context, analysis should be collaborative and therefore these metadata
artifacts need to be open and shared among different systems. Thus, SW
technologies are good candidates to model and capture these artifacts.

A first step for (meta)data sharing among different systems is to agree
about (meta)data representation, i.e., modeling. As RDF uses a triple repre-
sentation that is generic, the structure of specific (meta)data models is defined
via RDF vocabularies providing semantics to interpret the (meta)data. Thus,
the AM artifacts are modeled in [105] proposing the SM4AM metamodel.
Due to the heterogeneity of systems, the metamodel abstraction level is used
to capture the common semantics and organization of AM. Then, metadata
models of specific systems are defined at the model level instantiating one or
more AM artifacts. For instance, the schema artifact for Exploratory OLAP
can be represented using the QB4OLAP vocabulary to conform data to a mul-
tidimensional (MD) data model for OLAP on the SW [106]. QB4OLAP further
enables running of MD queries to perform OLAP on the SW [102]. However,
the representation of these queries to support their sharing, reuse, and more
extensive exploitation on the SW is yet missing. Thus, in the present paper
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we propose a model for MD queries and explain how it not only supports
sharing and reuse but can also be used to facilitate metadata processing, e.g.,
for user assistance exploitations such as query recommendations.

In particular, the contributions of this paper are:

• We propose SM4MQ: A Semantic Model for MD Queries formalized as
an RDF-based representation of typical OLAP operations. The model
captures the semantics of common OLAP operations at the conceptual
level and supports their sharing and reuse via the SW.

• We define a method to automate the exploitation of SM4MQ queries by
means of SPARQL. The method is exemplified on a use case to trans-
form a query from SM4MQ to a vector representation. The use case
shows an example of generating vectors (forming a matrix) as analysis-
ready data structures that are typically used in recommender systems
to compare different items [8] and existing approaches such as [25] use
vectors for query recommendations.

• We developed a prototype and used a set of MD queries to evaluate
our approach for the chosen use case. The evaluation shows that even
non-technical users can conduct this task thanks to the automatically
generated SPARQL queries based on the SM4MQ semantics.

The remainder of the paper is organized as follows. The next section ex-
plains the preliminaries of our approach. Then, Section 3 proposes the MD
query model. Section 4 defines a method to automate the exploitation of
SM4MQ queries and presents the use case of transforming these queries into
a vector representation. Section 5 discusses the results of the performed eval-
uation. Finally, Section 6 discusses the related work and Section 7 concludes
the paper.

2 Background

For understanding our approach, we introduce the necessary preliminaries
and a running example used throughout the paper. First, we explain the MD
model and the most popular OLAP operations. Then, we discuss the use of
SW and QB4OLAP for MD models. The formalization of QB4OLAP concepts
and OLAP operations can be found in [34] and in the present paper we pro-
vide the necessary intuition for understanding the proposed query model.
The running example is incrementally introduced in each of the subsections.

2.1 Multidimensional Model and OLAP Operations

The MD model organizes data in terms of facts, i.e., data being analyzed, and
dimensions, i.e., analytical perspectives [53]. Dimensions consist of levels rep-
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resenting different data granularities that are hierarchically organized into
dimension hierarchies. Levels can have attributes that further describe them.
Facts contain measures that are typically numerical values being analyzed.
Data conforming to an MD schema are referred to as a data cube that is be-
ing navigated (e.g., data granularity is changed) via OLAP operations. For
instance, Figure 5.1 illustrates an MD schema (using DFM notation [39]) cre-
ated for the European Union asylum applicants data set available in a Linked
Data version of the Eurostat data1. In the data set, the number of asylum
applications as a measure, can be analyzed according to the age, sex, type of
application (Asyl_app in the figure), destination country (Geo in the figure),
country of origin (Citizenship in the figure), and month of application (Ref-
Period in the figure) levels of related dimensions. Furthermore, the data can
be aggregated from months to quarters and likewise to years, from country of
origin to continent, and from destination country to continent or government
type as additional levels in related dimensions.

Fig. 5.1: Asylum Data set Schema

To navigate a data cube, OLAP operations are used and different OLAP
algebras have been proposed as discussed in [84]. In the present paper, we
consider the set of OLAP operations used in [34] and [32] that are defined at
the conceptual level as discussed in [29]. The considered OLAP operations
and their semantics are described in the following.

The ROLL-UP operation aggregates data from a finer granularity level
to a coarser granularity level in a dimension hierarchy of a data cube. For
instance, in case of the schema in Figure 5.1 data can be aggregated from
the month level to the year level for the RefPeriod dimension. Similarly,
the DRILL-DOWN operation as its inverse disaggregates data from a coarser
granularity level to a finer granularity level in a dimension hierarchy of a
data cube. Furthermore, the DICE operation takes a data cube and applies
a boolean condition expressed over a level (attribute) and/or measure value
over it. For instance, for the schema in Figure 5.1 a user may be interested in
number of asylum applications only for the years 2009 and 2010. Finally, the
SLICE operation removes a dimension or a measure from a data cube. For

1http://eurostat.linked-statistics.org/
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instance, a user may not be interested in the age of the applicants and thus
remove the related dimensions.

2.2 The Semantic Web Technologies

As mentioned in the introduction, the SW technologies provide means for
flexible (meta)data representation and sharing. RDF that is the SW back-
bone, represents data in terms of directed subject - predicate - object triples
that comprise an RDF graph where subjects and objects are nodes and pred-
icates are edges. Subject and predicate are represented with IRIs, i.e., unique
resource identifiers on the SW, while objects can either be IRIs or literal val-
ues. Furthermore, RDF supports representation of the data semantics via the
rdf:type property. In the context of sharing, the Linked Data initiative [45]
strongly motivates interlinking of RDF data on the SW to support identifi-
cation of related / similar / same concepts. Finally, the RDF data can be
queried with SPARQL [82], the standardized query language for RDF, which
supports their systematic exploration.

To support the publishing of MD data and their OLAP analysis directly
on the SW, two RDF vocabularies were proposed, namely the RDF Data Cube
(QB) and QB4OLAP vocabularies. As the former vocabulary was primarily
designed for statistical data sets, the latter one was proposed to extend QB
with necessary concepts to fully support OLAP. A detailed discussion on this
is presented in [106] where it is also explained how existing QB data sets
can be enriched with the QB4OLAP semantics. Thus, in the present paper
we consider QB4OLAP for the representation of the MD data on the SW and
Figure 5.2 illustrates how the MD schema from Figure 5.1 can be represented
with QB4OLAP. Note that for simplicity reasons we represent only the finest
granularity levels.

ex:migr_asyappctzm

property:age
qb:component

qb4o:level

sdmx-dimension:refPeriodqb:component
qb4o:level

sdmx-measure:obsValueqb:component
qb:measure

property:geo
qb:component

qb4o:level

qb4o:Sum

qb4o:aggregateFunction

property:sexqb:component
qb4o:level

property:citizenqb:component
qb4o:level

property:asyl_appqb:component
qb4o:level

Fig. 5.2: Asylum Data set QB4OLAP Schema Representation

Once a data cube is published using QB4OLAP, the OLAP operations in-
troduced in the previous subsection can be performed. However, a metadata
model for representing these queries is yet missing. Such a model can be cre-
ated by instantiating the SM4AM metamodel (see [105]). The metamodel rep-
resents the query AM artifact with several meta classes that we explain next.
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First, the sm4am:UAList element is a complex element that combines atomic
elements that include data exploration actions (i.e., sm4am:DataExploration-
Action with its sm4am:ManipulationAction subclass). Thus, the metamodel el-
ements can be instantiated as an MD query that combines OLAP operations
and we present the details in the next section.

3 A Semantic Model for Multidimensional Queries

In this section, we propose SM4MQ as an RDF-based model to represent
the introduced OLAP operations. The model is created by instantiating the
related SM4AM metamodel elements. It is built around the QB4OLAP model
for representing an MD schema and explained with examples related to the
running example schema.

3.1 MD Query Model

Figure 5.3 illustrates the complete SM4MQ query model. Furthermore, the
figure also shows how SM4MQ relates to the SM4AM metamodel concepts
and reuses concepts from the QB, QB4OLAP, and RDFS vocabularies. The
central concept of the model is sm4mq:Query representing a query. A query
can be related to a simply ordered set of OLAP operations (i.e., subclasses of
sm4mq:Operation via subproperties of sm4mq:hasOperation, namely sm4mq:-

hasRollUp, sm4mq:hasDrillDown, sm4mq:hasDimDice, sm4mq:hasMeasDice, sm4-
mq:hasDimSlice, and sm4mq:hasMeasSlice. OLAP operations are organized in
a simply ordered set as each of them directly relates to the query and they are
mutually ordered, e.g., the order of ROLL-UP and DRILL-DOWN operations
is relevant to determine the final granularity of the data cube. Each operation
relates to a data cube schema (i.e., qb:DataStructureDe�nition) via sm4mq:over-

Cube and to a data set (i.e., qb:DataSet) to which data belong to via sm4mq:-

forDataSet. This way, operations belonging to a single query can operate over
different schemata and data sets (inspired by the federated queries mech-
anism in SPARQL). In the next subsections, we explain each of the OLAP
operations. Note that we follow the formalization given in [32] and we also
enrich the model with additional information needed to facilitate sharing.

3.2 ROLL-UP and DRILL-DOWN Operations

Following the definition in [32], ROLL-UP (i.e., sm4mq:RollUp) is represented
with a data cube schema (i.e., qb:DataStructureDe�nition), a dimension (i.e.,
qb:DimensionProperty), and a level to roll-up to (i.e., qb4o:LevelProperty). In
addition to these concepts, SM4MQ also represents the level from which the
roll-up is performed, its order in the query, and the dimension hierarchy (i.e.,
qb4o:Hierarchy) used. The related properties are illustrated in Figure 5.3. In
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Fig. 5.3: A Semantic Model for Multidimensional Queries
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Fig. 5.4: ROLL-UP Instance Example

general, the roll-up from and hierarchy concepts can be inferred from a se-
quence of OLAP operations, however their explicit representations makes the
ROLL-UP operation model self-contained such that it can be easily shared.
The SM4MQ representation of the ROLL-UP example from Section 2 of ag-
gregating data from the month to the year level over the running example
schema is illustrated in Figure 5.4. The example shows the ROLL-UP in-
stance and also includes the related SM4MQ concepts (depicted in gray).
The top left unshaded triple shows the data set for ex:RollUp1 and the two
triples below the data structure definition and the operation order, respec-
tively. Moreover, the unshaded triples to the right from ex:RollUp1 show its
dimension, hierarchy, and from and to levels, respectively.

Following the definition in [32], DRILL-DOWN (i.e., sm4mq:DrillDown)
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is represented with a data cube schema (i.e., qb:DataStructureDe�nition, a di-
mension (i.e., qb:DimensionProperty), and a level to drill-down to (i.e., qb4o:Le-
velProperty). In addition to these concepts, SM4MQ also represents the level
from which the drill-down is performed, its order in the query, and the di-
mension hierarchy (i.e., qb4o:Hierarchy) used for the same reasons as in the
case of ROLL-UP. An example of DRILL-DOWN is analogous to the ROLL-
UP one and we omit it for space reasons.

3.3 DICE Operation

Following the definition in [32], DICE (i.e., sm4mq:Dice) is represented with
a data cube schema (i.e., qb:DataStructureDe�nition) and a boolean condition
(i.e., sm4mq:Predicate) over a dimension (i.e., qb:DimensionProperty) or a mea-
sure (i.e., qb4o:MeasureProperty). We represent these two cases separately for
the atomicity of operations that also facilitates sharing. Thus, in SM4MQ we
create two subclasses for DICE, sm4mq:DimDice as DICE applied over a di-
mension and sm4mq:MeasDice as DICE applied over a measure. The former
one relates to a dimension, hierarchy, level, and optionally level attribute,
while the latter relates to a measure. For both cases we define the order and
consider a set of relational predicates that includes equals to (i.e., sm4mq:-
Equal), not equals to (i.e., sm4mq:NotEqual), greater than (i.e., sm4mq:Greater),
greater than or equal (i.e., sm4mq:GreaterEq), less than (i.e., sm4mq:Less), and
less than or equal (i.e., sm4mq:LessEq). Each specific relational operator is an
instance of the sm4mq:Predicate class (similarly to the case of aggregate func-
tions in QB4OLAP), and it is related to rdfs:Literal used for the representation
of the concrete values. The SM4MQ representation of the DICE example from
Section 2 where a user is interested in number of asylum applications only
for the years 2009 and 2010 for the running example schema (see Figure 5.1)
is illustrated in Figure 5.5. The example shows the DICE instance and also
includes the related SM4MQ concepts (depicted in gray). The top left un-
shaded triple shows the data set for ex:Dice1 and the two triples below the
data structure definition and the operation order, respectively. Moreover, the
unshaded triples to the right from ex:Dice1 show its dimension, hierarchy,
level, and predicate, respectively. The two unshaded triples on the bottom
right link the predicate with related values.

3.4 SLICE Operation

Following the definition in [32], SLICE (i.e., sm4mq:Slice) is represented with
a data cube schema (i.e., qb:DataStructureDe�nition) and a dimension (i.e.,
qb:DimensionProperty) or a measure (i.e., qb4o:MeasureProperty). Again, we
represent these two cases separately for the atomicity of operations that also
facilitates sharing. Thus, in SM4MQ we create two subclasses for SLICE,
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sm4mq:DimSlice as SLICE applied over a dimension and sm4mq:MeasSlice as
SLICE applied over a measure.For both cases we also define the order. The
SM4MQ representation of the SLICE example from Section 2 where a user
is not interested in the age of the applicants and thus removes the related
dimensions for the running example schema (see Figure 5.1) is illustrated in
Figure 5.6. The example shows the SLICE instance and also includes the re-
lated SM4MQ concepts (depicted in gray). The top left unshaded triple shows
the data set for ex:Slice1 and the two triples below the data structure defini-
tion and the operation order, respectively. Moreover, the top right unshaded
triple relates ex:Slice1 to the dimension.

4 Exploiting SM4MQ

In this section, we discuss the benefits of having a semantic model for MD
queries. First, we discuss why modeling and capturing of the MD query
semantics is essential for their exploitation. We then propose a method on
how SM4MQ semantics can serve to automate the exploitation of SM4MQ
queries by means of SPARQL. We also present a use case that shows how can
the method be used to define the query transformations from SM4MQ to a
vector representation.
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4.1 Modeling and Semantics

We first explain the challenges behind the current state-of-the-art to represent
queries and explain how SM4MQ overcomes them. MD queries in existing
approaches are typically stored in query logs [104]. From logs, queries are
parsed to extract semantics needed for further processing. The parsing is
dependent on the particular technology used (e.g., SQL) where different pat-
terns need to be applied to identify OLAP operations introduced in Section
2. Once identified, the OLAP operations are represented with internal data
structures and any processing of the queries is directly dependent on these
internals. In the context of Exploratory OLAP [4] and next generation BI
systems [104], this situation leads to several challenges:

1. Repetitive model designing of MD queries – Instead of considering query
metadata as a first-class citizen and conforming them to a dedicated
model, repetitive efforts are invested into designing ad-hoc query rep-
resentations for each system.

2. Repetitive adjustments for exploitation – The use of hard-coded and ad-hoc
query models hinders the use of existing algorithms for their exploita-
tion. As the internals on query representation are typically not avail-
able, existing algorithms need to each time be adjusted to a specific
query model used in a system.

3. Burdensome query sharing – Overlooking of query modeling obstructs
query reuse among different systems. This becomes especially relevant,
considering Exploratory OLAP and public data sets on the SW where
not only data but also queries can be shared among the users. Moreover,
once modeled, queries can be made publicly available so that users can
exploit them for different purposes.

4. The need for IT people support – Working with internal query represen-
tation requires technical skills that are not characteristic of OLAP end-
users. Thus, preparing these queries (e.g., extracting the relevant se-
mantics) requires the support of IT people. In the OLAP context, the
data preparation by means of a correct ETL process may take up to 80%
of the entire DW project as reported by Gartner [95]; illustrating the
enormous efforts even from trained professionals.

The SM4MQ model for MD queries captures the MD semantics at the
conceptual abstraction level using the SW technologies. Thus, it overcomes
the previous challenges in the following way:

1. SM4MQ is a model of MD queries covering the OLAP operations spec-
ified in Section 2 that are commonly accepted and used in OLAP sys-
tems. Furthermore, the use of RDF makes it flexible to be extended with
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additional operations. Moreover, it can be linked with other RDF-based
models using Linked Data principles (see Section 2).

2. Being an RDF-based model, SM4MQ provides a common semantics
which exploitation algorithms can query in a standardized way via
SPARQL.

3. The sharing of queries conforming to SM4MQ directly supports their
sharing via Linked Data principles, i.e., publishing on the SW in the
RDF format. This way, different systems can open their queries to be-
come available.

4. The semantics of MD queries captured at the conceptual abstraction
level is understandable even for non-technical OLAP end-users [34,106].
It can automatically be transformed into different data structures (e.g.,
vectors) via SPARQL, the standard query language for RDF [82], and
thereby benefit from algorithms working over the related structures
(e.g., computing cosine similarity between vectors).

Once MD queries are represented with SM4MQ, we can use off-the-shelf
tools (i.e., RDF triple stores) to store and query them in a standardized man-
ner by using SPARQL. For example, queries that contain the roll-up from
Figure 5.4 can be retrieved with Query 1.

Query 1
Retrieve Queries Containing the Figure 5.4 Roll-up

1 SELECT DISTINCT ?q

2 WHERE {

3 ?q rdf:type sm4mq:Query ;

4 sm4mq:hasRollUp ?r .

5 ?r rdf:type sm4mq:RollUp ;

6 sm4mq:forDataSet ex:migr_asyappctzm_DS ;

7 sm4mq:overCube ex:migr_asyappctzm_DSD ;

8 sm4mq:ruDimension ex:TimeDimension ;

9 sm4mq:ruHierarchy ex:TimeHierarchy ;

10 sm4mq:ruFrom sdmx-dimension:refPeriod ;

11 sm4mq:ruTo ex:Year .

12 }

We next propose a method to automatize transformations of queries or
other metadata from our RDF-based model to other representations (i.e.,
models or structures) used for further exploitations, e.g., query comparison.
The method is exemplified on a use case of creating a vector representation
of the SM4MQ queries.

4.2 Automating SM4MQ Exploitation

SM4MQ supports automation of query exploitations in two ways. First, the
MD semantics of queries can be directly retrieved via SPARQL, instead of
extracting and parsing queries like in typical settings. Second, the con-
ceptual abstraction level of OLAP operations in SM4MQ makes the model
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understandable by non-technical OLAP users. Similar to how OLAP front-
ends support the automation of queries exploring MD data based on the MD
model, the SM4MQ model can support front-ends that automate exploration
of MD queries. Thus, such front-ends release the user of even using SPARQL.
For instance, an RDF-based model can be visualized as a graph and based
on the selection of its elements (nodes or edges), SPARQL queries can be
automatically generated to retrieve these elements and carry out automatic
transformations.

Using these benefits, we next propose a method defining the steps to
automate the transformation of queries from SM4MQ to other query rep-
resentations. We also provide a use case where we exemplify our claims
by transforming SM4MQ queries into analytical vectors that can be used to
perform advanced analysis such as query comparison and undertake recom-
mendations. Vector-based representations have been typically used to com-
pute similarities (e.g., the cosine similarity) that have been widely used in
recommender systems [8]. Therefore, several of the state-of-the-art query
recommendation approaches such as [25] use vectors to represent queries
and compute similarities (see [11]).

The method consists of the following tasks and subtasks:

1. Choosing the analytical structure,
2. Defining analytical features,

a. Selecting model element(s) to form analytical features,

b. Defining the level of detail for each analytical feature,

3. Populating the analytical structure,

a. Retrieving model instances, and

b. Computing values for each analytical feature.

Task 1. Choosing the analytical structure is the initial task where the tar-
get data structure needs to be chosen. The analytical structure then directly
determines the following tasks that define its analytical features and populate
the analytical structure. An analytical feature is a set of one or more model
elements (i.e., nodes or edges) representing a model characteristic, e.g., an
operation used in a query, that is relevant for the desired analysis, e.g., com-
parison of queries. Use Case. In the present paper, we focus on a vector
representation as an analytical structure to exemplify our method tasks.

Task 2. Defining analytical features identifies the elements of a given
model (e.g., SM4MQ in our case) that should be considered as analytical
features. As an analytical feature can involve one or more model elements,
it can either be atomic, i.e., consisting of one model element, or composite
including two or more model elements. We next explain the two subtasks
related to defining analytical features.
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Fig. 5.7: Selection of a Composite Feature for ROLL-UP

Task 2a. Selecting model element(s) to form analytical features is the task where
one or more model elements are selected to form an atomic or composite fea-
ture, respectively. Thus, it is performed for each analytical feature. SM4MQ
can be visualized as graph and the user can select the model element(s).
In this context, Figure 5.7 shows an example where the SM4MQ elements re-
lated to the subclasses of sm4mq:Operation are visualized as graph. Moreover,
the red marked elements are select by the user to define the ROLL-UP oper-
ation as analytical feature. Use Case. Such analytical feature will be a part of
the vector representation, i.e., will be represented with model elements, and
this is precisely defined in the next subtask.

When defining an atomic or a composite analytical feature, the following
reasoning applies:

• Starting from a chosen element of the model, in our case an MD query,
visit all the adjacent successor nodes (i.e., adjacent neighbors reached
via outgoing edges).

• If a successor node is to be considered alone, i.e., without its adjacent
successor nodes, it is considered as an atomic feature.

• Otherwise, if a successor node is to be considered together with its
successor nodes they form a composite feature. In this case, an edge
used to reach a successor node identifies that successor node. Thus, a
composite feature is a connected subgraph or the model graph.

Use Case. Analytical features will be a part of the vector representation,
i.e., they will be represented with vector elements. The starting node to look
for features in case of SM4MQ is sm4mq:Query. As the whole vector will rep-
resent a query, sm4mq:Query is not an analytical feature. Instead, the analyt-
ical features to be defined are different OLAP operations, i.e., the subclasses
of sm4mq:Operation, with their successor nodes (e.g., schema elements such
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Table 5.1: A Roll-up Piece of Vector Instance
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as level). As we consider that all the queries are run over the same data cube,
the data set and schema elements are omitted.

Task 2b. Defining the level of detail for each analytical feature relates to the
model elements forming analytical features. For each analytical feature, the
level of detail needs to be defined for each of the model elements forming that
feature. There are two possible levels of detail. One is the basic level of detail,
meaning that the model element in an analytical feature should be considered
without its instances. The other option is the comprehensive level of detail where
a model element in an analytical feature should be considered together with
its instances. Use Case. In a vector representation, this means that a model
element with the base level of detail takes a single vector element, e.g., if an
operation is used or not. Accordingly, in case of a model element with the
comprehensive level of detail, there is a vector element for each instance of
the model element, e.g., one vector element for each possible dimension that
can be used in an operation. This way, a vector length is defined by vector
elements needed for the model elements in each analytical feature.

As an example, we next define the level of detail in case of the ROLL-UP
operation as an analytical feature. Here, there should be a vector element
indicating if there is any ROLL-UP in the query (i.e., the basic level of de-
tail) and for each dimension used in one or more ROLL-UPs there should
be a sequence of vector elements (due to the comprehensive level of detail)
including: a vector element identifying the dimension, a vector element for
each dimension hierarchy, a vector element for each possible from-level, and
a vector element for each possible to-level. Note that the aggregate function
used in ROLL-UP is defined by the data structure definition and thus the
same for all queries. For example, Table 5.1 illustrates a part of vector in-
stance for the running example schema related to the ROLL-UP operation
from Figure 5.4. The non-zero values shown from the first vector element
to right specify that it is a ROLL-UP operation, over the dimension D1 and
hierarchy H1, from the RefPeriod level to the Year level.

Task 3. Populating the analytical structure focuses on taking a query in-
stance in SM4MQ and populating the chosen analysis-ready data structures.
This task depends on the analytical features definition from the previous task
and can be automatized with SPARQL query templates. It consists of the two
subtasks that we explain in the sequel. Use Case. For the vector representa-
tion, this means population of all vector element.
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Task 3a. Retrieving model instances is the task where template SPARQL
queries are defined to automatically retrieve the model elements instances
related to the analytical features. There are two types of templates. One
that retrieves all instances of the model elements that are nodes and belong
to one or more analytical features. The related SPARQL query is shown in
Query 2. Note that variables between two ’?’ are parameters that should be
replaced with the related IRIs, e.g., node IRIs in the previous case. This way,
all possible model element instances related to either atomic or composite
analytical features are retrieved, i.e., the space of all possible model instances
that can be used is defined.

Query 2
Retrieve Model Element Instaces

1 SELECT DISTINCT ?i

2 WHERE {

3 i? rdf:type ?nodeIRI? .

4 }

The other template retrieves the instances of graph patterns that includes
both nodes and edges related to composite analytical features. This way, all
model instances that are used in composite analytical features are retrieved.
For instance, in case of the ROLL-UP elements selected in Figure 5.7, they
can be retrieved with Query 3, where the ?q? parameter is a query IRI.

Query 3
Retrieve Roll-Ups for a Query

1 SELECT DISTINCT ?r ?d ?h ?fromL ?toL

2 WHERE {

3 ?q? rdf:type sm4mq:Query ;

4 sm4mq:hasRollUp ?r .

5 ?r rdf:type sm4mq:RollUp ;

6 sm4mq:ruDimension ?d ;

7 sm4mq:ruHierarchy ?h ;

8 sm4mq:ruFrom ?fromL ;

9 sm4mq:ruTo ?toL .

10 }

Use Case. Benefiting from the SM4MQ model, this task can be automatized
with Algorithm 3. The algorithm takes a metadata graph containing the
SM4MQ queries and QB4OLAP schema for a data set and returns the matrix
populated with vectors of all the queries. For simplicity of explanation we
consider that the graph contains metadata for a single data set. In lines
2 and 3, the algorithm first retrieves queries and schema triples and this
can be automatically performed with SPARQL queries based on the SM4MQ
and QB4OLAP semantics. Then, line 4 initializes the matrix, i.e., defines the
number of columns, based on the schema (see above for the vector instance
structure). The rest of the algorithm belongs to the following task and is
explained in the sequel.

Task 3b. Computing values for each analytical feature is the final task that
takes the model instances previously retrieved and processes them according
to the defined analytical features to populated the chosen analytical structure.
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This processing can be simple and result with values 1 or 0 to show if a
model element instance has been used or not in an analytical feature, or be
a customized function. Use Case. To populate vector elements, we apply a
simple computation and consider that the values of vector elements are 1 or
0 (meaning either the presence or absence of that element). Using this logic,
lines 5 to 13 of Algorithm 3 populate the matrix as follows. For each query, a
vector is created again based on the schema (see line 6), populated according
to the OLAP operations used in the query (see lines 7 to 12), and added to
the matrix (see line 13). The nested functions in lines 7 to 12 run SPARQL
queries and return specific OLAP operations for an MD query. An example
of a SPARQL query for q.getRollUps() used in line 7 is illustrated in Query
3. Finally, line 14 returns the resulting matrix. Thus, benefiting from the
SM4MQ query modeling and semantics, the population of the matrix can be
completely automatized using Algorithm 3 and encapsulated into high-level
modules that even non-technical users may use.

Algorithm 3: Populate the matrix of queries
Input: graph; // metadata graph with queries and schema

Output: matrix; // matrix representing queries

1 begin
2 queries = graph.getQueries();
3 schema = graph.getSchema();
4 matrix.init(schema);
5 foreach q ∈ queries do
6 vector.init(schema);
7 vector.addRollUps(q.getRollUps());
8 vector.addDrillDowns(q.getDrillDowns());
9 vector.addDimDices(q.getDimDices());

10 vector.addMeasDices(q.getMeasDices());
11 vector.addDimSlices(q.getDimSlices());
12 vector.addMeasSlices(q.getMeasSlices());
13 matrix.addVector(vector);

14 return matrix;

Once the matrix is populated with vector instances, it can be used to
compute similarities (e.g., cosine similarity) between vectors. In the next
section, we further discuss on this topic and provide examples of queries and
their comparison results.

5 Evaluation

In this section, we present an evaluation of our approach. For this purpose,
we implemented a prototype and used a set of 15 OLAP queries related to
the running example data set. We next explain the details.

The prototype was developed in Java using JDK 8, Apache Jena 2.13.0 for
working with RDF graphs, and Windows 8.1 as OS. It retrieves the (SM4MQ)
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query and (QB4OLAP) schema metadata, transforms queries into vectors us-
ing Algorithm 3, and compares queries using the cosine similarity often used
in this context as discussed in [11]. Assuming the existence of a single data set
and its metadata on a SPARQL endpoint, it takes the endpoint address as a
parameter and based on the SM4MQ and QB4OLAP semantics automatically
retrieves the needed metadata to support creating a vectorized representation
of the queries that will be used to compare queries.

We next discuss the user efforts required for this task. Considering the
method in Section 4 the user needs to select features and define their level of
detail, i.e., two user actions per model element. Thus, in the worst case, the
user can select all the model elements and that can easily be performed by
non-technical users. In the use case, the user needs 36 actions to define fea-
tures representing OLAP operations. Next, the user introduces the SPARQL
endpoint address and the vectors are automatically created and populated
from the query models. We later discuss in more detail an example of how
can these vectors be exploited. To illustrate the level of automation achieved
in this process, we next discuss the number of automatically triggered queries
by our tool. Once the user specified the SPARQL endpoint, our tool automat-
ically triggered 91 SPARQL queries related to MD queries, 1 SPARQL query
to retrieve all IRIs of MD queries and 6 SPARQL queries per MD query (one
for each OLAP operation of SM4MQ). Furthermore, the tool also automati-
cally triggered 32 SPARQL queries to retrieve the schema of the data set (the
number of queries depends on the schema structure, e.g., how many dimen-
sion or hierarchies exist). To perform this, the execution of all the SPARQL
queries took less than a second. Thus, our prototype automates, facilitates,
and speeds up this process benefiting from the SM4MQ semantics for MD
queries and also the QB4OLAP semantics for the MD schema, both being
RDF-based models.

Furthermore, we next show an example of how these vectors can be ex-
ploited the tool computes the cosine similarity to detect similarities between
queries (see [11]). In this context, we used 15 queries related the running
example data set. The queries cover the following scenarios of comparing:

1. The same queries.
2. The queries that only differ in the filtering conditions.
3. The queries that only differ in the used granularities.
4. The queries that only differ in the used dimensions.
5. The queries that only differ in the OLAP operations used.
6. The queries that differ in both OLAP operations and granularities used.
7. The queries that differ in both OLAP operations and dimensions used.
8. Incrementally built queries.

Each scenario includes one or more queries and provides insights about how
different changes in semantics influence the similarities of the queries com-
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puted in this way. The query taken as a seed (i.e., Query 1) for all other
queries considers the total asylum applications submitted by the continent from
which the applicant comes for year 2012, by sex, time, age, citizenship, and destina-
tion country. Thus, starting from the initial cube, this query applies ROLL-UP
from month to year over the time dimension, ROLL-UP from country of cit-
izenship to the continent over the citizenship dimension, DICE to year 2012
over the time dimension, DRILL-DOWN back to citizenship country, and
finally SLICE over the application type dimension. The results of the com-
parison of this query with other queries covering the scenarios are presented
in Table 5.2. For each query, we provide a brief description of how it differs
from Query 1.

Table 5.2: Query Similarities

Scenario Query Similarity
1 1. The same query 1
1 2. Different query with the same structure 1
2 3. Different filtering predicate 0.95
3 4. Time granularity changed 0.95
4 5. Dice over the geo instead of time dimension 0.81
5 6. Drill-Down changed to Dice 0.78
6 7. i) Time granularity changed and ii) Drill-Down changed to Dice 0.73
7 8. i) Dice over the geo and ii) Drill-Down changed to Dice 0.58
8 9. Only first operation of Query 1 0.49
8 10. First two operations of Query 1 0.65
8 11. First three operations of Query 1 0.82
8 12. First four queries of Query 1 0.95
8 13. Query 1 + additional Slice 0.98
8 14. Query 1 + additional Dice 0.92
8 15. Query 1 + additional Slice and Dice 0.90

The comparison of queries is metadata-based, i.e., it considers the MD
semantics of SM4MQ query and QB4OLAP schema structure elements in-
cluded in the vector structure. Thus, for example, Query 3 differs only in the
predicate applied in DICE, disregarding the concrete filtering value. Next, in
Query 4 we may notice that just a change of ROLL-UP granularity still keeps
the queries highly similar, while in case of Query 5 the change of dimension
used in an OLAP operation makes the queries more different. Furthermore,
Queries 6, 7, and 8 show that when introducing even more difference the
similarity decreases as expected, while keeping the trend that the dimension
change has higher impact than the change of granularity. Finally, Queries 9
to 15 follow the scenario of incremental adding of OLAP operations where
Queries 9 to 12 use already existing operations of Query 1 while Queries 13
to 15 add one or more additional operations to Query 1. It is interesting to
notice that SLICE makes less difference than DICE as it affects smaller part of
vector. This can be used for distinguishing between these to operations and,
if needed, this can be readjusted by vector redesign.

Overall, our experiments show that SM4MQ not only enables the sharing
of queries on the SW but its semantics can also be used to automatize the
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SM4MQ query transformation into an analysis-ready structure. For instance,
our prototype enables that the queries conforming to SM4MQ are automat-
ically transformed into vectors as preparation for further processing. The
matrix comprised of these vectors can be used to compute query similarities
by applying typical similarity functions (e.g., cosine similarity) for this con-
text. The whole process is facilitated such that even non-technical users can
perform it.

6 Related Work

The modeling and representing of queries on the SW is just in its infancy.
Just recently, in [88] the authors proposed an RDF-based model for repre-
senting SPARQL queries. They have used their model to represent a portion
of queries over DBpedia and other public SPARQL endpoints with the follow-
ing suggested use cases: generation of benchmarks, query feature analysis,
query cashing, usability analysis, and meta-querying. Thus, there is a move-
ment towards opening not only data but also metadata such as queries so
that they could be explored with SPARQL. In this direction, although needed
for the context of Exploratory OLAP [4], an MD query model is yet missing.
By now, most of the efforts have been devoted to the schema modeling with
vocabularies such as QB4OLAP (see [106]). Finally, another interesting use
case that can be added to the ones proposed in [88] is the user assistance (e.g.,
query recommendations). Different MD query recommendation approaches
have been proposed by now and a comprehensive overview can be found
in [11]. However, little attention has been given to the query modeling and
sharing, especially in the SW and Exploratory OLAP contexts.

7 Conclusions

In this paper, we have proposed SM4MQ, a Semantic Model for Multidimen-
sional Queries. Using RDF and MD semantics, SM4MQ is a step towards
Exploratory OLAP and sharing and reuse of MD queries on the SW. Further-
more, its semantics supports the automation of transforming the SM4MQ
queries into other analysis-ready representations. In this context, we pro-
posed a method to automate the transformation of queries and exemplified
it for the use case of transforming SM4MQ to a vector representation. To
evaluate our approach, we have developed a prototype implementing the
method for the vector use case. In the evaluation, we have used queries over
the running example data set. The experiments show that the transformation
to a vector representation can be performed automatically supported by the
SM4MQ semantics and similarities between queries can be identified even
with such a simple query representation. In our future work, we plan to
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work on the exploitation side of the queries, e.g., develop richer transforma-
tions to support advanced user support techniques such as [10].
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Chapter 6

Conclusions and Future
Directions

Abstract

This chapter summarizes the conclusions and directions for future work presented in
Chapters 2 - 5, Appendices A and B.

1 Summary of Results

This thesis presented our approach for modeling and exploiting semantic
metadata for supporting Exploratory OLAP. The main goal of the thesis is
to provide metadata means including models, methods, and tools to support
the user in this context. The thesis focuses on next generation BI systems with
especial emphasis on the Exploratory OLAP context. We aimed to create a
synergy of OLAP as a well-establish data analysis approach in BI, (analytical)
metadata management as a typically overlooked task for supporting users,
and the SW technologies that provide means to cope with heterogeneity in
these novel settings. Considering the research questions related to the meta-
data lifecycle, this thesis presents several approaches to address some of the
existing challenges. Specifically, the thesis addresses the metadata definition
and modeling phases, as well as providing techniques for the metadata pop-
ulation and exploitation phases for some of the metadata artifacts defined. In
the sequel, we summarize contributions of each of the presented chapters.

Chapter 2 provided the context of metadata that we consider in the thesis.
Thus, based on a survey of existing user assistance approaches in the OLAP
domain, Chapter 2 defined the analytical metadata framework which identified
the metadata artifacts used in this context. The artifacts were organized in
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the analytical metadata taxonomy that provides technical categories of analyt-
ical metadata together with the belonging artifacts. The chapter also dis-
cussed the types of artifacts processing that are base processing, derivative
processing, and goal-oriented processing. The main idea with these different
processing types is to support automation of the metadata lifecycle. Accord-
ingly, the metadata artifacts were also classified into explicit (i.e., manually
defined), implicit (i.e., detected by the system), and derived (i.e., generated
from the existing metadata). The metadata collection/generation should be
as transparent as possible for the user and their processing should enable
user assistance to facilitate the user analysis. Overall, Chapter 2 motivated
the research of this thesis and set the direction that was followed. The key
idea promoted is that the analytical metadata must be considered as first-
class citizens to support user-centric BI systems and Exploratory OLAP.

Chapter 3 presented our approach for modeling of analytical metadata ar-
tifacts. Considering the settings of heterogeneous metadata models present
in next generation BI systems and in the spirit of Exploratory OLAP, we
argued for the use of the SW technologies for analytical metadata formaliza-
tion. In particular, we chose RDF as it supports sharing and re-usability. RDF
also provides the flexibility to interlink and extend different models. Further-
more, instead of claiming for one universal data model which would hardly
be accepted, we proposed a metamodel capturing the common semantics of
different models. RDF also fits this need as it can be used for the ontologi-
cal metamodeling (see [14]). Thus, Chapter 3 proposed SM4AM: A Semantic
Metamodel for Analytical metadata. The chapter presented extensive exam-
ples on the metamodel usage and proposed a method on how to instantiate
an RDF-based metamodel as guidelines on how to use the metamodel in a
correct manner. Finally, the chapter provided a use case with two real-world
data sets from the SW domain on how the metamodel can be used with ex-
isting metadata models to narrow the (meta)data search space. Thus, we
showed the practical exploitation possibilities of our metamodel.

Chapter 4 presented our approach focusing on the schema metadata ar-
tifact and its exploitation on the SW. The central focus of the chapter is on
statistical linked open data sets modeled with the QB vocabulary that does
not fully support OLAP. Thus, to enable OLAP over these data sets, the chap-
ter proposed a method on how QB data sets can be enriched with additional
semantics defined in the QB4OLAP vocabulary that extends QB to introduce
the necessary concepts. Rather than just syntactic transformation, this en-
richment requires the use of additional metadata concepts and represents
a cumbersome and error-prone task. Thus, this chapter especially consid-
ered the possibilities for automating the enrichment and discussed the re-
lated challenges. In this context, we proposed two techniques to define and/
or discover the necessary metadata concepts. These concepts were then used
in the method defining the steps to enrich a QB data set with the additional
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QB4OLAP semantics. The steps were formalized as SPARQL queries to fa-
cilitate the understanding. Chapter 4 then presented a tool developed to
evaluate our approach and the experiments with 25 user were conducted in
this context. The evaluation showed that the tool facilitates the enrichment.
Moreover, the tool also in practice guaranteed the correctness of the produced
MD schema. Finally, Chapter 4 included a methodology given in its appendix
that was fully formalized using set theory and specified the enrichment steps
in terms of pre-conditions, post-conditions, and transformations performed
independently of the implementation. Overall, this chapter provided some
fundamental means for enabling Exploratory OLAP such as creating an MD
schema. The chapter also showed the benefits of using the SW technologies
and Linked Data sources that provide additional (meta)data that can be used
for the enrichment of existing data sets. This innovation especially relates to
a concept of fusion cubes [1] that promotes the use of external data sources
to enrich the user analysis. Last but not the least, the chapter demonstrated
that all this can be performed in an automatic and user-friendly manner such
that even non-technical users can create MD schemata on-the-fly.

Chapter 5 continued our research towards supporting Exploratory OLAP
and supporting the user assistance. Once having data conforming to an MD
schema on the SW, they are to be explored with MD queries that apply OLAP
operations to navigate the data cube. Thus, the chapter proposed SM4MQ:
A Semantic Model for Multidimensional Queries that is an RDF-based for-
malization of MD queries. The model included the most popular OLAP
operations, being ROLL-UP, DRILL-DOWN, DICE, and SLICE as proposed
in [34]. Following the algebraic formalization of [34] and [29], the seman-
tics of the OLAP operations captured in the model was considered at the
conceptual level. Furthermore, SM4MQ represented OLAP operations in a
way that provides atomicity and supports their easier sharing and reuse on
the SW. The chapter argued for the following benefits of representing MD
queries in RDF. First, RDF supports their sharing and reuse. This is espe-
cially important considering the Open Data initiative that can also be applied
to metadata such as queries. Second, the semantic representation and the
conceptual abstraction level enable that SM4MQ queries can be easily trans-
formed into other analysis-ready data structures and further exploited for
different purposes. In this context, the chapter proposed a method to auto-
mate the transformation of the SM4MQ queries via SPARQL and exemplified
the method for a vector representations. Moreover, the chapter presented a
prototype implementing the method to transform queries from SM4MQ to a
vector representation and compute their similarities using the cosine similar-
ity function. The prototype was used with a set of MD queries to evaluate our
approach showing that the transformation can be automatized thanks to the
SM4MQ semantics and that this task can be performed even by non-technical
users.
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Appendix A presented an initial version of the SM4AM metamodel. It in-
troduced the vision of using RDF for metadata representation and provided
initial examples and discussion in this direction. It was significantly extended
in Chapter 3 and therefore it does not provide new content. Appendix B pre-
sented a demonstration of the QB2OLAP tool that includes the QB2OLAPem
tool presented in Chapter 4 as a module. It provided additional details on the
QB2OLAPem internals and its use together with other complementary mod-
ules, giving the overall picture about the QB2OLAPem role and importance.

In summary, we position the contributions of each chapter with respect to
the phases of the metadata lifecycle. In particular, Chapter 2 defined the an-
alytical metadata framework including its metadata artifacts that contribute
to the metadata definition phase of the metadata lifecycle. Moreover, this
chapter also gave insight about the types of metadata processing related to
the metadata population and exploitation phases. Next, Chapter 3 proposed
modeling techniques to represent analytical metadata in a semantic-aware
fashion and address the needs of Exploratory OLAP that contributed to the
metadata modeling phase of the metadata lifecycle. Furthermore, Chapter 4
contributed to the several phases of the metadata lifecycle. First, it proposed
a method for the definition of an MD schema on the SW that contributed
to the metadata definition phase. Next, it provided means to automatically
discover the needed metadata that contributed to the metadata population
phase. Finally, the discovery of new metadata was driven by the existing
schema information which was related to the metadata exploitation phase.
In all these aspect, Chapter 4 focused on automation to facilitate these task
and enable non-technical users to perform them. Moreover, Chapter 5 like-
wise brought contributions to several metadata lifecycle phases. One con-
tributions was related to the metadata modeling phase in representing MD
queries on the SW. The other contribution was related to the metadata ex-
ploitation phase, where it proposed a method to prepare the metadata for
the further exploitation processing. In addition, Appendix B also illustrated
the exploitation possibilities of the schema metadata artifacts related to the
metadata exploitation phase. All in all, the thesis provided different models,
algorithms, methods, techniques, and tools as the contributions towards the
vision of Exploratory OLAP.

2 Future Research Directions

This PhD thesis opens several interesting and promising research directions.
Thus, we next discuss the future research according to the chapters presented.

The approach presented in Chapter 2 is our vision about the role of meta-
data. By now we have devoted attention to the metadata definition, model-
ing, and to the processing and population of some metadata artifacts. Thus,
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the next step in this direction is to consider other metadata artifacts, such as
user preference that can be implicitly detected from user actions. This re-
quires the preference metadata artifact modeling , detection (i.e., population
processing), and exploitation for the personalization of user interaction with
the system. Moreover, other (or ideally all) metadata artifacts should be used
and represented together in a single model to enable even wider exploitation
possibilities. In the context of derivative processing, the metadata artifacts
can also be combined to generate more complex metadata artifacts such as
system or user profiles. This would also require techniques to maintain the
complex metadata consistent with respect to the metadata they were derived
from. Finally, the exploitation of analytical metadata opens possibilities for
systems self-tuning by, e.g., identifying the most used data pieces.

Chapter 3 motivates the use of ontological metamodeling for different ex-
ploitation purposes. We believe that using semantic metamodels can serve
for novel approaches such as metamodel-driven data search, data analysis
recommendations, and even entity resolution and matching techniques. The
synergy of good practices from software engineering domain and flexibility
of SW technologies can bring benefits for both areas. In this direction, Chap-
ter 4 clearly shows the benefits of both MD modeling and (meta)data sharing
and re-use on the SW. This approach opens further possibilities for com-
bining different cubes on the SW and providing recommendations not only
on data exploration but also on the schema enrichment. Finally, Chapter 5
outlines the importance of queries in the Exploratory OLAP context and de-
mands further research efforts on the exploitation side, e.g., recommendation
algorithms though to benefit from the open and shareable metadata.

Overall, we believe that this PhD thesis opens a new line of research where
semantic metadata can bring benefits not only to next generation BI systems
and Exploratory OLAP areas, but also to various novel Big Data systems
working with data streams and schema-less data structures such as the Data
Lake. The tremendous growth of data volumes and their availability require
semantics for these data so that they can be automatically and on-the-fly
processed. Moreover, this data volume growth also requires that the related
metadata providing this semantics are also efficiently processed which re-
quires novel metadata processing and management solutions.
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Abstract

Next generation BI systems emerge as platforms where traditional BI tools meet semi-
structured and unstructured data coming from the Web. In these settings, the user-
centric orientation represents a key characteristic for the acceptance and wide usage
by numerous and diverse end users in their data analysis tasks. System and user
related metadata are the base for enabling user assistance features. However, current
approaches typically store these metadata in ad-hoc manners. In this paper, we pro-
pose a generic and extensible approach for the definition and modeling of the relevant
metadata artifacts. We present SM4AM, a Semantic Metamodel for Analytical Meta-
data created as an RDF formalization of the Analytical Metadata artifacts needed for
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user assistance exploitation purposes in next generation BI systems. We consider
the Linked Data initiative and its relevance for user assistance functionalities. We
discuss the metamodel benefits and present directions for future work.

1 Introduction

The analysis of ever-increasing data volumes represents an essential task
for obtaining knowledge to support decision-making. Next generation BI
systems (a.k.a., BI 2.0 systems) are characterized by heterogeneous, semi-
structured and/or unstructured, and external data sources. Moreover, they
claim for a strong user-centric orientation by supporting the user analytical
processes in these settings. End users must be enabled to perform their anal-
ysis in the easiest and most efficient way possible. This entails different user
assistance features provided by the system.

Major user support categories that we encountered in the literature (see
[104]) are querying assistance, most typically represented by query recom-
mendation, and visualization assistance for representing data in the most
suitable way. To facilitate the user exploration of data, the system may sug-
gest a query, help the user to compose a query, personalize the user results
according to the user profile, visualize the data by user preferences, and simi-
lar. Most of these activities are based on the exploitation of metadata, such as
queries, preferences, schema information, etc. Based on a survey conducted
in [104], we defined the Analytical Metadata (AM) framework and discovered
the metadata artifacts that are needed for user assistance functionalities. We
especially elaborated on the need for automation of both metadata collection
(e.g., by inference) and exploitation tasks by different processing techniques.
AM are the means for BI 2.0 systems to understand and assist the user. For
instance, user profiles enable the comparison of users and recommendations
based on the similarities found. However, by now there is no unified for-
malization of AM and current approaches typically store pieces of metadata
artifacts in ad-hoc manners that cannot be reused in other systems. They
mostly focus on recommendation algorithms while metadata management
and organization typically have been overlooked.

For the maximal benefit of AM, they need to be systematically organized
and represented in a machine-readable format so that the system becomes
semantic-aware and able to automatize the metadata processing. This is es-
pecially important considering the context of BI 2.0 systems where high fre-
quency of changes, heterogeneity, and diversity of data sources need to be
automatically overcome. The Resource Description Framework (RDF) has
been widely applied as a semantic-aware formalism in the Semantic Web en-
vironments and can also bring benefits for the data analysis in BI 2.0 systems
(see [4]). RDF represents data as simple subject-predicate-object triples that

178



1. Introduction

are machine-processable and flexible for representation of different types of
data. Most importantly, it brings a good ratio between expressiveness and
computational complexity.

RDF is widely applied in the Linked Data initiative that is a significant
participant of BI 2.0 settings. Linked Data addresses the challenge of linking
independent and heterogeneous data sources typically available on the Web.
It has been accepted by a significant number of participants including the
industry, e.g., Swirrl1, and public government institutions, e.g., the European
Union in the case of Linked Open Data2. Linked Data represents a valuable
wealth of information as many types of data including geographical, media,
government, education, retail and commerce, user generated content and so-
cial media, are a part of the Web of Data represented in RDF (see [45]).

As external and heterogeneous data sources, Linked Data can highly ben-
efit from user assistance functionalities for their exploration. Unlike internal
sources where data organization is generally familiar, Linked Data sources
are typically non-controlled and new for the user that needs guidance and
recommendations for their analysis. Moreover, existing BI systems need to
enrich their internal data with the information coming from the external data
sources. Hence, the user again needs assistance on how to manage these ex-
ternal resources. In these scenarios, not only data but also metadata should
be interlinked in order to be used for the user assistance. In this way, the
user assistance can be achieved over different independent systems that are
mutually linked. For instance, the user profile and characteristics can be rep-
resented in a form understandable for different systems and used for the
personalization of user interaction with all of them. Notice that RDF is al-
ready a mean for capturing different types of metadata (e.g., about music,
images, videos, etc.)3.

Contributions. In this paper, we propose a generic and extensible ap-
proach for the definition and modeling of the metadata artifacts needed for
user assistance purposes in BI 2.0 systems. We present SM4AM, a Semantic
Metamodel for Analytical Metadata created as an RDF formalization of AM
artifacts relevant for this context. The RDF representation provides semantics
that enables machine-processing of these metadata. We consider the Linked
Data initiative and its relevance for user assistance functionalities in BI 2.0
systems. The metamodel is elaborated through a set of examples that resem-
ble a real use case scenarios. Finally, we provide a thorough discussion of the
benefits and potential applications of the metamodel. Our focus is on how
to store AM in a semantic-aware and reusable manner since that directly de-
termines the future exploitation possibilities. Note that metadata processing
and exploitation are out of the scope of this paper, and we address them only

1http://www.swirrl.com/
2http://ec.europa.eu/digital-agenda/en/open-data-0
3http://dublincore.org/
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as examples to illustrate the potential use and benefits of SM4AM.
The rest of the paper is organized as follows. Section 2 briefly introduces

RDF as a semantic-aware formalism and presents the running example com-
ing from Linked Data. Next, the metamodel with prerequisites is presented in
Section 3. Section 4 provides a discussion about the benefits of the approach.
Finally, Section 5 presents the related work, while Section 6 concludes the
paper and gives future work directions on how we plan to exploit SM4AM.

2 Towards Semantic-awareness

When focusing on BI 2.0 systems aiming at semantic-awareness and inclusion
of external sources, RDF and Linked Data arise as the best fit option. Indeed,
RDF4 is very flexible for capturing data semantics and most information can
be naturally represented through RDF triples. A triple consists of a subject,
a predicate, and an object, and represents a binary relationship (a predicate)
between two resources (a subject and an object) or a resource (a subject) and a
literal (an object). An overview of Linked Data and RDF can be found in [21].
In short, Linked Data represents an initiative for the Web environment to
provide a mechanism for semantic interlinking of data. Through seman-
tic predicates, computers can interpret the meanings of a subject, an object,
and the relation between them. This opens wide possibilities for exploita-
tion and processing of machine-processable data with their description and
meaningful relations. For example, the same concepts can be reused in sev-
eral independent systems and as discussed in [21], data is self-describing and
data access is simplified by RDF as standardized data model. Although quite
simple, RDF and its extension RDFS5 (RDF Schema) represent formalisms
that can be used for relevant source discovery, data integration, mappings of
business and technical terms, incorporation of external and heterogeneous
sources, and other.

It is especially important to note that RDF and RDFS (jointly referred as
RDF(S)) semantics enable reasoning possibilities. Table A.1, extracted from
[5], represents RDF(S) statements and their First Order Logic translations
(FOL).

By using this semantics, we can infer the knowledge that has not been
explicitly stated. For instance, Figure A.1 illustrates a part of the schema in-
formation, certain (explicit) instances related to this schema, and the knowl-
edge inferred from the previous two. Note that in the figure, we use Turtle6

RDF notation, rdf and rdfs namespaces for RDF and RDFS respectively, and
an unnamed namespace (represented with only ’:’) for custom elements.

4http://www.w3.org/TR/rdf11-concepts/
5http://www.w3.org/TR/rdf-schema/
6 http://www.w3.org/TR/turtle/
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Table A.1: RDF(S) statements and FOL [5]

RDF(S) statements FOL translation

i rdf:type C C(i)

i P j P(i, j)

C rdfs:subClassOf D ∀X(C(X)⇒ D(X))

P rdfs:subPropertyOf R ∀X∀Y(P(X, Y)⇒ R(X, Y))

P rdfs:domain C ∀X∀Y(P(X, Y)⇒ C(X))

P rdfs:range D ∀X∀Y(P(X, Y)⇒ D(Y))

1 # ...

2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

4 # ...

5 # A part of the schema information

6 :Android rdfs:subClassOf :OperatingSystem .

7 :OptimizedFor rdfs:subPropertyOf :RunsOn .

8 :RunsOn rdfs:domain :OperatingSystem .

9 :RunsOn rdfs:range :Device .

10 # ...

11 # Instances (explicit facts asserted)

12 :KitKat rdf:type :Android .

13 :MobilePhone rdf:type :Device .

14 :KitKat :OptimizedFor :MobilePhone .

15 # ...

16 # Inferred knowledge!

17 :KitKat rdf:type :OperatingSystem .

18 :KitKat rdf:RunsOn :MobilePhone .

19 #...

Fig. A.1: Inferred Knowledge Example

As a running example, we will use the schema represented in Figure A.2.
This schema is a piece of the Freebase7 data set and will be used to show the
relevance of the proposed metamodel for real data sets. By using this data
set, we extend the analysis scope of our metamodel to include and consider
a Linked Data source. In the figure, the prefixes f, t, l, and m relate to the
http://www.freebase.com/film/film/, http://www.freebase.com/type/, http://www.free-
base.com/location/, and http://www.freebase.com/measurement_unit/ namespaces
respectively.

Fig. A.2: Running Example

The central concept is f:Film, which represents data about films. The
f:initial_release_date property correlates f:Film to the t:DateTime class instance
defining the film’s initial release date. Next, the f:directed_by property relates
f:Film with the film’s f:Director. The f:country property correlates f:Film with

7http://www.freebase.com/
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the l:Country of origin. Finally, f:gross_revenue links a film with the money
amount (m:DatedMoneyValue) of the revenue. This schema information can
be represented in Turtle RDF notation as illustrated in Figure A.3.

1 # Running Example

2 @prefix f: <http://www.freebase.com/film/film/> .

3 @prefix t: <http://www.freebase.com/type/> .

4 @prefix l: <http://www.freebase.com/location/> .

5 @prefix m: <http://www.freebase.com/measurement_unit/> .

6 # ...

7 f:Film f:initial_release_date t:DateTime .

8 f:Film f:directed_by f:Director .

9 f:Film f:country l:Country .

10 f:Film f:gross_revenue m:DatedMoneyValue .

11 # ...

Fig. A.3: Running Example in Turtle Notation

3 SM4AM

BI 2.0 settings need metadata to enable advanced user assistance function-
alities. As different systems model and use ad-hoc metadata solutions, an
approach for correlating similar concepts is strongly needed. As explained
in [51] where typical (metamodel, model, and instance) modeling abstrac-
tion levels were discussed, the metamodel level is convenient for these kind
of settings where heterogeneous models can be created as instances of the
metamodel. Indeed, as we showed in [104], existing approaches use sim-
ilar concepts for the user assistance. Therefore, in this section we define
SM4AM, a Semantic Metamodel for Analytical Metadata that is to capture
relevant metadata artifacts needed in the BI 2.0 context. Then, various sys-
tems can use the metamodel to instantiate specific models for their needs.
To achieve semantic-awareness, our metamodel is represented in RDF since
we follow the principle of least power (see [97]). This means that it pro-
vides an acceptable expressivity regardless of its simplicity. The notation for
RDF is flexible and even though there is no explicit distinction between meta
classes and classes (metamodel and model levels), it can be represented by
the rdf:type property (see Table A.1). In RDF there is no restriction that an
instance cannot be a class at the same time. For example, in Figure A.4 we
could express that Film is a class and an instance at the same time. In the
figure, we again use an unnamed namespace for custom concepts. Addition-
ally, in the context of BI 2.0 systems, an especially interesting characteristic of
RDF models is their extensibility. Novel concepts can be easily incorporated
and the metamodel can evolve according to the needs. This mechanism is
already used in Semantic Web environments and BI 2.0 systems can strongly
benefit from it. Figure A.5 presents the metamodel. It illustrates the meta-
model classes and their relationships that formalize the AM artifacts needed
for the user assistance activities. The metamodel includes the QB4OLAP
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part coming from [35], which is used for the representation of the schema as
AM artifact. As explained in [35], shadings of the QB4OLAP elements visu-
ally distinguishes their RDF vocabularies. In the next subsection, we briefly
outline AM and discuss QB4OLAP as the prerequisites for the metamodel
understanding. The rest of the section explains in detail all other parts of the
metamodel.

1 # ...

2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

3 # ...

4 :Film rdf:type :Art .

5 :Gladiator rdf:type :Film .

6 # ...

Fig. A.4: Class and Instance Concept Example

3.1 Prerequisites

Analytical Metadata

The AM defined in [104] represent a set of metadata artifacts supporting user
assistance activities in the context of BI 2.0 systems. Figure A.6 illustrates
the AM organization. Metadata artifacts are grouped into definitional, data
quality, navigational, lineage, and ratings categories. The definitional cate-
gory includes the vocabulary artifact defining business terms, their relation-
ships, and their mappings to the integration schema; schema representing the
data model; and user characteristics capturing the explicitly stated informa-
tion about the users (e.g., name, job, address, etc.). The data quality category
contains profiling metadata capturing technical characteristics of the data set.
Further, the navigational category includes query as a user inquiry for cer-
tain data (disregarding the form it takes), query log as a list of all queries
ever posed, and user session as a sequence of queries posed by the user when
analyzing or searching for certain data. The lineage category includes the
traceability metadata artifact describing information about data sources, per-
formed transformations, and mappings to the integration schema. Finally,
the ratings category keeps user preferences as the result set selection and/or
representation prioritization (e.g., 2014 as the preferred release year of a film
or bar chart as the preferred result visualization) and statistics as data us-
age indicators (e.g., most queried films). According to the survey conducted
in [104], AM are the most relevant artifacts needed for the user assistance ex-
ploitation. In the present paper, we go one step further and formalize them
into our SM4AM metamodel.
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Fig. A.5: SM4AM: A Semantic Metamodel for Analytical Metadata (QB4OLAP [35])

Fig. A.6: Analytical Metadata
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Schema and Multidimensionality

The previously introduced AM include the schema artifact that should cap-
ture the integration schema. Data in BI systems are typically modeled in a
multidimensional (MD) fashion and this should be reflected in the schema.
As discussed in [80], the MD model [64] is mature and well-founded and has
key applicability in data warehousing, OLAP, and increasingly in data min-
ing. It captures analytical perspectives by means of facts and dimensions.
In this context, it defines necessary constraints and is covered by the MD
algebra [84] that determine potential user actions. For example, if a user an-
alyzes data on the Month level, just based on the schema she can be suggested
to change the granularity to the Day or Year level even if no one performed
this analysis before. In this context, the authors of [35] have recently pro-
posed QB4OLAP as an RDF-based multidimensional model schema (see the
upper part of Figure A.5). For our metamodel, the concepts represented
in QB4OLAP are considered as metamodel classes since their instances are
classes belonging to the data model of a concrete data set which, in turn,
will have its instances. We use [35] for representing the schema artifact that
is then correlated to the rest of our metamodel. For instance, the running
example can be considered as an implicit multidimensional schema where
f:Film is the analyzed fact with the gross revenue (m:DatedMoneyValue class)
as a measure, and t:DateTime, f:Director, and l:Country are the dimensions of
the analysis. Different hierarchies with corresponding levels can be built on
top of these dimensional subjects depending on the data set used. These con-
cepts should be linked to the QB4OLAP [35] vocabulary, as for example in
Figure A.7. Note that the qb namespace refers to the Data Cube8 vocabulary.
More details on how to use QB4OLAP for RDF data sets can be found in [35].
Moreover, insights about identification of MD schemas from RDF data can be
found in [61] and [78].

1 # ...

2 f:Film rdf:type qb:Observation .

3 m:DatedMoneyValue rdf:type qb:MeasureProperty .

4 t:DateTime rdf:type qb:DimensionProperty .

5 f:Director rdf:type qb:DimensionProperty .

6 l:Country rdf:type qb:DimensionProperty .

7 # ...

Fig. A.7: Addition of MD Semantics Example

3.2 The Metamodel Elements

The metamodel captures AM artifacts either directly, i.e., by a one-to-one
mapping of an artifact to the metamodel element, or indirectly where an ar-
tifact information is to be retrieved from more than one metamodel element.

8http://www.w3.org/TR/vocab-data-cube/
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Therefore, for better understanding, we explain the metamodel in groups of
elements according to the information they seize. Each group is represented
with a figure (see Figures A.9 to A.13) depicting the corresponding part of the
metamodel along with examples of potential instantiations of model and in-
stance levels intended to illustrate how the metamodel can be used. In these
figures, we visually separate the metamodel, model, and instance levels. The
metamodel elements belong to our sm4am namespace, while we use the @pre-
fix ex: <http://www.example.org/> namespace for examples of the model and
instance elements. While the metamodel is common for different systems,
the model and instance levels can vary depending on the particular system.
Note that in the figures we abuse the notation (by using the same shapes for
metamodel, model, and instance levels) in order to enhance the understand-
ing. Nevertheless, these different abstraction levels are clearly separated to
the corresponding boxes. If needed, they can also be represented textually
in RDF like in Figures A.1, A.3, A.4, and A.7. Finally, to give the intuition
on how the metadata of any of the three abstraction levels can be exploited
for the user assistance in a real case scenario, we provide examples related to
our running example introduced in Section 2.

Evidence Elements

As mentioned, the AM artifacts in our metamodel are modeled directly or
indirectly. For example, a query typically consists of several operators that
we keep individually. Therefore, our metamodel captures the AM artifacts
through the pieces of evidence that capture information about the user and
user’s actions, or the system and its properties. When the pieces of evidence
are on a finer granularity than the artifact itself, as in the previous example of
the query, we consider the artifact indirectly modeled. Figure A.8 illustrates
this flow in which AM evidence is being collected from BI 2.0 and Linked
Data environments, after which it is formalized in our SM4AM metamodel so
that it can be processed and enable user assistance exploitations, e.g., query-
ing or visualization. Pieces of evidence that are collected refer to user queries,
preferences, user characteristics, schema, and other AM artifacts. Therefore,
the central focus of the metamodel is the sm4am:Evidence class (see Figure
A.5). According to the evidence information type, it is subcategorized to
sm4am:DataProperty and sm4am:UserAction. The first subcategory represents
evidence about the data set such as data origin, resource usage, etc. The latter
captures both explicit evidence of the user actions (e.g., queries) and implicit
evidence automatically inferred from the user actions (e.g., detected visu-
alization preference). sm4am:UserAction is characterized by two attributes,
sm4am:timeAttribute defining the time parameter(s) related to the user ac-
tions (e.g., action duration), and sm4am:orderingAttribute defining differ-
ent ordering characteristics for the sequences captured by sm4am:UAList that
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is defined in Section 3.2. Each evidence will be stored according to its type
as discussed in the next subsections.

Fig. A.8: Evidence Usage Flow

Data Exploration Action Elements

The first evidence belonging to the sm4am:UserAction category is sm4am:Da-
taExplorationAction or shortly DEA. It represents an atomic user operation
over data. For instance, in the multidimensional context discussed in Sec-
tion 3.1, an atomic operation can be a multidimensional operation. This and
similar cases are modeled with sm4am:ManipulationAction that captures the
actions for data handling (e.g., change of data granularity) with sm4am:pro-

cessingAttribute representing the characteristics of the actions. Another
DEA is sm4am:PresentationAction describing the actions for data presentation
(e.g., diagram type selection) with sm4am:analysisAttribute that captures
characteristics specific for visual data exploration. Both actions are related
to their corresponding types, sm4am:MAType (i.e., manipulation action type)
and sm4am:PAType (i.e., presentation action type) respectively, and this way
the same type actions can be easily grouped. Furthermore, the types belong
to the dictionaries sm4am:MADictionary and sm4am:PADictionary, respectively,
that define the sets of potential actions depending on the concrete system,
i.e., model instantiation. The actions, action types, and dictionaries are corre-
lated with the corresponding properties (sm4am:hasPAType, sm4am:hasMATy-
pe, sm4am:fromPADictionary, sm4am:fromMADictionary). Figure A.9 illustrates
the corresponding piece of metamodel, and its potential model and instance
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level examples that we explain next.

Fig. A.9: Data Exploration Action Elements

Example. The model level box represents the potential use of a multidi-
mensional algebra (ex:MDAlgebra) and a visualization operations collection
(ex:VisualizationOperations) as instances of sm4am:MADictionary and sm4am:-
PADictionary respectively. Furthermore, ex:MDOperation and ex:Visualizati-
onOperation are instances of sm4am:MAType and sm4am:PAType respectively,
while ex:QueryOperation and ex:ChartSelection exemplify instances of the sm4am:-
ManipulationAction and sm4am:PresentationAction metamodel classes respec-
tively. Notice that sm4am:processingAttribute is instantiated as the ex:proce-
ssingTime attribute that models the time the system needed to process the
user action. In a similar way, ex:dwellTime models the time that the user
spent in analyzing the returned results. The instance level of Figure A.9 il-
lustrates how concrete chart instance (ex:ChartInstance) of the bar chart type
(ex:BarChart) from the certain chart collection (ex:ChartCollection) would be
stored. The same goes for the selection of year 2014 (ex:Year=’2014’) as se-
lection operation (ex:Selection) from the concrete multidimensional algebra
(ex:MDAlgebraInstance).

Regarding the potential user assistance exploitation in the context of our
running example, these metadata capture two situations. First, when the user
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is querying the Film data set and looks for the films released in year 2014.
Second, when the user selects a certain bar chart to analyze. These metadata
can be used for various user assistance, e.g., recommendations of the similar
searches related to the same or some other data set linked to the current
one, suggestions of the alternative data visualization possibilities, etc. Once
the metadata are captured and stored, different user assistance and other
exploitation techniques can be applied.

Preference Evidence Elements

Another specialized evidence of sm4am:UserAction is sm4am:PreferenceEvide-
nce capturing the user preferences regarding the data and their presentation.
It is characterized by sm4am:preferenceAttribute that represents preference
characteristics important for system processing (i.e., priority). The purpose of
the preferences is to store information that enables the personalization of user
interaction with the system and we divide them into the next two categories.
sm4am:PresentationPreference captures evidence regarding the data presenta-
tion, typically visualization affinities, while sm4am:DataPreference keeps infor-
mation about the data interests and their importance that can be exploited for
the result personalization and similar purposes. As in the previous case, both
categories have their corresponding type classes, sm4am:PPType (i.e., presen-
tation preference type) and sm4am:DPType (i.e., data preference type), that are
further related to the sm4am:PPDictionary and sm4am:DPDictionary dictionar-
ies determining the potential types. All these concepts are correlated by the
appropriate properties (sm4am:hasPPType, sm4am:hasDPType, sm4am:fromPP-
Dictionary, sm4am:fromDPDictionary) as illustrated in Figure A.10. This figure
depicts related part of the metamodel with potential model and instance lev-
els for this context.

Example. The model level defines a data ordering preference expression
(i.e., ex:DOPreferenceExpression) that corresponds to a data ordering prefer-
ence type (i.e., ex:DataOrderingPreference) coming from a data preference al-
gebra (i.e., ex:DPAlgebra). Further, an instance metadata level would possibly
store ex:PreferredYear=’2014’ as a concrete preference expression, correspond-
ing to a ex:DimensionPreference data preference operation of ex:DPAlgebraInsta-
nce. The similar examples for the instantiation of sm4am:PresentationPreference
and related classes can be found in the figure with corresponding attributes
and properties. Note that the model example contains two instantiations of
sm4am:preferenceAttribute, the ex:inferred attribute defining whether the ev-
idence is explicitly stated by the user or it is inferred by the system, and the
ex:priority attribute defining the priority of the preference needed for the
ranking between preferences, i.e., which preference has higher priority.

In the context of our running example, these metadata can represent the
situations where the user explicitly states her preference towards the year
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Fig. A.10: Preference Evidence Elements

2014 of the film’s initial release date and where the system infers the user
preference for bar charts from her previous analysis (e.g., a bar chart pre-
sentation of an average film revenue per year). These metadata can be used
for the user assistance such as personalization of the results so that the ones
related to the year 2014 always have higher priority and are shown before the
others. For instance, this information can be used in the approach like [41].
In the context of Linked Data, this preference can be applied to any other
data set linked to these concepts, e.g., music. Figure A.10 similarly includes
sm4am:PresentationPreference related examples that can for instance be used to
visualize data as bar charts whenever possible (as in [75]).

User Action List Element

After introducing simple sm4am:UserActions, we now define the sm4am:UA-
List (i.e., user action list) class for composing them into ordered lists that
represent different concepts. For instance, a query can be represented as an
ordered list of: i) one or more sm4am:ManipulationActions, ii) optionally one
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or more sm4am:PreferenceEvidence, and iii) one or more sm4am:PresentationAc-
tions. The sm4am:timeAttribute and sm4am:orderingAttribute attributes of the
sm4am:UserAction evidence can be instantiated to keep the action time and
the ordering in a list of user actions.

Fig. A.11: User Action List Element

Example. Figure A.11 illustrates the metamodel part and examples of
model and instance levels for this context. The model level defines the con-
crete instances of the metamodel and as potential model level concepts we
have chosen a query (ex:Query), a session (ex:Session), and an exploration
pattern (ex:ExplorationPattern). These concepts are to be instantiated with
concrete instances that are encountered in the system usage.

In the context of our running example, let us consider that the user
searches for gross revenue of films from year 2014. Moreover, the user ex-
presses the preference that the revenues over 10 million dollars are more
preferred than the others. In this case, corresponding user actions (sm4am:-
UserAction) would be stored and organized as a ex:Query. On the instance
level it would contain a projection multidimensional operation regarding the
gross revenue fact, a selection multidimensional operation for the year 2014,
after which it keeps the previous preference, and finally the visualization
with bar chart as inferred from the examples in Section 3.2. Several corre-
lated user actions (e.g., sm4am:PresentationActions) posed at different points
of the analysis can represent a session. Moreover, this way different pat-
terns can be captured/detected and used for user assistance purposes. If it
is detected that the selection of a f:Film from a specific f:Director is usually
followed by the selection of t:DateTime (i.e., a director made the best films in
a certain year), this selection of t:DateTime can be automatically suggested in
the next occasion when the preceding sequence to this action is detected. The
Linked Data environments open even greater assistance opportunities as the
patterns can include user actions over several data sources. These metadata
can be used for approaches like [9], [15], [38], and [63].

User Elements

While the classes discussed by now capture evidence about the user actions,
several classes are used for capturing evidence about the user. sm4am:User
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is the main class representing the user that can have several user charac-
teristics (sm4am:UserCharacteristic). Moreover, the user can belong to one or
more sm4am:UserGroups that represent the collection of users with defined
user characteristics. User related classes are correlated by the properties il-
lustrated in Figure A.12. It is important to outline the importance of the
sm4am:isConnectedTo property that serves for modeling of different types of
user interconnections that can be defined on the model level.

Fig. A.12: User Elements

Example. In BI 2.0 systems there are many different users and Figure A.12
illustrates an example related to a social network. On the model level, ex:-
SocialNetworkMember is characterized with ex:SocialNetwork as one of the user
characteristics. A user belongs to ex:SocialNetworkUserGroup that also entails
one or more user characteristics. The figure shows the instances of two users
instantiating this model.

Many assistance possibilities are enabled by these metadata. For exam-
ple, when querying the data set from our running example, recommenda-
tions of queries and chart types can be based on the user profile created
as a set of user characteristics. User characteristics depend on the user
base. For example, in case of a business user, characteristics are job posi-
tion, company, and similar, while private user characteristics include age,
gender, etc. Furthermore, different types of users belong to different social

192



3. SM4AM

networks, e.g., LinkedIn9 in case of business users. User connections with
other users and other characteristics can be used for collaborative recom-
mendation techniques (see [6] for more details). In the context of Linked
Data, the storage of user metadata in RDF format enables the linking of the
same user accounts from different social networks and potential sharing and
exploitation of these metadata. Current approaches typically focus on the
user queries and sessions (i.e., user actions in our metamodel) for user as-
sistance (e.g., [9], [15], [38]) and typically overlook the user characteristics.
These metadata are especially important for the context-aware recommenda-
tions (see [7]) that are widely applied in the Web and still poorly exploited
for BI 2.0 systems.

Data Property Elements

The pieces of evidence introduced by now have focused on the user and user
actions. Although these pieces are our primary focus because of the user
assistance, we also keep track of the data/system related evidence (i.e., the
sm4am:DataProperty evidence) to enhance the user understanding of the ex-
plored data set. All data come from a certain data source and this information
is captured by the sm4am:DataSource class with its sm4am:sourceAttribute

defining specific attributes of the data source (e.g., external/internal flag).
sm4am:DataProperty has sm4am:DPPType (i.e., data property type). All data
property types are defined in the sm4am:DPPDictionary dictionary. These
classes with the related properties are shown in Figure A.13 representing this
piece of metamodel, with the examples of model and instance levels.

Fig. A.13: Data Property Elements

9www.linkedin.com
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Example. As a model example we present the ex:DateFormat class which
comes from a ex:Web data source and follows the ex:DataPattern type from
the ex:DataProfilingTypes collection. This model is instantiated as shown in
the figure.

Information that data are formatted by a certain pattern and come from
a trusted data source can be exploited for the analysis of the data set and
validity of stored instances. In the context of our running example, if for all
films initial release date instances satisfy the pattern defined in Figure A.13,
the user can be ensured that various aggregation functions can be performed
over this dimension. For Linked Data that brings many external data sources,
this information is essential for the user analysis when choosing among many
different data sets. For example, the result inconsistencies may originate from
distinct data patterns of different data sets. These metadata can be used for
data quality portfolio that keeps track of the data accuracy, completeness,
and similar.

4 Discussion

The SM4AM metamodel defined in the previous section captures pieces of ev-
idence for the representation of AM (see [104]). To recapitulate, for represen-
tation of the schema artifact we use QB4OLAP [35], whereas user characteristics
are defined by user related classes. Furthermore, queries and preferences are
defined as ordered lists of concrete user actions (see Section 3.2 and Section
3.2). The session artifact is also covered as a specific user action list in Section
3.2. Query log information is captured through all the queries stored. Profil-
ing metadata and traceability metadata are captured in the metamodel piece of
Section 3.2. All previous pieces of evidence represent the statistics artifact. Fi-
nally, the RDF representation of AM allows that the whole metamodel plays
the role of the vocabulary artifact. Assistance possibilities coming from AM
storage and exploitation have been thoroughly discussed in [104].

Our SM4AM described in the RDF notation is one of the first steps to-
wards user assistance support in the Linked Data context. These environ-
ments bring many new data published by the different entities where in par-
ticular government institutions provide Linked Open Data as publicly avail-
able information. The relation of Linked Data and BI 2.0 systems is becoming
increasingly important. The area of BI is strongly influenced by the develop-
ment of the Web and its trends. Hence, the BI environments must be open
to handle and benefit from these new emerging resources. At the same time,
well established BI principles are a sound foundation for addressing some
similar challenges in the new environments. More concretely, we believe that
the incorporation and integration of the external, often semi-structured, data
with traditional BI systems can be successfully addressed by means of the Se-
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mantic Web technologies such as ontologies (e.g., RDFS as a simple ontology
language [5]) that support the mappings and automatic reasoning. If BI re-
sources are represented by means of an ontology, they can be correlated with
an external Linked Data source through ontology mapping techniques. An
example of an RDF-based vocabulary representing a data warehouse schema
can be found in [35] as mentioned before. On the other perspective, cur-
rent Linked Data sources represent simple graph-organized data sets where
querying possibilities are quite limited. If these data sets would be enriched
with additional semantics and structure, where appropriate, a mature mul-
tidimensional model (as in the case of [35]) can be used for data sets explo-
ration by existing techniques and mechanisms. As discussed in [104], we
believe that the gathering and storage of AM would enable user assistance
functionalities that have rarely, if at all, been supported in Linked Data envi-
ronments. Moreover, the semantics present in the Linked Data architecture
can be exploited for providing advanced user support functionalities based
on the automatic reasoning over RDF schema and data structures. This would
be a significant step towards BI 2.0 vision that we discussed in [104].

RDF for itself brings specific benefits even if not related to the Linked Data
context. An especially important argument for its usage in BI 2.0 systems
is the extensibility it enables. New metadata artifacts can be added to the
metamodel just by creating new concepts and correlating them to the existing
ones, i.e., creating new RDF triples. Moreover, all the model level instances
can be directly linked to the metamodel classes and further, the instance level
metadata can be directly related to the concrete models. The schema and
instances are kept together so that the metamodel and model evolve together
with the data and can be directly extracted at any point. Therefore, there is
no need for additional external documentation efforts for schema changes.

Moreover, since there is a high variety of different systems and technolo-
gies in BI 2.0 environments, we propose SM4AM as a metamodel. Concrete
models depend on the specific systems, and examples in Section 3 should
have enhanced the understanding of how our approach helps to bridge this
gap. A huge variety in the BI 2.0 ecosystem brings very different needs with
respect to the types and numbers of users, queries, data sources, and other.
These challenges can be met by joint efforts (e.g., creation and linking of spe-
cific models) around a high (metamodel) abstraction and a semantic-aware
(RDF) formalism.

One of the strengths of our metamodel is the possibility of metadata reuse
in various related data sets. For example, metadata captured in the example
presented in Section 3.2 can be used for the user assistance in querying of
IMDB10 database. If properly linked and mapped, metadata captured in our
examples can directly be used for assistance (e.g., query recommendation)

10http://http://www.imdb.com/
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in IMDB exploration. In the context of Linked Data, the linking of concepts
should be performed by the publisher. Thereby, the common vocabulary
should be built by the joint effort of the participants.

The generalization and semantics that is to be achieved through the RDF
formalization can be applied for the assistance in querying of data sets from
different domains. Patterns captured by sm4am:UAList can be applied to the
different multidimensional data sets sharing the same dimensions and/or
semantics. For example, if the user always pairs two dimensions in her anal-
ysis (e.g., time and location) or uses specific sequence of dimension granular-
ity (e.g., month and then year) these metadata can be applied for assistance
within a data set containing these dimensions. The discovery of the data sets
containing these dimensions should also be facilitated by linking mechanism
of Linked Data.

Even though we have focused on the multidimensional data model, when
discussing generalization, it is nonetheless important to notice that the meta-
model can be used for other non-multidimensional data models. For that
case, the schema metadata artifact, for which we use QB4OLAP [35] vocabu-
lary, should be exchanged with an alternative data model, while the appro-
priate dictionaries of actions and characteristics should be provided for the
rest of the metadata artifacts. For example, in the case of relational data set,
all metadata artifacts can be adjusted to these settings e.g., relational algebra,
preferences for relational algebra, etc.

Nevertheless, we acknowledge that there are also certain limitations cur-
rently carried by the RDF usage. Non-existence of cardinalities and open
world assumption bring challenges that must be addressed for the incorpo-
ration of multidimensional semantics, e.g., the meaning of the aggregation
in the open world assumption. Performance requirements (especially con-
sidering automatic reasoning) should also be considered in the future when
providing implementation examples. However, the lack of explicit cardinal-
ities could be addressed by the detection of implicit cardinalities extracted
from the data, while performance is constantly improved by the advance-
ment of both hardware and software technologies. These challenges will be
addressed in our future work when exploiting the metamodel.

5 Related Work

The approaches for user assistance in the BI area typically use query logs,
user sessions, and/or schema information, as for example the approaches
in [9], [15], [26], [38], and [63]. They analyze the queries based on their syntax
and/or result data, compare query sessions in the search for the next poten-
tial query, and analyze table relations for the querying assistance. Solutions
like these store metadata on ad-hoc manners, in a none machine-processable
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form, and provide limited assistance possibilities due to the lack of seman-
tics. For example, similar queries that are differently formulated or return
different results cannot be detected or compared. Furthermore, these ap-
proaches are mostly tied to the implementation technology and cannot be
used in the combination with other solutions. Other approaches use addi-
tional metadata concepts for the user assistance. In [18], user profiles are
used for visualization assistance where the profile is limited to certain vi-
sualization constraints and preferences. Moreover, in [40] the authors use
preferences for the data analysis. Finally, the authors of [75] propose user as-
sistance features for which they keep various statistics. However, neither of
these approaches provides many details about the metadata used and, as ad-
hoc metadata solutions, they have similar limitations to the ones discussed
earlier.

A standardized solution for metadata management is presented in Com-
mon Warehouse Metamodel (CWM) [79] that is a standard for interchange
of warehouse metadata. However, it does not fully cover AM artifacts (e.g.,
preferences) and is mostly intended for the interchange of data warehouse
system metadata. Our metamodel mainly focuses on metadata needed for
the user assistance purposes.

6 Conclusions and Future Work

SM4AM presented in this paper is a foundation for the management and
organization of AM that is needed for user assistance purposes in BI 2.0 sys-
tems. To the best of our knowledge, no previous approach captures all these
metadata in the single unified metamodel. Furthermore, our metamodel is
described in RDF and thereby can easily be shared among various systems
and technologies. It captures the metadata in a semantic-aware format so
that they can be automatically processed. The paper is focused on the meta-
data management while exploitation of metadata will be elaborated in our
future work as discussed in the next paragraph. The metamodel uses exist-
ing QB4OLAP proposal [35] as a solution for the RDF representation of the
multidimensional data.

In our future work, as a first step towards the user assistance, we will
use SM4AM to implement a dedicated metadata repository for AM artifacts.
The repository will be a part of our own BI 2.0 system described in [57]. The
primary focus will be on the metadata needed for query recommendation
and personalization. Afterward, we will incrementally extend the repository,
improve the user assistance functionalities, and explore novel exploitation
possibilities of SM4AM such as system self-tuning.
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Abstract

Publication and sharing of multidimensional (MD) data on the Semantic Web (SW)
opens new opportunities for the use of On-Line Analytical Processing (OLAP). The
RDF Data Cube (QB) vocabulary, the current standard for statistical data publish-
ing, however, lacks key MD concepts such as dimension hierarchies and aggregate
functions. QB4OLAP was proposed to remedy this. However, QB4OLAP requires
extensive manual annotation and users must still write queries in SPARQL, the
standard query language for RDF, which typical OLAP users are not familiar with.
In this demo, we present QB2OLAP, a tool for enabling OLAP on existing QB
data. Without requiring any RDF, QB(4OLAP), or SPARQL skills, it allows semi-
automatic transformation of a QB data set into a QB4OLAP one via enrichment

199



Paper B. QB2OLAP: Enabling OLAP on Statistical Linked Open Data

with QB4OLAP semantics, exploration of the enriched schema, and querying with
the high-level OLAP language QL that exploits the QB4OLAP semantics and is
automatically translated to SPARQL.

1 Introduction

OLAP analysis [101] is a well-established approach for decision making. Typ-
ically used in Data Warehousing (DW), OLAP relies on the MD model which
represents data in terms of facts and dimensions. In short, dimensions conform
the axes of an MD space in which a set of measures (associated to the fact) are
represented. Dimensions provide appropriate contextual meaning to facts,
and are organized as hierarchies, providing different levels of data aggrega-
tion. By means of an MD algebra, MD data are aggregated and disaggregated
(through roll-up and drill-down, respectively), and filtered (through slice and
dice operations), among other operations.

Initiatives like Open Data1 are pushing organizations to publish MD data
using standards and non-proprietary formats. Two main approaches can be
followed for OLAP analysis of SW data. The first one aims at extracting
MD data from the Web, and loading them into traditional DWs for OLAP
analysis [58]. The second one (that we follow in our work) carries out OLAP-
like analysis directly over MD data represented in RDF, following the notion
of self-service BI [1].

Statistical data have traditionally been accessed and analyzed by means
of OLAP [101]. In the SW, statistical data sets are usually published using the
RDF Data Cube Vocabulary2 (QB), a W3C recommendation since January, 2014.
However, QB does not support the dimension hierarchies and aggregate func-
tions needed for OLAP analysis. To address this challenge, a new vocabulary
called QB4OLAP has been proposed [33]. QB4OLAP allows reusing data al-
ready published in QB by defining an MD schema containing the hierarchical
structure of the dimensions (and the corresponding instances that populate
the dimension levels). Once a data cube becomes published using QB4OLAP,
we benefit from all the OLAP advances achieved in order to enable users to
perform OLAP operations over the cube at a higher level of abstraction by
using an OLAP algebra. In the demo, we present the QB2OLAP tool that
can semi-automatically transform a QB data set into a QB4OLAP data set
by enriching it with QB4OLAP semantics, explore the enriched schema (i.e.,
dimensions’ structures and instances), and query the data set using a high-
level OLAP language, denoted QL. QB2OLAP semi-automatically discovers
dimension hierarchies to enrich the original data set, and automatically trans-
lates QL queries into SPARQL and executes them on an endpoint. Thus,

1http://okfn.org/opendata/
2http://www.w3.org/TR/vocab-data-cube/
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QB2OLAP is a tool that facilitates data analysis, encouraging the use of MD
data on the web. To our best knowledge, it is the first tool enabling native
OLAP analysis on Statistical Linked Open Data.

Demo Use Case Mary is a journalist covering the European migration crisis.
She wants to analyze historical migration data for the European Union (EU),
and knows that these data3 are provided by the statistical office of the EU
(Eurostat) and are also available as Linked Open Data in QB format4. Mary
wants to compute some basic filtering/ summaries, typical for OLAP, such as
aggregate the origin nationality of immigrants per continent. However, due
to the limited schema information, she soon realizes that it is not possible
to perform OLAP operations. To do so, she would need to enrich the data
set (e.g., with dimension hierarchies to roll-up through). Moreover, both
enrichment and analysis require the use of SPARQL, a language that she
cannot manage although she is quite proficient in OLAP. Fortunately, she
knows about QB2OLAP and decides to use it to overcome her lack of technical
knowledge on RDF, QB, and SPARQL. This demo shows how QB2OLAP can
be used to achieve OLAP-like analysis over existing QB data sets and enable
even wider analysis, e.g., analyze migration data according to the kind of
political organization of the host countries. The original data set contains data
about asylum applications from 2008 to 2014. For the demo purposes, we
consider the subset of recent observations about asylum applications between
2013 and 2014, comprising approximately 80,000 observations.

2 Background: QB vs. QB4OLAP

A QB data set is a collection of so-called observations (in OLAP terminology
facts) whose schema is specified by means of a Data Structure Definition (DSD)
as an instance of the RDF class qb:DataStructureDefinition. This specifi-
cation comprises a set of component properties representing dimensions, mea-
sures, and attributes, as shown below for a portion of the Eurostat data cube
(RDF prefixes are omitted).

1 dsd:migr_asyappctzm rdf:type qb:DataStructureDe�nition ;
2 qb:component [ qb:dimension sdmx−dimension:refPeriod] ;
3 qb:component [ qb:dimension property:age] ;
4 qb:component [ qb:dimension property:citizen] ;
5 ...
6 qb:component [ qb:measure sdmx−measure:obsValue] .

From an OLAP analyst’s point of view, QB has the following limitations:
(a) No native support of dimension hierarchies. OLAP operations rely on the or-
ganization of dimension members into hierarchies defined in terms of aggre-

3http://ec.europa.eu/eurostat/statistics-explained/index.php/Asylum_statistics
4http://eurostat.linked-statistics.org/
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gation levels. QB only allows representing relationships between dimension
instances. Thus, for example, although Mary knows that Nigeria aggregates
to Africa, there is no way to express that Nigeria is a country, Africa a con-
tinent, and that countries aggregate to continents. (b) No native support to
represent aggregate functions. Most OLAP operations aggregate measure val-
ues along dimensions in a cube using the default aggregate function defined
for the measure, which is not present in QB. (c) No support for descriptive
attributes. In the MD model, dimension levels are associated with a set of at-
tributes that describe the characteristics of their members. Lack of descriptive
attributes is not only awkward from a user’s point of view, but also ineffi-
cient. For example, if Mary wants to ask only for applications from Nigeria,
she would need to know the IRI representing Nigeria5.

The QB4OLAP6 vocabulary addresses the drawbacks above by represent-
ing the most common features of the MD model as shown in [35]. It is
currently being used in several research projects concerning OLAP over RDF
data. From a well-formed MD schema we can again automate most of the
OLAP processing, as done in traditional DW settings. Importantly, QB4OLAP
has been devised to operate over observations published in QB without the
need of rewriting them. Typically, observations are the largest part of the
data, while dimensions are usually orders of magnitude smaller.

A key difference between QB and QB4OLAP is that, in the latter, facts
represent relationships between dimension levels and fact instances (observa-
tions) that map level members to measure values. The dimension levels are
represented in the same way as dimensions, i.e., as component properties, and
they can be linked to the DSD via the qb4o:level property. Similarly, ag-
gregate functions are also component properties that are linked to the DSD via
the qb4o:aggregateFunction property associating measures with aggregate
functions. Moreover, QB4OLAP defines the qb4o:cardinality property that
represents the cardinality of the relationship between a fact and a dimen-
sion level. Finally, level attributes can be linked to a dimension level via the
qb4o:hasAttribute property. Below, we show the cube structure of the Eu-
rostat data set, represented in QB4OLAP.

1 schema:migr_asyappctzmQB4O rdf:type qb:DataStructureDe�nition;
2 qb:component [ qb4o:level sdmx−dimension:refPeriod ;
3 qb4o:cardinality qb4o:ManyToOne ];
4 qb:component [ qb4o:level property:citizen ;
5 qb4o:cardinality qb4o:ManyToOne ] ;
6 ...
7 qb:component [ qb:measure sdmx−measure:obsValue;
8 qb4o:aggregateFunction qb4o:sum ] ;

Furthermore, we also show a portion of the structure of the Citizenship
dimension, discovered by the tool that we present later. We show the defini-

5Some data sets include a Label, although there is no guarantee about this.
6http://purl.org/qb4olap/cubes
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tion of the dimension, the dimension levels (as part of the hierarchies), and
hierarchy steps that represent roll-up relationship between levels. We point
the interested reader to the QB4OLAP project’s wiki7 for details.

1 schema:citizenshipDim a qb:DimensionProperty ;
2 qb4o:hasHierarchy schema:citizenshipGeoHier,
3 schema:citizenshipGeoHier a qb4o:Hierarchy ;
4 qb4o:inDimension schema:citizenshipDim ;
5 qb4o:hasLevel property:citizen, schema:continent, schema:citAll .
6 _:ih45 a qb4o:HierarchyStep ;
7 qb4o:inHierarchy schema:citizenshipGeoHier ; qb4o:ChildLevel property:citizen ;
8 qb4o:parentLevel schema:continent ; qb4o:pcCardinality qb4o:ManyToOne .

3 QB2OLAP Overview

QB2OLAP is organized in three main modules, Enrichment, Exploration, and
Querying, as illustrated in Figure B.1. By using the Enrichment module, the
user generates the QB4OLAP graph. Then, this semantics is exploited by the
Exploration module enabling the user to explore the QB4OLAP schema and by
the Querying module enabling OLAP analysis. The schema and level instance
enrichment triples are loaded into a local SPARQL endpoint. All modules
provide graphical interfaces. QB2OLAP automatically generates and triggers
the necessary SPARQL queries and handles the result triples. The Querying
module also gives the possibility to manually formulate SPARQL queries.
Next, modules’ details are explained.

Fig. B.1: QB2OLAP Architecture

3.1 Enrichment module

The enrichment of the QB data set is a labor-intensive task that is semi-
automatized in the Enrichment module [106]. The user is released of the
burden to manually explore the data set, define dimension levels and hierar-
chies, and generate the corresponding QB4OLAP triples. Instead, the Enrich-
ment module triggers the queries, performs the necessary processing, makes

7https://github.com/lorenae/qb4olap/wiki
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suggestions for the user, and based on her choices enriches the schema. Thus,
even an ordinary OLAP user can perform the enrichment on her own. The
workflow of the Enrichment module is presented in Figure B.2.

Fig. B.2: The Enrichment Module Workflow

The first phase is the Redefinition Phase where the input schema of the
QB graph is adjusted according to the QB4OLAP semantics, i.e., dimensions
are redefined as levels (e.g., [qb:dimension property:citizen] is redefined
to [qb4o:level property:citizen; qb4o:cardinality qb4o:ManyToOne])
while measures are copied and an aggregate function is assigned to them
(e.g., [qb:measure sdmx-measure:obsValue] to [qb:measure sdmx-measure:-

obsValue; qb4o:aggregateFunction qb4o:sum]). Starting from the levels
of this redefined schema, the Enrichment Phase collects the level instances
and their properties. A query is run for each level instance and the re-
sults are processed to discover the properties that represent functional de-
pendencies (FD) which are typically used in MD modeling to automatically
discover potential roll-up relationships [86]. Therefore, such properties are
automatically suggested to the user as sound candidates for coarser gran-
ularity level(s) (e.g., schema:continent for property:citizen). The user
then chooses out of the automatically discovered candidate properties the
roll-up relationships of her interest and by doing so, we drastically prune
the search space guided by the user preferences. The tasks of the Enrich-
ment Phase are iteratively repeated until the user has added all desired levels
and conformed the dimension hierarchies. When a new level is added, the
dimension hierarchies are automatically constructed or updated (e.g., a por-
tion of triples related to the previous levels schema:citizenshipGeoHier a

qb4o:Hierarchy; qb4o:hasLevel property:citizen, schema:continent)
and the new candidate hierarchy levels for the added level are again discovered.
Finally, once the Enrichment Phase is over, the RDF triples are automatically
generated for both the schema and schema instances in the Triple Generation
Phase. The generated triples are then exploited in the Exploration and Query-
ing modules. Additionally, the Enrichment module also enables configuring
fine-tuning parameters for the aggregate function, level detection, and triple
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generation. In the Linked Data dynamic context involving external and non-
controlled data sources, the fine-tuning parameters that QB2OLAP offers are
essential to deal with data quality issues, e.g., by searching for quasi FDs (i.e.,
an FD with an allowed error threshold).

The Enrichment module is implemented in Java 8. The Jena 2.13.0 library
is used to manipulate RDF. QB and QB4OLAP graphs and the SPARQL end-
point are stored and run on Virtuoso 7 that is shared with the Exploration
and Querying modules. The module interface is implemented in SWT.

3.2 Exploration and Querying modules

The Exploration module8 allows to choose a data cube (represented in QB4-
OLAP) among a collection of cubes stored in an endpoint and, in a user-
friendly fashion, navigate its dimension structures and instances. Graphics
allow to explore the dimension instances and group them in many ways (e.g.,
hierarchies, dimensions, etc.).

Fig. B.3: The Querying Module Workflow

The Querying module lets the user write QL queries (or load predefined
example queries) in a query editor. Its workflow is presented in Figure B.3.
QL follows the ideas introduced in the work by Ciferri et al. [29]. Basically,
a QL program is a sequence of operations of the form (ROLLUP | SLICE |
DRILLDOWN)* (DICE)*. Thus, we impose (for simplicity of processing) that
dicing must always be written at the end of the QL program. In the Query
Simplification Phase QL queries are then automatically simplified to produce
better ones (e.g., the user may have included unnecessary operations, or writ-
ten them in a non-optimal ordered sequence). The current implementation
applies the following typical OLAP processing optimization rules: (a) per-
form SLICE operations as soon as possible, to reduce the size of intermediate

8https://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/explorer
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results; and (b) group all the ROLLUP and DRILLDOWN operations over the
same dimension, and replace them with a single ROLLUP from the dimension’s
bottom level to the latest level reached by the sequence of ROLLUP/DRILL-
DOWN operation(s).

After simplifying and optimizing the QL query, it is automatically trans-
lated into a single SPARQL expression in the Query Translation Phase as ex-
plained next. ROLLUPs are implemented navigating the roll-up relation-
ships between members, guided by the dimension hierarchy representation
provided by the QB4OLAP metadata, and aggregations are performed us-
ing GROUP BY clauses. Navigation is performed through SPARQL graph
patterns (corresponding to joins). Since SLICE removes dimensions, this re-
quires measure values to be aggregated up to a single value in the dimension
being sliced out. The mechanism for this is the same used as to compute a
ROLLUP. Lastly, a DICE operation is associated with a condition over mea-
sures and/or attribute values, and its result filters out of cells in the cube
that do not satisfy the condition. We implemented these conditions using
SPARQL FILTER clauses9. This way, the QL query is classified according to
the existing query patterns and two SPARQL queries are generated. Both are
semantically equivalent and one represents the direct translation while the
other is an alternative query generated using optimization heuristics thought
to deal with some of the typical limitations of SPARQL endpoints. Finally,
the user can choose to run either one or both queries and see the results in
the SPARQL Execution Phase. The resulting cube is computed on-the-fly.

The Exploration and Querying modules are implemented in JavaScript
and run on the Node.js platform. The interface of both modules is imple-
mented with D3.js.

4 Demonstration

In the on-site demonstration, we will show how Mary, our journalist, can use
the three modules of QB2OLAP to do her work. The following scenarios will
be demonstrated.

Enrichment. Starting from the QB data set loaded into the endpoint, Mary
can use the Enrichment module to interactively retrieve the cube structure
and candidate properties pointing to the possible higher dimension levels.
Using the graphical interface in Figure B.4, she is able to add new hierarchy
levels to the cube. The cube structure is visualized as a tree that is updated
after every change. Once all the levels are added, the triples representing
the schema and level instances are loaded into the endpoint and used by the
Exploration and Querying modules. We will also show that, in the presence of

9Details and examples of the translation process can be found in
http://cs.ulb.ac.be/conferences/ebiss2015/files/slides/vaisman_ebiss2015.pdf
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linked data sets, our tool is able to extract dimensional information (schema
and instances) from other data sets (e.g., DBpedia).

Fig. B.4: The Enrichment Example

Exploration and Querying. With the enriched data, Mary can now explore
the cube dimensions, hierarchies, attributes, etc., through the graphical inter-
face in Figure B.5. In the figure, Mary explores the dimensional cube data by
clustering the instances according to their level value. Nodes represent level
members (e.g., Syria) and edges represent roll-up relationships.

Once explored, Mary can write her own queries in QL (in the demo we
include some predefined queries, which the audience can modify). For ex-
ample, she can find the number of applications submitted by year by citizens
from African countries whose destination is France, a query that could not be
supported by the Eurostat site. The query (already simplified and rewritten)
reads in QL:

1 PREFIX data: <http://eurostat.linked−statistics.org/data/>;
2 PREFIX schema: <http://www.�ng.edu.uy/inco/cubes/schemas/migr_asyapp#>;
3 QUERY
4 $C1 := SLICE (data:migr_asyappctzm, schema:asylappDim);
5 $C2 := ROLLUP ($C1, schema:citizenshipDim,schema:continent);
6 $C3 := ROLLUP ($C2, schema:timeDim, schema:year);
7 $C4 := DICE ($C3, (schema:citizenshipDim|schema:continent|
8 schema:continentName = "Africa"));
9 $C5 := DICE ($C4, schema:destinationDim|property:geo|

10 schema:countryName = "France");
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Fig. B.5: The Exploration Example

A key feature to promote the use of our proposal is to relieve OLAP users
from the need of learning a new and complex language like SPARQL. QL
provides a higher abstraction level that is more intuitive to typical OLAP
users that only need to write relatively simple QL programs (e.g., the above
query translates to more than 30 lines of SPARQL) using OLAP algebra oper-
ations. Thus, they have the flexibility to analyze data cubes on-the-fly, since
QB4OLAP provides the metadata needed to automatically translate QL into
SPARQL. Further, graphical OLAP tools can be developed, and translated
first into a mediator language like QL, and then to SPARQL (we omit the
SPARQL translation here, for space reasons).
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