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Abstract

An atomic force microscope is capable of measuring the topography of a surface on a
nano meter scale by moving a cantilever with a tiny tip at its end across the surface.
The flexibility in the choice of the scan pattern, that the cantilever follows, allows for
undersampling of the surface, i.e. measuring only a part of the surface. In order to
display an image of the entire surface, algorithms for reconstructing the missing parts are
required. Such algorithms provide a description of the computations needed to estimate the
topography of the entire surface being imaged. If the time it takes to do the computations
is small compared to the time saved by only acquiring a part of the surface, a speed-up in
the entire imaging process is achievable. An image acquisition speed-up may potentially
enable applications such as surface “pre-viewing”, video-rate imaging, or super resolution
imaging.

In this thesis, we describe and discuss algorithms for reconstructing undersampled
atomic force microscopy images or other similar types of high dimensional signals. In
particular, our contributions relate to the design of algorithms that not only exploit sparsity
but structured sparsity. That is, algorithms that exploit the structure in prior information
about an image to guide the reconstruction of the image. We show that such structure may
be used to improve the estimate of the full topography surface compared to the estimate
obtained by algorithms relying only on sparsity.

The main body of this thesis is a collection of individual scientific papers and a tech
report which are preceded by an introductory part that summarises the topic and pro-
vides perspective on our results and contributions. In the introductory part, we carefully
outline our results related to the design of weighted iterative thresholding algorithms and
the design of a weighted prior for approximate message passing algorithms. Furthermore,
we address the issue of efficient handling of entrywise squared transforms for the high-
dimensional image reconstruction setting. Since our proposed algorithms are primarily
evaluated empirically through simulations, a major part of this thesis is devoted to the
description of our work and results on ensuring correctness and reproducibility of our
computational results. Having accounted for this important aspect, we conclude the in-
troductory part of the thesis with a comparison and discussion of the capability of our
proposed reconstruction algorithms compared to baseline algorithms.

i





Resumé

Atomar kraftmikroskopi kan med nanometeropløsning aftaste en overflades topografi ved
at føre en mikroskopisk nål henover overfladen. Fleksibiliteten i valget af nålens scan-
nemønster giver mulighed for at underaftaste overfladen, dvs. kun måle en mindre del af
overfladen. Det er herefter nødvendigt at bruge algoritmer til at genopbygge de manglede
dele af overfladen for at kunne fremvise et billede af den samlede overflade. Sådanne al-
goritmer beskriver de beregninger, der er nødvendige for at kunne estimere topografien af
den samlede overflade. Det er således muligt at fremskynde det samlede optageforløb, hvis
tidsforbruget til udførelsen af beregningerne er lille sammenlignet med tiden sparet ved
kun at aftaste dele af overfalden. Derved vil anvendelser som “overfladeeksemplificering”,
videooptagelser eller superopløsningsoptagelser potentielt muliggøres.

I denne afhandling beskrives og diskuteres algoritmer til genopbygning af underaftast-
ede atomar kraftmikroskopibilleder og lignende højdimensionelle signaler. Afhandlingens
bidrag relaterer sig især til udformning af algoritmer, hvori ikke alene tyndt besatte egen-
skaber, men strukturerede tyndt besatte egenskaber udnyttes. Det vil sige algoritmer,
hvori strukturen i forudgående information om et billede bruges som rettesnor i billedgenop-
bygningen. Udnyttelsen af denne struktur viser sig at give anledning til et forbedret estimat
af overfladetopografien sammenlignet med et estimat opnået ved brug af algoritmer, der
alene er baseret på tyndt besatte egenskaber.

Afhandlingens hoveddel er en samling af individuelle videnskabelige artikler samt en
teknisk rapport. Forud for denne hoveddel præsenteres en introduktionsdel, der opsum-
merer afhandlingens emne og giver perspektiv på dens resultater og bidrag. I afhandling-
ens introduktionsdel gives en sammenfatning af udformningen af vægtede iterative tærskel-
algoritmer samt udformningen af en vægtet prior til tilnærmet meddelelsesudvekslings-
algoritmer. Derudover adresseres problemet med effektiv håndtering af indgangsvist kvadre-
rede transformationer til højdimensionel billedgenopbygning. Da de foreslåede algoritmer
primært evalueres empirisk via simuleringer, er en betydelig del af denne afhandling viet
til en beskrivelse af det udførte arbejde med sikring af de beregningsmæssige resultaters
korrekthed og reproducerbarhed. Efter fremstillingen af dette vigtige forhold afrundes
afhandlingens introduktionsdel med en diskussion af egnetheden af de foreslåede algorit-
mer sammenlignet med deres udgangspunkt.
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endless love and support, I would not have made it to this moment where I can write these
final words of my thesis.

Christian Schou Oxvig
Aarhus, April 2017

1An electronic copy of this thesis is available at doi:10.5278/vbn.phd.engsci.00158
2All AFM images displayed in this thesis are derivatives of the “Atomic Force Microscopy Images of

Cell Specimens” and “Atomic Force Microscopy Images of Various Specimens” both by Christian Rankl,
Keysight Technologies. They are licensed under CC-BY 4.0, available at doi:10.5281/zenodo.17573 and
doi:10.5281/zenodo.60434, and provided as-is without warranty of any kind.
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Part I

Background, Overview & Perspectives
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1 Introduction & Outline

Atomic force microscopy (AFM) is a type of scanning probe microscopy (SPM) which
allows for acquiring images at sub-nanometer scale [3], [4]. It has applications in several
areas of imaging, e.g. cell imaging [5] and materials imaging [6]. Additionally, due to
its physics, the AFM instrument also has applications in materials manipulation such as
lithography [7].

One major concern in using the AFM is the extent of the imaging time. Using tra-
ditional AFM imaging methods, the imaging time is on the order of seconds to minutes
or even longer [8], [9], [10]. Not only are such wait times annoying to the practitioner,
they also prevent or limit the use of AFM in intriguing applications such as video-rate
imaging [11] or various studies of biological processes [12], [13] which require a minimum
of interaction between the AFM and the sample. Thus, if the AFM imaging process is
accelerated, it may potentially enable such new applications in addition to new imaging
features such as image previewing [14] and super resolution imaging [15], [16].

In the past decade, significant time and effort has been invested in research in the field
of compressed sensing (CS) [17], [18], [19], [20], [21]. The theories of CS provide a frame-
work for reconstructing undersampled signals, i.e. one may for instance recover a complete
image from a partial acquisition of it. Recovering the undersampled signal comes at the
cost of using computationally demanding reconstruction algorithms. However, given the
availability of high performance compute platforms and the maturity of the theoretical
foundations of CS, it seems reasonable to ask if such “undersample and reconstruct” meth-
ods may be used in AFM imaging? Is it possible to speed up the overall AFM imaging
process by significantly reducing the acquisition time through undersampling while only
introducing a relatively small time consumption due to the reconstruction process? These
are the questions that motivate the work presented in this thesis.

1.1 Main Hypothesis & Aims

When reconstructing an undersampled AFM image, one generally obtains an estimate or
approximation of the true underlying image. That is, the reconstruction is not perfect and
one must somehow judge the quality of the reconstruction. Independently of the choice of
quality indicator, the more measurements that are acquired, the better the reconstruction
generally gets. However, the choice of reconstruction algorithm also plays an eminent role
in getting the best possible reconstruction. Traditional CS reconstruction algorithms rely
on so-called sparse models. Informally, these methods exploit the availability of a concise
general description of the signal to reconstruct. However, we ask ourselves if it is possible
to obtain more accurate reconstructions by using algorithms tailored specifically for the
undersampled AFM image reconstruction problem? Thus, the work presented in this thesis
revolves around the following hypothesis:

Main Hypothesis
For a fixed number of measurements, undersampled AFM images may be reconstructed
to superior quality using algorithms that exploit statistical information in a structured
sparse model of the AFM images compared to algorithms that only rely on a sparse
model.

Throughout our work on exploring this main hypothesis, we have identified several
research areas of particular interest. Obviously models of AFM images and the actual
reconstruction algorithms play an important role. However, in comparing our proposed
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Chapter 1. Introduction & Outline

reconstruction algorithms to baseline alternatives, the choice of reconstruction quality indi-
cator becomes important. Also, our proposed AFM tailored reconstruction algorithms are
of little value if they are not readily available to the AFM practitioner. That is, reusable
and high quality implementations of the algorithms must be available and it must be fea-
sible to run those algorithms on standard computing platforms. Finally, since several of
our algorithm design and test methods are empirical in nature, i.e. they are based on large
simulation studies, correctness and reproducibility of our computational results become
crucial. Consequently, our overall aims in our work have been to:

1. Establish models of AFM images that may be used in structure exploiting recon-
struction algorithms.

2. Design structure exploiting reconstruction algorithms specifically tailored for the
undersampled AFM image reconstruction problem and evaluate their performance
relative to the more general baseline reconstruction algorithms.

3. Identify critical elements in comparing the quality of reconstructions of undersampled
AFM images.

4. Ensure that the proposed algorithms have sufficiently low computational- and mem-
ory requirements to make it feasible to implement them on standard computation
platforms.

5. Provide high quality and well tested reference implementations of our proposed al-
gorithms that are readily available to the AFM practitioner.

6. Take actions towards ensuring the correctness and reproducibility of our computa-
tional results.

1.2 Organisation & Main Contributions

The present thesis is organised as a collection of individual manuscripts with an extended
contiguous introductory part. That is, Part I provides a contiguous narrative on the
background, overview, and perspectives on our exploration of the main hypothesis and the
aims stated in Section 1.1 whereas Part II is a collection of individual manuscripts and
datasets that each give full disclosure on one or more of our main results and contributions.
Figure 1.1 illustrates this organisation.

The remainder of Part I is organised as follows: In the background Chapters 2 and
3, we formally introduce the undersampled AFM image reconstruction problem and its
mathematical foundations. Our proposed AFM tailored reconstruction algorithms are
presented in Chapters 4 and 5. The actions we have taken towards ensuring correctness
and reproducibility of our results are detailed in Chapter 6. A discussion of the assessment
of the quality of reconstructed AFM images is presented in Chapter 7 along with the results
from a large simulation study of the performance of our proposed reconstruction algorithms
compared to a range of baseline algorithms. In Chapter 8, we discuss our overall results
whereas our conclusions are stated in Chapter 9.

Our main contributions are presented throughout the introductory Part I, Chapters
2 – 6. They are highlighted with a vertical green bar and include references to the works in
Part II that give their full disclosure. Specifically, towards the end of Chapter 2, we present
our proposed structured model of AFM images from Paper B. Initially, our work focused on
using this model with iterative thresholding reconstruction algorithms. This line of work is
presented in Chapter 4 based on our results from Paper B. Having established results on the
use of our proposed model in iterative thresholding algorithms, we directed our attention
to applying our proposed model in the more general and adaptable approximate message
passing algorithms. That line of work is presented in Chapter 5 and includes our results
on efficient implementations (in terms of computational and memory requirements) of the

4



1.2. Organisation & Main Contributions

Figure 1.1: Illustration of the organisation of this thesis. Part I provides a contiguous
introduction to our line of work whereas Part II features the individual manuscripts and
datasets detailing our individual results and contributions. The chapters and individual
manuscripts are grouped based on the overall work they relate to, i.e. whether they provide
background on the undersampled AFM reconstruction problem, describe our main results,
support our algorithm comparison, or provide perspective on the entirety of our work.

involved transforms from Paper C as well as our results on a general weighted prior and an
AFM tailored weighted Bernoulli-Laplace prior from Tech Report G. Well tested and fully
documented implementations of our proposed reconstruction algorithms are available in
the Magni Python package which we introduce in Chapter 6 with more details in Paper D.
Throughout the entire course of our work on reconstruction algorithms, we have constantly
refined our actions towards ensuring correctness and reproducibility of our computational
results. As a consequence of this, we have proposed ways to handle this matter in the
typical scientific Python workflow. These results are presented in Chapter 6 based on their
description in Paper E and Paper F.
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2 Undersampling of Atomic Force Microscopy Images

Motivated by the potential gains in using undersampling in AFM discussed in Chapter 1,
we now provide a brief introduction to the basics of the AFM mechanics with an emphasis
on the image formation and the undersampling potential in AFM. More details about the
AFM mechanics, images formation, and undersampling potential are given in Paper A.

2.1 AFM Mechanics

In an atomic force microscope, a cantilever with a tiny tip at its end is moved across the
surface of a sample to be imaged. Due to its interaction with the surface, the cantilever
gets deflected. A laser beam is reflected off the cantilever and onto a photo detector in
order to record the cantilever deflection. The recorded deflection is then used in a feedback
control loop such that the feedback signal resembles the sample surface as the cantilever
is moved across it [3], [4]. This principle of operation is illustrated in Figure 2.1.

Figure 2.1: “Typical atomic force microscope (AFM) setup: The deflection of a microfab-
ricated cantilever with a sharp tip is measured by reflecting a laser beam off the backside
of the cantilever while it is scanning over the surface of the sample.” by yashvant. The
illustration is part of the The Opensource Handbook of Nanoscience and Nanotechnology
and is licensed under CC-BY 2.5.

The specifics of the feedback control loop are tied to the choice of AFM operation
mode, e.g. contact mode or tapping mode [3]. Even though all these AFM subtleties are
of great importance to the practitioner, in this thesis we simply assume that the AFM is
configured to allow for the use of arbitrary continuous sampling patterns when imaging the
sample topography. That is, we assume that the cantilever tip may follow any continuous
trajectory across the sample surface.

7
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Chapter 2. Undersampling of Atomic Force Microscopy Images

2.2 Image Formation

Traditionally, an image of an entire sample surface is created by moving the cantilever tip
across the surface in a raster scan pattern as illustrated in Figure 2.2 [4]. The surface
is then overlayed by a uniform pixel grid and a topography level relative to a reference
level from the raster scan sampling is assigned to each pixel1. When shown on a computer
screen, a color map is used to visualise the relative topography levels as shown in e.g.
Figure 3.1.

The cantilever is moved relative to the surface using a piezoelectric element. A sig-
nificant drift in the position of the cantilever may occur in the piezoelectric element [4],
[23] which may lead to translation, rotation, and stretch distortions of the resulting image.
In this thesis, we assume that such drift is mitigated by the either using a closed loop
mode (position feedback control in the AFM) and/or appropriate image post processing.
Furthermore, if the sample surface is not perpendicular to the cantilever tip, a tilt in
the resulting image occurs. In this thesis, we assume that such a tilt may be accurately
modelled by a plane which may be subtracted from the image when it is displayed.

The physics of the piezoelectric element as well as the need for slowly approaching the
surface with the cantilever tip makes it difficult to quickly move the cantilever between dif-
ferent locations on the surface [24], [25]. It is, thus, generally a necessity that a continuous
sampling pattern is used in the imaging process, though some studies indicate that it may
be feasible to use piece-wise continuous sampling patterns which rely on the cantilever tip
being raised from the surface, moved to another path segment, and lowered to the surface
again [25].

2.3 Undersampling Potential

The flexibility in the choice of sampling pattern allows for spatially undersampling the
image in the sense of only covering parts of the image pixel grid. Examples of such
undersampling strategies are shown in Figure 2.2. Undersampling may speed-up the AFM
imaging process since the distance travelled by the cantilever tip (which is proportional to
the imaging time for a fixed cantilever speed) is smaller than the full raster scan distance.
This leads to our definition of the AFM undersampling ratio in Definition 1. At first, the
factor of two in the definition of δ may seem odd. However, when using the raster scan
sampling pattern the entire surface is covered twice even though only one of the resulting
sets of pixels (blue or red in Figure 2.2) is usually displayed. Traditionally, this has been
the way to handle scan direction specific artefacts and distortions, i.e. by making sure
that the entire surface is scanned using a left-to-right scan (or, equivalently, a right-to-left
scan). In an undersampling setting, we assume that one may mitigate such artefacts and
distortions as part of the reconstruction.

Definition 1 (from [22, (Paper A)], [27, (Paper B)])
The AFM undersampling ratio is

δ = L

Lref
= L

2hw , (2.1)

where L is the sampling path length (e.g. the length of one of the green curves in Figure
2.2) and Lref = 2hw is the raster sampling baseline path length, i.e. the length of all the
blue and red line segments in Figure 2.2 approximated by two times the height times
the width of the surface.

1More details about such strategies for assignment of topography levels are given in [22, (Paper A)].
Since these details are of less importance to the topic of this thesis, we simply assume that it is done in a
reasonable way.
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Raster scan

Uniform lines

Rotated uniform lines

Random pixels

Spiral with corners included

Figure 2.2: Illustration of AFM sampling patterns mapped to a 16-by-16 pixel grid. Solid
lines mark the path followed by the cantilever tip. The shaded pixels are the ones covered
by the sampling pattern. The raster scan sampling pattern covers all pixels twice: First in
the left-to-right direction (blue) and then in the right-to-left direction (red). The uniform
lines and uniform rotated lines sampling patterns are simple approaches to sub-sampling
the traditional raster scan pattern. The random pixels sampling pattern is not easily
implementable on the AFM since it requires defining some continuous path through all
the selected pixels. When using the spiral sampling pattern from [26] the “corners” of
the rectangular area can only be included by either moving the probe along the edges
of the rectangular area (as illustrated) or by following the spiral pattern outside of the
rectangular area. The non-raster scan sampling patterns are based on an undersampling
ratio of δ = 0.15 (see Definition 1).

The catch in using such undersampling techniques is the need for post processing in
order to reconstruct the full image, i.e. fill in the missing pixels (e.g. the grey ones in Figure
2.2). The use of spatial undersampling techniques in combination with reconstruction
algorithms is, however, an option for AFM and other SPM modalities. Specifically, the
use of spatial undersampling in microscopy imaging applications has already been explored
in a number of previous works including in AFM [11], [12], [23], [24], [25], [28], [29], [30]
in scanning electron microscopy (SEM) [31], [32], and in electron tomography [33]. We
discuss the reconstruction methods used in these works once we have formally introduced
the mathematical framework defining the reconstruction of the undersampled AFM images
in Chapter 3.
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3 Mathematical Background on Reconstruction of
Undersampled Images

An undersampled AFM image may be reconstructed in several ways. Our focus is on
using methods related to the theory of compressed sensing (CS) [17], [18], [19], [20], [21].
Towards that end, we now introduce the mathematical background on this reconstruction
problem and discuss several practicalities in making it tractable for high-dimensional image
reconstruction. Finally, we introduce the main idea on which our AFM tailored CS image
reconstruction algorithms to be presented in the succeeding chapter are based. More de-
tails about the mathematical background on the undersampled AFM image reconstruction
problem are given in Paper A and Paper B.

3.1 The Reconstruction Problem

From a mathematical point of view, we consider a rectangular AFM image described by a
matrix X ∈ Rh×w. By stacking the columns of X, we may also represent the image by the
vector x ∈ Rp×1 with p = h · w. The spatial undersampling of AFM images, discussed in
Section 2.3, is assumed to be a linear process described by the sampling operator Φ ∈ Rm×p
with m ≤ p (usually, m� p). Applying this sampling operator on x, we have

z = Φx , (3.1)

where z ∈ Rm×1 is the vector of (noiseless) measurements of the undersampled AFM image,
e.g. the vector with entries corresponding to the green pixels in one of the sub-figures of
Figure 2.2. If we consider the measurement process to be corrupted by an additive noise
e ∈ Rm×1, e.g. an additive white Gaussian noise (AWGN), we have

y = z + e (3.2)
= Φx + e , (3.3)

where y ∈ Rm×1 is the vector of noisy measurements of the undersampled AFM image.
Given y and knowledge about the measurement matrix Φ, we are now interested in re-
constructing x, i.e. estimating the full AFM image x by assigning topography values to
the grey pixels in the sub-figures of Figure 2.2, based on the noisy measurements y (the
corresponding green pixels in the sub-figures of Figure 2.2). This is in general, in the
undersampling setting, an nontrivial problem, since there are more entries in the image
vector x than there are measurements, i.e. m < p. Compressed sensing does, however,
offer the theoretical foundations for solving this undersampling problem provided that the
information in the image is captured by some succinct representation, e.g. if x is sparse
(i.e. most of its entries are zero) in some dictionary matrix [19]. Informally, the idea is to
use some additional a priori information to make up for the lack of measurements. Thus,
if for some dictionary matrix, Ψ ∈ Cp×n with p ≤ n, we have

x = Ψα , (3.4)

for some sparse or otherwise structured α ∈ Cn×1 then under certain assumptions it is
possible to recover x from y [19], [20]. By defining the system matrix A = ΦΨ ∈ Cm×n,
we may state the set of equations defining our reconstruction problem as

y = Aα + e (3.5)
= ΦΨα + e (3.6)

x = Ψα . (3.7)
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As discussed in Section 3.4, there exists numerous methods to obtain an estimate x̂ of x
from y. One popular CS related method for solving this reconstruction problem is by use
of the least absolute shrinkage and selection operator (LASSO) [34], [35], [36], i.e. solving
the convex optimisation problem

α̂ = argmin
α

1
2 ||y−Aα||22 + β||α||1 (3.8)

or the equivalent formulation (for a given β there exists an ε such that the two problems
have the same solution [37])

α̂ = argmin
α

||α||1 s.t. ||y−Aα||22 ≤ ε . (3.9)

The CS theory gives several guarantees in terms of how well α̂ approximates α. These
guarantees are generally based the application of incoherence [19], [38], restricted isometry
property (RIP) [38], [39], or state evolution [36], [40]. Though all of these are interesting
theoretical elements, in this thesis we focus on empirical evaluation of the reconstruction
algorithm performance. Our reasons for this choice are twofold

• The performance predicted by such theoretical bounds is oftentimes worse than what
may be observed empirically [41], [42]. Thus, it may be possible to reconstruct under-
sampled AFM images in settings which are not covered by the theoretical guarantees.

• It is difficult, if not impossible, to verify if the assumptions (e.g. certain distributions
on the entries in the system matrix and coefficient vector, bounds on the sparsity, or
certain types of measurement noise [19], [21], [43]) behind the theoretical bounds are
fulfilled in practical applications [44] such as the AFM image reconstruction problem.
In particular, the AFM sampling process does not easily permit the application of
the theoretical guarantees as discussed in Section 3.2.

3.1.1 The Dimensionality Problem
The CS related methods for solving the undersampled AFM image reconstruction problem,
e.g. split-Bregman [45] or Douglas-Rachford splitting for the LASSO optimisation problem
in (3.8), the iterative thresholding methods [41] discussed in Chapter 4, or the approximate
message passing [36] algorithms discussed in Chapter 5 generally are first order methods
that rely on the iterative applications of matrix-vector products involving A and AH (the
complex conjugate transpose of A). Two problems arise from the application of such
matrix-vector products

• They require on the order of O(mn) floating point operations which makes them
infeasible (or at least rather slow) for large problem sizes (i.e. large p, n) and/or
high undersampling ratios (i.e. δ ≈ 1) [42] (see also the profilings reported on in
Paper C with the details available at doi:10.5278/240710282).

• The memory requirement for storing A scales poorly with the problem size. Con-
sider for instance a situation in which a 256-by-256 pixels AFM image is spatially
undersampled with δ = 0.5 (A ∈ R0.5·2562×2562). In this case, it would require
8 · 0.5 · (2562)2/10243 = 16GiB RAM to store A in double precision.

The poor scaling in terms of both floating point operations and memory requirements
in implementing these matrix-vector products makes it a necessity to replace such direct
matrix-vector products with implicit or otherwise fast and memory efficient implementa-
tions. Options for practically feasible implementations of A include the use of fast trans-
forms (e.g. a fast Fourier transform (FFT) for Fourier based transforms implementable
using O(n log2(n)) operations [46]) or possibly the use of a 2D separable transform, when
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3.2. The Sampling Operator

A involves matrices defined by Kronecker products [47] (see also the presentation in Paper
C). An overview of the floating point operations and memory scaling of these methods for
the AFM spatial undersampling problem is given in Table 3.1.

Matrix-vector product Separable transform Fast transform

Floating point operations O(mn) O(m +
√

nn) O(m + n log2(n))
Memory requirement O(mn) O(n) O(1)

Table 3.1: Scaling of floating point operations and memory requirements with reconstruc-
tion problem size for the AFM spatial undersampling problem when the reconstruction
method is based on the application of A and AH. The O denotes Big-O notation (see e.g.
[48]). In the computation of the floating point operations for both the separable and fast
transform, we have assumed that the sampling operator may be implemented using m op-
erations (see Section 3.2) such that only the dictionary is implemented using the specified
method. For the fast transform implementation, we assume an in-memory operation. The
details about the scaling of the separable transform may be found in Paper C.

3.2 The Sampling Operator

As detailed in Section 2.2, the AFM image formation amounts to assigning relative topog-
raphy levels to a pixel grid. When using spatial undersampling as detailed in Section 2.3,
topography values are only assigned to a subset of the pixels on the grid. Such a sampling
operation may be modelled by a matrix that extracts only that subset of the pixels from
the image vector x. That is, Φ = IΩ is a row sub-sampled identity matrix I with Ω being
the set of indices of rows corresponding to the pixels to extract. Thus, we have IΩ ∈ Rm×p
with |Ω| = m. The vector of extracted pixels is then z = Φx = IΩx. Applying ΦT to z
results in a vector similar to x but with the pixels corresponding to the non-indexed entries
set to zero.

Matrix-vector products involving such Φ and ΦT reduce to the problem of “looking
up” the entries in the vector corresponding to the set Ω which allows for an efficient
implementation. One only needs to keep track of the m indices and may thus implement
the sampling operation by implementing the m extractions from, or insertions into, the
vector.

An important note to make at this point is that the AFM physics lead to a sparse
and structured (due to the requirement of using a continuous sampling pattern) sampling
operator Φ. Contrary to this sparse and structured sampling operator is the dense ran-
dom sampling operators (e.g. a measurement matrix with independent and identically
distributed (i.i.d.) zero mean Gaussian entries or randomly sub-sampled Fourier matri-
ces) used to derive many of the theoretical results in the CS theory [19], [38], [49], thus
making it difficult to use such theoretical results in relation to the AFM image recon-
struction problem. The frameworks of structured random matrices [43] and structurally
random matrices (SRM) [50] provide some theoretical guarantees for sub-sampled struc-
tured transforms, e.g. when using the AFM sampling operator in combination with a
structured dictionary such as a Fourier dictionary. However, these results still depend on
the sub-sampling being random. That is, for the theoretical results to be applicable to the
AFM undersampling problem, one must use random sampling as illustrated in Figure 2.2
which is, unfortunately, not easily implementable on the AFM.

3.3 The Dictionary

Traditional choices of dictionaries for CS image reconstruction problems include orthonor-
mal bases (with p = n) such as the cosine transform or some of the wavelet transforms
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[51]. However, it is also possible to use learning methods to adapt the dictionary to the
application at hand [52], [53], [54]. Some dictionary learning approaches as well as oversam-
pling of the cosine transform or using wavelet frames lead to overcomplete and redundant
dictionaries (p < n) which may also be used in CS methods [54], [55].

The dictionary learning approaches, though intriguing in terms of the potentially
achievable reconstruction performance, are of limited interest with large problem sizes
due to their computational complexity. The learned dictionaries generally do not have
any structure that allow for efficient implementations [54]. Thus, one must resort to using
direct matrix-vector multiplication in implementing transforms based on learned dictionar-
ies. Finally, the use of learning methods entails the need for training data. AFM specific
training data is not easily available due to the time usage and other costs associated with
the data collection. All of this makes dictionary learning approaches less appealing in
connection to the undersampled AFM image reconstruction problem.

This leaves the discrete wavelet [56] and cosine transforms [57] as more obvious choices.
They generally have fast transforms allowing for implicit implementations usingO(n log2(n))
floating point operations [52], [54]. The wavelets used in the JPEG2000 image compres-
sion standard [58] generally provide better compression of natural images compared to the
cosine transform used in the JPEG image compression standard [59] and, thus, yields a
more (approximately) sparse α. Furthermore, wavelet dictionaries have been successfully
applied in some CS imaging applications when combined with dense random sampling [60],
[61]. However, a discrete wavelet transform (DWT) matrix is generally sparse whereas the
discrete cosine transform (DCT) matrix is dense. The matrix product of a sparse sam-
pling operator Φ (as the AFM sampling operator detailed in Section 3.2) and a sparse
dictionary Ψ generally yields a sparse system matrix A which may be problematic in an
undersampling setting. Intuitively, if A is too sparse, the sparse elements of Ψ are unable
to interpolate between the sparse sampling points extracted by Φ. This need for a dense
dictionary when used with sparse sampling is captured in the incoherent sampling require-
ment in the CS theory [19] as further detailed in [22, (Paper A)]. Thus, one must balance
the ability of the dictionary to provide a sparse representation of the signal of interest
against its incoherence with the sampling matrix. A large set of empirical evaluations of
the AFM image reconstruction performance when using both DWT and DCT dictionar-
ies are presented in [22, (Paper A)]. The results are highly dependent on the choice of
sampling pattern. However, the best possible results are obtained using the dense DCT.
Finally, since AFM images tend to have repetitive patterns as well as larger smooth regions,
it is reasonable to expect that the DCT compresses such images well.

The above discussion suggests that the DCT dictionary provides a reasonable balance
between reconstruction performance and ease of implementation in terms of both com-
putational and memory requirements. Thus, in this thesis, we focus on the use of the
orthonormal DCT as the dictionary of choice in the undersampled AFM image reconstruc-
tion problem. At this point we note that the simulation results in [22, (Paper A)] show
that an overcomplete DCT may yield a small gain in reconstruction performance compared
to the orthonormal DCT. However, this comes at increased computational complexity.

The 2D separable orthogonal DCT transform may be implemented using two 1D DCTs
(one on the columns and one on the rows) [47] which may in turn be implemented using an
FFT based method [62]. Thus, the number of floating point operations in implementing the
2D transform reduces to 2

√
nO(
√
n log2(

√
n) = O(n log2(

√
n))1 which is slightly less than

for the more general fast transform result given in Table 3.1. If an even faster transform
is needed, specialised 2D DCT algorithms exist [63].

1Strictly speaking, the result is O(n log(n)) since in Big-O notation, one only considers the scaling
behaviour up to a constant. However, in a practical application of our results, such constants have a
significant impact which is why we have included these extra details in the results.
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3.3.1 DCT Coefficient Structure in AFM Images
The CS theory allows for not only assuming sparsity but structured sparsity on α which
may be exploited to further improve the capabilities of reconstruction algorithms [64], [65].

A few examples2 of the placement of the 10% largest DCT coefficients of typical AFM
images are shown in Figure 3.1. With the exception of the last image, all of these examples
share a common low-frequency structure with a dispersion of the coefficients from the low-
frequency area towards the high-frequency area. The last image is a calibration grid (and
thus not a natural AFM image) which has a periodic structure. If the image matrix X is
transposed, its DCT domain is also transposed which suggests a general symmetry in the
DCT coefficients around the diagonal. These observations along with similar observations
based on other natural AFM images is the motivation behind our proposed model of the
DCT coefficient structure in AFM images detailed in Main Contribution 1. As is seen from
the examples in Figure 3.1, if, using some reconstruction algorithm, this structure model
in combination with a sparsity assumption makes it possible to identify the 10% largest
(or more) DCT coefficients and their values, accurate reconstructions of AFM images are
obtainable.

Main Contribution 1 (AFM DCT Support Structure from [27, (Paper B)])
We consider a model of the DCT coefficients that is characterised by:

1. A smooth transition from a peak value in the low-frequency area to a small constant
value in the high-frequency area. Examining the full DCT domain suggests an
exponentially decaying transition.

2. A sufficient number of degrees of freedom to model the dispersion in the coefficients
from low-frequencies to high-frequencies while still imposing symmetry around the
diagonal (in the model of the coefficients).

Specifically, we propose to model the dispersion in the DCT coefficient values using a
Gaussian function f of the form:

f(z) = a · exp
(
−(z− b)TC−1 (z− b)

)
(3.10)

z =
[
z1
z2

]
, b =

[
b
b

]

R =
[

cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

]

C−1 = R
[

1/c1 0
0 1/c2

]
RT ,

where:

• z1, z2 are the two pixel coordinates.

• a is a user specified parameter that determines the flatness of the model relative
to the data.

• b is the “mean” value positioned on the z1 = z2 diagonal.

• C is the “covariance” matrix rotated to ensure symmetry around the diagonal.

We use the quadratic form (z−b)TC−1 (z−b) to model the shape of the spread. Choosing
both entries in b to be equal forces the peak value to be on the diagonal. Combined with

2More examples for all the 17 AFM images shown in Figure 7.1 are included in the “Extra Figures”
supplementary material available at doi:10.5278/252861471.
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Chapter 3. Mathematical Background on Reconstruction of Undersampled Images

the fixed rotation matrix R that aligns the principal axes with the diagonals, this forces
the desired symmetry.

More details are given in [27, (Paper B)].

3.4 Reconstruction Algorithms in General

One general approach to obtaining an estimate x̂ of x from the undersampled noisy mea-
surements y is by directly estimating values of the missing pixels [66]. Interpolation tech-
niques such as nearest neighbour, linear, or cubic interpolation [12] [67], [68] based on
e.g. Delaunay triangulation provides one way to apply this strategy. Another way is to
minimise the total variation (TV) of the reconstructed image subject a least squares (LS)
constraint [69], [70], [71], e.g. solving the optimisation problem

x̂ = argmin
x

tv(x) s.t. ||y−Φx||22 ≤ ε . (3.11)

More details about these approaches are given in [22, (Paper A)]. Examples of studies on
undersampled microscopy image reconstruction based on this approach include [23], [24],
[12], [29] (interpolation based), as well as [11], [28], [31], [32], [33] (TV based).

A different approach to obtaining the estimate x̂ is to use the CS theory presented in
Section 3.1 - 3.3. A vast selection of CS reconstruction algorithms exist. Popular choices
include `1-norm minimisation approaches such as the LASSO in (3.8) [34] (also known as
basis pursuit denoising (BPDN) [72]), greedy algorithms [41], and approximate message
passing (AMP) based methods [36], [73]. Examples of studies on undersampled microscopy
image reconstruction based on the CS approach include [25], [28], [29], [32], [33] (`1-norm
minimisation based) as well as [30] (greedy matching pursuit based).

The main difference between the two approaches (direct estimation and CS methods)
is the introduction of the dictionary in the CS based methods. In the interpolation and
TV3 based methods one attempts to use structure in the image domain to guide the
reconstruction of the AFM image, e.g. the presence of larger smooth areas in typical
AFM images which motivates the use of interpolation as well as TV based methods. In
the CS based methods one instead attempts to use structure in the dictionary domain,
e.g. in the DCT domain structure discussed in Section 3.3.1. In our proposed AFM
image reconstruction algorithms presented in Chapters 4 and 5, we attempt to improve
the reconstruction performance by exploiting the model of the DCT domain structure
presented in Main Contribution 1.

3As detailed in [22, (Paper A)], one may interpret TV methods in a CS context by expressing the
TV operator as a dictionary. In the AFM undersampling problem, we like to make a distinction between
methods that directly attempts to “fill-in the blanks” in the image domain and methods that address the
reconstruction problem in another domain, e.g. the DCT domain. We reserve the CS context for the latter
type of methods.
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Excluded 90.0 92.5 95.0 97.5 100.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Excluded 90.0 92.5 95.0 97.5 100.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Excluded 90.0 92.5 95.0 97.5 100.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Excluded 90.0 92.5 95.0 97.5 100.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Excluded 90.0 92.5 95.0 97.5 100.0

Figure 3.1: Examples of structure in the DCT coefficients of typical AFM images (a subset
of the images shown in Figure 7.1). Each row displays for an image: The ground truth
image (left), an approximation based on the 10% largest DCT coefficients (mid), and the
structure of the 10% largest DCT coefficients (right). The right column figures show the
placement of the 10% largest coefficients (divided into four intervals) in the DCT domain.
The reader is encouraged to study the details in this figure using the electronic version of
this thesis available at doi:10.5278/vbn.phd.engsci.00158.
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4 Iterative Thresholding Reconstruction Algorithms

With an outset in the mathematical background provided in Chapter 3, we now present our
first proposed type of reconstruction algorithms which exploit structured sparsity to solve
the undersampled AFM image reconstruction problem. These are iterative thresholding
algorithms which allow us to use the structure model of AFM image DCT coefficients pre-
sented in Main Contribution 1. We introduce and motivate the basic iterative thresholding
algorithms before presenting our proposed modifications and discussing various implemen-
tation details. More details about the use of iterative thresholding algorithms for the
undersampled AFM image reconstruction problem may be found in Paper B.

4.1 The Greedy Idea and Iterative Thresholding Algorithms

Iterative thresholding reconstruction algorithms belong to a larger class of so-called greedy
reconstruction algorithms [41]. The greedy algorithms are based on the idea of choosing
locally optimal solutions in each iteration, hence the term greedy. In the CS setting, one
is typically trying to reconstruct a vector α which is assumed to be sparse. That is, the
`0 = |supp(α)| pseudo-norm which counts the size of the support of α (the number of
non-zero entries) is assumed small. Thus, one may be looking to solve the optimisation
problem

α̂ = argmin
α

||y−Aα||22 subject to ||α||0 ≤ k (4.1)

in order to find a k-sparse solution with the minimum mean squared error. Solving this
problem directly is unfortunately NP-hard [20]. However, the iterative hard thresholding
(IHT) algorithm is capable of finding a locally optimal solution to an approximation to
this optimisation problem [74], [75]. This represents the general greedy idea: Obtain
a computationally tractable reconstruction algorithm by accepting only finding a locally
optimal solution.

Specifically, the iterative thresholding algorithms are characterised by having a single
step in each iteration that forces an assumed sparsity constraint, yet still allows for the
support set to change between iterations [41]. The general iterative thresholding scheme
is stated in Algorithm 1. In this scheme, ηt is a scalar non-linear threshold operator that
acts independently on each of the entries in its vector argument and, in general, may be
iteration dependent. Furthermore, κ is a step-size (relaxation) parameter. The procedure
in Algorithm 1 may be interpreted as a gradient descent step in solving the unconstrained
optimisation problem minimise ||y −Aα||22 followed by a thresholding operation in order
to force sparsity in the solution [75], e.g. simply setting the k smallest (in absolute value)
entries to zero as is done in IHT [74].

The step-size parameter κmay be fixed to some sufficiently small value to ensure conver-
gence [41]. It may be chosen adaptively to optimally solve the unconstrained optimisation
problem minimise ||y −Aα||22 provided that the correct support has been found [75]. Or
it is may be fixed to the worst case empirically tuned value from [44] which is a more
practically applicable method.
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Algorithm 1 Iterative Thresholding (based on [41], [76])
1 initialise: α̂0 = 0, r0 = y
2 for t = 1 . . . Tmax do
3 ct = ATrt-1
4 α̂t = ηt(α̂t-1 + κ · ct)
5 rt = y−Aα̂t

6 if stop criterion is met then
7 break
8 end if
9 end for

4.2 Weighted Threshold Operators

The threshold operator ηt in Algorithm 1 may be chosen to reflect an assumed structure on
the signal being reconstructed. For sparse vectors, one may use the hard or soft threshold
operators

Hard [74]: ηH
t (x) = x · 1|x|>t (4.2)

Soft [77]: ηS
t (x) = sgn(x)(|x| − t)+ , (4.3)

where 1|x|>t is the indicator of |x| > t for some threshold level t and (|x| − t)+ = (|x| −
t) · 1(|x|−t)>0. That is, the hard threshold operator forces all entries smaller in absolute
value than t to zero, whereas the soft threshold operators forces all entries smaller than
t to zero and shrinks the remaining entries towards zero by t . When using the hard
threshold operator in Algorithm 1, the resulting algorithm is known as IHT [74]. Similarly,
when using the soft threshold operator, the resulting algorithm is known as iterative soft
thresholding (IST) [78] or the iterative shrinkage-thresholding algorithm (ISTA) [79]. IHT
forces sparsity in the solution by greedily attempting to solve the optimisation problem
in (4.1) for a fixed sparsity k. Similarly, it can be shown that for a fixed threshold level
t = β, IST attempts to solve the LASSO optimisation problem in (3.8) [80].

When a structured sparsity is assumed on the solution, the threshold operator may
be chosen to reflect that assumption, e.g. if the solution is assumed to lie on one of
several subspaces of a Hilbert space the threshold operator may be chosen to reflect that
[81]. Though not strictly based on the union of subspaces models for structured sparsity
[41], [64], [65], we have used this idea of designing a threshold operator for the assumed
structure on the solution in our proposed weighted threshold operators presented in Main
Contribution 2.

Main Contribution 2 (Weighted Threshold Operators from [27, (Paper B)])
Based on the idea of adapting the thresholding operators in model based CS [65], we
propose the following two weighted thresholding operators:

Weighted hard: ηwH
t (x) = x1|wx|>t (4.4)

Weighted soft: ηwS
t (x) = 1

w
sgn(x)(|wx| − t)+ (4.5)

where w ∈ R+ is a weight applied to the coefficient before thresholding.

More details are given in [27, (Paper B)].
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4.3 Iterative Thresholding for the AFM Image Reconstruction
Problem

The weighted threshold operators presented in Main Contribution 2 may be used with any
dictionary to promote an arbitrary structure described by a vector of weights w ∈ Rn×1

+ .
In particular, by obtaining a matrix of DCT domain weights from the application of the
DCT coefficient model in Main Contribution 1 and stacking its columns similarly to way x
is obtained from X, a vector of weights for the AFM undersampling problem is obtained.
This use of the DCT coefficient structure model in Main Contribution 1 with the weighted
threshold operators presented in Main Contribution 2 defines our first proposed type of
reconstruction algorithms tailored for the undersampled AFM reconstruction problem. A
comparison of this method to other reconstruction methods is given in Chapter 7.

When using the weighted hard threshold operator in (4.4) in Algorithm 1, we denote the
resulting algorithm weighted iterative hard thresholding (w-IHT). Similarly, when using
the weighted soft threshold operator in (4.5), we denote the resulting algorithm weighted
iterative soft thresholding (w-IST). Whereas the IHT and IST algorithms exploit sparsity
in α, the w-IHT and w-IST algorithms exploit structured sparsity in α. That is, using w,
one may mark some coefficients as being more likely to be included in the solution than
others while still forcing an overall sparse solution. Note that in the weighted threshold
operators in (4.4) and (4.5), only the choice of coefficients to threshold is influenced by the
weights - the values of the coefficients are not. Also note that when using w-IST, one must
ensure wj 6= 0,∀j to avoid a division by zero.

4.3.1 Threshold Level
When using iterative thresholding (Algorithm 1) with any of the threshold operators in
(4.2), (4.3), (4.4), (4.5), one must choose a threshold level t . The threshold level may be
fixed at e.g. t = β (as in the LASSO optimisation problem) if the application suggests
such a fixed value. Otherwise, it may be chosen adaptively, e.g. by using the false alarm
rate heuristic from [44].

In our evaluation of the iterative threshold algorithms for the undersampled AFM image
reconstruction problem presented in Chapter 7, we adaptively, in each iteration, choose t
such that the sparsity level ρ = k

m is fixed. That is, t = |α|(k) where |α|(k) is the k’th largest
(in absolute value) element in α. In line with our empirical approach to evaluating the
performance of reconstruction algorithms for the undersampled AFM image reconstruction
problem, we then evaluate the performance of the algorithm by testing several values of ρ
for a given δ.

4.3.2 Stop Criteria
A stop criterion may be used to terminate the iterations in Algorithm 1 when the estimate
α̂ is sufficiently close to the true solution. A few such stop criteria are detailed in the
generalized approximate message passing (GAMP) tech report (Tech Report G). We have
empirically found that the residual measurements ratio stop criterion proposed in [44] works
well when attempting to solve the AFM undersampled image reconstruction problem. That
is, the iterations in Algorithm 1 should be stopped when

||rt||2 < ε · ||y||2 , (4.6)

for some tolerance ε ∈ R+.
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5 Generalized Approximate Message Passing
Reconstruction Algorithms

Our second proposed type of reconstruction algorithms that exploit structured sparsity
to solve the AFM undersampling problem are based on the approximate message passing
(AMP) algorithm [36], [40], [73], [82]. These are iterative algorithms with a Bayesian
probabilistic interpretation of the undersampling problem, they attempt to solve. This
interpretation allows us to define and use a probabilistic model of AFM images with the
AMP algorithms. We introduce and motivate the AMP and generalized approximate
message passing (GAMP) algorithms before presenting our proposed modifications and
discussing various implementation details. More details may be found in Paper C and
Tech Report G.

5.1 The AMP and GAMP Algorithms

From a practical perspective, the approximate message passing (AMP) algorithm [36], [40],
[73], [82] and the generalized approximate message passing (GAMP) algorithm [83], [84]
are of interest since they may be used to find Bayes optimal solutions to undersampling
problems involving application specific probabilistic models. Specifically, based on an
application specfic prior (input channel) p(α; θI) parameterised by θI and an application
specific measurement model (output channel) p(y|z; θo) parameterised by θo, the GAMP
algorithm may be used to find minimum mean squared error (MMSE) and maximum a
posteriori (MAP) estimates of α. An AWGN output channel is assumed in the AMP
algorithm whereas the GAMP algorithm allows for other and more general measurement
models to be used. From a theoretical perspective, the AMP algorithms are of interest in
solving undersampling problems since the state evolution (SE) formalism [36], [40], [85] may
be used to show that these algorithms are optimal (in the large system limit n → ∞ and
under certain conditions) in the sense of reaching the theoretical reconstruction boundaries
described by the precise undersampling theorems [49]. The basics of AMP/GAMP as well
as several implementation details are summarised in Paper C and further elaborated on in
Tech Report G.

The AMP algorithm is stated in Algorithm 2 whereas the GAMP algorithm for finding
MMSE estimates is stated in Algorithm 3. In the AMP algorithm, ηt is a threshold function
(with a first derivative η′t) and 〈·〉 denotes averaging. In the GAMP algorithm, |A|◦2 is the
entrywise absolute value square of A. The output channel functions fz̄, fz̃ and the input
channel functions fᾱ, fα̃ are scalar conditional expectations that operate independently on
each entry of their vector arguments according to

fz̄(v, o; y,θo) = 1
Zo

∫

z

zp(y|z; θo)N (z; o, v)dz (5.1)

fz̃(v, o; y,θo) = 1
Zo

∫

z

|z|2p(y|z; θo)N (z; o, v)dz − |fz̄(v, o; y,θo)|2 (5.2)

fᾱ(s, r; θI) = 1
ZI

∫

α

αp(α; θI)N (α; r, s)dα (5.3)

fα̃(s, r; θI) = 1
ZI

∫

α

|α|2p(α; θI)N (α; r, s)dα− |fᾱ(s, r; θI)|2 , (5.4)
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for

ZI =
∫

α

p(α; θI)N (α; r, s)dα (5.5)

Zo =
∫

z

p(y|z; θo)N (z; o, v)dz (5.6)

N (α; r, s) = 1√
2πs

exp
(
−1

2
(α− r)2

s

)
(5.7)

N (z; o, v) = 1√
2πv

exp
(
−1

2
(z − o)2

v

)
, (5.8)

where N (x; θ̄, θ̃) denotes a Gaussian distribution on x with mean θ̄ and variance θ̃. Fur-
thermore, the GAMP initialisations are the conditional expectations and variances

Eα|θI [α] =
∫

α

αp(α|θI)dα (5.9)

Varα|θI (α) =
∫

α

|α|2p(α|θI)dα− |Eα|θI [α]|2 . (5.10)

Algorithm 2 AMP [36], [40].
1 initialise: ᾱ0 = 0n, χ0 = 0m
2 for t = 1 to Tmax do
3 ᾱt = ηt(ᾱt-1 + AHχt-1)
4 χt = y−Aᾱt + n

m 〈η′t(ᾱt-1 + AHχt-1)〉χt-1
5 if stop criterion is met then
6 break
7 end if
8 end for

Algorithm 3 MMSE GAMP [83]. Note that we use ◦ to denote entrywise multiplication
of vectors and � to denote entrywise division of vectors.

1 initialise: ᾱ0 = Eα|θI [α], α̃0 = Varα|θI (α), q0 = 0m
2 for t = 1 to Tmax do
3 vt = |A|◦2α̃t-1 # Factor side / output updates
4 ot = Aᾱt-1 − vt ◦ qt-1
5 z̄t = fz̄(vt,ot; y,θo)
6 z̃t = fz̃(vt,ot; y,θo)
7 qt = (z̄t − ot)� vt
8 ut = (vt − z̃t)� (vt ◦ vt)
9 st = 1n � ((|A|◦2)Tut) # Variable side / input updates

10 rt = ᾱt-1 + st ◦AHqt
11 ᾱt = fᾱ(st, rt; θI)
12 α̃t = fα̃(st, rt; θI)
13 if stop criterion is met then
14 break
15 end if
16 end for
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At first, AMP (Algorithm 2) and GAMP (Algorithm 3) may seem quite different.
However, as detailed in [86] and further elaborated on in the Tech Report G, the GAMP
algorithm reduces to the AMP algorithm under the assumption of an AWGN output chan-
nel and a few simplifications of the GAMP states. When used to find MMSE estimates,
the threshold operator ηt in the AMP algorithm corresponds to the GAMP channel func-
tion fα [73], [87]. However, for MAP estimates, e.g. solving the LASSO problem from a
probabilistic interpretation, the threshold operator may be chosen to the soft threshold op-
erator in (4.3) [36], [40]. Note that when used to find MAP estimates, the GAMP channel
functions have different definitions and are not conditional expectations but maximisation
problems [83], [84]. Comparing the soft threshold based AMP (Algorithm 2) to IST (Al-
gorithm 1 with a soft threshold operator), the only difference between the two is the extra
momentum term, n

m 〈η′t(ᾱt-1 + AHχt-1)〉χt-1, in the so-called Onsager corrected residual
χ which is needed to achieve the theoretical convergence guarantees of AMP compared to
IST [36], [40].

5.2 A Weighted Prior

The GAMP channel functions are required to be separable, i.e.

p(α|θI) =
∏

j

p(αj |[θI ]j) (5.11)

p(y|z; θo) =
∏

i

p(yi|zi; [θo]i) . (5.12)

Examples of input channel functions1 that satisfy this requirement are i.i.d. channels
such as the Bernoulli-Gaussian channel [82], [88], Bernoulli-Gaussian mixture models [42],
elastic net priors [89], or non-i.i.d. models such as Markov tree priors [61]. A particularly
popular prior is the i.i.d. general sparse prior consisting of a Bernoulli component plus an
arbitrary distribution ϕ [42], [73], [89]

p(αj ; θI) = (1− τ)δDirac(αj) + τϕ(αj ; [θI ]j) , (5.13)

where τ = k
n is the signal density and δDirac is the Dirac delta function.

For reconstruction of undersampled signals based on structured sparsity, we propose
to use the general weighted sparse (GWS) input channel detailed in Main Contribution 3.
In an implementation of the GWS input channel, one may separate the channel updates
related to the ϕ distribution from the rest of the channel updates. That is, it is easy to
reuse the GWS channel updates with different ϕ as detailed in Tech Report G.

Main Contribution 3 (GWS input channel from Tech Report G)
If we assume that α is not only sparse but structured sparse in the sense that some of
the coefficient values in α are more likely to be zero than others, we may consider an
independent but non-identical general weighted sparse (GWS) input channel, i.e.

p(αj ; θI) = (1− wjτ)δDirac(αj) + wjτϕ(αj ; [θI ]j) , (5.14)

where τ ∈ [0; 1] models the overall signal density and the wj ∈ [0; 1], j = 1, . . . , n are
individual weights that model the belief about the sparsity of the individual coefficients.
An expectation maximization (EM) update of τ is

τ t+1 =
∑n
j=1 π

w
j (rj , sj ,θtI)∑n
j=1 wj

. (5.15)

1We are mostly interested in the input channel function which allows us to define a probabilistic model
on α, e.g. a model of AFM images in the DCT domain. However, since the separability constraint is the
same for both in- and output channels, all our proposed input channels may also be modified to model the
measurement process described by the GAMP output channel.
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In order for the GAMP updates to be stable, the GAMP posterior must remain a proper
density which requires that wjτ t+1 ∈ [0; 1], ∀j. If the requirement on the choice of
weights is wj ∈ [0; 1], ∀j, then one must also require that τ t+1 ∈ [0; 1]. This requirement
may be satisfied in at least two different ways

1. We may force τ t+1 = 1 whenever τ t+1 > 1. This may be interpreted as forcing
the prior belief on the support probabilities. Note that since τ models the overall
average sparsity of the signal, forcing τ ≤ 1 has the effect of forcing the average
sparsity in the next GAMP iteration to be no larger than the average of the weights.

2. We may adjust the weights towards wj = 1, ∀j according to some scheme detailing
the weights update. This strategy allows for the weighted model to adapt towards
a non-weighted model, if the data suggest such a change.

More details are given in Tech Report G.

5.3 GAMP for the AFM Image Reconstruction Problem

When implementing the GAMP algorithm for solving the undersampled AFM image re-
construction problem there are several practical issues that must be addressed. First of
all, one must decide on the type of estimator to use, i.e. a MMSE or MAP estimator. The
rigorous theoretical convergence guarantees for AMP/GAMP in the large system limit
(n → ∞) are based on the assumption that A is a random matrix with i.i.d., zero-mean
sub-Gaussian entries [90], [91]. For finite n, the probability of deviation from the SE
decreases exponentially in n [92], i.e. finite problem sizes on the order of thousands of
pixels are likely not causing convergence issues. A potentially more critical element is
the fundamental difference between the random A used in the convergence analysis and
the structured and non-random A used in the undersampled AFM image reconstruction
problem as detailed in Chapter 3. Empirical evidence suggests that MMSE GAMP also
converges for randomly sub-sampled structured transforms [42], [93]. As discussed in Sec-
tion 3.2, it is not easy to implement random sampling on the AFM. Thus, one can hope for
this convergence with randomly sub-sampled structured matrices to generalise to the non-
random structured AFM sampling patterns. For that reason and due to the computational
tractability of our proposed MMSE AFM input channel (detailed in Main Contribution
5), we focus on the MMSE GAMP. That being said, it would be interesting, as a future
research task, to investigate in depth the differences between MMSE and MAP GAMP for
the undersampled AFM imaging problem.

Computational tractability is a major concern when using GAMP in high-dimensional
applications such as image reconstruction. As discussed in Section 3.1.1, fast transform
are needed in implementing the matrix-vector products involving A and AH. For the
GAMP algorithm this requirement extends to the matrix-vector products involving |A|◦2
and (|A|◦2)T. We present our proposed solution to this problem for the AFM setting in
Section 5.3.1. Computing the conditional expectations in (5.1)-(5.4) may in general entail
numerical integration which may easily make the GAMP channel evaluations computa-
tionally intractable. Fortunately, for some in- and output channels, analytic solutions to
the integrals exist. We discuss such computationally tractable channels for the AFM un-
dersampling problem in Sections 5.3.2 and 5.3.3. The problem of estimating or learning
the channel parameters is discussed in Section 5.3.4 whereas Section 5.3.5 provides a short
discussion of the choice of stop criterion. The resulting GAMP algorithm when combining
all these elements is our second proposed type of reconstruction algorithms tailored for the
undersampled AFM reconstruction problem. A comparison of this GAMP method (and
an AMP method) to other reconstruction methods is given in Chapter 7.
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5.3.1 The Squared Transform and Sum Approximations

The direct application of the matrix-vector products involving |A|◦2 and (|A|◦2)T in Al-
gorithm 3 easily becomes infeasible as discussed in Section 3.1.1. One approach to this
problem is to use sum approximations (also known as uniform variance) in the GAMP al-
gorithm. Essentially, one replaces the matrix-vector products involving |A|◦2 and (|A|◦2)T

with scaled sums of the vectors. The scaling factor is then either based on the variance of
the assumed random A as in the sum approximation by Krzakala et al. [73] or it is based
on the Frobenius norm of A as in the sum approximation by Rangan [84]. The differences
and similarities of these sum approximations are further discussed in Tech Report G. As is
empirically shown in Paper C, the choice of the scaling factor in the sum approximations is
critical for the performance of GAMP. A mismatched scaling factor may severely degrade
the performance of the algorithm. Thus, to use Rangan’s sum approximation, one needs to
know the Frobenius norm of A or be able to accurately estimate it since directly computing
it may be infeasible if one has to store the full A in memory. Fortunately, it turns out that
for sub-sampled Kronecker products, it is possible to find an efficient (in terms of compu-
tational and memory requirements) way to directly implement the matrix-vector products
involving |A|◦2 and (|A|◦2)T, thus, avoiding the sum approximations altogether. Such
sub-sampled Kronecker products are widely applicable in high-dimensional reconstruction
problems when combining the theories of structured random matrices [43] or SRMs [50]
with Kronecker CS [94]. One particularly interesting application is the sub-sampled DCT
used in the undersampled AFM image reconstruction problem, i.e.

A = DΩΨi2DDCT (5.16)
A = DΩ(ΨiDCT ⊗ΨiDCT) , (5.17)

with DΩ = Φ = IΩ, the sampling operator discussed in Section 3.2 and Ψi2DDCT, the
2D inverse DCT dictionary discussed in Section 3.3, i.e. Ψi2DDCT = ΨiDCT ⊗ΨiDCT (a
Kronecker product) for ΨiDCT a 1D inverse DCT matrix. Our theorems on Hadamard
powers of such sub-sampled Kronecker products are presented in Main Contribution 4.
In these theorems, we use the following notation from Paper C (see e.g. [95] for a full
introduction). The Kronecker product of two matrices A ∈ Cm×n and B ∈ Ck×l, denoted
by A⊗B ∈ Cmk×nl, is

A⊗B =



a11B · · · a1nB
... . . . ...

am1B · · · amnB


 , (5.18)

where aij denotes the ij-th entry of A. The Hadamard product (the entrywise product)
of two matrices A,B ∈ Cm×n, denoted by A ◦B ∈ Cm×n, is

A ◦B =



a11 · b11 · · · a1n · b1n

... . . . ...
am1 · bm1 · · · amn · bmn


 . (5.19)

The p-th Hadamard power of a matrix A ∈ Cm×n with p ∈ Z, denoted by A◦p ∈ Cm×n, is

A◦p =



ap11 · · · ap1n
... . . . ...

apm1 · · · apmn


 . (5.20)

That is, it is the Hadamard product with itself p times.
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Main Contribution 4 (Hadamard powers of sub-sampled Kronecker products
theorems from Paper C)
Theorem 1
Let D = diag(d1, . . . , dn) ∈ Cn×n be any diagonal matrix with diagonal entries
d1, . . . , dn. Furthermore, let DΩ ∈ Cm×n be a matrix created from D by taking only the
rows indexed by the set of indices Ω with |Ω| = m ≤ n. That is, the rows not indexed
by Ω are removed from D. Now, take any matrix A ∈ Cn×l and p ∈ Z. Then,

(DΩA)◦p = D◦pΩ A◦p , (5.21)

where DΩA ∈ Cm×l denotes the matrix product of DΩ and A.

Theorem 2
For any A1 ∈ Cm1×n1 , . . . ,As ∈ Cms×ns , and any p ∈ Z,

(A1 ⊗ · · · ⊗As)◦p = A◦p1 ⊗ · · · ⊗A◦ps . (5.22)

Theorem 3
Let A1 ∈ Cm1×n1 , . . . ,As ∈ Cms×ns , B1 ∈ Cn1×k1 , . . . ,Bs ∈ Cns×ks , and Es =
A1 ⊗ · · · ⊗As,Fs = B1 ⊗ · · · ⊗Bs. Then for any p ∈ Z,

(EsFs)◦p = (A1B1)◦p ⊗ · · · ⊗ (AsBs)◦p . (5.23)

Theorem 4
Let A1 ∈ Cm1×n1 ,A2 ∈ Cn1×n2 , . . . ,As ∈ Cns−1×ns , B1 ∈ Cl1×q1 ,B2 ∈
Cq1×q2 , . . . ,Bs ∈ Cqs−1×qs , and E1 = A1 ⊗ B1, . . . ,Es = As ⊗ Bs. Then for any
p ∈ Z,

(E1 . . .Es)◦p = (A1 . . .As)◦p ⊗ (B1 . . .Bs)◦p . (5.24)

Any result regarding Hadamard powers of Kronecker products of complex matrices also
holds for the moduli of the matrices, e.g. for Theorem 2, we have

|(A1 ⊗ · · · ⊗As)◦p| = |(A1 ⊗ · · · ⊗As)|◦p (5.25)
= |A1|◦p ⊗ · · · ⊗ |As|◦p . (5.26)

Additionally, since (DΩA)◦p from Theorem 1 also only consists of products of entries
of the matrices, we have the similar result

|(DΩA)◦p| = |DΩ|◦p|A|◦p (5.27)

More details as well as proofs of the theorems are given in Paper C.

Using Theorems 1 and 2, we may express |A|◦2 based on the A in (5.17) as

|A|◦2 = |DΩ|◦2|Ψi2DDCT|◦2 (5.28)
= |DΩ|◦2(|ΨiDCT|◦2 ⊗ |ΨiDCT|◦2) (5.29)
= DΩ(Ψ◦2iDCT ⊗Ψ◦2iDCT) , (5.30)

where in (5.30), we have used that DΩ in the AFM setting is a sub-sampled identity
matrix and that the DCT transform is a real transform. Thus, the |A|◦2 in (5.30) is a
sub-sampled separable transform that is significantly more computationally tractable for
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large problem sizes than the application of the direct matrix-vector products. The impact
of this difference is summarised in Table 3.1.

5.3.2 Choice of Input Channel
For the undersampled AFM image reconstruction problem, we suggest to use our proposed
GWS input channel presented in Main Contribution 3. The weights in the GWS input
channel may then be used to exploit the DCT coefficient structure from Main Contribution
1. The coefficient structure is used in a similar way to its usage in our proposed w-IST
and w-IHT algorithms presented in Chapter 4. However, in addition to modelling the
structure between the DCT coefficients, the GWS input channel also allows for exploiting
knowledge about the distribution of the coefficients through the choice of ϕ in (5.14). In
choosing ϕ, we consider the empirical distribution of the DCT coefficients of the 17 AFM
images depicted in Figure 7.1. This distribution is shown in Figure 5.1. Also shown in the
figure are examples of a Gaussian distribution and a Laplace distribution. These exam-
ple distributions are not necessarily optimal in terms of being “best” fits to the empirical
distribution of the DCT coefficients. They are merely included to exemplify the trade-off
between capturing the heavy tails and capturing the sharp peak of the empirical distri-
bution. The example Gaussian distribution reveals that a Gaussian distribution is unable
to model both the heavy tails of the empirical distribution and its peak around zero at
the same time. In comparison, the example Laplace distribution is significantly better,
though still not ideal, at capturing the shape of the empirical distribution. If the example
Laplace distribution is to more accurately capture the peak, it still comes at the expense of
not capturing the heavy tails. However, when combined with a Bernoulli component, the
Laplace distribution seems to be a reasonable choice of distribution for the AFM setting:
The Laplace component captures the heavy tails whereas the Bernoulli component some-
what compensates for the lack of density around the peak at zero. That is, we consider
a weighted sparse Bernoulli-Laplace (wBL) prior with signal density τ , Laplace mean µ,
and Laplace rate parameter λ > 0, (θI = [τ, µ, λ]T ), i.e.

p(α; θI) = (1− wjτ)δDirac(α) + wjτ
λ

2 exp(−λ|α− µ|) . (5.31)

Note that by disregarding the structure among the DCT coefficients, i.e. choosing wj =
1,∀j, the weighted sparse Bernoulli-Laplace prior in (5.31) reduces to a sparse Bernoulli-
Laplace prior based on (5.13). Our results for the MMSE GAMP channel updates for the
weighted sparse Bernoulli-Laplace prior in (5.31) are presented in Main Contribution 5.
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Figure 5.1: Distribution of the DCT coefficients in typical AFM images. The normalised
histogram is based on the DCT coefficients of the 17 de-tilted AFM images shown in Figure
7.1. For comparison, the histogram is overlaid with the PDF of a Gaussian distribution
with mean θ̄ = 0.0, variance θ̃ = 10−4, and the PDF of a Laplace distribution with mean
µ = 0.0, rate λ = 100. The reader is encouraged to study the details in this figure using
the electronic version of this thesis available at doi:10.5278/vbn.phd.engsci.00158.

Main Contribution 5 (Weighted Bernoulli-Laplace Input Channel updates
from Tech Report G)

For the weighted Bernoulli-Laplace Input Channel in (5.31), the following channel up-
dates may be used

fᾱj (sj , rj ; [θI ]j) = πw
j (rj , sj , [θI ]j)

{

µj +
ZIj
Zϕj


rj −

√
sj
φN
(−r

j√
sj

)

ΦN
(−rj√

sj

)


+

Z̄Ij
Zϕj


r̄j +√sj

φN
(
r̄j√
sj

)

ΦN
(
r̄j√
sj

)



}

(5.32)

fα̃j (sj , rj ; [θI ]j) = 2µfᾱj (sj , rj ; [θI ]j) + πw
j (rj , sj , [θI ]j)

{
− µ2

j

+
ZIj
Zϕj


sj


1−

φN
(−rj√

sj

)

ΦN
(−rj√

sj

)



φN
(−rj√

sj

)

ΦN
(−r

j√
sj

) −
rj√
sj




+


rj −

√
sj
φN
(−rj√

sj

)

ΦN
(−r

j√
sj

)




2


+
Z̄Ij
Zϕj


sj


1−

φN
(
r̄j√
sj

)

ΦN
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− fᾱj (sj , rj ; [θI ]j)2 , (5.33)
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for
Zϕj = ZIj + Z̄Ij (5.34)

ZIj = λj
2 exp

(
1
2λ

2
jsj + řjλj

)
ΦN
(−rj√

sj

)
(5.35)

Z̄Ij = λj
2 exp

(
1
2λ

2
jsj − řjλj

)
ΦN
(
r̄j√
sj

)
(5.36)

řj = rj − µj (5.37)
rj = řj + λjsj (5.38)
r̄j = řj − λjsj , (5.39)

and with ΦN (x̌) =
∫ x̌
−∞ φN (t) dt = 1√

2π

∫ x̌
−∞ exp

(
− t22

)
dt the cumulative distribution

function (CDF) of a standard normal distribution with PDF φN (x̌) = N (x̌, 0, 1) =
1√
2π exp

(
− x̌2

2

)
. Furthermore, πw

j (rj , sj , [θI ]j) = wjτZϕj
(1−wjτ)N (0;rj ,sj)+wjτZϕj

for Zϕj =
∫
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ϕ(αj ; [θI ]j)N (αj ; rj , sj)dαj and ϕαj |y;sj ,rj ,[θI ]j (αj ; [θI ]j) = N (αj ;rj ,sj)ϕ(αj ;[θI ]j)
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.

The related Laplace component EM updates are
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More details are given in Tech Report G.

5.3.3 Choice of Output Channel

The AFM measurement process is subject to several potential impairments from stochastic
noise sources that depend on the measurements system [96], [97], [98]. The GAMP output
channel may be used to model such stochastic sources subject to the separability constraint
in (5.12). Since our focus has primarily been on making the GAMP algorithm computa-
tionally tractable for high dimensional problems as well as designing an AFM specific prior,
we have not considered advanced output channels that model the noise sources in the AFM
measurement process. We merely restrict our attention to the “default fallback” AWGN
GAMP output channel. That is, we consider an AWGN output channel with noise variance
σ2 (θo = [σ2])

p(y|z; θo) = 1√
2πσ2

exp
(
− (y − z)2

2σ2

)
, (5.42)
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which has channel functions [83], [84]

fz̄(v, o; y,θo) = vy + σ2o

σ2 + v
(5.43)

fz̃(v, o; y,θo) = σ2v

σ2 + v
(5.44)

and a corresponding EM update of the noise variance [73]
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∑
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(yi−ot+1
i

)2
(

1+ 1
(σ2)t v

t+1
i

)2

∑
i

1
1+ 1

(σ2)t v
t+1
i

. (5.45)

5.3.4 Parameter Learning and Initialisation
If the in- and output channel parameters θI and θo are known, one may fix their values2

when using the GAMP algorithm. If the channel parameters are unknown a priori or
if a more general channel model (e.g. a Gaussian mixture [42]) is used, one may learn
the GAMP channel parameter values as part of the reconstruction, e.g. via expectation
maximization (EM) [42], [73]. EM is an iterative maximum likelihood (ML) parameter
estimation algorithm [99]. For the GAMP channel parameter updates, the EM algorithm
amounts to iterating [42]

θt+1
I = argmax

θ
Eα|y,θt

C
[ln(p(α; θ))] (5.46)

θt+1
o = argmax

θ
Ez|y,θt

C
[ln(p(y|z; θ))] , (5.47)

where θC = [θTI ,θTo ]T is the vector of all channel parameters. The posteriors used in the
expectations in (5.46) and (5.47) are approximated by the GAMP posteriors and a partial
update procedure (similar the expectation conditional maximization algorithm [100]) in
which one parameter is updated at a time is used [42]. More details about these EM for
GAMP methods are given in Tech Report G. The resulting EM updates for our proposed
wBL input channel, presented in Main Contribution 5, are given in (5.40) and (5.41). The
AWGN output channel noise variance EM update is given in (5.45).

Since the EM algorithm is only guaranteed to find a local maximum [99], proper ini-
tialisation becomes important. In our evaluation of the GAMP algorithms for solving the
undersampled AFM imaging problem presented in Chapter 7, we initialise the GAMP
channel parameters using an offline ML estimate as detailed in Section 7.3.1. A more
generic initialisation strategy is described in Tech Report G.

5.3.5 Stop Criteria
A stop criterion may be used to terminate the iterations in Algorithms 2 and 3 when the
estimate α̂ is sufficiently close to the true solution. A few such stop criteria are detailed
in Tech Report G. We have empirically found that the normalised mean squared error
stop criterion proposed in [42] as well as the residual measurements ratio stop criterion
proposed in [44] both work well when attempting to solve the undersampled AFM image
reconstructed problem.

2Our simulations have revealed that fixing the AWGN noise variance results in poor convergence of
the GAMP algorithm. In a practical setup, a certain “slack” is needed for the algorithm to converge.
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6 Correctness and Reproducibilty of Results

Our main method for assessing the performance of our proposed reconstruction algorithms
from Chapters 4 and 5 is computer simulations. Such an empirical approach to perfor-
mance evaluation entails the need for strict requirements to the assurance of correctness
and reproducibility of the results. We now present our initiatives in terms of assuring
the correctness and reproducibility of our results. First, we discuss the general need for
correctness and reproducibility of computational results. Next, we introduce the Magni
Python Package which includes our proposed tools for aiding in ensuring correct and repro-
ducible computational experiments. Finally, we provide an overview of our actions taken
in ensuring correctness and reproducibility of the results presented in this thesis. More
details about Magni and our proposed tools may be found in Papers D, E, and F.

6.1 The Credibility Crisis

The use of scientific computations in academic research has increased significantly in the
past decade and with it has followed an increased focus on transparency and reproducibility
of computational experiments [101], [102], [103], [104]. Requirements for adhering to best
practices for making research reproducible have been put forth [105], [106] and journals
have started to require of authors to make publicly available the tools needed to reproduce
their results [103], [107], [108]. This move towards more open and easily reproducible com-
putational experiments is largely an answer to the so-called credibility crisis that has hit
the computational sciences [103] due to lack of reproducibility of published results [109],
[110], [111] and retractions from high-ranked journals stemming from incorrect computa-
tional results [112]. In order to address this credibility crisis in the computational sciences,
more focus must be directed towards at least two critical elements in any computational
experiment

1. The assurance of correctness of the computational results.

2. The inspectability of the methods and reproducibility of the computational results.

Throughout the course of the research program that led to the results reported on in this
thesis, we have been adopting as many of the best practice policies in addressing these two
issues as possible as they have been put forth by the research communities. Additionally,
we have continuously been working on enabling such policies in the typical scientific Python
workflow. Thus, in line with the general evolution in this area, our methods and actions
taken towards ensuring correctness of results and making our research reproducible have
evolved from publication to publication.

6.1.1 The Need for Assurrance of Correctness of Results
The results presented in this thesis are primarily based on simulations that involve random
numbers. We essentially input random numbers (typically randomly sampled images) to
our algorithms which, consequently, produce a random output in the sense that the out-
put depends on the randomness in the input. We then evaluate the performance of our
algorithms by running a large number of simulations in order to assess general patterns
across all (random) results. By design this method is sensitive to errors in the experi-
mental setup and the implementation of the algorithms. If any part of the experiment
is wrongly implemented, the results of our experiments become truly random, i.e. they
convey no meaningful patterns. One can hardly expect a large computational experiment
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to be completely free of errors. However, it is reasonable to expect of the authors of the
experiment to take actions to reduce the risk of any errors being of significant importance
to the conclusions of the study.

Focusing on the use of proper design principles, code quality and testing, and general
best practices in writing scientific software is one way to build trust in computational
results [109], [113], [114], [115]. Another way is to use well designed computing workflows
that systematically address potential flaws in the computational experiment [116], [117].

6.1.2 The Need for Reproducibility of Results
Reproducibility refers to the notion of being able to independently re-implement and repeat
an experiment and its outcome from a description of it [103], [118]. A related notion is
replicability, which refers to the notion of being able to repeat an experiment and its
outcome using the same experimental setup as was used in the original experiment1.

Without reproducibility (or at least replicability) in a computational experiment, it
becomes difficult (if not impossible) to build on published results and identify and correct
any errors in the experiment. Thus, for computational results to be useful for others, it is
important that the description of the experiment that led to the results, i.e. the software
or code as well as associated data, is transparent, complete, and easily available to others.

Extensive time and effort have been put into defining best practices and guidelines for
making computational research reproducible and transparent, see e.g. [105], [106], [119],
[120], [121], [122], [123]. As noted in several of these works, such guidelines are constantly
evolving as more evidence on practical issues with reproducibility becomes available. Soft-
ware for aiding in making computational results reproducible is evolving similarly with
new tools frequently becoming available, see e.g. [121], [124], [125], [126].

6.2 The Magni Python Package

The Magni Python package is our take at a collection of tools for use in a scientific Python
workflow for undersampling and reconstruction of AFM images. It has been designed for
reuseability and with a focus on ensuring correctness of results as well as aiding in making
computational results reproducible according to best practices as found in the literature
discussed in Sections 6.1.1 and 6.1.2. In terms of asserting correctness of results, the main
actions, we have taken, are

• All code is under version control using the Git version control system to automatically
keep track of all changes to the code (see e.g. [127] for an introduction to Git version
control for research software).

• The inclusion of extensive unit tests (test code included to test a “code unit”, e.g. a
part of a function, for correctness) and doc tests (tests based on the usage examples
in the documentation of the code) that cover ∼ 90 % of the code paths in addition to
15 carefully designed end to end examples. All of these are routinely tested using a
continuous integration system, i.e. all tests are automatically run every time a new
set of changes is added using the version control system.

• All code consistently adheres to the PEP8 style guide2 for making Python code
easily readable. Variables are named consistently throughout the package and the
maximum cyclomatic complexity [128], [129] has been kept below 10. These are all
best practices for keeping code simple, easily comprehensible, and easily maintainable
and, thus, hopefully, free of errors. Automatic tests for these style constraints are
included in the test suite run by the continuous integration system.

1Some authors interchange this meaning of reproducibility and replicability. We use the definitions
from [103], [118].

2The PEP8 style guide is available at https://www.python.org/dev/peps/pep-0008/.
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• The entire package including its full API has been documented according to the
Numpydoc standard3 and the documentation is automatically built and served on-
line4.

• All code included in Magni releases have been reviewed by at least one other person
than its author.

• An extensive function input validation system (detailed in Section 6.2.1) is used
consistently throughout the package.

The magni.reproducibility subpackage provides tools that may be used to annotate
results databases and track provenance in order to aid in making results reproducible.
This subpackage is detailed in Section 6.2.2. More details about Magni may be found in
[130, (Paper D)].

6.2.1 Input Validation
In implementing a large computational experiment, numerous variables are passed between
functions, class constructors, class methods, etc. Typically, a function poses strict require-
ments for the types of its input variables, e.g. a variable must be a string or it must be
an integer. Compliance to such requirements are not automatically tested in weakly typed
languages like Python5 which may lead to unexpected and erroneous results, e.g. if a
string is supplied instead of an integer (in Python: »2 * 2 = 4« whereas »2 * ’2’ = ’22’«).
Additionally, scientific computations in Python typically involve the use of advanced types
such as the NumPy ndarray [131] for storing matrices and vectors. The NumPy ndarray is
not only itself a data type but also holds equally important information about the shape
of the array, the type of its elements, etc. All of these define requirements on the input to
functions.

In order to prevent erroneous results due to wrongly passed function input variables,
we propose to use an online (at execution time) input validation framework based on
the application-driven data types presented in Main Contribution 6. These application
driven data types are specifically tailored for easily expressing the requirements for the
numerical variables typically used in scientific computations, e.g. matrices and vectors.
Our implementation of our proposed input validation framework in Python enforces the
validation requirements by raising an exception if an input variable does not comply with
the validation scheme. This input validation framework is used throughout Magni and
we have found that it not only helps us identify potentially disastrous problems in our
own code but also helps in identifying problems due to changes in the underlying software
libraries that we make use of, i.e. NumPy and other packages from the Scipy stack.

Main Contribution 6 (Application-driven Data Types from [132, (Paper E)])
We suggest the concept of so-called application-driven data types as a signal processing
data model for programming. These data types are intended for expressing the validation
scheme of function arguments.

An application-driven data type is some "mental" intersection between math and
computer science in scientific computing and signal processing in particular. For exam-
ple, the set of real-valued matrices with dimensions m times n, Rm×n , is an example
of an application-driven data type. If the user is able to test the validity of a function

3The Numpydoc standard is available at https://github.com/numpy/numpy/blob/master/doc/HOWTO_
DOCUMENT.rst.txt.

4The Magni documentation is available at http://magni.readthedocs.io/en/latest/.
5The latest versions of Python (3.5/3.6) include a standard for specifying such requirements, though

third party tools are still needed in order to enforce the requirements. See https://www.python.org/dev/
peps/pep-0526/ for the details.
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argument against this application-driven data type, there is no need for the user to con-
sider the distinction between Python floats, numpy generics, numpy ndarrays, and so
on.

In Python signal processing applications, there should be an application-driven data
type representing the most general numerical value being able to assume any numerical
value of any shape. This data type should be able to be restricted to less general data
types by specifying the mathematical set, the range or domain of valid values, the number
of dimensions, and/or the specific shape of the data type. The suggested validation
schemes should be expressed in terms of the desired application-driven data type.

A reference implementation of this suggested validation strategy is made avail-
able by the open source Magni Python package [130] through the subpackage
magni.utils.validation.

More details are given in [132, (Paper E)].

6.2.2 Storing Experiments Metadata
In making a computational experiment reproducible, one must create a complete record
of its computational environment including details such as library versions, parameter
values, and clear detailing of the exact code that is run [103], [109], [110]. Two strategies
for tracking such provenance of a computational experiment seem to have found adoption
in the scientific communities:

1. Using tools that track the computational workflow and store metadata detailing
the experiment. Ideally such workflow details enable a later reproduction of the
experiment. Examples of such tools include Sumatra [121], Madagascar [124], and
ActivePapers [125].

2. Running the experiment in a virtual machine or container such as Docker [133].
Ideally, the virtual machine or container remains forever executable and, thus, allows
for future reproduction of the experiment.

The container strategy seems compelling in the current situation where scientific code
tends to rot, i.e. it eventually stops working as time passes due to incompatible changes in
hardware platforms and the low-level software libraries [125], [133]. However, the container
strategy has been criticised for being an unstable and non-transparent solution due to its
black-box nature6. Thus, at least for now, the tools for implementing the container strategy
do not seem to have matured sufficiently to be reliably used in science and research.

In our work, we have adopted a variant of the metadata storage strategy to mak-
ing computational results reproducible. Specifically, we store metadata about a particular
computational experiment along with its results. Such metadata include information about
hardware and software libraries used as well as details about the input data, parameter
choices, and the specific code that was run. Our proposed practical solution to this problem
of storing metadata about a single computational experiment is detailed in Main Contri-
bution 7.

Main Contribution 7 (A Pythonic Approach to Storing Reproducibility
Metadata from [134, (Paper F)])
We propose creating a scientific Python package that may be imported in existing scien-
tific Python scripts and may be used to store all relevant metadata for a computational
experiment along with the results of that experiment in an HDF5 database. For the

6This criticism has been raised by several leading researches in the computa-
tional sciences. See e.g. the blog by C. Titus Brown http://ivory.idyll.org/blog/
2017-pof-software-archivability.html or the blog by Gaël Varoquaux http://gael-varoquaux.
info/programming/of-software-and-science-reproducible-science-what-why-and-how.html.
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highest flexibility, we propose to store the metadata as separate HDF5 arrays and sug-
gest using JavaScript Object Notation (JSON) [135] for serializing the metadata. This
makes for a humanly readable representation. Furthermore, JSON is a standard format
with bindings for most major programming languages.

We argue that this idea of storing metadata along with results is an excellent solu-
tion. Having everything compiled into one standardized and open file format helps keep
track of all the individual elements and makes it easy to share the full computational
experiment including results and metadata.

A reference implementation of the above suggested library design is available
in the open source Magni Python package [130]. In particular, the subpackage
magni.reproducibility is based on this suggested design.

More details are given in [134, (Paper F)].

6.3 Quality Assurance and Reproducibility in the Present Work

The size of our computational experiments entails the use of compute servers in a compute
cluster for handling the computations. Thus, we use a two part workflow as illustrated in
Figure 6.1. That is, in our simulations, we specify our experiment in a Python script which
also includes the code needed for configuring the Python packages used in the experiment.
This Python script is then executed on one or more compute servers in order to carry out
the computations and store the results. Once the computations have finished an analysis
and visualisation of the results is done on a workstation or laptop using Jupyter notebooks.

To the extent possible, we use consistent labelling of the data in all processing steps in
our workflow in order to ensure that the final visualisation of the results corresponds to
the specified experiment. Furthermore, in all steps, we use the best practices for ensuring
correctness of results as discussed in Section 6.1.1. This includes adherence to style and
workflow guidelines, the use of frequent assertions in the code to check the sanity of the
intermediate results, the consistent usage of our proposed input validation framework de-
tailed in Section 6.2.1, and comprehensive logging and inspection of intermediate states.
Whenever possible, we also attempt to reproduce already published baseline results using
our experimental setup. All our results are stored in HDF5 databases which are annotated
according to our proposed metadata storage strategy for enhanced reproducibility of our
results as discussed in Section 6.2.2. Finally, to the extent possible, all critical algorithm
implementations and support routines used in the computations are included in Magni
with its strict requirements for code quality as discussed in Section 6.2. Finally, all of
our Python code builds on the well established scientific Python stack [136]. An overview
of the relevant resources needed to reproduce the computational results presented in this
thesis is given in Table 6.1.

Figure 6.1: Workflow in the typical computational experiment presented in this thesis. An
experimental part which includes the specification and configuration of the experiment as
well as the computations and storage of results is run on a compute cluster. Afterwards
the results are loaded on a workstation or laptop for analysis and visualisation.
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7 Reconstructions of Undersampled AFM Images

Having introduced our proposed algorithms for solving the undersampled AFM image
reconstruction problem in Chapters 4 and 5, we now present results from a large simulation
study comparing our proposed algorithms to the baseline approaches discussed in Section
3.4. We present both extensive quantitative evaluations of reconstructions of undersampled
AFM images and exemplify typical reconstructions. Before giving our simulation results,
we outline our comparison criteria and specify our experimental setup.

7.1 Ground Truth Images

In our experiments, we evaluate a given reconstruction of an undersampled AFM image
by comparing it to a reference ground truth image. Establishing such natural ground truth
AFM images is not an easy task since they must themselves be acquired using AFM or a
similar nano scale measurement processes. Hence, the assumed ground truth images are
subject to measurement impairments and noise. Our reference AFM images have been
acquired using traditional raster scan methods at slow scan speeds on calibrated AFM
equipment. Thus, we expect and assume that measurement impairments and noise are
at a minimum, the only exception being a possible tilt. We assume a small enough tilt
to be able to accurately correct it using a plane fit method as detailed in [98]. However,
keep in mind when assessing our results that some of the distortion in the reconstructions
relative to the assumed ground truth images may in fact stem from noise removal or similar
desirable properties of the reconstruction algorithms.

Our simulation experiments are based on the 17 AFM images of various specimens
shown in Figure 7.1. For our purpose of comparing AFM images, the absolute topography
levels are irrelevant. Thus, in our comparison, we scale and offset all pixel values to a
floating point representation with values in the interval [0, 1]. That is, all images (reference
images and reconstructions) are scaled such that the smallest pixel value is 0 and the largest
pixel value is 1.

7.2 Reconstruction Quality Indicators

To quantitatively evaluate the quality of reconstructed AFM images compared to a ref-
erence, we use two quality indicators: peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM). The PSNR is a mean squared error based quality indi-
cator defined as (see e.g. [137])

PSNR(X, X̂) = 10 log10


 P 2

∑h
k=1

∑w
l=1

(
Xkl − X̂kl

)2


 (7.1)

where P is the pixel value dynamic range, i.e. P = 1 by our convention of considering
images with pixel values in the interval [0, 1].

The PSNR is a traditional image processing quality indicator - the higher a PSNR, the
better an estimate X̂. However, the PSNR has been criticised for not accurately predicting
the human perception of image quality [137]. The SSIM is an attempt at defining a
quality indicator that more accurately predicts the human perception by considering local
similarity expressed in terms of local means, variances and co-variances of smaller image
patches [138], [139]. By computing such local structure in a moving window across an entire
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Chapter 7. Reconstructions of Undersampled AFM Images

Figure 7.1: The 17 ground truth AFM images used in the reconstruction simulations.
The images are from “Atomic Force Microscopy Images of Cell Specimens” and “Atomic
Force Microscopy Images of Various Specimens” both by Christian Rankl, Keysight Tech-
nologies. They are licensed under CC-BY 4.0, available at doi:10.5281/zenodo.17573 and
doi:10.5281/zenodo.60434, and provided as-is without warranty of any kind. All images
have been de-tilted using a plane de-tilt method, i.e. for each image a least square fit of a
plane to that image has been subtracted from the image using the method detailed in [98].
The reader is encouraged to study the details in this figure using the electronic version of
this thesis available at doi:10.5278/vbn.phd.engsci.00158.
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image, a SSIM map results. This SSIM map details the structural similarity throughout
the image. To obtain a scalar index, one may compute the mean of the SSIM map. With a
slight abuse of notation, in the sequel, we take SSIM to denote this mean SSIM map. Thus,
our presented SSIM is the mean SSIM as detailed in equations (5) trough (17) in [138] with
window size 7, K1 = 0.01, K2 = 0.03, C3 = C2

2 , α = β = γ = 1 in those equations. The
SSIM(X, X̂) is then a scalar in the interval [−1; 1] with 1 being a perfect match between
X and X̂. SSIM has been used to assess image quality in a range of natural imaging
applications including medical imaging (see [137] for an overview). Thus, we expect the
SSIM to be a reasonable indicator of the quality of our reconstructed AFM images.

In assessing our results presented in Sections 7.3.2 and 7.3.3, it is beneficial to keep in
mind that the SSIM tends to penalise structural problems in X̂ such as introduced artefacts
whereas PSNR tends to penalise more (mathematically) systematic changes in X̂ such as
blurring, i.e. a loss of details, or contrast changes.

7.3 Reconstruction Simulations

We now present a large simulation study designed to empirically determine the perfor-
mance of the various reconstruction algorithms, we have presented for solving the under-
sampled AFM image reconstruction problem. In this simulation study, we test a large
set of combinations of key choices in the reconstruction algorithms and record the result-
ing reconstruction performance for each combination. Specifically, in order to be able to
compare the reconstructed images to the assumed ground truth images, we simulate the
undersampling and reconstruction process and record the following performance indicators
of the reconstructed image

• The PSNR of the reconstruction relative to the ground truth as defined in (7.1).

• The SSIM of the reconstruction relative to the ground truth as detailed in Section
7.2.

• The measured reconstruction time in seconds1.

In addition to these scalar performance indicators, the full reconstructed images are saved.
Finally, we also record the pixel undersampling ratio ι (see Definition 2). This allows us
to compare the performance of the reconstruction algorithms versus both the AFM un-
dersampling ratio δ (see Definition 1) and the more traditional image pixel undersampling
ratio ι. As can be seen from Figure 2.2, the number of pixels that are included in the
sampling may vary significantly between sampling patterns for a fixed δ. That is, when
all pixels touched by the sampling path are included in the measurements, the number of
measurements varies significantly with the choice of sampling pattern for a fixed sampling
path length.

Definition 2
The pixel undersampling ratio is

ι = m

p
, (7.2)

where p is the total number of pixels in the reconstructed AFM image and m is the
number of measurements as detailed in Chapter 3.

1The degree to which the tested reconstruction algorithms have been optimised for execution speed
varies significantly. Thus, this measured execution time should only be used as an indicator of order of
the execution time, one can expect.
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The details of our experimental setup are given in Section 7.3.1. A few typical examples
of reconstructions are presented in Section 7.3.2. The full set of results comparing PSNR
and SSIM for all tested combinations are presented in Section 7.3.3. A discussion of the
results is given in Chapter 8. All the material needed to reproduce the results of our
simulation experiments is listed in Table 6.1. This includes a Jupyter Notebook which
reproduces all the results figures show in this thesis. In re-running the experiments, it
suffices to download the required material listed in Table 6.1, make any auxiliary modules
available on the PYTHONPATH, and then execute the main simulation script according
to the documentation provided with it.

7.3.1 Experimental Setup
We simulate the undersampling and reconstruction of AFM images based on all combina-
tions of

• 17 AFM images, i.e. the images shown in Figure 7.1.

• 4 different sampling patterns.

• 12 different reconstruction algorithms including our proposed algorithms as well as
well established baseline algorithms.

• 25 different undersampling ratios, i.e. δ ∈ {0.05, 0.0625, . . . , 0.35}

Furthermore, for the algorithms based on iterative thresholding (Algorithm 1), we test 25
sparsity levels, i.e. ρ ∈ {0.05, 0.065, . . . , 0.4}. The threshold level used in the iterative
thresholding is then determined from ρ as detailed in Section 4.3.1.

For all reconstruction algorithms that rely on a dictionary, we use the DCT dictionary
discussed in Section 3.3. The resulting system matrix in (5.17) is implemented using the
fast transform approaches described in Sections 3.1.1, 3.2, and 3.3. The ground truth
images all have a size of h = 256 times w = 256 pixels and the reconstructed images have
the same size. The specifics of the sampling patterns and reconstruction algorithms used
in the simulations are detailed below.

Sampling patterns

We consider the four sampling patterns illustrated in Figure 2.2, i.e. uniform lines, rotated
uniform lines, random pixels, and spiral with corners. For a given sampling path length
determined by δ, we then simulate the undersampling of the ground truth images by
extracting pixels according to the following rules (which are illustrated in Figure 2.2)

Uniform lines: The sampling path length is truncated such that all horizontal lines
are fully sampled. The lines are uniformly distributed across the full image. The
values of all pixels touched by the sampling path are included in y.

Rotated uniform lines: The sampling path length is truncated such that all ro-
tated lines are fully sampled. The lines are uniformly distributed across the full
image. The specific angle with which the lines are rotated depends on δ, i.e. the
angle is chosen as detailed in Table 7.1 based on the value of δ in the table that is
closest to the value of δ used in the simulation. The values of all pixels touched by
the sampling path are included in y.

Random pixels: The pixel values in y are chosen uniformly at random from the
full image. The number of included pixels are chosen such that ι = 2δ. As discussed
in Chapter 2, such a sampling pattern is not easily implementable in AFM. However,
since a significant number of CS results rely on such random sampling, we include
the random pixels sampling approach for comparison.
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Spiral with corners: The sampling path length is determined by δ. The pitch of
the spiral is chosen such that the sample path ends at a distance from the centre
corresponding to the distance from the centre to the corners of the image. The
sampling is assumed to continue outside of the image area following the spiral pattern
(which is different from what is illustrated in Figure 2.2). The values of all pixels
within the image area touched by the sampling path are included in y.

Undersampling ratio δ 0.10 0.15 0.20 0.25 0.30
Angle in radians 0.8216608 2.574812 0.6337494 2.503844 2.524497

Table 7.1: Angels used in rotated uniform lines sampling. When using an angle of zero radi-
ans, the rotated uniform lines sampling pattern corresponds to the uniform lines sampling
pattern. As the angle is increased, the vertical lines rotate counterclockwise.

Reconstruction Algorithms

An overview of the 12 different reconstruction algorithms, which we consider in our simu-
lations, is given in Table 7.2. The rest of this section is devoted to stating all the details
about the configuration of these reconstruction algorithms.

For the algorithms which make use of weights, the weights have been chosen as follows.
A jack-knife approach (see e.g [146]) is used in selecting the training images to which the
model of the DCT coefficients in Main Contribution 1 is fitted. That is, the DCT spectra
of all but the image being reconstructed is used in fitting the model in (3.10). A least
squares fit is used for fitting the model as proposed in [27, (Paper B)]. That is, for fixed
a = 2.5 · 10−3, we solve

minimise
b,c1,c2

∑

ž
(|α̌(ž)| − f(b, c1, c2; a, ž))2 (7.3)

using Powell’s method (see e.g. [141]) with the initial guess b = 0.005, c1 = c2 = 0.01.
Here α̌(ž) is a 2D representation of the average α (the average DCT spectrum) indexed
by ž = [z1, z2]T. In computing the fit, we use a re-scaling and offset of both image height,
image width, and topography height to the interval [0, 1]. Having fitted the model f , we
then construct a weights vector w with an ordering matching that of α using the following
algorithm class specific transformations

Iterative Thresholding: The fitted weights are scaled and offset to have values in
the interval [10−3; 1] as suggested in [27, (Paper B)].

Weighted `1 minimization: The fitted weights are scaled and offset to have values
in the interval [10−3; 1]. Since the weights should, in general, be selected to relate
inversely to the expected signal magnitudes [147], the inverses of these re-scaled
weights are used.

GAMP with GWS prior: The fitted weights are scaled and offset to have val-
ues in the interval [0.1, 0.99] which we have empirically found to result in stable
reconstructions.

The weighted `1 LS reconstruction method [147]2 is based on solving

α̂ = argmin
α

||Wα||1 s.t. ||y−Aα||22 ≤ ε , (7.4)

2A re-weighting scheme is used in [147]. However, in order to guide the algorithm to a solution that is
in line with our model, we fix the weights instead of iteratively updating them.
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where W ∈ Rn×n+ is the diagonal matrix with the entries of w on its diagonal.
In order to align the feasibility constraint in the reconstruction algorithms that make

use of iterative solvers, the LS optimisation methods use the feasibility constraint

||y−Aα||2 < 10−6 · ||y||2 , (7.5)

which mimics the stop criterion constraint in (4.6) used in the iterative thresholding and
AMP/GAMP methods.

In the implementation of the Douglas-Rachford splitting used in PyUNLocBoX to solve
the LS optimisation problems, a relative tolerance stop criterion is used, i.e. the solution
is accepted once the objective g (i.e. the `1-norm, weighted `1-norm, or TV criterion,
depending on the algorithm) satisfies

∣∣∣∣
g(αt)− g(αt-1)

g(αt)

∣∣∣∣ < 10−3 . (7.6)

The GAMP in- and output channel parameters are estimated as part of the GAMP
iteration using EM. Thus, they must be initialised in a reasonable way. It is our experience
that the GAMP EM procedure performs the best when the parameters are initialised
to values that allow for a “slack” in the algorithm. That is, the parameters should be
initialised to include “most” solutions such that the algorithm may tune itself towards a
specific solution. Towards that end, we initialise the AWGN output channel noise variance
to

σ2
0 = 1 , (7.7)

whereas Bernoulli-Laplace input channel parameters are initialised to

τ0 = δρSE(δ)
2 1
n

∑n
j=1 wj

(7.8)

µ0 = mdn(α̌) (7.9)

λ0 = 1
10 · 1

q

∑q
l=1 |α̌l − µ0|

, (7.10)

where q is the number of elements in α̌, mdn(·) denotes the median, and δ · ρSE(δ) is the
theoretical LASSO phase transition from [40]. Thus, the signal density initialisation is
based on a “slacked” version of the theoretical LASSO phase transition and the Laplace
parameters are initialised based on the Laplace distribution maximum likelihood values of
α̌ - but with a slack on the rate parameter λ0.

For the AMP algorithm, we use the median based threshold level update suggested in
[36]. That is, we use an iteration specific threshold level θτ̂t where θ is a tuning parameter
that we set to the minimax optimal value as detailed in [40] and

τ̂t = 1
Φ−1
N (0.75)

·mdn(χt) , (7.11)

(7.12)

where Φ−1
N (·) is the inverse CDF of a zero-mean, unit variance Gaussian random variable.

We initialise τ̂ = 1.
For all our simulations we used the Anaconda3 Python distribution4 version 4.3.0 based

on Python 3.6. Version 0.18.1 of SciPy was used for the interpolation implementations.
3The Anaconda Python distribution is freely available at http://www.continuum.io/anaconda
4A detailed list of all used Python packages and their version is stored as part of the annotations in

the results database
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For the implementation of the optimisation methods, we used a pre-release of PyUN-
LocBox5 since the latest release does not include a proximal operator for TV. Release 1.7.0
of the Magni Python Package was used for the iterative thresholding and AMP/GAMP
implementations. Our actions taken towards ensuring correctness and reproduciblity of
the results are detailed along with Magni in Chapter 6. All computations where done
using double precision floating point representations of decimal numbers. We used a com-
pute server featuring two Intel Xeon E5-2697V2 CPUs and 384 GiB RAM and which was
running Ubuntu 14.04.3 LTS.

7.3.2 Examples of Typical Reconstructions
Two sets of typical reconstructions of undersampled AFM images from our simulation study
are depicted in Figures 7.2 and 7.3. These two figures are part of a larger set of examples
based on all combinations of the four sampling patterns, four different undersampling
ratios, and four different AFM images. A subset of this larger set of examples is displayed
in Dataset H whereas the full set of examples is part of the “Extra Figures” supplementary
material available at doi:10.5278/252861471. See also the reconstruction examples in [22,
(Paper A)] and [27, (Paper B)].

The two figures (7.2 and 7.3) have been selected to highlight the typical reconstruc-
tion artefacts that occur when using a given combination of reconstruction algorithm and
sampling pattern. Also, the figures serve to illustrate the strong visual difference that may
exist between reconstructions of nearly the same PSNR/SSIM. This difference should be
kept in mind when comparing the PSNR/SSIM results presented in Section 7.3.3. We note
the following typical visual artefacts introduced by the different reconstruction algorithms
(when reconstruction is successful):

Linear / cubic interpolation: Mild blurring and/or a perceived stretching of the
reconstructed image.

Nearest neighbour interpolation: Pixelation.

TV LS: Smoothing of individual smaller areas in the image.

`1 LS / Weighted `1 LS: Introduction of noise that makes the image look “grainy”.

IST / w-IST / w-IHT: Heavy blurring and/or expressions of the sampling pattern.

GAMP: Mild blurring and/or introduction of “grainy” noise.

AMP: Heavy blurring.

7.3.3 Reconstruction Performance Results
The reconstruction results constitute a six dimensional data set consisting of the choices
of image, sampling pattern, reconstruction algorithm, undersampling ratio, reconstruction
quality indicator, and reconstruction algorithm specific parameter (the sparsity level for
the iterative thresholding algorithms). In order to reduce the dimensionality to the point
where the results may be visualised, we average the PSNR/SSIM over the choice of image
and maximise it over the reconstruction specific parameter (i.e. for the iterative thresh-
olding methods, we pick only the sparsity levels that yield the highest PSNR/SSIM). This
reduces the results to four dimensions. We then visualise the PSNR and SSIM results vs
undersampling ratio in separate figures which leaves only handling the choices of sampling

5Specifically, we used the code from https://github.com/epfl-lts2/pyunlocbox, master branch, tag:
v0.2.1-211-g585027a.
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Figure 7.2: Typical reconstructions of the first AFM image shown in Figure 7.1 when
using uniform line sampling and an undersampling ratio of δ = 0.15. In this setting, the
GAMP algorithm diverges yielding a solution of all NaNs (not a number). The reader
is encouraged to study the details in this figure using the electronic version of this thesis
available at doi:10.5278/vbn.phd.engsci.00158.

47

http://dx.doi.org/10.5278/vbn.phd.engsci.00158


Chapter 7. Reconstructions of Undersampled AFM Images

PSNR: 37.68 dB / SSIM: 0.94

Re
co

ns
tru

ct
io

n 
Ti

m
e:

 0
.4

8 
s

Linear Interpolation

PSNR: 34.04 dB / SSIM: 0.95
Re

co
ns

tru
ct

io
n 

Ti
m

e:
 0

.6
7 

s

Cubic Interpolation

PSNR: 34.34 dB / SSIM: 0.89

Re
co

ns
tru

ct
io

n 
Ti

m
e:

 0
.0

9 
s

Nearest Neighbour Interpolation

PSNR: 35.68 dB / SSIM: 0.91

Re
co

ns
tru

ct
io

n 
Ti

m
e:

 1
8.

63
 s

Total Variation LS

PSNR: 36.38 dB / SSIM: 0.92

Re
co

ns
tru

ct
io

n 
Ti

m
e:

 2
.8

4 
s

Weighted 1 LS

PSNR: 34.26 dB / SSIM: 0.88
Re

co
ns

tru
ct

io
n 

Ti
m

e:
 1

.0
8 

s

1 LS

PSNR: 34.55 dB / SSIM: 0.89

Re
co

ns
tru

ct
io

n 
Ti

m
e:

 4
.4

4 
s

w-IST (Res/Meas)

PSNR: 32.49 dB / SSIM: 0.84

Re
co

ns
tru

ct
io

n 
Ti

m
e:

 4
.0

9 
s

IST (Res/Meas)

PSNR: 34.91 dB / SSIM: 0.90

Re
co

ns
tru

ct
io

n 
Ti

m
e:

 4
.0

3 
s

w-IHT (Res/Meas)

PSNR: 36.11 dB / SSIM: 0.91

Re
co

ns
tru

ct
io

n 
Ti

m
e:

 2
8.

39
 s

AWGN wBL GAMP EM (Res/Meas)

PSNR: 34.86 dB / SSIM: 0.88

Re
co

ns
tru

ct
io

n 
Ti

m
e:

 2
8.

00
 s

AWGN iidBL GAMP EM (Res/Meas)

PSNR: 33.58 dB / SSIM: 0.86

Re
co

ns
tru

ct
io

n 
Ti

m
e:

 1
.8

1 
s

DMM AMP M (Res/Meas)

Figure 7.3: Typical reconstructions of the first AFM image shown in Figure 7.1 when using
random pixels sampling and an undersampling ratio of δ = 0.15. The reader is encouraged
to study the details in this figure using the electronic version of this thesis available at
doi:10.5278/vbn.phd.engsci.00158.
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pattern and reconstruction algorithm. In order to allow for easy comparison of both sam-
pling patterns and reconstruction algorithms, we display two sets of figures: In Figures
7.5 and 7.6, we overlay the reconstruction algorithms and facet the sampling patterns,
i.e. the PSNR/SSIM performance vs δ is displayed simultaneously for all algorithms in a
sub-figure with separate sub-figures for each of the sampling patterns. This allows for easy
comparison of the reconstruction algorithms. In Figures 7.7 and 7.8, we overlay the sam-
pling patterns and facet the reconstruction algorithms, i.e. the PSNR/SSIM performance
vs δ is displayed simultaneously for all sampling patterns in as sub-figure with separate
sub-figures for each of the reconstruction algorithms which allows for easy comparison of
the sampling patterns.

As discussed in Section 7.3, the ratio between the AFM undersampling ratio δ and the
pixel undersampling ratio ι may vary significantly with the choice of sampling pattern.
Thus, in order to also allow for an assessment of sampling pattern PSNR/SSIM vs ι
performance, these results are shown in Figures 7.9 and 7.10, respectively. Additionally,
the relations of ι vs δ for each of the sampling patterns is displayed in Figure 7.4.
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Figure 7.4: Comparison of sampling pattern pixel undersampling ratio (ι) vs AFM un-
dersampling ratio (δ). The random pixels sampling has been designed to include pixels
corresponding to ι = 2δ by virtue of the definitions of δ and ι in Definitions 1 and 2, respec-
tively. The uniform lines sampling matches this relationship closely with the exception of
small deviations due to truncated lines. The rotated uniform lines sampling “overshoots”
in terms of the number of included pixels whereas the spiral with included corners sam-
pling “undershoots”. The reader is encouraged to study the details in this figure using the
electronic version of this thesis available at doi:10.5278/vbn.phd.engsci.00158.

From Figures 7.5 and 7.6 we find that both in terms of PSNR and SSIM, the inter-
polation methods generally provide the best reconstructions. The results are more mixed
for the CS algorithms depending on the sampling pattern and undersampling ratio. The
AMP/GAMP algorithms generally fall behind the other methods, though. The optimisa-
tion approaches based on TV and weighted `1 generally perform well with PSNR/SSIM
values nearly matching those of the interpolation methods for all sampling patterns. The
w-IST algorithm performs particularly well with the random pixels sampling but degrades
for low undersampling ratios with the structured sampling patterns.
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Figure 7.5: Comparison of reconstruction algorithms in terms of average PSNR versus AFM
undersampling ratio (δ). The results for all the reconstruction algorithms are overlaid in a
facet plot based on the sampling patterns. The corresponding SSIM results are shown in
Figure 7.6. The reader is encouraged to study the details in this figure using the electronic
version of this thesis available at doi:10.5278/vbn.phd.engsci.00158.
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Figure 7.6: Comparison of reconstruction algorithms in terms of average SSIM versus AFM
undersampling ratio (δ). The results for all the reconstruction algorithms are overlaid in a
facet plot based on the sampling patterns. The corresponding PSNR results are shown in
Figure 7.5. The reader is encouraged to study the details in this figure using the electronic
version of this thesis available at doi:10.5278/vbn.phd.engsci.00158.
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Looking at Figures 7.7 and 7.8, we find that the rotated lines sampling pattern gives
excellent PSNR/SSIM performance when used with the interpolation and optimisation
based reconstruction algorithms. However, comparing with Figures 7.9 and 7.10, it is clear
that the results are more close when considering PSNR/SSIM versus pixel undersampling
ratio rather than versus AFM undersampling ratio. Most interesting, though, from Figures
7.9 and 7.10 (and also partly 7.7 and 7.8) is that all the reconstruction algorithms perform
the best when random pixel sampling is used - especially in the high undersampling setting,
i.e. for small values of δ (or ι). This is, in particular, true for the CS reconstruction
algorithms.
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Figure 7.7: Comparison of sampling patterns in terms of average PSNR versus AFM
undersampling ratio (δ). The results for all the sampling patterns are overlaid in a facet
plot based on the reconstruction algorithms. The corresponding SSIM results are shown in
Figure 7.8. The reader is encouraged to study the details in this figure using the electronic
version of this thesis available at doi:10.5278/vbn.phd.engsci.00158.
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Figure 7.8: Comparison of sampling patterns in terms of average SSIM versus AFM un-
dersampling ratio (δ). The results for all the sampling patterns are overlaid in a facet plot
based on the reconstruction algorithms. The corresponding PSNR results are shown in
Figure 7.7. The reader is encouraged to study the details in this figure using the electronic
version of this thesis available at doi:10.5278/vbn.phd.engsci.00158.
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Figure 7.9: Comparison of sampling patterns in terms of average PSNR versus pixel un-
dersampling ratio (ι). The results for all the sampling patterns are overlaid in a facet plot
based on the reconstruction algorithms. The corresponding SSIM results are shown in Fig-
ure 7.10. The reader is encouraged to study the details in this figure using the electronic
version of this thesis available at doi:10.5278/vbn.phd.engsci.00158.
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Figure 7.10: Comparison of sampling patterns in terms of average SSIM versus pixel
undersampling ratio (ι). The results for all the sampling patterns are overlaid in a facet
plot based on the reconstruction algorithms. The corresponding PSNR results are shown in
Figure 7.9. The reader is encouraged to study the details in this figure using the electronic
version of this thesis available at doi:10.5278/vbn.phd.engsci.00158.
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8 Discussion

As outlined in Chapter 1, our overall goal is to obtain state-of-the-art reconstructions of
undersampled AFM images using algorithms that exploit a structured sparse model of AFM
images. Towards that end, we have presented two families of reconstruction algorithms that
are applicable to high dimensional image reconstruction problems and allow for exploiting
a structured sparse model of the images in the reconstruction: 1. Weighted iterative
thresholding methods detailed in Chapter 4, and 2. Generalised approximate message
passing using a general weighted sparse prior detailed in Chapter 5.

Results from a large simulation study show an improvement in reconstruction quality
in terms of average PSNR and SSIM obtained using our proposed weighted sparse recon-
struction methods when compared to their baseline equivalents. More surprisingly, our
simulation results also show that these advanced CS based reconstruction methods are
inferior to the more simple interpolation and TV methods. As is evident from Figures
7.5 and 7.6, none of our proposed methods provide higher average PSNR and SSIM than
the interpolation and TV methods in any of our tested settings. The major cause for this
somewhat unexpected result is likely to be found in the choice of sampling pattern. The
difference in average PSNR and SSIM between the CS and interpolation methods is signif-
icantly smaller when using random pixels sampling than it is using any of the other more
structured sampling patterns. This ultimately questions if CS based reconstruction meth-
ods are at all applicable to the undersampled AFM image reconstruction problem which
is physically constrained to the use of (at least somewhat) structured sampling patterns.
Even with algorithmic improvements such as the incorporation of more accurate noise and
acquisition impairment models, the use of even more advanced structured models of the
images, or the use of dictionary learning or parameter tuning strategies, it seems unlikely
that the CS methods come out on top unless more random AFM applicable sampling
patterns are used. Potentially, an AFM undersampling pattern may have to be designed
specifically to match a certain choice of reconstruction algorithm. Such a design might also
need to incorporate more sophisticated mappings of the continuous surface samples to the
discrete grid used in the digital image reconstruction and representation.

A study on undersampling in SEM [31] report simulated reconstruction results simi-
lar to our AFM results. That is, interpolation and TV reconstruction methods are well
suited for the undersampled SEM application. Also interesting to note from the results in
[31] is that the interpolation methods break down when reconstructing SEM images from
noisy measurements. This result suggests that the CS based reconstruction methods may
have more merit in the SEM and AFM applications if the measurements are noisy. Our
simulations are based on AFM images that are assumed noiseless but a practical AFM un-
dersampling setup may produce images with significantly more measurement noise. This,
however, needs further investigation on its own. In two other studies, CS based recon-
struction methods are used together with a random line segment sampling pattern in an
undersampled AFM application [25], [30]. The results reported in those studies are some-
what varying but for some images the simulated reconstruction quality in terms of PSNR
come close to our simulation results using random pixel sampling. This result suggests
that improvements in reconstruction quality may be obtained from using more advanced
sampling patterns such as randomly chosen line segments [25], a double archimedian spiral
[23], or lissajous patterns [14]. However, common to all of these patterns is the need for
choosing pattern specific parameters. Unfortunately, there seems to be no clear recom-
mendation towards such choices. An option is to empirically measure the performance for
a large range of parameters. However, when combined with the choices of reconstruction
algorithm parameters, the resulting parameter space to explore is of a high dimension and
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Chapter 8. Discussion

likely difficult to comprehend, thus, making this option less appealing.
The use of undersampling in AFM applications first of all has to be useful to the

practitioner. All reconstructions of undersampled AFM images suffer from some sort of
impairments and artefacts stemming from the reconstruction process. Some of these arte-
facts, listed in Section 7.3.2, may be more critical to the practitioner than others. Image
reconstruction quality indicators such as PSNR and SSIM do not necessarily express such
differences in the importance of the introduced artefacts. As is evident from Figures 7.2,
7.3, and H.1 – H.10, different reconstructions with comparable PSNR or SSIM may have
significantly different visual expressions. Thus, the premise that all artefacts are equally
important, which underlies our comparison of algorithms based on PSNR and SSIM, may
not accurately reflect all practical use cases. This should be kept in mind when assessing
the comparisons of both reconstruction algorithms in Figures 7.5 and 7.6 and comparisons
of sampling patterns in Figures 7.7, 7.8, 7.9, and 7.10.

Our comprehensive simulation study has been designed to serve as a guideline to prac-
titioners interested in using undersampling in their AFM applications. We have tested a
significant number of relevant undersampling settings and made all the results available for
mining as detailed in Table 6.1. The simulations have been obtained using best practices for
ensuring correctness and reproducibility of computational results. Though our proposed
methods for incorporating these best practices into our scientific Python workflow signifi-
cantly strengthens the trustworthiness our results, we do acknowledge that such empirical
simulation studies are sensitive to errors in the experiments design and implementation.
However, given all our actions towards ensuring correctness and reproducibility of our re-
sults, we believe our results to generalise. Furthermore, we believe that our methods and
results are both inspectable and reproducible to a high extent.
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9 Conclusions

We have shown that it is possible, for a fixed number of measurements, to use statistical
information in a structured sparse model of AFM images to obtain superior (in terms of
average PSNR and SSIM) reconstructions of undersampled AFM images when compared to
CS sparsity only exploiting reconstruction methods, thus, confirming our main hypothesis
from Chapter 1. However, our empirical performance evaluation also shows that baseline
reconstruction methods such as interpolation or TV methods yield reconstructions with
higher average PSNR and SSIM than the CS sparsity exploiting methods. We believe that
the main reason for this somewhat surprising inferior performance of the CS algorithms is
the discrepancy between the assumed random measurement model of the CS algorithms
and the fixed structured measurements process used in AFM. That being said, our empir-
ical performance evaluation also reveals that different reconstruction algorithms introduce
visually different artefacts in the reconstructed images making it difficult to uncondition-
ally recommend one reconstruction method over the others. When using undersampling
in AFM, the practitioner must consider which reconstruction method best highlights the
elements of interest in the reconstructed image.

The significant reconstruction performance issues, we observe when using fixed struc-
tured sampling patterns, suggest that future research in undersampling of AFM images
should focus on a joint design of sampling pattern and reconstruction algorithm. Any
such design likely also needs to include elements of a consistent mapping of the continuous
surface measurements to the fixed grid used in the reconstruction process. Possibly, fur-
ther improvements to reconstruction algorithms such as the incorporation of more accurate
prior information or noise models may lead to improved reconstructions. However, given
the solid, though still moderate, improvements we have seen with our proposed reconstruc-
tion methods, it seems that the sampling pattern design issue is by far the most critical
element to investigate.

Our main contributions are associated with two main areas of research: 1. Practically
applicable reconstruction methods that exploit structured signal sparsity, and 2. Methods
and guidelines for implementing best practices to ensuring correctness and reproducibility
of computational results in a scientific Python workflow. Our proposed structure exploit-
ing reconstruction methods are suitable for use in more general high dimensional signal
reconstruction problems and have sufficiently low computational and memory requirements
to make them practically feasible. Our proposed input validation framework significantly
reduces the risk of obtaining erroneous results due to falsely formatted input data. Finally,
our proposed scheme for storing reproducibility metadata along with computational results
aids in making computational results easily inspectable and reproducible.
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Reconstruction Algorithms in Undersampled AFM
Imaging
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Abstract—This paper provides a study of spatial undersam-
pling in atomic force microscopy (AFM) imaging followed by
different image reconstruction techniques based on sparse ap-
proximation as well as interpolation. The main reasons for using
undersampling is that it reduces the path length and thereby
the scanning time as well as the amount of interaction between
the AFM probe and the specimen. It can easily be applied
on conventional AFM hardware. Due to undersampling, it is
necessary to subsequently process the acquired image in order
to reconstruct an approximation of the image. Based on real
AFM cell images, our simulations reveal that using a simple
raster scanning pattern in combination with conventional image
interpolation performs very well. Moreover, this combination
enables a reduction by a factor 10 of the scanning time while
retaining an average reconstruction quality around 36 dB PSNR
on the tested cell images.

Index Terms—atomic force microscopy, undersampling, image
reconstruction, sparse approximation, interpolation, compressed
sensing

I. INTRODUCTION

ATOMIC force microscopy (AFM) is a scanning probe
microscopy technique that offers several interesting pos-

sibilities in the imaging of biological materials such as cells.
Atomic force microscopy complements other microscopy tech-
niques such as optical microscopy or scanning electron mi-
croscopy (SEM) by enabling three-dimensional imaging of
cell surfaces and imaging cells and bio-molecules in more
natural environments than other techniques. This also enables
imaging of live cells [1]. Imaging biological material such
as live cells does, however, entail some challenges such as
the risk of damaging the cells due to interaction with the
microscope probe tip [2], [3].

Imaging with AFM equipment is a relatively time-
consuming process, taking on the order of seconds to minutes
or even higher to image a region of interest using commercial
AFM equipment [4], [5]. While this may be inconvenient to
the operator of AFM equipment, it can become an impediment
when imaging temporally evolving material and organisms,
i.e. the AFM equipment may simply not be able to scan the
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specimen sufficiently fast to be able to follow the process [6],
[7]. Several approaches to achieving higher-speed scanning in
AFM have been explored. These include approaches dealing
with the mechanical characteristics of the equipment, control
of the probe, or design of special sampling patterns that allow
faster movement of the probe [6], [8]–[10]. However, since it
is often necessary to probe the specimen with great caution,
particularly in the case of live cell imaging, efforts to scan
faster and yet interact as little/carefully with the specimen as
possible may well run counter to each other.

One way to combat this dilemma could be to use sparser
sampling patterns than the patterns typically used in AFM.
The typical way to sample the topography of a specimen in
AFM is to scan the probe across the surface in a dense raster
pattern [11]. This process can be sped up by using a sparser
sampling pattern, i.e. effectively letting the scan path cover
the surface less densely and thereby enabling a shorter and
thus faster scan path. This approach simultaneously causes the
probe tip to interact less with the specimen. Such an approach
can potentially solve the dilemma of careful interaction with
a fragile specimen vs. fast scanning. In exchange, this neces-
sitates reconstruction of the full surface topography (image)
from considerably fewer samples instead.

In this paper we survey a range of methods that can
be applied in order to achieve faster and/or less destructive
cell imaging using AFM.1 In particular, we compare two
different sampling patterns (raster and spiral) in combination
with a selection of image reconstruction techniques based
on sparse approximation and an interpolation technique used
as reference. For the comparison, we use seven AFM cell
image specimens. We identify useful combinations of scan-
ning patterns and reconstruction algorithms that provide good
reconstruction quality and are sufficiently fast w.r.t. scan time
as well as reconstruction time. A perhaps somewhat surprising
finding is that the naive approach of simply scanning the cell
specimen with a less dense raster pattern, effectively skipping
a fraction of the lines, and then combined with standard image
interpolation, leads to the best overall objective reconstruction
quality for a fixed undersampling ratio. It is worth noticing that
if obtaining a less dense raster scanning pattern is supported
by the AFM equipment, then this technique does not require

1The underlying code-base and images required for reproducing all results
in this article is freely available at:

• Code http://dx.doi.org/10.5281/zenodo.32959
• Results http://dx.doi.org/10.5281/zenodo.32958
• Images http://dx.doi.org/10.5281/zenodo.17573
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any hardware modification of the AFM equipment. The recon-
struction algorithm is then a purely software-based approach
that can be performed on a standard PC or enabled through a
firmware upgrade of the equipment. We also find that for the
seven AFM cell images considered in this study, interpolation
and total variation techniques work better with raster scanning
patterns, whereas sparse approximation techniques with DCT
dictionaries work better with spiral scanning patterns.

The paper is outlined as follows. In Section II we give an
overview of signal processing for atomic force microscopy,
introducing the basics of AFM equipment as well as the
necessary processing required to obtain useful images from
the equipment, possible impairments, and notation details.
In Section III we give an overview of image reconstruction
based on sparse approximation techniques and introduce a
reference method, interpolation, for comparison. Section IV
details our experiments regarding reconstruction of images in
AFM. Section V presents results from numerical experiments
with the presented reconstruction methods. Finally, Section VI
summarizes and concludes the paper.

II. NOTATION AND FRAMEWORK

A. Introduction to AFM
Atomic force microscopy (AFM) is one of the most ad-

vanced techniques for investigating and manipulating surfaces
on the atomic scale. By working on this scale, AFM pro-
vides magnification which is orders of magnitude beyond the
capabilities of optical, confocal, and even scanning electron
microscopy or transmission electron microscopy techniques
[12]. This is generally the case for scanning probe microscopy
(SPM) which encompasses the families of AFM and scanning
tunneling microscopy (STM). Whereas STM requires the
surface of interest to be electrically conductive, AFM does not
[11] and is therefore the technique of interest to the present
paper due to the potential application to live cell imaging.
However, many of the thoughts presented should be applicable
to SPM in general.

Being a state-of-the-art technique, AFM is used extensively
within nanoscale science and technology [13]. Partly because
the technique can be used on surfaces in both vacuum, air,
and liquids, there is a large variability in the applications [7].
A number of applications relate to materials science, some to
the study of biological processes, and some to the study of
biological materials [9]. Yet other applications use AFM for
surface manipulation including lithography, nanomanipulation,
and nanoassembly [14].

In the context of surface investigation, AFM is most com-
monly used to generate a 3D surface map of the object of
interest [6]. Loosely speaking, a probe is used to measure the
height of the surface while the probe and the surface are moved
relative to each other. Specifically, the vertical position of the
probe is controlled by a piezo which is itself controlled by a
feedback loop. This feedback loop keeps a particular measured
property constant, such as the deflection of the cantilever on
which the probe tip is located, in order to ensure that the
probe traces the surface. Independently of this control loop,
the probe and the surface are moved relative to each other by
the use of additional piezos [12].

B. Image acquisition

To prepare the AFM equipment for operation, the user must
perform an initial system setup which consists of a number of
steps. Some of these steps require the user to make decisions
based on the surface under investigation. These decisions
include selecting a cantilever, operating mode (contact mode,
acoustic AC mode, or magnetic AC mode), servo settings
or AC mode settings, and scanner settings. Although these
heavily affect the quality of the measurements of the surface,
an in-depth coverage of the initial system setup is beyond the
scope of the present paper. It is, however, worth mentioning
that the degree of interaction between the probe tip and sample
depends heavily on the chosen operating mode. In contact
mode, the probe tip is “dragged” across the surface and
thus typically applies a near-constant force to it [12]. In AC
mode on the other hand, the cantilever is oscillated and thus
only applies force to the surface a fraction of the time [15].
The interaction between probe tip and sample is particularly
important when dealing with soft materials such as biological
cells [16].

The setup of the AFM equipment includes a number of
steps related to the movement of the probe and the surface
relative to each other: i.e. the scanning path. Traditionally, a
raster scanning path is used [4], and this only requires the
user to decide which surface region to scan, how densely to
scan it, and how fast to scan it. If the raster scanning path
should not be used then the user is required to decide on
the actual scanning path, the movement speed of the probe,
and the sampling frequency. Additionally, when deciding on
a non-raster scanning path, the user is required to somehow
implement this scanning if it is not already available in the
AFM equipment.

The actual scanning path is subject to two major constraints:
1) The probe cannot easily or effectively “jump” from one
point on the surface to another. Therefore, the path must
be continuous. 2) The piezos have a band limited frequency
response. Therefore, when combined with a specific probe
movement speed, the path must have frequency contents which
are limited to that band in order to avoid distorting the
scanning path.

C. Acquisition impairments

The image acquisition process is subject to a number of
impairments. Some of these impairments may severely affect
the image quality when image reconstruction is introduced
[17]. To ensure successful image reconstruction, the impair-
ments must be considered. Fortunately, some of these can be
mitigated by careful setup of the AFM equipment whereas
others must be accounted for in the image reconstruction [11].
This section highlights some of the possible impairments but
should in no way be considered a complete list.

Some of the impairments relate to the object of interest. First
of all, when this object is put in place, the surface is likely to
be tilted since the user cannot likely ensure that the surface
is perfectly normal to the probe tip. This impairment should
be accounted for by the image reconstruction. Next, when
acquiring an image, the surface may be deformed [18] since
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the AFM equipment applies force to the object which may
consist of a soft material. This impairment can be mitigated by
careful setup of the AFM equipment but it inevitably distorts
the image slightly [6].

Some of the impairments relate to the physical parts of the
AFM equipment. The probe tip is affected by an area of the
surface rather than a single point because of the shape and
size of the probe [11]. Depending on the probe, the slope
of the surface, and the desired physical resolution, this may
distort the image slightly. The sensors used in state-of-the-art
AFM equipment are sufficiently accurate and precise to only
cause negligible impairments [9]. The piezos used to move the
sample and probe relative to each other are intrinsically subject
to non-linearity, hysteresis, and creep [14]. However, state-of-
the-art AFM equipment can operate in closed-loop mode in
order to mitigate these effects [8].

Some of the impairments relate to the control loops and the
applied signal processing. The probe is part of a cantilever
which is deflected when the probe tip is affected by the
sample surface. This deflection is measured and compared to
the desired deflection resulting in an error signal which is
used to control the piezo. However, due to the filters used,
the type of controller, and the physics of piezos, the piezo
does not instantaneously compensate for changes in cantilever
deflection which may distort the image [18]. This impairment
may be mitigated by reducing the probe movement speed.

Finally, there are also possible issues of stochastic measure-
ment noise. Several factors specific to the equipment contribute
to stochastic noise in AFM [19]. These are for example related
to the optical system that is used to control the deflection of
the cantilever.

D. Discretization

As described in Section II-A, imaging with AFM can be
seen as measuring the surface height of a specimen across
a continuous two-dimensional surface (topography). The end
goal we consider here is conveying this measured topography
visually. This typically entails displaying an image of the
measured surface as points on a uniform grid, e.g. a computer
screen. This can be done in various ways, some of which are
described in the following. In order to do that, we first establish
some notation and general principles here.

We consider a region Ω ⊂ R2 within which we wish
to image the topography of the continuous surface of the
specimen, denoted X . The surface of the specimen is sampled
along a scan path, on which the AFM probe, represented by
the sampling operator φ, collects m samples φ(X) ∈ Rm×1 at
discrete points on the surface X . From these samples, we wish
to reconstruct an h×w (pixels) image of the surface. We refer
to this image representation of the surface (with values located
on a uniform pixel grid over Ω) as a matrix, X ∈ Rh×w, or
as a vector, x ∈ Rhw×1, containing the stacked columns of
the matrix with the left-most column of X as the top entries
of x etc. The reconstruction of this image is correspondingly
denoted X̂ or x̂.

In the case of raster scanning as traditionally applied in
AFM, the sampled points can be chosen naturally to lie close

to a uniform grid that fits directly into an image interpretation.
In this case the sampled points φ(X) correspond directly to
the image X with the possible addition of noise and various
scanning artifacts E ∈ Rh×w as described in Section II-C:

φ(X) = X + E (1)

If one deviates from this traditional raster scanning and
sampling approach by either changing the scan pattern or using
non-uniform sampling, the acquired image samples do not
generally fall on a uniformly spaced grid corresponding to the
pixels of X. Having a uniformly spaced pixel grid is attractive
from a mathematical point of view, since the image can be
represented in a matrix form with an intuitive interpretation
of the physical locations of the sampling points. In this case,
we consider reconstruction X̂ of the hypothetical image X
from which measurements are obtained via an intermediate
interpolation from the measured points to the pixel grid. In
this spatially discretized setting, the obtained samples can be
seen as located at points on the uniform pixel grid as well
such that:

φ(X) = Φx (2)

The pattern of sampling points represented by the spatially
discrete matrix Φ is referred to as the sampling pattern.

The variables defined in this section form the basis of the
different reconstruction approaches presented in the following
sections.

III. SPARSE APPROXIMATION

Sparse regularization and/or approximation is a well-known
approach to solving ill-posed optimization problems, early
examples of which include [20]–[22]. The principle of com-
pressed sensing which has emerged quite recently has popu-
larized the sparse regularization principle [23], [24]. For an
introduction, see [25]–[27].

In this paper, we demonstrate a selection of reconstruction
algorithms based on sparse regularization. For this purpose,
we consider the following linear measurement model:

y = Aα (3)

The vector α ∈ Rn×1 is a sparse vector, i.e. it contains only
k � n non-zero entries, also expressed as ‖α‖0 = k in the
`0 pseudo-norm. The matrix A ∈ Rm×n is a sensing matrix
applied to the sparse vector to sample the measurements y ∈
Rm×1.

Typically, as is the case for the application to AFM proposed
here, a signal is not sparse in the domain we can observe it
in. The following more general model is therefore used:

y = Φx (4)

where:

x = Ψα (5)

Here x ∈ Rp×1 is the observable signal vector and Φ ∈ Rm×p
is a measurement matrix applied to sample the measurements.
The matrix Ψ ∈ Rp×n represents the dictionary, enabling a
sparse representation α of the observable signal x.
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If we consider the above formulations in the setting of
reconstructing an AFM image from samples scanned on a
specimen, y corresponds to the scanned samples of the image
x, a vector version of X. We wish to reconstruct an estimate
x̂ of the image from y. The fact that m < p ≤ n means
that (3), or equivalently (4) together with (5), constitutes an
under-determined linear equation system which we cannot
directly invert to obtain x̂. Sparse regularisation as used in, e.g.
compressed sensing enables solving (3) for α, and equivalently
for x through (5), by solving the following (non-convex)
optimization problem [23]:

α̂ = arg min
β
‖β‖0 s.t. y = Aβ (6)

Unfortunately (6) is an intractably difficult combinatorial
problem to solve exactly. However, compressed sensing theory
shows that (6) can be replaced by the following convex
relaxation of the problem [23], [26]:

α̂ = arg min
β
‖β‖1 s.t. y = Aβ (7)

The optimization problem in (7) can solve (3) exactly under
certain conditions [26], [29]. The convex relaxation in (7) is
one approach to approximating a solution to (6). However,
there exist a number of different approaches which we survey
a selection of in Section III-B.

The reconstruction method can be generalized to the case of
noisy measurements and/or signals that are not exactly sparse
but rather “compressible” in the sense that they are accurately
approximated by a few of the largest entries in α:

y = Φx + e (8)

The vector e ∈ Rm×1 represents noise in the acquired
measurements, e.g. the impairments described in Section II-C,
and/or the error resulting from sparsely approximating a
signal that is not strictly sparse. In this case, the following
optimization problem reconstructs the signal [26]:

α̂ = arg min
β
‖β‖1 s.t. ‖Aβ − y‖2 ≤ ε (9)

The parameter ε bounds the 2-norm of the error e.
The sparse representation model (5) is known as the sparse

synthesis model – for its ability to synthesize a signal x from
a sparse vector α. This model also has a counterpart: the co-
sparse analysis model [30]:

α = Ψ>x (10)

This model admits a sparse representation of the signal x after
multiplication by an analysis dictionary Ψ>. Note here that
good dictionaries for the analysis model are not necessarily
simply a transpose of a corresponding synthesis dictionary,
but we use this notation here in order not to complicate the
notation with additional symbols. The optimization problem
for reconstructing x from the analysis model, as a counterpart
to (9) can be stated as:

x̂ = arg min
x̃
‖Ψ>x̃‖1 s.t. ‖Φx̃ − y‖2 ≤ ε (11)

A number of theoretical conditions for compressed sensing
reconstruction to succeed can be found in the literature [26],

[31], but most of the theory relies on the measurement
matrix Φ having i.i.d. random entries. A random measurement
matrix is difficult to achieve when scanning a specimen in an
efficient manner in AFM and further, the continuous trajectory
typically used in AFM in this case violates the assumption of
i.i.d. entries. Therefore, the imaging techniques explored in
this paper are not strictly compressed sensing. Nevertheless,
we investigate some of the reconstruction algorithms known
especially from compressed sensing to assess the value of
reconstructing images in AFM by sparse approximation.

Previous work has shown that for particular AFM images
having much greater energy in the high-frequency domain than
in the low-frequency domain, sparse approximation techniques
generally perform better than (Delaunay) interpolation-based
techniques, whereas for low-frequency AFM images, excellent
performance can be obtained with Delaunay interpolation [32].

A. Measurement and Dictionaries

As mentioned in Section III, the sensing matrix A can be
considered as the product of a separate measurement matrix Φ
and (synthesis) dictionary matrix Ψ where the purpose of the
measurement matrix is to represent the process that physically
measures the sample. The purpose of the dictionary matrix is
to enable a sparse representation of the image x.

When considering separate measurement matrices Φ and
dictionaries Ψ, the matrices should be selected from incoher-
ent orthogonal bases Φ and Ψ. Coherence, µ, is a measure of
the similarity of the vectors Φ and Ψ [26]. A low coherence
is better. The measurement matrix Φ should consist of rows
selected uniformly at random from Φ while the columns of
the dictionary matrix Ψ should be the vectors from Ψ [26].
The preceding descriptions apply to the case of a dictionary Ψ
corresponding to an orthonormal basis [33], i.e. m = p in (5).
However, the more general case of over-complete dictionaries
where m < p is also possible [34].

An overview of the past and present directions in the
design of dictionaries is given in [35]. The possibilities range
from the fixed, general purpose, orthogonal dictionaries over
more adapted over-complete dictionaries [36], [37] to the
highly data- and application-specific dictionaries designed
using a Karhunen-Loeve transform [38] (also known as a PCA
transform [39]) or a learning approach [40], [41]. Although
any of these approaches may be applicable for AFM image
representation, here we only discuss fixed dictionaries such as
the discrete cosine transform (DCT)2 or the discrete wavelet
transform (DWT). These transforms are of particular interest
due to their simplicity, their celebrated applicability in general
compressive imaging [27], and the availability of efficient
implementations requiring only O(n log(n)) computations as
well as relaxed memory requirements due to an implicit
representation of the dictionary matrix [42].

The DCT is used in the JPEG coding standard [43] and
as such is known to be successful in sparsely representing

2Here we consider the DCT as a representative of the family of sinusoidal
transforms which also includes, e.g. the discrete Fourier transform (DFT). It
is our experience that the use of the DFT gives reconstructions comparable
to those based on the DCT.
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smooth images. However, in JPEG the DCT dictionary is
used on smaller patches of the image whereas we only apply
dictionaries to the full image in this study. In terms of its
applicability in AFM imaging, the DCT is the dictionary
used in two independent recent studies on the applicability of
compressed sensing in AFM [32] and SEM [44]. The DWT
is generally very successful in sparsely representing piece-
wise smooth images. Consequently, it is the transform chosen
in the JPEG2000 coding standard [45]. The DWT has been
successfully used in a number of compressive imaging studies,
see e.g. [46] and [47]. Note, however, that these studies use
dense sampling matrices with random entries and not the
sparse point sampling used in AFM.

The excellent sparse representation capabilities of the DCT
and DWT on natural images make them both good candidates
for use in reconstruction of undersampled AFM images. We
have, however, found that the DWT can be problematic when
used in combination with point sampling. As (4) shows, mea-
surements in compressed sensing are generally random linear
combinations of the entries of the observable signal. In AFM,
however, the physical properties of the probe tip only allow
the microscope to sample the specimen in discrete points,
i.e. each row in Φ contains only one 1-entry while the other
entries are 0, making this point sampling measurement matrix
extremely sparse. The DWT dictionary matrix is relatively
sparse compared to the DCT and it follows that their product
is likely to be sparse, where some columns can become all-
zero. Thus, the null-space of the product matrix is non-empty
and there exist sparse solutions which cannot be represented
by the particular pair of measurement and dictionary matrix.
Intuitively, the DWT basis functions are not able to smoothly
interpolate between points spaced too far apart due to being
very localized in the image domain. Hence, we may experience
low incoherence between the DWT and point sampling. This
is not the case for the DCT dictionary matrix, which is
dense and maximally incoherent with point sampling [26].
To demonstrate the difference in reconstruction capabilities
between DCT and DWT dictionaries, we include results of
experiments with both dictionary types in Section IV. As the
results show, the performance depends strongly on the type of
sampling pattern used.

B. Reconstruction Algorithms

In the following, we review a number of reconstruction
algorithms that can be used to reconstruct undersampled AFM
images by sparse approximation.

1) Convex Optimization: The classic approach to solving
sparse approximation problems described by (6) is using the
`1 norm convex optimization formulations introduced by (7)
and (9). The constrained convex formulation (9) is also com-
monly found in a regularized form:

α̂ = arg min
β

{
τ‖β‖1 +

1

2
‖Aβ − y‖22

}
(12)

Although (12) appears different from (9) at first glance, they
can produce identical solutions for given pairs of (ε, τ) [48].
These convex optimization formulations are also known as

the least absolute shrinkage and selection operator (LASSO)
or basis pursuit de-noising (BPDN) [49], [50].

Equations (7), (9), (12) are formulations of the problem to
solve. However, various different algorithms can be employed
to compute the actual solution [51], [52]. Some solvers for
this type of problems are implemented in for example PyUN-
LocBoX3 [53], SPGL14 [54], YALL15 [55], and TFOCS6.

Another convex optimization method following the ap-
proach in (11) is using total variation (TV) minimization [56].
Proposed for image denoising in the context of image pro-
cessing [57], TV is a measure that quantifies the variation
in some function. In image reconstruction, the TV measure
is used to minimize the variation in the reconstructed image.
That is, this approach takes advantage of the fact that natural
images tend to consist of relatively large smooth regions and
exploits this fact to fill in missing regions between the known
parts of the image. Anisotropic TV can be seen as analysis
co-sparse approximation with a discrete difference operator as
the analysis dictionary, see (10). The anisotropic TV operator
can be found in, e.g. [58]. As an example of analysis-based
sparse approximation, we apply a slightly different variant;
isotropic TV. This has also been applied to AFM image
reconstruction in [7]. A related application is found in [59]
where a slightly different but similar approach known as
heat equation in-painting is used. The isotropic TV convex
optimization problem can be posed as [60]:

x̂ = arg min
x

tv(x) s.t. ‖Φx − y‖2 ≤ ε (13)

In (13), we have used vector notation for the image x to sim-
plify the constraint. For the purposes of numerical computation
used in image processing, a discrete approximation of the TV
norm is used since the image is discretized to a pixel grid.
One definition of this discretization can be found in [60]:

tv(X) =
h−2∑

k=0

w−2∑

l=0

(∣∣X(k+1,l) −X(k,l)

∣∣2 +

∣∣X(k,l+1) −X(k,l)

∣∣2
) 1

2

+

h−2∑

k=0

∣∣X(k+1,w−1) −X(k,w−1)
∣∣2

+

w−2∑

l=0

∣∣X(h−1,l+1) −X(h−1,l)
∣∣2 (14)

In (14), we have used matrix notation for the image X to
simplify indexing; X(k,l) indexes the (k, l)’th entry in X.
Equation (14) is the isotropic version of the discrete TV norm.

The problem (13) can be solved using different algorithms
such as split Bregman [61] or Douglas-Rachford splitting [53],
[62]. Implementations of algorithms solving TV optimization
can be found in PyUNLocBox, which can solve (13) as
described in [63]. TFOCS6 [64] also implements a solution.

2) Greedy Pursuits: An alternative to the convex optimiza-
tion based reconstruction algorithms is using the class of so-
called greedy reconstruction algorithms. The term greedy is

3Available at https://github.com/epfl-lts2/pyunlocbox.
4Available at http://www.cs.ubc.ca/labs/scl/spgl1.
5Available at http://yall1.blogs.rice.edu/.
6Available at http://cvxr.com/tfocs/.
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used because these algorithms iteratively take decisions that
are locally optimal in each iteration [65].

Generally, an iteration of a greedy algorithm involves a
greedy selection of support elements (columns of A) followed
by a coefficient update (an update of α̂), see e.g. [65, Algo-
rithm 8.1]. The simplest examples are so-called greedy pur-
suits like Matching Pursuit (MP) [36] or Orthogonal Matching
Pursuit (OMP) [66] that only allow for a continued increase
of the support. Algorithms like Iterative Hard Thresholding
(IHT) [67] or Iterative Soft Thresholding (IST)7 [68] have an
ability to also prune elements from the support. For common
parameter choices, the IHT interchanges the optimization
criterion and the constraint in (9) and uses the `0 pseudo-norm
from (6) instead of the `1 relaxation:

α̂ = arg min
β
‖Aβ − y‖2 s.t. ‖β‖0 ≤ k (15)

In particular the IHT and IST algorithms have a simple
iterative form which can be written (with iteration index k)
as:

β(k+1) = Tµ

(
β(k) + κA>

(
y −Aβ(k)

))
(16)

The parameter κ is a step size. The function Tµ is a thresh-
olding operator applied entry-wise to each of the entries v of
a vector v. For IHT the hard thresholding operator [67] is:

Tµ (v) =

{
0 for |v| ≤ µ
v otherwise

(17)

For IST the soft thresholding operator [68] is:

Tµ (v) =

{
0 for |v| ≤ µ
sgn (v) (|v| − µ) otherwise

(18)

Even more advanced algorithms exist such as Subspace Pursuit
[69] or CoSaMP [70] that introduce a two-stage thresholding
scheme with an intermediate support element selection and
coefficient update.

Although some of the greedy algorithms can be shown to
have theoretical recovery guarantees that match those of the
`1 based convex relaxation methods [65], empirical evidence
suggests that they do not perform as well as `1 optimiza-
tion [71], [72]. The greedy algorithms are, however, worth
considering due to their low computational complexity. The
computational cost in an iteration of e.g., MP, IHT, or IST
is dominated by the computation of matrix-vector products
involving A and A>, thus, having complexity O(n2). If fast
transforms are available, as is the case when using e.g. the
DCT as described in Section III-A, the computational cost
is O(n log(n)). This has a significant impact on the time it
takes to do the reconstruction for large problem sizes such as
a 256× 256 = 65536 pixels AFM image.

3) Approximate Message Passing: Probabilistic Message
Passing (MP) algorithms based on graphical belief models
are known from Bayesian inference used in machine learning
[73]. This is an advanced method of reconstruction, which
takes into account prior information the user may have on

7IST can also solve a variant of the `1 minimization problem and as such
is not completely distinct from them.

signal characteristics [74]. It unfortunately suffers from severe
computational load and may also show poor convergence
properties if the algorithmic assumptions are not fulfilled
[75]. The Approximate Message Passing (AMP) algorithm
is derived as a first order approximation, which reduces
the computational burden significantly [73], [76]–[78]. AMP
exists in several variants allowing different signal priors [79],
inclusion of parameters as variables [80] etc. The following is
based on a reasonably simple AMP method using a Bayesian
framework for probabilities. Maleki and Baraniuk [81] showed
links between AMP and Iterative Soft Thresholding (IST)
in terms of identical convergence properties, and it has also
been shown that the AMP algorithm can solve the LASSO
(Least Absolute Shrinkage and Selection Operator) problem
formulated in (12) [80].

The Minimum Mean-Square Error (MMSE) signal recon-
struction estimate for xn can be found from a marginal
Bayesian mean of the posterior marginal estimate as [82]:

x̂MMSE
n =

∫

x∗
xn ℘X|Y (xn|y) dxn (19)

where ℘X|Y (xn|y) is the conditioned posterior pdf (probabil-
ity density function), and x∗ is the space of xn. To compute the
MMSE estimate in (19) we need to determine the conditioned
posterior probability ℘X|Y (xn|y), which can be done via
Bayes’ rule [82]:

℘X|Y (x|y) =
℘Y |X(y|x)℘X(x)

℘Y (y)
(20)

=
℘Y |X(y|x)℘X(x)∫

x∗ ℘Y |X(y|x)℘X(x) dx
(21)

For the sparse input signal x we assume all components to be
i.i.d. Bernoulli-Gaussian with marginal pdf:

℘X(xn) = ρN (xn; µx, σ
2
x) + (1− ρ) δdirac(xn) (22)

where ρ ∈ [0; 1], δdirac(·) is the Dirac δ-function [83], and the
general Gaussian function is:

N (xn; µx, σ
2
x) =

1√
2π σx

exp

(−(xn − µx)2

2σ2
x

)
(23)

The noise in (8) is modeled as additive white Gaussian noise
with a pdf given by:

℘E(en) = N (en; 0, σ2
e ) (24)

The Message Passing (MP) is then included to describe the
steps:

α → z = Aα → y = z + e = Aα + e (25)

remembering that x = Φα. When ℘X(x) is unknown, the ex-
pression above represents an assumption of the pdf. Other pdfs
may be used such as Laplace and Bernoulli-Gaussian Mixture
models [80]. The output can be based on any separable
distribution. In the special case of a Laplace pdf, the algorithm
can be reduced to a simple thresholding algorithm similar
to (16) with an additional correction term in the argument
to the threshold operator (18). The algorithmic complexity of
the AMP algorithm based on Bernoulli-Gaussian input prior
and Gaussian output prior is O(mn).
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4) Reference Method: Interpolation: Interpolation using
irregularly spaced samples is a widely studied topic and
used in diverse disciplines such as signal processing [84],
[85], computational geometry [86], and geoscience [87]. Here
The computationally simplest approaches to interpolation are
nearest neighbor interpolation, where the nearest known pixels
are simply copied to the unknown pixel locations, and linear
interpolation, where nearby pixels are linearly combined to
provide the values for the missing pixels. The weights used
in the linear combination are often empirically chosen such
that an average of the neighboring pixels is obtained or they
depend upon the distance between the pixels as is the case
with Kriging linear interpolation [87]. The weights can also
be analytically chosen to satisfy e.g., well-established sam-
pling theorems in shift-invariant spaces such as non-uniform
interpolation with b-splines [88] and sinc kernels [89]. Another
common approach is to use Delaunay triangularization, where
the surface area is subdivided into non-overlapping triangles.
The vertices of the triangles are assigned the measured points,
and any point within a triangle can be obtained by (non)-
linear interpolation methods such as linear, cubic, and nearest-
neighbor interpolation between its three vertices [86]. In this
study we use the latter interpolation method as a reference to
compare the sparse approximation methods against.

IV. EXPERIMENTS

In order to give an overview of the possibilities of image re-
construction from sparsely sampled images we have conducted
an extensive set of experiments to showcase the capabilities
of different reconstruction approaches presented in Section III.
The experiments cover basic variants of the involved recon-
struction algorithms, i.e., no attempts were made to exploit
special structure in the images or apply dictionary learning etc.
It is therefore also likely that specialization of the algorithms
may offer further reconstruction quality improvements or mit-
igation of some of the impairments described in Section II-C.

A. Quality Indicators

In order to assess the reconstruction quality in the exper-
iments, we apply two standardized image quality indicators.
The first is peak signal-to-noise ratio (PSNR):

PSNR = 10 log10


 P 2

∑h−1
k=0

∑w−1
l=0

(
X(k,l) − X̂(k,l)

)2




(26)

The value P is the maximum possible value of a pixel in
X, i.e. P = 1 according to the numeric representation of the
images described in Section IV-C.

The second metric is the structural similarity (SSIM) index
which we use according to the definition in [90]. In particular,
we use: window size 7, K1 = 0.01, K2 = 0.03, C3 = C2

2 ,
and α = β = γ = 1, cf. [90, Eq. (13)].

All reconstructed images are scaled to have pixel values in
the range [0, 1] prior to application of the PSNR and SSIM
indicators.

The color map referred to as “cool-warm” in [91] (exem-
plified in Figure 1a) is used for visualizing the ground truth
images in Figure 2 as well as the reconstructed images. We
have found through perceptual evaluation of the ground truth
images that this color map is better for discerning image details
otherwise lost in the color map traditionally applied in AFM
imaging which is exemplified in Figure 1b.

(a) “Cool-warm” color map.

(b) Traditional AFM color map.

Fig. 1. Color maps for visualization of images.

B. Sampling Pattern

We investigate reconstruction performance under varying
density of the applied sampling pattern. The density of the
sampling pattern is expressed in terms of an undersampling
ratio defined as follows: the undersampling ratio is measured
with respect to the length of the scan path as this can reason-
ably be assumed proportional to the amount of time required
to scan the image. We take as reference scan path length the
length of the dense raster pattern used to scan the original
images in Figure 2. This reference length is approximated as:

Lref = 2w h (27)

That is, the length of each horizontal line w times the number
of lines h, expressed in pixels. The multiplication by 2
stems from the fact that the probe is scanned both back and
forth once in each direction for each line counted. This in
principle results in two images; one composed of the left-to-
right-scanned samples and one composed of the right-to-left-
scanned samples. Only one of these images is used as they are
usually equivalent (but not completely identical) for practical
purposes. The undersampling ratio δ is finally calculated as

δ =
L

Lref
(28)

The length L is the length of the applied sampling pattern
in units of pixels. In reconstruction experiments involving the
spiral sampling pattern, we have simulated a scan path that
scans beyond the square region of the original image until
the spiral pattern fills the corners of the square as can be
seen in Figure 2h. In calculating the resulting undersampling
ratio, we also include the parts of the spiral scan path outside
the square image region for fairness of comparison. This is
done because the AFM equipment would have to traverse
these unused regions outside the image region in order not
to introduce scanning artifacts by deviating from the smooth
curve of the spiral path. Note that (28) is not equal to the
undersampling ratio measured in image pixels and (28) reflects
the fact that we wish to focus on the potential time savings in
applying sparse sampling patterns in AFM.
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(a) Chinese hamster ovary cells. (b) Chinese hamster ovary cells. (c) Human bladder carcinoma
cells.

(d) Human bladder carcinoma
cells.

(e) Chinese hamster ovary cells. (f) Chinese hamster ovary cells. (g) Chinese hamster ovary cells. (h) Sampling pattern example.

Fig. 2. (a)–(g) The seven ground truth images used in reconstruction experiments here shown before de-tilting; (h) shows an example of the spiral sampling
pattern with δ = 0.1.

C. Image Material
As examples of cell images we have selected the seven

images shown in Figure 2. The images have originally been
scanned for a size of 512× 512 pixels, but have been sub-
sequently decimated to 256× 256 pixels to reduce the com-
putational complexity of the reconstruction8. The images are
stored and processed as double precision (64-bit) floating point
values in the interval [0, 1]. Images (a), (c), (e), and (f) have
been acquired in acoustic AC mode; images (b), (d), and (g)
have been acquired in contact mode. The images have been
acquired on Keysight Technologies ILM6000 and 7500 AFM
equipment. The original image files are available along with
this paper9.

We demonstrate the performance of the reconstruction al-
gorithms on images sampled using raster-, respectively, spiral-
shaped scanning paths. In the experiments, we did not have
access to images scanned along a spiral scan path. For this
reason, the measurements used in the reconstruction experi-
ments were constructed as follows: the original images were
acquired using a dense raster scan path with one line per line
of pixels in the resulting image; spiral-scanned measurements
were simulated by picking pixels from the original images in
a spiral-shaped pattern as illustrated in Figure 2h; for fairness
of comparison, the raster-scanned measurements used in the
experiments were similarly picked as horizontal lines–joined
at the ends by vertical segments–of pixels from the original

8Most of the tested algorithms can actually handle images of size
512× 512, but the Bernoulli-Gaussian AMP algorithm described in Sec-
tion III-B3 was unable to handle larger images on the available hardware
due to memory requirements.

9http://dx.doi.org/10.5281/zenodo.17573

images. The undersampling ratio defined in Section IV-A is
varied among the following values:

δ ∈ {0.1 + n · 0.025 | n = 0, 1, . . . , 8} (29)

In the reconstruction experiments, the images have been de-
tilted prior to reconstruction. This is done by least-squares-
fitting a plane through the available measurements according
to the applied sampling pattern. The fitted plane is then
subtracted from the measurements. When evaluating PSNR or
SSIM of the reconstructed images, the reconstructed images
are compared to the de-tilted original.

There was not sufficient information available regarding the
physical experimental set-up used in producing the images in
Figure 2 to analyze and estimate the amount of measurement
noise in the images as described in, e.g. [19]. When available,
such estimates of measurement noise should be included
appropriately in the reconstruction algorithms. For example,
in the cases of (13) and (9) the estimated noise variance can
be used to determine ε.

D. Algorithm Implementations

For each of the sampling patterns (raster or spiral) and
each of the undersampling ratios, we reconstruct each of the
seven images using the following reconstruction algorithms:
`1-minimization (Section III-B1), AMP – with Laplace prior
and with Bernoulli-Gaussian prior (Section III-B3), IST and
IHT (Section III-B2), TV minimization (Section III-B1), cubic
interpolation via Delaunay triangulation (Section III-B4). The
simulation code has been implemented in Python, which is a
popular, open and suitable ecosystem for scientific computing
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(a) Spiral sampling pattern
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(b) Raster sampling pattern

Fig. 3. Comparison of reconstruction PSNR, SSIM, and run-time across the tested reconstruction algorithms, at 256× 256 pixels.

[92], [93]. Python also supports the ideas of reproducible
research which are considered important in the present simu-
lation rich context [94], [95]. The complete Python code used
to conduct the reconstruction experiments is available along
with its results10. Interaction with the data files from the AFM
equipment, generation of sampling patterns, measurement and
dictionary matrices (for the algorithms utilizing the latter) as
well as evaluation of quality indicators and visualization of
reconstruction results are handled through the Magni software
package11 described in [96]. Some of the applied reconstruc-
tion algorithms are provided as part of the Magni package
while others are available in other packages; see details in the
following:

1) `1-minimization For reconstruction via `1 minimization,
we solved (9). Reconstructions using `1-minimization
were performed using an orthogonal DCT dictionary
as well as over-complete DCT dictionaries. The over-
complete dictionaries applied 2 and 3 times oversam-
pling along each dimension of the frequency domain.
This amounts to a total of 4 and 9 times oversam-
pling, respectively. The over-complete DCT dictionaries
were implemented by applying zero-padding in the

10http://dx.doi.org/10.5281/zenodo.32959 and . . . /zenodo.32958.
11http://dx.doi.org/10.5278/VBN/MISC/Magni

image domain. Additionally, reconstructions using `1-
minimization were performed using orthogonal DWT
dictionaries with three different types of wavelets:
Meyer, Daubechies, and symlets. All three wavelet
types were used in their longest available form in the
PyWavelets toolbox for Python12. Wavelets with the
longest available filters were chosen to mitigate possible
problems with measurement-dictionary coherence and
non-empty null-space discussed in Section III-A.
The solver iterates until the constraint in (9) is met or a
limit of 2000 iterations has been reached. Other settings
in the solver may influence the stopping conditions;
these have been left at their standard values.

2) Approximate Message Passing For reconstruction via
AMP, we have implemented the algorithm in Python for
a Laplace as well as a Bernoulli-Gaussian (BG) prior.
The code is included in the software accompanying this
paper. The algorithms are iterated until they reach an
upper limit of 300 iterations or if the residual:

‖y −A α̂‖2 < ε‖y‖2, ε = 10−3 (30)

Our current implementation of Bernoulli-Gaussian AMP
(BG-AMP) cannot handle images in 256 × 256 pix-

12https://github.com/PyWavelets/pywt
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(a) Spiral sampling pattern
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(b) Raster sampling pattern

Fig. 4. Comparison of reconstruction PSNR, SSIM, and run-time across the tested reconstruction algorithms, at 128 × 128. This figure serves to compare
BG-AMP to the other algorithms.

els due to severe memory requirements. Therefore our
experiments with this particular algorithm have been
conducted with the images in Figure 2 decimated to
128 × 128 pixels. All experiments with the other al-
gorithms have additionally been repeated at this image
size for the purpose of comparison with this algorithm.
Reconstructions using AMP were only performed using
an orthogonal DCT dictionary.

3) Iterative Soft and Hard Thresholding For reconstruction
via IST as well as IHT, we have implemented these
algorithms in Python. The code is included in the
software accompanying this paper. The algorithms are
iterated until they reach an upper limit of 300 iterations
or meet the condition in (30).
Reconstructions using IHT and IST were only performed
using an orthogonal DCT dictionary.

4) Total Variation For reconstruction via TV minimization,
we solved (13) using Douglas-Rachford splitting. We
used the solver implemented in the PyUNLocBox pack-
age for Python, referenced in Section III-B1. The solver
iterates until the constraint in (13) is met or a limit of
2000 iterations has been reached. Other settings in the
solver may influence the stopping conditions; these have

been left at their standard values.
5) Interpolation For reconstruction via interpolation, we

used cubic Bezier polynomial interpolation over trian-
gles formed by triangulating the available measurements
Φx as implemented in the scipy.interpolate
Python module [97].

For the convex optimization-based reconstruction approaches
(items 1 and 4 above) we have repeated the reconstructions
over a wide range of the regularization parameter ε and se-
lected the reconstructions with highest PSNR/SSIM, averaged
over all images for each algorithm and undersampling ratio
δ. Similarly for the IHT and IST algorithms, we repeated the
reconstructions over a wide range of the sparsity parameter k
and selected the reconstructions with highest PSNR/SSIM, av-
eraged over all images for each algorithm and undersampling
ratio δ. This was done in order to provide a fair basis for
comparison between the different algorithms since the mea-
surement noise is unknown and thus unavailable to estimate
ε, as explained in Section IV-C. Also, the images are not truly
sparse – merely well approximated as such. There is thus no
true parameter k available and this parameter is very problem-
dependent. This choice of regularization parameters is not
feasible in practice since the original image is unavailable for
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PSNR: 13.34 dB / SSIM: 0.08

(a) Image 2a: IHT, spiral.

PSNR: 17.36 dB / SSIM: 0.31

(b) Image 2b: IST, spiral.

PSNR: 20.02 dB / SSIM: 0.41

(c) Image 2f: `1-min., raster.

PSNR: 15.50 dB / SSIM: 0.20

(d) Image 2g: Laplace AMP, raster.

Fig. 5. Examples of low-quality reconstructions at δ = 0.1. Images
reconstructed from measurements of the ground truth images 2 (a), (b), (f),
and (g). 256× 256 pixels.

evaluating the reconstruction quality. It was however chosen
in order to compare the mentioned algorithms on an equal
footing.

For each reconstruction experiment we have measured the
reconstruction time as a practical indicator of the run-time
complexity. Reconstruction time can of course vary depending
on the specific algorithm and the implementation of it used to
reconstruct the image. Our reconstruction results could thus
possibly be reproduced with different measured run-times.
However, the measured reconstruction times provide a useful
indicator of what is practically achievable.

V. RESULTS

For each of the reconstruction approaches, the performance
in terms of both PSNR and SSIM at 256 × 256 pixels is
plotted in Figure 3 along with reconstruction time against the
tested undersampling ratios, δ. All three panels display results
from the reconstructions resulting in the best PSNR among
the tested regularization parameters. Figure 3a shows results
for the spiral sampling pattern and 3b shows results for the
raster sampling pattern, cf. Section IV-B.

As expected, reconstructed image quality in terms of PSNR
as well as SSIM decreases as δ decreases. At the low un-
dersampling end, δ = 0.1, this results in reconstructions of
very low PSNR/SSIM, a few examples of which are shown in
Figure 5.

Figure 3 shows that interpolation and TV minimization
reconstruct the images best among the tested algorithms,
both in terms of PSNR and SSIM. As shown in Figure 3b,

interpolation results in the highest PSNR as well as SSIM
averaged over the seven ground truth images, for the raster
sampling pattern. TV reconstruction with the raster pattern
results in slightly lower PSNR than interpolation, 0.6 dB on
average. The spiral sampling pattern results in lower PSNR
for both interpolation and TV minimization, 4.9 dB worse on
average for interpolation while only 1.7 dB worse for TV. This
also means that reconstruction by TV minimization results in
2.5 dB higher PSNR than interpolation for the spiral sampling
pattern.

Reconstruction by `1-minimization with DCT dictionaries
and the spiral sampling pattern results in the highest PSNR
performance after TV optimization, where 2×2 and 3×3 over-
complete DCT result in PSNR performance close to that of
TV optimization. For the spiral sampling pattern, interpolation
only performs comparable to `1-minimization with orthogonal
DCT dictionary. The `1-minimization with DWT dictionary
performs substantially worse than for DCT dictionary with
the spiral sampling pattern. Here the Meyer wavelet is slightly
better than the symlet, which is again slightly better than the
Daubechies wavelet. Laplace AMP exhibits a trend in PSNR
performance that deviates from that of the other algorithms,
deteriorating severely for δ > 0.2. This is not intuitive as the
algorithms have more information available for higher δ. This
is likely due to unfavorable configuration of this algorithm’s
parameters. IST performs substantially worse than the above
algorithms for δ < 0.2 but comparable to `1-minimization
with DWT dictionary for δ ≥ 0.2. Finally, IHT reconstructs
at the lowest PSNR among all of the algorithms at more than
10 dB below `1-minimization with DWT dictionary.

The raster sampling pattern performs much worse than the
spiral sampling pattern for all of the DCT dictionary-based
methods (`1-minimization with DCT dictionaries, Laplace
AMP, IHT and IST). IHT, IST, and Laplace AMP with the
raster sampling pattern benefit very little from increased δ. The
described tendencies in PSNR figures are reflected similarly
in the SSIM figures. On the other hand, `1-minimization with
DWT dictionaries results in PSNR as well as SSIM figures that
are very close the corresponding figures for the spiral sam-
pling pattern. Finally, both TV minimization and interpolation
perform similar and best among all of the studied algorithms
for the raster sampling pattern. PSNR of the latter two ranges
from approximately 35 dB at δ = 0.1 to approximately 45 dB
at δ = 0.3.

As mentioned in Section IV-D, reconstruction experiments
using Bernoulli-Gaussian AMP have only been performed on
images at 128 × 128 pixels. Figure 4 displays results of the
same experiments as in Figure 3 at 128 × 128 pixels for
comparison to BG-AMP. Data plotted in Figure 4 stems from
the reconstructions resulting in the highest PSNR among the
tested regularization parameters13. The performance of BG-
AMP in terms of PSNR and SSIM lies between that of IHT
and IST for the spiral sampling pattern and even slightly
below IHT for the raster sampling pattern. Laplace AMP
was observed to perform substantially better than BG-AMP

13The corresponding regularization parameter values are not necessarily the
same as the values resulting in Figure 3.
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PSNR: 35.87 dB / SSIM: 0.97

(a) Interp., spiral, δ = 0.1.

PSNR: 32.18 dB / SSIM: 0.96

(b) TV, spiral, δ = 0.1.

PSNR: 36.49 dB / SSIM: 0.94

(c) Laplace AMP, spiral, δ = 0.15.

PSNR: 30.49 dB / SSIM: 0.89

(d) IST, spiral, δ = 0.225.

Fig. 6. Examples of reconstructions for the lowest δ yielding SSIM > 0.9.
All images reconstructed based on measurements of the image in Figure 2d.
256× 256 pixels.

in terms of both PSNR and SSIM. A likely reason for this is
that the DCT coefficients of the images have been observed
to follow a probability distribution resembling the Laplace
distribution rather than the Bernoulli-Gaussian. The remaining
algorithms exhibit the same trends as for the 256×256 pixels
images in Figure 3, except for Laplace AMP which has a much
less outspoken tendency to degrade for larger values of δ than
for the 256× 256 pixels images.

The different reconstruction algorithms require different
amounts of samples to reconstruct images satisfactorily. As
examples of reconstructions of reasonable quality, we display
an image reconstruction for each of the algorithms for the
lowest δ that achieves a SSIM > 0.9 in Figures 6 and 7.
These images represent reconstructions of somewhat degraded
quality compared to the original where reconstruction artifacts
typical of the tested reconstruction algorithms are evident. IHT
is left out in Figures 6 and 7 since it reconstructs the image
at SSIM < 0.9. BG-AMP is likewise left out since it has
only been run for images at 128 × 128 pixels. Interpolation
(Figure 6a) tends to produce artifacts that appear as if small
regions of the image are smeared radially outwards from the
center. Figure 6b demonstrates how TV reconstruction tends
to produce reconstructions of piece-wise constant value – here
particularly concentrated around the lines of the raster sam-
pling pattern. The sparse approximation methods (Figures 6c-
6d and 7a-7f) tend to leave traces of the sampling pattern in
the reconstructed image, which is particularly visible in the
reconstructions with DWT dictionaries: Figures 7d-7f.

To exemplify the best performance of the tested algorithms,

PSNR: 35.08 dB / SSIM: 0.96

(a) `1-min. DCT, spiral, δ = 0.15.

PSNR: 41.67 dB / SSIM: 0.97

(b) `1-min. DCT (2 × 2), spiral,
δ = 0.1.

PSNR: 41.88 dB / SSIM: 0.97

(c) `1-min. DCT (3 × 3), spiral,
δ = 0.1.

PSNR: 31.29 dB / SSIM: 0.91

(d) `1-min. DWT (Daub.), spiral,
δ = 0.125.

PSNR: 29.43 dB / SSIM: 0.91

(e) `1-min. DWT (Meyer), spiral,
δ = 0.1.

PSNR: 29.43 dB / SSIM: 0.91

(f) `1-min. DWT (symlet), spiral,
δ = 0.1.

Fig. 7. Examples of reconstructions for the lowest δ yielding SSIM > 0.9.
All images reconstructed based on measurements of the image in Figure 2d.
256× 256 pixels.

the best reconstruction in terms of PSNR of the image in
Figure 2a is shown for each algorithm in Figure 8. All
of the algorithms reconstruct the image at a legible quality
but preserve finer details with varying success; interpolation
and TV result in the best reconstruction quality both in
terms of PSNR and SSIM (Figures 8g and 8h) while the
`1 minimization algorithms with DCT dictionaries perform
slightly worse (Figures 8a-8c). `1 minimization algorithms
with DWT dictionaries (Figures 8d-8f) perform somewhat
worse than with DCT dictionaries, producing visible edge
artifacts in the reconstructed images. IHT (Figure 8k) is the
only algorithm among these specific examples which leaves
clearly visible sampling pattern artifacts in the reconstructed
image and results in low quality.

The results indicate that reconstruction methods favoring
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1

PSNR: 38.60 dB / SSIM: 0.95

(a) `1-min. DCT, spiral, δ = 0.3.

PSNR: 39.44 dB / SSIM: 0.95

(b) `1-min. DCT (2 × 2), raster,
δ = 0.3.

PSNR: 39.57 dB / SSIM: 0.96

(c) `1-min. DCT (3 × 3), raster,
δ = 0.3.

PSNR: 31.90 dB / SSIM: 0.92

(d) `1-min. DWT (Daub.), spiral,
δ = 0.3.

PSNR: 35.28 dB / SSIM: 0.93

(e) `1-min. DWT (Meyer), raster,
δ = 0.3.

PSNR: 34.75 dB / SSIM: 0.93

(f) `1-min. DWT (symlet), raster,
δ = 0.3.

PSNR: 42.93 dB / SSIM: 0.98

(g) Interp., raster, δ = 0.25.

PSNR: 42.15 dB / SSIM: 0.98

(h) TV, raster, δ = 0.3.

PSNR: 35.68 dB / SSIM: 0.90

(i) Laplace AMP, spiral, δ =
0.225.

PSNR: 37.45 dB / SSIM: 0.94

(j) IST, spiral, δ = 0.3.

PSNR: 24.83 dB / SSIM: 0.67

(k) IHT, spiral, δ = 0.3.

Fig. 8. Examples of reconstructions with the highest PSNR for each algorithm. All images reconstructed based on measurements of the image in Figure 2a.
256× 256 pixels.

image smoothness (interpolation and TV) work slightly better
than methods based on sparse approximation with DCT or
DWT dictionaries. It is particularly favorable for interpolation
that this method was also the fastest to compute among
the tested algorithms: approximately 0.3 s-1 s depending on
δ (Figure 3, right panel).

Although BG-AMP was demonstrated to work particularly
poorly in the examples studied here, this type of algorithm
has potential. As the Laplace variant demonstrated, selecting
a more appropriate prior (Laplace) distribution of the im-
age transform coefficients can result in better reconstruction.
Furthermore, this family of algorithms can be adapted more
specifically to different measurement noise distributions than
for example the `1 minimization approaches and may be able
to address the impairments described in Section II-C.

We stress here that the sparse approximation reconstruction

algorithms were selected to show an overview of the basic
form of some popular algorithms. These sparse approximation
algorithms can be specialized further to for example take
advantage of image structure [98], [99], dictionary learning
[41], or sparsity (`1) in an ensemble of several different
dictionaries can be combined [100]. In summary, there is
potential for further advances in AFM image reconstruction
using sparse approximation methods.

VI. CONCLUSION

We have proposed to reduce the critical scanning time
and probe-specimen interaction by AFM measurement via
undersampling achieved through the use of a sparse sampling
pattern. In the present study we investigated the raster sam-
pling pattern as well as an undersampling spiral pattern; both
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of varying densities. We studied the performance of a num-
ber of image reconstruction algorithms applied to measured
AFM images of cell material via numerical experiments and
evaluated their reconstruction performance in terms of PSNR
and SSIM. We compared the central algorithms on a best-
case basis over a range of different regularization parameters
in order to reduce the effect of the choice of regularization
parameters on the reconstruction results.

The studied algorithms include sparse approximation meth-
ods with discrete cosine transform and discrete wavelet trans-
form dictionaries as well as total variation. These algorithms
were compared to a reference method – cubic interpolation.
The experimental results showed that most of the basic forms
of sparse approximation algorithms studied could not quite
match the reference interpolation method in terms of PSNR
and SSIM. Only total variation minimization resulted in com-
parable PSNR and SSIM. Furthermore, interpolation was the
fastest method at 0.3 s-1 s depending on undersampling ratio.
Based on the tested algorithms and images, it was found that
the scan time or probe-specimen interaction can be reduced
by a factor of 10 compared to dense raster scanning while
retaining a reconstruction PSNR ' 36 dB, or by a factor of
4 for a reconstruction PSNR ' 44 dB. These reductions in
scan time / probe-specimen interaction are attainable on any
existing AFM hardware capable of varying the line density of
a horizontal-line raster pattern.
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A B S T R A C T

The use of compressed sensing in atomic force microscopy (AFM) can potentially speed-up image acquisition,
lower probe-specimen interaction, or enable super resolution imaging. The idea in compressed sensing for AFM
is to spatially undersample the specimen, i.e. only acquire a small fraction of the full image of it, and then use
advanced computational techniques to reconstruct the remaining part of the image whenever this is possible.
Our initial experiments have shown that it is possible to leverage inherent structure in acquired AFM images to
improve image reconstruction. Thus, we have studied structure in the discrete cosine transform coefficients of
typical AFM images. Based on this study, we propose a generic support structure model that may be used to
improve the quality of the reconstructed AFM images. Furthermore, we propose a modification to the
established iterative thresholding reconstruction algorithms that enables the use of our proposed structure
model in the reconstruction process. Through a large set of reconstructions, the general reconstruction
capability improvement achievable using our structured model is shown both quantitatively and qualitatively.
Specifically, our experiments show that our proposed algorithm improves over established iterative thresholding
algorithms by being able to reconstruct AFM images to a comparable quality using fewer measurements or
equivalently obtaining a more detailed reconstruction for a fixed number of measurements.

1. Introduction

In atomic force microscopy (AFM) there are several strong argu-
ments for aiming at reducing the image acquisition time. A general
wish for minimising operator time spent at the equipment is one
argument [1]. The wish for imaging dynamic processes that evolve over
time is another argument [2]. Yet another argument is that probe
interaction with certain specimens should be kept at a minimum to
reduce damage caused by the probe as e.g. experienced in cell imaging
[3].

Image scan speed may be increased by improving the mechanics of
the AFM equipment [1,2] which may in turn reduce the image scan
time. On top of that, advanced sampling methods may be used to
reduce the scan time as well as the necessary specimen interaction
during the scan. The compressed sensing (CS) paradigm is a recent and
still developing concept in the field of sampling digital signals [4–7]. It
offers the possibility to undersample signals, i.e., acquire fewer samples
than would normally be needed, while still allowing for near perfect
reconstruction of the original signal under certain conditions. In AFM,
CS may be used to only acquire part of an image and then advanced
reconstruction algorithms may be used to reconstruct the full image.

This spatial undersampling approach to general microscopy imaging
has already been explored in several studies, e.g., [8–13].

The studies just mentioned have all used reconstruction methods
based on so-called convex relaxation in CS. However, there are a
variety of other options for reconstruction algorithms; see e.g.
[7,14,15]. Additionally, there are numerous ways to spatially under-
sample the specimen. Besides doing a more coarse raster scan, some
examples from the literature include patterns such as a spiral [16], a
double Archimedian spiral [17], small horizontal linear micro-paths
[18], or so-called Lissajous patterns [19]. Independently of the method
of choice, CS does require computing the reconstruction which is going
to take time. The time spent on computing the reconstruction may
differ depending on the choice of reconstruction algorithm. If a speed-
up of the total image acquisition process is sought, it is clear that this
reconstruction computation time must not exceed the achieved reduc-
tion in image scan time.

The present study demonstrates that a model based CS approach
[6,20] utilising extended signal structure may be advantageous in
reconstructing spatially undersampled AFM images. Specifically, we
develop a model of the structure in the discrete cosine transform (DCT)
[21] coefficients of typical AFM images and apply this model in
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iterative thresholding reconstruction algorithms [22] known for their
low computational complexity and noise reducing capabilities [23].
Based on a large set of experiments we illustrate the image reconstruc-
tion capabilities of the proposed reconstruction method and discuss
various trade-offs associated with the undersampling approach to AFM
imaging.

The paper is organised as follows. In Section 2, we briefly describe
the background on CS as applicable to AFM. Section 3 outlines the
development of a model of typical structure in AFM image. Section 4
details how the developed model may be used in the reconstruction.
Section 5 provides results from a large experimental evaluation of the
proposed structure-utilising reconstruction method. A discussion of the
results is given in Section 6. Finally, Section 7 states the conclusions of
our work.

2. Compressed sensing in AFM

Undersampling and thus faster scan times or less probe-specimen
interaction is the motivation for using CS in AFM in a number of
studies as briefly covered in the Section 1. However, CS may also be
used to possibly achieve super resolution imaging as shown in e.g.
[24,25]. All of this motivates the following introduction to the general
CS framework as applicable to AFM.

An AFM (or scanning probe microscopy (SPM)) topography image
may be thought of as a 2D array (a matrix) of pixels. By stacking the
columns of the matrix, one gets a vector x ∈ n×1 where n is the total
number of image pixels, i.e., the height times the width of the image
measured in pixels. CS [26,27] deals with a general linear measure-
ment process that collects a sample vector y ∈ m×1 of the image vector
x. That is, we consider measurements of the form

y Φx= (1)

where Φ ∈ m n× is a measurement matrix with m n⪡ , i.e. we only
acquire what corresponds to a fraction of the full image vector. In the
general CS case, Φ can be dense. However, in the AFM application, Φ is
an identity matrix with some of its rows removed. That is, it is a fat
matrix with only a single one in each row and zeros elsewhere. Such a
matrix models the measurement process in which the AFM probe tip
only measures a single pixel of the image at a time as it moves around.1

Key to the CS theory is the idea of finding a dictionary or basis in which
x is sparse or approximately sparse (compressible). That is, we seek an
approximately sparse vector of coefficients α ∈ n×1 such that

αx Ψ= (2)

where Ψ ∈ n n× represents the dictionary.2 By combining Φ and Ψ into
a single CS matrix A ΦΨ= and adding measurement noise e ∈ m×1,
we get the linear model:

αy A e= + (3)

For sufficiently sparse α and under certain conditions, CS does
provide some guarantees under which the undersampled system in (3)
may be solved for α [4]. In the noiseless case, recovering α may be cast
as the NP-complete combinatorial optimisation problem [5]

α αy Aminimise ∥ ∥ subject to =0 (4)

where α∥ ∥0 is the ℓ0 “pseudo”-norm from [26], i.e., the number of non-
zero entries in α. For noisy measurement, one typically bounds the
noise in e.g. the two norm and searches for a sparse solution subject to

y Ax∥ − ∥ ≤ ϵ2 for some ϵ describing the bound on the noise.

Fortunately, there are several ways to find solutions to (4) despite it
being NP-complete. The probably most used method is based on
convex relaxation, i.e., replacing the ℓ0 norm with the ℓ1 norm as e.g.
in the Lasso [28]

α αλy Aminimise 1
2 ∥ − ∥ + ∥ ∥2

2 1 (5)

Having obtained an estimate of the sparse vector, α , an estimate of
the reconstructed image may be found using (2). See e.g. [4] for a
further discussion of CS or [29] for an introduction to the CS imaging
application.

3. Structure in AFM images

To be able to apply CS in AFM, there must exist some dictionary in
which AFM images are sparse or compressible as described in Section
2. The DCT is one such dictionary that is applicable to general imaging
[29] due to its ability to successfully approximate smooth images using
only few coefficients which has made it the basis for the widely used
JPEG image compression standard [30]. Furthermore, it has been used
in a previous scanning electron microscopy (SEM) study utilising CS
methods [9]. Since AFM images generally contain smooth regions or
repetitive patterns, it is to be expected that the DCT performs well for
compressing such images. The DCT also has a few other advantages.
Firstly, it is maximally incoherent with the sparse point sampling in (1)
[4]. This CS property, intuitively, states that it is likely that the dense
DCT is able to combine the very sparse measurements to get the full
image. Secondly, it has a fast implementation, i.e. a FFT based
implementation [31]. Even for the most advanced CS reconstruction
algorithms, a fast implementation may be essential in reducing the
time it takes to perform the signal recovery as shown in [32]. Another
typical choice of dictionary in CS imaging is the a discrete wavelet
transform (DWT) [29]. However, as reported in [13] and further
elaborated on in [33], the DCT provides better reconstructions than
the DWT in the CS for AFM application. Thus, in the rest of this paper,
we focus on the DCT as the dictionary of choice. We note, though, that
our methods are applicable to any dictionary, e.g. the DWT.

Following the model based CS framework of [6,20], we now turn
our attention toward not only sparsity but structured sparsity of AFM
images in the DCT domain. That is, we seek to exploit additional
information about the structure of the sparsity to enhance the
reconstruction of an undersampled image. To motivate this, consider
the AFM topography image and its reconstruction from the 10% largest
DCT coefficients in Fig. 1. This reconstruction exemplifies the image
quality that is achievable using only 10% DCT coefficients. The right
image in Fig. 1 illustrates the positions of these coefficients in the DCT
domain. From this illustration, we make the following observations:

1. The largest DCT coefficients are inherently low-frequent. That is,
they are found in the upper left corner of the DCT domain.

2. There is a dispersion in the coefficients from the low-frequency area
towards the high-frequency area such that:
(a) The magnitudes of the coefficients generally decrease as the

frequency increases.
(b) The coefficients are spaced further apart as the frequency

increases.

A somewhat similar low-frequency model is used in JPEG image
compression by virtue of ordering the coefficients in a “zig-zag”
sequence [30]. Additionally, the set of experiments detailed in
Section 5 provides further evidence that the above observations are
general to AFM images..

Note that if the image matrix in Fig. 1 is transposed, the DCT
domain is also transposed. This suggests that there should be sym-
metry around the diagonal in a model of the DCT coefficients. Based on
all these observations, we consider a model of the DCT coefficients that

1 When using this in practice, the AFM would directly acquire y and Φ would be a
model of the acquisition system. Thus, x would not be available and one would
consequently have to reconstruct an estimate, x, of it. In this study we do, however,
simulate the sampling of y based on an x obtained using a raster scan. This allows us to
compare the two imaging methods.

2 Both α and Ψ may be complex in the AFM application. However, in this study we
only consider real matrices and vectors.
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is characterised by:

1. A smooth transition from a peak value in the low-frequency area to a
small constant value in the high-frequency area. Examining the full
DCT domain suggests an exponentially decaying transition.

2. A sufficient number of degrees of freedom to model the dispersion in
the coefficients from low-frequencies to high-frequencies while still
imposing symmetry around the diagonal.

Specifically, we propose to model the dispersion in the DCT
coefficient values using a Gaussian function f of the form:
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where:

• z1, z2 are the two pixel coordinates.

• a is a user specified parameter that determines the flatness of the
model relative to the data.

• b is the “mean” value positioned on the z z=1 2 diagonal.

• C is the “covariance” matrix rotated to ensure symmetry around the
diagonal.

We use the quadratic form z b C z b( − ) ( − )T −1 , to model the shape
of the spread. Choosing both entries in b to be equal, forces the peak
value to be on the diagonal. Combined with the fixed rotation matrix R
that aligns the principal axes with the diagonals, this forces the desired
symmetry. The exponential function taken on the quadratic form is
used to model the smooth transition from the peak value at b towards
zero away from b. The value of a determines the scaling of the peak
value in the model, thus, allowing for forcing a model with a smaller (or
larger) peak value. A further discussion of the impact of the choice of a
is given in Section 6. We suggest fitting this Gaussian function f to the
DCT coefficients of an image using a least squares fit:

∑ α f b c c az zminimise (| ( ) | − ( , , ; , ))∼
b c c z, , 1 2 2

1 2 (7)

Here we take α z( )∼ be the 2D representation the vector α in (2) indexed
by z. Furthermore, f is regarded a function of b c c, ,1 2 with a fixed. An

example of the full DCT domain and a Gaussian model fitted to this
DCT domain is given in Fig. 2..

Note that image height, image width, and topography height in this
fit may be arbitrarily scaled and offset during the image processing.
Due to possible numerical issues in solving (7), it is convenient to not
work with quantities in the order of e.g. 10−9 but to re-scale and offset
to some larger quantity. We have successfully used a re-scaling and
offset of both image height, image width, and topography height to the
interval [0, 1]. That is, for each of the three lengths, we have found
scaling and offset values in an affine transform that transforms the
minimum value to 0, the maximum value to 1 and all other values to
the interval (0, 1). Using this re-scaling and offset, the parameters of
the Gaussian model in Fig. 2 are a b c c= 1.5·10 , = 0.18, = 0.12, = 0.19−3 1 2 .
Also note that this model only depends on the nature of the specimen
being imaged. It is independent of imaging technique. Thus, since other
SPM modalities produce images with smooth regions or repetitive
patterns similar to those found in AFM images, our model of the DCT
coefficients is likely to be applicable to any SPM technique.

4. Reconstructions using structure

Having established a model of the DCT coefficients of AFM images,
we now turn to the CS reconstruction algorithm. The choice of
reconstruction algorithm entails a trade-off between reconstruction
quality (e.g. peak-signal-to-noise-ratio (PSNR)), reconstruction cap-
ability, and the time required to do the reconstruction [34]. For some
fixed reasonable reconstruction quality and required reconstruction
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Fig. 1. Example of an AFM cell image (left), approximation from 10% DCT coefficients (middle), and locations of the 10% coefficients in the DCT domain (right). The image
approximation in the middle is based on the 10% largest DCT coefficients of the image to the left. Reconstruction metrics for this image are: PSNR: 36.59 dB, SSIM: 0.96. The colours in
the right figure illustrate the locations of the 90% smallest, and thus excluded, DCT coefficients (orange) and 10% largest DCT coefficients divided into four intervals. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Illustration of the absolute value of the full DCT domain of the AFM cell image in
Fig. 1 (left) and Gaussian model fitted to this DCT domain (right). The colour map used
in the left figure is based on a log-scale.
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time, we are interested in assessing the reconstruction capabilities, i.e,
the number of measurements in y needed to reconstruct x to the
specified quality.

As exemplified in Fig. 1 when using the DCT as a dictionary, the
reconstruction quality depends both on the number of coefficients used
in the reconstruction as well as the values of these coefficients. We are
thus interested in a CS reconstruction algorithm that allows us to fix
the number of coefficients and thereby roughly fix the reconstruction
quality assuming that the algorithm is capable of identifying the
coefficient values that optimises the reconstruction quality as e.g.
measured in PSNR. Specifically, we consider iterative thresholding
algorithms [22] of the general form in Algorithm 1.

Algorithm 1. Iterative thresholding (based on [22,23]).

1 initialise: α 0= , r y=
2 for i=1 to Imax do

3 c A r← T
4 α αη κ c← ( + · )t i

5 αr y A← −
6 if r y∥ ∥ < ϵ ·∥ ∥2 r 2then
7 break
8 end if
9 end for

In Algorithm 1, ηt is a scalar and non-linear threshold function that
operates on each entry of the vector independently. The main reason
for our interest in this type of algorithm is its simplicity and its
applicability in a model based CS framework [20]. The algorithm is
simple in the sense that it is computationally dominated by the matrix-
vector products involving A and AT. Thus, it has a complexity of m n( ).
If fast transforms are available such as a FFT based DCT as described in
Section 3, then the computational complexity is only n n( log( )) which
is a significant reduction for problem sizes of e.g. 256×256 pixels.

In Algorithm 1, one has to decide on the stopping criterion
tolerance ϵr, the maximum number of iterations Imax , the step-size κ,
and the non-linear threshold operator ηt. The step-size κ is an
extension of the algorithm in [22] and is critical in terms of the
convergence of the algorithm [23]. Note that other stopping criteria
may be used instead of the one stated in Algorithm 1, e.g. a criterion
based on the change in α in each iteration. The outset for iterative
thresholding algorithms is the assumption of a signal model as in (3).
There are several options for the choice of threshold function ηt. Two
well described threshold operators in the literature are:

• Hard [35]: η x x( ) = ·t x t
H | | >

• Soft [36]: η x x x t( ) = sgn( )(| |− )t
S +

with x x( ) = · x+ > 0 and x the indicator function. Here, ηt
H and ηt

S are
operators that work on each entry x of some vector x. Specifically, ηt

H
sets all entries in the vector smaller than some threshold t (in absolute
value) to zero whereas ηt

S sets all entries in the vector smaller than
some threshold t (in absolute value) to zero and pulls the remaining
entries towards zero by the amount t, i.e. subtracts t from the positive
entries and adds t to the negative entries.

When using the hard threshold, Algorithm 1 attempts to solve the
following variant of the CS reconstruction problem [35]:

α α ky Aminimise − subject to ∥ ∥ ≤2
2 0 (8)

where k is the assumed sparsity of α, e.g. a fixed number of DCT
coefficients. The minimisation is done in a greedy, that is, locally
optimal, way. When using the soft threshold there is no straight
counterpart to (8) since we fix the number of coefficients k and let
the threshold t vary accordingly in each iteration. Had the threshold t
been fixed to, say, λ, it can be shown that the soft threshold strategy

attempts to solve the Lasso problem in (5) [37]. In addition to the soft
thresholding case with p=1 in

∑α λ αy Aminimise 1
2 − + | |

j
j

p2
2

(9)

it can be shown that the hard thresholding case can be seen as the
solution to (9) in the limit when p goes to zero [37].

Based on the idea of adapting the thresholding operators in model
based CS [20], we propose the following two weighted thresholding
operators:

• Weighted hard: η x x( ) = ⋅t wx t
wH | | >

• Weighted soft: η x x wx t( ) = sgn ( )(| | − )t w
wS 1 +

where w is a weight applied to the coefficient before thresholding.
These weights allow us to attach additional importance to certain
entries in the vector when deciding which entries to set to zero. Thus, in
the AFM application, we have a vector of weights w ∈ n×1 correspond-
ing to the model f described in (6). That is, the weights, w, are a
possibly re-scaled and offset version of the vector obtained by stacking
the columns of a model based on f in (6). Note that the weights in the
weighted thresholding operators merely determine which coefficients
are zeroed in the thresholding, i.e., they favour zeroing coefficients that
have corresponding low weights. The weights have no impact on the
values of the coefficients that are not zeroed when choosing the
threshold t based on fixing the number of coefficients that are zerored.
Thus, in principle, scaling and offsetting w has no impact on the
performance of the thresholding operator. In practice, one must
consider the following when choosing weights:

1. Coefficient values may be very small or very large. Thus, to avoid
numerical over- or underflow, the weights should neither be too
small nor too large.

2. When using the weighted soft threshold operator, it must be asserted
that w ≠ 0 to avoid a division by zero.

When using iterative thresholding with the hard threshold operator,
ηt

H, the algorithm is known as Iterative Hard Thresholding (IHT) [35].
Similarly using the soft threshold operator, ηt

S, the algorithm is known
as Iterative Soft Thresholding (IST) [38]. Following this scheme, we
denote our corresponding weighted algorithms as w-IHT when using
ηt

wH and w-IST when using ηt
wS. We note that all four algorithms, IHT,

IST, w-IHT, and w-IST, may be used with any A, i.e. one may use other
sampling patterns and dictionaries than the ones used in this study.

5. Experiments

To assess the reconstruction capabilities of our proposed iterative
thresholding algorithms, we have conducted a large set of simulation
experiments.

5.1. Experimental setup

Based on an image gallery containing the 17 AFM images in Fig. 3,
all with a resolution of 256-by-256 pixels, we have simulated a
reconstruction of each image for each combination of:

• An undersampling ratio δ (according to (12)) from a set of 20 evenly
spaced values in the range [0.1, 0.4].

• A fixed sparsity level τ k n= / from a set of 20 evenly spaced values in
the range [0.05, 0.20]. The threshold level t in Algorithm 1 is then
chosen based on this fixed sparsity level.

• A reconstruction algorithm from the set {IHT, IST, w-IST, w-IHT}.

.
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Furthermore, as a CS reference, we have included reconstructions
using ℓ1 minimisation which is an instance of the well established
convex relaxation approach to CS (see e.g. [7] for an introduction). In
particular, we reconstruct the undersampled images by solving the
optimisation problem:

α αy Aminimise ∥ ∥ subject to − ≤ ϵ1 2
2 ℓ1 (10)

where we take yϵ = ϵ ·∥ ∥ℓ r 21 in order to have the same fidelity
constraint as used in the stopping criterion in Algorithm 1. In the
sequel, we refer to the optimisation problem in (10) as Basis Pursuit
Denoising (BPDN).

To be able to compare the reconstructed images to a raster scan
(our reference image) of the same specimen, we have simulated the
undersampled scanning from the raster scanned images. For down-
sampling, we have used the spiral sampling pattern proposed in [16]

and suggested for the CS for AFM application in [13]. We define the
undersampling ratio in terms of the distance travelled by the probe
during the scan, i.e. the scan path length. The distance travelled by the
probe in pixels during a raster scan is approximated as:

L n= 2· = 2·height·widthref (11)

The factor of two is a result of the usual approach of acquiring two
topography buffers, one based on the left-to-right scan and one based
on the right-to-left scan. Although almost identical, usually, only one of
the buffers is used and displayed as is the case in Fig. 3. Now let L
denote the length of a continuous scan path (in pixels) resulting in a
spiral scan as exemplified in Fig. 8. We then define the undersampling
ratio as

δ L
L

=
ref (12)

See Fig. 4 for an illustration of this undersampling ratio definition.
Before reconstructing the undersampled images, we remove any tilt

in the measurements by subtracting a least squares fit of a plane to the
measurement as outlined in [39]. Note that all the images in Fig. 3 have
been de-tilted using the same least squares plane fit method, albeit
based on the entire image.

In the evaluation of the performance of the Gaussian model in (6),
we have used a jack knife approach [40]. That is, when reconstructing a
given image with either w-IHT or w-IST, we have used a Gaussian
model based on the average DCT domains of all other images. We have
fitted the model using the optimisation problem in (7) which we have
solved using the implementation of Powell's method found in SciPy3

using an initial guess of b=0.005, c c= = 0.11 2 . Powell's method is a
conjugate directions minimisation method that does not need informa-
tion about the gradient of the cost function [41]. Before using the fitted
model as the weights, w, we have re-scaled and offset the weights to be
in the interval [10 , 1]−3 using the same re-scale and offset approach as
explained in Section 3.

In terms of the free parameters in Algorithm 1 and (6), we have
used the following values: ϵ = 10r −3, κ = 0.6, I = 300max , a = 2.5·10−3.

Finally, to quantitatively evaluate the image reconstruction quality,
we have used the two image quality indicators, PSNR, and mean
structural similarity index (SSIM). For a reconstructed image, x, the
PSNR is defined as follows:

Fig. 3. The 17 de-tilted AFM images that constitute the set of test images used in the
experiments.

Fig. 4. Illustration of the path lengths involved in calculating the undersampling ratio, δ,
in (12). The black pixel grid in the left sub-figure is scanned using a raster scan resulting
in two buffers, one for the left-to-right scan (blue), and one for the right-to-left scan
(red). The green spiral scan pattern in the right sub-figure only covers some of the pixels
in the black grid. In (12), L ref is approximately the sum of the lengths of the red and blue

paths whereas L is the length of the green path. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

3 See http://www.scipy.org/
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where we take P=1 since we re-scale and offset both x and x such that
all values are in the interval [0, 1] before computing the quality
indicators. We compute the mean SSIM according to the definition in
[42] with the parameter values: window size 7, K = 0.011 , K = 0.032 ,
C C= /23 2 , α β γ= = = 1.

5.2. Implementation

We have used the implementations of the iterative thresholding
algorithms available in the open source Python package magni
described in [43]. Release 1.5.04 of magni was used in all experiments.
The magni package is a collection of fully documented functionality for
compressive sampling and reconstruction of AFM images. It focuses on
producing correct results and as such comes with an extensive input
validation system [44] as well as several tests to exercise the entire
public API. Furthermore, magni provides several routines that may
help in improving the reproducibility [45] of the results obtained using
the package. For the BPDN reconstructions, i.e. solving (10), we used
the Douglas-Rachford solver from PyUNLocBox5 in its default config-
uration with the exception of allowing only 300 iterations as we do in
the iterative thresholding methods.

The Anaconda6 Python distribution version 4.1.1 based on Python
3.5 was used for running the simulations.7 The Python script used to
run the simulations and the full set of simulation results is available at
Zenodo.8 A Jupyter Notebook that reproduces the figures in this paper
is available from the authors' institutional repository.9 The simulations
were conducted on a compute server based on two Intel Xeon E5-
2697V2 CPUs and 384 GiB RAM. This 24 core setup with 48 hyper
threads allowed us to run 48 simulations concurrently.

5.3. Results

The reconstruction capability results from our experiments are
presented in Figs. 5, 6, and 7. The average SSIM of the reconstructions
for all combinations of sparsity level τ and undersamling ratio δ are
show in Fig. 5 whereas Fig. 6 details the improvement in PSNR and
SSIM in using w-IHT or w-IST over IHT or IST, respectively. Finally,
Fig. 7 shows the highest obtainable average PSNR and SSIM across all
sparsity levels for the iterative thresholding algorithms and includes
the BPDN (ℓ1) results for comparison.

Fig. 8 visually illustrates the quality gain in using a weighted
iterative thresholding scheme. Note that the three reconstruction
examples shown in Fig. 8 have been selected to visually illustrate
typical gains in using w-IST, i.e., they are examples from the red area in
the IST SSIM Improvement subfigure in Fig. 6. As illustrated in the left
part of Fig. 6 there are various combinations of sparsity level and
undersampling ratio that may enable IST or w-IHT (but not IHT) to
produce comparable reconstruction to those illustrated in Fig. 8.
However, as stated in Section 4, our goal has been to lower the
required number of measurements needed to provide a reasonable
reconstruction quality, e.g., a SSIM ≥0.90. Towards that end, in our
experiments, w-IST proved to be the superior algorithm for under-
sampling ratios δ0.15 ≲ ≲ 0.30 as witnessed in Fig. 7. For under-
sampling ratios δ ≳ 0.30, w-IST and BPDN (ℓ1) perform equally well

whereas for δ ≲ 0.15, only BPDN gives somewhat reasonable recon-
structions.

The average reconstruction times measured in our simulations were
IHT: 2.2 s, IST: 2.3 s, w-IHT: 2.2 s, w-IST: 2.4 s, BPDN (ℓ1): 0.8 s. Here
it should be noted that magni is a Python package that does not
provide algorithms optimised for execution speed but rather correct-
ness of the results. Execution speeds may vary a lot with parameter
choices and input images. Thus, these numbers should only be
considered indicators of the execution time that one may roughly
expect.

6. Discussion

The PSNR and SSIM image quality indicators used in Figs. 5, 6, and
7 provide a quantitative measure of the image reconstruction quality.
Another aspect of the reconstruction is the visual quality of the
reconstruction, i.e, the suppression of noise and highlighting of
important details in the images. Unfortunately, there is not a one-to-
one correspondence between higher PSNR (or SSIM) values and better
visual quality. PSNR and SSIM weight various errors in the reconstruc-
tion differently and, thus, may favour certain details in the reconstruc-
tion more than other. See e.g. [46] for a further discussion of these
aspects of measuring image reconstruction quality.

That being said, we find that acceptable reconstructions are
typically found for PSNRs ≳35 dB or SSIM ≳0.90. As such, the SSIM
sub-figures in Fig. 5 give a good overview of the undersampling ratio δ
and sparsity level τ needed to obtain a successful reconstruction, i.e., a
reconstruction with SSIM ≥0.90. Generally, each of the SSIM sub-
figures in Fig. 5 may be divided into three regions. A region where
reconstruction succeeds (red area), a region where reconstruction fails
(blue area), and a region in-between the two other regions where there
is a transition from reconstruction success to reconstruction failure. As
such the figures somewhat resemble the phase transition framework in
[38], albeit using τ k n= / instead of ρ k m= / . A general characteristic of
this transition region is that fewer measurements are needed for lower
sparsity levels to obtain acceptable reconstructions. However, one must
keep in mind that using fewer DCT coefficients in the reconstruction
leads to fewer details in the reconstruction and thereby a more smooth
(blurred) image.

Comparing the sub-figures in Fig. 5 as well as the results in Fig. 7,
we see that IHT does not seem to produce acceptable reconstructions
for any combination of τ and δ. Switching to w-IHT, it is possible to
obtain reasonable reconstructions. That is, at least in our experiments,
the use of weights in w-IHT enables the use of an IHT based algorithm
for reconstruction of undersampled AFM images. Using IST on the
other hand still provides more combinations of τ and δ for which
acceptable reconstructions are obtained than do w-IHT. This is even
further increased when switching to w-IST, i.e., the transition region is
pushed to the left which is also clear from studying the improvement
sub-figures in Fig. 6. Also interesting to note from these improvement
sub-figures is that they divide into similar regions as do the SSIM sub-
figures. Specifically, in the region where reconstruction is successful, no
or a minor improvement is seen. In the region where reconstruction is
unsuccessful, no or a minor degradation is seen. The most interesting
region, though, is the transition region where a major improvement is
seen. In other words our experiments show that using weights in
iterative thresholding yield similar or improved image reconstruction
quality. A degradation in image quality is only seen when the
reconstruction is already useless, e.g. with a SSIM ≤0.5.

Returning to the quality-capability-time trade-off inherent in any
reconstruction method, we make the following notes. Our proposed
Gaussian model in (6) is a low-frequency model which favours
reconstructions that are more smooth and with less high-frequency
details. To include more details in the reconstruction more DCT
coefficients are needed which in turn means that more measurements
are needed. However, this may still be acceptable so long as the overall

4 All magni releases are available at http://dx.doi.org/10.5278/VBN/MISC/Magni.
5 Specifically, we used the code from https://github.com/epfl-lts2/pyunlocbox, master

branch, tag: v0.2.1-211-g585027a.
6 See http://www.continuum.io/anaconda
7 Refer to the annotations in the results database for a full specification of the versions

of all the scientific Python packages used.
8 See http://dx.doi.org/10.5281/zenodo.60512
9 See http://dx.doi.org/10.5278/vbn/projects/wISTwIHT
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imaging time, i.e. image acquisition time plus image reconstruction
time, is still lower than the time it takes to do a traditional raster scan.
Additionally, it may be beneficial to fit different models to different
images types, e.g. fitting a specific model to the very low-frequency cell
images. Possibly, several reconstructions based on different models
may be done simultaneously on a multi core processor if the user is not
able to pick a reasonable model a-priori.

Also key in the quality-capability-time trade-off is the choice of free
parameters in the algorithms. We note that our choice of ϵr, κ, Imax are
based on empirical studies (our own as well as [38]) showing that these
are good choices on average. For the choice of sparsity level τ, we
suggest using our results presented in Fig. 5 as guidance, i.e. choosing
the sparsity level that yields the highest SSIM for a given under-
sampling rate as we did when constructing Fig. 7. The choice of a in (6)

is related to the high-frequency versus low-frequency trade-off. A lower
value of a implies less weight on low-frequency content compared to
high-frequency content. As such the user may also tweak this trade-off
by adjusting a. Additionally, when imaging in other resolutions than
256-by-256 pixels, it may be necessary to adjust a compared to the
value, we have used.

All the results presented in this paper are based on experiments
with the 17 AFM images in Fig. 3. When imaging other types of
specimens the applicability of our proposed iterative thresholding
methods may vary. However, since our test images are qualitatively
very different and due to the general applicability of the DCT in image
compression, we do believe that our results generalise to allow for
reconstruction of a broad range of undersampling images in various
areas of AFM, SPM, and SEM.

7. Conclusions

We have detailed a generic model of the structure in DCT
coefficients of a set of typical AFM images. The model emphasises
low-frequency content and assumes a smooth and diagonal-symmetric
transition to high-frequency content. Together with the model we have
proposed a weighted hard threshold function and a weighted soft
threshold function that allow us to exploit the model structure in a
general iterative threshold algorithm. A large set of experiments
indicate that this setup is capable of reconstructing undersampled
AFM cell images. Furthermore, the results indicate that our proposed
weighted thresholding schemes outperform the corresponding state-of-
the-art non-weighted schemes as well as ℓ1 minimisation based
reconstruction for some undersampling ratios. Concurrently with the
presentation of our proposed reconstruction method, we have dis-
cussed several practical issues in implementing CS for AFM imaging.
This discussion includes pointers on the choice of dictionary as well as
various elements that may help in retaining numerical stability in the

Fig. 5. Average SSIM values for each iterative thresholding reconstruction method. Each sub-figure shows the average SSIM across all 17 test images (colour coded) versus sparsity level
and undersampling ratio. All sub-figures share the same colour scale.

Fig. 6. PSNR and SSIM improvements in using a weighting scheme in the reconstruction algorithm, i.e., the difference between w-IST and IST, w-IHT and IHT, respectively, in both
average SSIM and average PSNR. Note that the colour scales are different in the four sub-figures since the colour scales are “centered” around zero (white colour) with blue colours for
negative values and red colours for positive values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Best case PSNR and SSIM performance vs undersampling ratio for all algorithms.
The best case PSNR and SSIM values for the iterative thresholding algorithms have been
found by choosing the highest PSNR (averaged across all test images), respectively SSIM,
value across all sparsity levels for each undersampling ratio.
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reconstructions. We believe that our results are extensible to various
applications in AFM, SPM, and SEM imaging.
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Abstract—A variety of image reconstruction applications such
as undersampled scanning probe microscopy or magnetic res-
onance imaging are characterised by measurements that may
be regarded as linear combinations of a (row) sub-sampled
structured transform, e.g. a Fourier, Cosine or Hadamard trans-
form. This characterisation may either stem from the modelling
of the physical image acquisition system e.g., Fourier modes
acquisition in magnetic resonance imaging or may simply be
due to the availability of a fast and memory efficient im-
plementation of the structured transform - a property that
is essential in high dimensional signal processing applications.
The recently proposed Approximate Message Passing (AMP)
methods for signal reconstruction rely on not only the first
order characterisation of the acquisition system but also the
second order characterisation, i.e. the entrywise absolute value
squared system transform, as additional information to enhance
the reconstruction. We derive efficient (in terms of memory
requirement and computational cost) ways to implement such
entrywise absolute value squared transforms for high dimensional
signal reconstruction using AMP when the system is described by
a sub-sampled separable structured transform. Through a large
set of simulation experiments, we detail the performance of our
efficient entrywise absolute value squared transforms compared
to the alternative sum approximations. In particular, we point
out the cases where it is a necessity to use our proposed method
in order to reconstruct undersampled signals.

Index Terms—Image Reconstruction, Scientific Computing,
Computational Complexity, Computational Efficiency, Estima-
tion, Message Passing, Compressed Sensing.

I. INTRODUCTION

METHODS for reconstructing undersampled high dimen-
sional signals have been heavily investigated in various

imaging applications. For instance, in Magnetic Resonance
Imaging (MRI) in an attempt to increase imaging speed [1]
or in hyperspectral imaging applications [2]. Or in Scanning
Probe Microscopies such as Atomic Force Microscopy [3]
and Scanning Electron Microscopy [4] in an attempt to re-
duce imaging time [5] or reduce the risk of damaging the
specimen by reducing the interaction with it, as is critical in
cell imaging [6]. One way to reconstruct undersampled high
dimensional signals is by use of the Approximate Message
Passing (AMP) based algorithms [7], [8] which have recently

The authors are with the Faculty of Engineering and Science, Depart-
ment of Electronic Systems, Aalborg University, Aalborg, Denmark e-mail:
{cso,tha,tl}@es.aau.dk.

This project has been supported by 1) The Danish Council for Indepen-
dent Research (DFF/FTP) for project number 1335-00278B/12-134971, and
2) by the Danish e-Infrastructure Cooperation (DeIC) for project number
DeIC2013.12.23.

been shown to yield excellent reconstruction performance in a
broad range of applications. When using the AMP algorithm,
information about an assumed statistical prior on the signal to
be reconstructed may be used to enhance the reconstruction.
The Generalized Approximate Message Passing (GAMP) [9]
algorithm additionally allows for including information about
a broad range of measurement channels in the reconstruction.
Thus, due to the generality of GAMP in terms of modelling
prior information on the signal and measurement channel as
well as its state-of-the-art reconstruction capabilities, it seems
compelling to use GAMP for reconstruction in imaging and
other high dimensional undersampling applications.

Several studies have already explored the use of (G)AMP
algorithms in imaging applications, e.g. in MRI [10], hy-
perspectral imaging [2], or in more general imaging and
high dimensional applications [11], [12], [13], [14], [15].
In the present work, we are considering several practical
implementation issues in using GAMP for high dimensional
signal reconstruction. The rest of this introductory section of
the paper is devoted to giving an informal overview of the
problem, we are considering. Having motivated the problem
and sketched our contributions, the remainder of the paper
is devoted to providing a formal disclosure of the problem,
our results and contributions, and their relation to existing
literature on the topic.

A. Motivation

A subtle, but critical, detail in using the GAMP algorithm
for reconstruction of undersampled images (and other high
dimensional signals) is the handling of the second order
characterisation of the imaging system. That is, if the imaging
system is modelled by the matrix A ∈ Cm×n (with m � n
in the undersampling regime), then the GAMP algorithm
additionally relies on the characterisation of the entrywise
absolute sqaured system matrix |A|◦2, i.e. the matrix with
entries |aji|2 for all entries aij in A. Specifically, the GAMP
algorithm requires computing matrix-vector products involving
A and |A|◦2. For large problem sizes, i.e. for large n, it may
easily become infeasible to store A, and |A|◦2 in memory
on a computer. Additionally, it may also become infeasible to
compute the matrix-vector products involving A, and |A|◦2.
This is a particularly distinct problem in high dimensional sig-
nal reconstruction (2D images or higher dimensional signals)
where the problem size n becomes the product of the sizes of
all the signal dimensions and, thus, easily gets very large. In
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order to handle such large problem sizes many signal process-
ing techniques leverage fast transforms for implementing the
required system transform matrix-vector products involving
A, e.g. a Fast Fourier Transform (FFT) based method for
implementing Fourier-like system transforms. Ways to handle
the second order system transforms involving |A|◦2 are less
clear, though.

B. The Problem

In this work we consider ways to implement the system
transform matrix-vector products involving |A|◦2 for the case
of sub-sampled separable transforms which are applicable in
many practical high dimensional settings. That is, in its sim-
plest form, we consider a system matrix with a structure such
that A = DΩ(F1⊗F2) where DΩ ∈ Rm×n is a sub-sampling
operator (an identity matrix with some of its rows removed)
that selects rows from a matrix F = F1 ⊗ F2 ∈ Rn×n
defined by the Kronecker product of the matrices F1 and F2.
Additionally, we study the performance of sum approximations
to matrix-vector products involving |A|◦2. That is, under
certain conditions, the matrix-vector products involving |A|◦2
in GAMP may be replaced by scaled sums of the vectors.

C. Our Contributions

We present theoretical results on ways to efficiently imple-
ment |A|◦2 and provide comprehensive empirical evaluations
of the performance of our proposed implementations of |A|◦2.
Specifically, our contributions are
• We present several theorems on Hadamard Powers of

Kronecker products. These theorems define ways to ef-
ficiently implement |A|◦2 in the case of sub-sampled
separable transforms. In particular, in its simplest form,
we have the result |A|◦2 = |DΩ|◦2(|F1|◦2 ⊗ |F|◦22 ) for
A = DΩ(F1 ⊗F2). Our results are much more general,
though, and defines ways to implement |A|◦2 for many
practically applicable A used in high dimensional signal
reconstruction applications.

• We discuss the differences between the various sum
approximations to matrix-products involving |A|◦2 in
GAMP. These sum approximations are well known in
the literature. However, to the best of our knowledge,
no other work has discussed the practical implications
of using such sum approximations in high dimensional
signal reconstruction. In particular, we give pointers on
the critical parameters that must be chosen (or estimated)
correctly in order for the sum approximations to yield
usable results. This is of great importance in practical
implementations of GAMP based on sum approximations
since the algorithm tends to be less robust to the choice
of these parameters.

• We present results from a large simulation study that
evaluates the performance of GAMP for practical image
reconstruction when using our proposed methods for im-
plementing |A|◦2 as well as when using the various sum
approximations. Our simulation results support our claim
that the parameter choices for the sum approximations
are critical since performance may significantly degrade

if the parameters are chosen incorrectly. Furthermore,
our simulation results suggest that it may not always
be possible to use GAMP with sum approximations in
practical high dimensional signal reconstruction. It seems
that there are cases which require implementing GAMP
using the full |A|◦2 transform. Thus, our theorems on
Hadamard Powers for Kronecker products may poten-
tially enable the use of GAMP in some high dimensional
signal reconstruction applications where no other GAMP
solution is feasible.

The remainder of the paper is organised as follows. In
Section II, we introduce our notation and briefly review the
GAMP algorithm and its use in reconstruction of undersam-
pled signals. In Section III, we formally introduce the high
dimensional signal reconstruction setting and the system trans-
forms that we are considering. Section IV presents our main
theoretical results for such transforms based on Hadamard
powers of sub-sampled Kronecker products. In Section V
we detail the sum approximations that may be used as an
alternative to the entrywise absolute value squared transform in
GAMP. Section VI provides an overview of, and results from, a
set of numerical experiments used to evaluate the performance
of our proposed method compared to the sum approximations.
A discussion of our results is given in Section VII whereas
Section VIII states our conclusions. Finally, proofs of our
theoretical results are given in Appendix A.

II. GENERALIZED APPROXIMATE MESSAGE PASSING

We consider the reconstruction of a vector α ∈ Cn×1 from
noisy measurements y ∈ Cm×1 with m � n, i.e. in an
undersampling regime. We assume that α has been measured
through a linear transform A ∈ Cm×n such that

z = Aα (1)
= ΦΨα (2)

for the non-noisy (and generally unknown) measurements z ∈
Cm×1 and a decomposition of A into a measurement matrix
Φ ∈ Cm×p and a dictionary matrix Ψ ∈ Cp×n. The known
noisy measurements y may be given by

y = z + e (3)
= Aα + e (4)

where in this example we are considering an additive measure-
ment noise e ∈ Cm×1. Note, however, that other measurement
channels may be assumed when considering the relation
between y and z.

The above is the well-known setting used in the Compressed
Sensing (CS) theory (see e.g. [16], [17], [18]). In CS one
assumes that α has some structure, e.g. is sparse in the
dictionary Ψ. Oftentimes, the dictionary Ψ is introduced since
the signal of interest (e.g. an image) x ∈ Cp×1 is not itself
sparse but is assumed sparse in e.g. the wavelet domain. Once
(an estimate of) the sparse α has been found, one may then
find the signal of interest

x = Ψα (5)
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with

z = Φx (6)

The Generalized Approximate Message Passing (GAMP)
algorithm [9] allows for reconstructing signals from the under-
sampled noisy measurements y. In a Bayesian interpretation
of GAMP, one may define priors on both α and the mea-
surement channel (e.g. a prior on the additive noise e). The
GAMP algorithm is then capable of finding either minimum
mean squared error (MMSE) or maximum a posteriori (MAP)
estimates of α. Here we focus on the MMSE GAMP as shown
in Table I.

In the MMSE GAMP, we have the initialisation

Eα|θI
[α] =

∫

α

αp(α|θI)dα (7)

Varα|θI
(α) =

∫

α

|α|2p(α|θI)dα− |Eα|θI
[α]|2 (8)

for some separable prior distribution p(α|θI) =∏
j p(αj |[θI ]j) on α parameterised by the vector of

parameters θI . Furthermore, we have the scalar output
channel functions fz̄ , fz̃ and scalar input channel functions
fᾱ, fα̃ that operate independently on each entry of the vector
arguments according to

fz̄(v, o; y,θo) =
1

Zo

∫

z

zp(y|z;θo)N (z; o, v)dz (9)

fz̃(v, o; y,θo) =
1

Zo

∫

z

|z|2p(y|z;θo)N (z; o, v)dz

−|fz̄(v, o; y,θo)|2 (10)

fᾱ(s, r;θI) =
1

ZI

∫

α

αp(α;θI)N (α; r, s)dα (11)

fα̃(s, r;θI) =
1

ZI

∫

α

|α|2p(α;θI)N (α; r, s)dα

−|fᾱ(s, r;θI)|2 (12)

ZI =

∫

α

p(α;θI)N (α; r, s)dα (13)

Zo =

∫

z

p(y|z;θo)N (z; o, v)dz (14)

N (α; r, s) =
1√
2πs

exp

(
−1

2

(α− r)2

s

)
(15)

N (z; o, v) =
1√
2πv

exp

(
−1

2

(z − o)2

v

)
(16)

for some separable distribution p(y|z;θo) =
∏
i p(yi|zi; [θo]i)

on y given z parameterised by the vector of parameters θo.
Finally, 0m is the zero-vector in Rm×1, 1n is the one-vector
in Rn×1, and |A|◦2 is the entrywise absolute value squared
version of the system matrix A, i.e. we are considering the
matrix with entries |aij |2 for all aij in A. The output of
MMSE GAMP is the MMSE estimate of α, i.e. ᾱ, and the
corresponding estimate of the variances of the entries in ᾱ,
i.e. α̃.

As pointed out in [19], the GAMP iteration is generally
computationally dominated by the matrix-vector products in-
volving A, AH , |A|◦2, and (|A|◦2)

T . However, this is only

TABLE I
MINIMUM MEAN SQUARED ERROR (MMSE) GENERALIZED

APPROXIMATE MESSAGE PASSING (GAMP) [9]. NOTE THAT WE USE ◦ TO
DENOTE ENTRYWISE MULTIPLICATION OF VECTORS AND � TO DENOTE

ENTRYWISE DIVISION OF VECTORS.

1 initialise: ᾱ0 = Eα|θI
[α], α̃0 = Varα|θI

(α), q0 = 0m
2 for t = 1 to Tmax do
3 vt = |A|◦2α̃t-1 Factor side / output updates
4 ot = Aᾱt-1 − vt ◦ qt-1
5 z̄t = fz̄(vt,ot; y,θo)
6 z̃t = fz̃(vt,ot; y,θo)
7 qt = (z̄t − ot)� vt
8 ut = (vt − z̃t)� (vt ◦ vt)

9 st = 1n � ((|A|◦2)
T
ut) Variable side / input updates

10 rt = ᾱt-1 + st ◦AHqt
11 ᾱt = fᾱ(st, rt;θI)
12 α̃t = fα̃(st, rt;θI)

13 if stop criterion is met then
14 break
15 end if
16 end for

true if the computational cost of evaluating the integrals
in (9)-(16) is negligible, i.e. if the integrals have closed
form solutions. In the general case one may have to resort
to numerical integration which may easily become more
computationally expensive than evaluating the matrix-vector
products. To further analyse the computational bottlenecks of
the GAMP algorithm, we profiled1 the algorithm in Table I
with channel functions that have simple closed form solutions.
The results showed that even when using optimised Basic
Linear Algebra Subroutines (BLAS) libraries to accelerate the
computation of the matrix-vector products, around 99% of the
time was spent on computing these matrix-vector products
(lines 3, 4, 9, and 10 in Table I). For large problem sizes
this O(mn) cost of computing matrix-vector products may
become infeasible. Also memory requirements for storing A
and |A|◦2 may likewise become infeasible for large problem
sizes.

A. Some Additional Notation Details

In the remainder of the paper, we make use of the Kronecker
and Hadamard products of matrices as well as the Hadamard
power of a matrix (see e.g. [20]). The Kronecker product of
two matrices A ∈ Cm×n and B ∈ Ck×l, denoted by A⊗B ∈
Cmk×nl, is

A⊗B =



a11B · · · a1nB

...
. . .

...
am1B · · · amnB


 (17)

where aij denotes the ij-th entry of A.

1The details of the profiling may be found in the profiling script which is
available at https://dx.doi.org/10.5278/240710282
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The Hadamard product (the entrywise product) of two
matrices A,B ∈ Cm×n, denoted by A ◦B ∈ Cm×n, is

A ◦B =



a11 · b11 · · · a1n · b1n

...
. . .

...
am1 · bm1 · · · amn · bmn


 (18)

The p-th Hadamard power of a matrix A ∈ Cm×n with
p ∈ Z, denoted by A◦p ∈ Cm×n, is

A◦p =



ap11 · · · ap1n

...
. . .

...
apm1 · · · apmn


 (19)

That is, it is the Hadamard product with itself p times.

III. HIGH DIMENSIONAL SIGNAL RECONSTRUCTION

In this work, we are interested in the large problem set-
ting, i.e. n & 10000. Such large problems often occur in
applications involving high dimensional signals (two or more
dimensions), e.g. a reconstruction of a 256-by-256 pixels
image. The signal of interest x is then a vector represen-
tation of the high dimensional signal, e.g. in the 256-by-
256 image case, one may stack the columns of the image
matrix to obtain an x ∈ R65536×1. Such large problems pose
several challenges in implementing a reconstruction method
like GAMP. Consider for instance a 256-by-256 pixels image
undersampled such that m = 0.5n. In this case, storing A in
a computer in double precision (8 bytes per entry) requires
8 ·0.5 · (2562)2/10243 = 16 GiB RAM. Thus, for larger prob-
lem sizes or higher dimensional signals, it quickly becomes
infeasible to store A due to the O(n4) memory scaling. Also,
reconstruction algorithms such as GAMP generally depend
on computing matrix-vector products involving A which may
become computationally infeasible when considering these
large problem sizes. For that reason (or simply due to the
physical nature of the imaging system), one typically assumes
a structure on the problem that allows for more efficient
implementations of the linear transforms involving A and
AH . One such general structure framework is the so-called
Structually Random Matrices (SRM) [21] which are closely re-
lated to structured random matrices [22] and spread-spectrum
form matrices [23]. The SRM framework includes matrices
described2 by

A = DΩF (20)

where DΩ ∈ Cm×n is created from the diagonal matrix
D = diag(d1, . . . , dn) ∈ Cn×n (usually an identity matrix)
by only keeping the rows that are indexed by the set Ω
and F ∈ Cn×n is an orthogonal matrix. We give concrete
examples of this type of transform in Section IV-B. We

2A SRM is described by A = DΩFR with R a pre-randomisation matrix.
Specifically, R is either a permutation matrix or a diagonal matrix with
uniformly random sign changes on the diagonal entries. We note that our
framework for finding |A|◦2 extends to the full SRM by arguments similar to
those used for DΩ since both DΩ and R are essentially scaled and permuted
identity matrices. However, in order to keep our discussion concise and clear,
we restrict our attention to SRMs without the pre-randomization matrix as
given in (20).

note that the sub-sampling matrix DΩ may be efficiently
implemented using a lookup-table to keep track of the rows
that are kept. As pointed out in [21], [22], F is oftentimes
for practical reasons chosen to have a fast transform, e.g. a
Fast Fourier Transform (FFT) if F is a Fourier matrix. Such a
fast transform essentially solves the memory and computation
issues in implementing reconstruction algorithms that make
use of matrix-vector products of A.

One particularly interesting case, that is the focus of the
present work, is when F may be expressed as a Kronecker
product of l lower dimensional matrices as in the theory of
Kronecker Compressive Sensing [24]

F = F1 ⊗ · · · ⊗ Fl (21)

where l is the signal dimension, e.g. l = 2 for an image.
In such cases, matrix-vector products involving F may be
computed efficiently by applying the lower dimensional ma-
trices independently to each signal dimension. Consider for
instance the case of a 1D transform T ∈ C

√
n×√n (assuming√

n an integer) from which as 2D transform may be defined
by the Kronecker product (T ⊗ T) ∈ Cn×n, e.g. a 2D
Discrete Fourier Transform (DFT). And consider an image
X ∈ R

√
n×√n with x ∈ Rn×1 a vector representation of X

created by stacking its columns. Then we may apply the 2D
transform by applying the 1D transform to each dimension
(the rows of and columns of X). Specifically we have (see
e.g. [25])

Z = (T(TX)T )T (22)
= (TXTTT )T (23)
= TXTT (24)

z = (T⊗T)x (25)

for z a vector representation of Z created by stacking its
columns. Thus, in using this separability property of the trans-
form, the computational complexity is reduced from O(n2)
to O(n

√
n). Possibly even more importantly, the memory

requirement is reduced from n2 entries for storing T ⊗ T
to n entries for storing T.

In Table II, this difference is summarised for the 2D case
with the |A|◦2 and (|A|◦2)

T transforms used in MMSE
GAMP (Table I). For the 2D MMSE GAMP case, we note
that going from a computational cost of 4mn to 4

√
nn is

a significant result since normally
√
n � m, even in the

undersampling setting. Likewise, going from a memory cost
of mn to 2n is a significant result since for large problem
sizes, we normally have m � 2. To further analyse the
gain in using such fast transforms, we profiled3 the GAMP
algorithm similarly to the profiling reported on in Section II.
The only difference is that this time we consider a 2D case
and use a FFT based transform in computing the matrix-vector
products involving A and AH and a 2D separable transform
in computing the matrix-vector products involving |A|◦2 and
(|A|◦2)

T . The in- and output channels are the same. Using

3The details of the profiling may be found in the profiling script which is
available at https://dx.doi.org/10.5278/240710282
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TABLE II
COMPARISON OF COMPUTATIONAL AND STORAGE COSTS IN IMPLEMENTING |A|◦2 AND (|A|◦2)

T
FOR THE 2D CASE.

Matrix-vector product Separable Transform Sum Approximation

Computational cost m(2n− 1) + n(2m− 1) ≈ 4mn m+ 2
√
n
√
n2(
√
n− 1) + n ≈ 4

√
nn m+ n

Memory cost mn 2
√
n
√
n = 2n 1

this setup we find that around 20% of the time is spent on
computing the transforms involving A and AH (lines 4 and
10 in Table I), around 50% of the time is spent on computing
the transforms involving |A|◦2 and (|A|◦2)

T (lines 3 and 9
in Table I), whereas around 30% of the time is spent on
evaluating the in- and output channels (lines 5, 6, 11, and
12 in Table I). Thus, the savings in computing the linear
transforms have now caused the channel evaluations to become
computationally significant, even for channels that have closed
form solutions.

At this point we note that the AMP algorithms have only
been proven to converge for certain classes of A matrices and
only in the large system limit n → ∞. In particular, conver-
gence has been proven when A has i.i.d. entries drawn from a
Gaussian distribution [26] or a sub-Gaussian distribution [27].
For certain other matrices (including sub-sampled unitary ma-
trices), a damping strategy may be used to ensure convergence
[28]. Also extensive empirical evidence suggests that GAMP
converges for various other practically applicable matrices and
for finite problem sizes [27], [29]. These empirical results are
in line with our numerical experiments described in Section
VI.

IV. ENTRYWISE SQUARED ABSOLUTE VALUE
TRANSFORMS IN GAMP

As is evident from the MMSE GAMP algorithm in Table I
and our profiling results reported on in Sections II and III, it
is only valuable to have efficient transforms for A and AH if
there also exists efficient transforms for the entrywise absolute
value squared transforms |A|◦2 and (|A|◦2)

T since all of these
transforms scale similarly with the problem size in terms of
both memory and computational cost. Thus, we now turn the
attention towards efficient implementations of the transforms
|A|◦2 and (|A|◦2)

T .
It may be that the system matrix A has a structure that

allows for particularly simple implementations of matrix-
vector products involving |A|◦2, e.g. when A is a sub-sampled
Fourier or Hadamard transform. In such cases the matrix-
vector products involving |A|◦2 and (|A|◦2)

T reduce to simple
sums of the vector [30]. Alternatively, one may potentially
mitigate the large problem size issues by processing smaller
blocks of the full scale problem at a time if the problem
permits such block processing. Another potential solution is
to use the sum approximations detailed in Section V if these
approximations are applicable to the problem. Here, though,
we focus on the case of the sub-sampled separable A described
by (20) and (21). It turns out that in this case it is possible to
find similar sub-sampled separable transforms for |A|◦2.

A. Efficient Entrywise Squared Absolute Value Transforms for
the Sub-sampled Separable Case

We now present our main theoretical contributions, i.e.
our results on Hadamard powers of sub-sampled Kronecker
products. We then show that |A|◦2 is a special case of such
Hadamard powers of Kronecker products which allows us to
use our results for finding efficient transforms for matrix-
vector products involving |A|◦2 in GAMP. Our first result is on
the computation of Hadamard powers of sub-sampled system
matrices as the SRM in (20).

Theorem 1: Let D = diag(d1, . . . , dn) ∈ Cn×n be any
diagonal matrix with diagonal entries d1, . . . , dn. Furthermore,
let DΩ ∈ Cm×n be a matrix created from D by taking only
the rows indexed by the set of indices Ω with |Ω| = m ≤ n.
That is, the rows not indexed by Ω are removed from D. Now,
take any matrix A ∈ Cn×l and p ∈ Z. Then,

(DΩA)◦p = D◦pΩ A◦p (26)

where DΩA ∈ Cm×l denotes the matrix product of DΩ

and A. A proof of the theorem is given in Appendix A.
Next, we give three results on Hadamard powers of system

matrices that are described by Kronecker products as in (21).
The first result is on a system matrix described by a series of
Kronecker products.

Theorem 2: For any A1 ∈ Cm1×n1 , . . . ,As ∈ Cms×ns , and
any p ∈ Z,

(A1 ⊗ · · · ⊗As)
◦p = A◦p1 ⊗ · · · ⊗A◦ps (27)

A proof of the theorem is given in Appendix A.
The last two results relate to system matrices that are de-

scribed by matrix products of matrices that each are described
by Kronecker products. The two results are closely connected
and may be combined if needed.

Theorem 3: Let A1 ∈ Cm1×n1 , . . . ,As ∈ Cms×ns , B1 ∈
Cn1×k1 , . . . ,Bs ∈ Cns×ks , and Es = A1 ⊗ · · · ⊗As,Fs =
B1 ⊗ · · · ⊗Bs. Then for any p ∈ Z,

(EsFs)
◦p = (A1B1)◦p ⊗ · · · ⊗ (AsBs)

◦p (28)

A proof of the theorem is given in Appendix A.
Theorem 4: Let A1 ∈ Cm1×n1 ,A2 ∈ Cn1×n2 , . . . ,As ∈

Cns−1×ns , B1 ∈ Cl1×q1 ,B2 ∈ Cq1×q2 , . . . ,Bs ∈ Cqs−1×qs ,
and E1 = A1⊗B1, . . . ,Es = As⊗Bs. Then for any p ∈ Z,

(E1 . . .Es)
◦p = (A1 . . .As)

◦p ⊗ (B1 . . .Bs)
◦p (29)

A proof of the theorem is given in Appendix A.
We note that for any two complex numbers a1, a2 ∈ C

given in polar coordinates (r̄, ϕ), i.e., a1 = r̄1[cos(ϕ1) +
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j sin(ϕ1)], a2 = r̄2[cos(ϕ2) + j sin(ϕ2)] and any p ∈ Z, we
have (see e.g. [31])

|a1a2| = |a1||a2| (30)
a1a2 = r̄1r̄2[cos(ϕ1 + ϕ2) + j sin(ϕ1 + ϕ2)] (31)
ap1 = r̄p1 [cos(pϕ1) + j sin(pϕ1)] (32)

Combining (31) and (32), we get

(a1a2)p

= (r̄1r̄2)p[cos(p(ϕ1 + ϕ2)) + j sin(p(ϕ1 + ϕ2))] (33)
= r̄p1 r̄

p
2 [cos(pϕ1 + pϕ2) + j sin(pϕ1 + pϕ2)] (34)

Applying (30) gives

|(a1a2)p| = r̄p1 r̄
p
2 (35)

= |a1|p|a2|p (36)
= |a1a2|p (37)

Since the Hadamard and Kronecker products only involve
products of the (possibly complex) entries of matrices, it is
clear from (35) - (37) that any result regarding Hadamard
powers of Kronecker products of complex matrices also holds
for the moduli of the matrices, e.g. for Theorem 2, we have

|(A1 ⊗ · · · ⊗As)
◦p| = |(A1 ⊗ · · · ⊗As)|◦p (38)

= |A1|◦p ⊗ · · · ⊗ |As|◦p (39)

Additionally, since (DΩA)◦p from Theorem 1 also only
consists of products of entries of the matrices (see the proof
of the theorem in Appendix A), we have the similar result

|(DΩA)◦p| = |DΩ|◦p|A|◦p (40)

B. Examples for the 2D Case

Having stated our main theoretical contributions, we now
present two examples of their applicability in terms of finding
efficient transforms for the matrix-vector products involving
|A|◦2 in the GAMP algorithm in Table I. For simplicity, we
consider two idealised 2D imaging cases. Our first example
is based on the Scanning Electron Microscopy (SEM) Com-
pressed Sensing setup described in [4]. The Scanning Electron
Microscope measures individual pixels in the image domain.
In the CS setup, this image domain is undersampled uniformly
at random and the image is attempted reconstructed using the
Discrete Cosine Transform (DCT) as a sparsifying transform.
Thus, this SEM example is described by the system matrix

A = DΩΨi2DDCT (41)

with DΩ being a sub-sampled identity matrix modelling the
random selection of pixels and Ψi2DDCT being a 2D inverse
DCT matrix, i.e. Ψi2DDCT = ΨiDCT ⊗ΨiDCT for ΨiDCT a 1D
inverse DCT matrix. Using Theorems 1 and 2, we may express
|A|◦2 as

|A|◦2 = |DΩ|◦2|Ψi2DDCT|◦2 (42)
= |DΩ|◦2(|ΨiDCT|◦2 ⊗ |ΨiDCT|◦2) (43)
= DΩ(Ψ◦2iDCT ⊗Ψ◦2iDCT) (44)

where in (44), we have used that DΩ in this example is a
sub-sampled identity matrix and that the DCT transform is a
real transform.

Our second example is inspired by the Magnetic Resonance
Imaging (MRI) CS setups described in [1] and [10]. That is,
we consider a setup in which an image is undersampled in
the Fourier domain and then attempted reconstructed in the
wavelet domain. Thus, this MRI example is described by the
system matrix

A = DΩΦ2DDFTΨi2DDWT (45)
= DΩ((ΦDFT ⊗ΦDFT)(ΨiDWT ⊗ΨiDWT)) (46)
= DΩ((ΦDFTΨiDWT)⊗ (ΦDFTΨiDWT)) (47)

with DΩ modelling the sub-sampling pattern, Ψ2DDFT being
a 2D forward Discrete Fourier Transform (DFT) matrix,
and Ψi2DDWT being a 2D separable inverse Discrete Wavelet
Transform (DWT). Again, ΦDFT and ΨiDWT are the corre-
sponding 1D transforms of Φ2DDFT and Ψi2DDWT, respectively.
Furthermore, we have used the mixed product property of the
Kronecker product (see e.g. [20]) in going from (46) to (47).
Using Theorems 1 and 4, we may express |A|◦2 as

|A|◦2 = |DΩ|◦2|Φ2DDFTΨi2DDWT|◦2 (48)
= |DΩ|◦2(|ΦDFTΨiDWT|◦2 ⊗ |ΦDFTΨiDWT|◦2) (49)

In both examples, we see that the matrix-vector products
involving |A|◦2 may be computed using the fast and memory
efficient methods for implementing a sub-sampled separable
transform as outlined in Section III.

V. SUM APPROXIMATIONS

As an alternative to the entrywise absolute value squared
transform |A|◦2, one may use various sum approximations in
the GAMP algorithm in Table I if certain assumptions on A
are met. We now describe these alternative sum approxima-
tions.

Krzakala et al. [7] considered the case of a homoge-
neous A with i.i.d. zero mean random entries with variance
Var(A) = 1/n and proposed to replace the matrix-vector
products involving (|A|◦2)

T and |A|◦2 in Table I with scaled
sums of the vectors, i.e. use the following scalar state updates
instead of lines 3 and 9, respectively

v̄t =
1

Var(A)

∑

j

[α̃t-1]j (50)

s̄t =

(
1

Var(A)

∑

i

[ut]i

)−1

(51)

The scalar updates v̄t and s̄t are then used in place of vt and
st, respectively, in Table I, effectively turning the entrywise
vector multiplications/divisions into multiplications/divisions
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TABLE III
MINIMUM MEAN SQUARED ERROR (MMSE) GENERALIZED

APPROXIMATE MESSAGE PASSING (GAMP) WITH SCALAR VARIANCES
[19].

1 initialise: ᾱ0 = Eα|θI
[α], ᾰ0 = 1

n

∑
j

[
Varα|θI

(α)
]
j
,

q0 = 0m
2 for t = 1 to Tmax do
3 v̆t = 1

m ||A||2F ᾰt-1 Factor side / output updates
4 ot = Aᾱt-1 − v̆tqt-1
5 z̄t = fz̄(v̆t,ot; y,θo)
6 z̃t = fz̃(v̆t,ot; y,θo)
7 qt = (z̄t − ot)v̆

−1
t

8 ŭt = 1
m

∑
i(v̆t − [z̃t]i)(v̆

2
t )−1

9 s̆t = ( 1
n ||A||2F ŭt)−1 Variable side / input updates

10 rt = ᾱt-1 + s̆tA
Hqt

11 ᾱt = fᾱ(s̆t, rt;θI)
12 ᾰt = 1

n

∑
j [fα̃(s̆t, rt;θI)]j

13 if stop criterion is met then
14 break
15 end if
16 end for

of a scalar and a vector. We note that this sum approximation
is based on i.i.d. random matrices with Var(A) = 1/n. It
may or may not work with other types of matrices or other
variances. In order to use this sum approximation, one must
be able to determine the variance Var(A) or estimate it.

Rangan [19] considered the case of an A with approxi-
mately equal entries such that |aij |2 ≈ ||A||2F

mn for all i, j
(||A||F being the Frobenius norm of A) and then proposed to
replace the vector variance states vt, ut, st, and α̃t with the
corresponding scalar variance states v̆t, ŭt, s̆t, ᾰt to yield the
MMSE GAMP with scalar variances algorithm in Table III.
We note that in order to use this sum approximation one must
be able to compute (or approximate) ||A||2F which may be
difficult in cases where it is infeasible to store A in memory
on a computer.

Common to both Krzakala’s and Rangan’s sum approxi-
mations are that they significantly reduce the memory and
computation cost of the GAMP algorithm. The matrix-vector
products involving |A|◦2 and (|A|◦2)

T become simple sums
for which one must only store the scaling constant in memory.
We have summarised these savings for the 2D case in Table
II.

A. Relation to the Donoho/Maleki/Montanari AMP

The sum approximations are closely related to
Donoho/Maleki/Montanari Approximate Message Passing
(DMM AMP) algorithm [8], [32] in Table IV where ηt is a
scalar thresholding function that operates independently on
each entry of its vector argument and η′t is the entrywise
derivative of ηt with respect to its argument. Finally, 〈·〉
denotes the average. As detailed in [33], when using an
additive white gaussian noise (AWGN) GAMP output

TABLE IV
DONOHO/MALEKI/MONTANARI APPROXIMATE MESSAGE PASSING

(DMM AMP) [8], [32].

1 initialise: ᾱ0 = 0n, χ0 = 0m
2 for t = 1 to Tmax do
3 ᾱt = ηt(ᾱt-1 + AHχt-1)
4 χt = y −Aᾱt + n

m 〈η′t(ᾱt-1 + AHχt-1)〉χt-1
5 if stop criterion is met then
6 break
7 end if
8 end for

channel and a choice of threshold functions according to (52),
(53),

ηt(·) = fᾱ(s, ·;θI) (52)

η′t(·) =
fα̃(s, ·;θI)

s
(53)

the DMM AMP is equivalent to Krzakala’s sum approximation
MMSE GAMP under the assumption of Var(A) = 1/m. The
Bayesian DMM AMP from [34] uses this choice of threshold
function. Usually, though, in the DMM AMP, the threshold
function is chosen to be the soft threshold [8], [32], [34].
We note that it is the DMM AMP with soft thresholding
that has been used in the previous studies of AMP for image
reconstruction based on Kronecker products [12], [35].

VI. NUMERICAL EXPERIMENTS

We evaluate the reconstruction capabilities of the various
(G)AMP implementations by estimating phase transitions as
defined in [36]. Specifically, we empirically estimate the phase
transition boundaries of the algorithms using the phase tran-
sition simulation framework from [37]. This is a well known
method for assessing the performance of (G)AMP algorithms
(see e.g. [7], [8], [29], [38]).

A. Phase Transitions

Consider the so-called phase space [36] defined by all
(δ, ρ) ∈ [0, 1]2 for an undersampling ratio δ = m/n and
a signal sparsity (density) ρ = k/m with k being the
true number of non-zero entries in a sparse signal α. The
probability of successfully reconstructing α from the noiseless
undersampled measurements z is then evaluated on the phase
space. It is less likely to have successful reconstruction of α as
δ decreases (fewer measurements are used) and as ρ increases
(the signal is less sparse). The phase space is generally divided
into two regions separated by a phase transition zone that
becomes narrower as the problem size n increases. Below
the phase transition zone, successful reconstruction is very
likely to happen whereas the opposite is true above the
phase transition zone where successful reconstruction is very
unlikely to happen.

In our practical simulations based on [37], we attempt
reconstructions over a 4000 point uniformly spaced grid in
the phase space using
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δ ∈ {0.025, 0.05, . . . , 1.00} (54)
ρ ∈ {0.01, 0.02, . . . , 1.00} (55)

with 10 different draws of A and α in each grid point. We
then consider a reconstruction ᾱ successful if

||ᾱ−α||22
||α||22

< 10−4 (56)

In order to estimate the 50 % successful reconstruction
phase transition boundary we use a logistic regression for mod-
elling the shape of the phase transition zone as suggested in
[39]. That is, for a fixed δ, as ρ increases, we assume a change
in the probability of successful reconstruction from 100 % to
0 % with a transition modelled by a logistic regression.

In all of our simulations we draw the non-zero entries of
α i.i.d. from a zero-mean, unit variance Gaussian distribution.
We consider three different types of A matrix ensembles:

1) An A matrix drawn from the Uniform Spherical En-
semble (USE) [39], i.e. a matrix with entries drawn
i.i.d. zero-mean, unit variance Gaussian followed by a
normalisation to obtain unit column norms.

2) A 2D SEM inspired A matrix as specified in (41) with
uniformly random sub-sampling.

3) A 2D MRI inspired A matrix as specified in (45).
For this setup we used random sub-sampling under the
constraint of forcing hermitian symmetry such that the
image formed by applying the inverse DFT remained
real4. Furthermore, we used single level 2D separable
Haar wavelets as the sparsifying basis.

Finally, in order to allow for size 32-by-32 2D cases, we
used a problem size of n = 322 = 1024 which is along the
lines of the experiments in [29] where they used n = 1000.

B. Experimental Setup
In our empirical phase transition experiments, we evaluated

the performance of five different (G)AMP algorithms:
1) DMM AMP (Table IV) using soft thresholding for the

threshold operator ηt.
2) MMSE GAMP (Table I) using the full |A|◦2 transform.
3) MMSE GAMP (Table I) using Krzakala’s sum approx-

imation (SA) updates in (50) and (51) with Var(A) =
1/m.

4) MMSE GAMP (Table I) using Krzakala’s sum approx-
imation updates in (50) and (51) with Var(A) = 1/n.

5) MMSE GAMP with scalar variances (Table III) based
on Rangan’s sum approximation.

For the DMM AMP algorithm, we tested both the median
(denoted M in Figures 1 - 3) and residual (denoted R in Figures
1 - 3) based threshold levels from [32]. Specifically, we used
an iteration dependent soft threshold level of θτ̂t with

τ̂t =
1

Φ−1
N (0.75)

·mdn(χt) (median based) (57)

τ̂t =

√
1

m
||χt||22 (residual based) (58)

4See the simulation script available at https://dx.doi.org/10.5281/zenodo.
165051 for the details.

where Φ−1
N is the inverse cumulative distribution function of

a zero-mean, unit variance Gaussian random variable, mdn(·)
denotes the median, and θ is a tuning parameter that we chose
to the minimax optimal value as detailed in [8]. We initialised
τ̂ = 1.

For the GAMP algorithms we used an AWGN output
channel and an i.i.d. sparse Bernoulli-Gaussian input channel,
i.e. we assumed channels described by [29]

p(y|z;θo) =
1√

2πσ2
exp

(
− (y − z)2

2σ2

)
(59)

p(α;θI) = (1− τ)δDirac(α)

+τ
1√
2πθ̃

exp

(
− (α− θ̄)2

2θ̃

)
(60)

where σ2 is the output channel noise variance parameter such
that θo = [σ2], τ is the signal density, θ̄ is the Gaussian
mean, and θ̃ is the Gaussian variance such that θI = [τ, θ̄, θ̃]T .
Closed form expressions for the channels functions fz̄ , fz̃
based on (59) and fᾱ, fα̃ based on (60) may be found in [33]
and [29], respectively. We tested both a genie version of the
GAMP algorithms that knew the true input channel parameters
θI = [ kn , 0, 1]T as well as a version that used Expectation
Maximization (EM) for learning the input parameters as
detailed in [29]. For the EM initialisation of the input channel
parameters we used the suggestion given in [29] with θ̄ = 0
and an “assumed” SNR of 100. In all GAMP algorithms, we
used EM for learning the output noise variance σ2 according
to the description in [7]. For the input genie versions we
initialised σ2 = 1 whereas in input EM versions, we used the
suggested initialisation of σ2 from [29] with an “assumed”
SNR 100. In all EM cases we did a single EM update as part
of the channel function evaluation following the actual channel
function evaluation.

In all (G)AMP algorithms we used the normalised mean
squared error (NMSE) stop criterion suggested in [29], i.e.

||αt-1 −αt||22
||αt-1||22

< ε (61)

with a tolerance ε = 10−6. Also common to all tested algo-
rithms was a maximum number of iterations of Tmax = 500.
Finally, all computations where done using double precision
floats.

In terms of implementing the |A|◦2 transform in GAMP,
we used the straight up computation of |A|◦2 for the USE
A matrix. For the 2D SEM A matrix, we used (44) together
with the separability property in (22) - (24) in implementing
the transforms involving |A|◦2. Similarly, for the 2D MRI A
matrix, we used (49) in implementing the transforms involving
|A|◦2. For both the 2D SEM and 2D MRI cases, we used fast
transforms in implementing A, e.g. an FFT for the Fourier
transform in the 2D MRI case.

We used the implementations of the (G)AMP algorithms
available in release 1.6.05 of the open source magni Python
Package described in [40]. The magni package focuses on

5All releases of magni are available at https://dx.doi.org/10.5278/VBN/
MISC/Magni
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GAMP using Krzakalas SA with variance 1=n (EM)

GAMP using Rangans SA (genie)
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Fig. 1. Empirical phase transition boundaries for the USE system matrix. The
theoretical `1 phase transition from [36] is included for reference. The curves
show the 50 % transition boundary of the fitted logistic regression. The error
bars mark the 10 % and 90 % transition levels of the fitted logistic regression as
an indicator of the phase transition zone width. The EM-BG-GAMP markers
are the corresponding results from [29], [44]12.

correctness of results and as such is fully documented, comes
with an extensive test suite, and an input argument validation
framework [41]. It has been developed according to best prac-
tices in scientific software development [42] and provides tools
for aiding in making results from computational experiments
reproducible [43]. All of these features of magni were used
to ensure the correctness as well as the reproducibility of
our numerical experiments. We used the Anaconda6 Python
distribution version 4.1.1 based on Python 3.5 for running the
simulations7 in combination with the Haar wavelet implemen-
tation in the PyWavelets8 library version 0.4.0. The Python
scripts used to run the simulations and the full set of simulation
results may be obtained from Zenodo9. A Jupyter Notebook
that reproduces the figures in this paper may be obtained from
the authors’ institutional repository10. The simulations were
conducted on a compute cluster consisting of five nodes each
featuring two Intel Xeon E5-2697V2 CPUs and 384 GiB RAM
and running Ubuntu 14.04.3 LTS.

C. Results

Our empirically determined 50 % phase transition bound-
aries are depicted in Figures 1 (USE), 2 (SEM), and 3 (MRI).
Each of the figures display the full phase space and the
placement of the phase transitions for all tested algorithms
along with the theoretical `1 phase transition from [36].
Error bars are used in the figures to display the 10 % and
90 % transition levels which give an indication of the phase
transition zone width.

6See http://www.continuum.io/anaconda
7Refer to the annotations of the results databases for a detailed list of

scientific Python packages used in the simualtions
8See http://pywavelets.readthedocs.io/en/latest/
9See https://dx.doi.org/10.5281/zenodo.165051
10See https://dx.doi.org/10.5278/240710282
12The EM-BG-GAMP results were replicated from [29], [44] using the

material from https://doi.org/10.5281/zenodo.160700
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Fig. 2. Empirical phase transition boundaries for the SEM inspired system
matrix. The theoretical `1 phase transition from [36] is included for reference.
The curves show the 50 % transition boundary of the fitted logistic regression.
The error bars mark the 10 % and 90 % transition levels of the fitted logistic
regression as an indicator of the phase transition zone width.
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Fig. 3. Empirical phase transition boundaries for the MRI inspired system
matrix. The theoretical `1 phase transition from [36] is included for reference.
The curves show the 50 % transition boundary of the fitted logistic regression.
The error bars mark the 10 % and 90 % transition levels of the fitted logistic
regression as an indicator of the phase transition zone width.

VII. DISCUSSION

The USE matrix ensemble results depicted in Figure 1 are
mainly included as a reference. The USE matrix ensemble is
based on the i.i.d. Gaussian matrices (with variance 1/m) that
are the basis for the derivation of the (G)AMP algorithms. As
such, our results for the USE matrix ensemble obtained using
the magni Python (G)AMP implementations are as expected.
The DMM AMP results closely follow the theoretical `1 curve
as is expected for this minimax tuned algorithm. The GAMP
results closely follow the corresponding simulation results
reported in [29]. We do note, though, that the results for
GAMP with Krzakala’s sum approximation using a (mistuned)
variance of 1/n performs significantly worse than its 1/m
counterpart. This result clearly indicates the importance of
tuning the variance parameter in Krzakala’s sum approxima-
tion. Apart from this lack of robustness of Krzakala’s sum
approximation towards changes in the variance parameter, all
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sum approximation methods seem to perform as well as the
GAMP algorithm using the full |A|◦2 transform for the USE
matrix ensemble.

For the SEM results in Figure 2, we again see the lack of
robustness towards changes in the variance parameter for not
only the GAMP with Krzakala’s sum approximation but also
for the DMM AMP. In particular, we see that for δ . 0.5,
the performance of Krzakala’s sum approximation based on
a variance of 1/m and DMM AMP (which also assumes a
variance of 1/m as detailed in Section V-A) degrades. The
SEM ensemble is not based on a matrix with i.i.d. random
entries, though we still use random sampling such that the
variance of the entries is on the order of 1/n. For large values
of δ, we have m ≈ n and still reasonable performance of
all methods. However, for δ . 0.5 (which is the interesting
case in undersampling applications), the choice of algorithm
becomes critical.

The MRI matrix ensemble is also based on random sampling
that results in entries with a variance on the order of 1/n. Thus,
the same remarks regarding the robustness towards the choice
of variance parameter as in the SEM matrix ensemble holds
for the MRI ensemble as seen in Figure 3. More interestingly,
though, is that for this matrix ensemble, we also see a
degradation in performance for both GAMP with Krzakala’s
sum approximation with variance 1/n and the scalar variance
GAMP based on Rangan’s sum approximation when δ . 0.2.
In this particular setting, the GAMP algorithms based on the
application of the full transforms involving |A|◦2 perform
significantly better than their sum approximation counterparts.
Additional simulations using problem sizes of 642 and 1282

and reported on in the supplementary material13 confirm that
this difference is also present for larger problem sizes, though
the large problem size generally also helps in stabilising the
transition zone and moving the 50 % boundary slightly upward
in the phase space.

Based on all of our simulations, we note that the various sum
approximations generally work well if one is able to correctly
determine or approximate the scaling factors, i.e. the variance
scaling factor for Krzakala’s sum approximation and the
Frobenius norm of A for Rangan’s sum approximation. In such
cases significant memory and computation cost reductions
may be obtained as exemplified for the 2D case in Table II.
However, our simulation results also show that one may have
to use the GAMP algorithm based on the application of the
full transforms involving |A|◦2 to get the best performance in
terms of reconstruction capabilities. In this case, our proposed
methods for implementing |A|◦2 for high dimensional sub-
sampled separable transforms yield significant memory and
computation cost reductions over explicitly forming |A|◦2 and
computing the matrix-vector products directly.

VIII. CONCLUSIONS

We have derived expressions to efficiently implement
Hadamard Powers of sub-sampled Kronecker products. A
particularly interesting application of these expressions is in

13The supplementary material is available at the authors’ institutional
repository at https://dx.doi.org/10.5278/240710282

implementing fast and memory efficient transforms involving
the entrywise absolute value squared system matrix used in the
GAMP algorithm. Such efficient transforms may be needed
in high dimensional signal undersampling applications where
the problem size makes it infeasible to store the full transform
matrices in memory on a computer. We have detailed the prac-
tical implications of using our proposed transforms compared
to the alternative sum approximations. In particular we have
discussed the quantities that one must be able to correctly
determine or estimate in order to use the sum approximations.
Furthermore, we have detailed a large set of phase transition
simulations of (G)AMP algorithms. Our simulations allow for
a comparison of our proposed efficient full transform imple-
mentations to the alternative sum approximations. Though the
sum approximations generally perform very well, we find that
there are cases such as our MRI inspired example where the
best performance is only achievable using the full transforms.

APPENDIX A
PROOFS OF HADAMARD POWERS RELATIONS

Here we give proofs of the theorems presented in Section
IV-A.

Proof of Theorem 1: Let (DΩA)◦pi and Ai denote
the i-th rows of the matrices (DΩA)◦p and A, respectively.
Furthermore, let aij denote the ij-th entry of A. Then,

(DΩA)◦pi = (diAi)
◦p (A.62)

=
[
(diai1)p . . . (diail)

p
]

(A.63)
=
[
dpi a

p
i1 . . . d

p
i a
p
il

]
(A.64)

= dpiA
◦p
i (A.65)

for any i ∈ 1 . . .m. Therefore, (DΩA)◦p = D◦pΩ A◦p.
Proof of Theorem 2: Consider matrices A ∈ Cm1×n1 ,

B ∈ Cm2×n2 . Let bij denote the ij-th entry of B and note
that for any β ∈ C and any p ∈ Z,

(βB)◦p =




(βb11)p · · · (βb1n2)p

...
. . .

...
(βbm21)p · · · (βbm2n2

)p


 (A.66)

=



βpbp11 · · · βpbp1n2

...
. . .

...
βpbpm21 · · · βpbpm2n2


 (A.67)

It then follows that

(A⊗B)◦p =




(a11B)◦p · · · (a1n1
B)◦p

...
. . .

...
(am11B)◦p · · · (am1n1

B)◦p


(A.68)

=



ap11B

◦p · · · ap1n1
B◦p

...
. . .

...
apm11B

◦p · · · apm1n1
B◦p


 (A.69)

= A◦p ⊗B◦p (A.70)

Now consider the recursive definition of A◦p1 ⊗ · · · ⊗A◦ps ,
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(A
′
s)
◦p = (A

′
s−1)◦p ⊗A◦ps , s ∈ {2, 3, 4, . . . } (A.71)

(A
′
1)◦p = A◦p1 (A.72)

Then by induction, we have

(A
′
1)◦p = A◦p1 = (A1)◦p (A.73)

(A
′
s+1)◦p = (A

′
s)
◦p ⊗A◦ps+1 (A.74)

= (A1 ⊗ · · · ⊗As)
◦p ⊗A◦ps+1 (A.75)

= (A1 ⊗ · · · ⊗As ⊗As+1)◦p (A.76)

Therefore, (A1 ⊗ · · · ⊗As)
◦p = A◦p1 ⊗ · · · ⊗A◦ps .

Proof of Theorem 3: Consider the recursive definition of
(A1B1)◦p ⊗ · · · ⊗ (AsBs)

◦p,

(AsBs)
′◦p = (As−1Bs−1)

′◦p ⊗ (AsBs)
◦p

s ∈ {2, 3, 4, . . . } (A.77)

(A1B1)
′◦p = (A1B1)◦p (A.78)

Then by induction, we have

(A1B1)
′◦p = (A1B1)◦p = (E1F1)◦p (A.79)

(As+1Bs+1)
′◦p = (AsBs)

′◦p ⊗ (As+1Bs+1)◦p (A.80)
= (EsFs)

◦p ⊗ (As+1Bs+1)◦p (A.81)
= ((EsFs)⊗ (As+1Bs+1))◦p (A.82)
= ((Es ⊗As+1)(Fs ⊗As+1))◦p (A.83)
= (Es+1Fs+1)◦p (A.84)

where we have used Theorem 2 in (A.82) and the mixed-
product property of the Kronecker product [20] in (A.83).
Therefore, (EsFs)

◦p = (A1B1)◦p ⊗ · · · ⊗ (AsBs)
◦p.

Proof of Theorem 4: Using the mixed-product property
of the Kronecker product [20], we get

(E1 . . .Es)
◦p

= ((A1 ⊗B1) . . . (As ⊗Bs))
◦p (A.85)

= (((A1A2)⊗ (B1B2)) . . . (As ⊗Bs))
◦p (A.86)

= ((A1 . . .As)⊗ (B1 . . .Bs))
◦p (A.87)

= (A1 . . .As)
◦p ⊗ (B1 . . .Bs)

◦p (A.88)

where we have used Theorem 2 in (A.88). Therefore,
(E1 . . .Es)

◦p = (A1 . . .As)
◦p ⊗ (B1 . . .Bs)

◦p.
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(1) Overview
Introduction
In our research group at Aalborg University (AAU) we 
have recently launched a new research project, FastAFM1, 
seeking to utilise compressed sensing in accelerating the 
acquisition of atomic force microscopy images. This is a 
relatively unexplored application area where results have 
only just started to appear [1], [2]. With the present paper, 
we present the general software package magni, which 
we have developed to combine compressed sensing and 
AFM imaging techniques.

Compressed sensing is a theory which has attracted 
a great deal of attention recently. In brief, the theory 
states that a wide range of possible signal types can be 
accurately represented from a greatly reduced number of 
acquired samples [3], [4]. That is, these signal types can be 
accurately reconstructed from samples taken significantly 
below the Shannon-Nyquist rate which is normally seen as 
the ultimate limit.

Atomic Force Microscopy (AFM) is one of the most 
advanced tools for high-resolution imaging and manipu-
lation of nanoscale matter [5]. When used for imaging, it 
is able to generate a 3D surface map with sub nanometer 
resolution of an object [6]. To generate this map, a sharp 

probe is brought close to the surface of the object, and the 
probe tip and the object are then moved relative to each 
other. The mechanical probe tip is affected by the force 
on the surface and, loosely speaking, “feels” the surface 
[6], [7]. Unfortunately, standard AFM imaging requires a 
timescale on the order of minutes to hours to acquire an 
image [7].

In the course of our work with compressed sensing and 
AFM, we have identified three shortcomings. We find that 
these are not adequately met by available free and open 
source research software in this area:

1. Software for reconstruction of compressed sensing 
signals.

2. Software for consistent and rigorous testing of 
reconstruction algorithms, particularly of their 
reconstruction capabilities in terms of phase transi-
tion.

3. Software for acquisition and processing of AFM 
images in relation to compressed sensing.

While free and open source software for compressed 
sensing signal reconstruction is available as such [8], [9], 
most of this software relies on Matlab from MathWorks 
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which limits the reproducibility. Also, the available free 
and open source software for AFM image post-processing 
and visualisation [10] does not include compressed sens-
ing related functionality. Instead, to mitigate these short-
comings, we have built the magni software package to 
ensure the highest degree of reproducibility defined for 
signal processing [11]. This has been done by relying on 
the free and open source programming language Python2 

and by making all examples, figures, etc. easily reproduc-
ible. An example of the reconstruction of an AFM image 
is shown in Figure 1. Using magni, the original image 
was loaded, preprocessed, sampled, reconstructed and dis-
played in less than 25 lines with intuitive calls to magni 
such as:

f>>> magni.imaging.measurements.spiral_sample_
image(h, w, scan_length, num_points)
>>> magni.imaging.measurements.construct_meas
urement_matrix(img_coords, h, w)
>>> magni.imaging.dictionaries.get_DCT((h, w))
>>> magni.afm.reconstruction.reconstruct(domain.
measurements, Phi, Psi)

We have designed the magni software package to 
address the above three needs: it contains a selection of 
compressed sensing reconstruction algorithms, a frame-
work for evaluating reconstruction algorithms through 
Monte Carlo Simulations, and more AFM-specific func-
tionality for sampling and reconstructing images from 
AFM equipment. Further development of the package is 
planned through our ongoing FastAFM research project 
as this progresses over the coming years. This further 
development aims to extend the functionality of the pack-
age both in terms of directly interfacing the AFM equip-
ment and in terms of adding more post-processing and 
reconstruction algorithms.

Implementation and architecture
The magni package is written in the Python program-
ming language2. Python combined with a set of third-party 
libraries is an excellent tool for scientific and engineer-
ing applications [12]. The magni package uses the fol-
lowing third-party libraries to exploit code reuse, to ease 
the quality control process, and to enhance the end user 
experience:

•	 The numpy and scipy libraries are used for handling 
data (using the efficient ndarray data container 
class [13]) and for performing numerical computa-
tions. These are two of the core libraries for scientific 
computing using Python [12].

•	 The pytables library [14] is used for storing data 
through a high-abstraction HDF5 database interface.

•	 The matplotlib library [15] is used for visualising 
data.

•	 The easy-to-use IPython [16] Notebook is used for 
presenting a number of examples showing the capa-
bilities of the magni package.

The magni package is itself a library, i.e. it is a col-
lection of Python sub-packages and modules and as such 
does not provide any (graphical) user interface. The func-
tionality provided by magni may be grouped into five 
categories with a sub-package assigned to each category, 
as illustrated in Figure 2. Furthermore, each sub-package 
has a number of modules or nested sub-packages to group 
related functionality.

As for coding style, procedural programming is preferred 
over object-oriented programming, to avoid unnecessary 
overhead [17]. Also, the developers found procedural 
programming more transparent for implementing the 

Figure 1: An example compressive sensing reconstruction of an AFM image.
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desired functionality. Only in a few cases where the use 
of classes leads to significantly cleaner code, object-ori-
ented programming is applied. Thus each module has its 
functionality encapsulated in a number of functions and 
classes, for which a distinction is made between public, 
internal, and private accessibility [18]. These accessibility 
levels are reflected in the code by use of the weak “inter-
nal use” indicator underscore convention as suggested by 
PEP83:

•	 Private functionality is used only by the module itself. 
An underscore precedes the name of such functions 
or classes.

•	 Internal functionality is used by modules in the same 
or a nested sub-package. No underscore precedes the 
name of such functions or classes, but an underscore 
precedes the name of the module.

•	 Public functionality is available to the end-users and 
used by the package itself. No underscore precedes 
the name of such functions or classes, and no under-
score precedes the name of the module.

Both functions and methods are implemented as to 
ensure readability in addition to efficiency by limiting the 
number of logical tasks per routine, the cyclomatic com-
plexity [19], [20], and the number of physical code lines4. 
The cyclomatic complexity, i.e. the number of independ-
ent paths through the function, is kept below 10 for core 
functionality, consistent with observations on the level 
which programmers can usually handle flawlessly. This 
has been validated via the static code analyser radon5. 
The number of physical code lines is kept below 50 which 

is consistent with recommendations used at IBM and TRW 
[19] and general experiences in this field [21], [22].

The magni package complies with the PEP8 recom-
mendation for Python coding conventions. This ensures 
that all Python code conforms to a number of recommen-
dations with the aim of making the code user-friendly and 
thus easier and more robust from a maintenance point-of-
view. The recommendations cover e.g. line width, variable 
naming conventions, package importing, indentations, 
and source encoding. Furthermore, magni is extensively 
documented using numpydoc6 formatted doc-strings 
which describe the objective of the code, specify inputs 
and outputs of functions, elaborate on the functionality of 
the code, mention relevant references, and present exam-
ples of the use of the package. Finally, the input of every 
public (i.e. user-accessible) function and class is validated 
according to the known requirements with appropriate 
Python exceptions raised for invalid input. This is done 
to avoid runtime errors with hard-to-debug messages and 
stack traces.

Quality control
The code development procedure was built on what was 
found to be the best choice of methods from: 1) Well 
defined stage-based methods such as the structured water-
fall approach [23] and the spiral approach [24] allowing 
backward interaction between different development 
phases; and 2) The test and adaptive centred Agile pro-
cedure [25] including e.g. Scrum [26], [27] and extreme 
programming [28], [29] with parts such as code reviews, 
code iteration, simplicity of design, frequent refactoring 
and collective ownership. All code modules were first 

Figure 2: The functionality of the 5 sub-packages of magni along with the dependencies of magni.
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developed with tight links to the algorithm and refactoring 
was then performed to ensure maintainability, readability, 
robustness and sufficient performance. Multiple smaller 
and one large code review were held by 2-6 researchers 
including the main developers. Throughout the develop-
ment process, Git was used for version control and issue 
tracking [30], and multiple branches were used to ensure 
that only tested code entered the master branch.

Testing and code validation has been handled by differ-
ent instruments:

•	 15 carefully designed end-to-end examples have been 
implemented in IPython Notebook (the .ipynb 
files). United, these examples exercise all critical code 
segments and serve the purpose of integration and 
regression testing.

•	 Doc-strings for all public functions include examples 
that are used in automated doctests7. This helps with 
the regression testing and ensures that the docstrings 
are kept up-to-date.

•	 pyflakes and pylint static source code analysers 
for Python have been used in the code development 
process to catch bugs and bad coding quality.

As always, no software package is better than its docu-
mentation and examples provided along with the package. 
The examples and part of the documentation have already 
been mentioned. Some of the examples use an AFM 
image, which is provided with the package. Furthermore, 
a full documentation in html is automatically generated 
from the doc-strings. A pdf version of this is shipped with 
the code.

(2) availability
Operating system
Tested on Ubuntu 12.04 LTS Linux, Apple Mac OS X 10.9, 
and Microsoft Windows 7. Since magni is written in pure 
Python, it should run on any system on which Python and 
the magni dependencies run.

programming language
The magni package is written in pure Python. Python 2 
(>=2.7) or Python 3 (>=3.3) is required to use the package. 
The package has been tested with the Anaconda8 Python 
distribution by Continuum Analytics.

additional system requirements
magni is designed to process data sets of all sizes. 
Hardware requirements in terms of processor power, 
memory capacity, etc. depend primarily on the size of the 
data sets that are processed. 

Dependencies
magni depends on numpy, scipy, pytables, and 
matplotlib. The package has been tested with:

•	 numpy version 1.8
•	 scipy version 0.13
•	 pytables version 3.1

•	 matplotlib version 1.3

The following libraries are optional requirements for 
magni:

•	 IPython Notebook >= 1.1 (for running examples)
•	 Math Kernel Library (mkl) >= 11.1 (for accelerated 

vector operations)
•	 sphinx >= 1.2 (for building the documentation 

from source)
•	 napoleon >= 0.2.6 (for building the documentation 

from source)

List of contributors
•	 Christian Schou Oxvig (Aalborg University) - Develop-

ment
•	 Patrick Steffen Pedersen (Aalborg University) - Devel-

opment
•	 Jan Østergaard (Aalborg University) - Testing and code 

review
•	 Thomas Arildsen (Aalborg University) - Testing and 

code review
•	 Tobias L. Jensen (Aalborg University) - Testing and 

code review
•	 Torben Larsen (Aalborg University) - Testing and code 

review

archive
Name
Videnbasen (VBN), Aalborg University

Persistent identifier
DOI: http://doi.org/10.5278/VBN/MISC/Magni

License
BSD 2-Clause

publisher
Christian Schou Oxvig

Date published
23/05/14

Code repository
Name
GitHub

Identifier
https://github.com/SIP-AAU/Magni/

License
BSD 2-Clause

Date published
23/05/14

Language
English
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(3) reuse potential
The magni package has been designed to facilitate reuse 
through extensive documentation of functionality and 
interfaces. The code has been implemented with focus on 
readability. And the package is accompanied by a number of 
examples to demonstrate its use in various use-cases.

We expect the magni package to have significant reuse 
potential for researchers in the area of AFM, particularly 
in relation to compressed sensing acquisition and recon-
struction of AFM images. This applies to both users inter-
ested in developing and testing new sampling patterns for 
use in conjunction with compressed sensing techniques 
and users developing new algorithms for compressed 
sensing in the context of AFM.

Furthermore, the magni package is applicable to com-
pressed sensing in general and can be particularly useful 
to those looking for compressed sensing reconstruction 
algorithms for use in Python, which have so far been 
scarce. In addition to reconstruction algorithms, the pack-
age provides a consistent framework which can be used to 
empirically estimate the reconstruction capabilities of the 
users’ own reconstruction algorithms in terms of recon-
struction phase transitions.

Due to the magni package being based on well estab-
lished Python libraries, it fits naturally into the Python eco-
system [31] of high-quality tools for scientific computing. 
The software complies with the reproducible research para-
digm as used in the field of signal processing [11]. The intent 
of reproducible research is to create an open and transpar-
ent approach to the software related to some specific con-
ducted research – see e.g. [32], [33], [34], [35]. We thus 
provide full open access to all source code and full reuse 
rights via the generous BSD 2-Clause license, making it easy 
for others to use the code base. While it is the plan of the 
developers to continuously expand the functionality of the 
software, others are free to use it in separate branches. The 
reproducibility subpackage goes one step further by 
providing functionality for reading and writing the version 
and complete configuration of magni. Furthermore, infor-
mation about conda, git revision, and the system platform 
is included if available. This information can be automati-
cally shipped alongside the results, by letting magni use 
the same HDF5 database for storing the two. With these fea-
tures, the developers hope to inspire others to make their 
results reproducible.

Notes
 1 See http://dx.doi.org/10.5278/vbn/projects/Fas-

tAFM/.
 2 See https://www.python.org/.
 3 Python Enhancement Proposal, see http://legacy.py-

thon.org/dev/peps/pep-0008/.
 4 See https://docs.python.org/2/reference/lexical_

analysis.html.
 5 See https://github.com/rubik/radon.
 6 See https://github.com/numpy/numpy/blob/mas-

ter/doc/HOWTO_DOCUMENT.rst.txt/.
 7 See https://docs.python.org/2/library/doctest.html/.
 8 See http://www.continuum.io/anacondace.html/.
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Abstract—Python does not have a built-in mechanism to validate the value
of function arguments. This can lead to nonsensical exceptions, unexpected
behaviour, erroneous results and the like. In the present paper, we define
the concept of so-called application-driven data types which place a layer of
abstraction on top of Python data types. With this concept in mind, we discuss
the current argument validation solutions of PyDBC, Traitlets and Numtraits,
MyPy, PyValid, and PyContracts. We find that they share the issue of expressing
the validation scheme in terms of Python objects rather than in terms of the
data they hold. Consequently, we lay out a suggestion for a validation strategy
including what qualifies as a validation scheme, how to create an interface
which promotes both usability and readability, and which Python constructs to
encourage using for validation encapsulation. A reference implementation of the
suggested validation strategy is part of the open-source Python package, Magni
which is thus presented along with a number of examples of the usages of this
package.

Index Terms—Function Argument Validation, Application-driven Data Types,
Signal Processing, Computational Science

Introduction

Python is a dynamically typed language that does not have a built-
in mechanism to ensure that the value of an argument passed to
a function conforms to the intentions of that particular argument.
This can lead to nonsensical exceptions, unexpected behaviour,
erroneous results and the like. In signal processing applications
and scientific computing in general, large amounts of numerical
data are passed to any number of functions that inherently impose
limitations upon that data. If such functions do not validate
their arguments, these limitations may be violated without raising
exceptions leading to potentially erroneous results. Thus, although
impairing the performance, explicit validation may not only spare
the user a lot of frustration by providing useful exceptions but may
also prevent erroneous results and thereby ensure the credibility of
works in scientific computing.

The usage of explicit function argument validation could
be considered "unpythonic"1 as it goes against dynamic typing
[CVS13] and duck typing [CVS13] by not relying on documen-
tation, clear code and testing to ensure correct usage. Even so,
there exist a number of solutions for validating function arguments

* Corresponding author: psp@es.aau.dk
‡ Faculty of Engineering and Science, Department of Electronic Systems,
Section of Signal and Information Processing, Aalborg University, 9220
Aalborg, Denmark

Copyright c○ 2016 Patrick Steffen Pedersen et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

in Python relying on a wide range of language constructs and
interfaces. The validation capabilities of these solutions vary
greatly from type, attribute, and value checks to fully customisable
checks. Among these solutions are PyDBC, Traitlets and Num-
traits, MyPy, PyValid, and PyContracts which are all discussed
later. Most of the solutions do, however, seem to have an interface
which relates to the data model used by Python and therefore
translates to Python check in a straightforward way.

Unfortunately, there are a number of shortcomings with the ex-
isting validation strategies as implemented in the existing Python
packages with validation capabilities; in particular in signal pro-
cessing applications. Some of the existing solutions lack general-
ity, some do not promote readability, and some are inconvenient
to use. However, the primary issue is that the validation scheme of
function arguments is expressed in terms of Python objects rather
than in terms of the data they hold, and this poses a number of
problems. Even with these shortcomings, the existing solutions
represent a large variety of validation strategies which are an
obvious source of inspiration.

In the present effort, we suggest the concept of so-called
application-driven data types as a signal processing data model
for programming. These data types are intended for expressing the
validation scheme of function arguments. Furthermore, based on
existing solutions, we lay out a new strategy for validating function
arguments in Python signal processing applications. Finally, we
present the open-source Python package, Magni which includes a
reference implementation of the suggested validation strategy, and
we show a number of examples of the usage of this package.

The remainder of the present paper is organised as follows.
We first take a look at validation in Python at a glance before
presenting the concept of application-driven data types. Next, we
discuss some of the existing solutions with an emphasis on the
validation strategies they represent. Drawing on the observations
made, we then present the suggested Python validation strategy.
Following this specification, we detail a reference implementation
of it and give examples of its usage. Finally, we conclude on
what is achieved by the presented validation strategy and reference
implementation as well as when to use them. All code examples
have been run with Python 2.7 unless otherwise noted, all trace-
backs have been removed to save space, and exception messages
and the like have been broken across multiple lines using trailing
backslashes where necessary.

1. For an informal yet fitting definition, see http://stackoverflow.com/
questions/25011078/what-does-pythonic-mean
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Validation in Python at a glance

For the purpose of exemplifying the concepts discussed in this
section, we define a simple Python function for returning the
square root of the first item of a sequence. Obviously, only a
sequence with a non-negative, numerical first item, a0 ∈ R≥0,
should be a valid argument of this function.
def do_something(a):

print(a[0]**0.5)

To quote the Zen of Python2, "there should be one-- and preferably
only one --obvious way to do it" when faced with solving a
task in Python, and the obvious ways to solve common tasks
are oftentimes referred to as pythonic idioms. When it comes to
function argument validation in Python, the most pythonic idiom
is to clearly document what a function expects and then just try to
use whatever gets passed to the function and either let exceptions
propagate or catch attribute errors and raise other exceptions
instead. This approach is well-suited for Python because it is a
dynamically typed language. Basically, this means that variables,
such as the function argument in the example, are not limited to
hold values of a certain type. Instead, we can pass a number, a
sequence, a mapping, or any other type to the example function.
Regardless of the type, Python tries to use whatever value gets
passed to the function which is a consequence of duck typing. The
basic principle is that if a bird looks like a duck, swims like a
duck, and quacks like a duck, then it probably is a duck. That is,
if a value exhibits the desired behaviour, then that value probably
is valid. Translated to our example, if the value of the function
argument, a, has the __getitem__ attribute which Python uses
internally for retrieving the first item, then a probably is valid.
Thus, the most pythonic idiom would rely on documentation, clear
code, and testing to ensure correct usage rather than explicitly
testing function arguments to ensure conformity to the intentions
of the function.

What happens, then, if the value of a function argument
is invalid by the reckoning of duck typing? This is the case
with the following call as the built-in int type does not define
__getitem__:
>>> integer = 42
>>> do_something(integer)
TypeError: ’int’ object has no attribute \
’__getitem__’

With the following call, a TypeError exception is raised with a
message that "’int’ object has no attribute ’__getitem__’".
Even with this simple example, such an exception message is
less sensible than desired. Furthermore, such an exception is
as likely to occur in some obscure function call and, thus, be
accompanied by a traceback with more levels than anyone would
want. However, at least the presence of an exception indicates that
something did not go as expected. What happens, however, if the
value of a function argument is valid by the reckoning of duck
typing but does not conform to the intentions of the function?
This is the case with the following call as the built-in dict
type defines __getitem__ but with a different purpose than
the __getitem__ of sequences:
>>> dictionary = {-1: 0, 0: 1}
>>> do_something(dictionary)
1.0

The intention of the function is to operate on the first item of the
function argument, but dictionary is unordered meaning that

2. See https://www.python.org/dev/peps/pep-0020/

there is no such thing as a first item. However, the call does not
raise an exception because of duck typing. This is an example of
unexpected or erroneous behaviour.

The two examples of calls presented showcase how the lack of
function argument validation can lead to hard-to-debug exceptions
or even worse to unexpected or erroneous behaviour. The benefit
of explicit function argument validation is that the mentioned
problems should be avoided. Furthermore, by having such val-
idation for functions that are part of a public API of released
packages, the package is made more trustworthy and user-friendly.

How to Test for Validity

One way to test for validity would be to check if the value of
a variable has a certain type. That is, to determine the validity
based on what a value is. For example, we could rewrite the
do_something example in the following way:

def do_something(a):
if not isinstance(a, list):

raise TypeError(’Descriptive message.’)

if not isinstance(a[0], int):
raise TypeError(’Descriptive message.’)

print(a[0]**0.5)

Obviously, this approach to validation goes against dynamical
typing as it restricts variables to only hold values of certain types.
In the example, amay hold values of the type list or of a derived
type, and the first item of a may hold values of the type int or of
a derived type. Clearly, the validation in the above example is too
restrictive: as the intention of the function is to allow a sequence
with a non-negative, numerical first item, the following call should
pass but instead fails the validation checks:

>>> sequence = (0., 1.)
>>> do_something(sequence)
TypeError: Descriptive message.

The issue is that a number of Python types represent sequences,
and a number of Python types represent numbers. This could be
accounted for in the example, but the point to stress is that the
programmer should not have to know about every single Python
type, nor should he or she have to explicitly list a large number of
Python types for each validation check.

Another way to test for validity would be to check if the value
of a variable displays a certain behaviour. That is, to determine
the validity based on what a value can do. For example, we could
rewrite the do_something example in the following way:

def do_something(a):
if not hasattr(a, ’__getitem__’):

raise TypeError(’Descriptive message.’)

if not hasattr(a[0], ’__pow__’):
raise TypeError(’Descriptive message.’)

print(a[0]**0.5)

Clearly, this approach to validation is along the lines of duck
typing as it explicitly checks for the presence of the required
attribute. In the example, a may hold values of any type that
defines the __getitem__ attribute, and a[0] may hold values
of any type that defines the __pow__ attribute. Unlike with the
first way to test for validity, the validation in the above example is
not restrictive enough as already explained using the example with
the dictionary. The same check could be achieved in a cleaner and
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more thorough way using abstract base classes3, but this solution
would essentially suffer from the same type of problem.

Neither of the two ways to test for validity mentioned, consider
the fact that the square root operation is only defined for non-
negative a[0] values if complex numbers are ignored. Thus, a
third way to partially test for validity would be to check if the
value of a variable is in a set of valid values. That is, to determine
validity based on what a value contains. For example, we could
rewrite the do_something example in the following way:
def do_something(a):

if len(a) < 1:
raise ValueError(’Descriptive message.’)

if a[0] < 0:
raise ValueError(’Descriptive message.’)

print(a[0]**0.5)

Obviously, this approach would have to be combined with some-
thing else to ensure that a is indeed a sequence and a[0] is indeed
a number as covered by the first two ways to test for validity.

The Concept of Application-Driven Data Types

The approaches presented in the previous section do not even
consider less common although valid cases such as non-derived
types that only implicitly define the required attributes. Even more
so, it is apparent that there is no straightforward way to test for
validity based solely on what a value is, can do, or contains. A
possible explanation for this is that all three approaches express
the validation scheme in terms of Python objects rather than
in terms of the data they hold. Indeed, it was easy to identify
and in plain writing express that the function argument of the
do_something example must be a sequence with a non-
negative, numerical first item. Expressing the validation scheme
in this way does provide a layer of abstraction.

Instead of checking if the value of a is a certain Python type,
it would be convenient to be able to check if the value of a is a
sequence. Likewise, instead of checking if the value of a[0] is
a certain Python type containing a non-negative value, it would
be convenient to be able to check if the value of a[0] is a
non-negative, numerical type. Both "sequence" and "non-negative,
numerical type" are examples of data types at a higher abstraction
level than actual Python types, and we will name these abstractions
application-driven data types.

In the context of scientific computing and signal processing
in particular, the most relevant and interesting application-driven
data types are numerical types. Here, an application-driven data
type is some "mental" intersection between math and computer
science in scientific computing and signal processing in particular.
For example, the set of real-valued matrices with dimensions m
times n, Rm×n, is an example of an application-driven data type. If
the user is able to test the validity of a function argument against
this application-driven data type, there is no need for the user to
consider the distinction between Python floats, numpy generics,
numpy ndarrays, and so on.

Existing Solutions

As mentioned in the introduction, there exist a number of solutions
to validating function arguments in Python relying on a wide range
of language constructs and interfaces and thereby representing

3. See https://docs.python.org/2/glossary.html#term-abstract-base-class

a large variety of validation strategies. As these strategies are a
source of inspiration for any new validation strategy, this section
is used to briefly discuss some existing solutions with a focus on
the three aspects which make up the suggested validation strategy:
1) The validation schemes that can be expressed and through that
the abstraction level of the application-driven data types. 2) The
way the interface of the implementation allows the validation
scheme to be specified. 3) The Python constructs used to allow
Python to validate the function arguments against the validation
specification. Additionally, the relevant versions of Python are
mentioned as 4) under each solution. Thus, the emphasis of this
section is not to give a complete review of all existing solutions.

PyDBC

Although the original PyDBC4 is long outdated, it represents
an approach worth mentioning. The package allows so-called
contracts to be specified using method preconditions, method
postconditions, and class invariants. Thus, function argument
validation can be performed using method preconditions. In the
following example, the function argument, a, of the function,
exemplify is validated to be a real scalar in the range [0;1]:

import dbc
__metaclass__ = dbc.DBC

class Example:
def exemplify(self, a):

pass # do something

def exemplify__pre(self, a):
assert isinstance(a, float)
assert 0 <= a <= 1

When an invalid value is passed, the following assertion error
occurs:

>>> example = Example()
>>> example.exemplify(-0.5)
AssertionError

As for validation strategy, the following observations are made:

1. As shown in the example above, the validation
function, exemplify__pre contains custom validity
checks, as PyDBC does not include any functionality for
specifying a validation scheme.

2. Without any functionality for specifying a validation
scheme, there is no fixed interface, and the user instead
writes a number of assert statements to validate the
function arguments.

3. The Python constructs used rely on object oriented
Python by using metaclasses. When the metaclass cre-
ates the class, it rewrites the function exemplify to
first invoke the function named exemplify__pre
when exemplify is called following a fixed naming
scheme.

4. PyDBC was intended for Python 2.2 and has not been
changed since 2005, but the package does work with
Python 2.7. It does, however, not work with Python 3,
but the same functionality could indeed be implemented
in Python 3.

4. See http://www.nongnu.org/pydbc/
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Traits, Traitlets, and Numtraits

Traits5 is an extensive package by Enthought which provides
class attributes with the additional characteristics of customis-
able initialisation, validation, delegation, notification, and even
visualisation. Traitlets6 is a lightweight Traits-like module which
provides customisable validation, default values, and notification.
Finally, Numtraits7 adds to Traitlets with a numerical trait with
more versatility in validation than that of the numerical traits of
Traitlets. Thus, although hardly as intended by the developers,
function argument validation can be performed using an attribute
for each function argument. In the following example, the function
argument, a, of the function, exemplify is validated to be a real
scalar in the range [0;1]:
from numtraits import NumericalTrait
from traitlets import HasTraits

class Example(HasTraits):
_a = NumericalTrait(ndim=0, domain=(0, 1))

def exemplify(self, a):
self._a = a

pass # do something

When an invalid value is passed, the following assertion error
occurs:
>>> example = Example()
>>> example.exemplify(-0.5)
traitlets.traitlets.TraitError: _a should be in \
the range [0:1]

As for validation strategy, the following observations are made:
1. The validation scheme of Traitlets requires specifying

a static Python type, allows specifying a valid range
of values for numerical types, and allows specifying
relevant properties for other specific types. Furthermore,
the validation scheme of the numerical trait of Numtraits
does not require specifying a static Python type but
allows specifying the number of dimensions and the
shape of a value.

2. As shown in the example above, the interface of
the implementation lets the user specify the validation
scheme using a single call for each function argument
with named arguments, named keyword arguments and
in some cases unspecified keyword arguments using
**kwargs.

3. The Python constructs used rely on object oriented
Python by using descriptors which modify the retrieving
and modification of attribute values of objects. Thus,
when assigning a new value to an attribute, the relevant
descriptor validates the new value.

4. Traitlets and Numtraits work with Python 2.7 and with
Python 3.3 or above.

Annotations, Type Hints, and MyPy

PEP 31078 is a Python enhancement proposal on function an-
notations which is a feature which has recently been added to
Python. This PEP allows arbitrary annotations without assigning
any meaning to the particular annotations. PEP 4849 is a PEP on
type hints which attach a certain meaning to particular annotations

5. See http://docs.enthought.com/traits/
6. See http://traitlets.readthedocs.org/
7. See http://github.com/astrofrog/numtraits/

to hint the type of argument values and return values of functions.
The most important goal of this is static analysis, but runtime
type checking is mentioned as a potential goal also. For more
information, see PEP 48310 on the theory of type hints and PEP
48211 for a literature overview for type hints. MyPy12 is a static
type checker which, thus, does not enforce data type conformance
at runtime. In the following example, the function argument, a, of
the function, exemplify is validated to be a real scalar:
def exemplify(a: float):

pass # do something

exemplify(’0’)

When the script above is passed to MyPy using Python 3.5, the
following message is produced:
$ mypy example.py
example.py:4: error: Argument 1 to "exemplify" has \
incompatible type "str"; expected "float"

As for validation strategy, the following observations are made:
1. The validation scheme of MyPy requires specifying a
static Python type or a union of static Python types. This
is hardly surprising for a static type checker.

2. As mentioned, the syntax of annotations is given by
PEP 3107, and the format of the type hints is given by
PEP 484 making the type hints explicit and readable
although a less well-known feature of Python.

3. The Python constructs used rely only on annotations
and runs offline and separately of normal execution of
Python code.

4. PEP 484 was accepted for Python 3.5, but the syntax
is compatible with that of PEP 3107 which was accepted
for Python 3.0, and thus MyPy works with Python 3.2
or above. Furthermore, PEP 484 suggests a syntax for
Python 2.7 using comments instead of annotations, and
MyPy supports this and thus also works with Python
2.7.

PyValid

As the name suggests, PyValid13 is a Python validation package,
and it allows validation of function arguments and function return
values. In the following example, the function argument, a, of the
function, exemplify is validated to be a real scalar:
from pyvalid import accepts

@accepts(float)
def exemplify(a):

pass # do something

When an invalid value is passed, the following assertion error
occurs:
>>> exemplify(0)
pyvalid.__exceptions.ArgumentValidationError: The \
1st argument of exemplify() is not in a \
[<type ’float’>]

As for validation strategy, the following observations are made:
1. The validation scheme for PyValid requires specifying

one or more static Python types and acts as a runtime

8. See https://www.python.org/dev/peps/pep-3107/
9. See https://www.python.org/dev/peps/pep-0484/
10. See https://www.python.org/dev/peps/pep-0483/
11. See https://www.python.org/dev/peps/pep-0482/
12. See http://mypy.readthedocs.org/
13. See http://uzumaxy.github.com/pyvalid/
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type checker. Thus, in terms of validation scheme capa-
bilities, this is equivalent to MyPy.

2. As shown in the example above, the interface of
the implementation lets the user specify the validation
scheme using a single call for an entire function with a
single argument or keyword argument for each validated
function argument.

3. The Python constructs used rely on decorators by
including an accept decorator in order to precede
function execution by function argument validation.

4. PyValid works with Python 2.6 or above and with
Python 3.

PyContracts

PyContracts14 is a Python package that allows declaring con-
straints on function arguments and return values. In the following
example, the function argument, a, of the function, exemplify
is validated to be a real scalar in the range [0;1]:
from contracts import contract

@contract(a=’float,>=0,<=1’)
def exemplify(a):

pass # do something

When an invalid value is passed, the following assertion error
occurs:
>>> exemplify(-0.5)
contracts.interface.ContractNotRespected: Breach \
for argument ’a’ to exemplify().
Condition -0.5 >= 0 not respected
checking: >=0 for value: Instance of \
<type ’float’>: -0.5
checking: float,>=0,<=1 for value: Instance of \
<type ’float’>: -0.5
Variables bound in inner context:

As for validation strategy, the following observations are made:
1. The capabilities of PyContracts allows specifying any
conceivable validation scheme. This is achieved in part
through built-in capabilities including specifying one or
more static types in a flexible way, specifying value
ranges, and specifying flexible length/shape constraints.
And in part through custom specifications by using so-
called custom contracts.

2. As shown in the example above, the interface of
the implementation lets the user specify the validation
scheme using a single call for an entire function with
a single keyword argument for each validated function
argument. The validation schemes for the individual
arguments are specified using a custom string format.
As the validation scheme becomes more advanced, the
specification becomes less Python-like and less read-
able. For example, the following was taken from an
official presentation and allows an argument to be a
list containing a maximum of two types of objects:
list(type(t)|type(u)).

3. The Python constructs used rely on decorators by
including a contract decorator in order to precede
function execution by function argument validation. De-
pending on the preference of the user, the validation
scheme is either specified through arguments of the
decorator, through annotations in the form of type hints

14. See http://andreacensi.github.com/contracts/

or custom annotations, or through docstrings following
a specific format.

4. PyContracts works with Python 2 and with Python 3.

The Suggested Python Validation Strategy

This section lays out a suggestion for a Python validation strategy
for validating function arguments in signal processing applica-
tions. This strategy uses the introduced concept of application-
driven data types and the observations made on the strategies
of existing solutions. As mentioned in the previous section, the
suggested validation strategy is made up of three aspects which
are discussed separately in the following.

The Suggested Validation Schemes

As described in a previous section, we want to specify validation
schemes in terms of application-driven data types rather than in
terms of what a valid Python object is, can do, or contains.
Needless to say, a translation must still be made from application-
driven data types to Python data types, but this task is left for the
validation package according to the suggested validation strategy.
For an early implementation, any application-driven data type will
allow only a limited set of Python data types. This does, however,
not mean that the application-driven data type is limited to a few
Python data types. Rather, more Python data types may be added
along the way as long as they provide the necessary attributes
with the desired interpretation. Thus, effectively, the suggested
validation strategy can be considered less strict than static type
checking but more strict than duck type checking.

The numerical trait of the Numtraits package has an inter-
esting approach which is not too different from the concept of
application-driven data types. The numerical trait does not distin-
guish between Python data types as long as they are numerical,
and this corresponds to the most general numerical application-
driven data type able to assume any numerical value of any shape.
Furthermore, the numerical trait allows restricting the data type
to more restrictive data types by specifying a number of dimen-
sions, a specific shape, and/or a range of valid values. Indeed,
signal processing applications could benefit from having such an
application-driven data type. However, in some applications it may
be necessary to work with boolean values, integral values, real
values, or complex values only. Therefore, it should be possible
to restrict the data type to suit these cases in addition to the other
possible restrictions allowed by numerical traits.

To summarise, in Python signal processing applications, there
should be an application-driven data type representing the most
general numerical value being able to assume any numerical value
of any shape. This data type should be able to be restricted to less
general data types by specifying the mathematical set, the range
or domain of valid values, the number of dimensions, and/or the
specific shape of the data type. The suggested validation schemes
should be expressed in terms of the desired application-driven data
type.

The Suggested Interface Type

Most of the existing solutions which were mentioned in the
previous section specify the validation scheme of all function
arguments of a function in a single call to the validation package
in question. This is not the case with the traits of the Trailets and
Numtraits packages which only specify the validation scheme of
a single function argument in each call to the validation package.
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From the perspective of the authors, the latter approach yields the
better readability. Therefore, the suggested interface type should
only let the user specify the validation scheme of a single function
argument in each call.

As for the specifics of the interface, the validation scheme
must be easy both for the programmer to state and for users to
read. The PyContracts details its own format where the validation
scheme is given by a string. However, it would be desirable to use a
more standard Python interface to ease the usages even if it means
having to be more verbose. On the other hand, the numerical
trait of the Numtraits package uses named named arguments and
keyword arguments which relate to the possible restrictions of
the application-driven data types. From the perspective of the
authors, the latter approach works well with application-driven
data types and result in logical, easy to use interfaces. Therefore,
the suggested interface should use named arguments and keyword
arguments related to the possible restrictions of the general numer-
ical application-driven data type to specify the validation scheme
of function arguments.

The Suggested Python Constructs to Use

There are a lot of Python constructs which could potentially be
used as showcased by the existing solutions. PyContracts allows
the user to specify the validation scheme through the docstring
of a function. However, most users would not expect docstrings
to be parsed to yield the validation scheme, and furthermore the
format used to specify the validation scheme would not be obvious
because of the lack of restrictions put on docstrings. Therefore,
docstrings are not suggested as a Python construct to use here.
Annotations, as used by MyPy, are relatively new to Python,
but that should not disqualify them from being used. However,
the format used would not be obvious because there are few
restrictions put on annotations so with the exception of type hints
which are insufficient for this purpose. Therefore, annotations are
not suggested as a Python construct to use here.

Next, there are the object oriented Python constructs. Meta-
classes, as used by, PyDBC, have existed for a long time. However,
these have changed over time, and so the metaclass attribute
feature of Python 2 no longer works in Python 3, and only one
metaclass is allowed per class in the more recent Python versions.
Furthermore, the behaviour of metaclasses makes them impair
the readability, especially to users that are unfamiliar with the
construct. Therefore, metaclasses are not suggested as a Python
construct to use here. Descriptors, as used by Traits, Traitlets,
and Numtraits, are another feature applicable to object oriented
Python, and these can provide flexibility and readability. However,
they are limited to object oriented Python, and furthermore it
seems unpythonic to validate function arguments by invoking
descriptors through class instance attribute assignment. Therefore,
descriptors are not suggested as a Python construct to use here.

Decorators, as used by PyValid and PyContracts, are a well-
known and general Python construct. However, it is not imme-
diately apparent if something goes on "under the hood", and
the pythonic approach is to specify the validation scheme of all
function arguments in a single decorator call, both of which affect
readability. Therefore, decorators are not suggested as a Python
construct to use here.

The suggested Python construct values explicit over implicit
and promotes readability. The suggestion is to define and explicitly
call a nested validation function with no arguments. There are

a number of obvious alternatives which are not suggested for
different reasons:

• It is not suggested to precede the function code by calls
directly to a validation package because this does not
clearly separate validation from the rest of the code.

• It is not suggested to use arguments for the validation
function because this could potentially lead to error-prone
validation if the validation function arguments are wrongly
named or ordered, or the function arguments are renamed
or reordered.

• It is not suggested to use a global rather than nested vali-
dation function because this could potentially separate the
validation from the function and thus reduce readability.

Magni Reference Implementation

A reference implementation of the suggested valida-
tion strategy is made available by the open source
Magni Python package [OPA+14] through the subpackage
magni.utils.validation. The subpackage contains the
following functions:

decorate_validation(func)
disable_validation()
validate_generic(

name, type_, value_in=None, len_=None,
keys_in=None, has_keys=None, ignore_none=False,
var=None)

validate_levels(name, levels)
validate_numeric(

name, type_, range_=’[-inf;inf]’, shape=(),
precision=None, ignore_none=False, var=None)

Of these, validate_generic and validate_levels are
concerned with validating objects outside the scope of the present
paper. The function, disable_validation can be used to
disable validation globally. Although discouraged, this can be
done to remove the overhead of validating function arguments.
As the name suggests, decorate_validation is a decorator,
and this should be used to decorate every validation function with
the sole purpose of being able to disable validation. Using the
suggested validation strategy with Magni, the following structure
is used for all validation adhering to the suggested Python
constructs to use:

from magni.utils.validation import decorate_validation

def func(*args, **kwargs):
@decorate_validation
def validate_input():

pass # validation calls

validate_input()

pass # the body of func

The remaining function, validate_numeric, is used to val-
idate numeric objects based on application-driven data types as
proposed by the suggested validation scheme of the validation
strategy. This is done using the interface as proposed by the
suggested interface type of the validation strategy: The type_
argument is used for specifying one or more of the boolean,
integer, floating, and complex subtype specifiers. The
range_ argument is used for specifying the set of valid values
with a minimum value and a maximum value both of which
may be included or excluded. The shape argument is used for
specifying the shape with the entry, -1 allowing an arbitrary shape

134



112 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

for a given dimension and any non-negative entry giving a fixed
shape for a given dimension.

The remaining arguments of validate_numeric are not
directly related to the validation scheme but rather to the sur-
rounding Python code. The precision argument is used for
specifying one or more allowed precisions in terms of bits per
value. The name argument is used for specifying which argument
of the function to validate with the particular validation call. The
ignore_none argument is a flag indicating if the validation call
should ignore None objects and thereby accept them as valid. The
var argument is irrelevant to the scope of the present paper and
the reader is referred to the documentation for more information.

Additional resources for magni are:

• Official releases: doi:10.5278/VBN/MISC/Magni
• Online documentation: http://magni.readthedocs.io
• GitHub repository: https://github.com/SIP-AAU/Magni

Examples

As mentioned in relation to the suggested validation schemes,
there should be an application-driven data type representing the
most general numerical value being able to assume any numerical
value of any shape. The following example validates a variable
against exactly this application-driven data type. The validation
only fails when a non-numerical object is passed as argument to
func.
from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric
import numpy as np

def func(var):
@decorate_validation
def validate_input():

all_types = (’boolean’, ’integer’,
’floating’, ’complex’)

validate_numeric(
’var’, all_types, shape=None)

validate_input()

pass # the body of the func

When valid values are passed, nothing happens:
>>> func(42)
>>> func(3.14)
>>> func(np.empty((5, 5), dtype=np.complex_))

However, when a non-numerical object is passed, the following
exception occurs:
>>> func(’string’)
TypeError: The value(s) of >>var<<, ’string’, must \
be numeric.

In the next example, the application-driven data type is any non-
negative real scalar, i.e., R≥0.
from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric

def func(var):
@decorate_validation
def validate_input():

real = (’integer’, ’floating’)
validate_numeric(

’var’, real, range_=’[0;inf]’)

validate_input()

pass # the body of the func

When valid values are passed, nothing happens:

>>> func(0)
>>> func(3.14)

However, when a complex object or a negative float is passed, the
following exception occurs:

>>> func(1j)
TypeError: The value(s) of >>var.dtype<<, \
<type ’complex’>, must be in (’integer’, ’floating’).

>>> func(-3.14)
ValueError: The value(s) of >>min(real(var))<<, \
-3.14, must be >= 0.

Notice, that the range_ argument in the validation call of the
previous includes the values zero and infinity using [...]. One
or both of these values could be excluded using (...) or ]...[
as is the case in the next example, i.e., R>0.

from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric

def func(var):
@decorate_validation
def validate_input():

real = (’integer’, ’floating’)
validate_numeric(

’var’, real, range_=’(0;inf)’)

validate_input()

pass # the body of the func

When a valid value is passed, nothing happens:

>>> func(3.14)

However, when a zero-valued object is passed, the following
exception occurs:

>>> func(0.)
ValueError: The value(s) of >>min(real(var))<<, \
0.0, must be > 0.

In the final example, the application-driven data type is any real
matrix with its first dimension equal to 5, i.e. R5×n for any non-
negative integer n.

from magni.utils.validation import decorate_validation
from magni.utils.validation import validate_numeric
import numpy as np

def func(var):
@decorate_validation
def validate_input():

real = (’integer’, ’floating’)
validate_numeric(

’var’, real, shape=(5, -1))

validate_input()

pass # the body of the func

When a valid value is passed, nothing happens:

>>> func(np.empty((5, 5)))
>>> func(np.empty((5, 10)))

However, when an R10×5 object or an R5×5×5 object is passed,
the following exception occurs:

>>> func(np.empty((10, 5)))
ValueError: The value(s) of>>var.shape[0]<<, 10, \
must be 5.

>>> func(np.empty((5, 5, 5)))
ValueError: The value(s) of >>len(var.shape)<<, 3, \
must be 2.
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Requirements

The required dependencies for magni (as of version 1.4.0) are:

• Python >= 2.7 / 3.3
• Matplotlib [Hun07] (Tested on version >= 1.3)
• NumPy [vdWCV11] (Tested on version >= 1.8)
• PyTables15 (Tested on version >= 3.1)
• SciPy [Oli07] (Tested on version >= 0.14)

It should be noted that the requirements other than
Python and NumPy are due to magni rather than
magni.utils.validation. In addition to the above require-
ments, magni has a number of optional dependencies but none of
these are relevant to the usage of magni.utils.validation.

Quality Assurance

The Magni Python package has been developed according to best
practices for developing scientific software [WAB+14], and every
included piece of code has been reviewed by at least one person
other than its author. Furthermore, the PEP 816 style guide is
adhered to, no function has a cyclomatic complexity [McC76]
exceeding 10, the code is fully documented, and an extensive test
suite accompanies the package. More details about the quality
assurance of magni is given in [OPA+14].

Conclusions

We have argued that function arguments should be validated
according to data types at a higher abstraction level than actual
Python types, and we have named these application-driven data
types. Based on a discussion of existing validation solutions, we
have suggested a Python validation strategy including three as-
pects: 1) The validation schemes that can be expressed. 2) The way
the interface of the implementation allows the validation scheme
to be specified. 3) The Python constructs used to allow Python
to validate the function arguments. A reference implementation of
this strategy is available in the open source Magni Python package
which we have presented along with a number of examples. In
short, magni and more generally the validation strategy should
be used to abstract function argument validation from Python to
signal processing, to make validation ease to write, and to enhance
readability of validation.
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Abstract—Computational methods have become a prime branch of modern
science. Unfortunately, retractions of papers in high-ranked journals due to
erroneous computations as well as a general lack of reproducibility of results
have led to a so-called credibility crisis. The answer from the scientific com-
munity has been an increased focus on implementing reproducible research in
the computational sciences. Researchers and scientists have addressed this
increasingly important problem by proposing best practices as well as making
available tools for aiding in implementing them. We discuss and give an example
of how to implement such best practices using scientific Python packages. Our
focus is on how to store the relevant metadata along with the results of a com-
putational experiment. We propose the use of JSON and the HDF5 database
and detail a reference implementation in the Magni Python package. Further,
we discuss the focuses and purposes of the broad range of available tools
for making scientific computations reproducible. We pinpoint the particular use
cases that we believe are better solved by storing metadata along with results
the same HDF5 database. Storing metadata along with results is important in
implementing reproducible research and it is readily achievable using scientific
Python packages.

Index Terms—Reproducibility, Computational Science, HDF5

Introduction

Exactly how did I produce the computational results stored in
this file? Most data scientists and researchers have probably asked
this question at some point. For one to be able to answer the
question, it is of utmost importance to track the provenance of the
computational results by making the computational experiment
reproducible, i.e. describing the experiment in such detail that it is
possible for others to independently repeat it [LMS12], [Hin14].
Unfortunately, retractions of papers in high-ranked journals due
to erroneous computations [Mil06] as well as a general lack
of reproducibility of computational results [Mer10], with some
studies showing that only around 10% of computational results are
reproducible [BE12], [RGPN+11], have led to a so-call credibility
crisis in the computational sciences.

The answer has been a demand for requiring research to be re-
producible [Pen11]. The scientific community has acknowledged
that many computational experiments have become so complex
that more than a textual presentation in a paper or a technical
report is needed to fully detail it. Enough information to make

* Corresponding author: cso@es.aau.dk
‡ Faculty of Engineering and Science, Department of Electronic Systems,
Aalborg University, 9220 Aalborg, Denmark

Copyright c○ 2016 Christian Schou Oxvig et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the experiment reproducible must be included with the textual
presentation [RGPN+11], [CG12], [SLP14]. Consequently, repro-
ducibility of computational results have become a requirement for
submission to many high-ranked journals [Edi11], [LMS12].

But how does one make computational experiments repro-
ducible? Several communities have proposed best practices, rules,
and tools to help in making results reproducible, see e.g. [VKV09],
[SNTH13], [SM14], [Dav12], [SLP14]. Still, this is an area
of active research with methods and tools constantly evolving
and maturing. Thus, the adoption of the reproducible research
paradigm in most scientific communities is still ongoing - and
will be for some time. However, a clear description of how the
reproducible research paradigm fits in with customary workflows
in a scientific community may help speed up the adoption of it.
Furthermore, if tools that aid in making results reproducible for
such customary workflows are made available, they may act as an
additional catalyst.

In the present study, we focus on giving guidelines for inte-
grating the reproducible research paradigm in the typical scientific
Python workflow. In particular, we propose an easy to use scheme
for storing metadata along with results in an HDF5 database.
We show that it is possible to use Python to adhere to best
practices for making computational experiments reproducible by
storing metadata as JSON serialized arrays along with the results
in an HDF5 database. A reference implementation of our proposed
solution is part of the open source Magni Python package.

The remainder of this paper is organized as follows. We
first describe our focus and its relation to a more general data
management problem. We then outline the desired workflow for
making scientific Python experiments reproducible and briefly
review the fitness of existing reproducibility aiding tools for this
workflow. This is continued by a description of our proposed
scheme for storing metadata along with results. Following this
specification, we detail a reference implementation of it and give
plenty examples of its use. The paper ends with a more general
discussion of related reproducibility aiding software packages
followed by our conclusions.

The Data Management Problem

Reproducibility of computational results may be considered a part
of a more general problem of data management in a computational
study. In particular, it is closely related to the data management
tasks of documenting and describing data. A typical computational
study involves testing several combinations of various elements,
e.g. input data, hardware platforms, external software libraries,
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Fig. 1: Illustration of a typical data management description prob-
lem as a layered graph. In this exemplified experiment, several
combinations of input data, hardware platforms, software libraries
(e.g. NumPy), algorithmic/experimental setup (described in a Python
script), and parameter values are tested. The challenging task is to
keep track of both the full set of combinations tested (marked by all
the edges in the graph) as well as the individual simulations (e.g. the
combination of highlighted vertices).

experiment specific code, and model parameter values. Such a
study may be illustrated as a layered graph like the one shown
in figure 1. Each layer corresponds to one of the elements, e.g.
the version of the NumPy library or the set of parameter values.
The edges in the graph mark all the combinations that are tested.
An example of a combination that constitutes a single simulation
or experiment is the set of connected vertices that are highlighted
in the graph in figure 1. In the present study, we focus on the
problem of documenting and describing such a single simulation.
A closely related problem is that of keeping track of all tested
combinations, i.e. the set of all paths through all layers in the graph
in figure 1. This is definitely also an interesting and important
problem. However, once the "single simulation" problem is solved,
it should be straight forward to solve the "all combinations"
problem by appropriately combining the information from all the
single simulations.

Storing Metadata Along With Results

For our treatment of reproducibility of computational results, we
adopt the meaning of reproducibility from [LMS12], [Hin14]. That
is, reproducibility of a study is the ability of others to repeat
the study and obtain the same results using a general description
of the original work. The related term replicability then means
the ability of others to repeat the study and obtain the same
results using the exact same setup (code, hardware, etc.) as in
the original work1. As pointed out in [Hin14], reproducibility
generally requires replicability.

The lack of reproducibility of computational results is often-
times attributed to missing information about critical computa-
tional details such as library versions, parameter values, or precise
descriptions of the exact code that was run [LMS12], [BPG05],
[RGPN+11], [Mer10]. Several studies have given best practices
for how to detail such metadata to make computational results
reproducible, see e.g. [VKV09], [SNTH13], [SM14], [Dav12].
Here we detail the desired workflow for storing such metadata
along with results when using a typical scientific Python workflow
in the computational experiments. That is, we detail how to

document a single experiment as illustrated by the highlighted
vertices in figure 1.

The Scientific Python Workflow

In a typical scientific Python workflow, we define an experiment
in a Python script and run that script using the Python interpreter,
e.g.

$ python my_experiment.py

The content of the my_experiment.py script would typically
have a structure like:

import some_library
import some_other_library

def some_func(...):
...

def run_my_experiment(...):
...

if __name__ == ’__main__’:
run_my_experiment(...)

This is a particularly generic setup that only requires the availabil-
ity of the Python interpreter and the libraries imported in the script.
We argue that for the best practices for detailing a computational
study to see broad adoption by the scientific Python community,
three elements are of critical importance: Any method or tool for
storing the necessary metadata to make the results reproducible
must

1. be very easy to use and integrate well with existing
scientific Python workflows.

2. be of high quality to be as trustworthy as the other
tools in the scientific Python stack.

3. store the metadata in an open format that is easily
inspected using standard viewers as well as program-
matically from Python.

These elements are some of the essentials that have made
Python so popular in the scientific community2. Thus, for storing
the necessary metadata, we seek a high quality solution which
integrates well with the above exemplified workflow. Furthermore,
the metadata must be stored in such a way that is is easy to extract
and inspect when needed.

Existing Tools

Several tools for keeping track of provenance and aiding in
adhering to best practices for reproducible research already ex-
ist, e.g. Sumatra [Dav12], ActivePapers [Hin15], or Madagascar
[Fom15]. Tools like Sumatra, ActivePapers, and Madagascar gen-
erally function as reproducibility frameworks. That is, when used
with Python, they wrap the standard Python interpreter with a
framework that in addition to running a Python script (using the
standard Python interpreter) also captures and stores metadata
detailing the setup used to run the experiment. E.g. when using
Sumatra, one would replace python my_experiment.py
with [Dav12]

$ smt run -e python -m my_experiment.py

1. Some authors (e.g. [SLP14]) swap the meaning of reproducibility and
replicability compared to the convention, we have adopted.

2. See http://cyrille.rossant.net/why-using-python-for-scientific-
computing/ for an overview of the main arguments for using Python
for scientific computing.
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Fig. 2: Illustration of the difference between a full reproducibility
framework (on the left) and an importable Python library (on the
right). The reproducibility framework calls the metadata collector
as well as the Python interpreter which in turn runs the Python
simulation script which e.g. imports NumPy. When using an im-
portable library, the metadata collector is imported in the Python
script alongside with e.g. NumPy.

This idea of wrapping a computational simulation is different from
the usual scientific Python workflow which consists of running a
Python script that imports other packages and modules as needed,
e.g. importing NumPy for numerical computations. This difference
is illustrated in figure 2.

We argue that an importable Python library for aiding in
making results reproducible has several advantages compared to
using a full blown reproducibility framework. A major element in
using any tool for computational experiments is being able to trust
that the tool does what it is expected do. The scientific community
trusts Python and the SciPy stack. For a reproducibility framework
to be adopted by the community, it must build trust as the wrapper
of the Python interpreter, it effectively is. That is, one must trust
that it handles experiment details such as input parameters, library
paths, etc. just as accurately as the Python interpreter would have
done. Furthermore, such a framework must be able to fully replace
the Python interpreter in all existing workflows which uses the
Python interpreter. A traditional imported Python library does not
have these potentially staggering challenges to overcome in order
to see wide adoption. It must only build trust among its users in the
same way as any other scientific library. Furthermore, it would be
easy to incorporate into any existing workflow. Thus, ideally we
seek a solution that allow us to update our my_experiment.py
to have a structure like:

import some_library
import some_other_library
import reproducibility_library

def some_func(...):
...

def run_my_experiment(...):
...

if __name__ == ’__main__’:
reproducibility_library.store_metadata(...)
run_my_experiment(...)

Interestingly, the authors of the Sumatra package has to some
degree pursued this idea by offering an API for importing the
library as an alternative to using the smt run command line
tool.

Equally important, to how to obtain the results, is how to
inspect the results afterwards. Thus, one may ask: How are the
results and the metadata stored, and how may they be accessed
later on? For example, Sumatra by default stores all metadata in a
SQLite database [Dav12] separate from simulation results (which
may be stored in any format) whereas ActivePapers stores the
metadata along with the results in an HDF5 database [Hin15]. The
idea of storing (or "caching") intermediate results and metadata
along with the final results has also been pursued in another study
[PE09].

We argue that this idea of storing metadata along with results
is an excellent solution. Having everything compiled into one stan-
dardized and open file format helps keep track of all the individual
elements and makes it easy to share the full computational experi-
ment including results and metadata. Preferably, such a file format
should be easy to inspect using a standard viewer on any platform;
just like the Portable Document Format (PDF) has made it easy
to share and inspect textual works across platforms. The HDF5
Hierarchical Data Format [FP10] is a great candidate for such a
file format due to the availability of cross-platform viewers like
HDFView3 and HDFCompass4 as well as its capabilities in terms
of storing large datasets. Furthermore, HDF5 is recognized in the
scientific Python community5 with bindings available through e.g.
PyTables6, h5py7, or Pandas [McK10]. Also, bindings for HDF5
exists in several other major programming languages.

Suggested Library Design

Our above analysis reveals that all elements needed for imple-
menting the reproducible research paradigm in scientific Python
are in fact already available in existing reproducibility aiding
tools: Sumatra may serve as a Python importable library and
the ActivePapers project shows how metadata may be stored
along with results in an HDF5 database. However, no single tool
offers all of these elements for the scientific Python workflow.
Consequently, we propose creating a scientific Python package
that may be imported in existing scientific Python scripts and
may be used to store all relevant metadata for a computational
experiment along with the results of that experiment in an HDF5
database.

Technically, there are various ways to store metadata along
with results in an HDF5 database. The probably most obvious
way is to store the metadata as attributes to HDF5 tables and
arrays containing the results. However, this approach is only
recommended for small metadata (generally < 64KB)8. For larger
metadata it is recommended to use a separate HDF5 array or table
for storing the metadata9. Thus, for the highest flexibility, we
propose to store the metadata as separate HDF5 arrays. This also
allows for separation of specific result arrays or tables and general
metadata. When using separate metadata arrays, a serialization (a
representation) of the metadata must be chosen. For the metadata
to be humanly readable using common HDF viewers, it must be
stored in an easily readable string representation. We suggest using
JSON [ECM13] for serializing the metadata. This makes for a
humanly readable representation. Furthermore, JSON is a standard
format with bindings for most major programming languages10.

3. See https://www.hdfgroup.org/products/java/hdfview/
4. See https://github.com/HDFGroup/hdf-compass
5. See https://www.youtube.com/watch?v=nddj5OA8LJo
6. See http://www.pytables.org/
7. See http://www.h5py.org/
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Fig. 3: Illustration of the structure of the
magni.reproducibility subpackage of Magni. The main
modules are the data module for acquiring metadata and the io
module for interfacing with an HDF5 database when storing as well
as reading the metadata. A subset of available functions are listed
next to the modules.

In particular, Python bindings are part of the standard library
(introduced in Python 2.6)11. This would effectively make Python
>=2.6 and an HDF5 Python interface the only dependencies of
our proposed reproducibility aiding library. We note, though, that
the choice of JSON is not crucial. Other formats similar to JSON
(e.g. XML12 or YAML13) may be used as well. We do argue,
though, that a humanly readable format should be used such that
the metadata may be inspected using any standard HDF5 viewer.

Magni Reference Implementation

A reference implementation of the above suggested library design
is available in the open source Magni Python package [OPA+14].
In particular, the subpackage magni.reproducibility is
based on this suggested design. Figure 3 gives an overview of the
magni.reproducibility subpackage. Additional resources
for magni are:

• Official releases: doi:10.5278/VBN/MISC/Magni
• Online documentation: http://magni.readthedocs.io
• GitHub repository: https://github.com/SIP-AAU/Magni

In magni.reproducibility, a differentiation is made
between annotations and chases. Annotations are metadata that
describe the setup used for the computation, e.g. the computational
environment, values of input parameters, platform (hardware/OS)
details, and when the computation was done. Chases on the other
hand are metadata describing the specific code that was used in the
computation and how it was called, i.e. they chase the provenance
of the results.

8. See http://docs.h5py.org/en/latest/high/attr.html
9. See https://www.hdfgroup.org/HDF5/doc1.6/UG/13_Attributes.html
10. See http://www.json.org/
11. See https://docs.python.org/2/library/json.html
12. See https://www.w3.org/TR/REC-xml/
13. See http://yaml.org/

Requirements

Magni uses PyTables as its interface to HDF5 databases. Thus,
had magni.reproducibility been a package of its own,
only Python and PyTables would have been requirements for its
use. The full requirements for using magni (as of version 1.5.0)
are14

• Python >= 2.7 / 3.3
• Matplotlib [Hun07] (Tested on version >= 1.3)
• NumPy [vdWCV11] (Tested on version >= 1.8)
• PyTables15 (Tested on version >= 3.1)
• SciPy [Oli07] (Tested on version >= 0.14)
• Setuptools16 (Tested on version >= 11.3)

When using the Conda17 package management system for
handling the Python environment used in the computation,
magni.reproducibility may optionally use Conda to cap-
ture details about the Python environment. Thus, we have one
optional dependency

• Conda (Tested on version >= 3.7.0)

Usage Examples

We now give several smaller examples of how to use
magni.reproducibility to implement the best prac-
tices for reproducibility of computational result described
in [VKV09], [SNTH13], [SM14]. An extensive example of
the usage of magni.reproducibility is available at
doi:10.5278/VBN/MISC/MagniRE. This extensive example is
based on a Python script used to simulate the Mandelbrot set18

using the scientific Python workflow described above. An example
of a resulting HDF5 database containing both the Mandelbrot sim-
ulation result and metadata is also included. Finally, the example
includes a Jupyter Notebook showing how to read the metadata
using magni.reproducibility.

A simple example of how to acquire platform metadata using
the data module from magni.reproducibility is
>>> from pprint import pprint
>>> from magni import reproducibility as rep
>>> pprint(rep.data.get_platform_info())
{’libc’: ’["glibc", "2.2.5"]’,
’linux’: ’["debian", "jessie/sid", ""]’,
’mac_os’: ’["", ["", "", ""], ""]’,
’machine’: ’"x86_64"’,
’node’: ’"eagle1"’,
’processor’: ’"x86_64"’,
’python’: ’"3.5.1"’,
’release’: ’"3.16.0-46-generic"’,
’status’: ’All OK’,
’system’: ’"Linux"’,
’version’: ’"#62~14.04.1-Ubuntu SMP ~"’,
’win32’: ’["", "", "", ""]’}

When using the typical scientific Python workflow described
above, one may use the functions in the io module from
magni.reproducibility to conveniently store all relevant
metadata, e.g. the create_database(h5file) to automati-
cally create an HDF5 database with a set of standard annotations

14. More details about Python and the Scientific Python Stack are available
at http://python.org and http://scipy.org

15. See http://www.pytables.org/
16. See http://setuptools.readthedocs.io/
17. See http://conda.pydata.org/docs/ as well as https://www.youtube.com/

watch?v=UaIvrDWrIWM
18. See https://en.wikipedia.org/wiki/Mandelbrot_set
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and chases. The my_experiment.py script would then have a
structure like
import tables
from magni import reproducibility as rep

def run_my_experiment(...):
...

def store_result(h5, result):
...

if __name__ == ’__main__’:
hdf5_db = ’database.hdf5’
rep.io.create_database(hdf5_db)
result = run_my_experiment(...)
with tables.File(hdf5_db, mode=’a’) as h5:

store_result(h5, result)

This would create an HDF5 database named database.hdf5
which would hold both the results and all metadata. The
HDF5 database may be inspected using any tool capable
of reading HDF5 files. As an alternative, the io module
from magni.reproducibility also includes convenience
functions for reading the annotations and chases. E.g. to
see the set of standard metadata stored in a database with
create_database(h5file), one could do
>>> from pprint import pprint
>>> import tables
>>> from magni import reproducibility as rep
>>> hdf5_db = ’database.hdf5’
>>> rep.io.create_database(hdf5_db)
>>> with tables.File(hdf5_db) as h5:
... annotations = rep.io.read_annotations(h5)
... chases = rep.io.read_chases(h5)
>>> pprint(list(annotations.keys()))
[’magni_config’,
’git_revision’,
’datetime’,
’conda_info’,
’magni_info’,
’platform_info’]
>>> pprint(list(chases.keys()))
[’main_file_source’,
’stack_trace’,
’main_file_name’,
’main_source’]

Quality Assurance

The Magni Python package is fully documented and comes with
an extensive test suite. It has been developed using best practices
for developing scientific software [WAB+14] and all code has
been reviewed by at least one other person than its author prior to
its inclusion in Magni. All code adheres to the PEP819 style guide
and no function or class has a cyclomatic complexity [McC76],
[WM96] exceeding 10. The source code is under version control
using Git and a continuous integration system based on Travis
CI20 is in use for the git repository. More details about the quality
assurance of magni are given in [OPA+14].

Related Software Packages

Independently of the tool or method used, making results from
scientific computations reproducible is not only for the benefit of
the audience. As pointed out in several studies [Fom15], [CG12],
[VKV09], the author of the results gains as least as much in terms
increasing one’s productivity. Thus, using some method or tool to

19. See https://www.python.org/dev/peps/pep-0008/
20. See https://travis-ci.org/

help make the results reproducible is a win for everyone. In the
present work we have attempted to detail the ideal solution for
how to do this for the typical scientific Python workflow.

A plethora of related alternative tools exist for aiding in
making results reproducible. We have already discussed ActivePa-
pers [Hin15], Sumatra [Dav12], and Madagascar [Fom15] which
are general reproducibility frameworks that allow for wrapping
most tools - not only Python based computations. Such tools are
definitely excellent for some workflows. In particular, they seem
fit for large fixed setups which require keeping track of several
hundred runs that only differ by the selection of parameters21

and for which the time cost of initially setting up the tool is
insignificant compared to the time cost of the entire study. That
is, they are useful in keeping track of the full set of combination
in a large computations study as marked by all the edges in the
layered graph in figure 1. However, as we have argued, they are
less suitable for documenting a single experiment based on the
typical scientific Python workflow. Also these tools tend to be
designed for use on a single computer. Thus, they do not scale
well for big data applications which run on compute clusters.

Another category of related tools are graphical user interface
(GUI) based workflow managing tools like Taverna [OAF+04] or
Vistrail [SFC07]. Such tools seem to be specifically designed for
describing computational workflows in particular fields of research
(typically bioinformatics related fields). It is hard, though, to see
how they can be effectively integrated with the typical scientific
Python workflow. Other much more Python oriented tools are the
Jupyter Notebook22 as well as Dexy23. These tools, however, seem
to have more of a focus on implementing the concept of literate
programming and documentation than reproducibility of results in
general.

Conclusions

We have argued that metadata should be stored along with com-
putational results in an easily readable format in order to make
the results reproducible. When implementing this in a typical
scientific Python workflow, all necessary tools for making the
results reproducible should be available as an importable package.
We suggest storing the metadata as JSON serialized arrays along
with the result in an HDF5 database. A reference implementation
of this design is available in the open source Magni Python
package which we have detailed with several examples of its
use. All of this shows that storing metadata along with results is
important in implementing reproducible research and it is readily
achievable using scientific Python packages.
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1 Introduction

This tech report details a collection of results related to the Generalised Approximate Message
Passing (GAMP) [1] algorithm. It is a summary of the results that the authors have found critical
in understanding the GAMP algorithm. In particular, emphasis is on the details that are crucial
in implementing the GAMP algorithm on a computer but which are oftentimes left out from the
literature focusing on the more theoretical aspects of GAMP. Thus, this tech report is not meant
to comprehensively cover all the published works on GAMP and related algorithms.

The Generalised Approximate Message Passing (GAMP) [1] algorithm by Rangan is a general-
isation of Approximate Message Passing (AMP) algorithm, independently described by Donoho et
al. [2], [3], [4] and Krzakala et al. [5], [6]. The generalisation allows for arbitrary output channels
to be used with AMP.

1.1 Contributions Overview

The primary focus of this tech report is on giving more elaborate derivations and discussions of
GAMP key relations found in the existing literature - with an emphasis on implementation details.
However, a few new results are presented. Specifically, our new contributions are:

1. The proposed General Weighted Sparse (GWS) GAMP input channel described in Section
3.5 and all of its related derivations including the EM updates described in Sections 6.2.2.2
and 6.2.2.3 and the relations described in Sections 3.7.1.2 and 3.7.2.1.

2. The Sparse Bernoulli-Laplace input channel derivations given in Section 3.7.1 and the related
EM update derivations given in Sections 6.2.2.4 and 6.3.4.

3. The methods for efficiently computing the Frobenius norm of various system matrices de-
scribed in Section 4.2.2.

1.2 Background

We consider the undersampling reconstruction problem of estimating α ∈ Cn×1 from the measure-
ments y ∈ Cm×1 when m ≤ n (typically m� n) and y = Aα+ e with:

• A ∈ Cm×n - the system matrix

• e ∈ Rm×1 - an additive measurement noise

The system matrix A may be further decomposed into the matrix product of the sampling operator
matrix Φ ∈ Rm×p and the dictionary matrix Ψ ∈ Cp×n, i.e. A = ΦΨ. The dictionary matrix is
chosen such that the coefficient vector α has some sort of structure, e.g. α is sparse. Introducing
the signal of interest, x ∈ Cp×1, as well as the noiseless measurements, z ∈ Cm×1, the setup is
described by the following set of equations:

y = Aα+ e (1.1)
= z + e (1.2)
= ΦΨα+ e (1.3)
= Φx + e (1.4)

x = Ψα (1.5)
z = Aα (1.6)
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2 Chapter 1. Introduction

1.3 Motivation

For probabilistic inference/recovery/reconstruction problems as those described in Section 1.2, one
can generally observe a phase transition [7] (in the large system limit n → ∞ for fixed δ = m/n)
separating the problems for which successful inference can be done from those for which it is
impossible [5], [6]. This separation is determined by the available information about the inference
problem. If too little information is available, it is generally not possible to solve the inference
problem. The overall goal is then to find algorithms that are able to reach the phase transition
boundary, i.e., they must be able to solve the inference problems when provided with just enough
information to be able to succeed. The AMP algorithm is of interest in this regard primarily due
to [5], [8]:

• It finds Bayes optimal (maximum a posterior (MAP) or minimum mean squared error
(MMSE)) estimates in probabilistic inference/recovery/reconstruction problems and is (un-
der certain conditions) able to reach the phase transition boundary.

• The number of messages in the underlying message passing problem that is being approxi-
mated scales linearly with the problem size. Thus, it is a computationally feasible algorithm.

See e.g. [5] or [8] for a more detailed motivation.

1.4 Derivation

Here we give a brief overview of a more heuristic derivation of the AMP following [5] and [9].
Rigorous proofs are given in [10], [11].

1.4.1 MMSE and MAP GAMP
We consider a Bayesian probabilistic approach to reconstructing a vector α from measurements y
in a setup described by the set of Equations (1.1)-(1.6). In particular, we consider the posterior
distribution:

p(α|y) = p(y|α)p(α)
p(y) (1.7)

= 1
Z p(y|α)p(α) (1.8)

for a normalisation constant Z, the likelihood p(y|α), and p(α) - a prior on α. As is usually the
case in Bayesian methods, it all boils down to finding ways to handle the otherwise intractable
integretions/summations needed to determine the value of such normalisation constants as well as
marginals or expectations.

Even though the posterior marginals of α may be of interest as such, one usually finds point
estimates from these marginals. In particular, the minimum mean squared error (MMSE) or the
maximum a posteriori (MAP) estimates are often used:

αMMSE
j =

∫

αj

αjp(αj |y)dαj (1.9)

αMAP
j = arg max

αj

p(αj |y) (1.10)

where the (conditional) marginals are obtained as

p(αj |y) =
∫

{αj′}:j′ 6=j
p(α|y)dα (1.11)

Thus, we are interested in finding MMSE (or MAP) estimates of α which entails the need for (at
least indirectly) finding the marginals. In rest of this tech report, we generally focus on GAMP
for finding MMSE estimates.
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1.4.2. The Message Passing Interpretation 3

1.4.2 The Message Passing Interpretation
In general, the system matrix A defines a dense bipartite factor graph with variables α1, . . . , αn
and factors y1, . . . , ym [9]. Had this factor graph contained no loops, it would have been possible
to obtain exact inference of the marginals in Equation (1.11) (and MMSE estimates) in a single
pass over the graph by use of the sum-product message passing algorithm (sometimes also known
as belief propagation) [12], [13]. However, due to the loops in the factor graph, iterative message
passing over the graph only results in approximate inference. In the loopy sum-product message
passing, one iteratively passes the following messages (full probability distributions) along the
edges of the factor graph:

mi→j(αj) = 1
Zi→j

∫

{αk}:k 6=j
p(yi|zi)

∏

k 6=j
mk→i(αk) factor to variable message (1.12)

mj→i(αj) = 1
Zj→i p(αj |[θI ]j)

∏

l 6=i
ml→j(αj) variable to factor message (1.13)

where the zi = [Aα]i’s are the noiseless measurements, [θI ]j are some parameters of the prior
distribution on αj and Zi→j , Zj→i are normalisation factors. The use of this iterative message
passing scheme poses two problems:

1. One has to track full probability distributions (the messages mi→j(αj), mj→i(αj) are full
probability distributions on αj , i.e. functions on the real axis).

2. There is a total of 2mn messages that must be passed in each iteration (all m factors sends
a message to all n variables and vice versa).

Thus, it is intractable to use the above message passing scheme as is. However, under certain
assumptions, it is possible to use a different message passing scheme involving onlym+n messages.
Furthermore, these messages are means and variances, i.e, they are scalars which provides for a
much more tractable algorithm.

The derivation of such a message passing scheme relies on the assumption that the individual
element of A becomes insignificant for n → ∞. That is, it is assumed that all elements of A
scale like 1√

n
such that each element seen in isolation becomes insignificant in the large system

limit n → ∞. In other words, the information is spread equally throughout the graph. The
use of various Taylor approximations and applications of the central limit theorem then gives the
resulting new message passing scheme. All the details are given in [2], [3], [4], [5], [6], [9], [14], [15].

Most importantly from an implementation perspective, the workload reduces to the iteration
of the mean and variance updates ᾱj and α̃j (along with a few other states as detailed below) for
finding the MMSE estimate1 of αj , j = 1, . . . , n

ᾱj = fᾱj (sj , rj ; [θI ]j) (1.14)
α̃j = fα̃j (sj , rj ; [θI ]j) (1.15)

for scalar non-linear functions fᾱj , fᾱj . These updates may be iterated to a fixed point resulting
in the reconstructed signal ᾱ = [ᾱ1, . . . , ᾱn]T . The estimated variance of the elements of ᾱ is then
given by α̃ [16]. This variance may be used to quantify the accuracy of the reconstructed signal
(it should be small). In summary, ᾱj ends up being an approximation of αMMSE

j in Equation (1.9)
with α̃j expressing something about the quality of this approximation.

As hinted by the scalar functions in Equations (1.14) and (1.15), one introduces additional
states that represent local beliefs about means and variances at the variables and factors:

sj : Prior side (/ AMP field / variable field) variance

rj : Prior side mean

vi: Factor side (/ Channel side / factor field) variance
1The GAMP framework of Rangan [1], [16] allows for both MMSE and MAP estimates by choosing different

channel functions.
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4 Chapter 1. Introduction

oi: Factor side mean

Note that there is one such state for each j = 1, . . . , n, i = 1, . . . ,m. Thus, the number of states
in the AMP algorithm that must be tracked and updated in each iteration is O(m+ n). Only the
compact (and simplified) AMP iteration by Donoho/Maleki/Montanari has exactlym+n messages
that must be tracked in each iteration [2] - see also Section 2.1. The full GAMP iteration is given
in Section 2 (Equations (2.1) - (2.12)). The generalisation in GAMP introduces further states as
well as a pair of scalar output side channel functions fz̄i , fz̃i in addition to the input side channel
functions fᾱj , fᾱj . Details about these channel functions are given in Section 3.

1.4.3 State Evolution
From a theoretical perspective, the probably most appealing part of the AMP algorithm is its State
Evolution (SE) formalism [2], [4], [9] which provides precise convergence guarantees for AMP. It
turns out that in the large system limit n→∞ and under certain conditions, a certain state (the
unthresholded α̂) in the AMP algorithm may be interpreted as a AWGN corrupted version of the
true α for any iteration. Thus, the reconstruction error may be tracked by the mean squared error
(MSE) of the estimate. This is, however, a purely analytical construction that may be used to
theoretically characterise the AMP algorithm in the large system limit for a given problem. A
rigorous proof of the SE is given in [10].

1.4.4 Theoretical Guarantees for Arbitrary System Matrices
The AMP algorithm has been rigorously proved to converge for i.i.d. Gaussian system matrices
(entries are drawn i.i.d. zero-mean Gaussian) in the large system limit n→∞ [17], [18] as well as
for i.i.d. sub-Gaussian system matrices [10], [11]. For i.i.d. Gaussian system matrices of finite size,
it can be shown that the probability of deviation from the SE described in Section 1.4.3 decreases
exponentially in n [19].

For various other types of system matrices, a damping strategy may be used to guarantee
convergence of the GAMP algorithms [20] (more details are given in Section 5.2). The S-AMP
algorithm described in [21] and [22] is an attempt at generalising GAMP to more general system
matrix ensembles. A similar attempt at an AMP algorithm for more general system matrix en-
sembles is the ADMM-GAMP algorithm [23]. Yet another attempt is the Orthogonal AMP [24]
algorithm which is somewhat similar to the Vector AMP algorithm2. Generally, these alterna-
tives have significantly higher computationally complexity than GAMP. Thus, they all present a
trade-off between convergence guarantee and computational complexity.

The fixed points of GAMP with arbitrary matrices is discussed in [25] whereas general com-
pressed sensing phase transitions for deterministic matrices are discussed in [26]. Details about
when AMP algorithms provide theoretically optimal recovery guarantees are given in [6], [27].
Finally, empirical results suggest that GAMP also converges for various other system matrices
[10], [28] including matrices related to structured random matrices [29] and structurally random
matrices [30].

1.4.5 Additional Practicality Notes on GAMP
The AMP algorithm is based on a zero mean assumption on A, i.e., the entries of A are assumed
to be zero mean. For non-zero mean A, one may use a transformation to a new problem with a
zero mean system matrix, see e.g. [5] or [31].

In the derivation of AMP, Krzakala et al. assume a 1√
n
scaling of the entries of A [6] whereas

Montanari et. al assume a 1√
m

with a fixed δ = m
n [9]. Theoretically, the two assumptions are

equivalent (in the sense of an element becoming insignificant) for n→∞ as long asm scales linearly
with n, i.e., δ is fixed. However, in practice (with finite n) for low δ, the difference between m and
n is large enough to impact the convergence of the AMP algorithm3.

2See the pre-print available at https://arxiv.org/abs/1610.03082
3Empirical phase transition simulations reported on in a submitted but yet to be published manuscript by the

authors of this tech report confirms this observation. See also Chapter 4 for a more elaborate discussion of the
impact of these assumptions.
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1.5. Notation 5

The in- and output channels are required to be separable. That is, the channel defining prob-
abilities must be conditionally independent [1]:

p(α|θI) =
∏

j

p(αj |[θI ]j) (1.16)

p(y|z;θo) =
∏

i

p(yi|zi; [θo]i) (1.17)

Thus, we consider a setup in which we imagine that a random α is generated according to the
input channel specification in Equation (1.16). This α is measured through the linear transform
in Equation (1.6). The observation y is then generated from z according to the output channel
specification in Equation (1.17) which is a generalisation of the additive noise used in Equation
(1.1). That being said, one may consider the θI ’s and θo’s to be random variables themselves and
define hyperpriors on them. This allows for arbitrary structures (subject to the above separability
constraint) on the prior of α, e.g. a Markov chain prior [32]. For updating the beliefs across such
priors, one may use the Turbo GAMP framework [33]. See also Chapter 8 for more references
to works on structured priors. Independently of the choice of prior, it is important to keep in
mind that the GAMP estimates, when MMSE- or MAP-optimal, are optimal under the model
assumption which may only approximate the problem attempted solved.

1.5 Notation

The notation used across publications by a given author is typically consistent. Unfortunately,
notation varies between different authors. Table 1.1 gives a comparison of the different notations
used by some of the authors responsible for a significant part of the published works on GAMP.
Also included in the table is our “unified” notation used in this note. This notation is a combination
of the other notations as well as elements from the notation that is customary in the compressed
sensing literature with a focus on imaging applications.
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6 Chapter 1. Introduction

Quantity Our notation Krzakala Schniter Rangan Donoho

System matrix A F A A A
Abs. entrywise squared A |A|◦2 or Aasq |A|2
Dictionary coefficients α x or s x x or s x or s
Noiseless measurements z z z
Noisy measurements y y y y y
Additive noise e ξ w w w
Image as a vector x
Image width w
Image height h
Image as a matrix M
Number of measurements m M m or M m n
Number of coefficients n N n or N n N
Number of non-zeros k K k or K k
Undersampling ratio δ = m

n
α δ

Sparsity level ρ = k
m

ρ
Signal density τ = k

n
ρ λ ρ

Dictionary Φ
Sampling matrix Ψ
Input (/prior) parameters θI q q
Output parameters θo
Factor-side state #1 v / v V / V̄ µp / µp τ p / τp γ
Factor-side state #2 o ω p̂ p̂
Channel function f f g F/G or (η)‡
Factor-side mean z̄ ẑ
Factor-side variance z̃ µz

Output channel state #1 q ŝ ŝ
Output channel state #2 u / u µs / µs τ s / τs
Variable-side state #1 s / s Σ2 / Σ2 µr / µr τ r / τr
Variable-side state #2 r R r̂ r̂
Variable-side mean ᾱ a x̂ x̂ x
Variable-side variance α̃ v µx (τx)†
Onsager-corrected residual χ v̂ z
(Marginal) prob. density p(x) φ(x) pX(x) pX(x)
Joint prob. density p(x, y) P (x, y) pX,Y (x, y) pX,Y (x, y)
Conditional prob. density p(x|y; θ) P (x|y, θ) pX|Y ;θ(x|y; θ)
Normalisation factor Z Z Z Z Z
AWGN noise variance σ2 ∆ µw or ψ τw σ2

Gaussian mean θ̄ x̄ θ̂ or θ q

Gaussian variance θ̃ σ2 µθ or φ τx0

Laplacian rate parameter λ λ β
Laplacian mean parameter µ
Convergence tolerance ε τgamp
Iteration index t t t t
Maximum iterations Tmax Tmax
Step-size parameter κ β
Dirac delta δDirac δ δ δ

‡ Only under certain conditions is the η threshold functions equivalent to the GAMP channel functions - see
Section 2.1.
† Rangan uses slightly different states to allow for both MMSE and MAP estimates. See [1], [16], [20].

Table 1.1: Comparison of notations typically used by the different research groups working on
(G)AMP.
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2 The GAMP Iteration

The AMP iteration is given in [5]. Here we state the MMSE Generalised AMP (GAMP) iteration
following Parker’s presentation [15]. Rangan was the first to state the GAMP iteration [1]. How-
ever, Rangan uses special output functions which allow for both MMSE and MAP estimates. The
relation between the below MMSE GAMP iteration and Rangan’s more general GAMP iteration
is elaborated on in Section 3. The optional use of parameter value updates is described in [5] and
[28]. The MMSE GAMP iteration consists of the state updates in Equations (2.1)-(2.12).

Output (factor) side updates:

vt+1
i =

∑

j

|aij |2α̃tj (2.1)

ot+1
i =

∑

j

aijᾱ
t
j − vt+1

i qti (2.2)

z̄t+1
i = fz̄i(vt+1

i , ot+1
i ; yi, [θo]ti) (2.3)

z̃t+1
i = fz̃i(vt+1

i , ot+1
i ; yi, [θo]ti) (2.4)

qt+1
i = z̄t+1

i − ot+1
i

vt+1
i

(2.5)

ut+1
i = vt+1

i − z̃t+1
i

(vt+1
i )2 (2.6)

Input (variable) side updates:

st+1
j =

[∑

i

|aij |2ut+1
i

]−1

(2.7)

rt+1
j = ᾱtj + st+1

j

∑

i

a∗ijq
t+1
i (2.8)

ᾱt+1
j = fᾱj (st+1

j , rt+1
j ; [θI ]tj) (2.9)

α̃t+1
j = fα̃j (st+1

j , rt+1
j ; [θI ]tj) (2.10)

Optional parameter value updates (using e.g. EM - see also Section 6):

[θo]t+1
i = . . . (2.11)

[θI ]t+1
j = . . . (2.12)

where a∗ij is the complex conjugate of aij .
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8 Chapter 2. The GAMP Iteration

2.1 Relation to Donoho/Maleki/Montanari AMP

Rangan states that GAMP [16] is closely related to the AMP algorithm by Donoho/Maleki/Montanari
[2], [3], [4], [9], [34]. Parker [15] gives the below elaboration on this claim in relation to the MMSE
GAMP (see also [35]).

We consider the MMSE GAMP with the AWGN output channel given in Equations (3.57)
and (3.60) (used in computing z̄ and z̃). The equivalence to the DMM AMP is based on a few
simplifications of some of the GAMP states. In particular, v, u, and s become scalars (which do
not depend on the index j)

vt+1 := 1
m

∑

j

α̃tj ≈
∑

j

|aij |2α̃tj (2.13)

ut+1 := vt+1 − z̃t+1

(vt+1)2 =
vt+1 − σ2vt+1

σ2+vt+1

(vt+1)2 =
vt+1σ2+(vt+1)2−vt+1σ2

σ2+vt+1

(vt+1)2 = 1
σ2 + vt+1 (2.14)

st+1 := 1
ut+1 = σ2 + vt+1 ≈

[
1
m

∑

i

ut+1
i

]−1

≈
[∑

i

|aij |2ut+1
i

]−1

(2.15)

These simplifications are closely related to the sum approximations by Krzakala et al. in Equations
(4.7) and (4.8), though the scaling (i.e. the assumed variance of the the entries in A) is slightly
different: 1

m vs 1
n . Based on the above simplifications, the update of the rj state becomes

rt+1
j = ᾱtj + st+1

∑

i

a∗ijq
t+1
i (2.16)

= ᾱtj + st+1
∑

i

a∗ij
z̄t+1
i − ot+1

i

vt+1 (2.17)

= ᾱtj + st+1
∑

i

a∗ij
ot+1
i + vt+1

σ2+vt+1 (yi − ot+1
i )− ot+1

i

vt+1 (2.18)

= ᾱtj + st+1
∑

i

a∗ij
yi − ot+1

i

σ2 + vt+1 (2.19)

= ᾱtj +
∑

i

a∗ij(yi − ot+1
i ) (2.20)

= ᾱtj +
∑

i

a∗ijχ
t+1
i (2.21)

for

χt+1
i := yi − ot+1

i (2.22)
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2.1. Relation to Donoho/Maleki/Montanari AMP 9

Now, for χt+1
i , we have

χt+1
i = yi − ot+1

i (2.23)

= yi −


∑

j

aijᾱ
t
j − vt+1qti


 (2.24)

= yi −
∑

j

aijᾱ
t
j + vt+1 z̄

t
i − oti
vt

(2.25)

= yi −
∑

j

aijᾱ
t
j + vt+1 yi − oti

σ2 + vt
(2.26)

= yi −
∑

j

aijᾱ
t
j + vt+1

st
χti (2.27)

= yi −
∑

j

aijᾱ
t
j +

1
m

∑
j α̃

t
j

st
χti (2.28)

= yi −
∑

j

aijᾱ
t
j +

1
m

∑
j s
tg′in(rtj ,θI , st)
st

χti (2.29)

= yi −
∑

j

aijᾱ
t
j + 1

m

∑

j

g′in(rtj ,θI , st)χti (2.30)

= yi −
∑

j

aijᾱ
t
j + n

m
〈g′in(rtj ,θI , st)〉χti (2.31)

= yi −
∑

j

aijᾱ
t
j + 1

δ
〈g′in(ᾱt−1

j +
∑

i

a∗ijχ
t
i,θI , s

t)〉χti (2.32)

where we have used Rangan’s GAMP g′in channel in Equation (3.26) and 〈·〉 denotes the average.
Similarly for ᾱt+1, we have

ᾱt+1
j = fᾱj (st+1

j , rt+1
j ;θI) (2.33)

= gin(rt+1
j ,θI , s

t+1
j , ) (2.34)

= gin(ᾱtj +
∑

i

a∗ijχ
t+1
i ,θI , s

t+1
j ) (2.35)

where we have used Rangan’s GAMP gin channel in Equation (3.25). Now in matrix-vector
notation, Equations (2.32) and (2.35) read

χt = y−Aᾱt-1 + 1
δ
〈g′in(ᾱt-2 + AHχt-1,θI , st-1)〉χt-1 (2.36)

ᾱt = gin(ᾱt-1 + AHχt,θI , st) (2.37)

where H denotes the Hermitian transpose (complex conjugated transpose), χ is the so-called
Onsager-corrected residual and st is a length m vector with all entries equal to the scalar in
Equation (2.15). Here we note that from Equations (2.13) and(2.15), using similar steps as in
deriving Equation (2.32), we have

vt+1 = 1
δ
st〈g′in(ᾱt−1

j +
∑

i

a∗ijχ
t
i,θI , s

t)〉 (2.38)

= 1
δ

(σ2 + vt)〈g′in(ᾱt−1
j +

∑

i

a∗ijχ
t
i,θI , σ

2 + vt)〉 (2.39)

Thus, in order to compute the channel value based on s, one may introduce the additional recursion
on the state v. If we take ηt(·) = gin(·,θI , st) for the threshold function ηt in [2], then Equations
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10 Chapter 2. The GAMP Iteration

(2.36) and (2.37) constitute the Donoho/Maleki/Montanari AMP update in Equations [2] and [1],
respectively, in [2]1.

The threshold function, ηt is in general a conditional expectation [3] (as is gin(·,θI , st)) in
MMSE GAMP. However, in AMP for the Basis Pursuit and LASSO problems [2], [3] (closely
linked to instances of the MAP GAMP [1], [16], the threshold function becomes the soft threshold
operator for which the threshold level is chosen slightly differently - see [9] for more details. See
also [15] for a further discussion of some of these subtle details in the choice of threshold function.

2.2 Relation to IST, ISTA, and ADMM

The iterative soft thresholding (IST) algorithm [36] is similar in structure to the DMM AMP
updates in Equations (2.36) and (2.37). Specifically, the corresponding IST updates read

χt = y−Aᾱt-1 (2.40)
ᾱt = ηt(ᾱt-1 + AHχt) (2.41)

for ηt being the soft threshold operator. Thus, the difference to AMP is the lack of the Onsager
correction 1

δ 〈g′in(ᾱt-2 + AHχt-1,θI , st-1)〉χt-1. It is this correction that gives rise to the interpre-
tation of ᾱt-1 +AHχt being a AWGN corrupted version of the true α as discussed in Section 1.4.3
[2].

GAMP may also be interpreted as certain variants of the iterative shrinkage and thresholding
algorithm (ISTA) [37] and the alternating direction method of multipliers (ADMM) algorithm [38]
as detailed in [25].

1In [2], ᾱt is computed prior to χt which accounts for the iteration index shifts.
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3 MMSE Channel Functions

The MMSE GAMP channel functions, fᾱ, fα̃, fz̄, fz̄, used in Equations (2.1)-(2.12) are given in
terms of special conditional expectations and variances since these are at the core of the MMSE
GAMP as described in Section 1.4.1. The MMSE GAMP channel functions follow the AMP
channel function definitions by Krzakala et. al in [5] but differs from GAMP the channel function
definitions used by Rangan [1] as elaborated on in Section 3.3.1. All channel functions are scalar
functions. Thus, in this chapter we drop the notational dependence on the index as well as the
notational dependence on iteration. When the presented channel expressions are used with the
GAMP iteration in Equations (2.1)-(2.12), the appropriate dependencies should be taken into
account.

3.1 Input Side Channel Functions

The GAMP input side channel functions are:

fᾱ(s, r;θI) = Eα|s,r,θI [α] := 1
ZI

∫

α

αp(α;θI)N (α; r, s)dα (3.1)

fα̃(s, r;θI) = Varα|s,r,θI (α) := 1
ZI

∫

α

|α|2p(α;θI)N (α; r, s)dα− |fᾱ(s, r;θI)|2 (3.2)

where ZI =
∫
α
p(α;θI)N (α; r, s)dα is a normalisation constant that ensures that the product

p(α;θI)N (α; r, s) is a proper probability measure and

N (α; r, s) = 1√
2πs

exp
(
−1

2
(α− r)2

s

)
(3.3)

Thus, from Equation (3.1) we find that in GAMP, the true marginal posterior p(α|y;θI) is ap-
proximated by:

p(α|y; s, r,θI) := p(α;θI)N (α; r, s)∫
α
p(α;θI)N (α; r, s)dα (3.4)

which has the interpretation that if Ã is a random variable distributed according to p(α;θI) and
B̃ = Ã + W with W a zero-mean Gaussian noise with variance s, then Equation (3.1) is the
conditional mean of Ã given B̃ = r, i.e. E[Ã|B̃ = r]. Similarly Equation (3.2) is the conditional
variance Var(Ã|B̃ = r) [3], [16].

Note that the input channel parameters θI may depend on the coefficient, i.e. the [θI ]j ’s
may be different for each j = 1, . . . , n. In Equation (3.4) it is to be understood that θI is the
vector/matrix of all input channel parameters independently of whether or not they depend on
the index j.

All the input channel functions are scalar functions. When used with vectors as arguments, it
is to be understood that a channel function is used on each element of the vector.

3.2 Output Side Channel Functions:

The GAMP output side channel functions are:

fz̄(v, o; y,θo) = Ez|o,v,y,θo [z] := 1
Zo

∫

z

zp(y|z;θo)N (z; o, v)dz (3.5)

fz̃(v, o; y,θo) = Varz|o,v,y,θo(z) := 1
Zo

∫

z

|z|2p(y|z;θo)N (z; o, v)dz − |fz̄(v, o; y,θo)|2 (3.6)
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12 Chapter 3. MMSE Channel Functions

where Zo =
∫
z
p(y|z;θo)N (z; o, v)dz is a normalisation constant that ensures that the product

p(y|z;θo)N (z; o, v) is a proper probability measure and

N (z; o, v) = 1√
2πv

exp
(
−1

2
(z − o)2

v

)
(3.7)

Thus, from Equation (3.5) we find that in GAMP, the true marginal posterior p(z|y;θo) is approx-
imated by:

p(z|y; o, v,θo) := p(y|z;θo)N (z; o, v)∫
z
p(y|z;θo)N (z; o, v)dz (3.8)

which has the interpretation that if Ỹ is a random variable distributed according to p(y|z;θo)
and Z̃ is a Gaussian random variable with mean o and variance v, then Equation (3.5) is the
conditional mean of Z̃ given Ỹ = y, i.e. E[Z̃|Ỹ = y]. Similarly, Equation (3.6) is the conditional
variance Var(Z̃|Ỹ = y) [16].

Note that the output channel parameters θo may depend on the coefficient, i.e. the [θo]i’s
may be different for each i = 1, . . . ,m. In Equation (3.8), it is to be understood that θo is the
vector/matrix of all output channel parameters independently of whether or not they depend on
the index i.

All the output channel functions are scalar functions. When used with vectors as arguments,
it is to be understood that a channel function is used on each element of the vector.

3.3 MMSE Channel Functions in General

From Equations (3.1) and (3.2) as well as Equations (3.5) and (3.6), we find that in the MMSE
case, evaluating the channels functions amounts to evaluating conditional means and variances.
Thus, in relation to the in- and output channel functions, we may, for a given channel distribution
p(u;θ), in general, define

Z(v ,w ,θ) :=
∫

u
p(u;θ)N (u; v ,w)du ∈ R (3.9)

N1(v ,w ,θ) :=
∫

u
up(u;θ)N (u; v ,w)du ∈ C (3.10)

N2a(v ,w ,θ) :=
∫

u
|u|2p(u;θ)N (u; v ,w)du ∈ C (3.11)

for which we may find mean and variance functions as

Eu|v,w ,θ[u] = N1(v ,w ,θ)
Z(v ,w ,θ) ∈ C (3.12)

Varu|v,w ,θ(u) = N2a(v ,w ,θ)
Z(v ,w ,θ) − |Eu|v,w ,θ[u]|2 ∈ R (3.13)
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3.3.1. Relation to Rangan’s Channel Functions 13

The expression for the conditional variance stems from

Varu|v,w ,θ(u) :=
∫

u |u − Eu|v,w ,θ[u]|2p(u;θ)N (u; v ,w)du∫
u p(u;θ)N (u; v ,w)du

(3.14)

N2(v ,w ,θ) :=
∫

u
|u − Eu|v,w ,θ[u]|2p(u;θ)N (u; v ,w)du (3.15)

=
∫

u
|u|2p(u;θ)N (u; v ,w)du

− Eu|v,w ,θ[u]
∫

u
u∗p(u;θ)N (u; v ,w)du

+ |Eu|v,w ,θ[u]|2
∫

u
p(u;θ)N (u; v ,w)du

− Eu|v,w ,θ[u]∗
∫

u
up(u;θ)N (u; v ,w)du (3.16)

=
∫

u
|u|2p(u;θ)N (u; v ,w)du

− Eu|v,w ,θ[u]Eu|v,w ,θ[u]∗Z(v ,w ,θ)
+ |Eu|v,w ,θ[u]|2Z(v ,w ,θ)
− Eu|v,w ,θ[u]∗Eu|v,w ,θ[u]Z(v ,w ,θ) (3.17)

=
∫

u
|u|2p(u;θ)N (u; v ,w)du − |Eu|v,w ,θ[u]|2Z(v ,w ,θ)∗ (3.18)

N2(v ,w ,θ) = N2a(v ,w ,θ)−N2b(v ,w ,θ) (3.19)
N2b(v ,w ,θ) := |Eu|v,w ,θ[u]|2Z(v ,w ,θ)∗ = |Eu|v,w ,θ[u]|2Z(v ,w ,θ) (3.20)

Varu|v,w ,θ(u) = N2(v ,w ,θ)
Z(v ,w ,θ) (3.21)

= N2a(v ,w ,θ)−N2b(v ,w ,θ)
Z(v ,w ,θ) (3.22)

= Na2(v ,w ,θ)
Z(v ,w ,θ) − |Eu|v,w ,θ[u]|2Z(v ,w ,θ)

Z(v ,w ,θ) (3.23)

= Na2(v ,w ,θ)
Z(v ,w ,θ) − |Eu|v,w ,θ[u]|2 (3.24)

where ∗ denotes complex conjugation.

3.3.1 Relation to Rangan’s Channel Functions

Rangan’s GAMP allows for obtaining both MAP and MMSE estimates depending on the choice
of channel functions. For MAP estimates the channel functions are found from certain probability
maximisation problems and are, thus, closely related to typical optimisation formulations used in
e.g. sparse inference [1], [16]. For MMSE estimates the channel functions are expectations and
variances as seen in the channel functions given in Sections 3.1 and 3.2. To allow for both types
(MAP and MMSE) of channel functions, Rangan uses the differently defined channel functions
gin, g

′
in, gout, g

′
out [1], [16]. For the MMSE case, we have the following relations:

gin(r,θI , s) = fᾱ(s, r;θI) (3.25)

g′in(r,θI , s) = fα̃(s, r;θI)
s

(3.26)

gout(o, y, v) = fz̄(v, o; y,θo)− o
v

= q (3.27)

g′out(o, y, v) = fz̃(v, o; y,θo)− v
v2 = −u (3.28)

163



14 Chapter 3. MMSE Channel Functions

3.4 General Sparse Input Channel

Sparsity is a typical structure assumed on α in the reconstruction problem described in Section
1.2. Thus, when using GAMP to solve such reconstruction problems, one usually uses a sparsity
promoting prior. For that reason, many of the input side channels presented in the literature are
described by a probability density function which is a mixture of a Dirac delta function at zero
and some other known proper density function [5], [28], i.e.

p(α;θI) = (1− τ)δDirac(α) + τϕ(α;θI) (3.29)

where τ ∈ [0; 1] is the signal density and ϕ(α;θI) is e.g. Gaussian, Laplace, Student’s t or even itself
a mixture density. Such a prior is sometimes also referred to as a spike-and-slab prior because of
the (sparsity promoting) spike at zero and a slab part ϕ(α;θI). The spike part is typically referred
to as the Bernoulli part as in e.g. a sparse Bernoulli-Gaussian prior [39]. In using the expression
in Equation (3.29), it is important to realise that any manipulations are to be understood as being
done “inside” an integral (such as an expectation) which makes the use of the Dirac delta function
well defined.

Since the Dirac delta function integrates to 1 over the real line, it is easily seen that p(α;θI) in
Equation (3.29) integrates to 1 for any proper probability density function ϕ(α;θI) and is, thus,
a proper probability density itself. The GAMP approximated posterior in Equation (3.4) for the
general sparse prior in Equation (3.29) is

p(α|y; s, r,θI) = ((1− τ)δDirac(α) + τϕ(α;θI))N (α; r, s)
ZI

(3.30)

= ((1− τ)δDirac(α) + τϕ(α;θI))N (α; r, s)
(1− τ)

∫
α
N (α; r, s)δDirac(α)dα+ τ

∫
α
ϕ(α;θI)N (α; r, s)dα (3.31)

= (1− τ)δDirac(α)N (α; r, s) + τϕ(α;θI)N (α; r, s)
(1− τ)Zδ + τZϕ

(3.32)

= (1− τ)N (α; r, s)δDirac(α)
(1− τ)Zδ + τZϕ

+ τN (α; r, s)ϕ(α;θI)
(1− τ)Zδ + τZϕ

(3.33)

= (1− τ)Zδ
(1− τ)Zδ + τZϕ

N (α; r, s)δDirac(α)
Zδ

+ τZϕ
(1− τ)N (0; r, s) + τZϕ

N (α; r, s)ϕ(α;θI)
Zϕ

(3.34)

=
(

1− τZϕ
(1− τ)Zδ + τZϕ

) N (α; r, s)δDirac(α)
Zδ

+ τZϕ
(1− τ)N (0; r, s) + τZϕ

N (α; r, s)ϕ(α;θI)
Zϕ

(3.35)

= (1− π(r, s,θI))δ′Dirac(α) + π(r, s,θI)ϕα|y;s,r,θI (α;θI) (3.36)
= (1− π(r, s,θI))δDirac(α) + π(r, s,θI)ϕα|y;s,r,θI (α;θI) (3.37)

for

ZI :=
∫

α

((1− τ)δDirac(α) + τϕ(α;θI))N (α; r, s)dα (3.38)

Zδ :=
∫

α

δDirac(α)N (α; r, s)dα = N (0; r, s) (3.39)

Zϕ :=
∫

α

ϕ(α;θI)N (α; r, s)dα (3.40)

π(r, s,θI) := τZϕ
(1− τ)N (0; r, s) + τZϕ

= 1
1 + (1−τ)N (0;r,s)

τZϕ
= 1

1 +
(

τZϕ
(1−τ)N (0;r,s)

)−1

(3.41)
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3.5. General Weighted Sparse Input Channel 15

ϕα|y;s,r,θI (α;θI) := N (α; r, s)ϕ(α;θI)
Zϕ

(3.42)

δ′Dirac(α) := N (α; r, s)δDirac(α)
Zδ

(3.43)

The equality of Equations (3.36) and (3.37) is based on the manipulations being done “inside” an
integral. In this case, the sampling property of the Dirac delta function δDirac(α) “sifts” the value
at α = 0 which means that the δ′Dirac(α) function provides a scaling of N (0; r, s) which is cancelled
by Zδ = N (0; r, s) essentially reducing δ′Dirac(α) to δDirac(α).

Thus, as reported in [28], for the general sparse prior in Equation (3.29), we find that the
GAMP posterior in Equation (3.37) is again a sparse density consisting of a Dirac delta at zero
and the GAMP posterior ϕα|y;s,r,θI (α;θI) of ϕ(α;θI) with a posteriori signal density (posterior
support probabilities) π(r, s,θI). As is seen from Equation (3.41), we have π(r, s,θI) ∈ [0; 1] as
along as τ ∈ [0; 1] and ϕ(α;θI) is a proper density since all quantities are non-negative. Thus, the
GAMP approximated posterior p(α|y; s, r,θI) remains a proper density.

3.5 General Weighted Sparse Input Channel

If we assume that α in the reconstruction problem in Section 1.2 is not only sparse but structured
sparse in the sense that some of the coefficient values in α are more likely to be sparse than others,
we may consider an independent but non-identical general sparse weighted (GWS) input channel,
i.e.

p(αj ;θI) = (1− wjτ)δDirac(αj) + wjτϕ(αj ; [θI ]j) (3.44)

where τ ∈ [0; 1] models the overall signal density and the wj ∈ [0; 1], j = 1, . . . , n are individual
weights that model the belief about the sparsity of the individual coefficients. We note that
the general weighted sparse input channel in Equation (3.44) reduces to the general sparse input
channel in Equation (3.29) if ∀j, wj = 1. Since the Dirac delta function integrates to 1 over the real
line, it is easily seen that p(αj ; [θI)]j in Equation (3.44) integrates to 1 for any proper probability
density function ϕ(αj ; [θI ]j) and is, thus, a proper probability density itself.

Since the input channel acts independently on each element of α, s, r, everything still decouples
in manipulations involving Equation (3.44). Thus, following the same path of derivations as was
done in deriving Equation (3.29), we find that GAMP approximated posterior for the GWS prior
in Equation (3.44) is

p(αj |y; sj , rj , [θI ]j) = (1− πw
j (rj , sj , [θI ]j))δDirac(αj)

+ πw
j (rj , sj , [θI ]j)ϕαj |y;sj ,rj ,[θI ]j (αj ; [θI ]j) (3.45)

for

πw
j (rj , sj , [θI ]j) :=

wjτZϕj
(1− wjτ)N (0; rj , sj) + wjτZϕj

=
wjτZϕj
ZIj

(3.46)

= 1
1 + (1−wjτ)N (0;rj ,sj)

wjτZϕj

= 1

1 +
(

wjτZϕj
(1−wjτ)N (0;rj ,sj)

)−1 (3.47)

ZIj :=
∫

αj

((1− wjτ)δDirac(αj) + wjτϕ(αj ; [θI ]j))N (αj ; rj , sj)dαj

(3.48)

Zϕj :=
∫

αj

ϕ(αj ; [θI ]j)N (αj ; rj , sj)dαj (3.49)

ϕαj |y;sj ,rj ,[θI ]j (αj ; [θI ]j) := N (αj ; rj , sj)ϕ(αj ; [θI ]j)
Zϕj

(3.50)

Thus, for the GWS prior in Equation (3.44), the GAMP posterior in Equation (3.45) is again a
sparse density with posterior signal densities πw

j (rj , sj , [θI ]j), j = 1, . . . , n. Again, it is clear from
Equation (3.46) that πw

j (rj , sj , [θI ]j) ∈ [0; 1] as long as wjτ ∈ [0; 1] and ϕαj |y;sj ,rj ,[θI ]j (αj ; [θI ]j)
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16 Chapter 3. MMSE Channel Functions

is a proper density since all quantities in πw
j (rj , sj , [θI ]j) are non-negative. Thus, the GAMP

approximated posterior p(αj |y; sj , rj , [θI ]j) remains a proper density.
Now defining

N1ϕj :=
∫

αj

αjϕ(αj ; [θI ]j)N (αj ; rj , sj)dαj (3.51)

N2aϕj :=
∫

αj

|αj |2ϕ(αj ; [θI ]j)N (αj ; rj , sj)dαj (3.52)

(3.53)

and using Equations (3.12), (3.13), and (3.45), we find that the MMSE GAMP input channel mean
and variance functions are given by

fᾱj (sj , rj ; [θI ]j) = πw
j (rj , sj , [θI ]j)

N1ϕj
Zϕj

(3.54)

fα̃j (sj , rj ; [θI ]j) = πw
j (rj , sj , [θI ]j)

N2aϕj
Zϕj

− |fᾱj (sj , rj ; [θI ]j)|2 (3.55)

since the Dirac delta at zero does not contribute to the mean or the variance. Thus, the GWS
input channel mean and variance functions may be expressed as scaled versions for the slab-part
mean and variance functions with the scaling given by the posterior signal densities. This may be
exploited in an implementation of the GWS input channel to separate the slab-part update from
the GWS updates making it easy to re-use the GWS updates with different slab-part updates.

3.6 Analytic Expressions for Common Output Channels

In an implementation of the MMSE GAMP, one may in general have to resort to numerical
integration to evaluate output the channel functions fz̄, fz̄. However, for some channels, it is
possible to derive analytic solutions to the integrals involved in evaluating the channel functions.
Here we present some output channels for which analytic solutions to the channel evaluation
functions exist.

3.6.1 AWGN Output Channel
For an additive white Gaussian noise (AWGN) output channel with noise variance σ2 (θo = [σ2]),
i.e.

p(y|z;θo) = 1√
2πσ2

exp
(
− (y − z)2

2σ2

)
(3.56)

we have channel functions [1], [16] (Eqs. (41), (42), (43)):

fz̄(v, o; y,θo) = vy + σ2o

σ2 + v
(3.57)

= o+ v

σ2 + v
(y − o) (3.58)

fz̃(v, o; y,θo) = σ2v

σ2 + v
(3.59)

= 1
1
σ2 + 1

v

(3.60)

Note that Equations (3.58) and (3.60) are the expressions suggested by Parker in [15]. However,
in EM-BG/GM-GAMP [28] Equations (3.58) and (3.59) are mentioned. Mathematically, there is
no difference in this choice. Numerically, however, there may be.
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3.6.2. AWLN Output Channel 17

3.6.2 AWLN Output Channel
For an additive white Laplacian noise (AWLN) output channel with rate parameter λ > 0, (θo =
[λ]), i.e.

p(y|z;θo) = λ

2 exp(−λ|y − z|) (3.61)

we have channel functions [40] (Eqs. (22), (23)):

fz̄(v, o; y,θo) = y + ZoZo


o−√v

φN
(
−o√
v

)

ΦN
(
−o√
v

)


+ Z̄oZo


ō+

√
v
φN
(

ō√
v

)

ΦN
(

ō√
v

)


 (3.62)

fz̃(v, o; y,θo) = −(y2 − fz̄(v, o; y,θo))2

+ ZoZo


v


1−

φN
(
−o√
v

)

ΦN
(
−o√
v

)



φN
(
−o√
v

)

ΦN
(
−o√
v

) − o√
v




+


o−√v

φN
(
−o√
v

)

ΦN
(
−o√
v

)




2


+ Z̄oZo


v


1−

φN
(

ō√
v

)

ΦN
(

ō√
v

)



φN
(

ō√
v

)

ΦN
(

ō√
v

) + ō√
v




+


ō+

√
v
φN
(

ō√
v

)

ΦN
(

ō√
v

)




2


(3.63)
for

Zo = Zo + Z̄o (3.64)

Zo = λ

2 exp
(

1
2λ

2v + ǒλ

)
ΦN
(−o√

v

)
(3.65)

Z̄o = λ

2 exp
(

1
2λ

2v − ǒλ
)

ΦN
(
ō√
v

)
(3.66)

ǒ = o− y (3.67)
o = ǒ+ λv (3.68)
ō = ǒ− λv (3.69)

ΦN (x̌) =
∫ x̌

−∞
φN (t) dt = 1√

2π

∫ x̌

−∞
exp
(
− t

2

2

)
dt (3.70)

φN (x̌) = N (x̌, 0, 1) = 1√
2π

exp
(
− x̌

2

2

)
(3.71)

The derivation of these channel functions is similar to the derivation of the channel functions for the
i.i.d. Sparse Bernoulli-Laplace input channel in Section 3.7.1. Note that the scaled complementary
error function may be used to achieve better numerical accuracy in an implementation as detailed
in Section 3.7.1.1.

3.7 Analytic Expressions for Common Input Channels

In an implementation of the MMSE GAMP, one may in general have to resort to numerical inte-
gration to evaluate the input channel functions fᾱ, fα̃,. However, for some channels, it is possible
to derive analytic solutions to the integrals involved in evaluating the channel functions. Here we
present some input channels for which analytic solutions to the channel evaluation functions exist.

3.7.1 I.i.d. Sparse Bernoulli-Laplace Input Channel
We now consider an i.i.d. BL input channel with signal density τ , Laplace mean µ, and rate
parameter λ > 0, (θI = [τ, µ, λ]T ), i.e. an input channel described by

p(α;θI) = (1− τ)δDirac(α) + τ
λ

2 exp(−λ|α− µ|) (3.72)
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18 Chapter 3. MMSE Channel Functions

We derive the channel functions following the general procedure described in Section 3.3. Towards
this end, we make use of various tricks and techniques used in the derivation of the elastic net
prior in [41] as well as in the derivation of the ALWN output channel in [40]. Starting with the
product of the prior and the Gaussian GAMP field, we observe that

p(α;θI)N (α; r, s) = (1− τ)δDirac(α)N (α; r, s) + τ
λ

2 exp(−λ|α− µ|)N (α; r, s) (3.73)

= (1− τ)δDirac(α̌+ µ)N (α̌; ř, s) + τ
λ

2 exp(−λ|α̌|)N (α̌; ř, s) (3.74)

where in Equation (3.74), we have shifted everything to align with the Laplace mean µ, i.e.,
α̌ = α− µ, ř = r − µ. Then the normalisation constant in Equation (3.9) is given by

ZI = (1− τ)
∫ ∞

−∞
δDirac(α̌+ µ)N (α̌; ř, s)dα̌+ τ

∫ ∞

−∞

λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.75)

= (1− τ)
∫ ∞

−∞
δDirac(α)N (α; r, s)dα+ τ

∫ ∞

−∞

λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.76)

= (1− τ)N (0; r, s) + τ

∫ ∞

−∞

λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.77)

where we have used the sampling property of the generalised Dirac delta function. The absolute
value in the integrand in Equation (3.77) requires considering the two cases: α̌ < 0, α̌ > 0,
separately. For α̌ < 0, we have

λ

2 exp(λα̌)N (α̌; ř, s) = 1√
2πs

λ

2 exp
(
− (α̌− ř)2 − λα̌2s

2s

)
(3.78)

= 1√
2πs

λ

2 exp
(
− α̌

2 + ř2 − 2α̌(ř + λs)
2s

)
(3.79)

= 1√
2πs

λ

2 exp
(
− (α̌− (ř + λs))2 − (λs)2 − 2řλs

2s

)
(3.80)

= 1√
2πs

λ

2 exp
(
− (α̌− r)2

2s

)
exp
(

1
2λ

2s+ řλ

)
(3.81)

= λ

2 exp
(

1
2λ

2s+ řλ

)
N (α̌; r, s) (3.82)

for r = ř + λs. Note that 1
2λ

2s+ řλ = r2−ř2

2s . Similarly, for α̌ > 0, we have

λ

2 exp(−λα̌)N (α̌; ř, s) = 1√
2πs

λ

2 exp
(
− (α̌− ř)2 + λα̌2s

2s

)
(3.83)

= 1√
2πs

λ

2 exp
(
− α̌

2 + ř2 − 2α̌(ř − λs)
2s

)
(3.84)

= 1√
2πs

λ

2 exp
(
− (α̌− (ř − λs))2 − (λs)2 + 2řλs

2s

)
(3.85)

= 1√
2πs

λ

2 exp
(
− (α̌− r̄)2

2s

)
exp
(

1
2λ

2s− řλ
)

(3.86)

= λ

2 exp
(

1
2λ

2s− řλ
)
N (α̌; r̄, s) (3.87)

for r̄ = ř − λs. Note that 1
2λ

2s− řλ = r̄2−ř2

2s .
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Now returning to the Equation (3.77), we may split the integral in a lower and an upper part

ZI = (1− τ)N (0; r, s)

+ τ

(∫ 0

−∞

λ

2 exp(λα̌)N (α̌; ř, s)dα̌+
∫ ∞

0

λ

2 exp(−λα̌)N (α̌; ř, s)dα̌
)

(3.88)

= (1− τ)N (0; r, s)

+ τ

(
λ

2 exp
(

1
2λ

2s+ řλ

)∫ 0

−∞
N (α̌; r, s)dα̌

+ λ

2 exp
(

1
2λ

2s− řλ
)∫ ∞

0
N (α̌; r̄, s)dα̌

)
(3.89)

= (1− τ)N (0; r, s)

+ τ

(
λ

2 exp
(

1
2λ

2s+ řλ

)
ΦN
(−r√

s

)
+ λ

2 exp
(

1
2λ

2s− řλ
)(

1− ΦN
(−r̄√

s

)))
(3.90)

= (1− τ)N (0; r, s)

+ τ

(
λ

2 exp
(

1
2λ

2s+ řλ

)
ΦN
(−r√

s

)
+ λ

2 exp
(

1
2λ

2s− řλ
)

ΦN
(
r̄√
s

))
(3.91)

= (1− τ)N (0; r, s) + τ(ZI + Z̄I) (3.92)

for

ZI = λ

2 exp
(

1
2λ

2s+ řλ

)
ΦN
(−r√

s

)
(3.93)

Z̄I = λ

2 exp
(

1
2λ

2s− řλ
)

ΦN
(
r̄√
s

)
(3.94)

where we have introduced the cumulative distribution function (cdf) ΦN (x̌) =
∫ x̌
−∞ φN (t) dt =

1√
2π

∫ x̌
−∞ exp

(
− t22

)
dt of a standard normal distribution (with probability density function (pdf)

φN (x̌) = N (x̌, 0, 1) = 1√
2π exp

(
− x̌2

2

)
). Note that we have the following symmetry relations

φN (−x̌) = φN (x̌) (3.95)
ΦN (−x̌) = 1− ΦN (x̌) (3.96)

Using techniques similar to those used above for deriving ZI , we have the following expression for
the N1 quantity in Equation (3.10)

N1 = (1− τ)
∫ ∞

−∞
(α̌+ µ)δDirac(α̌+ µ)N (α̌; ř, s)dα̌

+ τ

∫ ∞

−∞
(α̌+ µ)λ2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.97)

= (1− τ)
∫ ∞

−∞
αδDirac(α)N (α; r, s)dα

+ τ

∫ ∞

−∞
(α̌+ µ)λ2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.98)

= τ

∫ ∞

−∞
(α̌+ µ)λ2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.99)

= µτ

∫ ∞

−∞

λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌+ τ

∫ ∞

−∞
α̌
λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.100)

= µτ(ZI + Z̄I) + τ

∫ ∞

−∞
α̌
λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.101)
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= τµ(ZI + Z̄I)

+ τ

(∫ 0

−∞
α̌
λ

2 exp(λα̌)N (α̌; ř, s)dα̌+
∫ ∞

0
α̌
λ

2 exp(−λα̌)N (α̌; ř, s)dα̌
)

(3.102)

= τµ(ZI + Z̄I) + τ

(
λ

2 exp
(

1
2λ

2s+ řλ

)∫ 0

−∞
α̌N (α̌; r, s)dα̌

+ λ

2 exp
(

1
2λ

2s− řλ
)∫ ∞

0
α̌N (α̌; r̄, s)dα̌

)
(3.103)

= τµ(ZI + Z̄I)

+ τ


λ

2 exp
(

1
2λ

2s+ řλ

)
ΦN
(−r√

s

)∫ 0

−∞
α̌
N (α̌; r, s)
ΦN
(
−r√
s

) dα̌

+ λ

2 exp
(

1
2λ

2s− řλ
)

ΦN
(
r̄√
s

)∫ ∞

0
α̌
N (α̌; r̄, s)
ΦN
(
r̄√
s

) dα̌


 (3.104)

= τµ(ZI + Z̄I) + τ


ZI

∫ 0

−∞
α̌

1√
s
φN
(
α̌−r√
s

)

ΦN
(
−r√
s

) dα̌+ Z̄I
∫ ∞

0
α̌

1√
s
φN
(
α̌−r̄√
s

)

ΦN
(
r̄√
s

) dα̌


 (3.105)

= τµ(ZI + Z̄I) + τ


ZI

∫ 0

−∞
α̌

1√
s
φN
(
α̌−r√
s

)

ΦN
(
−r√
s

) dα̌+ Z̄I
∫ ∞

0
α̌

1√
s
φN
(
α̌−r̄√
s

)

1− ΦN
(
−r̄√
s

)dα̌


 (3.106)

Now, consider the double truncated normal distribution with probability density function [42]

T N (x̌, ξ, σ2, a, b) =





0, x̌ < a
1√

2πσ2
exp
(
− (x̌−ξ)2

2σ2

)

∫ b
a

1√
2πσ2

exp
(
− (t−ξ)2

2σ2

)
dt

= φN( x̌−ξσ )
σ(ΦN( b−ξσ )−ΦN( a−ξσ )) , a ≤ x̌ ≤ b

0, x̌ > b

(3.107)

with mean and variance [42]

E[x̌] =
∫ ∞

−∞
x̌T N (x̌, ξ, σ2, a, b)dx̌ (3.108)

= ξ + σ
φN
(
a−ξ
σ

)
− φN

(
b−ξ
σ

)

ΦN
(
b−ξ
σ

)
− ΦN

(
a−ξ
σ

) (3.109)

Var(x̌) =
∫ ∞

−∞
(x̌− E[x̌])2T N (x̌, ξ, σ2, a, b)dx̌ (3.110)

= σ2


1 +

a−ξ
σ φN

(
a−ξ
σ

)
− b−ξ

σ φN
(
b−ξ
σ

)

ΦN
(
b−ξ
σ

)
− ΦN

(
a−ξ
σ

) −



φN
(
a−ξ
σ

)
− φN

(
b−ξ
σ

)

ΦN
(
b−ξ
σ

)
− ΦN

(
a−ξ
σ

)




2
 (3.111)

Returning to Equation (3.106), we find that the integrals in that equation correspond to the mean
values of two singly truncated normal distributions

N1 = τµ(ZI + Z̄I) + τ

(
ZI
∫ 0

−∞
α̌T N (α̌, r, s,−∞, 0)dα̌+ Z̄I

∫ ∞

0
α̌T N (α̌, r̄, s, 0,∞)dα̌

)

(3.112)
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Thus, using the expression in Equation (3.109) (handling φN (∞) properly as a limit - see also
[43]), we have

N1 = τµ(ZI + Z̄I) + τ


ZI


r +

√
s
−φN

(
−r√
s

)

ΦN
(
−r√
s

)


+ Z̄I


r̄ +

√
s

φN
(
−r̄√
s

)

1− ΦN
(
−r̄√
s

)




 (3.113)

= τµ(ZI + Z̄I) + τ


ZI


r −√s

φN
(
−r√
s

)

ΦN
(
−r√
s

)


+ Z̄I


r̄ +

√
s
φN
(
r̄√
s

)

ΦN
(
r̄√
s

)




 (3.114)

Using techniques similar to those used above for deriving N1, we have the following expression for
the N2a quantity in Equation (3.11)

N2a = (1− τ)
∫ ∞

−∞
(α̌+ µ)2δDirac(α̌+ µ)N (α̌; ř, s)dα̌

+ τ

∫ ∞

−∞
(α̌+ µ)2λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.115)

= (1− τ)
∫ ∞

−∞
α2δDirac(α)N (α; r, s)dα

+ τ

∫ ∞

−∞
(α̌+ µ)2λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.116)

= τ

∫ ∞

−∞
(α̌+ µ)2λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.117)

= τ

∫ ∞

−∞
(µ2 + 2µα̌+ α̌2)λ2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.118)

= τµ2(ZI + Z̄I) + 2µ(N1 − τµ(ZI + Z̄I))

+ τ

∫ ∞

−∞
α̌2λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.119)

= −τµ2(ZI + Z̄I) + 2µN1

+ τ

(∫ 0

−∞
α̌2λ

2 exp(λα̌)N (α̌; ř, s)dα̌+
∫ ∞

0
α̌2λ

2 exp(−λα̌)N (α̌; ř, s)dα̌
)

(3.120)

= −τµ2(ZI + Z̄I) + 2µN1

+ τ


ZI

∫ 0

−∞
α̌2

1√
s
φN
(
α̌−r√
s

)

ΦN
(
−r√
s

) dα̌+ Z̄I
∫ ∞

0
α̌2

1√
s
φN
(
α̌−r̄√
s

)

1− ΦN
(
−r̄√
s

)dα̌


 (3.121)

The integrals in Equation (3.121) correspond to the second moments of two singly truncated normal
distributions

N2a = −τµ2(ZI + Z̄I) + 2µN1

+ τ

(
ZI
∫ 0

−∞
α̌2T N (α̌, r, s,−∞, 0)dα̌+ Z̄I

∫ ∞

0
α̌2T N (α̌, r̄, s, 0,∞)dα̌

)
(3.122)
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Thus, using E[x̌2] = Var(x̌) + E[x̌]2 together with Equation (3.111), we get

N2a = −τµ2(ZI + Z̄I) + 2µN1

+ τ


ZI


s


1 +

−−r√
s
φN
(
−r√
s

)

ΦN
(
−r√
s

) −



−φN

(
−r√
s

)

ΦN
(
−r√
s

)




2
+


r −√s

φN
(
−r√
s

)

ΦN
(
−r√
s

)




2


+ Z̄I


s


1 +

−r̄√
s
φN
(
−r̄√
s

)

1− ΦN
(
−r̄√
s

) −




φN
(
−r̄√
s

)

1− ΦN
(
−r̄√
s

)




2
+


r̄ +

√
s
φN
(
r̄√
s

)

ΦN
(
r̄√
s

)




2





(3.123)
= 2µN1 − τµ2(ZI + Z̄I)

+ τ


ZI


s


1−

φN
(
−r√
s

)

ΦN
(
−r√
s

)



φN
(
−r√
s

)

ΦN
(
−r√
s

) − r√
s




+


r −√s

φN
(
−r√
s

)

ΦN
(
−r√
s

)




2


+ Z̄I


s


1−

φN
(
r̄√
s

)

ΦN
(
r̄√
s

)



φN
(
r̄√
s

)

ΦN
(
r̄√
s

) + r̄√
s




+


r̄ +

√
s
φN
(
r̄√
s

)

ΦN
(
r̄√
s

)




2



 (3.124)

Finally, we arrive at the following expressions for the i.i.d. BL channel functions based on Equations
(3.12) and (3.13)

fᾱ(s, r;θI) = N1
ZI

(3.125)

=
τµ(ZI + Z̄I) + τ

(
ZI
(
r −√s φN

(−r√
s

)

ΦN
(−r√

s

)
)

+ Z̄I
(
r̄ +
√
s
φN
(
r̄√
s

)

ΦN
(
r̄√
s

)
))

ZI
(3.126)

= τ


µ (ZI + Z̄I)

ZI
+ ZIZI


r −√s

φN
(
−r√
s

)

ΦN
(
−r√
s

)


+ Z̄IZI


r̄ +

√
s
φN
(
r̄√
s

)

ΦN
(
r̄√
s

)






(3.127)

fα̃(s, r;θI) = N2a
ZI
− fᾱ(s, r;θI)2 (3.128)

= 2µfᾱ(s, r;θI) + τ

{
− µ2 (ZI + Z̄I)

ZI

+ ZIZI


s


1−

φN
(
−r√
s

)

ΦN
(
−r√
s

)



φN
(
−r√
s

)

ΦN
(
−r√
s

) − r√
s




+


r −√s

φN
(
−r√
s

)

ΦN
(
−r√
s

)




2


+ Z̄IZI


s


1−

φN
(
r̄√
s

)

ΦN
(
r̄√
s

)



φN
(
r̄√
s

)

ΦN
(
r̄√
s

) + r̄√
s




+


r̄ +

√
s
φN
(
r̄√
s

)

ΦN
(
r̄√
s

)




2

}

− fᾱ(s, r;θI)2 (3.129)

for

ZI = (1− τ)N (0; r, s) + τ(ZI + Z̄I) (3.130)

ZI = λ

2 exp
(

1
2λ

2s+ řλ

)
ΦN
(−r√

s

)
(3.131)

172



3.7.1.1. Numerical Accuracy Considerations for the i.i.d. BL Input Channel 23

Z̄I = λ

2 exp
(

1
2λ

2s− řλ
)

ΦN
(
r̄√
s

)
(3.132)

ř = r − µ (3.133)
r = ř + λs (3.134)
r̄ = ř − λs (3.135)

3.7.1.1 Numerical Accuracy Considerations for the i.i.d. BL Input Channel

When implementing these channel functions, one has to pay attention to fractions of the type
φN(x̌)
ΦN(x̌) . For such fractions, improved numerical accuracy may be obtained1 by using a reasonable
implementation2 of the scaled complementary error function [44]

erfcx(x̌) := exp
(
x̌2) 2√

π

∫ ∞

x̌

exp
(
−t2

)
dt (3.136)

For the scaled complementary error function, we have

erfcx
(−x̌√

2

)
= exp

((−x̌√
2

)2
)

2√
π

∫ ∞
−x̌√

2

exp
(
−t2

)
dt (3.137)

= exp
(
x̌2

2

)
2√
π

∫ x̌√
2

−∞
exp
(
−t2

)
dt (3.138)

= exp
(
x̌2

2

)
2√
2π

∫ x̌

−∞
exp
(
−
(

t√
2

)2
)
dt (3.139)

= exp
(
x̌2

2

)
2√
2π

∫ x̌

−∞
exp
(
− t

2

2

)
dt (3.140)

= exp
(
x̌2

2

)
2ΦN (x̌) (3.141)

which means that

φN (x̌)
ΦN (x̌) =

1√
2π exp

(
− x̌2

2

)

erfcx
(
−x̌√

2

)

2exp
(
x̌2
2

)
(3.142)

=
2√
2π exp

(
− x̌2

2

)
exp
(
x̌2

2

)

erfcx
(
−x̌√

2

) (3.143)

=
2√
2π

erfcx
(
−x̌√

2

) (3.144)

1This use of complementary error function was inspired by its use in the ElasticNetEstimIn.m file in the
GAMPMatlab Toolbox version 20161005 available at https://sourceforge.net/projects/gampmatlab/. See also
Section 7.2 for more information about the GAMPMatlab Toolbox.

2See: http://scipy.github.io/devdocs/special.html#error-function-and-fresnel-integrals and http://
ab-initio.mit.edu/wiki/index.php/Faddeeva_Package
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3.7.1.2 BL Expressions for use with the GWS Input Channel

Based on the result in Equations (3.127) and (3.129), we may identify the following i.i.d BL channel
updates to be used in the GWS framework described in Section 3.5

fᾱj (sj , rj ; [θI ]j) = πw
j (rj , sj , [θI ]j)

{

µj +
ZIj
Zϕj


rj −

√
sj
φN
(−r

j√
sj

)

ΦN
(−rj√

sj

)


+

Z̄Ij
Zϕj


r̄j +√sj

φN
(
r̄j√
sj

)

ΦN
(
r̄j√
sj

)



}

(3.145)

fα̃j (sj , rj ; [θI ]j) = 2µfᾱj (sj , rj ; [θI ]j) + πw
j (rj , sj , [θI ]j)

{
− µ2

j

+
ZIj
Zϕj


sj


1−

φN
(−r

j√
sj

)

ΦN
(−rj√

sj

)



φN
(−r

j√
sj

)

ΦN
(−r

j√
sj

) −
rj√
sj




+


rj −

√
sj
φN
(−r

j√
sj

)

ΦN
(−r

j√
sj

)




2


+
Z̄Ij
Zϕj


sj


1−

φN
(
r̄j√
sj

)

ΦN
(
r̄j√
sj

)



φN
(
r̄j√
sj

)

ΦN
(
r̄j√
sj

) + r̄j√
sj




+


r̄j +√sj

φN
(
r̄j√
sj

)

ΦN
(
r̄j√
sj

)




2

}

− fᾱj (sj , rj ; [θI ]j)2 (3.146)
for

Zϕj = ZIj + Z̄Ij (3.147)

ZIj = λj
2 exp

(
1
2λ

2
jsj + řjλj

)
ΦN
(−rj√

sj

)
(3.148)

Z̄Ij = λj
2 exp

(
1
2λ

2
jsj − řjλj

)
ΦN
(
r̄j√
sj

)
(3.149)

řj = rj − µj (3.150)
rj = řj + λjsj (3.151)
r̄j = řj − λjsj (3.152)

3.7.2 I.i.d. Sparse Bernoulli-Gauss Input Channel
For an i.i.d. BG input channel with signal density τ and Gaussian mean θ̄ and variance θ̃ (θI =
[τ, θ̄, θ̃]T ), i.e.

p(α;θI) = (1− τ)δDirac(α) + τ
1√
2πθ̃

exp
(
− (α− θ̄)2

2θ̃

)
(3.153)

we have channel functions [5]3 (Eqs. (68), (69))

fᾱ(s, r;θI) =
τab 1

s+θ̃ c

(1− τ)d + τba
(3.154)

fα̃(s, r;θI) =
τ(1− τ)dab 1

(s+θ̃)2 (θ̃s(s+ θ̃) + c2) + τ2aθ̃b4

((1− τ)d + τba)2 (3.155)

for

a := exp
(
− (r − θ̄)2

2(s+ θ̃)

)
(3.156)

3In [5] the full expressions for the channel functions are given, i.e. the intermediate variables a, b, c, d are not
used. These variables have been introduced by the authors of this note.
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b :=
√
s√

s+ θ̃
(3.157)

c := θ̄s+ rθ̃ (3.158)

d := exp
(
− r

2

2s

)
(3.159)

Manoel and Tramel suggested the following implementation4 of the i.i.d. BG input channel func-
tions

fᾱ(s, r;θI) =
c

s+θ̃
f + 1 (3.160)

fα̃(s, r;θI) = f f2
ᾱ(s, r;θI) + e

f + 1 (3.161)

for

e := θ̃s

s+ θ̃

[
= θ̃b2] (3.162)

f := 1− τ
τ

√
θ̃

e
exp
(
−1

2

(
r2

s
− (r − θ̄)2

s+ θ̃

))[
= 1− τ

τ

1
b

d
a

]
(3.163)

Parker suggested the following implementation of the i.i.d. BG input channel functions [15]

fᾱ(s, r;θI) = g
k

(3.164)

fα̃(s, r;θI) = g2 k − 1
k 2 + h

k
(3.165)

for

g :=
θ̄
θ̃

+ r
s

1
θ̃

+ 1
s

[
= c
s+ θ̃

]
(3.166)

h := 1
1
θ̃

+ 1
s

[= e] (3.167)

k := 1 + 1− τ
τ

√
θ̃

h
exp
(

1
2

[
(r − θ̄)2

θ̃ + s
− r2

s

])[
= 1 + 1− τ

τ

1
b

d
a

]
(3.168)

However, in EM-BG-GAMP [39], the following slightly modified implementation of the i.i.d. BG
input channel is suggested

fᾱ(s, r;θI) = lg
[
= g

k

]
(3.169)

fα̃(s, r;θI) = l (h + |g |2)− l 2|g |2
[
= h + |g |2

k
− |g |

2

k 2 = kh + |g |2(k − 1)
k 2 = |g |2 k − 1

k 2 + h
k

]

(3.170)

for

l := 1

1 +
(

τ
1−τ

1√
θ̃+s

exp
(
− 1

2
(r−θ̄)2
θ̃+s

)

1√
s

exp
(
− 1

2
r2
s

)
)−1


= 1

1 +
(

τ
1−τ b a

d

)−1 = 1
k


 (3.171)

Note that the l in Equation (3.171) corresponds to the π(r, s,θI) in Equation (3.41). Also note
that the absolute values are included for generality since the case of real valued Gaussians may be
extended to the case of circular-complex-Gaussians [39], [28].

4See: https://github.com/eric-tramel/SwAMP-Demo/blob/master/python/amp.py
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3.7.2.1 BG Expressions for use with the GWS Input Channel

Based on the result in Equations (3.170) and (3.170) as well as the multiplication rule for two
Gaussian densities given in [28], we may identify the following i.i.d. BG channel updates to be
used in the GWS framework described in Section 3.5

fᾱj (sj , rj ; [θI ]j) = πw
j (rj , sj , [θI ]j)




θ̄j
θ̃j

+ rj
sj

1
θ̃j

+ 1
sj


 (3.172)

fα̃j (sj , rj ; [θI ]j) = πw
j (rj , sj , [θI ]j)


 1

1
θ̃j

+ 1
sj

+




θ̄j
θ̃j

+ rj
sj

1
θ̃j

+ 1
sj




2
− fᾱj (sj , rj ; [θI ]j)2 (3.173)
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4 Sum Approximations

From an implementation point of view, a critical element in the GAMP iteration in Equations
(2.1)-(2.12) is the application of the entrywise absolute value squared system matrix

|A|◦2 = Aasq =



|a11|2 · · · |a1n|2

... . . . ...
|am1|2 · · · |amn|2


 (4.1)

If the system matrix A is given explicitly, one may easily find |A|◦2 using Equation (4.1). However,
oftentimes (especially when considering large problem sizes) it is a necessity to use a fast transform
for implementing the matrix-vector products involving A and AH in the GAMP algorithm in
order to achieve acceptable reconstruction times and reasonable memory requirements [28], [29].
For instance, one may use a Fast Fourier Transform (FFT) based method to implement a matrix-
vector product involving a Discrete Fourier Transform (DFT). However, such fast transforms
are not always available for implementing the matrix-vector products involving |A|◦2. As an
alternative, one may use sum approximation (also known as uniform variance) GAMP. The idea,
then, is to approximate the matrix-vector products involving |A|◦2 by certain sums.

4.1 The Sum Approximation by Krzakala et al.

In [5], Krzakala et al. consider the case where A is a homogeneous matrix with i.i.d. random entries
having zero mean and variance 1

n . In this case, the ensemble average of different realisations of
|A|◦2 is

E[|A|◦2] =



E[|a11|2] · · · E[|a1n|2]

... . . . ...
E[|am1|2] · · · E[|amn|2]


 (4.2)

=



Var(a11) · · · Var(a1n)

... . . . ...
Var(am1) · · · Var(amn)


 (4.3)

=




1
n · · · 1

n
... . . . ...
1
n · · · 1

n


 (4.4)

since the entries of A are zero mean. Now, one may consider an approximation of e.g. the GAMP
factor side update in Equation (2.1)

v̄t+1 =
∑

j

E[|A|◦2]ijα̃tj (4.5)

= 1
n

∑

j

α̃tj (4.6)

Since the variance (vt+1
i − v̄t+1)2 is of order O

( 1
n

)
(see the details in Eq. (55) in [5]), in the large

system limit as n→∞, one may consider all vt+1
i equal to their average v̄t+1. Similar arguments

may be used for other GAMP updates that involve |A|◦2. Thus, one may replace all GAMP
instances of |A|◦2 with sums scaled by 1

n , which yields the following alternatives to the GAMP
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updates in Equations (2.1) and (2.7)

v̄t+1 = 1
n

∑

j

α̃tj (4.7)

s̄t+1 =
[

1
n

∑

i

ut+1
i

]−1

(4.8)

which may then be used in place of all vt+1
i , st+1

j respectively, in the GAMP iteration in Equations
(2.1)-(2.12). Note that the sum approximation by Krzakala et al. (with an assumed variance of
1
m instead of 1

n ) is closely related to the Donoho/Maleki/Montanari AMP as described in Section
2.1.

4.2 The Sum Approximation by Rangan

In [16], Rangan considers a sightly different approximation based on the assumption that |aij |2 ≈
||A||2F
mn for all i, j, where ||A||2F is the Frobenius norm of the matrix A. Rangan then forces all

variance related components for each GAMP state to be the same. That is, vt+1
i = v̆t+1, ut+1

i =
ŭt+1, st+1

j = s̆t+1, α̃t+1
j = ᾰt+1 for all i, j. Specifically, Rangan’s MMSE GAMP iteration with

scalar variances reads

Output (factor) side updates:

v̆t+1 = 1
m
||A||2F ᾰt (4.9)

ot+1
i =

∑

j

aijᾱ
t
j − v̆t+1qti (4.10)

z̄t+1
i = fz̄i(v̆t+1, ot+1

i ; yi, [θo]ti) (4.11)
z̃t+1
i = fz̃i(v̆t+1, ot+1

i ; yi, [θo]ti) (4.12)

qt+1
i = z̄t+1

i − ot+1
i

v̆t+1 (4.13)

ŭt+1 = 1
m

∑

i

v̆t+1 − z̃t+1
i

(v̆t+1)2 (4.14)

Input (variable) side updates:

s̆t+1 =
[

1
n
||A||2F ŭt+1

]−1
(4.15)

rt+1
j = ᾱtj + s̆t+1

∑

i

a∗ijq
t+1
i (4.16)

ᾱt+1
j = fᾱj (s̆t+1, rt+1

j ; [θI ]tj) (4.17)

ᾰt+1 = 1
n

∑

j

fα̃j (s̆t+1, rt+1
j ; [θI ]tj) (4.18)

Optional parameter value updates (using e.g. EM - see also Section 6):

[θo]t+1
i = . . . (4.19)

[θI ]t+1
j = . . . (4.20)

In [16], Rangan claims that simulations show that this simplified GAMP iteration works as well as
the full (non-uniform variance) GAMP iteration in Equations (2.1) - (2.12). Unfortunately, neither
the specific simulations nor any details about their nature are given in [16].
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4.2.1 The Connection Between Sum Approximations by Krzakala et al. and Rangan
Rangan’s simplifications are closely related to simplifications by Krzakala et al. To see this, note
that for an m× n system matrix A with i.i.d. random entries having zero mean and variance σ2,
we have

σ2 ≈ 1
mn

∑

i

∑

j

|aij |2 = 1
mn
||A||2F (4.21)

Thus, if σ2 = 1
n as in the sum approximation by Krzakala et al. and vt+1

i ≈ v̆t+1, st+1
j ≈ s̆t+1 for

all i = 1, . . . ,m and j = 1, . . . , n, we have

v̄t+1 = σ2
∑

j

α̃tj (4.22)

≈ 1
mn
||A||2F

∑

j

α̃tj (4.23)

≈ 1
m
||A||2F ᾰt (4.24)

= v̆t+1 (4.25)

s̄t+1 =
[
σ2
∑

i

ut+1
i

]−1

(4.26)

≈
[

1
mn
||A||2F

∑

i

ut+1
i

]−1

(4.27)

≈
[

1
n
||A||2F ŭt+1

]−1
(4.28)

= s̆t+1 (4.29)

An interpretation of this result is that Rangan’s sum approximation adapts to the system matrix
A (and its variance) through ||A||2F .

4.2.2 Efficiently Computing the Frobenius Norm of the System Matrix
The need for finding ||A||2F may make it infeasible to use Rangan’s sum approximation in practical
applications. For instance, if one attempts to use Rangan’s method in order to avoid explicitly
storing |A|◦2 in memory on a computer because it is infeasible to do so, a method for implicitly
finding ||A||2F is needed. If no such method is available and one has to explicitly store A in
memory in order to estimate ||A||2F , no progress is made in using Rangan’s sum approximation.
We now discuss a few structured system matrices that allow for efficient (in terms of memory and
computation requirements) ways to compute ||A||2F .

If A is defined by a Kronecker product, i.e. A = B⊗C ∈ Cm×n for B ∈ Co×p, C ∈ Cq×r with
m = o · q, n = p · r, then we have

||A||2F =
m−1∑

i′=0

n−1∑

j′=0
|ai′j′ |2 (4.30)

=
o−1∑

i=0

p−1∑

j=0

q−1∑

k=0

r−1∑

l=0
|bijckl|2 (4.31)

=
o−1∑

i=0

p−1∑

j=0

q−1∑

k=0

r−1∑

l=0
|b|2ij |c|2kl (4.32)

=



o−1∑

i=0

p−1∑

j=0
|b|2ij



(
q−1∑

k=0

r−1∑

l=0
|c|2kl

)
(4.33)

= ||B||2F ||C||2F (4.34)
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Using an inductive argument, it is easy to see from the above computations that this property of
the Frobenius norm generalises to Kronecker products of more than two matrices.

Now consider all matrices that are arbitrary-sign adjusted, permuted, and scaled identity ma-
trices, i.e. any matrix G ∈ Cn×n formed from an identity matrix by scaling all diagonal entries by
an arbitrary factor b ∈ C, followed by arbitrary sign changes on the diagonal entries, followed by
an arbitrary permutation of either rows and/or columns. Now since we are only moving around
and scaling (with a common absolute value of the scaling factor) all entries of the identity matrix,
we have the following property of the Frobenius norm of the matrix products H1G, GH2 for any
H1 ∈ Cm×n, H2 ∈ Cn×m:

||H1G||2F =
m−1∑

i′=0

n−1∑

j′=0
|h1i′j′ · b|2 (4.35)

= |b|2
m−1∑

i′=0

n−1∑

j′=0
|h1i′j′ |2 (4.36)

= |b|2 · ||H1||2F (4.37)

||GH2||2F =
n−1∑

i′′=0

m−1∑

j′′=0
|b · h1i′′j′′ |2 (4.38)

= |b|2 ·
n−1∑

i′′=0

m−1∑

j′′=0
|h1i′′j′′ |2 (4.39)

= |b|2 · ||H2||2F (4.40)
(4.41)

with the i′, j′ indexing H1 according to the permutations applied by G and the i′′, j′′ indexing H2
according to the permutations applied by G.

Finally, we consider the Structurally Random Matrices (SRMs) detailed in [30]. These matrices
are defined by

A = DΩFR (4.42)

with DΩ ∈ Rm×n a sub-sampling matrix that selects a (random) subset of the rows from FR
according to the indexing set Ω, i.e. it is an identity matrix with the rows not indexed by Ω
removed, F ∈ Rn×n an orthogonal matrix, and R ∈ Rn×n a prerandomization matrix, i.e. either
an identity matrix with uniformly random sign changes on the diagonal entries or a permutation
matrix that permutes the columns of F at (uniformly) random. From Equation (4.37), we have
||FR||2F = ||F||2F . The sub-sampling by DΩ results in keeping only a fraction of m

n of the (unit
vector) rows in FR. Thus, for A a SRM, we get

||A||2F = ||DΩFR||2F (4.43)

= m

n
||FR||2F (4.44)

= m

n
||F||2F (4.45)

= m

n
n (4.46)

= m (4.47)

If F is not an orthogonal matrix, Equation (4.45) is not in general valid. However, if we assume
that all entries of |F|◦2 are of approximately the same size, i.e. |fij |2 ≈ ||F||

2
F

n2 for all i, j (essentially
the same assumption that is used in Rangan’s sum approximation), we have

||A||2F ≈
m

n
||F||2F (4.48)

for any such F. Furthermore, if F is defined by a Kronecker product, we may use Equation (4.34)
to compute ||F||2F .
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5 Implementations of the GAMP Iteration

The GAMP iteration given in Equations (2.1)-(2.12) may be implemented in a number of ways. One
may elect to combine some of the states, introduce new ones, or introduce convergence supporting
heuristics. In this section, we present some of the implementations of the GAMP iteration that
may be found in the literature.

The algorithms presented in this section are described using matrix-vector notation with Numpy
broadcasting rules1, e.g. multiplying two (column) vectors amounts to entrywise multiplication.
The matrix-vector notation takes precedence over broadcasting2, e.g. multiplying a matrix with a
vector amounts to a matrix-vector multiplication - not a broadcast along the last axis. All vectors
are column vectors. Also θI and θo are to be understood as being the relevant channel parameters
for the given iteration as detailed in Sections 3.1 and 3.2. The channel functions fz̄, fz̃, fᾱ, and
fα̃ are scalar functions as noted in Section 3. Thus, when used on vectors these functions operate
on each element of the vectors and produce a result vector having the individual scalar results as
its entries. Consequently, the result is a vector of the same size as the input vectors.

Algorithm 1 details the implementation of the MMSE GAMP from [1], [16] as described by
Parker [15]. Algorithm 1 is the GAMP variant used in Schniter’s and Vila’s EM-BG-AMP and
EM-GM-AMP algorithms [39], [45], [28].

Algorithm 1 - MMSE GAMP [1], [15]
1 initialise: ᾱ0 = Eα|θI [α], α̃0 = Varα|θI (α), q0 = 0m # marginal conditional expectations
2 for t = 1 . . . Tmax do
3 vt = Aasqα̃t-1
4 ot = Aᾱt-1 − vtqt-1
5 z̄t = fz̄(vt,ot; y,θo)
6 z̃t = fz̃(vt,ot; y,θo)
7 qt = z̄t−ot

vt
8 ut = vt−z̃t

v2
t

9 st = [AT
asqut]−1

10 rt = ᾱt-1 + stAHqt
11 ᾱt = fᾱ(st, rt;θI)
12 α̃t = fα̃(st, rt;θI)
13 if stop criterion is met then
14 break
15 end if
16 end for

Parker introduced some further modifications for numerical robustness of the GAMP algorithm
[15]. This modified algorithm is detailed in Algorithm 2. Compared to Algorithm 1, two modifi-
cations are made:

• Introduction of a step-size (or damping) parameter κ.

• Re-scaling of several of the states to better handle high SNR cases.

The simplified sum approximation GAMP algorithms described Section 4 have similar implemen-
tations to the algorithms presented so far. In particular, the sum approximation by Krzakala et
al. in Equations (4.7) and (4.8) may be implemented in Algorithm 1 be replacing Aasq with 1

n1Tn
and replacing AT

asq with 1
n1Tm which means that vt and st become scalar. Rangan’s simplified sum

1See: http://docs.scipy.org/doc/numpy-1.10.1/user/basics.broadcasting.html
2The way to think of it: Whenever you encounter an undefined operation in matrix-vector notation, then use

the broadcasting rules.
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32 Chapter 5. Implementations of the GAMP Iteration

Algorithm 2 - Numerically Robust MMSE GAMP with damping [15]
1 initialise: ᾱ0 = Eα|θI [α], α̃0 = Varα|θI (α), q0 = 0m, µ0 = 1, v0 = 0m # marginal

conditional expectations
2 for t = 1 . . . Tmax do
3 vt = κAasqα̃t-1 + (1− κ)vt-1
4 µt = 1

mvT
t 1m

5 ot = Aᾱt-1 − 1
µt

vtqt-1
6 z̄t = fz̄(vt,ot; y,θo)
7 z̃t = fz̃(vt,ot; y,θo)
8 qt = κµt

z̄t−ot
vt + (1− κ)qt-1

9 ut = κµt
vt−z̃t

v2
t

+ (1− κ)ut-1
10 ᾰt = κᾱt-1 + (1− κ)ᾰt-1
11 st = [AT

asqut]−1

12 rt = ᾰt + stAHqt
13 ᾱt = fᾱ(st, rt;θI)
14 α̃t = µtfα̃(st, rt;θI)
15 if stop criterion is met then
16 break
17 end if
18 end for

approximation GAMP iteration in Equations (4.9)-(4.20) may be implemented in a similar way to
Algorithm 1 as detailed in Algorithm 3.

Algorithm 3 - MMSE GAMP with Rangan sum approximations [16]
1 initialise: ᾱ0 = Eα|θI [α], ᾰ0 = 1

n

∑(
Varα|θI (α)

)
, q0 = 0m # marginal conditional

expectations
2 for t = 1 . . . Tmax do
3 v̆t = 1

m ||A||2F ᾰt-1
4 ot = Aᾱt-1 − v̆tqt-1
5 z̄t = fz̄(v̆t,ot; y,θo)
6 z̃t = fz̃(v̆t,ot; y,θo)
7 qt = z̄t−ot

v̆t

8 ŭt = 1
m

∑(
v̆t−z̃t
v̆2
t

)

9 s̆t = [ 1
n ||A||2F ŭt]−1

10 rt = ᾱt-1 + s̆tAHqt
11 ᾱt = fᾱ(s̆t, rt;θI)
12 ᾰt = 1

n

∑
(fα̃(s̆t, rt;θI))

13 if stop criterion is met then
14 break
15 end if
16 end for

5.1 Stop Criteria

The GAMP iteration in Equations (2.1)-(2.12) is to be iterated until convergence. However, in a
practical setup one may terminate the iteration once the algorithm is sufficiently close to conver-
gence. The challenge is then to find some criterion that describes when the algorithm has (almost)
converged. Here we discuss a few such stop criteria that may be used with Algorithms 1-3. For a
more general introduction to stop criteria for iterative methods see e.g. [46].
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5.1.1. Mean Squared Error Stop Criterion 33

5.1.1 Mean Squared Error Stop Criterion
Since the GAMP iteration converges to a fixed point [25], it seems natural to stop the iteration
once the change in the solutions between iterations becomes sufficiently small. If the change in
the solution between iterations is measured in the 2-norm, we have a mean squared error (MSE)
stop criterion

1
n
||ᾱt-1 − ᾱt||22 < ε (5.1)

for some tolerance ε.
Note that if the algorithm stalls for some iterations, too early termination may occur when

using this MSE stop criterion. It is the authors’ experience that this may indeed happen with
GAMP in some cases.

5.1.2 Normalised Mean Squared Error Stop Criterion
A stop criterion related to the MSE stop criterion in Equation (5.1) is the normalised mean squared
error (NMSE) stop criterion used in e.g. [28], [31], [40]

||ᾱt-1 − ᾱt||22
||ᾱt-1||22

< ε (5.2)

for some tolerance ε.
Note that this criterion is subject to a potential division by zero problem if ᾱt-1 = 0 which

happens if the solution vector is initialised to the zero-vector. It is the authors’ experience that
this stop criterion is more robust towards stalls than the MSE criterion in Equation (5.1).

5.1.3 Residual Stop Criterion
If an additive measurement noise is assumed, as e.g. when using the AWGN GAMP output
channel, one may define a stop criterion based on noise power. The GAMP iteration should then
be terminated once the residual may be regarded as a reflection of the noise, i.e. once it has a
signal power smaller than the noise power. Thus, we have the residual stop criterion

1
m
||y−Aᾱt||22 < ε (5.3)

for some tolerance ε reflecting the noise power, e.g. ε = σ2 for an AWGN with variance σ2.

5.1.4 Residual Measurements Ratio Stop Criterion
In [47] it is suggested to use the following residual measurments ratio stop criterion in iterative
reconstruction methods

||y−Aᾱt||22
||y||22

< ε (5.4)

for some tolerance ε.
Note that if the initial solution vector is chosen to be the zero-vector, this stop criterion

expresses the ratio of the residual at iteration t to the residual at iteration one. Thus, convergence
is determined based on the reduction in the residual. Also note that such a residual ratio stop
criterion reflects the error in the solution through the condition number of the system matrix (for
a non-singular system matrix) as detailed in [46].

5.2 Damping and Other Methods for Improving Convergence

The MMSE GAMP in Algorithm 2 incorporates damping of the GAMP updates by virtue of κ. It
has been shown that the application of sufficient damping guarantees convergence of GAMP for
arbitrary system matrices, A, and with a Gaussian distributed vector, α, as well as for some other
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34 Chapter 5. Implementations of the GAMP Iteration

distributions on the vector α under certain conditions [20]. Note that the GAMP states that are
damped in [20] are slightly different from those that are damped in Algorithm 2.

An adaptive damping scheme is proposed in [31] along with a scheme for removing any non-
zero mean of the system matrix. Such non-zero mean system matrices may significantly impede
convergence of the GAMP algorithm [31], [48]. Another method for improving the convergence of
the GAMP algorithm is to use a sequential updating scheme [48] where each of the elements in
the GAMP states are updated one at a time instead of in parallel. This is the idea used in the
Swept AMP from [49].
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6 Parameter Learning

For the GAMP algorithm to converge, it is essential to use some learning or estimation scheme to
update the AWGN output channel noise level (when using the AWGN output channel)1. Further-
more, several studies have shown that Expectation Maximization (EM) may be used to effectively
learn input channel parameters [6], [28], [39], [45], [50] to the point where oracle-like performance is
achieved. An alternative adaptive GAMP strategy for learning the channel distributions is detailed
in [51] and [52].

6.1 Variance Estimates

For the AWGN output channel given in Equations (3.57) and (3.59) with noise variance σ2, one
may use a per iteration estimate of the noise variance. This may e.g. be done using the sample
variance estimator

(σ2)t+1 = 1
m
||y−Aᾱt+1||22 (6.1)

Another option is to use the median based estimator often preferred by Donoho and Montanari
[9], [47], [53]:

(σ2)t+1 =
(
median

( |y−Aᾱt+1|
Φ−1
N (0.75)

))2

(6.2)

In Equation (6.2), the absolute value is entrywise and Φ−1
N is the inverse standard normal cumu-

lative distribution function.

6.2 Expectation Maximization (EM)

The Expectation Maximization (EM) algorithm may be used to find maximum likelihood (ML)
estimates of parameters in probabilistic models [54] (see also [55] for an introduction to EM). Here
we give an introduction to the use of EM to learn GAMP channel parameters as presented in [28],
[39], [45].

The complete vector of GAMP channel parameters θC is the concatenation of the input channel
parameter vector(/matrix) θI and the output channel parameter vector(/matrix) θo, i.e. θC =
[θTI ,θTo ]T . Now, the goal in using EM is to maximise the likelihood p(y|θC) with respect to θC .
This is done using an iterative scheme in which each iteration has an E-step and an M-step that is
guaranteed to increase the likelihood (if not at a stationary point already). One may elect to use
a partial E-step in an “incremental” EM scheme [56] for improved convergence and/or to obtain a
more computationally tractable problem. A partial M-step (known as the expectation conditional
maximisation (ECM) algorithm [57]) is also an option to obtain a more computationally tractable
problem. Both of these partial schemes are also guaranteed to increase the likelihood (if not at a
stationary point already), though not necessarily maximise it, in each iteration.

For the general GAMP channel parameter optimisation problem, the EM algorithm manifests
as the recursion of the following optimisation problem2 [28]

θt+1
C = arg max

θ
Eα|y,θt

C
[ln(p(y,α;θ))] (6.3)

where y is the vector of observed variables (the measurements) and α is the vector of the latent
(unobserved or hidden) variables. Specifically, α is the coefficient vector in Equation (1.1). Now,

1At least that is what the authors of this tech report have experienced in an extensive set of simulations
2Strictly speaking, this is the M-step in the EM algorithm consisting of both an E-step and the M-step. However,

the E-step amounts to trivially choosing the distribution p(α|y; θtC) for the expectation [28].

185



36 Chapter 6. Parameter Learning

if we consider only updating the input channel parameters (a partial M-step approach), we have

θt+1
I = arg max

θ
Eα|y,θt

C
[ln(p(y,α;θ))] (6.4)

= arg max
θ

∫

α

p(α|y;θtC) ln(p(y,α;θ))dα (6.5)

= arg max
θ

∫

α

p(α|y;θtC) ln(p(y|α;θo)p(α;θ))dα (6.6)

= arg max
θ

(∫

α

p(α|y;θtC) ln(p(y|α;θo))dα+
∫

α

p(α|y;θtC) ln(p(α;θ))dα
)

(6.7)

= arg max
θ

∫

α

p(α|y;θtC) ln(p(α;θ))dα+ const. (6.8)

= arg max
θ

∫

α

p(α|y;θtC) ln(p(α;θ))dα (6.9)

= arg max
θ

Eα|y,θt
C

[ln(p(α;θ))] (6.10)

since, by definition, θI is only used in the specification of the prior p(α;θI). That is, given a
specific value of α, the value of y no longer depends on θI . Thus, w.r.t. elements of θI , p(y|α;θo)
is a constant.

In order to find a similar expression for a separate update of the output channel parameters
(i.e. a partial M-step approach update of θo), one must realise that the distribution of y depends
only on α through z since z = Aα (a deterministic relation) as specified in Equation (1.6). Due to
the separability assumption of GAMP (see the discussion below Equations (1.16) and (1.17)), we
then have a Markov chain α→ z→ y meaning that p(α,y|z) = p(α|z)p(y|z). The deterministic
relation z = Aα also means that the joint distribution p(α, z) is degenerate3. All of this makes for a
series of mathematical subtleties in the below expression. However, in accepting these expressions,
it is probably most important to realise that the distribution of y depends only on α through z.

θt+1
o = arg max

θ
Eα|y,θt

C
[ln(p(y,α;θ))] (6.11)

= arg max
θ

∫

α

p(α|y;θtC) ln(p(y,α;θ))dα (6.12)

= arg max
θ

∫

α

p(α|y;θtC) ln(p(y|α;θ)p(α;θI))dα (6.13)

= arg max
θ

(∫

α

p(α|y;θtC) ln(p(y|α;θ))dα+
∫

α

p(α|y;θtC) ln(p(α;θI))dα
)

(6.14)

= arg max
θ

∫

α

p(α|y;θtC) ln(p(y|α;θ))dα+ const. (6.15)

= arg max
θ

∫

α

p(α,y;θtC)
p(y;θtC) ln(p(y|α;θ))dα+ const. (6.16)

= arg max
θ

∫

α

∫

z

p(α,y, z;θtC)
p(y;θtC) dz ln(p(y|α;θ))dα+ const. (6.17)

= arg max
θ

∫

α

∫

z

p(α,y|z;θtC)p(z;θtC)
p(y;θtC) dz ln(p(y|α;θ))dα+ const. (6.18)

= arg max
θ

∫

α

∫

z

p(α|z;θtC)p(y|z;θtC)p(z;θtC)
p(y;θtC) dz ln(p(y|α;θ))dα+ const. (6.19)

3To see this, consider the simple example that α = [α1, α2]T with p(α1, α2) = p(α1)p(α2), p(α1) = N (α1; 0, 1),
p(α2) = N (α2; 0, 1), and z = α1 + α2. Now, p(z) is well defined since it is simply the convolution of p(α1) and
p(α2). However, p(α, z) is degenerate in the sense the “density” is restricted to values for which z = α1 + α2.
Similarly, p(α|z) = p(α,z)

p(z) as well as p(z|α) = p(α,z)
p(α) are degenerate for the same reason. Thus, they act as a sort

of sampling that squeezes the domain of α into the domain of z since z is deterministically derived from α. In a
sense they have a “sampling property” similar to that of the generalised Dirac delta function.
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6.2. Expectation Maximization (EM) 37

= arg max
θ

∫

α

∫

z
p(α|z;θtC)p(z|y;θtC)dz ln(p(y|α;θ))dα+ const. (6.20)

= arg max
θ

∫

z
p(z|y;θtC)

∫

α

p(α|z;θtC) ln(p(y|α;θ))dαdz + const. (6.21)

= arg max
θ

∫

z
p(z|y;θtC) ln(p(y|z;θ))dz + const. (6.22)

= arg max
θ

∫

z
p(z|y;θtC) ln(p(y|z;θ))dz (6.23)

= arg max
θ

Ez|y,θt
C

[ln(p(y|z;θ))] (6.24)

where the constant is due to p(α;θI) being constant w.r.t. elements of θo.
Now since we are using GAMP which is trying to (indirectly) find the true posteriors p(α|y,θC)

and p(z|y,θC), we only have the GAMP approximated posteriors in Equations (3.4) and (3.8),
respectively, available. Thus, these GAMP approximations are used in computing the expectation
in the EM update [28], i.e., the E-step becomes approximate4. We then have the final GAMP EM
channel parameter recursions

θt+1
I = arg max

θ
Eα|y,s,r,θt

I
[ln(p(α;θ))] (6.25)

= arg max
θ

n∑

j=1
Eα|y,s,r,θt

I
[ln(p(αj ; [θ]j))] (6.26)

θt+1
o = arg max

θ
Ez|y,v,o,θto [ln(p(y|z;θ))] (6.27)

= arg max
θ

m∑

i=1
Ez|y,v,o,θto [ln(p(yi|zi; [θ]i))] (6.28)

where we have used the separability properties of the in- and output channels as described in
Equations (1.16) and (1.17). Note that the GAMP approximated posteriors p(z|y,v,o,θto) and
p(α|y, s, r,θtI) by definition are separable (as everything else in the in- and output channels). Also
note that one may use several GAMP iterations to find p(α|y, s, r,θtI) and p(z|y,v,o,θto) for each
EM update in Equations (6.26), (6.28) [28].

Furthermore, Schniter and Vila [28] as well as Krzakala et al. [5] use a “complete” partial
M-step in the sense that the elements of θC are updated one at a time, i.e. they essentially use the
expectation/conditional maximization (ECM) algorithm [57]. Thus, in the following, our focus is
on finding recursions based on Equations (6.26) and (6.28) for one parameter (one element of θC)
at a time. When using such a scheme, the ordering of the updates of the elements of θC become
important since all parameter updates should be based on the latest value of all other parameters.
The particular choice of update order may be arbitrary, but the all updates must be based on
the most recent values of all other parameters that they depend on. Note, though, that Schniter
and Vila [28] use the GAMP approximated posteriors p(z|y,v,o,θto) and p(α|y, s, r,θtI) based on
iteration t for the all parameter updates. That is, they do not recompute the GAMP posteriors
between the parameter updates.

4It is not clear whether or not this falls under the framework of partial E-steps from [56] guaranteed to increase
the likelihood.
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38 Chapter 6. Parameter Learning

6.2.1 EM Updates for Common Output Channels
We now state EM updates for several commonly used GAMP output channels.

6.2.1.1 AWGN Output Channel

For the AWGN output channel given in Equations (3.57) and (3.59) with noise variance σ2, Krza-
kala suggested the following EM recursion on the noise variance [5] (Eq. 77)

(σ2)t+1 =

∑
i

(yi−ot+1
i

)2
(

1+ 1
(σ2)t v

t+1
i

)2

∑
i

1
1+ 1

(σ2)t v
t+1
i

(6.29)

Manoel and Tramel suggested the following implementation5 of the EM recursion in Equation
(6.29):

(σ2)t+1 = (σ2)t
∑
i

(
yi−ot+1

i

(σ2)t+vt+1
i

)2

∑
i((σ2)t + vt+1

i )−1 (6.30)

which in matrix-vector + Numpy broadcast notation is:

σ2
t = σ2

t-1

∑(
y−ot
σ2
t-1+vt

)

∑
(σ2
t-1 + vt)−1 (6.31)

Note that vt becomes scalar when using the sum approximation GAMP described in Section 4 and
Algorithm 3. Thus, one must make sure to implement the denominator sum in Equation (6.31)
such that it acts as if vt was a vector (a sum over m elements - not just a single element).

Schniter and Vila suggested the following EM recursion on the noise variance [28] (Eq. (27)),
[39] (Eq. (38))

(σ2)t+1 = 1
m

∑

i

(|yi − z̄t+1
i |2 + z̃t+1

i ) (6.32)

However, in [40] it is reported that the closely related expression

(σ2)t+1 = 1
m

(||y−Aᾱt+1||22 +
∑

i

[|A|◦2α̃t+1]i) (6.33)

is supposed to yield improved performance in low SNR cases (SNR < 10 dB). Note how this
expression is an extension of Equation (6.1).

6.2.1.2 AWLN Output Channel

For the AWLN output channel given in Equations (3.62) and (3.63) with rate parameter λ, Vila
and Schniter suggested the following EM recursion on the rate parameter [40] (Eq. (52))

λt+1 = m

∑
i

(
ΦN
(
−ẑi
vi

)(
ẑi +√vi

φN
(
ẑi√
vi

)

ΦN
(
ẑi√
vi

)
)
− ΦN

(
ẑi
vi

)(
ẑi −

√
vi
φN
(−ẑi√

vi

)

ΦN
(−ẑi√

vi

)
)) (6.34)

for
ẑ := Aα− y (6.35)

5See: https://github.com/eric-tramel/SwAMP-Demo/blob/master/python/amp.py
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6.2.2 EM Updates for Common Input Channels
We now state EM updates for several commonly used GAMP input channels.

6.2.2.1 General i.i.d. Sparse Input Channel

As noted in [28], one may find a general expression for the EM update of the signal density τ in
the general sparse i.i.d. input prior in Equation (3.29). In particular, we have

τ t+1 = arg max
τ∈[0,1]

n∑

j=1
Eα|y,s,r,θt

I
[ln
(
p(αj ; τ,θtI\τ )

)
] (6.36)

= arg max
τ∈[0,1]

n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI) ln
(
(1− τ)δDirac(αj) + τϕ(αj ;θI\τ )

)
dαj (6.37)

Setting the derivative of the objective equal to zero, we obtain

0 = ∂

∂τ

n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI) ln
(
(1− τ)δDirac(αj) + τϕ(αj ;θI\τ )

)
dαj (6.38)

=
n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI)
∂

∂τ
ln
(
(1− τ)δDirac(αj) + τϕ(αj ;θI\τ )

)
dαj (6.39)

where we have used Leibniz’s integral rule to exchange differentiation and integration. Leibniz’s
integral rule requires the integrand and its partial derivative w.r.t. τ to be continuous in both αj
and τ which is not strictly true for the above objective due to the Dirac delta function. However, as
noted in [40], one may justify its use by considering an approximation of the Dirac delta function
δDirac(α) ≈ N (α, 0, ε) for a fixed arbitrarily small ε > 0. For the partial derivative, we have

∂

∂τ
ln
(
(1− τ)δDirac(αj) + τϕ(αj ;θI\τ )

)
=

ϕ(αj ;θI\τ )− δDirac(αj)
(1− τ)δDirac(αj) + τϕ(αj ;θI\τ ) (6.40)

=
ϕ(αj ;θI\τ )
δDirac(αj) − 1

(1− τ) + τ
ϕ(αj ;θI\τ )
δDirac(αj)

(6.41)

=
{
−1
1−τ , αj = 0
1
τ , αj 6= 0

(6.42)

Following [28], we may define a closed ball Bε := [−ε, ε] and its complement Bε = R\Bε which may
be used to evaluate the integral in Equation (6.39) as ε→ 0. Then using the GAMP approximated
posterior in Equation (3.37), we get

0 =
n∑

j=1

(
−1

1− τ

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)dαj + 1

τ

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)dαj

)
(6.43)

=
n∑

j=1

(
−1

1− τ (1− π(rj , sj ,θtI))
∫

αj∈Bε
δDirac(αj)dαj+

1
τ
π(rj , sj ,θtI)

∫

αj∈Bε
ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)dαj

)
(6.44)

=
n∑

j=1

( −1
1− τ (1− π(rj , sj ,θtI)) + 1

τ
π(rj , sj ,θtI)

)
(6.45)

=
n∑

j=1

( −τ
1− τ (1− π(rj , sj ,θtI)) + π(rj , sj ,θtI)

)
(6.46)
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= −τn
1− τ −

−τ
1− τ

n∑

j=1
π(rj , sj ,θtI) +

n∑

j=1
π(rj , sj ,θtI) (6.47)

= −τn+ τ
n∑

j=1
π(rj , sj ,θtI) +

n∑

j=1
π(rj , sj ,θtI)− τ

n∑

j=1
π(rj , sj ,θtI) (6.48)

= −nτ +
n∑

j=1
π(rj , sj ,θtI) (6.49)

with π(rj , sj ,θtI) defined in Equation (3.41). Note that in going from Equation (6.44) to Equation
(6.45), we have assumed that ϕ(αj ;θtI) is well behaved at αj = 0 such that

∫

αj∈Bε
ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)dαj =

∫

αj

ϕαj |y;sj ,rj ,θtI (αj ;θ
t
I)dαj = 1 (6.50)

Solving for τ , we get the final expression for its EM update

τ t+1 = 1
n

n∑

j=1
π(rj , sj ,θtI) (6.51)

The update in Equation (6.51) is intuitively pleasing since it states that the signal density τ is
the average of the posterior signal density (posterior support probabilities) π(rj , sj ,θtI). Also note
that since π(rj , sj ,θtI) ∈ [0; 1],∀j, we have that τ t+1 ∈ [0; 1].

6.2.2.2 General Weighted Sparse Input Channel

An EM update of the common signal density τ in the GWS input prior in Equation (3.44) may be
found using similar derivations as those used for the general i.i.d. sparse input channel detailed in
Section 6.2.2.1. In particular, we have

τ t+1 = arg max
τ∈[0,1]

n∑

j=1
Eα|y,s,r,θt

I
[ln
(
p(αj ; τ,θtI\τ )

)
] (6.52)

= arg max
τ∈[0,1]

n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI) ln
(
(1− wjτ)δDirac(αj) + wjτϕ(αj ;θI\τ )

)
dαj

(6.53)

Setting the derivative of the objective equal to zero, we obtain

0 = ∂

∂τ

n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI) ln
(
(1− wjτ)δDirac(αj) + wjτϕ(αj ;θI\τ )

)
dαj (6.54)

=
n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI)
∂

∂τ
ln
(
(1− wjτ)δDirac(αj) + wjτϕ(αj ;θI\τ )

)
dαj (6.55)

where we again have used Leibniz’s integral rule to exchange differentiation and integration. For
the partial derivative, we have

∂

∂τ
ln
(
(1− wjτ)δDirac(αj) + wjτϕ(αj ;θI\τ )

)

=
wjϕ(αj ;θI\τ )− wjδDirac(αj)

(1− wjτ)δDirac(αj) + wjτϕ(αj ;θI\τ ) (6.56)

=
wj

ϕ(αj ;θI\τ )
δDirac(αj) − wj

(1− wjτ) + wjτ
ϕ(αj ;θI\τ )
δDirac(αj)

(6.57)

=
{ −wj

1−wjτ , αj = 0
1
τ , αj 6= 0

(6.58)
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Again, using the closed ball Bε := [−ε, ε] and its complement Bε = R\Bε in evaluating the integral
in Equation (6.55) as ε→ 0 and using the GAMP approximated posterior in Equation (3.45), we
get

0 =
n∑

j=1

(
−wj

1− wjτ

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)dαj + 1

τ

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)dαj

)
(6.59)

=
n∑

j=1

( −wj
1− wjτ

(1− πw
j (rj , sj ,θtI)) + 1

τ
πw
j (rj , sj ,θtI)

)
(6.60)

=
n∑

j=1

( −wjτ
1− wjτ

(1− πw
j (rj , sj ,θtI)) + πw

j (rj , sj ,θtI)
)

(6.61)

=
n∑

j=1

( −wjτ
1− wjτ

− −wjτ
1− wjτ

πw
j (rj , sj ,θtI) + πw

j (rj , sj ,θtI)
)

(6.62)

=
n∑

j=1

(
−wjτ + wjτπ

w
j (rj , sj ,θtI) + πw

j (rj , sj ,θtI)− wjτπw
j (rj , sj ,θtI)

)
(6.63)

= −τ
n∑

j=1
wj +

n∑

j=1
πw
j (rj , sj ,θtI) (6.64)

with πw
j (rj , sj ,θtI) defined as in Equation (3.46). Solving for τ , we get the final expression for its

EM update:

τ t+1 =
∑n
j=1 π

w
j (rj , sj ,θtI)∑n
j=1 wj

(6.65)

Note that the GWS τ EM update in Equation (6.65) reduces to the general sparse channel τ EM
updates in Equation (6.51) for the choice of weights ∀j, wj = 1.

In order for the GAMP updates to be stable, the GAMP posterior must remain a proper density
which requires that wjτ t+1 ∈ [0; 1], ∀j as described in Section 3.5. If the requirement on the choice
of weights is wj ∈ [0; 1], ∀j, then one must also require that τ t+1 ∈ [0; 1]. Now, consider the case
of having just a single element in the coefficient vector. The τ EM update then becomes

τ t+1 = πw
1 (r1, s1,θ

t
I)

w1
∈ [0; 1

w1
] (6.66)

Thus, if the GAMP posterior support probability πw
1 (r1, s1,θ

t
I) is large and we have chosen a small

w1, we may end up with τ t+1 > 1. That is, if there is a significant mismatch between our prior
belief about the support probability (expressed by w1 and the actual posterior support probability
πw

1 (r1, s1,θ
t
I), it may potentially violate the requirement that τ t+1 ∈ [0; 1]. In generalising this

result to arbitrary length vectors we may consider

τ t+1 =
∑n
j=1 π

w
j (rj , sj ,θtI)∑n
j=1 wj

=
1
n

∑n
j=1 π

w
j (rj , sj ,θtI)

1
n

∑n
j=1 wj

(6.67)

That is, if the average GAMP posterior support probability becomes larger than our prior average
belief about the support probabilities (expressed by the wj ’s), it may violate the requirement that
τ t+1 ∈ [0; 1]. Note that, as discussed in Section 6.2.2.1, this problem is not present if wj = 1, ∀j.

At least two strategies for handling this violation can be identified

1. We may force τ t+1 = 1 whenever τ t+1 > 1. This may be interpreted as forcing the prior
belief on the support probabilities. Note that since τ models the overall average sparsity of
the signal, forcing τ ≤ 1 has the effect of forcing the average sparsity in the next GAMP
iteration to be no larger than the average of the weights.

2. We may adjust the weights towards wj = 1, ∀j according to some scheme detailing the weights
update. This strategy allows for the weighted model to adapt towards a non-weighted model,
if the data suggest such a change.
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One scheme for adjusting the weights towards wj = 1, ∀j is to apply Algorithm 4 which attempts
to increase all weights such that τ = 1. Worst case using this scheme, we get wj = 1, ∀j after n
iterations of the while loop. In a practical implementation of Algorithm 4, it may be beneficial to
introduce some other stop criterion.

Algorithm 4 - A scheme for adjusting the weights towards wj = 1, ∀j in the general weighted
sparse GAMP input channel.

1 while τ > 1 do
2 for j ∈ 1, . . . , n do
3 wj = τwj
4 if wj > 1 then
5 wj = 1
6 end if
7 end for
8 τ =

∑n

j=1
πw
j (rj ,sj ,θtI)∑n

j=1
wj

9 end while

6.2.2.3 EM updates of other channel parameters in the GWS channel

The derivation of EM updates for channel parameters in a general sparse input channel as detailed
in [28], [39], [45] may be summarised as follows:

1. Pick a parameter to update.

2. Write down the single step EM-update as in e.g. Equation (6.53).

3. Take the partial derivative, set equal to zero, and apply Leibniz’s integral rule to interchange
integration and differentiation (assuming that this interchange is valid) as in e.g. Equation
(6.55).

4. Compute the partial derivative as in e.g. Equation (6.58).

5. Handle the discontinuity at zero by splitting the integration and treating a closed ball around
zero separately from the remaining domain as in e.g. Equations (6.59).

6. Compute the integrals and solve for the parameter of interest to obtain the EM update as
in e.g. Equation (6.65).

For this recipe to work for other channel parameters than τ , the partial derivative must conform to
a certain structure. Specifically, consider the channel defined by p(αj ;θI) = (1−wjτ)δDirac(αJ) +
wjτf1(θI)exp(f2(αj ,θI)) for some well-behaved functions f1 and f2. This channel has partial
derivatives for each of the k parameters in θI

∂

∂θk
ln(p(αj ;θI)) = ∂

∂θk
ln((1− wjτ)δDirac(αJ) + wjτf1(θI)exp(f2(αj ,θI))) (6.68)

=
∂
∂θk

f1(θI)exp(f2(αj ,θI))
(1− wjτ)δDirac(αJ) + wjτf1(θI)exp(f2(αj ,θI))

(6.69)

=
{

0, αj = 0
∂
∂θk

f1(θI)exp(f2(αj ,θI))
wjτf1(θI)exp(f2(αj ,θI)) , αj 6= 0

(6.70)

Now consider the case in which f1 and f2 have structure such that

0 =
n∑

j=1

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)0dαj+

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)

∂
∂θk

f1(θI)exp(f2(αj ,θI))
wjτf1(θI)exp(f2(αj ,θI))

dαj (6.71)
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=
n∑

j=1

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)0dαj +

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)(f3(αj)− θk)dαj (6.72)

for some function f3 which does not depend on θk. In this case we find that

0 =
n∑

j=1

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)(f3(αj)− θk)dαj (6.73)

=
n∑

j=1
πw
j (rj , sj ,θtI)

∫

αj∈Bε
ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)(f3(αj)− θk)dαj (6.74)

θt+1
k =

∑n
j=1 π

w
j (rj , sj ,θtI)

∫
αj∈Bε ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)f3(αj)dαj∑n

j=1 π
w
j (rj , sj ,θtI)

∫
αj∈Bε ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)dαj

(6.75)

=
∑n
j=1 π

w
j (rj , sj ,θtI)

∫
αj
ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)f3(αj)dαj∑n

j=1 π
w
j (rj , sj ,θtI)

(6.76)

=
∑n
j=1 π

w
j (rj , sj ,θtI)

∫
αj
ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)f3(αj)dαj

τ t+1∑n
j=1 wj

(6.77)

where we have assumed that all the integrands are well-behaved at zero and that τ is the first
parameter to be updated. From Equation (6.77), we find that this EM update separates into a
slab-part only element (

∫
αj
ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)f3(αj)dαj) and the posterior support probabilities

πw
j (rj , sj ,θtI). Furthermore, since it turns out that these slab-part elements are typically computed

in the GAMP channel update, all elements needed in the EM-update are already available following
a GAMP channel update which allows for efficient implementations of the EM update. This is the
case for the sparse Bernoulli-Gauss channel as shown in [28] and detailed in Section 6.2.2.5. The
above imposed structure on the partial derivatives is somewhat limiting in terms of the possible
ϕ(αj ; [θI ]j) that one may consider. However, as is done in some updates in [28] as well as for
the sparse Bernoulli-Laplace input channel detailed in Section 6.2.2.5, one may apply various
approximations to impose this structure.

An implementation in which the GWS τ EM update is decoupled from the slab-part EM updates
is slightly more tricky than the corresponding channel updates since we assume common channel
parameters shared across all n coefficients effectively requiring a reduction from all n elements to
a single element. However, if the slab-part channel has the structure discussed above, one may
store the relevant channel update elements and reuse those in the common EM updates which still
provides an efficient implementation in which the GWS framework may be easily combined with
different slab-part priors.

6.2.2.4 I.i.d. Sparse Bernoulli-Laplace input channel

For the i.i.d. BL input channel given in Equations (3.127) and (3.129), we consider the following
parameter update order: τ, λ, µ. For the EM updates of the signal density parameter τ , we may
(via Equation (3.41)) use the general result in Equation (6.51)

τ t+1 = 1
n

n∑

j=1
π(rj , sj ,θtI) (6.78)

= 1
n

n∑

j=1

τ t(ZI + Z̄I)
(1− τ t)N (0; rj , sj) + τ t(ZI + Z̄I)

(6.79)

for ZI , Z̄I given in Equations (3.93), (3.94), respectively, and with appropriately indexed rj , sj in
ZI , Z̄I .

Using some of the ideas from [40] (which address a AWLN output channel) and [41] (which
address an elastic net input channel), we may find the EM updates for the remaining parameters,
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λ, µ. For the EM update of λ, we have

λt+1 = arg max
λ>0

n∑

j=1
Eα|y,s,r,θt

I
[ln
(
p(αj ;λ,θtI\λ)

)
] (6.80)

= arg max
λ>0

n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI) ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ

2 exp
(
−λ|αj − µt|

))
dαj (6.81)

Setting the derivative of the objective equal to zero, we obtain

0 = ∂

∂λ

n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI) ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ

2 exp
(
−λ|αj − µt|

))
dαj

(6.82)

=
n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI)
∂

∂λ
ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ

2 exp
(
−λ|αj − µt|

))
dαj

(6.83)

Where we have used Leibniz’s integral rule to exchange differentiation and integration using the
same argument as for Equation (6.39). Now for the partial derivative, we have

∂

∂λ
ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ

2 exp
(
−λ|αj − µt|

))
(6.84)

=
τ t+1 1

2exp(−λ|αj − µt|)− τ t+1 λ
2 exp(−λ|αj − µt|) |αj − µt|

(1− τ t+1)δDirac(αj) + τ t+1 λ
2 exp(−λ|αj − µt|)

(6.85)

=
τt+1

2 exp(−λ|αj − µt|) (1− λ|αj − µ|)
(1− τ t+1)δDirac(αj) + λ τ

t+1

2 exp(−λ|αj − µt|)
(6.86)

=

τt+1
2 exp(−λ|αj−µt|)(1−λ|αj−µ|)

(1−τt+1)δDirac(αj)

1 + λ τ
t+1
2 exp(−λ|αj−µt|)

(1−τt+1)δDirac(αj)

(6.87)

=
{

0, αj = 0
1
λ − |αj − µt|, αj 6= 0

(6.88)

Following [28], we may define a closed ball Bε := [−ε, ε] and its complement Bε = R \ Bε which
may be used to evaluate the integral in Equation (6.83) as ε→ 0

0 =
n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI)
∂

∂λ
ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ

2 exp
(
−λ|αj − µt|

))
dαj

(6.89)

=
n∑

j=1

(∫

αj∈Bε
p(αj |y, sj , rj ,θtI)0dαj +

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)(

1
λ
− |αj − µt|)dαj

)

(6.90)

=
n∑

j=1

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)(

1
λ
− |αj − µt|)dαj (6.91)

=
n∑

j=1

(
1
λ

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)dαj −

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)|αj − µt|dαj

)
(6.92)

(6.93)
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=
n∑

j=1

(
1
λ
π(rj , sj ,θtI)−

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)|αj − µt|dαj

)
(6.94)

= 1
λ
nτ t+1 −

n∑

j=1

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)|αj − µt|dαj (6.95)

Solving for λ, we get

λt+1 = nτ t+1
∑n
j=1

∫
Bε p(αj |y, sj , rj ,θ

t
I)|αj − µt|dαj

(6.96)

The integral in the denominator in Equation (6.96) is exactly the expectation from Equation
(3.127) with four exceptions:

1. The Dirac delta contribution should be left out since the integration is over Bε instead of
the entire real line. This is, however, not important since the Dirac delta contribution turns
out to be zero anyway.

2. The integral involves the expectation of |αj − µt| instead of αj . Thus, applying a shift
α̌j = αj − µt eliminates the contribution from a non-zero µt.

3. The absolute value in |αj − µt| must be addressed. Specifically, after having done the shift
α̌j = αj − µt, one must handle the absolute value |α̌j | in (what corresponds to) Equation
(3.102) correctly by changing the sign of the integral over the negative part of the real line.

4. The integration in (what corresponds to) (3.102) is done from −∞ to 0− and 0+ to ∞.
However, since the GAMP posterior p(αj |y, sj , rj ,θtI) without the Dirac delta contribution
at αj = 0 is well behaved, this makes no difference and we may integrate over the entire real
line.

Thus, we have
∫

αj∈Bε
p(αj |y, sj , rj ,θtI)|αj − µt|dαj

= τ t


 Z̄I
ZI


r̄j +√sj

φN
(

r̄√
sj

)

ΦN
(
r̄j√
sj

)


− ZIZI


rj −

√
sj
φN
(−rj√

sj

)

ΦN
(−r

j√
sj

)




 (6.97)

for
řj = rj − µt (6.98)
r̄j = řj − λts (6.99)
rj = řj + λtsj (6.100)

and ZI , ZI , and Z̄I as defined in Equations (3.92), (3.93), (3.94) (with appropriate indices on the
variables), respectively. Finally, we have the EM update for λ

λt+1 = nτ t+1

∑n
j=1 τ

t


 Z̄I
ZI


r̄j +√sj

φN

(
r̄√
sj

)

ΦN
(

r̄j√
sj

)

− ZIZI


rj −

√
sj
φN

(
−r
j√
sj

)

ΦN
(
−rj√
sj

)





(6.101)

For the EM update of µ, we have

µt+1 = arg max
µ

n∑

j=1
Eα|y,s,r,θt

I
[ln
(
p(αj ;µ,θtI\µ)

)
] (6.102)

= arg max
µ

n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI) ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ
t+1

2 exp
(
−λt+1|αj − µ|

))
dαj (6.103)
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The partial derivative with respect to µ of the integrand in Equation (6.103) is unfortunately not
continuous (even if using the same argument for the Delta function as in Equation (6.39)) due to
the absolute value causing problems at αj = µ. Thus, we may not apply Leibniz’s integral rule.
However, in order to derive a reasonable EM update for µ, we apply the quadratic approximation
|αj − µ| ≈ (αj − µ)2. Now, using Leibniz’s integral rule, taking the partial derivative of the
objective, and setting equal to zero, we obtain

0 = ∂

∂µ

n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI) ln
(

(1− τ t+1)δDirac(αj)

+ τ t+1λ
t+1

2 exp
(
−λt+1(αj − µ)2)

)
dαj (6.104)

=
n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI)
∂

∂µ
ln
(

(1− τ t+1)δDirac(αj)

+ τ t+1λ
t+1

2 exp
(
−λt+1(αj − µ)2)

)
dαj (6.105)

For the partial derivative, we have

∂

∂µ
ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ
t+1

2 exp
(
−λt+1(αj − µ)2)

)
dαj (6.106)

=
τ t+1 λt+1

2 exp
(
−λt+1(αj − µ)2) (−2λt+1(α− µ)(−1))

(1− τ t+1)δDirac(αj) + τ t+1 λt+1

2 exp(−λt+1(αj − µ)2)
(6.107)

=
τ t+1 λt+1

2 exp
(
−λt+1(αj − µ)2) (2λt+1(α− µ))

(1− τ t+1)δDirac(αj) + τ t+1 λt+1

2 exp(−λt+1(αj − µ)2)
(6.108)

=
τt+1 λt+1

2 exp(−λt+1(αj−µ)2)(2λt+1(α−µ))
(1−τt+1)δDirac(αj)

1 + τt+1 λt+1
2 exp(−λt+1(αj−µ)2)

(1−τt+1)δDirac(αj)

(6.109)

=
{

0, αj = 0
2λt+1(αj − µ), αj 6= 0

(6.110)

Again, using the closed ball Bε, we may evaluate the integral in Equation (6.105) as ε→ 0

0 =
n∑

j=1

∫

αj

p(αj |y, sj , rj ,θtI)
∂

∂µ
ln
(

(1− τ t+1)δDirac(αj)

+ τ t+1λ
t+1

2 exp
(
−λt+1(αj − µ)2)

)
dαj (6.111)

=
n∑

j=1

(∫

αj∈Bε
p(αj |y, sj , rj ,θtI)0dαj (6.112)

+
∫

αj∈Bε
p(αj |y, sj , rj ,θtI)(2λt+1(αj − µ))dαj

)
(6.113)

=
n∑

j=1

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)(αj − µ)dαj (6.114)

=
n∑

j=1

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)αjdαj − µ

n∑

j=1

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)dαj (6.115)

=
n∑

j=1

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)αjdαj − µπ(rj , sj ,θtI) (6.116)
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Thus, we have the following update of µ

µt+1 =
∑n
j=1

∫
αj∈Bε p(αj |y, sj , rj ,θ

t
I)αjdαj

π(rj , sj ,θtI)
(6.117)

=
∑n
j=1

∫
αj∈Bε p(αj |y, sj , rj ,θ

t
I)αjdαj

nτ t+1 (6.118)

The numerator in Equation (6.118) is the expectation from Equation (3.127) with the exception of
leaving out αj = 0 in the integration. However, since the remaining part of the GAMP posterior
p(αj |y, sj , rj ,θtI) (leaving out the Dirac delta contribution) is well-behaved, we find that

∫

αj∈Bε
p(αj |y, sj , rj ,θtI)αjdαj (6.119)

= τ t


µt (ZI + Z̄I)

ZI
+ ZIZI


rj −

√
sj
φN
(−rj√

sj

)

ΦN
(−rj√

sj

)


+ Z̄IZI


r̄j +√sj

φN
(
r̄j√
sj

)

ΦN
(
r̄j√
sj

)






(6.120)
for

řj = rj − µt (6.121)
r̄j = řj − λts (6.122)
rj = řj + λtsj (6.123)

and ZI , ZI , and Z̄I as defined in Equations (3.92), (3.93), (3.94) (with appropriate indices on the
variables), respectively. Finally, we have the EM update for µ

µt+1 =

∑n
j=1 τ

t


µt (ZI+Z̄I)

ZI + ZI
ZI


rj −

√
sj
φN

(
−rj√
sj

)

ΦN
(
−r
j√
sj

)

+ Z̄I

ZI


r̄j +√sj

φN

(
r̄j√
sj

)

ΦN
(

r̄j√
sj

)





nτ t+1
(6.124)

Based on the results in Equations (6.101) and (6.124), we may identify the following Laplace EM
updates to be used in the GWS EM update framework described in Section 6.2.2.2

λt+1 =
τ t+1∑n

j=1 wj

∑n
j=1 π

w
j (rj , sj ,θtI)


 Z̄I
Zϕj


r̄j +√sj
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(
r̄√
sj

)

ΦN
(

r̄j√
sj

)

− Z

I

Zϕj


rj −

√
sj
φN

(
−rj√
sj

)

ΦN
(
−r
j√
sj

)





(6.125)

µt+1 =

∑n
j=1 π

w
j (rj , sj ,θtI)


µt + Z

I

Zϕj


rj −

√
sj
φN

(
−rj√
sj

)

ΦN
(
−rj√
sj

)

+ Z̄I

Zϕj


r̄j +√sj

φN

(
r̄j√
sj

)

ΦN
(

r̄j√
sj

)





τ t+1∑n
j=1 wj

(6.126)
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6.2.2.5 I.i.d. Sparse Bernoulli-Gauss Input Channel

For the i.i.d. BG input channel given in Equations (3.154) and (3.155), Krzakala et al. suggested
the following EM recursions on the channel parameters [5] (Eqs. (74), (78), (79))6

τ t+1 =

∑n
j=1

1
θ̃t

+ 1
s
t+1
j

r
t+1
j

s
t+1
j

+ θ̄t

θ̃t

ᾱt+1
j

∑n
j=1


1− τ t + τt√

θ̃t

√
1
θ̃t

+ 1
st+1
j

exp




(
r
t+1
j

s
t+1
j

+ θ̄t

θ̃t

)2

2

(
1
θ̃t

+ 1
s
t+1
j

) − (θ̄t)2

2θ̃t







−1 (6.127)

θ̄t+1 =
∑n
j=1 ᾱ

t+1
j

nτ t+1 (6.128)

θ̃t+1 =
∑n
j=1(α̃t+1

j + (ᾱt+1
j )2)

nτ t+1 − (θ̄t+1)2 (6.129)

Note that Krzakala et al. do not make it clear (in either of [5], [6]) whether or not the iteration
dependence on the channel parameters (and thereby the ordering of the updates) are as given in
Equations (6.127) - (6.129). In [5] it is noted that the following heuristic rules should be used
together with the Equations (6.127), (6.128), (6.129)

• If the variance, θ̃t+1, becomes negative, it should be set to zero.

• If the signal density, τ t+1, becomes larger than the undersampling ratio δ, it should be set
to δ.

• A damping of 0.5 should be used on all EM updates. That is, the updated parameter values
should be taken to be the mean of the values of the updates in Equations (6.127), (6.128),
(6.129) and the respective previous values.

Schniter and Vila suggested the following EM recursions on the channel parameters for the i.i.d.
BG input channel [28] (Eqs. (34), (41), (47)), [39] (Eqs. (19), (25), (32))

τ t+1 = 1
n

∑

j

l (rt+1
j , st+1

j ; τ t, θ̄t, θ̃t) (6.130)

θ̄t+1 = 1
nτ t+1

n∑

j=1
l (rt+1

j , st+1
j ; τ t+1, θ̄t, θ̃t)g(rt+1

j , st+1
j ; τ t+1, θ̄t, θ̃t) (6.131)

θ̃t+1 = 1
nτ t+1

n∑

j=1
l (rt+1

j , st+1
j ; τ t+1, θ̄t+1, θ̃t)

(

|θ̄t+1 − g(rt+1
j , st+1

j ; τ t+1, θ̄t+1, θ̃t)|2 + h(rt+1
j , st+1

j ; τ t+1, θ̄t+1, θ̃t)
)

(6.132)

Where l , g , h are as defined in Equations (3.171), (3.166), and (3.167), respectively.
Based on the results in Equations (6.131) and (6.132), we may identify the following Gauss EM

6Eq. (74) in [6] lacks a set of parentheses to be equal to Equation (6.127). However, Eqs. (71) and (72) in [6]
suggest that Eq. (74) is to be interpreted as in Equation (6.127).
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updates to be used in the GWS EM update framework described in Section 6.2.2.2

θ̄t+1 =

∑n
j=1


πw

j (rj , sj ,θtI)
θ̄t
j

θ̃t
j

+ rj
sj

1
θ̃t
j

+ 1
sj




τ t+1∑n
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(6.133)
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2

+ 1
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τ t+1∑n
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(6.134)

(6.135)

6.3 Parameter Initialisation

Since the GAMP and EM algorithms are only guaranteed to converge to local optima, proper
parameter initialisation is important. The various proposed ways to initialise the GAMP states
are reproduced in the respective GAMP implementations in Algorithms 1, 2, and 3. Below we
summarise the various proposed EM initialisations.

6.3.1 EM Initialisation of the AWGN Output Channel Parameters
For the AWGN output channel EM update in Equation (6.32), Vila and Schniter [28] (Eq. (71))
suggested the following initialisation

σ2
0 = ||y||22

m(SNR0 + 1)
(6.136)

For some assumed true signal-to-noise ratio SNR0 = ||Aα||22
||e||22

. In lack of knowledge of the true
signal-to-noise ratio, SNR0 = 100 is proposed.

6.3.2 EM Initialisation of the AWLN Output Channel Parameters
For the AWLN output channel EM update in Equation (6.34), Vila and Schniter [40] (Eq. (67))
suggested the following initialisation

λ0 = 1 (6.137)

6.3.3 EM initialisation of the i.i.d. Sparse Bernoulli-Gauss Input Channel
Parameters

For the i.i.d. BG input channel EM updates in Equations (6.127) - (6.129), Krzakala et al. [5]
(Eq. (80)) suggested the following initialisation

τ0 = δ

10 (6.138)

θ̄0 = 0 (6.139)

θ̃0 = ||y||22
τ0||A||2F

(6.140)

Vila and Schniter [39] (Eqs. (39), (40)), [28] (Eqs. (70), (71)) suggested the following initialisation

τ0 = δρSE(δ) (6.141)
θ̄0 = 0 (6.142)

θ̃0 = ||y||
2
2 −mσ2

0
τ0||A||2F

(6.143)
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when using the AWGN output channel EM initialisation in Equation (6.136) and with ρSE the
theoretical LASSO phase transition curve [2] given by

ρSE(δ) = max
c>0

1− ζ
δ [(1 + c2)ΦN (−c)− cφN (c)]

1 + c2 − 2[(1 + c2)ΦN (−c)− cφN (c)] (6.144)

for ζ = 2 (sparse signed vectors). When using the AWLN output channel, Schniter and Vila
suggested using σ2

0 = 1 [40] (Eq. (67)).

6.3.4 EM Initialisation of the i.i.d. Sparse Bernoulli-Laplace Input Channel
Parameters

For the i.i.d. BL input channel EM updates in Equations (6.127), (6.101), and (6.124) when used
with an AWGN output channel, we suggest the following initialisation

τ0 = δρSE(δ) (6.145)
µ0 = 0 (6.146)

λ0 =
√√√√ 2
||y||22−mσ2

0
τ0||A||2F

(6.147)

That is, an initialisation based on Equations (6.141)-(6.143) but with λ initialised based on the
variance of a Laplace distributed random variable being 2

λ2 .
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7 GAMP Software

Various software packages include implementations of the GAMP algorithms described in this
note. Here we briefly describe a few of them.

7.1 Magni GAMP Implementation

Magni is a Python package which enables reconstruction of undersampled Atomic Force Microscopy
(AFM) images [58]. The magni.cs.reconstruction.gamp and magni.cs.reconstruction.amp
subpackages, which are part of Magni version ≥ 1.6.0, provide an implementation of GAMP in
Python by the authors of the present tech report. The Magni package is fully documented, has
an extensive test suite, makes use of an input validation framework [59], and comes with tools for
aiding in making computational results reproducible [60]. Related links are:

• Online documentation: http://magni.readthedocs.io/en/latest/

• Official source repository: http://dx.doi.org/10.5278/VBN/MISC/Magni

• GitHub repository: https://github.com/SIP-AAU/Magni

7.1.1 Magni GAMP Overview
The magni.cs.reconstruction.amp subpackage provides an implementation of the AMP algo-
rithm by Donoho/Maleki/Monatnari described in Section 2.1. As of Magni version 1.7.0, the
subpackage consists of the following modules:

• _algorithm: The base algorithm implementation which is available through
magni.cs.reconstruction.amp.run.

• _config: Configuration module available through magni.cs.reconstruction.amp.config
for choosing stop criterion, max iterations, threshold, etc.

• stop_criterion: Implementations of the stop criteria discussed in Section 5.1.

• threshold_operator: Implementations of threshold operators for DMM AMP as discussed
in Section 2.1.

• util: Utilities for use in the AMP algorithm.

The magni.cs.reconstruction.gamp subpackage provides an implementation of the MMSE GAMP
algorithm detailed in Algorithm 1 and the MMSE GAMP with Rangan sum approximations de-
tailed in Algorithm 3. For both algorithms it also offers the damping option from [20]. As of
Magni version 1.7.0, the GAMP subpackage consists of the following modules:

• _algorithm: The base algorithm implementation which is available through
magni.cs.reconstruction.gamp.run.

• _config: Configuration module available through magni.cs.reconstruction.gamp.config
for choosing stop criterion, max iterations, in- and output channels, etc.

• channel_initialisation: Implementations of the in- and output channel EM initialisations
described in Section 6.3.

• input_channel: Implementations of the input channels discussed in Sections 3.1, 3.4, 3.5,
and 3.7 with EM updates as discussed in Section 6.2.2.

• output_channel: Implementations of the output channels discussed in Sections 3.2 and 3.6
with EM updates as discussed in Section 6.2.1

• stop_criterion: Implementations of the stop criteria discussed in Section 5.1.
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7.2 GAMPMatlab Implementation

The GAMPMatlab Toolbox is an implementation of GAMP in MATLAB [61]. The GAMPMatlab
Toolbox is maintained by Phillip Schniter and Sundeep Rangan and has contributions from several
coauthors of the various GAMP algorithms and extensions. Related links are:

• Online documentation: http://gampmatlab.wikia.com/wiki/Generalized_Approximate_
Message_Passing

• Official source repository: https://sourceforge.net/projects/gampmatlab/

• SVN repository: svn.code.sf.net/p/gampmatlab/code/

7.3 BPCS AMP Implementation

The BPCS AMP package is another MATLAB based implementation of AMP which has been
developed by Jean Barbier in connection with his PhD studies [62]. Related links are:

• GitHub repository: https://github.com/jeanbarbier/BPCS/

7.4 Vampyre

Vampyre is a joint collaboration on a Python implementation of GAMP algorithms by many of the
authors of the works on GAMP. It has yet to kick-off, but may potentially become the reference
GAMP implementation.

• GitHub repository https://github.com/GAMPTeam/vampyre
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8 GAMP Extensions

A significant number of works on various extensions of the GAMP algorithm for specific appli-
cations have been published. Here, as a reference, we list (in no particular order) some of these
works.

• Markov-tree / Markov-random-field priors [33], [63], [64].

• Learning based priors [65]

• Phase retrieval [66].

• Hyperspectral image unmixing [67], [68].

• Linearly constrained non-neagtive sparse signals [40], [69].

• Non-stationary signals [70], [71].

• Multiple measurement vectors [72], [73].

• Classification and feature selection [74], [75].

• Low rank matrix completion [76].

• Spatially coupled structured operators [77].

• Total Variation like prior [78]

• Analysis compressive sensing [79].

• Quantized measurements [80], [81].

• Magnetic resonance imaging [82].
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Dataset H

Typical Reconstructions of Undersampled AFM images

This dataset contains a collection of typical reconstructions of undersampled AFM images
from the simulation study detailed in Chapter 7. An even larger collection of typical
reconstructions (which includes the figures from this dataset) is part of the “Extra Figures”
supplementary material available at doi:10.5278/252861471.
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Figure H.1: Typical reconstructions of the first AFM image shown in Figure 7.1 when
using uniform line sampling and an undersampling ratio of δ = 0.10. In this setting, the
GAMP algorithm diverges yielding a solution of all NaNs (not a number). The reader
is encouraged to study the details in this figure using the electronic version of this thesis
available at doi:10.5278/vbn.phd.engsci.00158.
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Figure H.2: Typical reconstructions of the first AFM image shown in Figure 7.1 when using
uniform line sampling and an undersampling ratio of δ = 0.20. The reader is encouraged
to study the details in this figure using the electronic version of this thesis available at
doi:10.5278/vbn.phd.engsci.00158.
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Figure H.3: Typical reconstructions of the first AFM image shown in Figure 7.1 when
using rotated uniform line sampling and an undersampling ratio of δ = 0.15. The reader
is encouraged to study the details in this figure using the electronic version of this thesis
available at doi:10.5278/vbn.phd.engsci.00158.
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Figure H.4: Typical reconstructions of the first AFM image shown in Figure 7.1 when
using spiral (including corners) sampling and an undersampling ratio of δ = 0.15. In this
setting, the GAMP algorithm diverges yielding a solution of all NaNs (not a number). The
reader is encouraged to study the details in this figure using the electronic version of this
thesis available at doi:10.5278/vbn.phd.engsci.00158.
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Figure H.5: Typical reconstructions of the second AFM image shown in Figure 7.1 when
using random pixel sampling and an undersampling ratio of δ = 0.10. The reader is
encouraged to study the details in this figure using the electronic version of this thesis
available at doi:10.5278/vbn.phd.engsci.00158.
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Figure H.6: Typical reconstructions of the third AFM image shown in Figure 7.1 when
using random pixel sampling and an undersampling ratio of δ = 0.10. The reader is
encouraged to study the details in this figure using the electronic version of this thesis
available at doi:10.5278/vbn.phd.engsci.00158.
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Figure H.7: Typical reconstructions of the eleventh AFM image shown in Figure 7.1 when
using random pixel sampling and an undersampling ratio of δ = 0.10. The reader is
encouraged to study the details in this figure using the electronic version of this thesis
available at doi:10.5278/vbn.phd.engsci.00158.
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Figure H.8: Typical reconstructions of the second AFM image shown in Figure 7.1 when
using spiral (including corners) sampling and an undersampling ratio of δ = 0.15. In this
setting, the GAMP algorithm diverges yielding a solution of all NaNs (not a number). The
reader is encouraged to study the details in this figure using the electronic version of this
thesis available at doi:10.5278/vbn.phd.engsci.00158.
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Figure H.9: Typical reconstructions of the third AFM image shown in Figure 7.1 when
using spiral (including corners) sampling and an undersampling ratio of δ = 0.15. In this
setting, the GAMP algorithm diverges yielding a solution of all NaNs (not a number). The
reader is encouraged to study the details in this figure using the electronic version of this
thesis available at doi:10.5278/vbn.phd.engsci.00158.
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Figure H.10: Typical reconstructions of the eleventh AFM image shown in Figure 7.1 when
using spiral (including corners) sampling and an undersampling ratio of δ = 0.15. In this
setting, the GAMP algorithm diverges yielding a solution of all NaNs (not a number). The
reader is encouraged to study the details in this figure using the electronic version of this
thesis available at doi:10.5278/vbn.phd.engsci.00158.
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