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Abstract

Software is in increasing fashion embedded within safety- and business critical
processes of society. Errors in these embedded systems can lead to human
casualties or severe monetary loss. Model checking technology has proven
formal methods capable of finding and correcting errors in software. However,
software is approaching the boundary in terms of the complexity and size that
model checking can handle. Furthermore, software systems are nowadays more
frequently interacting with their environment hence accurately modelling such
systems requires modelling the environment as well - resulting in undecidability
issues for the traditional model checking approaches.

Statistical model checking has proven itself a valuable supplement to model
checking and this thesis is concerned with extending this software validation
technique to stochastic hybrid systems. The thesis consists of two parts: the first
part motivates why existing model checking technology should be supplemented
by new techniques. It also contains a brief introduction to probability theory
and concepts covered by the six papers making up the second part. The first two
papers are concerned with developing online monitoring techniques for deciding
if a simulation satisfies a property given as a WMTL[a,b] formula. The following
papers develops a framework allowing dynamical instantiation of processes,
in contrast to traditional static encoding of systems. A logic, QDMTL, is
developed to express properties of these dynamically evolving systems. The
fifth paper shows how stochastic hybrid automata are useful for modelling
biological systems and the final paper is concerned with showing how statistical
model checking is efficiently distributed. In parallel with developing the theory
contained in the papers, a substantial part of this work has been devoted to
implementation in Uppaal SMC.
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Dansk Sammenfatning

Software er i stigende grad indlejret i vores sikkerhedskritiske processer. Fejl i
indlejrede softwaresystemer kan have store økonomiske konsekvenser og resultere
i tab af menneskeliv. Model checking har vist, at man med formelle metoder
kan finde fejl i software, som er svære at finde med traditionel testning. Kom-
plekstiteten af software har efterhånden nået en så kritisk størrelse at model
checking ikke længere kan håndtere modellernes størrelse. Endvidere interagerer
software i højere grad med dets omgivelser hvilket nødvendiggør modellering af
disse som del af systemet. Dette gør model checking-spørgsmålet uafgørbart.
Statistical model checking har vist sit værd som et alternativ til model checking,
og denne afhandling vil videreudvikle teknikken til stochastiske hybride syste-
mer. Afhandlingen består af to dele: Den første del giver belæg for at model
checking værktøjer skal suppleres af en anden teknologi. Den indeholder også en
kort introduktion til sandsynlighedsregning, samt koncepter fra de seks artikler
den anden del består af. De første artikler i anden del omhandler udviklingen
af en online monitoreringsteknik for en WMTL[a,b] formel. De efterfølgende
artikler udvikler et framework, der tillader dynamisk instantiering af processeer
og logikken QDMTL introduceres til at udtrykke egenskaber af disse dynamiske
systemer. Den femte artikel viser, at stochastiske hybride automater kan bruges
til at modellere biologiske systemer. Til slut viser den sjette artikel, hvordan sta-
tistical model checking kan blive effektivt distribueret. Simultant med udvikling
af teorien i artiklerne har en stor del af arbejdet været tilegnet implementering
i Uppaal SMC.
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Part I
Introduction





1Software Verification

For decades computers were “nice-to-have” but not essential for a household.
Contrary to this, computers are nowadays such an integral part of our lifes
that we no longer think about it: few people consider an interactive toy for
kids has an integrated computer system or that their washing machine is
software controlled. Software is “hidden”/embedded in our equipment to such
an extent that the only times we “worry” about it is when it breaks down.
Software systems embedded in gadgets, called embedded software systems, are
characterised by their tight integration with devices and that they respond
to stimuli from their environment. The embedding of software in safety and
business critical operations has made methods for guaranteeing correctness
a necessity. One approach is using a development process that minimises
errors by starting software validation early on in the development phase. Early
software validation and regression validation is promoted by the agile software
development movement to ensure quality of the final product. In industry,
the traditional validation technique is testing where the software is exposed to
certain parameter settings and the result compared to a precomputed correct
answer. Testing can, however, only verify a small fraction of the computational
paths of a software system and requires manually constructed test cases. The
testing community has developed measures for quantifying the proportion of
computational paths covered by a set of test cases. Although testers attempt
to maximise these measures, it is well-known that all paths are never covered
except for the most trivial systems. A supplement to testing is formal methods
that rely on mathematically anchored techniques to exclude the existence of
errors. One such method is model checking (MC) [12, 39, 40, 101].

1.1 Model Checking

Model checking is a formal method developed independently by Clarke and
Emerson [40] and Queille and Sifakis [101]. Clarke, Emerson and Sifakis were
jointly awarded the Turing Award for their pioneering work on MC. The key

3



1. Software Verification

System Model No/Trace

Model Checker

Requirements Specification Yes

Revise
Formalise

Formalise

Figure 1.1: The model checking procedure. A model checker is given a model
and property and returns either Y es or No. In case the result is no the model
checker provides a diagnostic trace that can be used to resolve the problem.

hypothesis in MC is that errors are not only due to flaws in the implementation,
but also due to flaws in the design and that errors might be caught earlier if the
design is verified prior to implementation. Model checking relies on a formal
description of both the design and the requirements. In Figure 1.1 a schematic
overview of the three phases of the model checking process is provided. These
are

1. model the design in a modelling language,

2. specify the requirements in a specification language and

3. pass the model and requirement to a model checking engine.

The MC algorithm explores the entire model description in search of a
computational path violating the requirement. A violation returns a diagnostic
trace witnessing the error. From this witness, the design can either revised or it
can be determined the requirement was wrong.

In classical model checking a system is modelled by a finite state ma-
chine (FSM) and specifications given in linear temporal logic (LTL) [100] or
computational tree logic (CTL) [40]. An important feature of FSMs is their
compositionality that allows modelling individual components and compose
them to an overall system. The "catch" is that a linear state space increase of
each component results in an exponential increase of the entire system state
space. This state space explosion is problematic for model checkers because
MC algorithms perform an exhaustive search of the state space. Research in
MC has to a large extend focused on developing efficient data structures for
representing the state space and developing techniques that minimises the state
space to be searched. Combined with increased computing power this has made
MC applicable to industrial cases and not only toy examples [69, 70, 88].

4



1.2. Probabilistic Model Checking

A series of classic MC tools has surfaced over the years: an incomplete list
includes SPIN [79], NuSMV [38], PAT [114], FDR3 [62] and CWB [94]. A
notable example of these is SPIN having its own model description language
(Promela) and giving specifications in LTL. The notability of SPIN lies in
its use of partial order reduction where certain parts of the state space is not
searched because other parts are guaranteed to reach the same state as those
skipped. Whereas SPIN reduces the state space to be searched, a tool like
NuSMV has focused on representing the state space efficiently using Binary
Decision Diagrams. Despite these successful tools, MC has some downfalls:
firstly the modelling language must adhere to certain restrictions to make the
model checking problem decidable, secondly the state space explosion puts a
natural limit to the size of models MC can be applied to.

1.2 Probabilistic Model Checking

Designs of computer systems may be made such that errors are allowed to occur
but remain unlikely due to randomisation: an example of this is the IEEE
802.15.4 CSMA/CA[113] protocol that specifies how nodes in a network avoid
collisions. The nodes are unable to sense if a collision occurs while transmitting
so to avoid collisions they choose a random time in which they sense for other
senders. In case no one has been transmitting the node initiates transmission.
It is clear that this does not guarantee collision freedom and any attempt of
verifying collision-freedom is futile. Instead of the qualitative yes/no answer
provided by MC, we are interested in the probability that a collision occurs
and assert it is lower than some desired threshold value. Probabilistic model
checking (PMC) [42, 115] allows calculating this probability given a probabilistic
model of the design. The model is given as a discrete time Markov chain or a
continuous time Markov chain. As for standard MC there is tool support for
PMC of which the most well-known is PRISM [84]. The PMC problem is as
difficult as the classic MC problem thus PMC also requires certain restrictions to
the modelling language and also suffers from the state space explosion problem.
In addition, PMC uses costly matrix multiplications that further limits the size
of models applicable to PMC.

1.3 Real Time Model Checking

An issue not covered by classical MC is real-time guarantees e.g. guaranteeing
that an air-bag deploys within milliseconds of a collision. To give such guarantees,
modelling formalisms must accommodate for specifying timed behaviours and
specification languages must be able to express timing constraints. A successful
modelling formalism is timed automaton (TA) [6, 7] that extends FSM with
clock variables on which behaviour can be conditioned.

Timed specifications are made in metric temporal logic (MTL) [83] being
an extension of LTL or Timed CTL [8] being an extension of CTL. Adding
time into the model may give an infinite state space, making an exhaustive

5



1. Software Verification

concrete state space exploration incomprehensible. Luckily, there exists a finite
partitioning into symbolic states making the MC problem decidable. Real time
model checking is supported by various tools [30, 49, 86] of which Uppaal [86]
is established as the standard tool for real time model checking. Uppaal uses
an extended timed automata formalism for modelling and a subset of Timed
CTL as specification language.

1.4 Hybrid Model Checking

The natural step after real time model checking is generalising time to physical
quantities such as heat. This is not a purely academic idea as software systems
already control objects that depend on physical quantities - those software
systems are called Hybrid systems. Hybrid systems exhibit a tighter integration
with their environment than embedded systems: an early example is the stability
control of fighter air planes - such air crafts are built aerodynamically unstable
and are only manoeuvrable because a computer system constantly adjusts the
flight controls. Other examples are the envisioned smart houses that adjusts
heating in rooms to meet the comfort level of its inhabitants [48] and smart
grids adjusting power consumption of individual house to load balance. Inherent
to these systems is the interaction/control with their environment, thus, to be
accurately modelled their environment must be taken into account. Behaviours
of physical quantities are commonly modelled by differential equations and
modelling formalisms that incorporates such exist. An example is Hybrid
Automata [72] used by the tool HyTech [74]. HyTech can analyse a sub-class
of Hybrid Automata, Linear Hybrid Automata, exact and over-approximate the
behaviour of a general hybrid automaton by a linear hybrid automaton. Clearly,
if the over-approximated model does not violate a requirement then the original
model does not - on the other hand a violation in the over-approximated system
does not prove a violation. The over-approximating strategy of HyTech is the
only option for analysing hybrid systems as the MC problem is undecidable for
general hybrid systems.

1.5 Statistical Model Checking

Software is getting increasingly complex and without increased computing power,
it is unlikely that traditional MC software can keep up with the complexity
introduced by software of the future. Younes [123] and Sen et al. [107] inde-
pendently developed an approximate software verification technique not facing
the state space explosion problem. The technique was coined statistical model
checking (SMC) and attributed Younes. Prior to these works Larsen and Skou
[85] applied ideas similar to SMC while defining probabilistic bisimulation. The
corner stone of SMC is, that a fully stochastic model can be simulated and that
it is possible to validate if a simulation satisfy a specification. After generating
a number of simulations and counting the number of satifying simulations,
hypothesis testing can be applied to decide if the probability of satisfying the

6



1.5. Statistical Model Checking

requirement exceeds a threshold. Alternative, a confidence interval can be made
if we want to estimate the probability.

M, τ Generator

φ V alidator

α, δ
Estimation
Algorithm

ψ ∈ [θ ± δ]

ω

tt/ff

(a) An estimation algorithm estimates the
unknown probability ψ to an interval [θ± δ]
with confidence α.

M, τ Generator

φ V alidator

α, β, δ, θ
Hypothesis
Testing

ψ ≥ θ + δ
or

ψ < θ − δ

ω

tt/ff

(b) A hypothesis testing algorithm asserts if
the unknown probability ψ is greater than
a threshold θ + δ or less than θ − δ.

Figure 1.2: Architectural overview of a statistical model checker. The generator
component produces a simulation, ω, of the model M of length τ . The validator
component validates if the run satisfies the requirement φ and produces tt/ff
for satisfaction and violation respectively. The Estimation/Hypothesis testing
algorithm takes some algorithm specific parameters.

In Figure 1.2 a high level overview of a SMC tool is presented: A generator
accepts a fully stochastic model M and outputs a simulation, ω, of a user
specified length, τ . Afterwards, a validator component gets that simulation and
a property φ and returns true (tt) or false (ff) to a statistical algorithm (either
hypothesis testing or estimation algorithm) taking some additional parameters.
The feedback loop from the statistical algorithm in Figure 1.2 indicates the
statistical algorithm may need additional samples to draw a conclusion. If
another sample is needed can be determined in two ways: either (1) the
statistical algorithm precomputes a number of samples required to draw a
conclusion or (2) a sequential algorithm is used where, after each generated
sample, it is determined if a new sample is needed by keeping track of the
current number of satisfying samples. The required statistical algorithms have
been known for a long time thus the key components that need to be developed
for SMC are efficient generation and validation techniques.

7



1. Software Verification

Numerous standalone SMC tools have already been developed:
Ymer [120], Vesta [109], PVesta [4], Plasma [80] and Cosmos [13] and
traditional model checking tools, Uppaal [86] and PRISM [84], also started
incorporating SMC features. Interestingly, many of these tools inherit their
modelling and specification formalisms from MC tools. This gives modellers
means to circumvent the state space explosion problem, but it does not give
the full advantage of SMC. An exception to this is the work by Zuliani et al.
[124] doing SMC for Simulink R© models and Uppaal SMC [45] which, during
the work of this thesis, has been extended to incorporate features from hybrid
systems and dynamically reconfigurable systems.

1.6 Dynamic Systems

The tighter integration between software and environment is not the only
problem faced by MC tools. Software is often designed as a network where
computational units may join and leave at will and researchers are talking about
the internet of things where all utility appliances are connected by a network,
making the appliances controllable from virtually anywhere. This produces a
new type of reconfigurable systems where the environment is allowed to change
the conditions under which a system operates. Many MC tools rely on a static
of encoding the system thus such dynamical systems are not modelled naturally
in them. Process algebras, such as CCS [91] and CSP [77], allow instantiating
processes on the fly using a recursion operator, and the π-calculus [92, 93]
extended CCS to express mobility of processes by sending channel names
between processes. Hence, The idea of dynamically reconfigurable systems is not
completely new to the formal methods community, but few tools uses π-calculus
as their modelling language. Exceptions are the “Stochastic Pi Machine” [99]
developed by Microsoft Research using the π-calculus with a stochastic semantics
to model biological systems and the Mobility Workbench [116].

1.7 Research Objectives

The previous sections gave an overview of MC and some issues regarding
modelling the behaviourally rich and complex systems of the future with MC
tools. One issue is that the state space explosion restricts MC to certain sizes of
systems. A second issue is the nature of software: software is being more tightly
integrated with its environment, thus modelling its behaviour requires modelling
physical aspects. It is however known that the MC problem is undecidable for
general hybrid systems. Statistical model checking has already been proven a
promising alternative to MC but has yet to separate itself from the modelling
and specification formalisms of MC.

8



1.7. Research Objectives

The goal of this thesis is to bring the SMC approach to the realms of
real-time, hybrid and dynamically reconfigurable systems. The work is
divided into 4 subgoals:

1. developing requirement validation techniques required by the SMC
algorithm for various specification formalisms,

2. extending the timed automaton formalism to hybrid systems and
provide a stochastic semantics and run generation technique for
SMC,

3. extending the hybrid automaton formalism to dynamically recon-
figurable systems with a stochastic semantics and run generation
technique for SMC and

4. develop a specification formalism along with a validation technique
for the formalism of 3.

9



1. Software Verification
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2Probability Theory

This section recalls basic concepts from probability theory and establishes
notation used throughout the thesis. The content is based on text books by Ash
and Doléans-Dade [11] and Olofsson [96]. Probability theory reasons on the
outcome of phenomena that appear random due to human inability to collect
enough information to “calculate” the result. A σ-algebra collects all the events
relevant to an experiment where an experiment is any process with a random
outcome.

Definition 1 (σ-algebra). A σ-algebra over the set Ω is a family F ⊆ 2Ω where

• Ω ∈ F,

• if F0, F1, . . . ,∈ F then (
⋃
i∈N Fi) ∈ F i.e. F is closed under countable

union and

• if F ∈ F then (Ω \ F) ∈ F i.e. F is closed under complement.

Notice the requirements imply that ∅ ∈ F since Ω ∈ F and Ω \Ω = ∅. Also,
by De Morgan’s laws, a σ-algebra is closed under countable intersection. Two
canonical σ-algebras definable for any set Ω are {∅,Ω}, the indiscrete σ-algebra
of Ω, and P(Ω) = {F | F ⊆ Ω}, the discrete σ-algebra of Ω. In addition
to a structure defining the events of an experiment, a measure defining the
probability of each event is needed: a probability measure for a σ-algebra, F,
assigns a value between 0 and 1 to each event F ∈ F, with 0 meaning that F
almost surely will not happen and 1 meaning F is almost certain to happen.

Definition 2 (Measurable Space). A measurable space is a pair (Ω,F) where
Ω is a set and F is a σ-algebra over Ω.

11



2. Probability Theory

Definition 3 (Probability Space). A probability space is a triple (Ω,F, m)
where (Ω,F) is a measurable space and m : F → [0, 1] with the conditions

• m(Ω) = 1 and

• if F0, F1 . . . are pair-wise disjoint sets in F then m(
⋃
i∈N Fi) =

∑
i∈N m(Fi).

The last requirement of Definition 3 asserts the probability measure m is a
σ-additive set function. If a fair die is thrown once, then the probability that
the outcome is a two or a six is 2

6 because the probability of getting two is 1
6

and so is the probability of getting a six.

Lemma 1. Let (Ω,F, m) be a probability space and let F1, F2 ∈ F then

• m(Ω \ F1) = 1− m(F1),

• m(F1 \ F2) = m(F1)− m(F2 ∩ F1),

• m(F1 ∪ F2) = m(F1) + m(F2)− m(F1 ∩ F2) and

• if F1 ⊆ F2 then m(F1) ≤ m(F2).

In Definition 4 the important notion of conditional probability is defined.
Conditional probabilities captures the fact that the probability of an event may
change if we have extra knowledge: if a die is thrown once the probability of
getting a six is 1

6 , but if somehow we know that the result is will either be a six
or a five then the probability of getting a six is 1

2 .

Definition 4 (Conditional Probability). Let (Ω,F, m) be a probability space
and let F1 ∈ F be an event s.t. m(F1) > 0 then for any event F2 ∈ F we define
the conditional probability of F2 given F1 as

m(F2 |F1) =
m(F2 ∩ F1)

m(F1)

2.1 Random Variables

In many cases we are not interested in the exact outcome of an experiment, but
a number giving an aggregate view on the result. A random variable obtains a
value after performing an experiment.

12



2.1. Random Variables

Definition 5. Let (Ω1,F1, m) be a probability space and (Ω2,F2) be a measur-
able space then a (Ω2,F2)−valued random variable is a function X : Ω1 → Ω2

such that for any F ∈ F2,

X−1(F) = {f ∈ Ω1 |X(f) ∈ F} ∈ F1.

Definition 5 states that a random variable is a function mapping from a
probability space to a measurable space and that given a random variable
X : (Ω1,F1, m1)→ (Ω2,F2) one can always define a measure m2 on (Ω2,F2) as
m2(F) = m1(X−1(F)) for all F ∈ F2.

Example 1. Consider the experiment of two consecutive throws of a single
die. Then for this experiment Ω = {1, . . . , 6}× {1, . . . , 6} and F is the discrete
σ-algebra of Ω. Since all outcomes are equally likely, we consider as probability
measure m : F → [0, 1] the unique one such that m({x}) = 1

|Ω| = 1
36 for all x ∈ Ω.

If we are only interested in the sum of the outcomes after the two consecutive
throws, we can capture it by defining random variable X : Ω → {2, 3, . . . , 12}
and X(x1, x2) = x1 + x2.

Assume we are interested in the probability that the resulting sum is 4
i.e. the probability that “X = 4”. We can find this probability by calculating
X−1({4}) = {(1, 3), (2, 2), (3, 1)} and considering the probability of this set
according to m:

m({(1, 3), (2, 2), (3, 1)}) = m({(1, 3)}) + m({(2, 2)}) + m({(3, 1)}) =

1

36
+

1

36
+

1

36
=

3

36
=

1

12
.

Definition 5 is general in the codomain of the random variable. For the remainder
we only consider real-valued random variables i.e. those with codomain given
by the measurable space (IR,B(IR)) where B(IR) denotes the Borel σ-algebra
on IR.

Considering again the experiment of Example 1; we may only be interested
in the probability that the total number of eyes is less than some threshold
k. For a random variable X we call this function its cumulative distribution
function (cdf).

Definition 6. Let (Ω,F, m) be a probability space and let X be a
(IR,B(IR))−valued random variable. The cumulative distribution function,
FX , of X is

FX(x) = m({f ∈ Ω|X(f) ≤ x})

A discrete random variable assumes values from a countable subset of IR. Let N
be the countable set of values a discrete random variable X assumes, then the

13



2. Probability Theory

cdf of X is a step function with a discontinuity at each x ∈ N . The magnitude
of each discontinuity is given by a function γ : IR→ [0, 1], called the probability
mass function (pmf), where γ(x) gives the probability that X = x. If FX is the
cdf of X then FX(x) =

∑
t≤x γ(t).

A continuous random variable is a random variable Y with cdf, FY , for
which there exists a Lebesgue-integrable function µ : IR → IR≥0 such that
FY (x) =

∫ x
−∞ µ(t) dt for all x. The function µ is called the probability density

function (pdf) of Y .
For a random variable X with pmf (pdf) γ (µ) we write X ∼ γ (X ∼ µ) to

denote the random variable obtains its probability mass (density) from that
function. We say the variable is distributed according to γ (µ).

For a (IR,B(IR))−valued random variable X mapping from (Ω,F, m) we de-
note by P(X ≤ x), m(X−1({y ∈ IR | y ≤ x}) = FX(x). Conditional probabilities
are expressed similarly as when using normal probability measures.

Expected Value and Variance

Being based on chance it is natural to consider what the expected value of a
random variable is. In layman terms, the expected value is the average value
observed if an experiment is repeated a sufficient number of times. For a discrete
random variable X ∼ γ with support N and a continuous random variable
Y ∼ µ the expected value is

E[X] =
∑
x∈N

(x · γ(x)) , and E[Y ] =

∫ ∞
−∞

y · µ(y) dy.

The expected value tells us where the cdf of a random variable is centred,
but not how much results are expected to deviate from the expected value. The
variance of a random variable is a quantification of this and defined as

Var[X] = E[(X − E[X])2].

Often the standard deviation, sd[X] =
√
Var[X], is used instead of the

variance. Figure 2.1 gives a graphical interpretation of the expected value and
the standard deviation.
Lemma 2. Let X be a random variable and a, b ∈ IR then

• E[a ·X + b] = a · E[X] + b and

• Var[a ·X + b] = a2 · Var[X].

2.2 Distributions

In the following we present the distributions used throughout this thesis. These
are the binomial distribution, the exponential distribution, the uniform distri-
bution (both continuous and discrete) and the normal distribution. Table 2.1
gives a brief overview of various distributions.
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2.2. Distributions

−10 −5 0 5 10
0

5 · 10−2

0.1

0.15

0.2

0.25

µ

Figure 2.1: Normal distribution with mean value µ = 1 and standard deviation
σ = 2. The scratched area marks the area [µ−σ, µ+σ] and thus the area where
most of the probability mass is.

The Uniform Distribution

The uniform distribution is the distribution referred to in everyday language
when something is said to be random: every outcome is equally likely. For a
discrete random variable ( X ) the probability mass is divided equally among
all possible outcomes thus if X assumes values from the finite set Ω then the
pmf is γ(x) = 1

|Ω| . We denote the pmf for the discrete uniform distribution over
a finite set Ω by UniγΩ .

For a continuous uniform distribution assuming values in [a, b] ⊆ IR the cdf
increases with a constant rate. As a result, the pdf is constant in the interval

X ∼ X ∈ µ(x) γ(x) E[X] Var[X]
Binomn,p {0, . . . , n}

(
n
x

)
· px · (1− p)n−x n · p n · p · (1− p)

Uniµa,b [a, b] 1
b−a

a+b
2

(b−a)2

12

Expλ IR≥0 λ · e−λ·x 1
λ

1
λ2

Expλ,L [L,∞] Expλ(x− L) L+ 1
λ

1
λ2

Normµ,σ IR 1
σ·
√

2π
· e−

(x−µ)2

2·σ2 µ σ

Table 2.1: Overview of various distributions. The X ∈ column gives the
values the random value may assume, the γ(x) column gives the pmf for
discrete distributions while the µ(x) coolumn gives the pdf for continuous
distribution. The γ(x) and µ(x) columns only apply for values from the X ∈
column. Everywhere else the pdf (pmf) is 0.
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2. Probability Theory

and zero everywhere else. Let this constant be c then we can write the following:∫ b

a

c dt = 1⇔ b · c− a · c = 1⇔ c = 1
b−a , b 6= a

hence the pdf is

Uniµa,b(x) =

{
1
b−a if a ≤ x ≤ b
0 otherwise

.

In Figure 2.2a and Figure 2.2b the pdf and cdf of a uniform distribution
over the interval [10, 20] are shown.

5 10 15 20 25
0

5 · 10−2

0.1

0.15

(a) Uniform pdf over interval [10, 20].

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

(b) Uniform cdf over interval [10, 20].

Figure 2.2: Example of the uniform distribution.

The Binomial Distribution

The binomial distribution arises after performing the same experiment a number
of times. Each experiment has two possible outcomes: success or failure with
probability p and 1 − p respectively. Assume the experiment is performed n
times and let X be a random variable that counts the number of successes i.e.
X assumes values in the set {0, 1, . . . , n}. The pmf Binomn,p is then given as

Binomn,p(x) =

(
n

x

)
· px · (1− p)n−x,

where
(
n
x

)
is the binomial coefficient.

In Figure 2.3a and Figure 2.3b are shown the pmf and cdf for a binomially
distributed random variable.

The Exponential Distribution

The exponential distribution is a continuous distribution arising when expressing
a specific property. Assume a component has a functioning time independent of
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(a) Binomial pmf with 50 trials and p = 0.45
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0
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(b) Binomial cdf with 50 trials and p = 0.45

Figure 2.3: Example of the binomial distribution.

its age, then the probability that it is working after x time units is independent
of its current age y. Let X be the value of the functioning time, then the
property of our concern is expressed as

P(X > x+ y|X > y) = P(X > x).

By definition of conditional probability we have

P(X > x+ y|X > y) =
P ({X > x+ y} ∩ {X > y})

P(X > y)
=

P(X > x+ y)

P(X > y)
,

and combining with the previous formula P(X > x) · P(X > y) = P(X > x+ y).
If we let G(x) = P(X > x) we have the equation

G(x) ·G(y) = G(x+ y),

which in our setting has only one meaningful solution [96]: G(x) = e−λ·x for
some constant λ. Let FX be the cdf of X then by construction FX(x) = 1−G(x)
and by differentiation we get the pdf

Expλ =

{
λ · e−λ·x if x ≥ 0

0 otherwise

In general we parameterise the exponential distribution by λ. Figure 2.4a and
Figure 2.4b show the pdf and cdf of an exponential distribution with λ = 0.5.

An exponential distribution can be shifted L units on the x-axis such that it
assumes values in [L,∞[. This is called a shifted exponential distribution and
has the pdf Expλ,L(x) = Expλ(x− L).
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(a) Exponential pdf with rate 0.5
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(b) Exponential cdf with rate 0.5

Figure 2.4: Example of the exponential distribution.
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(a) Normal pdf with µ = 0 and σ = 2
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(b) Normal pdf with µ = 0 and σ = 2

Figure 2.5: Example of the normal distribution.

The Normal Distribution

The normal distribution is not anchored in a specific experiment (as the binomial
distribution was) or in a mathematical property we want to express (such as
the uniform and exponential distributions). Instead, the normal distribution is
a distribution observed in nature: the height of a human population is normally
distributed. Let X be a normally distributed variable and let sd[X] = σ and
E[X] = µ, then its pdf is

Normµ,σ(x) =
1

σ ·
√

2π
· e−

(x−µ)2

2·σ2 .

In Figure 2.5 is an example of the pdf and cdf shown with expected value
0 and standard deviation 2. Notice that Figure 2.5 is symmetric around 0. If
sd[X] = 1 and E[X] = 0 then X is standard normally distributed and we let Φ
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2.3. Estimating Probability

be its cdf. If X ∼ Normµ,σ then Y = X−µ
σ ∼ Norm0,1. X is said to have been

normalised.
An important feature of the normal distribution is, that the sum of inde-

pendently sampled and identically distributed random variables is normally
distributed. A result generally known as the central limit theorem [96].

Theorem 1 (Central Limit Theorem). Let X1, . . . , Xn be independent and
identically distributed random variables with expected value µ and standard
deviation σ and let Sn =

∑n
i=1Xi. Then for all x ∈ IR

P
(
Sn − nµ
σ
√
n
≤ x

)
→ Φ(x), as n→∞

Remark 1. Recall that the binomial distribution was the result of counting
the number of successes of n experiments and each experiment had success p.
Let each experiment be represented by a random variable Xn that assumes
1 if the experiment is successful and 0 if it is not. All these variables has
expected value p and standard deviation

√
p(1− p). Technically, they are

Bernoulli distributed. Let Y =
∑n
i=1Xi then Y ∼ Binomn,p. By the central

limit theorem we have

P

(
Y − n · p√
p(1− p)

√
n
≤ x

)
→ Φ(x) as n→∞.

Observe here that Y−n·p√
p·(1−p)

√
n

= Y−E[Y ]
sd[Y ] thus normalising Y gives a stan-

dard normally distributed variable hence with large enough n the binomial
distribution can be approximated with a normal distribution.

2.3 Estimating Probability

A frequently occuring problem is that obtaining samples from a distribution is
possible, but the exact distribution is unknown or that getting samples from a
distribution is easy while computing probabilities is very difficult. The latter
is for instance the case for SMC. Despite such difficulties we are nevertheless
interested in the probability, p, of a property, thus we estimate it by the average
of samples on which the property hold.

Let X1, X2, . . . Xn be independent and identically distributed random vari-
ables which are 1 with probability p and 0 with probability 1 − p. Let
Y =

∑n
i=1Xi then Y ∼ Binomn,p with E[Y ] = n · p and Var[Y ] = n · p · (1− p).

An estimator for p is Z = Y
n with E[Z] = E[Y ]

n and Var[Z] = Var[Y ]
n2 .

With large enough n we have Z ∼ NormE[Z],sd[Z] and by normalisation

Q =
Z − E[Z]

sd[Z]
=
Z − E[Y ]

n√
Var[Y ]
n2

=
Z − p·n

n√
n·(p)·(1−p)

n2

=
Z − p√
(p)·(1−p)

n

∼ Norm0,1
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2. Probability Theory

Definition 7 (Confidence Interval). Let X1, . . . , Xn be random samples from
the same distribution and p an unknown parameter of the distribution. If T1

and T2 are two functions of the sample such that

P(T1 ≤ p ≤ T2) = α,

we call the interval [T1, T2] a confidence interval for p with confidence level α.

Now we construct a confidence interval for Q and “translates” this to a
confidence interval for Z. First we find values Z1 and Z2 such that Φ(Z1) = 1−α

2
and Φ(Z2) = 1− 1−α

2 which gives

Φ(Z2)− Φ(Z1) = 1− 1−α
2 − 1−α

2 = 1− 1 + α = α.

Since the normal distribution is symmetric around 0, Z1 = −Z2 thus

α ≈P(−Z2 ≤ Q ≤ Z2) =

P(−Z2 ≤
Z − p√
(p)·(1−p)

n

≤ Z2) =

P
(
−Z2 ·

√
(p)·(1−p)

n ≤ Z − p ≤ Z2 ·
√

(p)·(1−p)
n

)
=

P
(
−Z2 ·

√
(p)·(1−p)

n − Z ≤ −p ≤ Z2 ·
√

(p)·(1−p)
n − Z

)
=

P
(
Z2 ·

√
(p)·(1−p)

n + Z ≥ p ≥ −Z2 ·
√

(p)·(1−p)
n + Z

)
=

P
(
−Z2 ·

√
(p)·(1−p)

n + Z ≤ p ≤ Z2 ·
√

(p)·(1−p)
n + Z

)
This confidence interval depends on p which is the parameter we are esti-

mating. We can replace p with the estimator Z [96] in the left and right hand

side and get p ∈
[
Z − Z2 ·

√
(Z)·(1−Z)

n , Z + Z2 ·
√

(Z)·(1−Z)
n

]
with confidence

α.

Precomputing Sample Size

The above method of constructing the confidence interval relies on first obtaining
the samples, then specify the confidence level and finally based on these construct
the actual interval. It is more satisfying for a user to specify a width, 2 ·δ, of the
confidence interval and the required confidence level, α, and let a tool determine
the number, n, of samples. A nice result [78] (known as the Chernoff-Hoeffding
bound) states that ifX1, X2, . . . , Xn are identically distributed random variables
with mean µ and Y =

∑n
i=1Xi
n then

P(|Y − µ| ≥ δ) ≤ 2 · e−2·n·δ2 ⇒ P(Y ∈ [µ− δ, µ+ δ]) ≥ 1− 2 · e−2·n·δ2 ,
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for some δ. If we want to ensure an interval with at least confidence α we
should ensure that P(Y ∈ [µ− δ, µ+ δ]) ≥ 1− 2 · e−2·n·δ2 ≥ α. Now solving the
inequation for n yields

1− 2 · e−2·n·δ2 ≥ α

⇒1− α ≥ 2 · e−2·n·δ2

⇒1− α
2

≥ e−2·n·δ2

⇒ ln

(
1− α

2

)
≥ −2 · n · δ2

⇒
ln( 1−α

2 )

−2 · δ2
≤ n ,

and thus we should generate at least
ln(

1−α
2 )

−2·δ2 samples.

2.4 Hypothesis Testing

In certain situations we are not interested in the exact probability of a desired
property but wish to assert it is greater than a threshold value θ. Assume the
real, unknown, probability is p and let X1, . . . , Xn be random variables that
are 1 with probability p and 0 with probability 1− p. Let Y =

∑n
i=1Xi then

Y ∼ Binomn,p and E[Y ] = n · p. If p ≥ θ, we expect Y ≥ n · θ. If this is the
result, we accept the hypothesis that p ≥ θ. On the other hand, if Y < n · θ
there is a possibility that the hypothesis is true and should only be rejected in
the case Y is much smaller than θ · n.

The intuition is that a hypothesis should only be rejected if the result is
unlikely given the hypothesis is true. In advance, one should decide how large
the probability of rejecting a true hypothesis is allowed to be. This value is
called the level of significance and denoted α. Having decided on α, we find the
largest value c where

P(X ≤ c|p ≥ θ) ≤ α.

The hypothesis is rejected if the result is less than c. The area from 0 to c is
called the critical region.

The significance bounds the probability of rejecting a true hypothesis but
gives no way of bounding the probability of accepting a false hypothesis. The
power of a test, denoted β, is the probability of acceptance while the hypothesis
is wrong i.e. a test has power β if P(X > c|p < θ) < β. In the above
setting this is uncontrollable. If we want to bound both α and β we need
to introduce an indifference region of width 2 · δ. Instead of testing whether
p ≥ θ we test if p ≥ θ + δ and choose c such that P(X > c|p < θ − δ) < β and
P(X ≤ c|p ≥ θ + δ) ≤ α . An example of an algorithm for finding fixed n and
c, called a single sampling plan, for user specified α, β and δ is provided by
Younes [123].
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Sequential Probability Ratio Test

Assume we have concluded that 1000 samples are needed and that c should
be 100 for having a significance level of α, power β and an indifference region
of width 2 · δ. If the first 101 samples satisfy the property then there is no
need to generate the remaining 899 runs. Intuitively, we can do with a lot less
samples than precalculated if we keep track of the successes during generation
of samples.

By generalising this idea, Wald [118] introduced the sequential probability
ratio test (SPRT) which is a hypothesis testing algorithm that can draw a
conclusion with fewer samples than the precomputed n and c. Assume we want
to test that p ≥ θ and use an indifference region of width 2 · δ and let p0 = θ+ δ
and p1 = θ − δ. The SPRT algorithm then iteratively generates a sample and
validate if the new sample has the desired property. Let X count the number of
samples with the property at iteration i, s be the actual number and let p be
the real probability. Now, the quantity

r =
P(X = s|p = p1)

P(X = s|p = p0)
=

(
i
s

)
(p1

s) · (1− p1)i−s(
i
s

)
(p0

s) · (1− p0)i−s
=

(p1
s) · (1− p1)i−s

(p0
s) · (1− p0)i−s

is calculated and compared to two boundary conditions A and B defined by
the algorithm. If r ≤ B then the hypothesis is accepted and if r ≥ A then the
hypothesis is rejected. In any other case a new iteration is made. Finding A and
B boundaries such that the test has significance α and power β is non-trivial
but using A = 1−β

α and B = β
1−α gives actual significance α′ and power β′

which guarantees α′ + β′ ≤ α+ β. In practice α′ ≤ α and β′ ≤ β holds most of
the times [123].
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This chapter gives an overview of various modelling formalisms. First it discusses
how the discrete behaviour of and interaction between components is modelled.
Then this is generalised to timed systems and the higher level formalism timed
automata is introduced. After this, probabilistic choices are modelled using
discrete time Markov chains and then it is shown how time is added with
the continuous time Markov chains. Afterwards, a stochastic semantics for
compositions of timed automata is given along with some syntactical restrictions
to the syntax of timed automata and this is eventually generalised to stochastic
hybrid automata.

3.1 Labelled Transition System

The most elementary view we can have on a system is that it consists of states
and transitions between states. Transitions are labelled to tell observers what the
system does and to synchronise multiple labelled transition systems (LTSs) [82].

Example 2. Figure 3.1 depicts a LTS for a vending machine. In the initial
state, indicated by the incoming start arrow, the machine waits for a coin from
a user. This is modelled by an input synchronisation coin?. Afterwards it
awaits a selection from the user by waiting for an input synchronisation coff?
or tea?. Finally, it provides coffee or tea through output synchronisations
gCoff! or gTea!.

Let Chan be a set of channels over which components synchronise their
behaviour, then the possible output actions over these channels are Chano =
{a! | a ∈ Chan} and equivalently the possible input actions Chani = {a? | a ∈
Chan}. In general we write a! for outputting on channel a and a? for receiving
on a. For the remainder we abstract from the channels and merely specify the
output and input actions of components. However, we adhere to the convention
that the postfix ? is for input actions, ! is for output actions and that an output
action a! has a single corresponding input action a? and vice versa. For a set of
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VM1

start

VM2VM3 VM41

coin?

coff? tea?

gCoff! gTea!

Figure 3.1: Coffee machine example

output actions Σo we denote by Σo the set of corresponding input actions i.e.
Σo = {a? | a! ∈ Σo}.

Let S be a set of states, Σo a set of output actions and Σi a set of input
actions. A transition relation →⊆ S × (Σo ∪ Σi)× S describes what actions
can be performed to move between states. As per tradition we write s a−→ s′ if
(s, a, s′) ∈→. A transition relation, →, is input-enabled with respect to a set
of input actions Σi if for all s ∈ S there exists a? ∈ Σi and s′ ∈ S such that
s

a?−→ s′ and it is action-deterministic with respect to a set of actions Σ if for
any a ∈ Σ whenever s a−→ s′ and s a−→ s′′ then s′ = s′′.

Definition 8 (Labelled transition system). An LTS is a tuple
(S, s0 ,Σo ,Σi , AP, Pm,→) where

• S is a set of states,

• s0 ∈ S is the initial state,

• Σo is a set of output actions,

• Σi is a set of input actions,

• AP is a set of atomic propositions,

• Pm : S → 2AP gives the propositions that are true in a state and

• →⊆ S × (Σo ∪ Σi)× S is a transition relation which is

1. input-enabled with respect to Σi and

2. action-deterministic with respect to Σi ∪ Σo .

The required input-enabledness is easily guaranteed by adding self-loop on all
states - these are not shown in pictures of LTSs. The possible executions of a
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3.2. Timed Labelled Transition System

∃i, si
a!−→ s′i ∀j 6= i sj

a?−→ s′j

(s1, . . . , sn)
a!−→ (s′1, . . . , s

′
n)

Figure 3.2: Inference rule for parallel composition of n LTSs.

LTS K = (S, s0 ,Σo ,Σi , AP, Pm,→) is a sequence of states and output actions
s0a0!s1a1! . . . , such that for all i si

ai!−→ si+1.

Network of Labelled Transition Systems

Let Σo be a set of output actions partitioned into disjoint sets Σo
1,Σo

2, . . . ,Σo
n

and let K1, . . . ,Kn where Ki = (Si, s0
i,Σo

i,Σo , APi, Pmi,→i) be LTSs. Then
K1, . . . ,Kn can be composed into a network J = K1| . . . |Kn which is a new
LTS KJ = (SJ , s0

J ,Σo , ∅, APJ , PmJ ,→J) with

• SJ = S1 × · · · × Sn,

• s0
J = (s0

1, . . . , s0
n),

• APJ =
⋃n
i=1 APi and

• PmJ(s1, . . . , sn) =
⋃n
i=1 Pmi(si).

The transition relation →J is defined by the rule in Figure 3.2 and says that
if one component wishes to make an output then all others must respond to
that output with the corresponding input - we thus use broadcast as opposed to
handshake communication. Hand-shake synchronisation has inter-dependencies
between components because an output-action of one component can be blocked
by no-one offering the corresponding input synchronisation. Our assumption of
input-enabledness would guarantee this would never happen, but the receiver
would be selected non-deterministically. For the later development of a stochastic
semantics, we wish to only have non-determinism in selecting the output-actions
thus the use of broadcast communication.

Example 3. Consider composing the LTS in Figure 3.3a with Figure 3.1 then
we get the LTS depicted in Figure 3.3b. A possible execution of this composition
is the sequence

R1, M1coin!R2, M2coff!R3, M3 . . .

3.2 Timed Labelled Transition System

Previously we mentioned the need for modelling timed systems. Timed labelled
transition system (TLTS) is an extension of LTS that add delay transitions to
the system.
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R1 start

R2R3

R4

coin!

Coff!

gCoff?

pub!

(a) Researcher.

R1, VM1 start

R2, VM2R3, VM3

R4, VM1

coin!

Coff!

gCoff!

pub!

(b) Composed researcher and Vending ma-
chine. States that are unreacbable from the
intial state R1, VM1 are omitted from the pic-
ture.

Figure 3.3: Composition of LTSs.

Definition 9 (Timed labelled transition system). A TLTS is a tuple
(S, s0 ,Σo ,Σi , AP, Pm,→) where

• S is a set of states,

• s0 ∈ S is the initial state,

• Σo is a set of output actions,

• Σi is a set of input actions,

• AP is a finite set of propositions,

• Pm : S → 2AP maps a state to a set of propositions that are true in that
state

• →⊆ S × (Σo ∪ Σi ∪ IR≥0)× S is a transition relation which is

1. input-enabled with respect to Σi and

2. action-deterministic with respect to Σi ∪ Σo ∪ IR≥0.

If (S, s0 ,Σo ,Σi , AP, Pm,→) is a TLTS, s ∈ S is a state, d ∈ IR≥0 is a number
and s d−→ s′ then one would naturally expect to be able to delay any d′ < d and
from the resulting state be able to delay d − d′ to reach s′. We impose this
requirement to any TLTS and say that time is additive. Another requirement
we impose on the delay transition relation is that a zero-delay cannot change
the state and we assume that time delays are deterministic. The requirements
are formalised as follows [2]:

Time Additive If s d−→ s′ and 0 ≤ d′ ≤ d then s d′−→ s′′
d−d′−−−→ s′ for some s′′,

No delay s
0−→ s and
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3.3. Timed Automata

Time deterministic If s d−→ s′ and s d−→ s′′ then s′ = s′′.

Definition 10 (Timed Run). An infinite timed run over a TLTS K =
(S, s0 ,Σo ,Σi , AP, Pm,→) is a sequence s0d0a0! s1d1a1! s2d2a2! . . . where for
all i there exists s′i such that si

di−→ s′i
ai!−→ si+1.

We denote by Ω(K) all timed runs of K and if π = s0d0a0!s1d1a1! · · · ∈ Ω(K)
then we let π:n = s0d0a0!s1d1a1! . . . dn−1an−1!sn be its finite prefix, πn: =
sndnan!sn+1dn+1an+1! . . . be its finite postfix and let π:i: = (si, di, i!).

Definition 11 (Timed Propositional Run). An infinite timed propositional
run over the TLTS K = (S, s0 ,Σo ,Σi , AP, Pm,→) is a sequence P0d0 P1d1 . . .
where there exists s0d0a0! s1d1a1! · · · ∈ Ω(K) such that for all i Pi = Pm(si).

The set of all propostional runs over K is denoted ΩAP(K).

Network of Timed Labelled Transition Systems

Regarding a composition of TLTSs the transition semantics is the same as for
LTSs with one added rule that for the composition to do a delay all TLTSs
should do the delay i.e.

∀j, sj
d−→ s′j d ∈ IR≥0

(s1, . . . , sn)
d−→ (s′1, . . . , s

′
n)

The delay transition blocks the composition with respect to time if one
TLTS is unable to do a delay d > 0 and no TLTS can perform an output action.
This is counter-intuitive as a real system cannot stop time in this way hence
we assume that for any state s of any TLTS either (1) for all d ∈ IR≥0 there
exists a s′ s.t. s d−→ s′ or (2) there exists a d ∈ IR≥0, an output action a! and
states s′ and s′′ such that s d−→ s′

a!−→ s′′. That is, either the system can do any
delay or it can do some delay and afterwards perform an output. We call this
property time-lock-freedom.

3.3 Timed Automata

Timed labelled transition systems are useful for giving semantics to timed
systems but providing concise descriptions with TLTSs is tedious/impossible.
What is needed is a finite syntax with semantics given by a TLTS. A timed
automaton (TA) [6, 7] is a standard finite state machine equipped with real
valued counters (called clocks) that keep track of the time flow in the system.

If X is a set of clocks then an upper (lower) bound over x is an element
x ./ n where x ∈ X, n ∈ N and ./∈ {<,≤} ( ./∈ {≥, >} ). The set of upper
(lower) bounds over X, B≤(X) (B≥(X) ), is the set of finite conjunctions of upper
(lower) bounds and B(X) is the set of finite conjunctions of upper and lower
bounds. Let tt denote the empty conjunction.
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3. Modelling Formalisms

Example 4. In Figure 3.4 is shown a model of a smart lamp with three settings:
Off, On and Bright. In the Off setting the lamp is turned to On by touching it.
If the lamp is touched a second time within 5 seconds of being turned On it is
turned Bright. After the five seconds in On touching the lamp will turn it Off.
Touching the lamp while it is Bright always turn it Off.

The three settings are indicated by the three locations (the circles) of the
model and the initial setting of Off is indicated by the double concentric circle.
The switching between locations is governed by the edges and on edges are
annotated synchronisations. The model has one clock x which is set to zero
when entering On and the edges to Bright and Off are guarded by the expressions
x>5 and x<=5 to ensure only one is enabled when the synchronisation touch?
is given.

Definition 12 (Timed automaton). A timed automaton is a tuple
(L, l0,Σo ,Σi , X, E, I) where

• L is a finite set of control locations,

• l0 ∈ L is the initial location,

• Σo is a set of output actions,

• Σi is a set of input actions,

• X is a set of clocks,

• E ⊆ L× B(X)× (Σo ∪Σi)× 2X × L is a set of edges between locations and

• I : L → B(X) assigns an invariant to locations.

If X is a set of clocks, then a clock valuation is a function v : X → IR≥0

assigning a real value to all clocks. We let V(X) be the set of all valuations over
X. Let g = (x ./ n) ∈ B(x) and let v ∈ V(X) then we write v � g iff v(x) ./ n and

Figure 3.4: A smart lamp

say that v satisfies g. This is straightforwardly generalised to a conjunction of
bounds.

For defining the semantics of TAs a few operations on valuations is needed:
the delay operator increases the value of all clocks a given number of time units
and the reset operator sets a set of clocks to zero. Let v ∈ V(X), d ∈ IR≥0 and
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3.3. Timed Automata

Y ⊆ X then

(v + d)(x) = v(x) + d and v[Y = 0](x) =

{
0 if x ∈ Y

v(x) Otherwise.

With these operations at our disposal we define the semantics of TA S =
(L, l0,Σo ,Σi , X, E, I) as the TLTS KS = (L × V(X), (l0,~0),Σo ,Σi , L, PmS ,→)
where ~0(x) = 0 for any x ∈ X, PmS(l, v) = l and → is defined as follows:

• (l, v)
d−→ (l, (v + d)) if d ∈ IR≥0 and (v + d) � I(l) and

• (l, v)
a−→ (l′, v′) if there exists (l, g, a, r, l′) ∈ E such that v � g, v′ =

v[r = 0] and v′ � I(l′).

For consistency we require that ~0 � I(l0).

Remark 2. In this mapping we use the locations of the TA as propositions.
Obviously, we can generalise this to more general set of propositions.
For instance, the extended formalism of TA used by Uppaal has integer
variables and hence propositions could be the result of comparison between
variables or even the clock bounds that are true in a state.

Let S1, S2, . . . , Sn be TAs andK1, . . . ,Kn be their underlying TLTSs. Syntac-
tically we compose the TAs with the operator ‖. The semantics of a composition
of TAs, S1‖S2‖ . . . , ‖Sn, is the TLTS JS1‖S2‖...,‖Sn = K1| . . . |Kn.

Example 5. Returning to our smart lamp we show the underlying TLTS in
Figure 3.5. In this drawing, the horizontal axis indicate the value of the clock x
and the vertical position the location of the TA. Only a subset of the transitions
is shown: solid lines correspond to discrete touch? synchronisations whereas
the dashed lines correspond to delay transitions.

0 1 2 3 4 5 6 7 8
Off

On

Bright

Figure 3.5: Timed labelled transition system for the smart lamp in Figure 3.4
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3. Modelling Formalisms

3.4 Discrete Time Markov Chain

A discrete time Markov chain (DTMC) chain [12] consists of a set of states and
a set of transitions between states. To each state is associated a probability dis-
tribution over the transitions i.e. the successor state is selected probabilistically.
The important property of a DTMC is that the probabilities in the current
state is independent from whatever happened in the past. As an example,
consider the DTMC modelling a server in Figure 3.6. Initially, the server is
in the Idle state and may accept a connection with probability 0.10 or stay
idle with probability 0.90. Accepting a connection moves the server into Work

from which it may complete the task with probability 0.99 or break down with
probability 0.01. From here, the server may either be repaired and start idleing
or require longer maintenance and stay in Repair.

Definition 13 (Discrete time Markov chain). A discrete time Markov chain is
a tuple (S, s0 , γ, AP, Pm) where

• S is a countable set of states,

• s0 ∈ S is the initial state,

• γ : S × S → [0, 1] assigns probabilities to successor states with the
requirement

∑
s′∈S γ(s, s′) = 1 for all s ∈ S ,

• AP is a finite set of propositions and

• Pm : S → 2AP maps states to propositions.

Idlestart

Work Repair

0.10

0.900.99

0.01
0.20

0.80

Figure 3.6: A discrete time Markov chain (DTMC)

An infinite run of a DTMC M = (S, s0 , γ, AP, Pm) is an infinite sequence π =
s0s1s2 . . . where for all i, γ(si, si+1) 6= 0. Following notation as for LTSs we
denote by Ω(M) all runs generated by M and let π:n = s0s1 . . . sn−1sn. Let
ω = s0s1 . . . sn be a finite sequence of states, then the collection of paths of
DTMC M with this prefix, CM(ω) = {π ∈ Ω(M) |ω = π:n}, is called the cylinder
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of ω and a measure of the cylinder is PM(ω) =
∏n−1
i=0 γ(si, si+1), where the

product signifies that transitions between states are selected independently
from each other. A σ-algebra over the DTMC is constructed as the smallest
σ-algebra containing all cylinder sets CM(ω) where ω ranges over all possible finite
prefixes [12]. As for LTSs we can also consider the set of propositional runs of a
DTMC (S, s0 , γ, AP, Pm) being ΩAP(M) = {Pm(s0), Pm(s1) . . . | s0, s1, · · · ∈ Ω(M)}.

Example 6. Consider the DTMC in Figure 3.6 and the probability that the
server is idling for two steps then is working and afterwards is idling again. We
are thus interested in the probability of getting a run with the prefix

Idle, Idle, Work, Idle.

If (S, s0 , γ, AP, Pm) is the DTMC then the probability is clearly

γ(Idle,Idle) · γ(Idle, Work) · γ(Work, Idle) =

0.1 · 0.90 · 0.99 = 0.0891

3.5 Continuous Time Markov Chain

A continuous time Markov chain (CTMC) [96] extends the DTMC model by
incorporating real time information into the states. In particular, each state is
associated with an exponential distribution that gives the time the system will
stay in that state.

Definition 14 (Continuous time Markov chain). A CTMC is a tuple
(S, s0 , γ, R, AP, Pm) where

• S is a countable set of states,

• s0 ∈ S is the initial state,

• γ : S × S → [0, 1] assigns probabilities to successor states with the
requirement

∑
s′∈S γ(s, s′) = 1 for all s ∈ S ,

• R : S → IR>0 is a function giving the rate parameter to an exponential
distribution,

• AP is a set of propositions and

• Pm : S → 2AP maps states to propositions

An infinite run of a CTMC (S, s0 , γ, R, AP, Pm) is an infinite sequence π =
s0d0s1d1 . . . where for all i, si ∈ S , di ∈ IR≥0 and γ(si, si+1) 6= 0. The di is
called the sojourn time of si and is the time that the system is waiting in state
si. As for TLTSs we let Ω(M) and ΩAP(M) denote all timed runs and timed
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3. Modelling Formalisms

propositional runs respectively over the CTMC M.
The stochastic semantics is given in the same way as for DTMCs but the cylinder
construction also take the sojourn times into account. A path over a CTMC
M = (S, s0 , γ, R, AP, Pm) is a finite sequence ω = s0I0s1I1 . . . sn where for all
i < n, si ∈ S , γ(si, si+1) 6= 0 and Ii is an interval of IR≥0. The cylinder of runs
of ω is given by

CM(ω) = {π ∈ Ω(M) | ∀i ≤ n, π:i: = (si, di) and di ∈ Ii}

and the probability is PM(ω) =
∏n−1
i=0 γ(si, si+1) ·

∫
Ii
ExpR(si)

(t) dt.

Idle

2
start

Work

1

Repair

0.1

0.10

0.900.99

0.01
0.20

0.80

Figure 3.7: A CTMC

Example 7. In Figure 3.7 is depicted the DTMC as in the DTMC section but
the states are annotated with rates hence creating a CTMC. For this CTMC
we can calculate the probability that it will be idle two steps in a row, then be
working and return to idle. We have previously seen in the DTMC case that
this probability was 0.0891. If we add a time restriction, insisting the final idle
should be reached before 2 time units, the set of runs we are interested in is
captured by the set

{Idle d0 Idle d1 Work d2 Idle | d0 + d1 + d2 ≤ 2}.

The probability of these may be calculated by the integrala:∫ 2

0

Exp2(d0) · 0.1
∫ 2−d1

0

Exp2(d1) · 0.90 ·
∫ 2−d0−d1

0

Exp1(d2) · 0.99 d . . . =

0.0891 ·
∫ 2

0

Exp2(d0) ·
∫ 2−d1

0

Exp2(d1) ·
∫ 2−d0−d1

0

Exp1(d2) d . . . ≈ 0.052

afor conciseness the dd1 dd2 dd3 are replaced by d . . .

32



3.6. Stochastic Semantics for Transitions Systems

Transition Rates Instead of assigning a probability distribution over the so-
journ time and probabilistic chocies for the actual state transition, it is some-
times1 more natural that each transition has an associated exponential distri-
bution governing the time that transition should be taken. The actual state
transition is governed by a race among the transitions.

Consider a system is located in state s0 and may transit to s1, s2, . . . , sn
with rates r1, r2, . . . , rn - we will now see that we can represent this by a CTMC.
Let us consider the probability that the system transits to s1 before time t,
denoted P(≤ t, s1|s0).

P(≤ t, s1|s0) =

∫ t

0

Expr1(x) ·
n∏
i=2

∫ ∞
x

Expri(τ) dτ dx

=

∫ t

0

r1 · e−r1·x ·
n∏
i=2

e−ri·x dx

=

∫ t

0

r1 · e−(
∑n
i=1 ri)·x dx

=r1 ·
[

−1

(
∑n
i=1 ri)

e−(
∑n
i=1 ri)·x

]t
0

=r1

(
−1

(
∑n
i=1 ri)

· e−(
∑n
i=1 ri)·t − −1

(
∑n
i=1 ri)

)
=

r1

(
∑n
i=1 ri)

· (1− e−(
∑n
i=1 ri)·t)

Following equivalent reasoning

P(≤ t, sj |s0) =
rj

(
∑n
i=1 ri)

· (1− e−(
∑n
i=1 ri)·t) =

rj
(
∑n
i=1 ri)

·
∫ t

0

Exp∑n
i=1 ri

(τ) dτ

for any j ∈ {1 . . . n} and thus we can “match” these probabilities by selecting a
sojourn time from Exp∑n

i=1 ri
and afterwards probabilistically choose a succesor

state sj with probability rj∑n
i=1 ri

. Thus exactly a CTMC.

3.6 Stochastic Semantics for Transitions Systems

In this section we develop the stochastic semantics for transition systems. In
particular we present the stochastic semantics presented by David et al. [45].
Before this we try to relate the two existing stochastic/probabilistic semantics
to transition systems. For an LTS with state space S and output actions Σo

we can for each state s assume a pmf γs : Σo → [0, 1] that assigns probabilities
to the individual output actions. This γs would correspond to the transition
probabilities of a DTMC and in effect defining a DTMC. An LTS can thus

1For instance biochemical networks
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be given a probabilistic semantics by assigning probabilities to output actions.
In the case of real time systems modelled by a TLTS, a CTMC is not an
adequate stochastic model since the CTMC model rely on choosing a delay
in a given state and choose a discrete transition independent of the delay. A
TLTS does not behave like this as the set of possible output-actions after a
delay depends on the actual delay. Another problem is that CTMCs only select
delays from exponential distributions which are unbounded whereas TLTS may
define bounded delays.

Definition 15. A stochastic TLTS is a tuple (S, s0 ,Σo ,Σi , AP, Pm,→, γ, µ)
where

• (S, s0 ,Σo ,Σi , AP, Pm,→) is a TLTS,

• γ : S ↪→ Σo → IR≥0 gives a pmf for states that assigns probability mass
to output actions with the requirements that (1) γ(s) is defined if and
only if there exists a! ∈ Σo such that s a!−→ and (2) γ(s)(a!) 6= 0 only if
there exists s′ s.t. s a!−→ s′ and

• µ : S → IR≥0 → IR≥0 gives a pdf for each state with the requirement
that µ(s)(d) 6= 0 only if there exists s′ such that s d−→ s′ and γ(s′) is
defined.

As a short-hand we write µs(d) instead of µ(s)(d) and γs(a!) instead of γ(s)(a!).

Stochastic Semantics for Networks

The semantics for a network is that each component chooses a delay d. The
component with the smallest delay wins the race and performs an output action
(a!) after the delay. The entire network performs the delay d and the losing
components perform the corresponding input action (a?). Afterwards a new
race commences.

As for DTMCs and CTMCs the σ-algebra is defined by a cylinder con-
struction. Two different cylinder constructions can be made. The first [45]
defines the cylinder by means of the actions performed by the system and the
second [53] defines the cylinder by the propositions observed in the runs. Before
defining the cylinders we introduce some short-hand notations: if s is a state of
a network over output action Σo then [s]

x denotes the state s′ for which s
x−→ s′

where x ∈ IR≥0 ∪ Σo . For both delay and output actions s′ is uniquely defined
due to our assumptions about determinism and partitioning of output actions
among the components. Another short-hand notation is indexing into the state
vector: if s = (s1, s2, . . . , sn) then si = si.

Action-Based Cylinders Let J = K1|K2| . . . |Kn be a network over the output
actions Σo where for all Ki = (Si, s0

i,Σo
i,Σi , APi, Pmi,→i, γi, µi). An action-

prefix over the network is an element of {a1!, a2!, a3!, . . . , am! | ∀i, ai! ∈ Σo}. The
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cylinder set for an action-prefix a1!, a2!, a3!, . . . , am! is the set defined as

CAJ (a1!, a2!, . . . , am!) = {s1d1a1!s2d2a2! . . . , am!, · · · ∈ Ω(J)},

The probability of observing a run with the prefix a1!, a2!, . . . , am! from state s
is recursively defined as

Ps(a1!, a2!, . . . , am!) =

∫
t≥0

µsc(t) ·

∏
i 6=c

∫
τ>t

µsi dτ

 ·
γ([s]t)i(a1!) · P[[s]t]

a1!(a2! . . . , am!) dt,

with base case Ps(ε) = 1 and a1! ∈ Σo
c.

On the outermost level we integrate over all possible delays the component
responsible for performing the a1! action is allowed to do. The other components
independently choose a larger delay. Then the probability of performing the
actual action is multiplied and finally, since the remaining steps are independent
from the current one, the probability of seeing the remaining actions is multiplied.

Proposition-Based Cylinders A problem with defining the cylinder sets on the
basis of actions is that most logics are defined on the basis of propositional
runs thus the cylinders should contain the propositions. Furthermore, the
action-based cylinders do not contain timing information which is important
for some timed logics such as MTL [83].

For a network J = K1|K2| . . . |Kn where for all i APKi is the set of proposi-
tions for Ki we define a path to be a sequence ω = P1I1P2I2 . . . Pm, where for
all i, Pi ⊆

⋃
j=1...n APKj and Ii is a non-empty interval of IR≥0. The cylinder

set of ω is

CPJ (P1I1P2I2 . . . Pm) = {P1d1P2d2 . . . Pm · · · ∈ ΩAP(J) | ∀i < m, dj ∈ Ij}

As for the action-based cylinders we can now define the probability of seeing
a run matching ω from state s as:

Ps(P1I1P2I2 . . . Pm) = (P1
?
= Pm(s)) ·

n∑
i=1

∫
t∈I1

µsi(t) ·

∏
j 6=i

∫
τ>t

µsj (τ) dτ

 ·
 ∑
a∈Σo

i

(
γ([s]t)i(a) · P

[[s]t]
a!(P2I2 . . . Pm) dt

)
with base case Ps(P) = (P

?
= Pm(s)) and (P1

?
= P2) = 1 whenever (P1 = P2) and

0 otherwise.
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In this expression it is first checked if the set of propositions true in s matches
those required by the prefix. Then, because it is unknown which component is
going to perform the next action we sum over all components. Inside the sum,
the component winning the race chooses a delay in I1 and all others a delay that
is larger. Afterwards, we sum over all possible output actions of the winning
component, take the probability of performing the action into account and
multiply by the probability of observing the remaining prefix after performing
the action.

3.7 Stochastic Timed Automata

In the previous section we saw how a stochastic semantics is given for a TLTS by
associating a delay density to each state and a probability mass to each possible
output action from a state. In this section we describe how these functions
are defined for TA and get semantics for a structure we call stochastic timed
automaton (STA). Syntactically an STA is almost equivalent to a TA with the
additions that (1) each location is added a rate parameter that indicate how
fast the STA wants to leave the location, (2) edges may only be guarded by
lower bounds and (3) invariants can only be upper bounds. These syntactic
restrictions ensure that if a guard is enabled at some point then it remains
enabled until the invariant is violated.

Definition 16 (Stochastic timed automaton). A stochastic timed automaton
is a tuple (L, l0,Σo ,Σi , X, E, I, R) where

• L is a finite set of control locations,

• l0 ∈ L is the initial location of the STA,

• Σo is a set of output actions,

• Σi is a set of input actions,

• X is a set of clocks,

• E ⊆ L × B≥(X)× (Σo ∪ Σi)× 2X × L is a set of edges between locations,

• I : L → B≤(X) assign invariants to locations and

• R : L → IR>0 assign rates to location.

Let s = (l, v) be a state of the STA S = (L, l0,Σo ,Σi , X, E, I, R) then a
delay is stochastically selected in s in the following way: if the possible delays
are bounded i.e. I(l) 6= tt then the delay is selected uniformly between the
minimal delay before a guard is satisfied and the maximal delay where the
invariant is still satisfied. In case it is not bounded then the delay is selected
from a shifted exponential distribution ExpR(l),min where min is the minimal
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delay before any guard is satisfied. Formally, we define the functions min and
max which extracts the minimal and maximal delay from s = (l, v) as

min(s) = inf{d | ∃ a! s.t. s d−→ a!−→} and max(s) = sup{d | s d−→}.

Given these two functions the delay density is defined as

µs =

{
Uniµ

min(s),max(s) if I(l) 6= tt

ExpR(l),min(s) Otherwise

Regarding actions we use a uniform split among all possible actions. With a few
synctactic additions to the definition of STA this is however easily generalised
to user defined probability mass functions.

(a) Smart lamp from Figure 3.4.

(b) An exponential person.

(c) An uniform person.

Figure 3.8: Smart lamp composed with two different “persons”.
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Example 8. Consider putting the STA in Figure 3.8b in parallel with the TA
of Figure 3.8a then we may consider “what is the probability the lamp is put
into bright within 5 time units”. Since Figure 3.8b has no invariants the delays
in both locations are selected from exponential distributions with parameters
1
3 and 1

2 . The timed propositional runs of interest are

CJ = {〈Off,A〉t〈On,B〉τ〈Bright,C〉 . . . | t+ τ ≤ 5}.

The probability of these runs are

P(CJ) =

∫ 5

0

Exp 1
3

(t)

∫ 5−t

0

Exp 1
2

(τ) dτ dt ≈ 0.59.

Consider inserting Figure 3.8c into the system instead of Figure 3.8b. The
runs satisfying our property are then

CJ =

 〈Off,A〉t〈On,B〉τ〈Bright,C〉 . . . t ∈ [2, 4], τ ∈ [1, 3]
and t+ τ ≤ 5


The probability is now calculated as

P(CJ) =

∫ 4

2

Uniµ2,4(t)

∫ min(3,5−t)

τ=1

Uniµ1,3(τ) dτ dt

=

∫ 4

t

1

2

∫ 5−t

1

1

2
dτ dt

=

∫ 4

t

1

2
·
(

5− t
2
− 1

2

)
dt

=
1

2

[
5 · t
2
− t2

4
− 1

2
· t
]4

2

=
1

2

(
5·4
2 −

42

4
− 4

2
−
(

5 · 2
2
− 22

4
− 2

2

))
=

1

2
(10− 4− 2− (5− 1− 1))

=
1

2

Remark 3. In Example 8, the guard from On to Bright in Figure 3.8a is guarded
by an upper bound despite the syntax in Definition 16 disallowing it. This
works in Uppaal SMC because the synchronisation on the edge is an input
thus the guard is only used to ensure that the underlying TLTS is deterministic
regarding the touch? synchronisation.
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3.8 Stochastic Hybrid Systems

As stressed in the introduction future computer systems will be conditioning
their behaviour on other physical quantities than just time. These physical
quantities are state variables in the sense that in any state one can observe
the current energy level or the heat in a room; but they also change as time
progresses thus time delays affect their value

(a) A stochastic hybrid automaton mod-
elling the ball in Uppaal SMC

(b) A simulation of the bouncing the
ball

Figure 3.9: An stochastic hybrid automaton modelling a bouncing ball.

Figure 3.9a shows a stochastic hybrid automaton (SHA) modelling a bouncing
ball. In this model there are two clocks, p and v, measuring the height of the
ball and its vertical velocity respectively. Initially, p is set to ten and v is set
to zero. Then the velocity changes with the acceleration constant −9.81 and
the position with the rate given by the velocity. These rates can be seen by the
invariant expressions v’==−9.81 and p’==1∗v in the figure. Whenever s is zero
the velocity is multiplied by a random factor of 0.8 and negated - simulating
the bouncing of the ball on the ground. In Figure 3.9b the vertical position of
the ball is shown (y-axis) as time progresses (x-axis).

An stochastic hybrid automaton (SHA) may define the rate of a clock not
only by the value of another clock or a number but also arbitrary arithmetic
expressions over the clocks. This allows for expressing ordinary differential
equations.

Definition 17 (Clock Expression). Let X be a set of clocks then the set of
expressions ExprX is generated by the syntax

e, e1, e2 ::= x | r | e1ope2 | (e)

where x ∈ X, r ∈ IR and op ∈ {+,−, ·, /}.
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Definition 18. A stochastic hybrid automaton is a tuple
(L, l0,Σo ,Σi , X, E, I, R, X

R) where

• L is a finite set of control locations,

• l0 ∈ L is the initial location of the SHA,

• Σo is a set of output actions,

• Σi is a set of input actions,

• X is a set of clocks,

• E ⊆ L × B≥(X)× (Σo ∪ Σi)× 2X × L is a set of edges between locations,

• I : L → B≤(X) assign invariants to locations and

• R : L → IR>0 assign rates to location,

• XR : L → X → ExprX assign rates to each clock in each location

Let (l, v) be a state of SHA (L, l0,Σo ,Σi , X, E, I, R, X
R) with X = {x1, . . . , xn}

and let

dx1
dτ = XR(l)(x1)
dx2
dτ = XR(l)(x2)

...
dxn
dτ = XR(l)(xn),

be the set of differentials equations induced by XR . Let {x̄ : IR≥0 → IR | x ∈
X ∧ x̄(0) = v(x)} be the solution to the differential equations. Then we let
(v + XR · d)(x) = x̄(d). With this generalised delay operation on valuations we
can straightforwardly generalise the semantics from STAs to SHAs and likewise
the stochastic semantics is easily generalised.

Remark 4. Uppaal SMC does not solve the differential equations analytically.
Instead, a step size, ε, is selected by the user and the SMC engine ensures that
any delay step is below this ε. Uppaal SMC is essentially doing a fixed step
Euler integration.
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Remark 5 (Negative Clock Rates ).
The assumption driving the semantics of SHAs until now is that if a guard
is enabled at some point, then it remains enabled for all delays afterwards.
This assumption is true for SHAs with only positive clock rates but at the
moment negative clock rates are present in the SHA this assumption fails.
As an example of this, consider the SHA in Figure 3.10 where the clock x is
10 when entering location B and the edge towards C is enabled. The SHA
therefore choose a delay between [0, 12], say it chooses 2. Then after the delay,
x is 8 and the edge is no longer enabled. Since y is now 12 the SHA cannot
delay and exhibits a time-lock. In fact, the delay density assigns a probability
density to a delay for which the SHA cannot do any action which violates the
requirements from Definition 15.

The problem is that if a clock x has a negative rate, then a lower bound,
x <= n, effectively becomes an upper bound. Similarly, upper bounds becomes
lower bounds. One way to syntactically avoid this problem is to insist that
guards over clocks with negative rate must be upper bound and likewise
invariants must be lower bounds. In Uppaal SMC this syntactic check is not
performed and t is the responsibility of the modeller to ensure models do not
encounter situations as described.

Figure 3.10: An SHA violating the model sanity property.
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Having covered the modelling side of software verification we turn to the
specification side. Two different families of logics have been developed over the
years: branching-time and linear-time logics. The latter considers the future of
a single run to be fixed whereas the former considers the future of a single run
to be undetermined when doing verification. This means that branching time
logics can reason on the entire computation tree.

Linear time logics fits into the SMC framework as the satisfaction of a linear
time property on a run can be determined by considering only that single run.
For branching time logics resampling during a run is necessary. Younes [123]
and Larsen and Skou [85] based their work on branching time logics.

4.1 Linear Temporal Logic

Linear temporal logic (LTL) is a logic that extends basic propositional logic
with modalities for specifying requirements of the future. Definition 19 gives
the grammar for LTL formulas.

Definition 19. A linear temporal logic formula over a set of propositions AP
is generated by the grammar:

ϕ,ϕ1, ϕ2 ::= tt | p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

where p ∈ AP.

Linear temporal logic is interpreted over propositional runs. The intuitive
meaning of a formula ϕ1Uϕ2 is that at some point during a run ϕ2 holds and
ϕ1 holds at all other places before this time. The formula Xϕ expresses that ϕ
holds in the next state of the run.
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Formally, let π = P0, P1 . . . , be a propositional run and let πi: = Pi, Pi+1 . . . then
we define a satisfaction relation between an LTL formula ϕ and π inductively
as follows

• π � tt

• π � p if p ∈ P0

• π � ¬ϕ if π 2 ϕ

• π � ϕ1 ∧ ϕ2 if π � ϕ1 and π � ϕ2

• π � Xϕ if π1: � ϕ

• π � ϕ1Uϕ2 if there exists i ≥ 0 such that πi: � ϕ2 and for all 0 ≤ j < i
we have πj: � ϕ1

Common short hand notations are ♦♦♦ϕ = tt Uϕ, ���ϕ = ¬♦♦♦¬ϕ along with
the classic boolean operators ∨, =⇒ and ↔.

If M is a model that generates propositional runs and Ω(M) is the set containing
all those runs then we say that M satisfies the LTL formula ϕ if for all π ∈ Ω(M),
π � ϕ i.e. a model satisfies an LTL formula if all runs of the model satisfies the
formula.

Example 9. Consider the server in Figure 3.6 that may break down and be
repaired. One specification for this system could be �♦Idle meaning that it
is always the case that the server will return to idle. Clearly, this is not the
case since there is a possibility of looping in Repair.

The standard model checking technique for LTL is to negate the formula ϕ
to ϕ̄ = ¬ϕ, translate ϕ̄ into a Büchi automaton A and construct the product
M×A. If the language L(M×A) = ∅ then M � ϕ otherwise all π ∈ L(M×A) are
counter examples i.e. π 2 ϕ [12].

Consider now that M is a DTMC and assume we want to calculate the
probability that a random run satisfies ϕ, denoted by PM(ϕ). Firstly, we need
to assert that the set

Satφ = {π ∈ Ω(M) | π � ϕ},

is measurable with respect to the σ-algebra over M. This is for instance shown
by Baier and Katoen [12].

For measuring the probability PM(ϕ) with PMC, an automata based approach
similar to MC is adopted. First ¬ϕ is converted into an automaton A. Let
SatA be the of set runs accepted by A ,then PM(ϕ) = 1 − PM(SatA). To
guarantee the measurability of SatA the product M×A must be a DTMC and
to guarantee this, A must be deterministic [12]. Deterministic Büchi automata
are however strictly less expressive than their non-deterministic counterpart and
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as LTL is characterised by non-deterministic Büchi automata another automata
construction is necessary. Deterministic Rabin Automata fits this purpose. [12]

The satisfaction of an LTL formula on a single run can be established for
LTL thus one could guess that LTL is a proper specification language for SMC.
However, the semantics of LTL is not suitable for SMC since LTL is interpreted
over infinite runs and the SMC approach can only provide finite prefixes. A
common way to cope with this is to use the infinite extension semantics [17]
where the last set of propositions is repeated infinitely often. An alternative is
requiring that all U-operators are satisfied along the finite run and introduce
two operators, X and X, to replace the X operator. The Xϕ operator is satisfied
if there exists a next state that satisfies ϕ, whereas Xϕ is satisfied if there exists
a next state where ϕ is satisfied or there does not exist a next state. This
semantics is called finite LTL [17]. Bauer and Haslum [17] showed that the
infinite extension semantics and finite LTL coincide as long as we avoid using
any of the X operators. A problem with using either of the above semantics is
that they collapse runs that are for sure not satisfied and runs for which the
run was just too short to draw a conclusion, with respect to the standard LTL
semantics, into unsatisfaction. Bauer et al. [19] proposed the logic LTL3 with
verification outcomes in the set B3 = {>,⊥, ?} with > being satisfaction, ⊥
not satisfied and ? meaning “don’t know”. This semantics distinguishes the two
cases that were problematic for the other finite semantics but does not fit well
into the SMC framework as the distribution is no longer binomial.

Zuliani et al. [124] introduced a logic called bounded LTL which is interpreted
over infinite runs but for which there always exists a finite prefix after which
the runs satisfies the property or not. The semantics is similar to standard LTL
but the U and R operators are bounded which gives the ability to determine
the satisfaction on a finite prefix. Bounded LTL has been applied in the SMC
framework - although with a Bayesian interpretation of probabilities as opposed
to our frequentist interpretation.

4.2 Metric Temporal Logic

Metric temporal logic (MTL) [83] is an extension of LTL that takes timing
aspects of events into account. Where LTL can only assert an airbag deploys
after a crash, MTL can assert that it takes at most 5 ms to deploy. On a
syntactical level, Definition 20, LTL and MTL looks similar with the main
difference being that the U operator is bounded by a time interval.

Definition 20. A metric temporal logic formula over the propositions AP is
generated by the grammar:

ϕ,ϕ1, ϕ2 ::= tt | p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1UIϕ2

where p ∈ AP and I is an open or closed interval of IR.

Two different semantics have been considered for MTL: the point-wise and
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continuous semantics. The point-wise corresponds to the view that a system is
observed at distinct points in times and only at those time points is it known
what propositions are true. The continuous semantics assumes that a system
can be observed continuously throughout its execution and thus one knows
what propositions are true at any point in time.

In the point-wise semantics an MTL formula is evaluated over timed proposi-
tional runs. Here we only give the semantics of the U operator as the others are
similar to LTL. Let ϕ be an MTL formula and π = P0 d0 P1 d1 . . . be a timed
propositional run then the satisfaction relation is defined as below.

• π � ϕ1UIϕ2 if there exists i ≥ 0 such that
∑i−1
k=0 dk ∈ I, πi: � ϕ2 and for

all 0 ≤ j < i, πj: � ϕ1

The continuous semantics is interpreted over signals which are mappings
from the reals to sets of the propositions. Formally, a signal is a function

S : IR→ 2AP .

Let S be a signal and d ∈ IR≥0, then (S + d) is the signal S′ defined as
S′(x) = S(x+ d) i.e. it shifts the signal by d time units into the future.

Let S be a signal then we define the satisfaction relation as:

• S � tt

• S � p if p ∈ S(0)

• S � ¬ϕ if S 2 ϕ

• S � ϕ1 ∧ ϕ2 if S � ϕ1 and S � ϕ2

• S � ϕ1UIϕ2 if there exists i ∈ I such that , (S + i) � ϕ2 and for all
0 ≤ j < i, (S + j) � ϕ1

Notice that the X operator has been omitted because there is no next state
in a continuous setting. Consider the timed propositional run π = P0 d0 P1 d1 . . .
and a signal constructed to mimic the timed propositional run

S(x) =


P0 if x < d0

P1 if d0 ≤ x < d0 + d1

...

With this construction one could guess that the two interpretations are
equivalent. This is however not the case: consider the formula ttU[2;5]a and the
timed propositional run π = ∅ 1 {a} 7 ∅ . . . and the signal

S(x) =


∅ if x < 1

{a} if 1 ≤ x < 1 + 7

∅ if 1 + 7 < x
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It is clear that π 2 ϕ because a is true after one time unit and the next
set of propositions (where a is not true) is observed after 7 time units whereas
S � ϕ because a is true after 2 units as it has complete oberservability of the
system. This is just one example where they do not coincide but in general the
point-wise semantics is less expressive than the continuous semantics. The MC
problem is known to be undecidable for the continuous semantics [71] but there
are some decidable sublogics. Metric Interval Temporal Logic [9] is a decidable
sub-logic where punctuality is not allowed i.e. all intervals are non-singular
intervals. For many years it was thought that any kind of punctuality constraint
would break the decidability result. Bouyer et al. [29] showed however that
punctuality could be allowed as long as all intervals were bounded. For the
point-wise semantics the MC problem is decidable over finite propositional runs
with non-primitive recursive complexity and it is also decidable for the safety
fragment of MTL over infinite words [97, 98]. Despite these undecidability and
complexity issues of MTL we wish to use it for SMC anyways. The way we
do this is by constructing observers that can recognise if a property is satisfied
by a single timed propositional run. Nickovic and Piterman [95] constructed
deterministic timed automata for MTL under a continuous semantics relying on
a finite variability assumption, i.e. assumed that the system under evaluation
can only change state for a known finite number of times within a time interval.
Since the automata construction is deterministic this could prove useful for
determining if a run satisfies a formula. The finite variability assumption is
likely to hold because systems operate under a certain frequency but finding
the bound on the number of changes is non-trivial. Maler et al. [89] proved
that MTL without the finite variability is non-deterministic in the sense that
no deterministic observer can be made which can check if a MTL formula is
satisfied. This is surely a downfall as we want a real-time linear time specification
formalism for SMC.
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The introduction already mentioned the need for modelling dynamic systems
where components can be instantiated and cease to exist during the life span of
a system. In this chapter TLTSs is generalised to dynamic network of TLTSs
and the logic quantified dynamic metric temporal logic (QDTML) is created as
an extension of MTL.

5.1 Modelling

A classic example of a system that relies on instantiating components on the fly
is a client-server architecture as shown in Figure 5.1.

Figure 5.1: A client server

A main thread of computation is on the server side listening for incoming
connections generated by the traffic on the network. In response to an incoming
connection the main thread immediately spawns a thread for handling the
connected client and returns to listening for connections. The spawned thread
now communicates with the client and terminates when the client disconnects.

In Figure 5.2a and Figure 5.2b is shown a model of the main thread and
the spawned threads respectively as Uppaal SMC SHAs. Figure 5.2a initially
performs some internal setup with initPorts (), then it awaits an incoming
connection by listening for a synchronisation connect? and checks it can support
an extra connection by guarding that edge with hasPort(). If the connection
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can be made a ServerChild is spawned to handle the connection by the update
spawn ServerChild (openPort(),connectID). As part of this spawning a port id,
returned by openPort(), is given to the spawned ServerChild and an id (connectID)
to indicate what client the ServerChild should communicate with is forwarded.

When spawned, Figure 5.2b first has an arbitrary delay in the Accepting
location to model that there is an initial setup time when spawning threads.
Then it immediately accepts the connection on the port granted by the server by
a synchronisation accept[port ]! . Afterwards, in Working, it awaits a disconnect?
request from the client during which the port is closed and the ServerChild itself
cease to exist by the update exit ().

(a) Server() (b)
ServerChild (const
pid_t port ,
const int id)

Figure 5.2:

In Figure 5.3a and Figure 5.3b the two remaining SHA templates for the
model is shown. Figure 5.3b models incoming traffic on the network by spawning
a Client at random times and gives each client a unique id.

The client, Figure 5.3a, at the start tries to connect and while doing so write
its id to the global variable connectID which is captured by the Server to link
the Child to its designated ServerChild . Afterwards the client will be Waiting for
an accept after which it will go into Working. When done working the client
will disconnect? and terminate by exit (). If the accept is not granted, the client
enters a TimeOut-retry loop.

In the framework developed in this thesis a dynamic network consist of a
dynamically evolving number of components where components are running
instances of a template. The set of templates a component can be instantiated
from is given by a template collection J = (T1, . . . , Tn) where each template
defines a TLTS along with information about when another template should be
spawned.
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(a) Client (const int id) (b) Traffic ()

Figure 5.3:

Definition 21 (Template Collection). A template collection over the output ac-
tion Σo partitioned into n disjoint sets Σo

1, . . . ,Σo
n is a tuple J = (T1, . . . , Tn)

where for all i Ti = (Ki, spawni) with

• Ki = (Si, s0
i,Σo

i,Σo \ Σo
i, APi, Pmi,→i) being a TLTS and

• spawni : Si × Σo
i → 2{T1...Tn} for each state-output- action pair giving a

set of templates to be spawned while performing that action,

and for any j 6= k Sj ∩ Sk = ∅.

For statically encoded systems the index in the state vector was used for
addressing individual TLTSs in the semantics. In a dynamic setting this is
not possible, partly because we never know how many TLTSs are active in the
system and partly because we cannot know what type of TLTS is located at any
given index. Instead, we give names to the TLTSs and at the state level store
the active names and map those to a TLTS and to a state. Let PNames be a
set of names then a state of J = (T1, . . . , Tn) is a tuple (Active, T, Sm) where

• Active ⊆ PNames is the names for the active components,

• T : Active → {T1 . . . Tn} maps the names to their given templates and

• Sm : Active →
⋃
i=1...n S

i maps the names to states.

Naturally, we require that if a name is mapped to a given template then
that same name is mapped to a state of the TLTS of that template. Formally,
if T(k) = T and T = ((S, s0 ,Σo ,Σo , AP, Pm,→), spawn) then Sm(k) ∈ S . For the
actual spawning of a template we define an infix operator ⊕ that accepts a state
and a template and instantiates that template to a name: let (Active, T, Sm) be
a state and T = ((S, s0 ,Σo ,Σi , AP, Pm,→), spawn) a template then

(Active, T, Sm)⊕ T = (Active ∪ {k}, T[k 7→ T], Sm[k 7→ s0 ]),

where k ∈ PNames\Active and f [k 7→ i] updates f to map k to i. We generalise
this spawn function to spawn a set (P ) of templates recursively in the following
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way
(Active, T, Sm)⊕ P = ((Active, T, Sm)⊕ p)⊕ (P \ p),

for p ∈ P and base case (Active, T, Sm)⊕ ∅ = (Active, T, Sm).
The transition relation of J is defined as

• (Active, T, Sm)
d−→ (Active, T, Sm′) if for all k ∈ Active Sm(k)

d−→ Sm′(k)

• (Active, T, Sm)
a!−→
k

(Active, T, Sm′)⊕ P where k ∈ Active, Sm(k)
a!−→ Sm′(k),

for all n ∈ (Active \ {k}) if T(n) 6= T(k) then Sm(n)
a?−→ Sm′(n) otherwise

Sm(n) = Sm′(n), T(k) = (K, spawn) and P = spawn(Sm(k), a!).

The first rule expresses that the entire network may delay if all instantiated
components can delay. The second rule says that for the component with
name k to do an action a!, that component should do a!, all those with a
different template should do the corresponding input and all those with the
same template should just ignore the input. After, atomically, performing those
transitions the set P of TLTSs is spawned as requested by the component with
name k. For simplicity we let the initial state be defined as the state where
each TLTS is instantiated with one instance i.e. s0 = (∅,_,_)⊕ {T1, . . . , Tn}.

The set of runs over J, Ω(J), is straightforwardly defined as for statically
encoded networks but a slight modification for the propositional runs is needed.
For statically encoded networks we defined the function PmJ that returned the
union of all propositions that were true for each individual TLTS. For dynamic
networks we redefine PmJ to also index what name satisfies a given proposition
and to give the type of each active name. Formally,

PmJ((Active, T, Sm)) ={(a, p) | a ∈ Active ∧ p ∈ PmT(a)(Sm(a))}
⋃

{(a, T(a)) | a ∈ Active}

and the set of propositional runs then given by

ΩAP(J) = {PmJ(s0)d0PmJ ](s1)d1 . . . |s0d0s1d1 · · · ∈ Ω(J)}.

Adding the above annotations to the propositional runs will prove useful when
we define the semantics of quantified dynamic metric temporal logic (QDTML)

Stochastic Semantics

The stochastic semantics of a template collection is, on a conceptual level,
identical to that of a static network. The semantics are still race based with the
components selecting a delay independently and the winner selecting an action.
Before proceeding to define the probability of a cylinder we need to take care of
a few things though: the spawn operator defined so far is non-deterministically
choosing a name for the spawned TLTS and when spawning a set of templates
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it non-deterministically chooses a spawn ordering. Since this non-determinism
result in possibly different propositional runs for the same sequence of states
we need to determinise this. We do this by defining a total ordering among
the elements in PNames and a total ordering among the templates and always
extract the “smallest” element from PNames\Active and always spawn templates
in the defined order.

We are now ready for defining the probability of a cylinder CJ = P0I0P1I1, . . . , Pm
as

Ps0 (CJ) =(P0
?
= PmJ(s0)) ·

∑
k∈Active

·

 ∑
a!∈Σo

k

∫
I0

µSm(k)(t)· ∏
k′Active\{k}

∫
τ>t

µSm(k′)(τ) dτ

 · γ[Sm(k)]t(a!) · P
[[s0 ]t]

a!/k(C1
J) dt

 ,

where [s]
a!/k

= s′ for s a!−→
k

s′ and Σo
k is the output alphabet associated to the

TLTS with name k.

5.2 Specifying Properties

The logics developed for the statically described systems are not well suited
for specifying properties of dynamically evolving system. The reason is that
the logics would need to refer to specific process instantiations unknown when
making the requirements. Our developed specification formalism, quantified
dynamic metric temporal logic (QDTML), is MTL extended with constructs to
quantify over all possible instances of a specific template and specify requirements
to their future behaviour.

Definition 22 (Quantified Dynamic Metric Temporal Logic). Let T1, . . . , Tn
be templates and let PVar be a set of identifiers where each P ∈ PVar has a
type denoted by (P : T). The set of QDTML formulas is then generated by
the syntax

ϕ,ϕ1, ϕ2 ::=tt | ff | ¬ϕ | Xϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 | forall(P : T)ϕ | P.p |
sum(P : T)(P.p) ./ m

where p ∈ AP with (P : T) and T = ((S, s0 ,Σo ,Σo , AP, Pm,→), spawn), m ∈ N,
./∈ {<,≤,≥, >} and I is an interval of IR≥0.

The operators in Definition 22 that QDTML has in common with MTL has
the same semantical meaning. The construction forall(P : T)ϕ means that in
the current state all the instantiations with type T should satisfy ϕ where P
is bound to the name of instances of T while asserting that ϕ is satisfied. The
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5. Dynamic Systems

construct P.p looks at what name P is bound to and asserts the state of that
name satisfy p. In the client-server example a QDTML formula is for instance
forall(P : ServerChild)P.Working which means that at the current state all
ServerChilds should be working. A more interesting formula is perhaps

forall(P : Client)(P.Waiting =⇒ ♦[0;10](P.Working),

which asserts that if a client is waiting for a connection, then it is granted a
connection within 10 ten time units.

The final new construct is sum(P : T)(P.p) ./ m which sum together the
number of instantiations of T satisfying a proposition and compares the result
to a number m.

Syntactically the construction P.p can appear anywhere in a QDTML formula
but to have a meaning the variable P must be bound to an instantiation by
a binding occurrence forall(P : T)ϕ thus P.p should only be subformulas of
forall(P : T)ϕ. In the semantics a map M : PVar→ PNames∪{?} binds process
names to instantiations of the system where ? means “not bound yet”. The map
is updated to point P to p by writing M [P 7→ p]. With this we can define the
satisfaction relation between a run π = P0, d0, P1, d1, . . . , and a property as:

• π �M tt

• π �M ¬ϕ if π 2M ϕ

• π �M Xϕ if π1: �M ϕ

• π �M ϕ1 ∧ ϕ2 if π �M ϕ1 and π �M ϕ2

• π �M ϕ1UIϕ2 if there exists i such that πi: �M ϕ2,
(∑

k<i dk
)
∈ I and

for all j < i we have πj: �M ϕ1

• π �M forall(P : T)ϕ if for all (a, T) ∈ P0 π �M [P 7→a] ϕ,

• π �M P.p if M(P ) 6= ? and there exists (M(P ), p) ∈ P0

• π �M sum(P : T)(P.p) ./ m if |{(a, T)|(a, T) ∈ P ∧ ∃(a, p) ∈ P}| ./ m.

We say a run π satisfies a property ϕ, written π � ϕ if π �M? ϕ where
M?(P ) = ? for all P ∈ PVar.
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6Thesis Summary

This chapter presents the five papers in the second part of this thesis. For
each of the papers the abstract is given, the publication history is given and
its contribution is presented. Papers A and B are concerned with developing
validation techniques for a weighted extension of MTL. Paper C extends the
SMC approach to dynamic reconfigurable systems and Paper D presents the
logic QDTML for specifying properties of these along with an extenstion of the
validation techique from Paper B. Paper E shows the versatility of the SHA
formalism by modelling biological systems and finally Paper F proposes how to
distribute the SMC effort. The layout of the papers has been altered to fit this
thesis and appendices have been moved to the main text.
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6. Thesis Summary

Paper A - Monitor-Based Statistical Model Checking of WMTL≤

Peter E. Bulychev; Alexandre David; Kim Guldstrand Larsen;
Axel Legay; Guangyuan Li; Danny Bøgsted Poulsen; Amelie Stainer

Abstract We present a novel approach and implementation for analysing
weighted timed automata with respect to weighted metric temporal logic≤
(WMTL≤). Based on a stochastic semantics of weighted timed automata, we
apply statistical model checking (SMC) to estimate and test probabilities of
satisfaction with desired levels of confidence. Our approach consists in gen-
eration of deterministic monitors for formulae in weighted metric temporal
logic≤ (WMTL≤), allowing for efficient SMC by run-time evaluation of a given
formula. By necessity, the deterministic observers are in general approximate
(over- or under-approximations), but are most often exact and experimentally
tight. The technique is implemented in the new tool Casaal that we seamlessly
connect to Uppaal SMC in a tool chain. We demonstrate the applicability of
our technique and the efficiency of our implementation through a number of
case-studies.

Contributions

• Translation from WMTL≤ to non-determistic monitoring automata,

• Tranlsation from WMTL≤ to determistic over- and under-approximating
monitoring automata

Publication History The paper was accepted and presented at the 18th Inter-
national Conference on Logic for Programming and Artifical Intelligence and
Reasoning (LPAR) and published in Proceedings of LPAR LNCS 7180 pages
168-182.
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Paper B - Rewrite-Based Statistical Model Checking of WMTL[a,b]

Peter E. Bulychev; Alexandre David; Kim Guldstrand Larsen;
Axel Legay; Guangyuan Li; Danny Bøgsted Poulsen

Abstract We present a new technique for verifying Weighted Metric Temporal
Logic (WMTL) properties of weighted timed automata. Our approach relies on
statistical model checking combined with a new monitoring algorithm based on
rewriting rules. Contrary to existing monitoring approaches for WMTL ours is
exact. The technique has been implemented in the statistical model checking
engine of Uppaal and experiments indicate that the technique performs faster
than existing approaches and leads to more accurate results.

Contributions

• Developed an exact on-the-fly- monitoring technique for WMTL[a,b]

• Implementation of monitoring technique for MTL[a,b] subset of WMTL[a,b].

Publication History The paper was accepted and presented at the 3rd Interna-
tional Conference on Runtime Verification (RV) and published in Proceeding of
RV LNCS 7687 pages 260-275.
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6. Thesis Summary

Paper C - Statistical Model Checking of Dynamic Network of Stochastic Hybrid
Automata

Alexandre David; Kim Guldstrand Larsen; Axel Legay;
Danny Bøgsted Poulsen

Abstract In this paper we present a modelling formalism for dynamic networks
of stochastic hybrid automata. In particular, our formalism is based on primitives
for the dynamic creation and termination of hybrid automata components during
the execution of a system. In this way we allow for natural modelling of concepts
such as multiple threads found in various programming paradigms, as well as
the dynamic evolution of biological systems.

We provide a natural stochastic semantics of the modelling formalism based
on repeated output races between the dynamic evolving components of a system.
As specification language we present a quantified extension of the logic metric
temporal logic (MTL). As a main contribution of this paper, the statistical
model checking engine of Uppaal has been extended to the setting of dynamic
networks of hybrid systems and quantified MTL. We demonstrate the usefulness
of the extended formalisms in an analysis of a dynamic version of the well-known
Train Gate example, as well as in natural monitoring of a MTL formula, where
observations may lead to dynamic creation of monitors for sub-formulas.

Contributions

• Introduces dynamic networks of stochastic hybrid automata that allows
spawning of components during execution of system,

• introduces Dynamic Metric Temporal Logic (DTML),

• extended WMTL[a,b] monitoring technique to DMTL.

Publication History The paper was accepted and presented at the 13th Inter-
national Workshop on Automated Verification of Critical Systems and published
in Electronic Communication of the European Association of Software Science
and Technology Volume 66.
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Paper D - Quantified Dynamic Metric Temporal Logic for Dynamic Networks of
Stochastic Hybrid Automata

Alexandre David; Kim Guldstrand Larsen; Axel Legay;
Guangyuan Li; Danny Bøgsted Poulsen

Abstract Multiprocessing systems are capable of running multiple processes
concurrently. By now such systems have established themselves as the defacto
standard for operating systems. At the core of an operating system is the ability
to execute programs and as such there must be a primitive for instantiating
new processes - also programs are allowed to die/terminate. Operating systems
may allow the executing programs to split (spawn) into more computational
threads in order to let programs take advantage of concurrent execution as
well. One of the most used modelling languages, Timed Automata, is based on
multiple automata interacting thus they easily model the concurrent execution
of programs. However, this language assumes a fixed size system in the sense
that automata cannot be created at will but must be instantiated when the
overall system is created. This is in contrast with the fact that developers are
able to create threads when needed. In this paper we present our continued
work to incorporate spawning of threads into Uppaal SMC. Our modelling
language, Dynamic Networks of Stochastic Hybrid Automata, is essentially
Timed Automata extended with a spawning primitive and a tear-down primitive.
The dynamic creation of threads has the side-effect that it is no longer possible
to use ordinary logics to specify behaviours of individual threads - because the
threads no longer have unique names. In this paper we propose an extension
of Metric Temporal Logic with means for quantcifying over the dynamically
created threads. This makes it possible to zoom in on individual threads and
specify requirements to their future behaviour. Furthermore, we present a
monitoring procedure for the logic based on rewriting formulas. The presented
modelling language and the specification language have been implemented in
Uppaal SMC version 4.1.18.

Contributions

• Introduces Quantified Dynamic Metric Temporal Logic (QDMTL),

• extends monitoring technique to QDMTL.

Publication History The paper was accepted and presented at the 14th Inter-
national conference on Application of Concurrency to System Design (ACSD)
and appearded in the proceedings of ACSD.
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6. Thesis Summary

Paper E - Statistical Model Checking for Biological Systems

Alexandre David; Kim Guldstrand Larsen; Axel Legay;
Marius Mikocionis; Danny Bøgsted Poulsen; Sean Sedwards

Abstract Statistical Model Checking (SMC) is a highly scalable simulation-based
verification approach for testing and estimating the probability that a stochastic system
satisfy a given linear temporal property. The technique has been applied to (discrete
and continuous time) Markov chains, stochastic timed automata and most recently
hybrid systems using the tool Uppaal SMC. In this paper we enable the application
of SMC to complex biological systems, by combining Uppaal SMC with ANIMO, a
plugin of the tool Cytoscape used by biologists, as well as with SimBiologyR©, a plugin
of Matlab to simulate reactions. ANIMO and SimBiologyR© are two domain specific
tools that have their own user interfaces and formalisms specifically tailored towards
the biological domain. However – though providing means for simulation – both tools
lack the powerful analytic capabilities offered by SMC, which in previous work have
proved very useful for identifying interesting properties of biological systems. Our aim
is to offer the best of the two worlds: optimal domain specific interfaces and formalisms
suited to biology combined with powerful SMC analysis techniques for stochastic and
hybrid systems. This goal is obtained by developing translators from the XGMML
and SBML formats used by Cytoscape and SimBiologyR© to stochastic and hybrid
automata, allowing Uppaal SMC to be used as an efficient backend analysis tool,
that we demonstrate can handle real-world biological systems by pitting it against
the BioModels database. We present detailed analysis on two particular case-studies
involving the ANIMO and SimBiologyR© tools.

Contributions

• Develops translation from SBML to Stochastic hybrid automata,

• develops alternative translation of ANIMO models to stochastic hybrid
automata,

• Shows SHAs are useful for modelling biological systems.

Publication History The paper was submitted, accepted and published in the
International Journal on Software Tools for Technology Transfer.
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Paper F - Checking & Distributing Statistical Model Checking

Peter E. Bulychev; Alexandre David; Kim Guldstrand Larsen;
Axel Legay; Danny Bøgsted Poulsen

Abstract In this paper we propose a general framework for distributed statisti-
cal model checking of networks of priced timed automata. The first contribution
is a new algorithm to distribute sequential hypothesis testing without introduc-
ing bias in the results. The second contribution is an implementation of this
algorithm in Uppaal. The major contribution is an experimental and analytical
evaluation of the approach through case studies, including an analysis of the
SMC algorithm itself.

Contributions

• Develops a distributed algorithm for SMC for use in Uppaal SMC,

• Verifies said algorithm using Uppaal SMC itself

Publication History The paper was accepted and presented at NASA Formal
Methods NFM 4th International Symposium and was published NASA Formal
Methods LNCS 7226.
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AMonitor-Based Statistical Model
Checking of WMTL≤

Abstract We present a novel approach and implementation for analysing
weighted timed automata with respect to weighted metric temporal logic≤ (WMTL≤).
Based on a stochastic semantics of weighted timed automata, we apply statis-
tical model checking (SMC) to estimate and test probabilities of satisfaction
with desired levels of confidence. Our approach consists in generation of deter-
ministic monitors for formulae in weighted metric temporal logic≤ (WMTL≤),
allowing for efficient SMC by run-time evaluation of a given formula. By
necessity, the deterministic observers are in general approximate (over- or
under-approximations), but are most often exact and experimentally tight. The
technique is implemented in the new tool Casaal that we seamlessly connect to
Uppaal SMC in a tool chain. We demonstrate the applicability of our technique
and the efficiency of our implementation through a number of case-studies.

1 Introduction

Model checking (MC) [39] is a widely used approach to guarantee correctness of
a system by checking that its model satisfies a given property. A typical model
checking algorithm explores the state space of a model and tries to prove or
disprove the property holds on the model.

Despite a large and growing number of successful applications in industrial
case studies, the MC approach still suffers from the state space explosion
problem. This problem manifests itself in the form of unmanageable large state
spaces of models with large number of parallel components or large number of
variables. The situation is even worse when a system under analysis is hybrid,
because a state space of such models may lack finite representation [5]. Another
challenge for MC is to analyse stochastic systems, i.e. systems with probabilistic
assumptions about their behaviour.

One of the ways to avoid these complexity and undecidability issues is to
use statistical model checking (SMC) [123]. The main idea of SMC is to observe
a number of simulations of a model and then use results from statistics (e.g.
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Figure A.1: A model (left) and deterministic monitor (right) for the repair
problem

sequential analysis) to get an overall estimate of a system behaviour.
In the present paper we consider the problem of computing the probability

that a random run of a given weighted timed automaton (WTA) satisfies a
given weighted metric temporal logic≤ (WMTL≤). Solving this problem is of
great practical interest since WTAs are as expressive as general linear hybrid
automata [5], a formalism proved useful for modelling real-world hybrid and
real-time systems. Moreover, WMTL≤ [28] is not only a weighted extension
of the well established LTL but can also be seen as an extension of MTL [83]
to hybrid systems. As the model checking problem for WMTL≤ is known to
be undecidable [28], we propose an approximate approach that computes a
confidence interval for the probability. In most of the cases this confidence
interval can be made arbitrary small.

As an example consider a never-ending process of repairing problems [28],
whose WTA model is depicted at Fig. A.1 (left). The repair of a problem has a
certain cost, captured in the model by the clock c1. As soon as a problem occurs
(modelled by the transition labelled by action problem) the value of c grows with
rate 3, until actual cheap (rate 2) or expensive (rate 4) repair is taking place.
Clock x grows with rate 1 (its default behaviour unless other rate is specified).
Being a WTA, this model is equipped with a natural stochastic semantics [45]
with a uniform choice on possible discrete transitions and uniformly selected
delays in locations.

Now consider that we want to express the property that a path goes from
ok back to itself in time less than 10 time units and cost less than 40. This can
be formalised by the following WMTL≤ formula:

okUτ≤9(problem ∧ (¬ok Uτ≤10 ok) ∧ (¬ok Uc≤40 ok))

Here, the WMTL≤-formula ϕ1Uc≤dϕ2 is satisfied by a run if ϕ1 is satisfied
on the run until ϕ2 is satisfied, and this will happen before the value of the
clock c increases with more than d starting from the beginning of the run (τ is
a special clock that always grows with rate 1).

1we will (mis)use the term “clock” from timed automata, though in the setting of WTAs
the clocks are really general real-valued variables
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2. Weighted Timed Automata & Metric Temporal Logic

In order to estimate the probability that a random run of a model satisfies a
given property, our approach first construct deterministic monitoring weighted
timed automata for this property. In fact, it is not always possible to construct
an exact deterministic observer for a property, thus our tool can result in
deterministic under- and over-approximations. For our example, the tool
constructed the exact deterministic monitor presented in Fig. A.1 (right). Here
rates of a monitoring automaton are defined by the rates of the automaton
being monitored, i.e. the rate of c0 is equal to the rate of c.

The constructed monitoring WTA permits the SMC engine of Uppaal to
use run-time evaluation of the property in order to efficiently estimate the
probability that runs of the models satisfy the given property. In our example
Uppaal SMC returns the 95% confidence interval [0.215, 0.225]. If none of the
under- and over-approximation monitors are exact, then we use both of them
to compute the confidence interval.

Our contribution is twofold. First, we are the first to extend statistical
model checking to the WMTL≤ logic. The closest logic that has been studied so
far is the strictly less expressive MTL≤, that does not allow using energy clocks
in the U operator. Second, our monitor-based approach works on-the-fly and
can terminate a simulation as soon as it may conclude that a formula is satisfied
(or violated) by the simulation. Other statistical model checking algorithms
that deal with linear-time properties (cf. [3, 107, 123, 124]) require a posterior
(and expensive) check after a complete simulation of a fixed duration has been
generated.

2 Weighted Timed Automata & Metric Temporal Logic

In this section we describe WTA and weighted metric temporal logic (WMTL≤)
as our modelling and specification formalisms. A notion of monitoring weighted
timed automaton (MWTA) is used to define automatically constructed (deter-
ministic) observers for WMTL≤ properties.

2.1 Weighted Timed Automata

Let X be a set of clocks. A clock bound over X has the form x ./ n where x ∈ X,
./∈ {<,≤,≥, >} and n ∈ Z≥0. We denote the set of all possible clock bounds
over X by B(X). A valuation over X is a function v : X → IR≥0, and a rate vector
is a function r : X → Q. We let V(X) (R(X), respectively) be all clock valuations
(rates) over X. If d ∈ IR≥0, then we define (v + d) to be equal to the valuation
v′ such, that for all x ∈ X we have v′(x) = v(x) + d. If r is a rate vector, then
(v+r ·d) is the valuation v′ such that for all clocks x in X, v′(x) = v(x)+r(x) ·d.
The valuation assigning zero to all clocks is denoted ~0. Given Y ⊆ X, v[Y = 0] is
the valuation equal to ~0 over Y and equal to v over X \ Y.
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A. Monitor-Based Statistical Model Checking of WMTL≤

Definition 23. A WTAa over alphabet Σ is a tuple (L, l0, X
i, Xo, E, W, I, XR)

where:

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• Xi and Xo are finite set of real-valued variables called internal clocks and
observable clocks, respectively,

• E ⊆ L × 2B(X
i∪Xo) × Σ × 2X

i × L is a finite set of edges,

• W : E → R(Xi ∪ Xo) assigns weights to edges, weights of observable clocks
should be non-negative (i.e. W(e)(x) ≥ 0 for any e ∈ E and x ∈ Xo),

• I : L → 2B(X
i∪Xo) assigns an invariant to each location and

• XR : L → R(Xi ∪ Xo) assigns rates to the clocks in each location, rates of
observable clocks should be non-negative.

aIn the classical notion of priced timed automata [10, 20] cost-variables (e.g. clocks where
the rate may differ from 1) may not be referenced in guards, invariants or in resets, thus
making e.g. optimal reachability decidable. This is in contrast to our notion of WTA, which
is as expressive as linear hybrid systems [36].

We say, that a valuation v satisfies a clock bound b = x ./ n (denoted v � b), iff
v(x) ./ n. A valuation satisfies a set of clock bounds if it satisfies all of them or
this set is empty. A state (l, v) of a WTA consists of a location l ∈ L and a
valuation v ∈ V(Xi ∪ Xo). In particular, the initial state of the WTA is (l0,~0).
From a state, a WTA can either delay for some time d or it can perform a
discrete action a, the rules are given below:

• (l, v)
d−→ (l, v′) if v′ = (v + XR(l) · d) and v′ � I(l).

• (l, v)
a−→ (l′, v′) if there exists an edge e ∈ E such that e = (l, g, a, Y, l′),

v � g, v′ = (v[Y = 0] + W(e) · 1) and v′ � I(l′).

Definition 24. An infinite weighted word over a finite set of propositions AP
and clocks X is a sequence π = (P0, v0)(P1, v1) . . . where for all i, Pi ⊆ AP and
vi ∈ V(X).

For i ≥ 0, we denote by πi: the weighted word (Pi, vi)(Pi+1, vi+1) . . . .

A WTA S = (L, l0, X
i, Xo, E, W, I, XR) over Σ generates a weighted word π =

({a0}, v0)({a1}, v1) . . . over Σ and Xo, if there exists a sequence of transitions

(l0,~0)
d0−→ (l0, v

′′
0)

a0−→ (l1, v
′
1)

d1−→ . . .
an−−→ (ln+1, v

′
n+1) . . . ,

s.t. for any i the valuation vi is a projection of v′′i to Xo, i.e. vi(x) is equal
to v′′i (x) for any observable clock x ∈ Xo. We let L(S) denote the set of all
weighted words generated by an WTA S and refer to it as the language of S.
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2. Weighted Timed Automata & Metric Temporal Logic

Note, that since observable clocks are never reset and grow only with positive
rates, the values of observable clocks can not decrease in a word generated by
a WTA. In fact, we restrict ourselves to WTAs that generate cost-divergent
words (i.e. for any observable clock x and constant k ∈ IR≥0 there is vi such,
that vi(x) > k). If we consider that the WTA in Fig. A.1(left) has only one
observable clock c, then this WTA can generate a weighted word (ok, {c 7→ 0.0}),
(problem, {c 7→ 0.0}), (cheap, {c 7→ 10.2}), . . . .

A network of Weighted Timed Automata is a parallel composition of several
WTA with disjoint set of clocks and same set of actions Σ. The automata are
synchronised regarding discrete transitions such that if one automaton performs
a transition a−→ all other also must perform a a−→ transition. The notion of
language recognised by WTA is naturally extended to the networks of Weighted
Timed Automata.

In [45] we proposed a stochastic semantics for WTAs, i.e. a probability
measure over the set of generated weighted words L(S). The non-determinism
regarding discrete transitions for a single WTA is resolved using a uniform
probabilistic choice among the possible transitions. Non-determinism regarding
delays from a state (l, v) of a single WTA is resolved using a density function
µ(l,v) over delays in IR≥0 being either a uniform or an exponential distribution
depending on whether the invariant of l is empty or not.
The stochastic semantics for networks of WTAs is then given in terms of repeated
races between the component WTAs of the network: before a discrete transition
each acWTA chooses a delay according to its delay density function; then the
WTA with the smallest delay wins the race and chooses probabilistically the
action that the network must perform.

2.2 Monitoring Weighted Timed Automata

A monitoring weighted timed automaton (MWTA) SM is used to define allowed
behaviour of a system: a weighted word π over propositions AP and clocks X is
fed as input to SM . The run is read elementwise and SM transits between its
locations in response to each element. The clocks of SM has a corresponding
clock in π which allows SM to measure the elapse of time with respect to a
given clock of π. For accomplishing this, local clocks of SM always grow with
the same rate as their corrsponding clocks in π.

A literal is an element p or ¬p with p ∈ AP and AP being a set of propositions.
A conjunction over AP is a conjunction of literals. If α is a conjunction over
AP and P ⊆ AP then we define a satisfaction relation in the obvious manner
and write P � α. For a finite set of propositions AP, we denote by Conj(AP) the
set of all non-equivalent finite conjunctions over AP. Also we denote by αtt the
empty conjunction.
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A. Monitor-Based Statistical Model Checking of WMTL≤

Definition 25. A monitoring weighted timed automaton over the clocks X

and the propositions AP is a tuple (L, l0, la, X
m, E, m) where:

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• la ∈ L is the accepting location,

• Xm is a finite set of local clocks,

• E ⊆ L × 2B(X
m) × Conj(AP)× 2X

m × L is a finite set of edges and

• m : Xm → X gives the correspondence of local clocks and X.

An MWTA is called deterministic if for any location l ∈ L, set of propositions
P and valuation v ∈ V(Xm) there exists only one edge (l, g, α, Y, l′) ∈ E such that
v � g and P � α.

An MWTA SM = (L, l0, la, X
m, E, m) over clocks X and propositions AP

accepts a weighted word (P0, v0)(P1, v1) . . . over the same X and AP, iff there
exists a finite sequence of states (l0, ν0)(l1, ν1) . . . (ln, νn) of states of SM such
that:

• ν0(x) = ~0,

• for any i < n there exists an edge (li, gi, αi, Yi, li+1) ∈ E such, that:

– νi � gi,
– Pi � αi,
– νi+1(x) = (vi+1(m(x)) − vi(m(x))) if x ∈ Yi and νi+1(x) = νi(x) +

(vi+1(m(x))− vi(m(x))) otherwise

• ln = la is the accepting location of SM .

Thus, after reading an element of an input weighted word, a local clock x of the
MWTA grows with the same rate as the corresponding clock (x) in the input
word.

2.3 Weighted Metric Temporal logic WMTL≤

Definition 26. A WMTL≤ formula ϕ over atomic propositions AP and clocks
X is defined by the grammar

ϕ ::= p |¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 |Xϕ |ϕ1Ux
≤dϕ2 | ϕ1Rx

≤dϕ2

where p ∈ AP, d ∈ N, and x ∈ X.

Remark 6. We restrict WMTL≤ formulas to be in negative normal form. We
need this for our monitoring technique and it provides no limitations as any
standard WMTL≤ formula can be transformed to negative normal form.
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Let ff be an abbreviation for (p ∧ ¬p), and tt be an abbreviation for ¬p ∨ p.
The other commonly used operators in WMTL≤ can be defined by the following
abbreviations: ♦♦♦x

≤d ϕ = tt Ux
≤d ϕ, ���

x
≤d ϕ = ff Rx

≤d ϕ. We assume that there
always exists a special clock τ ∈ X (that grows with rate 1).

For a given weighted word π = (P0, v0)(P1, v1)(P2, v2) . . . over AP and X and
WMTL≤ formula ϕ over AP and X, the satisfaction relation πi: |= ϕ is defined
inductively:

1. πi: � p iff p ∈ Pi

2. πi: � ¬p iff p /∈ Pi

3. πi: � ϕ1 ∧ ϕ2 iff πi: |= ϕ1 and πi: |= ϕ2

4. πi: � ϕ1 ∨ ϕ2 iff πi: |= ϕ1 or πi: |= ϕ2

5. πi: � Xϕ iff πi+1: |= ϕ

6. πi: � ϕ1Ux
≤dϕ2 iff there exists j such that j ≥ i, πj: |= ϕ2, vj(x)−vi(x) ≤ d,

and for all k, i ≤ k < j, πk: |= ϕ1 .

7. πi: � ϕ1Rx
≤dϕ2 if for all j where vj(x)− vi(x) ≤ d πj: � ϕ2 or there exists

a k, i ≤ k < j, where πk: � ϕ1.

We say, that a weighted word π satisfies ϕ, iff π0: � ϕ, and denote by L(ϕ)
the set of all weighted words satisfied by ϕ. Formulas ϕ1 and ϕ2 are equivalent if
they are satisfied by the same weighted words, in which case we write ϕ1 ≡ ϕ2.

Given the stochastic semantics of a WTA S, and semantics of WMTL≤
formula ϕ, we can define PS(ϕ) to be the probability that a random run of S
satisfies ϕ. This probability is well-defined because L(S) ∩ L(ϕ) is a countable
union and intersection of measurable sets and thus it is measurable itself.

3 From Formulas to Monitors

In this section we present a novel procedure for translating WMTL≤ formulas
into equivalent MWTA monitors, providing an essential and efficient compo-
nent of our tool-chain. However, to enable monitor-based SMC it is essential
that the generated MWTA is deterministic. Unfortunately, this might not
always be possible as there are WMTL≤ formulas for which no equivalent
deterministic MWTA exists2. As a remedy, we describe how basic syntactic
transformations prior to translation allow us to obtain deterministic over- and
under-approximating MWTAs for any given formula ϕ. In Section 5, we shall
see that these approximations are tight and often exact.

2For instance, ♦τ≤1(p ∧ �τ≤1(¬r) ∧ ♦τ≤1(q)) is an example of a formula not equivalent to
any deterministic MWTA.
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3.1 Closures & Extended Formulas

In this section, we assume that ϕ is a WMTL≤-formula over propositions AP
and (observable) clocks X. We use Sub(ϕ) to denote all the sub-formulas of ϕ.

In order to further expand ϕ into a disjunctive normal form, we introduce
for each ϕ1Ux

≤dϕ2 ∈ Sub(ϕ) and each ϕ1Rx
≤dϕ2 ∈ Sub(ϕ), one local clock y and

two clock bounds y ≤d and y >d to express some timing information related
to ϕ1Ux

≤dϕ2 and ϕ1Rx
≤dϕ2. Also, we introduce auxiliary formulas ϕ1Ux

≤d−yϕ2

and ϕ1Rx
≤d−yϕ2 to express some requirements that should be satisfied in the

future when we try to guarantee ϕ1Ux
≤dϕ2 ∈ Sub(ϕ) or ϕ1Rx

≤dϕ2 ∈ Sub(ϕ) is
true in the current state.

We define Xϕ = {yϕ1Ux
≤dϕ2
|ϕ1Ux

≤dϕ2 ∈ Sub(ϕ)} ∪ {yϕ1Rx
≤dϕ2
|ϕ1Rx

≤dϕ2 ∈
Sub(ϕ)} to be the set of all local clocks for ϕ, where yϕ1Ux

≤dϕ2
is the clock

assigned to ϕ1Ux
≤dϕ2 and yϕ1Rx

≤dϕ2
is the local clock assigned to ϕ1Rx

≤dϕ2.
We call yϕ1Ux

≤dϕ2
a local clock of U≤-type, yϕ1Rx

≤dϕ2
a local clock of R≤-type

and denote all U≤ clocks by XU
ϕ and all R≤ clock by XR

ϕ. The mapping m

from local clocks Xϕ to observable clocks X is defined by m(yϕ1Ux
≤dϕ2

) = x and
m(yϕ1Rx

≤dϕ2
) = x. The closure of ϕ, written as CL(ϕ), is now defined by the

following rules:

1. tt ∈ CL(ϕ), Sub(ϕ) ⊆ CL(ϕ)

2. If ϕ1Ux
≤dϕ2 ∈ Sub(ϕ) and y ∈ Xϕ is the local clock assigned to ϕ1Ux

≤dϕ2,
then y ≤d, y >d, ϕ1Ux

≤d−yϕ2 ∈ CL(ϕ),

3. If ϕ1Rx
≤dϕ2 ∈ Sub(ϕ) and y ∈ Xϕ is the local clock assigned to ϕ1Rx

≤dϕ2,
then y ≤d, y >d, ϕ1Rx

≤d−yϕ2 ∈ CL(ϕ),

4. If ϕ1, ϕ2 ∈ CL(ϕ), then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 ∈ CL(ϕ)

Obviously, CL(ϕ) has only finitely many non-equivalent formulas.
For a local clock y, we use rst(y) to represent that y will be reset at current

step and unch(y) to represent that y will not be reset at current step. The set
of extended formulas for ϕ, written as Ext(ϕ), is now defined by the following
rules:

1. If ψ ∈ CL(ϕ), then ψ, Xψ ∈ Ext(ϕ)

2. If y ∈ XU
ϕ then unch(y) ∈ Ext(ϕ)

3. If y ∈ XR
ϕ then rst(y) ∈ Ext(ϕ)

4. If ϕ1, ϕ2 ∈ Ext(ϕ), then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 ∈ Ext(ϕ)

Extended formulas can be interpreted using extended weighted words. An
extended weighted word π = (P0, v0, ν0)(P1, v1, ν1)(P2, v2, ν2) . . . is a sequence
where (P0, v0)(P1, v1)(P2, v2) . . . is a weighted word over AP and X, and for

72
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every i ∈ N, νi is a clock valuation over Xϕ such that for all y ∈ Xϕ, either
νi+1(y) = vi+1(m(y))− vi(m(y)) or νi+1(y) = νi(y) + vi+1(m(y))− vi(m(y)).

The semantics for extended formulas is naturally induced by the semantics
of WMTL≤ formulas:

Definition 27. Let π = (P0, v0, ν0)(P1, v1, ν1)(P2, v2, ν2) . . . be an extended
weighted word and Φ ∈ Ext(ϕ). The satisfaction relation πi: �e Φ is inductively
defined as follows:

1. πi: �e y ≤ d iff νi(y) ≤ d

2. πi: �e y > d iff νi(y) > d

3. πi: �e rst(y) iff νi+1(y) = vi+1(m(y))− vi(m(y))

4. πi: �e unch(y) iff νi+1(y) = νi(y) + vi+1(m(y))− vi(m(y))

5. πi: �e ϕ iff πi: � ϕ and ϕ ∈ Sub(ϕ)

6. πi: �e ϕ1Ux
≤d−yϕ2 iff there exists j such that j ≥ i, πj: |= ϕ2, vj(x) −

vi(x) ≤ d− νi(y), πk: |= ϕ1 for all k with i ≤ k < j

7. πi: �e ϕ1Rx
≤d−yϕ2 iff for all j ≥ i such that vj(x) − vi(x) ≤ d − νi(y),

either πj: |= ϕ2 or there exists k with i ≤ k < j and πk: |= ϕ1

8. πi: �e ϕ1 ∧ ϕ2 iff πi: �e ϕ1 and πi: �e ϕ2

9. πi: �e ϕ1 ∨ ϕ2 iff πi: �e ϕ1 or πi: �e ϕ2

10. πi: �e XΦ iff πi+1: �e Φ

πi: is a model of ϕ if πi: �e ϕ and two extended WMTL≤-formulas are said
equivalent if they have exactly the same models.

3.2 Constructing Non-deterministic Monitors

As in the construction of Büchi automata from LTL formulas, we break a
formula into a disjunction of several conjunctions [43]. Each of the disjuncts
corresponds to a transition of a resulting observer automaton and specifies
the requirements to be satisfied in the current and in the next states. In
the rest of this section, we use rst({x1, x2, . . . , xn}) and unch({y1, y2, . . . , yn})
to denote the formula of rst(x1) ∧ rst(x2) ∧ . . . ∧ rst(xn) and the formula of
unch(y1) ∧ unch(y2) ∧ . . . ∧ unch(yn) respectively. A basic conjunction is an
extended formula of the form:

α∧ g∧ rst(X) ∧ unch(Y) ∧ X(Ψ),

where α ∈ Conj(AP), g is a conjunction of clock bounds, X is a set of local clocks
of R≤-type, Y is a set of local clocks of U≤-type, and Ψ is a formula in CL(ϕ).
The α∧ g ∧ rst(X) ∧ unch(Y) part of a basic conjunction specifies requirements
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A. Monitor-Based Statistical Model Checking of WMTL≤

to be satisfied in the current state and Ψ specifies the requirements in the next
state. Note that we will often consider the conjunction of clock bounds, g, as a
set of clock bounds.

Definition 28. Let ϕ be a WMTL≤ formula. Then we define the function
Rew : CL(ϕ)→ Ext(ϕ) recursively as follows:

• Rew(p) = p

• Rew(¬p) = ¬p

• Rew(y ./ d) = y ./ d where ./∈ {≤, >}

• Rew(f ∧ g) = Rew(f) ∧ Rew(g)

• Rew(f ∨ g) = Rew(f) ∨ Rew(g)

• Rew(Xϕ1) = Xϕ1

• Rew(ϕ1 Ux
≤d ϕ2) = Rew(ϕ2)∨(Rew(ϕ1)∧X((y≤d)∧(ϕ1 Ux

≤d−yϕ2))), where
y is the clock assigned to ϕ1 Ux

≤d ϕ2

• Rew(ϕ1 Ux
≤d−y ϕ2) = Rew(ϕ2) ∨ (Rew(ϕ1) ∧ unch(y) ∧ X((y ≤ d) ∧

(ϕ1 Ux
≤d−yϕ2)))

• Rew(ϕ1 Rx
≤d ϕ2) = Rew(ϕ2) ∧ (Rew(ϕ1) ∨ (rst(y) ∧ X(((y ≤ d) ∧

(ϕ1 Rx
≤d−yϕ2)) ∨ (y>d)))), where y is the clock assigned to ϕ1 Rx

≤d g

• Rew(ϕ1 Rx
≤d−y ϕ2) = Rew(ϕ2) ∧ (Rew(ϕ1) ∨ X(((y≤d) ∧ (ϕ1 Rx

≤d−yϕ2)) ∨
(y>d)))

Lemma 3. Let π = (P0, v0, ν0)(P1, v1, ν1)(P2, v2, ν2) . . . be an extended
weighted word and Φ ∈ CL(ϕ). If πi: �e Rew(Φ) then πi: �e Φ.

Proof. Proof by induction in the structure of Φ. Let Φ =

• p
Trivial since Rew(p) = p.

• ¬p
Trivial since Rew(¬p) = ¬p.

• y ./ d
Trivial since Rew(y ./ d) = y ./ d

• ϕ1 ∧ ϕ2

Then Rew(Φ) = Rew(ϕ1)∧Rew(ϕ2) and we need to show that πi: �e ϕ1∧ϕ2.
Since πi: �e Rew(ϕ1) and πi: �e Rew(ϕ2) then by induction hypothesis
πi: �e ϕ1 and πi: �e ϕ2 thus πi: �e ϕ1 ∧ ϕ2.
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• ϕ1 ∨ ϕ2

Similar to above

• Xϕ1

Trivial since Rew(Xϕ1) = Xϕ1.

• ϕ1 Ux
≤d ϕ2

Then Rew(Φ) = Rew(ϕ2) ∨ (Rew(ϕ1) ∧ X((y≤d) ∧ (ϕ1 Ux
≤d−yϕ2))). Since

πi: �e Rew(Φ) then either:

1. πi: �e Rew(ϕ2) and by induction hypothesis then πi: �e ϕ2 and so
πi: �e ϕ1Ux

≤dϕ2, or

2. πi: 2e Rew(ϕ2). Then by the fact that πi: �e Rew(Φ) we know
that πi: � Rew(ϕ1) ∧ X((y≤d) ∧ (ϕ1 Ux

≤d−yϕ2)) thus πi: �e Rew(ϕ1)

implying πi: �e ϕ1. It is not too difficult to see that πi: �e ϕ1

combined with that πi: �e X((y≤ d) ∧ (ϕ1 Ux
≤d−yϕ2)) implies that

πi: �e ϕ1Ux
≤dϕ2.

• remaining cases are omitted. They are quite similar to the above.

Definition 29. Let π = (P0, v0)(P1, v1)(P2, v2) . . . be a weighted word and
ϕ be WMTL≤ formula. We define an extended weighted word π̄ =

(P0, v0, ν0)(P1, v1, ν1) with ν0 = ~0 and for all i > 0:

1. If y is the clock assigned to (ϕ1 Ux
≤d ϕ2) ∈ Sub(ϕ), then

νi+1(y) =


νi(y) + vi+1(x)− vi(x) if νi(y) ≤ d, πi: � ϕ1 Ux

d−νi(y) ϕ2

and π2:ϕ2

vi+1(x)− vi(x) otherwise

2. If y is the clock assigned to (ϕ1 Rx
≤d ϕ2) ∈ Sub(ϕ) then

νi+1(y) =

{
vi+1(x)− vi(x) if πi: � ϕ1 Rx

≤d ϕ2 and πi: 2 ϕ1

νi(y) + vi+1(x)− vi(x) otherwise

Lemma 4. Let π = (P0, v0)(P1, v1)(P2, v2) . . . be a weighted word and Φ ∈
CL(ϕ). If π̄i: �e Φ then π̄i: �e Rew(Φ)

Proof. Induction in the structure of Φ. Let Φ be

• p.
Trivial as Rew(p) = p.
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• ¬p.
Trivial as Rew(¬p) = ¬p.

• y ./ d
Trivial since Rew(y ./ d) = y ./ d

• ϕ1 ∧ ϕ2

As π̄i: � Φ then π̄i: � ϕ1 and π̄i: � ϕ2. By our induction hypothesis
π̄i: �e Rew(ϕ1) and π̄i: �e Rew(ϕ2) thus π̄i: �e Rew(ϕ1) ∧ Rew(ϕ2).

• ϕ1 ∨ ϕ2

Similar to above

• ϕ1Ux
≤dϕ2.

Then Rew(Φ) = Rew(ϕ2) ∨ (Rew(ϕ1) ∧ X((y≤d) ∧ (ϕ1 Ux
≤d−yϕ2))) thus we

need to argue either that π̄i: �e Rew(ϕ2) or that π̄i: �e (Rew(ϕ1) ∧ X((y≤
d) ∧ (ϕ1 Ux

≤d−yϕ2)))

Since π̄i: �e ϕ1Ux
≤dϕ2 then either

1. π̄i: �e ϕ2.
Then by our induction hypothesis π̄i: �e Rew(ϕ2), or

2. π̄i: 2e ϕ2.
Then there exists j > i s.t. vj(x)− vi(x) ≤ d, π̄j: �e ϕ2 and for all
k, i ≤ k < j, π̄k: �e ϕ1. By induction hypothesis then π̄i: �e Rew(ϕ1)
thus now we only need to argue that π̄i: �e X((y≤d)∧(ϕ1 Ux

≤d−yϕ2)))

amounting to show that π̄i+1: �e (y≤d) and that π̄i+1:(ϕ1 Ux
≤d−yϕ2).

To conclude this we need to consider the different values for νi+1(y).
Let

– νi+1(y) = vi+1(x)− vi(x)
Recall that d ≥ vj(x) − vi(x) ≥ vi+1 − vi(x) = νi+1(y) thus
clearly π̄i+1: �e (y≤d). For showing that π̄i+1: �e ϕ1 Ux

≤d−yϕ2

we just need to show that vj(x) − vi+1(x) ≤ d − νi+1(y) as
the remaining requirements are implied from π̄i: �e ϕ1Ux

≤dϕ2.
Consider that

vj(x)− vi+1(x) + νi+1(y)

=vj(x)− vi+1(x) + vi+1(x)− vi(x)

=vj(x)− vi(x) ≤ d

and thus

vj(x)− vi+1(x) + νi+1(y) ≤ d
⇔vj(x)− vi+1(x) ≤ d− νi+1(y)
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– νi+1(y) = νi(y) + vi+1(x)− vi(x)
Then by definition of π̄, νi(y) ≤ d and πi: � ϕ1Ux

≤d−νi(y)ϕ2.
Then it must be the case that vj(x) − vi(x) ≤ d − νi(y) thus
d ≥ vj(x) − vi(x) + νi(y) ≥ vi+1(x) − vi(x) + νi(y) = νi+1(y)
hence clearly π̄i+1: �e (y≤d).
For showing that π̄i+1: �e ϕ1 Ux

≤d−yϕ2 we just need to show that
vj(x) − vi+1(x) ≤ d − νi+1(y) as the remaining requirements
are implied from π̄i: �e ϕ1Ux

≤dϕ2. Consider now that νi+1(y) +
vj(x) − vi+1(x) = νi(y) + vi+1(x) − vi(x) + vj(x) − vi+1(x) =
νi(y)− vi(x) + vj(x) ≤ d⇔ vj(x)− vi+1(x) ≤ d− νi+1(y)

• Remaining cases are omitted as they are quite similar to the above.

The next Lemma 5 and main Theorem 2 provides the construction of a
monitor from a formula.

Lemma 5. Let ϕ ∈ CL(Φ). Then Rew(ϕ) can be transformed into a disjunction
of several basic conjunctions.

Proof. Structural induction in the structure of ϕ. Let ϕ be

• p.
Since Rew(p) = p = p∧ rst(∅) ∧ unch(∅) ∧ X(tt) the lemma holds.

• ¬p.
Since Rew(¬p) = ¬p = (¬p∧ rst(∅) ∧ unch(∅) ∧ X(tt)) the lemma holds.

• x ./ n.
Since Rew(x ./ n) = x ./ n = αtt ∧ (x ./ n) ∧ rst(∅) ∧ unch(∅)X(tt)) where
αtt denotes the empty conjunction of propositions the lemma holds.

• ϕ1 ∧ ϕ2.
Then by induction hypothesis Rew(ϕ1) =

∨k1
i=1(α1

i∧g1
i ∧rst(X1

i )∧unch(Y1
i∧

X(ψ1
i ) for some k1 and Rew(ϕ2) =

∨k2
j=1(α2

j∧g2
j ∧rst(X2

j )∧unch(Y2
j∧X(ψ2

j )
for some k2

Since

Rew(ϕ1 ∧ ϕ2) = Rew(ϕ1) ∧ Rew(ϕ2) =

(∨k1i=1(α1
i ∧ g1

i ∧ rst(X1
i ) ∧ unch(Y1

i ) ∧ X(ψ1
i ))
∧

(∨k2j=1(α2
j ∧ g2

j ∧ rst(X2
j ) ∧ unch(Y2

j ) ∧ X(ψ2
j ) =

k1∨
i=1

∨k2j=1(α1
i ∧ α2

j ) ∧ (g1
i∧2

j ) ∧ rst(X1
i ∪ X2

j ) ∧ unch(Y1
i ∪ Y2

j ) ∧ X(ψ1
i ∧ ψ2

j ),

the lemma holds
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• Remaining cases are similar to the above.

Theorem 2. Let ϕ be a WMTL≤-formula over the propositions AP and the
clocks X. Let the MWTA Sϕ= (L, l0, la, X

m, E, m) over the clocks X and the
actions Σ = 2AP be defined as follows:

• L = {lψ |ψ ∈ CL(ϕ) } is a finite set of locations;

• l0 = lϕ is the initial location;

• la = ltt is the accepting location;

• Xm = Xϕ is the set of all local clocks,

• (lψ, g, α, r, lψ′) ∈ E if α∧g∧rst(X)∧unch(Y)∧X(ψ′) is a basic conjunction
of ψ, and that X ⊆ r ⊆ (Xm \ Y) and

• m is defined by m(yϕ1Ux
≤dϕ2

) = x and m(yϕ1Rx
≤dϕ2

) = x.

Then L(ϕ) = L(Sϕ).

Proof.

• L(ϕ) ⊆ L(Sϕ)
Let π ∈ L(ϕ) and let π̄ = (P0, v0, ν0)(P1, v1, ν1)(P2, v2, ν2) . . . be as defined
in Definition 29 then by π ∈ L(ϕ) we know that π̄ �e ϕ.

By structural induction in ϕ we now show that if π̄0: �e ϕ then there exists
accepting sequence of states (lϕ, ν0)(lψ1

, ν1) . . . (lψm−1
, νm−1)(ltt, νm) for

some formulas ψ1, ψ2 . . . ψm−1 and some m. Let ϕ be

– p.
Then a basic conjunction of Rew(ϕ) is p ∧ rst(∅) ∧ unch(∅) ∧ X(tt).
Let r = {y ∈ Xm | ν1(y) = v1(m(y))− v0(m(y))}. Since ∅ ⊆ r ⊆ Xm \ ∅
there exists an edge (lϕ, ∅, p, r, ltt) and thus (lϕ, ν0)(ltt, ν1) is an
accepting sequence of Sϕ.

– ¬p.
Similar to above

– x ./ n.
Similar to above

– ϕ1 ∧ ϕ2.
Then π̄ � ϕ1 and π̄ � ϕ2 and thus by induction hypothesis there
exist accepting sequences of states

(lϕ1 , ν0)(lϕ1
1
, ν1) . . . (lϕn−1

1
, νn−1)(ltt, νn)
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and
(lϕ2 , ν0)(lϕ1

2
, ν1) . . . (lϕk−1

2
, νk−1)(ltt, νk),

for some k and n. Assume without loss of generality that n < k,
then it can be shown by induction in n that there exists a sequence

(lϕ1∧lϕ2
, ν0)(lϕ1

1∧ϕ1
2
, ν1) . . . (lϕn−1

1 ∧ϕn−1
2

, νn−1)(lϕn2 , νn)

of states of Sϕ.
Thus an accepting sequence of states is

(lϕ1∧lϕ2
, ν0)(lϕ1

1∧ϕ1
2
, ν1) . . . (lϕn−1

1 ∧ϕn−1
2

, νn−1)(lϕn2 , νn)

(lϕn+1
2

, νn+1) . . . (lϕk−1
2

, νk−1)(ltt, νn)

– ϕ1 ∨ ϕ2.
Assume without loos of generality that π �e ϕ1 then by induction
hypothesis there exists an accepting sequence of states

(lϕ1 , ν0)(lϕ1
1
, ν1) . . . (lϕn−1

1
, νn−1)(ltt, νn)

and a basic conjunction α ∧ rst(X) ∧ unch(Y) ∧ X(ϕ1
1) of Rew(ϕ1).

Since α ∧ rst(X) ∧ unch(Y) ∧ X(ϕ1
1) is also a basic conjunction of

Rew(ϕ) clearly

(lϕ1∨ϕ2 , ν0)(lϕ1
1
, ν1) . . . (lϕn−1

1
, νn−1)(ltt, νn)

is a valid sequence of states of Sϕ.

– ϕ1Ux
≤dϕ2.

Then either

∗ π̄ �e ϕ2.
Using similar reasoning as in the ∨ case it is very easy to
construct an accepting sequence using the induction hypothesis.

∗ there exists an n where π̄n: �e ϕ2 and for all j < n, π̄j: �e ϕ1

and vj(x)− v0(x) ≤ d.

Firstly consider that since π̄0: �e ϕ, then π̄0: �e Rew(ϕ) and
consequently a basic conjunction of Rew(ϕ) is satisfied. As
Rew(ϕ) = Rew(ϕ2) ∨ (Rew(ϕ1) ∧ X((y ≤ d) ∧ ϕ1Uy

d−yϕ2)) and
π̄0: 2e ϕ2, clearly π̄0: �e (Rew(ϕ1) ∧ X((y ≤ d) ∧ ϕ1Uy

d−yϕ2))).
Then it must be the case that a basic conjunction of Rew(ϕ1) is
true. Let that be

αϕ1
∧ gϕ1

∧ rst(Xϕ1
) ∧ unch(Yϕ1

) ∧ X(ψ′1).
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A basic conjunction of Rew(ϕ) which is satisfied is then

αϕ1
∧gϕ1

∧ rst(Xϕ1
)∧unch(Yϕ1

)∧X(ψ′1∧ (y ≤ d)∧ (ϕ1Ux
d−yϕ2))

and thus the state (lψ′1∧(y≤d)∧(ϕ1Ux
d−yϕ2), ν1) is reachable.

We now show that there exists a sequence of states

(lψ1 , ν1) . . . (lψnn , νn),

where for all i ≥ 1, ψi = ψ′i ∧ (y ≤ d) ∧ (ϕ1Ux
d−yϕ2) for some

formula ψ′i and π̄i: �e ψi .
base case, i = 1

Trivial.
Inductive step, i<n

Since π̄i: �e ψi then π̄i: �e ψ′i and thus one basic conjunction
of Rew(ψ′i), say αψ′i∧gψ′i∧rst(Xψ′i)∧unch(Yψ′i)∧X(ψ′′i ), must
be satisfied. Also, since i 6= n we know π̄i: �e ϕ1 and hence
one basic conjunction of Rew(ϕ1), say αϕ1

∧ gϕ1
∧ rst(Xϕ1

)∧
unch(Yϕ1

) ∧ X(ϕ′1) is satisfied.
A basic conjunction of Rew(ψi) is

αψ′i ∧ αϕ1
∧ (y ≤ d) ∧ gψ′i ∧ gϕ1

∧ rst(Xψ′i ∪ Xϕ1
)∧

unch(Yψ′i ∪ Yϕ1
∪ {y}) ∧ X(ψ′′i ∧ ϕ′1 ∧ (y ≤ d) ∧ ϕ1Ux

d−yϕ2).

thus clearly the state (lψ′′i ∧ϕ′1∧(y≤d)∧ϕ1Ux
d−yϕ2), νi+1) is reach-

able in Sϕ.
In (lψn , νn) of Sϕ we know that π̄n: �e ϕ2 and we know that
ψn = ψ′n ∧ (y ≤ d) ∧ (ϕ1Ux

d−yϕ2) for some ψ′n. By definition

Rew(ψn) =Rew(ψ′n) ∧ (y ≤ d) ∧ (Rew(ϕ2) ∨ (Rew(ϕ1) ∧ unch({y})∧
X((y ≤ d) ∧ (ϕ1Ux

d−yϕ2))))

=(Rew(ψ′n) ∧ (y ≤ d) ∧ Rew(ϕ2))∨
(Rew(ψ′n) ∧ (y ≤ d) ∧ Rew(ϕ1) ∧ unch(y)∧
X((y ≤ d) ∧ (ϕ1Ux

d−yϕ2))).

Using arguments as in the ∧ case it can easily be seen that
π̄n: �e Rew(ψ′n) ∧ ((y ≤ d) ∧ Rew(ϕ2) implies there exists an
accepting sequence from (lψn , νn).

– Remaining cases omitted.

• L(Sϕ) ⊆ L(ϕ)
Let π = (P0, v0)(P1, v1)(P2, v2) . . . and let π ∈ L(Sϕ). Then there exists
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edges (lψ0 , g0, α0, r0, lψ1)(lψ1 , g1, α1, r1, lψ2) . . . (lψn−1 , gn−1, αn−1, rn−1, lψn)

with ψ0 = ϕ, ψn = tt and valuations ν0, ν1, . . . , νn such that ν0 = ~0 and
for all i, 0 < i < n, there exists a basic conjunction αi ∧ gi ∧ rst(Xi) ∧
unch(Yi)∧X(ψi+1) of Rew(ψi) where νi � gi, Pi � αi, Xi ⊆ ri ⊆ Xm \Yi and
for all y ∈ X, νi+1(y) = νi[ri = 0](y) + vi+1(m(y))− vi(m(y)).
We now consider the extended weighted word ~π = (P0, v0, ν0)(P1, v1, ν1)

(P2, v2, ν2) . . . and show that for all k, ~πk: �e ψk. We do induction in
the distance to lψn and use as induction hypothesis that for some i,
~πn−i: �e ψn−i and use this to show that ~πn−(i+1): �e ψn−(i+1).

Base case, i = 0 Since ψn−0 = ψn = tt this is trivially true.

Inductive step We need to show that ~πn−(i+1): �e ψn−(i+1) which
amounts to showing that one basic conjunct of Rew(ψn−(i+1)) is
satisfied. One basic conjunct of Rew(ψn−(i+1)) is

αn−(i+1) ∧ gn−(i+1) ∧ rst(Xn−(i+1)) ∧ unch(Yn−(i+1)) ∧ X(ψn−(i)).

Since there was en edge in the automaton clearly Pn−(i+1) � αn−(i+1)

and equivalently we know νn−(i+1) � gn−(i+1). By induction hy-
pothesis we know that ~πn−i: �e ψn−i thus we only need to prove
that the rst(Xn−(i+1)) and unch(Yn−(i+1)) subformulae are satis-
fied. By definition of Sϕ then for any x ∈ Xn−(i+1), νn−i(x) =
vn−i(m(x))− vn−(i+1)(m(x)). This is the requirement for satisfying
rst(Xn−(i+1)). Similarly by definition we know that for any clock in
x ∈ Yn−(i+1) νn−i(x) = νn−(i+1)(x) + vn−i(m(x))− vn−(i+1)(m(x)).

Example 10. Fig.A.2a is a MWTA obtained with our approach for f =
(♦x≤1p) ∨ (�y≤2q) = (tt Ux≤1p) ∨ (ff Ry≤2q).

3.3 Constructing Deterministic Monitors

The construction of section 3.2 might produce non-deterministic automata. In
fact, as stated earlier, there exist WMTL≤ formulas for which no equivalent
deterministic MWTA exists. To get deterministic MWTA for WMTL≤-formulas,
we further translate formulas in disjunctive form into the following deterministic
form by repeated use of the logical equivalence p⇔ (p ∧ q) ∨ (p ∧ ¬q).

F =

n∨
i=1

(
αi ∧ gi ∧

mi∨
k=1

(rst(Xik) ∧ unch(Yik) ∧ X(Ψik))

)
where for all i ∈ {1, . . . , n}: mi is a positive integer, Xik ⊆ Xϕ is a set of local
clocks of R≤-type and Yik ⊆ Xϕ is a set of local clocks of U≤-type, and for all
i 6= j: αi ∧ gi ∧ αj ∧ gj is ff.
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f

a c c e p t

p f1

!p ,  x0 :=0

f2

q & ! p ,  y 0 : = 0

p & ( x 0 < = 1 )

! p & ( x 0 < = 1 )  

! ( y 0 < = 2 )

q & ( y 0 < = 2 )

(a) Non-deterministic monitor

f

a c c e p t

p

f1

!p&!q ,  x0 :=0 f1 |  f2

q & ! p ,  x 0 : = 0 , y 0 : = 0

p & ( x 0 < = 1 )

! p & ( x 0 < = 1 )
! ( y 0 < = 2 ) |

( p & ( x 0 < = 1 ) )

! p & ! q & ( x 0 < = 1 ) & ( y 0 < = 2 )  
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q & ! ( x 0 < = 1 ) & ( y 0 < = 2 )

! ( y 0 < = 2 )

q & ( y 0 < = 2 )

(b) Deterministic under-approximation monitor

Figure A.2: Monitoring weighted timed automaton for f ≡ (♦x≤1p) ∨ (�y≤2q),
with
f1 ≡ (x0 ≤ 1) ∧ (ttUx≤1−x0

p) and f2 ≡ ((y0 ≤ 2) ∧ (ffRy≤2−y0q)) ∨ (y0 > 2).

Using the facts that X distributes over ∨, and rst(X) and unch(X) are mono-
tonic in X, the following formulas are obviously strengthened (Fu) respectively
weakened (F o) versions of F :

Fu =

n∨
i=1

(
αi ∧ gi ∧ rst

(
mi⋃
k=1

Xik

)
∧ unch

(
mi⋃
k=1

Yik

)
∧ X

(
mi∨
k=1

Ψik

))

F o =

n∨
i=1

(
αi ∧ gi ∧ rst

(
mi⋂
k=1

Xik

)
∧ unch

(
mi⋂
k=1

Yik

)
∧ X

(
mi∨
k=1

Ψik

))

Interestingly, by simply applying the construction of Theorem 2 to Fu (F o) we
immediately obtain a deterministic under-approximating (over-approximating)
MWTA Suϕ (Soϕ) for ϕ. Moreover, if during the construction of Suϕ we see that
Fu is always semantically equivalent to F , then Suϕ is an exact determinisation
of ϕ, i.e. L(Suϕ) = L(ϕ) (the same is true for over-approximation).

Example 11. (continued) Fig.A.2b is the under-approximation deterministic
MWTA for f = (♦♦♦x≤1p) ∨ (���y≤2q).

4 The Tool Chain

Figure A.3 provides an architectural view of our tool chain. The tool chain
takes as input a WMTL≤ formula ϕ, a WTA model S, as well as statistical
parameters ε, α for controlling precision and confidence level. As a result a
confidence interval for the probability PS(ϕ) with the desired precision and
confidence level is returned.
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ϕ

Tool chain

Casaal uppaal SMC

So
ϕ

Sϕ

Su
ϕ

S ǫ, α

PS(ϕ)

Figure A.3: Tool chain architecture

Casaal The tool chain includes the new tool component Casaal for gen-
erating monitors. The tool is implemented in C++ and is build on top of the
Spot3 open-source library for LTL to Büchi automata translation. We also use
Buddy4 BDD package to handle operations over Boolean formulas. Given a
WMTL≤ formula ϕ, Casaal may construct an exact MWTA Sϕ, as well as
two – possibly approximating – MWTAs, Suϕ and Soϕ. The tool also reports if
one of these approximations is exact (i.e. recognises exactly the language of ϕ).
Table A.1 demonstrates some experimental results for Casaal. The formulas
were also used in [61] and for comparison we list their results as well.

formula automaton states trans time(s)

pUτ≤1(qUτ≤1(rUτ≤1s))

nondet 5 14 0.02
under 9 58 0.02

over 9 56 0.04
Geilen 14 30

(p→ �τ≤5q)Uτ≤100�
τ
≤5¬p

nondet 7 19 0.01
under 9 32 0.01

over 9 32 0.01
Geilen 21 64

(((pUτ≤4q)Uτ≤3r)Uτ≤2s)Uτ≤1t)

nondet 17 121 0.02
under 17 121 0.03

over 17 121 0.03
Geilen 60 271

Table A.1: Experimental results for WMTL≤ formulas.

UPPAAL SMC [45, 46] is a tool that allows estimating and test PS(φ), i.e. the
probability that a random run of a given WTA model M satisfies φ, where φ
is a WMTL≤ formula restricted to the form ♦c≤dψ and ψ is a state predicate.
Estimation is performed by generating a number of random simulations of S,
where each simulation stops when either it reaches a state when ψ is satisfied,
or c ≤ d is violated.

Combining CASAAL and UPPAAL SMC Casaal can generate monitors for
general weighted words thus if AP is the set of propositions and X the set of
clocks then a weighted run is π = (P0, v0)(P1, v1) . . . where for all i, Pi ⊆ AP

3http://spot.lip6.fr/wiki/
4http://sourceforge.net/projects/buddy/develop
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and vi ∈ V(X). As a result of this, the edges of the created monitors may
contain labels of the form p ∧ q and thus require two propositions to be true
simultaneously. The weighted word generated by a network of WTAs over the
actions Σ is however simpler as here, for all i, Pi ∈ {{a}|a ∈ Σ} and thus only
one proposition is true at any given time in these weighted words. With this in
mind, an edge lψ

g,α,r−−−→ lψ′ where α = p ∧ q can clearly be removed from the
generated monitor as p and q can never be satisfied simultaneously. Also, an
edge lψ

g,α,r−−−→ lψ′ where α = ¬p1 ∧ ¬p2 . . .¬pn can be transformed into a set
of edges {lψ

g,q,r−−−→ lψ′ |q ∈ Σ \ {p1, p2, . . . pn}}. These transformations ensures
the MWTA can be synchronised with a WTA.

Given the above transformation let us describe how we use Uppaal SMC
together with Casaal to estimate the probability that a random run of a WTA
model S satisfies a general WMTL≤ property ϕ, i.e. PS(ϕ).

Let us first assume, that one of two deterministic approximations for ϕ
returned by Casaal is exact. This means, that we have MWTA Sdetϕ =

(L, l0, la, X
m, E,m) such that L(Sdetϕ ) = L(ϕ). First, we turn Sdetϕ into input-

enabled automaton by introducing a rejecting location lr and adding comple-
mentary transitions to lr from all other locations. Then we augment MWTA
Sdetϕ with a clock c† that will grow with rate 1 in rejecting location lr, and with
rate 0 in all other locations. Additionally, for every clock c ∈ Xm we duplicate
all rates and transition weights from the corresponding clock m(c) to make
sure, that the clocks of Sdetϕ grow with the same rate as the corresponding
clocks of the automaton S being monitored. Forming a parallel composition
of S and Sdetϕ , we may now use Uppaal SMC to estimate the probability
p = PS||Sdetϕ

(♦c
†

≤1(la)). This can be done because of the following theorem:

Theorem 3. If S produces cost-divergent runs only, then each simulation of
S||Sdetϕ will end up in accepting or rejecting location of Sdetϕ after finite number
of steps.

If none of the two MWTAs Soϕ and Suϕ are exact determinisation of Sϕ (i.e.
L(Auϕ) ( L(ϕ) ( L(Aoϕ)), then we use both of them to compute upper (using Soϕ)
and lower (using Suϕ) bounds for PS(ϕ). Indeed, if n1 (n2, correspondingly) out
of m random simulations of S||Suϕ (S||Soϕ, correspondingly) ended in accepting
location lua (loa, correspondingly), then with significance level of α we can accept a
hypothesisH1 (H2, correspondingly) that PS(ϕ) ≥ n1/m−ε (PS(ϕ) ≤ n2/m+ε).
By combining hypothesis H1 and H2 we can obtain a confidence interval
[n1/m− ε, n2/m+ ε] for PS(ϕ) with significance level of 1− (1−α)2 = 2α−α2.

5 Case Studies

We performed several case studies to demonstrate the applicability of our tool
chain. In the first case study we analyse the performance of Casaal on a
set of randomly generated WMTL≤ formulae. In the second case study we
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5. Case Studies

use a model of a robot moving on a two-dimensional grid, this model was first
analysed in [14] using the manually constructed monitoring timed automaton.

5.1 Automatically Generated Formulae

In the first case study we analyse the performance of Casaal on a set of
randomly generated WMTL≤ formulae. We generated 1000 formulae with 2,
3 and 4 actions, and created deterministic over and approximations for these
formulae. Each of the formulae have 15 connectives (release, until, conjunction
or disjunction) and four clocks.

For the formulae where only one or none of the approximations was exact
(i.e. L(Suϕ) 6= L(Sϕ) or L(Soϕ) 6= L(Sϕ)), we measured the “stochastic difference”
between approximations by generating a number of random weighted words
and estimating the probability that the over approximation accepts a random
word, when the under approximation does not.

Table A.2 reports the amount of formulae for which the under or over
approximation was exact and the amount of formulae where none of them was
exact. It also contains the average time spent for generating the monitors and
the average number of locations, and the stochastic difference.

5.2 Robot Control

x=0

x=0
fireice

normal

goal
fire

normal

goal
ice

goal
Accept

x<=5x<=3

x<=3

x<=5

Figure A.4: Observer
automaton used in [14]

We consider the case of a robot moving on a two-
dimensional grid that was explored in e.g. [14]. Each
field of the grid is either normal, on fire, cold as ice
or it is a wall which cannot be passed. Also, there is
a goal field that the robot must reach. The robot is
moving randomly i.e. it stays in a field for some time,
and then randomly moves to one of the neighbouring
fields (if it is not a wall). Figure A.5 shows a robot
controller implementing this along with the grid we use.

We are interested in the probability that the robot reaches its goal location
without staying on consecutive fire fields for more than one time units and on
consecutive ice fields for more than two time units.

In [14] the authors solved this problem by manually constructing a monitoring
automaton to operate in parallel with the model of the robot. The automaton
they used is depicted in Figure A.4. Using WMTL≤ we can express the same
requirement more easily as ϕ ≡ (ϕ1 ∧ ϕ2)Uτ≤10goal, where:

# exact Avg. time (s) Avg. size Stochastic difference
Actions under over none one under over under over no exact one exact

2 831 542 169 289 0.24 1.01 6.35 6.35 0.27 0.15
3 706 370 294 336 1.42 2.75 12.29 12.29 0.05 0.03
4 586 233 414 353 8.66 13.05 22.97 22.97 0.01 0.02

Table A.2: Results for the random generated formula test.
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Figure A.5: (a) A 6× 6 grid. The black fields are walls, the fields with vertical
lines are on fire and the fields with horizontal lines contain ice. The circle
indicates the robot’s starting position and the square the goal.
(b) WTA implementing the random movement of the robot.
(c) Cumulative distribution of the robot reaching the goal, staying too long in
the fire or too long on the ice.

ϕ1 ≡ ice =⇒ ♦♦♦τ≤2(fire∨ normal∨ goal)

ϕ2 ≡ fire =⇒ ♦♦♦τ≤1(ice∨ normal∨ goal)

Casaal produces an MWTA (6 locations, 55 edges) that is an exact under-
approximation for ϕ. Based on this MWTA, our tool chain estimates the
probability that the random behaviour of the robot satisfies ϕ to lie in the
interval [0.373, 0.383] with a confidence of 95%. Fig. A.5c shows how we can
visualise and compare the different distributions using the plot composer of
Uppaal SMC.

Energy

We extend the model by limiting the energy of the robot that will stop moving
when it runs out of energy. Furthermore, it can regain energy while staying on
fire fields and use additional energy while staying on ice fields. Let x be the
clock accumulating the amount of consumed energy. Now, we can express the
property ϕ ≡ (ϕ1 ∧ ϕ2 ∧ ¬noEnergy)Ux

≤5goal that the robot should not use
more than 5 units of energy while obeying the requirements from before. The
tool chain estimates the probability that the robot satisfies this requirement to
lie in [0.142; 0.152] with a confidence of 95%.

6 Related and Future Work

To our knowledge, we are the first to propose and implement an algorithm for
translation of WMTL≤ formulae into monitoring automata. However, if we
level down to MITL≤, there are several translation procedures described in
the literature that are dealing with this logic. First, Alur et al. [9] presents

86



6. Related and Future Work

a procedure that is mostly theoretical and is not intended to be practically
implemented. Second, Maler et al. [90] proposed a procedure to translate MITL
into temporal testers (not the classic timed automata), their procedure also
has not been implemented. Nickovic and Piterman [95] proposed an approach
how to translate MTL to deterministic timed automata under finite variability
assumption (this assumption is not valid for the WTA stochastic semantics that
we use). Finally, Geilen [60] has implemented a procedure to translate MITL≤
to timed automata, but his approach works in the continuous semantics.

For future work we aim at extending our monitor- and approximate deter-
minization constructions to WMTL[a,b] with (non-singleton) cost interval-bounds
on the U modality in order to allow for SMC for this more expressive logic.
Here a challenge will be how to bound the length of the random runs to be
generated.
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BRewrite-Based Statistical Model
Checking of WMTL[a,b]

Abstract We present a new technique for verifying Weighted Metric Temporal
Logic (WMTL) properties of weighted timed automata. Our approach relies on
statistical model checking combined with a new monitoring algorithm based on
rewriting rules. Contrary to existing monitoring approaches for WMTL ours
is exact. The technique has been implemented in the statistical model checking
engine of Uppaal and experiments indicate that the technique performs faster
than existing approaches and leads to more accurate results.

1 Introduction

Runtime verification (RV) [18, 68] is an emerging paradigm used to design a
series of techniques whose main objective is to instrument the specification of a
system (code, ...) in order to prove/disprove potentially complex properties at
the execution level. Over the last years, RV has received a lot of interest and
has been implemented in several toolsets. Such tools have successfully been
applied on several real-life case studies.

The main problem with RV is that, contrary to classical verification tech-
niques, it does not permit assessing the overall correctness of the entire system.
Statistical model checking (SMC) [22, 107, 108, 120] extends runtime verification
capabilities by exploiting statistical algorithms to get evidence that a given
system satisfies some property. The core idea of the approach is to monitor
several executions of the system. The results are then used together with
algorithms from statistics to decide whether the system satisfies the property
with a probability greater than some threshold. Statistical model checking
techniques can also be used to estimate the probability that a system satisfies
a given property [75]. In contrast to classical exhaustive formal verification
approaches, a simulation-based solution does not guarantee a result with 100%
confidence. However, it is possible to bound the probability of making an error.
Simulation-based methods are known to be far less memory and time intensive
than exhausative ones, and are sometimes the only option [122]. Statistical
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model checking, which clearly complements RV, is widely accepted in various
research areas such as software engineering, in particular for industrial applica-
tions, or even for solving problems originating from systems biology [64, 81].

To get a more accurate intuition, Fig. B.1 provides a schematic view of a
statistical model checker and its interaction with RV procedures.

Generator

Validator

Core algorithm

M , τ

φ

θ,ε

Pr[ ≤ τ ](φ) =ψ ± ε with confidence θ

Run

Yes/No

Inconclusive

Figure B.1: A statistical model checker. The run generator first generates a
run of M , which is propagated into the run validator. The run validator then
validates if the run satisfies the property ϕ and returns Y es or No to the core
algorithm. Afterwards the core algorithm decides if another run is needed or if
it, based on the accumulated knowledge, can draw a conclusion.

The run generator is responsible for generating runs of the model under
verification and the run validator, which corresponds to the RV part of the
effort, validates if a run satisfy the property or not. The core algorithm collects
the simulation results until sufficient samples has been obtained to provide an
overall result. The core algorithm is computationally lightweight compared to
the remaining two. An optimisation of SMC is therefore most easily obtained
by optimising either the run generation or the run validation. In this paper, we
focus on the run validation part.

In our work, we consider combining RV and SMC techniques in order to
verify complex quantitative properties (performance evaluation, scheduling, ..)
over rich systems. More precisely, we are interested in computing the probability
that a random run of a weighted timed automaton (WTA) [20] satisfies a formula
written in Weighted Metric Temporal Logic (WMTL) [28]. Weighted timed
automaton is a rich formalism capable of capturing (quantitative) non-linear
hybrid systems, while WMTL corresponds to the real-time extension of the
linear temporal logic equipped with cost operators. In this paper, due to the
use of SMC, we assume that the scope of the temporal operators is bounded,
i.e., that one can decide whether a run satisfies a formula by only looking at
a finite prefix. Unfortunately, it is known that, due to the expressivity of the
automata-based model, the problem of verifying WMTL with respect to WTA
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is undecidable [27] – hence it cannot be tackled with existing formal techniques
such as model checking. Another drawback is that it is known that, even for the
case where temporal operators are bounded, WMTL is more expressive than the
class of deterministic timed automata [89]. This latter result implies that there is
no automata-based runtime monitoring procedure for WMTL, even for the case
where the scope of the temporal operators is finitely bounded. A first solution
to the above problems could be to use a three-valued logic [19]. However, the
absence of decision results is often unsatisfactory from an engineering point of
view, especially when dealing with performance analysis.

In [45], we proposed the first SMC-based verification procedures for the
eventually and always fragments of WMTL. Our work relies on a natural
stochastic semantic for WTA. The work was implemented in Uppaal SMC
and applied to a wide range of case studies. However, our original work does
not consider nested temporal operators for which a solution was first proposed
by Clarke et al. in [124]. While the approach in [124] is of clear interest, it only
works for a subset of MTL where the temporal operators can only be upwards
bounded, i.e., the lower bound is 0. In [35] we proposed another approach for
this fragment, called WMTL≤, that relies on monitoring automata representing
over and under approximations of solutions to the WMTL≤ formula. This
approach, which has been implemented in Casaal and Uppaal SMC, exploits
confidence levels obtained on both approximations in order to estimate the
probability to satisfy the formula. The first drawback with the approach in [35]
is that both the under and over approximation depend on some precision that
has an influence on the confidence level returned by the SMC algorithms. The
second drawback is that automata-based monitors may be of large size, hence
intractable.

In this paper, we propose a new monitoring approach for WMTL formu-
las with upper and lower bounds, called weighted metric temporal logic[a,b]

(WMTL[a,b]). Contrary to existing approaches that work by first constructing a
monitor for the property, ours exploit a graph-grammar procedure that rewrite
the formula on-the-fly until a decision can be taken. The approach extends that
of [104] to a timed logic. Contrary to existing off-line monitoring approaches [55],
ours stops as soon as the formula is proved/disproved, which allows saving
computation time and hence drastically improve both memory and time perfor-
mances. Our approach has been implemented in Uppaal SMC and evaluated
on several case studies, from random large-size formulas to concrete applications.
As expected, there are many situations where we clearly outperform [35] while
being more precise!

Outline In section 2 we introduce our modelling formalism Networks of WTAs.
Later in section 3 we define the WMTL[a,b] logic, and section 4 describes
our rewrite-based algorithm for monitoring of WMTL[a,b] properties. The
experiments are described in section 5.
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2 Networks of Weighted Timed Automata

In this section, we briefly recap the formalism of networks of WTAs [20]. Let
X be a set of variables called clocks. A clock valuation over X is a function
v : X → IR that assigns a real-valued number to each clock. We let V(X) denote
all possible valuations over X and let ~0 be the valuation that assign zero to all
clocks. An upper (resp. lower) bound over X is of the form x ./ m where x ∈ X,
m ∈ N, and ./∈ {<,≤} (resp. ./∈ {>,≥}). We denote by B≤(X) (resp. B≥(X))
the set of upper (resp. lower ) bounds over X. We let B(X) = B≤(X)∪B≥(X). Let v
be a valuation over X and let g ⊆ B(X) then we write v � g if for all (x ./ m) ∈ g,
v(x) ./ m. For a valuation v ∈ V(X), a function r : X → Q and a d ∈ IR we let
(v + r · d) be the valuation over X such that (v + r · d)(x) = v(x) + r(x) · d for
every clock x ∈ X. Let Y ⊆ X then v[Y = 0] is the valuation that assigns zero to
every clock in Y and agrees with v on all other clocks. For two valuations v1

and v2 we let v2 − v1 be the valuation v′ where v′(x) = v2(x)− v1(x).

Definition 30. A WTA over the finite set of actions Σ and the set of proposi-
tions AP is a tuple (L, l0, X, X

o, E, I, R, XR , Pm), where

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• X is a finite set of clocks,

• Xo ⊆ X is a finite set of observable clocks

• E ⊆ L × 2B
≥(X) × Σ × 2X × L is a set of edges,

• I : L → 2B
≤(X) assigns invariants to the locations,

• R : L → Q assigns transition rates to locations,

• XR : L → X → Q assign rates to the clocks of the WTA and

• Pm : L → 2AP assign propositions to the locations of the WTA.

The semantics of a WTA S = (L, l0, X, X
o, E, I, R, XR , Pm) is given as a timed

transition system with state space L × V(X) (denoted (SP(S)) and initial state
(l0,~0) (denoted init(S)). For consistency, we require ~0 � I(l0). Furthermore,
we require that the rates of the observable clocks in any location is greater than
0. The transition rules are given below:

Delay Transition (l, v)
d−→ (l, v′) where d ∈ IR≥0, if v′ = (v + XR(l) · d) and

v′ � I(l)

Discrete Transition (l, v)
a−→ (l′, v′) if there exists (l, g, a, Y, l′) ∈ E such

that v � g, v′ = v[Y = 0] and v′ � I(l′).
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2. Networks of Weighted Timed Automata

To prepare for composition of WTAs we assume that the set of actions Σ is
partitioned into a set of input actions Σi and output actions Σo . Also, we
assume the WTA is input-enabled for the input actions Σi , i.e. that for any
a ∈ Σi and any state (l, v) there exists a transition (l, v)

a−→ (l′, v′). A WTA
is deterministic for Σ′ ⊆ Σ if there exists at most one transition for each a ∈ Σ.
In the paper, we let Si = (Li, l

i
0, Xi, X

o
i , Ei, Ii, Ri, X

R
i , Pmi)

Network of WTAs A network of WTAs (NWTA) is a set of WTAs executing
in parallel. The automata communicate via broadcast synchronisation.

Let S1, S2, . . . , Sn be WTAs over the common set of actions Σ. Furthermore,
let Σ1,Σ2 . . .Σn be mutually disjoint subsets of Σ and for all i let Si be
deterministic and input-enabled with respect to Σ \ Σi and deterministic with
respect to Σi. Then we call N = S1‖S2‖ . . . ‖Sn a network of WTAs over Σ
where Σi is the output actions of Si and Σ \ Σi is its input actions.

The semantics of the network of WTAs is a timed transition system with
the state space SP(N ) = SP(S1)× SP(S2)× · · · × SP(Sn) and the initial state
(init(S1), init(S2), . . . , init(Sn)). We refer to an element s = (s1, s2, . . . ,
sn) ∈ SP(N ) as a state vector of the network and let si = si. The transition
rules of a network is given as

• (s)
d−→ (s′) if for all i, 1 ≤ i ≤ n, si d−→ s′

i, and d ∈ IR≥0

• (s)
a−→ (s′) if for all i, 1 ≤ i ≤ n si

a−→ s′
i, and a ∈ Σ.

Consider the WTAs given in Fig. B.2. WTAs (a) and (b) are competing
to force (c) to go either to location Left or to location Right. Initially both
competitors are waiting for between 3 and 5 time units where after one of them
moves the (c) to either Left or Right. Afterwards both competitors have a period
where time progresses and nothing occurs. Indeed, when one of the competitors
returns it must wait for between 3 and 5 time units again and choose to either
move (c) or let it be and enter a waiting period again. The primary difference
between (a) and (b) is that (b) rushes to return to a position from which it can
change (c) and (a) returns within 5 time units.

x:=0
x:=0

x:=0 x>=3
flip[0]!

back[0]!
flip[1]?

x<=5

x<=5

(a)

x:=0
x>=1

x:=0

x:=0 x>=3

1

flip[1]!
back[1]!

flip[0]?

x<=5

(b)

Left Right

flip[0]?

flip[1]?

flip[1]?

flip[0]?

(c)

Figure B.2: Network of Timed Automata.
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B. Rewrite-Based Statistical Model Checking of WMTL[a,b]

Let s = ((l1, v1), (l2, v2), . . . , (ln, vn)) be a state vector for S1‖S2‖ . . . Sn.
Then we let Pm(s) =

⋃n
i=1 Pmi(li). Let x ∈ Xi for som i then V (s, x) = vi(x).

Definition 31 (Run). Let S1‖S2‖ . . . ‖Sn be a network of WTAs. A run of
the network is an infinite weighted word (P0, v0)(P1, v1) . . . where for all i, vi
is a valuation over Y =

⋃
i∈{1,2,...,n} X

o
i and

• v0 = ~0 ,

• there exists an alternating sequence of delays and discrete transitions
s0

d0−→ s′0
a0−→ s1

d1−→ . . . , where for all i, 0 < i, and for all x ∈ Y

vi(x) = vi−1(x) + (V (s′i−1, x)− V (si−1, x)).

• s0 = (init(S1), init(S2), . . . , init(Sn)) and

• for all j, j ≥ 0, Pj = Pm(sj).

For a run π = (P0, v0)(P1, v1) . . . , we let πi: = (Pi, vi)(Pi+1, vi+1) . . . . A run π is
called diverging for clock x if for any i there exists a j such that vj(x) > vi(x)+1.
A run is diverging if it is diverging for all clocks. In what follows, we assume
that there always exists a clock τ in a WTA, and this clock always have a rate
of 1 and is never reset, i.e. τ measures the time length of a run.

Stochastic Semantics In [45] we introduced the stochastic semantics for
NWTAs, i.e. proposed a probability measure on the set of all runs of a network
and described an algorithm for generating a random run. Roughly speaking, the
stochastic semantics of WTA components associates probability distributions
on both the delays one can spend in a given state and on the transition between
states. In Uppaal SMC uniform distributions are applied for bounded delays
and exponential distributions for the case where a component has unbounded
delay. In a network of WTAs the components repeatedly race against each
other, i.e. they independently and stochastically decide on their own how much
to delay before outputting, with the “winner” being the component that chooses
the minimum delay.

Statistical Model Checking As said in the introduction, we use SMC [22, 107,
108, 120, 123] to compute the probability for a network of WTAs to satisfy
a given property. Given a program B and a trace-based property1 φ , SMC
refers to a series of simulation-based techniques that can be used to answer
two questions: (1) qualitative: is the probability for B to satisfy φ greater or
equal to a certain threshold θ (or greater or equal to the probability to satisfy
another property φ′) [120]? And (2) quantitative: what is the probability for B
to satisfy φ [75]? In both cases, the answer is correct up to some confidence
level, i.e., probability that the algorithm does not make mistake, whose value

1i.e. a property with semantics defined on traces.
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3. Weighted Metric Temporal Logic

can be configured by the user. For the quantitative approach, which we will
intensively use in this paper, the method computes a confidence interval that
is an interval of probabilities that contains the true probability to satisfy the
property. The confidence level is interpreted as the probability for the algorithm
to compute a confidence interval that indeed contains the probability to satisfy
the property.

Our Uppaal SMC toolset implements a wide range of SMC algorithms for
WTAs. In addition, the tool offers several features to visualise and reason on the
results. Until now, the monitoring procedure for WMTL relies on a technique
that computes over and under approximation monitors for the formulas. In
this paper, we go one big step further and propose a more efficient and precise
monitoring procedure.

3 Weighted Metric Temporal Logic

In this section we review the syntax and semantics of weighted metric temporal
logic[a,b] (WMTL[a,b]). The syntax is defined as follows.

Definition 32. A WMTL[a,b] formula over the propositions AP and the clocks
X is generated by the grammar:

ϕ,ϕ1, ϕ2 ::= tt | ff | p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Ux
[a,b]ϕ2 | ϕ1Rx

[a,b]ϕ2

where a, b ∈ Q, a ≤ b, p ∈ AP and x ∈ X.

As one can see in the syntax, we restrict to a fragment of WMTL where temporal
operators are bounded. As stated in the introduction, this fragment is sufficient
to break any decidability results. Observe that WMTL[a,b] is an extension of
MTL [83] in which U and R can also be bounded for arbitrary clocks. As an
example, bounding U and R over arbitrary clock allows one to express that a
communication device should recover from a state without spending more than
x units of energy. This can be accomplished by adding an observable clock,
that measures the energy consumption, to the model and bound the U and R
modalities over this clock.

We interpret WMTL[a,b] formulas over runs of WTAs. Informally, the
WMTL[a,b] formula ϕ1Ux

[a,b]ϕ2 is satisfied by a run if ϕ1 is satisfied on the run
until ϕ2 is satisfied, and this should happen before the value of the clock x
increases with more than b units starting from the beginning of the run, and after
it increases for more than a units. Formula Xϕ means that ϕ should be satisfied
starting from the next observation of the run. The logical operators are defined as
usual, and the release operator R is dual to U i.e. ϕ1Rx

[a,b]ϕ2 ≡ ¬(¬ϕ1Ux
[a,b]¬ϕ2).

Formally, let π = (P0, v0)(P1, v1) . . . be a timed run. The satisfaction relation
is inductively defined as

• π � tt

95



B. Rewrite-Based Statistical Model Checking of WMTL[a,b]

• π � p if p ∈ P0

• π � ¬p if p /∈ P0

• π � ϕ1 ∨ ϕ2 if π � ϕ1 or π � ϕ2

• π � ϕ1 ∧ ϕ2 if π � ϕ1 and π � ϕ2

• π � Xϕ if π1: � ϕ

• π � ϕ1Ux
[a,b]ϕ2 if there exists i such that a ≤ vi(x) − v0(x) ≤ b, πi: � ϕ2

and for all j < i we have πj: � ϕ1

• π � ϕ1Rx
[a,b]ϕ2 if for all i where a ≤ vi(x) − v0(x) ≤ b, πi: � ϕ2 or there

exists j < i where πj: � ϕ1.

In the rest of the paper, we use the following equivalences: ♦♦♦x
[a,b]ϕ = ttUx

[a,b]ϕ

and ���x
[a,b]ϕ = ffRx

[a,b]ϕ. We also use ���[a,b]ϕ instead of ���τ[a,b]ϕ for the case where
τ always grows with rate 1.

Example 12. Consider again the WTAs in Fig. B.2 and assume that the
winner of the competition is the one who managed to have (c) located in its
designated location for 8 consecutive time units. To express that (a) wins
within 100 time units we need to state that (c) stays in Left for 8 consecutive
time units at some point and that it has not stayed in Right for 8 consecutive
time units before that point. Using WMTL this can be expressed like

(¬Right ∨ ♦♦♦[0,8]Left)U[0,92](���[0,8]Left).

We now focus on deciding a WMTL[a,b] formula ϕ on a finite prefix of an
infinite diverging run π = (P0, v0)(P1, v1) . . . . We first define the bound function
N(π, ϕ) inductively as follows:

N(π, tt) = N(π,ff) = N(π, p) = 0

N(π,¬p) = 0

N(π, ϕ1 ∧ ϕ2) = max{N(π, ϕ1), N(π, ϕ2)}
N(π, ϕ1 ∨ ϕ2) = max{N(π, ϕ1), N(π, ϕ2)}

N(π,X(ϕ)) = 1 +N(π1:, ϕ)

N(π, ϕ1Ux
[a;b]ϕ2) = max({i+N(πi:, ϕ2), j +N(πj:, ϕ1) |

a ≤ vi(x)− v0(x) ≤ b ∧ j < i})
N(π, ϕ1Rx

[a;b]ϕ2) = max({i+ 1, i+N(πi:, ϕ2), j +N(πj:, ϕ1) |
a ≤ vi(x)− v0(x) ≤ b ∧ j ≤ i})
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4. Monitoring WMTL Properties

The bound function characterises the maximal prefix of π that one needs to
observe to decide ϕ. Observe that, contrary to [124], the bound depends not only
on the formula but also on the run itself. The latter is due to the introduction
of the next operator that is absent in [124].

We say that two infinite runs π1 = (P1
0, v

1
0)(P1

1, v
1
1) . . . and π2 = (P2

0, v
2
0)

(P2
1, v

2
1) . . . are n-equivalent, denoted π1 ≡n π2, if for all i ≤ n P1

i = P2
i and

v1
i = v2

i . We say that π n-boundly satisfies ϕ, denoted π �n ϕ, iff for all
π′ where π ≡n π′, π′ � ϕ. We say that π run n-boundly violate ϕ if for all
π′ where π ≡n π′, π′ 2 ϕ. It is easy to see that π �n ϕ =⇒ π � ϕ and
π 2n ϕ =⇒ π 2 ϕ. We can now conclude with the following theorem that
shows that any WMTL[a,b] property can be decided on a finite prefix of the run.

Theorem 4. Let π = (P0, v0)(P1, v1) be an infinite run and ϕ be a WMTL[a,b]

formula. Then π � ϕ if and only if π �N(π,ϕ) ϕ.

4 Monitoring WMTL Properties

We present an efficient online monitoring algorithm for checking if a given
infinite run π of a WTA satisfies a given WMTL[a,b] property ϕ.

Algorithm B.1: WMTL formula satisfiability checking
1 // Input: WMTL[a,b] formula ϕ and weighted word ω
2 // Output: tt iff π � ϕ, ff otherwise
3 i:=0
4 while ϕ 6= tt ∧ ϕ 6= ff do
5 ϕ:=Simp(Rew(ϕ, Pi, vi+1 − vi))
6 i:=i+1
7 end
8 if ϕ == tt then
9 return tt

10 end
11 if ϕ == ff then
12 return ff
13 end

The pseudo code of our algorithm is presented in Algorithm B.1. Intuitively,
the algorithm reads the elements of the input run one-by-one and rewrites
the formula after reading each new element. The algorithm stops when the
formula becomes tt or ff meaning any continuation of the finite prefix read
so far will be accepted (or rejected) by the original formula ϕ. The rewriting
step is performed by first applying the function Rew that updates the formula
according to a new observation, and then applying Simp function that simplifies
the formula and tries to reduce it to tt or ff.
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B. Rewrite-Based Statistical Model Checking of WMTL[a,b]

The rewrite function Rew is defined by the following recursive rules where v
is a function that gives the change of the clock variables since the last element
of the run:

• Rew(p, P, v) =

{
tt, if p ∈ P

ff, if p 6∈ P

• Rew(¬p, P, v) =

{
ff, if p ∈ P

tt, if p 6∈ P

• Rew(ϕ1 ∧ ϕ2, P, v) = Rew(ϕ1, P, v) ∧ Rew(ϕ2, P, v)

• Rew(ϕ1 ∨ ϕ2, P, v) = Rew(ϕ1, P, v) ∨ Rew(ϕ2, P, v)

• Rew(Xϕ, P, v) = ϕ

• Rew(ϕ1Ux
[a, b]ϕ2, P, v) =

Rew(ϕ1, P, v) ∧ ϕ1Ux
[max(a−v(x), 0), b−v(x)]ϕ2 , if a > 0 ∧ v(x) ≤ b

Rew(ϕ2, P, v) ∨ (Rew(ϕ1, P, v) ∧ ϕ1Ux
[0, b−v(x)]ϕ2) , if a = 0 ∧ v(x) ≤ b

Rew(ϕ2, P, v), if a = 0 ∧ v(x) > b

ff, if a > 0 ∧ v(x) > b

• Rew(ϕ1Rx
[a, b]ϕ2, P, v) =

Rew(ϕ1, P, v) ∨ ϕ1Rx
[max(a−v(x), 0), b−v(x)]ϕ2 , if a > 0 ∧ v(x) ≤ b

Rew(ϕ2, P, v) ∧ (Rew(ϕ1, P, v) ∨ ϕ1Rx
[0, b−v(x)]ϕ2) , if a = 0 ∧ v(x) ≤ b

Rew(ϕ2, P, v), if a = 0 ∧ v(x) > b

tt if a > 0 ∧ v(x) > b

The omitted cases are all rewritten into themselves. The simplify function Simp

is defined by the following recursive rules:

• Simp(ϕ1 ∧ ϕ2) =



ff, if Simp(ϕ1) = ff or
Simp(ϕ2) = ff

Simp(ϕ1), if Simp(ϕ2) = tt

Simp(ϕ2), if Simp(ϕ1) = tt

Simp(ϕ1) ∧ Simp(ϕ2), otherwise.

• Simp(ϕ1 ∨ ϕ2) =



tt, if Simp(ϕ1) = tt or
Simp(ϕ2) = tt

Simp(ϕ1), if Simp(ϕ2) = ff

Simp(ϕ2), if Simp(ϕ1) = ff

Simp(ϕ1) ∨ Simp(ϕ2), otherwise.

• Simp(ϕ) = ϕ in rest of the cases.
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4. Monitoring WMTL Properties

The simplify function Simp takes into account only the logical equivalences,
namely ϕ∧ tt ≡ ϕ, ϕ∧ ff ≡ ff, ϕ∨ tt ≡ tt, ϕ∨ ff ≡ ϕ.

The correctness and termination of our algorithm is proved by the following
lemmas:

Lemma 6. Let π = (P0, v0), (P1, v1), . . . be an infinite weighted word, and ϕ
be a WMTL[a,b] formula. If πi+1: � Rew(ϕ, Pi, vi+1 − vi) then πi: � ϕ .

Proof. Induction in the structure of ϕ. Let ϕ =

• p.
Then since πi+1: � Rew(ϕ, Pi, vi+1− vi) we know Rew(ϕ, Pi, vi+1− vi) = tt
thus by the definition p ∈ Pi hence πi: � p.

• ¬p.
Similar to above.

• ϕ1 ∧ ϕ2.
Then Rew(ϕ, Pi, vi+1 − vi) = Rew(ϕ1, Pi, vi+1 − vi)∧ Rew(ϕ2, Pi, vi+1 − vi)
thus πi+1: � Rew(ϕ1, Pi, vi+1 − vi) and πi+1: � Rew(ϕ2, Pi, vi+1 − vi). By
induction hypothesis then πi: � ϕ1 and πi: � ϕ2.

• ϕ1 ∨ ϕ2.
Similar to above.

• Xϕ1.
Then Rew(ϕ, Pi, vi+1 − vi) = ϕ1 and πi+1: � ϕ1 thus πi: � X(ϕ1).

• ϕ1Ux
[a, b]ϕ2.

In the remainder let v = vi+1 − vi. We divide into cases and let
Rew(ϕ1Ux

[a, b]ϕ2) =

– Rew(ϕ1, Pi, v) ∧ ϕ1Ux
[max(a−v(x), 0), b−v(x)]ϕ2

Let us consider the case where max(a− v(x), 0) = a− v(x). Then
since πi+1: � ϕ1Ux

[max(a−v(x), 0), b−v(x)]ϕ2 there exists a k ≥ i+ 1 such
that πk: � ϕ2, a−v(x) ≤ vk(x)−vi+1(x) ≤ b−v(x) and for all j < k,
πj: � ϕ1. Also, by induction hypothesis πi: � ϕ1 thus to prove that
πi: � ϕ1Ux

[a, b]ϕ2 we should only prove that a ≤ vk(x) − vi(k) ≤ b.
Recall that v = (vi+1 − vi) thus

a− v(x) ≤ vk(x)− vi+1(x) ≤ b− v(x)⇔
a ≤ vk(x)− vi+1(x) + v(x) ≤ b⇔
a ≤ vk(x)− vi+1(x) + vi+1 − vi(x) ≤ b⇔
a ≤ vk(x)− vi(x) ≤ b

For the case where max(a − v(x), 0) = 0 the proof is similar - we
only need to realise that a− v(x) < 0
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B. Rewrite-Based Statistical Model Checking of WMTL[a,b]

– Rew(ϕ2, Pi, v) ∨ (Rew(ϕ1, Pi, v) ∧ ϕ1Ux
[0, b−v(x)]ϕ2). Two possibilities:

1. πi+1: � Rew(ϕ2, Pi, v). Then by induction hypothesis πi: � ϕ2

and since a = 0 then πi: � ϕ1U[a,b]ϕ2.
2. πi+1: � Rew(ϕ1, Pi, v)∧ϕ1Ux

[0,b−v(x)]ϕ2. Similar to the case where
Rew(ϕ1Ux

[a, b]ϕ2) = Rew(ϕ1, Pi, v) ∧ ϕ1Ux
[max(a−v(x), 0), b−v(x)]ϕ2

– Remaining cases are omitted. They are similar to above

• Remaining cases are omitted as they are quite similar to the U case.

Lemma 7. Let π = (P0, v0), (P1, v1), . . . be an infinite weighted word, and ϕ
be a WMTL[a,b] formula. If πi: � ϕ then πi+1: � Rew(ϕ, Pi, vi+1 − vi).

Proof. Induction in the structure of ϕ. Let v = vi+1 − vi and let ϕ =

• p
Then since πi: � p we know that p ∈ Pi thus Rew(p, Pi, vi+1 − vi) = tt and
πi+1: � tt.

• ¬p
Similar to above.

• Xϕ1.
Then πi+1: � ϕ1 and Rew(Xϕ1, Pi, vi+1 − vi) = ϕ1 thus clearly πi+1: �
Rew(Xϕ1, Pi, vi+1 − vi).

• ϕ1Ux
[a, b]ϕ2. We will divide into different cases depending on the values of

a and b in relation to v(x). Let

– a > 0 ∧ v(x) ≤ b
Then there exists k ≥ i s.t. πk: � ϕ2 and for all j, i ≤ j < k, πj: � ϕ1

and a ≤ vk(x)− vi(x) ≤ b - notice that since a > 0 then k > i. Also
Rew(ϕ, Pi, v) = Rew(ϕ1, Pi, v) ∧ ϕ1Ux

[max(a−v(x), 0), b−v(x)]ϕ2.
As πi: � ϕ1 then by induction hypothesis πi+1: � Rew(ϕ1, Pi, v). To
prove that πi+1: � ϕ1Ux

[a′,b−v(x)]ϕ2, where a′ = max(a− v(x), 0) we
need to show that a′ ≤ vj(x)− vi+1(x) ≤ b− v(x). Let

∗ a′ = a− v(x). Then

a ≤ vj(x)− vi(x) ≤ b⇔
a− v(x) ≤ vj(x)− vi − v(x) ≤ b− v(x)⇔
a− v(x) ≤ vj(x)− vi − (vi+1(x)− vi(x)) ≤ b− v(x)⇔

a′ ≤ vj(x)− vi+1(x) ≤ b− v(x)
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∗ a′ = 0. Then as before

a− v(x) ≤ vj(x)− vi+1(x) ≤ b− v(x)

The crucial step is realising that a − v(x) ≤ 0 and that 0 ≤
vj(x)− vi+1(x) due to vj(x) ≥ vi+1(x) and hence

a− v(x) ≤ 0 ≤ vj(x)− vi+1(x) ≤ b− v(x)

– a = 0 ∧ v(x) ≤ b
Omitted. Similar to above.

– a = 0 ∧ v(x) > b
Then there exists k ≥ i s.t. πk: � ϕ2 and for all j, i ≤ j < k,
πj: � ϕ1 and a ≤ vk(x) − vi(x) ≤ b. Also Rew(ϕ, Pi, vi+1 − vi) =
Rew(ϕ2, Pi, vi+1 − vi).
Since v(x) > b ⇔ vi+1(x) − vi(x) > b then for any k′ > i we
can easily see that vk′(x) − vi(x) > b thus obviously k = i. This
means that πi: � ϕ2 and thus by induction hypothesis πi+1: �
Rew(ϕ2, Pi, vi+1 − vi) = Rew(ϕ, Pi, vi+1 − vi).

– a > 0 ∧ v(x) > b. Then there cannot exist any j where a ≤ vj(x)−
vi(x) ≤ b thus πi: 2 ϕ.

• ϕ1Rx
[a, b]ϕ2.

Omitted - quite similar to U case.

Lemma 8. Let π = (P0, v0), (P1, v1), . . . be an infinite weighted word and ϕ0

be a WMTL[a,b] formula. For all i ≥ 0 let ϕi+1 = Simp(Rew(ϕi, Pi, vi+1 − vi)).
If there exists k ≥ 0 such that ϕk = tt then π � ϕ0.

Proof. First realise that πi: � ϕ if and only if πi: � Simp(ϕ) - this is given
without proof but should be obvious from the definition of ∧ and ∨.

Let ϕk = tt. Then πk: � ϕk and since Simp(Rew(ϕk−1, Pk−1, vk−vk−1)) = ϕk
then πk−1: � ϕk−1. Continuing this reasoning easily gives π0: � ϕ0.

Lemma 9. Let π = (P0, v0), (P1, v1), . . . be an infinite weighted word and ϕ0

be a WMTL[a,b] formula. For all i ≥ 0 let ϕi+1 = Simp(Rew(ϕi, Pi, vi+1 − vi)).
If there exists k ≥ 0 such that ϕk = ff then π 2 ϕ0.

Proof. First realise that πi: � ϕ if and only if πi: � Simp(ϕ) - this is given
without proof but should be obvious from the definition of ∧ and ∨.

Let ϕk = ff and assume towards a contradicition that π0: � ϕ0. Since
π0: � ϕ0 then π1: � Simp(Rew(ϕ0), P0, v1 − v0) thus π1: � ϕ1. Since π1: � ϕ1

then π2: � ϕ2 . . . In general we have that, since πj: � ϕj then πj+1: � ϕj+1.
According to the above then πk: � ϕk but as ϕk = ff then πk: 2 ϕk.

Contradiction.
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Lemma 10. Let π = (P0, v0), (P1, v1), . . . be an infinite weighted word that
diverges for every clock used in a WMTL[a,b] formula ϕ0 = ψ0

1 ∧ ψ0
2 .

For all i ≥ 0, let

ϕi+1 = Simp(Rew(ϕi, Pi, vi+1 − vi)),

ψi+1
1 = Simp(Rew(ψi1, Pi, vi+1 − vi)) and

ψi+1
2 = Simp(Rew(ψi2, Pi, vi+1 − vi)).

If there exists k1 and k2 such that ψk11 = tt and ψk22 = tt then there exists
k such that ϕk = tt.

Proof. Let kj = min{k | ψkj = tt} for j ∈ {1, 2} and assume without loss of
generality that k1 < k2. The proof is divided into two parts: We first prove for
all j, 0 ≤ j < k1, that ϕj = ψj1 ∧ ψj2. Secondly we show that ϕk1 = ψk12 after
which the proof is done because we know that ψk12 will be rewritten into tt -
namely when we reach the kth2 rewriting step.

1. For all j, 0 ≤ j < k1 that ϕj = ψj1 ∧ ψj2.
This goes by induction in k1

Base case, j = 0
Trivial

Inductive step
Let ψi+1

1

′
= Rew(ψi1, Pi, vi+1 − vi) and ψi+1

2

′
= Rew(ψi2, Pi, vi+1 − vi).

Then by definition

ϕi+1 = Simp(Rew(ϕi, Pivi+1 − vi))

and by induction hypothesis

ϕi = ψi1 ∧ ψi2

thus

Simp(Rew(ϕi, Pivi+1 − vi)) =

Simp(Rew(ψi1 ∧ ψi2, Pivi+1 − vi)) =

Simp(Rew(ψi1, Pi, vi+1 − vi) ∧ Rew(ψi2, Pi, vi+1 − vi)) =

Simp(ψi+1
1

′ ∧ ψi+1
2

′
) =

ψi+1
1 ∧ ψi+1

2

where the last step stems from the fact that Simp(ψi+1
1

′
) = ψi+1

1 6= tt

and Simp(ψi+1
2

′
) = ψi+1

2 6= tt.

2. ϕk1 = ψk12
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As ϕk1−1 = ψk1−1
1 ∧ ψk1−1

2 then

ϕk1 =Simp(Rew(ϕk1−1, Pk−1vk1 − vk1−1)) =

Simp(Rew(ψk1−1
1 ∧ ψk1−1

1 , Pk−1, vk1 − vk1−1)) =

Simp(ψk11

′ ∧ ψk12

′
)

where ψk11

′
= Rew(ψk1−1

1 , Pk1−1, vk1−vk1−1) and ψk12

′
= Rew(ψk1−1

2 , Pk1−1, vk1−
vk1−1). Now, since Simp(ψk11

′
) = ψk11 = tt it is evident that

Simp(ψk11

′ ∧ ψk12

′
) = ψk12

Lemma 11. Let π = (P0, v0), (P1, v1), . . . be an infinite weighted word that
diverges for every clock used in a WMTL[a,b] formula ϕ0 = ψ0

1 ∨ ψ0
2 .

For all i ≥ 0, let

ϕi+1 = Simp(Rew(ϕi, Pi, vi+1 − vi)),

ψi+1
1 = Simp(Rew(ψi1, Pi, vi+1 − vi)) and

ψi+1
2 = Simp(Rew(ψi2, Pi, vi+1 − vi)).

If there exists k such that ψk1 = tt or ψk2 = tt then there exists k′ such that
ϕk
′

= tt.

Proof. Similar to proof for Lemma 10.

Lemma 12. Let π = (P0, v0), (P1, v1), . . . be an infinite weighted word that
diverges for every clock used in a WMTL formula ϕ0. For all i ≥ 0 let
ϕi+1 = Simp(Rew(ϕi, Pi, vi+1 − vi)).

If π0: � ϕ0 then there exists k ≥ 0 such that ϕk = tt.

Proof. Induction in the structure of ϕ0. Let ϕ0 =

• p. Since π0: � ϕ0 then p ∈ P0 thus Simp(Rew(ϕ0, P0, v1 − v0)) = tt thus
k = 1.

• ¬p. Similar to above.

• ψ0
1 ∧ ψ0

2 . Then π0: � ψ0
j for j ∈ {1, 2} thus by induction hypothesis

there exists formulas ψ1
j , . . . and kjs such that, for all i ≥ 0, ψi+1

j =

Simp(Rew(ψij , Pi, vi+1 − vi) and ψkjj = tt.

By Lemma 10 the conclusion holds.

• ψ1 ∨ ψ2. Similar to above
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• ψ1Ux
[a,b]ψ2.

In the following let νi = vi+1 − vi. We split into cases. Let

– a = 0 ∧ ν0(x) < b.
Then Rew(ϕ0, P0, ν0) = Rew(ψ2, P0, ν0)∨(Rew(ψ1, P0, ν0)∧(ψ1Ux

[0,b−νi(x)]ψ2).
Since π � ϕ0 and a = 0 then either
∗ π � ψ2.
Let ψj2 = Simp(Rew(ψj−1

2 , Pj−1, νj−1)) for all j > 0 and let
ψ0

2 = ψ2. Then by our induction hypothesis there exists a k2

such that ψk22 = tt.
Notice now, that ϕ1 = Simp(Rew(ψ2, P0, ν0) ∨ (Rew(ψ1, P0, ν0) ∧
(ψ1Ux

[0,b−νi(x)]ψ2)) and consider that k2 = 1: then by definition
of Simp and Rew, ϕ1 = tt.

If k2 6= 1 then ϕ1 = ψ1
2 ∨ κ where κ = Simp((Rew(ψ1, P0, ν0) ∧

(ψ1Ux
[0,b−νi(x)]ψ2)).

Notice that ϕ1 is a disjunction and given our knowledge that
ϕk22 = tt by Lemma 11 the conclusion follows.

∗ π 2 ψ0
2 .

Then there exists a m where πm: � ψ2 and for all i < m, πi: � ψ1.
To make notation a bit easier in the following we will let [κ]j,n =
Simp(Rew([κ]j,n−1, Pj+n−1, νj+n−1)) for n ≥ 1 and [κ]j,0] = κ for
any formula κ.
Notice now that since π � ψ1 then by our induction hypothesis
there exists a k1 such that [ψ1]0,k1 = tt. Thus since

Rew(ϕ, P0, ν0) = [ψ2]0,1 ∨ ([ψ0
1 ]0,1 ∧ (ϕ1Ux

[0,b−ν0(x)])

and due to Lemma 10 and Lemma 11 we only need to prove that
there exists a k′ where [(ψ1Ux

[0,b−ν0(x)]ψ2)]1,k
′

= tt.
Let m = 1 then π1: � ψ2 thus there exists k′′ where [ψ2]1,k

′′
= tt.

As

[(ψ1Ux
[0,b−ν0(x)]ψ2)]1,1 =

Simp(Rew(ψ1Ux
[0,b−ν0(x)]ψ2, P1, ν1)) =

[ψ2]1,1 ∨ ([ψ1]1,1 ∧ (ψ0
1Ux

[0,-
¯
ν0(x)−ν1(x)]ψ2))

the proof is done.
If m 6= 1 then π1: � ψ1 thus there exists k′′′ where [ψ1]1,k

′′′
= tt.

Because

[(ψ1Ux
[0,b−ν0(x)]ψ2)]1,1 =

Simp(Rew(ψ1Ux
[0,b−ν0(x)]ψ2, P1, ν1)) =

[ψ2]1,1 ∨ ([ψ1]1,1 ∧ (ψ1Ux
[0,-
¯
ν0(x)−ν1(x)]ψ2))
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we only need to show that there exists a k′′′′ such that

[(ψ1Ux
[0,-
¯
ν0(x)−ν1(x)]ψ2)]2,k

′′′′
= tt.

This process can continue until we reach the m step where
πm: � ψ2 after which we are done.

– a > 0 ∧ ν0(x) < b. Quite similar to above.

– a = 0∧ ν0(x) > b. Then since π � ϕ0 it must be the case that π � ψ2

- this can easily be deduced from the semantics of until and the fact
that b < ν0(x) = v1(x)− v0(x) < vj(x)− v0(x) for any j > 1.
Since π � ψ2 then by induction hypothesis the lemma holds for ψ0

2

and as Rew(ϕ, P0, ν0) = Rew(ψ2, P0, ν0) the lemma holds for ϕ0.

– a > 0 ∧ νi(x) > b. Then π 2 ϕ.

• ψ1Rx
[a,b]ψ2.

Quite similar to until case

Lemma 13. Let π = (P0, v0), (P1, v1), . . . be an infinite weighted word that
diverges for every clock used in a WMTL formula ϕ. Let ϕ0 = ϕ,ϕ1, . . .
be a sequence of WMTL[a,b] formulas such that for all i > 0 ϕi+1 =
Simp(Rew(ϕi, Pi, vi+1 − vi)). If π0: 2 ϕ0 then there exists k ≥ 0 such that
ϕk = ff.

Proof. Similar to the previous lemma.

Together the previous lemmas easily gives the following main theorem of
our technique.

Theorem 5. Let π = (P0, v0), (P1, v1), . . . be an infinite weighted word that
diverges for every clock used in a WMTL[a,b] formula ϕ0. For all i ≥ 0 let
ϕi+1 = Simp(Rew(ϕi, Pi, vi+1 − vi)). Then there exists k ≥ 0 such that ϕk = tt
if and only if π � ϕ0. Similarly, there exists k ≥ 0 such that ϕk = ff if and
only of π 2 ϕ0.
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Example 13. Consider the run

({a}, {τ 7→ 0})({a},{τ 7→ 2.5})({b}, {τ 7→ 3})
({a}, {τ 7→ 3.2})({b, c}, {τ 7→ 5})({a}, {τ 7→ 6}) . . .

and the WMTL[a,b] formula (aU[0,4]b)U[0,10]c. Our algorithms will produce
the following sequence of rewriting rules. The sequence results in tt thus the
formula is satisfied by the run.

(aU[0,4]b)U[0,10]c
{a}, {τ 7→2.5}−−−−−−−−→(aU[0,1.5]b) ∧ (aU[0,4]b)U[0,7.5]c

{a}, {τ 7→0.5}−−−−−−−−→(aU[0,1.0]b) ∧ ((aU[0;3.5]b) ∧ (aU[0,4]b)U[0,7.0]c)

{b}, {τ 7→0.2}−−−−−−−−→(aU[0,4]b)U[0,6.8]c

{a}, {τ 7→1.8}−−−−−−−−→(aU[0,3.2]b) ∧ ((aU[0,4]b)U[0,5.0]c)

{b,c},{τ 7→1}−−−−−−−−→tt.

5 Experiments

Our approach has been implemented in Uppaal SMC. We now illustrate the
technique and compare it with the one in [35] that relies on automata-based
monitors. If there is no deterministic automaton for the corresponding formula,
[35] builds a deterministic under/over approximation that may strongly impact
the confidence interval computed by SMC.

5.1 Size of Intermediate Formulas and Precision

Our rewriting rules are recursive in the structure of the formula, which means
that the performance of the technique is highly dependent on the size of the
intermediate formulas. In the following example, we show how the size of the
intermediate formulas vary. We also show that our technique is often much
more accurate than the one of [35].

We first study the evolution of the size of the intermediate formula generated
by our technique during the monitoring of several randomly generated formulas.
We also study the precision of the confidence interval returned by the SMC
algorithm in case [35] uses an over or under approximation of the monitor. We
also exploit an encoding in Uppaal to show how the size of the formula varies
over time for a validation of a single run. In both cases runs are randomly
generated by automata. This is done by choosing a delay with respect to
an exponential distribution with rate parameter r and after the delay with a
discrete probabilistic choice set one of the propositions to true or false.
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Formula r #U/R Largest EMax σ2
Max τR τM RR RM

Random1 1 11 14 6.81 3.16 0.19s 5.70s 738 1748
Random1 4 11 18 7.03 4.92 0.22s 5.83s 738 1748
Random1 8 11 21 7.06 4.74 0.23s 5.78s 738 1748
Random2 1 8 17 8.52 5.33 0.19s 6.13s 738 1748
Random2 4 8 21 11.05 4.71 0.34s 6.17s 738 1748
Random2 8 8 27 12.79 7.16 0.58s 6.26s 738 1748
Random3 1 11 21 11.51 4.74 0.50 10.99s 738 1748
Random3 4 11 40 13.58 16.53 1.08 11.06s 738 1748
Random3 8 11 36 14.00 18.16 1.52 11.38s 738 1748

(a)

Formula #U/R r %R %M RR RM τR τM
random4 15 4 [0.57; 0.67] [0.57; 0.83] 738 1748 0.34s 7.77s
random5 15 4 [0.00; 0.05] [0.00; 0.97] 738 1748 0.94s 2.83s
random6 15 4 [0.00; 0.05] [0.00; 0.72] 738 1748 0.81s 3.18s
random7 15 4 [0.00, 0.07] [0.00; 0.43] 738 1748 2.36s 26.61s

(b)

Table B.1: Result of the random formula test. The r column is the rate at
which the run was generated. The #U/R column contains the number of
until or release modalities that was in the formula. The EMax column is the
average largest size of formula and σ2

Max is the variance thereof. τM and τR is
the verification time for the monitoring technique and the rewrite technique,
respectively. The verification time for the monitors are the time to construct
the monitors and use them - in all the cases the monitors were not exact and
both the under and over approximation was used. The RR and RM columns
contain the number of runs each method required to establish the verification
result. The %M and %R columns refer to the confidence interval obtained by
the monitoring and the rewrite process respectively.

Random Formulas

We compute the average size of the largest intermediary formula generated in
the rewriting process of different formulas. We verified each formula with a
confidence level of 0.05. The results of the test are shown in Table B.1a and
Table B.1b. We also give the verification time and the time used in total for
the monitor based approach, i.e. both the time to construct the monitor and
to verify. The results show that the intermediate formula size depends on the
transition rate of the model and as a result so does the validation. The monitor
based approach, on the other hand, does not depend on this and the time used
remain constant for all the models - due to the most significant part of the
monitor based approach is constructing the monitor. However, the rewrite
technique is significantly faster than the monitoring technique in all cases. For
the results in Table B.1a the monitors are tight approximations thus we gain
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time and not precision. However, results in Table B.1b show that we can obtain
much more accurate confidence intervals with our new technique. This is due to
the monitors might be a large over approximation/a small under approximation.
The variance in Table B.1a is rather high due to the runs being random.

Modelling UPPAAL inside UPPAAL

In order to obtain a more in-depth view on how the size of formulas change over
time, we have encoded the rules as Uppaal timed automata. The objective
being to use the visualisation features of the tool to see how the number of
automata evolve over time. Our construction is recursive in the structure of the
formula in the sense that a network of observing automata for ϕ is obtained as
one automaton for ϕ and at least one automaton for each of the sub-formulas
of ϕ.

The automaton for ϕ starts its sub-automata through a designated init-
channel and the sub-automata informs the ϕ-automaton that their sub-formula
has been rewritten to tt or ff through designated channels. The automata
for until and release rely on having multiple automata for their sub-formulas
that they can start one of after each observation. If there are insufficient
sub-automata an error state is reached - because of this the encoding is an
under-approximation of the WMTL formula in question.

Example 14. Consider the run

(p, {τ 7→ t0})(p, {τ 7→ t1})(p, {τ 7→ t2})(¬p, {τ 7→ t3})(p, {τ 7→ t4})
(p, {τ 7→ t5})(p, {τ 7→ t6})(p, {τ 7→ t7})(?, {τ 7→ t8}),

where we do not know if the proposition p is true at time t8 and let t8− t0 > 10.
In Fig. B.3 we provide a snapshot of the set of active automata at time t7.
At the top we have an automaton that monitors the expression ♦[0;10]�[4;15]p
which has been active since t0 thus it has 10− (t7 − t0) time units left before
its expression has been violated.
Below this automaton are automata observing the subexpression �[4;15]p. These
automata have been started at times t4, t5 and t6 respectively and will report tt
to the parent automaton at the moment they have oberved p for 15 time units
or ff if they observe ¬p. Notice that all the automata started before t4 are no
longer active since ¬p was true at time t3. Also, there is one automaton (the
gray one with dashed borders) that is being started by ♦[0;10]�[4;15]p through
its init-channel. Since t8 − t0 > 0 the top level automaton will not start any
sub-automata at time t8. Instead it will merely wait for the already started
automata to return either tt or ff. If one of them return tt then the top-level
automaton will return tt. In case all of the sub-automata return ff then the
top-level automata will return ff.

We encoded the formula ♦♦♦[0;1](p ∧ ���[0;1](¬r) ∧ ♦♦♦[0;1](q)), and put the re-
sulting automata in parallel with an automaton generating random runs and
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♦[0;10]�[4;15]p
[10− t7 + t0]

�[4;15]p
[0; 15+t4−t7]

�[4;15]p
[4 + t5 −

t7; 15+t5−t7]

�[4;15]p
[4 + t6 −

t7; 15+t5−t6]

�[4;15]p
[4; 15]

tt/ff
tt/ff

tt/ff init

Figure B.3: Snapshot at time t7 with 3 active automata and one being started.
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Figure B.4: Plots of how the size of the formula varies over time. On the y-axis
is plotted the number of active automata and the x-axis contain the time.

an automaton incrementing a counter whenever an automaton was started or
decremented the counter, whenever an automaton stopped. We did this for
transition rates 2 and 20 of the random run generating automaton and used
the simulate query, simulate 1 [<=3] {size}.

In Fig. B.4 we show the plots we obtain for runs generated with varying
transition rates. One can easily see that the number of automata does not
increase exponentially. We have observed the phenomena on various case studies.

5.2 IEEE 802.15.4 CSMA/CA Protocol

IEEE 802.15.4 standard [113] specifies the physical and media access control
layers for low-cost and low-rate wireless personal area networks. Devices oper-
ating in such networks share the same wireless medium and can corrupt the
transmission of each other by sending data at the same time. We applied our
technique to the analysis of Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) network contention protocol that is used in IEEE 802.15.4 to
minimise the number of collisions.
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Number of nodes 2 3 4 5 6
Monitor-based approach (time) <1s 3s 57s 20m2s -
Size of the monitor 230 2049 16306 123800 -
Rewrite-based approach (time) 55s 2m85s 4m11s 6m32s 9m21.47s
Average formula size 8.98 13.76 19.24 24 30.34

Figure B.5: Results for the CSMA/CA protocol

Our objective is to estimate the probability that if a collision occurs, then
all nodes participating in it will recover from the collision within a given time
bound. This can be specified with ∧i=1..Nϕi, where N is a number of network
nodes and ϕi specifies the behaviour of a single node:

ϕi ≡ ���≤10000(collisioni → ♦♦♦≤4000sendi)

The monitor built by [35] is precise. We are thus not interested to reason on
precision of the confidence interval, but rather on the evolution of computation
time. In Fig. B.5 we observe that both the size of intermediary formulas used to
rewrite ϕ and the computation time grow linearly as the number of components
N increases. On the other hands, both the size of monitor and the computation
time with the approach in [35] grow exponentially and cannot be applied to
real-life deployments of CSMA.

Although the monitor-based approach is faster for smaller N , for larger N
it quickly becomes intractable, while the rewrite-based approach scales well.

6 Conclusion

We presented a new monitoring procedure for WMTL formulas. The technique
relies on a series of rewriting step for the formula and is guaranteed to terminate.
Contrary to automata-based approaches, ours is precise in the sense that it
does not depend on over and under approximation of the formula. We have
implemented our approach in Uppaal SMC. Our results outperform those of
the monitor-based approaches.
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CStatistical Model Checking of
Dynamic Network of Stochastic
Hybrid Automata

Abstract In this paper we present a modelling formalism for dynamic networks
of stochastic hybrid automata. In particular, our formalism is based on primitives
for the dynamic creation and termination of hybrid automata components during
the execution of a system. In this way we allow for natural modelling of concepts
such as multiple threads found in various programming paradigms, as well as
the dynamic evolution of biological systems.

We provide a natural stochastic semantics of the modelling formalism based
on repeated output races between the dynamic evolving components of a system.
As specification language we present a quantified extension of the logic metric
temporal logic (MTL). As a main contribution of this paper, the statistical model
checking engine of Uppaal has been extended to the setting of dynamic networks
of hybrid systems and quantified MTL. We demonstrate the usefulness of the
extended formalisms in an analysis of a dynamic version of the well-known
Train Gate example, as well as in natural monitoring of a MTL formula, where
observations may lead to dynamic creation of monitors for sub-formulas.

1 Introduction

A computer program was originally seen as a single stream of instructions
performed in a linear sequence. In contrast, multitasking systems of today have
multiple computational threads and the threads executions are interleaved. To
complicate matters, computational threads are even allowed to spawn other
threads. The study of such systems was pioneered by the introduction of
process algebras, e.g. CSP [77] and CCS [91]. Process algebras describe
the behaviour of systems with a minimal set of primitives and allow us to
reason about the equivalence of systems using bisimulation relations. Adding a
recursion/replication operator permits expressing spawning of new threads.

Besides having multiple computational threads, modern software is getting
more complex due to the distribution of labour: clients connect to servers,
servers may delegate work to others and servers may need to contact some
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other service. In general, systems may establish connections to other systems
and share communication links. The π-calculus [93, 92], an extension of CCS,
allows processes to pass communication links to each other. The minimalistic
approach of process algebras, however, makes modelling actual systems tedious.

Statistical model checking is a software verification technique that relaxes
the requirements to the modelling language. In particular, the state space does
not need to be finite as an execution of the model is always terminated at a
specific time point - provided the model is time diverging. We will construct a
formalism that allows spawning new threads as in process algebras.

In this paper, we present a new modelling formalism founded on the basis
of timed IO transition system (TIOTS). The formalism operates on a collection
of TIOTSs (templates) that can be instantiated during transitions of active
templates. The templates could be generated by any model with semantics given
by a TIOTS but in our implementation we rely on Hybrid Automata. We present
a stochastic semantics for our formalism based on races between the instantiated
components. We develop a specification logic based on MTL [83]. The main
difference from MTL is the addition of two operators, one to quantify on the
(unknown) number of components of the network, and another to reason on
arithmetic operations on this number. We have made an implementation of the
modelling formalism and the monitoring technique inside Uppaal SMC [46].

Related Work. Dynamic creation of processes is already part of extensions
of process algebras. An example is the fork calculus [67] that extends CCS
with a fork primitive. The extensions do not consider quantities and runtime
verification of complex requirements expressed in MTL. As said above, the
study of dynamical architecture is an intensive research topic. At the software
engineering level, several works propose extensions of UML/MODAF/DODAF
to handle dynamicity. Those extensions do not rely on a formal semantic
which makes run-time verification almost impossible. Additionally, timed and
stochastic information are rarely considered in those works. From a more formal
perspective, the work of Chen [37] deals with adaptive systems, but again
assume that the state space is known in advance. Recently, Sharifloo proposed
to avoid this assumption by combining verification and run-time of the deployed
system within the Lover framework [111]. This work is in line with our objective,
but ignores timed and stochastic aspects. Tools such as BIP have been extended
to deal with dynamical architecture [31]. BIP focuses on interactions, while
Uppaal proposes a quantitative framework. Other approaches such as PRS also
consider dynamical networks. However, they remain at a highly theoretical level,
mostly studying what is decidable and what is not [112]. Those approaches do
not consider effective and efficient algorithms. Finally, Henzinger et al., have
also considered dynamical extension of reactive module with an application
to systems biology. The theory presented in [59] remains very complex, there
is no run-time monitoring procedure and the verification process is limited to
conformance. There are also a wide range of dynamical architectures dedicated
to a specific problem [58]. Our approach is more generic and hence incomparable
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to those approaches.

2 Dynamic Networks of Hybrid Automata

We introduce a general framework for dynamically evolving networks of real-time
components. As the semantical basis of the individual components and the
network itself, we use the notion of TIOTS.

Definition 33 (Timed IO-transition System). A timed IO transition system
K is a tuple (S, s0 ,Σ,→), where

• S is a set of states,

• s0 ∈ S is the initial state,

• Σ = Σo ] Σi is a finite set of actions partitioned into inputs (Σi) and
outputs (Σo) and

• →⊆ S × (Σ ∪ IR≥0)× S is the transition relation.

As usual we write s a−→ s′ whenever (s, a, s′) ∈→, and s a−→ whenever s a−→ s′

for some s′. We call s a−→ s′ a discrete (input respectively output) transition
whenever a ∈ Σ (a ∈ Σi respectively a ∈ Σo), and a delay transition whenever
a ∈ IR≥0.

Following the compositional specification theory for timed systems in [44],
we assume that a TIOTS, K, is deterministic, i.e. whenever s a−→ s′ and s a−→ s′′

then s′ = s′′. We denote by [s]
a the unique state s′ such that s a−→ s′ (whenever

it exists). Also we assume that K is input enabled, i.e. s a−→ for all a ∈ Σi .
Well-known formalisms for expressing TIOTSs include timed automata [7],

priced timed automata [20] and hybrid automata [73]. In these formalisms,
states are of the type (l, v), with l ∈ L being a location of the given automaton,
and v ∈ V(X) a valuation assigning values to the various continuous variables of
the automaton (e.g. clocks, costs and hybrid variables). A discrete transition,
(l, v)

a−→ (l′, v′), corresponds to an edge between l and l′ in the given automaton,
whose guard is enabled by the source valuation v and where the resulting
valuation v′ is obtained from v by performing the updates required by the
edge. In delay transitions, (l, v)

d−→ (l, v′), the values of the various continuous
variables are changed according to a “flow” function Fl : IR≥0 × V(X) −→ V(X)
specified by the location l, i.e. v′ = Fl(d, v). For timed automata Fl(d,_)
simply corresponds to increasing the value of all clocks with d, whereas the
“flow” function for hybrid automata are specified using differential equations.

113



C. Statistical Model Checking of Dynamic Network of Stochastic Hybrid
Automata
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Figure C.1: Bouncing Balls with a Player.

Example 15. Consider the variant of the bouncing ball in Fig. C.1. Here a
ball is repeatedly bouncing on the floor expressed by the hybrid automaton
(template) in Fig. C.1(a). In the model p is the height of the and v its velocity
on the vertical axis. After being initialised to the state (p = 10, v = 0) - by
the first transition allowed in Fig. C.1a - the following transition sequence may
occur:

(p = 10, v = 0)
1.02−→ (p = 0, v = −10.00)

bounce!−→ (p = 0, v = 9.01)

where in the bounce!-transition the dampening factor has non-deterministically
been chosen from the interval [0.80, 0.92] as 0.901. Fig. C.1(b) models an
(inexperienced) player that attempts to repeatedly hit the ball after non-
deterministic delays between 0 and 3. The individual behaviours of the ball
and player are illustrated in Fig. C.1(c).

In our framework, a system consists of a dynamically changing number of
interacting components, where each component is an instance of a template.
The available templates is given by a template collection J = (K1, . . . ,Kn),
describing closed networks: all templates have the same action set Σ, and their
output action sets provide a partitioning of Σ, i.e. Σ = ∪j=1...nΣo

j . For a ∈ Σ
we denote by c(a) the unique j for which a ∈ Σo

j . For a set A, we shall denote
all multisets over A by M(A). By X ] Y , we denote the multiset union of
two multisets X and Y . Whenever f : A → B, where A and B are sets, we
shall extend f to the corresponding multisets in the obvious manner, i.e. for
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Delay (M1, . . . ,Mn)
d−→ (M ′1, . . . ,M

′
n)

if d ∈ IR≥0 and for all i ≤ n,Mi
d−→i M

′
i ;

Action (M1, . . . ,Mj ] {s}, . . . ,Mn)
a−→ (M ′′1 , . . . ,M

′′
j , . . . ,M

′′
n )⊕ P

if a ∈ Σj and s
a−→
j

P s
′,M ′′j = Mj ] {s′}, andMl

a−→l M
′′
l for l 6= j.

Table C.1: Transition relation for SJ , where J = (T1, . . . , Tn) is a template
collection.

X ∈M(A), f(X) = {· f(a) : a ∈ X ·} ∈ M(B) where {· . . . ·} defines a multiset
construction.

Definition 34 (Template Collection). Let Σ be a set of actions. A template
collection over Σ is a tuple J = (T1, . . . , Tn), where for j = 1 . . . n, Tj =
(Kj , spawnj) with Kj = (Sj , s0

j ,Σ,→j) and:

• (Sj , s0
j ,Σ,→j) is a TIOTS over Σ with Σj as output action set;

• Σ1,Σ2, . . . ,Σn is a disjoint partitioning of Σ;

• spawnj : Σj × Sj → M({T1, . . . , Tn}) gives for each output-action-
state-pair of Kj a multiset of templates that should be spawned while
performing the output action. Whenever s a−→

j
s′ with a ∈ Σj and

P = spawnj(a, s), we write s a−→
j

P s
′.

Formally, a template collection J = (T1, . . . , Tn) describes a TIOTS KJ =
(SJ , s0 ,Σ,→), where all actions are output actions. The set of states SJ
are tuples (M1, . . . ,Mn) with Mj ∈ M(Sj) describing the multiset of states
comprising the currently active instances of template Tj . The initial state s0

is ({·s0
0·}, . . . {·s0

n·}) i.e. initially one instance of each template is instantiated.
The transition relation→ of KJ is given by the rules of Table C.1. To delay from
a state s = (M1, . . . ,Mn), all active instances of all templates must participate
in the delay. An a-action transition is driven by an instance of the template Tj
for which a is an output. All other instances of Tj ignore this output, whereas
instances of other templates respond with a corresponding input transition
on a. Importantly, instances of the templates in the multiset P are spawned
and added to the new configuration. Formally, (M1, . . . ,Mn) ⊕ P is defined
inductively in the size of P . As basis (M1, . . . ,Mn) ⊕ ∅ = (M1, . . . ,Mn). If
P = P ′ ] {Kj} and (M1, . . . ,Mn)⊕ P ′ = (M ′1, . . . ,M

′
n), then (M1, . . . ,Mn)⊕

P = (M ′1, . . . ,M
′
j ] {s0

j}, . . . ,M ′n).
An (infinite) timed run over J is a sequence π = s0d0s1d1 . . . sndnsn+1 . . .,

where for all i ≥ 0 si ∈ SJ , di ∈ R≥0 and si
di−→ ai−→ si+1 for some ai ∈ Σ. We

denote by πi: the suffix sidisi+1di+1 . . ..
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Remark 7. For readability, we only consider spawning of template instances on
output actions. Extending the semantics to also allow spawning on input actions
is, however, straightforward. Alternatively, a desired transition s a−→

j

P s
′, where

a is an input of template Tj , may be encoded as a sequence s a−→
j
sa

o−→
j

P ,
with o being a new output action for Tj and sa being a new intermediate state
that can only output o while spawning P .

Example 16. Reconsider the bouncing ball example from Fig. C.1. Jointly
the ball and the player constitutes a template collection J with two templates
(Ball and Player), with initially one ball and one player. Figure C.1(d) depicts
the joint behaviour during the first 25 time-units, with the first transitions
detailed as follows:(
{〈p = 10, v = 0 〉}, {〈x = 0〉}

) 1.02−→
(
{〈p = 0, v = −10.00〉}, {〈x = 1.02〉}

)
bounce!−→

(
{〈p = 0, v = 9.01〉}, {〈x = 1.02〉}

)
0.8−→

(
{〈p = 6.1, v = 1.16〉}, {〈x = 1.82〉}

)
hit!−→

(
{〈p = 6.1, v = −5.04〉, 〈p = 10, v = 0〉}, {〈x = 1.82〉}

)
In particular, we note that after the (initial) ball have bounced, the player
successfully hits it resulting in a new (second) ball being spawned. We see that
during the 25 time-units the player is also successful in hitting that (second)
ball. In the figure we can see a ball being spawned by the extra curves compared
to Fig. C.1(d).

Remark 8. For simplicity our theoretical construction does not allow for
parameterising templates. It is, however, allowed in our implementation in
Uppaal SMC.

3 Stochastic Semantics for Dynamic Networks

Reconsidering our dynamic version of the bouncing ball from Section 2, we
may consider that there is a constant race between the ball(s) bounce!ing on
the floor and the player hit!ing the ball(s). Whereas the time of bouncing is
deterministic – given by the ODE obtained from the (stochastic) effect of the
previous bounce! or hit! – the time of the hitting by the player is stochastic
according to a uniform distribution in the interval [0, 3]. In the randomly
generated trajectory of Fig. C.1d it seems that the player was successful in
hitting twice, thus generating two additional balls. In fact, a measure on sets of
runs of the system is induced, according to which quantitative properties such
as “the probability that there are two or more balls with a height greater than 5
within 4 and 6 time-units” become well-defined.

Our stochastic semantics is based on the principle of independence between
components. Repeatedly each component decides on its own – based on a given
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delay density function and output probability function – how much to delay
before outputting and what output to broadcast at that moment. Obviously,
in such a race between components the outcome will be determined by the
component that has chosen to output after the smallest delay: the output is
broadcast and all other components may consequently change state.

Stochastic Template Collection Stochastic template collections refine the non-
deterministic choices that may exist with respect to delay, output and next
state in the specification of a template collection J = (T1, . . . , Tn). Let Tj =
(Kj , spawnj), be a template of the collection and let Sj denote the corresponding
set of states of K. For each state s ∈ Sj , we assume that there exist probability
distributions for delays, outputs as well as next-state:

• the delay density function, µs over delays in IR≥0, provides stochas-
tic information for when the component will perform an output, thus∫

IR≥0
µs(t) dt = 1 1;

• the output probability function γs assigns probabilities for resolving what
output o ∈ Σo

j to generate, i.e.
∑
o∈Σo

j γs(o) = 1 .

Remark 9. In Uppaal SMC uniform distributions are applied for states
where delay is bounded, and exponential distributions (with location-specified
rates) are applied for the cases, where a component can remain indefinitely
in a location. Also, Uppaal SMC provides syntax for assigning discrete
probabilities to different outputs as well as specifying stochastic distributions
on next-states (using the function random[b] denoting a uniform distribution
on [0, b]).

Stochastic Dynamic Networks A stochastic template collection J = (T1,
. . . , Tn) in turns induces a stochastic semantics of the dynamic network timed
IO transition system KJ = (SJ , s0 ,→,Σ). For s = (M1, . . . ,Mn) ∈ SJ ,
CJ(s, a1a2 . . . ak) denotes the set of all maximal runs from s with a prefix
t1a1t2a2 . . . tkak for some t1, . . . , tn ∈ IR≥0 (a cylinder), that is runs where the
i’th action ai has been outputted by some instance of Tc(ai). Providing the
basic elements of a σ-algebra, we now inductively define the measure for such
sets of runs:

PJ
(
CJ(s, a1 . . . an)

)
=

∑
s∈Mc

∫
t≥0

µs(t) ·

∏
j 6=c

∏
s′∈Mj

(∫
τ>t

µs′(τ) dτ

) ·
 ∏
s′′∈Mc\{s}

(∫
τ>t

µs′′(τ) dτ

) ·
γ[s]t(a1) · PJ

(
CJ((

[
[s]t
]a1 , a2 . . . an))dt

1For outputs happening deterministically at an exact time point d, µs becomes a Dirac
delta function δd.
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where c = c(a1). This definition requires an explanation: at the outermost level
we sum over all states fromMc, i.e. active instances of the template Tc for which
a1 is an output. For a given delay t, the outputting component, s, will choose
to make the broadcast at time t with the stated density. Independently, the
other components (other components of the template Tc as well as components
of other templates) will choose a delay amount, which – in order for c to be the
winner – must be larger than t; hence the (two) products of the probabilities
that they each make such a choice. Having decided for making the broadcast
at time t, the probability of actually outputting a1 is included. Finally, the
probability of runs according to the remaining actions a2 . . . an is taken into
account.

Example 17. Given the dynamic spawning of new instances, the question
arises whether the resulting network explodes in the sense that discrete actions
may occur with shorter and shorter time between them as the number of
instances grows, and hence the race between components become more and
more intense over time. Stated differently, we worry that the dynamic network
may exhibit Zeno behaviour with a non-zero probability. As a (potential)
example consider the template P of Fig. C.2, where each instance will spawn new
instances according to an exponential distribution with rate 2. The resulting
evolution of the number of instances during a random run is illustrated in
Fig C.2. Fortunately, it follows from Reuter’s criteria for birth-and-death
processes [103], that for template collections where all delay densities are
either exponential distributions (spanning a finite range of rates) or uniform
(spanning a finite range of intervals), the system does not explode. This is
important as termination of our method of statistical model checking relies on
the assumption that random runs will eventually exceed any given time-bound
with probability one.

L

spawn P()

2

(a) Template P.

sum (p : P )( p.L)

time

va
lu

e

0

120

240

360

0 1,50 3,00

(b) Number of instances.

Figure C.2: An exploding template collection?

4 Dynamic Metric Interval Temporal Logic

In this section we present dynamic metric temporal logic (DMTL) for defining
properties of runs of a dynamic network. The logic is based on MTL, where
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atomic propositions have been extended with means for quantifying over the
dynamic components of the systems.

Let J = (T1, . . . , Tn) be a template collection. For each template T ∈
{T1, . . . , Tn}, we assume the existence of a syntactic category of arithmetic
expressions, ExprT , interpreted over the states ST of T. Thus, whenever
ε ∈ ExprT and s ∈ ST then [[ε]](s) ∈ N. Similarly we assume a syntactic
category of Boolean expressions, BoolT , interpreted over the states ST of T.
Thus, whenever β ∈ BoolT and s ∈ ST then [[β]](s) ∈ B.

Considering now global states (M1, . . . ,Mn) of the template collection J,
we introduce the sets of arithmetic expressions, Expr, and Boolean expressions,
Bool given by the following grammars:

e ::= c | e1 op e2 | sum(t : T).εT

b ::= tt | ff | ¬b | b1 ∧ b2 | e1 ./ e2 | forall(t : T).βT
where c ∈ Z, op is a binary arithmetic operator, ./ is a binary comparison
operator, T is a template from the collection J, εT ∈ ExprT and βT ∈ BoolT .
The semantics are:

• [[c]](M1, . . . ,Mn) = c

• [[e1op e2]](M1, . . . ,Mn) = [[e1]](M1, . . . ,Mn)op [[e2]](M1, . . . ,Mn)

• [[sum(t : Tj).εTj ]](M1, . . . ,Mn) =
∑
S∈Mj

[[εTj ]](s)

• [[tt]](M1, . . . ,Mn) = tt

• [[ff]](M1, . . . ,Mn) = ff

• [[¬b]](M1, . . . ,Mn) = ¬[[b]](M1, . . . ,Mn)

• [[b1 ∧ b2]](M1, . . . ,Mn) = [[b1]](M1, . . . ,Mn) ∧ [[b2]](M1, . . . ,Mn)

• [[e1 ./ e2]](M1, . . . ,Mn) = [[e1]](M1, . . . ,Mn) ./ [[e2]](M1, . . . ,Mn)

• [[forall(t : Tj).βTj ]](M1, . . . ,Mn) =
∧
S∈Mj

[[βTj ]](s)

Definition 35 (Dynamic metric temporal logic). Let J = (T1, . . . , Tn) be a
collection of templates. A DMTL formula ϕ over J is defined by the grammar:

ϕ ::= b | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1U[x,y]ϕ2

where b ∈ Bool, x, y ∈ Q with x ≤ y.

We use exists(t : T).βT as an abbreviation for ¬forall(t : T).¬βT . Commonly
used operators of MTL are derived in the usual manners, e.g.: ϕ1 ∨ ϕ2 =
¬(¬ϕ1∧¬ϕ2), ϕ1 → ϕ2 = (¬ϕ1∨ϕ2), ♦♦♦[x,y]ϕ = tt U[x,y]ϕ, ���[x,y]ϕ = ¬♦♦♦[x,y]¬ϕ,
and ϕ1R[x;y]ϕ2 = ¬(¬ϕ1U[x,y]¬ϕ2), where R is the “release” operator. For a
given timed run π = s0d0s1d1 . . . sndnsn+1 . . . over KJ and a DMTL formula
ϕ, we define satisfaction πi: |= ϕ inductively as follows:
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1. πi: |= b iff [[b]]si

2. πi: |= ¬ϕ iff πi: 6|= ϕ

3. πi: |= ϕ1 ∧ ϕ2 iff πi: |= ϕ1 and πi: |= ϕ2

4. πi: |= Xϕ iff πi+1: |= ϕ

5. πi: |= ϕ1U[x,y]ϕ2 iff there exists j ≥ i such that πj: |= ϕ2 and
∑j−1
k=i dk ∈

[x, y] and πk: |= ϕ1 whenever i ≤ k < j.

We say that a timed run π satisfies ϕ if π0: |= ϕ. We say that a template
collection J satisfies ϕ, J |= ϕ, iff all timed runs of KJ starting in s0 satisfies
ϕ. Given the stochastic semantics of J, we define PJ(ϕ) to be the probability
that a random run of J satisfies ϕ. As we shall see later, this probability is
well-defined as it may be characterised as a countable union and intersection of
cylinders over J extended with a monitorMϕ for ϕ, and is thus measurable.

Example 18. Reconsider the bouncing ball from Fig. C.1. The property
“there are two or more balls with a height greater than 5 within 2 and 3 time-
units” may be expressed as the DMTL formula ♦[2,3]

(
sum(b : Ball)(b.p >

5)
)
≥ 2. Similarly, the property “for any time-point within 1 and 3

time units, all balls have height less than or equal to 4” corresponds to
the formula �[1,3]forall(b : Ball)(b.p ≤ 4). Using Uppaal SMC, we find
[0.164092, 0.264092], resp. [0.82, 0.92], to the interval of the probability that
a random run will satisfy the first, resp. the second, property with 95%
confidence.

Theorem 6. Let J be a template collection and ϕ be a DMTL formula .
Then there exists a template collection Jϕ = {Kϕ,Kϕ1 , . . . ,Kϕn} over Σφ with
ttϕ!, ffϕ! ∈ Σφ associated with ϕ such that:

PJ(ϕ) = PJ∪Jϕ

( ⋃
ω∈Σ∗

π ((s0 , s0
ϕ), ωttϕ!)

)
(C.1)

where s0
ϕ = (Mϕ,Mϕ1

, . . .Mϕn) with Mϕ = {s0
ϕ} and for all j 6= 0, Mϕj = ∅,

and Σ is the combined alphabet of J and Jϕ excluding ttϕ! and ffϕ!.

5 Dynamic Networks of Hybrid Automata in UPPAAL

Uppaal SMC has been extended to dynamic instantiation of templates. Tem-
plates are, as usual, defined as stochastic hybrid automata (SHAs). The
extension includes extending the core language with two keywords (spawn and
exit ) to create and terminate processes, extending the notion of ranges to sets
of processes using a similar syntax, and extending MTL to refer to the dynamic
processes. We mention some interesting details that are important.
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Core Language Extensions. New processes are created by calling spawn
T(args. . . ) where T is the name of a template. The argument list is similar
to the ordinary process instances. However, the internal mechanism for dynam-
ically creating processes is different. A dynamic process terminates by calling
the special function exit ().

Normally, an instance corresponds to a template with its arguments substi-
tuted that is then compiled to obtain some byte-code specific for that instance.
This is too expensive for dynamic instances not to mention the serious issue
concerning memory management when terminating an instance (and the byte-
code in the engine too). The mechanism we have creates local variables that
correspond to the instance parameters of these templates. The templates are
instantiated when needed but are recycled and kept in the engine when they
terminate, in particular between each run. Instantiating a dynamic instance
(spawn) is done by taking a process in a pool, writing to its local variables
(instead of substituting and generating new byte-code), and adding it to the
state. Termination of a process ( exit ) corresponds to recycling.

Sets of Processes. The language extends the notion of ranges to sets of
processes. The processes are here instances of stochastic hybrid automata
templates. Normally, the user can use for loops, and the statements sum,
forall , and exists over ranges, e.g., for ( i : id_t) for iteration purposes. Now, this
is extended to sets of processes for a given template type. For a template of
type T, it is now possible to use the syntax t :T to iterate over this set with,
e.g., sum(t:T) t.count.

Statistical model checking (SMC) We use SMC [87, 108, 121, 123] to estimate
and test on the probability that a random run of a network of stochastic hybrid
automata satisfies a given property. Given a model H and a trace property ϕ,
SMC refers to a series of simulation-based techniques that can be used to answer
two main questions: (1) Qualitative: is the probability that a random run of
H satisfies ϕ greater or equal to a certain threshold θ? and (2) Quantitative:
what is the probability that a random run of H satisfies ϕ? In both cases, the
answer will be correct up to a user-specified level of confidence, providing a
upper bound on the probability that the conclusion made by the algorithm
is wrong. For the quantitative approach, the method computes a confidence
interval that is an interval of probabilities that contains the true probability to
satisfy the property. Here the confidence level provides the probability that the
computed confidence interval indeed contains the unknown probability.

Implementation of DMTL Monitoring. When checking DMTL properties, the
engine rewrites the DMTL formula ϕ on-the-fly in such a way that the new
formula ϕ1 is satisfied from the next state if and only if ϕ was satisfied from
current state. The technique is similar to the one presented in [34], but the
engine has been extended to check the construct forall(t : T).βT .
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i==h2

(b) trainSpawner ()

Figure C.3: Automaton of a train (a) and an automaton for spawning trains (b)

Visualisation of Simulated Runs. As part of the SMC analysis output, plots
are very useful tools. When generating processes dynamically, we need a new
way to ask for plots on such dynamic instances. To do this, the special statement
foreach(t :T) expr is used to tell the model-checker to generate plots for each of
the expressions expr that depend on t. An example of such a plot is shown in
Figure C.1d.

6 Dynamic Train Gate

We consider a dynamic version of the train gate example distributed with
Uppaal: a gate controls the access to the one rail over a bridge. When a train
approaches the bridge it signals the gate that it is approaching. Depending on
the speed of the train, the train will proceed onto the crossing after 10 and
before 20 time units. The actual crossing takes 5 time units. From the approach
signal has been sent, the gate can stop the train to avoid a collision. When
stopped, the train can be restarted which takes between 7 and 15 time units.
Afterwards the train enters the bridge and cannot be stopped. To ensure only
one train crosses at a time, the gate allows the train arriving first to proceed
and queue the latter. When a train leaves the crossing, the gate will start the
first train in the queue.

In our model each train is modelled as a single SHA, depicted in Figure C.3a.
The train-SHA has four parameters, namely the channels leave ,stop,go and appr.
The trains are spawned according to an exponential distribution with rate 2
by the SHA in Figure C.3b. This uses a function to acquire channels, from a
pre-allocated set of channels, to be used by the spawned train.

The gate, see Figure C.4b, listens on all channels that can be used as appr
channels and when a train signals its approach a train stopper, depicted in
Figure C.4a, is spawned . The train stoppers are given a number (myNumber) that
they decrease when a train has left the crossing (signalled by a synchronisation
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Figure C.4: Model of the queue (a) and the gate controller (b)

on globalStop?) . When myNumber is equal to one, the train stopper broadcasts
go! to its associated train. Whenever a train broadcasts leave ! the associated
train stopper will broadcast globalStop!. This results in starting a stopped train.
In this manner the train stoppers are encoding a queue. In the original model
the queue was encoded explicitly in the C-like language of Uppaal but as this
does not allow dynamic allocation of memory we resorted to using templates.
Initially the only instances in the system are the gate and train spawner.

h tdecide Probability
20 10 [0.000; 0.097]
20 12 [0.091; 0.191]
20 15 [0.393; 0.494]

40 10 [0.000; 0.0974]
40 12 [0.156; 0.255]
40 15 [0.701; 0.801]

Table C.2: Probability of colli-
sion within 110 time units with
h trains and a decision time of
tdecide

Experiments Figure C.5 shows the number
of trains in each of their possible location.
This plot was obtained by running the Up-
paal SMC query:

simulate 1
[<=300] {sum (t:train)(t.Stopped),sum

(t:train)(t.Safe)...}

We see in the run that only one train is on
the bridge at a time (i.e. in the location Cross).
We also see that the trains are spawned at
the beginning of the run, resulting in a high number of trains being stopped.
At some point,approximately about 40 time units into the run, all the trains
have been spawned and the number of stopped trains decreases, as the trains
are moved one by one to the crossing.

In the model h trains are spawned by the the template in Figure C.3b with
some delay in between. The gate is supposed to ensure only one train crosses
the bridge at a time, and in order to do so it relies on the train stopper tem-
plates. The train stoppers need some time, tdecide , to decide if a train should
be stopped or not. Using Uppaal SMC we can find the probability that two
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trains are on the bridge simultaneously within 1100 time units through the query:

Pr[<=X] (<> exists (t : train) (t.Cross && exists (p :
train)(p.Cross && p!=t)))

The delayed reaction from the train stoppers may, obviously, result in the
gate not being safe. The results in Table C.2 suggests, however, that if the time
the train stoppers need is less than the minimum time for the train to enter the
bridge then the probability is low.

7 Experiments with the Monitoring of DMTL

For experimenting with the MTL monitoring stated in Theorem 6 we have cre-
ated an automaton that

time

v
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30

0 0,36 0,72 1,08 1,44 1,80 2,16

Figure C.6: The number active ob-
servers during a verification of the for-
mula ♦[0;1](p ∧�[0; 1](¬r) ∧ ♦[0;1](q))

generate random runs over the propo-
sitions p, q and r. The automaton
“flips” the truth assignment of p,q or
r with a rate of 2 i.e. the delays be-
tween state changes is extracted from
an exponential distribution with rate
parameter 2.

The advantage of “implementing”
the rewrite technique as observers is
that we can use the plotting feature of Uppaal SMC to obtain plots of the
number of active observers during a simulation. This can be done with a query
in the style of

Pr[<=10]{sum (b : T1) (1) +sum (b : T2) (1) ...}.

We show such a plot in Figure C.6. Obtaining this plot with the optimised
version in Uppaal SMC is more difficult because you would have to explicitly
gather information during the rewriting. In addition to obtain such plots, we can
experiment with variations of the rewrite technique. It is well-known, that for
run time verification it is not feasible to observe a system every time it changes

sum (t : train )( t.Cross)
sum (t : train )( t.start)
sum (t : train )( t.Stopped)
sum (t : train )( t.Appr)
sum (t : train )( t.Safe)

time
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Figure C.5: The number of trains in each location. The number of trains in
this run is 20 and the trains stoppers time to decide (tdecide) is 0
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state. Instead the system is observed at distinct time points. This can result in
different verification results thus we are interested in knowing how the verification
result differs when using fewer observations. To exemplify this we have created
three collections of observers for the formula ♦[0;1](p ∧ �[0; 1](¬r) ∧ ♦[0;1](q))
and parallel composed them with the random automata previously described:
The first one, J 1

φ , observes every state change of the system. The second one
J 2
φ observes the system at time points randomly selected - with the restriction

that there should be one observation each time unit. The third, J 3
φ , is similar

to the second, but the maximal time between observations is 2.
Verifying the property with the different observer setups gives probability

bounds [0.02, 0.12] using J 1
φ and [0.03, 0.13] for J 2

φ . For J 3
φ we obtain a proba-

bility bound [0.00, 0.10]. These results are not surprising, but they exemplify
the possibility of using Uppaal SMC to make an analysis of a run validation
technique.

8 Conclusion & Future Work

We have presented a formalism that allows for dynamical instantiation of
templates of hybrid automata. The formalism is given a natural stochastic
semantics based on repeated output races. Also, we have extended MTL with
the possibility of quantifying over components at the propositional level. In
particular, the engine of Uppaal SMC has been extended to allow for statistical
model checking of DMTL properties for dynamic networks of stochastic hybrid
systems. Also we added additional visualisation option to Uppaal SMC.

Future extension involve extension to more advanced specification formalism
in which we allow for nesting the quantifications over components.
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D
Quantified Dynamic Metric
Temporal Logic for Dynamic
Networks of Stochastic Hybrid
Automata

Abstract Multiprocessing systems are capable of running multiple processes
concurrently. By now such systems have established themselves as the defacto
standard for operating systems. At the core of an operating system is the ability
to execute programs and as such there must be a primitive for instantiating new
processes - also programs are allowed to die/terminate. Operating systems may
allow the executing programs to split (spawn) into more computational threads in
order to let programs take advantage of concurrent execution as well. One of the
most used modelling languages, Timed Automata, is based on multiple automata
interacting thus they easily model the concurrent execution of programs. However,
this language assumes a fixed size system in the sense that automata cannot
be created at will but must be instantiated when the overall system is created.
This is in contrast with the fact that developers are able to create threads when
needed. In this paper we present our continued work to incorporate spawning
of threads into Uppaal SMC. Our modelling language, Dynamic Networks of
Stochastic Hybrid Automata, is essentially Timed Automata extended with a
spawning primitive and a tear-down primitive. The dynamic creation of threads
has the side-effect that it is no longer possible to use ordinary logics to specify
behaviours of individual threads - because the threads no longer have unique
names. In this paper we propose an extension of Metric Temporal Logic with
means for quantcifying over the dynamically created threads. This makes it
possible to zoom in on individual threads and specify requirements to their future
behaviour. Furthermore, we present a monitoring procedure for the logic based
on rewriting formulas. The presented modelling language and the specification
language have been implemented in Uppaal SMC version 4.1.18.

1 Introduction

Computer systems of today are beyond the state where they were statically
encoded entities that were disconnected from their surroundings. Instead many
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software architectures are build with communication to other systems in mind
thus each system may rely on other systems for accomplishing their tasks. The
systems providing services to other systems must incorporate concurrency into
their execution platforms in order to handle requests from multiple clients
simultaneously - and to support an unknown number of clients they must be
able to make new computational threads at will. Luckily, most mainstream
programming languages and operating systems support concurrency out of
the box and alleviate the programmer from the burden of programming the
concurrency model.

Reasoning on dynamic systems poses a major challenge to the formal methods
community, that is the one of being able to develop models and techniques for
systems whose state-space is not known a priori. Additionally, it also requires to
deal with communication between processes at run time. Process algebras, e.g.
CSP [77] and CCS [91] have been designed to analyse such systems. In process
algebras the behaviour of systems is described with a minimal set of primitives
and they allow us to reason about the equivalence of systems using bisimulation
relations. By adding a recursion/replication operator we can express spawning
of processes. Whereas process algebras have been developed for reasoning about
dynamic systems, we note that few formal tools support dynamic creation of
processes. Instead, they require specifying all processes in advance which forces
the modeller to encode an underlying resource manager with a preset finite
capacity. This stands in deep contrast to the support given by operating systems
and programming languages.

In a recent work [52], we developed a modelling framework that allowed
spawning inside Uppaal SMC [45]. In our setting, processes are spawned from
a finite set of templates, each being an arbitrarily complex input/output timed
system. In this setting, processes communicate via an input/output mechanism
of actions, and each of those actions may eventually lead to the creation of
one or several new processes. The model checking problem is known to be
undecidable for such systems. As a solution, we proposed to equip our system
with a stochastic semantic, allowing us to unleash the power of simulation-based
solutions such as statistical model checking (SMC) [123]. In this framework,
verification reduces to monitor several executions of the system and then use an
algorithm from statistics to deduce the overall correctness with a controllable
confidence. One of the drawbacks of the work in [52] is that the logic for
specifying properties of template systems was a limited extension of metric
temporal logic (MTL) [83], where quantifications over processes were allowed at
the atomic level. While such a logic is powerful enough to express properties
like: “at any time, all the processes shall avoid state x”, it does not allow to deal
with more complex requirements such as “if there exists a process that reaches
state q, then it should reach state q’ in less than ten units of time after reaching
q”.

In this paper, we propose an extension of MTL for dynamic timed systems,
where quantifications over process templates can be nested. Our new quantified
dynamic metric temporal logic (QDTML) is inspired by those proposed to
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specify properties of infinite state systems, especially in the context of the
so-called regular model checking approach [1, 25]. As a second contribution, we
present a monitoring procedure for this new logic. The procedure uses rewriting
techniques of subformulas of the logic. Our work has been implemented in
Uppaal SMC, the SMC extension of Uppaal.

Related Work. Dynamic creation of processes is already part of extensions of
process algebras. An example is the fork calculus [67] that extends CCS with
a fork primitive. These extensions do not consider quantities and run time
verification of complex requirements expressed in MTL. Recently, Sharifloo
proposed to avoid this assumption by combining verification and run-time of
the deployed system within the Lover framework [111]. This work is in line
with our objective, but ignores timed and stochastic aspects. Tools such as BIP
have been extended to deal with dynamical architecture [31]. BIP focuses on
interactions, while Uppaal SMC proposes a quantitative framework. Other
approaches such as PRS also consider dynamical networks. However, they
remain at a highly theoretical level, mostly studying what is decidable and what
is not [112]. Those approaches do not consider effective and efficient algorithms.
Finally, Henzinger et al., have also considered dynamical extension of reactive
modules with an application to systems biology. The theory presented in [59]
is without a run-time monitoring procedure and the verification process is
limited to conformance. There are also a wide range of dynamical architectures
dedicated to a specific problem [58]. Our approach is more generic and hence
incomparable to those approaches. Dynamic process creation is already part
of the model checking tool SPIN[79]. Contrary to our work, SPIN does not
consider timed, hybrid or stochastic aspects of systems. Boudjadar et al. [26]
have developed a framework called Callable Timed Automata (CTA) that
allows dynamic creation of processes. Our work distinguishes itself from theirs
by having a stochastic semantics and their work did not consider a logic for
expressing properties of the dynamic systems.

2 Client-Server Example

The purpose of this section is to provide the intuition behind our modelling
formalism by means of an example. The example we consider is that of a
client-server system shown in Figure D.1. Due to Traffic we have clients arriving
in the network (1). These clients connect to a server (2) that generates threads
(3) to handle the subsequent communication with the clients (4). When the
exchange is over, the client and corresponding server threads terminate. This
models the typical behaviour of servers that listen on a port, accept a connection,
and delegate the connection to a forked process or a new thread while returning
to listening on its port. We aim towards only giving the intuition behind our
formalism in this section and leave the actual semantics for later. In short, a
model consists of templates that we can instantiate to running processes. A
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Figure D.1: A client-server example.
process is either instantiated as an initialisation step of the model, or by being
spawned by a running process 1.

The model has four templates shown in Fig. D.2 through D.5.

Figure D.2: Server()

Server. Figure D.2 shows the template modelling the server. To model that
servers can accept only a limited number of connections, the server manages
its available connection ports with an array. The first transition from Start
initialises this array with initPorts(). The server awaits a connection request
from a client with a channel synchronisation on connect?. The server reacts
only if it has some available port (condition hasPort()) and spawns a server
child. This is done with the spawn command that instantiates the ServerChild
template (modelling a thread) with argument values computed on-the-fly. The
server allocates a port with the function openPort() and forwards connectID that
it receives from the client to the server child.

ServerChild. The template taking care of the connections is shown in Fig D.3.
An instance of this template starts by taking some time to reply and accept
the connection. The time is picked with an exponential distribution with
rate 5. Then the instance synchronises back with the client that initiated the
connection and “sends” the allocated port number with the synchronisation
accept[port ]! 2. Here connectID is used to filter out the right client. The location

1In the same manner as you spawn processes in computer systems
2The trick uses an array of channels for message passing.
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Figure D.3: ServerChild (const pid_t port , const int id)

Working abstracts from the actual communication until the client closes it, which
is done by the synchronisation disconnect [port ]?. The server child closes the
port (makes it available again) and terminates, which is done with the special
function exit().

Figure D.4: Traffic ()

Traffic. To model traffic, the template of Fig. D.4 generates clients, i.e., spawns
client processes with the expression spawn Client(++clientID). The time between
creation is picked with an exponential distribution with rate 10. Each new
client receives a unique identifier.

Client. When spawned, the client of Fig. D.5 will take some time to connect
(exponential distribution with rate 10). It will then wait for the synchronisation
accept[p]? that passes the port. The client tests if the reply matches its ID with
id==connectID. This is needed since we abstract from the actual communication
protocol. The client times-out after 5 time units and will retry MAX_RETRIES
times before aborting. If the connection is accepted then the client works for
some time, then disconnects with disconnect [port ]! and terminates. Here again
the client process terminates by calling exit().

Support for Dynamic Processes. When the special command spawn is encoun-
tered, Uppaal SMC creates a new instance of a given template with the current
values of the expressions used for arguments. When the special function exit()
is executed in a dynamic process, Uppaal SMC discards this process. The
templates that can be instantiated dynamically are declared to be dynamic in
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Figure D.5: Client (const int id)

the global declaration of the model as shown in Listing D.1. We also show the
functions for opening and closing ports.� �

pid_t openPort ( ) {
a s s e r t ( f r e ePo r t >=0); r e t u r n po r t s [−− f r e e P o r t ] ;

}
vo i d c l o s ePo r t ( pid_t p ) {

a s s e r t ( f r e ePo r t <MAX_CONNECTIONS) ;
p o r t s [ f r e e P o r t++] = p ;

}

dynamic S e r v e r C h i l d ( con s t pid_t port , con s t i n t i d ) ;
dynamic C l i e n t ( con s t i n t i d ) ;� �
Listing D.1: Global declarations of the client-server example

3 Dynamic Network of Hybrid Systems

In this section we provide the semantical part of our modelling framework.
The framework is equivalent to the one we presented in [52] but the semantics
are expressed differently: in our previous work all processes were anonymous
whereas we in this work give them identities by giving them a name. We later
use these names in defining the semantics of our logic.

We abstract from the actual modelling formalism and define our semantics
on the basis of timed IO transition system (TIOTS).

Definition 36 (Timed IO-transition System). A timed IO transition system
over the input actions Σiand output actions Σo is a tuple (S, s0 ,→) where

• S is a set of states,

• s0 ∈ S is the initial state and

• →⊆ S × (Σi ∪ Σo ∪ IR≥0)× S is the transition relation.

Let (S, s0 ,→) be a TIOTS then we write s a!−→ s′ whenever (s, a, s′) ∈→
and a ∈ Σo . Similarly we write s a?−→ s′ if a ∈ Σi and s

d−→ s′ if d ∈ IR≥0.
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In accordance with the compositional specification for timed systems [44] we
assume any TIOTS is input-enabled i.e. for any state s and any input action a
there exists s′ s.t. s a?−→ s′. Also we assume determinism thus if s x−→ s′ and
s
x−→ s′′ then s′ = s′′. Since we assume determinism we denote the x− successor,

x ∈ (IR≥0 ∪ Σi ∪ Σo) of s by [s]
x i.e. s x−→ [s]

x.
Timed IO transition systems can be generated by various formalisms. Well-

known formalisms include Timed Automata [7] and Hybrid Automata [73],
where states have the form (l, v) where l is a control location of the automaton
and v is a valuation that assigns values to continuous variables e.g. clocks, costs
and hybrid variables. A discrete transition from (l, v) to (l′, v′) corresponds
to an edge, in the automaton, between l and l′ whose guard is enabled by v.
The resulting v′ is obtained by performing the updates required by the edge. In
delay transitions, the values of the continuous variables are changed according
to a flow function that gives the rate of change for each clock. For a timed
automaton this rate is always 1 hence a delay of d would increase all variables
by d. For hybrid systems the rates are specified using differential equations.

Example 19. Consider the model of a client attempting to establish a con-
nection to a server shown in Figure D.5. This timed automaton has one clock
x with a starting value of 0. The client is initially in the location Starting.
From this initial state a possible transition sequence is:

(Starting, x = 0)
0.8−−→ (Starting, x = 0.8)

connect!−−−−−→ (Waiting, x = 0)

In our framework a system consists of a dynamically evolving set of pro-
cesses, where processes are running instances of templates and can spawn other
processes. The available set of templates that a process can be spawned as is
given in terms of a Template Collection J = (T1, . . . , Tn) where each template
defines a TIOTS. All the templates share a common set of actions, Σ. This set
is partitioned into disjoint subsets Σ1,Σ2, . . . ,Σn and template Ti uses Σi as
output actions and Σ \ Σi as input actions.

Definition 37 (Template Collection). A Template Collection over the set of
actions Σ partitioned into n disjoint sets Σ1,Σ2, . . . ,Σn is a tuple (T1, . . . , Tn)
where for all i, Ti = (Si, s0

i,→i, spawni) with:

• (Si, s0
i,→i) is a TIOTS with output action Σi and input actions Σ \Σi,

• spawni : Si × Σi → 2{T1,T2,...,Tn} describes for each state-action-pair a
set of templates that should be spawned while doing that action from
that state.

As mentioned earlier the semantics is based on a dynamically evolving set
of processes. When spawning a process, on the basis of a template T, a name
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p for the new process is extracted from an infinite but countable set of names
PNames, and the global state is updated to point p to the initial state of T.
Furthermore, in the global state we record that p has type T and record that
the name p has been used.

Formally, a state of a template collection (T1, . . . , Tn) has the form (Active, T, Sm),
where

• Active ⊆ PNames contains the names that has been bound to form a
process,

• T : Active → {T1, . . . , Tn} gives the template type of each process and

• Sm : Active →
⋃n
i=1 S

i maps the bound names to their corresponding
state.

Naturally, we require consistency in the sense that if Sm(p) points to a state
of Ti then T(p) = Ti. For the actual spawning of processes we define an operator
⊕ defined between a state and a template.

(Active, T, Sm)⊕ T = (Active ∪ {p}, T′, Sm′),

where T = (S, s0 ,→, spawn), p ∈ PNames \ Active, Sm′(p) = s0 , T′(p) = T
and for all p′ ∈ Active, Sm′(p′) = Sm(p′) and T′(p′) = T(p′). This operator is
straightforwardly generalised to sets of templates.

Remark 10. In the above the names for processes is selected non-
deterministically. To make this selection deterministic we will assume an
ordering on PNames and always extract the smallest element from Active. Also,
we will assume an ordering among templates so that when spawning a collection
of templates they are spawned in a deterministic order.

For simplicity we let each template initially be instantiated by one process
thus the initial state is defined as (∅,_,_)⊕ {T1 . . . , Tn}. This can easily be
modified to only spawn a subset of the processes. The transition relation of
a template collection is defined in Figure D.6. The semantics states that the
entire system can delay if all processes can participate in the delay. Regarding
actions, the system can perform an action a! if there exists some process, of the
template T owning the action, that can perform it and all other components
change state in accordance with the input. The processes of T not performing
the action simply ignore it.

Example 20. In Figure D.7 we show a graphical representation of the location
changes of the clients. In the plot we see that all the clients are spawned in
location Starting and after some delay move into Waiting. Then after some
time has passed they are accepted and enter the Working location. From there
they disappear when entering the End location

134



3. Dynamic Network of Hybrid Systems

Delay (Active, T, Sm)
d−→ (Active, T, Sm′)

if d ∈ IR≥0 and for all p ∈ Active, Sm(p)
d−→ Sm′(p);

Action (Active, T, Sm)
a!−→ (Active, T, Sm′)⊕ P

if a ∈ Σj , and there exists p ∈ Active such that:
T(p) = Tj , Sm(p)

a!−→ Sm′(p) , P = spawnj(Sm(p), a)),
and for all q ∈ (Active \ {p}), if T(q) = Tj
then Sm(q) = Sm′(q), otherwise Sm(q)

a?−→ Sm′(q).

Figure D.6: Transition relation of a Template collection

Figure D.7: Gantt chart of the clients in the client-server example. Each
line represent a single client. What location a client is in can be read by
first calculating ȳ = y mod 10 where after the location is given as follows:
ȳ = 0 =⇒ Starting, ȳ = 2 =⇒ Waiting, ȳ = 5 =⇒ Working and
ȳ = 8 =⇒ Timeout.

A timed run of a template collection J is an infinite sequence π = s0d0s1d1 . . .

such that s0 is the initial state of J, and for all i ∈ N: di ∈ IR≥0 and si
di−→ ai−→

si+1 for some ai ∈ Σ. An infinite run is called time-diverging, if for any constant,
c ∈ IR≥0, there exists a j such that

∑j
i=0(di) > c. For a template collection J,

we let Ω(J) be the set of all diverging runs.
Consider each template T has a finite set of atomic propositions APT that

can be true in states of that template. Now, let s be a state of T then PmAP(s)
gives the finite subset of AP that is true in s.

For a template collection J = T1, T2, . . . , Tn, we may consider having global
propositions APJ as well as the propositions for each template type APT1 , . . . , APTn .
With these we can then define the propositions that are true in a state s of J as

Pm J(s) = {(a, Ti, p) | a ∈ Active ∧ T(a) = Ti ∧ p ∈ PmAPTi (Sm(a)}∪PmAPJ (s),
(D.1)

135



D. Quantified Dynamic Metric Temporal Logic for Dynamic Networks of
Stochastic Hybrid Automata

where PmAPJ gives the finite subset of APJ true in s.
With the mapping of states to propositions the set of propositional runs of

template collection J is:

ΩAP(J) ={PmJ(s0)d0PmJ(s1) · · · | s0dos1 · · · ∈ Ω(J)}

3.1 Stochastic Semantics

Following David et al. [45], our stochastic semantics is based on output races
among components i.e. each component chooses a delay and the one with the
smallest delay wins the race. Afterwards, the winning component chooses an
action to perform and another race commences.

On the component-level we associate to each state of a TIOTS (S, s0 ,→)
a delay density function - for a state s we write µs to obtain this density. In
addition we assign an output probability function γs to all states mapping
output actions to probabilities. Naturally we require that γs(a) = 0 if and only
if s 6 a−→.

Now, let J = (T1, . . . , Tn) be a template collection. We want to define a
measure on a set of propositional runs of J. The set is defined through a
cylinder construction: let ω = P0I0 . . . Pm, where Pi ⊂fin AP,

AP ={(a, T, p) | a ∈ PNames, T ∈ {T1, . . . , Tn} and p ∈ APT} ∪ APJ

and all Ii are non-empty intervals. Notice that AP is an infinite set, yet all Pi
must be finite subsets.

Now, we can calculate the probability of observing a run in the cylinder
CJ(ω) = {P0d0P1d1 . . . Pm · · · ∈ ΩAP(J) | di ∈ Ii} from state s = (Active, T, Sm)
as

PJ(s, CJ(ω)) = (PmJ(s)
?
= P0) ·

∑
k∈Active

(∫
I0

µSm(k)(t)· ∏
k′∈Active\{k}

∫
τ>t

µSm(k′)(τ) dτ

 ·
∑
a∈Σo

(
γ[Sm(k)]t(a) · PJ

([
[s]

t
]a/k

, CJ(P1I1 . . . Pm)

))
dt

)

with base case PJ(s, P) = PJ(s)
?
= P, (P

?
= P′) is 1 if P = P′ and 0 otherwise. In

this expression we use [s]
a/k to obtain the uniquely defined state that is reached

if the process with name k performs action a.
The probability defined above requires some explanation: first it is checked

if the propositions true in the first state matches those of the cylinder, then
on the outermost level we sum over all active processes. After some delay t in
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I0 , the winning process chooses to perform some action. Independently, the
other processes choose a delay, τ , greater than t - captured by the inner integral.
Having delayed t, all the possible actions that the winning component can
perform and their probabilities are taken into account. Finally, the probability
of seeing the remaining part of the cylinder is multiplied.

For the remainder of this paper we let CJ(J) be all cylinders.

Remark 11. Allowing spawning of templates one might worry if the system
will explode in the sense that discrete actions may occur with shorter and
shorter time between them due to growing number of components. Essentially,
one might worry if the system would exhibit a zeno behaviour. Luckily it
follows from Reuters criteria for birth-and-death processes[103] that if we only
have exponential distributions (spanning a finite range of rates) or uniform
distributions (spanning a finite range of intervals), the system will not explode.
We rely on this fact as our statistical model checking algorithm requires that
runs are time-diverging.

4 Quantified Dynamic Metric Temporal Logic

In this section we present the syntax and semantics of quantified dynamic metric
temporal logic (QDTML) that is highly based on MTL. The logic is defined
over a template collection J = (T1, . . . , Tn).

For any TIOTS K = (S, s0 ,→) we assume there exists a set of numeric
expressions ExprK that we can evaluate in any of its states. Similarly, we
assume there exists a set of boolean expressions BoolK . In both cases we
evaluate the expression e in state s ∈ S by [[e]](K, s). If e ∈ BoolK the result is
contained in the set {tt,ff} otherwise it returns a real-valued number. Now let
s = (Active, T, Sm) be a state of J, p ∈ Active, T(p) = T and let T = (K, spawn).
Then we denote the evaluation of e ∈ ExprK in the context of p in s by
[[e]](p, s) = [[e]](K, f(p)). Similar notation is used for the boolean expressions.

Assume we have a finite set of names PVar each assigned a template type,
that will act as placeholders for processes in formulas. For P ∈ PVar we denote
its type T by (P : T). Given this set of variables, the set of numeric expressions
over a template collection J is generated by the syntax

E ::= c | E1 op E2 | sum(T)(e) | P.e2

where c ∈ IR, op ∈ {+,−, ·, /}, e ∈ ExprT and if (P : T1) then e2 ∈ ExprT1 .
To evaluate these expressions we need to bind the process names in PVar to
actual process names in PNames. We do this in terms of a mappingM : PVar→
PNames ∪ {?}, where ? /∈ PNames. The symbol ? is here used to denote that a
name has not been bound to a process. We then give the semantical meaning
of an expression E in a given state s = (Active, T, Sm) and with mapping M ,
denoted [[·E·]](s,M), recursively as:
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• [[·c·]](s,M) = c,

• [[·E1 op E2·]](s,M) = [[·E1·]](s,M) op [[·E2·]](s,M),

• [[·sum(T)(e)·]](s,M) =
∑
p∈{sT} ([[e]](p, s)) and

• [[·P.e·]](s,M) = [[e]](M(P ), s)

where if s = (Active, T, Sm) then {sT} = {p ∈ Active | T(p) = T}. Naturally the
latter is only defined if M(P ) 6= ?.

The set of QDTML formulas for a template collection J = (T1, . . . , Tn) is
generated by the syntax

ϕ := tt | P.b̃ | E1 ./ E2 | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 U[a,b] ϕ2 | forall(P : T )ϕ

where ./∈ {<,≤,≥, >}, P ∈ PVar, (P : T), a, b ∈ IR≥0, where a ≤ b and
b̃ ∈ BoolT .

As it is custom in the family of MTL logics we use ♦♦♦[a;b]ϕ as a syntactical
short hand for ttU[a;b]ϕ, ���[a;b]ϕ for ¬♦♦♦[a;b]¬ϕ. We derive the classic boolean
operators ∨ and =⇒ in the usual way and let exists(P : T)ϕ = ¬forall(P : T)¬ϕ.
We call an occurrence of a subformula where every P.b or P.e is surrounded by
a binding occurrence of the form forall(P : T) a sentence. In the semantics, the
actual binding is accomplished by updating a mapping whenever encountering
an occurrence of forall(P : T): if M is a mapping then

M [P 7→ p](x) =

{
p if x = P

M(x) otherwise

Let π = s0d0s1d1 . . . be a run of J, where si = (Activei, Ti, Smi) for all i > 0,
and let ϕ be a QDTML formula. Then we define satisfaction of ϕ with respect
to a mapping M recursively as,

• π |=M tt

• π |=M P.b̃ if M(P ) 6= ? and [[·b̃·]](M(P ), s0) = tt

• π |=M E1 ./ E2 if [[·E1·]](s0,M) ./ [[·E2·]](s0,M)

• π |=M ¬ϕ if π 2M ϕ

• π |=M ϕ1 ∧ ϕ2 if π |=M ϕ1 and π |=M ϕ2

• π |=M Xϕ if π1: |=M ϕ

• π |=M ϕ1 U[a,b] ϕ2 if there exists j such that πj: |=M ϕ2,
∑j−1
i=0 di ∈ [a, b],

and for all k < j, πk: |=M ϕ1.
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• π |=M forall(P : T)ϕ if for each p ∈ Active0, if T0(p) = T then π |=M [P 7→p] ϕ

Example 21. Consider our running example of a client-server model. Possible
QDTML formulas over this system are:

���0;5(forall(c : Client)(c.Waiting =⇒ ♦♦♦[0;10](c.Working)))

���0;5(forall(c : Client)(c.Waiting =⇒ ♦♦♦[0;10](

c.Working ∧ exists(s : ServerChild)

(s.Working ∧ s.id == c.id))))

The first formula asserts that if a client within the first five time units is
awaiting a connection, then it will come to the working location. The second
formula asserts, in addition to this, that a ServerChild should also be in the
Working location and have the same id i.e it asserts that a ServerChild is
communicating with the client.

Definition 38. Let ϕ be a QDTML sentence and let M0 be a function where
for all P ∈ PVar M0(P ) = ?. Then we define that π � ϕ iff π �M0 ϕ.

Theorem 7. For all QDTML formulas ϕ, all template collections J and
mappings M : PVar→ PNames, the set {π ∈ Ω(J) |π �M ϕ} is measurable.

Proof. (sketch)
For this sketch we focus on the subset of QDTML where the construction
E1 ∼ E2 is omitted. First, we define the propositions per template T that we
need to know the value of at each state. Let ϕ be a QDTML formula and
T = (K, spawn) a template then APT ⊆ BoolK is a finite set of properties that
are relevant for ϕ i.e. APT = {b̃|P.b̃ is a sub-expression of ϕ and (P : T)}. Let s
be a state of the template collection J then the global propositions APJ we are
interested in are the active processes and their type thus the global propositions
APJ = {(a, T)|a ∈ Active ∧ T is a template}. We let

PmJ(s) =

{
(a, T, b̃) a ∈ Active ∧ ∃b̃ ∈ APT ∧ T(a) = T∧

[[·b̃·]](a, s) = tt

}⋃
{(a, T)|a ∈ Active ∧ T(a) = T}

This is merely a concrete instance of the abstract proposition mapping
given in Eq. (D.1). Notice that the propositional run induced by the above
proposition mapping contains enough information to conclude if a QDTML
formula is satisfied on that run 3 thus we can easily define a satisfaction relation
between a propositional run and a QDTML formula and easily show that

3recalling that we omitted the E1 ∼ E2
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s0d0s1 . . . �
M ϕ⇔ PmJ(s0)d0PmJ(s1) . . . �M ϕ

What remains is to show that the set

{π|π ∈ ΩAP(J) ∧ π �M ϕ}

is indeed measurable i.e. is representable by a set of cylinders.
We do so by structural induction in ϕ. For this sketch we only show the

construction for one simple formula. Let ϕ = P1.b̃U[a,b] P2.b̃ and
Consider the set of cylinders:

{P0I0P1I1 . . . Pn ∈ CJ(J) | ∃j s.t. ∃(M(P2), T2, b̃) ∈ Pj

with (P2 : T2) and ∀i < j, ∃(M(P1), T1, b̃) ∈ Pi with (P1 : T1) and ∑
k=1..j−1

Ik

 ∈ [a, b]}

Quite clearly this is representable by a union of cylinders and equally clearly
any run contained in any of the cylinders satisfy ϕ = P.b̃U[a,b]P2.b̃.

5 Statistical Model Checking of QDMTL

Statistical model checking [123] is a simulation based software verification tech-
nique. Underlying the technique is that the model has a Stochastic semantics
and that we efficiently can obtain runs from its associated probability distribu-
tion. In addition we need a logic for which we can settle if a formula is satisfied
by a run. Generating a run of a model and validating if a formula is satisfied
gives rise to a Bernoulli variable X that obtains the value 1 if the formula
was satisfied and 0 if it was not satisfied. The probability that X = 1 is the
probability that a random run satisfies the formula. Let this probability be
θ. Now let X1, X2 . . . Xn be n such Bernoulli variables and let Y be a random
variable obtaining the value

Y =

n∑
i=1

Xi,

i.e. Y counts the number of runs that satisfied the formula. Y is distributed
according to a binomial distribution with succes-parameter θ. If we want to
answer the qualitative question “is θ greater than a threshold” we may employ
a hypothesis testing approach with a controllable level of significance[118]. In
case we want to answer the quantitative question “what is the probability θ” we
can employ an estimation approach and obtain a confidence interval. One such
method is using the Chernoff-Bound as described in [45]
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Statistical Model Checker

A naive statistical model checker thus consists of (1) a component that generate
runs of a model, (2) a component that can settle if a formula is satisfied for
a given run and (3) an algorithm from statistics that either estimates the
probability θ or tests if it exceeds a threshold value.

The decoupling of the generation of the run and the validation of a run has
the positive effect, that implementing a statistical model checker is easy and the
individual components may easily be exchanged for others. The decoupling is,
however, inefficient as time may be wasted generating a long run violatinh the
property after one step thus we wish to perform the validation of a run in parallel
with the run generation. Previously [34], we developed such a monitoring scheme
for MTL that was based on rewriting formulas: Given a run

π = (s0, d0)(s1, d1) . . .

and a MTL formula ϕ0 the monitor rewrites ϕ0 into ϕ1 using s1 and d0 as
input (denoted ϕ0

s1,d0−−−→ ϕ1) in such a way that π1: � ϕ1 if and only if π � ϕ0.
Continuing to rewrite the formulas eventually transforms a formula into tt
signalling satisfaction, or ff signalling violation of the property. We now provide
some of the rewrite rules needed for QDMTL. The remaining rules are similar
to those presented in [34].

Since we have variables in the formulas, we need to take a mapping into
account i.e. we rewrite tuples of the form (ϕ,M) where ϕ is a QMDTL formula
and M is a mapping from PVar to PNames.

(tt,M)
s,d−−→ (tt,M)

(Atom)

[[·E1·]](s,M) = r1 [[·E2·]](s,M) = r2 r1 ./ r2

(E1 ./ E2,M)
s,d−−→ (tt,M)

(Eval1)

[[·E1·]](s,M) = r1 [[·E2·]](s,M) = r2 r1 6./ r2

(E1 ./ E2,M)
s,d−−→ (ff,M)

(Eval2)

Above we show the most basic rewrite rules of our monitoring technique. The
first rule states that if the formula is tt, then this will not change due to a rewrite4.
The two latter rules expresses that to rewrite a comparison between expressions,
the two expressions should first be evaluated and afterwards compared. If the
comparison is true then the formula is rewritten into tt, otherwise it becomes
ff.

Monitoring a formula ψ = forall(P : T)ϕ requires monitoring ϕ for each
process of T i.e. we start a rewriting sequence per process - each of these rewrite

4An equivalent rule applies for ff
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sequences should have their own mapping. To denote that multiple formulas
should be rewritten in parallel with each other we use the syntactical construct∧+

[(ϕ1,M1), (ϕ2,M2) . . . , (ϕn,Mn)].
The formula ψ is satisfied along a run if and only if ϕ was satisfied for all pro-

cesses when we encountered ψ. Consequently, we rewrite
∧+

[(ϕ1,M1), (ϕ2,M2) . . . ,
(ϕn,Mn)] into tt if all of the formulas are rewritten into tt at some point (see
ConjList2 below). Similarly, ψ is not satisfied if one of the processes did
not satisfy ϕ thus if a formula is rewritten into ff - captured by the rule
ConjList1. Finally, if none of the above rules apply we simply rewrite the
individual formulas.

∃i ∈ {1, . . . , n} (ϕi,Mi)
s,d−−→ (ff,M)

+∧
[(ϕ1,M1), . . . , (ϕn,Mn)

s,d−−→ (ff,Mi)]

(ConjList1)

∀i ∈ {1, . . . , n} (ϕi,Mi)
s,d−−→ tt

+∧
[(ϕ1,Mn), . . . , (ϕn,Mn)

s,d−−→ (tt,M1)]

(ConjList2)

[
(ϕi,Mi)

s,d−−→ (ϕ′i,M
′
i)
]
i=1,n

+∧
[(ϕ1,Mn), . . . , (ϕn,Mn)]

s,d−−→
+∧

[(ϕ′1,M
′
n), . . . , (ϕ′n,M

′
n)]

(ConjList3)

The initiating step of transforming ψ into a
∧+ construct consist of three

rules(below): the first rule corresponds to immediately discovering that one of
the processes did not satisfy the formula ϕ thus ψ is not satisfied. The second
one correspond to all processes immediately satisfy ϕ and consequently that ψ
is satisfied.
The final rule is instantiating the parallel rewrite process by first rewriting ϕ
for all processes and then construct the conjunction between these.

∃p ∈ {sT} (ϕ,M [P 7→ p])
s,d−−→ ff

(forall(P : T)ϕ,M)
s,d−−→ ff

(Binding1)

∀p ∈ {sT} (ϕ,M [P 7→ p])
s,d−−→ tt

(forall(P : T)ϕ,M)
s,d−−→ tt

(Binding1)

[
(ϕ,M [P 7→ p])

s,d−−→ ((ϕp,Mp)
]
p∈sT

(forall(P : T)ϕ,M)
s,d−−→

+∧
p∈sK

[(ϕp,Mp)]

(Binding3)
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Theorem 8. Let π = s0d0s1d1s2d2 . . . be an infinite time-diverging run and
let ϕ be a QMDTL sentence. In addition let M be a function where for all
P ∈ PVar M(P ) = ?. Then π � ϕ if and only if there exists a rewrite sequence

(ϕ,M)
s0,d0−−−→ (ϕ′,M ′)

s1,d1−−−→ . . . (tt,M ′′)

and π 6� ϕ if and only if there exists a rewrite sequence

(ϕ,M)
s0,d0−−−→ (ϕ′,M ′)

s1,d1−−−→ . . . (ff,M ′′)

6 Experiments

6.1 Robot

We consider the imaginary example of robots moving randomly on a 2-dimensional
grid in search of a specific location. In the following we describe a parameterised
model so that we can make a series of experiments. Let the grid have size x× y
and the goal be location (x−1, y−1). Initially no robots are present on the grid
but are spawned by an extra component. The robots are spawned in location
(i, 0) where i is randomly selected in the range [0, x− 1] for each robot. The
robots each have a variable x and y that tells where they are on the grid and
move with a rate of 2. The robots can only move up,down,left or right and only
inside the grid thus they cannot move from one boundary to the other in one
step.

In this random setup we may wonder how likely it is for two robots to be in
the same location at once within some time limit τ . In Uppaal SMC we can
find the probability of no robots being in the same field at once by checking the
query

Pr ([][0; τ] forall (t:Robot)

(forall (t2:Robot)

(t.x == t2.x && t.y ==t2.y

imply t==t2))).

We call this formula φ1. Naturally the probability we are interested in is 1− θ
where θ is the probability of satisfying φ1.

In Table D.1 we show the probability estimated for φ1 by Uppaal SMC for
various parameters to the model.

Setting aside that robots may actually be on the same field, we might be
interested in estimating the probability that one robot reaches the goal, within
τ time units, and it does so with a margin of δ to the second robot reaching
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x y #Robots Probability Time (s)
2 2 1 [0.95, 1.00] 0.15
4 4 2 [0.00, 0.07] 1.01
8 8 4 [0.00, 0.08] 1.06
64 64 4 [0.41, 0.51] 2.55
64 64 8 [0.06, 0.16] 2.93

Table D.1: Verification results for φ1 for various grid sizes and number of robots
with τ = 100. In the probability column is a 95% confidence interval satisfying
φ1.

the goal. This is straightforwardly expressed in Uppaal SMC by the query

Pr (<>[0;τ]exists{t:Robot} (t.x==xgoal

&& t.y==ygoal ∧
([][0;δ] forall{t2:Robot}

((t2.x==xgoal && t2.y==ygoal)

imply t==t2))))

where (xgoal, ygoal) is the goal location. We call this formula for φ2 Again we
show the verification result for various parameters to the model in Table D.2.

x y #Robots Probability Time (s)
2 2 1 [0.95, 1.00] 0.13
4 4 2 [0.58, 0.68] 1.55
8 8 4 [0.47, 0.57] 6.01
8 8 8 [0.42, 0.52] 22.27
16 16 8 [0.00, 0.05] 10.27

Table D.2: Verification results for φ2 for various grid sizes and number of robots
with τ = 100 and δ = 20.

6.2 Client-Server

We now turn our focus towards applying QDTML to the client-server example.
For a start, we consider the property that all clients get a connection within 10
time units after their initial connection request. We verify this within the first
10 time units of a run. In Uppaal SMC the property is expressed as

Pr ([][0;10] forall { c : Client}

(!(c.Waiting && c.retries==0) ∨
(<>[0;10]c.Working )))
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Ports Probability Time Largest σ
10 [0.17, 0.27] 17m56.750s 2054 2079.53
13 [0.84, 0.94] 4m55.545s 491 854.49
15 [0.94, 1.00] 2m11.51s 198 440.1

Table D.3: Probability that client do not get a connection in their first try. The
Ports column is the number of simultaneous connections the server can handle.
The Probability column is a 95% confidence interval, time is the time used for
the verification in seconds. Largest is the average largest intermediate formula
encountered during a verification and σ is its standard deviation

Figure D.8: Development of the number of Clients. The clientID curve is
the total number of spawned clients - the numOf(Client) is number of active
clients.

This probability depends on the number of simultaneous connections that
the server can handle - in our model this corresponds to the number of ports.
In Table D.3 we show the 95% confidence intervals obtained by verifying the
property for three different number of ports. We also present the time used for
the verification. In all of the three cases, the verification used 738 runs. During
the generation of the runs we measured the size of the intermediate formulas, in
terms of the number of terminals and recorded the largest formula encountered.
In the Largest column we give the average of these and in the σ column we
show the standard deviation. We observe that the probability is higher when
we provide the server with more ports. At first the verification time seems high,
but recall that each discrete step in the model results in an expansion of the
forall ,and as a large large number of clients are spawned, as seen in Figure D.8,
this results in large formulas. The monitoring technique is recursive in the
formulas parse tree thus large formulas result in large verification time. We
conjecture that the verification is smaller when the probability is high simply
because the intermediate formulas encountered during verification is smaller.
This is supported by the results in Table D.3.

If we take a closer look at the model, we notice that it is possible for the
ServerChild to get stuck. If it chooses a long delay > 5 before signalling
a connection to the client, the Client would have timed out and might not
be ready for receiving the synchronisation from ServerChild. In the model
there is no time out on the server side thus the ServerChild would wait for a
disconnect synchronisation forever. This is possible in the model but verifying
the property
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Pr (<>[1;10] exists { s : ServerChild}

([][0;20] s.Working))

in Uppaal SMC, with 10 ports available, shows that the probability of having
a ServerChild in the s.Working location for 20 time units is in the interval
[0.00, 0.01] with a confidence of 95% thus it seems like an improbable event.

7 Conclusion

In this paper we have presented the logic QDMTL. The logic has been developed
with the specific aim of reasoning on the behaviour of the dynamic systems
i.e. systems consisting of a dynamically evolving set of processes. The logic
is complemented by an on-the-fly monitoring technique that given a time
diverging run of the system is guaranteed to terminate and provide a correct
result. We have applied our new logic to two examples, one being several robots
moving autonomously on a grid and the other being our running example of a
client-server architecture.

In the future we will continue our work towards providing a tool set for
reasoning on dynamic systems. Especially we will extend the modelling formal-
ism towards dynamic generation of communication channels and for allowing
processes to communicate these to each other.
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EStatistical Model Checking for
Biological Systems

Abstract Statistical Model Checking (SMC) is a highly scalable simulation-based
verification approach for testing and estimating the probability that a stochastic system
satisfy a given linear temporal property. The technique has been applied to (discrete
and continuous time) Markov chains, stochastic timed automata and most recently
hybrid systems using the tool Uppaal SMC. In this paper we enable the application
of SMC to complex biological systems, by combining Uppaal SMC with ANIMO, a
plugin of the tool Cytoscape used by biologists, as well as with SimBiologyR©, a plugin
of Matlab to simulate reactions. ANIMO and SimBiologyR© are two domain specific
tools that have their own user interfaces and formalisms specifically tailored towards
the biological domain. However – though providing means for simulation – both tools
lack the powerful analytic capabilities offered by SMC, which in previous work have
proved very useful for identifying interesting properties of biological systems. Our
aim is to offer the best of the two worlds: optimal domain specific interfaces and
formalisms suited to biology combined with powerful SMC analysis techniques for
stochastic and hybrid systems. This goal is obtained by developing translators from the
XGMML and SBML formats used by Cytoscape and SimBiologyR© to stochastic and
hybrid automata, allowing Uppaal SMC to be used as an efficient backend analysis
tool, that we demonstrate can handle real-world biological systems by pitting it against
the BioModels database. We present detailed analysis on two particular case-studies
involving the ANIMO and SimBiologyR© tools.

1 Introduction

It is conceivable to design systems to make their analysis easier, but usually
they are optimised for other constraints (efficiency, size, cost, etc.) and they
evolve over time, developing highly complex and unforeseen interactions and
redundancies. These phenomena are epitomised by biological systems, which
have no inherent need to be understandable or analysable. The discovery
that the genetic recipe of life is written with just four characters (nucleotides
Adenine, Cytosine, Guanine and Thymine) that are algorithmically transcribed
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and translated into the machinery of the cell (RNA and proteins) has led
scientists to believe that biology also works in a computational way. The further
realisation that biological molecules and interactions are discrete and stochastic
then suggests that biological systems can be analysed using the same tools used
to verify for instance a complex aircraft control system.

Using formal methods to investigate natural systems can thus be seen as
a way to challenge and refine the process of investigating man-made systems.
It is very difficult to reason about systems of this type at the level of their
descriptions, however. It is much more convenient to directly analyse their
observed behaviour. In the context of computational systems we refer to this
approach as runtime verification, while in the case of biological systems this
generally takes the form of monitoring the simulation traces of executable
computational models.

There already exists several formal tools dedicated to this purpose. As an
example, the ANIMO toolset [106] can be used to model biological pathways.
This tool handles phenomena described via the Cytoscape library [110]. The
tool chain goes via a translation from the library to timed automata, which
allows exploiting Uppaal for verifying properties of the system. Unfortunately,
ANIMO is restricted so that it cannot capture the stochastic behaviours inherent
to many biological phenomena. Moreover, its expressive power is restricted
to timed automata while many behaviours have to be described via general
Ordinary Differential Equations (ODE). Another interesting toolset is Mat-
lab with SimBiology R©1 frontend from Mathworks. While Matlab is clearly
powerful enough to handle complex phenomena, including non linear ones, it
does not provide efficient verification techniques and powerful logics to describe
eventually complex properties one may want to measure and check on the model.

In this paper, we propose a new tool-chain for the analysis of biological
systems. Our approach heavily relies on statistical model checking (SMC) [87,
108, 121], a powerful formal approach that has recently been proposed as a new
validation technique for large-scale, complex systems. The core idea of SMC is to
conduct some simulations of the system, monitor them, and then use statistical
methods (including sequential hypothesis testing or Monte Carlo simulation)
to decide with some degree of confidence whether the system satisfies the
property or not. By nature, SMC is a compromise between testing and classical
formal method techniques. Simulation-based methods are known to be far less
memory and time intensive than exhaustive ones, and are some times the only
option. SMC has been implemented in a series of tools [80, 86, 120] that have
defeated well-known numerical-based analysis tools on several non-academic
case studies. Such tools have been applied to large-size industrial applications
such as the verification of a complex aircraft control system [16], schedulability
analysis of mixed criticality systems [50] or more recently for complex systems of
systems within the integrated project DANSE2 and performance evaluation of

1http://www.mathworks.se/products/simbiology/
2http://www.danse-ip.eu/home/
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energy-aware buildings in the Sino-Danish Basic Research Center IDEA4CPS3.
In fact, one shall see that biological phenomena can be represented by

networks of stochastic hybrid automata (SHAs). Stochastic hybrid automata
are timed automata whose clocks can evolve with different rates, which may
depend not only on values of discrete variables but also on the value of other
clocks, effectively amounting to ordinary differential equations (ODEs). In
[45, 47], we showed that SHAs can be equipped with a stochastic semantic
based on stochastic delays and repeated races between the components of
composite model. Importantly, the stochastic semantics provide the foundation
for well-defined probability measures for a range of linear temporal properties.
In the present paper, we shall see that this model is general and can be used to
capture a wide range of biological phenomena. More precisely, our approach
can handle biochemical reactions that rely on the interaction of molecules of
different species. In one approach, the models based on elemental reactions with
mass action kinetics may be simulated exactly as a continuous time Markov
chain (CTMC) having discrete states. Alternatively, in case of huge amount
of molecules, approximate analysis may be preferable (or necessary) using sets
of coupled ODEs that assume continuous states. The method of conversion
between these two paradigms, along with explanations of the emphasised terms,
is given in [63].

We then see how to connect ANIMO and Matlab SimBiology R© to Up-
paal SMC. Uppaal SMC is a stochastic and statistical model checking exten-
sion of Uppaal that relies on the SHA model described above.
Uppaal SMC comes together with a friendly user interface that allows a
user to specify complex problems in an efficient manner as well as to get feed-
back in the form of probability distributions and compare probabilities to analyse
performance aspects of systems. The Uppaal SMC model checking engine has
been applied to a wide range of examples ranging from networking and Nash
equilibrium [33] through systems biology [47, 51], real-time scheduling [50] to
energy aware systems [48]. Our connection is based on intermediary translations
to XGMML (used by ANIMO) or SBML (used by SimBiology R©) to the CTMCs
and ODEs format of Uppaal SMC. By connecting ANIMO and SimBiology R©

to Uppaal SMC, we not only unify their expressive power, but also make the
powerful simulation engine of SMC available for efficient verification of com-
plex behaviours. It is worth observing that our transformation is general and
can be used to connect Uppaal SMC to other libraries to describe biological
phenomena, including the BioNetGen framework of Faeder et al. [56].

Finally, we compare the performances of ANIMO, SimBiology R©, and Up-
paal SMC on several biology examples. The structure of the paper is as
follows. Section 2 presents the formalisms used in ANIMO and Simbiology,
Section 3 reviews the SHA modelling formalism of Uppaal SMC as well as
application of its SMC engine, Section 4 presents our translators from ANIMO
and SimBiology R© (SBML format in fact) to Uppaal SMC, and Section 5

3http://www.idea4cps.dk/
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(b) Unbalanced quantities.

Figure E.1: Continuous Time Markov Chain models of reactions.

focuses on two case-studies and compares the different tools.

2 Modeling Formalisms for Biology

Here we introduce a simple example and use it to demonstrate features of
ANIMO and Matlab SimBiology R©. Suppose we have two reactants A and B
which produce C with a rate kon = 0.2m−1s−1, the reaction can be reversed
with a rate koff = 0.1s−1 and the product C can decay into some other materials
with rate kdeg = 1.0s−1. The system can be described by the following chemical
reactions:

A + B
kon−−−⇀↽−−−
koff

C
kdeg−−−→

Due to results of [63], such a system of chemical reactions can be modelled
as a CTMC under the assumptions that at most two molecules participate
in a reaction instance and that molecules are well mixed (uniform reaction
rates). Figure E.1a shows a CTMC model of our reactions where the state
〈[A], [B], [C]〉 corresponds to the number of molecules of each reactant and
transition probability is proportional to the reaction rate and available reactant
molecules. For example, if we start with a mix containing [A]=3, [B]=3 and
[C]=0 molecules (state 〈3, 3, 0〉 in Figure E.1a), then the molecules of A and
B may react with a probability rate of 3 · 3 · kon by consuming one molecule
of each A and B and producing one C, thus the resulting target state contains
[A]=2, [B]=2 and [C]=1 molecules (state 〈2, 2, 1〉). The other reactions can be
modelled likewise. Eventually all of our molecules decay into other materials
which do not participate in our system resulting in a dead-end state 〈0, 0, 0〉. If
the initial quantities are not so well balanced, then the final state may contain
some of the initial reactants like in Figure E.1b. It is easy to see that the
modelling approach can be generalised by encoding the quantities of species as
variables and disregarding the reactions where the reaction rate is zero due to
some reactant having zero molecules.
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Alternatively, when there is an abundance of reactants (the number of
molecules is large enough that changes can be viewed as continuous) the system
of reactions can be modelled as a dynamical system using ordinary differential
equations (ODE):

d[C]

dt
= +kon [A] · [B]− (koff + kdeg) · [C] (E.1)

d[A]

dt
= −kon [A] · [B] + koff · [C] (E.2)

d[B]

dt
= −kon [A] · [B] + koff · [C] (E.3)

In our examples we will assume the initial conditions as follows: [A]=50m,
[B]=80m, [C]=0m.

2.1 ANIMO

ANIMO [105, 106] is a tool developed for modelling biological pathways. In
Figure E.2 we provide a screenshot of the main window of the tool. At the
center of the screen is a model of our running example. In this model the
nodes represent species and the edges represent reactions. To the right of this is
presented a single simulation of the model. Below this simulation is a slider that
the user can use to zoom into a specific time point of the simulation: during this
movement the representation of the model is updated such that the colouring
of the nodes represent the quantity(colouring scheme is shown in the left of the
screen) of each species and the thickness of the edges represent how likely that
reaction is to occur next. In this manner ANIMO gives a visual representation
of the current state of the pathway. In ANIMO a molecule can be in an inactive
or active state and the reactions of the pathway may alter the state of a single
molecule4. If a reaction activates a molecule we call it an activation reaction
and if it deactivates a molecule, we call it an inhibitory reaction. In the graph
an edge A → C means A activates C and A a C means A inhibits C. In
ANIMO the amount of each species is fixed and given as a user defined value
known as the number of activation levels. An activation reaction increases the
current activation level of a species and inhibitory reactions decrease the current
activation level. Initially the species starts at an activity level defined by the
user.

The example in Figure E.2 is the model of our running example. Because
reactions in ANIMO can only influence one species (and condition its behaviour
on others) the model does not correspond exactly to the description. For
instance, the reaction binding A and B molecules into a C molecule is split
into three separate reactions: one increasing the activity level of C and two
decreasing the activity level of A and B respectively. Similarly, the splitting of
a C molecule into A and B is given as three reactions. A final difference from

4In fact the colouring of the nodes represent how large a fraction of each species is active
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Figure E.2: Screenshot from ANIMO.

the description is that the model does not incorporate the decay of C molecules
into “something else”.

The graph view of a pathway shows how species influence each other but
provides no visual means to indicate how the species influence the time before
a reaction occurs. The user controls this by choosing an appropriate reaction
type and by setting a reaction rate k. Also the user should provide a scaling
factor timeScale that translates the model time units to real-world time units.

ANIMO supports three kinds of reactions:

• A reaction C → A( C a A) is a type-1 activation (inhibition) reaction, if
the time before the reaction occurs only depend on the activity level of A,

• a reaction E → F (E a F ) is a type-2 activation (inhibition) reaction, if
the time before the reaction occurs depends on the activity level of E and
the inactivity (activity) level of F and

• the last reaction type supported by ANIMO is a type-3 reaction. In this
reaction scheme two species, called reactants, inhibits/activates a third
species - an example of this reaction is the double arrow from A and B
to C in Figure E.2. The time before the reaction occurs depend on the
activity level of the reactant, the inactivity levels of the reactants or the
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activity of one and inactivity level of the other reactant.

The time before a reaction occurs is selected in the interval [0.95×f, 1.05×f ]
where f is calculated differently depending on the reaction type as described by
Schivo et al. [105].

In ANIMO the pathway is translated into a network of timed automata.
We notice that it is more natural to use exponential distributions for reaction
times compared to the uniform distributions in ANIMO.

2.2 Matlab SimBiology R©

Matlab SimBiology R© is a tool for modelling, simulation and analysis of
dynamic systems with a focus on pharmacokinetics/pharmacodynamics and
systems biology. The tool features an editor with textual and graphical notation
to model chemical reactions. For example, the screenshot in Figure E.3a shows
that reactants, reaction rates and kinetic laws of our basic example can be
specified at the upper half, and the quantities with units can be declared at
the lower half. Besides simple reaction specification, the tool provides means of
grouping reactions into compartments allowing to model physical isolation of
materials, also the coefficient declarations can be separated by a reaction scope
allowing reuse of variable names. The reactions can be specified using graphical
notation interchangeably with textual notation. For example our reactions were
automatically rendered in graphical diagram shown in Figure E.3b: species
are drawn as blue ellipses, reactions appear as yellow circles, lines denote
participating reactants and arrows point to reaction products. Lines are dashed
if a reactant is only participating as a catalyst but is not consumed (a few
instances are shown in Figure E.12).

Once the model is complete, SimBiology R© can simulate the model as either
dynamical system using stiff numerical differentiation formula solver (ode15s
stiff/NDF, the plot is shown in Figure E.3c) or stochastic simulation using
ssa solver (plot shown in Figure E.3d). The simulation can be accelerated by
compiling the model into native executable code. Note that the solver has to
be selected for entire simulation and thus stochastic and dynamical phenomena
cannot be combined in one simulation.

3 UPPAAL SMC

The verification tool Uppaal [21, 86] provides support for modelling and efficient
analysis of real-time systems modelled as networks of timed automata [7]. To
ease modelling, the tool comes equipped with a user-friendly GUI for defining
and simulating models. Also, the modelling formalism extends basic timed
automata with discrete variables over basic, structured and user-defined types
that may be modified by user-defined functions written in a Uppaal specific C-
like imperative language. The specification language of Uppaal is a fragment of
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(d) Stochastic output.

Figure E.3: Matlab SimBiology R© modelling and simulation using different
solvers.

timed computation tree logic supporting a range of safety, liveness and bounded
liveness properties.

Uppaal SMC is a recent branch of Uppaal which supports statistical
model checking of stochastic hybrid systems, based on a natural stochastic
semantics [47]. Firstly, Uppaal SMC extends the basic timed automata
formalism of Uppaal by allowing rates of clocks to be defined by general
expressions possibly including clocks, thus effectively defining ODEs. Secondly,
Uppaal SMC comes equipped with a stochastic semantics [45] that refine
the non-deterministic choices that may exist with respect to delay, output as
well as next state. For delay of individual components, uniform distributions
are applied for states where delay is bounded, and exponential distributions
(with location-specified rates) are applied for the cases where a component
can remain indefinitely in a location. Also, Uppaal SMC provides syntax
for assigning discrete probabilities to different outputs as well as specifying
stochastic distributions on next-states (using the function random(b) denoting a
uniform distribution on [0, b]). The stochastic semantics of a network is given
in terms of repeated races between the constituent components, where in each
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vx = −10+random(0.5)
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bounce!
x == 0 && vx < 0

x’==1*vx

(a) Model of x coordinate.
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(d) Trajectory as (x, y) plot.

Figure E.4: Models and a trajectory of a thrown/bouncing ball hit by a player.

round the component choosing to output at the earliest time-point is the winner.
The specification formalism of Uppaal SMC is that of weighted metric

temporal logic(WMTL) [34, 35] with respect to which four different (simulation-
based) statistical model checking queries are supported: hypothesis testing,
probability estimation, probability comparison and simulation. Here the user
may control the accuracy of the analysis by a number of statistical parameters
(size of confidence interval, significance level, etc.). Uppaal SMC also provides
distributed implementations of the hypothesis testing and probability estimation
demonstrating linear speed-up [35].

Throwing & Bouncing Ball To give an illustration of the expressive power of
the modelling formalism of Uppaal SMC, we consider a variant of the well-
known bouncing ball. In our version the ball is initially thrown against a wall,
bounces against it, and then continues its trajectory by falling and bouncing
against the floor. In addition, an inexperienced player tries to hit the ball
randomly according to an exponential distribution. The model is depicted in
Figure E.4(a)–(c). The player is modelled as a simple automaton that broadcasts
hit! with an exponential distribution of rate 5

2 . The x coordinate (Figure E.4a)
is initialised to 10 with an uncertain derivative vx uniformly distributed between
[−10,−9.5] (the ball is thrown against the wall), after which the ball moves
toward the wall (placed at 0). Here, the automaton outputs bounce! on an urgent
channel, which forces the transition to take place deterministically at x=0. After
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a bounce with a random dampening factor of the velocity vx uniformly between
[0.85, 1], the ball continues to move in the opposite direction. The y coordinate
(Figure E.4b) is initialised to 10 with an uncertain derivative vy. The model
shows the effect of gravitation with vy’=−9.81. The ball bounces with a random
dampening factor on the floor (at 0) and when the ball is away from the wall
(x>= 10) then it can be hit by the player provided it is high enough (y>= 6).
Depending on the current direction of the ball, the ball may bounce or it is
pushed. One possible trajectory of the ball is shown in Figure E.4d. The plot
is obtained by checking the query “ simulate 1 [x<=40] {y}”. The vertical line
shows the ball moving to its initial position and should be ignored. The ball
bounces as expected against the wall, the floor, and the hitting of the player.
Uppaal SMC is able to simulate this hybrid system that has a second order
ODE, a stochastic controller (the player), and a stochastic environment (random
dampening factor).

In addition, we may perform SMC in order to estimate the probability that
the ball is still bouncing above a height of 4 after 12 time units with the query:

Pr[<=20](<> time>=12 and y>=4)

which returns the confidence interval [0.44, 0.55] with 95% confidence after
having generated 738 runs. We can also test for the hypothesis

Pr[<=20](<> time>=12 and y>=4) >= 0.45,

which gives a more precise lower bound. The hypothesis holds with a region of
indifference ±0.01 and a level of significance of 5% after generating 970 runs. In
the queries the [<=20] tells the engine that the property should be true within
the first 20 model time units hence the sample runs should only have a length
of 20 model time units..

Uppaal SMC, and in principle any statistical model checker, consist of
three components: A generator, a validator and a core algorithm as depicted in
Figure E.5. The generator takes as input a model M and produces a single run
of a given length, the validator takes as input a property φ and a run and returns
true if the run satisfies the property and false otherwise. This control flow is
shown by the solid lines in Figure E.5. The core algorithm essentially “keeps
score” of the number of true and false results, in order to perform hypothesis
testing or estimation with respect to the unknown probability PM (φ) using
classical statistical algorithms. For hypothesis testing, additional information
with respect to required significance level (α1) and threshold probability (θ)
is required. For estimation, information concerning the size of the confidence
interval (δ) and the required confidence level (α2) is required.

In order to increase performance, Uppaal SMC is validating a run while it
is generated. Here the generator passes a single state forward to the validator
and the validator can ask for the next state in the run being generated or may
pass true or false to the core algorithm. This one-step validation is shown by
the dashed lines i Figure E.5 and is essentially made to avoid generating and
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storing long runs, e.g. 1000 steps, if the property may already be settled after a
few, e.g. two, steps.

M
Model Generator

φ
Property Validator

α1, θ
α2, δ

Core
algorithm

PM (φ) ≥ θ
with significance α1

PM (φ) ∈ [a ± δ]
with confidence α2

run state

true/false

Inconclusive

Figure E.5: High level view of a statistical model checker for probability
estimation and hypothesis testing. The dashed lines correspond to Uppaal SMC
optimised generation/validation loop and the solid lines to a generic statistical
model checker.

Weighted Metric Temporal Logic Besides pure reachability properties Up-
paal SMC also supports Weighted MTL (WMTL) properties with a point-wise
semantics. An example of a WMTL property is that the ball within 4 but not
earlier than 2 time units should reach a height greater than 6 and afterwards
within 1 time unit should drop below 4. In WMTL we can describe this as

(tt U[2;4] (y > 6 ∧ (tt U[0;1] y < 4)),

in which an expression as φ1U[a;b]φ2 should be interpreted as φ1 must be true
until φ2 is true and φ2 must be true before b time units have passed but not
before a time units.

The syntax of WMTL extends propositional logic with time- and weight-
constrained Until and Release modalities:

ϕ ::=tt |ff | p |¬p |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |Xϕ |ϕ1Ux
[a;b]ϕ2 |ϕ1Rx

[a;b]ϕ2
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Figure E.6: Overview of our tool chain.

where x is a clock that for any infinite run will exceed any given bound of the
system (we omit this clock when we bound over the global time), p is an atomic
expression, a, b ∈ Q and a < b. An expression φ1R[a;b]φ2 means that φ2 must
be true until both φ1 and φ2 are true and they should be true after a time
units and before b time units. Alternatively φ2 is true from now and until b
time units have passed. The expression Xϕ means ϕ should be true in the next
observation.

In Uppaal SMC there are two different ways of using WMTL. For the MTL
fragment of WMTL, a MTL property can be passed directly to the engine [34].
For the full WMTL language, the formula can be converted into an observer
automaton and that automaton be parallel composed into the system [35]. The
observer is guaranteed to reach a specific location if the property is satisfied and
another if its not satisfied thus we can use the optimised reachability engine of
Uppaal SMC to verify WMTL. There is a catch though - sometimes an exact
observer cannot be constructed and only an over or underapproximation can be
made.

In adition to verify properties in WMTL, we can also use the observers
to, at run time, detect certain phenomena of the system (peaks for instance).
By coordinating multiple observers we can detect the period of the periodic
behaviours of the observed system. In Section 5.2 we will see an example of
this usage.

4 Translators

4.1 Overview

We have implemented two tools to translate (i) network description files (XG-
MML) with the semantics of the ANIMO plugin, and (ii) a subset of the
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standard format SBML5 to Uppaal SMC stochastic hybrid automata (XML).
Figure E.6 gives an overview of our translations. We can export ANIMO models
to XGMML within the Cytoscape tool and translate this format into a CTMC
Uppaal SMC model. From the SimBiology R© plugin we export SBML that we
can translate to both a CTMC or an ODE Uppaal SMC model. We note that
we could connect to other tools that use this standard format, such as BioNet-
Gen. The translators complement the functionalities of other tools by offering
statistical model-checking. In addition, we can envision that Uppaal SMC
could be used as a backend to other tools that translate models from a domain
specific formalism to stochastic hybrid automata.

Implementation and Availability The translators are implemented in C++.
The XGMML translator uses the rapidxml library and the SBML translator the
libsbml library. Our translators are available with the distribution of Uppaal
version 4.1.14. The translator for XGMML interprets the network according
to the semantics of ANIMO only. The translator for SBML is general and has
been tested against the BioModels database of biological models6.

4.2 General Principle of The Translations

To explain the general principles of our translations, we consider the following
example that is representative of the types of reactions we support:

A+B
kon−−−⇀↽−−−
koff

C
kdeg−−−→

Here, A and B are reactants, C is the product of the first reaction, and C is
itself a reactant for a second reaction where it degrades. In general, we can have
more reactants or products. To model these reactions we need to pick a kinetic
law V for each of them (in function of the concentrations of the reactants). If
we separate the reactions we have:

A+B
kon−−−→ C Von = kon [A][B]

C
koff−−−→ A+B Voff = koff [C]

C
kdeg−−−→ Vdeg = kdeg [C]

We note that the kinetic laws may contain some extra terms, e.g., concentrations
of catalysts that are not explicitly present in the reactions. These reactions
can be modelled as CTMCs (the stochastic model) or with ordinary differential
equations (the ODE model).

Basic Stochastic Model The stochastic model for these reactions is a network
of simple stochastic hybrid automata. The template for each reaction has one
edge with:

5http://sbml.org
6http://www.ebi.ac.uk/biomodels-main/publmodels

159

http://sbml.org
http://www.ebi.ac.uk/biomodels-main/publmodels


E. Statistical Model Checking for Biological Systems

A-=1, B-=1, C+=1

A>0 && B>0

Kon*A*B

(a) A+B
Kon−−−→ C

C-=1, A+=1, B+=1

C>0

Koff*C

(b) C
Koff−−−→ A+B

C-=1

C>0

Kdeg*C

(c) C
Kdeg−−−→

Figure E.7: The three stochastic hybrid automata to model the three reactions
of our example.

A=50,
B=80,
C=0

A’==-Kon*A*B+Koff*C &&
B’==-Kon*A*B+Koff*C &&
C’==Kon*A*B-(Koff+Kdeg)*C

Figure E.8: The ODE hybrid automaton to model the three reactions of our
example.

• A guard that ensures there is enough reactant, in our case A>0 && B>0
for the first reaction of our example and

• updates that encode the actual reaction, e.g., A−=1, B−=1, C+=1.

Furthermore, the kinetic law is encoded in the exponential rate that define
the distribution of the delay to take this transition. For this example we have
Kon∗A∗B. Figure E.7 shows the three stochastic automata used to model the
three separate reactions of our example. The automatic generation of these
automata is straight-forward from the reactions. The variables used are integers
since we only need counters. This may require rescaling the values of the initial
reactions.

Basic ODE Model To model with ODEs, we derive the equations from the
reactions and their kinetic laws. The derivative for each reactant is the weighted
sum (positive if produced or negative if consumed) of the kinetic laws of the
reactions that involve this reactant. For our example, we obtain the derivatives
of equations E.1, E.2 and E.3 in Section 2.

To model these equations in Uppaal SMC, we use one automaton with one
transition from an initial state to a main state to initialise the reactants, and
then the equations are declared in the invariant of the main state as shown in
Figure E.8. In practice, the values of the constants are inlined in the model.

The generation of the model is done by first collecting the reactants and the
different sums for their derivatives and second by writing the resulting list of
rates. The variables are clocks here. We do not need to rescale values as for the
stochastic model.
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(b) Scaled CTMC and ODE simulations.

Figure E.9: Simulation results of the CTMC and ODE models for our running
example. The {A,B,C}1 variables are from the non-scaled CTMC model, the
{A,B,C}2 variables are from the the ODE model and the {A,B,C}3 variables
are from the scaled CTMC model.

Example We show the results of the simulation of our example in Figure E.9.
Figure E.9(a) compares the simulations of the CTMC and the ODE models (the
ODE corresponding to the smooth plot). To increase the precision of the CTMC
simulation (done with small numerical values), we can scale the amounts by 100
(and correct the kinetic laws). Figure E.9(b) plots the scaled-down values from
the scaled model. The plot shows how the CTMC is now much closer to the
ODE solution and is in fact its discretization. This illustrates that by taking
large amount of reactants, the behaviour converges to the solution of the ODEs.

4.3 ANIMO to UPPAAL SMC

ANIMO models are exported to the XGMML format, which is a general XML
based format for representing networks. Our tool recognises the types of nodes
and their semantics used by ANIMO. The translation from ANIMO follows our
general principle for translating the reactions into CTMCs. Let A,B and C be
species with nA, nB and nC activation levels and let the time scale in ANIMO
be ts, then the translation is performed as shown in Table E.1.

Recall that the reaction time in ANIMO was chosen uniformly in the interval
[0.95 × f ; 1.05 × f ], f being calculated differently depending on the type of
reaction. The exponential rate we use in our translation to CTMCs correspond
to 1

f thus we ensure the average reaction time is the same for our translation
and the semantics for ANIMO.

4.4 SimBiology R© to UPPAAL SMC

SimBiology R© models are exported to SBML, a standard format to describe
biological systems. The SBML language has been designed for biologists and
can be used by several tools, in particular BioNetGen or SimBiology R©. SBML is
rich and is unfortunately not used in a standard way nor do different simulators
agree on simulation results [23], which shows that handling general models
is difficult: As an example, for the model #24, only six out of 12 simulation

161



E. Statistical Model Checking for Biological Systems

Type Guard UpdateExponential

A a B
1 A > 0 && B−1>0 B=B−1nB/(nA∗ts)∗k∗A

2 A>0 && B−1 >=0 && B>0 B=B−11/(nA∗ts)∗k∗A∗B

A→ B
1 A > 0 && B+1<=nB B=B+1nB/(nA∗ts)∗k∗A

2 A>0 && B+1 <=nB && (nB−B)>0 B=B+11/(nA∗ts)∗k∗A∗(nB−B)

A,B a C 3 f(A,actA) > 0 && f(B,actB)>0 && C−1>0 C=C−1nB/(nA∗nB∗ts)∗k∗f(A,actA)∗f(B,actB)

A,B → C 3 f(A,actA) > 0 && f(B,actB)>0 && C−1>0 C=C+1nB/(nA∗nB∗ts)∗k∗f(A,actA)∗f(B,actB)

Table E.1: Overview of the translation where actA, actB ∈ {active, inactive},
f(X, active) = X and f(X, inactive) = nX −X.

packages returned a result and only two of these seemed to agree on a specific
behaviour. We choose to support a subset of SBML and to judge if it is relevant
and to assess the validity of our translations, we apply our tool to all the 436
models of the BioModels database. According to [23],

“ The curated models in the BioModels Database cover a wide range of
features of the SBML language and are therefore an optimal choice as a
base set of models for simulator comparison. “

Translation To translate SBML models we use both the basic stochastic model
and the ODE models that we need to extend to accommodate the extra features
of SBML. We mention the following features that need extra handling:

• Functions: User functions in the form of lambda expressions can be defined.
These functions return floating point values, which is not yet supported
by Uppaal SMC, so we inline them in the model.

• Compartments: Species exist in compartments that have volumes, e.g., a
cell. We use compartments as namespaces.

• Species: Species (names for the reactants and products) are declared
with either initial amounts or initial concentrations (this is inconsistent
across models). We choose on-the-fly the right initial state. In addition,
quantities are not integers in general so our tool suggests a scaling factor
(option –scale value) to scale the values and update the kinetic laws
automatically.

• Parameters: Models can be parameterized by global or local parameters
(local to kinetic laws). We inline the definition of these parameters in
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time

trigger assignments

delay

(a) Time frame of events.

!triggered && triggerCondition

triggered=false

triggered=false,
load()

triggered && delayCondition

triggered &&
!triggerCondition

asap!

asap!
triggered=true,
save()

(b) Simplified template for encoding
events.

Figure E.10: Events in SBML and their encodings.

formulas where they are used if they are constants. If parameters are not
constants, they are typically used in event assignments, in which case they
are added to the model as extra variables.

• Assignment and rate rules: The models may contain reactions and explicit
equations that define how species evolve. The explicit definition of [A] =
expr is an assignment rule and d[A]/dt = expr is a rate rule. Sometimes
assignment or rate rules are present together with reactions involving the
same species and they may conflict. When rules are given, we consider
that they override any equation that we may infer from the reactions.
Assignment rules are inlined in formulas and rate rules override the
derivatives. It is forbidden to have both assignment and rate rules for the
same species.

• Names: Species are not used directly in the model, but rather species
references (to some identifier). Sometimes the identifier is misused as the
name and sometimes the name of the species is the right name. By default
our translator uses IDs but there is an option (–name) to use the names
of the species instead. This helps to understand the output.

• Events: External events to the reactions can occur, e.g., an operator
pours a reactant or a cell divides. They are akin to discrete transitions
in hybrid systems. An event is triggered when its trigger condition is
true. Event assignments are performed after an optional delay with
either the state or the state when the trigger occured (that means it has
to be saved). Events can be persistent. A non-persistent event means
that the trigger condition has to hold until the event assignment takes
place otherwise it is cancelled. Figure E.10(a) shows the time frame of
such events. Figure E.10(b) shows the extra transitions for each event
that are added to the basic ODE model7. The flag triggered records

7They can be added to the CTMC model as well but this is not yet implemented.
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Inconsistent models 2.7%
Unsupported features 25%
CTMC and ODE 10.1%
CTMC or ODE 30.3 %
Failed simulations 31.9%

Table E.2: Synthetic results on the database in percentage of the 436 models.

the occurrence of the event, triggerCondidion is the trigger condition,
delayCondition is the optional delay condition, save() is replaced by
saving the clocks needed for the assignment if the values at the trigger
are needed, and load() is replaced by the actual event assignments that
read either the current values or the values saved. The bottom transition
can disable the event if it is not persistent.

We do not support the other features. In particular, we currently assume that
the units in the model are consistent. Units can be handled via rescaling and
this is not a fundamental limitation. On the other hand, algebraic rules that
define equations of the form f(xi) = A where f(xi) is some arbitrary function
depending on species and A a constant, are more problematic. In practice they
are rarely used (not at all in the BioModels database) so this is not a limitation
either.

Validating the Tool To validate and assess the tool we use the following method-
ology. We download all curated models from the BioModels database. A curated
model is a manually sanitised model. We run our translator on all of them and
then we (manually) simulate all of those that were successfully translated. We
record the following results:

• We found models with negative initial amounts or that use reaction
identifiers as variables. They cannot be translated and are considered to
be inconsistent.

• We failed to translate some models that use unsupported features.

• For the models we successfully translate (72.3%), we can simulate CTMC
or ODE models (or both)8. The simulations may also fail mainly due to
numerical problems.

The detailed results of our validation experiments can be found in Table E.3
and are summarised in Table E.2.

These experiments show that we can obtain meaningful simulations auto-
matically out of 40.4% of all the models from this database, which is a positive
result considering that these models are not easy to handle even by specialised
tools in biology. This shows that Uppaal SMC can realistically be used as

8The individual scaling or simulation steps are not reported here for brevity.
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Nr. Res. Nr. Res. Nr. Res. Nr. Res. Nr. Res. Nr. Res. Nr. Res.
001 - 002 x 003 ode 004 ode 005 ctmc 006 ode 007 x
008 ode 009 x 010 both 011 both 012 both 013 x 014 both
015 x 016 x 017 x 018 x 019 - 020 x 021 ode
022 ode 023 ode 024 - 025 - 026 ode 027 both 028 both
029 both 030 both 031 ode 032 x 033 x 034 - 035 both
036 ode 037 both 038 x 039 x 040 x 041 ode 042 ode
043 ctmc 044 ctmc 045 ctmc 046 x 047 - 048 x 049 both
050 both 051 - 052 both 053 x 054 ode 055 - 056 x
057 ode 058 ode 059 x 060 ode 061 ctmc 062 ode 063 !
064 ctmc 065 ode 066 ode 067 ode 068 x 069 ode 070 ctmc
071 x 072 x 073 ode 074 ode 075 - 076 both 077 -
078 - 079 ode 080 x 081 - 082 x 083 - 084 ode
085 x 086 x 087 x 088 - 089 x 090 ctmc 091 ctmc
092 both 093 both 094 both 095 - 096 - 097 - 098 ode
099 ode 100 x 101 - 102 ode 103 ode 104 - 105 both
106 ode 107 ode 108 ctmc 109 - 110 ode 111 x 112 -
113 ode 114 ode 115 ode 116 ctmc 117 - 118 x 119 x
120 - 121 - 122 - 123 x 124 - 125 - 126 -
127 - 128 - 129 - 130 - 131 - 132 - 133 -
134 - 135 - 136 - 137 - 138 x 139 - 140 -
141 - 142 - 143 x 144 ode 145 ode 146 ode 147 ode
148 ctmc 149 - 150 x 151 x 152 - 153 - 154 -
155 - 156 ode 157 ode 158 x 159 ode 160 ode 161 -
162 - 163 x 164 - 165 - 166 ode 167 - 168 x
169 ode 170 both 171 - 172 x 173 - 174 - 175 x
176 x 177 x 178 x 179 - 180 - 181 ode 182 x
183 x 184 ode 185 ode 186 - 187 - 188 - 189 -
190 ode 191 both 192 x 193 - 194 - 195 x 196 -
197 both 198 ode 199 x 200 x 201 x 202 ode 203 x
204 x 205 x 206 ode 207 ode 208 - 209 x 210 x
211 ode 212 x 213 x 214 - 215 - 216 ode 217 ode
218 x 219 x 220 x 221 x 222 x 223 x 224 ode
225 ode 226 x 227 - 228 ode 229 ode 230 ode 231 ctmc
232 x 233 ode 234 x 235 - 236 ode 237 - 238 x
239 ode 240 ode 241 - 242 ode 243 both 244 - 245 !
246 x 247 x 248 ! 249 ode 250 x 251 x 252 x
253 x 254 ode 255 - 256 - 257 ode 258 ode 259 both
260 both 261 both 262 - 263 - 264 - 265 x 266 x
267 both 268 - 269 ode 270 x 271 both 272 x 273 -
274 ode 275 ode 276 ode 277 ode 278 x 279 x 280 x
281 - 282 x 283 both 284 ode 285 x 286 - 287 -
288 x 289 x 290 x 291 x 292 ode 293 both 294 ode
295 - 296 ode 297 x 298 ode 299 ode 300 x 301 -
302 x 303 x 304 x 305 ! 306 x 307 x 308 x
309 both 310 x 311 x 312 - 313 ode 314 ode 315 both
316 - 317 - 318 - 319 ode 320 ode 321 ode 322 ode
323 ode 324 x 325 ! 326 - 327 - 328 both 329 ode
330 x 331 x 332 ode 333 ode 334 ode 335 x 336 x
337 - 338 - 339 - 340 - 341 ode 342 - 343 x
344 x 345 x 346 x 347 x 348 x 349 x 350 -
351 - 352 - 353 ode 354 ctmc 355 x 356 - 357 both
358 both 359 ode 360 ode 361 both 362 x 363 ode 364 ode
365 ode 366 ode 367 ode 368 x 369 x 370 x 371 !
372 x 373 ! 374 ! 375 ! 376 ! 377 ! 378 !
379 ode 380 x 381 ode 382 x 383 x 384 x 385 x
386 x 387 x 388 ode 389 ctmc 390 x 391 x 392 x
393 x 394 ode 395 ode 396 ode 397 both 398 both 399 -
400 x 401 ode 402 ode 403 ode 404 - 405 x 406 x
407 x 408 - 409 ode 410 ode 411 - 412 - 413 both
414 ode 415 x 416 x 417 both 418 ode 419 ode 420 ode
421 ode 422 - 423 x 424 x 425 ode 426 x 427 ode
428 x 429 - 430 both 431 both 432 both 433 both 434 x
435 ode 436 -

Table E.3: Detailed results on all 436 (curated) SBML models from the database
available at http://www.ebi.ac.uk/biomodels-main/publmodels. The re-
sults are reported as follows: “!” means the model was inconsistent, “x” means
the simulation failed, “-” means the translation failed, “ctmc” means only the
CTMC simulation worked, “ode” means only the ODE simulation worked, and
“both” means both simulations worked. Italic “ode” means that the CTMC
model could not be generated because of the presence of rate rules in the SBML
file (it is not possible to get a CTMC model)
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a backend tool to handle real-world models. In the next section, we study in
details one of these models (number 35).

Remark 12. Some of the models used for the experiments are stiff and the
step size has to be adjusted for the integration to work. In particular, the
biological oscillator (model 35) needs a step size of 10−4.

5 Case Studies

In this section, we demonstrate the intended usage and benefit of the developed
tool chain on two case studies.

5.1 PC-12 Neural Pathways

We consider the case that the authors of [106] used to exemplify the use of
ANIMO. The case is a pathway that coordinates the neural differentiation of
PC-12 cells. The original ANIMO model was obtained from the authors and
afterwards translated into a Uppaal SMC model using xgmml2ctmc. We use
this model to compare the model of ANIMO with our translated model. For
the experiments we have used version 2.55 of ANIMO.

For the ANIMO model we generated 100 runs and took the average on each
sampling point to obtain an “expected” run. We did similarly for our translated
model but for 10000 runs - we used a greater number of runs for our model to
accommodate for the higher variability that the exponential distributions give.

In Figure E.11a we have plotted the expected run from ANIMO and in
Figure E.11b we show the expected run of Uppaal SMC. By visual inspection
we notice that the graphs of ANIMO and Uppaal SMC are not lining up
perfectly. However, they do share a common structure where ERK, and MEK
rises rapidly in the beginning and then drops and approaches zero as the time
progresses. Similarly RAF rises in the beginning and drops afterwards. The
primary difference in the runs is that the Uppaal SMC run takes longer to reach
the maxima for the species and equivalently takes longer in approaching zero.
This difference may easily be explained by our use of exponential distribution
versus the uniform distributions of ANIMO.

5.2 Genetic Oscillator

We show how the genetic oscillator [15, 117] can be modelled and simulated
in Matlab SimBiology R© exactly as a stochastic process with discrete states,
approximated using ODEs that assume continuous states, and then demonstrate
statistical model-checking approach using Uppaal SMC.

The synthetic genetic oscillator distills the essence of several real circadian
oscillators to demonstrate how nature constructs a reliable system in the face
of inherent stochasticity: the oscillator has been shown to exhibit a kind of
regularity referred to as stochastic coherence [76]. The model is based on
elemental reactions with mass action kinetics shown in Table E.4 .
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(a) A simulation from ANIMO. (b) Average run from Uppaal SMC.

Figure E.11: Comparison between Uppaal SMC and ANIMO. The time is on
the x-axis and on the y-axis we have the activity levels of the variables. In (a)
R45 = RAF, R26 = MEK and R39 = ERK

.
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β
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C
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A−→ R

A
δ
A−→ ∅

R
δ
R−→ ∅

MA

δ
MA−→ ∅

MR

δ
MR−→ ∅

αA = 50h−1 δMR= 0.5h−1

α′A = 500h−1 θA = 50h−1

αR = 0.01h−1 θR = 100h−1

α′R = 50h−1 DA = 1m
βA = 50h−1 D′A = 0
βR = 5h−1 DR = 1m
γA = 1m−1h−1 D′R = 0
γR = 1m−1h−1 MA= 0
γC = 2m−1h−1 MR= 0
δA = 1h−1 A = 0
δR = 0.2h−1 R = 0
δMA= 10h−1 C = 0

Table E.4: Reactions and initial values for constants and species from the
genetic oscillator [117].
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(b) Output of ODE solver.
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(c) Output of stochastic solver.

Figure E.12: Modelling and simulating the genetic oscillator in SimBiology R©.

Oscillations arise in the model as a result of a phase shift between competing
processes of production and sequestration of protein A. Genes DA and DR are
transcribed to messenger RNA MA and MR, that are translated to proteins A
and R, respectively. A and R dimerise to produce complex C. Protein A acts as
a promoter for its own gene, creating a positive feedback loop that causes the
production of A to increase rapidly. Protein A also promotes the production of
protein R. Hence, as A increases, so too does R, but after a delay due to the
two step transcription-translation process. As R increases it sequesters A via
the second order dimerisation reaction, thus limiting the maximum amount of
protein A. The delay in this negative feedback causes the system to oscillate.

Matlab SimBiology R© is designed specifically for biochemical processes,
thus modelling is straightforward and simulation benefits from a similar set
of solvers with an important addition of the stochastic one. The remarkable
feature of SimBiology R© is that simulations can be performed in ensembles and
the simulation can be accelerated further by compiling into native executable
through translation into C, but eventually the behavioural data is recorded as
large Matlab arrays for later post-processing.

We have modelled the genetic oscillator [117] in our previous study [47, 51]
and in this paper we compare the results and performance of Uppaal SMC
with Matlab SimBiology R© and Simulink R©. Figure E.12 shows the reaction
model and simulation plots using a deterministic ODE and a stochastic solver.
The simulated behaviour is identical with our previous results and the translated
models to Uppaal SMC through SBML are equivalent to the ones we studied

168



5. Case Studies

Tool Simulation Performance, s

Simulink R©
fixed 10−4 step ode1 (Euler) 3.7900 ±0.11
variable step ode45 (Runge-Kutta) 0.7700 ±0.02
variable step ode15s (stiff/NDF) 0.0783 ±0.0065

SimBiology R©

ode15s (stiff/NDF) 0.1805 ±0.0017
ssa (stochastic) 0.2575 ±0.0090
accelerated ode15s (stiff/NDF) 0.0203 ±0.0015
accelerated ssa (stochastic) 0.2476 ±0.0054

Uppaal SMC
fixed 10−4 step ODE (Euler) 1.7520 ±0.0056
CTMC (stochastic) 1.0400 ±0.24

Table E.5: Genetic oscillator simulation performance using various tools: the
intervals computed using 20 measurements with 95% confidence.

Tool Simulation Tuples Min memory, KB

SimBiology R© ode15s 747 58.4
ssa 286080 ±7674 22350.0

Uppaal SMC
ODE 5354 418.3
stochastic 4437 ±34 346.6

Table E.6: Simulation data comparison.

before. We also modelled the differential equation model in Simulink R© and got
identical results.

Table E.5 summarises the timing measurements of 100h of model time
simulations (containing about four periods of oscillations) with graphical plotting
turned off. Matlab family of tools provides a wide range of solvers with varying
quality and behaviour. We tried a fixed time step ode1 Euler solver because it is
the same method used by the current release of Uppaal SMC. The results show
that Uppaal SMC implementation is about two times faster. A default choice
in Simulink R© is a variable step ode45 solver which is more accurate and faster
than Uppaal SMC because it can leap in larger time steps when dynamics
change little. Solver ode15s seems to be even a better choice here because it is
designed for stiff functions and still fast. The problem with Matlab Simulink R©

is that resulting models are large9 and thus the modelling process is tedious
and difficult to debug.

Table E.6 shows amounts of data generated for simulation purposes. A
tuple of data consists of ten double precision numbers (one for time and nine
for species quantities). SimBiology R© works very well for deterministic ODE
simulations and acceleration can be dramatic, but the stochastic simulations
hardly get any benefit from acceleration and can be problematic due to vast
amount of generated data while performing small time steps and even simple

9e.g. StateSpace approach is not applicable due to multiple species coupling.
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Figure E.13: Estimated probability density distributions for amplitude and
period.

ensemble simulation becomes a memory bottleneck in the process. For example,
generating ensemble simulation of just 100 runs (without plots), Matlab’s
virtual memory grows from 1329MB to 5633MB (504MB to 4600MB of resident
memory). The small time steps are inevitable in stochastic simulations of
biological systems because the reaction rates are proportional to molecular
quantities and some of them can get very high. While it is possible to use
the memory more efficiently by analysing one run at a time, it still requires
programming and is still constrained to storing at least one entire run.

Uppaal SMC contains twice as fast Euler ODE integrator, but it is still
much slower than variable step solvers like ode45 and ode15s. On the other
hand, stochastic simulation is more than 64 times efficient in space due to
data filtering and thus is more suitable for interactive exploration. In addition,
Uppaal SMC provides a query language and evaluates the statistical properties
on-the-fly by storing only one state at a time, and thus does not have a storage
bottleneck. Uppaal SMC may also terminate simulation earlier due to feedback
from its Validator and Core algorithm to Generator that it has acquired enough
information about a single run or observed enough runs.

Next, we demonstrate statistical query language application. For example,
the amplitude of each protein quantity can be measured by the following query:

E[<=100; 2000](max: Q)

where 100 is the time bound for simulation, 2000 is the number of simulations
and Q is a model expression of interest: in our case it is simply one of variables
A, C or R. As a result, Uppaal SMC renders a probability density plot of
possible amplitudes and a vertical line for an average value shown in upper plots
of Figure E.13. The memory consumption remains about the same: around
40MB of virtual and 3.7MB of resident.

Uppaal SMC can also estimate a distance between peaks by the construction
of monitors for WMTL. The idea of the approach is to translate a WMTL
formula that describes the shape of a peak into a monitoring automaton. By
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resetting a clock x and start a secondary monitor when a peak is detected we
can estimate the distance as the value of x when the second monitor detects a
peak[51].

To detect peaks of A when its amount rises above 1100 and drops below
1000 within 5 time units, we use the formula (in the tool syntax):

true U[<=100] (A>1100 && true U[<=5] A<=1000)

Then the distance between peaks can be estimated by measuring maximal
value of clock x with similar queries we used to estimate amplitude. The result
is rendered by the tool as a logarithm of probability density shown in the second
row of Figure E.13. The plots show that in most cases the measured distance
between peaks is about 24.2 hours (slightly more than one day-night cycle).
Then there are some smaller bumps with several magnitudes lower probability
which can be explained by either a) false positive peak as the WMTL monitor
is confused by a sudden stochastic saw-tooth in signal A, or b) missing a peak
or two, or even three (in C) if the peak is not high enough to be registered at
all, hence the next one is registered instead.

6 Conclusions

The present paper proves three main points:

1. Uppaal SMC can handle a wide range of biological systems.

2. The simulation engine of Uppaal SMC is of comparable performance
with Simulink R© and SimBiology R©.

3. The essential benefit of Uppaal SMC comes with the power of statistical
model checking with respect to a range of temporal logic properties.

In order to show the range of applicability we have connected the Up-
paal SMC toolset to ANIMO and SimBiology R©– two tools that can be used to
specify and analyse biological phenomena. In particular we support SBML, used
in many other research projects. Our implementation works via a translation
from the input languages of those tools to the one of Uppaal SMC. This ap-
proach allows us not only to exploit the efficient ODEs solver of Uppaal SMC,
but also to apply powerful techniques such as Statistical Model Checking to the
systems.

As future work, we would like to implement new functionalities to capture a
wider range of biological phenomena. We also plan to improve the ODE solving
capabilities of Uppaal SMC by implementing more advanced ODE solvers
such as CVODE and ode15s.
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FChecking & Distributing Statistical
Model Checking

Abstract In this paper we propose a general framework for distributed statistical
model checking of networks of priced timed automata. The first contribution is a
new algorithm to distribute sequential hypothesis testing without introducing bias
in the results. The second contribution is an implementation of this algorithm in
Uppaal. The major contribution is an experimental and analytical evaluation
of the approach through case studies, including an analysis of the SMC algorithm
itself.

1 Introduction

Statistical model checking (SMC) techniques [75, 108, 123], can be seen as a
trade-off between testing and formal verification. The core idea of the approach
is to conduct some simulations of the system and verify if they satisfy a given
property. The results are then used together with statistical algorithms to decide
whether the system satisfies the property with some probability. Statistical
model checking techniques can also be used to estimate the probability that a
system satisfies a given property [75, 65]. Of course, in contrast to an exhaustive
approach, a simulation-based solution does not guarantee a correct result with
100% confidence. However, it is possible to bound the probability of making
an error. Statistical model checking gets widely accepted in various research
areas and applied to problems that are beyond the scope of classical formal
techniques [24, 41, 87, 102, 107, 122, 124].

Unfortunately, extremely huge sized problems and a demand of extremely
high confidence may require generation of a large number of simulation runs, each
of which may itself be extremely time consuming. To address this confidence-
explosion problem, we suggest in this paper to take advantage of PC-clusters
and GRID computers. In fact, it is well-known that statistical solutions methods
that use samples of independent observations are often trivially parallelisable.
As observed in [120], SMC algorithms can be distributed through the help of
a master/slave architecture where multiple computers are used to generate
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the simulations. The idea is as follows: one or more slave processes register
their ability to generate simulation with a single master process that is used
to collect those simulations and perform the statistical test. However, this
process may become complex when considering sequential hypothesis testing
(when the number of simulations is not known in advance). The problem is that
there might exist a correlation between a time needed to generate a random
simulation and the fact that a property is satisfied by this simulation. Thus it
is important to guarantee that the technique will not introduce a bias towards
the results that are generated by shorter simulations.

In a series of recent works [45], we have extended Uppaal with SMC algo-
rithms applied to Networks of Priced Timed Automata – hence leading to the
first implementation of SMC for real-timed stochastic systems. The objective
of this paper is to go one step further and propose the first complete study of
distributed SMC, in general, and in the framework of Uppaal in particular.
Our contributions are:

1. A distributed implementation of the estimation algorithm proposed in
[75]. Building on classical Monte Carlo techniques [66], an estimation
algorithm precomputes the number of simulations needed to estimate
the probability to satisfy a property with a given confidence. Such an
algorithm which is trivially parallelisable amounts to equally distribute
the number of simulations to perform between the slave computers.

2. A thorough evaluation of our implementation through new applications
of SMC algorithms. In particular, we apply the distributed SMC engine
to an analysis of an instance of the LMAC protocol of unprecedented size.
Additionally, a thorough evaluation of the distributed SMC framework
itself is made aiming at identifying optimal settings of the parameters
for the framework. The evaluation is carried out both experimentally
(using the implementation) as well as analytically (using SMC) based on a
model of the distributed SMC algorithm itself, and with high consistency
in identifications made by the two approaches.

2 Statistical Model-Checking in UPPAAL

This section introduces the formalisms used in Uppaal for modelling systems
and specifying properties. Then, we briefly survey existing statistical model
checking (SMC) algorithms. Finally, a novel application of SMC is presented.

2.1 Networks of Priced Timed Automata

The new SMC engine of Uppaal [46] supports the analysis of priced timed
automata (PTAs) that are timed automata whose clocks can evolve with dif-
ferent rates, and with no restrictions in guards and invariants. Addition-
ally, we support other features of the Uppaal model checker’s input lan-
guage such as integer variables, data structures and user-defined functions.
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Figure F.1: An Network of priced
timed automata (NPTA), (A|B|T ).

We also assume PTAs are input-enabled,
deterministic (with a probability measure
defined on the sets of successors), and non-
zeno. PTAs communicate via broadcast
channels and shared variables to generate
NPTAs.

Figure F.1 provides an NPTA with
three components A, B, and T as specified
using the Uppaal GUI. One can easily
see that the composite system (A|B|T )
has the transition sequence:(
(A0, Bo, T0), [x = 0, y = 0, C = 0]

) 1−→ a!−→(
(A1, B0, T1), [x = 1, y = 1, C = 4]

) 1−→ b!−→(
(A1, B1, T2), [x = 2, y = 2, C = 6]

)
,

demonstrating that the final location T3 of T is reachable. In fact, location
T3 is reachable within cost 0 to 6 and within total time 0 and 2 in (A|B|T)
depending on when (and in which order) A and B choose to perform the output
actions a! and b!. Assuming that the choice of these time-delays is governed
by probability distributions, a measure on sets of runs of NPTAs is induced,
according to which quantitative properties such as “the probability of T3 being
reached within a total cost-bound of 4.3” become well-defined.
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Figure F.2: Cumulative probabilities for
time and Cost-bounded reachability of
T3.

In our early works [45], the
stochastic semantic of PTA compo-
nents associates probability distribu-
tions on both the delays one can spend
in a given state as well as on the
transition between states. In Uppaal
uniform distributions are applied for
bounded delays and exponential dis-
tributions for the case where a com-
ponent can remain indefinitely in a
state. In a NPTA the components re-
peatedly race against each other, i.e.

they independently and stochastically decide on their own how much to delay
before outputting, with the “winner” being the component that chooses the
minimum delay. For instance, in the NPTA of Figure F.1, A wins the initial
race over B with probability 0.75.

Properties For specifying properties of NPTAs, we use cost-constrained
temporal properties over runs of the form ψ = ♦♦♦x

≤cφ. Here x is an observer
clock (that is never reset and should grow to infinity on any infinite run),
c ∈ IR≥0 and φ is a state-predicate. We say that a run π satisfies ψ = ♦♦♦x

≤cφ if
there exists a state (l, v) in π satisfying φ and with v(x) ≤ c. For an NPTA N
we define PN (ψ) to be the probability that a random run of N satisfies ψ.
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Reconsider the example of Figure F.1, we can evaluate the probabilities
Pr[time<=2](♦ T.T3) and Pr[C<=6](♦ T.T3) in Uppaal, obtaining as ex-
pected 0.75 for the composition (A|B|T) for both of these probabilities. In
fact Figure F.2 gives the time- and cost-bounded reachability probabilities for
(A|B|T) for a range of bounds.

2.2 Statistical Model Checking Algorithms

We briefly recall statistical algorithms allowing to answer the following two
types of questions : (1) qualitative Is the probability that a random run of a
given NPTA N satisfies a property ♦♦♦x

≤cφ greater than a certain threshold θ?
and (2) quantitative: What is the probability that a random run of N satisfies
♦♦♦x
≤cφ? For both question a run of the system is encoded as a Bernoulli random

variable that is true if the run satisfies the property and false otherwise.

Qualitative Question This reduces to test the hypothesis H: p = PN (♦♦♦x
≤cφ) ≥ θ

against K : p < θ. To bound the probability of making errors, we use strength
parameters α and β and test the hypothesis H0 : p ≥ p0 and H1 : p ≤ p1

with p0 = θ + δ0 and p1 = θ − δ1 (δ0 and δ1 are parameters of the algorithm).
The interval [p0, p1] defines an indifference region, and p0 and p1 are used as
thresholds in the algorithm. The parameter α is the probability of accepting
H0 when H1 holds and the parameter β is the probability of accepting H1 when
H0 holds. The above test can be solved by using Wald’s sequential hypothesis
testing [119]. This test, which is presented in Algorithm F.1, computes a
proportion r among those runs that satisfy the property. With probability 1,
the value of the proportion will eventually cross log(β/(1−α) or log((1− β)/α)
and one of the two hypotheses will be selected.

Algorithm F.1: Hypothesis testing
1 function hypothesis(S:model , ψ: property)
33 r:=0
55 while true do
77 Observe the random variable x corresponding to ♦x≤cφ for a run.
99 r := r + x ∗ log(p1/p0) + (1− x) ∗ log((1− p1)/(1− p0))

1111 if r ≤ log(β/(1− α)) then accept H0

1313 if r ≥ log((1− β)/α) then accept H1

14 end

Quantitative Question This reduces to a Monte Carlo approach that computes
the number N of runs needed in order to produce an approximation interval
[p− ε, p+ ε] for p = Pr(ψ) with a confidence 1− α. The values of ε and α are
chosen by the user and N relies on the Chernoff-Hoeffding bound.
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2.3 Analysing SMC in UPPAAL

In this section we will use the SMC engine of Uppaal to our first non-trivial task,
namely to analyse itself! More precisely, by suitably modelling the sequential
testing algorithm as well as a sample model M, we will be able to use the SMC
engine of Uppaal to analyse the performance of SMC on M. Later, in Section
4, this will allow us to evaluate various naive (and even faulty) proposals for
distributing SMC.

The sample model M given in Figure F.3a1 makes an initial probabilistic
choice between the two branches, each having a looping transition taken repeat-
edly with a delay chosen uniformly from ]0, 2]. Performing sequential testing of
the hypothesis H0: Pr[<=100](♦ OK)≥ 0.5 some 10 times with α = 0.05 as
level of significance and with an indifference region of ±0.01, we consistently
(and correctly) dismiss the hypothesis with an average of 408.6 runs and with
standard deviation 127.5.
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time=0
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x=0x=0

(c) Generator.

Figure F.3: Sample model M (a) satisfying Pr[<=100](♦ OK)= 0.42 and mod-
elling SMC of M (b, c) with respect to H0: Pr[<=100](♦ OK)≥ 0.5 with 0.05
as level of significance and [0.49, 0.51] as indifference region.

Now, aiming at obtaining a better understanding of sequential testing2 we
may simply model the sequential testing algorithm of M directly and analyse its
(expected) performance using Uppaal SMC. The resulting model is given in
Figure F.3 and consists of an extension of the sample modelM into the component
Generator that will repeatedly generate random runs of M (of time-duration 100)
and report the outcome to a Master using the channels add (when 100 time-units
has elapsed without OK having been observed) and sub (used as soon as it is
observed that the OK branch has been taken, note the absence of the time>=100
guard on the right side of the Generator model). The Master has the obligation
of adjusting appropriately the ratio-variable r according to Algorithm F.1, and
conclude on H0 or H1 as soon as the value of r exceeds the given threshold.
Given the indifference region [0.49, 0.51] and level of significance 0.05, we find
that the approximate values to be used 3 in Algorithm F.1 are: − log(p1/p0) =

1M is a timed variant of the model proposed in [123] and used to demonstrate bias in a
naive distributed approach to SMC.

2The performance of sequential testing has been subject to significant studies and is
well-understood [118]. The aim here is to demonstrate that our Uppaal SMC engine is a
useful tool for obtaining such an insight.

3Those values are obtained by observing Wald’s ratio on several application of the SMC
algorithm to the same problem, and then take the average of the observations.
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log(1− p0/1− p1) = 0.01715 and log((1− β)/α) = − log(β/(1− α)) = 1.2787
(≈ 1.262 + 0.017). In the model of Figure F.3 we are using scaled integer
constants for these values. Now, looking at the estimation of Pr[#<=20000](♦
Master.H1) in Figure F.4, we find – as expected – that the probability of
accepting H1 (H0) tends to 1 (0) as the number of steps increases. We also see
that the average number of runs is estimated to 481.4. The “mismatch” with
the experimentally found average 408.6 is due to early termination when the
threshold for H0 is exceeded.
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Figure F.4: Cumulative probability plots over number of steps and runs.

3 Distributed Statistical Model-Checking in UPPAAL

SMC suffer from the fact that high confidence required by an answer may
demand a large number of simulation runs, each of which may itself be time
consuming. As an example, the first hypothesis test shown later in this section
can generate between 14,000 and 2,390,000 runs if the parameters α, β, δ range
between 0.01 and 0.001. A possible way to leverage this problem is to use several
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Figure F.5: Probability distributions ob-
tained with 1 (top), 5, 10, and 20 (bot-
tom) generator nodes.

computers working in parallel using
a master/slaves architecture: one or
more slave processes register their
ability to generate simulation with a
single master process that is used to
collect those simulations and perform
the statistical test. For an estimation
algorithm, this collection is trivially
performed as the number of simula-
tions to perform is known in advance
and can be equally distributed be-
tween the slaves. When working with
sequential algorithms, the situation
gets more complicated. Indeed, we
need to avoid introducing bias when
collecting the results produced by the slave computers. This means that results
should not be collected arbitrarily as illustrated by considering the model of Sec-
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tion 2.3 with several instances of the Generator template. Checking the property
Pr[runs<=20000](♦ Master.H1) Figure F.5 shows that different distributions
can be obtained with different numbers of generator nodes, hence revealing a
bias in the results. In fact the probability of accepting H1 tends (incorrectly)
to 0 when the number of Generator components increases.

A solution, which was proposed in [123], consists in observing that Wald’s
ratio r is updated as a function of the Bernoulli random variable x as r+ =
x∗racc+(1−x)∗rrej with racc and rrej being constants depending on the tested
hypothesis. To reduce blocking and still update r, the non-biased algorithm
updates two safe approximations for r (r1 and r2). If x is unknown then it
updates with r1+ = rrej and r2+ = racc, and then testing if r1 ≤ I to accept H0

or if r2 ≥ S to accept H1
4. When all outcomes of a round are known then we can

reset r1 := r2 := r. This allows us to accept H0 even if some accepting outcomes
are missing or conversely to accept H1 if some rejecting outcomes are missing.

K

buffer

size

N number of nodes

Asynchronous incoming messages

Figure F.6: Buffer of results at the
master node.

We generalise [123] by aggregating the
outcomes x by batches (of size B) and
also by implementing a buffer (of size K)
of incoming results. The batch is used
to reduce communication by sending B
aggregate results. The buffer is used to
improve concurrency since the nodes are
more loosely synchronised and they can
be K runs ahead of the slowest node. Fig-
ure F.6 illustrates our algorithm at the
master node that receives asynchronous
messages from all other nodes in a buffer.
A message is an aggregate result contain-
ing the outcome of B runs. The master
may take a decision as soon as r1 ≤ I or r2 ≥ S. When all outcomes at the
bottom line of the buffer are known we reset r1 := r2 := r with the exact
updated value of r with those outcomes, and free the bottom line of the buffer.
In practice, our algorithm is calibrated to count the runs up to a certain depth
in the buffer. Indeed, the outcomes are weighted by B so few missing aggregated
outcomes can prevent the algorithm from deciding. We have implemented this
algorithm with asynchronous communications (using OpenMPI). There can be
at most K pending messages due to the size of the buffer. If a slave tries to
send more messages, then the communication will block waiting for a “slot” to
be free. The experiment performed in the remainder of the paper has been
carried out on varying numbers of nodes on a cluster with dual Xeons 5650
(hexa-cores at 2.66GHz) interconnected with infiniband.

We first make two types of experiments to exhibit the performance charac-
teristics of our algorithm. The experiments are carried out using the train-gate
example available as a demo of Uppaal. This model comprises a number of

4I = log(β/(1− α)) and S = log((1− β)/α) as stated in Alg. 1.
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trains crossing a bridge with only one track. A gate controller stops and restart
the trains to ensure mutual exclusion on the bridge and absence of starvation
for the trains. Our first experiment concerns 6 trains and the property of being
in a state where train 5 is crossing while all the other trains are stopped.
Pr[<=100](<> Train(5).Cross and

(forall (i : id_t) i != 5 imply Train(i).Stop)) >= 0.46188
The runs are relatively short with few components so they will be cheap to

compute and we expect the throughput of messages to be high. In addition, the
hypothesis we are testing is not deterministic, which means that the outcomes
and computation times of the runs will vary. The property is checked with high
confidence (99.999%) and small indifference regions (+/- 0.00001) to have a
precise and reliable result – and to stress our distributed algorithm.

Our second experiment considers a “large” instance with 20 trains, where
we check if the model satisfies mutual exclusion on the bridge, expressed by the
property

Pr[<=1000]([] forall (i : id_t) forall (j : id_t)
Train(i).Cross and Train(j).Cross imply i == j) >= 0.9999

Here, the runs are random but bounded by the same large bound and since
the inner property []forall(i : id_t)forall(j : id_t)... holds by model-
checking, all the runs will all reach their bounds. In addition, we have 20 trains
and the runs are long (1000 time units) so they are relatively expensive to
generate. This means that all the runs are implicitly synchronised and small
deviations are amortised by the long runs. The throughput of messages will
be low, which means a low overhead compared to the actual useful work of
generating the runs.
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Figure F.7: Verification times on 16, 32, and 128 cores in function of B and K
for the “small” model (first row) and the “large” model (second row).

Figure F.7 shows our results for different number of cores. The solution in
[120] corresponds to the particular case with K and B are equal to one, exhibit-
ing in all the experiments the worst verification time, and with performance
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deteriorating with increasing number of cores (i.e. for 128 cores performance loss
is a factor of 4). Though the impact of the buffer size is less, the experiments
indicate that a buffer of size 2-4 will suffice. The results also demonstrate
linear scalability of our distributed implementation: for B = 32 and K = 2
the verification times for 16, 32 and 128 cores are 108, 56 and 19 seconds
(respectively).

3.1 Distributing Estimation

Distributing the estimation algorithm is much simpler than distributing sequen-
tial hypothesis testing. We need a fixed number of runs to compute an estimate
of the probability value with given confidence level. This is an embarrassingly
parallel problem since we can simply divide the work equally and gather the
result at the end. The speed of generating the runs has no influence here since
every computer node is allocated the same number of runs and if this number is
high enough (and the computers identical), the running time on every node will
be closely the same. This latter claim is indeed confirmed by our experiments
since we observe that the performance scales almost linearly with the number
of nodes. Interestingly, the loss in efficiency in the later cases exhibits the
overhead of starting up all the processors (around 3-4 seconds), which would
be compensated for much longer runs. The jobs here are too small and fast,
which is an extreme case. Table F.1 shows running time and relative efficiency
for estimating a few probabilities on the Firewire and LMAC protocol5 with
confidence 99.9% and uncertainty interval 0.005. Time is not very sensitive
to the physical placement of the cores here because there is essentially one
communication round when all the nodes have finished their jobs.

Firewire LMAC
PxC/N 1 2 4 8 16 1 2 4 8 16

1x1 621.7s 316.7s 160.2s 81.1s 44.7s 279.3s 140.7s 73.0s 37.0s 19.5s
1.00 0.98 0.97 0.96 0.87 1.00 0.99 0.96 0.94 0.90

1x2 300.9s 162.2s 80.5s 47.6s 24.3s 144.3s 71.0 37.5s 19.2s 10.4s
1.03 0.96 0.97 0.82 0.80 0.97 0.98 0.93 0.91 0.84

1x4 161.2s 84.0s 44.8s 24.1s 16.0s 74.2s 36.1s 19.3s 9.6s 8.1s
0.96 0.93 0.87 0.81 0.61 0.94 0.97 0.90 0.91 0.54

2x4 85.1s 46.5s 23.1s 14.1s 8.5 35.5s 19.6s 10.1s 10.2s 6.4s
0.91 0.84 0.84 0.69 0.57 0.98 0.89 0.86 0.43 0.34

Table F.1: Time in seconds and efficiency (italic) to estimate probabilities on the
Firewire and LMAC model in function of the number of nodes (N), processors
per node (P) and cores per processor (C).

5The model and properties are available on http://people.cs.aau.dk/~adavid/
smc/http://people.cs.aau.dk/˜adavid/smc/.
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Figure F.8: Timed automata model of a statistical model checking process.

4 Analysing Distributed SMC in UPPAAL

In this section we model the implemented distributed algorithm of sequential
hypothesis testing and we check it using the SMC engine of Uppaal. The goal
is to estimate the verification time and processor utilisation, check for bias in
the distributed algorithm, and explore the parameters of our distributed SMC
algorithm in an analytical manner.

Modelling.

We model the master and slave processes described in Section 3 as shown in
Figure F.8. The master sends a broadcast request req! to verify batches of
runs (of size B). We use a standard modelling pattern to synchronise on the
corresponding req? as soon as possible. The master gathers the results with its
saveWork function and loops again if neither H0 nor H1 is accepted. Listing F.3
shows this saveWork function that implements the distributed hypothesis testing
algorithm of Section 3. Uppaal uses floating point numbers that are not
available in the modelling language. Instead we encode fixed point arithmetics
with integers and we use precomputed tables for logarithm values (shown in
Listing F.2).

Once the master accepts H0 or H1, it moves to the location Done and stops
the clock time.

Slave processes proceed to compute their batches if their communication
buffers are not full ( level [ id ] < K) or wait for the condition to hold. The
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� �
t y p ed e f i n t [ -1024∗1024∗1024 , 1024∗1024∗1024] l ong ; // h igh p r e c i s i o n
con s t i n t N = 128 ; // number o f p r o c e s s o r s
con s t i n t B = 32 ; // number o f runs i n a batch
con s t i n t K = 4 ; // maximum d i f f e r e n c e o f ba t che s among p r o c e s s o r s
con s t i n t LatencyLower = 19 ; // l a t e n c y l owe r bound
con s t i n t LatencyUpper = 20 ; // l a t e n c y h i g h e r bound
t y p ed e f i n t [ 0 , N-1 ] node_t ; // node i d type
t y p ed e f s t r u c t { // SMC v e r i f i c a t i o n pa ramete r s :

l ong s c a l e ; // denominator f o r f i x e d po i n t o p e r a t i o n s
l ong a lpha ; // p r o b a b i l i t y o f f a l s e p o s i t i v e ( m u l t i p l i e d by
s c a l e )
l ong beta ; // p r o b a b i l i t y o f f a l s e n e g a t i v e ( m u l t i p l i e d by
s c a l e )
l ong th e t a ; // the p r o b a b i l i t y f o r h y p o t h e s i s t e s t i n g
l ong deltaM ; // l owe r p r o b a b i l i t y d e v i a t i o n
l ong de l t aP ; // upper p r o b a b i l i t y d e v i a t i o n
l ong p1 ; // l owe r p r o b a b i l i t y bound [ t h e t a -deltaM ]
l ong p0 ; // upper p r o b a b i l i t y bound [ t h e t a+de l t aP ]
l ong va lAcc ; // va l u e accumu la t i on [ l o g ( p1/p0 ) ]
l ong v a lR e f ; // va l u e r e f e r e n c e [ l o g ( (1 -p1 ) /(1 -p0 ) ) ]
l ong l o g I n f ; // l o g inf imum ( l owe r v a l u e bound ) [ l o g ( beta /(1 -
a lpha ) ) ]
l ong logSup ; // l o g supremum ( upper v a l u e bound ) [ l o g ( (1 -
beta ) / a lpha ) ) ]

} SMC_params_t ; // the s t r u c t u r e i s pas sed to Master upon
i n s t a n t i a t i o n

con s t i n t H_f i r s t = 13 ; // the s t a r t o f the h i s tog ram
con s t i n t H_last = 48 ; // the end o f the h i s tog ram
con s t i n t H_step = 1 ; // t ime s t ep o f one bucket
t y p ed e f i n t [ H_f i r s t , H_last ] bucket_t ; // type o f i n t e g e r w i th

s p e c i f i c range
con s t i n t w[ bucket_t ] = { 6207 ,0 , 0 , 0 , 0 , 10463 ,0 , 0 , 0 , 5 , 10903 ,0 , 0 , 0 , 4 ,

9133 ,0 , 0 , 0 , 3 , 8569 ,0 , 0 , 0 , 2 , 8837 ,0 , 0 , 0 , 1 , 1233 ,0 , 0 , 0 , 1 , 64469 } ;
b r oadca s t chan req ; // master r e q u e s t s
b roadca s t chan d e l i v e r [ node_t ] ; // s l a v e d e l i v e r s
i n t l e v e l [ node_t ] ; // l e v e l o f the batch queue f o r each node
boo l busy [ node_t ] ; // encodes whether the node i s computing� �

Listing F.1: DSMC model global declarations.

� �
i n t v a l u e ; // sha r ed v a r i a b l e f o r t r a n s f e r i n g r e s u l t s
con s t SMC_params_t p [ 3 ] = {
// s c a l e a l pha beta t h e t a +d e l t a - d e l t a p1 p0 va lAcc

v a lR e f l o g I n f logSup
{100000 , 100 , 100 , 46188 , 100 , 100 , 46088 , 46288 , -433 , 372 ,-

690675 ,690675} ,
{100000 , 1000 , 1000 , 46188 , 1000 , 1000 , 45188 , 47188 , -4331 , 3717 ,-

459512 ,459512} ,
{100000 , 5000 , 5000 , 46188 , 5000 , 5000 , 41188 , 51188 ,-21736 ,18637 , -

294444 ,294444}
} ;
master = Master ( p [ 1 ] , v a l u e ) ;
s l a v e ( con s t node_t i d ) = S l a v e ( id , v a l u e ) ;
system master , s l a v e , G l oba l ;� �

Listing F.2: DSMC instantiation and system declaration.
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� �
// b u f f e r p o r t i o n f o r e a r l y t e rm i n a t i o n :
con s t i n t P = (K<=4)?K : ( (K<=8)?5 : ( (K<=16)?8 : ( (K<=32)?10 :

12) ) ) ;
boo l H0 = f a l s e , H1 = f a l s e ; // f o r h y p o t h e s i s H0 and H1
i n t batch [N ] [ K ] ; // b u f f e r o f ba t che s (K ba t che s f o r N nodes )
l ong s a t i s f i e d =0, u n s a t i s f i e d =0; // i n f o rma t i o n about f i l l e d l i n e s
l ong s a t =0, unsa t =0, unknown=N∗P∗B; // e a r l y r e s u l t s i n u n f i l l e d

l i n e s
l ong l o gRa t i o = 0 , ra t i oLow = 0 , r a t i oUp = 0 ; // s c a l e d by p . s c a l e
vo i d saveWork ( con s t node_t node , con s t i n t v a l u e ) {

i f ( l e v e l [ node]<=P) { // en t e r e d the e a r l y r e s u l t s p o r t i o n
s a t += va l u e ; unsa t += B− v a l u e ; unknown −= B;

}
batch [ node ] [ l e v e l [ node ] ] = va l u e ; l e v e l [ node ]++; // s t o r e
i f ( l e v e l [ node ]==1) { // en t e r e d at the l owe s t l e v e l

boo l f i l l e d = f o r a l l ( i : node_t ) l e v e l [ i ] >0;
i f ( f i l l e d ) { // l i n e at the l owe s t l e v e l has been f i l l e d

i n t L ;
f o r ( i : node_t ) { // s h i f t a l l queues one by one

s a t i s f i e d += batch [ i ] [ 0 ] ; // count as f i rm r e s u l t s
u n s a t i s f i e d += B−batch [ i ] [ 0 ] ;
s a t −= batch [ i ] [ 0 ] ; // d i s c o un t from e a r l y r e s u l t s
unsat −= B−batch [ i ] [ 0 ] ; unknown += B;
l e v e l [ i ]−− ; // remove from b u f f e r
f o r (L=0; L<l e v e l [ i ] ; ++L) {

batch [ i ] [ L ] = batch [ i ] [ L+1] ; // s h i f t
i f (L==P) { // en t e r e d the e a r l y r e s u l t s

p o r t i o n
s a t += batch [ i ] [ L+1] ; unsa t +=

B−batch [ i ] [ L+1] ;
}

}
batch [ i ] [ l e v e l [ i ] ]=0 ; // c l eanup

}
l o gRa t i o = p . va lAcc ∗ s a t i s f i e d + u n s a t i s f i e d ∗p . v a lR e f ;
i f ( l o gRa t i o <= p . l o g I n f ) H0 = t r u e ;
i f ( l o gRa t i o >= p . logSup ) H1 = t r u e ;

}
}
ra t i oLow = p . va lAcc ∗( s a t i s f i e d +sa t+unknown ) +

p . v a lR e f ∗( u n s a t i s f i e d +unsat ) ;
r a t i oUp = p . va lAcc ∗( s a t i s f i e d +sa t ) +

p . v a lR e f ∗( u n s a t i s f i e d +unsat+unknown ) ;
i f ( r a t i oUp <= p . l o g I n f ) H0 = t r u e ;
i f ( r a t i oLow >= p . logSup ) H1 = t r u e ;

}� �
Listing F.3: Master code.

compute location models the computation time of a run, chosen according to the
distribution shown in Figure F.8b. This is encoded using probabilistic edges
with weights matching the distribution. The distribution comes from a real
verification of the property in Section 3:

Pr[<=100](<> Train(5).Cross and
(forall (i : id_t) i != 5 imply Train(i).Stop)) >= 0.46188

The last weighted edge (case i=H) is reserved for the runs that did not satisfy
the property.
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Verification.

In the hypothesis we test, the actual probability is very close to 0.46188.
Since the real probability falls in the indifference region of our test, we would
expect that a non-biased implementation would accept H0 or H1 equally often.
Estimating the probability of confirming the hypothesis H0 with the query
Pr[<=10000000](<> master.H0) gives the probability 0.503±0.005 with 99.9%
confidence, confirming that our algorithm is not biased as well as the validity of
our model.

Similarly, we obtain the distribution of the verification time by the query
Pr[<=10000000](<> master.Done) for a model with number of nodes N = 128,
batch size B = 64, and buffer size K = 4. The result is 9557.6 time units in
average and the distribution histogram is depicted in Figure F.9a. To estimate
the processor usage time, we add another process with a single location with the
invariant usage’==sum(i:node_t)busy[i]. Here, usage is a clock that grows with a
rate equal to the number of busy nodes.
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Figure F.9: Time estimation from 6000 runs of DSMC model.

The question is now to find a good settings for the parameters of our
algorithm (B and K). We perform parameter sweep to estimate the verification
time for values of B andK taking values in 1, 2, 4, 8, 16, 32, 64 for three topologies
with the number of processing nodes N = 16, 32, or 128. The results are depicted
in Figure F.10, where it is visible that extremely small batch size requires more
time. Large batch sizes can also be detrimental in a large cluster setting
(Figure F.10c where too many runs are requested in bulk than actually needed
to establish the result). Buffer size of one has a huge penalty of blocking
with small blocks, but it is barely noticeable otherwise. This confirms the
experimental findings of Section 3.

5 Lightweight Media Access Control

LMAC is a Lightweight Media Access protocol (studied in [45, 57]) used for
scheduling communication in wireless sensor networks where the topology is
determined by physical location and radio connectivity of the individual nodes.
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(a) 16 nodes. (b) 32 nodes. (c) 128 nodes.

Figure F.10: Estimated verification times in model time units.

One of the goals of the LMAC protocol is to minimize the number of collisions
in the network and to reconfigure the network to avoid further collisions.

The original model has been developed in [57] where topologies of 4-5 nodes
are studied exhaustively using classical Uppaal and a number of topologies
are identified as problematic, containing perpetual collisions. In this paper we
provide new insight as to the likelihood of perpetual collisions in different topolo-
gies. This insight could not be delivered by the use of classical Uppaal and the
experiment conducted is of unprecedented size. In LMAC communication media
access time is discretized into time frames and each time frame is divided into
time slots. The goal of the protocol is to allocate the time slots to each node
efficiently. The challenge is that there is no central node distributing and assign-
ing slots and nodes cannot themselves listen while transmitting, hence neigh-
bours are responsible for detecting and informing each other about collisions.

Figure F.11: LMAC protocol
phases.

After waiting phase, the node moves to a dis-
covery phase and listens for an entire time
frame and notes which time slots are used by
its neighbours. The collision counting expres-
sion collisions =++cc; is added on the edge
from rec_one0 to done0 in Figure F.12b. Af-
ter one time frame of discovery phase, the
node chooses seemingly unused time slot and
moves to an active phase. The node falls
back to waiting phase if there are no neigh-
bours (no signal received) or all slots are oc-
cupied. During active and discovery phases
the node listens and notes any collisions (sev-
eral receptions during the same slot). During
active phase the node transmits information
about collisions it has detected during its time
slot and listens for collisions and information
about collisions during other time slots. From the active phase the node may
fall back to discovery phase if it is notified about the collisions on its time slot
and falls back to the waiting phase if it detects that neighbours are gone.

Figure F.11 shows the four phases of the protocol. Initially all nodes except
the gateway are listening and waiting for a radio signal from its neighbourhood
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during the initialization phase. The communication is triggered by a dedicated
gateway node. Upon reception of signal, the node notes the relative time offset
of the signal and moves to waiting phase, during which it chooses to wait
for a random amount of time frames. The random delay is modeled using
probabilistic branching (see Figure F.12a) with geometrical weights (weight
array).
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Figure F.12: LMAC phases in the model.

Starting from the model6 of [57], we removed the verification optimizations
constraining the parallelism, annotated it with power consumption and collision
counting (as cost variables). The model contains twice as many slots as nodes,
whereas one slot per node is enough to schedule flawless communication in any
topology if nodes were aware of each others choices.

First we examine the distribution of the first collisions over time. The
first row of Figure F.13 is a result of a query Pr[<=1000](♦ collision>0)
and it shows that most collisions happen early in time and in a ring topology
some collisions may be discovered later (possibly when the first signal propa-
gation meets at the opposite of the ring). In the second row of Figure F.13
the distribution of possible number of collisions is examined using a query
Pr[collisions<=100](♦ time>=1000): in a chain and a ring topologies the
collisions are unlikely to occur (> 90% probability of 0 collisions), but in a star it
is almost guaranteed to occur (only 8% probability of 0 collisions). The third row
of Figure F.13 shows the probability distribution of collision counts after twice
as long period of time (using query Pr[collisions<=100](♦ time>=2000)).
Notice that the shape of distributions has not changed, but the small bumps
have shifted to the right at exactly twice the number of collisions and almost
identical probability density, which implies that those particular collisions are
accumulating proportionally to the progress of time, and in other words it means
that collisions are reoccurring perpetually without recovery. We checked these

6Thanks to Ansgar Fehnker and Angelika Mader.
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Figure F.13: Collision statistics in three different topologies, in rows: probability
of a collision over time, probabilities of a number of collisions up to 1000 and
up to 2000 time units.

three properties on a 128 cores cluster with high precision (with α = β = 0.0001
and ε = 0.0005) in about 30 minutes, which generated around 19 million runs.

We have demonstrated how Uppaal SMC can be used to identify problem-
atic topologies and distributed implementation can provide a high degree of
accuracy in spotting the reoccurring collisions.

6 Comparison with other toolsets

To the best of our knowledge, there are only two tools that implement distributed
SMC algorithms, namely Ymer [120] and PVesta [4]. We could not conduct a
direct comparison with distributed Ymer as the implementation is currently
broken7. However, we could compare the batch algorithm implemented in Ymer
with ours in the setting of Uppaal (see Section 3).

PVesta is a distributed statistical model checker based on Vesta [109]. It
performs hypothesis testing but instead of using a sequential approach, it relies
on a single sampling plan where the number, N , of samples needed to solve
the qualitative question is pre-computed. As for the estimation algorithm a
single sampling plan is thus trivially parallelisable. To compare PVesta with
our implementation we created a Uppaal model of the cyclic polling server
example of the PVesta distribution.

7Discovered per personal communication with H. Youness
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Time (900 st.) Samples (900 st.) Time (9000 st.)
Nodes Uppaalh PVesta Uppaale Uppaalh PVesta Uppaale Uppaalh Uppaale

1 ≤ 4 46.0 12.15 115 16906 18448 ≤ 4 84.0
2 ≤ 4 23.7 7.5 190 16906 18448 ≤ 4 44.4
4 ≤ 4 12.7 3.91 557 16906 18448 ≤ 4 23.8
8 ≤ 4 7.2 5.5 2340 16906 18448 ≤ 4 12.5

Table F.2: Verification time for Uppaal and PVesta. The nodes column
refers only to the nodes used for sample generation (PVesta actually used
nodes+1 processing units for the verification). The Uppaalh column shows the
verification time in seconds for hypothesis testing and Uppaale for estimation
using Uppaal.

We test for the hypothesis provided with the example, namely P >= 0.5
[<> < 20.0 @0] and its equivalent in Uppaal and we estimate this probability
in Uppaal. The results for a configuration of 900 stations are given in Table F.2.
We note that for 900, the computation time of Uppaal is so short that we can
only measure the overhead of starting and distributing the computation that
takes less than 4 seconds, which is why we show ≤ 4 in the table. To see the
scalability of Uppaal, we experiment with 9000 stations in the model. We can
only show the results for Uppaal since PVesta reached its time limit of one
hour before it could give a result. The experiments show that Uppaal and
PVesta scale almost linearly and Uppaal is at least two orders of magnitude
faster than PVesta on for hypothesis testing.

7 Conclusion and Future work
In this paper we have developed, implemented, applied and evaluated a general
and scalable framework for distributed SMC. We have thoroughly investigated
the distribution of sequential algorithms where bias can be introduced when
collecting the samples produced by slave computers. In particular, we have
identified best choices of batch and buffer sizes both experimentally and ana-
lytically, with agreement in the findings of the two approaches. In the future,
we plan to implement and distribute other SMC algorithms, principally the
Bayesian algorithms introduced in [124, 81].

Finally, it is worth mentioning that we have tried to use other distributed
SMC model checkers such as Ymer [120] or PVesta [4, 109]. Aside from the
fact that the GUI of those two tools is quite restricted, we observed that Ymer
does not work anymore and that PVesta only distributes those algorithms where
the number of simulations is precomputed in advance.
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Acronyms

WMTL[a,b] weighted metric temporal logic[a,b].

WMTL≤ weighted metric temporal logic≤.

cdf cumulative distribution function.

CTL computational tree logic.

CTMC continuous time Markov chain.

DMTL dynamic metric temporal logic.

DTMC discrete time Markov chain.

FSM finite state machine.

LTL linear temporal logic.

LTS labelled transition system.

MC model checking.

MTL metric temporal logic.

MWTA monitoring weighted timed automaton.

NPTA Network of priced timed automata.

pdf probability density function.

PMC probabilistic model checking.

pmf probability mass function.

PTA priced timed automaton.
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Acronyms

QDTML quantified dynamic metric temporal logic.

RV runtime verification.

SHA stochastic hybrid automaton.

SMC statistical model checking.

SPRT sequential probability ratio test.

STA stochastic timed automaton.

TA timed automaton.

TIOTS timed IO transition system.

TLTS timed labelled transition system.

WTA weighted timed automaton.
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