
 

  

 

Aalborg Universitet

Novel Cooperative Spectrum Sensing Methods And Their Limitations

Kiilerich Pratas, Nuno

Publication date:
2012

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Kiilerich Pratas, N. (2012). Novel Cooperative Spectrum Sensing Methods And Their Limitations.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 28, 2024

https://vbn.aau.dk/en/publications/32085fb5-75c2-42ee-bfa9-358a4706fd5c


NOVEL COOPERATIVE SPECTRUM SENSING METHODS
AND THEIR LIMITATIONS

a dissertation
submitted to the department of

Electronic Systems
of

aalborg university
in partial fulfillment of the requirements

for the degree of
doctor of philosophy

Nuno Manuel Kiilerich Pratas
Center for TeleInFrastruktur, Instituto the Telecomunicações



Supervisor:

Professor Ramjee Prasad, Aalborg University, Denmark

Associate Professor Neeli Rashmi Prasad, Aalborg University, Denmark

Assistant Professor António Rodrigues, Instituto Superior Técnico, Universidade
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Abstract

The rapid growth of services offered through wireless communication has as
consequence an increase on the demand for electromagnetic radio frequency
spectrum, which is a scarce resource, mainly assigned to license holders on
a long-term basis for large geographical regions, causing a large portion of
the spectrum to remain unused for a significant percentage of the time. A
new paradigm – to overcome this apparent spectrum shortage – that consists
of radio devices with the ability to adapt to their spectral environment and
are therefore able to make use of the available spectrum in an opportunistic
manner was put forward, i.e. the Cognitive Radio paradigm.

Spectrum sensing is the key mechanism in enabling spectrum awareness in
Cognitive Radio. The performance of the spectrum sensing depends on the
local channel conditions, such as the multipath, shadowing and the receiver
uncertainty issues. The conjunction of these conditions can result in regimes
where the signal strength is below the detection threshold of the sensor, re-
sulting in missed detections.

To overcome this limitation, there have been several proposals made in the
research community towards the use of cooperation in spectrum sensing. Since
the signal strength varies with the sensor location, the worst fading conditions
can be avoided if multiple sensors in different spatial locations share their local
sensing measurements, i.e. take advantage of the spatial diversity.

In this thesis a Cooperative Spectrum Sensing mechanism is proposed.
While identifying the key components needed to enable such mechanism, an
analysis is presented regarding the correctness of the class of protocols which
enable the Cooperative Spectrum Sensing mechanism. This is done by propos-
ing and employing a process calculus variant of the π-calculus, denoted as
Bounded Broadcast Calculus. This analysis is done over centralized, decen-
tralized and relay aided topologies. The outcome of this analysis is a theorem
where it is stated, which properties a protocol should have so that it can be
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deemed correct, i.e. that it performs as intended, over each of the considered
network topologies.

The performance of data fusion schemes based on counting rules is ana-
lyzed, which lead to the proposal of an adaptive counting rule algorithm that
adapts the decision threshold according to the performance of the local detec-
tors. A study is done about the impact of using local detectors in the data
fusion scheme which are experiencing different channel conditions, i.e. some
of these local detectors are experiencing the channel as free while others as
occupied. In this analysis it is measured what is the impact of using data
fusion in these cases, and whether it improves the detection of the resources
available. Based on these insights a cluster based data fusion algorithm is pro-
posed, which uses the correlation measured between the decisions of the local
detectors over time to group the local detectors together in different clusters,
and then apply the adaptive counting rule data fusion algorithm separately
to each of the defined clusters. It was observed, in the case of a single signal
source, that the proposed algorithm performance in regards to identified spec-
trum resources is almost the same as the theoretical maximum, and superior
to the case where the local detectors are not divided in clusters.

Finally, a node selection mechanism which assigns the local detectors to
the channel that most likely will be experienced vacant by the local detector is
proposed. The purpose of using such scheme is twofold, one is to ensure that
the correct amount of the local detectors is sensing each channel; the other is to
increase the probability of the network finding a channel available to be used.
This is accomplished by assigning the local detectors to channels that have a
higher probability of being available and where most likely the local detector is
outside the range of the signal source. The node selection scheme is proposed
in a centralized and in a decentralized version. These versions can complement
each other and therefore lead to a more robust cooperative spectrum sensing
mechanism.
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Dansk Resume

Den hastige vækst indenfor serviceydelser, der tilbydes via tr̊adløs kommunika-
tion, har betydet en stigende efterspørgsel p̊a elektromagnetisk radiofrekvens
spektrum. Dette er en begrænset ressource primært tildelt licensindehavere
gennem en længere periode over store geografiske omr̊ader, hvilket medfører,
at en stor del af spektret forbliver ubrugt i en betydelig del af tiden. For
at forbedre udnyttelsen af spektret er et nyt paradigme blevet fremsat, hvori
radio-enheder er i stand til at tilpasse sig deres spektrale miljø og til at gøre
brug af de tilgængelige frekvensressourcer p̊a en opportunistisk m̊ade, dvs.
Cognitive Radio paradigmet.

Spectrum sensing er den centrale mekanisme, der giver kendskab til spek-
trets udnyttelse indenfor Cognitive Radio. Udførelsen af spectrum sensing
afhænger af de lokale kanalforhold, s̊asom reflektioner, skygger og modtager-
usikkerhed. Kombinationen af disse kanalforhold kan resultere i situationer,
hvor signalstyrken er under detektionsgrænsen for sensoren, hvilket resulterer
i manglende registreringer.

For at overvinde dette problem med de manglende registreringer, er der
blevet fremsat forskellige forslag i forskerkredse om brugen af samarbejde
mellem sensorer. Eftersom signalstyrken varierer med sensorens placering, kan
de værste problemer undg̊as, hvis flere sensorer p̊a forskellige steder deler deres
lokale m̊alinger og dermed drager fordel af den rumlige forskellighed.

I denne afhandling bliver en kooperativ Spectrum Sensing mekanisme fores-
l̊aet. Først identificeres de centrale komponenter, der kræves til s̊adan en
mekanisme og derefter præsenteres en analyse af korrektheden af den klasse af
protokoller, som benyttes til s̊adan en mekanisme. Dette gøres ved at foresl̊a og
benytte en proces calculus variant af π-calculus, betegnet som Bounded Broad-
cast Calculus. Denne analyse er lavet over centraliserede, decentraliserede og
radio-relæ-støttede topologier. Resultatet af denne analyse er et teorem, hvor
det er angivet, hvilke egenskaber en protokol bør have, s̊a den kan anses for
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korrekt: at den virker efter hensigten i hver af de p̊agældende netværkstopolo-
gier.

Derefter analyseres ydelsen af forskellige metoder til datafusion baseret
p̊a tælleregler, som fører til forslaget om en adaptiv tælleregel algoritme, der
tilpasser grænseværdien i forhold til præstationen af de lokale detektorer. En
undersøgelse er udført over konsekvenserne af at bruge lokale detektorer i en
datafusionsordning, der oplever forskellige kanalforhold, dvs. nogle af disse
lokale detektorer registrerer kanalen som ledig, mens andre som optaget. I
denne analyse bliver det m̊alt, hvad virkningen af at anvende datafusion i disse
tilfælde er, og om det forbedrer detektion af de ressourcer, der er til r̊adighed.
P̊a baggrund af denne viden foresl̊aes en klynge-baseret datafusion-algoritme,
som bruger korrelationen m̊alt mellem resultaterne fra de lokale detektorer
over tid til at gruppere de lokale detektorer sammen, og derefter anvende den
adaptive tælleregel datafusion-algoritme særskilt til hver af de definerede klyn-
ger. Med én enkelt signalkilde blev det observeret, at den foresl̊aede algoritmes
ydelse i forhold til identificerede frekvensressourcer er næsten den samme som
det teoretiske maksimum, og overlegen i forhold til n̊ar de lokale detektorer
ikke er opdelt i klynger.

Endelig foresl̊as en nodeudvælgelsesmekanisme, der tildeler de lokale de-
tektorer til den kanal, der med højest sandsynlighed vil blive registreret som
ledig af den lokale detektor. Der er to form̊al med at bruge s̊adan en ordning:
den ene er at sikre, at den rigtige mængde af de lokale detektorer registrerer
hver kanal, den anden er at øge sandsynligheden for at netværket finder en
ledig kanal. Dette opn̊as ved at tildele de lokale detektorer til kanaler, der har
en højere sandsynlighed for at være ledige, og hvor den lokale detektor højst
sandsynligt er uden for rækkevidde af signalkilden. Denne nodeudvælgelsesor-
dning er foresl̊aet i en centraliseret og en decentraliseret udgave. Disse udgaver
kan supplere hinanden, og føre til en mere robust kooperativ spektrum sensing
mekanisme.
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1
Introduction

The rapid growth of a multitude of wireless communication services had as a
consequence the increase on the demand for electromagnetic radio frequency
spectrum, which is a scarce resource, mainly assigned to license holders on a
long-term basis for large geographical regions, causing, according to measure-
ments [3], a large portion of the spectrum to remain unused for a significant
percentage of the time.

Upon this scenario, the Federal Communications Commission in the United
States and the European Commission’s Radio Spectrum Policy Group in the
European Union, proposed a secondary and concurrent usage of this spectrum,
focusing on the case where this secondary system does not interfere with the
normal operation of the license holders. These new regulations, in contrast with
the licensed bands to which entities such as TV stations or cellular operators
are granted exclusive access, allows the evolution of a new paradigm, consisting
of devices with the ability to adapt to their spectral environment and able to
make use of the available spectrum in an opportunistic manner, paving the
way for the development of the Cognitive Radio (CR) paradigm.

The CR paradigm was first put forward by J. Mitola III in [22], as the
natural evolution of the Software Defined Radio (SDR). The CR by Mitola
was presented as an intelligent agent able to track radio resources and related
computer-to-computer communications and able to detect user communica-
tions needs as a function of use context, and to provide radio resources and the
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wireless services most appropriate to those needs. Later the focus of research
in CR was directed mainly towards the intelligent and opportunistic use of the
radio resources, a technique also known as Dynamic Spectrum Access (DSA).

The CR concept was then further defined in [13], and the DSA was empha-
sized, which led to a new CR definition: an intelligent wireless communication
system, aware of its surrounding environment (i.e., outside world), that uses
the methodology of understanding-by-building to learn from the environment
and to adapt its internal states to statistical variations in the incoming RF
stimuli by making corresponding changes in certain operating parameters (e.g.,
transmit-power, carrier-frequency, and modulation strategy) in real-time, with
two primary objectives in mind: highly reliable communications whenever and
wherever needed and efficient use of the radio spectrum.

As stated in the definition, the CR is a device that is aware (of its surround-
ing radio environment), is intelligent (as it decides the best approach to convey
the wireless service), learns and adapts, is reliable and above all efficient. One
of the main capabilities of the CR, is its ability to reconfigure, which is enabled
by the SDR platform, upon which the CR is built [9].

Currently there are several ongoing CR standardisation efforts like IEEE
802.22 [10], IEEE 1900 [25] and the IEEE 802.11af.

1.1 Cognitive Radio Fundamentals

The key enabling technologies of CR are the functions that provide the capa-
bility to share the spectrum in an opportunistic manner. In [5] a summarized
definition of CR was presented: A CR is a radio that can change its transmit-
ter parameters based on interaction with the environment in which it operates.

Since most of the spectrum is already assigned, the challenge is to share the
spectrum with coexisting networks without interfering with their transmission.
For this the cognitive radio enables the usage of temporarily unused spectrum,
which is referred in the literature as Spectrum Hole (SH) or white space, which
is depicted in Figure 1.1. In [13], the definition of SH was given: A SH is a band
of frequencies assigned to a primary user, but, at a particular time and specific
geographic location, the band is not being used by that user. If this SH where
the CR is operating starts also to be used by another secondary user, then the
CR moves to another SH or stays in the same, altering its transmission power
level or modulation scheme to minimize interference. Therefore the CR is a
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paradigm for the efficient and opportunistic use of the available spectrum and
through it, it is possible to:

• Determine which portions of the spectrum are available;

• Select the best available channel;

• Coordinate access to this channel with other users;

• Vacate it when the channel conditions worsen.

To implement the CR paradigm a network needs to employ adaptive net-
work protocols. Such an example is given in [5, 16], where it is proposed an
cross layer adaptation approach of the Open Systems Interconnection (OSI)
network model to allows the implementation of the CR paradigm. In Fig-
ure 1.2 is depicted the model proposed in [5] that is used as reference in this
thesis. In this model, the spectrum sensing and spectrum sharing functions
cooperate with each other to improve the network spectrum use efficiency. In
the spectrum decision and spectrum mobility functions, application, transport,
routing, medium access and physical layer functionalities are carried out in a
cooperative way, so to allow to adapt to the dynamic nature of the underlying
spectrum.

The OSI model added functionalities which implement the Cognitive Radio
paradigm and their purpose are explained in the following sub-sections.
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1.2 Cognitive Radio Functions

The CR main goal is to enable networks to use the appropriate available spec-
trum band according to the network users Quality of Service (QoS) require-
ments. To accomplish this, new spectrum management functions are required,
taking into consideration the dynamic spectrum characteristics. These func-
tions are the Spectrum Sensing (SS), Spectrum Analysis (SA) and Spectrum
Decision (SD), and their interrelation is depicted in Figure 1.3, [13].

It is expected that the SS function will find SH spread over a wide frequency
range including both unlicensed and licensed bands. Therefore, these will
potentially show different characteristics according not only to the time varying
radio environment but also to the spectrum band information such as the
operating frequency and the bandwidth.

Due to the dynamic nature of the underlying spectrum the communication
protocols need to adapt to the wireless channel parameters, since the behavior
of each protocol affects the performance of all the other protocols built on top
of it. For example, by using different Medium Access Control Layer (MAC)
techniques CR networks, the Round Trip Time (RTT) for the transport proto-
cols will be affected. Similarly, when re-routing is done because of link failures
arising from spectrum mobility, i.e. when a SH is no longer usable by the
Cognitive Radio Network (CRN), the RTT and error probability in the com-
munication path will change accordingly. The change in error probability also
affects the performance of the MAC protocols. Consequently, all these changes
affect the overall quality of the user applications.
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The SA and SD function cooperate with the communication layers, as
shown in Figure 1.2. In order to decide the appropriate spectrum band, the in-
formation regarding the QoS requirement, transport, routing, scheduling, and
sensing is required. So the use of a cross layer approach will use the interde-
pendencies among functionalities of the communication stack, and their close
coupling with the physical layer to accomplish the SA and SD function. So,
while SS is primarily a Physical Layer (PHY) and MAC issue, SA and SD are
closely related to the upper layers.

1.2.1 Spectrum Sensing

The SS function is responsible for the monitoring of the spectrum environment
at the network node position, with the purpose of detecting unused spectrum,
i.e. the SH. In Figure 1.4, [28], the SS is depicted as an imperfect and simplified
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mapping of the radio environment to a representation at the sensing node,
which in the remaining of the thesis is denoted as Local Detector (LD). By
sensing the spectrum the CR becomes aware and sensitive to the changes
in its surrounding, giving to the CR the information needed to adapt to its
environment.

Spectrum Sensing, is realized as a PHY and MAC mechanism [18] as de-
picted in Figure 1.2, and as been covered extensively in literature [5, 29, 6] and
falls into the domain of the detection theory, presented in detail in [36]. While
the PHY SS focuses on the detecting of signals, and the detection methods
put in place can be classified into two groups, either coherent (prior informa-
tion needed, e.g. Pilot Detection, [5]) or non-coherent (no prior information
needed, e.g. Energy Detector (ED), [35]). The MAC part of the SS focuses on
when to sense (in time) and which spectrum to sense (in frequency).

The performance of the SS depends on the local channel conditions, i.e.
depend on the multipath, shadowing and local interference. The conjunction
of these conditions can result in regimes where the signal Signal to Noise Ratio
(SNR) is below the detection threshold of the LD, resulting in missed detections
and in false alarms creating the imperfect mapping illustrated in Figure 1.4.
To overcome this limitation the use of cooperation as been proposed. Since
the signal strength varies with the LD location, the worst fading conditions
can be avoided if multiple sensors in different spatial locations share their local
sensing measurements, i.e. take advantage of the spatial diversity. The focus of
this thesis is on these Cooperative Spectrum Sensing (CSS) schemes, therefore
further details about the background of these can be found in Chapter 2.

1.2.2 Spectrum Analysis

The SH identified by the SS function have different characteristics which vary
over time. The purpose of the SA function is to characterize these spectrum
bands, as to identify the appropriate one for the CRN node requirements.

To account for the dynamic nature of networks, each SH should consider not
only the time-varying radio environment, but also the interferers activity and
the spectrum band information such as operating frequency and bandwidth.
Hence, it is essential to define characterizing parameters that can represent the
quality of a particular spectrum band. The following were identified in [5]:

• Interference - The spectrum band in use determines the characteristics
of the interferers affecting the channel;
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Figure 1.4: Representation of sensing from a cognitive radio prespective

• Path loss - The path loss increases as the operating frequency increases. If
the transmission power of a node remains constant, then its transmission
range decreases at higher frequencies;

• Link errors - Depending on the modulation scheme and the interference
level of the spectrum band, the error rate of the channel changes;

• Link layer delay - Depending of the spectrum band in use, it is expected
different path loss, wireless link error, and interference. All these condi-
tions amount to different link layer packet transmission delay;

• Holding Time - The activities of interferers can affect the channel quality
to the network. Holding time refers to the expected time duration that
the node can occupy a band before getting interrupted. The lower is the
holding time the higher is the frequency of spectrum handoff. Since the
spectrum handoff also means wasting time in adjusting the transmission
to a new channel, then the system throughput and connectivity are sac-
rificed in these procedures. So channels with longer holding times are
therefore better. Since frequent spectrum handoff can decrease the hold-
ing time, previous statistical patterns of handoff should be considered.

The spectrum band is characterized by the channel capacity, which can
be derived from the above parameters. The SNR is normally used to perform
channel capacity estimation, but since it only considers the observations at the
receiver, then the previous parameters need also to be considered to estimate
the channel capacity.

1.2.3 Spectrum Decision

Upon characterization of the available spectrum bands and the associated po-
tential estimated channel capacity, the appropriate operating spectrum band
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can be selected. Based on the CRN node QoS requirements, the data rate,
acceptable error rate, delay bound, transmission mode, and bandwidth can be
determined. Then according to the decision rule in use, the set of appropriate
spectrum bands can then be chosen.

Several examples of rules to be used in the SD function can be found
in the literature. Here we briefly highlight some of them. In [41], five SD
rules are presented, which are focused on fairness and communication cost,
however assuming that all channels have similar throughput capacity. In [17],
an opportunistic frequency channel skipping protocol is proposed for the search
of channels with better quality, and where the decision is based on the channel
SNR. In [4], an adaptive based centralized decision solution is presented, which
also considers spectrum sharing. The adaptation mechanism considers the user
traffic and the base stationt’s hardware resources.

1.2.4 Spectrum Mobility

The purpose of the Spectrum Mobility (SMob) function is to allow a network
to use the spectrum in a dynamic manner, i.e. allowing the CR nodes to
operate in the best available frequency band. The SMob function is defined
as the process through which a CRN node changes its frequency of operation,
also known as spectrum handoff, [5].

In a CR network, the SMob arises when the conditions of the channel in
use by the node become worse, due to the node movement or because an in-
terferer appears in the channel. The SMob gives rise to a new type of handoff,
referred to as spectrum handoff in [5]. A CR can adapt to the frequency of
operation. Therefore, each time a CR node changes its frequency of operation,
the network protocols are going to shift from one mode of operation to an-
other. The different layers protocols of the network stack need to adapt to the
channel transmission parameters of the operating frequency, as well as being
transparent to the spectrum handoff and the associated latency.

The purpose of SMob management in CR networks is to make sure that
such transitions are made smoothly and as soon as possible such that the
applications running on a CRN node perceive minimum performance degra-
dation during a spectrum handoff. It is therefore essential for the mobility
management protocols to learn in advance about the duration of a spectrum
handoff. This information can be provided by the SS and SA algorithms,
through the estimation of the channel holding time. Once the mobility man-
agement protocols learn about this latency, their job is to make sure that the

8
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ongoing communications of a CRN node undergo only minimum performance
degradation.

Whenever a spectrum handoff occurs, there is an increase in latency, which
directly affects the performance of the communication protocols. Thus, the
main challenge in SMob is to reduce the latency for spectrum handoff which
is associated to the SS latency. During spectrum handoff, the channel param-
eters such as path loss, interference, wireless link error rate, and link layer
delay are influenced by the dynamic use of the spectrum. On the other hand,
the changes in the PHY and MAC channel parameters can initiate spectrum
handoff. Moreover, the user application may request spectrum handoff to find
a better quality spectrum band.

As shown in Figure 1.2, the SMob function cooperates with SD and SA
function and SS to decide on an available spectrum band. In order to estimate
the effect of the spectrum handoff latency, information about the link layer
and sensing delays are required. Moreover, the transport and application layer
need to be aware of the latency to reduce the abrupt quality degradation.
In addition, the routing information is also important for the route recovery
algorithms which base their decisions also on the information estimated about
the frequency of spectrum handoff on each of the available links. For these
reasons, the SMob is closely related to the operations in all communication
layers.

1.2.5 Spectrum Sharing

The shared nature of the wireless channel requires the coordination of transmis-
sion attempts between CRN nodes. Spectrum Sharing (SSh) can be regarded
to be similar to generic MAC problems in traditional systems. However, sub-
stantially different challenges exist for SSh in CR networks. The coexistence
with other systems and the wide range of available spectrum are the main
reasons for these unique challenges.

In [5] it was provided an overview of the steps of SSh in CRN. The SSh
process consists of five steps:

• Spectrum sensing - When a CRN node aims to transmit packets, it first
needs to be aware of the spectrum usage around its vicinity;

9
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• Spectrum allocation - Based on the spectrum availability, the node can
then allocate a channel. This allocation does not only depend on spec-
trum availability, but it is also determined based on existing spectrum
access policies;

• Spectrum Access - Since there may be multiple CRN nodes trying to
access the spectrum, this access should be coordinated in order to prevent
multiple users colliding in overlapping portions of the spectrum;

• Transmitter-receiver handshake - Once a portion of the spectrum is de-
termined for communication, the receiver should also be informed about
the selected spectrum;

• Spectrum Mobility - When the conditions of the allocated spectrum de-
teriorate, the CRN nodes need to move to another vacant portion of the
spectrum, making use of the spectrum mobility function.

The existing work in the literature regarding SSh can be classified in three
aspects, being those architecture, spectrum allocation behavior and spectrum
access technique.

The classification of spectrum sharing techniques based on the architecture
is as follows:

• Centralized - A centralized entity controls the spectrum allocation and
access procedures. To aid the procedures, a distributed sensing procedure
is proposed such that each entity in the network forwards its measure-
ments about the spectrum allocation to the central entity and this entity
then constructs a spectrum allocation map. Examples of this kind of
architecture can be found in [7, 30, 38, 32, 4, 31, 33];

• Distributed - Distributed solutions are mainly proposed for cases where
the construction of an infrastructure is not preferable. Each node is
responsible for the spectrum allocation and access is based on local or
global use policies. These policies can be vendor specific or can be dic-
tated by an regulator entity, like the Federal Communications Commis-
sion (FCC). An example can be found in [15].

The classification of SSh techniques based on the access behavior is as
follows:

• Cooperative - Cooperative solutions consider the effect of the node’s
communications on other nodes. The interference measurements of each
node are shared with other nodes, and the spectrum allocation algorithms

10
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also consider this information. All centralized solutions are regarded as
cooperative, although there are also distributed cooperative solutions.
Examples of these can be found in [16, 7, 33, 15, 19, 39];

• Non-Cooperative - Non-cooperative solutions consider only the node at
hand. These solutions are also referred to as selfish. While non-cooperative
solutions may result in reduced spectrum utilization, they do not require
the exchange of control information among other nodes as the coopera-
tive ones do. Examples of these can be found in [41, 24, 40].

When comparing these approaches in terms of architecture and access be-
havior, it was shown in the literature that cooperative approaches outper-
form non-cooperative ones, moreover it was shown that distributed solutions
closely follow centralized solutions. Evidence of these results can be found
in [26, 28, 40].

The classification of spectrum sharing techniques based on the access tech-
nology is as follows:

• Overlay - In overlay spectrum sharing, a node accesses the network using
a portion of the spectrum that is not used by licensed users. As a result,
interference to the primary system is minimized, [16, 7, 42, 24, 40, 42,
23, 11];

• Underlay - Underlay spectrum sharing exploits the spread spectrum tech-
niques developed for cellular networks, an example can be found in [15].
Once a spectrum allocation map has been acquired, a CR node trans-
mits in a way such that its transmitting power at a certain portion of
the spectrum is regarded as noise by the licensed users. This technique
requires sophisticated spread spectrum techniques and can use increased
bandwidth when compared to overlay techniques.

The theoretical work on spectrum access in CRN reveals important trade-
offs for the design of spectrum access protocols. It was shown that cooperative
settings result in higher utilization of the spectrum as well as improved fairness.
However, this advantage may eventually not be so high considering the cost of
cooperation due to the signaling overhead. In [11, 20] it was shown that the
spectrum access technique, i.e. whether it is overlay or underlay, always affects
the performance of legacy systems. While an overlay technique focuses on the
holes in the spectrum, dynamic spreading techniques are required for underlay
techniques for interference free operation between concurrent systems.
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The performance of SSh depends on the SS capabilities of the CRN nodes.
SS as mentioned before is both a PHY function, when considering the detec-
tion, and a MAC function in the case of cooperative detection, since the CRN
nodes need to make use of a common channel for exchanging sensing informa-
tion. Therefore, it is clear that the performance of communication protocols
depend on SS, i.e. on getting accurate information about the spectrum utiliza-
tion at the CRN nodes locations, implying a cross-layer design between SSh
and SS.

1.2.6 Physical Architecture and Re-configurability

The CR needs to be implemented on top of a hardware platform which enables
its functionality. In Figure 1.5 it is depicted a generic architecture of a CR
transceiver, based on the one proposed in [16]. The main components of a CR
transceiver are the radio front-end and the baseband processing unit. Each
component can be reconfigured via a control bus to adapt to the time-varying
Radio Frequency (RF) environment. In the RF front-end, the received signal
is amplified, mixed and Analog to Digital (A2D) converted. The baseband
processing unit of a CR is essentially similar to existing transceivers. The
solution to enable this is the use of SDR platforms, an example of which
currently available in the market is the hardware enabling the GNU radio
software stack [2, 1].

While the functions mentioned before, i.e. SS, SA and SD, enable the cogni-
tive capability, provide the spectrum awareness, whereas the re-configurability
enables the radio to be dynamically programmed according to the radio envi-
ronment. More specifically, the re-configurability is the capability of adjusting
operation parameters for the transmission on-the-fly without any modifications
on the hardware components.

This capability enables the CRN node to easily adapt to the dynamic radio
environment. In [5] one enunciates what should be the main reconfigurable
parameters to be implemented in the CR, being those:

• Operating Frequency - Based on the radio environment information, the
most suitable operating frequency can be determined, enabling the com-
munication to be dynamically performed in the appropriate frequency;

• Modulation - A CRN node should reconfigure the modulation scheme in
a way that is adaptive to the user requirements and channel conditions,
i.e., in the case of delay sensitive applications, the data rate is more
important than the error rate. Thus, the modulation scheme that enables

12
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Figure 1.5: Cognitive radio transceiver.

the higher spectral efficiency should be selected. Conversely, the loss-
sensitive applications require modulation schemes with low bit error rate;

• Transmission Power - Power control enables dynamic transmission power
configuration within the permissible power limit. If higher power oper-
ation is not necessary, the CR reduces the transmitter power to a level
that allows more users to share the spectrum, decreasing the interference;

• Communication Technology - A CR can also be used to provide inter-
operability among different communication systems, therefore employing
the SDR capabilities.

The transmission parameters of a CR can be reconfigured not only at the
beginning, but also during a transmission. According to the spectrum charac-
teristics, these parameters can be reconfigured such that the CR is switched to
a different spectrum band, the transmitter and receiver parameters are recon-
figured and the appropriate communication protocol parameters and modula-
tion schemes are used. Such a re-configuration framework has been proposed
in [14].

1.3 Motivation

The main focus in this thesis is on how to enable CSS in a CRN. The mo-
tivation to focus only on this aspect of CR comes from that the SS is the
key mechanism to enable spectrum awareness, without which all the other CR
functions cannot operate. So as refered before the CR [22, 9] has emerged as a
technology which allows the access on the intermittent periods of unoccupied
frequency bands, SH, and therefore increasing the spectral efficiency.
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To allow this opportunistic access, the CRN nodes must be able to detect
the presence of the licensed nodes in a monitored range of spectrum, also
known in the literature as Primary User (PU) – which are denoted in this
thesis also as the incumbent – and detect when that spectrum is available.
This is accomplished by the SS, where the CRN node samples the targeted
spectrum and based on those samples decides whether an incumbent signal is
present or not. The purpose of SS, besides detecting available resources, is
also to limit the interference that the CRN nodes may cause in the incumbent.
Therefore the detection performance of the SS scheme in use by the CR nodes
is crucial to the performance of both CRN as well as the incumbent network,
may it be licensed or not.

The performance of detector used in the spectrum sensing mechanism is
given by:

• Probability of False Alarm, pfa - which quantifies the probability of a
CR user declaring that a incumbent is present in the spectrum when the
spectrum it is not. The occurence of a false alarm will reduce the spectral
efficiency, since spectrum resources are identified as occupied when they
are in fact available to be used;

• Probability of Detection, pd - which quantifies the probability of a CR
user detecting that a incumbent is present. When a missdetection occurs
the CRN node will most likely try to use the identified resource, and
therefore the incumbent will be interfered.

The pfa and pd can be expressed as function of the other, and therefore a
common practice when designing a detector for optimal detection performance,
the pd is maximized while subject to the constraint of the pfa.

The detection performance is affected by the channel conditions, which
depend on the path loss, multipath, shadowing, local interference and noise
uncertainty [34, 9]. The combination of these phenomena can result in regimes
where the SNR at the CRN node is below the detection threshold of the de-
tector, and therefore the incumbent signal will most likely not be detected.

Consider the scenario illustrated in Figure 1.6(a), where there is a pri-
mary system and cognitive radio system, both composed by a transmitter and
receiver. The CR transmitter is not able to detect the transmission of the
primary transmitter, because it is outside the incumbent transmission range,
i.e., the SNR is below the CR transmitter detection threshold. So the CR
transmitter sees the channel as vacant and therefore decides to transmit on it,
causing interference to the incumbent receiver. This is known as the hidden
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node problem. So even if a transmission is not detected by the sensing node,
it does not mean that there is not one there, namely because the sensing node
may be under a deep fade, due to an obstacle in the terrain.

To overcome these limitations, in [8, 12, 21, 37, 9] it was proposed the use of
cooperation in the SS. Since the signal strength varies with the LD location, the
worst fading conditions can be avoided if multiple sensors in different spatial
locations share their sensing measurements, i.e., take advantage of the spatial
diversity, therefore improving the overall detection performance.

The main idea behind the CSS is to enhance the detection performance by
exploiting the spatial diversity in the observations of spatially located CRN
nodes. Through this cooperation the CRN nodes can share their individual
sensing information and then combine them to achieve a more accurate decision
than the ones possible when only the invidual sensing information is available.

From the wireless receiver prespective, the multipath fading and shadowing
make the SNR of the received incumbent signal to be small, beyond the capa-
bilities of the receiver to detect, since it might be below the receiver sensitivity.
The receiver sensitivity is the capability of the receiver to detect weak signals,
and higher is the sensitivity – the lower detectable SNR – the higher is the
hardware complexity and therefore associated cost. Also below a certain SNR
threshold it is not possible to detect the signal, even by increasing the receiver
sensitivity, since there is a limit caused by the noise uncertainty, known as
the SNR wall [34]. Through the use of cooperation it is possible relieve the
receiver sensitivity requirements and ensure that it is above the SNR wall, as
illustrated in Figure 1.7 [21], and make it approximately set to the same level
as the nominal path loss [21], being this called the potential cooperative gain.

It should be noted that this potential cooperative gain is not limited to
improving the detection performance and to relax the sensitivity requirement.
It can also be used in other areas such to reduce the sensing time, i.e. re-
duce the number of samples needed for the SS and therefore increase the SS
efficiency, since it leaves the CRN node more time for data transmission and
consequentially increasing the CRN node throughput.

The potential cooperative gain might not be achieavable due to other limit-
ing factors, such as if the CR nodes are behind the same obstacle their channel
conditions are correlated and therefore this will affect the detection perfor-
mance [12, 21]. So to achieve the potential gain it is necessary to have a node
selection mechanism in the CSS so to ensure that the collaborating CRN nodes
are not too correlated to the point of the affecting the detection performance.
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The use of CSS schemes also brings drawbacks to the CRN, known as
cooperation overhead. This overhead refers to any extra effort that the CRN
node needs to do to accomplish CSS when compared to the case where no CSS
is done. This extra effort can be extra sensing time, delay, extra spent energy
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and other operations devoted to accomplish the CSS. Also any performance
degradation due to imperfect CR node selection, where the nodes are under
correlated shadowing, or vulnerability to security attacks.

Another cooperative overhead not considered in the literature [6, 27] is that
although it might be problematic to choose CR nodes which are under corre-
lated shadowing, when opposed to the case where the nodes are experiencing
completely uncorrelated conditions, there is also a drawback for not doing so.
Consider the scenario illustrated in Figure 1.6(b), where there is a primary
system and cognitive radio system, both composed by a transmitter and re-
ceiver. Both the CRN node and the primary transmitters are able to detect
each other, but the receivers are outside the interference zone, i.e., the CRN
receiver is outside the range of the primary transmitter, and the primary re-
ceiver outside the range of the CRN transmitter, so if both transmitters would
do a transmission there would be no interference, but since the transmitters
detect each other then only one of them transmits at a given time. This is
known as the exposed node problem.

The effect of the exposed node problem is increased by fusing together
sensing results taken from spatial positions apart, and therefore by combining
sensing results from positions far apart, one is losing the information about
possible available spectrum opportunities, i.e. losing information about the
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spatial diversity. This phenomenon is illustrated in Figure 1.8, where the col-
ored regions represent where the spectrum is available and non-colored where
the spectrum is occupied. After the Data Fusion (DF) occurs the informa-
tion about the regions where the spectrum was available disappears, therefore
causing the network to lose that information.

So the above gives the motivation for the development of a CSS mechanism,
where each of its composing elements need to be taken into account so that
then resulting mechanism increases the network performance instead of the
opposite.

1.4 Problem Definition

The problem tackled in this thesis was on how to develop a CSS mechanism
which both overcomes the hidden node problem, does not accentuate the ex-
posed node problem and at the same time is efficient and allows to monitor
several frequency channels. With that in mind the problem tackled can be
expressed through the following questions:

• What are the essential components of a CSS mechanism?

• What are the properties that a protocol should have to enable this CSS
mechanism?

• How should the CRN nodes cooperate?

• If the local decisions of the CRN nodes are to be combined, where should
it be done and how?

• What is the effect of correlation in regards to the combining of the local
decisions of the CRN nodes?

• How to select which CRN nodes should sense which channel in a multi-
channel context?

In this thesis each one of this questions is analyzed and answered.

1.5 Original Contributions and Publications

The original contributions given throughout this thesis are the following:
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Figure 1.8: The drawback of using data fusion, the loss of spatial diversity

• A distributed protocol which enables the Cooperative Spectrums Sens-
ing is proposed over three different network topologies, a centralized, a
decentralized and a relay aided one;

• A process calculus, denoted as Bounded Broadcast Calculus, which is
used to model and prove the correctness of the proposed distributed
protocols that enable the Cooperative Spectrum Sensing;

• An adaptive counting rule for the data fusion of the local decisions, which
is able to select the best k-threshold based on the performance of the local
detectors and the incumbent signal duty cycle;

• A methodology to measure the potential resources that a cooperative
spectrum sensing mechanism can identify;

• A cluster based adaptive counting rule algorithm, which groups together
the local detectors that are experiencing the same conditions. Through
this algorithm is possible to maximize the amount of potential resources
identified;

• A centralized and a decentralized Node Selection mechanism, which the
goal is to maximize the amount of potential resources identified in a
multi-channel scenario.

The publications performed during the Ph.D. work which are directly re-
lated to the work described in this thesis are listed below.

The conference publications are the following:

a - Nuno Pratas, Neeli Rashmi Prasad, António Rodrigues and Ramjee
Prasad, Cooperative spectrum sensing: State of the art review, Wireless
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Communication Society, Vehicular Technology, Information Theory and
Aerospace and Electronic Systems Technology, Wireless VITAE 2011;

b - Nuno Pratas, Nicola Marchetti, António Rodrigues, Neeli Rashmi Prasad
and Ramjee Prasad, Adaptive Counting Rule for Cooperative Spectrum
Sensing Under Correlated Environments. The 13th International Sympo-
sium on Wireless Personal Multimedia Communications (WPMC 2010);
Best Student Paper Award

c - Nuno Pratas, Nicola Marchetti, António Rodrigues and Ramjee Prasad,
Capacity Limits Introduced by Data Fusion on Cooperative Spectrum
Sensing under Correlated Environments. The 8th Communications In-
ternational Conference, in Bucharest, Romania. COMM 2010; Best
Student Paper Award

d - Nuno Pratas, Nicola Marchetti, Neeli Rashmi Prasad, António Ro-
drigues and Ramjee Prasad, Centralized Cooperative Spectrum Sensing
for Ad-hoc Disaster Relief Network Clusters. IEEE International Com-
munications Conference, IEEE ICC 2010;

e - Nuno Pratas, Nicola Marchetti, Neeli Rashmi Prasad, António Ro-
drigues and Ramjee Prasad, Decentralized Cooperative Spectrum Sensing
for Ad-hoc Disaster Relief Network Clusters. 2010 IEEE 71st Vehicular
Technology Conference: VTC2010-Spring, IEEE VTC2010-Spring;

The journal publications are the following:

f - Nuno Pratas, Nicola Marchetti, Neeli Rashmi Prasad, António Ro-
drigues and Ramjee Prasad, System Capacity Limits Introduced by Data
Fusion on Cooperative Spectrum Sensing under Correlated Environments,
MTA Review XX(4), 245-262 (2010), Romania;

g - Nuno Pratas, Nicola Marchetti, Neeli Rashmi Prasad, António Ro-
drigues and Ramjee Prasad, Adaptive Counting Rule for Cooperative
Spectrum Sensing Under Correlated Environments, Special Issue of the
Wireless Personal Communications Journal from Springer Verlag;

h - Nuno Pratas, Hans Hüttel, Understanding Cooperative Spectrum Sens-
ing using a Process Calculus ; (submitted)

The book chapter:
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i - Nuno Pratas, Nicola Marchetti, Neeli Rashmi Prasad, António Ro-
drigues and Ramjee Prasad, Cognitive Disaster Relief Networks, in Telecom-
munications in Disaster Areas, ISBN : 978-87-92329-48-6. River Publish-
ers

Other publications done in parallel not directly related with the work pre-
sented in this thesis but which had an effect on the methodology followed are
the following: The conference publications are the following:

• Nuno Pratas, Filippo Meucci, Damir Zrno, Neeli Rashmi Prasad, An-
tónio Rodrigues and Ramjee Prasad, Cogito Test-bed - Cognitive Re-
search Evolved, Wireless Communication Society, Vehicular Technology,
Information Theory and Aerospace and Electronic Systems Technology,
Wireless VITAE;

• Nuno Pratas, P.N. Anggraeni, S.A. Wardana, Neeli Rashmi Prasad, An-
tónio Rodrigues and Ramjee Prasad, Context-Aware Trust and Privacy
Application for Mobile Identification System, Wireless Communications
and Networking Conference 2009, WCNC 2009;

• João Mestre, Nuno Pratas, Neeli Rashmi Prasad, António Rodrigues
and Ramjee Prasad, Adaptive Flexible Spectrum Usage Algorithms in
Heterogeneous Cell Deployment. PIRMC 2011

• Andrei Lucian Stefan, Cyril Rota, Juras Klimasauskas, Nuno Pratas,
Neeli Rashmi Prasad and Ramjee Prasad, Spectrum and Service pricing
for 802.22 networks. The 14th International Symposium on Wireless
Personal Multimedia Communications: WPMC 2011

• Pedro Alvarez, Nuno Pratas, Neeli Rashmi Prasad, António Rodrigues
and Ramjee Prasad, Energy Detection and Eigenvalue Based Detection:
An Experimental Study Using GNU Radio. The 14th International Sym-
posium on Wireless Personal Multimedia Communications: WPMC 2011

• Frederico Santos, Nuno Pratas, Neeli Rashmi Prasad and António Ro-
drigues, Multimedia Broadcast Multicast System Enhancements - The
Layer Algorithm. The 13th International Symposium on Wireless Per-
sonal Multimedia Communications: WPMC 2010

The journal publications are the following:
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• Nuno Pais, Bilge Kartal, Nuno Pratas, Neeli Rashmi Prasad, Fernando
Velez and Ramjee Prasad, Cost-benefit Aware Routing Protocol for Wire-
less Sensor Networks with Hybrid Energy Storage System. Green Engi-
neering Journal

1.6 Thesis Outline

The outline of the thesis is given in Figure 1.9, which depicts the a generalized
CSS mechanism proposed in this thesis, as well where each of the contributions
fit.

In Chapter 1 was given an overview on the Cognitive Radio fundamentals
and its functionality, together with the motivation for the work developed and
described in this thesis, the problem definition and the original contributions.

In Chapter 2 is discussed the Cooperative Spectrum Sensing state of the
art. Where it is highlighted the most common spectrum sensing methods, how
the local decisions of the local detectors are reported to the network, how the
local decisions can be combined to achieve a network wide decisions in regards
to the monitored spectrum, how this information can be constructed over time,
and finally an overview of the node selection methods available is given.

In Chapter 3 is presented an analysis of the correctness of the protocol
which enable the CSS. This is done by proposing and employing a process
calculus which is a variant of the π-calculus, denoted as Bounded Broadcast
Calculus (BBC). This analysis is done over centralized, decentralized and relay
aided topologies. The outcome of this chapter is a theorem which states the
formal correctness properties of a protocol for each of the network topologies
considered.

Chapter 4 presents an analysis of the performance of the counting rule based
data fusion schemes. It is also proposed an adaptive counting rule algorithm
which adapts the decision threshold according to the performance of the local
detectors. In this chapter is also done a study about the impact of using local
detectors in the data fusion scheme which are experiencing different channel
conditions, i.e. some of these local detectors are experiencing the channel as
free while other as occupied. In this analysis is measured what is the impact
of using data fusion regarding these cases, whether it improves the detection
of these available resources, minimizing both the hidden and exposed node
problem. The chapter concludes with the proposal and the analysis of the
performance of a cluster based adaptive counting rule data fusion scheme.
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Chapter 5 presents the framework for a Node Selection (NS) mechanism
which allows to select which local detectors are sensing which channel at a
given sensing session. Two algorithms, a centralized and a decentralized, are
proposed to implement the proposed NS mechanism. The purpose of using
such scheme is to ensure that the correct amount of the local detectors is
sensing each channel, and therefore maximize the amount of channels sensed.
The proposed scheme tends to assign the local detectors to channels which
have an higher probability of being available, so to increase the probability of
the network finding a channel which is available to be used.

Finally in Chapter 6 the final conclusions and outlook for future work are
given.
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2
State of the Art

2.1 Introduction

Cooperative Spectrum Sensing can be achieved through different approaches.
The dominant approach is to follow the parallel data fusion model [38], al-
though some other approaches have been proposed which follow a sequential
data fusion model [19]. It as been also proposed in the literature to resort
to the active probing of the primary network [11], where the Cognitive Ra-
dio Network (CRN) creates interference on purpose to the primary network to
measure its reaction. For this kind scheme to work the primary network needs
to have an Adaptive Modulation and Coding mechanism in place. In this the-
sis it is considered the more traditional Cooperative Spectrum Sensing (CSS),
i.e. passive sensing, using a paralled data fusion model.

To describe how a CSS mechanism can be implemented, consider the gen-
eralized model depicted in Figure 2.1. The purpose of this mechanism is to
ensure that all the nodes in the CRN have updated and synchronized informa-
tion about the state of the targeted spectrum. The considered mechanism is
the backbone for the centralized [30] and decentralized [28] mechanism imple-
mentation, and the interactions between each of the modules, i.e. the protocol,
is analyzed in Chapter 3. The modules depicted in the generalized distributed
CSS model are elaborated in next sections.
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Figure 2.1: Distributed spectrum sensing mechanism flow

2.2 Spectrum Sensing

For the CSS mechanism to work it is necessary that a local spectrum sensing
detector is available at each of the CRN nodes. The role of Spectrum Sensing
(SS) is to detect whether a signal is present or not in the monitored spectrum
band. In the literature [21, 3] several SS techniques can be found, in Table 2.1
are listed some of them.

These SS techniques can be classified by whether the detection is coherent
or non-coherent and in regards to the monitored spectrum bandwidth, i.e.
whether is narrowband or wideband. In the coherent detection, the detection
is performed by comparing the received signal or some of its characteristics
with a priori knowledge about that specific signal. While in the non-coherent
detection a priori knowledge is not required.

Whether for the detection of temporal or spatial Spectrum Hole (SH), SS in
CRN involves deciding whether a primary signal is present or not in a spectrum
band at the position of the detector, therefore the detection can be formulated
as a test of two hypothesis, given by:

y(t) =

{
w(t) if H0

s(t) + w(t) if H1
(2.1)

where y(t) is the received signal at the detector, s(t) is the signal or in the
case there are several signals the summation of those signals, and w(t) is the
additive white gaussian noise. H0 andH1 denotes the hypothesis corresponding
to the absence and presence of a signal. The detector then decides between
H0 and H1 from the observation of y(t).

For the remaining of the thesis the Energy Detector (ED) [37] is considered
as the local detector put in place at the CRN nodes, and therefore a short
introduction to its theoretical model is given next.

The ED is the simplest SS technique. The ED can be implemented following
the blocks depicted in Figure 2.2, where Figure 2.2(a) is the traditional im-
plementation, while Figure 2.2(b) is an alternative approach proposed in [8, 4]
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Table 2.1: Spectrum sensing method overview.
Detector Coherent Non-Coherent Narrowband Wideband References
Energy • • • [37, 12, 8, 32]
Cyclostationary Feature • • [7, 15, 14, 20, 18]
Matched Filter • • [9, 7, 6, 18]
Wavelet • • [6, 35, 18]
Eigenvalue • • • [40, 41, 26, 18]
Compressed Sensing • • [13, 10, 34]

which allows the detection of narrowband signals and sinewaves with better
performance than the traditional implementation.

The ED treats the signal as noise and decides on the presence or absence
of the primary signal based on the energy of the observed signal. Since it does
not need any a priori knowledge of the signal, the ED is robust to the variation
of the signal, does not involve signal processing and has low complexity.

The test statistics, T , of the ED is obtained as the observed energy sum-
mation within N consecutive samples, i.e.,

T =

{ ∑N
n=1 |W (n)|2 if H0∑N
n=1 |S(n) +W (n)|2 if H1

(2.2)

where S(n) and W (n) denote the spectral components of the received signal
and the noise on the channel of interest in the nth sample, respectively. The
noise is assumed to be additive, white and Gaussian noise with zero mean and
variance σ2

w. Since the detection is non-coherent [8] the signal samples can
also be modelled as a Gaussian random process with variance σ2

x. The decision
statistic is an application of the Cell Averaging Constant False Alarm Rate
detector [38] for the ED.

Considering the Neyman-Pearson Criterion (NPC), a common detection
performance criteria used for weak signal detection [38], the likelihood ratio
yields the optimal hypothesis testing solution and performance is measured by
probability of detection pd and probability of false alarm pfa.

The probability of detection is defined as,

pd = P (H1|H1) (2.3)

The probability of false alarm can be defined as,

pfa = P (H1|H0) = 1− P (H0|H0) (2.4)

When the signal is absent, the decision statistic has a central chi-square
distribution with N degrees of freedom. When the signal is present, the deci-
sion statistic has a non-central chi square distribution with the same number
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Figure 2.2: Energy Detector Implementation a) with analog pre-filter and
square-law device b) implementation using periodogram: FFT magnitude
squared and averaging

of degrees of freedom [8]. Considering the purpose is the detection of signals in
low Signal to Noise Ratio (SNR) regime, therefore the number of samples re-
quired is potentially large. Considering that the number of samples is N > 250
and using the central limit theorem, then it is possible to approximate the test
statistics as Gaussian, which yields,

T ≈
{
Normal (Nσ2

w, 2Nσ
4
w) if H0

Normal (N(σ2
w + σ2

x), 2N(σ2
w + σ2

x)
2) if H1

(2.5)

Therefore, pd can be evaluated as,

pd = Q

γ −N (σ2
w + σ2

x)√
2N (σ2

w + σ2
x)

2

 (2.6)

and pfa as,

pfa = Q

(
γ −Nσ2

w√
2Nσ4

w

)
(2.7)

Since the Cell Averaging Constant False Alarm Rate is considered, then
the threshold γ can be set without the knowledge of the signal power [8]. By
manipulating Eq. 2.7, the threshold γ can be expresses as,

γ = σ2
w

[
Q−1 (pfa)

√
2N +N

]
(2.8)
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Expressing the SNR as,

SNR =
σ2
x

σ2
w

(2.9)

The pd can be expressed in function of the N , SNR and pfa, by combining
in Eq. 2.6 both Eq. 2.8 and Eq. 2.9, obtaining the following,

pd = Q

(
Q−1 (pfa)

√
2N −NSNR√

2N (1 + SNR)

)
(2.10)

From this equation it is possible to obtain the Receiver Operating Char-
acteristic (ROC) for the pair (pd, pfa), while considering a fixed number of
samples N and for a given SNR. Note that if the number of samples is not
limited, then any pair of (pd, pfa) is possible. The minimum number of samples,
Nmin, for a given (pd, pfa) pair and SNR can be written as,

Nmin = max
(

2
[(
Q−1(pfa)−Q−1(pd)

)
SNR−1 −Q−1(pd)

]2
, 250

)
(2.11)

The minimum value that N can take is 250 due to the assumptions taken
to define Eq. 2.5. The low SNR regime (SNR << 1), according to Eq. 2.11 [8]
the number of samples required, for a specified (pd, pfa) pair, scales as,

Nmin
SNR<<1→ O

(
1

SNR2

)
(2.12)

This means, the lower is the SNR the higher is the sensing time required.
Although, according to [33], there is a lower threshold for the SNR, denoted as
SNRwall for which below it is not possible to detect the signal and consequen-
tially Eq. 2.11 does not hold. This limitation is due to the signal model used
to design the detector [8], where two fundamental assumptions were made:

• Noise Type - the noise was assumed to be white, additive and Gaussian,
with zero mean and known variance. However, noise is an aggregation
of various sources, such as thermal noise at the receiver and underlined
circuits and also interference due to nearby unwanted emissions, weak
signals from far way, etc;

• Noise Variance - the noise variance was assumed to be known to the
receiver, so that that threshold could be set accordingly. However this
is not realistic since the noise could vary over time due to temperature
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change, ambient interference, filtering, etc. Even considering that the
receiver estimates it, there is a resulting estimation error due to limited
amount of observation time.

Therefore, the detection model needs to account the measure of noise vari-
ance uncertainty. In [33], this SNRwall was defined as,

SNRwall = 10 log10

(
10

x
10 − 1

)
(2.13)

where x is the noise uncertainty threshold. So if the threshold is set too high,
due to wrong estimated noise variance, then signals below the SNRwall cannot
be detected.

2.3 Local Decision Reporting

After the SS is performed and a local decision is achieved, then it is time to
report that same decision to the network. The destination of the reporting will
depend on the CSS topology that the network has in place. The cooperation
in the network can be organized in one of three topologies, a centralized, a
decentralized or relay based one, all depicted in Figure 2.3.

In the centralized network topology the network is composed by a central
node, Central Node (CN), and one or several sensing nodes, Sensing Node
(SN), as depicted in Figure 2.3(a). In this kind of topology the CN is the
one responsible for selecting which nodes will sense the spectrum and also
responsible for computing the cooperative decisions based on the local decisions
from each of the sensing nodes. The drawback of this topology is that if the
CN drops from the network then the CSS mechanism stops until the CN is
restored or until a new CN is selected or set-up.

In the decentralized network topology the network is composed only by
sensing nodes, SN, as depicted in Figure 2.3(b). In this topology the Sensing
Nodes (SNs) exchange the local decisions between each other with the purpose
of either reaching a unified decision or to improve the own local decision of the
SNs. In the later case a unified decision may not be reached since not all SNs
will have access to the same sensing data, since not all SNs might be in each
other reach. A possible way of overcoming this is to allow some of the SNs
to relay the local decisions from the surrounding SNs to the other SNs out of
reach.

In the relay aided network topology the network is composed by a central
node, CN, one or several sensing nodes, SN, and one or several relay nodes,
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Figure 2.3: (a) Centralized Topology, (b) Decentralized Topology, (c) Relay
aided Topology

Relay Node (RN), Figure 2.3(c). In the relay aided topology the SNs might
not able to connect directly with the CN and therefore in those cases the
communications are always performed through a RN. The need for the relay
aided topology comes since the sensing channel and the report channel are
not perfect, and therefore a SN experiencing a weak sensing channel and a
strong report channel and a SN with a strong sensing channel and a weak
report channel can complement and cooperate with each other to improve the
performance of cooperative sensing. The example depicted in Figure 2.3(c)
depicts a centralized topology aided by relays, but these relays can of course
be also applied to the decentralized case and in that case it might be needed
to perform multi-hopping and so the intervening SNs will also act as relays.

2.4 Local Decisions Fusion

After the local decisions from the surrounding CRN nodes are collected, these
need to be combined so that a global decision is reached. Data fusion is the
process through which the global decision is accomplished, i.e. it is the process
where the local sensing data is combined to allow hypothesis testing. The local
sensing data can be of different forms, size and type, being in general limited
by the control channel reporting available bandwidth. The combined of the
sensing results can be classified as:

• Soft Combining - CRN nodes transmit the entire local sensing samples
or the complete local test statistics for soft decision, [22, 31];
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• Quantized Soft Combining - CRN nodes quantize the local sensing results
and send only the quantized data for soft combining to alleviate control
channel communication overhead, [22, 31];

• Hard Combining - CRN nodes make a local decision and transmit the
one-bit decision for hard combining at the data fusion center, [27, 25, 39,
36].

From these, the soft combining is the one that allows for a superior detec-
tion performance, since there is more information in the shared local sensing
data, although at the cost of control channel bandwidth, while quantized and
hard combining require less control channel bandwidth at the cost of degraded
detection performance due to loss of information due to the quantization.

2.5 Knowledge Base Update

While performing CSS, the CRN accumulates over time data regarding the
spectrum allocation conditions at its surroundings. This information is built
by combining past observation with the current derived observations. This ac-
cumulated information can be used to improve the network performance as well
as to improve the CSS schemes performance. This accumulated information
can take the form of traffic patterns, location and transmit power of channel
incumbents. If this information is available at the time when the decisions are
made regarding the presence of a signal in the channel they can help improve
the detection performance.

This gathering of information is called in the literature [2, 3] as Knowledge
base (KB), and it can be used to assist, complement or even replace CSS in
some scenarios, for example in the TV white space band where the position of
the broadcasters is publicaly available.

The KB can be used in two ways, [3], in CSS:

• to enhance the detection performance by utilizing the accumulated knowl-
edge and the learned experience such as statistical models in the database;

• to alleviate the burden of CSS by retrieving the spectrum information
such as a list of Primary User (PU) occupied channels from the database.

The KB might be able to provide information regarding the incumbents of
the targeted spectrum such as locations, tracking, transmit power, and activity
in the forms of spatial temporal spectral maps for cooperative sensing. There

36



2.6. Node Selection 37

are some examples in the literature how such knownledge can be used to create
a KB, being those [3]:

• incumbent duty cycle [28, 30];

• radio environment map [43, 42];

• received signal strength profiles [23];

• channel gain map [16, 17];

• power spectral density [5].

Still there are some issues to address, like who should populate these knowl-
edge base, only the CRN nodes or should there be external entities which can
update it so to ensure a more smooth functioning of the CRN, minimizing the
interference with incumbent users. A recent Federal Communications Com-
mission (FCC) ruling [1] removed the spectrum sensing requirements in the
TV white space band, and so CRN nodes are to access the incumbent activ-
ity and spectrum information from a remote knowledge base. Although this
ruling removes the SS challenges, it introduces another challenge, on how can
the CRN nodes access this remote KB, while considering the scalability issue
which will impact on how fast each of the CRN nodes can access the required
information.

2.6 Node Selection

The cooperation between CRN nodes is controlled by the Node Selection (NS)
procedure, which plays a key role on the performance of the CSS since it can
influence the cooperative gain as well as address the overhead issues. Consid-
ering the case when the cooperating nodes are experiencing the same signal
power level conditions, i.e. the node experienced SNR is correlated, then
the cooperative gain will be much less than when the cooperation is done be-
tween nodes experiencing uncorrelated channel conditions, as shown in [24].
Although it was shown in [29] the use of uncorrelated nodes in the CSS may
decrease the perceived available resources, since the SS measurements can be
potentially taken from spread geographical locations. There is also the issue
of malicious CRN users which may affect the system performance by shar-
ing erroneous SS data, therefore by performing proper NS these nodes can be
discarded from the cooperation group. The NS mechanism besides selecting
which CRN nodes to cooperate with each other also selects where these CRN
nodes should cooperate, i.e. which spectrum band they should sense.
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The NS can be based on two approaches the centralized [30] and decentral-
ized [28]. On the centralized, there is a central entity, normally the CN, which
performs the NS, while in the decentralized each CRN node performs the NS
itself. The NS is based on the information collected overtime through the SS,
i.e. from the KB. More about NS methodologies can be found on [3].

2.7 Gain and Overhead

The main driver behind CSS is the exploitation of spatial diversity, which al-
lows to improve the detection performance, where the improvement is termed
as cooperative gain [24]. But the use of cooperation adds a variety of overheads
that might limit the achievable cooperative gain. This overhead is created by
the conditions needed to achieve the cooperation. The elements of cooper-
ative spectrum sensing which affect the cooperation gain and overhead are:
sensing time and delay; channel impairments; energy efficiency; cooperation
efficiency; mobility; security; and wideband sensing. These items are discussed
extensively in [3].

2.8 Conclusions

Spectrum sensing is the cornerstone of the cognitive radio paradigm and has
therefore been the focus of intensive research, where one of the main conclu-
sions from the research community is that spectrum sensing performance can
be greatly enhanced through the use of cooperative sensing schemes.

In this chapter was given an overview on what is cooperative spectrum
sensing and what are main channel to be overcome, as well what are the
possible gains and possible overhead.
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3
Reasoning about Distributed

Cooperative Spectrum Sensing
Protocols Correctness

3.1 Introduction

The goals of a Cooperative Spectrum Sensing (CSS) mechanism is to ensure
that all the Cognitive Radio Network (CRN) nodes know which spectrum to
sense and when to sense, how to share the results from the sensing and how
to ensure that all CRN nodes have an updated and synchronized information
about the state of the monitored spectrum.

In the literature one can find several proposals on how to establish this
cooperation mechanism, as discussed in Chapter 2. In general, these can be
classified according to the assumptions made on the topology of the network,
i.e. whether it is centralized, decentralized or relay-assisted. In each proposed
mechanism, there is a protocol in the form of a distributed algorithm which
allows to achieve the CSS mechanism goals. However, little work has been done
to model and analyse the algorithmic correctness of these same protocols. In
the case of CSS, a protocol is considered correct if it allows the CRN nodes
to perform the stated CSS mechanism goals. Most proposals found in the
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literature focus on the analysis of the performance of the algorithms upon
implementation, be it through theoretical modelling, simulation or real system
implementation, i.e. they give a quantitative analysis, while in this chapter the
focus is on the analysis of the underlying properties of the algorithms which
enable the CSS, such as correctness, therefore a qualitative analysis.

A CSS mechanism can be expressed, as discussed in Chapter 2, by the
flow diagram depicted in Figure 3.1, a generalized version of the one proposed
in [13, 12]. From this flow diagram four elemental components, or modules,
of the CSS can be identified. These are the Spectrum Sensing (SS), Local
Decisions Data Fusion (LDDF), Knowledge Base Update (KBU) and Node
Selection (NS). In this chapter, the implementation of these components is not
discussed, they are considered to be black boxes which are able to exchange
messages with the other CSS components. Instead the focus is on the message
exchange, i.e. on the distributed protocol which enables the CSS.

A CRN which implements a CSS, as discussed in Chapter 2, can be orga-
nized in one of three topologies, a centralized, a decentralized or relay-assisted
one, all depicted in Figure 3.2. The network nodes can assume different
functionalities in regards to the CSS depending on the network topology in
place. In the centralized topology there is a Central Node (CN) and several
Sensing Nodes (SNs) while in the relay based topology there are also Relay
Nodes (RNs), while in the decentralized topology there are only SNs.

To allow the cooperation to be established between each of CRN nodes,
there is the need for these CRN nodes to be able to have access to a Common
Control Channel (CCH). Here is assumed that such a channel exists and that
it is divided in the time domain by control frames of equal duration, in which
the control frames are further divided in time as shown in Figure 3.3. The
control exchanges part of the frame is used by the CRN nodes to exchange
any signalling information not related to CSS. While the sensing exchanges
part is where all the exchanges related to the CSS occur. Note that all the
CRN nodes are assumed to be registered with each other when the network is

Spectrum
Sensing

Local 
Decision

Reporting

Local 
Decisions

Fusion

Node 
Selection

Knowledge 
Base

Update

Figure 3.1: Distributed spectrum sensing mechanism flow
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instatiated, therefore the node registration procedure is not discussed in this
thesis.

3.2 Reasoning about protocols using process

calculi

As a motivating example, consider the scenario depicted in Figure 3.4, where
there is one Sensing Node (SN) and one CN. In this scenario, the SN senses the
state of the channel being monitored and reaches a local decision regarding the
state of that same channel. Then the SN forwards the local decision, denoted
as the ss message, to the CN. The CN then processes the received message
and informs the SN of its global decision, denoted as the sd message. All these
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message exchanges are done through the common control channels denoted by
ccd (downlink) and ccu (uplink).

The question is now: how can it be stated and shown that the protocol
works as described, i.e. that it will indeed perform the described interactions?
To this end a process calculus is employed.

Process calculi arise in computer science as a mathematical frameworks for
describing aspects of distributed and parallel computations, analogous to the
role played by Turing machines and lambda calculus in computability theory.
The topic originated around 1980 with the seminal work of Milner [8] and there
is now an extensive body of work on both the mathematical foundations and
the applications to reasoning about phenomena distributed and parallel com-
puting. In most process calculi, the parallel components of a system interact
through communication, and very often this communication is described as
point-to-point communication over named channels. The system in Figure 3.4
can be described using the process calculus notation as

S = ccu〈1〉.ccd(b).x〈b〉︸ ︷︷ ︸
SN

| ccu(a).ccd〈1 + a〉.︸ ︷︷ ︸
CN

(3.1)

This system uses two channels named respectively ccu and ccd. Parallel compo-
sition is denoted by the bar |. If we let overlined names denote output actions
and all other names denote input actions, the intuition is that the system will
first allow the component SN to output 1 on the channel ccu and allow the CN
component to receive a message, also on the channel ccu. The CN component
can then output the result of the sum on the ccd-channel. After its initial
output, SN can receive a value on the ccd-channel and subsequently output it
on the x-channel.

Around 1990, Milner et al. proposed the π-calculus [9, 10] as a process
calculus for describing parallel computations that involve notions of mobility.
A central insight is that mobility involves passing references in the form of
names.

Considering a modified version of the described system now with labels,
denoted by

S = ccu〈ccd〉.ccu〈ss〉.ccd(c).x〈b〉︸ ︷︷ ︸
SN

| ccu(a).ccu(b).a〈sd(b)〉.︸ ︷︷ ︸
CN

(3.2)

Here, SN is now able to send a channel name ccd, which CN can receive.
Upon reception, CN can then use the ccd-channel for communicating with SN.
Channels may have scope; in a further modification, the scope of ccd can also
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Figure 3.4: A simple protocol

be restricted to SN using a ν-binder.

S = (νccd)

ccu〈ccd〉.ccu〈ss〉.ccd(c).x〈b〉︸ ︷︷ ︸
SN

 | ccu(a).ccu(b).a〈sd(b)〉.︸ ︷︷ ︸
CN

(3.3)

After the first communication on the ccu-channel, this scope will now be ex-
tended to also include CN as follows.

S = (νccd)

ccu〈ss〉.ccd(c).x〈b〉︸ ︷︷ ︸
SN

| ccu(b).ccd〈sd(b)〉.︸ ︷︷ ︸
CN

 (3.4)

A large variety of process calculi that extend the π-calculus have been pro-
posed. Some variants of the π-calculus, notably the distributed π-calculus due
to Hennessy and Riely [6, 14] introduce notions of locality; here a process P is
located at a named location ` and is thus written `[P ]. In other variants of the
π-calculus, a notion of broadcast communication has been introduced, notably
by Ene and Muntian [3]. These approaches have led to a body of work devoted
to understanding the computational properties of mobile ad hoc networks by
means of process calculi. Some of this work has focused on security properties,
while other work has focused on timing properties [1, 11, 7].

Revisiting the system depicted in Figure 3.4, it can be shown how the
system evolves.

S = ccu〈ss〉.ccd(b).d〈b〉︸ ︷︷ ︸
SN

| ccu(a).ccd〈sd(a)〉︸ ︷︷ ︸
CN

−→ (3.5)

ccu〈ss〉.ccd(b).d〈b〉 | ccu(a).ccd〈sd(a)〉 −→ (3.6)

ccd(b).d〈b〉 | ccd〈sd(ss)〉 −→ (3.7)

d〈sd(ss)〉 (3.8)
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So a simple exchange of messages has been described, through which it is
possible to see how the messages can be exchanged, allowing to study the
network configuration across several states.

In the remaining of this chapter the computational properties of distributed
protocols which enable the CSS mechanism are described and reasoned about.
Here an extension of the variant of the π-calculus with located processes and
broadcast communication introduced by Godskesen et al. [5] is considered.
Three different protocols are proposed, according to the underlying topology,
for sensing and selecting which radio channels should be sensed in the CRN
context and are also proved to be correct for any number of nodes using the
defined process calculus techniques.

3.3 Network Description

Here the network topologies illustrated in Figure 3.2 are described using a
process calculus, which will be defined formally in Section 3.4. All the com-
munications related to the CSS, including message relaying, are performed
through a CCH, denoted as cc. In the following descriptions, the notation∏

i∈I Pi is used to denote the parallel composition of a finite set of network
components, each denoted by Pi with i in some index set I.

In the centralized network topology the network is composed by a CN and
one or several SNs. The centralized network topology is defined using the
process calculus notation as,

S ≡ (ν~cc)

(∏
i∈I

cl ./ sli

)
| CN |

∏
i∈I

SNi (3.9)

where CN represents the central node, SNi is the ith sensing node and I is
the index set of sensing nodes. cl and sli are the locations of the CN and
the ith SN , respectively. The operator ./ denotes that the locations are near
each other, i.e. any communication established between processes at these
locations is bidirectional. The ≡ operator denotes the structural congruence,
which is a relation that states that two processes or networks are related, if
they are identical up to simple structural modifications such as the ordering of
parallel components. The purpose of structural congruence is discussed further
in Section 3.4.2.
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In the decentralized network topology the network is composed only of SNs.
The decentralized network topology is defined as,

S ≡ (ν~cc)

( ∏
i,j∈I,i 6=j

sli ./ slj

)
|
∏
i∈I

SNi (3.10)

where SNi is the ith sensing node and sli is the location of the ith SN .

In the relay-based network topology the network is composed by a CN one or
several SNs and one or several RNs. It is assumed that in this topology the SNs
are not able to connect directly with the CN and therefore the communications
are always performed through a Relay Node (RN). To ease the presentation
here is considered that between a given SN and the CN there is only one RN.
The relay based network topology is defined as,

S ≡ (ν~cc)

∏
j∈J

cl ./ rlj |
∏
j∈J

∏
i∈Ij

sli ./ rlj

 | CN |∏
j∈J

RNj |
∏

i∈
⋃

j∈J Ij

SNi

(3.11)

where SNi is the ith sensing node, I is the index set of sensing nodes, RNj is
the relay node and J is the set of relay nodes. cl, sli and rlj are the locations
of the CN , the ith SN and the jth RN , respectively.

3.4 Bounded Broadcast Calculus

In this section the proposed Process Calculus (PC), denoted as Bounded
Broadcast Calculus (BBC), is defined formally, together with the new additions
to the PC which allow to model and reason about a CSS.

3.4.1 Syntax

The BBC has locations similar to that of the PC proposed by Godskesen et
al. [5]. In the BBC, processes reside at named sites, called locations, and
use named channels for communication. Thus, a central notion is that of
names, and that a, x ∈ Names, a countably infinite set of names. A parallel
composition of these located processes is called a network.

The set of networks is called Nets, the set of processes is called Proc, the
set of messages is denoted Msg. The formation rules defining these three sets
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M ::= x | (M1, . . . ,Mk) | f(M)

P ::= a((λ~x)M).P1 | a〈M〉.P1 | (νx)P1 | [M = N ]P1 | [M 6= N ]P1

| P1 | P2 | P1 + P2 | 0 | ∗P1 | A (~n)

N ::= l[P ] | N1 | N2 | (νx)N | ψ
ψ ::= l . m

Table 3.1: Formation rules

are given in Table 3.1. A message M can be a name x, a vector of messages
(M1, . . . ,Mk) or a message f(M) where a function symbol f , where f ∈ Fun
(a finite set of function symbols), has been applied to argument M . Note that
f is viewed as a message constructor, i.e. as a tag; no actual evaluation of
composite messages is assumed. In the BBC lists of names are used often.
Two important function symbols are therefore the list constructors :: and []; []
denotes the empty list and b :: l denotes the list whose head element is b and
whose tail is the list l.

From the formation rules, a process P can be seen as one of the following:

• An input process a((λ~x)M).P1 which asks for a message on the channel
named a and, if the received message N matches the input pattern (λ~x)M
(defined formally below), then the process continues as the instantiation
P1θ. A process a((λx)x)).P1 is written a(x).P1.

• An output process a〈M〉.P1 sends out the message M on the channel
named a and then continues as P1.

• A restriction (νx)P1 declares the name x to be private within P1.

• A match [M = N ]P1 proceeds as P1 if M and N are the same term.

• A parallel composition P1 | P2 runs the parallel components P1 and P2

in parallel.

• A mismatch [M 6= N ]P1 proceeds as P1 if M and N are distinct terms.

• A nondeterministic choice P1 + P2 can proceed as either P1 or P2.

• An inaction 0 has no behaviour.

• A replication of process P is denoted as ∗P . A replicated process ∗P
is expressed by the agent identifier AP whose defining equation is AP =
P | AP and should therefore be thought of as an unbounded supply of
parallel copies of P .
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• Agent identifiers A(~n) parameterized by a sequence of names; an identi-

fier must be defined using an equation of the form A(~x)
def
= P . Definitions

of this form can be recursive, with occurrences of A(~x) (with names in ~x
instantiated by concrete names) occurring within P .

An input pattern is of the form (λ~x)M , where the variable names in ~x are
distinct and occur free in M . A message N matches this pattern, if it can
be obtained from it by a substitution. More formally, a term substitution is a
finite function θ : Names →Msg. The substitution can also be written as a
list of bindings θ = [x1 7→ n1, . . . , xk 7→ nk].

The action of θ on an arbitrary message can be defined by the clauses

xθ
def
= θ(x) (3.12)

f(M)θ
def
= f(Mθ) (3.13)

(M1, . . . ,Mk)
def
= (M1θ, . . . ,Mkθ) (3.14)

N is said to match (λ~x)M with θ if for a substitution θ with dom(θ) = ~x
N = Mθ is true.

For any process P , fn(P ) the set of free names of P , can be defined. This is
the set of names that are not bound by a restriction or an input pattern. More
formally, fn(P ) is the least set satisfying the equations found in Table 3.2.

A network N is a collection of located processes running in parallel. The
operators of parallel composition and restriction can also be applied at this
level; l[P ] denotes the process P running at location l. ψ is a proximity predi-
cate; l . k denotes that location l is close to k. For these proximity predicates,
parallel composition is thought of as logical conjunction. So, if l and k are
close to each other, then l ./ m can be written instead of l . m|m . l.

3.4.2 Structural congruence and normal form

Structural congruence ≡ is a relation defined for both processes and networks;
the intuition is that two processes (or networks) are related, if they are identical
up to simple structural modifications such as the ordering of parallel compo-
nents. The relation is defined as the least equivalence relation satisfying the
proof rules and axioms of Tables 3.3 and 3.4.

In the rules defining structural congruence, it is described that parallel
composition is commutative and associative both at the level of processes (rules
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fn(a((λ~x)M).P1) = fn(P1) \ {~x}
fn(a〈M〉.P1) = {a} ∪ fn(M) ∪ fn(P )

fn((νx)P1) = fn(P1) \ {x}
fn([M = N ]P1) = fn(M) ∪ fn(N) ∪ fn(P1)

fn([M 6= N ]P1) = fn(M) ∪ fn(N) ∪ fn(P1)

fn(P1 | P2) = fn(P1) ∪ fn(P2)

fn(0) = ∅
fn(A(~n)) = fn(P ) if A(~x)

def
= P

Table 3.2: Free names

(P-Com) P1 | P2 ≡ P2 | P1

(P-As) (P1 | P2) | P3 ≡ P1 | (P2 | P3)

(P-Com-Plus) P1 + P2 ≡ P2 + P1

(P-As-Plus) (P1 + P2) + P3 ≡ P1 + (P2 + P3)

(P-Nil) P | 0 ≡ P

(P-Ext) (νx)(P1 | P2) ≡ (νx)P1 | P2 if x 6∈ fn(P2)

(P-New) (νx)(νy)P ≡ (νy)(νx)P

(P-Eq-1) [M = M ]P ≡ P

(P-Eq-2) [M 6= N ]P ≡ P

(P-AG)
A(~x)

def
= P

A(~n) ≡ Pθ
where θ = [x1 7→ n1, . . . , xk 7→ nk]

Table 3.3: Structural congruence for processes

(P-Com) and (P-As)) and of networks (rules (N-Com) and (N-As)). This
justifies the use of iterated parallel composition

∏
i∈I Pi introduced earlier.

The restriction axioms describe the scope rules of name restrictions. The
scope extension axioms (P-Ext) and (N-Ext) tells that the scope of an exten-
sion can be safely extended to cover another parallel component if the restricted
name does not appear free in this component. The exchange axioms (P-New)
and (N-New) makes it possible to exchange the order of restrictions.
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Finally, the agent axiom (P-Ag) tells that an instantiated agent identifier
A(~n) should be seen as the same as the right-hand side of its defining equa-
tion A(~x) = P instantiated by the substitution θ that maps the names in ~x
component-wise to those of ~n.

For networks, an important axiom is (N-Cong), which expresses that lo-
cated processes are to be identified, if they have the same location name and if
the contents are structurally congruent. The axiom (N-Loc) lets fuse located
processes that have the same location name. The axiom (N-Near) explains
the dynamics of the neighbourhood relation; if a site named l is near another
site m, then this knowledge is known outside the site as well.

By using the laws of structural congruence, any network can be rewritten
to normal form. Informally, a network is on normal form if it consists of the
total neighbourhood information as one parallel component and the location
information as the other.

Definition 1. A network N is on normal form if

N ≡ (ν ~m)(
∏
i∈I

∏
j∈Ji

li . mj |
∏
k∈K

lk[Pk])

Theorem 1. For any network N , there exists a network N1 such that N1 ≡ N
and N1 is on normal form.

Proof. Induction in the structure of N .

3.4.3 Reduction Semantics

The BBC reduction semantics describes the execution steps of terms by means
of a reduction relation →, defined using the notion of structural congruence.

The purpose of the semantics of a PC is to define formally how a process
will evolve. The definition takes the form of a finite set of reduction rules. In
the BBC reduction semantics it is assumed that the network terms are always
on normal form; this is justified by Theorem 1. Reductions are of the form
N → N ′ and should be read as saying that the network configuration N can
perform a computational step, following which it will be in configuration N ′.

The semantics of the BBC needs to capture the bounded connectivity of a
link in a wireless network and in particular that a signal cannot be received,
if too many senders are active on that same link. More precisely, if b is a
positive integer, a a channel name and m a location name, then b(a,m) denotes

53



Chapter 3

(N-Cong)
P1 ≡ P2

l[P1] ≡ l[P2]

(N-Com) N1 | N2 ≡ N2 | N1

(N-As) (N1 | N2) | N3 ≡ N1 | (N2 | N3)

(N-Nil) N | 0 ≡ N

(N-Ext) (νx)(N1 | N2) ≡ (νx)N1 | N2 if x 6∈ fn(P2)

(N-New) (νx)(νy)N ≡ (νy)(νx)N

(N-Loc) l[P | Q] ≡ l[P ] | l[Q]

(N-Near) l[P ] | l . m ≡ m[P ] | l . m
(N-Eq) (νn)l[P ] ≡ l[(νn)P ] if l 6= n

Table 3.4: Structural congruence for networks

the maximum number of senders that may send content on the channel a to
location m. If more senders than b(a,m) are able to send content on the a
channel to a process at location m, then no communication should happen.

Consider the following network example and assume that b(a,m) = 2.

3∏
i=1

li . m | l1[a〈M1〉.P1] | l2[a〈M2〉.P2] | l3[a〈M3〉.P3] | m[a(x).P3] (3.15)

The process at location m should not be able to receive a message on the
channel named a, as the location m has 3 neighbours. If a transmission is to
happen, some of the links must first disappear.

The reduction rules which accomplish this, are found in Table 3.5. To
capture congestion avoidance, the reduction rule (R-Com) expresses that a
communication is only possible for a node if its connectivity is below b. The
rule (R-Drop) expresses that local connectivity can decrease: a link from
node li to node m can spontaneously disappear if the total number of links to
m exceeds b.
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(R-Com)

(ν~n)(
∏

i∈I
∏

j∈Ji li . mj |
∏

k∈K lk[a〈Mk〉.Pk | P ′k] |
∏

`∈Lm`[a((λ~x)M ′
`).Q`] | R)

−→
(ν~n)(

∏
i∈I
∏

j∈Ji li . mj |
∏

k∈K\{j} lk[a〈Mk〉.Pk | P ′k] | lj[Pj | P ′j ] |
∏

`∈Lm`[Q`θ`] | R)

where lj . m` and 1 < {lj | lj . m`} ≤ b(a,m`) for all ` ∈ L,

and for all ` ∈ L then Mj = M ′
`θ` for some θ`.

(R-Drop)

(ν~n)(
∏

i∈I
∏

j∈Ji li . mj |
∏

k∈K lk[Pk])

−→
((ν~n)(

∏
i∈I\{r}

∏
j∈Ji li . mj |

∏
j∈Jk\{s} lr . mj |

∏
k∈K lk[Pk])

for some r ∈ I, s ∈ Ji and channel a ∈ fn((ν~n)(
∏

i∈I
∏

j∈Ji li . mj |
∏

k∈K lk[Pk]))

where |{l | l . ms}| > b(a,ms)

Table 3.5: Reduction rules for networks on normal form, assuming connectivity
b(a,m)

3.5 Centralized Topology Description

In the centralized network topology, the network nodes can either assume the
role of a SN or of a CN.

The SN is the node responsible for performing the SS and is defined as,

SN
def
= sl [(νnSN) ∗ P | RSN ]

where P is the process which implements the sensing and reporting function-
ality at the sensing node and RSN is the process which encapsulates the node
functionality which is out of the scope. The SN performs the SS in every sens-
ing iteration, except when it does not receive any information regarding which
channel to sense from the CN.

The CN is responsible for the LDDF, KBU and the NS in each sensing
iteration, and is defined as follows,

CN
def
= cl

[
(νnCN) ∗

(∏
m∈M

Qm | T

)
| RCN

]
(3.16)

where Qm is the process which deals with the LDDF and KBU of the mth

channel. T is the process on which the NS occurs after each sensing iteration,
and RCN represents any other functionality which is out of scope.
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3.5.1 Spectrum Sensing

The process P is divided in three subprocesses and is defined as

P
def
= P1 | P2 | P3 (3.17)

P1 is the subprocess which receives the information about which channel should
the SN sense in the next sensing iteration, and is defined as

P1
def
= cc (λ (x, y) (x, y)) if x = nCN then e〈y〉 (3.18)

where cc is the CCH through which all control messages are exchanged between
the network nodes. The input process checks if the message has the correct
pattern and checks also if the originator of the message is the CN. This is done
by comparing the id of the message, x, with the id of the CN, given by nCN .
y is the message with the information about the label of the channel which
should be sensed, and e the communication link to the P2 subprocess.

P2 is the subprocess where the SS occurs, and is defined as

P2
def
= e(a).f〈SS (a)〉 (3.19)

where SS is the spectrum sensing function, and f is the communication link
with the reporting process, P3. The output of the SS function is a decision
about the state of the sensed channel, which from now on is referred as the
local decision.

P3 is the subprocess where the state of the sensed spectrum is reported to
the network, and is defined as

P3
def
= f(b).cc〈(nSN , b)〉 (3.20)

3.5.2 Data Fusion and Knowledge Base Update

Qm is the process where the LDDF and KBU of the mth channel is performed.
The data fusion and channel state estimation is done separately for each of the
sensed channels. To perform these functions first the information about the
local decision at each of the SNs, needs to be received and collected, this is
implemented by subprocess Qm1. Then the received data is processed through
the LDDF function, this is implemented in subprocess Qm2. Finally the KBU
function is executed from the current and past measurements, this is imple-
mented by subprocess Qm3. The subprocess Qm4 implements the case where
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the CN does not receive any information from the SNs, and therefore cannot
perform LDDF, but it still sends the result of the KBU to the NS function.

The Qm process is defined by,

Qm
def
= Qm1 | Qm2 | Qm3 +Qm4 (3.21)

The Qm1 is defined as,

Qm1
def
= Cm ([]) (3.22)

Here Cm is an agent identifier that represents how the local decisions re-
garding the state of the sensed channel m at each of the sensing nodes is
collected. Cm is parameterized by the list of names that have been collected
so far and is defined by

Cm(l)
def
= cc (λ (x, y) (x, y)) if x 6= nCN then Cm(y :: l) + dm〈l〉 (3.23)

where the derived state information y of channel m according to the ith node
are stored in l, cc is the CCH and d is the link with the LDDF subprocess. The
collection of local decisions ends, when a given number of decisions is collected
or the collection period ends.

The Qm2 is defined as

Qm2
def
= dm(e).gm〈LDDF (e)〉 (3.24)

where the LDDF combines the information received from the SNs in one label,
and g is the link with the KBU subprocess. Note that the inputs of the DF
function are all the local decisions received in regards to channel m which are
then concatenated in e.

The Qm3 is defined as

Qm3
def
= gm(i).h〈KBU (i)〉 (3.25)

where KBU takes as input the global decision derived through the LDDF
function, i, and h is the communication link to the subprocess where the NS
function takes place.

Qm4 is the subprocess which provides KBU of the mth channel in the case
where there is no input sensing information from the SNs. The KBU mecha-
nism runs even if there is no data to feed the LDDF, in this case the KBU is
performed with [] input, i.e. an empty input.

Qm4
def
= h〈KBU ([])〉 (3.26)
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3.5.3 Node Selection

The NS is implemented by the process T . This process uses a collector function
to collect the result of the KBU for each of the targeted channels. So T is
composed by the subprocesses T1 and T2 which implement the collection of
KBU results and NS, respectively.

T
def
= T1 | T2 (3.27)

T1 implements the collection of KBU results,

T1
def
= CKBU ([]) (3.28)

Here CKBU is an agent identifier that represents how the KBU results regarding
the state of each of the sensed channels is collected. CKBU is parameterized
by the list of names that have been collected so far and is defined by

CKBU(l)
def
= h(b).CKBU(b :: l) + k〈l〉 (3.29)

where b is the estimated state of the ith channel, M is the number of channels,
h is the channel where the information about the KBU results comes from and
k is the communication link with the NS subprocess.

T2 is the subprocess through which the NS occurs, and is defined as,

T2
def
= k(e).cc〈(nCN , NS (e))〉 (3.30)

where NS is the mechanism which chooses which channel the SNs should sense
in the next sensing iteration. From an implementation point of view the output
of NS needs to express which channel should each of the SNs sense, this can
be accomplished by sending a message which includes a list with the id of the
SN paired together with the id of channel to be sensed.

3.6 Decentralized Topology Description

In the decentralized network topology the network nodes assume only the role
of SN. In this topology the SN is responsible for performing the SS as well as
to decide which channel to sense at each sensing iteration. The SN is defined
as follows,

SN
def
= sl

[
νnSN

∗

(∏
m∈M

Qm | T | P

)
| RSN

]
(3.31)
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where P is the process which implements the SS and reporting functionality
of the SN. Qm is the process which deals with LDDF and KBU of the mth

channel. T is the process on which the NS occurs and RSN comprises the node
remaining functionality that is out of scope.

3.6.1 Spectrum Sensing

The SS and reporting functionality is given by the process P , which is divided
in three subprocesses, defined as follows,

P
def
= P1 | P2 | P3 (3.32)

P1 is the subprocess which receives the information about which channel should
be sensed in the next sensing iteration, and is defined as follows,

P1
def
= w(a).e〈a〉 (3.33)

where a is the label of the channel which should be sensed, and e the commu-
nication link to the SS subprocess.

P2 is the subprocess where the SS occurs, and is defined as follows,

P2
def
= e(a).f〈SS (a)〉 (3.34)

where SS is the SS function, and f is the communication link with the report-
ing process. The output of the SS function is a local decision about the state
of the sensed channel.

P3 is the subprocess where the local decision is sent for processing in the
Q process as well to be reported to the network, and is defined as

P3
def
= f(b).v〈b〉.cc〈(nSN , b)〉 (3.35)

where the v is the link with the Q process and cc is the CCH.

3.6.2 Data Fusion and Knowledge Base Update

The Qm is the process where the state estimation of the mth channel is per-
formed. This process has the same structure as the Qm in 3.5.2.

The Qm process is defined by,

Qm
def
= Qm1 | Qm2 | Qm3 +Qm4 (3.36)
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Qm1 subprocess is where the information from the SNs is collected, and is
defined as follows,

Qm1
def
= Cm ([]) (3.37)

Here Cm is defined as

Cm(l)
def
= v(b).Cm(b :: l)+cc (λ (x, y) (x, y)) if x 6= nSN then Cm(y :: l)+dm〈l〉

(3.38)

where b is the local decision of the SN and y is the local decision of the other
SNs in the network, cc is the CCH, v is the link from where the local decision
information come from and d is the to the Qm2 process. The collection of
local decisions ends, when a given number of decisions is collected or when the
collection time period ends.

The sub-processes Qm2, Qm3 and Qm4 have the same definitions as the ones
given in 3.5.2.

3.6.3 Node Selection

The selection of the channel to sense in the next iteration is implemented by
the process T . This process follows the same structure as the T defined in 3.5.3.
T is defined as,

T
def
= T1 | T2 (3.39)

The definition of the sub-process T1 is the same as in 3.5.3. While T2 is the
subprocess through which the choice of channel to sense in the next iteration
occurs, and is defined as,

T2
def
= k(e).w〈NS (e)〉 (3.40)

where the NS function this time selects which channel the SN should sense in
the next sensing iteration.

3.7 Relay Based Topology Description

The network nodes in a relay based network topology can assume one of three
roles, namely of SN, CN or of a RN. The SN is responsible for performing the

60



3.7. Relay Based Topology Description 61

SS and is defined by

SN
def
= sl [(νnSN) ∗ P | RSN ] (3.41)

where P is the process which implements the sensing and reporting function-
ality at the SN and RSN is its remaining node functionality which is out of
scope. Similarly to the centralized topology, the SN performs the SS in every
sensing iteration, except when it does not receive the information regarding
which channel to sense from the CN. The definition of the process P is the
same as the one presented in 3.5.1.

The RN is the node responsible for forwarding the data between the CN
and SN, both in the uplink and downlink directions. The RN is defined as
follows,

RN
def
= rl [(νnRN) ∗RC | RRN ] (3.42)

where RC is the process which takes care of the messages relay from the SNs
to the CN and in the reverse direction, i.e. from CN to the SNs, and RRN

represents any other node functionality which is out of scope in this paper.

The CN is responsible for the data fusion and the selection of which chan-
nels the sensing nodes should sense in the next sensing iteration. The CN is
defined as follows,

CN
def
= cl

[
(νnCN) ∗

(∏
m∈M

Qm | T

)
| RCN

]
(3.43)

where Qm is the process which deals with data fusion and channel state esti-
mation of the mth channel. T is the process on which the choice of channel to
sense in the next iteration occurs and finally RCN represents any other node
functionality which is out of scope in this paper. The definition of the processes
Qm and T are the ones presented in 3.5.2 and in 3.5.3 respectively.

3.7.1 Relay Process

The relay from the SN to the CN, or from CN to SN is done via the RN, and
the process which allows this functionality in the RN is the RC, which allows
relaying in the uplink and downlink directions. The RC process is defined as
follows,

RC
def
= R1 | R2 (3.44)
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The sub-process R1 collects the messages sent by the SNs or the CN and
forwards them to sub-process R2.

R1
def
= CP ([], []; f) (3.45)

where CP (l1, l2; f) is a process that collects a pair of lists (l1, l2) of names and
eventually outputs them on the f channel. This process is defined as

CP (l1, l2; f)
def
= cc (λ (x, y) (x, y)) .CP (x :: l1, y :: l2; f) + f〈l1, l2〉 (3.46)

Here, x :: l denotes the list whose head is x and whose tail is l.

The sub-process R2 then sends the collected messages to the intended re-
ceiver.

R2
def
= f(a, i).cc〈(a, i)〉 (3.47)

Note that it is implicit that the output of the R2 process does not feedback
in the input of the R1 process.

3.8 Correctness

Protocol correcteness is defined as the ability of the network protocol to allow
the network nodes to perform the task to which they were designed for. In a
CSS mechanism the protocol will be correct if it allows the network nodes to
cooperate with each other, enabling the CSS. The protocol is considered to be
correct only if the network nodes running that same protocol reach a resolved
state periodically, which means that the CSS as occured and will continue to
do so infinitely often.

The network S is considered to a reach a resolved state when the NS func-
tion is reached. The definition of resolved state is dependent on the network
topology and therefore it will be given later in this section to each of the
considered topologies.

To aid the readability of the proofs, the following notation definitions for
reduction sequences are introduced. It allows one to express that a network S
reaches another state S ′ after some number of steps.

Definition 2. If S −→∗ S ′ when n ≥ 0, then one can write S −→n S ′.

Definition 3. If S −→n S ′ with n > 0, then one can write S −→+ S ′.
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With these definitions it is now possible to express and prove correctness.

Theorem 2. Let S be one of the following networks:

• Centralized:

S ≡ (ν~cc)

(∏
i∈I

cl ./ sli

)
| CN |

∏
i∈I

SNi (3.48)

if |I| = n.

• Decentralized:

S ≡ (ν~cc)

( ∏
i,j∈I,i 6=j

sli ./ slj

)
|
∏
i∈I

SNi (3.49)

if |I| = n.

• Relay:

S ≡ (ν~cc)

∏
j∈J

cl ./ rlj |
∏
j∈J

∏
i∈Ij

sli ./ rlj

 | CN |∏
j∈J

RNj |
∏

i∈
⋃

j∈J Ij

SNi

(3.50)

if |
⋃
j∈J Ij| = |I|, |J | > 0, |I| > 0 and n = |J |+ |I|.

Then S satisfies the following:

1. S −→∗ S ′ where S ′ is resolved

2. for any S ′ where S −→∗ S ′ and S ′ resolved. ∃S ′′ such that S ′ −→+ S ′′,
S ′′ is resolved.

Proof. Here is given a sketch of the proof, which proceeds by induction in the
number of non-central nodes, i.e. SNs and RNs when applicable.
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3.8.1 The Centralized Case

Here, the procedure is to perform induction in n = |I|. The definition of
resolved state in the centralized topology is given by,

Definition 4. S is resolved if S ≡ S ′ | cl [cc〈nCN , NS (c)〉] for some nCN and
c.

The first step of the proof in the centralized topology is to show that in
the base case, i.e. when n = 1, the network reduces from its initial state after
a number of reduction steps to the resolved case, proving the first item of the
theorem.

The first step of the proof is to resolve the S structure when |I| = 1. The
S structure in this case reduces as

S ≡ (ν~cc) (cl ./ sl)︸ ︷︷ ︸
SI

| CN | SN (3.51)

And the sequence of reductions follows,

SI | SN | CN −→∗ SI | SN | CN | cc〈nCN , NS(c)〉︸ ︷︷ ︸
Resolved State

(3.52)

The second item of the theorem states that when the network achieves the
resolved state, it can achieve it again after a number of reduction steps. This
can be proved with the following sequence of reductions,

SI | SN | CN | cc〈nCN , NS(c)〉︸ ︷︷ ︸
Resolved State

−→+ SI | SN | CN | cc〈nCN , NS(c)〉︸ ︷︷ ︸
Resolved State

(3.53)

So with this it is proved that the base case accomplishes both items of the
theorem.

Following the induction hypothesis it can be assumed that the case where
|I| = N , S reaches the resolved state, and so to complete the proof the final
is to show what happens when an extra SN is added to the network, i.e. the
number of nodes in the network is |I| = N + 1. Therefore the network as the
following form,

S ≡ (ν~cc)

(∏
i∈I

cl ./ sli

)
︸ ︷︷ ︸

SI

| CN |
∏
i∈I

SNi
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The flow of the proof is the same as in the base case, i.e. first show that the
first item of the proof occurs and finish the proof be showing that the second
item also occurs. The full proof is shown in Appendix A.

3.8.2 The Decentralized Case

Again, the procedure is to perform induction in n = |I|. The definition of
resolved state in the decentralized topology is given by,

Definition 5. S is resolved if S ≡ S ′ |
∏

i∈I sli [wi〈NS (c)〉] for some c.

Following the same logic as the centralized topology, first is shown that S
resolves when |I| = 2, where there are two nodes and therefore a network can
be formed.

The S structure in this case reduces as

S ≡ (ν~cc) (sl1 ./ sl2)︸ ︷︷ ︸
SI

| SN1 | SN2 (3.54)

And the sequence of reductions follows,

SI | SN1 | SN2 −→∗ SII | w1〈NS (c)〉 | P 1 | w2〈NS (c)〉 | P 2︸ ︷︷ ︸
ResolvedState

(3.55)

The second item of the theorem states that when the network achieves the
resolved state, it can achieve it again after a number of reduction steps. This
can be proved with the following sequence of reductions,

SII | w1〈NS (c)〉 | P 1 | w2〈NS (c)〉 | P 2︸ ︷︷ ︸
ResolvedState

−→+ (3.56)

SII | w1〈NS (c)〉 | P 1 | w2〈NS (c)〉 | P 2︸ ︷︷ ︸
ResolvedState

(3.57)

Following the induction hypothesis it can be assumed that the case where
|I| = N , S reaches the resolved state, and so to complete the proof the final
step is to show what happens when an extra SN is added to the network, i.e.
the number of nodes in the network is |I| = N + 1. The S structure in this
case is defined as,

S ≡ (ν~cc)

( ∏
i,j∈I,i 6=j

sli ./ slj

)
|
∏
i∈I

SNi
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The flow of the proof is the same as in the base case, i.e. first show that the
first item of the proof occurs and finish the proof by showing that the second
item also occurs. The full proof is shown in Appendix B.

3.8.3 The Relay Case

The induction is performed in n = |J |+ |I|. The definition of resolved state in
the relay assisted topology is given by,

Definition 6. S is resolved if S ≡ S ′ | cl [cc〈nCN , NS (c)〉] for some nCN and
c.

Following the same logic as the centralized topology, first the S is resolved
for the base case, which in this topology occurs when n = 2, the minimum size
of the network. The network topology in this case is given by,

S ≡ (ν~cc) (sl ./ rl | cl ./ rl)︸ ︷︷ ︸
SI

| SN | RN | CN

To simplify the notation, in the base case the index of the SN and the RN are
not included since there is only one of each. So first the steps from the initial
state until the resolved state are computed.

SI | SN | RN︸ ︷︷ ︸
SII

| CN −→∗ SII | cc〈(nCN , NS(c))〉 | CN︸ ︷︷ ︸
Resolved State

The second item of the theorem states that when the network achieves the
resolved state, it can achieve it again after a number of reduction steps. This
can be proofed with the following sequence of reductions,

SII | cc〈(nCN , NS(c))〉 | CN︸ ︷︷ ︸
Resolved State

−→+ SII | cc〈(nCN , NS(c))〉 | CN︸ ︷︷ ︸
Resolved State

Following the induction hypothesis it is assumed that the case where |I|+|J | =
n = N , S reaches the resolved state, and so to complete the proof it is shown
what happens when n = N + 1.

So assuming by induction hypothesis that for all n′ < n, S reaches a re-
solved state. Then it can be shown that for n the network S can also reach a
resolved state. To perform the proof, due the network topology, there are the
following two subcases:
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1. Induction in the size of |J |, when |I| = 1. The case |J | = 1 is the same
as the base case, so the case |J | > 1 needs to be proved by induction
hypothesis;

2. Induction in the size of |I|, when |J | > 1. This is only possible after the
first sub-case has been proved.

The full proof is shown in Appendix C.

3.9 Conclusions

In this chapter a PC, denoted as BBC, was introduced to describe and reason
about the computational properties of distributed protocols which enable CSS.
The BBC uses broadcast communication over channels with bounded capacity
to allow a more realistic modelling of the CSS.

Three different network topologies were considered – centralized, decentral-
ized and relay based topologies – and their associated CSS protocols. In each
case it is straightforward to describe conditions for protocol correctness that
ensure that the agents participating in the cooperative scheme will eventually
reach a resolved state every time a SS round is initiated. A theorem on the
correctness of the protocols was given and proved by standard inductive proof
techniques.

The work shows that process calculi provide a promising approach for de-
scribing and reasoning about the computational properties wireless commu-
nication protocols. The proofs in this chapter were done by hand; a topic
for further work is to mechanize the proofs using a verification tool such as
ProVerif [2] or a proof assistant. The use of this methodoly will streamline the
application of the BBC and its variants to other distributed protocols scenar-
ios. In the literature there can be found several examples of when ProVerif has
been used to automatize the proofs, one such example is Godskesen’s formal
verification of the ARAN routing protocol using the applied π−calculus, [4].
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4
Data Fusion of Local Spectrum Sensing

Decisions

4.1 Introduction

In Figure 4.1 is depicted the flow which serves as basis for the Cooperative
Spectrum Sensing (CSS) mechanism considered in this thesis. The purpose of
the CSS mechanism, as discussed in the previous chapters, is to ensure that
all Cognitive Radio Network (CRN) nodes have updated and synchronized
information about the state of the monitored spectrum. The function of each
of the modules depicted in the flow is the following:

• Spectrum Sensing - Each CRN node uses a local detector to perform the
spectrum sensing and reach a local decision regarding the status of the
sensed channel, i.e. if either the channel is vacant or not, as discussed in
Chapter 1 and in Chapter 2;

• Local Decision Reporting - Each CRN node shares the local decisions
with the rest of the network, where the intended recipients depend on
the considered network topology, as discussed in Chapter 3;

• Local Decisions Fusion - Here the recipient nodes perform the data fu-
sion using the local decisions received from the CRN nodes. As discussed
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Figure 4.1: Distributed cooperative spectrum sensing flow

in Chapter 3 in a multi-channel sensing scenario the data fusion is per-
formed separately for each sensed channel;

• Knowledge Base Update - Here the CRN combines the reached global
decision in the previous step with the past decisions so to create a con-
tinuous knowledge base, which can then be used by the network for
deciding which resources to use, as discussed in Chapter 2;

• Node Selection - Finally in this step the network chooses which channel
should each of the CRN nodes sense, as discussed in Chapter 5.

The focus in this chapter is on the Local Decisions Fusion step. From a
structural standpoint the Local Decisions Data Fusion (LDDF) system can be
classified as a two level parallel distributed detection system, as depicted in
Figure 4.2, consisting of an arbitrary number of local detectors and a fusion
center. Each CRN node, here denoted as a Local Detector (LD), reaches a
local decision based on the underlying hypothesis testing problem. The local
decisions are then transmitted to the fusion center where a global decision is
made, as depicted in Figure 4.1.

Through the LDDF process it is possible to achieve a global decision by
combining together the local decisions. The type of data fusion depends on the
amount of information available from each local decision. Where this amount
of information is in general limited by the reporting channel bandwidth, as
discussed in Chapter 2. Here is considered the synchronous hard combining
class of data fusion, which employs fusion rules to achieve the data fusion.
Where a fusion rule is a logical function with c binary inputs and one binary
output, also called boolean function; therefore there are 22c possible fusion
rules when there are c binary inputs to the fusion centre. From these there
are a subset which are classified as counting rules, i.e. they count the number
of local decisions stating a given state and then compare it with a decision
threshold to reach a decision about the state of the channel. The selection of
the threshold affects both the global probability of false alarm as well as the
global probability of detection.
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Figure 4.2: Two-level distributed detection system

4.2 Motivation for the use of Counting Rules

Spectrum sensing is in essence a detection problem, where the purpose is to
find what is the state of the monitored channel, i.e. if the channel is vacant or
not. Being a detection problem it can be modelled as a statistical hypothesis
testing problem. Here is considered the binary hypothesis testing both at the
LD level and at Fusion Center (FuC) level, although other other methods can
be applied, such as composite hypothesis and sequential testing methods, [1].

The detection problem at the local detectors can be formulated as a test
of two hypothesis, given by,

yi =


wi if H0

i = 1, ..., N
si + wi if H1

(4.1)

where yi is the received signal ith sample at the detector, si is the ith sample
of the signal or in the case where there are several signals the cummulation
of those signals, and wi is the ith sample of the additive white gaussian noise.
H0 and H1 denote the hypothesis corresponding to the absence and presence
of a signal. The detector from the observation of y(t) decides between H0 and
H1. The jth detector performs the hypothesis testing over N samples of the
received signal and reaches a conclusion regarding the state of the spectrum,
denoted as uj, as depicted in Figure 4.2.
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From hypothesis testing at the jth local detector the Likelihood Ratio Test
(LRT) can be formulated following the Neyman-Pearson (NP) test formulation.
The objective of the NP test is to maximize the local detection probability, pd,
given a constraint on the local probability of false alarm pfa, i.e. pfa ≤ α. So
it can be shown, [10], that the NP test, Λ(uj), is equivalent to the LRT given
by,

Λ(uj) =
P (y1, ..., yN |H1)

P (y1, ..., yN |H0)
QH1
H0
λ (4.2)

The FuC performs the data fusion over the local decisions communicated to
it by the local detectors, and is referred here as LDDF. The LDDF process is
modelled also as a NP test, Λ(u), which is formulated by the following LRT,

Λ(u) =
P (u1, u2, ..., uc|H1)

P (u1, u2, ..., uc|H0)
QH1
H0
λ (4.3)

where u = [u1, ..., uc]
T , is the vector formed by the set of local decisions (where

ui = 0 when the sensor i decides H0, and ui = 1 when the sensor i decides
H1) corresponding to the c local detectors and λ is the decision threshold. λ
is computed by setting an upper bound on the local probability of false alarm
at the FuC [10].

Now, consider the case where all the detectors have the same performance,
i.e. they have the same local probability of detection, pd, and local probability
of false alarm, pfa, and that there is a quantifiable degree of correlation between
their decisions, i.e. there is a statistical relation between the local detectors
decisions over time such that systematic changes in the value of one of the local
detectors decisions will be accompanied by systematic changes in the other
local detectors decisions. Then, according to [4], the LRT can be expressed as,

Λ(u) =
P (u|H1)

P (u|H0)
= Λ(m) (4.4)

where m out of c detectors are in favor of H0 (i.e. there are m zeros in the
vector u). Elaborating further Λ(u) [11],

Λ(u) =

∑m
i=0 (−1)i

(
m
i

)
pd
∏c−m+i−2

k=0
ρ1(k+1−pd)+pd

1+kρ1∑m
i=0 (−1)i

(
m
i

)
pfa
∏c−m+i−2

k=0

ρ0(k+1−pfa)+pfa

1+kρ0

, 0 ≤ m ≤ c− 2 (4.5)

where pd and pfa, are respectively the local probability of detection and local
probability of false alarm, and the correlation coefficients 0 ≤ ρ0 ≤ 1 and
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0 ≤ ρ1 ≤ 1. Although in [4], Λ(u) was not explicitly considered for the cases
when m = c− 1 and m = c, it was considered and derived in [11].

The optimum decision rule, i.e. the one which maximizes the global prob-
ability of detection, GPd, for a given upper bound of the global probability of
false alarm, GPfa, is obtained by the LRT given by,

ruleoptimal(u) = ruleoptimal(m) = (4.6)
H1 , if Λ(m) > λ

H1 with probability γ , if Λ(m) = λ
H0 , if Λ(m) < λ

(4.7)

where γ is a randomization constant. Both λ and γ are greater than zero, and
are defined by the upper bound of GPfa.

The implementation of the LRT can lead to complex iterative algorithms.
Therefore, in [4] it was shown that the LRT can also be expressed as a function
of m, i.e. the number of detectors that decide in favor of H0. In [11] it was
proposed to use a counting rule instead of a LRT, i.e. a rule that counts m,
and decide H1 when m is smaller than a given integer threshold, m0. This
counting rule can be defined as,

rulecount(u) = rulecount(m) = (4.8)
H1 , if m < m0

H1 with probability γ , if m = m0

H0 , if m > m0

(4.9)

The equivalence between the LRT and the counting rule is then given by,

Λ(m) Q λ⇔ m Q m0(λ) (4.10)

and is only valid if Λ(m) is a decreasing function of m, as demonstrated in [11].

The conclusion taken from the analysis on both [4, 11] is that the choice of
the counting rule threshold, k, depends on the Local Detectors (LDs) perfor-
mance, the correlation between the decisions of the detectors, and finally on
the upper bound set for the GPfa.

A counting rule belongs to a subset of the fusion rule set. Where a fusion
rule, as discussed previously, is a logical function with c binary inputs and one
binary output. From c binary inputs there are 22c possible fusion rules. From
this set of possible fusion rules only a subset of those are of interest, since a
large majority of the fusion rules can disregard some or in some cases all of
the inputs. A discussion on how to obtain the set of fusion rules of interest in
a data fusion context can be found in [10].
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In the remaining of thesis is assumed that the LDDF is always accomplished
through counting rules.

4.3 Counting Rules Theoretical Formulation

In [4], as discussed in the previous section, was analyzed the effect of correla-
tion in the performance of LDDF when the LDs are experiencing the same level
of correlation. One of the conclusions, besides that LDDF can also be accom-
plished through counting rules, was that the higher the correlation between
the LDs then the lower was the performance gain obtained from performing
data fusion. This occurs because as the correlation increases the decisions of
the LDs become similar, therefore there is less information for the FuC to work
with. In the limit, when the correlation coefficient is 1, the performance of the
data fusion becomes the same as the one from the LD. In [4] it was not consid-
ered the scenario where the correlation between the decisions of the LDs is not
the same, i.e. if one would measure the correlation between the decisions of
different pairs of LDs then one would obtain different correlation coefficients,
and also it did not consider the case where the correlation under H0 and H1

are different.

In the case of cooperative spectrum sensing, the LDs are uncorrelated in
regard to H0, since the noise at each LD is independent from the noise at
the other LDs. So although experiencing the same conditions, the LDs, can
still generate a false alarm independently of each other. This occurs because
although the LDs are experiencing the same average power level due to noise,
the detection process is still independent since the input samples vector, y, are
independent at each of the LDs.

When the signal is present, H1, the signal power amplitude variation will
be correlated both in space and in time due to fast fading as well as to slow
fading. The signal samples received by two LDs will be uncorrelated if these
local detectors are at least separated by half of the wavelenght of the signal
carrier [5]. Therefore, under H1 the LDs are also uncorrelated. The slow
fading or shadowing makes the signal power amplitude to be correlated over
distances that can span tens of meters or more, depending of the surrounding
radio environment. So it is likely that the power levels experienced by the
LDs will be correlated with each other, this correlation in the power will not
affect the independence between the detections at the local detectors, instead
impacting on the detection performance of the local detector.
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The LDs are designed to achieve a certain local probability of detection,
pd, at a specific SNR target while having a constant local probability of false
alarm, pfa. So when the SNR experienced by the acLD varies then the LD
actual pd will also vary. Therefore, although the detections at the LDs will
still be independent, the actual pd is no longer the same among all the LDs.
The spread of the pd will be dependent upon the correlation between the signal
power received at each of the LDs, so it is expected that for the LDs which are
near each other the received signal power will be nearly the same, while others
that are farther apart will have more differentiated received signal power levels.
Before analysing the performance of the LDDF while using local decisions
from LDs with different pd, first it is considered the case where the LDs are
independent and identical distributed and the LDs are experiencing the same
SNR level, i.e. all the LDs have the same pd. From there it is derived the
global probability of detection and false alarm, GPd and GPfa respectively.

The performance of the data fusion process based on counting rules is
characterized by the global probability of detection, GPd(k, c), and false alarm,
GPfa(k, c), which are derived as follows. The probability that there are exactly
k independent and identical distributed LDs out of c LDs, that perform a given
event x follows a binomial distribution with parameters c and px and is given
by,

Pr(exactly k events x out of c local detectors) =

(
c

k

)
pkx(1−px)c−k (4.11)

The k is the decision threshold, following the definition in the previous section,
defined as k = c−m0. Defining GPx(k, c) as the global probability of an event
x occurring in at least k out of c local detectors, and where the probability of
that same event x occuring at any local detector is given by px, then,

GPx(k, c) =
c∑
i=k

(
c

i

)
pix(1− px)c−i (4.12)

Considering that the event x can either be a detection or a false alarm, also
known as false detection, then the GPd(k, c) and GPfa(k, c), for an arbitrary
counting rule threshold k where the local detectors are i.i.d., are defined as,

GPd(k, c) =
c∑
i=k

(
c

i

)
pid(1− pd)c−i (4.13)

and

GPfa(k, c) =
c∑
i=k

(
c

i

)
pifa(1− pfa)c−i (4.14)
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where k is the threshold of the counting rule, i.e. k-out-of-c. pd and pfa are
respectively the local detectors probability of detection and false alarm, which
substitute px in the previous equation.

Next is analyzed the sensitivity of GPx(k, c) to the variation of k, c and px.
The methodology followed in this analysis mirrors the one presented in [6] for
the analysis of the reliability of a k-out-of-n system with i.i.d. components.

Now to analyse how the GPx(k, c) varies with c while considering a fixed k
and px. First a pivotal decomposition method developed in [7] and illustrated
in [6] is applied to the GPx(k, c),

GPx(k, c) = pxGPx(k − 1, c− 1) + (1− px)GPx(k, c− 1)

= px (GPx(k − 1, c− 1)−GPx(k, c− 1)) +GPx(k, c− 1)

= pxPr(k − 1 detections out of c− 1 components) +GPx(k, c− 1)

=
(
c−1
k−1

)
px

k(1− px)c−k +GPx(k, c− 1)

(4.15)

Then by rearranging the equation it is possible to obtain the growth rate, mC,
of GPx with c which is given by,

mC = GPx(k, c)−GPx(k, c−1) =

(
c− 1

k − 1

)
px

k(1−px)c−k, for c ≥ k (4.16)

Now consider the plot in Figure 4.3 where the sensitivity of GPx(k, c) to the
increase of the number of local detectors c is depicted. From the figure it can
be seen that after a certain threshold, in this case when c = 18, the growth of
the GPx decreases. So this leads to the conclusion that increasing the number
of local detectors participating in the data fusion process only makes sense up
to a certain point, which depends of course on the considered k and px. Now
considering the boundary condition GPx(k, c) = 0 when c < k then GPx(k, c)
can be redefined as,

GPx(k, c) =
n∑
i=k

[GPx(k, c)−GP (kx, c− 1)] = pkx

c∑
i=k

(
i− 1

k − 1

)
(1− px)i−k

(4.17)

From this equation it can be seen that GPx(k, c) increases with c and px and
decreases with k.
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Figure 4.3: (a,b) GPx and mC variation with c, where k = 10 and px = 0.5

Now to analyse how the GPx(k, c) varies with k while considering a fixed c
and px.

GP (k, c) = Pr(at least k detections)

= Pr(at least k − 1 detections)− Pr(exactly k − 1 detections)

= GP (k − 1, c)−
(
n
k−1

)
pk−1qn−k+1

(4.18)

Then by rearranging the equation the following is obtained,

mK = GP (k − 1, c)−GP (k, c) =

(
c

k − 1

)
pk−1(1− p)c−k+1 (4.19)

Now consider the plot in Figure 4.4 where the sensitivity of GPx(k, c) to the
increase of the k threshold is depicted. From the plot it can be seen that
GPx(k, c) decreases with the increase of k, and also that the growth ofGPx(k, c)

79



Chapter 4

reaches a minimum when k = 20. This leads to the conclusion that the k
threshold can be increased without a significant impact on the GPx(k, c) until
a certain point, which depends on c and px .

Finally, to analyse how the GPx(k, c) varies with px while considering a
fixed c and k, GPx(k, c) is differentiated in regards to px, as given

mPx =
d

dpx
GPx(k, c) = k

(
c

k

)
pk−1(1− p)c−k (4.20)

In the Figure 4.5 is plotted GPx(k, c) in regards to the variation with px. As
expected, GPx(k, c) increases with px and as with the other variables after a
certain value of px the increase in GPx(k, c) is negligible.

4.4 Performance Evaluation Metrics

The goal of Spectrum Sensing (SS) is to detect what is the state of the range
of spectrum being monitored. This process can be described as a mechanism
which corresponds to an imperfect and simplified mapping of the real radio
environment conditions, to a representation in the CRN nodes, as depicted in
Figure 4.6.

The considered LDDF method can be classified as a binary classification
problem, since its purpose is to determine whether the monitored channel is
occupied or not. Therefore its performance can be presented in the form of a
confusion matrix, as depicted in Figure 4.7, which includes the True Positives
(TP), False Positives (FP), False Negatives (FN) and True Negatives (TN)
accumulators. This matrix can be obtained after running a training sequence,
where the actual state of the channel is known, i.e. it is known whether a
signal is present, H1, or not, H0, and then the TP, FP, FN and TN can be
determined accordingly.

In the considered context there are several LDs, spread across space, that
participate in the data fusion process, among these there might be some which
the signal at their spatial location is experiencing a deep fade, which makes
the signal strenght to be below the detection target threshold, and therefore
their actual state is H0. This effect, due to spatial diversity, is accounted for
in the analysis of the data fusion process performance by considering that the
actual state in the fusion center is H1, if at least at the location of one of
the local detectors the actual state is also H1, which is in-line with the aim of
cooperative spectrum sensing. This assumption will be in place until otherwise
stated.
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Figure 4.4: (a,b) GPx and mK variation with K, where c = 40 and px = 0.5

Now considering the case where the confusion matrix, depicted in Fig-
ure 4.7, is filled with the experimental data, which can be obtained from a
simulation or from an actual experiment, then the GPd and GPfa can be ob-
tained from the data in the matrix using the following equations,

GPd =
TP

TP + FN
(4.21)

GPfa =
FP

FP + TN
(4.22)

With that in mind it is possible to define two different performance measure-
ment metrics, the Matthews correlation coefficient [3], φ, and the Root Mean
Square Error, ε. First it is defined the φ coefficient. The data fusion process
performance can be measured through the φ coefficient, which is defined as,

φ =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.23)

81



Chapter 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

px

G
P

x

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

px

m
P

x

(b)

Figure 4.5: (a,b) GPx and mP variation with px, where c = 40 and k = 10
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Figure 4.6: Representation of sensing from a cognitive radio prespective.

The φ measures the correlation between the observed and the predicted binary
classification, and it returns a value between −1 and +1. When φ = +1 it
means there was a perfect prediction, when φ = 0 there is an average random
prediction with the same performance as tossing a coin, finally when φ = −1
there is the inverse prediction.
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Figure 4.7: Confusion Table

The other defined metric is the Root Mean Square Error, ε, which is fre-
quently used to measure the differences between values predicted by a model
or an estimator and the values actually observed from the phenomenon being
modeled or estimated. Therefore, ε is a measure of accuracy, [8]. Here the ε is
used to quantify the error between the observed state and the predicted state
of the sensed channel. The ε of the channel state is given by,

ε =

√∑N
i=1 (ŝi − si)2

N
(4.24)

whereN is the number of sensing sessions. Consider that the ŝi and si represent
the predicted state and observed state of the channel in the sensing session i,
then the individual accounted differences, ŝi − si, are called residuals, and the
ε aggregates these individual residuals to quantify the error between sensed
and real state of the channel during a set of sucessive sensing sessions.
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As example of what both φ and ε measure, consider the plot in Figure 4.8,
which was obtained by doing a training sequence in both H0 and H1 for the
counting rule based LDDF. From the Figure 4.8 it can be seen that there is
a range of the k-threshold which minimizes the ε and maximizes the φ. This
range is the optimal for the considered number of local detectors and their
detection performance.

4.4.1 Local Detector Model

The global probabilities of detection, GPd, and false alarm, GPfa, depend on
the local detectors performance, which is given by the pd and pfa pair. These
can be expressed as a function of each other, where this relation depends on
the detector implemented at the local detectors. Here we consider the Energy
Detector [2, 9] as the detector in place in the local detectors, as described in
section 3.5.1. So the pd can be expressed as a function of pfa, as follows,

pd = Q

(
Q−1 (Pfa)

√
2N −NSNR√

2N (1 + SNR)

)
(4.25)

From this equation it can be plotted the performance points of the counting rule
detector in the Receiver Operating Characteristic (ROC) plot, as depicted in
Figure 4.9. In the figure two cases are shown. On the first one, in Figure 4.9(a),
the difference in the detector performance when using two different quantities
of samples. On the second one, in Figure 4.9(b), is shown the detection perfor-
mance when using a single local detector and when using a OR counting rule
with 10 local detectors, i.e. when the k-threshold equals 1.

In Figure 4.10 is depicted the variation of ε and φ with pfa of the local
detectors and k-threshold for the counting rule, while using the model of the
Energy Detector detailed above for the local detector. From the figure it can
be observed that the lower is the pfa then the smaller is the range as well as
the smaller is the k-thresholds which minimizes the ε and maximizes φ, which
is the expected result since the GPd can be expressed as a function of GPfa.

4.4.2 Duty-Cycle

Until now the results shown for ε and φ where obtained while considering a
mean duty cycle of 50%, i.e. referring to the confusion table in Figure 4.7 the
TP + FN = FP + TN . So in Figure 4.11 is depicted the variation of ε and
φ with the mean duty cycle. As expected the depicted variation shows that
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Figure 4.8: (a,b) φ and ε variation with the k-threshold for different pd and
pfa pairs, with c = 40

when the duty cycle is 0%, i.e. TP + FN = 0, then the detector is always
under H0 and therefore the performance measured by ε and φ depends only on
the pfa, on the under hand when the mean duty cycle is 100% the detector is
always under H1 then the performance measured by ε and φ depends only on
pd.

4.5 Non-Identical Local Detectors

Now after characterizing the performance of the counting rules when the local
detectors are independent and identical distributed, now it is considered the
case where the performance of the LDs is not identical. As mentioned before,
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Figure 4.9: (a) Comparison of the ROC of the ED when N = 250 and N =
500, (b) Comparison of the ROC of the ED and OR rule with N = 250 in a
single detector and c = 10

when the local detectors are spread over space, is expected that their experi-
enced SNR is different depending on their distance and position in regard to
the source of the signal to be detected. So considering that the local detector
is dimensioned to achieve a certain pd to a defined SNR target, then it is
expected that if the experienced SNR is lower than the target SNR then the
pd will also be lower, likewise in the reverse situation, i.e. if the experienced
SNR is higher than the target SNR then the pd will also be higher. This
is illustrated in Figure 4.12, where for the Energy Detector model the pd is
plotted in function of the experienced SNR. Note that in this plot and in
the remaining of this chapter it is disregarded the detection uncertainty wall
discussed in Chapter 2.

Consider that now there are c local detectors spread across space and that
their received power will most likely follow a log-normal distribution, due to
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Figure 4.10: (a,b) ε and φ variation in regards to pfa and k, with c = 40

shadowing, then it is expected that the experienced SNR will also follow a log-
normal distribution. Still in Figure 4.12 is depicted a case where the variation
of the experienced SNR, SNRexp, across a number of local detectors is within
−5 dB and 5 dB. So the pd of the LDs will vary over that range. Therefore,
while considering the defined performance metrics, the performance interval is
between the minimum and maximum pd, while setting a fixed pfa, while the
real performance of the LDDF in these conditions is somewhere within that
range, as depicted in Figure 4.13.

In the scenario depicted in both Figure 4.12 and in Figure 4.13 it is difficult
to find beforehand what is the range of k-thresholds which should be used since
it will depend on the individual pd of the local detectors. Considering that the
radio enviroment conditions can change over time, due to the local detectors
mobility or the signal source mobility, it is expected that the radio environment
conditions experienced by the local detectors will also change over time.
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Figure 4.11: (a,b) ε and φ variation in regards to Duty Cycle and k, with
c = 40, pd = 0.8 and pfa = 0.05

Now consider the plots depicted in Figure 4.14, where three different σ
were considered to generate the pd of each of the local detectors, i.e. to repre-
sent three different shadowing conditions. From the plot it can be seen that,
depending on these shadowing conditions, the ranges of k-thresholds which
maximizes φ and minimizes ε are different.

Now consider the plot depicted in Figure 4.15, where it is shown the varia-
tion of both φ and ε in regards to σ ranging from 0 dB to 20 dB in 1 dB steps.
From the Figure 4.15 plot it can be seen that the higher is the considered σ
then the smaller is the range of k-thresholds values which maximize φ and
minimize ε.

In Figure 4.16 is shown a plot with the variation of both φ and ε in regards
to pfa, where it can be seen that the lower is the pfa then the lower is the
k-threshold range which maximizes φ and minimizes ε.

While in the case where the local detectors are i.i.d. it is possible to derive
analytically the k-threshold to be used, in the now considered case the same
is not possible. Especially if it is considered that the data fusion center does
not have information about the individual pd and pfa of the local detectors.
So the data fusion center needs to be able to estimate what is the proper

88



4.6. Adaptive Counting Rule 89

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

p d

pd = 0.33 when
SNRexp = −5 dB

Variation Interval of
the experienced SNR

pd = 0.8 at SNRtarget
=0.8

pd = 0.98 when
SNRexp = 5 dB

Figure 4.12: pd of the Energy Detector in function of the experienced SNR,
with pfa = 0.05, SNRTarget = 0dB

k-threshold value range to be used, but for this estimation to occur it needs
feedback information regarding the impact of using a given k-threshold value
range. In the next section an algorithm framework is proposed for an adaptive
mechanism which allows the data fusion center to adapt k-threshold range,
based on feedback provided by the network while using the results from the
data fusion center decisions.

4.6 Adaptive Counting Rule

Here is assumed that the data fusion center has available information about
the local decisions of the local detectors and that those decisions are each en-
coded in one bit, i.e. the local decisions are of the hard decision type. It is also
assumed that the data fusion center does not have access to measurements on
the radio conditions that the local detectors are experiencing, and consequen-
tially is not able to estimate the local detectors performance. Therefore is not
possible for the data fusion center to compute the optimal k-threshold and so
there is the need for a mechanism that is able to tune the k-threshold based on
the received local decisions and the performed global decisions over the time.

Here is proposed a mechanism which adapts the k-threshold continuously
based on the feedback from the previous global decisions. This approach allows
to adapt to the radio environment conditions at the local detectors without
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Figure 4.13: (a,b) ε and φ variation in regards to minimum and maximum pd
and the heterogeneous pd

having implicit information about them, by instead using the information from
that feedback.

The algorithm framework which implements the Adaptable Counting Rule
(ACR) mechanism is listed in Algorithm 1. This algorithm framework adapts
the decision k-threshold, so that for a detection to occur there has to be at
least k positive detections out of the c local detectors.

Where the meaning of the metrics shown in the Algorithm 1 is the following:

• MDC - The misdetection counter counts every time the fusion center
decides that the channel is free, and the network tries to use the channel
but the channel is occupied;

• ODC - The occupied detection counter counts every time the fusion
center decides the channel is occupied;

• OW - The observation window is the time interval of the observations
used to make the decisions, i.e. it serves as the memory of what occurred
in the previous sensing sessions;
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Figure 4.14: (a,b) ε and φ variation with heterogeneous pd depending on σ

• MDThrs - The misdetection threshold is the amount of misdetections
permitted within the observation window. When this value is overcome,
it triggers the decrease of the k-threshold;

• OCThrs - The occupied detection threshold is the amount of occupied
detections occurring during the OW , which, if exceeded, triggers the
increase of the k-threshold;

• CS - The channel state is the actual channel state, which is found when
one of the local detectors tries to access the channel;

• k - Is the k-threshold;

• H0 - Is the state of the channel when it is vacant;

• H1 - Is the state of the channel when it is occupied;

• kStep - Is the step which the k is increased or decreased;

• kinitial - Is the initial k-threshold value;
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Figure 4.16: (a,b) ε and φ variation with pfa ∈ [0.01, 0.2]

• uH1 - Is the number of local detectors which their local decision is H1.

The rationale behind the ACR algorithm, is that in the case where the
sensed channel is deemed vacant, then at least one pair of LDs in the network
will try to communicate through the sensed channel and the result of that
action can then be used as feedback to tune the k-threshold. In the case where
one of the local detectors tries to transmit and the channel is not vacant, i.e.
a colision occurs, then it means that there was a misdetection and therefore
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Algorithm 1 Adaptive counting rule mechanism
if Initial Sensing Iteration then
k = kinitial

end if
if uH1 ≥ k then
ODC = ODC :: 1
MDC = MDC :: 0

else
ODC = ODC :: 0
if CS 6= H0 then
MDC = MDC :: 1

end if
end if
if MDC > MDThrs then

Increase k by kstep
end if
if ODC > OCThrs then

Decrease k by kstep
end if
if k was updated then

Set MDC = [] and ODC = []
else

Discard MDC and ODC elements outside the OW
end if

the k-threshold should decrease so the GPd increases. At the same time there
should be an inverse mechanism which increases k-threshold, so to ensure that
a upper bound of the GPfa is respected. The system feedback, used to tune the
k-threshold, can be obtained by the statistics of the successful transmissions,
failed transmissions, and on the case of a Carrier Sense Multiple Access with
Collision Avoidance based system on the number of times that the Collision
Avoidance mechanism was put in place.

The performance of the proposed algorithm depends on the values selected
for the thresholds MDThrs and OCThrs and on the selected OW . It was ob-
served that after several trials, the value of the initial k-threshold, kinitial, only
affects the initial iterations and after that the k-threshold quickly falls within
the optimal k-threshold range. It was also found that the duty cycle of the
interfering signal also affects the performance of the proposed algorithm, where
it was observed that an high duty cycle, above 0.6, makes the k-threshold tend
towards upper bound of the accepted k-threshold range, while a low duty cycle,
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below 0.4, makes the k-threshold tend towards lower bound of the accepted
k-threshold range.

As an example consider the plot in Figure 4.17, where it is shown the
result of the algorithm adapting the k-threshold over time. In the same plot
is also shown the interval where the k-threshold should fall into, which was
obtained by considering φ ≥ 0.9, following the same approach as discussed
as in section 4.5 for obtaining φ. It was considered a duty cycle of 0.6 and
MDThrs = 1 while OCThrs = 0.8OW . In the plot it can be seen that the
k-threshold keeps within the accepted k-threshold range.

To illustrate how the performance of the algorithm is dependent of MDThrs

and OCThrs consider the following plots depicted in Figure 4.18, which depict
the variation of φ in regards to MDThrs and OCThrs, while considering four
different Duty Cycles values for the signal source.

From the plots in Figure 4.18, it can be seen that when using the lowest
possible MDThrs, it is always possible to obtain an higher φ in any of the
considered duty cycle cases. While when considering the behaviour of the
proposed algorithm in regards to the OCThrs, it can be seen that the higher is
the duty cycle then the higher should be the OCThrs. Although, as observed
for lower duty cycles the OCThrs which maximizes the φ is closely related to
the duty cycle, which suggests that the algorithm should take the duty cycle
into account.

Now to illustrate what should be the optimum OCThrs which maximizes the
φ obtained by the ACR algorithm, consider the plot depicted in Figure 4.19,
where MDThrs = 1.

From the plot in Figure 4.19(a), it is observed that there is a linear relation
between the duty cycle and the OCThrs which maximizes the φ, as shown in
Figure 4.19(b). Therefore, the ACR algorithm needs to be able to adjust the
OCThrs according to the experienced duty cycle. The Algorithm 1 is modified
accordingly and the updated version is listed in Algorithm 2.

In Algorithm 2, a new metric OCS which stores the observed channel state
within the OW was added, which is then used as an estimator for the OCThrs
through the estimator function f(OCS), defined as,

f(OCS) =

∑
OCS

OW
OW + CfOW (4.26)

where Cf is a correction factor, which for the observed cases can be set to
Cf = 0.

94



4.6. Adaptive Counting Rule 95

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

5

10

15

20

25

30

35

40

Iterations

k−
th

re
sh

ol
d

 

 
Adaptive Counting Rule
Minimum K−threshold Phi
Maximum K−threshold Phi

Figure 4.17: Adaptive Counting Rule versus time.

In Figure 4.20 is depicted the variation of the k-threshold over time for
both the Modified Adaptable Counting Rule (MACR) and ACR. It can be
observed that the MACR adapts the k-threshold while the ACR maintains it
constant, which occurs due to the initial chosen OCThrs.

The MACR algorithm performance versus the duty cycle is depicted in
Figure 4.21(a). As seen in the plot, the φ of the MACR algorithm is higher
when the signal duty cycle is between 0.1 and 0.9. It can also be observed
that the OCThrs does not vary linearly with the signal duty cycle. This occurs
because the OW is finite and therefore there is an estimation error associated
with the estimated duty cycle. If the size of the OW is increased then it
is expected that the duty cycle estimation error will decrease, leading to a
smaller variation of the OCThrs. In Figure 4.21(b) is shown the φ of the ACR
algorithm in regards to the duty cycle, where it can be seen that if a proper
initial OCThrs is not chosen then the algorithm performs bad, as depicted in
the plot.
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Figure 4.18: Adaptive Counting Rule performance in regards to φ versus
MDThrs and OCThrs for different duty cycles, with σ = 8dB and c = 40

The proposed ACR and MACR algorithms are both able to adapt the
decision threshold, k, according to the experienced channel conditions and to
the signal duty cycle changes. The rate of adaptation depends on the lenght
of the observation window, OW . While a high OW leads to a slower adapting
algorithm a lower OW leads to a faster adapting algorithm, although less
stable. It was shown that the MACR performance is superior to the ACR,
since the MACR is able to adapt to the signal duty cycle, while the ACR
parameters needs to be optimized for each duty cycle, to achieve the same
performance as the MACR.

In the next section the concept of capacity in a data fusion context is
introduced, which is then used to analyze the performance of the proposed
MACR.
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Figure 4.19: (a) Optimum OCThrs which maximizes the φ obtained by ACR
versus the duty cycle, for different σ and c = 40 (b) Optimum OCThrs fitted
curve

4.7 Capacity Limits introduced by Data Fu-

sion

When performing the LDDF the exposed node problem is aggravated. This
occurs since when combining sensing results from positions far apart, one loses
information about possible available spectrum opportunities, i.e. it loses the
information about the spatial diversity. This phenomenon is illustrated in Fig-
ure 4.22, where the coloured regions represent where the spectrum is available
and non-coloured where the spectrum is occupied. After the Data Fusion (DF)
occurs the information about the regions where the spectrum was available dis-
appears, causing the network to lose that information.

In this section it is defined what is the capacity perceived by the cooper-
ative spectrum sensing mechanism, focusing on the loss of perceived capacity
introduced by the use of data fusion. This analysis is done along the data
fusion chain, comparing several scenarios encompassing different degree of en-
vironmental correlation between the local detectors, number of local detectors
and sensed channel occupation statistics. To answer this question, first is
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Algorithm 2 Modified Adaptive counting rule mechanism
if Initial Sensing Iteration then
k = kinitial

end if
if uH1 ≥ k then
ODC = ODC :: 1
MDC = MDC :: 0
OCS = OCS :: 1

else
ODC = ODC :: 0
if CS 6= H0 then
MDC = MDC :: 1
OCS = OCS :: 1

else
OCS = OCS :: 0

end if
end if
if MDC > MDThrs then

Increase k by kstep
end if
if ODC > OCThrs then

Decrease k by kstep
end if
if k was updated then

Set MDC = [] and ODC = []
else

Discard OCS,MDC and ODC elements outside the OW
OCThrs = f(OCS)

end if

necessary to introduce new metrics which will allow to measure the system
perceived capacity.

4.7.1 System Capacity Metrics

In this subsection is defined what is meant by the system’s perceived capacity,
from a cooperative spectrum sensing mechanism, along the data fusion chain.
In Figure 4.23 the steps that constitute the data fusion chain are depicted,
where Ue,n, Us,n and Udf quantify the perceived state of the sensed channel at
each step of the data fusion chain. The Ue,n quantifies the experienced state
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Figure 4.20: k-threshold variation of MACR and ACR vs time, with c = 40,
OW = 100, MDThrs = 1, initial OCThrs = OW and duty cycle 0.5

of the channel targeted for sensing by the local detector. The Us,n quantifies
the perceived state of the channel after sensing. Finally, Udf quantifies the
perceived channel state after the data fusion. The values that each of these
states can take are,

Ue,n, Us,n, Udf =

{
1 if H0

0 if H1
(4.27)

To illustrate the meaning of system perceived capacity, first consider that
in a CSS session there are several participating local detectors, and that each
of these experiences different signal strength, due to path loss, fast fading,
shadowing, etc. Now if one considers that at the location of each of these
sensing nodes, the channel is deemed free for use if the signal strength is below
a given Signal to Noise Ratio (SNR) threshold, then it is expected that due
to the mentioned varying channel conditions, some of the local detectors will
experience the same channel as free while other will experience it as occupied,
i.e. when the signal is above the SNR threshold. Note that what is meant by
experienced channel state refers to the actual state of the sensed channel at
a particular geographical location, given by Ue,n, i.e. before the sensing takes
place. Following the data fusion chain in Figure 4.23, in Figure 4.24 is depicted

99



Chapter 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Duty Cycle

φ

(a) MACR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

O
C

T
hr

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Duty Cycle

φ

(b) ACR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
99

100

101

O
C

T
hr

s

Figure 4.21: φ vs duty cycle, for MACR and ACR, with c = 40, OW = 100,
MDThrs = 1 and initial OCThrs = OW

Data
Fusion

Figure 4.22: The drawback of using data fusion, the loss of spatial diversity

the status of the perceived channel state at each step of the data fusion chain,
given by Ue, Us and Udf . Each of the figure’s blocks represents a sensing node
and its color the perceived channel state.

When comparing the experienced spectrum state, Ue, and sensed spectrum
state, Us, it can be seen that some of the local detectors fail to detect that the
channel is occupied, i.e. a missed detection occurs, while the other local detec-
tors judge the channel as occupied when it is not, i.e. a false detection or false
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Figure 4.23: Capacity along the paralel data fusion chain

alarm occurs. Both events have impact on the perceived system capacity, the
missed detections because they cause the local detector to perceive a channel
as free when it is occupied, and the false alarm because the node perceives the
channel as occupied when it is free. So in the former, one assumes to have more
resources than the ones available, while in the latter one misses the available
resources.

After the data fusion takes place, Udf , all local detectors are assumed to
perceive the channel state that resulted from the data fusion. From the ex-
ample in Figure 4.24, after the data fusion all local detectors are assumed to
perceive the channel as occupied, although some of the nodes actually perceive
the channel as free, causing a decrease of the system perceived capacity.

To measure the system perceived capacity at the different stages of the data
fusion chain, several metrics are defined. While what is meant by capacity in
the cooperative spectrum sensing context is the number of local detectors which
are experiencing or perceiving the channel state as free.

The potential capacity of the set of considered local detectors, given by Cr,
is defined as,

Cr =

∑N
i=1 Ue,i
N

(4.28)

where Ue,i is the experienced channel state of the ith local detector and N the
number of local detectors. This metric allows to measure the fraction of local
detectors that are experiencing a free channel, i.e. before the sensing takes
place.
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Figure 4.24: Spectrum sensing capacity illustration

The post-sensing capacity of the considered local detectors set, given by
Cs, is defined as,

Cs =

∑N
i=1 Us,iUe,i
N

(4.29)

where Us,i is the sensed channel state of the ith local detector. This metric
allows measuring the fraction of local detectors that perceive the sensed channel
as free when the channel is in fact free. Therefore when a local detector
perceives the channel as occupied when it is actually free, i.e. a false alarm as
occurred, then the Cs does not consider it. So the occurrence of false alarms
is the phenomenon that causes the Cs to be lower than the Cr.

The post-data fusion capacity of the set of the considered local detectors,
given by Cdf , is defined as,

Cdf = Udf

∑N
i=1 Ue,i
N

(4.30)
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where Udf is the decided spectrum state after the data fusion. This metric
measures the fraction of local detectors of the set that are indeed experiencing
a free channel when the perceived state resulting from the data fusion is as
free channel. Here the occurrence of false alarms, i.e. perceiving the channel
as occupied and it is free, causes the Cdf to be lower that the Cr.

The Cr, Cs and Cdf are the system’s perceived capacity at three different
points of the data fusion chain, and the difference among them accounts for
the probability of false alarm, i.e. of perceiving the spectrum as occupied
when it is in fact free. But these metrics do not account for the effect of
perceiving erroneously the channel state as free, i.e. they do not account for
the occurrence of misdetections.

The potential false capacity of the set of considered local detectors, given
by FCr, is defined as,

FCr = 1− Cr (4.31)

where Cr is the potential capacity of the set of considered local detectors. This
metric allows to measure the fraction of local detectors that can potentially
decide the channel to be free when it is not, i.e. before the sensing takes place.

To measure the fraction of local detectors which perceive erroneously the
channel as free post sensing, the post-sensing false capacity, given by FCs, is
defined as,

FCs =

∑N
i=1 Us,i (1− Ue,i)

N
(4.32)

where Us,i is the sensed channel state of the ith local detector. This metric
allows measuring the fraction of nodes that perceive the sensed channel as free
when the channel is in fact occupied, this achieved by using the term (1−Ue,i).

To measure the fraction of local detectors which perceive erroneously the
channel as free post data fusion, the post-data fusion false capacity is defined,
given by FCdf , as,

FCdf = Udf

∑N
i=1 (1− Ue,i)

N
(4.33)

where Udf is the decided spectrum state after the data fusion. This metric
measures the fraction of local detectors of the set that are indeed experiencing
a occupied channel when the perceived state resulting from the data fusion is
as free channel.
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To visualize better the obtained results, the Cs and Cdf can be normalized
in regards to Cr, and are defined as,

Cs =
Cs
Cr

(4.34)

Cdf =
Cdf
Cr

(4.35)

while the FCs and FCdf can be normalized in regard to (1 − Cr), and are
defined as,

FCs =
FCs

1− Cr
(4.36)

FCdf =
FCdf

1− Cr
(4.37)

Through these five metrics it is possible to characterize completely the
perceived capacity at each point of the data fusion chain, and therefore to
understand and quantify the capacity limits achieved by using different data
fusion schemes as well on the case where the data fusion is not performed.
In Figure 4.25 is depicted an example where the defined metrics are applied
and where it can be seen that although the data fusion scheme minimizes the
False Capacity, i.e. it maximizes the GPd, at the same time it also minimizes
the Capacity, i.e. maximizes the GPfa. In the next sub-section is shown and
analyzed how the Capacity and False Capacity vary in different situations.

4.7.2 Effect of Environment Correlation on System Ca-
pacity

Here is studied how varying correlation between the local detectors affects the
capacity perceived by the cooperative spectrum sensing scheme. The corre-
lation considered in this study is the average correlation index across all the
local detectors. Where the pair wise correlation is obtained from the Pearson’s
product-moment coefficient, ρ, defined as

ρij =
E[uiuj|Hk]− E[ui|Hk]E[uj|Hk]√

E[(ui − E[ui])2|Hk]E[(uj − E[uj])2|Hk]
,∀i,ji 6= j, k = 0, 1 (4.38)
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Figure 4.25: Capacity and False Capacity metrics use illustration

where ui and uj are the sequence of decisions at the ith and jth local detectors.
The average correlation index, ρ, is defined as,

ρ =

∑N
i=1

∑N
j=1 ρij

2N
, ∀i,ji 6= j (4.39)

The study was performed with the aid of simulation using a scenario where
4 signal sources were present and the local detectors were deployed around
them following a uniform distribution. The ρ variation was obtained through
artificial means by adjusting the noise level at each of the local detectors while
maintaining the transmission power constant at the signal sources. Through
this process was then possible to obtain a correspondence between the noise
level and the average correlation, as depicted in the plot in Figure 4.26. Al-
though not possible to replicate the same scenario experimentaly, it serves as
an approximation which allows to control the average experienced correlation
by the local detectors.

The main simulation setup parameters are listed in Table 4.1. Where the
SNRtarget is the SNR to which the Energy Detector is dimensioned to detect
with the pd,target and pfa,target, while the SNRThreshold is the SNR level below
which the local detector is deemed to be experiencing a vacant channel.
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Figure 4.26: ρ vs Noise Level at the local detectors

Parameter Value
Primary Signal Duty Cycle 0.5
Number of Local Detectors 20
Detector Model Energy Detector
pd,target 0.80
pfa,target 0.05
SNRtarget 0 dB
SNRThreshold -7.5 dB
Correlation Index Variation 0 to 1

Table 4.1: Relevant simulation parameters

In Figure 4.27 is plotted the behaviour of the Capacity and False Capacity
of a data fusion based CSS mechanism in regards to the average experienced
correlation. The plots consider the ACR presented previously as well as the
OR counting rule. i.e. (1− out− of − c).
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Figure 4.27: (a) Capacity and (b) False Capacity versus average local detectors
experienced correlation

From Figure 4.27(a), it is seen that the Cr decreases with the increase
of the ρ. This occurs because the higher is the correlation, the lower is the
spatial diversity leading to lower potential capacity. The Cs follows the same
behavior, and the observed gap between the Cr and Cs is due to the pfa of
the local detectors. For both data fusion schemes the Cdf maintains the same
perceived capacity along the ρ variation. This occurs since the purpose of
using data fusion schemes is to collate correlated measurements to improve
the detection of a phenomenon, which in the considered case is the presence of
a signal in the sensed channel. Therefore the more correlated are the nodes the
better are the data fusion schemes performance, as observed when normalizing
the Cdf in regard to the Cr, as depicted in Figure 4.28.

In Figure 4.27(b) it is depicted the False Capacity, and as expected 1−Cr
increases with the increase of the average correlation index, this behavior is
followed by the FCs, although when the average correlation index is above 0.4,
i.e. when there is a high degree of correlation, the FCs growth rate decreases.
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To further illustrate the dependence of the Capacity and False Capacity in
Figure 4.28 are depicted respectively the normalized Capacity and normalized
False Capacity.

From Figure 4.28(a) it can be seen that the Cs remains almost the same
independently of the average correlation index, while when considering the
case of Cdf , for both fusion rules, there is an increase on the achieved capacity
with the increase of the average correlation index. Also, the ACR allows for
an higher perceived capacity than the OR rule.

The perceived capacity in the case of the data fusion schemes is proportional
to the global probability of false alarm, GPfa. Then it can be concluded that
the reason why the adaptive rule Cdf is higher than the Cdf of the OR rule is
because the adaptive rule allows to achieve a lower GPfa.

The Cs is higher than the Cdf , not due to the individual pfa, but instead
because in the case of the data fusion when there is enough local detectors
experiencing and detecting the channel as occuppied then after the data fusion
the fusion center decides that all the local detectors are experiencing the local
channel as occupied. This causes the previously mentioned loss of the diversity
information which the consequence is a lower perceived capacity.

From Figure 4.28(b) it can be seen that in all cases the Normalized False
Capacity (NFC) decreases with the increase of the average correlation index.
Note that the False Capacity (FC) as defined relates to the probability of
missed detection. This can be confirmed by observing that the NFC for the
FCs is higher than the FCdf , since the purpose of using data fusion schemes
is to decrease the probability of occurring missed detections.

From Figure 4.28, it is observed that although the sensing without data
fusion achieves a higher perceived capacity, it also achieves a higher perceived
FC. From the analysis in this subsection it can be seen that the use of data
fusion although reducing substantially the perceived capacity, also minimizes
the perceived FC.

This occurs because the probability of detection and false alarm are de-
pendent of each other; in fact it is possible to express them as a function of
each other, as discussed previously. Therefore, as seen in the previous plots,
by minimizing one the other is also minimized, since their relationship is of
direct proportionality, although this relationship can be altered so that they
become more robust against the effect of the other.

The DF schemes employed, perform the data fusion of the sensing results
of all the participating local detectors, so hypothetically by using a subset of
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Figure 4.28: (a) Normalized Capacity and (b) Normalized False Capacity ver-
sus average local detectors experienced correlation

these nodes to perform the data fusion, it might be possible to increase the
achieved capacity while minimizing the FC. This will be made apparent in
the next sub-section, where the effect of the number of local detectors on the
system perceived capacity is analyzed.

4.7.3 Effect of Number of Network Nodes on System
Capacity

In this subsection the effect of varying the number of local detectors partic-
ipating in the CSS is analyzed. The simulation parameters are the same as
in the previous subsection, and the only difference is that here the average
correction index is set to be 0.2, while varying the number of local detectors.

From Figure 4.27 it can be seen that the potential capacity, Cr, achievable
by the CSS mechanism decreases with the increase of the average correlation
index, i.e. the more correlated are the nodes the lower is the probability of the
nodes to be experiencing different conditions, leading to less opportunities to
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find available resources. The potential capacity is therefore a function of the
spatial diversity degree.

In Figure 4.29 are depicted the Capacity and False Capacity versus the
number of network nodes, c, respectively. From Figure 4.29(a) it is observed
that Cs is constant when increasing the number of nodes, while the Cdf de-
creases. The decrease of Cdf is explained by the data fusion reducing the
spatial diversity, and therefore the more nodes are performing data fusion, the
less is the perceived capacity. The increase of the number of nodes leads to
an increase of the overall probability of false alarm on data fusion schemes,
which causes the system’s perceived capacity to decrease. This becomes evi-
dent when considering the OR rule, since in this scheme the probability of false
alarm increases with the number of nodes participating in the data fusion, as
discussed before.

From Figure 4.29(b) is observed that the FCs is constant with respect to
the increase of the number of nodes, while the FCdf decreases with the number
of nodes, which is explained by the decrease of the missed detection probability.
This occurs because the purpose of using data fusion schemes is to increase the
chances of performing a detection, which is what is observed in Figure 4.29(b).

The study presented in this subsection confirms the hypothesis formulated
before, that the use of a lower number of nodes in the data fusion increases
the system’s perceived capacity, although it also increases the false capacity.

4.7.4 Effect of Channel Occupation on System Capacity

In the previous sub-sections it was observed how the system perceived capacity
varies with the average correlation index and with the number of nodes. In
this subsection the effect of varying channel occupation statistics is considered.
The simulation parameters are the same as in the previous subsections except
that it is considered the ρ to be 0.2 and 0.5 with variable signal source duty
cycle.

In Figure 4.30 is plotted the Capacity and FC versus the signal duty cycle.
In Figure 4.30(a) it can be observed that the perceived capacity decreases
with the increase of the channel occupation as expected, since if the channel is
occupied an higher percentage of the time, then it is expected that the potential
system’s capacity will be lower. The reason the Cr is not 0 when the duty cycle
is 1 because that some of the local detectors are outside the coverage of the
transmitter, i.e. the signal is below the SNR detection threshold, so even if the
transmitter is active these local detectors can still experience the channel as
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Figure 4.29: (a) Capacity and (b) False Capacity versus number of local de-
tectors

free. The opposite trend can be seen in Figure 4.30(b), where the FC increases
with the channel occupation, which is expected since a missed detection, can
only occur if there is a signal being transmitted.

It should also be noted that although the perceived and potential capacity
decreases linearly, its inclination is dependent on the environment average
correlation. This can be observed by comparing Figure 4.30 with Figure 4.31.

4.7.5 Considerations on how to increase System Capac-
ity

From the analysis performed in the previous subsections it can be concluded
that the environment correlation affects the potential capacity achievable by a
CSS mechanism. The effect depends on how the sensing results are used, from
the analysis it can be seen the capacity is higher when not using data fusion
schemes while the false capacity is lower when using data fusion schemes.
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Figure 4.30: (a) Capacity and (b) False Capacity versus channel occupation,
ρ = 0.5 and c = 20

Another observation is that the increase of the number of local detectors
participating in a data fusion scheme reduces the perceived Capacity, while
also reducing the FC. From this study the main conclusion drawn is that by
using a lower number of local detectors in the data fusion it might be possible
to achieve a higher perceived capacity, while the minimization of the FC will
depend of the data fusion scheme in place.

Therefore, it is expected that if one groups together the local detectors in
different sub-sets according with their correlation, then most likely the per-
ceived capacity will be maximized while the FC will be minimized. The ca-
pacity gain from performing the division of the local detectors in sub-sets will
of course depend on how correlated the local detectors are with each other.

In this section it was analyzed how the perceived capacity of a CSS mech-
anism behaves, according to the experienced environment correlation, channel
occupation and number of cooperating local detectors. The analysis was made
based on the defined metrics which characterize the perceived capacity and FC
achieved by the studied schemes on all parts of the data fusion chain.
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Figure 4.31: (a) Capacity and (b) False Capacity versus channel occupation,
ρ = 0.2 and c = 20

In the next section a data fusion algorithm which groups the local detectors
in sub-sets and then performs the data fusion within each one of these, is
introduced.

4.8 Cluster based Adaptive Counting Rule

As discussed in the previous section, it might be possible to improve the net-
work perceived capacity by gathering the LDs in different clusters, and then
perform the data fusion individually at each cluster of LDs, as illustrated in
Figure 4.32.

As a proof of concept consider the plot in Figure 4.33, where it is depicted
the Capacity (C) and FC at the different levels of the parallel data fusion chain.
The metrics of interest are the Cdf , Cdf,PC , FCdf and FCdf,PC , which measure
the the C and FC perceived by using the MACR normally and by dividing the
LDs in clusters, respectively. In the latter case, the LDs where grouped into
two clusters, and the division method was given by a SNR threshold, SNRThrs,
where any LD experiencing a SNR below that threshold was assumed to be
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Figure 4.32: Clustering of LDs illustration

experiencing the channel as vacant. The motivation for defining such threshold,
is that it is expected that below a certain SNRThrs it does not make sense to
consider the channel to be occupied, since the amount of interference that
the node associated to the LD would experience from the signal source can be
neglected. This assumption is done from the CRN side, i.e. it does not consider
the minimization of the interference of the CRN in the primary network and
therefore this approach might not be applicable in some scenarios, where the
goal is to ensure that the CRN does not interfere with the primary network. It
should be noted that the purpose of this algorithm is to identify the maximum
number of available opportunities for the CRN to use, and whether these will
be used or not will depend on the access control mechanism in place at the
CRN.

From the plot in Figure 4.33 it can be seen that it is worthwhile to group
the LDs in clusters. The main challenge is to identify which information should
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Figure 4.33: Proof of concept for the use of clustering in data fusion, c = 40

be used as basis to perform the clustering process, since the information about
the SNRExp is not available at the fusion center, as discussed previously. The
alternative source of information found was the observed correlation between
the LDs local decisions over time. The issue with this source of information is
that the LDs are not perfect, i.e. their pd < 1 and their pfa > 0, and therefore
the LDs will most likely never be fully correlated. Therefore there is a need to
find define a correlation threshold which translates to the considered SNRThrs.

The correlation can be measured with either the ρ or the φ correlation
coefficients. To analyze the viability of using these metrics, consider the plots
in Figure 4.34, where it is depicted the variation of the correlation coefficients
ρ and φ in regards to the SNR experienced, SNRExp, by a pair of LDs in two
different scenarios is depicted. In the first scenario, the blue curve, the pair of
LDs have the same performance, i.e. they have the same pd, which is dependent
on the SNRExp. In the second scenario, the red curve, in one of the LDs the
pd is same in regards to the minimum SNRExp, while in the other LD the pd
varies with the SNRExp. In Figure 4.34(c) is plotted the relationship between
the pd and SNRExp, which was obtained following the Energy Detector (ED)
model discussed in Chapter 2.
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Figure 4.34: (a) φ (b) ρ coefficients between the decisions of two LDs, with
signal duty cycle of 0.5 and the LDs pfa = 0.05, (c) pd versus SNRExp

In the first scenario, it can be seen that both correlation coefficients are
higher than 0.5 only when the SNRExp > 0dB, which from the plot in Fig-
ure 4.34(c) translates to a pd > 0.8. This observed relationship leads to that
by using the correlation coefficients it is possible to identify whether a LD is
experiencing a SNR above a certain level, if there at least one other LD which
is also experiencing the same level of SNR. This pair matching will of course
depend of the LDs performance.

In the second scenario, it can be seen that if the SNRExp by one of the
LDs is low enough, then the correlation coefficients are always near zero.
This is also observed in the first scenario, when the SNRExp by both LDs
is low enough, where in the depicted scenarios low enough occurs when the
SNRExp < −10dB. This occurs due to the mapping chosen in the local deci-
sions in regards to the presence and absence of a signal, i.e. when the signal
is absent, H0, the local decision of the ith detector is mapped as ui = 0, while
when the signal is present, H1, the local decision of the ith detector is mapped
to ui = 1.
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Based on the previous observations, is now possible to define an algorithm
which performs the grouping of LDs in clusters, by using the correlation coef-
ficients of the LDs decisions over time as information source. For simplicity, it
is considered that there is only one signal source, and therefore it is of interest
to divide the LDs in only two clusters. The goal is that one of the clusters
will include all the LDs which are experiencing a SNR above a pre-defined
threshold, while the other cluster will include all the other LDs.

In Figure 4.35 is plotted, for the same the detector performance curve
depicted in Figure 4.34(c), the evaluation of different ρ thresholds in regards
to φ, so to measure the performance of the classification mechanism which puts
the LDs in one of two clusters. It can be observed that the φ is maximized
when the ρ ∈ [0.3, 0.4], at least when all the LDs are dimensioned according
to the considered performance curve.

To illustrate how the ρ threshold varies in regards to different performance
curves, obtained by setting different pd targets while maintaining the pfa =
0.05, consider the plot in Figure 4.36. As observed in the plot the ρ threshold
varies according to the performance of the LDs. The LDs performance range
of interest is when the pd ∈ [0.6, 1.0], which translates to a ρThrs ∈ [0.3, 0.6].

The integration of the clustering algorithm with the MACR algorithm, for
the case where there is only one signal source present, is listed in Algorithm 3.
Where |Lρ| represents the number of elements in the decrescent ordered list
Lρ. The SI is the sensing iteration counter, the SImin is the minimum number
of sensing iterations so that the ρ is statistically significant. C1 is the LD
cluster where are stored the LDs which are experiencing a level of correlation
above ρThrs, which means that the LDs have a SNRExp ≥ SNRThrs, while C0

is the cluster where all the uncorrelated LDs are stored. Note that the cluster
decision, Cdf,0, for C0 is H0, because as seen in Figure 4.34 when a LD is
uncorrelated with all others LDs then it means that the SNRExp < SNRThrs.

In Figure 4.37 is depicted the comparison over time using the capacity
and false capacity metrics defined in Section 4.7 for the case of no DF, with
DF using the MACR, and the DF with clustering, where the indices df, PC
and df, CC refer to perfect clustering, as the one depicted in Figure 4.33, and
the correlation based clustering, as the one defined by Algorithm 3 with a
ρThrs = 0.35, respectively. As seen from the results the proposed correlation
based clustering algorithm is able to achieve the same performance of the
perfect clustering algorithm.
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Algorithm 3 MACR integrated with single source clustering algorithm
if SI < SImin then

Group LDs in one cluster
Perform the Data Fusion using Algorithm 2

else
for all i, j LD pairs when i 6= j do

Compute ρij from local decisions ui and uj and Lρ ← ρij
end for
while |Lρ| > 0 do

Remove ρij from the head of Lρ
if i, j /∈ C1 then

if ρi,j ≥ ρThrs then
C1 ← i, j
if i, j ∈ C0 then

Remove i, j from C0

end if
else if i, j /∈ C0 then
C0 ← i, j

end if
else

if ρi,j ≥ ρThrs then
if i /∈ C1 then
C1 ← i
Remove i from C0

else
C1 ← j
Remove j from C0

end if
else if i, j /∈ C0 then
C0 ← i, j

end if
end if

end while
if |C1| > 0 then

Obtain Cdf,1 from Algorithm 2
end if
if |C0| > 0 then
Cdf,0 = H0

end if
end if
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In Figure 4.38 is depicted the variation of the k-threshold of the MACR
without clustering and with perfect and correlation based clustering. It can
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Figure 4.37: Non and clustering based data fusion algorithms comparison

be observed that all algorithms adapt the k-threshold at the same speed. Al-
though it should be noted that while the simple MACR deals with all the
c LDs, the MACR with clustering work with a lower number of LDs, which
means that in relative terms the k-threshold is higher in the MACR with clus-
tering than the simple one.

Now is the clustering algorithm is generalized to the case where there are
multiple signal sources. The integration of the generalized clustering algorithm
with the MACR algorithm is listed in Algorithm 4. Where |Lρ| represents the
number of elements in the decrescent ordered list Lρ. The SI is the sensing
iteration counter, the SImin is the minimum number of sensing iterations so
that the ρ is statistically significant. Ch is the hth cluster and C0 is the cluster
where all the uncorrelated LDs are stored. Note that the cluster decision for
C0 is H0, because as seen in Figure 4.34 when a LD is uncorrelated with all
others LDs then it means that the SNRExp by the LD is below the SNRThrs.

Intuitively with the Algorithm 4 the LDs which experience similar condi-
tions will be grouped together and therefore it will be possible to maximize the
detection of the presence of a signal, while ensuring that LDs which are not
experiencing the presence of the signal will be grouped together and therefore
eliminating the occurance of false alarms.
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Algorithm 4 MACR integrated with Generalized Clustering Algorithm
if SI < SImin then

Group LDs in one cluster
Perform the Data Fusion using Algorithm 2

else
for all i, j LD pairs when i 6= j do

Compute ρij from local decisions ui and uj and Lρ ← ρij
end for
while |Lρ| > 0 do

Remove ρij from the head of Lρ
if i, j /∈ ∀hCh then

if ρi,j ≥ ρThrs then
Create cluster Ch and add i, j
if i, j ∈ C0 then

Remove i, j from C0

end if
else if i, j /∈ C0 then
C0 ← i, j

end if
else

if ρi,j ≥ ρThrs then
if i /∈ ∀hCh then

Add i to Ch for which j ∈ Ch
else

Add j to Ch for which i ∈ Ch
end if
if i, j ∈ C0 then

Remove i, j from C0

end if
else if i, j /∈ C0 then
C0 ← i, j

end if
end if

end while
for all Ch when h > 0 do

Obtain Cdf,h from Algorithm 2
end for
if |C0| > 0 then
Cdf,0 = H0

end if
end if
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Figure 4.38: k-threshold variation over time, with c = 40 and OW = 100

In Algorithm 4 is expected that the number of clusters will not be higher
than the twice the number of signal sources. This is expected because in the
extreme case for each signal source the LDs can potentially be separated into
a cluster which gathers the LDs which are experiencing that same signal. The
Algorithm 4 as not been implemented at this point, so further analysis will be
given in future work.

4.9 Conclusions

This chapter was focused on the Local Decisions Fusion step of the CSS flow.
It was considered the case where the data fusion follows a two level parallel
distributed detection system, which consists of a number of LDs connected
to a fusion center. It was assumed that each LD reaches a local decision in
each sensing session, of the hard decision type, i.e. the result of the decision is
encoded in just one bit, which is then transmitted to the fusion center. At the
fusion center its considered that the data fusion is performed over the received
local decisions using a fusion rule of the counting rule type, i.e. that counts
the number of LDs which have decided that a signal is present in the sensed
channel and then compare that number with a decision threshold, which in
case where it is higher than the threshold then the global decision is that a
signal is present, otherwise that is absent.
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The chapter starts with a detailed motivation for the use of counting rules
as the fusion rules in place for the data fusion. Then a theoretical formulation
of the counting rules is given, and how the performance of the data fusion is
affected when varying its implicit parameters, such as the local probability of
detection, false alarm and the number of LDs in place.

Two performance evaluation metrics φ and ε were introduced. The counting
rules were then evaluated using these performance metrics, first in general
without considering the underlying LD model, then when considering the LD
model and finally when the signal duty cycle varies.

The case where the LDs are non-identical is considered, which then gives
rise for the motivation of using an ACR mechanism, which adapts the k-
threshold based on the experienced conditions of the LDs using the feedback
when the CRN tries to access the sensed channel. The proposed ACR mecha-
nism is then further refined to be more adaptable, and depend less on a-priori
set thresholds.

The concept of Capacity and False Capacity in the spectrum sensing con-
text is introduced, and then an evaluation of both capacities along the data
fusion chain is given. The Capacity metric measures the effect of the exposed
node problem, while the False Capacity metric measures the effect of the hid-
den node problem. In this evaluation it was considered the correlation between
the LDs, the number of LDs participating in the data fusion and the effect of
the signal duty cycle.

The Capacity and False capacity study gave insights on how the data fu-
sion process can be improved, so to increase the amount of perceived available
resources in the sensed channel. Based on these insights a Cluster based Adap-
tive Counting Rule is then proposed, on which the LDs that experience similar
signal conditions are grouped in clusters and where the data fusion is done
separately for each cluster. The proposed clustering algorithm uses the cor-
relation between the local decisions of the LDs over time to select the cluster
where each LD should go. It was observed, in the case where there is only one
signal source, that the proposed algorithm was able to achieve the same level
of performance in terms of Capacity and False Capacity when compared to
the perfect clustering algorithm where full information about the conditions at
each of the LDs was available at the fusion center. In the case of multiple sig-
nal sources a generalized clustering algorithm was proposed, but its evaluation
was left for future work.

It should also be noted that it was assumed that the reporting channel
is noiseless. Therefore it would be of interest for future work to consider
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the impact of a noisy reporting channel in the performance of the proposed
schemes.
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5
Node Selection Mechanisms

5.1 Introduction

In Figure 5.1 is given an overview of the Cooperative Spectrum Sensing (CSS)
mechanism considered in this thesis, where as discussed in the previous chap-
ters, the goal of the CSS mechanism is to ensure that all Cognitive Radio
Network (CRN) nodes have updated and synchronized information about the
state of the targeted spectrum.

In this chapter is discussed the role of the Node Selection (NS) step, which
the purpose is to control how the Local Detectors (LDs) cooperate in regards
to the Spectrum Sensing (SS). As stated in Chapter 2, the NS step plays a
key role on the performance of the CSS since it can influence the cooperative
gain as well as be used to address the possible overhead issues, although it
should be noted that these gains and losses are not explicitly considered in
this chapter. The focus on this chapter is instead on how to select which
channels should each of the LDs sense at each sensing session, and therefore
on which mechanism can accomplish this.

The NS mechanism proposed in this chapter, is described in a centralized
and in a decentralized approach, as proposed in [4] and [3], respectively. In
the centralized approach, there is a central entity, normally where the Fusion
Center (FuC) is co-located, which performs the NS, while in the decentralized
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Figure 5.1: Distributed cooperative spectrum sensing flow

approach each CRN node performs the NS by itself. From a distributed pro-
tocol standpoint, both the centralized and decentralized approaches follow the
protocol descriptions stated in Chapter 3.

The NS mechanism here proposed follows the same lines as an orches-
tration mechanism in computing, which the purpose here is the automated
arrangement and coordination of the LDs among the monitored spectrum, so
to maximize the gain of using cooperation, which in this case translates in
identifying has many available resources as possible, while taking in account
that the number of LDs available is a finite resource. In this chapter it is
introduced the orchestrating mechanism which distributes the LDs across the
monitored spectrum along consecutive SS sessions. The proposed NS mecha-
nism, selects which channels should each Local Detector (LD) sense through
the use of a scheduling mechanism, which belongs to the class of utility based
schedulers proposed by Kelly [2]. It is assumed that the utility function of the
scheduler is somehow related to the duty cycle of the primary signal in each
channel. Therefore in the proposed mechanism the observed duty cycle serves
as input for the scheduling metric, and so the mechanism tends to prioritise
the sensing of channels which have an observed lower signal duty cycle, since
these channels are the ones that most likely will have resources available to be
used by the CRN.

In the following section is analyzed the performance gain in terms of po-
tential capacity, as defined in Chapter 4, when the LDs are able to sense more
than one channel at a time.

5.2 Multi Channel Sensing

Here is considered the case where the LDs are able to sense more than one
channel at each sensing iteration. The analysis depicted refers to the potential
gains and losses in regards to potential capacity and false capacity, and does not
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consider the increased hardware or algorithmic complexity that such solutions
would imply.

To quantify the performance, the metrics defined in Chapter 4 for the
potential capacity and false capacity need to be extended to account the case
where the CRN is monitoring multiple channels.

The multichannel potential capacity of the set of considered LDs, given by
MCr, is defined as,

MCr =

∑M
j=1

∑N
i=1 Ue,ji

MN
(5.1)

where Ue,ji is the experienced channel state of the ith local detector at the
jth channel and N is the number of LDs. This metric allows to measure the
fraction of LDs that are experiencing free channels, i.e. before the SS takes
place.

The multichannel potential false capacity of the set of considered LDs,
given by MFCr, is defined as,

MFCr = 1−MCr (5.2)

where MCr is the multichannel potential capacity of the set of considered LDs.
This metric allows to measure the fraction of LDs that can potentially decide
the channels to be free when they are not, i.e. before the SS takes place.

In the plots of Figure 5.2 are shown the normalized potential Multichannel
Capacity (MC) and Multichannel False Capacity (MFC) achievable when using
LDs which are able to sense one, two and three channels in each sensing session
in regards to the case where the LDs are able to sense m channels in each
sensing session. These results where obtained through a monte carlo type
simulation, where the duty cycle of each of the monitored channels can be
within [0, 1], and as been obtained for each of the channels by drawing a random
uniform variable, r ← U(0, 1).

The results show that there is a potential gain and loss by using LDs which
are able to sense multiple channels in the same sensing session, as seen in
plots in Figure 5.2(a) and Figure 5.2(b), respectively. It can also be observed
that the growth of the gain in potential MC decreases with the increase of the
number of channels that the LDs can sense in each sensing session. This is
made evident by the concavity observed in the trend line associated with the
potential MC and the convexity in the trend line associated with the potential
MFC, for the case m = 5. Although, the same phenomenon is not observable
in the case where m = 10, since the number of channels that the LDs need to
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Figure 5.2: Comparison between normalized MCr and MFCr for LDs able to
sense multiple channels, for m = 5 and m = 10

be able to sense in each sensing session needs to be higher than three so that
the same saturation in the gain is observed.

From the observations of the plots in Figure 5.2 it can be concluded that
there is an observable gain in regards to the potential MC, although with an
increase in the potential MFC, especially when the number of channels that
each LD is able to sense in each sensing session aproximates the number of
monitored channels. This leads to the conclusion that the optimum number of
channels that the LDs should sense per sensing session depends on the number
of channel monitored.

The drawback, although not measured, is on the added hardware and signal
processing complexity to the LDs, which leads to an higher cost, which will
depend on the technology used to implement the LDs. In the remaining of the
chapter is considered that each LD is able to sense only one channel in each
sensing session, which therefore implies that the developed NS algorithms were
not tested nor designed for a scenario where the LDs are capable of sensing
multiple channels in each sensing session.

In the next section is presented the rationale for using the channel observed
signal duty cycle as scheduling metric for the NS mechanism.
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5.3 Node Selection Rationale

In the plots of Figure 5.3 is depicted a comparison between several NS strate-
gies, in regards to the normalized MC and MFC.

The optimum NS mechanism assumes that there is full knowledge about
the monitored channel states and whether the LDs are in range of the signal
source for each of the monitored channels. The optimum NS matches the
performance of the LD which is able to sense only one channel at a time, i.e.
single, as depicted in the plots of Figure 5.2.

The sequential NS mechanism selects one of the monitored channels for
the LDs to sense in each sensing session. The choice of the channel to sense
is done sequentially, as done in a round robin scheme. Therefore in stationary
conditions it would be expected that each of the channels have been sensed
the same amount of times.

In the random NS mechanism, each LD is assigned randomly a channel to
sense. This is performed by drawing a uniform random variable that is then
used to select which channel the LD should sense, therefore each channel has
the same probability of being selected to be sensed.

Finally, the lower duty cycle NS mechanism selects the channel that each
LD should sense based on the monitored channel duty cycle and on the in-
formation of whether the LD is in range of each of the signal sources in each
of the monitored channels. The selection is done by prioritizing the sensing
of channels that have a lower duty cycle. The information about the moni-
tored channels duty cycle can be estimated from the results of the sensing over
time. While the information about whether the LDs are in range of each of
the transmitters in each of the monitored channels can be obtained by using a
data fusion algorithm as the one the proposed and described in Chapter 4.

Comparing the performance of each of the described NS mechanisms, it
can be concluded that the mechanism that prioritises the sensing of the lower
duty cycle channels presents an higher performance, when compared to the
sequential and random NS mechanisms. It should be noted that this difference
in performance will only be observed when the there is enough information
for the lower duty cycle NS mechanism, which can only occur after sufficient
number of sensing sessions. Therefore in the beginning the sequential, random
and lower duty cycle NS mechanism will have the same performance, but then
over several sessing sessions, the performance of the lower duty cycle NS will
increase. The results shown in the plots of Figure 5.3 for the lower duty cycle
NS refer to the case where the information available has the highest quality
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Figure 5.3: Comparison between NS strategies

possible, i.e. the estimation of the duty cycle and whether the LDs are in range
of each of the transmitters is perfect.

These performance differences where expected since if the NS mechanism do
not use any information about the monitored channels to select which channels
should each LD sense, then it is expected that a mechanism that does use
that information will present an higher performance. This also means that
the sequential and random NS are simple to implement, while the other one
requires more sophisticated techniques. In the remaining of this chapter is
described how the lower duty cycle NS mechanism can be implemented.

In the following section is introduced the scheduling fundamentals of the
NS proposed in this chapter.

5.4 Node Selection Fundamentals

The proposed NS mechanism is based on the Kelly scheduler [2], here described
following the notation of [1].

Consider the case where M users are bidding for a share of a finite resource
denoted as C. In the CSS context, the users are the channels being monitored,
while the resources to distribute are the LDs.
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Each mth user has associated a utility function, Um(dm), which determines
the monetary value of any resource allocation, dm, to the mth user.

Consider now the triple (C,M,U), where C > 0, M > 1, and U =
[U1, ..., UM ], as the utility system. The utility is measured in monetary units;
therefore, if the mth receives a resource allocation dm, it must pay a price wm,
thus receiving a net payoff NPO, given by,

NPO = Um(dm)− wm (5.3)

Given any vector of utility functions U the maximization problem can be
expressed as the maximization of the aggregate utility, and can be defined as
the triple (C,M,U) such that:

maximize
∑M

m=1 Um(dm)

subject to
∑M

m=1 dm ≤ C
dm ≥ 0

(5.4)

where dm are the components of the non-negative vector of resource allocation
d. This vector d can be computed, by considering that each mth user submits
a bid, denoted as wm, to the resource manager, i.e. the CRN node responsible.

Then given the vector w, defined as w = [w1, ..., wM ], the resource manager
chooses and allocates d, according to,

dm (wm) =

{
wm∑M
k=1 wk

C , if wm > 0

0 , if wm = 0
(5.5)

Considering that the users choose the bid based on the maximization of
the NPO, then according to [1], the allocation of the resources is fully efficient,
reaching the maximum possible aggregate utility.

Note that the Um(dm) is not defined here, and so is considered to be un-
known. Revisiting the NPO, it can be stated, in a CSS context, that the NPO

will be maximized when the number of received LDs will match the number of
identified resources. Where the number of identified resources follows the same
definition given in Section 4.7, i.e. the number of LDs that are experiencing
the channel as free, which might be due to the absence of signal or because
the LDs are outside the signal source range, i.e. the SNRExp < SNRThrs.
Intuitively when a channel has a lower observed duty cycle then potentially
there will be more resources to be identified by sending an higher number of
LDs there. For simplification, it is considered that the channel observed duty
cycle, represents the behaviour of all signal sources operating in that channel,
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excluding the CRN signal sources, i.e. the duty cycle measures the channel
occupation in regards to the primary system.

So following the exposed nomenclature, the mth channel bid wm is equal to
the remainder of signal source duty cycle, sm, defined as,

sm = 1− dcm (5.6)

where dcm is the duty cycle of the mth channel. It is assumed that the signal
source duty cycle is obtained through estimation, which can be accomplished
by using one of the estimators defined in Appendix D.

In the next section are introduced the NS mechanism which apply the
presented scheduling framework.

5.5 Node Selection Mechanism

The scheduling framework presented in the previous section is here applied to
design both a centralized and decentralized NS mechanism.

In the centralized mechanism there is one CRN node responsible for the
orchestration, but in a decentralized approach, there is not a single CRN node
which is responsible for the orchestration. Therefore, to apply this scheduler
to the decentralized case the Eq. 5.5 needs to be obtained indirectly, i.e. each
of the LDs will select which channel to sense based on the bids received from
their neighbouring LDs, and in the end the resource distribution will try to
follow Eq. 5.5.

These algorithms assume that the duty cycle of the monitored channels is
estimated over time, using the estimators defined in Appendix D, and that
the information obtained over time from the Cluster based Adaptive Counting
Rule, defined in Chapter 4, is available, such as the information about which
LDs are out of range of the signal source in each of the monitored channels.

Note that the proposed algorithms follows the same structure as the one
expressed through the use of a process calculus in Chapter 3.

5.5.1 Centralized Mechanism

In Algorithm 5 is listed the algorithm used to implement the centralized NS
mechanism. At the system initialization, since it is assumed that there is no
information a priori available about the state of the channels then the LDs

134



5.5. Node Selection Mechanism 135

are assigned to sense a random channel, and from there start the orchestration
mechanism based on the estimated information.

The allocation of the resources can be accomplished by either assigning all
the LDs to the channel with the higher dm, stated in the algorithm as Single
Channel Assignment (SCA), or by assigning the number of LDs proportionally
to the dm, while ensuring that the LDs assigned to sense the channel are the
ones that are more likely to experience the channel as vacant.

The SCA strategy is adequate when the CSS system has not yet acquired
sufficient information about whether the LDs are in range of each of the signal
sources at each of the channels. While the later assignment strategy should be
used when that same information is reliable enough. According to the perfor-
mance from the Cluster based Adaptive Counting Rule, defined in Chapter 4,
the required information should have enough reliability when each channel has
been sensed at least 100 times. Therefore the proposed NS mechanism perfor-
mance improves over consecutive sensing sessions. The drawback is that this
improvement will only occur if the system observed conditions does not change
often, i.e. if the LDs are mobile most likely the NS will never be able to take
advantage of higher performance given by the later LD assignment strategy
due to not be able to acquire the required information with enough reliability
fast enough.

5.5.2 Decentralized Mechanism

In Algorithm 6 is depicted the algorithm which accomplishes the distribution
of the sensing nodes across the monitored channels in the decentralized case.
As in the centralized algorithm, when the CSS system is initialized the LDs
are assigned to sense a random channel. The Algorithm 6 runs simultaneously
in each of the CRN nodes which act as LDs, allowing this decentralized system
to achieve the same behaviour as the centralized algorithm.

Similarly to the centralized algorithm, the assignment of the LDs can be
accomplished by either assigning all the LDs to the channel with the higher
‖wm‖, stated in the algorithm as SCA, or by trying to assign the number
of LDs proportionally to dm, which here is obtained by drawing a uniform
distributed random variable and then match it with the minimum m where
r < ‖wm‖CDF . The assignment to channels where the LD will most likely
experience the channel as vacant is prioritized. As stated in the algorithm the
LD performs a number of trials to try to assign the LD to a channel that where
the LD will most likely experience it as vacant.
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Algorithm 5 Centralized Node Selection Scheme
Receive Sensing Results from LDs
for every channel m do

if channel m has been sensed then
Compute sinst according to data fusion scheme

end if
Compute ŝm and obtain wm

end for
for every channel m do

Compute dm(wm)
end for
if Single Channel Assignment then

Allocate all LDs to the channel m← max(dm)
else

for every channel m do
Allocate bdmc LDs to channel m
Prioritise LDs that are out of range of the signal source in channel m

end for
if There are unassigned LDs then

Allocate the remaining LDs to the channel m← max(dm)
end if

end if

The SCA strategy, as in the centralized algorithm, is adequate when the
CSS system has not yet acquired sufficient information about whether the
LDs are in range of each of the signal sources at each of the channels. While
the later assignment strategy should be used when that same information is
reliable enough. The decentralized algorithm has the same drawbacks as the
centralized in regards to the required number of sensing sessions to acquire
enough information to be able to perform a reliable estimation of which LDs
are in range of each of the signal sources at each of the monitored channels.

5.5.3 Implementation Constraints

Although both algorithms are possible to implement, there are some observed
performance constraints, especially for the decentralized algorithm. In the
decentralized algorithm it is not possible to know for certain what will be the
number of LDs which will be sensing a given channel, therefore the Adaptive
Counting Rule data fusion scheme, proposed in Chapter 4, will most likely
perform worse than the case where the number of LDs is constant. Therefore,
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Algorithm 6 Decentralized Node Selection Scheme
Receive Sensing Results from Cluster Nodes
for every channel m do

if channel m has been sensed then
Compute sinst according with fusion rule

end if
Compute ŝm and obtain wm

end for
Normalize the channel bids, i.e. ‖wm‖ = wm/

∑M
m wm

if Single Channel Assignment then
Select channel to sense with index m← max(‖wm‖)

else
Compute CDF , i.e. ‖wm‖CDF = ‖wm‖+ ‖wm−1‖CDF
Set Counter = Number of trials
while Counter == 0 do

Generate random variable, r ←Uniform(0, 1)
Select the minimum m for which r < ‖wm‖CDF is true
if channel m signal source is out of the LD range then

Select channel to sense with index m
Counter = 0

else
Counter = Counter − 1

end if
end while

end if

the centralized NS algorithm will most likely achieve an higher performance
than the decentralized one.

The purpose of the decentralized NS mechanism is to give a higher robust-
ness to the CSS scheme, since if in the centralized scheme the CRN responsible
for the orchestration stops working then the CSS collapses, while in the decen-
tralized in the case that some of the LDs withdraws, it will still be possible to
continue with the CSS.

The centralized and decentralized NS schemes complement each other, since
allowing the CRN to support both schemes is a viable way to increase the
robustness of the CSS. So in the case where the CRN node responsible for the
orchestration, by any reason, stops working the CRN can continue to perform
the CSS by activating the decentralized NS scheme, until another CRN node
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can be elected to act as the orchestrating node. Through this is possible to
achieve uninterrupted CSS as long as there are at least two LDs.

5.6 Performance Comparison

The comparison of the proposed NS with the optimum and the random NS,
both described in Section 5.3, is depicted in the plots of Figure 5.4.

As expected the proposed NS performs better in regards to the Random
NS, although it is not able to reach the same performance as the Optimum
NS. The performance of the proposed NS is higher than the Random NS
since the proposed NS uses the information harvested along the consecutive
sensing sessions, while the Random NS disregards that same information. The
performance of the proposed NS is always lower than the Optimum NS because
the information available to the algorithm is not enough to make the perfect
assignment. It should be noted that the plots shown in Figure 5.4 for the
proposed NS algorithms, show the case where there is enough information for
the algorithms to work properly without the SCA, therefore the performance in
the best case. It should also be noted that the performance of the decentralized
NS is slightly lower than the centralized NS, this is due to the weighted random
selection in the decentralized NS.

In the plots of Figure 5.5 is shown the comparison between the performance
of the centralized and decentralized NS with and without the SCA active. The
SCA should only be active when there is not enough information to perform
a proper channel assignment, therefore this case represents the lower perfor-
mance bound of the algorithm. While the case of when the SCA is inactive
gives the upper bound of the algorithm, since it considers that the required
information as been perfectly estimated. Therefore it is expected upon im-
plementation the performance of the proposed algorithms will be within this
interval.

5.7 Conclusions

In this chapter was shown why a proper NS is required for a CSS to work
properly in a multi-channel scenario. This was done by showing through the
use of the Potential Capacity and and False Capacity metrics, which quantify
not only the performance of the proposed NS but also to give a measure of
the performance achievable when the using the optimum multi-channel and
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Figure 5.4: Performance Evaluation comparison between the proposed central-
ized and decentralized NS without SCA and random and optimum NS
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Figure 5.5: Performance comparison between centralized and decentralized NS
with and without SCA

single-channel NS. Where these optimal NS assume that there is perfect and
total information about the signal activity as well if each of the LDs is within
range of the signal sources in each of the monitored channels.
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A centralized and a decentralized NS algorithm were proposed, and their
performance compared to the optimal NS, as well with the random NS, i.e.
channel un-aware NS which has the same performance as a round-robin based
scheme. The proposed schemes are able to work in the case where there is
enough and the case where there is not yet enough information about the
signal activity and the location of the LDs in regards to the signal source. In
the case where there is not enough information the algorithms resort to the use
of SCA, while when they acquire enough information the assignment of a LD
is done preferentially to a channel that most likely the LD will experience as
vacant. The use of this later strategy, as shown in the performance comparison,
allows to reach a performance near the optimum NS.

The proposed centralized and decentralized NS algorithm can be combined
in the CSS, so that in case the CRN node acting as the central node with-
draws from the CRN, then the decentralized NS is activated and then CSS can
proceed.

The future steps of this work should be to study the effect of mobility in
the information needed by the proposed NS algorithms.
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6
Conclusions and Outlook

6.1 Conclusions

The rapid growth of services offered through wireless communication has lead
to an apparent shortage of the radio frequency spectrum. After several mea-
surements campaigns the common conclusion is that this shortage is in most
cases caused by the assignment of the spectrum in a static manner over large
geographical regions over long time periods. To overcome this, a new paradigm
which allows accessing the radio spectrum in an opportunistic manner has been
put forward. This paradigm is called Cognitive Radio, and the foundation of
this opportunistic spectrum access is the awareness of the state of the radio
spectrum in the surroundings of the cognitive radio network, which is accom-
plished through Spectrum Sensing (SS).

The SS performance depends on the local channel conditions, such as the
multipath, shadowing and the receiver uncertainty issues. The conjunction of
these conditions can result in regimes where the signal strength is below the
detection threshold of the sensor, resulting in missed detections. To overcome
this limitation, there have been several proposals made in the research com-
munity towards the use of cooperation in SS. Since the signal strength varies
with the sensor location, the worst fading conditions can be avoided if multiple
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sensors in different spatial locations share their local sensing measurements, i.e.
take advantage of the spatial diversity.

In this thesis the focus was on how to accomplish this cooperation. For
that purpose a Cooperative Spectrum Sensing (CSS) mechanism was proposed,
which consists of a distributed protocol that connects the elements of this mech-
anism, being those the SS, Local Decisions Data Fusion (LDDF), Knowledge
Base Update (KBU) and Node Selection (NS). The CSS mechanism goal is to
ensure that all the Cognitive Radio Network (CRN) nodes know which spec-
trum to sense and when to sense, how to share the results from the sensing
and how to ensure that all CRN nodes have an updated and synchronized
information about the state of the monitored spectrum.

A Process Calculus (PC), denoted as Bounded Broadcast Calculus (BBC),
was introduced to reason about the computational properties of the proposed
distributed protocol. The BBC uses broadcast communication over channels
with bounded capacity to allow a more realistic modelling of the CSS. Three
different network topologies were considered – centralized, decentralized and
relay based topologies – and their associated CSS protocols. In each case it
was straightforward to describe conditions for protocol correctness that ensure
that the agents participating in the cooperative scheme will eventually reach
a resolved state every time a SS round is initiated. A theorem on the cor-
rectness of the protocols was given and proved by standard inductive proof
techniques. The work showed that the use of process calculi provide a promis-
ing approach for describing and reasoning about the computational properties
wireless communication protocols.

In this thesis it was considered on how to combine the local decisions from
each of the local detectors participating in the CSS. The approach taken to
combine these local decisions follows a two level parallel distributed detection
system, which consists of a number of Local Detectors (LDs) connected to a
fusion center. It was assumed that each Local Detector (LD) reaches a local
decision in each sensing session, of the hard decision type, i.e. the result of
the decision is encoded in just one bit, which is then transmitted to the fusion
center. At the fusion center its considered that the data fusion is performed
over the received local decisions using a fusion rule of the counting rule type.
This rule counts the number of LDs that decided that a signal is present in
the sensed channel and then compares that number with a decision threshold.
When the number of positive LDs is higher than the decision threshold then the
global decision is that a signal is present, otherwise that is absent. The analysis
of this data fusion method is given first by providing a theoretical formulation
which motivates the use of the counting rules in detriment of other data fusion
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methods. The behaviour of the counting rules is then observed when varying
its implicit parameters, such as the local probability of detection, false alarm
and the number of LDs in place.

To evaluate the performance of the counting rules based data fusion, two
performance evaluation metrics φ and ε were introduced. The counting rules
were then evaluated using these performance metrics, first in general without
considering the underlying LD model, then when considering the LD model
and finally when the signal duty cycle varies.

The case where the LDs are non-identical is considered, which then gives
rise for the motivation of using an Adaptable Counting Rule (ACR) mecha-
nism, which adapts the k-threshold based on the experienced conditions of the
LDs using the feedback when the CRN tries to access the sensed channel. The
proposed ACR mechanism is then further refined to be more adaptable, and
depend less on a-priori set thresholds. To measure the potential resources that
the CSS mechanism can identify, it was introduced the concept of Capacity
and False Capacity in the spectrum sensing context, and then an evaluation
of both capacities along the data fusion chain is given. The Capacity metric
measures the effect of the exposed node problem, while the False Capacity
metric measures the effect of the hidden node problem. In this evaluation it
was considered the correlation between the LDs, the number of LDs partici-
pating in the data fusion and the effect of the signal duty cycle. This study
gave insights on how the data fusion process can be improved, so to increase
the amount of perceived available resources in the sensed channel. Based on
these insights a Cluster based Adaptive Counting Rule is then proposed, on
which the LDs that experience similar signal conditions are grouped in clusters
and where the data fusion is done separately for each cluster. The proposed
clustering algorithm uses the correlation between the local decisions of the LDs
over time to select the cluster where each LD should go. It was observed, in
the case where there is only one signal source, that the proposed algorithm
was able to achieve the same level of performance in terms of Capacity and
False Capacity when compared to the perfect clustering algorithm where full
information about the conditions at each of the LDs was available at the fusion
center. In the case of multiple signal sources a generalized clustering algorithm
was proposed, but its evaluation was left for future work.
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Finally, it was shown why a NS mechanism is required for a CSS to work
properly in a multi-channel scenario. This was done by first extending the pro-
posed Capacity and False Capacity metrics to account for the case where mul-
tiple channels are being monitored. These metrics quantify not only the perfor-
mance of the proposed NS but also give a measure of the performance achiev-
able when using the optimum multi-channel and single-channel NS. These
optimal NS assume that there is complete information about the signal activ-
ity as well as information on if the LDs are within range of the signal sources
in each of the monitored channels. Then a centralized and a decentralized NS
mechanisms were proposed, and their performance compared to the optimal
NS, as well with the random NS, i.e. channel un-aware NS which has the same
performance as a round-robin based scheme. The proposed schemes are able
to work in the case where there is enough information and the case where there
is not yet enough information about the signal activity and the location of the
LDs in regards to the signal source. In the case where there is not enough infor-
mation the algorithms resort to the use of Single Channel Assignment (SCA),
while when they acquire enough information the assignment of a LD is done
preferentially to a channel that most likely the LD will experience as vacant.
The use of this later strategy, as shown in the performance comparison, al-
lows to reach a performance near the optimum NS. The proposed centralized
and decentralized NS algorithm can be combined in the CSS, so that in case
the CRN node acting as the central node withdraws from the CRN, then the
decentralized NS is activated and then CSS can proceed.

In conclusion, in this thesis was proposed a CSS mechanism, where the
focus was given in the properties and correctness of the distributed protocol
that enables it, the way on how the data fusion is performed and finally on
how the LDs should cooperate.

6.2 Outlook

Possible directions of this work, can be on how to combine the proposed
methodologies and algorithms to work together with knowledge databases,
both to update them as well as using their information to improve the per-
formance the proposed mechanism. Other future steps of this work should be
to study the effect of mobility in the information needed by the proposed NS
algorithms, as well as the effect of using a noisy reporting channel.

The proposed CSS mechanism should be integrated in an actual network,
so that it could be possible to study if there is added value for the network
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to be spectrum aware. An example could be an wifi network, where after the
CSS mechanism is integrated, it could be measured if there was an increase
on the performance of the network, both in terms of throughput as well as
interference reduction in the surrounding wifi networks.
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A
Appendix - Centralized Topology

Induction Proof

The theorem for the Centralized Topology which states the correctness is given
by the following:

Theorem 3. Let S be:

S ≡ (ν~cc)

(∏
i∈I

cl ./ sli

)
| CN |

∏
i∈I

SNi (A.1)

if |I| = n.

Then S satisfies the following:

1. S −→∗ S ′ where S ′ is resolved

2. for any S ′ where S −→∗ S ′ and S ′ resolved. ∃S ′′ such that S ′ −→+ S ′′,
S ′′ is resolved.

Proof. The proof of the theorem is accomplished by induction hypothesis in
the size of I.
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A.1 Base-Case

The purpose of the base case proof is to show that the network reaches after a
sequence of reduction steps a certain step denoted as the resolved state, which
if the network is properly constructed then according to Theorem 3 after a cycle
of reduction steps that same resolved state will be reached, and therefore proof
that the base case of the structure S reaches a resolved state and therefore is
correct.

The definition of resolved state in the centralized topology is given by,

Definition 7. S is resolved if S ≡ S ′ | cl [cc〈nCN , NS (c)〉] for some nCN and
c.

The first step of the proof is to resolve the S structure when |I| = 1. The
S structure in this case reduces as

S ≡ (ν~cc) (cl ./ sl)︸ ︷︷ ︸
SI

| CN | SN (A.2)

When the network is instatiated, the Central Node, CN , needs to send the
request to the Sensing Node, SN , regarding which channel should be sensed.
This is assumed to be the network initial state.

And the sequence of reductions follows,

SI | SN | CN −→∗ SI | SN | CN | cc〈nCN , NS(c)〉︸ ︷︷ ︸
Resolved State

(A.3)

In the following is shown the expanded version of the sequence of reductions.
So first is shown the computation of the reduction sequences from the initial
state until the resolved state.

SI | SN | CN ≡

SI | SN |

(∏
m∈M

Qm | T

)
| (νnCN) ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

−→

SI | SN

∏
m∈M

Qm4︸︷︷︸
No SN reports available

| T

 | CN ≡
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SI | SN |

(∏
m∈M

h〈KBU([])〉 | T

)
| CN ≡

SI | SN | CN |

∏
m∈M

h〈KBU([])︸ ︷︷ ︸
kbum

〉 | T

 ≡

SI | SN | CN |

(∏
m∈M

h〈kbum〉 | T1 | T2

)
≡

SI | SN | CN |

(∏
m∈M

h〈kbum〉 | CKBU([]) | T2

)
−→

SI | SN | CN | k〈kbu1 :: kbuM〉. | k(e).cc〈nCN , NS(e)〉 −→

SI | SN | CN | cc〈nCN , NS(kbu1 :: kbuM)〉︸ ︷︷ ︸
Resolved State

And so the network reaches the resolved state and from there on the network
is considered to be initialized. The purpose of this proof is to show that the
network reaches the same resolved state after a given number of iterations, as
stated in the Theorem 3.

SI | SN | CN | cc〈nCN , NS(kbu1 :: kbuM)︸ ︷︷ ︸
ns

〉 ≡

SI | (νnSN) ∗ P | R︸ ︷︷ ︸
SN

| CN | cc〈nCN , ns〉 ≡

SI | P | (νnSN) ∗ P | R︸ ︷︷ ︸
SN

| CN | cc〈nCN , ns〉 ≡

SI | P | SN | CN | cc〈nCN , ns〉 ≡
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SI | P1 | P2 | P3︸ ︷︷ ︸
P

| SN | CN | cc〈nCN , ns〉 ≡

SI | cc (λ (x, y) (x, y)) if x = nCN then

e〈y〉 | P2 | P3 | SN | CN | cc〈nCN , ns〉 −→

SI | e〈ns〉 | P2 | P3 | SN | CN ≡

SI | e〈ns〉 | e(a).f〈SS(a)〉 | f(b).cc〈nSN , b〉 | SN | CN −→

SI | f〈SS(ns)〉 | f(b).cc〈nSN , b〉 | SN | CN −→

SI | cc〈nSN , SS(ns)︸ ︷︷ ︸
x1

〉 | SN | CN ≡

SI | cc〈nSN , x1〉 | SN | (νnCN) ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

−→

SI | cc〈nSN , x1〉 | SN |

(∏
m∈M

Qm | T

)
| CN ≡

SI | cc〈nSN , x1〉 | SN |

(∏
m∈M

Qm1 | Qm2 | Qm3 +Qm4

)
| T | CN −→

Since the Central Node (CN) receives the reports from the Sensing Node (SN)
then the process Qm4 does not run.

SI | cc〈nSN , x1〉 | SN |

(∏
m∈M

Qm1 | Qm2 | Qm3

)
| T | CN ≡

SI | cc〈nSN , x1〉 | SN |

(∏
m∈M

Cm ([]) | Qm2 | Qm3

)
| T | CN −→
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SI | cc〈nSN , x1〉 | SN |

(
∏
m∈M

cc (λ (x, y) (x, y)) if x 6= nCN then Cm(y :: l)+

dm〈l〉 | Qm2 | Qm3) | T | CN −→

SI | SN |

∏
m∈M

dm〈(x1 :: xk)︸ ︷︷ ︸
ym

〉 | Qm2 | Qm3

 | T | CN ≡

SI | SN |

(∏
m∈M

dm〈ym〉 | dm(e).gm〈LDDF (e)〉 | Qm3

)
| T | CN −→

SI | SN |

(∏
m∈M

gm〈LDDF (ym)〉 | gm(i).h〈KBU(i)〉

)
| T | CN ≡

SI | SN |

∏
m∈M

h〈KBU(LDDF (ym))︸ ︷︷ ︸
kbum

〉

 | T | CN ≡

SI | SN |

(∏
m∈M

h〈kbum〉

)
| T | CN ≡

SI | SN |

(∏
m∈M

h〈kbum〉

)
| T1 | T2 | CN ≡

SI | SN |

(∏
m∈M

h〈kbum〉

)
| CKBU ([]) | T2 | CN −→

SI | SN | k〈kbu1 :: kbuM〉 | T2 | CN −→

SI | SN | k〈kbu1 :: kbuM〉 | k(e).cc〈nCN , NS(e)〉 | CN −→

SI | SN | cc〈nCN , NS(kbu1 :: kbuM)〉 | CN︸ ︷︷ ︸
Resolved State

As stated, the resolved state is achieved and therefore it is shown that after
the certain number of iterations the network S resolves to S ′
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A.2 N + 1 Case

Following the induction hypothesis it is assumed that when |I| = N , S reaches
the resolved state, and so to complete the proof it is shown what happens when
an extra SN is added to the network, i.e. the number of nodes in the network
is |I| = N + 1.

S ≡ (ν~cc)

(∏
i∈I

cl ./ sli

)
︸ ︷︷ ︸

SI

| CN |
∏
i∈I

SNi

The first step is to initialize the network until it reaches the resolved state,
and although that it follows the same steps as in the base case, the sequence
of reduction steps until the resolved state is reached are shown here.

SI | SN1 | SN2 | . . . | SNN−1 | SNN | SNN+1 | CN −→

S ′ | SN1 | SN2 | . . . | SNN−1 | SNN | SNN+1︸ ︷︷ ︸
SII

|

(∏
m∈M

Qm | T

)
|

| (νnCN) ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

≡

SII |

∏
m∈M

Q4m︸︷︷︸
No SN reports available

| T

 | CN ≡

SII |

∏
m∈M

h〈KBU([])︸ ︷︷ ︸
kbum

〉 | T

 | CN ≡

SII |

(∏
m∈M

h〈kbum〉 | T1 | T2

)
| CN ≡

SII |

(∏
m∈M

h〈kbum〉 | CKBU([]) | T2

)
| CN −→
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SII | k〈kbu1 :: kbuM〉. | k(e).cc〈nCN , NS(e)〉 | CN −→

SII | cc〈nCN , NS(kbu1 :: kbuM)〉 | CN︸ ︷︷ ︸
Resolved State

The network S reaches the resolved state and from here on the network is
assumed to be initialized. In this part of the proof, it is shown that even when
there are N + 1 Sensing Nodes (SNs) in the network, the network will reach
the resolved state after a finite number of reduction steps.

SII | cc〈nCN , NS(kbu1 :: kbuM)︸ ︷︷ ︸
ns

〉 | CN ≡

S ′ | SN1 | SN2 | . . . | SNN−1 | SNN | SNN+1 | cc〈nCN , ns〉 | CN −→

SIII is introduced to ease the proof, since the reduction sequences that happen
in SN1 are the same for the other N SNs, as shown in A.1.

SN1 | S ′ | SN2 | . . . | SNN−1 | SNN | SNN+1 | CN︸ ︷︷ ︸
SIII

| cc〈nCN , ns〉 ≡

SIII | ((νnSN,1) ∗ P | R)︸ ︷︷ ︸
SN1

| cc〈nCN , ns〉 −→

SIII | P1 | P2 | P3 | SN1 | cc〈nCN , ns〉 ≡

SIII | cc (λ (x, y) (x, y)) if x = nCN then e〈y〉
| P2 | P3 | SN1 | cc〈nCN , ns〉 −→

SIII | e〈ns〉 | P2 | P3 | SN1 ≡

SIII | e〈ns〉 | e(a).f〈SS(a)〉 | f(b).cc〈nSN1 , b〉 | SN1 −→

SIII | f〈SS(ns)〉 | f(b).cc〈nSN1 , b〉 | SN1 ≡

SIII | cc〈nSN1 , SS(ns)︸ ︷︷ ︸
x1

〉 | SN1 ≡

SI | (cc〈nSN1 , x1〉 | SN1) | (cc〈nSN2 , x2〉 | SN2) | . . . |
(cc〈nSNN

, xN〉 | SNN) | (cc〈nSNN+1
, xN+1〉 | SNN+1) | CN ≡

Now in this reduction step depending on when whether the N + 1 is bigger or
smaller than b(cc, cl), messages can be dropped or not.
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A.2.1 N + 1 < b(cc, cl)

Here is considered the case where the number of SNs is lower than b(cc, cl),
the capacity of the control channel at the cl location.

SI | (cc〈nSN1 , x1〉 | SN1) | . . . | (cc〈nSNN+1
, xN+1〉 | SNN+1)︸ ︷︷ ︸

SII

| CN ≡

SII | (νnCN) ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

−→

SII |

(∏
m∈M

Qm | T

)
| CN ≡

SII |

(∏
m∈M

Qm1 | Qm2 | Qm3 +Qm4

)
| T | CN −→

Since the CN receives the reports from the SNs then the process Qm4 does not
run.

SII |

(∏
m∈M

Qm1 | Qm2 | Qm3

)
| T | CN ≡

SII |

(∏
m∈M

Cm ([]) | Qm2 | Qm3

)
| T | CN −→

SII | (
∏
m∈M

cc (λ (x, y) (x, y)) if x 6= nCN then Cm(y :: l) + dm〈l〉 |

Qm2 | Qm3) | T | CN −→

SII |

(∏
m∈M

dm〈(x1 :: xk)〉 | Q2m | Q3m

)
| T | CN ≡
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SII |

(∏
m∈M

dm〈(x1 :: xk)〉 | dm(e).gm〈LDDF (e)〉 | Q3m

)
| T | CN −→

SII |

(∏
m∈M

gm〈LDDF (x1 :: xk)〉 | gm(i).h〈KBU(i)〉

)
| T | CN −→

SII |

(∏
m∈M

h〈KBU(LDDF (x1 :: xk))〉

)
| T | CN ≡

SII |

∏
m∈M

h〈KBU(LDDF (x1 :: xk))︸ ︷︷ ︸
kbum

〉

 | T1 | T2 | CN ≡

SII |

(∏
m∈M

h〈kbum〉

)
| T1 | T2 | CN ≡

SII |

(∏
m∈M

h〈kbum〉

)
| CKBU ([]) | T2 | CN −→

SII | k〈kbu1 :: kbuM〉 | T2 | CN ≡

SII | k〈kbu1 :: kbuM〉 | k(e).cc〈nCN , NS(e)〉 | CN −→

SII | cc〈nCN , NS(kbu1 :: kbuM)〉 | CN︸ ︷︷ ︸
Resolved State

−→

The network S when |I| = N + 1 and |I| < b(cc, cl), reaches the resolved
state, as stated in Theorem 3.
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A.2.2 N + 1 > b(cc, cl)

In this case the SNs will start reporting back to the CN through the cc, which
has limited capacity given by b(cc, cl), and therefore some of the SNs messages
will be dropped following the R−DROP reduction rule in Table 3.5.

SI | (cc〈nSN1 , x1〉 | SN1) | . . . | (cc〈nSNb
, xb〉 | SNb)︸ ︷︷ ︸

Keep

| (cc〈nSNb+1
, xb+1〉 | SNb+1) | . . . | (cc〈nSNN+1

, xN+1〉 | SNN+1)︸ ︷︷ ︸
Drop

| CN −→

SI | (cc〈nSN1 , x1〉 | SN1) | . . . | (cc〈nSNb
, xb〉 | SNb)︸ ︷︷ ︸

SIV

| SNb+1 | . . . | SNN | SNN+1︸ ︷︷ ︸
SV

| CN −→

SI | SIV | SV︸ ︷︷ ︸
SII

| CN ≡

SII | ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

−→

SII |

(∏
m∈M

Qm | T

)
| CN ≡

SII |

(∏
m∈M

Qm1 | Qm2 | Qm3 +Qm4

)
| T | CN −→

Since the CN receives the reports from the SNs then the process Qm4 does not
run.

SII |

(∏
m∈M

Qm1 | Qm2 | Qm3

)
| T | CN ≡
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SII |

(∏
m∈M

Cm ([]) | Qm2 | Qm3

)
| T | CN −→

SII | (
∏
m∈M

cc (λ (x, y) (x, y)) if x 6= nCN then Cm(y :: l) + dm〈l〉 |

Q2m | Q3m) | T | CN −→

SII |

(∏
m∈M

dm〈(x1 :: xk)〉) | Q2m | Q3m

)
| T | CN ≡

SII |

(∏
m∈M

dm〈(x1 :: xk)〉) | dm(e).gm〈LDDF (e)〉 | Q3m

)
| T | CN −→

SII |

(∏
m∈M

gm〈LDDF (x1 :: xk)〉 | gm(i).h〈KBU(i)〉

)
| T | CN −→

SII |

∏
m∈M

h〈KBU(LDDF (x1 :: xk))︸ ︷︷ ︸
kbum

〉

 | T | CN ≡
SII |

(∏
m∈M

h〈kbum〉

)
| T1 | T2 | CN ≡

SII |

(∏
m∈M

h〈kbum〉

)
| CKBU ([]) | T2 | CN ≡

SII |

(∏
m∈M

h〈kbum〉

)
| h(b).CKBU(b :: l) + k〈l〉 | T2 | CN ≡

SII | k〈kbu1 :: kbuM〉 | T2 | CN ≡

SII | k〈kbu1 :: kbuM〉 | k(e).cc〈nCN , NS(e)〉 | CN −→

SII | cc〈nCN , NS(kbu1 :: kbuM)〉 | CN︸ ︷︷ ︸
Resolved State

−→

So when |I| = N + 1 and |I| > b(cc, cl) the network S still reaches the
resolved state, as stated in Theorem 3.
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Induction Proof

The theorem for the Decentralized Topology which states the correctness is
given by the following:

Theorem 4. Let S be:

S ≡ (ν~cc)

( ∏
i,j∈I,i 6=j

sli ./ slj

)
|
∏
i∈I

SNi (B.1)

if |I| = n.

Then S satisfies the following:

1. S −→∗ S ′ where S ′ is resolved

2. for any S ′ where S −→∗ S ′ and S ′ resolved. ∃S ′′ such that S ′ −→+ S ′′,
S ′′ is resolved.

Proof. The proof of the theorem is accomplished by induction hypothesis in
the size of I.
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B.1 Base-Case

B.1.1 |I| = 1

Again, the procedure is to perform induction in n = |I|. The definition of
resolved state in the decentralized topology is given by,

Definition 8. S is resolved if S ≡ S ′ |
∏

i∈I sli [wi〈NS (c)〉] for some c.

The first step is to resolve S when |I| = 1, where there is only one node
and therefore there is no network. In this case the node should still work, i.e.
should still resolve.

The S structure in this case is defined as,

S ≡ (ν~cc) (sl1)︸ ︷︷ ︸
SI

| SN1

When the network is instatiated, none of the SNs knows which channel to
sense. Therefore there is an initialization process to be done, which we will
consider next.

So first we compute the steps from the initial state until the resolved state.

SI | SN1 ≡

SI | νnSN
∗

(∏
m∈M

Qm | T | P

)
| RSN −→

SI |

(∏
m∈M

Qm | T | P

)
| νnSN

∗

(∏
m∈M

Qm | T | P

)
| RSN︸ ︷︷ ︸

SN1

≡

SI |

(∏
m∈M

Qm

)
| T | P | νnSN

∗

(∏
m∈M

Qm | T | P

)
| RSN︸ ︷︷ ︸

SN1

≡

SI |

(∏
m∈M

Qm

)
| T | P | SN1 ≡
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SI |

(∏
m∈M

Qm1 | Qm2 | Qm3 +Qm4

)
| T | P | SN1 −→

SI |

(∏
m∈M

Qm4

)
| T | P | SN1 ≡

SI |

(∏
m∈M

h〈KBU ([])〉

)
| T | P | SN1 ≡

SI |

(∏
m∈M

h〈KBU ([])〉

)
| T1 | T2 | P | SN1 ≡

SI |

∏
m∈M

h〈KBU ([])︸ ︷︷ ︸
kbum

〉

 | T1 | T2 | P | SN1 ≡

SI |

(∏
m∈M

h〈kbum〉

)
| (CKBU ([])) | T2 | P | SN1 ≡

SI |

(∏
m∈M

h〈kbum〉

)
| h(b).CKBU (b, y1 :: yM)

+k〈y1 :: yM〉 | T2 | P | SN1 −→+

SI | k〈kbu1 :: kbuM〉 | k(e).w〈NS (e)〉 | P | SN1 −→

SI | w〈NS (kbu1 :: kbuM)︸ ︷︷ ︸
ss1

〉 | P | SN1

︸ ︷︷ ︸
ResolvedState

≡

SI | w〈ss1〉 | P1 | P2 | P3 | SN1 ≡

SI | w〈ss1〉 | w(a).e〈a〉 | P2 | P3 | SN1 −→
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SI | e〈ss1〉 | e(a).f〈SS (a)〉 | P3 | SN1 −→

SI | f〈SS (ss1)〉 | P3 | SN1 −→

SI | f〈SS (ss1)〉 | f(b).v〈b〉.cc〈(nSN , b)〉 | SN1 −→

SI | v〈SS (ss1)〉.cc〈(nSN , SS (ss1))〉 | SN1 ≡

SI | v〈SS (ss1)〉.cc〈(nSN , SS (ss1))〉 |

νnSN
∗

(∏
m∈M

Qm | T | P

)
| RSN︸ ︷︷ ︸

SN1

−→

SI | v〈SS (ss1)〉.cc〈(nSN , SS (ss1))〉 |

(∏
m∈M

Qm

)
| T | P | SN1 ≡

SI | v〈SS (ss1)〉.cc〈(nSN , SS (ss1))〉 |(∏
m∈M

Qm1 | Qm2 | Qm3 +Qm4

)
| T | P | SN1 −→

SI | v〈SS (ss1)〉.cc〈(nSN , SS (ss1))〉 |(∏
m∈M

Qm1 | Qm2 | Qm3

)
| T | P | SN1 ≡

SI | v〈SS (ss1)〉.cc〈(nSN , SS (ss1))〉 |

(
∏
m∈M

v(b).Cm (b, x1 :: xk) + cc (λ (x, y) (x, y)) if x = nSN then

Cm (y, x1 :: xk) + dm〈(x1 :: xk)〉 | Qm2 | Qm3) | T | P | SN1 −→

SI | v〈SS (ss1)〉.cc〈(nSN , SS (ss1))〉 |

(
∏
m∈M

cc (λ (x, y) (x, y)) if x = nSN then

Cm (y, x1 :: xk) + dm〈(x1 :: xk)〉 | Qm2 | Qm3) | T | P | SN1 −→
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SI | cc〈(nSN , SS (ss1))〉 | (
∏
m∈M

cc (λ (x, y) (x, y)) if x = nSN then

Cm (y, x1 :: xk) + dm〈(x1 :: xk)〉 | Qm2 | Qm3) | T | P | SN1 −→

SI | (
∏
m∈M

dm〈(ss1 :: ssk)〉 | Qm2 | Qm3) | T | P | SN1 ≡

SI | (
∏
m∈M

dm〈ss1 :: ssk〉 | d(e).g〈LDDF (e)〉 | Qm3) | T | P | SN1 −→+

SI | (
∏
m∈M

dm〈ss1 :: ssk〉 | dm(e).gm〈LDDF (e)〉 | Qm3) |

T | P | SN1 −→

SI | (
∏
m∈M

dm(e).gm〈LDDF (ss1 :: ssk)〉 | Qm3) |

T | P | SN1 ≡

SI | (
∏
m∈M

dm(e).gm〈LDDF (ss1 :: ssk)〉 | g(i).h〈KBU (i)〉) |

T | P | SN1 −→

SI |
∏
m∈M

h〈KBU(LDDF (ss1 :: ssk))︸ ︷︷ ︸
kbum

〉 | T | P | SN1 ≡

SI |
∏
m∈M

h〈kbum〉 | T1 | T2 | P | SN1 ≡

SI |
∏
m∈M

h〈kbum〉 | (CKBU ([])) | T2 | P | SN1 ≡

SI |
∏
m∈M

h〈kbum〉 | h(b).CKBU (b, y1 :: yM)

+k〈y1 :: yM〉 | T2 | P | SN1 −→+

SI | k〈kbu1 :: kbuM〉 | T2 | P | SN1 ≡

SI | k〈kbu1 :: kbuM〉 | k(e).w〈NS (e)〉 | P | SN1 −→

SI | w〈NS (kbu1 :: kbuM)〉 | P | SN1︸ ︷︷ ︸
ResolvedState
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B.1.2 |I| = 2

The second step is to show that S resolves when |I| = 2, where there are two
nodes and therefore a network can be formed.

The S structure in this case reduces as

S ≡ (ν~cc) (sl1 ./ sl2)︸ ︷︷ ︸
SI

| SN1 | SN2 (B.2)

And the sequence of reductions follows,

SI | SN1 | SN2 −→∗ SII | w1〈NS (c)〉 | P 1 | w2〈NS (c)〉 | P 2︸ ︷︷ ︸
ResolvedState

(B.3)

In the following is shown the expanded version of the sequence of reductions.
When the network is instatiated, none of the SNs knows which channel to sense.
Therefore there is an initialization process to be done. So first is shown the
computation of the reduction sequences from the initial state until the resolved
state.

SI | SN1 | SN2 ≡

SI | νnSN1
∗

(∏
m∈M

Q1
m | T 1 | P 1

)
| R1

SN︸ ︷︷ ︸
SN1

|

νnSN2
∗

(∏
m∈M

Q2
m | T 2 | P 2

)
| R2

SN︸ ︷︷ ︸
SN2

−→

SI |

(∏
m∈M

Q1
m

)
| T 1 | P 1 | SN1 |

(∏
m∈M

Q2
m

)
| T 2 | P 2 | SN2 ≡

SI | SN1 | SN2︸ ︷︷ ︸
SII

|

(∏
m∈M

Q1
m

)
| T 1 | P 1 |

(∏
m∈M

Q2
m

)
| T 2 | P 2 ≡
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SII |

(∏
m∈M

Q1
m1 | Q1

m2 | Q1
m3 +Q1

m4

)
| T 1 | P 1 |(∏

m∈M

Q2
m1 | Q2

m2 | Q2
m3 +Q2

m4

)
| T 2 | P 2 −→

SII |

(∏
m∈M

Q1
m4

)
| T 1 | P 1 |

(∏
m∈M

Q2
m4

)
| T 2 | P 2 −→

SII |

(∏
m∈M

h1〈KBU ([])〉

)
| T 1 | P 1 |

(∏
m∈M

h2〈CE (<>)〉

)
| T 2 | P 2 ≡

SII |

∏
m∈M

h1〈KBU ([])︸ ︷︷ ︸
kbu1m

〉

 | T 1
1 | T 1

2 | P 1 |

∏
m∈M

h2〈KBU (<>)︸ ︷︷ ︸
kbu2m

〉

 | T 2
1 | T 2

2 | P 2 ≡

SII |

(∏
m∈M

h1〈kbu1
m〉

)
| T 1

1 | T 1
2 | P 1 |

(∏
m∈M

h2〈kbu2
m〉

)
| T 2

1 | T 2
2 | P 2 ≡

SII |

(∏
m∈M

h1〈kbu1
m〉

)
| C1

KBU ([]) | T 1
2 | P 1 |(∏

m∈M

h2〈kbu2
m〉

)
| C2

KBU ([]) | T 2
2 | P 2 ≡

SII |

(∏
m∈M

h1〈kbu1
m〉

)
| h1(b).C1

KBU (b, y1 :: yM)

+k1〈y1 :: yM〉 | T 1
2 | P 1 |(∏

m∈M

h2〈kbu2
m〉

)
| h2(b).C2

KBU (b, y1 :: yM)

+k2〈y1 :: yM〉 | T 2
2 | P 2 −→+
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SII | k1〈kbu1
1 :: kbu1

M〉 | T 1
2 | P 1 | k2〈kbu2

1 :: kbu2
M〉 | T 2

2 | P 2 ≡

SII | k1〈kbu1
1 :: kbu1

M〉 | k1(e).w1〈NS (e)〉 | P 1

| k2〈kbu2
1 :: kbu2

M〉 | k2(e).w2〈NS (e)〉 | P 2 −→+

SII | w1〈NS
(
kbu1

1 :: kbu1
M

)
〉 | P 1 | w2〈NS

(
kbu2

1 :: kbu2
M

)
〉 | P 2︸ ︷︷ ︸

ResolvedState

−→+

The second item of the theorem states that when the network achieves the
resolved state, it can achieve it again after a number of reduction steps, as
follows,

SII | w1〈NS (c)〉 | P 1 | w2〈NS (c)〉 | P 2︸ ︷︷ ︸
ResolvedState

−→+ (B.4)

SII | w1〈NS (c)〉 | P 1 | w2〈NS (c)〉 | P 2︸ ︷︷ ︸
ResolvedState

(B.5)

This can be proved by the following sequence of reductions,

SII | w1〈NS
(
kbu1

1 :: kbu1
M

)︸ ︷︷ ︸
ns1

〉 | P 1 | w2〈NS
(
kbu2

1 :: kbu2
M

)︸ ︷︷ ︸
ns2

〉 | P 2 ≡

SII | w1〈ns1〉 | P 1 | w2〈ns2〉 | P 2 ≡

SII | w1〈ns1〉 | P 1
1 | P 1

2 | P 1
3 | w2〈ns2〉 | P 2

1 | P 2
2 | P 2

3 ≡

SII | w1〈ns1〉 | w1(a).e1〈a〉 | P 1
2 | P 1

3 | w2〈ns2〉 |
w2(a).e2〈a〉 | P 2

2 | P 2
3 −→

SII | e1〈ns1〉 | P 1
2 | P 1

3 | e2〈ns2〉 | P 2
2 | P 2

3 ≡

SII | e1〈ns1〉 | e1(a).f 1〈SS (a)〉 | P 1
3 | e2〈ns2〉 | e2(a).f 2〈SS (a)〉 | P 2

3 ≡

SII | e1〈ns1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉
| e2〈ns2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉 ≡
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SI | e1〈ns1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

| νnSN1
∗

(∏
m∈M

Q1
m | T 1 | P 1

)
| R1

SN︸ ︷︷ ︸
SN1

| e2〈ns2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

| νnSN2
∗

(∏
m∈M

Q2
m | T 2 | P 2

)
| R2

SN︸ ︷︷ ︸
SN2

−→

SI | e1〈ns1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

|

(∏
m∈M

Q1
m | T 1 | P 1

)
| SN1

| e2〈ns2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

|

(∏
m∈M

Q2
m | T 2 | P 2

)
| SN2 ≡

SII | e1〈ns1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

|

(∏
m∈M

Q1
m

)
| T 1 | P 1

| e2〈ns2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

|

(∏
m∈M

Q2
m

)
| T 2 | P 2 ≡

SII | e1〈ns1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

|

(∏
m∈M

Q1
m1 | Q1

m2 | Q1
m3 +Q1

m4

)
| T 1 | P 1

| e2〈ns2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

|

(∏
m∈M

Q2
m1 | Q2

m2 | Q2
m3 +Q2

m4

)
| T 2 | P 2 ≡
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SII | e1〈ns1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

| (
∏
m∈M

v1(b).Cm (b, x1 :: xk) + cc (λ (x, y) (x, y)) if x = nSN1 then

Cm (y, x1 :: xk) + d1〈(x1 :: xk)〉 | Q1
m2 | Q1

m3 +Q1
m4) | T 1 | P 1

| e2〈ns2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

| (
∏
m∈M

v2(b).Cm (b, x1 :: xk) + cc (λ (x, y) (x, y)) if x = nSN2 then

Cm (y, x1 :: xk) + d2〈(x1 :: xk)〉 | Q2
m2 | Q2

m3 +Q2
m4) | T 2 | P 2 −→+

SII | (
∏
m∈M

d1〈

x1 :: xk︸ ︷︷ ︸
y1

〉 | Q1
m2 | Q1

m3) | T 1 | P 1

| (
∏
m∈M

d2〈

x1 :: xk︸ ︷︷ ︸
y2

〉 | Q2
m2 | Q2

m3) | T 2 | P 2 ≡

SII | (
∏
m∈M

d1〈y1〉 | d1(e).g1〈LDDF (e)〉 | Q1
m3) | T 1 | P 1

| (
∏
m∈M

d2〈y2〉 | d2(e).g2〈LDDF (e)〉 | Q2
m3) | T 2 | P 2 −→

SII | (
∏
m∈M

g1〈LDDF (y1)〉 | Q1
m3) | T 1 | P 1

| (
∏
m∈M

g2〈LDDF (y2)〉 | Q2
m3) | T 2 | P 2 ≡

SII | (
∏
m∈M

g1〈LDDF (y1)〉 | g1(i).h1〈KBU (i)〉) | T 1 | P 1

| (
∏
m∈M

g2〈LDDF (y2)〉 | g2(i).h2〈KBU (i)〉) | T 2 | P 2 −→

SII | (
∏
m∈M

h1〈KBU (LDDF (y1))︸ ︷︷ ︸〉kbu1m) | T 1 | P 1

| (
∏
m∈M

h2〈KBU (LDDF (y2))︸ ︷︷ ︸
kbu2m

〉) | T 2 | P 2 ≡

168



B.1. Base-Case 169

SII | (
∏
m∈M

h1〈kbu1
m〉) | T 1

1 | T 1
2 | P 1

| (
∏
m∈M

h2〈kbu2
m〉) | T 2

1 | T 2
2 | P 2 ≡

SII | (
∏
m∈M

h1〈kbu1
m〉) | C1

KBU([]) | T 1
2 | P 1

| (
∏
m∈M

h2〈kbu2
m〉) | C2

KBU([]) | T 2
2 | P 2 ≡

SII | (
∏
m∈M

h1〈kbu1
m〉) | h1(b).CKBU (b, y1 :: yM)

+k1〈y1 :: yM〉 | T 1
2 | P 1

| (
∏
m∈M

h2〈kbu2
m〉) | h2(b).CKBU (b, y1 :: yM)

+k2〈y1 :: yM〉 | T 2
2 | P 2 −→+

SII | k1〈kbu1
1 :: kbu1

M〉 | T 1
2 | P 1 | k2〈kbu2

1 :: kbu2
M〉 | T 2

2 | P 2 ≡

SII | k1〈kbu1
1 :: kbu1

M︸ ︷︷ ︸
z1

〉 | k1(e).w1〈NS (e)〉 | P 1 |

k2〈kbu2
1 :: kbu2

Mz2︸ ︷︷ ︸〉 | k2(e).w2〈NS (e)〉 | P 2 ≡

SII | k1〈z1〉 | k1(e).w1〈NS (e)〉 |
P 1 | k2〈z2〉 | k2(e).w2〈NS (e)〉 | P 2 −→+

SII | w1〈NS (z1)〉 | P 1 | w2〈NS (z2)〉 | P 2 ≡

SI | w1〈NS (z1)〉 | P 1 | SN1 | w2〈NS (z2)〉 | P 2 | SN2︸ ︷︷ ︸
Resolved State

The resolved state was achieved and therefore shown that after the certain
number of iterations the network S resolves to S ′.
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B.2 N + 1 Case

Following the induction hypothesis it can be assumed that the case where
|I| = N , S reaches the resolved state, and so to complete the proof the final
step is to show what happens when an extra Sensing Node (SN) is added to
the network, i.e. the number of nodes in the network is |I| = N + 1. The S
structure in this case is defined as,

S ≡ (ν~cc)

( ∏
i,j∈I,i 6=j

sli ./ slj

)
|
∏
i∈I

SNi

The flow of the proof is the same as in the base case, i.e. first show that
the first item of the proof occurs and finish the proof be showing that the
second item also occurs. When the network is instatiated, none of the Sensing
Nodes (SNs) knows which channel to sense. Therefore there is an initialization
process to be done, which is depicted next. So first are computed the steps from
the initial state until the resolved state. By induction hypothesis is assumed
that the case |I| = N is resolved, then here for illustration purposes it is shown
explicitly that the reduction sequence of two sensing nodes while the reduction
of the remaining sensing nodes is implicit.

(ν~cc)

( ∏
i,j∈I,i 6=j

sli ./ slj

)
|
∏
i∈I

SNi ≡

(ν~cc)

( ∏
i,j∈I,i 6=j

sli ./ slj

)
|
N+1∏
i=1

SNi ≡

(ν~cc)

( ∏
i,j∈I,i 6=j

sli ./ slj

)
| SN1 | SN2 |

N+1∏
i=3

SNi ≡

(ν~cc)

( ∏
i,j∈I,i 6=j

sli ./ slj

)
|
N+1∏
i=3

SNi︸ ︷︷ ︸
SI

| SN1 | SN2 ≡
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SI | νnSN1
∗

(∏
m∈M

Q1
m | T 1 | P 1

)
| R1

SN︸ ︷︷ ︸
SN1

|

νnSN2
∗

(∏
m∈M

Q2
m | T 2 | P 2

)
| R2

SN︸ ︷︷ ︸
SN2

−→

SI |

(∏
m∈M

Q1
m

)
| T 1 | P 1 | SN1 |

(∏
m∈M

Q2
m

)
| T 2 | P 2 | SN2 ≡

SI | SN1 | SN2︸ ︷︷ ︸
SII

|

(∏
m∈M

Q1
m

)
| T 1 | P 1 |

(∏
m∈M

Q2
m

)
| T 2 | P 2 ≡

SII |

(∏
m∈M

Q1
m1 | Q1

m2 | Q1
m3 +Q1

m4

)
| T 1 | P 1 |(∏

m∈M

Q2
m1 | Q2

m2 | Q2
m3 +Q2

m4

)
| T 2 | P 2 −→

SII |

(∏
m∈M

Q1
m4

)
| T 1 | P 1 |

(∏
m∈M

Q2
m4

)
| T 2 | P 2 −→

SII |

(∏
m∈M

h1〈KBU ([])〉

)
| T 1 | P 1 |

(∏
m∈M

h2〈KBU ([])〉

)
| T 2 | P 2 ≡

SII |

∏
m∈M

h1〈KBU ([])︸ ︷︷ ︸
b1m

〉

 | T 1
1 | T 1

2 | P 1 |

∏
m∈M

h2〈KBU ([])︸ ︷︷ ︸
b2m

〉

 | T 2
1 | T 2

2 | P 2 ≡
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SII |

(∏
m∈M

h1〈b1
m〉

)
| T 1

1 | T 1
2 | P 1 |

(∏
m∈M

h2〈b2
m〉

)
| T 2

1 | T 2
2 | P 2 ≡

SII |

(∏
m∈M

h1〈b1
m〉

)
| C1

KBU ([]) | T 1
2 | P 1 |(∏

m∈M

h2〈b2
m〉

)
| C2

KBU ([]) | T 2
2 | P 2 ≡

SII |

(∏
m∈M

h1〈b1
m〉

)
| h1(b).C1

KBU (b, y1 :: yM)

+k1〈y1 :: yM〉 | T 1
2 | P 1 |(∏

m∈M

h2〈b2
m〉

)
| h2(b).C2

KBU (b, y1 :: yM)

+k2〈y1 :: yM〉 | T 2
2 | P 2 −→+

SII | k1〈y1 :: yM〉 | T 1
2 | P 1 | k2〈y1 :: yM〉 | T 2

2 | P 2 ≡

SII | k1〈y1 :: yM〉 | k1(e).w〈NS (e)〉 | P 1 |
k2〈y1 :: yM〉 | k2(e).w〈NS (e)〉 | P 2 −→+

SII | w〈NS (y1 :: yM)〉 | P 1 | w〈NS (y1 :: yM)〉 | P 2 −→+

SII | w〈NS (y1 :: yM)︸ ︷︷ ︸
ss1

〉 | P 1 | w〈NS (y1 :: yM)︸ ︷︷ ︸
ss2

〉 | P 2 ≡

SII | w〈ss1〉 | P 1 | w〈ss2〉 | P 2 ≡︸ ︷︷ ︸
ResolvedState

So the network reached the resolved state. In the next step is shown that
through a sequence of reductions steps the network tends to the same resolved
state.

SII | w〈ss1〉 | P 1
1 | P 1

2 | P 1
3 | w〈ss2〉 | P 2

1 | P 2
2 | P 2

3 ≡
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SII | w〈ss1〉 | w1(a).e1〈a〉 | P 1
2 | P 1

3 | w〈ss2〉 || w2(a).e2〈a〉 | P 2
2 | P 2

3 −→

SII | e1〈ss1〉 | P 1
2 | P 1

3 | e2〈ss2〉 | P 2
2 | P 2

3 ≡

SII | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | P 1
3 | e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | P 2

3 ≡

SII | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉
| e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉 ≡

SI | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

| νnSN1
∗

(∏
m∈M

Q1
m | T 1 | P 1

)
| R1

SN︸ ︷︷ ︸
SN1

| e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

| νnSN2
∗

(∏
m∈M

Q2
m | T 2 | P 2

)
| R2

SN︸ ︷︷ ︸
SN2

−→

B.2.1 N + 1 < b(cc, sli)

Here is considered the case where the number of SNs is lower than b(cc, sli),
the capacity of the control channel at the sli location.

SI | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

|

(∏
m∈M

Q1
m | T 1 | P 1

)
| SN1

| e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

|

(∏
m∈M

Q2
m | T 2 | P 2

)
| SN2 ≡
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SII | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

|

(∏
m∈M

Q1
m

)
| T 1 | P 1

| e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

|

(∏
m∈M

Q2
m

)
| T 2 | P 2 ≡

SII | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

|

(∏
m∈M

Q1
m1 | Q1

m2 | Q1
m3 +Q1

m4

)
| T 1 | P 1

| e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

|

(∏
m∈M

Q2
m1 | Q2

m2 | Q2
m3 +Q2

m4

)
| T 2 | P 2 ≡

SII | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

| (
∏
m∈M

v1(b).Cm (b, x1 :: xk) + cc (λ (x, y) (x, y)) if x = nSN1 then

Cm (y, x1 :: xk) + d1〈(x1 :: xk)〉 | Q1
m2 | Q1

m3 +Q1
m4) | T 1 | P 1

| e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

| (
∏
m∈M

v2(b).Cm (b, x1 :: xk) + cc (λ (x, y) (x, y)) if x = nSN2 then

Cm (y, x1 :: xk) + d2〈(x1 :: xk)〉 | Q2
m2 | Q2

m3 +Q2
m4) | T 2 | P 2 −→+

SII | (
∏
m∈M

d1〈

x1 :: xk︸ ︷︷ ︸
y1

〉 | Q1
m2 | Q1

m3) | T 1 | P 1

| (
∏
m∈M

d2〈

x1 :: xk︸ ︷︷ ︸
y2

〉 | Q2
m2 | Q2

m3) | T 2 | P 2 ≡

SII | (
∏
m∈M

d1〈y1〉 | d1(e).g1〈LDDF (e)〉 | Q1
m3) | T 1 | P 1

| (
∏
m∈M

d2〈y2〉 | d2(e).g2〈LDDF (e)〉 | Q2
m3) | T 2 | P 2 −→
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SII | (
∏
m∈M

g1〈LDDF (y1)〉 | Q1
m3) | T 1 | P 1

| (
∏
m∈M

g2〈LDDF (y2)〉 | Q2
m3) | T 2 | P 2 ≡

SII | (
∏
m∈M

g1〈LDDF (y1)〉 | g1(i).h1〈KBU (i)〉) | T 1 | P 1

| (
∏
m∈M

g2〈LDDF (y2)〉 | g2(i).h2〈KBU (i)〉) | T 2 | P 2 −→

SII | (
∏
m∈M

h1〈KBU (LDDF (y1))〉) | T 1 | P 1

| (
∏
m∈M

h2〈KBU (LDDF (y2))〉) | T 2 | P 2 ≡

SII | (
∏
m∈M

h1〈KBU (LDDF (y1))〉) | T 1
1 | T 1

2 | P 1

| (
∏
m∈M

h2〈KBU (LDDF (y2))〉) | T 2
1 | T 2

2 | P 2 ≡

SII | (
∏
m∈M

h1〈KBU (LDDF (y1))〉) | C1
KBU([]) | T 1

2 | P 1

| (
∏
m∈M

h2〈KBU (LDDF (y2))〉) | C2
KBU([]) | T 2

2 | P 2 ≡

SII | (
∏
m∈M

h1〈KBU (LDDF (y1))〉) | h1(b).CKBU (b, y1 :: yM)

+k1〈y1 :: yM〉 | T 1
2 | P 1

| (
∏
m∈M

h2〈KBU (LDDF (y2))〉) | h2(b).CKBU (b, y1 :: yM)

+k2〈y1 :: yM〉 | T 2
2 | P 2 −→+

SII | k1〈y1 :: yM〉 | T 1
2 | P 1 | k2〈y1 :: yM〉 | T 2

2 | P 2 ≡

SII | k1〈y1 :: yM︸ ︷︷ ︸
z1

〉 | k1(e).w1〈NS (e)〉 | P 1 |

k2〈y1 :: yMz2︸ ︷︷ ︸〉 | k2(e).w2〈NS (e)〉 | P 2 ≡
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SII | k1〈z1〉 | k1(e).w1〈NS (e)〉 | P 1 |
k2〈z2〉 | k2(e).w2〈NS (e)〉 | P 2 −→+

SII | w1〈NS (z1)〉 | P 1 | w2〈NS (z2)〉 | P 2 ≡

SI | w1〈NS (z1)〉 | P 1 | SN1 | w2〈NS (z2)〉 | P 2 | SN2︸ ︷︷ ︸
Resolved State

It was shown that the network S resolves to S ′ after the certain number of
reduction steps.

B.2.2 N + 1 > b(cc, sli)

In this case when the SNs start reporting to the other SNs through the cc,
they overcome the channel capacity which is given by b(cc, sli), and therefore
some of the SNs messages will be dropped following the R−DROP reduction
rule in Table 3.5.

SI | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

|

(∏
m∈M

Q1
m | T 1 | P 1

)
| SN1

| e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

|

(∏
m∈M

Q2
m | T 2 | P 2

)
| SN2 ≡

SII | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

|

(∏
m∈M

Q1
m

)
| T 1 | P 1

| e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

|

(∏
m∈M

Q2
m

)
| T 2 | P 2 ≡
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SII | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

|

(∏
m∈M

Q1
m1 | Q1

m2 | Q1
m3 +Q1

m4

)
| T 1 | P 1

| e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

|

(∏
m∈M

Q2
m1 | Q2

m2 | Q2
m3 +Q2

m4

)
| T 2 | P 2 ≡

SII | e1〈ss1〉 | e1(a).f 1〈SS (a)〉 | f 1(b).v1〈b〉.cc〈(nSN1 , b)〉

| (
∏
m∈M

v1(b).Cm (b, x1 :: xk) + cc (λ (x, y) (x, y)) if x = nSN1 then

Cm (y, x1 :: xk) + d1〈(x1 :: xk)〉 | Q1
m2 | Q1

m3 +Q1
m4) | T 1 | P 1

| e2〈ss2〉 | e2(a).f 2〈SS (a)〉 | f 2(b).v2〈b〉.cc〈(nSN2 , b)〉

| (
∏
m∈M

v2(b).Cm (b, x1 :: xk) + cc (λ (x, y) (x, y)) if x = nSN2 then

Collectm (y, x1 :: xk) + d2〈(x1 :: xk)〉 | Q2
m2 | Q2

m3 +Q2
m4) | T 2 | P 2 −→+

In this sequence of reductions the SNs all messages above the channel capacity
b(cc, sli) are discarded.

SII | (
∏
m∈M

d1〈

x1 :: xk︸ ︷︷ ︸
y1

〉 | Q1
m2 | Q1

m3) | T 1 | P 1

| (
∏
m∈M

d2〈

x1 :: xk︸ ︷︷ ︸
y2

〉 | Q2
m2 | Q2

m3) | T 2 | P 2 ≡

SII | (
∏
m∈M

d1〈y1〉 | d1(e).g1〈LDDF (e)〉 | Q1
m3) | T 1 | P 1

| (
∏
m∈M

d2〈y2〉 | d2(e).g2〈LDDF (e)〉 | Q2
m3) | T 2 | P 2 −→

SII | (
∏
m∈M

g1〈LDDF (y1)〉 | Q1
m3) | T 1 | P 1

| (
∏
m∈M

g2〈LDDF (y2)〉 | Q2
m3) | T 2 | P 2 ≡
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SII | (
∏
m∈M

g1〈LDDF (y1)〉 | g1(i).h1〈KBU (i)〉) | T 1 | P 1

| (
∏
m∈M

g2〈LDDF (y2)〉 | g2(i).h2〈KBU (i)〉) | T 2 | P 2 −→

SII | (
∏
m∈M

h1〈KBU (LDDF (y1))〉) | T 1 | P 1

| (
∏
m∈M

h2〈KBU (LDDF (y2))〉) | T 2 | P 2 ≡

SII | (
∏
m∈M

h1〈KBU (LDDF (y1))〉) | T 1
1 | T 1

2 | P 1

| (
∏
m∈M

h2〈KBU (LDDF (y2))〉) | T 2
1 | T 2

2 | P 2 ≡

SII | (
∏
m∈M

h1〈KBU (LDDF (y1))〉) | C1
KBU([]) | T 1

2 | P 1

| (
∏
m∈M

h2〈KBU (LDDF (y2))〉) | C2
KBU([]) | T 2

2 | P 2 ≡

SII | (
∏
m∈M

h1〈KBU (LDDF (y1))〉) | h1(b).C1
KBU (b, y1 :: yM)

+k1〈y1 :: yM〉 | T 1
2 | P 1

| (
∏
m∈M

h2〈KBU (LDDF (y2))〉) | h2(b).C2
KBU (b, y1 :: yM)

+k2〈y1 :: yM〉 | T 2
2 | P 2 −→+

SII | k1〈y1 :: yM〉 | T 1
2 | P 1 | k2〈y1 :: yM〉 | T 2

2 | P 2 ≡

SII | k1〈y1 :: yM︸ ︷︷ ︸
z1

〉 | k1(e).w1〈NS (e)〉 | P 1

| k2〈y1 :: yMz2︸ ︷︷ ︸〉 | k2(e).w2〈NS (e)〉 | P 2 ≡

SII | k1〈z1〉 | k1(e).w1〈NS (e)〉 | P 1

| k2〈z2〉 | k2(e).w2〈NS (e)〉 | P 2 −→+
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SII | w1〈NS (z1)〉 | P 1 | w2〈NS (z2)〉 | P 2 ≡

SI | w1〈NS (z1)〉 | P 1 | SN1 | w2〈NS (z2)〉 | P 2 | SN2︸ ︷︷ ︸
Resolved State

So the resolved state was achieved and therefore shown that after a certain
number of reduction steps the network S resolves to S ′
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C
Appendix - Relay Topology Induction

Proof

The theorem for the Relay Assisted Topology which states the correctness is
given by the following:

Theorem 5. Let S be the following networks:

S ≡ (ν~cc)

∏
j∈J

cl ./ rlj |
∏
j∈J

∏
i∈Ij

sli ./ rlj

 | CN |∏
j∈J

RNj |
∏

i∈
⋃

j∈J Ij

SNi

(C.1)

if |
⋃
j∈J Ij| = |I|, |J | > 0, |I| > 0 and n = |J |+ |I|

Then S satisfies the following:

1. S −→∗ S ′ where S ′ is resolved

2. for any S ′ where S −→∗ S ′ and S ′ resolved. ∃S ′′ such that S ′ −→+ S ′′,
S ′′ is resolved.

Proof. The proof of the theorem will be done through induction in the size of
n, where n = |J | + |I|, as stated in the theorem 5. The proof is composed of
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two steps the base case where n = 2, since that is the minimum size of the
network, and n+ 1.

The definition of resolved state in the relay assisted topology is given by,

Definition 9. S is resolved if S ≡ S ′ | cl [cc〈nCN , NS (c)〉] for some nCN and
c.

C.1 Base Case

The purpose of the base case proof is to show that the network reaches the
resolved state, which if the network is properly constructed then according to
Theorem 5 after a cycle that same resolved state will be reached, and therefore
we will have proved that for the base case the structure S is resolved. This
proofs the first item of the theorem.

As state before the base case in this topology occurs when n = 2, the
minimum size of the network. The network topology in this case is given by,

S ≡ (ν~cc) (sl ./ rl | cl ./ rl)︸ ︷︷ ︸
SI

| SN | RN | CN

To simplify the notation, in the base case we do not included the index of the
SN nor the RN since there is only one of each.

When the network is instatiated, the Central Node, CN , needs to send the
request to the Sensing Node, SN , regarding which channel should be sensed.
This is assumed to be the network initial state.

So first are computed the steps from the initial state until the resolved
state.

SI | SN | RN︸ ︷︷ ︸
SII

| CN ≡

SII | CN ≡

SII | (νnCN) ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

−→
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SII |

(∏
m∈M

Qm | T

)
| (νnCN) ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

≡

SII |

(∏
m∈M

Qm | T

)
| CN ≡

SII |

(∏
m∈M

Qm1 | Qm2 | Qm3 +Qm4 | T

)
| CN −→

SII |

∏
m∈M

Q4m︸︷︷︸
No SN reports available

| T

 | CN ≡

SII |

∏
m∈M

h〈KBU ([])︸ ︷︷ ︸
kbum

〉 | T

 | CN ≡

SII |

(∏
m∈M

h〈kbum〉 | T1 | T2

)
| CN ≡

SII |

(∏
m∈M

h〈kbum〉 | (CKBU ([])) | T2

)
| CN ≡

SII | (
∏
m∈M

h〈kbum〉 | h(b).CKBU (b, y1 :: yM)

+k〈y1 :: yM〉 | T2) | CN −→

SII | k〈kbu1 :: kbuM〉 | T2 | CN ≡

SII | k〈kbu1 :: kbuM〉 | k(e).cc〈(nCN , NS (e))〉 | CN −→
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SII | cc〈(nCN , NS (kbu1 :: kbuM))〉 | CN ≡

SII | cc〈(nCN , NS(kbu1 :: kbuM))〉 | CN︸ ︷︷ ︸
Resolved State

So the resolved state is reached and from here on the network is initialized.
The purpose of this proof is to show that the network reaches the same resolved
state after a given number of iterations, as stated in the theorem.

SII | cc〈(nCN , NS(kbu1 :: kbuM)︸ ︷︷ ︸
ns

)〉 | CN ≡

SII | cc〈(nCN , ns)〉 | CN ≡

SI | SN | RN | cc〈(nCN , ns)〉 | CN ≡

SI | SN | (νnRN) ∗RC | RRN︸ ︷︷ ︸
RN

| cc〈(nCN , ns)〉 | CN −→

SI | SN | RC | (νnRN) ∗RC | RRN︸ ︷︷ ︸
RN

| cc〈(nCN , ns)〉 | CN ≡

SI | SN | RC | RN | cc〈(nCN , ns)〉 | CN ≡

SI | SN | R1 | R2 | RN | cc〈(nCN , ns)〉 | CN ≡

SI | SN | CP ([], [], f) | R2 | RN | cc〈(nCN , ns)〉 | CN −→+

SI | SN | cc (λ (x, y) (x, y)) .CP (x1 :: l1, y1 :: l2; f) + f〈(l1, l2)〉 | R2 |
RN | cc〈(nCN , ns)〉 | CN −→+

SI | SN | f〈(nCN , ns)〉 | R2 | RN | CN ≡

SI | SN | f〈(nCN , ns)〉 | f(a, i).cc〈(a, i)〉 | RN | CN −→
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SI | SN | cc〈(nCN , ns)〉 | RN | CN ≡

SI | RN | CN | SN | cc〈(nCN , ns)〉 ≡

SI | RN | CN | (νnSN) ∗ P | RSN︸ ︷︷ ︸
SN

| cc〈(nCN , ns)〉 −→

SI | RN | CN | SN︸ ︷︷ ︸
SIII

| P | cc〈(nCN , ns)〉 ≡

SIII | P | cc〈(nCN , ns)〉 ≡

SIII | P1 | P2 | P3 | cc〈(nCN , ns)〉 ≡

SIII | cc (λ (x, y) (x, y)) if x = nCN then e〈y〉 |
P2 | P3 | cc〈(nCN , ns)〉 −→

SIII | e〈ns〉 | P2 | P3 ≡

SIII | e〈ns〉 | e(a).f〈SS (a)〉 | P3 −→

SIII | f〈SS (ns)〉 | P3 ≡

SIII | f〈SS (ns)〉 | f(b).cc〈(nSN , b)〉 −→

SIII | cc〈(nSN , SS (ns)︸ ︷︷ ︸
ss

)〉 ≡

SIII | cc〈(nSN , ss)〉 ≡

SI | CN | SN | RN | cc〈(nSN , ss)〉 ≡
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SI | CN | SN | (νnRN) ∗RC | RRN︸ ︷︷ ︸
RN

| cc〈(nSN , ss)〉 −→

SI | CN | SN | RN︸ ︷︷ ︸
SIII

| RC | cc〈(nSN , ss)〉 ≡

SIII | RC | cc〈(nSN , ss)〉 ≡

SIII | R1 | R2 | cc〈(nSN , ss)〉 ≡

SIII | CP ([], []; f) | R2 | cc〈(nSN , ss)〉 −→

SIII | cc (λ (x, y) (x, y)) .CP (x :: l1, y :: l2; f)+

f〈l1, l2〉 | R2 | cc〈(nSN , ss)〉 −→

SIII | f〈nSN , ss〉 | R2 −→

SIII | f〈nSN , ss〉 | f(a, i).cc〈(a, i)〉 −→

SIII | cc〈(nSN , ss)〉 −→

SI | RN | SN | CN | cc〈(nSN , ss)〉 ≡

SI | RN | SN | (νnCN) ∗

(∏
m∈M

Qm | T

)
| RCN︸ ︷︷ ︸

CN

| cc〈(nSN , ss)〉 −→

SI | RN | SN | CN︸ ︷︷ ︸
SIII

|
∏
m∈M

Qm | T | cc〈(nSN , ss)〉 ≡

SIII |
∏
m∈M

Qm | T | cc〈(nSN , ss)〉 ≡
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SIII |

(∏
m∈M

Qm1 | Qm2 | Qm3 +Qm4

)
| T | cc〈(nSN , ss)〉 −→

SIII |

(∏
m∈M

Qm1 | Qm2 | Qm3

)
| T | cc〈(nSN , ss)〉 ≡

SIII |

(∏
m∈M

Cm ([]) | Qm2 | Qm3

)
| T | cc〈(nSN , ss)〉 ≡

SIII | (
∏
m∈M

cc (λ (x, y) (x, y)) if x = nCN then Cm (y, x1 :: xk) +

dm〈(x1 :: xk)〉 | Qm2 | Qm3) | T | cc〈(nSN , ss)〉 −→

SIII | (
∏
m∈M

dm〈ss〉 | Qm2 | Qm3) | T ≡

SIII | (
∏
m∈M

dm〈ss〉 | dm(e).gm〈LDDF (e)〉 | Qm3) | T −→

SIII | (
∏
m∈M

gm〈LDDF (ss)〉 | Qm3) | T ≡

SIII | (
∏
m∈M

gm〈LDDF (ss)〉 | gm(i).h〈KBU (i)〉) | T −→

SIII | (
∏
m∈M

h〈KBU (LDDF (ss))︸ ︷︷ ︸
kbum

〉) | T ≡

SIII |
∏
m∈M

h〈kbum〉 | T ≡

SIII |
∏
m∈M

h〈kbum〉 | T1 | T2 ≡
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SIII |
∏
m∈M

h〈kbum〉 | (CKBU ([])) | T2 ≡

SIII |
∏
m∈M

h〈kbum〉 | h(b).CKBU (b, y1 :: yM) + k〈y1 :: yM〉 | T2 −→

SIII | k〈kbu1 :: kbum〉 | T2 ≡

SIII | k〈kbu1 :: kbum〉 | k(e).cc〈(nCN , NS (e))〉 −→

SIII | cc〈(nCN , NS (kbu1 :: kbum))〉 ≡

SI | SN | RN | CN | cc〈(nCN , NS (kbu1 :: kbum))〉︸ ︷︷ ︸
Resolved State

The resolved state is achieved and therefore it is shown that after the certain
number of iterations the network S resolves to S ′

C.2 N+1 Case

Following the induction hypothesis it is assumed that the case where |I|+|J | =
n = N , S reaches the resolved state, and so to complete the proof it is shown
what happens when n = N + 1.

So assuming by induction hypothesis that for all n′ < n, S reaches a re-
solved state. Then it can be shown that for n the network S can also reach a
resolved state. To perform the proof, due the network topology, there are the
following two subcases:

1. Induction in the size of |J |, when |I| = 1. The case |J | = 1 is the same
as the base case, so the case |J | > 1 needs to be proved by induction
hypothesis;

2. Induction in the size of |I|, when |J | > 1. This is only possible after the
first sub-case has been proved.
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C.2.1 Induction in |J |

In here is performed the induction in the size of |J | and as stated before the
case |J | = 1 is the same as the base case, so by induction hypothesis it is
assumed that when |J | = N the network S reaches a resolved state and in the
following it is shown that the network S also resolves when |J | = N + 1.

In this case the channel capacity is never reached at any of the locations
because there is only one Sensing Node (SN), and even in the case where the
number of Relay Nodes (RNs) tend to infinity the channel capacity is never
reached, since there is still only one SN. This is will be made clear along the
following sequence of reductions.

The S structure in this case is defined as,

S ≡ (ν~cc)

(
sl1 ./ rl1 |

∏
j∈J

cl ./ rlj

)
︸ ︷︷ ︸

SI

| SN |
∏
j∈J

RNj | CN

Note that sl1 ./ rl1 was chosen to ease the readability of the proof. The sl1
can of course be connected to any other rlj.

So first are computed the steps from the initial state until the resolved
state.

SI | SN |
∏
j∈J

RNj︸ ︷︷ ︸
SII

| CN ≡

SII | CN ≡

SII | (νnCN) ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

−→

SII |

(∏
m∈M

Qm | T

)
| (νnCN) ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

≡
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SII |

(∏
m∈M

Qm | T

)
| CN ≡

SII |

(∏
m∈M

Qm1 | Qm2 | Qm3 +Qm4 | T

)
| CN −→

SII |

∏
m∈M

Q4m︸︷︷︸
No SN reports available

| T

 | CN ≡

SII |

(∏
m∈M

h〈KBU ([])〉 | T

)
| CN ≡

SII |

(∏
m∈M

h〈KBU ([])〉 | T1 | T2

)
| CN ≡

SII |

(∏
m∈M

h〈KBU ([])〉 | (CKBU ([])) | T2

)
| CN ≡

SII | (
∏
m∈M

h〈KBU ([])︸ ︷︷ ︸
kbum

〉 | h(b).CKBU (b, y1 :: yM) +

k〈y1 :: yM〉 | T2) | CN −→

SII | k〈kbu1 :: kbum〉 | T2 | CN ≡

SII | k〈kbu1 :: kbum〉 | k(e).cc〈(nCN , NS (e))〉 | CN −→

SII | cc〈(nCN , NS (kbu1 :: kbum))〉 | CN ≡

SII | cc〈(nCN , NS(kbu1 :: kbum))〉 | CN︸ ︷︷ ︸
Resolved State
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So the resolved state is reached and from here on the network is initialized.
The purpose of this proof is to show that the network reaches the same resolved
state after a given number of iterations, as stated in the theorem.

SII | cc〈(nCN , NS(kbu1 :: kbum)︸ ︷︷ ︸
ns

)〉 | CN ≡

SI | SN |
∏
j∈J

RNj | cc〈(nCN , ns)〉 | CN ≡

SI | SN | RN1 |
∏

j∈J,j 6=1

RNj | cc〈(nCN , ns)〉 | CN ≡

SI |
∏

j∈J,j 6=1

RNj | SN︸ ︷︷ ︸
SIII

| RN1 | cc〈(nCN , ns)〉 | CN ≡

SIII | RN1 | cc〈(nCN , ns)〉 | CN ≡

SIII | (νnRN) ∗RC | RRN︸ ︷︷ ︸
RN1

| cc〈(nCN , ns)〉 | CN −→

SIII | RN1 | RC | cc〈(nCN , ns)〉 | CN ≡

SIII | RN1 | R1 | R2 | cc〈(nCN , ns)〉 | CN ≡

SIII | RN1 | CP ([], [], f) | R2 | cc〈(nCN , ns)〉 | CN ≡

SIII | RN1 | cc (λ (x, y) (x, y)) .CP (x1 :: l1, y1 :: l2; f)+

f〈(l1, l2)〉 | R2 | cc〈(nCN , ns)〉 | CN −→

SIII | RN1 | f〈(nCN , ns)〉 | R2 | CN ≡

SIII | RN1 | f〈(nCN , ns)〉 | f(a, i).cc〈(a, i)〉 | CN −→
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SIII | RN1 | cc〈(nCN , ns)〉 | CN −→

SI |
∏

j∈J,j 6=1

RNj | SN | RN1 | cc〈(nCN , ns)〉 | CN ≡

SI |
∏

j∈J,j 6=1

RNj | RN1︸ ︷︷ ︸
SIV

| SN | cc〈(nCN , ns)〉 | CN ≡

SIV | SN | cc〈(nCN , ns)〉 | CN ≡

SIV | (νnSN) ∗ P | RSN︸ ︷︷ ︸
SN

| cc〈(nCN , ns)〉 | CN −→

SIV | SN | P | cc〈(nCN , ns)〉 | CN ≡

SIV | SN | P1 | P2 | P3 | cc〈(nCN , ns)〉 | CN ≡

SIV | SN | cc (λ (x, y) (x, y)) if x = nCN then

e〈y〉 | P2 | P3 | cc〈(nCN , ns)〉 | CN −→

SIV | SN | e〈ns〉 | P2 | P3 | CN ≡

SIV | SN | e〈ns〉 | e(a).f〈SS (a)〉 | P3 | CN −→

SIV | SN | f〈SS (ns)︸ ︷︷ ︸
ss

〉 | P3 | CN ≡

SIV | SN | f〈ss〉 | P3 | CN ≡

SIV | SN | f〈ss〉 | f(b).cc〈nSN , b〉 | CN −→

SIV | SN | cc〈nSN , ss〉 | CN ≡
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SI |
∏

j∈J,j 6=1

RNj | RN1 | SN | cc〈nSN , ss〉 | CN ≡

SI |
∏

j∈J,j 6=1

RNj | (νnRN) ∗RC | RRN︸ ︷︷ ︸
RN1

| SN | cc〈nSN , ss〉 | CN −→

SI |
∏

j∈J,j 6=1

RNj | RC | RN1 | SN | cc〈nSN , ss〉 | CN ≡

SI |
∏

j∈J,j 6=1

RNj | RN1 | SN︸ ︷︷ ︸
SV

| RC | cc〈nSN , ss〉 | CN ≡

SV | RC | cc〈nSN , ss〉 | CN ≡

SV | R1 | R2 | cc〈nSN , ss〉 | CN ≡

SV | CP ([], []; f) | R2 | cc〈nSN , ss〉 | CN ≡

SV | cc (λ (x, y) (x, y)) .CP (x :: l1, y :: l2; f)+

f〈l1, l2〉 | R2 | cc〈nSN , ss〉 | CN −→

SV | f〈nSN , ss〉 | R2 | CN ≡

SV | f〈nSN , ss〉 | f(a, i).cc〈(a, i)〉 | CN −→

SV | cc〈(nSN , ss)〉 | CN ≡

SV | cc〈(nSN , ss)〉 | (νnCN) ∗

(∏
m∈M

Qm | T

)
| RCN︸ ︷︷ ︸

CN

≡
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SV | cc〈(nSN , ss)〉 |
∏
m∈M

(Qm1 | Qm2 | Qm3 +Qm4) | T | CN −→

SV | cc〈(nSN , ss)〉 |
∏
m∈M

(Qm1 | Qm2 | Qm3) | T | CN ≡

SV | cc〈(nSN , ss)〉 |
∏
m∈M

(cc (λ (x, y) (x, y)) if x 6= nCN then Cm(y :: l)

+dm〈l〉 | Qm2 | Qm3) | T | CN −→

SV |
∏
m∈M

(dm〈ss〉 | Qm2 | Qm3) | T | CN ≡

SV |
∏
m∈M

(dm〈ss〉 | dm(e).gm〈LDDF (e)〉 | Qm3) | T | CN −→

SV |
∏
m∈M

(gm〈LDDF (ss)〉 | Qm3) | T | CN ≡

SV |
∏
m∈M

(gm〈LDDF (ss)〉 | gm(i).h〈KBU (i)〉) | T | CN −→

SV |
∏
m∈M

(h〈KBU (LDDF (ss))︸ ︷︷ ︸
kbum

〉) | T | CN ≡

SV |
∏
m∈M

h〈kbum〉 | T | CN ≡

SV |
∏
m∈M

h〈kbum〉 | T1 | T2 | CN ≡

SV |
∏
m∈M

h〈kbum〉 | CKBU ([]) | T2 | CN ≡
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SV |
∏
m∈M

h〈kbum〉 | h(b).CKBU(b :: l) + k〈l〉 | T2 | CN −→

SV | k〈(kbu1 :: kbum)〉 | T2 | CN ≡

SV | k〈(kbu1 :: kbum)〉 | k(e).cc〈(nCN , NS (e))〉 | CN −→

SV | cc〈(nCN , NS (kbu1 :: kbum))〉 | CN︸ ︷︷ ︸
Resolved State

The network reaches the resolved state, as proved by induction in the size
of |J |. When the size of |J | varies the capacity of the channel is never reached,
since it only depends on the number of Sensing Nodes (SNs).

C.2.2 Induction in |I|

After proving that the network reaches the resolved state periodically indepen-
dently of the size of |J |, then it is finally possible to prove that the network
reaches the resolved state also independently of the size of |I|. For that it
is assumed that by induction hypothesis the network reaches a resolved state
when |I| = N and then it can be shown that the network still resolves for
|I| = N + 1. This proof is performed while considering that |J | > 1.

As stated in the proof by induction in the size of |J | the channel capacity is
only reached when the number of SNs is above a certain threshold. Therefore
this part of the proof is divided in three parts, the case where the channel
capacity is not overcome at any location, the case where the channel capacity
is overcome at the RNj location and the case where the capacity is overcome
at the CN location.

Since the differences between each one is only at instance where the RN
receives data from the SNs and when the CN receives messages from the RNs
then at those point in the reduction sequence, we will show show what would
happen in each case. This will allow to simplify the proof and make it less
cumbersome to follow.

The S structure in this case is defined as,

S ≡ (ν~cc)

∏
j∈J

cl ./ rlj |
∏
j∈J

∏
i∈Ij

sli ./ rli


︸ ︷︷ ︸

SI

|
∏
j∈J

RNj |
∏

i∈
⋃

j∈J Ij

SNi | CN ≡
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SI |
∏

j∈J,j 6=l

RNj | RNl |
∏

i∈
⋃

j∈J Ij ,i 6=k

SNi | SNk | CN ≡

SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J Ij ,i 6=k

SNi︸ ︷︷ ︸
SII

| RNl | SNk | CN ≡

SII | RNl | SNk | CN ≡

From this step we can compute the sequence of reductions which will allow
the network to reach the resolved state.

SII | RNl | SNk︸ ︷︷ ︸
SIII

| CN ≡

SIII | CN ≡

SIII | (νnCN) ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

−→

SIII |

(∏
m∈M

Qm | T

)
| (νnCN) ∗

(∏
m∈M

Qm | T

)
| R︸ ︷︷ ︸

CN

≡

SIII |

(∏
m∈M

Qm | T

)
| CN ≡

SIII |

(∏
m∈M

Qm1 | Qm2 | Qm3 +Qm4 | T

)
| CN −→

SIII |

∏
m∈M

Q4m︸︷︷︸
No SN reports available

| T

 | CN ≡
196



C.2. N+1 Case 197

SIII |

∏
m∈M

h〈KBU ([])︸ ︷︷ ︸
kbum

〉 | T

 | CN ≡

SIII |

(∏
m∈M

h〈kbum〉 | T

)
| CN ≡

SIII |

(∏
m∈M

h〈kbum〉 | T1 | T2

)
| CN ≡

SIII |

(∏
m∈M

h〈kbum〉 | CKBU ([]) | T2

)
| CN ≡

SIII |

(∏
m∈M

h〈kbum〉 | h(b).CKBU(b :: l) + k〈l〉 | T2

)
| CN −→

SIII | k〈kbu1 :: kbuM〉 | T2 | CN ≡

SIII | k〈kbu1 :: kbuM〉 | k(e).cc〈(nCN , NS (e))〉 | CN −→

SIII | cc〈(nCN , NS (kbu1 :: kbuM))〉 | CN ≡

SIII | cc〈(nCN , NS (kbu1 :: kbuM))〉 | CN︸ ︷︷ ︸
Resolved State

So the resolved state is reached and from here on the network is initialized.
In the rest of the proof it will be shown that after a number of sequence of
reductions the network reaches the same resolved state as state in the theorem.
Note that emphasis will be given in the reduction sequences where the effect
of the channel capacity takes place.

SIII | cc〈(nCN , NS (kbu1 :: kbuM)︸ ︷︷ ︸
ns

)〉 | CN ≡
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SIII | cc〈(nCN , ns)〉 | CN ≡

SII | SNk | RNl | cc〈(nCN , ns)〉 | CN ≡

The message broadcasted from the Central Node (CN) is received by all the
RNs, to ease the demonstration it is only shown what happens in one of the
RNs, but it should be noted that the same process is occurring in all the RNs.

SII | SNk | (νnRN) ∗RC | RRN︸ ︷︷ ︸
RNl

| cc〈(nCN , ns))〉 | CN −→

SII | SNk | RNl | RC | cc〈(nCN , ns))〉 | CN ≡

SII | SNk | RNl | R1 | R2 | cc〈(nCN , ns))〉 | CN ≡

SII | SNk | RNl | CP ([], []; f) | R2 | cc〈(nCN , ns))〉 | CN ≡

SII | SNk | RNl | cc (λ (x, y) (x, y)) .CP (x :: l1, y :: l2; f)+

f〈l1, l2〉 | R2 | cc〈(nCN , ns))〉 | CN −→

SII | SNk | RNl | f〈nCN , ns〉 | R2 | CN ≡

SII | SNk | RNl | f〈nCN , ns〉 | f(a, i).cc〈(a, i)〉 | CN −→

SII | SNk | RNl | cc〈(nCN , ns)〉 | CN ≡

SII | RNl | CN | (νnSNk
) ∗ P | RSN︸ ︷︷ ︸
SNk

| cc〈(nCN , ns)〉 −→

SII | RNl | CN | SNk︸ ︷︷ ︸
SIV

| P | cc〈(nCN , ns)〉 ≡

SIV | P1 | P2 | P3 | cc〈(nCN , ns)〉 ≡
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SIV | cc (λ (x, y) (x, y)) if x = nCN then e〈y〉 | P2 | P3 |
cc〈(nCN , ns)〉 −→

SIV | e〈ns〉 | P2 | P3 ≡

SIV | e〈ns〉 | e(a).f〈SS (a)〉 | P3 −→

SIV | f〈SS (ns)〉 | P3 ≡

SIV | f〈SS (ns)︸ ︷︷ ︸
ssk

〉 | f(b).cc〈(nSNk
, b)〉 −→

SIV | cc〈(nSNk
, ssk)〉 ≡

SII | CN | SNk | RNl | cc〈(nSNk
, ssk)〉 ≡

SII | CN | SNk | (νnRN) ∗RC | RRN︸ ︷︷ ︸
RNl

| cc〈(nSNk
, ssk)〉 −→

SII | CN | SNk | RNl | RC | cc〈(nSNk
, ssk)〉 ≡

So after the sequence of reductions it is reached the step where the capacity of
the channel might be overcome. To ease the exposition of the proof it is only
shown what happens to the SNs associated with RNl.

SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J Ij ,i 6=k

(SNi | cc〈(nSNi
, ssi)〉)

| SNk | cc〈(nSNk
, ssk)〉 | CN | RNl | RC ≡

SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J,j 6=l Ij

(SNi | cc〈(nSNi
, ssi)〉)

|
∏

h∈Il,h6=k

(SNh | cc〈(nSNh
, ssh)〉)

| SNk | cc〈(nSNk
, ssk)〉 | CN | RNl | RC ≡
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Consider that at the location of the RNl the capacity of the cc is given by
b(cc, rnl). If the size of |Il| is lower than b(cc, rnl) then the capacity of the
channel is not reached and therefore none of the messages from the SNs are
dropped. When the size of |Il| is higher than b(cc, rnl) some of the messages
are dropped. The first case follows the same sequence of reductions as the
base case, so here it is shown only what happens in the second case, i.e. when
some of the messages are dropped, according the R-DROP rule. For that is
considered Il = Idl ∪Indl , where Idl is the set of SNs with dropped messages and
Indl is the set of SNs which their messages are not dropped and that k ∈ Indl .
So first is shown the reduction sequence where the messages are dropped. Note
that messages directed to other RNs are also exchanged, although they are not
shown explicitly here.

SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J,j 6=l Ij

(SNi | cc〈(nSNi
, ssi)〉)

|
∏
h∈Idl

(SNh | cc〈(nSNh
, ssh)〉) |

∏
h∈Ind

l ,h6=k

(SNh | cc〈(nSNh
, ssh)〉)

| SNk | cc〈(nSNk
, ssk)〉 | CN | RNl | RC −→+

SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J,j 6=l Ij

SNi

|
∏
h∈Idl

SNh |
∏

h∈Ind
l ,h6=k

(SNh | cc〈(nSNh
, ssh)〉)

| SNk | cc〈(nSNk
, ssk)〉 | CN | RNl | RC ≡

So from here the normal reduction sequence continues, which coincides with
the case where the |Il| is lower than b(cc, rnl).

SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J,j 6=l Ij

SNi

|
∏
h∈Idl

SNh |
∏

h∈Ind
l ,h6=k

(SNh | cc〈(nSNh
, ssh)〉)

| SNk | cc〈(nSNk
, ssk)〉 | CN | RNl | R1 | R2 ≡

SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J,j 6=l Ij

SNi |
∏
h∈Idl

SNh |
∏

h∈Ind
l ,h6=k

(SNh | cc〈(nSNh
, ssh)〉)

| SNk | cc〈(nSNk
, ssk)〉 | CN | RNl |

cc (λ (x, y) (x, y)) .CP (x :: l1, y :: l2; f) + f〈l1, l2〉 | R2 −→+
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SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J,j 6=l Ij

SNi |
∏
h∈Idl

SNh |
∏

h∈Ind
l ,h6=k

SNh

| SNk | CN | RNl | f〈nSNh
:: nSNk︸ ︷︷ ︸
xl

, ssh :: ssk︸ ︷︷ ︸
yl

〉 | R2 ≡

SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J,j 6=l Ij

SNi |
∏
h∈Idl

SNh |
∏

h∈Ind
l ,h6=k

SNh

| SNk | CN | RNl | f〈xl, yl〉 | R2 ≡

SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J,j 6=l Ij

SNi |
∏
h∈Idl

SNh |
∏

h∈Ind
l ,h6=k

SNh

| SNk | CN | RNl | f〈xl, yl〉 | f(a, i).cc〈(a, i)〉 −→

SI |
∏

j∈J,j 6=l

RNj |
∏

i∈
⋃

j∈J,j 6=l Ij

SNi |
∏
h∈Idl

SNh |
∏

h∈Ind
l ,h6=k

SNh

| SNk | CN | RNl | cc〈(xl, yl)〉 −→

SI |
∏

j∈J,j 6=l

RNj | RNl | cc〈(xl, yl)〉 |
∏

i∈
⋃

j∈J Ij ,i 6=k

SNi | SNk | CN ≡

At this point in the sequence of reductions it is reached the second step where
the capacity of the channel might be overcome. At this step the RNs are going
to send the concatenated messages that they received from their respective
SNs. The same will occur as in the previous step, i.e. some of these messages
will be dropped. In the following it is shown only the case where some of the
messages need to be dropped. Following the same reasoning as before, the
RNs are divided into two groups, the one where the messages will be dropped
and the one where the messages will not. Therefore J = Jd ∪ Jnd , where Jd

is the set of RNs where the message is dropped and Jnd the set of RNs where
the message is not dropped and l ∈ Jnd.

SI |
∏
j∈Jd

RNj | cc〈(xj, yj)〉 |
∏

j∈Jnd,j 6=l

RNj | cc〈(xj, yj)〉 | RNl | cc〈(xl, yl)〉

|
∏

i∈
⋃

j∈J Ij ,i 6=k

SNi | SNk | CN −→+
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SI |
∏
j∈Jd

RNj |
∏

j∈Jnd,j 6=l

RNj | cc〈(xj, yj)〉 | RNl | cc〈(xl, yl)〉

|
∏

i∈
⋃

j∈J Ij ,i 6=k

SNi | SNk | CN ≡

SI |
∏
j∈Jd

RNj |
∏

j∈Jnd,j 6=l

RNj | cc〈(xj, yj)〉 | RNl | cc〈(xl, yl)〉

|
∏

i∈
⋃

j∈J Ij ,i 6=k

SNi | SNk | (νnCN) ∗

(∏
m∈M

Qm | T

)
| RCN︸ ︷︷ ︸

CN

−→

SI |
∏
j∈Jd

RNj |
∏

j∈Jnd,j 6=l

RNj | cc〈(xj, yj)〉 | RNl | cc〈(xl, yl)〉

|
∏

i∈
⋃

j∈J Ij ,i 6=k

SNi | SNk | CN |
∏
m∈M

Qm | T ≡

SI |
∏
j∈Jd

RNj |
∏

j∈Jnd,j 6=l

RNj | cc〈(xj, yj)〉 | RNl | cc〈(xl, yl)〉

|
∏

i∈
⋃

j∈J Ij ,i 6=k

SNi | SNk | CN

|

(∏
m∈M

Qm1 | Qm2 | Qm3 +Qm4

)
| T −→

SI |
∏
j∈Jd

RNj |
∏

j∈Jnd,j 6=l

RNj | cc〈(xj, yj)〉 | RNl | cc〈(xl, yl)〉

|
∏

i∈
⋃

j∈J Ij ,i 6=k

SNi | SNk | CN |

(
∏
m∈M

cc (λ (x, y) (x, y)) if x 6= nCN then Cm(y :: l)+

dm〈l〉 | Qm2 | Qm3) | T −→

SI |
∏
j∈Jd

RNj |
∏

j∈Jnd,j 6=l

RNj | RNl |
∏

i∈
⋃

j∈J Ij ,i 6=k

SNi | SNk | CN︸ ︷︷ ︸
SV

| (
∏
m∈M

dm〈(y1, . . . , yk)︸ ︷︷ ︸
ssm

〉 | Qm2 | Qm3) | T ≡
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SV | (
∏
m∈M

dm〈ssm〉 | Qm2 | Qm3) | T ≡

SV | (
∏
m∈M

dm〈ssm〉 | d(e).gm〈LDDF (e)〉 | Qm3) | T −→

SV | (
∏
m∈M

gm〈LDDF (ssm)〉 | Qm3) | T −→

SV | (
∏
m∈M

gm〈LDDF (ssm)〉 | gm(i).h〈KBU (i)〉) | T −→

SV | (
∏
m∈M

h〈KBU (LDDF (ssm))︸ ︷︷ ︸
kbum

〉) | T ≡

SV |
∏
m∈M

h〈kbum〉 | T ≡

SV |
∏
m∈M

h〈kbum〉 | T1 | T2 ≡

SV |
∏
m∈M

h〈kbum〉 | CKBU ([]) | T2 ≡

SV |
∏
m∈M

h〈kbum〉 | h(b).CKBU(b :: l) + k〈l〉 | T2 ≡

SV |
∏
m∈M

k〈kbu1 :: kbuM〉 | T2 ≡

SV |
∏
m∈M

k〈kbu1 :: kbuM〉 | k(e).cc〈(nCN , NS (e))〉 −→

SV |
∏
m∈M

cc〈(nCN , NS (kbu1 :: kbuM))〉︸ ︷︷ ︸
Resolved State

So the network S still reaches the resolved state, as stated in Theorem 5.
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D
Appendix - Channel Duty Cycle

Estimation

After a decision is reached in regards to the state of the channel after the
data fusion, it is time to combine it with past observations. This will allow to
obtain updated statistics of the state of the sensed channel, e.g. duty cycle,
longest observed free period, etc. Through the use of these statistics, it is then
possible for the Cognitive Radio Network (CRN) to reach an adequate decision
on when to use a given channel for communications.

The purpose here is to estimate the mth channel remainder of signal source
duty cycle, also known as un-occupancy, denoted as sm. For this estimation to
be of use it needs to be updated continuously during the CRN lifetime. The
issue is that sometimes there are no recent observations available for the mth

channel.

To get an estimation of sm, two methods are considered, which are an
exponential moving average and a linear moving average, respectively. Both
are modified to include a reset mechanism which allows to update the sm,
altough introducing an error, even when the channel was not sensed.
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Chapter D

D.1 Exponential Moving Average Estimator

The channelm un-occupancy, sm, is estimated continuously during the network
lifetime. This estimation is based on previous observations, when available,
while taking in account when the channels have not been observed in a long
time. The channel un-occupancy estimator, an exponential moving average
with reset factor, is given by,

The exponential moving average with reset factor channel un-occupancy
estimator is given by,

ŝm =

{
(1− α)ŝm,old + αsm,inst ,if m sensed
(1− α)ŝm,old + αsreset ,if m not sensed

(D.1)

where ŝm is the estimated unoccupancy of the channel m, ŝm,old is the esti-
mated un-occupancy from the last scheduling bid, sm,inst is the instantaneous
occupancy obtained from the sensing of the channel m in the previous sensing
session, sreset is the term that is used to reset the channel un-occupancy esti-
mation when the channel has not been sensed in the previous sensing session
and finally α the forgetting factor used to tune the exponential moving aver-
age. Through this scheme it is possible to estimate the channel un-occupancy
and to have a feedback mechanism which enables a controlled distribution of
the sensing nodes by using the ŝm as the channel bid, i.e. wm.

D.1.1 Linear Moving Average Estimator

The linear moving average with reset factor channel un-occupancy estimator
is given by,

ŝm =

{∑OW
i=1 s

i
m,old+sm,inst

OW
,if m sensed∑OW

i=1 s
i
m,old+sreset

OW
,if m not sensed

(D.2)

where ŝm is the estimated un-occupancy of the channel m is, sim,old is the

observed un-occupancy in the ith previous spectrum sensing session, sm,inst is
the instantaneous occupancy obtained from the sensing of the channel m in
the previous sensing session, sreset is the term that is used to reset the channel
un-occupancy estimation when the channel has not been sensed in the previous
sensing session, and OW is the observation window length.
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D.1. Exponential Moving Average Estimator 207

D.1.2 Implementation Issues and Performance Compar-
ison

The linear estimator achieves the minimum RMSE if the observation window
is the same as the number of observations, although needing to have all the
previous observations stored. The exponential average can offer similar perfor-
mance, depending on the distribution of the samples, but it only needs to store
the previous estimation. Therefore from an implementation point of view the
exponential estimator is the one to choose.

In Figure D.1 it is depicted the obtained RMSE while using both estimators
for each of the channels. Two scenarios are considered, one where the channel
is sensed each session, i.e. all samples are considered, and the case where the
channel is sensed every second sensing session, i.e. half of the available samples
are taken into account. sreset was set to 0.5, α was set to 0.01 and the OW
was set to 40.

From Figure D.1 it can be observed, as expected, that both estimators have
similar performance, except in the Ch2 during the interrupted sensing, where
the RMSE was substantially higher for the exponential estimator. This was
caused by the sreset value which was set as 0.5. Although it can be argued
that by taking out the sreset the RMSE would be minimized, it needs to be
considered since the estimation is used as channel bid for the scheduler and
therefore needs to be updated in every sensing cycle.
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Figure D.1: Channel Estimation Performance Comparison
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