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PREFACE 
A long – indeed very long – roller coaster ride is nearing its end. And what a ride 
it has been; it has been bumpy to say at least, but also thrilling, scary, and tiring at 
times. Luckily, it has never been boring and how could it in the ACABS Research 
Group.

The ride started back in the spring of 2001, when Professor Kim Esbensen visited 
Aalborg University Esbjerg as a guest lecturer and held a short presentation on 
multivariate data analysis. We ended up talking about sampling aspects, which 
was a rather new research discipline for Kim (and completely unknown to me and 
the rest of the group). For some reason Lars Petersen and I ended up talking to 
Kim about his future employment at Aalborg University Esbjerg and about a PhD. 
scholarship in his new group. This actually ended up in two full scholarships: One 
full-time scholarship on theoretical and practical sampling at Aalborg University 
Esbjerg and one full-time Marie Curie scholarship on practical sampling with one 
year in Esbjerg and two years at HIT/TF in Porsgrunn, Norway. Shortly before 
going to Norway (after approximately ¾ of a year) the Marie Curie scholarship 
was abruptly terminated due to the sudden death of the responsible supervisor in 
Porsgrunn, Professor Sunil de Silva. The scholarship was quickly converted into 
an additional full-time scholarship at AAUE in Esbjerg, which required quite a lot 
of sacrifices from both Kim and head of institute Torben Rosenørn. I am indeed 
grateful for getting this opportunity; thank you Torben and Kim! 

The ride is about to end and hopefully all the essential parts of the journey are 
documented in this thesis. No one could have imagined the length and the 
challenges involved in this ride. Typically, a PhD scholarship offers many 
challenges and this should always be expected even though it can set you back to 
a certain level. The challenges for this scholarship included; building a new 
research group including building a suitable imaging facility, losing access to this 
facility due to a sudden renovation of the laboratories, re-creation of an image 
laboratory due to both the laboratory renovation and software problems, and 
cancellation of papers due to author disputes – only to mention a few of the 
challenges one should expect during a scholarship. However, more uncommon 
challenges were more or less crucial parts of this journey: marriage, the birth of 
two wonderful girls, bereavement of close family, illness, getting a new job, and 
moving the entire immediate family. 
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Many have contributed directly or indirectly to the work behind this thesis and I 
would like to thank everyone involved for making this dream come true. I will 
name a few, but the list is in reality more or less endless. 

First, and most importantly, I would like to thank Kim for giving me this 
opportunity. As mentioned above, it has certainly been challenging, yet I have 
learned a lot from the dear professor. I would say most of my scientific skills 
come from many hours of discussions with Kim, so naturally I owe Kim a great 
deal for everything. The scientific education is one aspect of this educational 
development; however, the cultural aspect was equally as essential and at least as 
interesting thanks to Kim. 

I would also like to thank my fellow colleague since 1996, Lars Petersen, for 
being a good friend and laboratory partner through the many years. The first 1½ 
years of this scholarship were spent primarily with Lars (and Kim) interpreting 
and deducing the many aspects of TOS (pure theory – a different challenge), 
imaging and analysis of agglomerated samples (unexplored, but indeed interesting 
and sticky territory – Paper I), sorting and shoveling of PP pellets (the aquarium
experiment – SIGH) and the tedious mass reduction experiment of various mass 
reduction devices/methods (documented in Paper V). 

Another great contributor to this thesis is the entire ACABS Research Group, 
which during the six year period included: Lars Houmøller, Hans Henrik Friis-
Pedersen, Jonas Sjøland, Johnny Madsen, James Burger, Carina Lomborg, Jens 
Bo Holm-Nielsen, and Peter Paasch Mortensen. Thank you all for everything. 

 I also would like to thank Anne Cole for introducing me to the many aspects of 
the English/American language. There is still room for improvements on my side, 
but you have without a doubt contributed much to my language development 
throughout the entire scholarship, which has been effectively combined with the 
practical experience of writing scientific and peer reviewed papers. 

The entire team of the AAUE-staff has been unbelievably helpful and inspiring 
throughout my 10 years at the AAUE campus. Thank you all for making my stay 
as both a student and an employee at AAUE so interesting, fun, and relaxing. 

The entire team at Rationel Kornservice A/S provided unbelievable and unselfish 
help during this scholarship. I thank RAKO for supporting me and ACABS, and 
for the great insight into practical sampling solutions. 
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I could never have completed this long ride without the help and support of 
everyone around me including my wonderful family. But ultimately I could not 
have done this without my dear wife, Laisa, who gave me the necessary space and 
support to finish this great opportunity. I am truly grateful to her and this thesis is 
dedicated to my loving Laisa. 
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ABSTRACT
The work behind this thesis was inspired by my interest for two different 
scientific main areas: The Theory of Sampling (TOS) and multivariate data 
analysis. 

This PhD scholarship started out with focus on the practical application of 
multivariate data analytical techniques – specifically on the application of the 
image analytical technique Multivariate AMT Regression (MAR) on various 
substances/mixtures. A study on moisture-induced agglomeration was followed 
by an educational study of TOS, which ended up by establishing the foundation 
for understanding and applying TOS at Aalborg University Esbjerg – a work 
carried out together with my colleagues Kim H. Esbensen and Lars Petersen. This 
didactic study was followed by a series of practical mass reduction experiments 
documenting various aspects of TOS in practice as well as theoretically. With 
these deductive and practical studies completed, this PhD turned towards 
application and understanding of MAR. 

After a while with several practical imaging studies on various 
substances/mixtures, the focus of this PhD slowly changed into a research area, 
which amalgamates the Theory of Sampling (TOS) and image analysis into a new 
field termed Image Analytical Sampling (IAS).  

The introduction of this thesis serves as a first comprehensive delimitation of 
Image Analytical Sampling, but also of all the many disciplines behind IAS. The 
introduction is followed by five papers: 

I. C.K. Dahl (50%), L. Petersen (40%) & K.H. Esbensen (10%), “Image 
Analytical Characterization of Powder Agglomeration by AMT-
Regression (Angle Measure Technique) – Development and Method 
Validation”. In preparation. 

II. J.B. Holm-Nielsen (50%), C.K. Dahl (40%) & K.H. Esbensen (10%), 
”Representative Sampling for Process Analytical Characterization of 
Heterogeneous Bioslurry Systems – a Reference Study of Sampling Issues 
in PAT”, Chemometrics and Intelligent Laboratory Systems Volume 83 
(2006) pp. 114-126. 
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III. C.K. Dahl (80%), P. Minkkinen (10%) & K.H. Esbensen (10%), “Image 
Analytical Monitoring of Paper Quality – a Feasibility Study”, TAPPI 
JOURNAL, Volume 5 Issue 11 (2006) pp. 18-24. 

IV. C.K. Dahl (75%) & K.H. Esbensen (25%), “Image Analytical 
Determination of Particle Size Distribution of Natural and Bulk 
Aggregates”, Chemometrics and Intelligent Laboratory Systems, Volume 
89 (2007) issue 1 pp. 9-25. 

V. L. Petersen (50%), C.K. Dahl (40%) & K.H. Esbensen (10%), 
“Representative Mass Reduction in Sampling – a critical Survey of 
Techniques and Hardware”, Chemometrics and Intelligent Laboratory 
Systems, Volume 74 (2004) issue 1 pp. 95-114. 
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SYNOPSIS
Arbejdet bag denne afhandling er inspireret af min interesse for to forskellige 
videnskabelige discipliner: The Theory of Sampling (TOS) og the Angle Measure 
Technique (AMT). 

Denne PhD startede med fokus på praktisk anvendelse af billedanalytiske 
teknikker – primært Multivariate AMT Regression (MAR) – på forskellige 
substanser/blandinger. Første forsøg var et fugt-induceret 
agglomereringseksperiment, hvilket blev efterfulgt af et teoretisk studium af TOS. 
Dette studium blev udført sammen med mine kollegaer Kim H. Esbensen og Lars 
Petersen og endte ud som et fundament for forståelse og anvendelse af TOS på 
Aalborg Universitet Esbjerg. Studiet blev efterfulgt af en række praktiske forsøg, 
der dokumenterede forskellige praktiske og teoretiske aspekter af TOS. Kim og 
Lars fortsatte herefter med at arbejde med TOS, mens mit arbejde drejede i 
retning af anvendelse og forståelse af MAR. 

Efter at have gennemført adskillige praktiske billedanalytiske studier på 
forskellige substanser/blandinger, blev fokus for afhandlingen ændret til at 
introducere en ny videnskabelig disciplin, som sammensmelter TOS og 
billedanalyse til billedanalytisk prøvetagning – Image Analytical Sampling (IAS). 

Introduktionen til denne afhandling fungerer som en første indledning til 
Billedanalytisk Prøvetagning (Image Analytical Sampling), samt som en 
introduktion til de forskellige teknikker bag IAS. Introduktionen efterfølges af 
fem artikler: 

I. C.K. Dahl (50%), L. Petersen (40%) & K.H. Esbensen (10%), “Image 
Analytical Characterization of Powder Agglomeration by AMT-
Regression (Angle Measure Technique) – Development and Method 
Validation”. Under forberedelse. 

II. J.B. Holm-Nielsen (50%), C.K. Dahl (40%) & K.H. Esbensen (10%), 
”Representative Sampling for Process Analytical Characterization of 
Heterogeneous Bioslurry Systems – a Reference Study of Sampling Issues 
in PAT”, Chemometrics and Intelligent Laboratory Systems Volume 83 
(2006) pp. 114-126. 
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III. C.K. Dahl (80%), P. Minkkinen (10%) & K.H. Esbensen (10%), “Image 
Analytical Monitoring of Paper Quality – a Feasibility Study”, TAPPI 
JOURNAL, Volume 5 Issue 11 (2006) pp. 18-24. 

IV. C.K. Dahl (75%) & K.H. Esbensen (25%), “Image Analytical 
Determination of Particle Size Distribution of Natural and Bulk 
Aggregates”, Chemometrics and Intelligent Laboratory Systems, Volume 
89 (2007) issue 1 pp. 9-25. 

V. L. Petersen (50%), C.K. Dahl (40%) & K.H. Esbensen (10%), 
“Representative Mass Reduction in Sampling – a critical Survey of 
Techniques and Hardware”, Chemometrics and Intelligent Laboratory 
Systems, Volume 74 (2004) issue 1 pp. 95-114. 
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1 INTRODUCTION 
The need for industrial online process or product monitoring is ever increasing to 
maximize either process output or product quality (or both simultaneously). This 
monitoring is often carried out by use various image analytical techniques. These 
techniques do in general all suffice from a serious assumption:  

The samples underneath the camera are tacitly 
assumed to be representative of the lot product 
quality in general and 2-D image acquired of the 
sample surface is assumed to be representative of 
the 3-D bulk sample. 

Both assumptions are only semi-valid in limited cases and can not be considered 
applicable in practice. One sample/image can never fully represent the quality of a 
whole lot! With regards to the second assumption (concerning 2-D image vs. 3-D 
sample representativity), this assumption is only valid for non-segregating 
materials. What is the solution to this image analytical problem? Structurally 
correct sampling as laid down in the Theory of Sampling (TOS). 

Combining image analysis and TOS provides the ultimate solution for many 
online process/product monitoring tasks by taking the best from both worlds and 
providing representative image analysis. This new field is introduced in this thesis 
and the methodology is termed Image Analytical Sampling (IAS).  

IAS can also be considered a process analytical technology (PAT) per the official 
FDA definition: 

Process Analytical Technology is:

� a system for designing, analyzing, and controlling 
manufacturing through timely measurements (i.e., during 
processing) of critical quality and performance attributes of raw 
and in-process materials and processes with the goal of 
ensuring final product quality.  

[Source: FDA’s “Proces Analytical Technology (PAT)  Initiative” 
http://www.fda.gov/Cder/OPS/PAT.htm]
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The main area for this thesis is combining representative, i.e. structurally correct 
sampling, of particular materials with proxy methods – specifically with image 
analysis. The theoretical background and the applicability of this amalgamated 
PAT technique is exemplified through a specific image analytical technique 
termed Multivariate AMT Regression (MAR) pioneered by Jun Huang. MAR 
uses a specific image preprocessing procedure called the Angle Measure 
Technique (AMT) whose output is so-called AMT spectra, which typically are
analyzed by use of traditional multivariate regression methods – in this thesis 
multivariate calibration is only exemplified through partial least squares
regression, PLS-R.
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2 MULTIVARIATE DATA ANALYSIS 
Many different types of multivariate data analysis exist in chemometrics. They 
are typically divided into three distinct groups [1]: 

� Data description 
� Discrimination and classification 
� Regression and prediction 

This thesis has had its main chemometric focus on multivariate regression, which 
has been carried out on unfoldeda and preprocessedb images using Partial Least 
Squares regression (PLS-R). 

The objective of multivariate calibration is to establish a regression model of 
empirical (X,Y) relations for prediction purposes. A calibration model can be 
illustrated as shown in Figure 1, which focuses on the fact that the X-variables 
always are and the Y-variable(s) can be multivariate.    

Figure 1. Establishing a multivariate calibration model. N represents the number of 
objects (samples), while P and Q represent the variables in X and Y, respectively. 

In many cases a linear regression relationship between the X and Y data exists 
(shown here for one y-variable): 

                                                     

a See chapter 3.1. 
b Preprocessed using the Angle Measure Technique (chapter 2.3). 
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y=X � +E 

with � being the regression coefficients for all P X-variables and E the errors 
(unexplained variance). 

2.1 PARTIAL LEAST SQUARES REGRESSION 
PLS regression is a powerful generalized regression technique that surpasses 
standard statistical calibration concepts such as principal component regression 
(PCR) and multiple linear regression (MLR) [1,2]. The objective of PLS 
regression is to predict the dependent variable(-s) (Y) from the independent 
variables (X), and the technique does - as the only method - allow an active 
influence of the Y-information in the decomposition of the X-matrix by only 
seeking the part of X that is relevant (i.e. correlated) for the description of Y. 

The procedure for estimating the model parameters is typically built on the so-
called non-linear iterative partial least squares algorithm (NIPALS) – an 
algorithm based on iterative convergence to underlying (hidden) correlated latent 
components in both (X,Y) spaces. This algorithm was originally formulated by 
Herman Wold, and was later further developed in chemometrics by Svante Wold 
[3,4] and others.  

The NIPALS algorithm is used in PLS regression in two different versions: PLS1 
and PLS2. PLS1 is used for predicting a single y-variable, while PLS2 is used for 
predicting several y-variables simultaneously, taking advantage of correlations 
between the Y-variables. This can, however, be disadvantageous, if one or more 
Y-variables are not correlated with the other. PLS2 is for this reason used 
primarily for explorative analysis of Y-variable relationships. It can be especially 
difficult to get an overview of all Y-variables from individual PLS1 models alone; 
Paper III deals with no less than 42 Y-variables. 

PLS-R is methodologically superior in its use of Y-data structure directly for 
decomposing the X-matrix hereby ensuring that only the interesting Y-correlated 
X-variation is put into the regression model (to be used for future predictions of 
Y), while the uninteresting non-correlated X-variation is filtered out (and put into 
an error matrix, E). There is also an error matrix for Y termed F.  
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This regression approach is based on transforming the original multi-dimensional 
X-data space into an embedded coordinate system with fewer dimensions lying 
centrally in the data – illustrated in Figure 2. The data elements from the original 
data space are projected onto this Y-guided PLS component space which captures 
the main variation in the data in the sense of simultaneously seeking the 
maximum X-Y covariance [2]. The direction corresponding to this maximum 
within the data (X) is represented as PLS component number 1 (PC1) shown on 
Figure 2, while the direction corresponding to the same criterion in the orthogonal 
residual X-space will be constructed as PLS component number 2 (PC2) and so 
on.

Figure 2. Original three-dimensional X and Y data set represented by new two-
dimensional embedded PLS component space. This projection feature of PLS-
regression can be generalized also to higher-order dimensions (in both X- and Y-
spaces).

Each direction of PLS components can be understood as a linear combination of P
unity vectors (P original variables in the X-space), specified by P direction-
coefficients called loadings, pka (k is the variable index, and a is the component 
index). In PLS three different set of loadings exists: P, Q and W. The P-loadings 
express the relationship between the PLS components and the original X-axes, 
while Q-loadings express the similar relationship between PLS components and 
the original Y-axes. The loading weights (W) represent the effective loadings 

PLS1 

PLS2 
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which characterize the maximum (X,Y) covariance - see Figure 3 for an overview 
illustration. W expresses the core model relationships of the PLS model. 

Both the X and Y scores (collected into matrices T and U) are found by projecting 
each data point (object) onto the pertinent PLS component expressing the distance 
from the projected footprint on the component to the center of the model. The 
residual can be found as the perpendicular projection distance from an object to a 
component. 

All data can hence be described by two interdependent bilinear models: 

�
�

���

���

a aa

a aa

FQUY

EPTX
T

T

Figure 3. Schematic overview of the elements in a PLS-regression model. 

2.1.1 THE PLS1 NIPALS ALGORITHM

Most applications in this thesis deal with only one y-variable at a time (PLS1), 
which makes the u-vector and y-vector identical. The general PLS2 NIPALS 
algorithm is reduced to the simple procedure below:  
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1. f
T
ff

T
ff yXyXw �     (normalization of w)

2. fff wXt �
3. f

T
ff

T
ff ttyt�q

4. f
T
ff

T
ff tttXp �

5. T
fff1f ptXX ���  and fff1f tqyy ���

6. 1�� ff

Following several iterative steps using the above procedure, it is possible to 
obtain a stable (converged) model that explains as much as possible of the Y-
variance using only the correlated X-variance.  

The questions that naturally arise are: Can this model be used to predict future 
observations? How can this model be used to predict new Y-values directly from 
new X-data alone? What is the accuracy and precision of such predictions?  

These questions can only be answered after a suitable validation of the prediction 
model performance. 

2.2 VALIDATION
The purpose of validation is to provide a reliable assessment of the prediction 
performance of an already established model. This way it is possible to 
substantiate whether the model will work in the future on similar data sets. A
second aspect of validation is finding the optimal model complexity – i.e. finding 
the optimal number of model components. 

Finding the optimal model complexity is essential in multivariate regression. This 
task is often based on finding the lowest residual validation variance (the minimal 
prediction error), which can be seen as Root Mean Square Error of Prediction 
(RMSEP):

� �
n

yy
n

i
i,vali,val�

�

�
� 1

2ˆ
RMSEP
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with valiy ,ˆ  being the predicted y-value in the validation and valiy , the actual y-
value.�

As shown on Figure 4, the model complexity can be visualized as a function of 
two parts: The modeling error ( calcal yy �ˆ ), which decreases when model 
complexity is increasedc, and the prediction error coming from estimating the 
regression coefficients (noise), which increases with increasing model 
complexity.   

Figure 4. Illustration of the optimal number of components through a minimization 
of the compound modeling and prediction error. 

The methodology described above for finding the optimal number of components 
is the well-established practice. First of all, it should be noted that this clear “V-
rule” does not always apply; it depends on the data structure (as well as outlier 
removal). Secondly, all previous knowledge should be used in determining the 
optimal number of components. It is an all too easy task to minimize the 

                                                     

c Given that the calibration object are representative for the new objects to be predicted. 
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prediction error beyond the realistic by outlier removal or overfitting, but 
awareness should be paid to the estimation of uncertainties around the different 
validation methods; most validation procedures are often over-optimistic resulting 
in an unrealistic low prediction error.

Having selected the optimal model complexity, assessing the prediction 
performance of a model is the next task. It can be rather easy and straightforward 
if the proper prerequisites are met. This is, however, very seldom the case. 
Without proper consideration of all errors involved in the model building there is 
no valid validation. The only way to know if a model will truly give realistic 
predictions of future observations is to test its performance on a completely new 
and independent data set [1]. This data set specifically needs to be obtained in a 
way, so it is representative of future situations, as well as it is extracted in 
accordance to the principles of structurally correct samplingd for being 
representative of the bulk material, from which it was initially sampled. There is a 
direct relationship between unrecognized TOS-errors and typical chemometric 
validation issues, which need further attention than what is usually considered in 
chemometrics. 

2.2.1 VALIDATION PROCEDURES

Within the chemometric society at least three well-know validation methods are 
in use: 

� Test set validation 
� Cross validation
� Leverage correction 

Each method has its advantages and drawbacks, which will be elaborated on 
below.

TEST SET VALIDATION
Test set validation is used for estimating a realistic measure of the predictive 
ability of a model on a new, independent data set. The “price” of this validation 
approach is that two individual data sets are required: one for establishing the 

                                                     

d As defined by the Theory of Sampling (TOS) [6,28-30]. 
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model and one for testing its predictive ability (aptly called the calibration and the 
test set, respectively). Thus two independent drawings from the parent population 
should be made, in which the statistical and physical (TOS) sampling conditions 
should be as similar as possible. In order to further the most realistic estimate of 
the future prediction accuracy and precision, the key issue is that both data sets 
should be representative of all future situations in which the prediction model is to 
be used [1,5]. If both data sets indeed have been extracted separately and under 
identical conditions, the difference between these sets should only consist of 
sampling errors and material variation [1,6]. 

Test set validation determines both model complexity and prediction error 
estimation simultaneously. This method has the obvious advantage that the 
validation procedure is fast and the computer requirements are low, since the 
method only requires one calculation step for validation (opposite to cross 
validation – see further below).

Procedure (Test Set Validation) 
A model is first made using the calibration (often also called the modeling) data 
set, which is to be validated with regards to the optimal number of PLS-
components. For both purposes the differences between the actual (measured or 
reference) and the predicted Y-values are calculated for each validation object.  

Figure 5 shows an example of a predicted vs. measured graphical plot for paper 
roughness (example taken from Paper III).  
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Figure 5. Example of predicted vs. measured plot. The measured (reference) Y-
values are plotted along the x-axis, while the predicted Y-values are plotted along the 
y-axis. A standard y|x regression line is fitted to these pairs of data from which the 
slope and RMSEP statistics (amongst other) can be calculated. 

This type of plot furthers an illuminative overview of the prediction performance: 
the degree to which a fitted regression line has a slope as close to 1.0 as possible 
is a measure of the overall prediction accuracy, while the “spread around the 
model” (around the fitted regression line) gives rise to the RMSEP measure of the 
prediction precision. 

The correlation coefficient, r2, is another, alternative measure of the precision, 
proportional to RMSEP: 

22 )RMSEP(1r ��

CROSS VALIDATION
Sometimes it may not be possible (and/or desirable) to get as many samples as 
required for a test set validation. For such situations cross validation can be used, 
although at a price (TOS-sampling variance for the second data set – standing in 
for all future data sets – is left out). Thus it can never be as realistic, since it is 
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only a simulation of test set validation. The principle behind cross validation is 
simply that a model is made from part of the data set, while the rest is used for 
testing. When determining model dimensionality this should also be taken into 
account, especially with regards to overfitting.  
Two different versions of cross validation are typically used: segmented and full 
cross validation. 

Segmented cross validation is used whenever a relative large number of samples 
are available. The number of segments ranges between 2 and n, with n being full 
cross validation. The segments function as virtual, temporary small test sets. 
Selecting the appropriate number of segments can be difficult and it would be 
nice if universally applicable rule of thumb could be put up. This is not possible, 
however, since such a selection must be based on the size of the data set, as well 
as a priori knowledge of the data structure itself.
If two independent data sets cannot be obtained, cross validation must be used; 
the second best situation is then to obtain a calibration data set being twice as 
large as necessary for modeling. In that case it is possible to use “test set switch”e,
a segmented cross validation approach, where the data set is simply divided into 
two with modeling of the first part and subsequent validation using the second 
part and vice versa. In the end, the prediction error is found as the mean error 
from these two validations. This approach is (only) formally similar to test set 
validation, since this is also missing the random (TOS) sampling variations that 
only can be captured using an individually extracted second data set.  
When it is not possible to get such a large data set; in these situations “real” cross 
validation most come into play.  

Full cross validation, or leave one out cross validation, can also be considered a 
segmented cross validation approach – only with one sample in each segment. 
Full cross validation is used when the data set is extremely small or whenever it is 
not desirable to use segments. This is, however, seldom the case, only when the 
span of the data set will be severely affected by putting specific samples into one 
segment. Using full cross validation on large data sets will eventually lead to 
over-optimistic results, because the left out sample will on average give a 
significantly smaller (simulated) sampling variance contribution for increased 
data set sizes. 

                                                     

e A singularly bad term only kept for historical reasons; there is manifestly no test set 
present! 
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When cross validation is used on measurement replicates, one should select the 
cross validation type carefully. Running full cross validation with replicates in the 
data set will inevitably result in an artificial low validation variance due to the 
validation of samples very similar to those already included in the model! 

LEVERAGE CORRECTION
With leverage correction a direct copy of the training set serves as a test set with a 
leverage correction for each individual object prediction error estimates. Leverage 
correction can therefore also be considered a weighted, one segment cross 
validation.
This validation approach may be used in the initial modeling stages instead of 
cross validation or test set validation, but never in the final validation of a 
multivariate calibration model, since leverage correction is only an approximate 
prediction error assessment and since this validation procedure almost always 
gives over-optimistic predictions. The only reason for this method being so 
widespread in method validation is that it is extremely fast, because the 
corrections involved can be computed simultaneously with the modeling stages. 
For this reason an initial leverage corrected model will be exactly identical to the 
test set or cross validated versions, only the validations are different. However, 
since the validation is supposed to give information about the optimal number of 
components, ultimately alternative validation procedures may end up as different 
models. 

SUMMARIZING
Leverage corrected validation and cross validation use the same set of samples 
(calibration data set) both for establishing the calibration model and for testing its 
predictive abilities – though differently. Both these approaches unfortunately 
often lead to over-optimistic predictions [1].  

Test set validation, on the other hand, is the only option for estimating a realistic 
measure of the predictive ability of a model, since a completely new data set is 
used in this validation procedure. One universal validation method for predictive 
purposes does exist; test set validation with samples extracted according to TOS.  
The one and only case where it is methodically sound to use other validation 
approaches, is in comparative studies, where different versions of a prediction 
model are to be compared. In this special context it seems reasonable to use a 
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well-reflected, identical version of cross validation. However, the final model 
should always be tested on a completely independent data set.  

For all purposes, the data sets should be as realistic as possible in order to be 
representative for current and future situations. They must also span the X and Y 
space as widely as necessary for the final validated model to do justice to the 
prediction purposes. This goes hand in hand with the fact, that the span of a 
calibration model only rarely can be expanded with confidence by extrapolation. 

2.3 THE ANGLE MEASURE TECHNIQUE (AMT)
The Angle Measure Technique (AMT) is a signal characterization method 
originally developed to characterize the complexity of 1-dimensional data. 
Although this generic method can be used on all one-dimensional measurement 
series [5], within chemometrics it has so far been used mostly for extracting 
textural features from images. This thesis deals only with image analytical AMT 
applications.

AMT is potentially able to transform a two-dimensional image into a one-
dimensional complexity spectrum without losing essential textural information 
[4,10], although the specifics of the unfolding operations involved (see chapter 
3.1), can be important. Provided the image is essentially isotropic, a condition 
certainly fulfilled by for example paper master roll or sand images, an important 
simplifying pretreatment transform from the image domain to the scale domain is 
unfolding the image.  

A typical color image consists of three (or more) individual gray-scale images 
(multi-spectral imagery consist of many more channels); while AMT works on 
univariate (grey-level) images (see chapter 3.1 for an introduction to imagery). 
Thus a critical step preceding AMT is selection of an appropriate channel, or 
several channels when each is carrying specific information. Often the loading 
relationships from a PCA decomposition of the spectral space (MIA) can be used 
for this purpose. Papers I and IV covers all aspects regarding channel selection. 

Each channel is geometrically two-dimensional with I x J pixels and is separately 
unfolded [7,8] before being subjected to AMT. This unfolding procedure can be 
carried out in several different ways; primarily as linear unfolding, spiral 
unfolding or snake-wise unfolding. These techniques are all illustrated in Figure 
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10. The unfolding eventually leads to a one-dimensional discrete measurement 
series.

After affixing a “connecting line” between each individual datum (pixel), the 
measurement series is often referred to as a “digitized line” in the AMT parlance; 
all digitized lines are routinely subjected directly to AMT. Figure 6 shows a 
conceptual illustration of the AMT transform on a 1-D measurement series (in 
which the digitalization unit is so small that the connecting line appears smooth 
and continuous, but this is only a matter of scale) . 

Figure 6. The concept behind the AMT transform. A circle centered on A, with 
contemporary radius S, intersects the measurement series/digitized line in two 
points: B and C, which are used to define both AMT’s trigonometric “Angle 
Measure” as well as the Y-direction difference measure of complexity of the series. 

A number of center points, A, are randomly chosen along the entire measurement 
series. This number is highly dependent on the specific context [8-10]. For each 
such point A as origo, a circle with radius S is drawn. Radius S is the 
contemporary scale of interest; it can be viewed as a scale parameter with which 
to gauge the complexity of the measurement series. This circle will intersect the 
measurement series in two points: B and C, which defines both the angle CAB 
(for computational reasons the supplement to angle CAB is always used) as well 
as the difference in Y measure of complexity for the series. An overall grand 
average for both angle as well as the Y-direction complexity measure is 
calculated (over all the pertinent A-points distributed across the measurement 
series), called the “mean angle”, MA, and the Mean Y-Direction measure, MDY, 
respectively.  
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The contemporary scale is now increased from scale S to S+1 and the average 
MA and MDY measures are again calculated for all A points - and so forth. The 
scale of interest will run in the interval [1, N/2], where N is the total number of 
data in the measurements series; often a smaller scale range will be significant. 

With a sufficiently large number of both initial points A, as well as corresponding 
scales (250 to 500 is typically used, but depending on the textures and other 
features in the images to be characterized, it can be increased with no problem), it 
is always possible to obtain statistically robust mean angles, MA, and mean 
difference in Y, MDY. 
These operations constitute a transformation from the two-dimensional image 
domain, via the unfolded measurement series, to a new scale-domain: For each 
measurement series, one can construct a MA (and/or MDY) versus scale 
relationshipf, which is most often depicted in a simple two-dimensional scatter-
plot:

Figure 7.  MA/MDY-scatter plot for paper sample (type star with matt surface 
finishing – see Paper III)g.

                                                     

f A so-called complexity spectrum. 
g This scatter plot can be considered a spectrum, but only as a visual analogy as the X-axis 
is not phenomelogically equivalent to e.g. a wavelength interval in spectroscopy. 
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AMT complexity spectra are to be viewed as the mean angular (or vertical) 
change as a function of the set of increasing scales S. Therefore AMT can be 
viewed as a new domain transform, which characterizes the data series 
complexity as a function of scale [5,8].  

Thus AMT functions analogously to other domain transforms, e.g. the well-
known Fourier transform, but where the Fourier transform returns a frequency 
transform, AMT returns what could be termed a complexity spectrum (for each 
image in this case). 

In general, AMT complexity spectra constitute a synoptic complexity 
characterization of any measurement series as a function of the MA/MDY versus 
scale relationship. The complexity measures (MA and MDY, respectively) are 
able to vary freely with scale, thus enabling AMT a much larger potential to 
express essential complexity relationships than for example fractal descriptors, 
which rigidly assume a constant fractional dimension (measure of complexity) for 
all scales (sic). Although AMT spectra can be used (and often is) with an aim of 
interpretation of the intrinsic complexity and scale-dependencies in their own 
regimen, direct post-processing of AMT-spectra has been much used the last 10 
years [5,8-17] related to the very powerful chemometric multivariate calibration 
possibilities, most often in the form of PLS-regression. 
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3 IMAGE ANALYTICAL TECHNIQUES 
Images are most-often analyzed by traditional image analysis, Multivariate Image 
Analysis (MIA), or Multivariate AMT Regression (MAR). However, prior to any 
usage of these analytical techniques, it is often necessary to preprocess the images 
using image processing techniques.  

3.1 THE IMAGE 
Essentially, a grayscale image may be viewed as a 2-D array of pixels with row- 
and column-indices [I,J] specifying the row and column in the array of pixel 
values. Each pixel can be described by an intensity value and an X- and Y-
position in the spatial (image) plane - see Figure 8. 

Figure 8.  Presentation of relationship between image array indices and image plane 
coordinates (spatial image). A normal image is represented in the image plane, while 
the computer considers the digitized image as an image array.  

If the image consists of more than one image channel and hence is multivariate - 
multitemporal with several images of the same motive acquired at various times 
or hyperspectral with several images at different wavelengths – it can simply be 
viewed as a stack of image planes. The image array hence becomes defined as 
[I,J,K] with K being the number of planes (channels) within the image. A typical 
3-D color image (RGB) is digitally represented as shown in Figure 9. 
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Figure 9. Digitized 3-D color image with image array indices (I,J,K). 

UNFOLDING
In certain situations it may be useful to reduce the image rank, for instance by 
changing a three-way image array into a two-way array, which is typically done 
by simple reorganization from the [I,J,K] array into a [I×J,K] array. Figure 10 
illustrates such reorganization – also know as vectorizing, reshaping, or unfolding 
– of a 2-D image (grayscale).  
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Figure 10. Unfolding a two-dimensional image. Figures a and b shows the classical 
row- or column-wise unfolding technique´(colloquially known as “Chop chop”), 
figure c spiral unfolding, whilst figures d and e shows a snake like unfolding 
technique.

Traditionally, unfolding is carried out by vector-wise concatenation (row-by-row 
or column-by-column juxtaposing) as illustrated in Figure 10a and b. However, 
other unfolding schemes also exist, which eventually also leads to one-
dimensional discrete measurement series. Each such measurement series 
(unfolded image) can now be viewed as a digitized spectrum. A K-spectral image 
has dimensions IxJ with K individual unfolded image planes.  

3.2 IMAGE (PRE-)PROCESSING 
Under ideal conditions an image can be used directly in image analysis. However, 
image parameters such as insufficient contrast, lack of focus, artifacts, and 
shading effects very often prevent straightforward image analysis. In such 
situations image preprocessing can be used to compensate for the plethora of 
image deficiencies and hence allows better analysis of features of interest. 
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3.2.1 SHADING EFFECTS

In some cases images may need some type of shading correction. This correction 
takes away errors caused by the optical system (such as inhomogeneous 
illumination). Figure 11 illustrates how illumination gradients can be observed. 

Figure 11. Sand sample with (left) and without (right) illumination gradient. Both 
images show the exact same sample. 

Several different techniques based on different algorithms a.o. can be used to 
remove shadings [18-23]. In Paper IV a new technique was introduced, which is 
capable of estimating and removing illumination gradients generated by point 
source illumination – Figure 11 illustrated a sample with the illumination gradient 
and the exact same sample – only with the gradient removed by the new gradient 
removal technique. 

The gradient seems to be linear in the horizontal direction and non-existent in the 
vertical direction. This makes is possible to calculate the average pixel intensity 
per column in the 2-D image, resulting in a function as illustrated in Figure 12.  
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Figure 12. The mean pixel intensity (y-axis) for each column in the image (x-axis), 
which makes it possible to find a fitted linear regression line.  

By use of least squares regression a linear function describing the illumination 
gradient can be obtained. This function can be computed into a correction image 
by assuming that the gradient only exists in the horizontal direction, as illustrated 
in Figure 13.   

Figure 13. Example showing a linear gradient correction image. The linear gradient 
function shown in Figure 12 can be extended into the above image by row-wise 
duplication with all rows being identical.
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If the correction image and the original (but shaded) image are divided, a gradient 
corrected image can be computed (the right picture in Figure 11). 

3.2.2 IMAGE CONTRAST

Some images might have very low initial contrast primarily caused by non-
optimal illumination and camera exposure. Such limitations might hinder proper 
use of image analysis and eventually leads to bad or non-interpretative results 
from analysis.  
The proper solution to inadequate image contrast is reacquiring the images; 
however, often this is neither possible nor desirable. In such cases an intensity 
adjustment can be useful, because this remaps an image’s intensity values to a 
new range – typically to cover the full dynamic range - thus leading to an 
improved image contrast.  

In addition to having several shortcomings with regards to unwanted effects, an 
image might also have incorrect luminosity. Images often lack contrast due to 
either low or high luminosity. This is very often the case for images corrected by 
the gradient removal procedure described above. 

If the steepness of the illumination gradienth function is too high, an intensity 
adjustment can be a necessity. If such an adjustment is not applied, the image 
often becomes too bright. This follows from a simple division of the pixel value 
by the linear gradient function, since a pixel value around maximum (typically 
0/255) is often obtained.   

A histogrami for a gradient image and a corrected image would display the 
differences caused by the gradient correction – see Figure 14.  

                                                     

h Procedure described above. 
i An image histogram is a chart that shows the distribution of intensities in a grayscale 
image. 
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Figure 14. Differences in grayscale distribution with and without a gradient 
correction (for the images shown in Figure 11). The left image shows the histogram 
for the original, uncorrected image, while the right image shows the smoothed 
histogram for the corrected image.   

From Figure 14 it can be seen, that the gradient correction also reduces the 
amount of noise. Sometimes the distribution of the pixels is also changed, 
resulting in a change in overall brightness. These changes are a consequence of 
the gradient correction procedure. Such changes do certainly affect any regression 
model, but do not necessarily result in worse models.  

3.3 IMAGE ANALYSIS 

3.3.1 IMAGE ANALYSIS

Traditional image analysis is widely used within the industrial sector for 
qualitative and quantitative characterization in many different areas. Information 
is extracted from images - usually from grayscale (2-D) or color images (3-D) - 
by means of various digital image processing techniques – typically in either the 
spatial or the frequency domain. Techniques such as thresholding, segmentation, 
and various filters are very common within image analysis [24-25]. 

3.3.2 MULTIVARIATE IMAGE ANALYSIS (MIA)
While traditional image analysis most often works in the spatial or frequency 
domain for 2-D (grayscale) or 3-D (color) image arrays, the spectral or time 
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domain become a higher priority when images become multivariate or 
multitemporal. When this is the case Multivariate Image Analysis (MIA) becomes 
very useful [26-27].

Multivariate image analysis is primarily used for explorative analysis and works 
by decomposing the unfolded image space into a principal component space – a 
latent variable space – by principal component analysis (PCA).  

3.3.3 MULTIVARIATE AMT REGRESSION (MAR)
Multivariate AMT Regression (MAR) is a method for multivariate calibration 
between AMT complexity spectra (X) and a dependent variable (Y), for example 
denoting reference analytical results. 
This approach was pioneered by Jun Huang in a series of works, which have been 
a major inspiration for the present work [5,14-17]. The regression equation in 
general is given as: 

yAb̂ ��

with A+ denoting the generalized inverse of the AMT spectra. Any multivariate 
regression method can be applied. Figure 15 shows the entire process behind 
MAR using Partial Least Squares (PLS) as regression method [5,15]. 

Figure 15. Procedure for Multivariate AMT Regression (MAR). 

Each image plane is processed individually with unfolding, AMT, and subsequent 
PLS regression. 
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4 IMAGE ANALYSIS AND SAMPLING 
Image Analysis (IA) is a widely applied industrial technique for process and 
product control. Many image analytical approaches and techniques are based on 
an unsubstantiated assumption that the samples (images) examined are 
representative from the bulk sample underneath the imaged surface area. This is 
an assumption, which is almost never realistic however. 

To understand why this is so one needs to understand and appreciate the 
fundamental issues involved for representative sampling – enter the Theory of 
Sampling (TOS). In the following TOS is first reviewed to the extent needed here, 
and subsequently applied to the image analysis scenario. 

4.1 THE THEORY OF SAMPLING (TOS) 
The sole purpose of sampling is to reduce the mass of a lot and obtain a sample 
which is still representing the initial material with sufficient accuracy and 
precision (TOS gives strict definitions on these attributes, see further below). Any 
sampling – which leads to an experimental estimate of the true lot content – forms 
the basis for the product quality that ultimately is desired to be both consistent 
and satisfactory. It is always easy to extract an(y) indiscriminate lot portion and to 
analyze it with the best analytical method available. Nonetheless, any such 
extraction and the subsequent analytical result, will in practice be worthless if the 
sampling process is not representative, i.e. the particular lot portion is but a 
specimenj.

Representativity is intimately related to the concept of ‘heterogeneity’, as will be 
presented below. 

                                                     

j According to TOS incorrectly extracted, and hence non-representative mass-reduced lot 
portions should be termed ‘specimens’ - to clearly distinguish these from truly 
representative ‘samples’. 
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4.1.1 HETEROGENEITY

If we look at a heap (e.g. stockpile, railroad or truck load etc.) of material at a 
certain distance, it might at first glance appear ‘homogeneous’, i.e. all 
constituentsk are apparently identical. As we move closer to the heap however, it 
will be obvious at some point that the material in reality is not homogeneous; 
Visual differences from some parts of the heap to another will often be 
observable. Moving down to the level of each fragment one will discover that the 
material indeed is heterogeneous. All fragments will in practice never be strictly 
identical; different composition, shape, size, density, etc. occurs. Within 
sampling, we might as well remove the term ‘homogeneous’ from our vocabulary, 
since this is a theoretical limiting case only, alas never encountered in reality for 
any naturally occurring material. 

Representative samples can only be obtained by following the specific guidelines 
laid down in TOS. This is a rigorous, comprehensive theory developed by Dr. 
Pierre Gy, which describes all aspects of how to establish a representative 
sampling process from which the results can be demonstrated to be samples with 
the desired characteristics w.r.t. the lot. TOS makes use of a number of well-
defined sampling errors – which will be duly explained below.  
When we are sampling we are replacing the true lot content aL with its estimator 
ai. This leads to a selection error: 

L

Li

a
aa

SE
�

�  [28,29] 

The representativity, r, of the sampling process is defined as the sum of the mean 
SEl and the variance of SE: 

)SE(s)SE(m)SE(r 222 ��  [28,29] 

with r being the representativity of the selection error, m the mean, and s2 the 
variance.
                                                     

k Constituent: The smallest elements that can be considered to be indivisible during the 
selection process. In sampling also known as fragments, which can be grains, particles, 
molecules, ions. 
l m2(SE) is the bias. 
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According to TOS, representativeness is characterized by the absence of bias 
(accuracy) and by the particular sampling variance pertaining to the sampling 
process involved (TOS prefers to speak of reproducibility). Having reached an 
unbiased sampling process (a correct sampling process), it is now up to the 
sampler to secure that the remaining sampling variance (reproducibility) reaches a 
sufficiently low level – no matter how heterogeneous the material is. This is the 
task of sampling process optimization. It cannot be emphasized enough however, 
that the prerequisite for all successful sampling is that the particular process 
contemplated must be accurate, must be unbiased. It is not possible for any 
sampling process, once performed, to correct for sampling bias, as this is in 
principle un-estimable [28-30].  

The primary objective for any sampling process is therefore to fall in line with the 
necessary TOS specifications needed in order for the results of the process to be 
unbiased.

A material can be heterogeneous at two distinctive different levels: 

� Constitutional 
� Distributional 

CONSTITUTIONAL HETEROGENEITY (CH)
The constitutional heterogeneity (CH) is an intrinsic property of the material 
under consideration and unitsm making up any such material are considered 
unalterable and indivisible and thus stable in a physical and chemical 
environment. Indeed the units must be stable also w.r.t. the sampling process 
itself; i.e. the sampling process should not lead to fragmentation of any of these 
units. If it does (for example when sampling friable materials), TOS conveniently 
speaks of ‘fragments’ as the smallest stable inseparable units, allowing us to 
contemplate all types of sampling process and materials.  

A lot (material) has a homogeneous constitution only when all units are strictly 
identical, while the constitution of a material (lot) is heterogeneous if all units are 
not identical. However, all units do not necessarily have to be completely 
identical, as the understanding of constitution heterogeneity depends on whether 
                                                     

m Definition of unit 
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we for example are considering one specific material property or all of them 
simultaneously.  

The amount of heterogeneity carried by one fragment, Fi, is defined as: 

i
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The constitutional heterogeneity of all NF fragments in a lot can be described as: 
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The crucial conceptual element is that CHL is defined as the variance of all 
fragment heterogeneity contributions making up the entire lot. 

If one lot portion is extracted alone (below to be termed a ‘grab sample’), this can 
never constitute a representative sample by itself, due to the intrinsic 
constitutional heterogeneity displayed by any heterogeneous material at large. 
Any two such specimens can never give rise to identical analytical results, indeed 
any repeated sampling, say 10 times, per force must give rise to a distribution of 
analytical results. The specific sampling error arising from this non-constant 
material heterogeneity is termed the Fundamental Sampling Error (FSE). 
Constitutional heterogeneity is a material characteristic related to the differences 
in composition between the fundamental, smallest inseparable fragments making 
up the total lot. Since this heterogeneity is intrinsic, mixing and ‘homogenization’ 
has no effect on it. 

Distributional heterogeneity, however, is affected by mixing.  

DISTRIBUTIONAL HETEROGENEITY (DH)
The distributional heterogeneity (DH) can be observed when comparing different 
groups-of-neighboring fragments, while only differences between these 
individual units were considered regarding the constitutional heterogeneity. 
Distributional heterogeneity is a concern when we sample groups of fragments
(DH is nil if ‘samples’ consist of single fragments only). In practice samples of 
course never consist of singular fragments only, and DH can therefore be viewed 
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– and used – to characterize also the added uncertainty stemming from the 
practical necessity of sampling some volume – always consisting of more than 
one fragment. This sampling volume shall be known as the increment volume (or 
the increment mass) in the following. 

This heterogeneity depends on the constitution heterogeneity, but it especially 
reflects the specific spatial distribution of the fragments, but more importantly of 
the groups (increments) in the lot. Furthermore the size and shape of the lot also 
affects DHL, since this aspect of the lot heterogeneity is affected by the 
omnipresent gravitational force pervading our environment. By definition, a lot 
has a homogeneous constitution only when all groups of a strictly similar size 
have strictly identical composition, which of course can never be the case – since 
even the compositional heterogeneity is never zero for naturally occurring 
materials. If the lot is subjected to mixing and homogenization however, DHL

n is 
reduced; by contrast segregation leads to an increase in DHL.

The heterogeneity carried by a group-of-fragments within the lot can be described 
by an identical equation as for the fragments. Observe however the critical step-
up in scale, from fragments to groups: 

n
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�  [29, p.65] 

where Mn is now the mass of the group and nM  the average mass of all groups in 
the lot (for a theoretical analysis, we may assumed these quantities are fully 
known). The distributional heterogeneity, DHL, is now defined as the variance of 
the heterogeneity between all groups, s2(hn).

DHL can also be expressed as a direct function of the constitutional heterogeneity 
(CH) and of the spatial, distributional heterogeneity, which is characterized using 
Y, a grouping factor (equal to the average number of fragments in each group in 
the lot) and Z, a segregation factor (1 for fully segregated material and 0 for 
completely homogenized material): 

                                                     

n DHL is the lot Distribution Heterogeneity. 
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From the above formula it can be seen that distribution heterogeneity only exists 
if the lot constitution indeed were homogeneous. Furthermore it can be seen that 
CHL � DHL, i.e. the distribution heterogeneity is always smaller than the 
constitutional heterogeneity. With all materials being essentially heterogeneous, 
sampling operations will thus inevitably result in a compound sampling error. The 
added error (exceeding FSE) associated with the spatial distribution of the groups-
of-fragments within the lot material is termed the Grouping and Segregation Error 
(GSE).

DH, as delineated above, not only depends on both CH and the spatial distribution 
of the units (characterized by Y and Z), but also on the lot dimensionality. 

HETEROGENEITY AND LOT DIMENSIONALITY
Strictly speaking, of course all lots display a three-dimension nature, but one or 
two of these dimensions can in practice often be regarded as much less important; 
indeed they may at times be completely disregarded provided the increments 
involved span this/these dimensions completely (and correctly) - the effective lot 
dimensionality will thus be reduced. TOS classifies lots as three-, two-, one-, or 
zero-dimensional bodies.  

Zero-Dimensional Lot 
Zero-dimensional lots can at first be difficult to comprehend based on their 
apparent non-existing dimensionality in reality, but this term is simply meant to 
signify typical statistical populations consisting of a large number of non-ordered, 
non-correlated, and random units, fragments or groups, depending on the scale 
contemplated. A zero-dimensional body could be a large number of truckloads, 
railroad cars, or barrels, which have lost their internal relationship or ordering 
(geometric or chronologic) and thus must be regarded as random and non-
correlated units. In practice, any heap of particulate, free-flowing material which 
can be manipulated in the sampling process would be classified as a zero-
dimensional body.  

Sampling of a zero-dimensional lot material will vary as a consequence of:  

� random fluctuations between fragments – and between groups
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� errors generated as a results of the sampling extraction of groupso

� grouping and segregation (the spatial distribution of heterogeneity)

Assuming that sampling is carried out correctly (“correctness” is defined in 
chapter 4.1.2), the errors associated with the material alone are: 

GSEFSECSE1 ��

This heterogeneity, h1, in zero-dimensional lots can be classified as small-scale
fluctuations covering the specific constitution of fragments and groups. In zero-
dimensional lots we therefore only deal with a comparison of fragments and 
groups of fragments, while we also focus on long(er)-range variations for one-
dimensional lots. 

One-Dimensional Lot 
These lots are typically very long with width- and depth-dimensions of vanishing 
importance. Such lots are either elongated, continuous material streams or non-
random and discontinuous units. Examples include series of truckloads and 
barrels as well as materials on conveyor belts and in pipes. 

Industrial (manufacturing, processing) one-dimensional lots are often generated 
by chronological operations, wherefore they will reflect processing fluctuations – 
always including the small-scale fluctuations (h1), but also from long-range (h2)
and cyclic (h3) fluctuations. These lot fluctuations on all scales lead to the 
following full complement of errors for correct sampling in one-dimensional lot 
case:

321 CSECSECSECSE ���

Two- and Three-Dimensional Lots
The dimensions in three-dimensional lots are all of equal importance and the 
dimensionality can hence not be reduced. Examples of three-dimensional lots are 
geological occurrences, e.g. mineral deposits and large, isolated, piles such as 
shiploads, stockpiles which are too big to be manipulated without excessive 
efforts.

                                                     

o These errors are aptly termed ‘sampling process errors’.
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For two-dimensional lots the depth-dimension can be considered of vanishing 
importance. Two-dimensional lots are often flattened three-dimensional lots such 
as flat mineral deposits or the content of a flat truckload; other examples would be 
from the environmental realm, for example when taking soils samples of constant 
depth (or from a constant depth-interval) for all increments. 
.
Two- and three-dimensional lots are not easy to sample and typically also not 
feasible to sample correctly [28,29]. For large material lots – such as mineral 
deposits – geostatistics provides the beginning of a solution, but for small material 
lots such an evaluation is not feasible [29]. Since handling of two- and three-
dimensional lots is strictly speaking not included in TOS, this thesis will 
henceforth not deal with lots having more than one dimension. 

4.1.2 STRUCTURALLY CORRECT SAMPLING

As sampling from two- and three-dimensional lots are most-often not feasible, 
ultimately the sampling operator should try to convert such lots into zero- or one-
dimensional lots. These conversions are all-too-often not carried out in practice, 
because it is argued that it is too expensive and/or difficult to perform a lot-
dimensionality conversion. What is often forgotten in this process is the fact that 
we have no control of what we are analyzing when the sampling is not carried out 
with the sole purpose of getting a structurally correct sample. 

If handed a sample it is impossible to tell if it is representative of the lot 
material from which it was extracted, or not. Consequently, all efforts 
should go into making the sampling process representative. 

THE SEVEN SAMPLING ERRORS
The sampling process is an error-generating process by itself at every sampling 
stage, including materials handling operations. These numerous errors can all be 
characterized using TOS in a very effective, systematic fashion. 

Correct Sampling Errors (CSE) 
Thus far all errors described arise from the heterogeneous nature of the material 
(FSE+GSE). These two errors are summarized as the correct sampling errors
(CSE), and they result from a point-selection process in which FSE originates 
from the intrinsic nature of each fragment, and GSE originates from the 
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distributional heterogeneity, which, again, is caused by the practical necessity of 
sampling groups of fragments instead of individual fragments. 

GSEFSECSE ��

Incorrect Sampling Errors (ISE) 
Since sampling essentially is a forced (groups-of-fragments) statistical selection 
process, we need to understand how to perform this selection without making 
compromises with regards to the sample representativity. Thus far we have tacitly 
assumed that we can always follow the basic principle of structurally correct 
sample extraction, i.e. all fragments of the lot are submitted to the selection 
process with an equal probability P of being selected. 

The discrete nature of the fragments makes it difficult to obey this rule when 
performing the actual physical sampling however. The sampling process results in 
a materialized increment, which is that group of fragments which have been 
extracted from the lot in a single operation. This materialization is achieved by 
first defined the increment to be extracted – an operation termed increment 
delimitation. Having defined the delimitation of the increment, the increment 
must then be physically extracted. These two operations are error-generating 
processes leading to errors which are termed the Increment Delimitation Error, 
IDE, and the Increment Extraction Error, IEE respectively.  

Increment Delimitation Error (IDE) 
A structurally correct increment must be delineated properly. Dealing with a one-
dimensional lot this means the increment must consist of a cross-section defined 
by two parallel (or curvi-parallel) planes. This ensures that no part of the lot is 
represented in higher or lower portions than any other in successive increments, 
as illustrated in Figure 16. 



                       An Introduction to Image Analytical Sampling                        

- 33 - 

Figure 16.  Correct and incorrect increment delimitation. The first three examples 
are all delimited correctly with parallel sampling boundaries, whilst the latter three 
all over-represents some part of the 1-D lot. 

Increment Extraction Error (IEE) 
Having delimited the prospective increments area, the material located within 
these boundaries must be extracted. In order to avoid generating an additional 
sampling error performing this operation, known as the Increment Extraction 
Error, IEE, it has to be ensured that nothing else than what is defined in the 
correctly delineated area is actually extracted. Even though a fragment has been 
defined as belonging partly to the increment and partly to the remainder of the lot, 
this fragment must not be divided in any way as it in TOS is considered 
indivisible during the selection process. In practice this means that fragments 
having their center of gravity included in the delimitated increment must be 
included in the extraction process and vice versa. This principle is known as the 
rebounding rule [28]. The actual extraction of an increment from a correctly 
delimited area is exemplified in Figure 17. 
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Figure 17. Increment delimitation and correct materialization. White fragments are 
not part of the delimitation, while fragments marked as checkered are all selected as 
belonging inside the increment. The gray fragments are on the other hand not 
selected – because their center of gravity falls outside the boundaries defined by the 
delimited increment. 

In this illustration, four fragments are crossed by the delimitated boundaries of the 
increment; two are gray and two are checkered. The center of gravity for the two 
gray fragments fall outside the marked increment and should consequently not 
belong to the extracted increment, while the two checkered fragments correctly 
falls inside the increment.

IEE quantifies the errors associated with the physical increment extraction of the 
delineated area. Any deviation from the rebounding (or the center-of-gravity) rule 
will inevitable lead to an extraction error, which, according to Pitard [28], can be 
a “substantial error with many types of materials”.

Increment Preparation Error (IPE) 
The materialization procedure of the increment does not only include a 
delimitation and extraction of the actual increment, but also a handling of the 
increments between the sampling stages as well as all of the processes commonly 
known in the analytical laboratory as ‘sample handling and preparation’. The 
errors which may occur here are all grouped under the Increment Preparation 
Error term, IPE. This includes errors incorrectly occurring during operations such 
as mixing, comminution, and transportation. Further handling operations 
generates additional errors also belonging to the Increment Preparation Error IPE, 
which could be caused as a consequence of loss of material, contamination, 
deliberate alteration. 
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Incorrect Sampling Error 
The materialization error – known collectively as the Incorrect Sampling Errors 
(ISE) – is simply the sum of IDE, IEE, and IPE: 

IPEIEEIDEISE ���

The CSE model alone does not take these errors into account. A correct sampling 
procedure is consequently defined by the demand: 

0IPEIEEIDE ���

It is clear that elimination of ISE is very high on the agenda when striving to 
achieve an accurate, bias-free sampling process – in fact, complete elimination of 
ISE is the very criterion for a sampling process which is in statistical control; ISE 
:= 0. 

IDE and IEE are random variables, whilst IPE is non-random being generated 
accidentally and is hence non-statistical in nature 

Total Sampling Error (TSE) 
Thus far we have focused on how to perform representative sampling according 
to TOS, which has introduced both the correct and incorrect sampling errors, CSE 
and ISE. This combines to the Total Sampling Error, TSE: 

ISECSETSE ��

which, in total, represent all the following errors - for each sampling stage: 

IPEIEEIDECSECSEGSEFETSE 32 �������

It should be carefully noted however that errors CSE2 and CSE3 are of concern 
only for one-dimensional lots, since both the cyclic heterogeneity, CSE3 and the 
long-range heterogeneity, CSE2, have no meaningful counterparts in zero-
dimensional lots - and have more elaborate meanings in both 2-D and 3-D lots, 
which will have to be installed specifically for the cases at hand here. 
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Global Estimation Error 
Thus an analytical result for sample S includes the analytical errors, Total 
Analytical Error, TAE, as well as all sampling errors stemming from the whole 
sample extraction procedure, TSE. For completion, the sum of these two errors is 
termed Global Estimation Error, GEE, and hence includes all errors associated 
with any given sample S: 

TAETSEGEE ��

In total, using N sampling stages, the following errors will be associated to a 
sample S: 

�
�

��������

���
N

1n
32 )IPEIEEIDECSECSEGSEFE(TAEGEE

TSETAEGEE

This thesis will not deal with TAE as analytical errors have been amply dealt with 
in the pertinent literature [31-34]. 

The connection between all the zero-dimensional errors can be visualized as 
shown in Figure 18. 
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This diagrammatic overview may at first sight appear complicated, but in practice 
all of these errors can either be minimized or fully eliminated by following the 
simple principles and practical guidelines for structurally correct (unbiased) 
sampling.  

4.2 IMAGE ANALYTICAL SAMPLING 
Instead of physical sampling, there are many situations in today’s industrial 
practice, where it is desirable to rely on indirect sampling, also called sampling-
by-proxy. The reason behind this is the need and desire for real-time, on-line (at-
line) quality inspection or quality control etc. Many process times are so low that 
immediate feed-back from the products will be extremely beneficial for process 
control purposes. 

Using image analysis as a means for indirect sampling as well as for analysis is in 
many cases perfect for on-line purposes. This way it is possible to rely 
exclusively on on-site calibrated image analytical models instead of direct 
physical sampling with subsequent off-site analysis. This opens up for the realm 
of applied Image Analytical Sampling (IAS), which is based on a 2-D rendition of 
the product/process surface, as supported by a relevant image acquisition system, 
suitably calibrated. In the following introduction to the IAS approach, we discuss 
generic imaging systems without technical details, while focusing on the IAS 
principles and parameters. IAS is aimed at analyzing, understanding, and making 
use of the imaging process (and the associated image analysis) – as seen from the 
perspective of the general Theory of Sampling (TOS). 

Using an image analytical technique gives a lot of advantages, but it also has a 
number of disadvantages:  

Advantages; image analysis is: 

� Fast
� Inexpensive
� Simple 
� Easy to automate 
� Remote sensing 
� Non-invasive
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Disadvantages; image analysis is: 

� Based on empirical reference data – these are subject to traditional TOS 
and TAE errors 

� Sensitive to change in production parameters (image recording 
parameters …) 

The fact that this methodology is dependent on reference sampling/empirical data 
when establishing prediction models makes it especially sensitive to changes in 
production/material parameters. 

The IAS approach can be applied to all image analytical areas and several 
different imaging techniques can be used; for instance traditional grey-level 
image analysis, Multivariate AMTp Regression (MAR) [5,15], and Multivariate 
Image Regression (MIR) [26,35,36]. In addition, the images can be pre-processed 
using different techniques such as Fast Fourier Transform (FFT) [5,7] and 
Wavelet compression [5,7] – AMT can also be viewed as a preprocessing 
technique.

In this thesis the well-described image analytical technique MAR will be used to 
illustrate potential application areas for a new combined MAR/IAS methodology, 
which is mainly applied in the solids producing/processing industry sectors. The 
MAR approach can be used to quantify most product parameters, which are 
correlated to surface properties. 

This is facilitated by data analysis of signals from problem-dependent (1-channel, 
multi-channel, VIS, NIR) camera sources. MAR works by extracting relevant 
information from accurate and precise camera data with subsequent multivariate 
calibration. Spectral image data (X) relate to the surface of the solid/product. 
Provided a satisfactory calibration can be set with regards to the reference results 
(Y), e.g. PLS-regression or similar, image analytical signals can then be used for 
prediction of the corresponding Y-data directly from new images thus making 
sampling with offline analysis unnecessary.

                                                     

p Angle Measure Technique (see Chapter 2.3) 
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4.2.1 TOS ON IMAGE ANALYSIS: IMAGE ANALYTICAL 
SAMPLING (IAS)

IAS thus has the potential to replace actual sample extraction with subsequent 
analysis. The most important differences between these two approaches are: 

� IAS is an indirect analytical technique and does not physically alter the 
material – IAS does not require a physical sample extraction. 

� Physical sample extraction naturally involves analyzing in depth, 
analyzing the bulk material, while IAS per force focuses on the material 
surface alone – X-ray and �-ray (neutron) analysis excluded. This thesis 
only covers optical (VIS and NIR spectroscopy) imaging. 

Indirect image sampling methods is for example often used for analyzing 
compositional mixtures, particle size distributions, particle shape, color, physical 
characteristics a.o. Such methods can only yield good results for prediction if they 
are based on representative physical samples - for instance from a moving stream 
or an elongated lot. This process is denoted as Physical Reference Sampling, PRS, 
for which TOS stipulates all the necessary and complete requirements for such 
increments to be representative samples. 

Estimating the analytical content(s) in such samples necessitates subsequent off-
line analysis, which ultimately permits establishment of a usefulq calibration 
model. Having established a satisfactory model should eventually result in a fully 
automated, remote-sensing monitoring facility with no need for further physical 
sampling! 

In order to characterize any lot material, the necessary sampling procedures 
should be considered first. With a well-defined sampling scheme one has to 
decide whether to aim at sampling with time-consuming off-line analysis or 
whether to use a proxy sampling methodology such as image analysis (Figure 19).

                                                     

q Useful is here defined as an accurate and precise prediction model as tradition in 
chemometrics. 
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Figure 19. Overview of Image Analytical Sampling and multivariate calibration: IAS 
relationships with Theory of Sampling (TOS), image analysis, chemometrics and 
reference analysis. 

IAS is critically dependent on representative reference sampling to establish a 
predictive model. TOS stipulates how to perform “structurally correct” sampling, 
representative sampling, which often includes several mass reduction steps, 
comminution/grinding, and homogenization (mixing) of the sample material. 
Eventually we end up with a sample representative of the lot material in a size 
suitable for analysis. Such samples therefore form the required basis for the 
reference calibration and are hence critical for the validity and reliability 
(accuracy and precision) of the final prediction model. 
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Pitted against this background, the cornerstone of the image sampling process, 
IAS, will be the definition of the imaging area, the Field-Of-View (FOV) and the 
image acquisition. A finite imaging FOV can for most lot dimensionalities be 
well-defined following general TOS-guidelines and the imaging process itself 
should be fairly easy to carry out in practice. Nevertheless, optimization of the 
imaging equipment with the sole purpose of obtaining optimized predictability of 
any material property is a realm of its own. The essential optimization areas are 
addressed and described below (see section 4.3.1 and Paper IV). 

THE “STRUCTURALLY CORRECT” IMAGE
The imaging area is in most cases easily defined, as TOS delineates how to obtain 
representative samples – for all lot dimensionalities. In general, it has no 
relevance to address three-dimensional lots with any imaging technique, as the 
depth dimension always will be undetectable to some extent – regardless of the 
hardware (VIS, NIR, a.o).  

IAS does  not apply to three-dimensional lots 

There might be conceived a few exceptions to this statement – mostly connected 
to materials with low density and/or high transparency – but in general, if IAS 
works on a material with three apparent dimensions, at least one dimension can be 
regarded as of secondary importance and the lot dimensionality is hence reduced 
in practice.

Zero-, one-, and two-dimensional lots can all potentially be described using an 
IAS technique. Image-wise these dimensions are all identical, because the image 
– hence the sample – will always display the 2-D surface delimited in the imaging 
area. Ultimately this means that each image can be considered two-dimensional, 
while all samples and lots can be classified as either zero- or one-dimensional – 
depending on the application. 

If the lot is zero-dimensional the image should consist of the whole increment 
surfacer, while images in one- (conveyor belt, pipeline) and two-dimensional lots 
always consist of but fractional surface sampling areas selected according to a 
systematic or stratified random sampling scheme. The sampling areas for one-
                                                     

r As zero-dimensional lots pr. definition consists of discrete units. 
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dimensional lots should furthermore be proscribed to contain the whole cross-
section area of the 1-D process stream as illustrated in Figure 16 and Figure 20.  

Figure 20. Imaging area versus lot dimensionality. Imaging areas are marked in 
dark gray for zero-, one-, and two-dimensional lots. Three-dimensional lots are not 
feasible to study using IAS and are therefore not marked.  

All sampling schemes should initially include a heterogeneity characterization of 
the lot material. This characterization can then be used for defining optimal 
sample size and sampling frequency. Full definition of the various 1-D sampling 
schemes is beyond the scope of this introduction and referral is made to the 
pertinent introductions and explanations found in the TOS-literature [28,29,37].  

The camera design very nearly always pre-defines the size and shape of the 
increment / measurement area, because the camera’s optical system defines a 
sharply defined regular measurement area, the Field-Of-View. This area can 
however easily be narrowed or expanded – either through a simple imaging crop 
procedure effectively reducing the available data or through the use of several 
cameras/images for expansion of the measurement area – see Figure 21 for 
exemplification of various sampling schemes. Furthermore, Paper 4 details how 
extended sample sizes can be used in practice and how this influences model 
representativity. 
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Figure 21. Illustration of various sampling schemes vs. imaging FOVs. Modeled 
imaging areas are hatched, while camera field-of-view is gray. Image sampling can 
be A) systematic, B) random, C) stratified random, D) expanded systematic, E) 
reduced systematic. Combination modes can also be conceived for special purposes. 

Now, the imaging world is not quite this simple when models are to be 
established, as bulk samples never can be regarded as fully flat (with no depth 
dimension) and often there has been accepted a certain lack of correspondence 
between the top surface of the physical reference sample and the camera’s optical 
footprint. This physical discrepancy between the image and the reference signals 
will necessarily contribute to producing model – and prediction errors which 
ultimately show up as unnecessarily large RMSEP. 

The image is almost never fully representative of the bulk 
sample beneath it!  
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This a critical success factor, not always sufficiently contemplated: How to 
reconcile the inherent mismatch between these different supports for the X-space 
(image) and the Y-space? 

THE “REPRESENTATIVE IMAGE”
This mismatch comes to fore because the spectral image data (X) in practice 
almost always relate only to the surface of the solid/products. In order to assume 
that this surface image is representative, it must be assumed that the two-
dimensional area captured by the camera’s field-of-view always represents the 
true grade of the three-dimensional bulk sample. This can only be true if no 
heterogeneity is present vertically, expressed by either grouping or the 
segregation. In other words, the bulk sample must be homogeneous vertically and 
any variation has to be described by the 2-D surface only. This will of course 
never occur in practice for most naturally occurring or produced materials, as 
FSE/GSE is always present in any bulk sample hereof.  

On the other hand, there does also exist a certain class of products for which this 
depth-heterogeneity issue is either so reduced or practically eliminated, that this 
point is not relevant. Examples include potato chips, corn flakes, pizza surface 
ingredient density mapping, flakes, shards etc. It is a fair assumption though, that 
this class of specific products is distinctly smaller than its complement – but in 
any event the present IAS introduction only deals with the general case, in which 
physical reference samples must be extracted in order to establish an image 
analytical prediction model. 

PHYSICAL REFERENCE SAMPLING, PRS 
The physical reference samples, PRS’s, are easy to identify and most-often also to 
extract with the sampling practices well covered by TOS. A procedure for 
identification and extraction of representative samples can always be established 
by rigorous use of TOS. Any such sampling scheme involves optimal sample 
location, number and frequency, and size(mass) of the increments to be taken. 
Extraction should make use of all the relevant TOS-principles needed to provide 
representative samples for analysis.  

                                                     

s Excluding the camera-sources which can in fact look below the upper material surface. 
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Physical extraction of samples often involves several other steps before a final 
sample can be obtained. The first extraction often leads to larger samples than 
needed or desired. Depending on the material being sampled, 
grinding/comminution and/or homogenization may need to be performed, which 
is often followed by a mass reduction step. This mass reduction can be either 
another physical extraction or a mass reduction step by use of – for instance – a 
riffle splitter (see paper 5 for an introduction to mass reduction). Following the 
final mass reduction step having reached a final sample of a given size (weight, 
volume), this is subjected to analysis being any analytical method.  

Using proxy-methodst it is only necessary to physically extract and analyze a set 
of calibration samples. But proxy-sampling only allows characterization of the set 
of reference samples if based on a proper multivariate calibration in which the 
calibration data set has been sufficiently controlled in both X- and Y-space. 
Establishing an image-PLS model is comparatively straight forward, as is proper 
validation provided it follows the rules set forward for test set validation [1]. With 
IAS this proviso becomes particularly important, because of the potential 2-D 
(image) vs. 3-D support mismatch however. This issue forms a specific new 
element in IAS w.r.t. traditional physical TOS. 

4.3 SAMPLE REPRESENTATIVITY IN IMAGE 
ANALYSIS

The critical issue in IAS is related to the degree of match, or mismatch, between 
IAS’s 2-D rendition of the surface of a product or process stream relative to its 
bulk 3-D characteristics. Materials which are not segregated in their natural state 
(high-viscosity bulks, slurries, solids), can be directly imaged – and IAS 
characterizations will in general be representative. Materials prone to for example 
gravity segregation obviously need to be homogenized before presentation to the 
camera and the only possible counteraction for this is to install a mechanical 
homogenization device before presentation to the camera. This must take place 
immediately before image acquisition, because of the severe risk for recurrence of 
the same transportation-induced segregation etc. However, it is important to note 
that due to the inherent inhomogeneous nature of most materials, it will not be 
possible to obtain completely homogeneous samples even though the most 
                                                     

t E.g. acoustic chemometrics or image analysis. 
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thorough mixing is applied (a natural minimum residual heterogeneity always 
exists, cfr. TOS). Be this as it may, many mechanical engineering solutions can be 
conceived for homogenization (but not treated further here as they can be 
considered fully “doable”, which will suffice in this conceptual analysis). 

To minimize this effect a large number of replicating increments must be used – 
replicating increments can either be the result of acquiring new images along the 
1-D lot (“translational replicates”), or can be effectuated by rotating the lot -, or 
the individual samples. The latter can come about either by physically rotating the 
samples, or by a circular translation of the camera and/or the illumination sources
(Figure 22) 

Figure 22. Creation of rotational replicated increments for improved sample 
representativity. The sample material can either be rotated or several illumination 
sources can be used. 

When using low-angle structured light, changing the illumination or the viewing 
angle effectively acts as opening up a new view of the surface of the material 
(“rotational replicates”). Both kinds of replication carry their own pro’s and con’s. 
Rotational replication can be comparatively easy to set up, but it also carries its 
own penalty: no matter how many rotational replicates, they all but shared the 
same, singular analytical Y-reference value - it is effectively only the X-
increments which are replicated. But this approach does open up for a very 
effective averaging procedure. By contrast, translational replication allow 
individual calibration with a fresh reference sample, but now each of these will in 
turn correspond to a new residual heterogeneity manifestation. Balancing these 
two opposing issues is a central issue when designing an optimal (i.e. appropriate 
and effective) IAS-system.   

As a case in point (related to IA characterization of a multi-component mixture 
for example), acquiring only one image with a fixed illumination and camera 
angle (Figure 23) will often result in lack of sufficient information for the task at 
hand.
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Figure 23. Principle of IAS applied to a moving process string - with possible vertical 
segregation or not! 

It is nearly always beneficial to use several lamps – especially with regards to 
MAR. Using several light sources, but not at the same time, will allow 
presentation of new surface aspects of a sample: 

� Particles that were hidden using a specific combination of illumination 
and camera angle (in shadows) will now appear. 

� Particle shapes will be better delineated, also through their “shadow 
image”, which can be of special importance for characterization of non-
spherical particles. 

Based on a scheme designed with multiple illumination sources, e.g. for a specific 
industrial setting, an analogue situation can be simulated in the laboratory, 
meaning that the sample can be rotated a number of times corresponding to the 
number of fixed illumination sources. This is the setup used in many of ACABS 
pilot studies (see Figure 22 and Figure 23). 



                       An Introduction to Image Analytical Sampling                        

- 49 - 

Sample homogenization through mixing and/or other augmentation of the sample 
size/sample representativity through replicating increments are two ways to obtain 
improved prediction models. Nonetheless, IA prediction models can also be 
significantly affected by the imaging equipment and the settings of this. In fact, a 
wealth of parameters can be important to a specific, certain extent, but these are 
all highly problem-dependent. 

4.3.1 IMAGING PARAMETERS OF IMPORTANCE IN IAS
Many image acquisition parameters are of critical importance for obtaining 
reasonable prediction models, because bad equipment and poor experimental 
settings can seriously degrade the correlation between image and material 
parameters of interest. Special focus should be on imaging device (camera) and 
illumination source/settings as these two factors are instrumental for finding 
useful correlations between the X and Y spaces. 

CAMERA
Different camera solutions greatly affect the possibility for successful prediction 
models, through different options for resolution, color depth, wavelength, number 
of cameras etc.  

The imaging equipment – camera and lens – must be selected especially for the 
purpose at hand. A simple TOS characterization reveals that the required sample 
size (camera “footprint”) is phenomenological proportional to the heterogeneity 
of the material to be examined. With very heterogeneous material relative large 
image field-of-views, or many image increments, is necessary in order to obtain a 
sufficient representativity [9]. 

Selecting a camera appropriate for the tasks at hand can however be difficult. 
Efforts regarding this selection should be put into many different areas such as:  

� Camera type (digital/analogue) 
� Chip type (CMOS/CCD) 
� Lens
� Filter(s)
� Camera resolution 
� Image channel(s) (BW/RGB/Hyper spectral) 
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Most cameras used today are digital, minimizing the risk of introducing artifacts 
in the digitization process, which can be serious impediments to quantitative 
measurements. Some cameras are analogue, directly attached to a frame-grabber, 
which digitizes the pictures hereby functioning as an A/D-converter. This might 
introduce noise that should be eliminated or minimized afterwards with filtering 
techniques. Using even a low-end digital chip camera is as good as using a 
conventional analogue camera [22].  

Image compression might pose an even larger problem than the digitization 
process. This is especially a problem for conventional digital cameras. Image 
compression techniques, such as JPEG, discard exact pixel information and use 
approximations instead, which of course might have severe effects on quantitative 
image analysis, since image details are lost. Higher-end consumer and 
professional cameras all offer image storage without lossy compression. These 
cameras also offer higher fidelity with the original colors showing subtle 
differences and finer details. This can be observed, especially in the high-
brightness and high-saturation regions [22]. 

In some cases using an ordinary lens is not sufficient for reaching a desired field 
of view (or desired effective pixel size), since a 1:1 ratio maximally can be 
reached. It can thus be necessary to use other solutions; if the objective is inverted 
using a bellows solution, a (limited) magnification can be reached. If such an 
enlargement still is too small, a combination of a camera and a microscope can be 
used.

The final image resolution and color depth should in general be high. Of course, it 
is not always advantageous to have a really high resolution, since it directly 
affects computational requirements – the higher the resolution, the higher the 
computational load. In many cases an exceptionally high resolution is also 
unnecessary, since requirements for resolution depth and particle size are 
intimately connected, and this automatically will define the requirements for 
image resolution. Besides, an unnecessary high image resolution will introduce a 
great deal of redundant information in the images, since new features of no 
interest might be brought forward as a consequence of the change in scale. Such 
redundant information will never improve quantifications – it will only 
complicate prediction models and perhaps also make for computational problems, 
at least in on-line application scenarios. 
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Figure 24 shows three different cameras ranging from a simple, off-the-shelf 3-
CCD color camera (medium resolution), over a high-resolution multiple-channel,, 
to a full multi-channel, line-scan camera. 

Figure 24. Examples of different camera types: Left: Sony 3-CCD camera. Centre: 
QImaging b/w camera with color wheel. Right: Camera X line-scan camera 
(BBcom). 

In many industrial inspection and monitoring situations it may be satisfactory to 
use an off-the-shelf 1-CCD (black/white) or CMOS camera. The problem with 
single chip cameras is that the spatial – and the radiometric resolutions – are 
closely tied together. For quantification of large particles the resolution is often 
above what is satisfactory, while it is rather expensive to get a camera with a 
satisfactory resolution for fine particles such as powders used in pharmaceuticals, 
especially if the need calls for a full multi-spectral facility. However, many other 
correlated features needs to be observed when selecting camera and illumination 
solutions.

ILLUMINATION
Choosing optimal settings for illumination cannot be emphasized enough, as this 
is what determines the optical quality of the digitized imagery. Both unilateral and 
bilateral illumination modes can be employed, as well as omni-directional light 
(Figure 25).
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Figure 25. Left: Standard light source for both uni- and bilateral illumination (type: 
LHS-500).  Right: Omni-directional ring-light (Schott-Fostec). 

Choosing optimal light sources for image analytical techniques is of course highly 
dependent upon the specific application – and material – context. Material-
dependent features such as reflection/absorption always have to be taken into 
account. Choice of illumination source and camera is also closely related; a 
typical lamp in the visible electromagnetic range reaches approximately 700 nm, 
while the near-infrared area starts around 800 nm. But these are highly–problem 
dependent issues, for which reason no firm general guidelines can be given. If the 
illumination settings are not optimal, i.e. not giving a clear contrast in the gray-
scale levels for each color channel, MAR will for example not work to its full 
capacity. Contrasts can sometimes be enhanced by use of image enhancing and 
processing techniques. 

OTHER OPTIMIZATION ISSUES
It is also possible to enhance the surface features (for instance color treatment) by 
more traditional means, such as filters or by modifying the images using low-level 
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image processing to improve image contrast, edge-definitions etc., but this latter 
always adds heavily to the real-time computational load. 

Getting the right equipment and finding the optimal settings for this is 
unfortunately not the only necessary steps to consider for obtaining the optimal 
prediction models. As mentioned above segregation might occur and requires 
homogenization prior to imaging, but also the sample/image delimitation, the 
image acquisition, and the reference sample extraction has to be carefully 
considered.

An essential part of obtaining representative samples – be that physical samples 
or the virtual image footprints – is understanding and appreciation of the 
numerous sampling errors didactically elaborated in TOS (see chapter 4.3.2).  

4.3.2 TOS SAMPLING ERRORS IN IAS 
All the seven sampling errors comprising the total sampling error, TSE, are also 
applicable to IAS, but the cyclic and long range heterogeneities are only a 
concern for one-dimensional lot types and can be characterized as described in the 
TOS literature [6,28-30].  

THE CORRECT SAMPLING ERRORS IN IAS
Even with dominant focus and efforts on optimization of the sampling procedures 
and the correct image acquisition and definition, sampling errors will still 
influence the prediction models as the correct sampling errors to some extent are 
unavoidable – not only in image analytical sampling, but in sampling in general. 

Because we are normally not imaging only one fragment we have to introduce the 
grouping and segregation error, GSE. GSE can be minimized by either reduction 
of the fundamental sampling error, the grouping parameter, Y, or the segregation 
parameter, Z. Minimization of FSE is treated below, whereas the grouping 
parameter only can be eliminated by imaging (analyzing) smaller and smaller 
FOVs (in the limit actually imaging fragments one by one) but there is a natural 
limit to this approach. The segregation parameter can only be reduced by 
subjecting the lot, or the pertinent process stream segment to thorough mixing 
prior to sampling/imaging. GSE can on the other hand not be completely 
eliminated, as a residual heterogeneity – the minimum distribution heterogeneity, 
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MPE – will exist regardless of the quality of the mixing. This variance of the 
Minimum Practical Error (MPE) is defined as: 

)FSE(YZs)FSE(s)MPE(s 222 ��  [29 p. 77] 

The residual distribution heterogeneity is the consequence of the omnipresent 
gravity acting on the fragment characteristics, which ultimately leads to an 
asymptotic GSE-limit always significantly above zero (obviously always material 
dependent).

In addition to the pervasive omnipresent distribution heterogeneity, the material 
also has an intrinsic constitution heterogeneity characterized by the fundamental 
sampling error, FSE. The fundamental sampling error variance can be well 
approximated by: 

S

3
2

M
Cd)FSE(s �  [29 p. 73] :  

with C representing a material specific constant, d the average top particle size
d95, and MS the sample mass. 

As can be deduced from this formula, this error can only be minimized through 
comminution/crushing of the lot material to a smaller average particle size, d, or 
by increasing the sample mass, MS , which is much more easily done simply by 
acquiring more images; the sample size increase is only limited by digital image 
computational power! 
A general reduction of the particle size will, however, change the foundation for 
IAS, as such reduction might also require a change in camera towards higher 
resolution; ultimately to distinguish between the individual fragments in the 
actual image analysis. As mentioned in chapter 4.3.1 a higher resolution should at 
least give identical prediction models, but in most cases result in even better
predictions.
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These correct sampling errors will in total never cancel out, but mixing prior to 
imaging, composite imagesu, and ultimately reduction of the average particle size 
in the lot will effectively minimize GSE and FSE also in IAS. 

It is a quite distinct other matter, that the original reason for image analysis in 
process control most likely is a desire for passive, remote sensing with absolutely 
no interference with the material stream being imaged. The possibility for such 
drastic intervention as having to crush the material will in all likelihood not be a 
frequent option.   

INCORRECT SAMPLING ERRORS IN IAS
Within sampling the incorrect sampling errors can be worked on until being 
practically eliminated given specific conditions, but there may have to be a 
dedicated amount of work involved, Petersen & Esbensen [6].  

In IAS applications IDE is not present if the whole cross-sectional sample/product 
is imaged, as the cameras field-of-view automatically defines a sample which 
equally represents the width of the process stream. However, if the whole cross-
sectional sample is not imaged, the case of reduced imaging (case E in Figure 21), 
IDE will be present.

IEE, the extraction error, is practically impossible to avoid in IAS (as images 
most often only reflects the sample surface). The imaging virtually extracts only a 
fraction of the delimited sample area (unless the sample in the imaging area per 
default consists of a mono-like layer of sample material). But IEE can be reduced 
through reduction of the sample depth. However, IEE will always be present in 
imaging studies, as the imaging process divides fragments/particles on the sample 
boundaries, whilst fragments are considered indivisible in TOS.  

The incorrect preparation error, IPE, is just as applicable to IAS as for regular 
TOS. For specific details see references Pitard and Gy [28,29]. 

The incorrect sampling errors in IAS can only be avoided if imaging the entire 
sample/cross section of the process stream and if the sample depth is virtually 
equal to zero (mono-layer sample depth). In practice IEE is unavoidable, but the 
magnitude of this error greatly depends on the specific material characteristics. 
                                                     

u Composite images: Images of several increments combined into one, larger image. 
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All three incorrect sampling errors, but especially IEE, will be subject to 
significant changes in their individual manifestation levels to a degree which is 
strongly correlated to the specific material and process involved. In fact, nothing 
much more can be said in general as to their influence – a specific analysis will 
always be called for, for each individual material and imaging scenario. 
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5 DISCUSSION AND CONCLUSION 
The critical issue in IAS is centered on to which degree it is possible to acquire 
images which are fully representative of the bulk material under investigation. In 
most cases the representativity issue is tightly connected to segregation and how 
to guarantee sufficient homogenization of the material before image acquisition. 
This is just another formulation of the representativity issue: For all reference 
samples, which are physically extracted from the lot material, the surface cross-
section (the camera footprint) must represent a sufficiently homogenized surface 
rendition of the 3-D bulk material.  

For IA-cameras the old dictum is particularly true: WYSIWYG (What You See Is 
What You Get). But in the present context the issue is even worse: 
WTCDNSWNSUITIAPM (What The Camera Does Not See Will Not Show Up 
In The Image Analytical Prediction Model). This critical issue is unfortunately 
not always properly recognized in image analysis.  

The conceptual IAS analysis above delineated the individual factors involved, 
both the image acquisition issues - representing the X-signals in a multivariate 
calibration context – and the reference sampling issues, which makes up the Y-
data. It was stressed that while the latter issue has an obvious, direct relation to 
the TOS as a critical prerequisite, so does the X-side. An analysis of image 
acquisition and low-level image processing in the light of TOS was therefore 
carried out in detail. This resulted in specification of the critical factors and issues 
to be aware of when contemplating situations where chemometric multivariate 
calibration comes to the fore, i.e. when image analytical prediction models are to 
be invoked. These issues are treated in depth in the individual studies behind the 
collected papers making up this thesis. 

5.1 APPLICATION POSSIBILITIES 
The principles behind the IAS approach delineated above is applicable for on-line 
monitoring in many industrial sectors, among others the food and beverage-, feed 
-, mining -, energy -, polymer  -, pharmaceutical, as well as  the powder and pulp 
industries – indeed the solids producing/processing process industry at large. 
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Sector Examples of IAS applications 
Food & beverage Process control in manufacturing of food & feeds 
Polymer films Process control of polymer films and coatings 
Medical Correlation between imagery and reference sampling 

(e.g. blood vs. NIR) 
Powder industry Aggregates, powders, mixtures 
Paper & pulp Quality control in lumber mills or process control in 

pulp and paper manufacturing. The textile industry is 
very similar. 

Commercial sheet & 
surface products 

Classification of steel or aluminum surface quality. 
Control of surface appearance of consumer products, 
wood boards, paper texture (correlation with material 
characteristics) 

Pharmaceuticals Raw material inspection, mixtures, tablets, liquids 
Energy production Fuels, wood pellets/chips, coal, oil, biofuel 

characterization 

Figure 26. Possible PAT areas for IAS application. 

5.2 FUTURE WORK 
This PhD has touched many different scientific as well as technical areas. 
However, on an overall work-basis two of these areas stand out: Applied 
multivariate data analysis and Image Analytical Sampling. This being so because 
the applied multivariate data analytical technique Multivariate AMT Regression 
has been used to show the potential of both the specific methodology and the 
applicability of Image Analytical Sampling. 

With two so different techniques this calls for two different evaluations of future 
working areas: 

Multivariate AMT Regression
The applicability and theoretical study/optimization of the algorithms behind 
AMT/MAR has undergone thorough research and in my mind MAR is at a 
developmental stage, which makes the technique ready for industrial application. 
Slow computers have earlier stopped this technique from being implemented 
industrially, but with the ever faster computers this problem is getting smaller and 
smaller. 
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Most technical/imaging parameters regarding AMT/MAR should always be 
determined based on the specific material investigated and on the application 
context. On the other hand general guidelines/rules of thumb might be 
established, however, this would require a full-time PhD scholarship looking at 
correlations between most experimental parameters and different 
materials/substances. Indeed interesting, but also very time consuming and my 
best guess is that in the end it would be very difficult to put up guidelines in 
general.

As all image analytical applications should take structurally correct sampling into 
account prior to and during implementation, Image Analytical Sampling should 
always come into consideration. 

Image Analytical Sampling
This area is much needed for the imaging industry and the first task at hand 
should be to deduce and write a complete tutorial on both the theory and the 
practical aspects behind Image Analytical Sampling. A significant part of such a 
tutorial can be found in this the introduction and in the four image analytical 
applications described in Papers I to IV. 
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ABSTRACT:
Fifteen different powders have been subject to controlled water-induced agglomeration 
and subsequent quantitative image analysis and multivariate prediction modeling. The 
degree of induced agglomeration varies from dry powder (minimum agglomeration) 
through water-saturated powders, quantified by a powder-invariant agglomeration in-
dex. The powders range from large-sized particulates of many different provenances to 
small-size pharmaceutical powders such as talc, including seven POSTEC-selected rep-
resentative industrial powders (cement, dolomite, alumina, talc, cellulose, clay, and 
sand). The technique uses the Angle Measure Technique (AMT) transformation on digi-
tal images obtained by a modified R/G/B camera. The channel with the highest contrast 
(green) was used throughout the experimental series, characterized by unilateral low-
angle illumination. AMT successfully captures the essential texture characteristics of 
the imaged powder surfaces, which can be quantitatively correlated to the innate mois-
ture content. Most of the resulting models show very good correlation between pre-
dicted and reference agglomeration index values, indicating promising aspects for on-
line control/characterization (prediction) of moisture and the degree of agglomeration of 
powders in various industrial processes that can be subjected to image analytical proc-
ess monitoring. 

Keywords: Angle Measure Technique, AMT, Powder Agglomeration, Image Analysis, 
Multivariate Data Analysis, Prediction, Moisture Content.  

1 INTRODUCTION
Powder-handling industries place great emphasis on extensive quality control. One as-
pect of powder quality control, which has not yet received proper considerations, con-
cerns agglomeration. Quantification of, and changes in, the superficial appearance of 
powders is of great practical interest in several particulate matter industries. 
Powders and aggregate mixtures are frequently subject to agglomeration induced by 
moisture, condensing water, electrostatic forces amongst other. This is an often occur-
ring, serious problem in several industrial sectors and can be a costly everyday problem 



2

for many process industries and powder-based goods manufacturers. It would be highly 
desirable if a quantitative agglomeration index (and thus a potential new process opera-
tion parameter) could be derived, preferably on-line and if possible by a non-intrusive 
technique (thus solving a difficult sampling and sample handling problem). This could 
also furnish a means for quantification of the innate moisture content of raw material by 
indirect calibration based on agglomeration behavior. 

Figure 1. Generic illustration of powder agglomeration. Progressively increasing moisture additions to 
dry powder (0). 1–6 represent equal increments of added moisture. This work develops a facility for 
quantitative characterization of either agglomeration or moisture content (see text for details). 

1.1 Objective of Study 
The objective of this work is to develop – and validate – a non-intrusive, fast, and inex-
pensive technique for quantifying the degree of agglomeration (Fig. 1) for a comprehen-
sive range of industry-relevant powders. The present work will solely address water-
induced agglomeration because this is by far the most prevalent in practical industrial 
settings (condensation, transport, and/or storage under varying moisture conditions). 
While electrostatic agglomeration is also rather common, its effects are typically several 
orders of magnitude less than those of water-induced agglomeration and are therefore 
excluded here [1-4]. 

1.2 Development of Pilot-study Laboratory Procedures 
For non-intrusive powder characterization, image analysis is an obvious candidate. 
Digital images can be obtained with relative ease in many industrial settings and is thus 
a straight-forward primary choice for data acquisition. Industrial and technical image 
acquisition and digital image processing is today a well developed area with many exist-
ing applications in different industrial and laboratory environments; a comprehensive 
recent overview is that of Zeuch [1]. Because of this we here assert any-and-all practical 
problems related to specific implementations of an appropriate image analytical data 
acquisition system as mere engineering problems – all of which are doable in the rele-
vant implementation context, and we shall not treat these aspects further below.  
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For the present study we will not be using standard, conventional image processing pro-
cedures for analyzing the powder images obtained. Instead, we shall introduce a new 
texture-characterization procedure, the AMT (Angle Measure Technique), for decoding 
the specific agglomeration image data structures in combination with a chemometric 
regression technique termed PLS-R (Partial Least Squares Regression), both of which 
shall be briefly described below.

Angle Measure Technique (AMT) 
AMT is a relatively new preprocessing technique, which has been found useful in the 
last 7+ years of initial industrial applications [5-14]. The technique has especially seen 
powerful image-analytical applications.

AMT is a domain-transforming technique, which in the present setting is used for ex-
tracting textural features from images and converting these into spectra characterizing 
the surface rendered in the image. These spectra can subsequently be used in multivari-
ate calibration and prediction, such as PLS-regression (see further below). For a 2D 
digital image the local surface is transformed into a 1D vector (“AMT-spectrum”) carry-
ing information about textural complexity at all existing scales within the image.  

AMT works on grey-level (single-channel) images. In this work the green channel is 
selected throughout (because of superior contrast) and unfolded into a row vector, by 
juxtaposing the individual rows of the image, which in turn is subjected to the AMT 
transform. The solid curve in Fig. 2 (“hill-and-valley”) represents the grey-level values 
of each pixel making up this concatenated vector. An image measuring for instance 512 
x 512 pixels results in an unfolded linear array (the X-axis direction in Fig. 2) of 
262.214 elements. The Y-axis in Fig. 2 serves only plotting and visualization purposes 
allowing the pixel grey-level values to be related in magnitude; often a “connecting 
line” is depicted between all discrete data. The linear array is often called the “meas-
urement series” allowing a uniform description of the AMT method for both 1D data 
series as well as unfolded 2D arrays etc. 

Figure 2. Derivation of the Mean Angle (MA) complexity measure (�(i)S) in AMT, see text. The comple-
mentary MDY measure is phenomenologically self-explainable; also explained in references [5-7]. 
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The AMT method operates by first choosing a random point from the entire measure-
ment series “A” as the centre of a circle with diameter “S”, which is termed the tempo-
rary scale. Points “B” and “C” are found as the intersections of the circle with the 
measurement series (i.e. intersection points on the curve made up of the connecting 
lines between all grey-level values). The complement to angle CAB, �(i), is calculated 
and stored. Differences X and Y are found as the horizontal and vertical distances be-
tween points C and B, respectively, see Fig. 2. The selection of point “A” is actually 
repeated a sufficiently high number of times, 500 or more, and the results are used for 
calculation of the Mean Angle MA (mean of the complementary angles, �(i)); a “suffi-
ciently high number“ relates to statistical stability for the MA estimate. Following this 
procedure, the mean differences MDY and MDX are also calculated; very often only 
MDY is used (MDX is only used for “closed curves”). The random distribution of 500+ 
“A” points covering the entire data series is a necessary and sufficient condition for the 
[MA, MDY] complexity measures to represent the complexity at scale S.  

Subsequently the value of S is increased by one (S = S+1) and the [MA,MDY] proce-
dure is repeated in full until “S“ reaches a (problem dependent) maximum value (often a 
number equal or smaller than half the horizontal resolution of the image). With the pre-
sent 512 x 512 images, this results in [MA,MDY]-spectra with 256 data-points corre-
sponding to a half-width of the image. This is very often more than enough to character-
ize the pertinent textures, because of a problem-dependent choice of the image resolu-
tion of the powder aggregate field-of-view, see Fig.1.  

Below is presented an illustration of a heavily agglomerated powder image and the cor-
responding AMT-spectra (Fig. 3). The image is cropped from the central area to avoid 
influence from the black background surrounding the Petri dish, which is used to con-
tain the powder. 
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Figure 3. An image of severely agglomerated ground corn is cropped and subsequently subject to the 
AMT-transform (via the AMT-toolbox for MATLAB [9]).

The two spectra, MA and MDY are usually joined into a single row vector consisting of 
2 times “S” elements; each element records the appropriate MA and MDY values, re-
spectively. An automated MATLAB routine has been developed for cropping images, 
averaging data, indexing, transforming and exporting results as a data matrix file, which 
is compatible with most chemometric (and mathematical/spreadsheet) software pack-
ages for post-AMT data-analytical processing. 

Fig. 4 provides a schematic overview of the entire process from imaging to the final 
regression modeling of the AMT-complexity spectra calibrated with regard to a Y-
variable of interest. Y is the independent data to be modeled on X, which is the depend-
ent (spectral) data. Fig. 4 is a precognition of the specific regression approach used be-
low, PLS-regression, in which T is a matrix of scores and W is a matrix of loading
weights. All these terms are explained in full in the section on Partial Least Squares re-
gression, PLS-R. 
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Figure 4. Schematic first overview of the compound AMT/PLS-R transform. The present work made use 
of a R/G/NIR-camera [6-8,12]. The “best contrast” for all powders turned out to be the green channel. 

Why Does AMT Transformation Work for Agglomeration Characterization?
AMT was originally meant for characterizing the complexity of “geomorphologic lines” 
(e.g. map contours, coastlines, meandering rivers - it was in fact developed by physical 
geographer Robert Andrle as an alternative to fractal analysis), but has also been shown 
to describe textures in images very well [5-14].  

The success in describing textures in powders, food types amongst other products, is 
related to using a problem-specific low-angle illumination, see e.g. Figs. 1 & 4, fully 
explained in the published literature, ibid. This creates intricate grading shadow varia-
tions on the surface imaged by the camera, which records this as complicated light-and-
dark patterns because of the interaction of the low-angle illumination with all surface 
protrusions and hollows. An increasing degree of agglomeration for example results in 
progressively larger agglomerates and thus more complicated light-dark regions in the 
image, cfr. Figs. 8 & 9. 

The image recording - explained below - results in complex images, which cannot be 
interpreted directly. Instead, they are used as unfolded “linear texture transform images” 
as described above (1D vectors or complexity spectra), where dark regions will result in 
radiometric low grey-level values (in the ordinary R/G/B image each pixel value vary 
between 1 and 255) while light regions will be represented by high Y-values, Figs. 2 & 
3.

There are several reasons for the need of the AMT-transform in the present context. It 
bears noting that AMT is a much more powerful transformation than for example a 
simple threshold operator. The light-and-shadow patterns on the sample (powder) sur-
face represent a snapshot of the entire complex surface morphology. The AMT-spectra 
are able to reveal both the local as well as the scale-dependent complexity upwards from 
a scale corresponding to the immediate neighboring pixels to half the image size - si-
multaneously. The brightness of each individual pixel represent  a very complex interac-
tion between the specific color of the underlying particle (often several pixels in diame-
ter) and reflection of the incident light, due to the geometrical angle of the particle face 
at the location of the pixel and the unilateral illumination angle as well. The brightness-
level, the Y-level of the unfolded linear arrays, is very much a compound measure of 
intrinsic color and the reflection efficiency, which in turn is a function of the spatial 
disposition of all particles in question. These relationships are further compounded at 
the mesoscopic scale, because the surface of the sample is manifestly not level in the 
pristine state of the powders as presented to the camera  (although in half the present 
experiments this surface was deliberately scraped, se further below). These features 
cannot in any way be decoded by a simple Y-level threshold in neither the raw R/G/B 
color space, neither in for example L,a,b or the HIS alternative color transformations, 
nor can they be related to the apparent size-distributions of the dark areas for example. 



7

This latter is because of the dominantly grading relationships between both dark and 
bright areas – at all scales. Thresholding, for example, would amount to defining all 
“dark areas” by a simple Y cut-off level, which would be but an exceedingly poor sim-
plification of a much more complicated relationship. In fact, the low-angle illuminated 
imagery of the surface morphology demands use of the entire fidelity in the grey-level 
intervals recorded [0,255]. By working out the pertinent scale-versus-angle (scale-
versus-complexity) relationships for all scales simultaneously, AMT is able to render a 
complete complexity spectrum as a function of scale, i.e. able to use all the differential 
latent texture information present in this type of image. It is precisely this function of 
scale characteristic, which sets AMT aside as a monumentally more powerful transform 
than mere fractals [5,14]. 

From extensive AMT experience the powder-and-agglomeration-state-dependent pat-
terns of dark and light regions have been shown to be qualitatively, indeed quantita-
tively, related to the degree of agglomeration. This can only come about by the use of a 
multivariate regression approach such as PLS-R, however. 

Partial Least Squares-Regression (PLS-R) 
We here only describe the phenomenology of the PLS-R method in brief. Recently an-
other chemometric paper making extensive use of PLS-R was published in this journal 
[15], in which PLS is explained in somewhat more detail. Extensive descriptions of the 
theory and practice of PLS-regression (PLS-R) can be found in the chemometric litera-
tures [16,17] and references herein.

PLS-R, Partial Least Squares Regression, is a generalized regression approach, where 
indirect observations obtained from e.g. instruments (X-data) are related to the interest-
ing properties, the dependent Y-data, in a new augmented fashion. Often the dependent 
data are laborious, inaccessible or expensive to acquire (analytical chemical data, pow-
der characteristics obtained in the lab. etc.), while the indirect observations are much 
more easily obtainable as measurement/instrumental data (hence fast and inexpensive). 
In the present context image, and image-derived data, are clearly in the latter, X, cate-
gory, while the Y-data would be the agglomeration (or experimental moisture addition) 
data.

The defining PLS-issue: PLS uses the Y-data structure directly as a guide for decom-
posing the X-matrix, thereby ensuring that only the interesting, correlated X-variation is 
put into the regression model, while all the uninteresting non-correlated “X-noise” is 
filtered out (Y-noise is similarly screened away in this approach). This ensures a statis-
tically optimal future prediction performance of Y, ibid.

This regression method is based on representing the original, multi-dimensional data-set 
(first delineated as a data “point swarm” in the coordinate system made of the p X-
variable axes, Fig. 5), with fewer descriptive parameters (latent factors or principal 
components, PC’s) that capture the main variation in the data. Finding these PC-
directions is done either by searching for maximum variance directions in a series of 
orthogonal sub-spaces, or by a least squares minimization approach on the residuals
(defined below). The maximum variation directions are simultaneously optimized with 
regard to correlation with the Y-data. Thus the directions depicted as PC1 and PC2 in 
Fig. 5, are in fact found by this compound optimization criterion; the directions are thus, 
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more-or-less, tilted with regard to the pure X-variance directions alone (corresponding 
to the Principal Component decomposition). Higher-order components, PC3+ are de-
rived as the case may be, dependent on the data complexity present. 

Figure 5. The original data set represented in the p-dimensional coordinate system (made up of p X-
variable axes). The PLS-representation makes use of a projection sub-space defined by a series of com-
ponents, here illustrated by a new 2-dimensional PC-space [10,11]. In reality, there is always a very high 
degree of dimensionality reduction with PCA and PLS, for example from 512 X-variables (e.g. spectro-
scopic data, AMT spectra) to a very few components only, typically 1-5 or so. 

The perpendicular projection distance from a variable (a point) to a PC is termed the 
residual, ei. Every PC can be described as a linear combination of the p X-variables. 
Every PC has a set of coefficients called loadings, pka, which characterizes this direction 
with regard to the original p X-variable axes, Fig.5 (k is a  variable index; a is a order-
ing component index for the PC’s).  

All original [X,Y] data can hence be decomposed as following: 

�
�

���

���

A
T

A
T

FQUY

EPTX

Where
T is a matrix of scores for the X-data; PT contains the corresponding loadings.
U is a matrix of scores for the Y-data; QT contains the corresponding loadings.

The scores are found by projecting each point onto a PC and subsequently measuring 
the distance from that point to the center of the model. All PLS-calibrations in fact re-
sults in two set of X-loadings, loadings, P, and loadings weights, W, respectively. The 
P-loadings express the internal relationship between the X-data and their scores, whilst 
the loading weights represent the essential guiding of the regression model towards 
maximum correlation with the Y-data; these latter carry the essential X-Y regression 
information in the overall PLS regression model. 
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Figure 6. Summary of the matrixes involved in PLS [9,16,17]. 

Visual inspection of the W-vectors forms a central element of establishing a PLS model. 
These W-spectra, as they are called, allows direct interpretation of which X-variables 
contribute most to the model. In a sense, once a model has been established – and suita-
bly validated – the w-relationships contain all the essential model information which 
can then be directly related to the original AMT-spectral information amongst other. We 
shall use, and explain, this feature extensively in the data analysis and results sections 
below

2 POWDER SELECTION CRITERIA 
Fifteen carefully selected powders and particulate materials are investigated for the pos-
sibility of developing a quantitative model to describe the degree of agglomeration.  

The powders are shown in fig. 7: 

1. Ground Corn 
2. Couscous
3. Paprika
4. Amaranth 
5. Red Lenses 
6. Brown Rice 
7. Clayey Sand 
8. Plastic pellets 
9. Clay
10. Fine Sand
11. Microcrystalline

Cellulose 
12. Cement 
13. Alumina 
14. Talc
15. Micro dolomite 
      (MD100) 

Figure 7. Photograph illustration of all 15 powders. All photographs are to the same scale. The numbers 
correspond to the images from top left through right bottom. These grey-level illustrations pertain to the 
green channel used throughout this study.  
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We have put great emphasis on selecting relevant and typical powders, representative 
both with regard to their use and abundance in the agglomeration-concerned industry as 
well as from a fundamental powder science and technology point of view, in order – 
hopefully – to be able to make valid interpretations of the underlying principles at work.
Thus the first seven powders were chosen from easily accessible “everyday” powders, 
but with focus on the widest possible span regarding the basic surface morphological 
characteristics, as well as their wettability characteristics. Prior to the selection of the 
final set of powders in the present study, many others were also tested for their ability to 
agglomerate, by screening tests employing spray-added water (see further below). These 
first seven powders span a wide range in what could be called the powder agglomera-
tion space. 

The remaining eight powders were selected from a repertoire of major, proven industry-
related powder types, as delineated by a standard set of powders from the POSTEC re-
search group, Porsgrunn, Norway. 

Thus we have good reason to consider the present set of powders as spanning the gamut 
of the relevant characteristics for the purpose at hand. While we, from a practical point 
of view, are interested in finding out to what degree it is possible to establish image 
analytical methods for quantitative agglomeration characterization, we are equally inter-
ested in the fundamental powder science and technology aspects of why the established 
regression models work (planned for an companion paper II), by focusing on more de-
tailed interpretations of the PLS-regression parameters and their relationship to the un-
derlying fundamental AMT and image analytical powder features.

In the present study the one overriding design parameter is the degree to which the se-
lected powders show a relatively easy propensity towards agglomeration (for obvious 
reasons of industrial relevance). We assume that individual particle surface morphology 
and wettability are among the most influencing physical features involved, because of 
their direct role as determinants as to the aggregate system behaviors. We have had very 
little control over possible additional chemical and/or physiological features leading to 
different water adsorptions/absorptions by the powder particles themselves. Finally we 
have discarded electrostatic aspects as was delineated above.

3 EXPERIMENTAL  
For the first seven powders we performed several sets of pilot experiments in order to 
orient ourselves with regard to the somewhat elusive agglomeration relationships. 

The “maximum amount” of water - until the powder was saturated - was measured for 
every powder type individually by adding controlled incremental amounts of water, 
under continuous stirring, until the water began adhering to the sides of the stirring 
beaker and the sample seemed not to agglomerate further. This amount was equated as: 
“100% agglomerated, saturated”, see Fig. 8. Any additional water resulted only in pro-
ducing a slurry that became progressively more diluted. Water was added by a modified 
spray apparatus giving uniform increments of water. The individual maximum amounts 
of water that could be added to each powder type, were divided into 10% increments 
(plus the initial dry sample), totaling 11 agglomeration levels for each powder. Relevant 
absolute increment sizes and total amounts are compared in Table 1.  
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Rather than concentrating on these maximum absolute amounts of water, we have de-
rived a relative water-induced agglomeration index, which shall be used in the quantita-
tive modeling studies below. We state that this powder agglomeration quantification is 
the most relevant measure keeping in mind that we are both interested in the individual
agglomeration quantification and modeling possibilities for each powder, as well as the 
underlying fundamental powder science relationships which are related to the relative 
relationships between the powders. 

Amaranth
(scraped)

Paprika
(pristine
surface)

Figure 8. Progressive agglomeration (0 % through 100 %; increments of 10 %) for Amaranth (scraped 
surface) and Paprika (pristine, non manipulated surface). These illustrations represent two of the 15 ag-
glomerated powders used in the quantitative modeling below. The alternative surface treatments (scraped, 
pristine) are explained in text immediately below.  
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Table 1. 
Pilot study powders: Absolute amounts of water added.
Component Max amount of water 

[No. of increments] 
Increment size 

Ground Corn 60 6 
Couscous 60 6 
Paprika 40 4 
Amaranth 20 2 
Red lenses 10 1 
Short brown rice 10 1 
Clayey Sand 10 1 
Pellets 10 1 
Clay 30 3 
Sand (0,18 mm) 10 1 
Cellulose 30 3 
Cement 20 2 
Alumina 30 3 
Talc 30 3 
MD100 20 2 

The individual samples were prepared by adding 70 ml of the “dry” (as purchased, no 
specific drying were performed) powders to a glass beaker with a standardized stirring 
approach (a laboratory fork) between additions of each increment. After each addition 
of water and subsequent stirring, the samples were transferred to a Petri dish for photo-
graphic recording in one of two different ways producing either a scraped or a pristine,
non-manipulated powder surface. 

Figure 9. Clayey sand: Pristine (non-manipulated) sample (left) and scraped sample (right) 

Rationale: These alternative preparation techniques are designed to simulate the two 
most obvious real-life industrial imaging pre-processes imaginable, namely a conveyor 
belt transportation past a camera - with or without - a mounted surface-scraping instru-
ment. “Scraping” in this study means that the sample is transferred to a Petri dish in 
bulk, after which the aggregate surface is scraped by a sharp object to get a broadly pla-
nar, even surface (using a straight knife edge in this instance), Fig. 9. Conversely, pris-
tine, or “non-manipulated”, means only gently shaking the contents of the dish-
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transferals into place (in an as “reproducible” way as possible), to get a surface that is 
not tampered with in any mechanical fashion. Fig. 9 shows the resulting surface mani-
festations to good measure. From our initial powder image analytical knowledge, [5-9], 
it is not known a priori which surface preparation type will lead to optimal image ana-
lytical fidelity; hence we here treat both alternatives throughout the modeling below. 

The time from addition of the first water increment till the first image was recorded was 
exactly four minutes. This interval is chosen in order to make any untoward illumina-
tion-induced evaporation as reproducible as possible for all powder samples. The Klieg 
light in Fig. 10 gives off 1000 Watts; thus minor, but possibly non-negligible, water 
evaporation cannot be ruled out.

The digital imaging camera setup is illustrated in Fig. 10, in which also the low-angle 
unilateral illumination employed can be observed. This imaging procedure followed 
closely precursory powder studies by [5-9], in which the advantages of the combined 
low-angle illumination/AMT texture-characterization is laid out in full detail, although 
we here performed a completely new illumination angle optimization pertaining to the 
present set of powders - to be described below. 

Figure 10. The camera-setup used for image recording. An illumination angle (�) optimization was per-
formed for an initial selected sub-set of powders (see text for details). 

The distance from the light source to the sample “D” is held constant at all angles by 
varying the distances “H” and “W”, respectively, hereby insuring equal light intensity. 
The distance from the camera to the sample “C” is held constant resulting in an average 
image resolution for all powders (fixed from a survey pilot experiment).  

Replication regimen: Four replicate images were recorded for each powder sample (the 
Petri dish was rotated 90 degrees between each acquisition – spaced by 15 seconds). A 
pre-chosen central quadratic area of all Petri dish images were then cropped and subse-
quently transformed by AMT. The resulting AMT-spectra were imported into “The Un-
scrambler”, a multivariate data analysis software package, and appropriate averages of 
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these four replicate AMT-spectra were calculated and stored (together with all individ-
ual recordings). In the present study, as indeed in all precursor studies, we make use of 
the significant signal-to-noise improvement available when using averages over four 
replicates. This type of replication is absolutely necessary when imaging surfaces as 
irregular as those found in the present context; this has also been amply confirmed by 
all our earlier powder imaging experiences. 

Subsequently we carried out individual PLS-regressions on all 15 series (each consist-
ing of eleven averaged objects) for both the scraped and pristine samples. All PLS-
models are here validated by full cross-validation, i.e. leaving one sample out sequen-
tially, while modeling the remaining ten samples and validating by predicting for the 
left-out object – repeating the procedure circulating out/replacement for all 11 objects 
for each powder type.  

For the present model assessment purpose, we may refrain from the potentially most 
objective test-set validation (i.e. using a complete new, 11-object validation data set), 
often considered mandatory for valid chemometric regression modeling, because of the 
limited comparison objectives of the model evaluations and interpretations [16].

3.1 Optimal Illumination Angle for Image Acquisition 
To optimize image acquisition for the modeling of the degree of agglomeration, four 
different illumination angles were initially tested. This illumination optimization consti-
tutes one of the most important features related to the (subsequent) practical industry 
implementation engineering problems otherwise not treated here. This type of optimiza-
tion is absolutely necessary when imaging surfaces as irregular as those found in the 
present context. 

Based on our earlier powder imaging experiences, the angles tested were as follows: 

Table 2. 
Alternative illumination angles. 
Angle number Angle [degrees] 
1 23 
2 35 
3 48 
4 63 

The alternative illumination angles were not tested for all fifteen powders however – 
rather this was pilot-investigated for a selected subset of only three representative pow-
der types: amaranth, couscous and paprika, selected because of the extreme visual ap-
pearance differences. It turned out that the angle 48 degrees was very clearly optimal for 
this context, as is borne out by the results reported in Table 3, in which 5 out of 6 of the 
best models relate to this angle. Thus this angle is used in all succeeding experiments.  

Caveat: It should be noted that the present objective of relating a widely varying set of 
different powders constitutes a different and demanding situation from that of imple-
menting an automated image acquisition system for use in a fixed industrial environ-
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ment. Such an environment is typically only concerned with a single powder type, 
which of course calls for a much more constant illumination context.  

Evaluation of the regression prediction performances for the different models in Table 3 
follows exactly the same procedure (explained in detail below). For now it suffices to 
note that for all practical purposes the prediction results are almost exclusively related 
to the third column representing an angle of 48 degrees which is chosen by an overall 
majority vote. It should be noted, though, that the angle of illumination should be opti-
mized for every powder in its specific implementation and application context. 

Table 3 lists all possible combinations of the four alternative angles, with the two alter-
native surface treatments, as well as the internal data modeling alternatives of using 
either standardized scaling or not (see the section on PLS above).

It is critical to understand why we have chosen this practical and complete model pre-
diction assessment as optimization criterion. This has to do with the fact that the indices 
employed in the statistical prediction strength assessment (slope and correlation coeffi-
cients) are manifestations of the total, accumulated prediction accuracies and precisions 
respectively. These multivariate calibrations encompass all the practically relevant sam-
pling, illumination, modeling and prediction error components associated with present-
ing powder samples to an image analytical acquisition system. This type of empirical 
testing is much to be preferred en lieu of various internal statistical tests only. 

Table 3. 
Selected prediction model evaluation parameters (Slope = Sl and regression coefficient = r2) from models 
for Amaranth, Couscous and Paprika. These two statistics constitute the most informative, immediately 
accessible prediction performance indices for lateral comparison between models, Esbensen (2001).  

  Angle 1 (23º) Angle 2 (35º) Angle 3 (48º) Angle 4 (63º) 
  Scaled Non-sc. Scaled Non-sc. Scaled Non-sc. Scaled Non-sc. 
Amaranth Scrap. Sl: 0.88 

r2:  0.86 
Sl: 0.93 
r2: 0.98 

Sl: 0.81 
r2:  0.83 

Sl: 0.79 
r2: 0.93 

Sl: 0.92 
r2:  0.92 

Sl: 0.95 
r2: 0.96

Sl: 0.78 
r2: 086 

Sl: 0.80 
r2: 0.88 

 Prist. Sl: 0.78 
r2: 0.77 

Sl: 0.78 
r2: 0.81 

Sl: 0.88 
r2: 0.92 

Sl: 0.96 
r2: 0.79 

Sl: 0.87 
r2: 0.64 

Sl: 0.92 
r2: 0.66 

Sl: 0.91 
r2: 0.83 

Sl: 0.99 
r2: 0.85

Couscous Scrap. Sl: 0.34 
r2: 0.29 

Sl: 0.32 
r2: 0.21 

Sl: 0.75 
r2: 0.62 

Sl: 1.10 
r2: 0.96 

Sl: 0.94 
r2: 0.98 

Sl: 0.97 
r2: 0.98

Sl: 0.92 
r2: 0.94 

Sl: 0.88 
r2: 0.94 

 Prist. Sl: 0.85 
r2: 0.83 

Sl: 0.92 
r2: 0.92 

Sl: 0.90 
r2: 0.98 

Sl: 0.97 
r2: 0.96 

Sl: 1.00 
r2: 0.98

Sl: 0.95 
r2: 0.98 

Sl: 0.85 
r2: 0.85 

Sl: 0.84 
r2: 0.81 

Paprika Scrap. Sl: 0.91 
r2: 0.92 

Sl: 0.94 
r2: 0.94 

Sl: 0.92 
r2: 0.92 

Sl:0.93
r2: 0.92 

Sl: 0.95 
r2: 0.96 

Sl: 0.98 
r2: 0.98 

Sl: 0.99 
r2: 0.98 

Sl: 1.00 
r2: 0.98

 Prist. Sl: 0.72 
r2: 0.77 

Sl: 0.86 
r2: 0.90 

Sl: 0.88 
r2: 0.90 

Sl: 0.91 
r2: 0.94 

Sl: 0.95 
r2: 0.96 

Sl: 0.98 
r2: 0.96 

Sl: 0.79 
r2: 0.76 

Sl: 0.78 
r2: 0.79 

Bold & italics designates best model. Italics alone designates best model for opposite surface treatment. 

3.2    First Models for Agglomeration Quantification
Our first foray into quantitative modeling of agglomeration made use of the following 
seven powders: amaranth, couscous, paprika, ground corn, red lenses, rice (brown, 
short) and sand (fine, clayey), which were analyzed in the exact same way as above 
(Table 3). Selected prediction parameters for the final models are presented in Table 4. 

All final models are outlier-screened, 11-segment cross-validated prediction valuations, 
following the procedures in [9,16,17]. We here only present the two main statistics: the 
slope of the “predicted versus measured” model fit, Sl, and the squared correlation coef-
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ficient, r2, of which the former is a visually sharp assessor of the overall accuracy of 
prediction, the latter taking good care of the precision (there is a one-to-one relationship 
with the alternative precision statistic, RMSEP). 

Table 4.  
Prediction performance statistics for final models for all powders at an angle of 48º.   

Initial experiments 
  Auto-scaled Non-scaled 
Ground corn Scraped Sl: 0.93  -  r2:  0.92 Sl: 0.92  -  r2: 0.92 
 Pristine Sl: 0.96  -  r2: 0.98 Sl: 0.93  -  r2: 0.98 
Couscous Scraped Sl: 0.94  -  r2: 0.98 Sl: 0.97  -  r2: 0.98 
 Pristine Sl: 1.00  -  r2: 0.98 Sl: 0.95  -  r2: 0.98 
Paprika Scraped Sl: 0.95  -  r2: 0.96 Sl: 0.98  -  r2: 0.98 
 Pristine Sl: 0.95  -  r2: 0.96 Sl: 0.98  -  r2: 0.96 
Amaranth Scraped Sl: 0.92  -  r2:  0.92 Sl: 0.95  -  r2: 0.96 
 Pristine Sl: 0.88  -  r2: 0.64 Sl: 0.92  -  r2: 0.66 
Red lenses Scraped Sl: 0.56  -  r2: 0.59 Sl: 0.50  -  r2: 0.44 
 Pristine Sl: 0.97  -  r2: 1.00 Sl: 0.95  -  r2: 0.96 
Short brown rice Scraped Sl: 0.79  -  r2: 0.79 Sl: 0.85  -  r2: 0.81 
 Pristine Sl: 0.81  -  r2: 0.96 Sl: 0.88  -  r2: 0.98 
Clayey sand Scraped Sl: 0.96  -  r2:  0.98 Sl: 0.93  -  r2: 0.94 
 Pristine Sl: 0.98  -  r2: 0.85  Sl: 0.95  -  r2: 0.96 
Subsequent experiments 
Plastic pellets Pristine Sl: 0.37  -  r2: 0.26 Sl: 0.37  -  r2: 0.25 
Clay Pristine Sl: 0.97  -  r2: 0.92 Sl: 0.99  -  r2: 0.94 
Sand (0.18 mm) Pristine Sl: 0.95  -  r2: 0.94 Sl: 0.93  -  r2: 0.94 
Cellulose Pristine Sl: 0.96  -  r2: 0.96 Sl: 0.94  -  r2: 0.94 
Cement Pristine Sl: 0.76  -  r2: 0.72 Sl: 0.73  -  r2: 0.66 
Alumina Pristine Sl: 0.93  -  r2: 0.92 Sl: 0.94  -  r2: 0.92 
Talc Pristine Sl: 0.98  -  r2: 0.96 Sl: 0.98  -  r2: 0.94 
Microdolomite Pristine Sl: 0.92  -  r2: 0.79 Sl: 1.02  -  r2: 0.79 

Bold & italics denotes best model. Italics alone denotes best model for opposite surface treatment. 

4 DISCUSSION 
The above first foray is now augmented by an additional eight powders. All powders are 
presented in full in Table 4, in which the last eight powder type entries are only repre-
sented by the pristine surface treatment (reasons given below). The surface treatment 
optimization is to be one of the primary results from the present data analysis (reported 
on in both this and the companion paper II). At this stage we really do not know (yet) 
which is performing “best”.  

In this results overview we have also included the data analytical ambiguity of whether 
to use “auto-scaled” data or not. Typically, from overall chemometric experience, there 
is no telling which of the latter alternatives are best in any new data analysis setting 
[9,16,17]. It is often a very practical matter to be settled by appropriate experimentation. 
The laboratory pilot-study context should always be closely similar to the future indus-
trial setting. 

The results are revealing in their apparent first ambiguity that there is no universal op-
timal setting (illumination angle, surface treatment, data analytical scaling) for all pow-
ders. For each powder type in Table 4, we have highlighted the “best” prediction model 
(bold and italics) as well as the second-best (italics) - for the opposite surface treatment.  
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The first significant observation is that there are not very big differences between many 
model alternatives, so that many “best” choices, in reality are only marginally so in de-
tailed comparison. This apparently ambiguous feature will actually allow us to make 
more general conclusions however. 

1. There would appear to be approximately as many “best” prediction models for 
the auto-scaled (standardized) data models as for the non-scaled alternatives. As 
this internal data analytical choice is of absolutely no practical consequence 
whatsoever with regard to establishing PLS-R models (it takes exactly the same 
amount of computer time to do either), this can very well be decided upon on an 
individual powder type basis. Whether to scale or not when making calibrations 
for powders is problem-dependent.  

2. There would clearly appear to be a higher proportion of pristine “best models”. 
Detailed inspection of Table 1 reveal a 5 out of 7 best “non-manipulated” mod-
els (only gently shaken pre-treatments). Also, for the two “opposite” models, 
which are deemed “best” with regard to the scraped surface treatment, the alter-
native pristine models are only marginally worse off (amaranth) or insignifi-
cantly different (couscous), all in all strongly pointing to the pristine (non-
manipulated surface) option as the final verdict. This is the reason we only in-
clude these models for the last eight powders in the full results reporting. Pre-
sumably it is also most desirable with the least mechanical industrial image ana-
lytical setup, i.e. no mechanical surface scraping on top of the conveyor belt load 
etc.

3. There are clearly many possible ways to achieve quite satisfactory prediction 
models for automated quantitative prediction of the degree of agglomeration by 
using an off-the-shelf, inexpensive R/G/NIR image analytical system, combined 
with simple, well-tested chemometric data analysis (AMT image pre-processing 
and PLS-R prediction modeling).  

4. The present models have all been subjected to 11-segment so-called full cross-
validations, which are quite satisfactory for the comparative purpose of finding 
one (more) optimal predictor model configuration amongst a set of alternatives.  

5. Still, we have also performed the ultimately desirable, most relevant and most 
reliable practical test, based upon two independent new test sets [16]. Thus we 
have duplicated the entire experiment for two representative powders: sand and 
clay. We present these results, and compare them with the original models for 
these two powders, in Table 5. Here we show results for both scaled as well as 
non-scaled models. Detailed comparisons show quite convincingly that the re-
sults in Table 4 are not a consequence of statistical flukes, as both test set valida-
tions compare very closely with the original, cross-validated models. This is 
proof positive, from the practical context (new, independently drawn test sets), 
that we have indeed been able to develop – and fully validate using comparative 
cross-validation – the desired image analytical powder agglomeration predictor. 
Figures 11 through 14 show the model overview of the four test-set validated 
models (auto-scaled and non-scaled) for clay and sand (0.18 mm).

6. In the planned companion paper II we shall further explore a more full under-
standing of which powder characteristics lies behind this success of practical ag-
glomeration description and quantitative prediction modeling as well as other 
objectives.
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Figure 11. Test-set validated model: clay (auto-scaled; pristine surface). 

Figure 12. Test-set validated model: clay (non-scaled; pristine surface). 
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Figure 13. Test-set validated model: sand (auto-scaled; pristine surface). 

Figure 14. Test-set validated model: sand (non-scaled; pristine surface). 
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Table 5. Summary of slope and regression statistics for test set-validated models.  
  Auto-scaled Non-scaled 
Clay Non-m. Sl: 0.97  -  r2: 0.92 Sl: 0.99  -  r2: 0.94 
Sand (0.18 mm) Non-m. Sl: 0.95  -  r2: 0.94 Sl: 0.93  -  r2: 0.94 
Clay test-set Non-m. Sl: 1.06  -  r2: 0.92 Sl: 1.05  -  r2: 0.92 
Sand test-set Non-m. Sl: 0.94  -  r2: 0.98 Sl: 0.79  -  r2: 0.98 

Interpretation of results: Individual Models  
As a final illustration of the coverage of the 15 powders employed, we present all the 
relevant predicted vs. measured assessment plots. For all the powders we have results 
for the pristine surface, while only the first seven were modeled for the scraped (non-
manipulated) surface treatment.  

The graphical depictions below are intended to convey a direct graphic overview of the 
degree of difference with which it has been possible to construct useful models for pre-
dicting the degree of agglomerative behavior, and thus also the potential for indirect 
prediction of moisture content. There are some powders in this selected set which do not 
lend themselves to agglomeration modeling (at all); these will give rise to distinctly 
inferior prediction model statistics, while many other powders are subject to easy mod-
eling. Only these latter will be amendable to the methodology developed in this work. 
Naturally not all powder types are significantly affected by moisture-induced agglom-
eration.

Ground Corn
Ground corn is of the intermediate class of powders with regard to particle size in the 
present setting. Ground corn is relatively well modeled, both surface scraped and pris-
tine. The reason for this, we believe, is found in the fact that the powder is “sticky”. 
Ground corn absorbs water with relative ease. 

Couscous
Couscous is extremely well modeled with the pristine surface, but a little worse off 
when scraped. The reason for this is found in that very large “snow-ball-effect” agglom-
erates are produced when the sample is scraped. Increments 7-10 for the scraped sam-
ples produce very nearly equal results, possibly because of saturation and thus had to be 
removed from the dataset. 

Paprika
Paprika expresses no clear preference towards either surface treatment and is well mod-
eled in both cases. 

Amaranth
Amaranth produces “intermediately good models” due to the fact that it is mostly water-
films on the surface of the seeds which are binding/holding the agglomerates together. 
The scraped models are best, possibly due to the fact that nicely distributed “crevices” 
appear when the knife passes by. The non-manipulated models are not that good, proba-
bly because the agglomerates are easily broken even during the gentlest transportation/ 
shaking.
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Red Lenses
This powder was initially believed impossible to model, due to the very large grains. 
The scraped models were of very low quality because the knife removed almost all the 
sample material from the Petri dish due to the fact that all particles were effectively 
“glued” together into one giant nugget. The pristine models, however, turned out very 
well, even though the particles “glued” together very rapidly after addition of water, and 
the initial Petri dish “gentle shaking” had absolutely no effect.  

Short Brown Rice 
Another example of where pristine models exceed the scraped ones in prediction per-
formance, mainly due to the same reasons as for Red Lenses above (though in a down-
scaled version). A few samples with high addition of water had to be removed from the 
models due to saturation effects. 

Clayey Sand
The models for the pristine surface were slightly better. Sand is difficult to model, be-
cause the agglomerates are very instable and the heat from the (1000 W) lamp causes 
the water to evaporate relatively fast from the surface. Even the gentle rotation of the 
sample-holder resulted in destruction of some agglomerates. This calls for extensive
effort to produce similar conditions if applied to industrial large scale conditions.  

Plastic Pellets
Very low quality models were produced because of the large particle size, and the lack 
of ability of the particles to find “joint surfaces” where the water can bind the particles 
together. This is due to the fact that the shapes of the particles are rather irregular 
(“morphed” cylinders). 

Clay
The latter eight powders were only modeled for the pristine surface, due to superior 
models for this option for the previous seven powders. Clay is well modeled due to the 
stickiness of the powder, which is certainly a reflection of its very high water holding 
capacity.

Sand (0.18 mm)
The same comments are valid as above for Clayey Sand. 

Cellulose (micro-crystalline)
Very good models are established, hence opening for a wide range of potential applica-
tion areas in the pharmaceutical industries where micro-crystalline cellulose is a major 
filler component. The high contrast between the white powder and the illumination-
generated shadows is believed to influence positively on the modeling.

Cement
The models produced are only of intermediate quality, mainly due to the (obvious) abil-
ity of cement and water to create very hard agglomerates! The reason for the lower 
quality models is also believed to be associated with the low contrast between the ce-
ment and the shadows. 
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Alumina
Again good models could be established, mainly due to identical reasons as for cellu-
lose.

Talc
Also very good models – explanation are identical to those for cellulose and alumina.  

Microdolomite
This last, white, powder also produced very good models, due to the same explanations 
as with the other fine, white powders in the selected training set. 

Figures 15 and 16 below provide an overview of the regressions (predicted vs. meas-
ured values) for all fifteen powders with both surface treatment alternatives, scraped or 
pristine, respectively. The large span in model quality is easily appreciated from com-
parison of the figures and relating to the above individual comments.

Ground corn Couscous 

Paprika Amaranth 

Red lenses Short brown rice 
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Clayey sand 
Figure 15. Predicted vs. measured plots for the best scraped models (see Table 4). 

Ground corn Couscous 

Paprika Amaranth 

Red lenses Short brown rice 
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Clayey sand Plastic pellets 

Clay Sand (0.18 mm) 

Cellulose (microcrystalline) Cement 

Alumina Talc
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Microdolomite (MD100) 
Figure 16. Predicted vs. measured plots for the best pristine models (see Table 4). 

5 CONCLUSIONS 
A series of 15 representative industry-related powders have been subjected to a new 
image analytical quantitative agglomeration characterization, tantamount to indirect 
moisture determination. All details of the new methodology (fully developed and de-
scribed here), were optimized on average for this set of powders.

An optimal illumination angle of 48° (of the four tested) was used throughout all ex-
periments. It must be emphasized that the angle of illumination must be optimized for 
every specific industrial application context. 

The results clearly show that the pristine surface treatment option gave the best models 
for the powders tested, which has desirable consequences for industrial applications (no 
conveyor belt scraping necessary, or similar). Thus this feasibility study finds the meth-
ods described in the present work as successful candidates for future automated quanti-
fication of powder agglomeration. The degree to which this will hold up also in rela-
tively rough industrial settings will depend on good process automation engineering; 
judging from today’s many other types of successful image analytical implementations 
this would appear eminently doable.   

Only very little effort has yet gone into optimizations of individual powder-specific im-
age acquisition and the corresponding data analytical modeling, which for all particular 
industrial setups will result in higher accuracy and precision than those for the present 
global models in future applications. The successful global results presented here for 15 
decidedly very different powders bode very well for this issue.

Data analysis of the extensive results did not resolve whether to use auto-scaling or not, 
so this has to be decided upon on an individual application basis, as indeed all aspects of 
which data and model pre-treatment to use. A global answer to this issue was sought, 
but none appeared. However this is of no practical consequence, since either alternative 
will not result in any discernable difference in computation time. Different (spectral) 
types of cameras, different focal distances and especially a higher number of sample 
replicates should of course be tried out in the specific implementation contexts.  

The present results are not necessarily restricted only to water-induced agglomeration. 
We can recommend further application of this type of chemometric image analy-
sis/AMT/PLS methods also for other types of particulate matter e.g. powder mixtures, 
slurries as well as other industrial materials of similar surface texture manifestations, 
even certain types of solid surfaces amongst other.
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Abstract

Extensive experimentation and evaluation of alternative sampling methods of highly heterogenous bioslurries are carried out in the context of
the theory of sampling (TOS) in order to delineate optimal, representative sampling procedures in PAT (process analytical technologies). The
analytical methods investigated are at-line NIR and image analysis (IA) for monitoring of an industrial bioenergy anaerobic digestion processes
(AD), subject to stringent economic bracketing: PAT solutions have to be both practical and inexpensive in the bioenergy sector where cost
efficiency of instrumentation and monitoring systems is an absolute must. Focus is on development of minimum expenditure methods for
sufficient characterization of the very heterogeneous types of biomass feedstock as used in industrial scale, continuously stirred tank reactors
(CSTR). Product and process characterization necessarily involves a chemometric multivariate calibration predictor (PLS regression). The general
goal is development of appropriate sampling/PAT facilities for at-line/on-line process monitoring in typically low-tech bioenergy, agro-industrial
sectors. Experimental laboratory reactor evaluations, based on biomass feedstock and digested products from a full-scale biogas plant, were
initially run in batch mode for a week, followed by fed-batch addition of maize silage, introducing a systematic increase in total solids allowing
properly spanning multivariate calibration models. Measurements on 55 laboratory reactor samples taken during a complete 14-day fermentation
cycle included three key process parameters: total solids (TS), volatile solids (VS) and chemical oxygen demand (COD), representing difficult-to-
sample analytes. NIR spectroscopy and image analysis, including the angle measure technique transform (AMT), were evaluated for
characterization of different feedstocks as well as continuously extracted process samples with respect to selected chemistry and dry matter
characteristics. Optimized sampling on four different scale-levels allowed acceptable PLS prediction models for TS and VS for both NIR and
image analysis compared to chemical reference analysis, while it was not possible to predict the COD levels satisfactorily due to large
uncertainties in mandatory reference measurement protocols. This feasibility study is promising for NIR as at-line prediction of TS and VS content
as well as other AD parameters, which can be measured on the same sample types, while image analysis is currently too complex and expensive
for these industry sectors. The findings in the present bioslurries study have a considerable generalization potential: all PAT approaches are
critically dependent on representative reference calibration sampling, which has to be fully compliant with the theory of sampling (TOS).
© 2006 Elsevier B.V. All rights reserved.

Keywords: PAT (process analytical technologies); Representative sampling; TOS (theory of sampling); Chemometrics; AMT (angle measure technique); Image
analysis; PLS regression; Anaerobic digestion; Bioslurry; Biogas production

1. Introduction

Fermentation processes at large-scale biogas plants are
sensitive to sudden changes in feedstock composition, which
cause significant variability in the process conditions. Today,

fermentation process control is achieved through manual
sample extraction (shown below to be highly problematic due
to the very heterogenous nature of the fermentation media) with
off-line (sometimes even off-site) analysis of a few key process
parameters such as total solids (TS), volatile solids (VS) and
chemical oxygen demand (COD), as well as volatile fatty acids
(VFA), total-N and ammonia content. However, other para-
meters, e.g., process temperature, pH, volumetric biogas yield
as well as methane, carbon dioxide and hydrogen sulfur content
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in the gaseous headspace of the reactor, are also monitored
more-or-less on-line as control parameters in more advanced
plants [1,2].
Even though time-constants involved in anaerobic diges-

tion (AD) are not critically short (average hydraulic retention
time of feedstock in a semi-continuously fed-batch digestion
system is of the order of 10 to 25days), there is nevertheless a
desire for implementation of on-line technologies, of a
distinctly inexpensive, robust types. The perspective is to
develop real-time process monitoring data at full-scale
commercial biogas plants above a certain minimum size to
be used for improved routine managing tools, i.e., for
identification of critical process state parameters, upsets and
for monitoring when unavoidable deviations in feedstock
composition occurs. By combining low-tech, but reliable
sensors with critical at-line facilities if/where/when physical
samples must be examined, the goal is to contribute towards a
new generation of fully integrated process management
systems for the daily operating plant staff [3,4]. This endeavor
fits well with current EU renewable energy initiatives for
considerably increased utilization of biofuels including biogas,
integrated in the overall energy as electricity, heat and in the
transportation fuel sectors.
Improved control of this type of fermentation processes

especially calls for more controllable raw materials character-
ization throughout, which today are often based on slow off-line
measurements. Improved optimization of anaerobic digestion
processes can only be achieved by incorporating new, relevant
sensor technologies for semi-continuous at-line/on-line mea-
surements of the composition of both raw materials and
processed biomass at important process stages. The most
relevant sensor deployment locations with this scope include:

• Feedstock arrival depositories (raw materials)
• Inlets (feed-points) for fermentation reactors
• In-process deployments (in reactors and transportation
pipelines)

• Outlets (exit-points) for the fermentation reactors

Any process analytical technology (PAT) is critically
dependent on the representativity of the signals obtained from
on-line or in-line probes or sensors in pipelines or reactor tanks
as well as representativity of the samples analysed for
calibration. For example, what is the relationship between a
sensor or probe's field-of-view (a few mm2) in relation to the
entire cross-section of a transportation pipeline or the entire
reactor volume in question? What with TOS is termed
“incorrect sampling procedures”, which are legion in the AD
regimen, will always result in biased, non-representative and
hence unreliable analytical results [5–9]. All traditional
sampling procedures involved in the general AD process flow
are therefore carefully evaluated in the present study in the light
of TOS (theory of sampling) and the specific sampling errors
are estimated where needed in order to put these hitherto largely
neglected sampling issues on a firm quantitative footing.
Sampling is a critical component in any analytical procedure

and must always ensure representativity of the primary,

secondary and tertiary sampling steps. Total sampling errors
typically can be in the order of 100+ times the specific
analytical error. “Incorrect sampling” always results in non-
representative samples because of an uncontrollable bias even
though all subsequent steps have been performed in a correct
way [5–8].
Animal manure forms a highly complex and heterogeneous

suspension because of a significant proportion of solids, “dry
matter” (3–12%): straw, grass, undigested lignocellulosic fiber
particles, besides not yet digested macromolecule aggregates
such as starch, sugars and proteins. Such suspensions are
therefore always prone to segregation on several scales, which
sets in immediately after agitation has been terminated.
Sampling from such systems consequently will introduce a
significant sampling bias if not properly counteracted, where-
fore this study will deal exhaustively with all relevant sampling
issues using the complete TOS toolbox [8]. In this context,
focus will be on a general sampling hierarchy, covering all
aspects from primary field sampling to the ultimate, apparently
insignificant, mass reduction involved in securing the often
minute analytical volume.
This study also evaluates the potential of an imaging

technique in characterizing important physical and chemical
parameters. Since NIR reflectance/transmission has shown
good potential in mixed liquids in linked fermentations sectors,
a NIR reflectance system was employed for reference
comparison and/or as the main PAT technique. NIR has been
tested extensively with varying degrees of success as a
spectroscopy tool for on-line bioslurry monitoring of continu-
ous AD systems and similar [2,10–13].
We here combine image analysis (IA) and the angle

measure technique (AMT), a powerful texture extraction
technique [14–19], with chemometric multivariate modeling
(PLS-R) in a pilot study with a potential for on- or at-line
monitoring and prediction of visible features such as the
surface manifestation of bioslurries and the TS content. By
virtue of stoichiometric closed array relationships, there is also
a possibility for indirect multivariate calibration modeling for
correlated parameters, VS and perhaps even COD a.o. Such
methods constitute a potential for monitoring and optimization
of full-scale production plants.

2. Sampling in AD systems for multivariate calibration

Procurement of feedstock as well as digested biomass in
preparation for AD trials and testing took place at a full-scale
industrial biogas plant, the Ribe Biogas plant, Denmark.
Primary and secondary sampling and preparation will be
described in detail below. Experimental fermentation trials–
including a tertiary sampling step–is a commonly used
procedure both in academic studies as well as in commercial
laboratories to study biomass feedstock compositions and to
characterize their biogas potentials [1,2]. This is followed by a
quaternary sampling procedure for securing representative
analytical samples for the final NIR and IA analysis. Fig. 1 is
a schematic illustration of the entire AD process and the
attendant sampling hierarchy as examined in this study.
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2.1. Primary sampling: full-scale biogas plant

Appropriate field sampling procedures based on TOS were
employed in order to obtain proper extraction of primary
samples from a full-scale biogas plant, the Ribe Biogas plant.
The feedstock in terms of total solid contents is here composed
of approximately 80% pig and cattle manure to which is added
∼20% industrial organic waste from Danish food processing
plants (primarily from slaughteries). All feedstocks of this
origin utilized for biogas production are very heterogeneous by
nature and thus constitute a relevant vehicle for displaying all
issues involved when sampling heterogenous materials in
general.
Suitable primary extraction sites were located for both

feedstock and final digested biomass sampling. Significant

gravitational segregation always occurs in horizontal pipelines
with higher concentration of solid material along the bottom.
Thus, it was decided to sample from a vertical pipeline through
side-valves: upward flow greatly facilitates mixing due to
turbulence, gravity now acting to boost mixing. The pre-mixed
feedstocks was extracted before addition to the full-scale
fermentation reactor (Fig. 2, left), while digested biomass was
sampled directly at the outlet pipeline immediately after the
fermentation reactor (Fig. 2, right).
It is not only important to point-sample heterogeneous

material in well-mixed upflow pipelines—it is equally impor-
tant to employ extensive time-averaging composite sampling
schemes, tuned to the specific situation(s). Thus, primary
sampling took place by spanning eight buckets each of 10L of
biomass with 3-min intervals in the continuous pumping.

Fig. 2. Primary sampling locations for feedstock and final digestate. Left: outflow from heat-exchanger immediately before inlet to CSTR reactor. Right: sampling of
digested biomass at the CSTR reactor outlet. Note sampling only in vertical upward flow.
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Fig. 1. Schematic illustration of the necessary sampling hierarchy for the AD process, including primary sampling at the full-scale biogas plant, secondary sampling
preparing samples for fermentation trials, tertiary sampling from laboratory fermentation reactor and quaternary sampling associated with analysis.
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Feeding and outlet pumping sequences both consist of 30m3

biomass/h from an 1800-m3 biogas reactor. Although the
composite sample itself only corresponds to (8 × 10/
30,000)×100∼0.3%, the composite sampling rate covered
approximately (15/1800)×100∼0.8% of the total reactor
volume in the 30-min pumping interval. Sampling rates of the
order of 0.1–1.0% are typical of reactor volumes of the current
magnitude (1800+m3), for very hardheaded practical reasons
(Fig. 3).
The bioslurries were first collected from the outlet pipeline in

a series of eight 10-L buckets representing time sampling over
3min. From each of these 10-L buckets, a 1-L increment was
extracted while the content was thoroughly mixed by use of a
hand-held mixer to ensure maximum homogenization. The
resulting eight 1-L increments were subsequently combined
into an intermediate 8-L composite sample, for further
secondary sampling.

2.2. Secondary sampling: sample size reduction for the
fermentation trials and analysis

From this 8-L composite bucket, secondary sampling
increments were extracted using a fractional ladling technique:
each 750-mL secondary sample consists of 15 such increments,

which were extracted at various depths in the continuously
stirred material. Taking many small increments under contin-
uous agitation leads to a minimization of the dominant sampling
error involved, the grouping and segregation error (GSE). This
secondary sampling scheme is also in accordance with all
appropriate principles in TOS [5–9].
This contrasts drastically with, e.g., one 750-mL grab sample

taken directly from the pipeline, which would be thoroughly
non-representative, ibid. Use of such a scheme for direct grab
sampling, i.e., going directly for the final sample volume
without TOS-correct mass reduction of the a larger composite
alternative delineated above completely destroys any hope of
representativity. Such direct grab sampling unfortunately more-
or-less rules the day in very many routine, ill-reflected sampling
protocols.
The final part of the secondary sampling followed a scheme

of randomly choosing 750-mL bottles, which were further
subdivided into 120-mL volumes. These were even further
subdivided into a number of 30-mL volume vials. At each level,
mass reduction was carefully performed by similar agitated
fractional ladling, although using with appropriately scaled-
down tools, etc. The entire TOS-correct mass reduction of
biomass feedstocks (as well as final digested biomass) resulted
in thoroughly representative material utilized for all

Fig. 3. Schematic illustration of primary sampling at the full-scale biogas plant in which a two-step composite sampling approach was used. Eight 10-L primary
increments were individually mass-reduced to 1L, before being compounded. Mechanical agitation is essential to keep the bioslurries in a state of maximum
homogenization while being subsampled. This compound sampling scheme is in full accordance with the principles of TOS [5–9].

Fig. 4. Fed-batch laboratory reactor operations flowsheet outlining balanced sampling and feeding schemes. Addition of maize ensilage was used to boost biogas
production. All 30-mL sampling/30-mL feedstock replacement takes place every sixth hour (four times each day).
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experimental digestion trials, for chemical reference analysis
and for testing the selected PAT tools.

2.3. Tertiary sampling from the laboratory reactor

Mixtures for laboratory-scale fermentation trials were
formulated as 20% raw feedstock added to 80% the outgoing
digested biomass in order to be as identical as possible to the
average complex material found in the full-scale fed-batch
operated reactors of the biogas plant. In a broad sense, this
mixture can be viewed as typical for a great many contemporary
AD biogas reactor contents, especially as regards the two-phase
bioslurry characteristics.
All anaerobic digestion trials in the laboratory were run for

14days. After the sixth day, 1% finely macerated maize silage
was added daily to increase the dry matter content in the
feedstock (Fig. 4). Use of this TS-augmented medium is
motivated by new feedstock strategies being contemplated in
the European biogas sector focusing more on well-defined
feedstocks originating exclusively from farms (in combination
with the ubiquitous manure). This study conveniently also uses
this total solids (TS) increase to produce a significant calibration
span for TS in the multivariate calibration context.
Over the entire 14-day biogas cycle, a 30-mL digested

biomass sample was extracted every sixth hour from the
laboratory reactor by a syringe device (Fig. 1). This provided all
samples used for reference analyses (Y) for both NIR and image
analysis X-data. Each 30-mL volume was promptly replaced by
an equal amount of fresh feedstock, making the laboratory
reactor run in a similar fed-batch mode as its full-scale origin.
These 30-mL samples reflect the typical practical difficulties
and attendant sampling uncertainties caused in batch-fed or
continuously fed reactors—problems typically caused by
segregation or sedimentation, inefficient/insufficient steering,
inhomogenous fibre distribution a.o.

2.4. Quaternary sampling for analysis

Each 30-mL sample was finally split in two by a fractional
pouring technique. From each sample, 15mL was subsampled
for reference analysis (subsample A) by vigorous shaking of the
vial followed by immediate pouring of a small fraction into

another container. This procedure was repeated several times
until approximately 15mL were obtained as illustrated in Fig. 5;
absolutely identical weight was not a critical issue for the
subsequent chemical analysis, as different weights were
corrected for. The remaining volume constituted the parallel
subsample B. This procedure is also meant to represent very
many contemporary laboratory techniques as closely as
possible.

2.5. Analytical procedures

TS, VS and COD were chosen as experimental analytes in
this comparative study, since they are typically used to
characterize both feedstock and digested biomass in full-scale
biogas production contexts. Fig. 6 shows the uncertainties of the
reference measurements—calculated as the relative standard
deviation (RSD), defined as [20]:

RSD ¼ s
x
d100%

RSD for reference measurement duplicates show twice as
high an analytical uncertainty for COD compared to TS and VS.
For routine AD monitoring in the industrial regimen, it is
customary not to invest in overly accurate nor precise analytical
equipment (including sampling equipment and procedures); one
is usually content with analytical reproducibilities of the order
of, say, 5+%, which is not acceptable for pilot study laboratory
runs however. For COD, the current total reproducibility
standard deviation almost reaches 11%, which is way too
high for serious data analysis and interpretation. Nevertheless,
for the integrity and practical relevance of the present sampling
feasibility study, it was necessary to use this standard industrial
COD analytical procedure.

2.5.1. Ultimate subsampling of bioslurries (analytical volume)
A special study was deemed necessary, to determine if–or to

what extent–the intrinsic material heterogeneity affects splitting
into two supposedly identical subsamples (cf. Fig. 5), because
later multivariate calibrations are based on these split sample
series (parallel samples producing the X- and Y-data, respec-
tively). Subsample A was poured from the predecessor vial,
while subsample B is made up of the remaining material. Thus,
if segregation occurs at this ultimate, minute scale-level,

Fig. 5. Schematic illustration of typical laboratory subsampling procedure, here
used for chemical reference analysis (subsample A) and NIR/IA (subsample B).
Fractional pouring (in a composite sampling mode) was used to split the initial
sample into two subsamples. Two other alternative subsampling methods in the
laboratory were also evaluated, see text.

Fig. 6. Relative standard deviation (RSD) for duplicate reference analyses for
three selected analytes.
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subsample B should show a higher concentration level of solid
matter, but to what extent—significant or negligible (Fig. 7)?
No less than four different types of relevant heterogeneous

materials/mixtures were examined for these splitting experi-
ments. The level of heterogeneity, and hence the magnitude of
the resulting sampling error, will depend on the material and its
specific characteristics. The following formulations are based
on extensive practical experience with AD systems and
materials:

• Feedstock (raw material from the Ribe Biogas plant)
• Digested biomass (also from the Ribe Biogas plant)

• FD (20% feedstock, 80% digested biomass)
• FDM (10% feedstock, 88% digested biomass, 2% maize
silage)

The first two substrates were chosen for obvious reasons,
since they constitute the relevant bracketing (raw materia-
l→end-product) of the industrial biogas production process
studied. FD has a composition similar to that under initial
laboratory bioprocessing conditions, while FDM has strong
similarities with important industrial mixtures, which are
routinely “improved” by adding maize silage.
These four material substances were each produced in a

series of 30 duplicate split vials, each of 30mL, by fractional
ladling, following identical procedures as outlined above for
secondary sampling (Section 2.1). In the results section, we
evaluate the effectiveness and representativity of this replication
experiment. Analytical results from the comprehensive splitting
tests are visualised in Fig. 8 for TS and VS.
In general, VS shows no difference between A and B

samples, while there is a clear systematic difference between A
and B samples as concerns TS for all four materials. The total
solids content of course reflect the dry matter content, the

Fig. 7. Analytical volume sample splitting test. Will (50/50) splitting into
parallel A and B aliquots by pouring result in two equal subsamples (mass,
composition), i.e. to which degree will they be representative of the predecessor
sample? Sample A is poured from the predecessor vial, while subsample B
contains the remaining material.

Fig. 8. Compositional differences between A and B vial splits (TS and VS) for four types of materials, typical in biogas production: feedstock, digested biomass, FD
and FDM. Note truncated concentration axes, visually augmenting A/B differences. Note a clear systematic difference in TS contents for B samples for all four
compositions, while this tendency is missing for VS.
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fraction prone to segregation. Splitting into A and B subsamples
by fractional pouring in the current study will consequently be
slightly biased. Even the extreme homogenization efforts
employed in this study have not been able to do away entirely
with this tendency.

2.6. Multivariate calibration implications

Since the consecutive 30-mL samples from the fermentation
process resulted in relatively minor (but not negligible)
differences between the A and B subsamples, some mismatch
between reference analysis and NIR/IA was unavoidable. The
net effect of this is to broaden the imprecision associated with
the final prediction models; everything else equal, a mismatch
between the X- and Y-samples will inflate RMSEP levels. But
because this feasibility study is aimed at showing the prospects
of PAT methodologies on heterogenous systems, including
inherent sampling problems the bias is accepted here (it is far
smaller than what is usual from sampling from this type of
heterogeneous system). This bias can play a didactic role as to
the pervasiveness of incorrect sampling errors at even the
smallest scales in the total sampling-and-analysis process chain.

2.6.1. Vial extraction method
Another subsampling test was carried out to discriminate

between three alternative methods for sampling (extraction)
from a vial to a Petri dish. Two of the above mixtures were used
again:

• DM (90% digested biomass and 10% maize silage).
• FDM (10% feedstock, 88% digested biomass and 2% maize
silage).

The following three extraction techniques were investigated:

• “Pseudo Coliwasa”, a plastic tube made from the cut end of
an automatic pipette, which allowed large(r) particles to be
sampled manually.

• Standard automatic pipette with cut end, also allowing large
particles to pass.

• Incremental fractional pouring directly from the vial, with
continuous shaking to minimize segregation effects (as
described above).

The COLIWASA (COlumn LIquid WAter SAmpler),
described in detail in [7], is supposed to allow extraction of a
virtually undisturbed column through the entire thickness of a
possibly stratified medium. This is an especially appealing

approach for segregated materials, since such a column by
definition is the only which can be fully representative, ibid.
Pitard [6] also describes weakly conical inlet tube configura-
tions, which allows effective sampling of “sticky materials”
(within “reasonable” limits), as is illustrated in Fig. 9.
All methods were tested with continued agitation of the

super-nascent suspensions. These alternative extraction techni-
ques from vial-to-Petri dish are compared in Fig. 10 for the two
prepared mixtures DM and FDM, again using the relative
standard deviation. RSD is here a measure of the reproducibility
of the specific extraction method, based on 10 replicate
extractions.
From Fig. 10, all three methods would appear close to equal

in extraction performance, with a grand average RSD of some
4.5%. None of the methods are very much different from one
another over both materials. This result was slightly surprising,
as the COLIWASA approach has otherwise shown great
potential in many other macroscopic application scales. The
present application is distinctly on the mini-scale however.
Fractional pouring, showing a minimum RSD for DM and
intermediate for FDM, was chosen as the extraction technique
used for analysis by NIR and image analysis below.

3. Analysis

3.1. NIR measurements—PAT

The specific reflectivity and absorptivity of the complex AD
organic materials makes it ideal for analysis by NIR
spectroscopy. NIR is also advantageous for on-line character-
ization due to its often supposed minimal or no sample

Fig. 9. Equipment used in evaluation of vial-to-Petri dish extraction. Left: “pseudo COLIWASA” (operated manually by thumb-pipetting). Right: cut, standard
automated pipette. Note that both these alternatives allow for sampling of “sticky” material following [6].

Fig. 10. RSD comparison of reproducibility of alternative vial extraction
techniques, based on two different mixtures (FDM, DM). Average results, based
on 10 replicate extractions for each technique and biomass material.
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pretreatment and rapid analysis/sample prediction in standard
PAToperations [21–26]—which very often pays no attention to
the gamut of sampling representativity issues however.
NIR measurements were carried out on the B subsamples

(see Fig. 5) using a NIR Systems 5000 spectrophotometer
equipped with a mirror transflexive probe head on an optical
fiber (scanning range between 1100 and 2500nm). The samples
were homogenized prior to measurements by vigorous shaking.
Having completed the NIR measurements, the same samples
were subsequently subjected to image analysis.

3.1.1. Results—NIR
NIR spectra were modeled using PLS-1 with segmented

cross validation for all three Y-variables: TS, VS and COD;
Table 1 summarizes these results. The final 44 measurements
(objects) were divided into 11 segments, selected from a sorted
listing of ascending TS/VS/COD values. For the purpose of
comparison between alternative prediction models, it is
acceptable, indeed optimal, to use an appropriate segmented
cross-validation scheme—contrary to the demands for absolute
prediction performance assessment, in which the use of a
independent test set is mandatory [27].
Fig. 11 (left) presents the loading weights for the first and the

second PLS components from a NIR model of the volatile
solids, VS. Stochastic noise was dominant for the highest
wavelengths, wherefore variable selection was performed,
cutting away variables >2300nm without loss of information
—indeed resulting in improved models; there were a relatively
high fraction of outliers.
Final assessment of any PLS model rests with the “predicted

vs. measured” plot, or rather with the attendant statistics,
pertaining to a fitted regression model. A slope of 0.90 or higher

is highly acceptable for the present strongly heterogeneous
system. A RMSEP of 0.23 signifies a quite satisfactory
prediction precision. Based on the mean VS (4.7%), this
RMSEP corresponds to a prediction error ∼10% (±2 RMSEP).
Another way to express prediction precision is by the squared
correlation coefficient. For the NIRVS model, r2 scores as high
as 0.91. These statistics attest a satisfactory potential for
predicting VS directly from (properly sampled) at-line samples.
Table 1 shows similar statistics for all three AD process

parameters, TS, VS and COD. While TS does not achieve as
quite good prediction assessment statistics as do VS, they are
still acceptable, but COD cannot be modeled with any degree of
satisfaction. COD is a measure of the chemical oxygen demand,
which includes all compounds in the sample, including water-
soluble molecules a.o. It is not overly surprising that no
correlated signals appear in the NIR spectra. This can partly also
be explained by the particularly high analytical uncertainties for
COD compared to TS and VS (see Fig. 6).

3.2. Image analysis

An at-line image of the surface of a specially prepared
version of the “B” samples is acquired by an appropriate
imaging system in the laboratory, which has been described
extensively in [18,19]. This type of imagery is isotropic for
which reason the AMT transform can be put into use [14–19].
The angle measure technique (AMT) is a preprocessing

technique used for characterizing the complexity of one- and
two-dimensional technological data series [14–18]. Image
analysis (IA), combined with AMT and PLS-R, is a powerful
technique for qualitative and quantitative description of visual
features, especially surface morphology and texture [15]. This
combined imaging technique (IA/AMT) has mostly been used
for characterizing solid materials (surface textural features) and
bulk materials (particle sizes, shapes a.o.) [14–19]. The current
study takes this technique into a new domain, into character-
ization of the visual appearances of complex slurry textures as
presented by Petri dish appearances in a backlighted setting
[18,19]. This may have potential interest in pulp-based
industries of various kinds (dairy, paper, mineral extraction,

Table 1
NIR prediction evaluations for TS, VS and COD; identical 11-segment X-val

NIR TS VS COD

Slope 0.87 0.90 0.77
R2 0.81 0.91 0.77
Outliers 9 9 7
# Comp 4 3 3

Fig. 11. Left: loading weights for the first and second PLS components for a NIR model of the volatile solids, VS. An indication of the >2300-nm stochastic noise can
be appreciated, especially for the second (topmost) component. Right: predicted vs. measured plot for this model, based on 11-segment cross-validation.
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chemical process industries), which was the reason to include
image analysis/AMT as a possible PAT modality here.
From the outset, it was expected that IA/AMT should be able

to model, e.g., TS effectively, while the attendant VS (and
COD) might, or might not, also be amendable to PLS modeling
and prediction as well. This will depend on the closed array
stoichiometrics of the anaerobic digestion system: In a
compositionally closed system, it may sometimes be possible
to arrive at satisfactory prediction facilities based on indirect
characterization, necessarily heavily dependent upon realistic
test-set validations, etc. [27].
The AMT algorithm was originally developed for one-

dimensional data and cannot process a color image as such (in
this study R/G/B imagery is used). Each color channel must
hence be tested separately, which–in turn–results in three AMT
complexity spectra; one for each color channel. The AMT
method has been described in full detail in the chemometric
literature [15–19].
The imaging system was a QImaging filter-wheel CCD

camera equipped with a Nikkor 120mm F2.8 macro lens,
supporting 12-bit grayscale images with a resolution of
1280×1024 pixels. A 4″×4.88″ backlight platform from Schott
Fostec was used to illuminate the material being imaged.
Backlighting can be used to create a crisp edge around the
present solid material particles in transparent liquids (water).
This was thought to be especially useful for image complexity
characterization with AMT, because the algorithm would
benefit from a clear definition of the transition between matrix
(water) and object (dry matter particles).

3.2.1. Replication scheme in image analysis
Each final 30-mL B subsample was distributed into two

Petri dishes by fractional pouring as related in detail above.
Two non-overlapping images from each Petri dish subsample
were acquired. Subsequently, the Petri dish was gently shaken
(not stirred) and another set of images was acquired. This
procedure was repeated four times, resulting in eight replicates
for each split subsample—altogether 16 replicate images for
each B subsample (Fig. 12). The rationale for this extensive

replication relates to the need for evaluating the camera-
presentation sampling variance, essentially the “pouring
variance”, which will always be present for an at-line imaging
system. This pouring sampling error cannot be ignored a priori;
it has never been adequately assessed [5–7]. In addition, the
material is still exceedingly heterogeneous at this stage; the
more image replicates, presumably the more representative
their average manifestation. This procedure was repeated for
each of the 55 samples drawn from the entire 14-day
fermentation cycle. The complete imaging procedure is
illustrated in Fig. 12.

3.2.2. Results—IA
All images were processed using AMT using both MA as

well as MDY complexity spectra [15–19]. Subsequently, all
images were subjected to a correction procedure (gamma
correction and grey-level enhancement) to optimize image
contrast in order to obtain the best possible AMT definition.
All images were treated identically. These images were all
transformed into AMT complexity spectra and were subse-
quently modeled using PLS-1 with identical segmented cross-
validation procedures as for the validation of the NIR
models.
The loading weights from this PLS model reflect the

wavelengths, which are most correlated with VS. The MA
spectra (left half of MA+MDY) reveal that neighbourhoods up
to a distance of some 35–85 pixels carry the main correlated
information. This corresponds well with the pixel size/
resolution of typical dry matter particles in the original images.
The main contributions to the prediction model come from the
first and second PLS components (92/58 and 6/15% of the total
X/Y-variances modeled, respectively).
The prediction assessment in Fig. 13 shows only a slightly

lower prediction precision (r2 =0.88) for TS than for VS. The
accuracy statistic slope is equal to 0.86, which again is fully
acceptable for the complex system involved. Because of
essential interconnections, the relative RMSEP-level is also
closely comparable.
Fig. 14 shows the same predicted vs. measured relationship

for the VS model as in Fig. 13, also showing models based on
all 16 individual replicates, a model based on averaging of the
image duplicates and a model based on averaging both image
duplicates and shaking replicates. Fig. 14 very clearly attests to
the enormous advantage of the averaging operator in the
presence of the significant variability associated with the
imaging sampling process.
The most important feature in Fig. 14 is the enormous

sampling error associated with the original pouring into a Petri
dish, viz. the extremely large individual differences in the 16
replicates for each split (upper left panel). This is a poignant
reminder that sampling errors (sampling variability) can, and
will, crop out at any scale if not recognized; from the primary
field situation to the last instance of pouring some 15,
apparently innocent, milliliters into a Petri dish (very often
considered totally “insignificant” in the greater order of things).
The lesson is clear though. If the attending sampling variability
is not known, there is every chance that unrecognized errors of

Fig. 12. Replication protocol for imaging procedure. Subsamples (B), also used
for NIR analysis, are mixed thoroughly before being distributed into two
subsamples (termed 1 and 2) by fractional pouring. Each subsample is poured
into a Petri dish and subjected to duplicate imaging. This is followed by gentle
shaking of the Petri dish four times with duplicate images after every
redistribution of the sample. Altogether this results in an extensive 2×8
replicate image series for each B sample.

122 J.B. Holm-Nielsen et al. / Chemometrics and Intelligent Laboratory Systems 83 (2006) 114–126



highly detrimental magnitudes may easily corrupt the reliability
of the analytical results. It is only through the diligent,
extremely careful, replication/averaging scheme employed in
the present study that any image analysis/AMT prediction
model could be obtained at all (lower right panel).

Table 2 summarizes averaged results from the whole set of
image analysis calibrations, based on the red, green or blue
image channel, respectively.
From Table 2, it can be seen that acceptable prediction

models are possible for both TS and VS for all three channels. In

Fig. 13. Evaluation of image analysis PLS-1 model for VS. Left: loading weights for the first and second components. No variable selection was needed for AMT. The
model is based on corrected images (described in text) from the blue channel. Right: predicted vs. measured plot for the AMTmodel of VS, based on a grand average of
all 16 image-replicates (Fig. 14 shows the same results without averaging).

Fig. 14. Averaging effect on the “predicted vs. measured plot” for the PLS-1 model of IA/AMT for VS. Top left: model without averaging (880 images). Top right:
model with averaging over image duplicates (440 images). Bottom left: averaging of image duplicates and shaking replicates (110 images). Bottom right: final model
based on all three levels of averaging.

123J.B. Holm-Nielsen et al. / Chemometrics and Intelligent Laboratory Systems 83 (2006) 114–126



general, the models were not improved from the contrast
correction however. The blue color channel would appear to
give the best prediction models on an overall basis, though the
red channel works well also for VS. It is not possible to model
COD by any image approach. The computationally intensive
image correction should be omitted, since this does not improve
the predictability.

4. Discussion and perspectives

4.1. Representative sampling—a must

This study illustrates the importance of a fundamental
quantitative heterogeneity characterization for all new materials
to be sampled for the first time [8]. Considerable efforts were
spent on zooming in on appropriate sampling procedures, from
the initial field sampling to the minute sampling for the ultimate
analytical volume. A considerable informed diligence with
relation to TOS is necessary in order not to oversee any link in
the sampling vs. scale representativity hierarchy. The innate
heterogeneity of the material systems were highly significant,
which made for an exceptionally clear case of the difficulties
involved in representative sampling and mass reduction. There
exist a plethora of identical complex, heterogeneous materials in
process industrial sectors to which the chemometrics commu-
nity currently introduces the PAT concept. Reliable, represen-
tative sampling must play a central role in this context, in the
critical reference calibration context as well as concerning
appropriate sensor localizations and representativity in accor-
dance with the entire volume or cross-section of reactors or
pipelines.

4.2. NIR and image analysis perspectives

This feasibility study tested a parallel NIR and AMT
methodology for characterizing specific complex, heteroge-
neous bioslurries (sampling based on proper TOS principles).
Optimization of the individual experimental conditions will
necessarily be closely linked to the particular industrial
implementations. Many parameters, such as illumination and
camera options, sample preparation (especially dilution and
sample amount/thickness) and bioslurry sampling must always
be optimized when dealing with image analytical applications,

but this will necessarily be related to potential, specific
industrial implementations. With problem-dependent optimiza-
tion, both the NIR and IA prediction models can most likely be
somewhat to significantly improved. Below, we discuss general
features only.
From related research on newly developed circulation flow-

through cells (carried out at Christian-Albrecht's-University,
Kiel), termed “Transflexive Embedded Near InfraRed Sensor”
(TENIRS), joint work in progress has shown very promising
results for the same types of difficult medias. Here, manure
slurries and digestate slurries not only gave good models for TS
and VS, but also for total-N, ammonium and phosphorous. In
this type of circulation configuration, much larger analytical
volumes of slurry can be measured in an at-line, or even on-line
NIR context. This system is currently for use distinctly as an at-
line facility, but by-pass options from primary biogas plant
pipelines or reactors can easily be envisaged and are not
technically difficult. By-pass solutions must of course also
oblige all the necessary TOS criteria.
The challenge is to develop, and especially to maintain,

robust calibration models based on NIR measurements, due to
the extreme variability of the feedstocks encountered in the
industrial biogas sectors originating from a bewildering array of
manure types and organic by-products as well as waste-streams
from food and pharmaceutical industries. There is an ultimate
challenge due to the fact that systems have to be developed, and
maintained, at price levels far below what is the case for, e.g.,
the food manufacturing and pharmaceutical sectors. This is
because the bioenergy sector has to produce, indeed make a
profit, far below these price levels per units of product [3,4].
This puts very stringent demands as to the level of high-tech
equipment that can be contemplated.

4.3. PAT for anaerobic bioconversion processes—perspectives

The present method developments in laboratory-scale
studies are currently being followed up by extensive testing
of the TENIRS flow-through cell system both for at-line and
on-line NIR, augmented by acoustic chemometrics character-
izations [28,29], aimed at overcoming the immense difficulties
for TOS-correct reactor sampling, which is virtually impossi-
ble. This will be done by introducing a recurrent loop
sampling concept, essentially transforming the three-

Table 2
PLS prediction results for TS, VS and COD from IA/AMT on three alternative color channels

IA results TS VS COD

Red Green Blue Red Green Blue Red Green Blue

Original images Slope 0.77 0.72 0.84 0.84 0.79 0.80 0.67 0.63 0.71
r2 0.72 0.66 0.76 0.81 0.76 0.79 0.64 0.64 0.67
Outliers 6 5 6 6 6 7 7 6 8
# Comp 5 5 6 4 3 1 3 3 5

Corrected image Slope 0.70 0.73 0.78 0.73 0.71 0.86 0.53 0.53 0.51
r2 0.59 0.71 0.72 0.66 0.67 0.81 0.50 0.50 0.49
Outliers 6 8 4 6 4 6 5 6 6
# Comp 5 5 5 4 5 6 2 2 3

The images were modeled both with and without a contrast enhancement (original vs. corrected images).
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dimensional bioreactor sampling issue into a one-dimensional
pipeline sampling situation, which in comparison is fairly easy
[8,9]. The prospects here also lie in reducing and minimizing
the time consumption and cost expenditures for the necessary
analysis.
PAT, process analytical technologies is here, as in pharma-

ceutical and food production contexts, directly aimed at
improved process control by applying suitable sensor technol-
ogies for on-line measurement of biomass feedstock composi-
tion and of important intermediary and end products of the
anaerobic digestion processes. Appropriate sensors and phys-
ical sampling modalities shall be deployed at critical control
points: (1) at raw materials and feeding inlet/outlet localizations,
(2) in recurrent loops positioned strategically in the process and
(3) at post-treatment localizations. These developments will
contribute towards the goal of an integrated process and product
monitoring management and regulation system, orders of
magnitude more reliable than the current state of art.
By introducing the type of reliable on-line PAT sensor

systems delineated in Fig. 15 in addition to the at-line analysis
approaches surveyed here, it will be possible to deliver fully
comprehensive monitoring data for improved control through-
out the AD processes. This will make it possible to adjust
process parameters on a real-time basis based only on
characterization of feedstock variations coupled with a library
of relevant PLS predictor models. This concept transgresses the
narrow AD scope and will address the much more general field
of anaerobic bioconversion (ABC) process regimen without
loss of significant carry-over potential because of the con-
sciously selected adverse general dry-matter/suspension char-
acteristics in the present study.

5. Conclusions

A down-scaled laboratory bioreactor was used to survey
appropriate sampling for two selected potential process
analytical technologies, NIR and image analysis/AMT, for
highly heterogeneous anaerobic digestion processes in large-
scale biogas plants.

All critical sampling issues for at-line analysis across the
relevant scale domains, primary sampling, reactor and
pipeline sampling, secondary laboratory sample mass reduc-
tion, tertiary mass reduction/splitting in the laboratory trials
and quaternary NIR/IA analytical sample preparation, were
analyzed in their proper TOS contexts. Appropriate repre-
sentative sampling procedures and equipment were developed
and implemented, commensurate with the intrinsic heteroge-
neity characteristics of the materials involved, as exemplified
by multicomponent organic feedstocks and digested bioslur-
ries. An attempt was made to illuminate the critical role of
proper quantitative heterogeneity characterization before
design of representative sampling protocols, without which
chemical analysis and data analysis will always be in
potential jeopardy.
The quantitative sampling_cum_analysis error levels in-

volved were empirically estimated in order to demonstrate the
effectiveness of the sampling measures adopted. Each of 55
laboratory reactor samples following the normal and enhanced
(maize silage spiking) biogas process development was split
into two subsamples by use of optimised fractional pouring.
One of these subsample series was subjected to NIR followed
by image analysis/AMT, while the other was used for chemical
reference analysis of total solids (TS), volatile solids (VS) and
chemical oxygen demand (COD), followed by multivariate
calibration (PLS regression).
Acceptable prediction models could be obtained for TS and

VS for both the NIR and IA/AMT techniques, as summarized in
Tables 3 and 4. These two important routine AD parameters
show promising prospects for at-line/on-line prediction of
complex bioslurries, while it was not possible to model COD
satisfactory due to very large analytical uncertainties in the
routine COD analysis standards. This latter aspect both can and
will have to be improved.
There would appear to be a significant advantage in using a

larger primary camera footprint—in the form of many image
replicates in order to suppress the specific image sampling
errors encountered, dramatically displayed by Fig. 14. While we
here were able to suppress this error satisfactory (by extensive
replication), if image analysis indeed is to be a viable PAT
candidate for this type of material system, it must be amendable

Fig. 15. On-line PAT measurement and TOS-sampling concept in a full-scale
AD plant context.

Table 3
NIR modeling/prediction results

NIR NIR

TS VS COD

Slope 0.87 0.90 0.77
R2 0.81 0.91 0.77

Table 4
IA/AMT prediction results (blue channel)

IA Original image—blue color channel

TS VS COD

Slope 0.84 0.80 0.71
R2 0.76 0.79 0.67
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to extensive automated sample preparation (presentation to the
camera)—which is tantamount to a far too laborious, and even
more too expensive, task for full-scale facilities at present.
Thus, the NIR approach comes out as a clear winner in this

context, especially as the prospects for full-scale implementa-
tion already has been amply proven for many other media in
very many other process analytical contexts. While the critical
(although often too easily dismissed) sampling issues have been
treated in full detail here, the attending specific probe-
localization sampling error issues have been only hinted at so
far however; they will be addressed in full elsewhere.
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Off-line testing (lab testing) of finished sheet characteris-
tics is still the most common practice to ensure that

process and quality specifications are being met.These meth-
ods are often too slow for on-line process control strategies,
and also have an inherent sampling problem: physical sam-
ples are usually cut only from the end part of a master roll.

Commercial technologies for on-line measurement of fin-
ished paper characteristics have proven to be limited in both
speed and range of tests.Image analytical techniques could be-
come a very useful tool for on-line measurement of paper
properties. Image processing technology is used in the indus-
try today, but it cannot be used to control all quality parame-
ters alone and must often be combined with other methods.
The complexity of integrating these other methods into the
image analysis puts high demands on the reliability and stan-
dardization of information,both of which are necessary to de-
velop robust process and product control systems.

An alternative approach, combining all necessary charac-
terization methods into one, may some day come into exis-
tence, presumably based on optical (visual [VIS] and near-in-
frared [NIR]) and physical-radiometric (neutron activation
analysis [NAA]) techniques,amalgamated into one.

This paper investigates how far optical paper quality char-
acterization can reach on its own merits.The technique used
is a combination of digital image acquisition, followed by the
angle measure technique (AMT) [1-3,6-11,13].We designed an
image analytical system to simulate automatic monitoring of as
large a set of paper quality parameters as possible.The system
relies on problem-dependent oblique unilateral illumination to-
gether with multivariate calibration of transformed images.

In this study, isotropic images of low-angle oblique illu-
mination enhanced paper surface texture are transformed
into so-called AMT complexity spectra [3,7,8],which are sub-
jected to multivariate calibration using partial least squares
(PLS) regression [4,12].

IMAGING
Figure 1 shows a proposed on-line (on-machine) image sys-
tem setup. Recorded images of the paper surface provide in-
formation about its texture and other physical properties.The
critical vision system parameters include the camera perform-
ance specifications,which should be adequate for the task re-
quired (though not detailed in this study),and the illumination
conditions. It is often also important to carry out problem-de-
pendent image processing,which in the present case included
enhancement of selected surface features (i.e., texture). By
using low- to very low-angle (oblique) unilateral illumination,
complex shadows are created,which in turn enhance the fea-
ture extraction function of the AMT.With the paper lane suit-
ably illuminated,images are acquired automatically with a cam-
era connected directly to a computer by FireWire or similar
fast computer interface connection.A fast connection is need-
ed to capture high resolution,high quality, real-time images of
the moving paper.Although the paper speed may exceed 1000
meters/min., only a small fraction of the total lot (length) of

Image analytical monitoring of 
paper quality – a feasibility study

CASPER K. DAHL, PENTTI MINKKINEN, AND KIM H. ESBENSEN

ABSTRACT: We evaluated 14 selected paper quality parameters using new image analytical tech-
niques for characterization and monitoring of paper quality (multivariate AMT regression). We tested the
technique on six major paper types. Of the parameters tested, 13 could be modeled with only minor opti-
mization of the initial experimental image recording parameters. Although this analysis was performed in
the laboratory with static sheets of paper, this new “remote sensing” image technique shows promising
application potential for on-line product monitoring of the specified physical qualities.

Application: The research presented here should lead to an on-line method for evaluating paper
quality during production.

1.Typical image analytical system setup.
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paper needs to be sampled (strip-imaged) and analyzed, typi-
cally using a sampling rate of 1:100 or less.

Image analysis can be used for both quantitative and quali-
tative measurement.The images of the virtual paper strips “cut
out”by the camera system should be representative of the en-
tire paper master roll.Two key issues must be addressed for this
to be valid:

1.The sampling rate must be adequate along the longitudi-
nal length-dimension of the master roll (the total width of
the paper lane is supposedly captured).
2.The degree to which the upper surface of the paper
lane will function in relation to the properties present
throughout the total thickness of the paper.
The Theory of Sampling (TOS) [6,17,18] is a comprehen-

sive theory for obtaining structurally correct samples (samples
that represent the average composition of the lot material).
TOS (1-dimensional sampling) uses variogram analysis
[6,15,16] methodology to ensure that the fractions (strip
areas) sampled by the camera are representative of the whole
1-dimensional production lot or paper master roll,with a spec-
ified sampling error.This technique can be used for sampling
on-line measurements and is well described by Petersen et.al.
[17].Variographic techniques and PLS-regression have recent-
ly been used to study pulp bleaching processes [7,8].

The sample strip longitudinal dimension will be deter-
mined on a problem-dependent application basis.Because non-
physical, remote sensing (imaging) is being used, we can ana-
lyze as many and as large samples as the variogram analysis
demands. Only in the calibration process of the prediction
model is it necessary to extract the physical samples from
which the reference values for the paper quality parameters are
determined.The sampled strip-images are then subjected to fea-
ture extraction by the AMT transform.This results in a “com-
plexity-spectra,”x,which can be subjected to multivariate cali-
bration using PLS-regression with paper quality parameters,y.

PLS-REGRESSION
PLS-regression is a bilinear projection method,where samples
expressed in the x-space (defined by the original x-variables)
are projected onto new axes (termed PLS-components),which
define a new space constituted by a few latent variables only.
The projected locations of the samples in this PLS-component
space are termed scores.These PLS-projections are dynamical-
ly inter-correlated with the y-space (one or more y-variables,
see further below), in such a fashion that the y-space data
structure is used actively to find only the relevant information
in x (i.e., the most correlated).This optimizes the covariance
between the two spaces and often leads to very simple mod-
els consisting only of a few latent PLS-components in each
space (often as low as 2,3,or 4).

Two different versions of PLS exist:PLS1 and PLS2.In PLS1,
one y-variable is modelled only.PLS2 models on all y-variables
simultaneously. PLS1 is optimal for predicting a single y-vari-

able,while PLS2 is used for overview modelling only,because
of the advantage of modelling all correlations between all x-
and y-variables simultaneously.Predictions are always based on
PLS1 exclusively.PLS-regression can generally be schematized
in the following way:

Both the x- and y-space are modelled by summarized
product of scores (T/U) and loadings (P/Q) and error ma-
trixes (E/F).The product of the scores and loadings (loadings
are the coordinates of the new axes in the original space,
which is a reflection of how well each variable is taken into
account by the PLS-components) can then be seen as a com-
pact model of the covariance data-structure, while the error
matrices contain the remaining, noncorrelated information.

MATERIALS
Six different paper types from UPM-Kymmene Corporation
(Finland) were studied (Fig. 2). Each represents a printing
grade with different degrees of finish.The Cote matte grade
represents a coated sheet, which must have characteristics
of functionality, consistency, and good print results on both
gloss and matte surfaces (Cote matte paper is imaged in this
study).The Finesse grade is a wood-free,high brightness and
opacity sheet, with differing finishes, from gloss to matte
(silk).The different finishes provide a good basis for image
and text reproduction.The Satin sheet allows print to stand
out on both matte and glossy surfaces (only matte was im-
aged). Star paper is double-coated and used for high-quality
print reproduction. It exhibits high brightness, gloss, and
smoothness. Both matte and gloss finish were sampled.

We measured 72 paper quality parameters for each paper
type.A PLS2 model [4,12] was developed between these pa-
rameters and the AMT-spectra to observe relationships (Fig.3).

The y-loadings (Q) for the first PLS component are plotted
against the y-loadings for the second PLS component.Similarly
behaving variables are grouped tightly,which indicates a strong
internal correlation [4,12].For example,six different measures
for brightness have been measured and modeled and these are
grouped as contiguous gray-shaded area number 5 in Fig.3.

The 14 y-variables numbered in Fig. 3 and named in
Table I) that span the depicted loading space were selected
for further individual analysis with PLS1.This reduced set rep-
resents key variables important to paper quality.Also,the vari-

T:x-scores

U:y-scores

P:x-loadings; W: x-loading weights 
(“effective” loadings, see [4,12])

Q:y-loadings

E: Error matrix for the x-space

F: Error matrix for the y-space

A:The number of PLS components

T:Transpose operator
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ables loading space spans a summary of
their individual PLS1 modeling and pre-
diction abilities,and as such will provide
a condensed, yet reliable view on the
current feasibility study objectives.

EXPERIMENTAL SETUP
The optical system was composed of a
QImaging black-and-white CCD camera
with a Nikkor 120 mm F2.8 macro lens,
supporting 12-bit grayscale images with a
resolution of 1280 x 1024 pixels, all
mounted directly to a Kaiser rePro photo
stand (Fig. 4).The entire camera stand
was placed in a dark room to eliminate
stray external light.This prevented inac-
curate color reproduction and extensive
natural light variations, which among
other variables would negatively affect
modeling.Maintaining as constant a light-
setting as possible minimizes modeling
error in an on-line industrial application.

The paper was placed directly un-
derneath the camera and illuminated
with a FalconEyes LHS-500 lamp holder
fitted with a 150W bulb. The holder
was vertically adjustable to provide low
to very-low oblique illumination. We
used this combination to enhance the
appearance of the sheets’ surface fea-
tures.The recorded images were trans-
ferred to a personal computer via a
FireWire connection.

1.Ash 
2. b*C2
3. Bending resistance 
4. Bending resistance
ratio

5. Brightness 
6. Density 
7. Gloss 
8. Grammage
9. Opacity

10. Roughness
11.Tear strength
12.Tensile strength
13.Thickness
14.Whiteness

I. Paper quality parameters in this study.

2. Visual appearance of the six imaged paper types.

Cote Matt Finesse Gloss Finesse Silk

Satin Star Gloss Star Matt

3. PLS analysis graph (PLS2 loading weights) showing groupings of corre-
lated variables (see Table I for variable groups).The two PLS-components
(plotted as the x- and y-axis, respectively) use 88 + 6 = 94% of the x-vari-
ance to explain 23 + 14 = 37% of the y-variance.

4. Image analytical setup: 1. paper
sample; 2. camera stand (elevator);
3. camera; 4. low angle illumina-
tion source; 5. cable to computer.
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We used standard experimental design approaches to op-
timize the imaging conditions. For the six paper types, sur-
face feature (texture) images were sampled by changing both
illumination angle and image size (resolution). Four different
experimental setups were selected (series 1-4, Table II).

We used illumination angles of 17.5° and 21° to image the
same sample of Star matte paper.Significant improvements in
the surface roughness and compositional texture definitions
were observed in the images using the lower angle (Fig. 5).

Two footprint sizes (absolute size of the camera field-of-
view) were used to determine whether a few large image
cutouts or many small(er) samplings would be optimal.The-
oretically,and in industrial applications,the entire paper lane
cross-section should be imaged to obtain the most represen-
tative sample characteristics.This paper investigates only a
first estimate of the usable sampling rate relationships need-
ed (see the study by Mortensen and Esbensen [13]).

We investigated footprint sizes of 1.7 x 1.35 cm (low res-
olution) and 1.0 x 0.8 cm (high resolution).These footprint
sizes roughly correspond to a realistic industrial sampling
rate.Figure 6 shows that this difference in size is markedly
visible-the texture definition is of course changed as a func-
tion of the pixel-size scale resolved.

To minimize measurement errors, we used a number of
replicates between and within the paper type sheets (Fig.7).

Within each paper sheet, two sets of replicates were
used.For the low-resolution settings,four image replicates for
each sheet were acquired, while 12 were acquired for the
high-resolution settings (Fig. 8).

Five sheet replicates of each of the six paper type repli-

cates were subjected to imaging, resulting in 120 images for
the larger, low-resolution image samples and 360 images for
the smaller, higher resolution image samples.

Feature extraction of the images using the AMT transform
yielded 500 x-variables for each image, of 5000 initial points
(pixels),A,which corresponded to approximately 0.5% of the
total image size.

The overall sampling error and modeling quality were
greatly improved by averaging the individual AMT spectra

II. Experimental overview.The four experimental series
are numbered as indicated.

Paper footprint 
size:1.7 x 
1.35 cm

(low resolution)

Paper footprint 
size:1.0 x 

0.8 cm
(high resolution)

Illumination angle: 21° 1 4

Illumination angle:17.5° 2 3

5. Visual appearance with 17.5° (left) and 21° (right)
illumination angles on Star matte paper.

6. Resolution alternatives studied. Star paper matte
finish, 17.5° illumination, 100 x 100 pixels. Pixel size is
8 x 6 µm (high resolution) (left) and 13 x 10 µm (low
resolution) (right).

7. Layout of replicate regimen studied.

8. Sheet replicate scheme for low-resolution images
(experimental series 1 and 2) (left) and high-resolution
images (experimental series 3 and 4) (right).
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within each sheet before performing the multivariate data
analysis.This averaging resulted in 30 AMT spectra for multi-
variate data analysis (five replicates for each of the six paper
types) (Fig. 9).

The x- and y-data sets were normalized to zero mean and
each of the 14 selected variables was modeled using PLS1
with test set validation.

PREDICTION OF PAPER QUALITY 
FUNCTIONAL PROPERTIES

The 14 parameters were modeled using PLS. Either two or
three of the five paper sheet replicates (for each paper type)
were randomly chosen for testing the prediction models
(test set definition).The fitted slope (accuracy) and the r2 cor-
relation coefficient (precision) were used to describe the
quality of the established multivariate prediction models for
the paper quality parameters (Figs. 10 and 11).

Results show that series 3 and 4 (smallest footprint areas,
highest resolution) yielded the best prediction quality statis-
tic (r2), indicating that the physical area being imaged (or the
pixel size in µm) is important in determining the precision
of this image analytical method. However, the optimal ex-
perimental settings do vary, as evident in the parameters
thickness, tensile strength, and density.

All 14 paper quality parameters cannot accurately be pre-
dicted with only one of the four experimental settings.How-
ever,13 of them could be modeled reasonably well using the
third experimental settings.The bending resistance ratio
failed to model well with any of the four series.We do not yet
fully understand why this physical material characteristic
was not predicted and other physical tests were. Even
though series 3 was able to predict most parameters, series
2 gave the best models for whiteness and tear strength.With

all 14 slopes (but one) and all correlation coefficients higher
than 0.80, the potential for image analytical prediction in
these grades of paper are quite promising.

DISCUSSION
In this study we investigated whether paper quality can be
predicted from image analysis.The results show that this
image analytical technique is capable of predicting many key
paper quality parameters.To apply the off-line techniques dis-
cussed here into an on-line application, a faster imaging sys-
tem with sufficient processing speed is needed.

To process the large amounts of data that are collected
on-line, modifications must be made to the current algo-
rithms for AMT, which are the limiting factor today. Opti-
mized algorithms are in development [11].The computa-
tional system requirements (and algorithms) are highly
dependent upon the image size and image sampling fre-
quency.The computational requirements are even greater if
any image preprocessing is to be performed.

To obtain acceptable prediction models, it might be nec-

9. Predicted vs. measured plot for brightness, no aver-
aging (a) and averaging within individual sheets (b).
(Cote paper was not included in brightness models
due to lack of reference values)

10. Prediction model slopes, reflecting overall accuracy
of prediction.

11. Prediction model correlation coefficient indicating
overall precision of prediction.
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essary to optimize the system settings
both before and after imaging. In this
study, a set of illumination angles and
camera resolution settings were varied
to achieve optimum correlation to
sheet properties.Additional experimen-
tation with different illumination angles
and sample sizes, or the use of a differ-
ent problem-dependent illumination
source may improve results even fur-
ther. Existing knowledge on light
sources versus AMT performance may
also assist in making the optimal equip-
ment, imaging, and data analysis selec-
tions [14].Finally,the set of ideal system
parameters may need to be established
by trying them under a series of realis-
tic on-line conditions and comparing
the results with the use of the tech-
niques discussed in this paper.

Prediction performance may be fur-
ther improved by preprocessing the raw
images with various image analytical fil-
ters before data analysis. Small changes
in contrast or brightness can greatly af-
fect image features.A previous study [2]
showed that some variables could not
be modeled at all without preprocess-
ing, while much more satisfactory mod-

els were obtained with preprocessing.
All paper quality parameters can

roughly be divided into two groups:op-
tical (surface relevant properties) and
physical (mechanical). It should be pos-
sible to describe almost all optical pa-
rameters using the present imaging tech-
nique. Some physical parameters, such
as bending resistance ratio,appear more
difficult to predict,while those correlat-
ing with paper texture such as thickness
and density, are more accurately mod-
eled.However, correlations might be re-
duced for paper grades that do not focus
on surface properties (such as tissue,
linerboard, corrugated medias, etc.), es-
pecially if the relevant parameters are
not correlated with surface properties.

The current system only investigat-
ed a small fraction of the image area,but
it provided quite satisfactory first-order
models. Larger images (composite im-
ages from well-sampled increments
over the entire paper lane width) will
undoubtedly improve the models [5].
This strategy for improvement in real-
world implementations corresponds to
increasing the number of sheet repli-
cates (five in the present investigation).

This study investigated 14 different
quality variables, although 72 different
parameters are often used in the quali-
ty control of the paper grades investi-
gated. In Fig. 3, all 72 parameters are
modeled simultaneously using PLS2.
Most functional groups were modeled
and a large part of the variable space
was covered by the 14 paper parame-
ters selected here. Most of the remain-
ing variables can most likely be mod-
eled with individual PLS1 models
similar to those used here.

CONCLUSION
Two different illumination angles and
two different resolutions (image sizes)
were tested within a relevant parame-
ter space. The combination of 17.5°
angle illumination and high resolution
images could predict most parameters.
The only variable that was not modeled
with acceptable accuracy was the
bending resistance ratio.

The following paper quality para-
meters were modeled successfully with
only minor optimization of the initial
experimental parameters: ash, b*C2,
bending resistance, brightness, density,

INSIGHTS FROM THE AUTHORS
A former research project was the forerunner for this
project and hence woke my interest to dig deeper into
the possibilities of combining image analytical sam-
pling with monitoring of paper and bulk quality.

This work supports previous work done in coopera-
tion with a Finnish paper mill, but it also differs from
previous research projects regarding the application
of this new imaging technique.

The most difficult aspect of this work was to find a
set of relevant parameters, which potentially could
characterize 72 process parameters. However, a large
PLS2 model did successfully find 13 parameters,
which spanned the whole measurement space.

It was expected that the surface images could be
correlated to the surface properties such as bright-
ness. However, it was surprising that it was possibly
to correlate the surface images with the mechanical
bulk properties, such as paper thickness.

Because this cheap technique can be applied to on-
line monitoring of paper and bulk quality parameters

it can definitely be beneficial to the paper industry.

The next step in developing this technique would be
to perform a mill trial. 

Dahl and Esbensen are with ACABS Research Group,
Aalborg University Esbjerg, Esbjerg, Denmark; Minkkinen
is with the Department of Chemical Technology,
Lappeenranta University of Technology, Lappeenranta,
Finland; email Dahl at ckd@aue.auc.dk or Esbensen at
kes@aue.auc.dk.
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gloss, grammage, opacity, roughness,
tear strength, tensile strength, thick-
ness, and whiteness.

The present image analytical
AMT/PLS technique has shown a prom-
ising application potential for monitor-
ing paper quality by being able to model
those 13 representative key quality pa-
rameters by remote optical sensing.
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ABSTRACT 
Image Analysis combined with multivariate regression on Angle Measure Technique (AMT) trans-
formed imagery and the Theory of Sampling (TOS) is here presented as a comprehensive for Image 
Analysis Sampling  (IAS), which takes all aspects of sampling representativity into account - espe-
cially 2-dimensional image versus 3-dimensioanl bulk compositions issues. Every IAS application 
has to be based on optimized image acquisition parameters: camera and illumination type, illumina-
tion angle, sample thickness as well as image post-processing, which are all examined here in order 
to delineate the general requirements for optimal prediction models for particle size distribution of 
natural and industrial bulk solid aggregates. We present a complete optimization study in order to 
show its intrinsic problem-dependent nature. This optimization allowed an original 60-sample data 
set to be compressed to an essential 22 natural coastal sands array with equally varying composition 
ranges – which was subjected to IAS in order to characterize the specific particle size distribution 
curves. In addition to D50 (50 %-tile), six other size classes were successfully predicted, while ex-
treme size classes (extreme low or high particle sizes) showed a too narrow training data set span, 
illustrating a critical grain size contrast which will always bracket successful models of particulate 
matter being imaged for grain size characterization. All classes with a satisfactory (representative) 
calibration interval span can be quantitatively predicted due to the powerful scale-dependency of 
the central AMT feature extraction combined with PLS multivariate calibration. The present appli-
cation to natural sand aggregate size distributions forms a vehicle to illustrate the full potential of 
image analysis in general, IAS in particular, also for technological/industrial manufacturing on-line 
product and process monitoring applications, or quality control purposes, with similar grain-size 
prediction objectives. There is a significant carrying-over potential to parallel industrial scenarios.  

Keywords: Image Analysis, Image Analysis Sampling (IAS), Theory of Sampling (TOS), Angle 
Measure Technique (AMT), multivariate calibration, Grain-size Prediction 

INTRODUCTION
In many aggregate materials and powder handling/processing operations particle size and particle 
size distribution play a key role. It is an essential quality control characteristic of many industrial 
product specifications often affecting important bulk characteristics, e.g. particle size distribution is 
a major determinant regarding flow properties. But most methods used for determining the particle 
size of powders and aggregates are designed to be used off-line, such as sieving, image analysis of 
prepared samples, laser diffraction. However advantageous with precise off-line methods, today it is  
of increasing importance to many industries to carry out this analysis on-, at or in-line. An on-line 
technique should both be fast and robust in delivering the results – typically for a large number of 
measurements – and reliable in having a high level of accuracy and precision.  

Traditional low-level image processing techniques have been used for on-line measurements during 
the last ten years; a good overview of many successful implementations and applications can be 

* Revised Manuscript
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found in Zeuch [1]. The disadvantage of these approaches is that calculations are heavy, thus a lim-
ited number of measurements per time-interval can only be made [2,3] – and many of the dedicated 
analyzing instrument will necessarily represent a significant capital outlet. This paper presents an 
alternative extended image analysis technique, which potentially can be used for on-line particle 
size prediction as well as many other physical characteristics – based on standard, off-the-shelf, 
inexpensive camera technologies. In fact, it was originally thought of as a spin-off from other ma-
chine vision or image inspection operations. The new method is based on feature extraction from 
standard digital imagery using the Angle Measure Technique (AMT) with subsequent multivariate 
data analysis, Partial Least Squares regression (PLS-R). This combined approach was termed MAR 
(Multivariate AMT Regression) by Huang [4,5]. 

In the event of significant material segregation before imaging, this necessitates use of the Theory 
of Sampling (TOS) to ensure valid correspondence between the sample surface characteristics (the 
2-dimensional image) and the true bulk (3-dimensional, volume) sample characteristics. Combining 
MAR with representative TOS-sampling introduces a new way to deal with this issue, which could 
be viewed as Image Analytical Sampling (IAS). IAS deals with all aspects related to this basic 2D 
(surface characterization) vs. 3D (true bulk characteristics) match, or conflict. 

In the present work we develop a method for particle size distribution determination for natural 
beach sands excavated from the Western Coast of Jutland, Denmark. The Danish Coastal Inspector-
ate (“Kystdirektoratet”) makes extensive use of this type of sample as part of monitoring cam-
paigns of coastal protection activities of and on the Jutland Coast, which is regularly subjected to 
significant erosion from the North Sea with its prevailing western wind in an intense and frequent 
storm regimen. Coastal monitoring is carried out in a variety of ways, including satellite surveil-
lance, morphological analysis, mathematical modeling. As an important part of the monitoring, on-
site sand samples are also routinely extracted from selected beach locations, which are characterized 
by their particle size distribution. The results are a.o. used for modeling of movement of sand as a 
function of various experimental erosion abatement parameters in several different projects. This 
material is here used to illustrate the potential of the proposed image analytical methodology for 
characterization of particle size class mixtures. It was decided to use beach sands samples because 
these furnish a realistic vehicle for modeling grain size in a very relevant particle diameter range. 
Indeed, if anything, natural sand mixtures are significantly more complex – distribution-wise – than 
the gamut of industrial powder and particle aggregates also considered as candidates for image 
analysis, which are usually confined by much narrower grain size distribution brackets. Thus the 
present approach is of a much wider application potential within science, technology and industry. 

All surface morphology imaging approaches to aggregate materials will necessarily break down at 
some material-dependent limit-of-application because of the simultaneous presence of both large-
diameter particles, �max, together with fines, �min. There is a problem-dependent limit to the fidelity 
with which an optical method can characterize both large and small particle diameters simultane-
ously – and their mixtures – due to transgression beyond a useful regimen of a material-specific 
grain-size contrast ratio � := �max / �min. The overlying theme for IAS in the present context is then: 
By using sand aggregates as the medium, what can be learned about the general limit at which 
grain-size prediction models break down? 

METHODOLOGY
IA for grain-size prediction is comprised of five elements: 

1. Image Acquisition/Image Analysis (IA) 
2. Image Sampling (IS) 
3. Image pre-processing 
4. Angle Measure Technique (AMT) 
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5. Multivariate calibration (PLS-regression) 

1.1 IMAGE ACQUISITION/IMAGE ANALYSIS 
There are two critical issues in image acquisition, which have to do with the quality of the images 
obtained as well as their representativity with regard to the characteristics of the lot material. 

Image quality is a direct function of the imaging equipment as well as the relevant system settings. 
Figure 1 shows a sketch of a typical setup for digital image acquisition. 

Figure 1. Principal image analytical system setup for characterization and monitoring of selected material char-
acteristics. The camera only acquires surface images of a suitable illuminated “footprint” of a sample area; the 

images are transferred to a computer for subsequent processing and analysis.  

Images only reflect the surface of the material; a certain area of the material is imaged only (the 
camera “footprint”). This area is determined from the geometry and setup of the camera/lens, which 
mainly is influenced by the optical distance to the sample surface. The camera quality is evident. 
The images are transferred to a computer for subsequent processing and Image Analysis (IA). 

Selecting appropriate equipment and securing optimal image acquisition conditions is dependent on 
the experimental conditions. Also, camera and illumination source(s), and the optimal setting of 
these devices, must of course be selected based on the characteristics of the material to be exam-
ined, for instance particle size, shape, and color. However, such practical implementation problems 
are only addressed briefly in the present study, since the main focus is to show the prospects for 
monitoring bulk solid properties by the IAS approach only, as exemplified by particle size and par-
ticle size distribution for particle aggregates. We refer to the excellent textbook by Zeuch [1] for a 
complete review of these essential basic issues. 

For every specific application context, optimal illumination conditions must be found in order to 
accentuate the key features and characteristics of interest, i.e. bring out colors, produce textural con-
trasts, create shadows (essential for the present AMT purpose) a.o. Illumination sources might e.g. 
be a UV, fluorescence or an ordinary tungsten source (VIS). The number of illumination sources, 
the illumination angle(s) and the distance from the sample surface must also receive serious consid-
eration. For most image analytical techniques it is of course important to keep illumination as con-
stant as possible. To keep the illumination constant in harsh industrial environments, it may at times 
even be necessary to use e.g. a dark chamber (or similar) around the equipment. 

Selecting a camera appropriate for the tasks at hand is not trivial either. Efforts should for each ap-
plication context be focused on the following principal issues:  

• Camera type (digital/analogue) 
• Chip type (CMOS/CCD) 
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• Lens 
• Filter(s) 
• Camera resolution 
• Spectral characteristics (BW/RGB/multi- & hyper-spectral) 

IMAGE ANALYSIS 
Several different IA techniques are used extensively today, also within the powder industry. Tradi-
tional IA is typically based on filtering techniques in which images are subjected to various thresh-
olding in the image and frequency domains, combined with object segmentation - for example for 
digital particle separation. This would then typically be followed by a series of relatively simple 
size, form and texture measurements of the individual particles. Standard IA software suites can be 
used here, which are based on a wealth of different image-processing techniques; being able to find 
the optimal method requires at least some insight and experience though. 

Other techniques, such as MIA (Multivariate Image Analysis) [6,7] and Multivariate AMT Regres-
sion (MAR) [4,5], can be used as well. MIA is based on decomposition of the spectral domain into 
a principal components domain (scores and loadings), based on PCA. MIA has been used for both 
qualitative as well as quantitative analysis. MAR is based on the Angle Measure Technique (AMT) 
which extracts features of interest from the image domain into a scale domain. This transformation 
results in the so-called AMT complexity spectra which represent a compressed description of the 
morphological texture relationships of the original image simultaneous at all scales simultaneously 
(see further below). These spectra can be used as 1-dim object vectors in further multivariate data 
modeling for finding possible correlations between image features and material – or material func-
tional characteristics. 

Acquiring an image suitable for image analysis can be a task in itself, but it is always doable at the 
current technical development stage of IA. Ensuring that the image actually depicts the material 
below the camera in a representative fashion is quite a different, non-trivial matter, however. This 
study focuses primarily of image analytical representativity issues. 

1.2 IMAGE ANALYTICAL SAMPLING 
Acquiring representative images includes an understanding of the Theory of Sampling (TOS), 
which is a complete theory detailing how to obtain representative samples from all given materials 
and lot types [8-11]. The present work deals with material lots that essentially occupies only one, 
dominating dimension, such as conveyor belts and pipelines (to a first approximation the width and 
depth is negligible compared to the length dimension) – subject to the necessary condition that both 
images (X) as well as corresponding reference samples (Y) must cover the transverse dimension(s) 
of the lot completely, always consisting of an entire cross-section in width and depth respectively, 
as outlined in Figure 1. 

Image Analytical Sampling (IAS) deals within the realm of “proxy-sampling”. It is often tacitly 
assumed that the 2-dim surface making up the camera’s Field-Of-View (FOW) also represents the 
average composition of the bulk (3-dim) sample without further qualifications, i.e. the material be-
ing imaged is assumed to be identical throughout the vertical dimension underlying the FOW. 
However, this assumption is valid if, and only if, the material to be analyzed can be demonstrated to 
be homogeneous, to wit:  
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Since all materials are indeed inhomogeneous by nature (dependent on the scale of observation) 
representative reference samples can only be obtained through TOS-correct physical sampling. This 
is manifestly the case for samples used in MAR, since any calibration should be based on reference 
measurements (Y) determined from representative samples in order to produce a valid prediction 
model. Prior to physical extraction of samples, the surface of the lot is subjected to imaging (X). It 
is vital to estimate the degree of mismatch between the image analytical 2-dim rendition of the sur-
face of a product relative to its 3-dim bulk characteristics. Only materials which can be/have been 
demonstrated not to be significantly segregated in their natural state can be directly imaged; image 
analysis will in general be representative for such situations (examples: potato chips on a conveyor 
belt, metal surfaces etc.). However, most particulate materials are manifestly prone to segregation to 
some significant degree and must therefore, as an absolute minimum, be subjected to thorough mix-
ing before presentation to the camera. Thorough mixing will not make samples homogeneous how-
ever, but makes them only less heterogeneous. It will always be necessary to document the effective 
residual heterogeneity obtained by any particular mixing operation.  

Combining mixing with a large number of replicate samples will also help effectively towards 
higher representativity.  

Two types of replicates can be used in the imaging context:  

• Physical replicates (pouring, loading) – reconstituted presentation of the sample (or samples) 
to the camera (simulates a number of replicate images along the conveyor belt etc.) 

• Imaging replicates (sample rotation) – the sample is illuminated from different angles (simu-
lates more than one illumination source or more than one camera angle)  

Physical replication: The sampling error can be significantly minimized by reconstituting the sam-
ple (mixing it thoroughly) and re-subjecting it to imaging. This way, the bulk of the material will be 
introduced to the camera, but differently: another mixing surface will be imaged. Different views of 
the material will be recorded and interpreted by the image analytical facilities with an objective of 
averaging. On a conveyor belt this can be done for example by implementing a plow-like mixer just 
before the sample is presented to the camera hereby minimizing segregation effects; there are of 
course many other possibilities for physical mixing – all delightful engineering challenges. 

Imaging replication: In addition, the samples might also be illuminated from different angles – one 
by one for unilateral illumination. This will produce “imaging replicates” which are not physical 
replicates, but each manifestly provides another view of the same surface of the material – it will be 
shown that this type of replicates also has great merit. 

This study distinguishes clearly between these two types of replicates. The easiest way to minimize 
image sampling errors is to average over a multiple of imaging replicates, which is almost without 
extra costs in practice since the effort of taking one or more images (everything else being equal: 
illumination etc.) is virtually nil – but this endeavor will ultimately be limited by computation 
power especially in real-time contexts. 

Sampling for reference analysis (calibration) is very much another matter, since these samples must 
be extracted physically (3-D bulk samples). Reference sampling is often the distinctly most costly 

“Homogeneity is an abstract mathematical concept that 
does not exist in the real, material world.”
[P. Gy, p.24, Sampling for Analytical Purposes]
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element in any replication context, for which reason it is economically “the first” item on all 
money-saving horizons. Whether this also is a scientifically sound approach is a totally uncorrelated 
matter however, especially when TOS sampling errors are involved. Image replicates (X) can of 
course only be regarded as true new samples if they are complemented by complementary new-
physically extracted reference samples (Y). 

1.3 IMAGE PREPROCESSING 

UNWANTED EFFECTS 
Images can contain many types of unwanted effects or artifacts, e.g. shading, unwanted objects, 
blurring (or other optical deficiencies), noise etc. Most of these effects can be reduced or eliminated 
by low-level image-processing techniques in the spatial domain [2,3] or, if need be, by careful ap-
plication of special, i.e. problem-dependent, corrections. In the present work a significant shading 
effect in the shape of a clear illumination gradient was observed, which greatly affected the multi-
variate models. This gradient originated because of the necessary unilateral low-angle illumination 
used to optimize the AMT feature extraction [2]. Figure 2 shows an example of how this gradient 
appears to the camera as well as after removal by a simple gradient correction. 

Figure 2. Sand sample with extensive illumination gradient (left) and in corrected form (right). Both images are 
also shown (lower panels) in a contrast-enhanced version for improved appreciation of the correction. 

Since the gradient was found to be nearly linear in the horizontal direction (and non-existent in the 
vertical direction) the average pixel intensity per column can be used for a simple correction, which 
takes the form of a linear regression. If each pixel is corrected by the inverse of this function the 
result will be an image without this detrimental illumination gradient.  

Other filtering techniques could have been used for removing shadings, e.g. morphological, homo-
morphic or lowpass filtering. Zamperoni [12] has pointed out that morphological filtering can be 
used for removal of uneven illumination effects, while the Quantitative Imaging Group at Delft 
University of Technology has shown [13] that homomorphic or lowpass filtering can be used for 
estimating any shading effects generally. Nevertheless, there is a serious drawback: More or less all 
filtering techniques, including the linear gradient removal function developed specifically for this 
paper, add heavily to the real-time computational load – especially for large number of images (rep-
licates). This should of course be taken into account when setting up potential on-line IA applica-
tions.  

1.4 THE ANGLE MEASURE TECHNIQUE (AMT) 
The Angle Measure Technique (AMT) is a signal characterization method for describing the com-
plexity of 1-dim data series. AMT was originally developed by physical geographer Robert Andrle 
expressly for characterizing 2-dim “geomorphic lines” (map contours, coastal lines, river trajecto-
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ries) as an alternative to fractal analysis [14]. This technique has been further developed within 
chemometrics where it today can be applied to all generic 1-D data series [5]. For the present study 
AMT was used to facilitate extraction of useful surface morphology features from unfolded images, 
essential in the context of aggregate grain size descriptions and - prediction. 
   
AMT focuses on extracting features, both global and local, as a domain transform operating analo-
gously to the Fourier transform, but AMT transforms data series (unfolded images in this study) 
into a new scale domain; this results in so-called “complexity spectra”. Following this domain 
transformation a standard multivariate data modeling approach, such as partial least squares (PLS), 
can be used for establishing relationships between the extracted signal features (AMT’s complexity 
spectra) and the reference data in question – which in the present study will be grain-size frequen-
cies. For a detailed description of AMT we refer to the extensive literature, e.g. [14,16,23-25]. 

Figure 3 gives a schematic overview of the complete AMT conversion process from images to pre-
diction model (PLS-R), with Y being the independent data to be modeled and predicted; X repre-
sents the spectral data after the AMT domain transformation, T is the PLS score-vector, and W the 
loading weight. In the regression model, the two standard AMT spectra MA and MDY are concate-
nated in a fixed succession [MA,MDY]. The full workings of AMT + PLS has also been described 
extensively in the chemometric literature [17-19]. 

Figure 3. Schematic overview of AMT as a PLS-regression pre-processing transform. One color channel has to 
be selected, i.e. the channel with the highest contrast. This is  followed by AMT feature extraction on the unfolded 
imagery [MA,MDY], from which a regression model can be established. 

Before any multivariate regression is carried out, averaging of the AMT spectra for replicates is 
often performed. The average for each AMT scale is found and used as a more robust expression of 
the image complexity. Using averaging dramatically improves both the precision (RMSEP) and 
accuracy (slope) of properly validated prediction models. Figure 4 is an example of the averaging 
procedures as used in this study, expressed by two complementary prediction model validations 
(“Predicted vs. measured” plots with associated statistics), with – and without averaging. 
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Figure 4. PLS-regression validation (“Predicted vs. Measured” evaluation plot) for a particular grain-size fea-
ture (D50) with and without averaging of both physical and imaging replicates (described in text). Note the dra-
matic improvement in prediction performance for the averaged data (lower right panel). 

1.5 MULTIVARIATE REGRESSION 
For the present work PLS-R is used for establishing regression models between the AMT spectra 
(X) and the reference variables (Y). 

VALIDATION 
When a regression model has been established, its predictive performance must be evaluated 
through a suitable validation procedure. The only way to know if a model will truly give realistic 
predictions of future observations is to test its performance on a completely new and independent 
data set (called the test set). All data sets (both training and test sets) need to be obtained in a way 
so as to be representative of the future situation in which the prediction model is to perform. Need-
less to say both types of data sets must be based on samples which have been extracted using proper 
sampling techniques for the bulk material in question: representative sampling [8-11,16, 22]. Test 
set validation with samples extracted according to TOS is the only way to get a realistic assessment 
of the full prediction error [17]. On the other hand, all cross-validation schemes underestimate the 
physical sampling error seriously, as there is only one data set - the calibration data set. One needs 
the additional test data set in order at least to have sampled the material (“the population” if one so 
prefers) twice, so as to incorporate two different TOS sampling-error manifestations in the valida-
tion procedure; if the material is severely heterogeneous, using more than one test set would appear 
a prudent approach, ibid., always subjected to the economics and logistics of the situation at hand. 

The one and only case, where it is statistically sound to use other validation approaches, is for com-
parative evaluations regarding alternative model specifications. In this special context it can be ar-
gued that using a well-reflected version of cross-validation is sensible, since no additional errors 
will be introduced through different application on the same test set. However, any final prediction 
model should always be tested on a completely independent data set to get a fully realistic estima-
tion of the prediction strength. 
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MATERIALS
For the present study we used a master sample set consisting of 60 pristine coastal sands with sig-
nificantly different particle size distributions. These sands have arrived at their present size distribu-
tion status through a set of complex coastal and beach processes (erosion – transportation – deposi-
tion – reworking). These sands come from the entire length of the Danish west coast (approx. 300 
km in length), making up 60 widely spanning sands, each with its own specific history. It is certain 
that this calibration data set is considerably more complex than very many industrial aggregates; 
many industrial and manufacturing aggregate products will display a much more constrained grain 
size distribution, while some raw materials could be as complex so as to be comparable to the pre-
sent set. From experience with IA/AMT characterization of solid aggregates, the present data set 
can be viewed as representative both in overall grain size distribution span as well as w.r.t. sorting. 

The sixty samples were selected from the vast coastal sand archives by senior research personnel at 
the Danish Coastal Inspectorate (Søren Bjerre-Knudsen). Each sample originally consisted of three 
increments excavated from three different depths from one pit-hole, combined and mixed in the 
field, this being is the traditional sedimentological characteristic employed for beach sands. After 
transport to the inspectorate storages these samples are mass-reduced to a prescribed archival mass 
using riffle splitting in accordance with optimal TOS principles [11], and the particle size distribu-
tion of each sample is finally determined by standard laboratory sieving using 15 trays. The particle 
sizes are hereby classified in sixteen different size classes, which in these experiments are used as 
the independent data to be modeled (variables Y1 to Y16). These reference data were supplied for 
the present study together with the selected archival samples themselves. These samples and their 
reference grain-size distribution data are considered highly trustworthy as they all originate from 
the same laboratory (they were in fact produced by the same, very experienced laboratory techni-
cian). 

The overall variations in composition, particle size and sorting can be appreciated from Figure 5, in 
which the entire spanning ranges for these features have been captured by a selected series.   

Figure 5. Illustration of the wide material composition, grain size and sorting span of the natural coastal sand 
calibration set. Note significant differences especially regarding particle size, the objective of the present study.  

Figure 6. Close-ups showing extreme span in average particle size as realized in the master data set, as well as 
large differences w.r.t. particle size contrast (sorting). Images are to identical scale. 

Figure 7, 8Figure 8 and 14 describe the grain-size distribution characteristics of the training set. In 
terms of absolute grain sizes, many samples display a relative small average particle size ranging 
between 0.2 and 0.8 mm, with a positively skewed tail covering larger average particle size; only 3 
out of 60 samples (5 %) were found to have an average particle size (D50) above 1.0 mm. The sort-
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ing of these natural sands is well characterized by their cumulative size distribution curves as illus-
trated in Figure 7. 

Figure 7. Selected cumulative distribution curves for seven sand samples with D50-values ranging from 0.200 to 
1.259, covering the full span of the present prediction models. 
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Figure 8. D50 particle size distribution for the DCI 60-sample data set. D50 values were derived from the 15-bin 
sieving data. Only three samples display D50 above 1.0. 

The particle size distribution skewness (inherited from the DCI data sets) will cause some inherent 
calibration difficulties. This is a minor issue only however as this study was not meant to focus on 
applicability of image analysis on all types of beach sands specifically (neither necessarily covering 
the gamut of 16 size classes). This study instead focus on illustrating the general applicability po-
tential for determining complex bulk aggregate/powder parameters – especially aggregate particle 
size distributions to the number of size classes realizable. 

EXPERIMENTAL 
Obtaining images of non-moving materials is relatively easy, in comparison with moving objects; 
exemplified by a conveyor belt, perhaps suffering adverse from illumination hindrances etc. Under 
all circumstances the image acquisition conditions are always of critical importance. Especially 
illumination source, camera type and illumination angle when images are to be preprocessed using 
AMT. 
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To zoom in on optimal imaging conditions for the sand samples acquired, a number of pre-
experiments were performed, which can be divided into three series with the following objectives:  

1. Selection of optimal illumination source conditions 
2. Optimization of camera type and illumination angle  
3. Final modeling of 16 different size classes based on these optimized conditions 

All images from the second and third experimental series were subjected to AMT. Prior to this the 
images were unfolded by row-wise concatenation. 5000 points were selected randomly from each 
unfolded image as seed points for AMT and each of these points was analyzed for the first 250 
AMT-scales (for both MA and MDY). 

1.6 SERIES ONE – ILLUMINATION SOURCE 
Illumination is alpha and omega in image analysis. In the first half of the present study three differ-
ent illumination sources were investigated for optimizing the image contrast on a particle-to-particle 
scale:  

• LED Darkfield Ringlight, which is often used to enhance the contrast of surface features. 

• LED Ringlight is used in pattern recognition due to its shadow-free illumination. 

• A standard unilateral, oblique illumination source: a LHS-500 lamp (FalconEyes) was 
used with a 150 W bulb. This type of unilateral illumination has been used extensively in 
earlier AMT-applications giving rise to shadows which enhances differences in particle 
sizes/shapes very efficiently. In the initial study an illumination angle of 45° was used, 
based on said earlier experiences. 

Eight different sand samples were used in series one (a widely size spanning end-member series). 
Figure 9 serves to demonstrate the manifestations of the three different illumination sources. 

Figure 9. Photographs of the same sand sample, illustrating contrast differences resulting from the three alterna-
tive illumination sources. Photos (left to right) were obtained using the darkfield ringlight, ringlight and the 
LHS-500 lamp, respectively.  

Evaluating these alternatives over eight very different sand samples, it was decided to use the LHS-
500 lamp, because of its optimal contrast, as evidenced in the right panel in Figure 9. The unavoid-
able illumination gradient could easily be removed by the corrections already described. The choice 
of a unilateral illumination source corresponded well with experience from many previous AMT 
experiments in which an identical setup has indeed also proven superior in many cases [5]. In the 
end illumination optimization will always depend exclusively on the specific application context at 
hand. 
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1.7 SERIES TWO – CAMERA AND ILLUMINATION ANGLE 
For unilateral AMT illumination, the illumination angle is of critical importance. A very high illu-
mination angle close to 90° (w.r.t. the horizontal) will remove shadows, while lower angles will add 
shadow effects to the image – the lower the angle, the larger the shadows. These shadows are aiding 
the AMT-algorithm in distinguishing between, for instance, particles with different size, texture 
and/or shape. Unilateral illumination is a unique strength to AMT. 

In addition to the illumination angle, two different cameras were also tested in series two: 

• Sony 3-CCD analogue camera type DXC-390P with a 16 mm F1.4 C 2/3” objective. 
Digital images were obtained using a 3-channel Matrix Vision frame grabber, type PCI-
mage-SRGB, with a resolution of 752x572 with 8 bit color in each channel. 

• QImaging digital b/w camera, type QICam with a 105 mm F2.8 AF Micro-Nikkor objec-
tive. To obtain color images a RGB Liquid Crystal Color Filter is attached. QI images 
display a resolution of 1280x1024 also with 8 bit color in each channel. 

The image resolution and the pixel size are both important, as they limit the ultimate small-scale 
texture characteristics possible in the AMT complexity spectra. For experimental series two, the 
images were obtained with identical distance from camera to sample, but with different resolutions 
due to the inherent different camera specifications. This difference is shown with great fidelity in 
Figure 10, which shows two alternative renditions of the same sample. Both images are 200x200 
pixels in size and both are at their maximum resolution. 

Figure 10. Comparison of maximum image resolution for the Sony (left) and the QImaging camera (right). Im-
ages were acquired at identical camera distance and both images represent 200x200 pixels. 

From Figure 10 it can be seen that the QImaging camera (right panel) has more detailed information 
at smaller scales than the Sony camera. In the final modeling this could make a difference, unless 
the higher resolution acquired by the QImaging camera does not add useful information.  

Both cameras were tested with alternative illumination angles 28° and 45°. For this optimization 
trial, 16 other samples were selected from the DCI master sample set based on their visual appear-
ance (covering the whole distributional curve for D50 for all 60 samples); the selection spanned al-
most the full grain-size range covered, except for the absolutely smallest grain-sizes, Figure 11.   
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Figure 11. D50 size distribution for the total DCI data set (60 samples) and the series two selection termed “16 
samples” in these studies. 

Series two - replication scheme 
To be fully realistic it was decided to use two true replicates (re-poured samples for renewed pres-
entation to the camera) and eight imaging replicates (rotations) for each sample, giving a total of 16 
images for each individual sand sample; each rotation was 45°. This setup is illustrated in Figure 
12. Altogether using these settings on two illumination angles and for two cameras, 256 x 2 x 2 = 
1024 images were obtained for the series two evaluation. 

Figure 12. Sample replication setup for experimental series two. Sixteen samples were selected on basis of their 
visual appearance, covering the widest possible D50 span. Each sample was poured twice, and rotated eight times.  
This procedure resulted in 16 x 2 x 8 = 256 images per sand sample (for each camera and illumination setup). 

In addition to illumination angle and camera type, two other parameters will be important for the 
present type of material (sands): choice of color channel and whether to use scaling or not in the 
ensuing chemometric data analysis. With a color image composed of three grayscale images 
(R/G/B), 3 x 1024 images were obtained. These images were all subjected to AMT domain trans-
formation, which was followed by averaging for the 2 x 8 replicates for each sample. 

Altogether 24 different multivariate models were established for optimizing the settings with re-
gards to camera type (2), illumination angle (2), color channel (3), and whether to use auto-scaling 
or not (2). The images were all subjected to the gradient correction algorithm (or not), which re-
sulted in 24 additional models. All models in series two were established for mean centered data 
using full cross-validation, here considered acceptable as a vehicle for internal comparison purpose 
for which it was desired to not compound the issues with physical re-sampling variability. 
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1.8 SERIES THREE – PREDICTION OF SIZE DISTRIBUTION 
Based on the optimized set of parameters from series 1 and 2, it was found necessary to focus on 
sand models without the extreme highest grain sizes (D50 below 1.0 mm) as the upper part (D50
above 1.0) could not be adequately covered by three samples only. Without loss of generality, focus 
in the rest of the studies presented here is on D50 < 1.0 mm, see Figure 8 and Figure 11. 

Spanning this main interval of the distributional curve regimen, 11 samples were selected to serve 
as the calibration set and 11 separate samples for the test set, the characteristics of which are both 
illustrated in Figure 13. These samples were selected on basis of a visual inspection of all original 
samples. Both sets were selected to be as widely spanning (while only broadly comparable) as pos-
sible, i.e. certainly not identical, in order to comply with the most stringent test set validation crite-
ria [17]. The primary comparison feature was the D50-values, while the grain size variances were 
left to random choice. Since experimental series three focuses on establishing the final prediction 
models, this deliberate calibration set/test set definition was essential. Test set validation is used 
throughout for all series 3 prediction models. 
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Figure 13. Comparison of D50 size distributions for the master data set and the 22 samples in the two series 3 
data sets. 

Figure 14. The combined (calibration, test) data set for the final third series (2 x 11 samples). Top left: highest 
D50 through lower right: lowest D50. Every second sample in this lineup was selected alternatively for the training 

and the test set respectively. 
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All samples



Image Analytical Determination of Particle Size Distribution for Bulk Solids 

- 15 - 

Since the present sand samples are certainly not homogeneous (even though some are rather well 
sorted), sampling errors – often manifested as grain-size segregation – will necessarily occur to a 
significant degree, the point being that all necessary counteracting precautions must be applied 
(TOS): 1) mixing reduces sampling errors, 2) sampling errors will be lowered through averaging 
based on an increased number of replicates, 3) sampling errors will also be minimized by illuminat-
ing the sample surfaces from different angles.  

Obtaining a higher number of images can be effectuated while at the same time reducing the poten-
tial 2-dim / 3-dim mismatch tendency through an increased surface area by a minimization of the 
sample thickness – a flattening of the sample layer as it were – ultimately (but rarely fully realiz-
able) into a very thin, quasi mono-particle layer. With image analysis of stationary objects this is an 
easy task, whereas flattening of samples can be difficult to implement in applications with non-
stationary, moving material (conveyor belts, pipelines). Irrespective of the practical difficulties e.g. 
in the industrial setting, sample thickness should always be optimized for each individual applica-
tion. To illustrate the cardinal importance of sample thickness (or its reciprocal: surface area), a thin 
and a thick sample layer for each sand sample were produced during all series three experiments 
(based on an equal sample volume). In practice this was done with the use of the two alternative 
sample trays shown in Figure 15. 

Figure 15. Alternative sample trays for the series three final experiments. The trays hold an identical  sample 
volume; the large tray (bottom) is  four times as long as the small (top).  

The large tray holds the exact same volume as the small one and they both have the same width, 7.2 
cm; the large tray is four times as long, 50 cm, while the small one is 12.5 cm. Compared to the 
sample masses used, the long tray comes very near to establishing a mono-particle layer of material 
(0.25 mm), with practically all sample material completely spread out, while the small tray has a 
rather small surface area and consequently a correspondingly greater thickness. Imaging a larger 
surface area with unchanged effective pixel size should indeed result in significantly better predic-
tion models, in more-or-less direct proportion to the degree of segregation propensity displayed by 
the lot material. 

For experimental series three it was decided to use four physical pouring replicates (re-introducing 
the samples four times completely anew to the camera). To simulate the effect of illuminating from 
different angles, imaging replicates were used as well. Due to the experimental setup it was not pos-
sible to rotate the large tray more than +/- 180 degrees, i.e. to simulate illumination from two oppo-
site sides only, Figure 16.  
   

Figure 16. The large sample tray was virtually divided into four regions with the tray being illuminated from two 
sides (opposite). The same illumination setup was used for the small tray, but see Figure 17. 
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The large tray was virtually divided into four regions, each with the same surface area as the small 
tray. All regions were subjected to identical imaging; with illumination from each side eight images 
were obtained for the large tray. Each sample in the small tray was illuminated from eight different 
illumination angles in the horizontal plane, based on the results from series 2. Thus eight imaging 
replicates could be realized for each tray option. 

Figure 17. Eight different illumination sources were simulated by rotating the small tray. The sample is seen 
from the camera’s perspective. 

Replication rationale 

• Using the above procedure for the large and the small tray respectively will make it possible 
to look into the effects of segregation - if detectable. Equally good prediction performance 
of models from both tray types would indicate insignificant levels of segregation. 

• Comparing models based on the average AMT-spectrum for these eight replicate images 
(eight illumination angles) with models based on only one illumination angle will make it 
possible to investigate if better prediction models can be obtained by use of illumination rep-
licates. If not, this would indicate that it will be sufficient to use only one illumination 
source making it easier to implement the technique in practice. 

• With this compound experimental setup it will also be possible to investigate whether segre-
gation can be detected or not; this should be seen from better overall prediction models for 
the experiments using the larger surface tray compared to the one with the smaller surface. 
Naturally, the eight imaging replicates for the small tray should represent the surface better 
than the two used for the large tray, but this is carefully counterweighted by the four-time 
increase in surface area. If segregation is minimal, the prediction models for both trays 
should be equally good. 

• Series three thus probes directly at the core issue of this study, the potential 2-dim / 3-dim 
correspondence, or mismatch, between image data (X) and reference results (Y); the latter 
are provided by the external DCI grain-size distribution results. 

RESULTS

1.9 INITIAL RESULTS – OPTIMIZATION OF EXPERIMENTAL PA-
RAMETERS 

Series two and - three experimentation was carried out based on one unilateral illumination source, 
following the salient pre-experiment conclusions reached above. The results from the second ex-
perimental series are based solely on the predictive ability of D50 and are summarized in Figure 18 
and Figure 19. 
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Figure 18. Results from the initial experiments, series 2: Sony camera. Results for scaled and non-scaled models 
for both original images (with illumination gradient) and the corrected images are displayed - for both illumina-
tion angles. 

Figure 19. Results from the initial experiments, series 2: QImaging camera. Results for scaled and non-scaled 
models for both original images (with illumination gradient) and the corrected images are displayed – for both 
illumination angles. 

No acceptable model  
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For the comparisons below between the many alternative PLS-R prediction models, we make use of 
a two-parameter evaluation based on performance statistics pertaining to a fitted linear regression 
line for the “Predicted vs. Measured” relationships. The slope of this fitted line is a reflection of the 
overall accuracy of the predicted results, the closer the slope is to 1.0 the better the statistical accu-
racy of the prediction model. The squared correlation coefficient (Pearson second moment correla-
tion coefficients), r2, is the complementary measure of the overall precision of the predictions from 
the test sets; the closer this measure is to 1.0 the better the prediction model.  

The primary objective was to investigate if any correlations between the AMT-spectra and the 
whole range of reference sieving values exist. Figure 18 and Figure 19 show that very good, indeed 
excellent models of D50 can be easily established. In general, the QImaging camera gives better 
models in comparison to the Sony camera due to the higher resolution (3x larger). Both cameras are 
affected by the illumination gradient artifact. Correcting this gradient on average gives slightly bet-
ter models. Scaling the AMT-spectra does in general not seem to improve the models. Based on an 
overall assessment no clear conclusion can be drawn with regards to the selection of color channel, 
since the differences in general seem to be either marginal (non-significant) or to show no clear 
trends. These irrelevant minor nuances notwithstanding, the overall result from these experiments 
show a very good modeling potential with highly promising predictive abilities. 

Based on the synoptic series 2 optimization results presented in Fig.s 18 and 19, it was decided to 
use the QImaging camera with a unilateral illumination source at a 28° angle. It was of course also 
decided to remove the illumination gradient. The red and the green color channel are equally good 
for describing the differences in particle size, while blue seemed to be slightly worse or not giving 
consistent results. It was therefore decided to use the red channel for the final modeling phase, also 
because the red channel previously showed equally good ability towards describing surface features 
of similar aggregates (sand, clay, cement …) [4,5,16,24]. Again, channel selection should always be 
a problem-dependent issue. 

In order to determine if the number of illumination sources has a significant impact on model pre-
dictability, four different settings were tested. The results are based on the red color channel with 
the corrected images from the QImaging camera with 28° illumination angle. 

Table 1. Influence of # of illumination sources. Four different settings 
were tested: Eight sources, four sources, two sources, and only one il-
lumination source. 

 Slope Correlation 
8 illumination sources 0.96 0.98 
4 illumination sources 0.94 0.97 
2 illumination sources 0.93 0.96 
1 illumination source 0.87 0.95 

As is evident from Table 1 the number of illumination sources is important. It was therefore decided 
to use eight sources (eight sample rotations in practice) for the third experimental series.  

1.10 OPTIMIZED PREDICTION OF PARTICLE SIZE DISTRIBUTION 
The calibration-prediction results in Figure 20 and Figure 22 aim directly at deciding on the core 
issue: is there a sample depth-influence on the realizable prediction performance (given the set of 
optimal experimental settings)? The results are singled out as large surface (area) vs. small surface 
(area) – and 2 x 4 imaging replicates vs. grab-sampling (2 x 1 image). 
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Figure 20. Final prediction models for sand based on eight replicate images for the large tray vs. two for the 
small tray. The models are for size classes 1.400, 1.000, 0.710, 0.500, 0.355, 0.255 mm as well as D50.

Figure 20 shows very clearly that better models can be obtained by expanding the surface area. 
Slopes generally > 0.85-0.90 and correlations generally > 0.85-0.90 are excellent results for materi-
als with the given levels of grain-size heterogeneity. 

To determine the effect of eight illumination sources compared to only one, the models for these 
experiments are compared in a similar fashion in Figure 21.  

Figure 21. Comparison of final prediction models for the small tray using one and eight light sources respec-
tively.  

It can be seen that prediction performance are indeed improved by using several illumination 
sources. The present sand particles are quite rounded (reworked beach sands) and the sample sur-
faces were produced so as to be quite flat when being poured into the trays.  

These complementary series 3 results show conclusively that using a larger surface area in combi-
nation with a larger number of illumination sources will result in superior prediction capabilities - 
but which of these factors has the largest comparative effect? Figure 22 delineates the salient differ-
ences between models with an increased surface versus an increased number of illumination 
sources. 
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Figure 22. Final series 3 prediction models for sand based on eight images for the large tray (4 x 2 illuminations) 
vs. eight (rotations) for the small tray. 

From Fig. 22 it is clearly seen that an increased surface area overall result in more accurate predic-
tions (slope), while the situation w.r.t. precision (correlation) is rather equally balanced w.r.t. im-
provement; notice however that all models are of a highly satisfactory nature. From Figure 22 it can 
be concluded that very good prediction models are obtained for D50 and six size classes as well: 
1.400, 1.000, 0.710, 0.500, 0.355, and 0.255 mm.  

It bears noting, however that four minor deviations from these results (out of altogether 22), very 
likely attest to a combined effect from the fundamental sampling error (FSE) and the grouping and 
segregation error (GSE), well-known from TOS. Even at these small sample volumes, the effects of 
material manipulation (pouring, loading) as well as segregation still play a role in spite of the most 
strenuous efforts to control them. FSE and GSE are universal adverse agents. One would do well to 
be conversant about TOS to a sufficient, self-dependent degree.   

DISCUSSION
The AMT-augmented image analytical methodology used in this study has shown its applicability 
for determining size distributions for sand mixtures of varying composition. Successful prediction 
models were obtained for the classes covering the central interval of the training data sets grain-size 
span. Those classes which could not be modeled well are characterized by a relatively low fraction 
of very large particles, which will have an adverse impact on the modeling possibilities if these 
classes are not very well represented in the training data set. Image sampling can be considerably 
compromised as a consequence of segregation: large particles might either show up on the surface 
images recorded, or not, with obvious serious consequences regarding their representativity.  

Also the extremely fine-grained classes experienced difficulties. This is the exact scenario per-
ceived related to the grain size ratio characterizing a particular material: if the ratio of the largest to 
the smallest effective grain diameters, � := �max / �min, surpasses a certain critical threshold, 
IA/AMT will experience increasing difficulties w.r.t. fidelity of the image information in relation to 
the bulk, 3-dim, concentration reference values. This is not an innate weakness for the IA/AMT 
method as such, but an unavoidable consequence of the fact that there will necessarily always be a 
limit to the size contrast which can be modeled by a surface image alone. A completely analogous 
situation exists within acoustic chemometrics, in which the exact similar ratio �max / �min brackets 



Image Analytical Determination of Particle Size Distribution for Bulk Solids 

- 21 - 

the possibilities to simultaneously acquire informative acoustic spectra related to the specific grain-
size setup of free-flowing mixtures [20]. 

Segregation is of critical importance in image analysis and can only be avoided if all particles are 
identical in size, weight and shape. Nevertheless, segregation is often assumed to be negligible, and 
checks on this assumption is very rarely carried out which can be fatal. In all practical applications 
segregation does occur – at some scale. The experiments examined in this paper are no different, 
witness that even the series 3 results indicated that some segregation had taken place: the model 
data summarized in Figure 20 showed that, on an overall basis, better results are obtained when a 
larger surface is used during the imaging. This was the case even though a rather large number of 
illumination sources were used when the small surface was examined. The present sample “depth 
thickness” is very small indeed compared to the gamut of industrial conveyor belt situations for 
example, in which one is naturally most often interested in the maximum mass flux possible, i.e. a 
high load per unit conveyor belt length := a thick sample depth. Thus, in the typical industrial set-
ting, segregations will have a (much) larger effect than realized here – a fact to contemplate in all 
IA projects. 

A technique similar to bed blending was used during pouring of the samples in this study, expressly 
in order to minimize segregation during pouring as illustrated in Figure 23.  

Figure 23. Bed-blending technique as used in this study. Whenever this technique is  used, the material should 
become as evenly spread out as physically possible compared to when the material is  poured into the sample 
container in one single pouring operation - which is a sure way of introducing maximum flow - and other segre-
gation effects. 

Whenever the bed-blending technique is used, the variability of re-pouring results should be signifi-
cantly reduced. Still the results using the two different surface areas were quite different in this 
study.  

Another way to minimize the imprecision associated with prediction of the actual lot value will be 
to use a large number of (physical reference, or imaging) replicates. This is in complete accordance 
with the principles of process sampling according to TOS [8-9,21-22]. In the present study, four 
imaging replicates were used, a number that preferably could be even higher in real-world imple-
mentations. However, the present study was undertaken to investigate whether this extended image 
analytical technique can at all be used for quantifying the frequency of particles having a certain 
size, wherefore it was of prime importance to use a consistent number of replicates between model 
alternatives. The results also indicate that it will be beneficial to use several illumination sources 
(imaging replicates) to minimize the image sampling – and hence the final prediction error. The 
balance and number of physical and imaging replicates should always be optimized relative to the 
specific practical usage of course. 

It is important to use an optimal type of camera for each specific application context. Two different 
cameras were tested in the initial experiments and the high-resolution camera from QImaging 
turned out to give marginally better models, which was expected due to the 3x increase in resolution 
compared to the camera from Sony. Other factors, such as the particle size in pixels (the effective 
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pixel size) and the fraction of the total particle number shown in each image (again, the effective 
pixel size), has always played an important role in determining if AMT can be used for feature ex-
traction from images. All images obtained in the final experiments encompassed a large number of 
particles within the Field-Of-View (FOW) with particle size ranging between approximately 1 and 
50 pixels (linear dimensions). In this study it was of paramount importance to have a large number 
of particles in each image. If an image displays only a few particles, the AMT algorithm will mainly 
extract features from the surface of each particle only, which in this case will contribute to the total 
amount of noise, whereas the feature extraction should rather focus on the differences in size be-
tween the particles. A large fraction of particles shown in each image will also contribute in making 
the images more representative of the material to be sampled, always leading to better prediction 
models. 

The present feasibility prediction models could almost certainly be further optimized using soft-
ware/hardware filters in order to enhance for example image contrast better. In the initial modeling 
phase various software contrast-enhancing filters were tried out with varying success, but improved 
prediction models were obtained.  If a color camera is used, this contrast enhancement must be done 
on each color channel separately. This often leads to differences in predictability for the different 
channels, but only very small variations were observed for the present study (series two). 

Two different illumination angles: 28° and 45° were examined, where the low angle option was 
found to be marginally better, absolutely in line with what would be expected; a low angle gives 
rise to larger shadows contributing to the overall more informative AMT feature extraction. The 
illumination angle should always be optimized locally in the pertinent problem-dependent context. 
Even though the differences are marginal in the present experiments, large differences in model 
predictability have been observed in previous experiments [23]. 

It might be argued that one could also have included interaction terms in the underlying experimen-
tal design used for investigating the many factors influencing the quality (contrast, definition) of the 
X-images of the sample surface. While we have made no formal ANOVA evaluation here, Fig.s 18-
22 in point of fact indeed were evaluated based on simultaneous considerations of the effects from 
all factors included. As essentially all individual prediction models were already highly acceptable 
in their own right (main factor effects), it was decided to rest the case and not to expand an already 
very large experimental campaign further: very nearly all alternative models already displayed 
slopes and r2 well above 0.90. It was decided to let potential, additional second-order improvements 
be part of the salient industrial, technological or scientific problem-context into which any IAS fa-
cility will have to be implemented under all circumstances. 

The AMT algorithms have not yet been optimized for on-line implementation, for which reason it is  
quite time-consuming to calculate both the gradient corrected images and the AMT-spectra. How-
ever, these algorithms can be optimized – possibly even for on-line use – after which a powerful 
computer can turn each image into a spectrum within a fraction of a second instead of minutes. 
With variable selection in the subsequent multivariate data analysis and a good camera for imaging, 
this methodology has shown good potential towards on-line implementation.  

It was observed that auto-scaling does not improve the prediction models for the material examined, 
contrary to very many general chemometric experiences. Recent, parallel work on the general features 
of the AMT method (by the AMT-consortium: results to be presented shortly in the proceedings from 
 SSC10) has lead to a full understanding of why this is so: It is not the relative information potential be-
tween X-variables that is important (as is  the case for e.g. spectroscopic X-data) – In fact different X-
variab les in the AMT “complexity spectrum” are fundamentally different in that they represent differ-
ent scale levels, between which there is no continuity analogue vis-à-vis spectroscopic spectra. As a 
consequence, the information content present in the absolute levels of AMT’s MA as well as the MDY 
spectra carries a very important part of the information to be correlated to the Y-data – hence no im-
provement by applying auto-scaling which relativize along the variable dimension of the X-matrix. 
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Why Does AMT Work in Characterizing Particle Size Distribution? 

AMT has been shown to describe textures in images very well (as a function of many features: in-
trinsic chemical particle properties, particle mixtures, particle surface characteristics, other) [4-5,16, 
23-25]. The success in describing particle sizes and distributions emerges from the use of a unilat-
eral, low-angle illumination, which creates intricate light and dark regions dominantly caused by 
particle surface protrusions and their shadows. An increasing particle size results in a larger dark 
region in the image. After unfolding, these regions are described using the all AMT-scales, where 
the compound, very complex, pattern of occurrences of dark regions will result in spectrum signa-
tures representing increased complexity. It is AMT’s greatest tribute that it is able to characterize 
such complex light-dark-shadow patterns at all scale levels simultaneously, and to be able to embed 
this complex information into a 1-dimensional complexity spectrum. This pattern of dark and light 
regions in gray-scale images has here been shown to be quantitatively related to the particle size and 
- distribution, but only because of the powerful use of PLS-R employing the full-spectrum advan-
tages well-known from e.g. NIR-spectroscopic experiences [18]. This operative proportionality is  
partly seen here only because the Theory of Sampling was used to counteract the segregation issues, 
thereby increasing the 2-dim / 3-dim matching. 

CONCLUSIONS
A final, optimized data set consisting of 22 natural sands extracted from different beaches along the 
western Danish coastline were subjected to a new image analytical technique, Image Analytical 
Sampling, for simultaneously characterizing the salient spanning particle size classes as well as D50.

The technique was first developed through optimization of the experimental imaging parameters. 
For the final modeling and prediction experiments a QImaging camera and a LHS-500 lamp with 
unilateral illumination at an angle at 28° was used. The red color channel was chosen for subse-
quent multivariate AMT + PLS-regression. The results were clearly improved after removal of a 
linear illumination gradient on all images. Such a gradient should always be avoided because it in-
creases computational demands severely. However, for studies on particle size/shape, a unilateral 
oblique illumination source must be used, since this illumination setup is necessary for optimal 
definition of sample surface morphologies. 

Implementing the Theory of Sampling (TOS) was demonstrated to be critical for the type of aggre-
gates (sand) samples examined; the prediction models were clearly improved by use of a larger sur-
face area (composite sampling), expressly counteracting segregation of each sample as it was pre-
sented (poured) to the camera. 

Acceptable, indeed very good prediction models were obtained for the following parameters: 

• D50
• Size classes: 1.400, 1.000, 0.710, 0.500, 0.355, and 0.255 mm. 

The remainder of the 16 original size classes can most likely be modeled with equal success subject 
only to a better calibration span that what was available in this naturally generated data set. There is 
no loss of generality by natural sands not necessarily displaying a full grain size span in each of all 
16 size classes routinely sieved for in the sedimentological laboratory. The salient conclusion is 
two-fold: 1. IA/AMT is fully successful for classes falling within the specific grain size ratio brack-
ets for the material at hand. 2. There are limits for application of this new technique, most specifi-
cally an average grain-size contrast ratio bracket, which is material-dependent. These findings are 
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identical to those earlier presented but using acoustic chemometrics [20,26]. Careful calibration, 
using fully representative sample training sets, is the only way forward pushing this envelope.  

The developed image analytical technique has shown its full applicability to particle size determina-
tion in general (size-fraction mixtures), but this is not a conclusion specific only for sand(s). The 
conclusions can be carried over and even expanded into several other scientific and technological 
research areas as well as industrial production sectors for a range of solids and aggregate materials, 
e.g. in powder technology and bulk materials handling, where characterization in which grain-size 
distribution or size-fraction mixing determination is on the agenda. Because the AMT algorithm 
always extracts all potentially interesting scales from an image, to be calibrated for one or more Y-
features of interest in each specific application case, it will be easy to expand this technique to such 
applications. During the last five years of AMT applications, different parameters have been mod-
eled for, such as: powder flow properties, growth rate, mixture composition and water content, 
which have all been successfully modeled for materials including solids, suspensions and liquids [4-
5,16,23-25]. The carrying-over potential would appear significant. 
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Abstract

We here present a comprehensive survey of current mass reduction principles and hardware available in the current market. We conduct a

rigorous comparison study of the performance of 17 field and/or laboratory instruments or methods which are quantitatively characterized

(and ranked) for accuracy (bias), reproducibility (precision), material loss (external as well as internal loss), user-dependency, operation time,

and ease of cleaning. Graphical comparison of these quantitative results allow a complete overview of the relative strengths and weaknesses

of riffle splitters, various rotational dividers, the Boerner Divider, the ‘‘spoon method’’, alternate/fractional shoveling and grab sampling.

Only devices based on riffle splitting principles (static or rotational) passes the ultimate representativity test (with minor, but significant

relative differences). Grab sampling, the overwhelmingly most often used mass reduction method, performs appallingly—its use must be

discontinued (with the singular exception for completely homogenized fine powders). Only proper mass reduction (i.e. carried out in

complete compliance with all appropriate design principles, maintenance and cleaning rules) can always be representative in the full Theory

of Sampling (TOS) sense. This survey also allows empirical verification of the merits of the famous ‘‘Gy’s formula’’ for order-of-magnitude

estimation of the Fundamental Sampling Error (FSE).

D 2004 Elsevier B.V. All rights reserved.

Keywords: Mass reduction; Sampling; Riffle splitter; Shoveling; Boerner Divider; Rotational divider; Grab sampling; Representativeness

Sampling is nothing but representative mass reduction.

[Pierre Gy]

1. Introduction

The archetype error of ill-reflected sampling is to focus

on getting to the final sample volume much too early in the

sampling process. Instead of only focusing on securing as

quickly as possible the desired representative samples

(which cannot be evidenced from the physical samples

themselves) of the final sample volume/mass, the Theory

of Sampling (TOS) stipulates that only a properly designed

and controlled sampling process can facilitate this. Only

TOS tells comprehensively how and how much material to

extract from a lot. For many types of heterogeneous material

often the extracted primary sample has to be of a quite

substantial size in order to be representative, and this places

stringent demands on the sampler (the sampling instrument),

for instance if the sample is used for chemical analysis,

where typically only 1 g, or a fraction hereof is required.

Usually, there is a very long way from the size of the initial

lot—via the primary sample—to the final analytical sample

mass (Fig. 1). Typically mass reductions of the order of

1:1000 to 1:100.000 have to be invoked. It is therefore of

the utmost importance that all sampling processes make do

only with representative mass reduction. Unfortunately

many designs and implemented hardware look at mass

reduction as a pure materials handling reduction in terms

of weight per se. It’s quite another thing to be concerned

with the degree of representativity of the reduced mass

fractions.

Also, usually emphasis is on getting a valid analytical

result, in the sense that the amount of the analyte in the final

sample, aS, makes do—while TOS emphasizes that only the

corresponding estimate of the lot concentration, aL, carries

the information sought. There is a world of difference

between these two concentration estimates—the entire

0169-7439/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.chemolab.2004.03.020
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1:100 to 1:100.000 mass reduction lies in-between! In the

present work we focus on how to reduce the size of any

sample (lot, or primary sample) without sacrificing the

crucial representativity prior to analysis.

Here we shall not discuss the issues concerning how to do

the primary sampling, as this is amply covered in the basic

sampling literature [1–14]. Here we are exclusively oriented

towards the subsequent mass reduction process(es) involved

(principles, methods and hardware: design and mainte-

nance). Even when the extracted primary sample is repre-

sentative of the lot, it will still be up to the subsequent mass

reduction process whether the secondary-, tertiary-, labora-

tory- and instrumental sample preparation sub-sampling

leads to the desired results or not, i.e. whether the mass

reduction is ‘‘correct’’ or not in the full TOS sense [1–3,14].

We intend to show that making sure that all mass

reduction steps are correct allows for a certain indispensable

freedom in the sampling process in the sense that one is now

free to make the primary sample mass, MS, of any size

necessary (due to the heterogeneity of the material, etc.).

This means that having to take a large primary sample is no

longer a problem. One simply has to reduce this mass before

transportation, storage or analysis in order to save time and

money. Thus proper mass reduction comes to the fore at all

stages in a compound sampling/mass reduction staged

process. The principles and procedures examined here are

all operational over this entire range, from reducing the

primary sample (orders of magnitude span 1 kg–1 ton, or

more) all the way down to an analytical mass of the order of

grams, micrograms or even smaller.

In slightly more detail: In order for all mass reduction

methods or devices to work properly it is critical to respect

all the key principles of TOS, primarily that all constituent

fragments of the lot must have equal, non-zero, probabilities

of ending up in the final sample. This necessitates complete

randomness in the selection process of the constituent frag-

ments (units, groups or sub-samples). We here refer to the

literature on proper sampling [1–14].

The present paper focuses on 17 current methods and

devices commonly used for mass reduction, which have

been tested and assessed with regard to a number of

characterizing parameters, among which the most prominent

are accuracy and reproducibility (precision), constituting the

definition of representativity [1,2,15–17]. But in the present

comparison study we are in fact interested in the quality of

both the average composition estimates resulting from mass

reduction operations as well as in the variances of repeated

assessments of the performances of the various instruments

employed (replicating the entire mass reduction process).

Also, other, more practically related parameters such as

operating time consumption, user-dependency and device

cleaning requirements, etc., are included in the final overall

presented below.

This study is complementary to the one by Gerlach et al.

[17], who performed a survey of five field-sampling techni-

ques. Gerlach et al. was interested in testing robust, quick

and efficient methods for soil splitting in the field (methods

included were riffle splitting, paper cone splitting, fractional

shoveling, coning and quartering and grab sampling, three

of which are also covered here), whereas we are more

oriented towards major undertakings associated with indus-

trial and routine laboratory sampling in general. One major

difference is that whereas Gerlach et al. only used synthetic

samples, we use naturally occurring materials making up

99.90% of all compositions investigated.

2. Material system and analytical procedures

Which material system for comparison purposes would

be optimal? Should the material system reflect one dominant

situation (necessarily with a relatively smaller range of

potential applications fields) or should one strive for as

general a material system as possible? What would consti-

tute the latter? This issue is intimately related to the very

purpose of mass reduction—here mass splitting is specifi-

cally used for the purpose of representative sampling, so the

possibility to make generalizations from our survey is of

prime importance. Accordingly we have laid down the

following criteria for the design of an optimal comparison

material system:

(1) The system must reflect both major concentrations,

intermediate as well as trace concentrations. For this

purpose we have chosen the following levels: 89.9%,

10.0% and 0.1% (1000 ppm).

(2) The material system must be sensitive to flow

segregation (indeed also to all other manipulation

segregations as far as possible: roll segregation, etc.).

This is in order for the system to exhibit a significant

degree of segregation as an inherent part of the mass

reduction process. We have chosen one component

(0.1%) with a very smooth surface (the trace concen-

tration component), one smooth component (10.0%)

Fig. 1. Do not focus on directly getting the final analytical volume too early

in the sampling process—representative mass reduction does all the work.
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and one with slightly softer surface characteristics

(89.9%).

(3) It is equally important in the present context that at least

some (one, two) of the chosen components also show a

significant propensity for ‘‘rebounding’’ when impact-

ing on hard surfaces, as this is an inherent weakness in

the design of some mass reduction tools (while being

better counteracted by others).

We have stipulated these requirements in order for the

comparison system to represent a fair worst case scenario;

we wanted to test the 17 approaches to be compared

exclusively from the point of view of their performance in

such a realistic, difficult situation. It is of course trivial to

generalize to less adverse situations.

The result was a system of mixed wheat grains, rape

seeds and glass spheres, with concentrations 89.9%, 10.0%

and 0.1% w/w, respectively. We deliberately chose glass

spheres as the trace component, in order to represent, e.g.

an impurity (an artifact component), so we did not object to

this being an artificial component. We also took great care

in designing a material system in which the average grain

size, and density, for all three components were not

significantly contrasted, in order not to end up in patho-

logical situations (extreme size and/or density agitation

segregation). The average grain sizes of wheat, rape seed

and glass spheres were: 6.0 (by 3.0 as a ‘‘cylinder’’), 2.6

and 1.0 mm, respectively. Their average densities were:

0.75, 0.77 and 2.60 g/cm3. We believe that the chosen

system does a good job standing in for a very wide range of

industrial and laboratory material systems of aggregate

materials and powders with respect to these physical design

characteristics. It is admittedly very sensitive for flow

segregation, but so much the better when the objective is

to test the performance of purported universal mass reduc-

tion tools.

Mixing of this lot material prior to all mass reduction

experiments (always carefully weighed in completely iden-

tical proportions) was carried out by randomly shaking a

plastic bucket for 2 min (mechanical shaking and mixing).

A lot mass of 2 kg were to be mass reduced to get either 100

or 125 g in the final sample, depending on the nature of the

method or device (i.e. dependent upon which split ratios

could be obtained with the specific methods). After every

pass of mass reduction, the composition of the resulting sub-

samples was determined, using a screening system consist-

ing of two sieves and a bottom collecting pan, all mounted

on a shaking table (Fig. 2), which collected the wheat, rape

seed and glass, respectively. The screen sizes were 2.8 and

1.5 mm. We initially performed a set of screening verifica-

tion experiments; the results showed that the efficiency of

separating the three components used was completely sat-

isfactory since the three components were fully separated.

After separating the different fractions of the final re-

duced samples—as well as the very important fractions of

the left-over material (i.e. material rebounded out of the

receptacle bins, etc.) were weighed individually by a labo-

ratory analytical weight. Weighing was chosen as ‘‘analy-

sis’’ because of the minimal error associated with this,

estimated at 0.01% relative. The masses were used to

calculate the analytical result, aS.

The same mass reduction/sub-sampling/weighing proce-

dure was repeated 20 times in blocks of 10 by two operators

(the two first authors) for all methods and devices investi-

gated. A replication rate of 20 allows for highly trustworthy

statistics, which is deemed necessary in order to reach

significant conclusions as to reliable, accurate and precise

comparability and ranking. Inclusion of two operators in all

experiments represents inclusion of inter-operator errors in

the overall mass reduction errors estimated in our survey,

adding to the validity of a most realistic working situation. If

anything, the experimental setup was stacked to reflect a

(very) difficult situation indeed.

3. Devices and methods

3.1. Riffle splitting

The most well-founded method for mass reduction is

riffle splitting. Riffle splitters can be constructed in

several different ways, of which many are in accord with

TOS principles and equally many are not. If designed and

used correctly it provides a very stable, reliable and

inexpensive method for mass reduction with reasonable

speed.

3.1.1. Principle

The general principle is that the sample to be divided is

introduced to a rectangular area, divided by parallel chutes

leading to two separate receptacles. For this device to work

properly it must be designed according to a few essential

rules. There have to be an equal number of chutes of which

every second leads to the two alternate receptacles. The

chutes must all have the same size and form; the wall

material must be thin in relation to the wall-to-wall dimen-

sions of the chutes themselves. It is also important that no

chute can be over-represented when introducing the sample

Fig. 2. The screening system.
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into the device, for instance by a non-correct design of the

sample holders or by a cone-shaped inlet collar in the

longitudinal direction. The higher the number of chutes,

the better the device splits the sample, both in terms of the

splitting bias between the two splits as well as with regard to

the variance of repeated splits, as shall be amply demon-

strated below. The width of the chutes also has to have a

certain minimum width which depends on the particle size,

in order to prevent blocking (large particles) or bridging

(powders) [18]. An empirical rule-of-thumb stipulates that

chutes must be wider than three times the maximum particle

size or two times this plus 5 mm, since even extremely small

particles should not be split using smaller chute width than 5

mm. The general literature on TOS has exhaustive analysis

and discussions of correct design principles of riffle split-

ters, which must be consulted before acquisition of any riffle

splitter [1,2].

3.1.2. Use of riffle splitters

It is, however, not enough to have access to a correctly

designed riffle splitter. In order to obtain a representative

mass reduction, the device also has to be used—and indeed

cleaned and maintained—correctly. There are a few simple

rules that must be followed, which may be summarized as

follows:

1. The sample must be spread out equally over the whole

length of the feeding tray.

2. The feeding tray must have exactly the same width as the

rectangular receiving region of splitter; there is thus no

need for inclined inlet collars, etc., in the longitudinal

direction.

3. The sample must be fed perpendicularly to the

longitudinal axis along the device; the sample must be

fed precisely on to the center axis.

4. No particles can be allowed to bounce out of the

receiving trays or the splitter.

5. The split sample (or the portion to be split further) must

be chosen at random.

If these rules are obeyed, any split portion should (in

theory) not be systematically biased by the splitter. Fig. 3

shows some of the errors than can result from incorrect

design and use of riffle splitters. To understand the impor-

tance of the design it is important to remember that even

though the sample is evenly spread over the width of the

feeding tray, it cannot in practice become homogeneous and

this will lead to (minor) differences between the feed for the

individual chutes.

3.1.3. Device description

In the present work six different riffle splitters of the

basic design described above were tested. During the

experimental runs several optimizations on existing devices

and the design of a new device took place. This is described

in further detail in a later section. The splitters used are

named according to design and for easier distinction as

follows:

� The animal feed splitter
� The seed splitter
� RK 10 chutes/20 mm width splitter
� RK 10 chutes/30 mm width splitter
� RK 18 chutes/16 mm width splitter
� RK 34 chutes/10 mm width splitter

The latter four are manufactured by the same company

and three of these are designed in an exactly identical

fashion, only scaled-up. The 34 chute splitter differs, since

it represents a completely new design resulting from the

present work. In the following sections the individual

splitters are further described.

3.1.4. The animal feed splitter

This divider (Fig. 4) has 10 chutes and is used by the

Danish Ministry of Agriculture’s department of animal feed

testing. The chutes are 27 mm wide. The design has several

apparent errors, but also some advantages. The device has

three identical trays, two used for receiving and one for

Fig. 3. Schematic illustration of the critical importance of correct riffle

splitter design.
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feeding. The trays can be switched freely, making handling

easier. The greatest advantage is that it can be taken apart for

easy cleaning.

One of the obvious errors is found in the design of the

trays, since these are narrower than the top of the divider

and the section for the receiving trays. This makes the

introduction of the sample to the divider and the reception

of the sub-samples unavoidable sources of bias. If the

reception trays are placed wrongly, which easily happens,

some of the material is lost completely since it does not even

hit the reception trays at all. Fig. 5 shows a close-up of the

side of the divider when one of the receiving trays is placed

wrongly. It is observed that almost half the material hitting

the uttermost chute will be lost.

Another error is the open design of the top of the splitter,

where many particles (especially rape seed) are observed to

bounce out of the device during operation. The Feed Splitter

is greatly dependent on the user because of the pouring

mechanism. This cannot be avoided in the current design.

3.1.5. The seed splitter

This device (Fig. 6) is used by the Danish Ministry of

Agriculture’s department of seed testing and has 20 chutes

of width 10 mm. The design again has errors, but also some

good features.

The errors consist of the open design of the section

between the feeding tray and the chutes. Much material is

lost in this region due to particles bouncing out of the

splitter. The advantages are found in the feeding mecha-

nism, which makes handling easy and also minimizes the

possibility of operator introduced errors. This splitter can

also be taken apart for easy cleaning. The relatively high

number of chutes (20) makes the splitter more reliable than

the previous one. A nice detail is that the leading edges of

the blades between the chutes are sharpened to minimize

particle bouncing. The feeding tray is nicely aligned with

the sides of the splitter and no error is thus induced from

this.

3.1.6. The RK splitters

Three of the four splitters from ‘‘Rationel Kornservice A/

S’’ (RK) are designed from the same basic principles. The

only features changing are the number of chutes, the width

of these chutes and the resulting overall dimensions of the

devices. The splitters consist of two separate reception trays,

a splitter and a swinging, mounted feeding tray (which can

be easily dismounted however if need arises). These splitters

are delivered with extra plates for insertion over the chutes

to minimize sample loss due to bouncing. The reason that

these insertion plates are not permanently installed is only

that the splitters are also used for grass that has a tendency

to clog up the device if this inner clearing is too narrow.

These plates were installed on all the splitters used in the

current experiments, except the RK 10 chute (20 mm) and

RK 34 chute (10 mm) splitters.

There are errors in this design too. The first relate to the

fact that the feeding trays are slightly narrower than the top

of the splitters. This, however, is possibly only of marginal

importance, since the error is the same in both distal ends,

and thus both reservoirs are underrepresented from the

outmost chutes by approximately the same amount. The

splitter is not easily cleaned since it cannot be taken apart.

The advantage on the other hand is equally obvious since a

Fig. 5. Unwanted design error for the animal feed riffle splitter. If the tray is

placed wrongly, as is very easy, almost half the material hitting the most

peripheral chutes is lost.

Fig. 6. The seed splitter.

Fig. 4. The animal feed splitter.
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minimum of particles are lost during use because of the

closed design; another advantage would be that the sample

is presented to the splitter in exactly the same way every

time, because of the fixed feeding tray. Fig. 7 shows the

principle design and use of these RK splitters.

The last of the four RK splitters is a result of an ongoing

collaboration between ACACSRG and Rationel Kornser-

vice A/S to build a better splitter. The new design has

several improvements, mainly in the increased number of

chutes (34) and the optimized feeding tray. In the next

section this device is described in detail.

3.1.7. RK 34—device optimization

The new design differs from the old mainly in the

feeding device and the number of chutes. Designing the

new feeding mechanism started by checking out the idea of

using the same principle of a mounted feeding tray as the

seed splitter. This turned out to be a very constructive idea

and the design process continued on this basis. The solution

sought had to eliminate the step of pouring material from

one of the previous receiving trays into the feeding mech-

anism, since this introduced rolling and trajectory segrega-

tion as well as impact effects. When spreading out the

material as evenly as possible in the feeding trays, these

effects lead to bias of the results. The final solution was

simply to furnish the feeding mechanism with a slot for

directly inserting one of the previous used receiving trays

(Fig. 8).

When tipped, the sample is poured into the conically

inclined interior of the feeding device. This minimizes the

effect of segregation drastically. The conical delivery funnel

only opens when the tray is tipped all the way and gently

brought in contact with the chute area in the splitter due to a

small activation/stopper pin. Also, the width of the opening

can be regulated by this controlling pin (Fig. 9).

Several lengths of the feeding funnel were tested out, to

see if a shorter delivery path along which the particles can

segregate would increase splitter precision of repeated

operations. This was not the case and therefore the final

design was kept to minimize size and weight configuration

for both economical and practical reasons. The resulting

splitter looks exactly as in Fig. 8, but with a shorter feeding

funnel. As in the previous design there is indeed in principle

introduced a very small error since the feeding tray is

slightly shorter than the splitter length by the width of two

individual chute walls; this would appear almost totally

negligible however, since in the longitudinal direction this

foreshortening amounts to 1.6 mm/359.6 mm, or 0.4% only.

Since we were in fact unable to demonstrate any effect of

this error, the design was consequently kept as is. The

results of the present overall survey were not known to us

at the time when we decided to stop the development

process of the present apparatus. Only later it was learned

that this prototype RK 34 riffle splitter indeed outperformed

all other riffle splitters in the present study, so this error truly

must be exceedingly small. For more homogeneous systems

the old (long) feeding trays can still be mounted, since these

fit into the same socket as the new one. This also opens the

possibility of changing to the new feeding mechanism on

existing dividers, etc. RK has since the ending of the present

work declared that all future splitters (all sizes and models)

will be built according to this new design.

Fig. 7. The 10 chutes/20 mm width splitter (left) and the 18 chutes/16 mm

width splitter in action (right). Notice the closed design resulting in minimal

material loss.

Fig. 8. The final RK 34 design, using an insertion slot for a third tray in the

feeding device.

Fig. 9. The feeding tray opens ‘‘automatically’’ when tipped and gently

pressed against the chutes. This takes place exactly at the center

longitudinal axis. The small pin is inserted for controlling the width of

the opening.
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3.1.8. Experimental run

The riffle splitter experiments were carried out in iden-

tical fashions for all methods. The 2 kg were divided four

times to get approximately 125 g in the final sample. After

each split the tray to be further divided, or the final sample,

was selected at random. The practical procedures for the

individual splitters were necessarily a little problem-depen-

dent, but all efforts were made to follow the rules of correct

use. The material was poured into the feeding tray and

spread evenly over the entire width with the greatest care in

order to allow all methods to compete evenly and fairly. The

material was then fed along the center axis of the chutes

with a steady flow in order to minimize bouncing, especially

of rape seed. All RK riffle splitters tested were fast and easy

to use. The three older designed splitters can all be some-

what user-dependent, since pouring the sample into the

feeding tray can vary. By using the improved design this

user-dependency is minimized or fully eliminated.

3.2. Revolving splitters

Revolving splitters are based on the same principle as

riffle splitters. The revolving feeder distributes the sample

material equally (in time) over a number of radial chutes,

assuming constant rotational speed. These devices are very

easy to use, since one only needs to pour the material to be

divided into a hopper, thereby getting one or several reduced

splits. They also require very little preparation and clean-up

and split the sample very fast. The latter of course depends

on the rotating speed as well as the influx velocity of the

material through the feeding funnel. The essential principle

here is that every second radial chute contributes to one of

the two alternative collecting reservoirs.

Since a larger number of sub-samples in this context give

more representative samples it can be desired to increase the

total number of revolutions. This can be done by using a

smaller outlet size of the hopper. Also, size, slope and

rotation speed of the inlet tube can be altered to change

the outlet speed.

3.2.1. Vario Divider

With a revolving variable sample divider named ‘‘Vario

Divider’’ (Fig. 10), it is possible to get a mass reduction

ratio as small as 1:100, depending on the nature (mainly

particle size) of the material to be split. Some models

include the possibility of getting several final samples.

The lot material is poured into a hopper (1) from where it

is led to a revolving feeder (2). From here the material is led

either to a chute opening (11) or to the bottom as left-over

material (9). The divider shown gives two equivalent

samples (7 and 8).

When using the model type 1G/1–4 on the current

sample composition, it is only possible to get a sampling

ratio of 1:9 because of the particle sizes involved. To obtain

a sample of 100 g it is necessary to realize a sampling ratio

of 1:20. The sample therefore had to be divided in at least

two steps, which allows for a realistic testing of the Vario

dividing principle.

Two different multiple-step settings were tested: sam-

pling ratios of 1:4 + 1:5 and 1:2 + 1:2 + 1:5. Splitting the

sample in three steps is of course more time demanding;

however, we found this to be only minimal in practical

terms. In general, using more steps results in a larger

sampling error since every single step is error generating.

Again, this is setting the comparison study with the most

stringent demands on the performance for this device type.

Only a marginal sample loss was observed. This was

exclusively caused by rebounding of the rape seeds from

the sample boxes. Therefore almost no maintenance or

clean-up was necessary, and the method must be classified

as very easy and fast to use. Since the user only has to pour

the sample into a hopper, neither any user-dependency is

observed.

There has been a certain theoretical discussion regarding

the possibilities of such devices to deliver correct (repre-

sentative) split samples, mainly related to the variable

portion of left-over material—we here refrain from entering

into this discussion, but are the more happy to include

examples of these Vario Dividers into the set of devices to

be compared and ranked. We will let the empirical perfor-

mance of these revolving riffle splitters speak for itself.

3.2.2. 32-Divider (fixed ratio)

With the 32-Divider (fixed ratio), Fig. 11, it is possible to

get the lot material divided into 32 supposedly equal sub-

samples (so the design objective claims).

The principle used for this divider is identical to that for

the Vario Divider, but without any variability whatsoever.

The whole cross-section area is divided into 32 fixed chutes,

so that the lot material is split completely, and there is no

left-over material at all. The constant rotation of the revolv-

ing feeder causes the lot material to be equally divided

amongst the 32 chutes giving 32 sub-samples.

Fig. 10. Vario Divider. 1: hopper, 2: revolving feeder, 3: motor, 4: chute

closer, 5 and 6: sample outlets, 7 and 8: samples, 9: left-over material, 10:

chute opening handle and, 11: chute [19].
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Two of the 32 sub-samples were joined into one com-

posite sample of approximately 125 g; these two sub-

samples were always selected at random from the 32

candidates. The tested divider was fairly easy to use, but

required the user to attach plastic bags to each of the 32

tubes. This did of course affect the preparation time for each

split, but since this is only a practical, and easily solvable

problem, it should not be taken into serious account.

Besides this minor attachment work it was regarded as a

fast and easy mass divider to use, with no maintenance. If

the sub-samples are extracted at random, neither systematic

differences nor user-dependencies are expected to influence

the splitting results.

3.3. Shoveling methods

3.3.1. Spoon Method

The Spoon Method can be used to achieve relatively low

sampling ratios. This method is somewhat related to the

principles behind bed blending, but weakly at best [1,2,20].

The lot material is spread out in an even layer: the lot is

poured out on a flat surface as a thin string in an s-shape

movement in one direction. This is subsequently repeated in

the traverse (90j rotated) direction, then this procedure is

repeated again and so forth until all of the lot is poured into

the tray, as shown in Fig. 12.

After the laying out step, the spoon method simply

consists in extracting a ‘‘sample’’ by using a spatula and a

small spoon ensuring that the bottom of the tray is reached

(Fig. 13). Several sub-samples, increments, are extracted

and joined as the final sample, reducing the effect of the

grouping factor [1,2]:

c ¼ NF � NG

NG � 1

where NF is the number of fragments in the lot and NG is the

number of groups, or increments, in the lot.

It is important that the final sample is composed of as

many increments as possible. To make sure that uncompro-

mised increments can in fact be extracted, and thereby

reducing any incorrect sampling errors (ISE), the lot mate-

rial has to be spread out in a layer of a certain thickness. The

extracted sub-samples have to be extracted completely at

random from the whole lot to get a probabilistic sample. The

method is generally time consuming, tedious, and greatly

user-dependent. By following the guidelines mentioned

above the user-dependency will be somewhat reduced.

In practice, the final sample in the present experiments

was composed of five increments (Fig. 14), which resulted

in an average mass of 115 g. Some sample loss always

occurred due to problems (selective losses) during incre-

ment transfer to the sample box.

3.3.2. Alternate shoveling

The alternate shoveling method can be used to split a

sample into two samples with almost equal weight, hope-

Fig. 12. The pattern used for spreading the lot material in the tray.

Fig. 13. Extraction of sample using the spoon method.

Fig. 14. Box after random sample extraction by the ‘‘spoon method’’.

Fig. 11. The 32-Divider.
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fully also of almost equal composition. TOS has made

thorough analysis of this general approach [1–3], and there

are many pitfalls which are almost universally unavoidable

in practice. The equality of the final samples obtained by

this method will also be highly dependent on the nature of

the material sampled.

The method is based on the principle that all extracted

shovelfuls from the original sample are deposited sequen-

tially in two alternative heaps as illustrated in Fig. 15.

It is important that all extracted shovelfuls are selected at

random from the initial lot and that all increments have the

same (approximate) size. Each heap should consist of an

equal number of shovelfuls. One heap should only consist of

all even-numbered samples while the other should only

consist of all odd-numbered samples. By ensuring that all

shovelfuls are carefully selected at random, the condition of

sampling equity is preserved thereby minimizing the risk of

a systematic bias to some degree.

Four full splits were necessary to obtain a final sample on

approximately 125 g in our experimental runs. Some sample

loss was observed due to the practical handling of

shovelfuls. Different samplers (operators) will definitely

have unequal impact on the quality of the final reduced

samples, since the shoveling can vary greatly from user to

user.

3.3.3. Fractional shoveling

With true fractional shoveling it is possible to divide the

lot material into N sub-samples instead of only two.

Shovelfuls are extracted from the lot material and deposited

into N distinct heaps. In Fig. 16, true fractional shoveling

with N = 5 is shown.

The shovelfuls should again all be extracted at random

from the lot material and should be (approximately) equal in

size. Each heap should consist of an equal number of

shovelfuls. All extracted shovelfuls should be alternated

from heap one to heap N.

To reduce the initial 2 kg into approximately 100 g the

sample was first split into five heaps. From these five heaps

one was chosen randomly and further divided into four

samples at approximately 100 g each. This method can also

be slow, tedious and user-dependent.

3.3.4. Grab sampling

Grab sampling is the easy choice for extracting a

‘‘sample’’ and is (unfortunately) very often the preferred

choice in practical sampling situations. One sample only is

extracted to represent the whole lot. Grab sampling is the

archetype sampling error at work. The focus is exclusively

on getting the final sample mass directly in one go!

However, a grab sample may also result from joining

several increments (sub-samples), to produce a composite

sample, which in general should result in a more repre-

sentative sample. Grab samples are typically taken by a

Fig. 15. Alternate shoveling.

Fig. 16. Fractional shoveling with N= 5.

Fig. 17. Grab sampling.

Fig. 18. Boerner Divider.
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scoop or a shovel, depending on the size of the original lot,

etc.

To obtain a truly representative sample all virtual units

making up the lot per force must have the same probability

of being selected. With grab sampling this manifestly

neither can be, nor hardly ever is, the case. The singular

sample to be extracted by grab sampling is of course also

often taken from an(y) easily accessible part of a lot, i.e. the

top. Grab sampling is therefore often classified as determin-

istic sampling.

Extracting a sample from the bottom of the lot in Fig. 17

was difficult as in most cases (extraction shown in the

figure). The sample domain was divided into six virtual

areas. Each grab sample was extracted at random from one

of these six areas thereby counteracting unwanted system-

atic bias. It was attempted to extract the sample from the

whole virtual area by pushing the scoop to the bottom and

withdrawing it slowly upwards.

If such ‘‘samples’’ are erroneously accepted, grab sam-

pling is a fast and easy choice. If the final sample is to be a

probabilistic sample it can be time consuming, very often

difficult or downright impossible to get correctly sampled

increments. Lastly grab sampling is always user-dependent.

Following TOS, grab sampling is supposed to perform the

worst of all alternative mass reduction approaches. It was

therefore a natural must for the present comparison purpose,

if nothing else as a (bad) benchmark.

3.4. Other methods

3.4.1. Boerner Divider

Using the Boerner Divider (Figs. 18 and 19) it is possible

to divide a sample into two app. equal half-splits. The

halved samples can iteratively be divided again, etc., until

a satisfactory sample size has been reached.

The initial sample is poured into a hopper. When the

hopper’s bottom-shutter is opened the sample is directed

down onto the top of a cone. Since the sample is flowing

downwards by gravity it should be spread out evenly in all

azimuth directions. At the bottom of the cone the material is

led through a number of alternative chutes which are so

connected so as to lead the alternate part-streams into the

resulting two half-sample splits.

The Boerner Divider is very easy and very fast to use.

Set-up and maintenance is straight forward, but some

sample loss can occur during use, depending greatly on

the nature of the material to be split. Especially bouncing

materials such as rape seed and glass pellets can be a

problem. To avoid any systematic differences from one side

of the splitter (receiving tray) to the other it is also here

important to choose one of the two receptacle trays

randomly.

The initial 2 kg material lots in the present study had to

be divided four times to get a sample size of approximately

125 g. Some loss of material was observed primarily due to

the design of the receptacle tray combined with the nature of

the glass and rape seed used.

Two different Boerner Dividers were tested; one will be

referred to as calibrated, the other as non-calibrated, mean-

Fig. 19. Boerner Divider at work.

Fig. 20. Standard deviation of the final sample mass.
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ing that the hopper was slightly off-centered and that the

receptacle bins where open. For the non-calibrated divider

this could lead to over-representation of some chutes and a

fair amount of lost material. Figs. 18 and 19 show the non-

calibrated divider.

4. Results and discussion

4.1. Characterizing parameters

In order to evaluate and compare the above methods a

system is developed for characterization by a selected set of

mass reduction quality parameters. These parameters are

described shortly below.

4.1.1. Mean and bias (concentration)

After performing the splits or the individual mass reduc-

tions, the results are characterized by the arithmetic average

concentration for all three materials after the universal 20

repetitions. This parameter is very important in practice

since it characterizes the method’s ability to perform splits

and leave the sample with the same composition as the lot

material.

Themean is a measure of the accuracy of the method when

assessed against the true xLot (aL). The bias is simply

Fig. 21. Relative bias of the final sample mass.

Fig. 22. Relative bias for the concentration of wheat.
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calculated as the average concentration minus the true

(known) concentration of the lot, xLot (or aL). The bias is

also presented as a relative value showing the percent wise

deviation from 89.9, 10.0 or 0.1% w/w. The relative bias is

calculated as:

Relative bias ¼ 100� 100 � xLot
x̄

4.1.2. Standard deviation (concentration)

In order to characterize the dispersion of the results

around the mean, the standard deviations are calculated.

The formula used is based on sample statistics (i.e. a

statistical sample selected from a large population), since

20 results is not (statistically speaking) really a large number

of replicates. The square of the standard deviation, the

variance, represents a measure of the reproducibility of the

method (precision in statistical terms).

4.1.3. Mean and bias (mass)

The ability to extract the wanted mass of material for the

sample is characterized by the mean of the masses. This is

an important factor in industrial, laboratory as well as field

sampling, where samples often have to be of more or less

constant mass.

Fig. 23. Relative bias for the concentration of rape seed.

Fig. 24. Relative bias for the concentration of glass.
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4.1.4. Standard deviation (mass)

Again, the dispersion of the individual runs around the

mean is presented as the standard deviation.

4.1.5. Loss of material

In order to characterize the method it is also interesting to

find out to what degree it causes loss of material during

mass reduction. This parameter is also related to the

recovered mass of the three fractions in the sample as well

as to the residue (material adhering to walls or other surfaces

in the apparatus after completed splitting); the residue is

estimated as the mass of cleaned-out material. Loss is

simply calculated as the initial mass (2 kg) minus the sum

of these two recovered weights.

4.1.6. Representativeness

Representativeness is authoritatively defined by Gy [1]

and is the only statistic term that includes both accuracy and

reproducibility (precision). Many authors, standards and

norm writers use the term representative only very loosely

and very often without a proper mathematical definition.

Normally this characteristic is used for setting a lower limit,

with which a representativity statistic for a particular split

has to comply in order to be acceptable. In this work

Fig. 25. Standard deviation for the concentration of wheat and rape seed.

Fig. 26. Standard deviation on the concentration of glass.
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however we use it strictly for comparative purposes. The

representativeness is defined as the mean square of the

selection error, SE, i.e. the sum of the squares of the mean

and standard deviation of the selection error [2]:

r2ðSEÞ ¼ m2ðSEÞ þ s2ðSEÞ

where the selection error in turn is defined as:

SE ¼ aS � aL

aL

Here aS is the grade of the critical component in the sample

and aL is the grade of the critical component in the lot

material. The latter is known without any uncertainty in our

runs, since we carefully prepared the same initial lot

composition for each experiment.

4.1.7. Processing time

In order for the method to be attractive, for instance for

handling a high throughput of samples (commercial labora-

tories, government and other regulating bodies, etc.), pro-

cessing time has to be relatively low. The parameter presented

here is simply the average time duration, in seconds, from the

beginning of the split until the final sample is at hand.

4.1.8. User-dependency

This characteristic is meant to divide the methods in two

types; the first of which is where the person performing the

Fig. 27. Representativeness of wheat.

Fig. 28. Representativeness of rape seed.
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sampling has a large influence on the result. The second

section is where this influence is minimized if not totally

negligible.

4.1.9. Cleaning

Some devices are easily cleaned and others are more

difficult to dissemble, etc. This is an overall assessment

performed by the authors in every case. It is divided into

three categories: easy, intermediate and hard.

4.1.10. Initialization

Another parameter that might be of comparative impor-

tance would be the time consumption and workload needed

in initializing a mass reduction operation. For instance when

the same instrument has to be used for different material

systems, or for performing different split ratios, initialization

time might be important. Again, this is an assessment

performed by the authors and it is divided in three groups:

quick, intermediate and long.

4.2. Comparison of mass reduction methods

There are two major fields of interest when characteriz-

ing a mass reduction method: the mass of the final sample

and the composition resulting from analysis of this mass.

The ability of the devices/methods to find the correct

(target) mass is summarized in Figs. 20 and 21. We notice

that the shoveling methods show a particularly bad accuracy

Fig. 30. Sum of representativeness (pooled for wheat, rape seed and glass).

Fig. 29. Representativeness of glass.
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and precision. Only fractional shoveling seems to have a

relatively good precision. This method is comparable to

alternate shoveling, but differs in having only two mass

reduction steps instead of four, which possibly can explain

the better precision. The rotational dividers and some of the

riffle splitters seem to have good accuracy and precision

throughout in finding the target mass. The RK 10 chute (20

mm splitter), however, differ significantly from the rest of

the riffle splitters (in an adverse sense). The only possible

reason for this must be the missing insertion plates on this

splitter.

With regard to the composition of the final sample, the

methods are evaluated by the standard deviation, relative

bias and the representativeness.

In Figs. 22–24, the methods deviating most from the

rest clearly are the spoon method and grab sampling. This

is understandable since these two methods are both shov-

eling methods, and thus expected to be less precise. In

general, all shoveling methods and some of the riffle

splitters are characterized by bad precision, while all

revolving dividers show good precision. The reason for

this good precision is the large number of rotations

involved, and hence the large number of effective chutes

involved in the mass reduction. When the sample takes

about 1 min to pass through these devices, the number of

revolutions per minute is 40 and the number of openings

eight, the effective number of chutes is actually 320 for the

Vario Dividers and an impressive 1280 for the 32-divider

(which has 32 openings).

The standard deviation is an expression of the precision

of a particular method. Fig. 25 shows the standard devia-

tion of wheat and rape seed, which both are present in

rather large concentrations in the material (89.9 and 10.0%

w/w). All the methods with a large number of chutes or

openings have a low standard deviation on both wheat and

rape seed. The shoveling methods, again, stand out as

terribly imprecise methods, even though the spoon method

would appear just within the window for this parameter

alone. This is possibly due to the bed blending like

preparation of the lot material and the extraction method,

which for the experienced operator ensures nicely delimited

increments (sub-samples).

Glass is present in very low concentration (0.1% w/w) in

the material, and it is expected that the reproducibility

(precision) for this material is substantially worse than the

components present in larger concentrations. The absolute

values in Fig. 26 are not directly comparable with those in

Fig. 25, since the standard deviation is a relative value. It is

noted that the precision of all the methods is more or less

equal for the trace element level, except for the shoveling

methods. The spoon method again seems to have an

acceptable performance, but the rest of the shoveling meth-

ods are distinctly bad, very likely due to the extraction

method.

The overall TOS-measure representativeness takes into

account both accuracy and precision, and will thus express

the overall performance of a method. It is seen in Figs. 27–

30 that the methods with the lowest number of chutes or

openings and the shoveling methods indeed are worst. This

is in accordance with the previous conclusions.

The representativeness of glass has a dominating influ-

ence on the pooled sum, since these values are much larger

than the values for wheat and rape seed. However, the sum

is the best measure for the overall performance of the

methods, since it includes constituents present in both high

and low concentrations. It is observed from Fig. 30 that the

calibrated Boerner Divider has the best overall performance.

There is, however, no large difference to be found between

Fig. 31. Total loss of material.

L. Petersen et al. / Chemometrics and Intelligent Laboratory Systems 74 (2004) 95–114110



the 10 best of the methods, meaning that all these methods

in principle are suitable for mass reduction with regard to

representativeness.

The total loss of material during mass reduction is seen in

Fig. 31. The loss is high for all splitters with open designs,

and for all the shoveling methods with several steps in-

volved. Especially the seed splitter, the animal feed splitter

and the non-calibrated Boerner Divider stand out as spilling

large amounts of material (especially rape seed is seen to

bounce out).

In Table 1, the compound characteristics for the investi-

gated methods are summarized. The different values are

here weighed equally and it is left for the reader to apply

differential weighing to fit his or her own customs or needs.

If for instance operating time is of greater importance than

cleaning, or if it is absolutely crucial to have the correct

mass in the final sample, these parameters can be weighed

on an individual basis.

The resulting sum-scores divide the methods/devices into

three groups:

The newly developed riffle splitters, the calibrated

Boerner Divider, the 32-divider and the Vario Divider

outperform all other methods—even though they all can

be difficult to clean. The riffle splitters are in general

rather slow to use, but this is a relative factor, since the

slowest method overall—alternate shoveling—uses only

approximately 200 s to reduce the mass by a factor of

20. The devices in the best group are all really good at

finding the correct target concentration and mass of a final

sample.

This is also the overall conclusion for the intermediate

group. Most of these methods have a significant loss

however and/or are also rather slow to use. T
ab
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The dividers/methods in the worst group include,

amongst others, all the shoveling methods and many of

the methods which have really substantial losses, show large

user-dependency, are (too) slow or have severe difficulties

to end up with the correct target concentration or mass. It is,

however, important to consider carefully the purpose of the

method/device, so as to make the correct choice. In this

context users should pay special attention to the parameters

of importance in the specific situation.

4.3. Estimation and comparison of the Fundamental

Sampling Error

The Fundamental Sampling Error (FSE) is the error that

remains when the sampling procedure is rid of incorrect

errors and faults. This means that FSE is the minimum

sampling error that can be obtained in practice and it is

inherent only to the material heterogeneity. For this very

reason it is, of cause, method-independent. FSE can be

calculated from a series of measurements as the difference

between the estimate of the lot grade, aS, and the actual lot

grade, aL (known in the present experiments):

FSE ¼ aS � aL

aL

FSE for a given material can also be estimated before-

hand using the so-called ‘‘Pierre Gy formula’’ [1,2]:

s2ðFSEÞ ¼ cfgbd3
1

MS

� 1

ML

� �

� c is the constitution parameter expressed in g/cm3 that

accounts for the densities as well as the proportions of the

constituents.
� f is a ‘‘particle shape factor’’ (dimensionless) describing

the deviation from the ideal shape of a cube. A square

will have f = 1, a sphere f = 0.52 and an almost flat disc

f = 0.1.
� g is a ‘‘size distribution factor’’ (dimensionless) describ-

ing the span of particle sizes in the lot. Default values are

estimated by Gy and Pitard [1,2].
� b is a ‘‘liberation factor’’ (dimensionless) describing the

degree of liberation of the critical component from the

matrix. Totally liberated particles means b = 1 and totally
incorporated particles means b = 0.

� d is the ’’top particle size’’, defined as the square-mesh

screen that retains 5% of the material (dimension of

length expressed in cm)—this does not necessarily

correspond to the physical particle diameter, as in the

case of ‘‘cylindrical’’ particles such as wheat.

The parameters listed in Table 2 were used to calculate

FSE for the given materials used here.

The ratios shown in Figs. 32–34 should optimally be

around 1.0, which would imply that the methods or devices

only have a sampling error in the range of the Fundamental

Sampling Error (FSE), implying very low deviation from

minimum practical sampling error. Pierre Gy’s estimate is

Table 2

Parameters used to estimate FSE

ML

[g]

aL dA
[g/cm3]

c [g/cm3] b f g d

[cm]

Wheat 2000 0.899 0.75 0.088 1 0.1 0.65 0.35

Rape seed 2000 0.100 0.77 6.914 1 0.48 0.8 0.26

Glass 2000 0.001 2.6 2595.554 1 0.52 1 0.1

dA is the density.

Fig. 32. Ratio between estimate of FSE and FSE from experimental procedure (for wheat). The horizontal line depicts the ratio of 10, indicating that all ratios

lower than this is within an order of magnitude from the Pierre Gy formula estimate of FSE.
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meant to give the order of magnitude for the value of FSE;

in this case the ratio should maximally be 10. This is marked

as the flat line shown in Figs. 32–34. From the figures it can

be observed that the estimates fit nicely with the experi-

mental values for all acceptable methods, indicating that

Pierre Gy’s formula can be used for getting a rough estimate

of FSE prior to any experimental procedure. At the same

time, it further indicates the great overall performance of the

best of the methods. It must, however, be stressed clearly

that Pierre Gy’s formula only yields an estimate to an order

of magnitude of FSE, and must not be taken for an

absolutely true value.

5. Conclusions

In order to achieve the best possible mass reduction it is

crucial that the operator clearly analyses and defines the

needs in a specific situation. In the overall characterization

of the methods it has been decided to weigh all the

characterizing parameters equally, even though this might

be unreasonable for some applications in certain situations.

We ask the readers to make their own modified conclusions

from their specific needs; it will be very easy to consult

Table 1 in this context. We have here emphasized the overall

pooled characteristics of the methods investigated.

Fig. 33. Ratio between estimate of FSE and FSE from experimental procedure (for rape seed). The horizontal line depicts the ratio of 10, indicating that all

ratios lower than this is within an order of magnitude from the Pierre Gy formula estimate of FSE.

Fig. 34. Ratio between estimate of FSE and FSE from experimental procedure (for glass). The horizontal line depicts the ratio of 10, indicating that all ratios

lower than this is within an order of magnitude from the Pierre Gy formula estimate of FSE.
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If all parameters can indeed be equally weighed, the

following conclusions can be drawn.

The best overall methods for mass reduction are:

Of these methods riffle splitters are portable devices to be

used both in the field or laboratory, while the latter two are

heavy machines that can only be installed permanently for

high speed reductions in permanent sampling stations or in

laboratories. The Boerner Divider is heavy, though it also

can be classified as portable if in a tight spot. All five

methods perform excellently in both finding the correct

target concentrations as well as having the nominal split-

mass in the final samples. This compound criterion includes

exactly what should rightly be characterized as the two most

important parameters of a mass reduction device or method.

Any differences concerning proper mass reduction between

these five devices are minor and can be regarded as

insignificant.

5.1. Total rejection of the world’s most often used

method—grab sampling

In general, all grab sampling and shoveling methods

must be totally avoided; indeed grab sampling should never

be used in practice—with the singular exception for thor-

oughly homogenized fine powders. It is a sad state of affairs

that it is indeed a really fast, easy and cheap method since it

‘‘just happens’’ to be the absolute worst of all mass

reduction methods. Fig. 35 tells its own story directly with

the utmost clarity.

Acknowledgements

We would like to express our gratitude towards A/S

Rationel Kornservice, Esbjerg, Denmark (Knud Klit, Axel

Schou and Christian Husted) for their invaluable pieces of

advice, time and help within the present work.

We would also like to thank the Danish Ministry of

Agriculture’s departments of seed testing and animal feed

testing (Dot Vittrup Pedersen and Lone Bjørn) for help and

general correspondence on the present work.

Peter Paasch Mortensen is thanked for his ‘‘magic’’

illustrative powder mix.

References

[1] P. Gy, Sampling for analytical purposes, Wiley, Chichester, England,

1998.

[2] F.F. Pitard, Pierre Gy’s Sampling Theory and Sampling Practice, 2nd

ed., CRC Press, Boca Raton, FL, 1993.

[3] P.L. Smith, A primer for sampling solids, liquids and gases-based on

the seven sampling errors of Pierre Gy, ASA SIAM, USA, 2001.

[4] P.M. Gy, Coal Mining and Processing, (1981 September) 62–67.

[5] P.M. Gy, Process Control and Quality 1 (1990) 5–22.

[6] P.M. Gy, Process Control and Quality 6 (1994) 97–102.

[7] P.M. Gy, Trends in Analytical Chemistry 14 (1995) 67–76.

[8] P.M. Gy, Analusis 23 (1995) 497–500.

[9] P.M. Gy, HiT Skrift 1 (2000) 255–265.

[10] P.M. Gy, LC-GC 11 (1994) 808–817.

[11] P. Minkkinen, Analytica Chimica Acta 196 (1987) 237–245.

[12] G.J. Lyman, International Journal of Mineral Processing 55 (1998)

95–112.

[13] P. Minkkinen, Chemometrics and Intelligent Laboratory Systems 29

(1995) 263–270.

[14] P.M. Gy, Analytica Chimica Acta 190 (1986) 13–23.

[15] T. Lwin, R.C.A. Flann, G.M. Short, W. Guthrie, International Journal

of Mineral Processing 54 (1998) 59–80.

[16] J. Ronalds, Australian Development Assistance Course on the Pres-

ervation of Stored Cereals, vol. I, 1981, Proceedings of the confer-

ence, Australia, CSIRO Division of Entomology, Canberra, 1983,

pp. 333–346.

[17] R.W. Gerlach, D.E. Dobb, G.A. Raab, J.M. Nocerino, Journal of

Chemometrics 16 (2002) 321–328.

[18] M. Rhodes, Introduction to Particle Technology, Wiley, Chichester,

England, 1998.

[19] Personal communication, with-, and product descriptions from A/S

Rationel Kornservice, Esbjerg, Denmark, 2003.

[20] P.M. Gy, International Journal of Mineral Processing 8 (1981)

201–238.

Fig. 35. Grab sampling—the world’s worst mass reduction/sampling

method! If the lot material is heterogeneous and/or segregated (which is

most often the case), grab sampling is the simplest and fastest way to get

heavily biased samples. A miniature riffle splitter can easily be used

instead—adding only seconds to the total preparation time, but several

orders-of-magnitude to the representativeness. Grab sampling is to be

totally avoided!

. Boener divider (cal.)

. RK 34 chutes (10 mm) short

. RK 34 chutes (10 mm) long

. Rotating 32-divider

. Vario Divider with splitting ratio 1:4 + 1:5
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