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Summary in English

Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced
today. With the increasing size wind turbines also become more and more optimized with re-
spect to structural dimensions and material usage, without increasing the stiffness proportionally.
Consequently, large wind turbines become increasingly flexible and dynamically sensitive. This
project focuses on the structural analysis of highly flexible wind turbine wings, and the aerody-
namic loading of wind turbine wings under large changes in flow field due to elastic deformations
and changing wind conditions.

The nonlinear equations of motion of a rotating wing are derived using the Bernoulli-Euler
beam theory within a blade fixed rotating coordinate system. By applying forced support point
motion, the tower-nacelle system is decoupled from the wing. The model introduces contribu-
tions from a nonlinear description of the curvature, rotation of the aerodynamic loading due to
deflection, displacement of the mass due to deflection, and contributions from the support point
motion and rotation of the beam. Nonlinearities up to third order are retained in the final formu-
lation of the equations of motion. A two-degrees-of-freedom reduced modal model is derived
using the fundamental blade and edgewise eigenmodes, and the important nonlinear coupling
terms are found and kept for further analysis. 4 characteristic frequencies are considered with
respect to stability and resonance behaviour, which are the rotational frequency of the rotor, the
support point frequency and the eigenfrequencies of the blade and edgewise modes, respectively.
Stability of the nonlinear wing is evaluated by the use of Lyapunov exponents. Stability bound-
aries are found with respect to the mentioned frequencies, modal damping and support point
amplitude during harmonic support point motion and constant lift and drag coefficients.

Wind turbine wings experience significant changes in both flow velocity and direction due
to tower passage, rotation in a shear wind field, turbulence components, active control of the wing
and elastic deformations. A so-called semi-empirical dynamic stall model of a two-dimensional
wing section is devised. The model includes 4 state variables describing important contribu-
tions as regards the aerodynamics of wind turbine wings. The model uses two state variables to
describe the dynamic lift under attached flow conditions, one state variable to account for the
dynamic effects of trailing edge separation, and finally, one state variable to introduce contribu-
tions from leading edge separation. Five other dynamic stall models are described and they are
validated against experimental data. The devised model is shown to perform as well as any other
and more complicated models.

Next, the nonlinear structural model and the dynamic stall model are combined, and numer-
ical simulations illustrate the performance of the combined model. The numerical simulations
include: variation of pitch setting with no support point motion, harmonic variation of support
point motion at various constant pitch settings, simulation in a shear wind field including tower
passage, and the performance of a linear control algorithm using the pitch system as actuator.

Finally, a stability analysis is performed of the wing undergoing stochastically varying sup-
port point motion. The structural dynamics of the wing is relatively complicated. To understand
the behaviour of the nonlinear stochastically parametrically excited system, two simpler systems
are initially analysed. Firstly, a stability analysis is carried out by use of Lyapunov exponents of
a mechanical system parametrically excited by a stochastic renewal jump process. Secondly, the
stability of a support point excited cable with a small sag is analysed by use of the Floquet the-
ory. The stability of the nonlinear wing is shown to be related to a one-dimensional outcrossing
problem of the excitation envelope process, as is the case for the support point excited cable.
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Summary in Danish

Vindmøller med en effect på 5 MW og rotordiameter på 126 m bliver produceret i dag. Møllerne
bliver optimeret mere og mere både hvad angår dimensionering og materialer uden tilsvarende
øgning af stivhederne. Dette introducerer øget fleksibilitet og derved en mere dynamisk følsom
konstruktion. Projektet fokuserer på den strukturelle analyse af fleksible vindmøllevinger samt
den aerodynamiske belastning ved store variationer i strømningsfeltet pga. elastiske deforma-
tioner og ændringer i vindforholdene.

Først er ikke-lineære bevægelsesligninger for en roterende vinge udledt ved brug af Bernoulli-
Euler bjælketeori, hvor der benyttes et roterende koordinatsystem, der følger vingen. Ved at
påføre tvungne understøtningsflytninger er tårn-nacelle systemet dekoblet fra vingen. Mod-
ellen introducerer bidrag fra en ikke-lineær beskrivelse af krumningen, rotation af de aerody-
namiske laster samt forskydning af masse pga. udbøjning af vingen. Desuden indføres bidrag
fra understøtningsflytningerne. Ikke-lineariteter op til tredje orden bibeholdes i modellen. En to-
frihedsgrads modaludvikling foretages, hvor første blad- og kant-egensvingningsform benyttes,
uvæsentlige led identificeres og ignoreres i følgende analyser. 4 karakteristiske frekvenser er
af betydning, rotationsfrekvensen af rotoren, understøtningsfrekvensen og de to egenfrekvenser.
Stabiliteten af det ikke-lineære vingesystem analyseres ved Lyapunov eksponenten for de nævnte
frekvenser. Desuden er stabilitetsgrænser bestemt for variation af modal dæmpning samt under-
støtningsamplitude.

Vindmøllervinger oplever betydelige ændringer i både stømningshastighed og -retning, hvilket
skyldes virkninger fra tårnpassage, rotation i en grænselagsstrømning, turbulenskomponenter,
aktiv kontrol samt elastiske deformationer af vingerne. En såkaldt semi-empirisk dynamisk stall
last model for et todimensionalt vingeprofil er udviklet. Modellen inkluderer 4 tilstandsvariable,
der beskriver betydningsfulde bidrag i forbindelse med vindmøllevingeprofiler. Der benyttes
to tilstandsvariable til at beskrive det dynamiske løft under fuldt vedhæftet strømning, én til-
standsvaribel til at beskrive den dynamiske bevægelse af bagkantsseperationspunktet samt én til-
standsvariabel, der beskriver effekten af ledende kant seperation. 5 andre dynamisk stall modeller
er beskrevet, og de er alle benyttet til at simulere forsøgsdata. Den opstillede model beskriver
forsøgsdataene i ligeså tilstrækkelig grad som mere komplicerede modeller.

Herefter kobles den ikke-lineære strukturmodel med den dynamiske stall model. Numeriske
eksempler illustrerer, hvorledes modellen virker. De numeriske simuleringer inkluderer: varia-
tion af pitchindstillingen uden påvirkning fra understøtningsbevægelsen, harmonisk variation af
understøtningsbevægelsen ved forskellige pitchindstillinger, simulering af vingen i en grænse-
lagsstrømning med bidrag fra tårnpassage, samt effekten af at indfører en lineær kontrol af vin-
gen, hvor pitchsystemet benyttes som aktuator.

Til slut analyseres stabiliteten af vingen ved stokastisk variation af understøtningsbevægelsen.
Den dynamiske beskrivelse af vingen er relativ kompliceret, hvorfor to simplere systemer først
analyseres, for at forstå opførelsen af ikke-lineær systemer, der påvirkes stokastisk parametrisk.
Først analyseres stabiliteten af et mekanisk system der påvirkes af en renewal jump proces vha.
Lyapunov eksponenten. Herefter benyttes Floquet teori til at analysere stabiliteten af et kable
med et lille nedhæng, der påvirkes af understøtningsflytninger. Den stokastiske stabilitet af den
ikke-lineære vinge viser sig at afhænge af den stokastiske påvirknings indhyldningskurve, hvilket
også er tilfældet for kablet.
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CHAPTER 1
Introduction

For many years numerical analyses of wind turbines have been done by linear structural
models combined with various nonlinear unsteady load models. As wind turbines increase in size
without corresponding increase in stiffness, considerable deformations arise, and geometrical
and inertial nonlinearities need to be considered. In this introduction a brief overview is made
of the aspects to consider when working with wind turbine dynamics including aerodynamics,
structural modelling and wind field description. Further, a description is given of the features
of two main programs used for calculating wind turbine performance and loading. Finally,
nonlinear considerations for this project are outlined. The introduction is concluded with an
overview of the different chapters included in the present thesis.

1.1 Background

Within the last 30 years wind turbines have grown from less than 100 kW machines produced
mainly to relive an environmental concern of limited fossil fuel sources, to 5 MW impressive high
tech machines, starting to play an increasingly important role on the electricity market. Figure
1.1a shows a small Bonus 30 kW wind turbine from 1980 (Danish Wind Industry Association
2005), and Figure 1.1b illustrates a row of 2.3 MW Bonus wind turbines placed at Rødsand wind
farm (Offshore Center Denmark 2005).

From initially being isolated grid connected machines, wind turbines are now a days mostly
organised in wind farms of several MW sized turbines. Large wind turbines have a massive
effect on the surrounding flow field. Especially, turbulence phenomena are introduce within the
wake due to vortex shedding of the blades. Also, a considerable rotation of the entire wake is
initiated. These effects are undesirable interaction effects, which are sought minimised mainly
through increasing the distances between the turbines. Furthermore, the increase in wing size
have made transportation of wings over land a considerable problem. Favourable turbulence
intensity and higher wind velocities over sea launched the development of offshore wind turbine
farms approximately 15 years ago.

Eight offshore wind farms have so far been constructed within Danish waters. A map of
their locations is given in Figure 1.2, and the specific data for the eight wind farms are listed in
Table 1.1, (Offshore Center Denmark 2005). The area spanning Horns Rev wind farm is 20 km 2,
making a corresponding land wind farm virtual impossible within Danish borders. Thus, growth
of wind turbines are no longer limited by transportation issues or finding sufficiently large areas.

It is a well known fact that wind turbines grow in size both with regards to power output and
physical magnitude. Figure 1.3 illustrates the increase in rotor diameter and relative size over
the last 20 years, (Danish Energy Authority 2005). It should be mentioned that the Tvind wind

— 1 —



2 Chapter 1 – Introduction

a) b)

Figure 1.1 a) Bonus Energy 30 kW. b) Row of Bonus Energy 2.3 MW placed at Rødsand.
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Figure 1.2 Position of the eight offshore wind
farms.g

Position Year Number
of

turbines

Power pr.
Turbine
[MW]

Total
power
[MW]

Vindeby (1) 1991 11 0.45 4.95
Tunø Knob (2) 1995 10 0.50 5.0
Middelgrunden
(3)

2000 20 2.0 40.0

Horns Rev (4) 2002 80 2.0 160.0
Rønland (5) 2003 8 4×2.0 17.2

4×2.3
Rødsand (6) 2003 72 2.3 165.6
Samsø (7) 2003 10 2.3 23.0
Frederikshavn (8) 2003 3 1×3.0 7.6

2×2.3

Total 214 1.978 423.35

Table 1.1 Data for the 8 Danish offshore wind farms.

turbine, erected in the late 70’s, had a rotor diameter of 54 m producing 2 MW. More than 15
years later, this was still the largest turbine created.

Danish wind energy is beginning to make a considerable contribution to the total Danish
electricity production. The yearly wind produced electricity since 1983 is illustrated in Figure
1.4, (Danish Wind Industry Association 2005). The electricity consumption in 2003 was 35
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Figure 1.3 Rotor diameter and relative size of installed wind turbines in Denmark.

GWh and the wind produced electricity was 16%. Normalizing with the average wind energy
from 1979 to 2002, the total share of wind produced electricity was 19.4% with an increase of
3.7% compared to 2002.
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Figure 1.4 a) (�) Consumed electricity in Denmark. (�) Wind turbine produced electricity. b) Share of consumed
electricity produced by wind turbines, normalized with respect to wind energy.
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The political goal since 1996 has been to install a total of 1500 MW before 2005 and further
introduce installations of 5500 MW before 2030 with 4000 MW produced by offshore wind tur-
bines, (Danish Energy Authority 1996). The total wind energy capacity since 1983 is illustrated
in Figure 1.5a, (Danish Wind Industry Association 2005). The increase since 1996 is significant,
and the political goal of 1500 MW was already achieved in 1998. As a direct consequence of
the increase of the rotor diameter, illustrated in Figure 1.3, and the introduction of large offshore
wind farms, the average power output per turbine has increased from 500 kW in 1995 to 2 MW
in 2003.
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Figure 1.5 a) Total installed wind power capacity in Denmark. b) Averaged power rating of installed wind turbines in
Denmark.

1.2 Wind Turbine Dynamics

Obviously, the wind makes wind turbine rotors rotate. However, many engineering disciplines
are involved when trying to understand the behaviour of a wind turbine. The incoming flow field,
the aerodynamics of the rotor blades, the structural dynamics of wings, drive train and tower,
control issues, the energy transformation in the generator and the modelling of the tower support
are just a few of the engineering tasks used within the field of wind turbines. Several practical
issues, such as wing production, logistic and assembling should also be addressed, together with
the impact on society, environment and economy. Many other issues may be mentioned, but a
few of them will be given some special attention.

1.2.1 Wind field description

The incoming flow field is usually described as a constant or slowly varying mean wind com-
ponent with a stochastic varying perturbation on top, named the turbulence component. The
modelling of the mean wind may be divided into two subproblems. Firstly, the undisturbed flow
field is determined as a variation with height depending on the roughness of the surrounding
area. This is the so-called shear field. If the wind turbine is located at the top of a hill certain
modifications can be introduced to account for induced flow velocities. Often standard mean
wind flow fields are use, see e.g. (Danish Standard 1998). Secondly, changes are made to the
undisturbed mean flow as a consequence of placing the wind turbine. The flow field approaching

Jesper Winther Larsen



1.2 Wind Turbine Dynamics 5

the turbine contains a stagnation point upwind of the tower. As a rotor blade moves through this
rapidly changing flow field wing vibrations are introduced. However, as long as the boundary
layers over the profile of the blade are attached, these vibrations are rapidly dissipated due to
aerodynamic damping. The effect of tower passage on rotor dynamics is described in Chapter 4.

Consider a section of the wing placed a certain distance from the rotor axle. Then, the
incoming wind component mentioned above, and a meeting wind component are felt depending
on the distance to the rotor axle and the rotational speed. Most three bladed wind turbines
rotate clockwise looking from the upwind side, which induces a counterclockwise rotation of
the surrounding flow field. Also, a complicated series of tip and root vortices are induced by
the rotating blades, creating considerable changes in the incoming flow field. These effects can
be taken into consideration through the Blade-Element-Momentum methods (BEM), see e.g.
(Hansen 2000), where induction factors reducing the incoming mean wind and increasing the
meeting wind component are introduced. This is a consequence of extracting energy from the
wind and the counter-rotating wake.

The turbulence component is introduced as a perturbation to the mean flow field. The time
variation of the turbulence components felt at a given spatial point, can be seen as the result of a
constant spatial turbulence field translated with the mean flow velocity through the point as pre-
sumed by Taylor’s hypothesis of frozen turbulence. Hence, a turbulence fluctuation is convected
downstream with a convection velocity equal to the mean velocity. To generate a spatial field of
turbulence components two methods are mainly used. One is devised by Mann and Krenk (1993),
and the other is by P. S. Veers (1988) also named the SANDIA method. The method of Mann
and Krenk introduces correlation between the different turbulence components together with the
spatial correlation, whereas the SANDIA method disregards correlation between components.

1.2.2 Aerodynamics

The instantaneous wind velocity and direction is known for any spatial point in the field. Nor-
mally, wind components are known at discrete points and some sort of interpolation is carried
out to find the wind components at various wing sections located at given coordinates in space
and time. A horizontal axis wind turbine wing works in principle as an aircraft wing. The main
force is the lift component working perpendicular to the incoming wind direction. At high angles
of attack separation may occur, resulting in a loss of lift. This phenomena is named stall. A more
thorough description of the various aerodynamic effects are given in chapter 3. The principle of a
lifting surface for a wind turbine profile is illustrated in Figure 1.6. The rotation is assumed from
left to right as indicated, which induces a meeting wind component illustrated by a red arrow,
and the incoming wind is indicated by a green arrow from the bottom up. The tower is located at
the top of the figure on the so-called suction side of the profile. The resultant wind component
has a given angle of attack relative to a defined axis through the profile. The flow generates a
pressure and a suction on the different sides of the profiles as indicated in Figure 1.6, which
initiate a lift and drag force dependent on the angle of attack and unsteady flow conditions. The
lift and drag components are projections of the resulting force onto the directions perpendicular
and parallel to the resulting flow direction, respectively. Assuming that the lift and drag is known
the components may be projected onto the tangential and normal directions of the rotor plane as
illustrated in Figure 1.6. As long as the tangential component is in the rotational direction, a pos-
itive torque is produced on the rotor axle for generating electricity. The normal force introduces
a bending deformation in the so-called blade direction, while the tangential force causes bend-
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ing deformation in the edgewise direction. The lift is the primary component when considering
wind turbine wings, however, the drag may be significant at high angles of attack. In chapter 3
a so-called semi-empirical model is devised for calculating the lift under dynamic variation of
the surrounding flow field. Especially, the dynamic variation of lift under stall conditions are of
great importance, since a significant increase in lift compared to the quasi static case can occur
as well as loss of aerodynamic damping. The term semi-empirical is used because the dynamic
stall model assume knowledge of the quasi-static lift force as a function of the angle of attack.
Ordinarily, the quasi-static lift curve is determined from experimental data.

Tower

Rotational direction

Lift

Drag

Normal

Tangential

Meeting component
Incoming component

Resultant

suction

pressure

downwind

upwind

Figure 1.6 Lifting principal of a wind turbine wing.

1.2.3 Structural modelling

The normal and tangential forces illustrated in Figure 1.6 introduces deformation of the wing
section in blade and edgewise directions, respectively. Since, the flow field is unsteady, the forces
become unsteady, resulting in unsteady deformations of the wing. The unsteady deformations
of the wing creates changing flow condition, which, all combined, generates a highly dynamic
sensitive system. As illustrated in Figure 1.3, the wings of new wind turbines span more than 55
m. In written hour, the longest wing produced is a 62.5 m LM wing constructed for a 5 MW wind
turbine manufactured by REpower (REpower systems 2005). Erection of the turbine is depicted
in Figure 1.7a. Static testing of the wing at the test bed in Lunderskov, Denmark, is illustrated in
Figure 1.7b. With a maximum chord of 4.6 m and a weight of approximately 17.7 t the wing is
still highly flexible in the blade direction (LM 2005), making large deformations out of the rotor
plane possible.

To create a numerical model of a wind turbine, the finite element approach or modal ap-
proach are commonly used to discretize the continues system. Considering the length to chord
and length to thickness ratios, the Bernoulli-Euler beam theory may be applied with sufficient ac-
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a) b)

Figure 1.7 a) Erection of the REpower 5 MW turbine in Brunsbüttel, Germany. b) Static testing of the LM62.5 wing
used for the REpower 5 MW turbine.

curacy. The size of the structural system is usually between 100 and 1000 degrees of freedom for
the finite element model. The modal approach introduces modal modes, damping and frequen-
cies, where the modes and frequencies are determined from eigenvalue and eigenvector analyses
of a finite element model. The advantage of the modal approach is a significant reduction of the
degrees of freedom. However, the behaviour of the reduced model may be faulty if excitation of
disregarded modes occur.

Normally, the equation of motion of the wings are formulated in a wing fixed coordinate
system, in which various centrifugal and Coriolis terms appear due to the rotational component.
The tower displacements are often introduced as rigid body motion of the wing, which conse-
quently brings forward some inertial terms together with extra contributions to the centrifugal
and Coriolis terms. Within the modal approach the centrifugal terms can be decoupled by a
proper choice of eigenmodes, or they may be applied as external loading. The centrifugal forces
tend to increase the stiffness and consequently the eigenfrequencies.

1.3 Aeroelastic Codes used in the Wind Industry

Manufactures of wind turbines use various numerical codes when determining the dimensioning
criteria of e.g. the wings or tower. The ones used in the Danish wind industry are FLEX5 and
HAWC. Parts of these systems are described in short below, including the wind field modelling,
the structural system and the aerodynamic loading.
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1.3.1 FLEX5

The aeroelastic design code FLEX5 is originally developed at the Fluid Mechanics Department at
the Technical University of Denmark by Øye. The code is mainly used by Vestas Wind Systems
A/S, where the original FLEX core is being further developed, (Svendsen 2005). The equations
of motions are based on a linear modal treatment, where coupling effects between the tower
deformation and wing system are included. For rotating systems the system matrices cannot
normally be assumed to be symmetric. However, in FLEX5 the equations of motion are based
on a series-system approach for which the mass matrix becomes symmetric and the damping and
stiffness matrices become diagonal. The Coriolis and other gyroscopic terms, which will give
rise to cross terms and asymmetry in the damping and stiffness matrices, are in FLEX5 treated as
external loading, which yields symmetric and time-invariant system matrices. The modal modes
used for the wings are the first two in-plane and the first two out-of-plane modes, and for the
tower, forward and sideward bending together with a torsional mode.

The Øye model for dynamic stall, described in Chapter 3, is used for modelling the dynamic
variation of lift throughout the wing. The incoming mean wind field is corrected for tower
passage using a potential flow with a dipole simulating the tower, and the effects of induced
velocities are included by the BEM method. The turbulence field is loaded as a spatial field
translated through the turbine with the mean wind velocity, hence, the generated turbulence field
may be created by any method of choice.

1.3.2 HAWC

HAWC was originally developed by Petersen (1990) at Risø National Laboratory, Denmark. The
model is used by Siemens Wind Power. The structural system is modelled as a full finite ele-
ment model of both the wings and tower. The original release of the model was essential linear
assuming small deformations. Deformations of the tower are included in the mass, damping and
stiffness matrices making these time dependent. Coriolis effects are introduced in addition to
contributions from the rotational speed, and inertial loads from rigid body motions of the wings.
The dynamic stall model is a modified version of the Beddoes-Leishman model developed at
Risø National Laboratory. Both models are described in Chapter 3. The aerodynamic loads are
introduced in the direction orthogonal to the deformed wing. Furthermore, an inertial contribu-
tion to the pitching moment is included from the displacement of the centre of gravity due to
deformation of the wing. The Risø National Laboratory has developed further on the original
code, whereas, Siemens Wind Power have started to develop and use a completely new version
of the code using co-rotational beam elements, capable of modelling large deformations. An ex-
ample of a co-rotational formulation can be found in Krenk (2004b). The wind field is modelled
in the same manner as FLEX5 including tower passage, induced velocities and a Taylor type
hypothesis of a convected frozen turbulence field.

1.4 Presentation of the Problem

Based on the previous introduction it is clear that wind turbines have increased immensely in size
since the first commercial wind turbines were introduced, and so far no indications of stagnation
of this tendency is noted. Also, with a desire to lower weight of the wings in order to decrease
the total cost of the turbine, the wings become more and more flexible. As computer power
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increases it is now possible to simulate several load conditions including failure situations and
fatigue loads for dimensioning and verification of prototypes. However, test machines are still
erected to calibrate the numerical simulations. The demand for nonlinear considerations seems
inevitable if realistic behaviour should be modelled numerically, making expensive prototype
machines obsolete. Within this project emphasis is upon nonlinearities of the structural dynamics
of wind turbine wings and the aerodynamic loading during stall conditions.

1.4.1 Nonlinear considerations

At first, the nonlinear structural dynamics of a wind turbine wing is considered. within the analy-
sis the tower deformations are decoupled from the wing system, applying a forced support point
motion on the wing. This introduces a rigid body translation and rotation of the entire wing.
The low frequency behaviour of the wing is fairly accurate described by a Bernoulli-Euler beam
structure. Assuming large displacements of the wing in both edgewise and blade directions the
curvature of the wing can no longer be determined as the second derivative of the elastic displace-
ment field. Hence, a nonlinear description of the curvature should be introduced. Ordinarily, the
aerodynamic loads are applied to the blade and edgewise directions of the undeformed beam.
However, large displacement causes large rotations of the wing sections, and consequently a sig-
nificant rotation of the aerodynamic loads. The axial component of the rotated load influences
the normal force, and hence the geometrical stiffness of the wing. The nonlinear description of
curvature and rotation of the aerodynamic loading are classified as geometrical nonlinearities. In-
ertial nonlinearities are mainly introduced via the support point motion. However, a considerable
mass is translated in the negative axial direction due to large bending deformations, which adds
to the inertial terms. In both cases the axial components of the induced inertial loads influences
the geometrical stiffness through a modification of the normal force.

Due to large changes in the flow conditions during tower passages and turbulence compo-
nents, the aerodynamic loading changes considerably even during normal operating conditions.
Large deformation velocities will also contribute significantly to the time varying flow condi-
tions. All aeroelastic codes apply more or less complex numerical models for including stall
effects, which in essence are highly nonlinear. The angle of attack for a horizontal axis wind
turbine will, even when considering the twist, vary from within the deep stall region at the root
to the attached flow regime at the tip, or the entire wing may be within the stall region during
active control or failure situations. When aeroelastic contributions are included the variation of
the effective angle of attack is relatively high, introducing significant nonlinear effects on the
aeroelastic loading components.

The qualitatively and quantitatively behaviour and relative importance of all these nonlin-
earities may be highly complex and virtual impossible to analyse by analytical methods. For
this reason numerical simulation is used as a tool to analyse the nonlinear systems. Through
this project a structural nonlinear model of a wind turbine wing is devised including the above-
mentioned nonlinear effects. Furthermore, a dynamic stall model is developed only adding con-
tribution which are estimated to be of importance when considering the aerodynamics of wind
turbine wings. The nonlinear systems are investigating both separately and in combination. The
behaviour of the structural system is analysed during constant aerodynamic loading, and the
aeroelastic dynamic stall model is analysed during forced variation of the angle of attack.
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1.5 Overview of the Thesis

� Chapter 2 describes the derivation of the nonlinear structural equations of motion of a wind
turbine wing subjected to support point rotation and translation. The model is devised using
Newton’s second law of motion and the beam theory of Bernoulli-Euler. As wind turbines
become larger and more flexible the necessity of active control increases. In practise, the in-
strumentation of a wind turbine only allow to identify the fundamental blade and edgewise
eigenmodes. With this in mind, the equations of motions are reduced using the modal ap-
proach with two degrees of freedom including the fundamental blade and edgewise modes.
The nonlinear system retains contributions of up to third order and insignificant contribu-
tions are disregarded. The reduced order model are then analysed with respect to harmonic
support point motion, rotational frequency of the rotor and eigenfrequency ratio between
the eigenfrequencies of the fundamental modes.

� In Chapter 3 a dynamic stall model of the lift component is formulated. The model includes
4 state variables, using two state variables to describe the dynamic variation of lift under
fully attached flow condition, one state variable to describe the dynamic variation of the
trailing edge separation point, and one state variable describing effects of leading edge
separation. 5 other dynamic stall models are describe and the various models are compared
with experimental data.

� Chapter 4 explains how the structural and dynamic stall model are combined and various
numerical examples are given. The numerical examples include: forced pitch variation of
the wing, harmonic support point motion in constant and shear wind field including tower
passage effects, and simulations including an active control algorithm.

� The previous analyses are performed with harmonic variation of the support point motion.
In reality the excitation will be stochastic narrow banded, perhaps even broad banded. The
nonlinear structural model of the wing includes both linear and nonlinear parametric ex-
citation in addition to additive load terms from the support point motion. In Chapter 5 the
stochastic stability of various nonlinear parametrically excited systems are analysed. Due to
the complexity of the wing model, the stochastic stability of two different systems including
parametric and nonlinear terms are analysed, to illustrated classical approaches and behav-
iour of nonlinear stochastically parametrically excited systems. First, the stochastic stability
of a mechanical system is analysed when the system is excited parametrically by a renewal
jump process. This analysis is relevant since parametric excitation plays an important role
for the wing. Then, the behaviour of a cable with moderate sag is analysed when excited
harmonically and stochastically by support point motion. The analysis is performed for
a reduced two-degrees-of-freedom system similar to the one applied for the wing. Again
parametric excitation plays an important role for the behaviour of the system. Finally, a
numerical analysis is carried out, when the nonlinear wing is excited by stochastic support
point motion.

� Finally, Chapter 6 summarize the main conclusion of the project.

The thesis is based on a series of journal papers written within the Ph.D. project. The
formulation and parametric analyses of a nonlinear wind turbine wing, given in Chapter 2, are
based on Larsen and Nielsen (2004a, 2005b). The contents of Chapter 3 is based on Larsen et
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al. (2005). In section 5.1 is the stability analysis of a stochastic parametric mechanical system
given. The results are also presented by Iwankiewicz et al. (2005). The analyses and results
from section 5.2, describing the behaviour of a support point excited cable, are also published
by Larsen and Nielsen(2004b). Furthermore, four papers are under preparation, which have only
partially been incorporated in this thesis. Firstly, the stochastic stability of the nonlinear wind
turbine wing, analysed in section 5.3, will be published by Larsen et al. (2005). Under certain
conditions the nonlinear wind model exhibits chaotic response. The idea of the paper is to analyse
the behaviour of the strange attractor under stochastic support point excitation. A nonlinear finite
element model using co-rotating beam elements is under preparation (Holm-Jørgensen et al.
2005), based on the formulation described in Chapter 2. The idea is to study possible energy
transfers from the two lowest modes to higher modes via nonlinear couplings, and the influence
of these couplings on the stability and chaotic behaviour. Finally, the formulation of an active
control law during dynamic stall conditions applied to the nonlinear wing is under preparation
by Larsen and Nielsen (2005a)
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CHAPTER 2
Nonlinear Structural Dynamics

of Wind Turbine Wings

This chapter deals with the formulation and analysis of nonlinear vibrations of a wind turbine
wing described in a wing fixed moving coordinate system. The considered structural model is a
Bernoulli-Euler beam with due consideration to axial twist, and is excited by aerodynamic loads
and support point displacements. The model includes geometrical nonlinearities induced by the
rotation of the aerodynamic load and the curvature, as well as inertial induced nonlinearities
caused by the support point motion. The nonlinear partial differential equations of motion in the
moving frame of reference are discretized, using the fixed base eigenmodes as a functional basis
and a reduced two-degrees-of-freedom system in blade and edgewise directions are formulated.
Important nonlinear couplings between the fundamental blade mode and edgewise mode are
identified and only these are retained for further analysis. Assuming harmonic displacement of
the tower-nacelle system dominated by the first fundamental tower mode, the frequency response
of the system is analysed with respect to eigenfrequency ratio and excitation frequency ratio
between the rotational frequency and the frequency of the support point motion.

2.1 Nonlinear Structural Model of Wind Turbine Wings

In recent years wind turbines have been growing in size. Offshore wind turbines with a nominal
power of up to 10 MW and a rotor diameter of 175 metres, placed on water depths as deep as
20 metres are under serious consideration. Since the stiffness is not increasing proportionally,
structures of that magnitude are severely dynamical sensitive. Moreover, very large displace-
ments of the wing may occur, for which reason nonlinear effects cannot be ignored. Most of
the available commercial programs for numerical analysis of wind turbines use rather simplified
linear structural models which cannot be applied on structures with considerable deformations.
The response of a nonlinear system may differ qualitatively from that of a corresponding linear
system in a number of ways. Hence, before numerical based nonlinear algorithms can be devised
it is necessary to understand the various nonlinear interactions thoroughly. This deeper insight is
best achieved by the analysis of simplified nonlinear reduced degrees-of-freedom models, which
are believed to provide a qualitatively correct description of the structure.

Krenk (1983a) developed a linear theory for pretwisted elastic beams under general loads
assuming the cross sections are only deformed in the longitudinal direction. The theory was fur-
ther developed in Krenk (1983b), where an explicit asymptotic formula for the torsion-extension
coupling for pretwisted elastic beams with arbitrary homogeneous cross section was indicated.

— 13 —
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Yang, Jiang and Chen (2004) derived a set of fully coupled nonlinear integro-differential equa-
tions for the description of axial, transverse and rotational motions of a rotating Bernoulli-Euler
beam. The centrifugal stiffening effect is included without any restriction concerning angular
speed. Based on an FE discretization the model is used to study suppression of transverse vibra-
tions by controlling the angular speed. Oh and Librescu (2003) presented a linear dynamic the-
ory of rotating blades with constant rotational speed modelled as anisotropic thin walled beams.
The structural model encompasses directionality of fibrous composite materials, transverse shear,
pretwist, a rigid hub and rotary inertia. Validation of the natural frequencies for sheareable beams
of the presented model is made against various comparable FE models. Esmailzadeh and Jalili
(1998) developed a linear structural model for a non-rotating cantilever Timoshenko beam with
a tip mass excited by support motion causing parametric excitation. The idea was to study the
influence of the ratio between the beam mass and the tip mass on the mode shapes, natural fre-
quencies and the stability regions under harmonic excitation. They showed that increasing the tip
mass would reduce the stability region, and using a Bernoulli-Euler model leads to incorrect sta-
ble regions compared to those found from the Timoshenko model. Krenk and Gunneskov (1986)
developed a triangulation procedure for the determination of elastic cross sections with mod-
erate wall thickness for finding cross sectional parameters like area, moments of inertia, shear
stress distributions in torsion and shear, the torsional stiffness and the shear flexibility tensor.
The procedure was used on different turbine blades including various NACA profiles. In a series
of papers Dwivedy and Kar (1999a, 1999b) investigated the parametric stability of a base ex-
cited cantilever beam with an attached mass retaining up to cubic nonlinearities. They analysed
the steady state, periodic and chaotic response under parametric and internal resonances by the
methods of multiple scales and normal forms. Kane et al. (1987) obtained a comprehensive the-
ory for dealing with vibrations of a beam attached to a moving base. They included the stretch,
bending in two principal directions, shear deformations and warping of the beam. Hanagud and
Sarkar (1989) formulated the problem of a cantilever beam attached to a moving support. They
redefined the stretch term given by Kane et al. (1987). The formulation is valid for large dis-
placements, and the stability characteristics of a beam under spin-up manoeuver was studied. It
was demonstrated that structural nonlinearities play a major role in the response characteristics.

In this section the nonlinear dynamic response of rotating wind turbine wings are developed
with emphasis on modal interactions due to parametric and additive excitation from the support
point motions. The interaction between the nacelle and the wings is introduced as a support point
motion of the wings, caused by the stationary motion of the turbine in the non-homogeneous
mean wind field. The displacement and rotation of the support point introduce nonlinear inertia
loads on the wing in addition to the parametric and additive excitation. Additionally, nonlin-
earities are introduced via the curvature of the wing and the rotation of the aerodynamic load.
The aim is to analyse various nonlinear phenomena by a Galerkin reduced degrees-of-freedom
model using the undamped fixed base eigenmodes as shape functions. Especially, the important
nonlinear couplings between the fundamental blade mode and the fundamental edgewise mode
are identified by reducing the model to a two-degrees-of-freedom system. The accuracy of the
reduced model is to be investigated by Holm-Jørgensen (2005), however, in contrast to the sim-
ilar truncation of the shallow cable described in section 5.2, the reduced nonlinear wing model
has not yet been verified numerically. Wind turbines are usually equipped with sensors at the
root as illustrated with the strain gages s1 and s2 in Figure 2.1.

In principle, if an exact mathematical model for the structural system is available, if the
external loading is exactly known in space and time, and if no measurement noise is present,
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s2
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Figure 2.1 Sensor position for an ordinary wind turbine wing indicated by s1 and s2.

then the complete state vector describing the dynamics of the system can be reconstructed from
a reduced number of observed state variables, a so-called full state observer or a Luenberger
observer, see e.g. Preumont (2002). In practice, the assumptions of a full state observer cannot
be met. Firstly, the loading is non-observable, e.g. turbulence components may vary the loading
significantly. Secondly, the sensors are usually calibrated to a given current via static loading,
see Figure 1.7. Hence, the static displacement of the wing tip may be observed, but not necessar-
ily the dynamic deformation. Consequently, any dynamic state observation through the sensors
introduces noise. This means that the estimation of higher order modes becomes increasingly un-
certain. The above arguments are incentives to formulate the mentioned two-degrees-of-freedom
problem. Higher modes may be included in the model, however, the complexity of the system
increases substantial with the numbers of degrees-of-freedom.

As long as the boundary layer is attached to the profile the blade mode is strongly dampened
due to aerodynamic damping. The damping in the edgewise mode is much smaller. However,
during dynamic stall the damping in the blade mode is reduced significantly. Accordingly, in this
study the damping in the edgewise mode is kept at a constant low value, whereas the damping in
the blade mode is varied to simulate various degrees of aerodynamic damping.

In practice, a frequency ratio between the fundamental edgewise and blade frequencies of
ω2/ω1 � 2 is often met. For this reason, the analysis of this section concentrates on nonlinear
interactions for wings with the indicated eigenfrequency ratio.

2.1.1 Geometrical description

A global (x1, x2, x3)-coordinate system is placed at the bottom of the tower with the x1-axis
oriented parallel to the rotor axes as shown in Figure 2.2. To simplify matters the tilt angle and
the cone angle of the wind turbine are assumed to be zero. As the tower-nacelle system deforms
a rotation and displacement of the hub occurs, which introduce a rotation of the rotor plane.
Additionally, a blade fixed (x′

1, x
′
2, x

′
3)-coordinate system with origo at the hub and with the

(x′2, x
′
3)-plane parallel to the global (x2, x3)-plane is introduced. The position of the x ′

2-axis is
determined by the phase angle Φ(t) from the global x2-axis to the local x′2-axis with the sign
definition shown in Figure 2.2. The x ′

3-axis is oriented from the hub towards the free end. Then,
the x′1 and x′2-axes define the blade and edgewise directions, respectively. The shear centres of
the cross-sections along the beam are assumed to be positioned on the x ′

3-axis.
The wing is decoupled from the nacelle and the tower by introducing prescribed linear

translation and rotation vectors u0(t) and θ0(t) with the global and local coordinates ui,0(t),
θi,0(t) and u′i,0(t), θ

′
i,0(t). To simplify matters further only the deformation components u 1,0(t)

and θ2,0(t) are considered, as shown in Figure 2.3a. Additionally, these components, which
are causing quasi-static displacements merely in the blade direction, are assumed to be related
through the fundamental eigenmode of the tower. Hence, the following support point motions
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Figure 2.2 Definitions of coordinate systems.
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Figure 2.3 Definition of material point deformation.

are assumed

u1,0(t) = U1,0u(t), θ2,0(t) = Θ2,0u(t), u2,0(t) = u3,0(t) = θ1,0(t) = θ3,0(t) = 0. (2.1)

The eigenmode component U1,0 may be chosen as 1. Then, the modal coordinate of the tower
u(t) may be interpreted as the physical horizontal displacement of the nacelle.

The base unit vectors of the fixed (x1, x2, x3) and the movable (x′
1, x

′
2, x

′
3)-coordinate sys-

tem are denoted as ij and i′j(t), j = 1, 2, 3, respectively. The transformation between the said
base vectors and the local and global components v ′

i and vj of a vector v is given as
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i′i(t) = Aij(t)ij , v′i = Aij(t)vj . (2.2)

In (2.2) and below the summation convention over dummy indices has been applied. Dummy
Latin indices range over 1, 2 and 3, and dummy Greek indices over 1 and 2. The following
notation will be used. A vector is represented by bold signature, e.g. v, while the components of
v in a given coordinate system are represented as a column matrix by a single underline, e.g. v.
Finally, a two dimensional matrix is represented by a double underline, e.g. A.

The coordinate transformation matrix A(t) is found as a rotation θ 2,0 of the rotor plane fol-
lowed by a wing rotation Φ(t) around the x ′

2-axis of the wing fixed (x′
1, x

′
2, x

′
3)-coordinate sys-

tem. This gives the following transformation matrix between the global (x 1, x2, x3)-coordinate
system and the local (x′1, x

′
2, x

′
3)-coordinate system

A(t) =

⎡
⎣−1 0 0

0 cosΦ − sinΦ
0 − sin Φ − cosΦ

⎤
⎦
⎡
⎣cos θ2,0 0 − sin θ2,0

0 1 0
sin θ2,0 0 cos θ2,0

⎤
⎦ . (2.3)

The time-derivative of Φ(t) specifies the rotational speed of the rotor

Ω(t) = Φ̇(t). (2.4)

Then the local components of the support point motion become u ′
i,0(t) = Ai1(t)u(t) and

θ′i,0(t) = Ai2Θ2,0u(t). Hence, the local components become

u′0(t) =

⎡
⎣ −u(t) cos θ2,0

−u(t) sin Φ sin θ2,0

−u(t) cosΦ sin θ2,0

⎤
⎦ , θ′0(t) =

⎡
⎣ 0

Θ2,0u(t) cosΦ
−Θ2,0u(t) sin Φ

⎤
⎦ (2.5)

To simplify matters, the effects on the hub displacement from the rotation θ 2,0 are disregarded.
Hence, u′1,0(t) � −u(t), u′2,0(t) = u′3,0(t) � 0.

Figure 2.3b shows a wing with prescribed support point motions. A material point P de-
fined by the position vector x0(x′3, t) from the origo of the local moving coordinate system is
considered, which is assumed to undergo the elastic deformation u(x ′

3, t) with local components
u′j(x

′
3, t) and a support point translation u0(t) with global components uj,0(t). The position vec-

tor of P relative to the hub in the referential position is denoted as x(x ′
3, t). The local coordinates

of x0 are time-invariant and given as

x′0 =

⎡
⎣ 0

0
x′3

⎤
⎦ . (2.6)

The indicated vectors are related as, see Figure 2.3b

x(t) = u0(t) + x1(t), (2.7)
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where x1(t) = x0 +u(t). The global components of the position vector x(t), the velocity vector
v(t) and the acceleration vector a(t) of point P , are given by the following column matrices

x(t) = u0(t) +AT (t)x1(t),

v(t) = u̇0(t) + Ȧ
T
(t)x1(t) +AT (t)ẋ1(t),

a(t) = ü0(t) + Ä
T
(t)x1(t) + 2 Ȧ

T
(t)ẋ1(t) +AT (t)ẍ1(t). (2.8)

where the local coordinates of x1(t) are given as

x′1(t) =

⎡
⎣ u′1

u′2
u′3 + x′3

⎤
⎦ . (2.9)

By premultiplication of A(t) the local components of the velocity and acceleration vectors are
obtained

v′(t) = u̇′0(t) + ẋ1(t) +A(t)Ȧ
T
(t)x1(t), (2.10)

a′(t) = ü′0(t) + ẍ1(t) +A(t)Ä
T
(t)x1(t) + 2A(t)Ȧ

T
(t)ẋ1(t), (2.11)

where it has been used that A(t) is orthonormal, hence

A(t)AT (t) = I, (2.12)

Differentiation of (2.12) provides the relation A(t) Ȧ
T
(t) = −Ȧ(t)AT (t), which shows that the

matrix A(t)Ȧ
T
(t) is skew symmetric, and at most contains three non-trivial components.

Let ω(t) be the angular velocity vector of the support point. This rotation induces a velocity
vector of the point P of magnitude

v(t) = ω(t) × x1(t). (2.13)

The local components of v(t) may be written as

v′(t) = ω̃′(t)x′(t), ω̃′(t) = spin
(
ω′(t)

)
=

⎡
⎣ 0 −ω′

3 ω′
2

ω′
3 0 −ω′

1

−ω′
2 ω′

1 0

⎤
⎦ , (2.14)

where the column matrix ω ′(t) stores the local components of the angular velocity vector, and ω̃
denotes the so-called spin matrix related to ω. This is related to the transformation matrix as

ω̃′(t) = A(t)Ȧ
T
(t), (2.15)
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The following relation may be derived

A(t)Ä
T
(t) =

d

dt

(
A(t)Ȧ

T
(t)
)
− Ȧ(t)Ȧ

T
(t) =

d

dt

(
A(t)Ȧ

T
(t)
)
− Ȧ(t)AT (t)A(t)Ȧ

T
(t)

= ˙̃ω′(t) − ω̃′T (t)ω̃′(t). (2.16)

By use of (2.15) and (2.16), (2.11) may then be written as

a′(t) = ü′0(t)+ẍ1(t)+D(t)x1(t)+E(t)ẋ1(t), E(t) = 2ω̃′(t), D(t) = ˙̃ω′(t)−ω̃′T (t)ω̃′(t).
(2.17)

It should be noted that (2.17) applies to any form of rotation specified by the local components
ω′

i of the angular velocity vector. In this particular case the local components of ω(t) are defined
by the rotational speed and the time derivative of the support point rotations. Hence,

ω′(t) =

⎡
⎣ Ω(t)
θ̇′2,0(t)
θ̇′3,0(t)

⎤
⎦ , (2.18)

where θ̇′2,0(t) and θ̇′3,0(t) are the local components of θ̇0(t). Hence, θ̇′2,0(t) = θ̇2,0 cos(Ωt) and

θ̇′3,0(t) = −θ̇2,0 sin(Ωt). Now, the components of E(t) and D(t) become

E(t) = 2

⎡
⎣ 0 −θ̇′3,0 θ̇′2,0

θ̇′3,0 0 −Ω
−θ̇′2,0 Ω 0

⎤
⎦ ,

D(t) =

⎡
⎢⎣

0 −θ̈′3,0 θ̈′2,0

θ̈′3,0 0 −Ω̇
−θ̈′2,0 Ω̇ 0

⎤
⎥⎦−

⎡
⎣θ̇′23,0 + θ̇′22,0 −θ̇′2,0Ω −θ̇′3,0Ω

−θ̇′2,0Ω θ̇′23,0 + Ω2 −θ̇′3,0θ̇
′
2,0

−θ̇′3,0Ω −θ̇′3,0θ̇
′
2,0 θ̇′22,0 + Ω2

⎤
⎦ . (2.19)

Terms entering via the matrix D(t) specify centrifugal accelerations, whereas E(t) deter-
mines various Coriolis acceleration terms.

2.1.2 Nonlinear Bernoulli-Euler beam theory

Consider a differential beam element of the length ds0 = dx′3 placed along the beam axis at
x′3 in the referential state. The length of the beam element in the deformed state is ds, and the
displacement vector is u(x′

3, t). As a result of the rotation of the element the material fixed basis
is rotated into a new (i′′1 , i

′′
2 , i

′′
3) basis, defining a local (x′′1 , x

′′
2 , x

′′
3 )-coordinate system, see Figure

2.4. The transformation between the global and the rotated basis is given by the tensor relations,
see (Krenk 2004b)
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x′1

x′2

x′3

x′′1

x′′2

x′′3

u

u + ∂u
∂s0

ds0

ds0 = dx′3

ds

i′1

i′2

i′3

i′′1

i′′2

i′′3

Figure 2.4 Definition of local (x′1, x′
2, x′

3)-coordinate system and the deformed (x′′1 , x′′
2 , x′′

3 )-coordinate system.

i′′j =
(
I + 2i′′j i

′
j − 2nn

) · i′j. (2.20)

where · denotes a scalar product, I is the identity tensor, and nn indicates a dyadic product of
the unit vector n given as

n =
i′3 + i′′3
|i′3 + i′′3 |

. (2.21)

It is easily shown that i′′3 = −i′3 + 2n(n · i′3). Hence, (2.20) reduces to

[i′′1 i′′2 i′′3 ] = [I − 2nn] · [i′1 i′2 − i′3], (2.22)

further that (2.22), (2.21) provide i ′′j · i′′k = δjk.
Let ε′′3 = ds

ds0
− 1 be the axial strain in the rotated frame of reference, where ds indicates

the deformed length of the element. Then, the basis unit vectors i ′′3 and i′3 are related to the
displacement gradients as

(
1 + ε′′3

)
i′′3 = i′3 +

∂u
∂x′3

. (2.23)
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The axial strain becomes

ε′′3 +
1
2
(
ε′′3
)2 = i′3 ·

∂u
∂x′3

+
1
2
∂u
∂x′3

· ∂u
∂x′3

=
∂u′3
∂x′3

+
1
2
∂u′j
∂x′3

∂u′j
∂x′3

. (2.24)

The right-hand side of (2.24) represents the axial Green strain evaluated in the referential frame
of reference. In what follows the beam is assumed to be inextensible, which means that ε ′′

3 = 0.
Hence, (2.24) implies

∂u′3
∂x′3

= −1
2
∂u′j
∂x′3

∂u′j
∂x′3

= −1
2
∂u′α
∂x′3

∂u′α
∂x′3

+O(ε2). (2.25)

where

ε =
∣∣∣∣∂u′3∂x′3

∣∣∣∣. (2.26)

has been introduced as a characteristic error measure in the following derivations. It follows that

the remainder in (2.25) is of the 4th order in the deformation gradient ∂u′
α

∂x′
3

. Then, from (2.21),
(2.23) and (2.25)

i′′3 � i′3 +
∂u
∂x′3

⇒

n =
2i′3 +

∂u
∂x′3√

4 − ∂u′α
∂x′3

∂u′α
∂x′3

+O(ε2)

=
(
i′3 +

1
2
∂u
∂x′3

)(
1 +

1
8
∂u′α
∂x′3

∂u′α
∂x′3

+O(ε2)
)
. (2.27)

Hence, within an error of the order O(ε2) the components of n in the referential frame of refer-
ence may be written as

⎡
⎣n′

1

n′
2

n′
3

⎤
⎦ �

⎡
⎢⎢⎢⎢⎣
a
∂u′1
∂x′3

a
∂u′2
∂x′3
b

⎤
⎥⎥⎥⎥⎦ , a =

1
2

+
1
16
∂u′α
∂x′3

∂u′α
∂x′3

, b = 1 − 1
8
∂u′α
∂x′3

∂u′α
∂x′3

. (2.28)

The rotation tensor between the referential and the deformed system has the following dyadic
expansions

B = B′
kl i

′
ki

′
l = B′′

kl i
′′
ki

′′
l . (2.29)
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Further,

i′′j = B · i′j = B′′
kl

(
i′′l · i′j

)
i′′k ⇒ B′′

kl

(
i′′l · i′j

)
= δjk ⇒

B′′
jl = i′j · i′′l . (2.30)

Let B = [B′′
jl] be the matrix components of the rotation tensor in the rotated frame of reference.

Then, the transformation between the referential and deformed components v ′
j and v′′k of a vector

v is

v′j = B′′
jkv

′′
k . (2.31)

Within an error of the magnitude O(ε2) these components may be obtained from insertion of
(2.28) into (2.22) as follows

B �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2a2
(∂u′1
∂x′3

)2

−2a2∂u
′
1

∂x′3

∂u′2
∂x′3

2ab
∂u′1
∂x′3

−2a2 ∂u
′
1

∂x′3

∂u′2
∂x′3

1 − 2a2
(∂u′2
∂x′3

)2

2ab
∂u′2
∂x′3

−2ab
∂u′1
∂x′3

−2ab
∂u′2
∂x′3

−1 + 2b2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
2

(∂u′1
∂x′3

)2

−1
2
∂u′1
∂x′3

∂u′2
∂x′3

∂u′1
∂x′3

−1
2
∂u′1
∂x′3

∂u′2
∂x′3

1 − 1
2

(∂u′2
∂x′3

)2 ∂u′2
∂x′3

−∂u
′
1

∂x′3
−∂u

′
2

∂x′3
1 − 1

2
∂u′α
∂x′3

∂u′α
∂x′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.32)

where the order of magnitude relations
(∂u′

1
∂x′

3

)2 = O(ε),
(∂u′

2
∂x′

3

)2 = O(ε), ∂u′
1

∂x′
3

∂u′
2

∂x′
3

= O(ε) have
been used. The orthonormal properties ofB in the final result are easily verified to be accurate to

the third order in ∂u′
α

∂x′
3

. Hodges (1974, p.49) arrived at approximately the same result. However,

the cross terms B′′
12 = 0 and B′′

21 = −∂u′
1

∂x′
3

∂u′
2

∂x′
3

, differ from the present result. Since these
terms do not influence the orthonormality to the considered accuracy, both formulations may be
considered valid approximations.

Figure 2.5 shows the beam element in the deformed state. x denotes a position vector
from the origo of the referential coordinate system to the deformed left-end section of the beam
element. −N and −M denote the section force and section moment at the left-end section. The
corresponding quantities at the right-end section become N + ∂N

∂x′
3
dx′3 and M + ∂M

∂x′
3
dx′3. The

external load per unit length of the referential state is denoted p, so the external load on the beam
element becomes pdx′3. Force and moment equilibrium of the beam element are expressed by
the equilibrium equations
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x

−N

−M

pdx′3

x + ∂x
∂x′

3
dx′3

N + ∂N
∂x′

3
dx′3

M + ∂M
∂x′

3
dx′3

x′′3
x′′3

NN⊥

N‖

a) b)

Figure 2.5 Beam element with section forces, displacement components and applied force.

∂N
∂x′3

+ p = 0, (2.33)

∂M
∂x′3

+
∂x
∂x′3

× N = 0, (2.34)

where × denotes a vectorial product. As illustrated in Figure 2.5b the section force vector N is
resolved into a normal force vector N‖ tangential to the deformed beam axis and a vector N⊥
in the orthogonal direction. Hence, N‖ is perpendicular to ∂x

∂x′
3

and does not contribute to the
moment equilibrium. Then (2.33) and (2.34) may be reformulated as

∂N‖
∂x′3

+
∂N⊥
∂x′3

+ p = 0, (2.35)

∂M
∂x′3

+
∂x
∂x′3

× N⊥ = 0. (2.36)

Let δu and δϕ denote a virtual displacement and rotation vectors of the beam element. Then
the equivalent weak form of (2.35) and (2.36) reads

∫ L

0

(
δu ·

(
∂N‖
∂x′3

+
∂N⊥
∂x′3

+ p
)

+ δϕ ·
(
∂M
∂x′3

+
∂x
∂x′3

× N⊥

))
dx′3

= −
∫ L

0

[
δ

(
∂u
∂x′3

)
· N‖ +

(
∂(δu)
∂x′3

− δϕ × ∂x
∂x′3

)
· N⊥ +

∂(δϕ)
∂x′3

·M
]
dx′3

+
∫ L

0

δu · p dx′3 +
[
δu · (N‖ + N⊥) + δϕ · M]L

0
= 0. (2.37)

The last formulation follows from integration by parts, and use of the identity δϕ · ( ∂x
∂x′

3
× N⊥

)
=
(
δϕ × ∂x

∂x′
3

) · N⊥. The boundary term in (2.37) vanishes at the boundaries, where δu(0) =
δϕ(0) = N‖(L) = N⊥(L) = M(L) = 0. Then, (2.37) may be written as
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∫ L

0

(
δ

(
∂u
∂x′3

)
· N‖ + δε ·N⊥ + δκ · M

)
dx′3 =

∫ L

0

δu · p dx′3, (2.38)

δε and δκ denote the variation of the strain ε and curvature κ vectors, which are work conjugated
to the section force vector N and the moment vector M, given as

δε = δ

(
∂u
∂x′3

)
− δϕ × ∂x

∂x′3
, δκ = δ

(
∂ϕ

∂x′3

)
. (2.39)

In Bernoulli-Euler beam theory shear deformations are neglected. When the virtual work is
evaluated in the rotated coordinate system this means that δε ′′1 = δε′′2 = 0. The aeroelastic load
and the inertia load act in the aerodynamic and mass centre of gravity, respectively. These usually
do not coincide with the shear centre of the section generating a twisting moment. However,
due to the relative large rotational stiffness of wind turbine wing sections the effects of twisting
momentM ′′

3 are disregarded in the following. Hence, the virtual work from the torsional moment
M ′′

3 and the shear force components N ′′
1 and N ′′

2 is neglected. N‖ is tangential to the deformed
beam, i.e. the following expansion prevails in the referential and deformed frame of reference

N‖ = N ′′
3 i′′3 = N ′

α‖i
′
α +N ′

3‖i
′
3. (2.40)

It follows that

N ′
α‖ = N ′′

3 i′α · i′′3 = N ′′
3B

′′
α3 = N ′′

3

∂u′α
∂x′3

. (2.41)

Then the virtual work affecting the normal force in (2.38) may be written as

∫ L

0

δ

(
∂u
∂x′3

)
·N‖ dx′3 =

∫ L

0

[
δ

(
∂u′α
∂x′3

)
N ′′

3

∂u′α
∂x′3

+ δ

(
∂u′3
∂x′3

)
N ′

3‖

]
dx′3

=
∫ L

0

[
δ

(
∂u′α
∂x′3

)
N ′′

3

∂u′α
∂x′3

− δu′3

(
∂N ′

3‖
∂x′3

)]
dx′3 +

[
δu′3N

′
3‖
]L
0
. (2.42)

The last term in (2.42) vanishes due to boundary conditions. Then, (2.38) reduces to

∫ L

0

[
δ

(
∂u′α
∂x′3

)
N ′′

3

∂u′α
∂x′3

+ δκ′′αM
′′
α

]
dx′3 =

∫ L

0

[
δu′αp

′
α + δu′3

(
p′3 +

∂N ′
3‖

∂x′3

)]
dx′3. (2.43)

The last term in the integrand on the right-hand side provides the following equilibrium equation
in the axial direction
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∂N ′
3

∂x′3
+ p′3 = 0. (2.44)

for ease in notation N ′
3 has been introduced for N3‖. κ is defined from the rotation tensor B as

follows, see (Krenk 2004b).

κ × I =
∂B
∂x′3

· BT , (2.45)

where I is the identity tensor and BT is the inverse rotation tensor. Then, the components κ ′′
i in

the rotated frame of reference are given as

κ̃′′ =
∂B

∂x′3
BT . (2.46)

Preserving terms up to cubic order the following results may be derived after some algebra.

κ′′α = −eαβ

∂2u′β
∂x′23

− 1
2
eαβ

∂u′β
∂x′3

∂u′γ
∂x′3

∂2u′γ
∂x′23

,

κ′′3 = −1
2
eαβ

∂2u′α
∂x′23

∂u′β
∂x′3

. (2.47)

Since it has been assumed that M ′′
3 = 0 we would expect κ′′

3 �= 0. Hence, the fact that (2.47)
provides κ′′

3 �= 0 may be considered a minor inconsistency in the theory. One of the basic
assumptions is that the no rotation occur over a differential beam element. It seems that the
rotation through the smallest angle given by (2.32) introduce a change in the axial curvature
and hence a change in rotation over a beam element. From (2.47) follows the corresponding
components of δκα

δκ′′α = −eαβδ

(
∂2u′β
∂x′23

)
−1

2
eαβ

(
δ

(
∂u′β
∂x′3

)
∂u′γ
∂x′3

∂2u′γ
∂x′23

+
∂u′β
∂x′3

δ

(
∂u′γ
∂x′3

)
∂2u′γ
∂x′23

+
∂u′β
∂x′3

∂u′γ
∂x′3

δ

(
∂2u′γ
∂x′23

))
.

(2.48)

The constitutive relations of Bernoulli-Euler beams postulate a linear relationship between
moment componentsM ′′

α and curvature components κ ′′
α as follows

M ′′
α = EI ′′αβκ

′′
β. (2.49)

In (2.49) E is the elasticity modulus, and I ′′
αβ is the inertia tensor.

Let (x′′′1 , x
′′′
2 , x

′′′
3 ) denote a principle axes coordinate system rotated the twist angle ϕ(x ′′

3 )
around the x′′

3 -axis with the sign defined in Figure 2.6. Then,
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x′′1

x′′2

x′′′1

x′′′2

x′3, x
′′
3

ϕ

Figure 2.6 Principal coordinate system.

I ′′αβ = I ′′′γδCαγCβδ, (2.50)

where I ′′′αβ denotes the components of the inertia tensor in the (x ′′′
1 , x

′′′
2 , x

′′′
3 )-system. These may

be stored as the diagonal matrix

I ′′′ =
[
I ′′′11 0
0 I ′′′22

]
, (2.51)

Cαβ describes the components of the transformation matrix between the principal (x ′′′
1 , x

′′′
2 )-

coordinate system and the local (x′′
1 , x

′′
2 )-coordinate system as represented by the matrix

C =
[

cosϕ sinϕ
− sinϕ cosϕ

]
. (2.52)

2.1.3 External load and normal force

x′′3

x′′1
x′1

x′2
x′3

p′′1,A

p′′2,A

µdx′3

−u′3

dx′3

Figure 2.7 Geometrical nonlinear effects due to beam deformation.

Left is to determine the external load p ′α in the referential frame of reference and the normal
force N ′′

3 in the rotated frame of reference. The external load originates from the aerodynamic
loading and support point motion. Usually, the aerodynamic loads are determined for 2D sections
throughout the wing perpendicular to the deformed beam axis x ′′

3 . This is illustrated in Figure 2.7,
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for the (x′1, x
′
3)-plane. To determine the aerodynamic loads in the referential frame of reference

entering the right-hand side of (2.43), the vector component relation in (2.31) is used

p′i,A = B′′
iβ p

′′
β,A =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
1 − 1

2

(∂u′1
∂x′3

)2
)
p′′1,A − 1

2
∂u′1
∂x′3

∂u′2
∂x′3

p′′2,A

−1
2
∂u′1
∂x′3

∂u′2
∂x′3

p′′1,A +
(

1 − 1
2

(∂u′2
∂x′3

)2
)
p′′2,A

−
(
∂u′1
∂x′3

p′′1,A +
∂u′2
∂x′3

p′′2,A

)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.53)

Then, the total external force components orthogonal to the beam axis become

p′α = p′α,A − µa′α. (2.54)

where D’Alambert’s principle is used and the acceleration components a ′
α are obtained from

(2.17).
The normal force N ′

3 is made up of a quasi-static referential contribution N ′
3,s due to the

centrifugal axial force at the rotational speed Ω(t), and a dynamic contribution N ′
3,d, caused by

the axial inertial load p′3,G and the axial component p′3,A of the aerodynamic load. Then, N ′
3 is

given as, cf. (2.44)

N ′
3 = N ′

3,s +
∫ L

x′
3

(
p′3,G + p′3,A

)
dx′3. (2.55)

In the present case elastic elongation of the beam is disregarded, and the geometric nonlinear
effect is entirely caused by the rotation of the normal force, Hence, N ′′

3 = N ′
3. N ′

3,s in (2.55)
originates from the term D33(t)x′3 in (2.17) and is given as

N ′
3,s(x

′
3, t) = Ω2(t)

∫ L

x′
3

µ(x′3)x
′
3dx

′
3. (2.56)

In (2.55) p′3,G = −µ(a′3 + ü′3
)
, where a′3 denotes the component along the x ′

3-axis of the ac-
celeration vector (2.17). Notice, that the centrifugal acceleration term −Ω 2(t)x′3 in (2.17) has
already been accounted for via N ′

3,s. As seen in Figure 2.7 the displacement of the beam causes
an axial displacement u′

3, which will introduce an axial inertial load −µü ′
3. This load causes a

nonlinear term of the 3rd order, when included intoN ′
3. With a consistent approximation u′

3 may
be calculated from

u′3(x
′
3, t) = −

∫ x′
3

0

(
1 −
√

1 −
(∂u′1
∂x′3

)2

−
(∂u′2
∂x′3

)2
)
dx′3 � −1

2

∫ x′
3

0

(
∂u′α
∂x′3

∂u′α
∂x′3

)
dx′3 ⇒

ü′3(x
′
3, t) = −

∫ x′
3

0

(
∂u̇′α
∂x′3

∂u̇′α
∂x′3

+
∂u′α
∂x′3

∂ü′α
∂x′3

)
dx′3. (2.57)
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Combining (2.17), (2.54) and (2.55) the following expressions are obtained for the dynamic loads
per unit length and the axial force

p′1 = p′1,A −µ
(
ü′1,0 + ü′1−

(
θ̇′23,0 + θ̇′22,0

)
u′1−

(
θ̈′3,0 − θ̇′2,0Ω

)
u′2 +

(
θ̈′2,0 + θ̇′3,0Ω

)
x′3 −2θ̇′3,0u̇

′
2

)
,

p′2 = p′2,A − µ

(
ü′2 +

(
θ̈′3,0 + θ̇′2,0Ω

)
u′1 −

(
θ̇′23,0 + Ω2

)
u′2 −

(
Ω̇ − θ̇′3,0θ̇

′
2,0

)
x′3 + 2θ̇′3,0u̇

′
1

)
,

N ′
3 = N ′

3,s+
∫ L

x′
3

[
p′3,A−µ

(
−(θ̈′2,0−θ̇′3,0Ω

)
u′1+

(
Ω̇+θ̇′3,0θ̇

′
2,0

)
u′2−θ̇′22,0x

′
3−2θ̇′2,0u̇

′
1+2Ωu̇′2+ü

′
3

)]
dx′3,

(2.58)

where p′i,A is given in (2.53), and ü ′
3 is determined from (2.57).

2.1.4 Related linear eigenvalue problem

In order to discretize the variational equation (2.43) the displacement components u ′
α(x′3, t) are

represented by the following modal expansion

u′α(x′3, t) =
∞∑

j=1

Φ(j)
α (x′3)qj(t). (2.59)

qj(t) denotes the modal coordinates and Φ(j)
α (x′3) represents the undamped eigenmodes, which

are determined from the following linear self-adjoint eigenvalue problem

d2

dx′23

(
eαγEI

′′
γδeδβ

d2Φ(j)
β

dx′23

)
+

d

dx′3

(
N ′′

3,s

dΦ(j)
α

dx′3

)
+ ω2

jµ(x′3)Φ
(j)
α (x′3) = 0,

Φ(j)
α (0) =

dΦ(j)
α (0)
dx′3

= 0, EI ′′αδ(L)eδβ

d2Φ(j)
β (L)
dx′23

=
d

dx′3

(
EI ′′αδ(L)eδβ

d2Φ(j)
β (L)
dx′23

)
= 0.

(2.60)

N ′′
3,s(x

′
3) = N ′

3,s(x
′
3) as given by (2.56) has been taken at a constant referential value Ω 0 of the

rotational speed. At the formulation of the mechanical boundary condition at x ′
3 = L for the

shear force it has been utilized that N ′′
3,s(L) = 0. ωj denotes the circular eigenfrequencies of

the wing, under the rotational speed Ω0 and fixed at the hub. The eigenmodes Φ(j)
α (x′3) fulfil the

orthogonality conditions

∫ L

0

[
d2Φ(j)

α

dx′23
eαγEI

′′
γδeβδ

d2Φ(k)
β

dx′23
+
dΦ(j)

α

dx′3
N ′′

3,s

dΦ(k)
α

dx′3

]
dx′3 =

{
0 , j �= k,

ω2
jMj , j = k,

(2.61)
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∫ L

0

µ(x′3)Φ
(j)
α (x′3)Φ

(k)
α (x′3)dx

′
3 =

{
0 , j �= k,

Mj , j = k,
(2.62)

where Mj denotes the modal mass related to the jth mode. The eigenvalue problem has been
solved numerically by means of an FE method, which additionally provides all necessary deriva-
tives of the eigenmodes. Then, based on these solutions all quadratures involving the eigenmodes
and their derivatives are evaluated by means of the trapezoidal rule.

Additionally, we shall assume that the variational field δu ′
α(x′3) is expanded in the same

functional modal basis as the displacement field, corresponding to the following Galerkin type
of variation

δu′α(x′3, t) =
∞∑

j=1

Φ(j)
α (x′3)δqj(t). (2.63)

2.1.5 Modal equations of motion

The idea is to use (2.59) and (2.63) in the variational equation (2.43). This is acceptable since all
kinematical requirements are fulfilled by the mode shapes Φ (j)

α (x′3). Assuming that the rotational
speed is constant, i.e. Ω(t) = Ω0, then the mode shapes derived from (2.60) will decouple the
non-gyroscopic linear terms in (2.43). The resulting ordinary differential equations for the modal
coordinates become

∞∑
j=1

(
mij q̈j + cij(t)q̇j + kij(t)qj

)
+

∞∑
j=1

∞∑
k=1

(
aijk(t)qjqk + bijk(t)qj q̇k

)

+
∞∑

j=1

∞∑
k=1

∞∑
l=1

(
dijklqjqkql + gijkl

(
qj q̇kq̇l + qjqkq̈l

))
= fi(t), (2.64)

where

mij = Miδij ,

cij(t) = 2ζiωiMiδij +
∫ L

0

µΦ(i)
α EαβΦ(j)

β dx′3,

kij(t) = Miω
2
i δij +

∫ L

0

[
µΦ(i)

α DαβΦ(j)
β − ∂Φ(i)

α

∂x′3

∂Φ(j)
α

∂x′3

∫ L

x′
3

µD33x
′
3 dx

′
3

]
dx′3. (2.65)

In (2.65) and below the summation convention has been abandoned over the modal coor-
dinate indices. Further, in cij(t) a damping term has been introduced via the modal damping
ratio ζi accounting for structural and aerodynamic damping. As seen, the support point rota-
tions θ′2,0(t) and θ′3,0(t) cause parametric excitation in the linear terms. The nonlinear coupling
coefficients in (2.64) are defined as follows
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aijk(t) =
∫ L

0

[
∂Φ(i)

α

∂x′3

∂Φ(j)
α

∂x′3

∫ L

x′
3

[
− p′′β,A

∂Φ(k)
β

∂x′3
− µD3βΦ(k)

β

]
dx′3

+
1
2
Φ(i)

α p′′β,A

∂Φ(j)
α

∂x′3

∂Φ(k)
β

∂x′3

]
dx′3,

bijk(t) =
∫ L

0

[
∂Φ(i)

α

∂x′3

∂Φ(j)
α

∂x′3

∫ L

x′
3

−µE3βΦ(k)
β dx′3

]
dx′3,

dijkl =
∫ L

0

1
2
eαηEI

′′
αβeβξ

[
∂2Φ(i)

η

∂x′23

∂Φ(j)
ξ

∂x′3

∂Φ(k)
γ

∂x′3

∂2Φ(l)
γ

∂x′23
+
∂2Φ(l)

ξ

∂x′23

∂Φ(i)
η

∂x′3

∂Φ(j)
γ

∂x′3

∂2Φ(k)
γ

∂x′23

+
∂2Φ(l)

ξ

∂x′23

∂Φ(j)
η

∂x′3

∂Φ(i)
γ

∂x′3

∂2Φ(k)
γ

∂x′23
+
∂2Φ(l)

ξ

∂x′23

∂Φ(j)
η

∂x′3

∂Φ(k)
γ

∂x′3

∂2Φ(i)
γ

∂x′23

]
dx′3,

gijkl =
∫ L

0

[
∂Φ(i)

α

∂x′3

∂Φ(j)
α

∂x′3

∫ L

x′
3

[
µ

∫ x′
3

0

∂Φ(k)
β

∂x′3

∂Φ(l)
β

∂x′3
dx′3

]
dx′3

]
dx′3, ,

fi(t) =
∫ L

0

Φ(i)
α

(
p′′α,A − µ

(
ü′α,0 +Dα3x

′
3

))
dx′3. (2.66)

As seen, the parametric excitation from θ ′2,0(t) and θ′3,0(t) is also present in the quadratic non-
linear coupling terms bijk(t) and aijk . By contrast, the support point displacement u ′

1,0(t)
only enters the equations as an additive load term via the modal loads f i(t). bijk(t) and gijkl

are quadratic and cubic nonlinear coupling coefficients originating from inertial nonlinearities,
whereas dijkl is a purely geometrical nonlinear term from the nonlinear description of the cur-
vature. The quadratic nonlinear coupling coefficients a ijk(t) include both contributions from the
rotation of the aeroelastic loads and from the support point rotations.

2.1.6 Reduction to a two-degrees-of-freedom system

In what follows it is assumed that merely the fundamental blade and edgewise modal coordinates
are performing large vibrations due to resonance, whereas all other modal coordinates remain
small, and may be described by a linear theory. Moreover, these degrees of freedom are com-
pletely decoupled from the fundamental blade and edgewise modal coordinates. Accordingly,
the influence of the linear degrees of freedom on the qualitatively behaviour of the nonlinear
modal coordinates may be considered weak. Hence, (2.64) reduces to
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M1

(
q̈1 + 2ζ1ω1q̇1 + ω2

1q1
)

+ c12q̇2 + k11q1 + k12q2

+ a111q
2
1 +
(
a112 + a121

)
q1q2 + a122q

2
2 + b111q1q̇1 + b112q1q̇2 + b121q2q̇1 + b122q2q̇2

+ d1111q
3
1 +
(
d1112 + d1121 + d1211

)
q21q2 +

(
d1122 + d1212 + d1221

)
q1q

2
2 + d1222q

3
2

+ g1111
(
q1q̇

2
1 + q21 q̈1

)
+ g1112

(
q1q̇1q̇2 + q21 q̈2

)
+ g1121

(
q1q̇1q̇2 + q1q2q̈1

)
+ g1211

(
q2q̇

2
1 + q1q2q̈1

)
+ g1122

(
q1q̇

2
2 + q1q2q̈2

)
+ g1212

(
q2q̇1q̇2 + q1q2q̈2

)
+ g1221

(
q2q̇1q̇2 + q22 q̈1

)
+ g1222

(
q2q̇

2
2 + q22 q̈2

)
= f1(t), (2.67)

M2

(
q̈2 + 2ζ2ω2q̇2 + ω2

2q2
)

+ c21q̇1 + k22q2 + k21q1

+ a211q
2
1 +
(
a212 + a221

)
q1q2 + a222q

2
2 + b211q1q̇1 + b212q1q̇2 + b221q2q̇1 + b222q2q̇2

+ d2111q
3
1 +
(
d2112 + d2121 + d2211

)
q21q2 +

(
d2122 + d2212 + d2221

)
q1q

2
2 + d2222q

3
2

+ g2111
(
q1q̇

2
1 + q21 q̈1

)
+ g2112

(
q1q̇1q̇2 + q21 q̈2

)
+ g2121

(
q1q̇1q̇2 + q1q2q̈1

)
+ g2211

(
q2q̇

2
1 + q1q2q̈1

)
+ g2122

(
q1q̇

2
2 + q1q2q̈2

)
+ g2212

(
q2q̇1q̇2 + q1q2q̈2

)
+ g2221

(
q2q̇1q̇2 + q22 q̈1

)
+ g2222

(
q2q̇

2
2 + q22 q̈2

)
= f2(t). (2.68)

With the local components of the support point motions given by (2.1), the time dependent coef-
ficients (2.65) and (2.66) may be written in the following way

kij(t) = −kij,11Θ2
2,0u̇

2(t)+kij,12Θ2,0

(
ü(t) sin Ω0t+u̇(t)Ω0 cosΩ0t

)
+kij,21Θ2,0

(
−ü(t) sin Ω0t+u̇(t)Ω0 cosΩ0t

)
+ kij,22

(
− Θ2

2,0u̇
2(t) sin2 Ω0t− Ω2

0

)
+ kij,33Θ2

2,0u̇
2(t) cos2 Ω0t,

cij(t) = −cij,1u̇(t)Θ2,0 sin Ω0t,

aijk(t) = aijk,0(t)−aijk,1Θ2,0

(
ü(t) cos Ω0t+u̇(t)Ω0 sinΩ0t

)
−aijk,2Θ2

2,0u̇
2(t) sin Ω0t cosΩ0t,

bijk(t) = −bijk,1Θ2,0u̇(t) cosΩ0t+ bijk,2Ω0,

fi(t) = fi,0(t)+fi,1Θ2,0

(
ü(t) cosΩ0t−Ω0u̇(t) sin Ω0t

)
−fi,2Θ2

2,0u̇
2(t) sin Ω0t cosΩ0t+fi,3ü(t),

(2.69)

where the time independent coefficients are found to be
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cij,1 = 2
∫ L

0

µ
(
− Φ(i)

1 Φ(j)
2 + Φ(i)

2 Φ(j)
1

)
dx′3,

kij,αβ =
∫ L

0

µΦ(i)
α Φ(j)

β dx′3, kij,33 =
∫ L

0

[
∂Φ(i)

α

∂x′3

∂Φ(j)
α

∂x′3

∫ L

x′
3

µx′3 dx
′
3

]
dx′3,

aijk,0 =
∫ L

0

[
∂Φ(i)

α

∂x′3

∂Φ(j)
α

∂x′3

∫ L

x′
3

−p′′β,A

∂Φ(k)
β

∂x′3
dx′3 +

1
2
Φ(i)

α p′′β,A

∂Φ(j)
α

∂x′3

∂Φ(k)
β

∂x′3

]
dx′3,

aijk,α =
∫ L

0

[
∂Φ(i)

β

∂x′3

∂Φ(j)
β

∂x′3

∫ L

x′
3

−µΦ(k)
α dx′3

]
dx′3, bijk,α = 2aijk,α,

fi,0 =
∫ L

0

Φ(i)
α p′′α,Adx

′
3, fi,α = −

∫ L

0

Φ(i)
α µx′3dx

′
3 fi,3 =

∫ L

0

Φ(i)
1 µdx′3. (2.70)

To investigate the relative importance of the nonlinear terms entering (2.67) and (2.68) the
following time variations of the horizontal displacement of the nacelle are assumed to be

u(t) = u0 cosω0t. (2.71)

Typically, ω0 � 3Ω0 for a three bladed rotor moving in a nonhomogeneous shear mean wind
field.

The incoming wind velocity V ′
1(x′3, t) as seen from a considered cross section of the wing

varies periodically with the rotational speed Ω0. V ′
1(x′3, t) is assumed to vary logarithmic in the

following way

V ′
1 (x′3, t) = V0

lnx3

lnh
= V0

ln
(
h− x′3 cosΩ0t

)
lnh

, (2.72)

where V0 is the undisturbed mean wind velocity and h is the height of the rotor axis. The
rotational wind velocity is given as V ′

2(x′3) = x′3Ω0. Then, the resulting wind velocity V (x ′
3, t)

may be written as

V (x′3, t) =
√
V ′2

1 (x′3, t) + V ′2
2 (x′3). (2.73)

Based on (2.73) the following expression for the aerodynamic loads are derived

p′′1,A(x′3, t) =
1
2
ρV 2(x′3, t)c(x

′
3)cL � p′′1,A,0(x

′
3) + ∆p′′1,A,1(x

′
3) cosΩ0t,

p′′2,A(x′3, t) =
1
2
ρV 2(x′3, t)c(x

′
3)cD � p′′2,A,0(x

′
3) + ∆p′′2,A,1(x

′
3) cos Ω0t. (2.74)
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p′′α,A,0(x
′
3) denotes the mean value of p′′α,A(x′3, t), when the wing is at the top and bottom po-

sitions. Correspondingly, ∆p′′α,A,1(x
′
3) denotes half of the difference between these extreme

values. cL and cD are the lift and drag coefficients. The coefficients a ijk,0(t) and fi,0(t) in
(2.70) may then be written in the following way

aijk,0(t) = aijk,00 + ∆aijk,01 cosΩ0t, fi,0(t) = fi,00 + ∆fi,01 cosΩ0t (2.75)

with

aijk,00 =
∫ L

0

[
∂Φ(i)

α

∂x′3

∂Φ(j)
α

∂x′3

∫ L

x′
3

[
− p′′β,A,0

∂Φ(k)
β

∂x′3

]
dx′3 +

1
2
Φ(i)

α p′′β,A,0

∂Φ(j)
α

∂x′3

∂Φ(k)
β

∂x′3

]
dx′3,

∆aijk,01 =
∫ L

0

[
∂Φ(i)

α

∂x′3

∂Φ(j)
α

∂x′3

∫ L

x′
3

[
−∆p′′β,A,1

∂Φ(k)
β

∂x′3

]
dx′3 +

1
2
Φ(i)

α ∆p′′β,A,1

∂Φ(j)
α

∂x′3

∂Φ(k)
β

∂x′3

]
dx′3,

fi,00 =
∫ L

0

Φ(i)
α p′′α,A,0dx

′
3, ∆fi,01 =

∫ L

0

Φ(i)
α ∆p′′α,A,1dx

′
3. (2.76)

2.1.7 Numerical example

The theory will be demonstrated using a 46 m wing. The aerodynamic profiles are NACA 63-
418 section profile as illustrated in Figure 2.10, scaled with chord and height values indicated
in Figure 2.11d. The inner 2.0 metres of the wing has a circular cross section with 2.0 metres
in diameter. The wing has a total weight of 10 t. The stiffness and mass distribution are chosen
so the eigenfrequencies approximately match those given by the manufacture of a corresponding
wing size. The twist throughout the wing is chosen so that the angle of attack of the resulting
wind is approximately 6◦ at a constant rotational speed of 1.6 s−1, and an incoming wind velocity
of 12 m/s.
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a) b)

x′1x′1

x′2x′2

x′3 x′3

Figure 2.8 a) First eigenmode Φ(1). b) Second eigenmode Φ(2).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1
a) b)

x′3/L [-]x′3/L [-]

Φ
(1

)
α

[-
]

Φ
(2

)
α

[-
]

Figure 2.9 Components of eigenmodes. ( ) Φ1 Bernoulli-Euler beam. ( ) Φ1 Mindlin-Reissner laminated
shell theory. ( ) Φ2 Bernoulli-Euler beam. ( ) Φ2 Mindlin-Reissner laminated shell theory. a) First eigen-
mode Φ(1) . b) Second eigenmode Φ(2) .
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Figure 2.10 Normalized profile of a NACA 63-418 wing
section. gggggHHHH

Mode 1 2

ωi [s−1], Ω0 = 0 s−1 4.61 9.39
ωi [s−1], Ω0 = 1.6 s−1 5.14 9.49
Mi [kg] 427.9 852.1
ζi [-] Variable 0.01

Table 2.1 Fixed base circular eigenfrequencies, modal
masses and damping ratios.
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Figure 2.11 a) Twist angle throughout the beam. b) Mass per unit length. c) Distribution of local moment of inertia.
( ) I11. ( ) I12. ( ) I22. d) ( ) Chord length c. ( ) Thickness t of cross sections.

The fundamental blade and edgewise eigenmodes are illustrated in Figure 2.8. The com-
ponents in the x′1- and x′2-directions are shown in Figure 2.9 with the dominating components
normalized to 1 at the wing tip. The components determined by Bernoulli-Euler beam theory
are plotted as ( ) and ( ) for the inplane and out-of-plane components, respectively.
For comparison the corresponding components obtained by an equivalent Mindlin-Reissner lam-
inated shell theory are indicated by ( ) and ( ). Very small deviations are registered,
indicating that the beam theory is sufficiently adequate in determining the lower order mode
shapes. As seen, a considerable edgewise component is present in the blade mode Φ (1) and an
even more dominating blade component is present in the edgewise mode Φ (2). The wing has
the twist angle, the mass, local moments of inertia, chord length and thickness distributions as
indicated in Figure 2.11.

Modal parameters for the first two fixed base modes of the wing are listed in Table 2.1 for
the rotational speeds Ω0 = 0 s−1 and Ω0 = 1.6 s−1. The structural and aerodynamic damping in
the edgewise mode is kept constant at the modal damping ratio ζ 2 = 0.01. In the blade mode the
aerodynamic damping ratio may vary from about 0.2 in case of fully attached flow to negative
values under deep stall. As a consequence ζ1 is varied in steps between the values 0.01 to 0.20
in the following study. The lift and drag coefficients are assumed to be

cL = 1.5 , cD = 0.05. (2.77)

With the described wing properties the coefficients in (2.69) and (2.70) become
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cij,1 =
[

0 −1078.62
1078.62 0

]
kg, kij,11 =

[
381.34 −115.92
−115.92 61.04

]
kg,

kij,12 =
[

81.22 517.92
−21.41 −114.93

]
kg, kij,21 = kT

ij,12,

kij,22 =
[

17.72 115.95
115.95 784.94

]
kg, kij,33 =

[
806.29 −206.29

−206.29 1373.31

]
kg,

fi,00 =
[

48535.1
−10426.40

]
N ,∆fi,01 =

[
993.93

−177.19

]
N , fi,1 =

[−28510.61
4681.19

]
kgm,

fi,2 =
[ −6619, 84
−47391, 25

]
kgm , fi,3 =

[−872.82
75.82

]
kg,

a1jk,00 =
[−17.50 15.79
−14.52 11.17

]
N/m2, a2jk,00 =

[
20.41 −18.54

−40.57 33.85

]
N/m2,

∆a1jk,01 =
[−0.33 0.30
−0.29 0.22

]
N/m2, ∆a2jk,01 =

[
0.39 −0.35

−0.79 0.65

]
N/m2,

a1jk,1 =
[−12.76 4.82

4.79 −2.56

]
kg/m, a2jk,1 =

[
4.79 −2.56

−18.70 6.02

]
kg/m,

a1jk,2 =
[−2.60 −15.78

0.88 4.83

]
kg/m, a2jk,2 =

[
0.88 4.83

−3.95 −25.05

]
kg/m,

d11kl =
[

15.65 −13.28
−11.54 15.37

]
N/m3, d12kl =

[−3.33 48.90
8.21 −29.02

]
N/m3,

d21kl =
[−9.38 33.76

12.12 −31.91

]
N/m3, d22kl =

[
26.60 −49.99
−5.15 110.58

]
N/m3,

g11kl =
[

0.46 −0.20
−0.20 0.64

]
kg/m2, g12kl =

[−0.20 0.11
0.11 −0.25

]
kg/m2,

g21kl = g12kl, g22kl =
[

0.64 −0.26
−0.26 0.93

]
kg/m2. (2.78)

The numerical results will be given in terms of the root-mean-square values of the modal
coordinates q1 and q2 with the mean values subtracted. The resulting quantities are denoted as
Q1 and Q2, respectively.

Figure 2.12 shows Q1 and Q2 as functions of the excitation frequency ω0 found by numer-
ical integration of the modal differential equations of motion with ζ 1 = ζ2 = 0.01, u0 = 0.3
m and Ω0 = 1.6 s−1, using a Runge-Kutta fourth order algorithm with the time steps ∆t =
0.002 2π

ω0
. The full line indicates results obtained by the total system given in (2.67) and (2.68).

The dashed line is the corresponding result achieved when the cubic coupling coefficients d i122,
di212, di221, di222, gi112, gi121, gi122, gi212, gi221, gi222 are set equal to zero together with the
quadratic coupling coefficients ai22 and bi22. The correspondingly reduced modal differential
equations are given by (2.79). As seen, the response curve does not change significantly when
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Figure 2.12 Comparison of modal coordinates determined from the full and reduced model. ζ1 = ζ2 = 0.01,
u0 = 0.30 m, Ω0 = 1.6 s−1, ω2/ω1 = 2. ( ) Full model (2.67), (2.68). ( ) Reduced model (2.79). a)
Q1(ω0). b) Q2(ω0).
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Figure 2.13 Modal coordinates at various values of ζ1. u0 = 0.30 m, Ω0 = 1.6 s−1, ω2/ω1 = 2. ( )
ζ1 = 0.01. ( ) ζ1 = 0.05. ( ) ζ1 = 0.2. a) Q1(ω0). b) Q2(ω0).
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Figure 2.14 Modal coordinates at various values of u0. ζ1 = ζ2 = 0.01, Ω0 = 1.6 s−1, ω2/ω1 = 2. ( )
u0 = 0.3 m. ( ) u0 = 0.4 m. ( ) u0 = 0.5 m. a) Q1(ω0). b) Q2(ω0).
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Figure 2.15 Comparison of modal coordinates determined from the reduced model with and without contribution from
f2. u0 = 0.30 m, ζ1 = ζ2 = 0.01, Ω0 = 1.6 s−1, ω2/ω1 = 2. ( ) f2 �= 0. ( ) f2 = 0. a) Q1(ω0). b)
Q2(ω0).
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the system is reduced as indicated. Keeping the terms in (2.67) and (2.68), which influence the
frequency response curve and the stability region qualitatively and quantitatively, the reduced
equations of motion become

M1

(
q̈1+2ζ1ω1q̇1+ω2

1q1
)
+c12(t)q̇2+k11(t)q1+k12(t)q2+a111(t)q21 +

(
a112(t)+a121(t)

)
q1q2

+ b111(t)q1q̇1 + b112(t)q1q̇2 + b121(t)q2q̇1 + d1111q
3
1 +
(
d1112 + d1121 + d1211

)
q21q2

+ g1111
(
q1q̇

2
1 + q21 q̈1

)
+ g1211

(
q2q̇

2
1 + q1q2q̈1

)
= f1(t),

M2

(
q̈2+2ζ2ω2q̇2+ω2

2q2
)
+c21(t)q̇1+k21(t)q1+k22(t)q2+a211(t)q21 +

(
a212(t)+a221(t)

)
q1q2

+ b211(t)q1q̇1 + b212(t)q1q̇2 + b221(t)q2q̇1 + d2111q
3
1 +
(
d2112 + d2121 + d2211

)
q21q2

+ g2111
(
q1q̇

2
1 + q21 q̈1

)
+ g2211

(
q2q̇

2
1 + q1q2q̈1

)
= f2(t). (2.79)

Six main resonance peaks are present in the frequency response curve of both Q 1 and Q2.
They are located at ω0/ω1 � 0.66, 1.0, 1.33, 1.66, 2.0 and 2.33. Further, two minor peaks appear
in Q2 at ω0/ω1 = 0.83 and 1.16. Especially, at high amplitude excitation the peaks become
doubled peaked, see Figure 2.14.

Figure 2.13 shows the response for the reduced system for various values of ζ 1 modelling the
variable aeroelastic damping in the blade direction. It is seen that for the edgewise component
only resonance peaks at frequencies in the region ω 0/ω1 < 1.4 is effected by changes in ζ1.
Hence, resonance in this region of the edgewise component is primarily due to coupling terms.
In the blade component all resonance peaks are influenced by changes in ζ 1.

Figure 2.14 shows the corresponding frequency response curve at various values of the
amplitude u0 of the support point motion. For the blade component an increase of u 0 only in-
troduces minor increases of the resonance peaks at ω0/ω1 � 0.66, 1.0 and 1.66 and the increase
in response of the remaining peaks are relatively small. The relative increase in the edgewise
response is more significant for all peaks except for ω0/ω1 � 0.66. Hence, the edgewise com-
ponent is mainly excited by the support point motion, while the aerodynamic loading primarily
excites the blade component.

Finally, the relative influence of the additive loading f2(t) and the nonlinear interactions
from the blade mode on the response in the edgewise direction have been illustrated in Figure
2.15. As seen, the additive load term f2(t) does not change the resonance peaks in Q2 for
ω0/ω1 < 1.4. However, a significant decrease in the peaks at ω0/ω1 > 1.4 is observed. This
supports the argument that the resonance peaks in Q2 at low frequencies originate mainly from
the coupling terms, while both the additive and parametric excitation contribute to the resonance
peaks at ω0/ω1 > 1.4.

The additive load term f1(t) is partly responsible for the resonance peaksω0/ω1 = 0.66, 1.0
and 1.33 inQ1 while resonance inQ1 at ω0/ω1 > 1.4 mainly is due to nonlinear coupling terms.

The parametric linear terms cij(t) and kij(t) introduce a decrease of resonance frequencies
for the peaks at ω0/ω1 = 1.66, 2.0 and 2.33 in Q2.

The parametric quadratic terms defined by a i11(t) and bi11(t) mainly stabilize the reso-
nance peak at ω0/ω1 � 1.0, but also a stabilizing influence at ω0/ω1 = 1.66, 2.0 and 2.33 is
observed. Only minor changes are observed when disregarding the terms a i12(t), ai21(t) and
bi21(t), however, bi12(t) accounts for the coupling peaks in Q1 at ω0/ω1 = 1.66, 2.0 and 2.33.
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The cubic nonlinear terms have a significant stabilizing effect on all resonance peaks. If
these terms are disregarded all resonance frequencies generate infinite response. However, when
the cubic terms are included the peaks at ω0/ω1 � 0.66, 1.0 and 1.33 curve a little to the right
making the system stable. Furthermore, the cubic terms introduce an increase in the resonance
frequency of Q1 at ω0/ω1 � 1.66, 2.0 and 2.33 so they do not coincide precisely with the corre-
sponding resonance frequencies of Q2. This shift in frequencies also makes the high frequency
peaks stable.

The terms defined by coefficients di111 and gi111 straighten the peaks for ω0/ω1 < 1.4.
Looking at Figure 5.11 showing the frequency response of a shallow cable, several solution
exists for a given excitation frequency. The same behaviour is observed if the terms involving
di111 and gi111 are disregarded. Also, a considerable damping is introduced via the mentioned
cubic terms within the peaks at ω0/ω1 > 1.4. The cubic terms defined by di112, di121 and di211

have a significant stabilizing effect on the peaks at ω0/ω1 = 1.0 and 1.33. In case the cubic terms
defined by di112, di121 and di211 are disregarded, instability occurs at ω0/ω1 = 1.0, 1.33, 1.66,
and 2.0 for u0 = 0.24 m, 0.62 m, 0.98 m and 0.92 m, respectively. The remaining peaks stay
stable at increasing u0. When the mentioned cubic terms are included, all peaks become stable
at increasing u0. The cubic terms defined by gi211 only cause minor changes of the frequency
response. If a wish exists to further reduce the equations of motion the parametric quadratic
terms, defined by ai112, ai121 and bi121, together with the cubic terms g1211, may be disregarded
without major influence on the frequency response and stability.

2.1.8 Concluding remarks

A nonlinear two-degrees-of-freedom model modelling the nonlinear interactions between the
fundamental blade and edgewise modes has been devised, retaining nonlinear terms up to cubic
order. The model includes inertial nonlinearities from support point motions and geometrical
nonlinearities from a nonlinear description of the curvature, and rotation of the aerodynamic
loads caused by the deflection of the beam. Assuming a harmonic variation from the support
point causing primarily quasi-static displacements in the blade direction, the important nonlinear
couplings are identified, and a somewhat reduced system is indicated, retaining all terms of
importance for the quantitative and qualitative behaviour of the system.

The numerical analysis focuses on the often met frequency ratio of ω 2/ω1 � 2, in which
case 2:1 internal resonance may be induced in the edgewise mode by the blade mode via quadratic
nonlinearities. It is demonstrated that significant resonances may occur at excitation frequencies
fulfilling ω0/ω1 � 0.66, 1.33, 1.66 and 2.33 in addition to the resonances at ω0/ω1 � 1.0 and
ω0/ω2 � 1.0 partly caused by the additive loading.

At the resonance peaks ω0/ω1 � 1.0, 1.33, 1.66 and 2.0 the system may render into para-
metric instability, dependent on the excitation amplitude u 0 and level of modal damping if the
cubic terms are disregarded. If the cubic terms are included all resonance frequencies produce
stable response.

It should be noticed that the dominating tower frequency in proportion to the blade fre-
quency normally is placed in the interval ω0/ω1 ∈ [0.5, 1.5].
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2.2 Parametric Stability of Wind Turbine Wings

Nonlinear rotor dynamic is characterized by parametric excitation of both linear and nonlinear
terms caused by centrifugal and Coriolis forces when formulated in a moving frame of reference
in combination with the translational and rotational support point motions of the hub. Specific
for wind turbine wings is that the parametric excitation is controlled by four different frequen-
cies. Firstly, the wing is rotating with the circular frequency Ω0, the so-called rotational speed,
which causes both parametric and additive excitation of the wing. The tower is performing nar-
rowbanded vibrations with a central circular frequency ω 0, which causes corresponding support
point motions and rotations of the hub. For a three-bladed wind turbine ω 0 is close to 3Ω0 due to
the changes in wind load when the individual wings are in top and bottom position of the incom-
ing shear wind field. Finally, nonlinear interactions and related parametric instability depends on
the ratio between the fundamental fixed base circular eigenfrequencies ω 1 and ω2 in the blade
and edgewise directions. For larger wind turbine wings the frequency ratio ω 2/ω1 � 2 is often
met.

Stability of motions may be studied by a variety of techniques. A quantitatively stabil-
ity analysis of nonlinear systems may be performed by various perturbation methods, see e.g.
(Nayfeh 2000). For nonlinear systems, which experience periodic response, the stability may be
analysed by the Floquet theory (Nayfeh and Mook 1995). Nonlinear systems may experience
almost periodic or even chaotic response. Under such conditions the Floquet theory is no longer
applicable. To investigate the stability of such cases techniques based on a Lyapunov exponent
may be used. Wolf et al. (1984) presented an algorithm for determining the entire spectrum of
Lyapunov exponents from a time series of displacements components by means of the Gram-
Schmidt reorthonormalization procedure. Also algorithms for finding only the largest Lyapunov
exponent or the two largest Lyapunov exponents were devised. The procedures described by
Wolf et al. are widely used in the literature.

Several extensive investigations on the onset of chaotic motions of the Duffing oscillator
have been performed based on these algorithm, see e.g. (Moon 1987; Thomsen 1997). To and
Liu (1996) investigated the chaotic behaviour of the Duffing oscillator both under determinis-
tic, stochastic and combined deterministic and stochastic excitation by means of an averaged
Lyapunov exponent and information dimension. Castanier and Pierre (1995) analysed wave
propagation and localization phenomena in multi-coupled systems using both the algorithm by
Wolf et al. and a perturbation technique for finding the first Lyapunov exponent. Comparison
of the said methods and Monte Carlo analysis was made, and good agreement was demonstrated
in several cases. Shin and Hammond (1998) showed that the conventional Lyapunov exponent
is very useful for quantification of chaotic dynamics, but only represents the average long term
behaviour. They introduced so-called instantaneous Lyapunov exponents for describing the local
non-stationary behaviour of the system. Numerical examples were given for the Van der Pol and
Duffing oscillators, where changes in damping were detected efficiently. The theory was also
used to determine changes in damping properties of an experimental system.

Parametric excitation due to support point motion of nonlinear systems are also widely
investigated in the literature. Ge and Tsen (2001) analysed the dynamic behaviour of a two-
degrees-of-freedom rigid body with vibrating support. The Lyapunov direct method was used
to determine the stability conditions, and various algorithms were used to effectively control the
chaotic behaviour. In the same manner Ge and Shiue (2002) analysed the dynamic stability of a
tachometer subjected to vertical harmonic support vibrations. In a series of papers Dwivedy and
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Kar (1999a, 1999b, 1999c, 2001, 2003) investigated the parametric stability of a base excited
cantilever beam with an attached mass retaining up to cubic nonlinearities. They analysed the
steady state, periodic and chaotic response under parametric and internal resonances by the meth-
ods of multiple scales and normal forms. Nayfeh (1983b) analysed a two-degrees-of-freedom
nonlinear system with quadratic nonlinearities subjected to parametric excitation, and a multi-
degrees-of-freedom system under parametric excitation in (Nayfeh 1983a). Hanagud and Sarkar
(1989) analysed a cantilever beam attached to a moving support. The formulation was shown to
be valid for large displacements, and the stability characteristics of a beam under spin-up ma-
neuver was studied. It was demonstrated that structural nonlinearities play a major role in the
response characteristics.

This section deals with the onset of chaotic behaviour and parametric instability of nonlin-
ear vibrations of wind turbine wings. The analyses are made for the reduced nonlinear system
in (2.79), and the numerical examples presented in this section are carried out for a 46 m wing
with properties as described in section 2.1.7. In the study the amplitude and frequency of the
support point motion and the rotational speed are varied, along with the eigenfrequency ratio
ω2/ω1 and the damping ratio ζ1 of the blade mode. The damping ratio may vary significantly
dependent on the boundary layer flow over the profile is attached or separated. The latter case
occurs during large oscillations (dynamic stall), with the implication that the significant aerody-
namic damping is lost. When the ratio between the tower frequency and rotational frequency is
rational the response becomes periodic and stability of the solution at certain parameter values
may be evaluated using Floquet theory. If the response becomes chaotic or almost periodic due
to irrational excitation frequency ratios, this is no longer applicable. Instead the stability may be
evaluated using the Lyapunov coefficient. Since the Floquet theory only is applicable in small
regions of the investigated parameter space, the Lyapunov exponent approach, as given by Wolf
et al. will be used to determine stability of the system throughout this study. The algorithm is
given in Appendix B.

2.2.1 Harmonic response analysis

In the following the support point motion is assumed to vary harmonically with amplitude u 0

and circular frequency ω0 as

u(t) = u0 cosω0t (2.80)

Hence, the excitation period is T0 = 2π/ω0. Initially, the eigenfrequency ratio ω2/ω1 = 2 is
assumed, and the excitation frequency is specified as ω0/Ω0 = 3. Then, as seen from (2.69) the
modal loads f1(t) and f2(t) contain harmonic components with the circular frequencies mΩ 0,
m = 1, . . . , 4. At first, the equations (2.79) are considered when only the constant linear terms
on the left-hand sides are retained, ignoring all linear parametric, quadratic parametric and cu-
bic terms. The corresponding solution may be considered a 0th order solution in a perturbation
approach, where the linear parametric terms, quadratic parametric terms and cubic terms repre-
sent various 1st order perturbations, which are independently investigated below. The circular
frequencies mΩ0 = m/3ω0, m = 1, . . . , 4, in the additive excitation terms will also be present
in the 0th order solution. When any of these frequencies are equal to ω 1 or ω2 = 2ω1 reso-
nance appear in the first and second modes. This happens for the excitation frequency ratios
ω0/ω1 = 3/m and ω0/ω1 = 6/m, respectively, as shown by the dashed curve on the frequency
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response curve in Figure 2.16a. In the plots Q1 and Q2 signify the RMS value of q1(t) and q2(t)
when averaged over one vibration period T .

The linear parametric coefficients cij(t) and kij(t) contain harmonic components with the
circular frequencies 2Ω0 and 4Ω0. In combination with the harmonic components of the 0th
order solution the linear parametric terms will contain harmonics at the circular frequencies
mΩ0 = m/3Ω0, m = 1, . . . , 8. When transferred to the right-hand side these terms may in-
duce resonance at ω0/ω1 = 3/m and ω0/ω1 = 6/m, m = 1, . . . , 8 in the blade and edgewise
modes, respectively. Hence, the resonance peaks for m = 2, 3, 4, present in the linear response,
are influenced by the linear parametric excitation as well. However, as seen by the unbroken
curve on Figure 2.16a the influence of the linear parametric terms is insignificant in the blade
mode, whereas the effect in the edgewise mode merely is to reduce the resonance frequencies
and introduces weak coupling between the considered modes.

The quadratic parametric coefficients aijk(t) and bijk(t) contain harmonic components
with the frequencies 1Ω0, 2Ω0 and 4Ω0. In combination with the harmonic components of
the 0th order solution the quadratic nonlinear terms will contain harmonics at the frequencies
mΩ0 = m/3ω0, m = 1, . . . , 12. When transferred to the right hand side these terms may induce
resonance at ω0/ω1 = 3/m and ω0/ω1 = 6/m, m = 1, . . . , 12. In Figure 2.16b it is seen that
the resonance peaks for m = 2, 3, 4 become unstable in the blade mode when quadratic non-
linear terms are included, which means that these terms introduce parametric instability. In the
edgewise mode resonance peaks are visible for ω0/ω1 = 3/4 and ω0/ω1 = 1 corresponding to
m = 4, 6. Additionally, chaotic behaviour of the system occurs for ω 0/ω1 > 2, corresponding
to ω0 > ω2, which is not brought forward by the linear parametric terms.

The cubic 0th order solutions terms contain harmonics at the frequencies mΩ 0 = m/3ω0,
m = 1, . . . , 12. When transferred to the right hand side these terms may induce resonance at
ω0/ω1 = 3/m and ω0/ω1 = 6/m, m = 1, . . . , 12, as was the case for the quadratic parametric
terms. In Figure 2.16c it is seen that the cubic terms influence the blade mode by curving the
resonance peaks to the right. In the edgewise mode extra resonance peaks occur for ω 0/ω1 � 3/4
and ω0/ω1 � 1.0 corresponding to m = 4, 6, as was the case for the quadratic parametric terms.

Finally, in Figure 2.16d the full model is compared with the linear response. Due to both the
quadratic parametric terms and the cubic terms the response becomes chaotic for ω 0/ω1 > 1.5.
Comparison of Figure 2.16d, 2.16b and 2.16c indicates that the response in the region ω 0/ω1 >
1.5 is mainly influenced by the quadratic parametric terms, while at ω 0/ω1 < 1.5 the cubic terms
are the main source for changes compared to the 0th order solution.

When ω0/Ω0 �= 3 it turns out that the vibration period is determined from the interference
of the response caused by the circular frequencies ω0 + Ω0 and ω0 − Ω0. The corresponding
periods become

T+ =
2π

ω0 + Ω0
=

T0

1 + Ω0
ω0

, T− =
2π

ω0 − Ω0
=

T0

1 − Ω0
ω0

. (2.81)

In order to find the combined period of the response T the following ratios are evaluated

T

T+
= n

(
1 +

mΩ0

ω0

)
,

T

T− = n

(
1 − mΩ0

ω0

)
, (2.82)

The factor n is found as the minimum value at which both T/T + and T/T− attain integer
values. Poincaré maps of 2000 excitation periods are plotted in Figure 2.17 for various ratios of
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ω0/Ω0. The amplitude is u0 = 0.3 m, the damping ratios ζ1 = ζ2 = 0.01 and the frequency
ratio ω0/ω1 = 0.8. (◦) indicates the phase value (q1, q̇1) for every excitation period T0, and
(×) indicates the phase value at every response period T . As seen the period tends towards
infinity as ω0/Ω0 becomes irrational. As an example ω0/Ω0 = 3.14159 results in n = 314159.
For an irrational frequency ratio a so-called almost periodic response is achieved in which case a
continuous closed curve is obtained in the phase plane for the Poincaré map. As seen from Figure
2.17 the amplitude of q1(t) increases as ω0/Ω0 is increased. The reason is that the fundamental
blade circular eigenfrequency for the considered example is given as ω 1/Ω0 = 3.2125. Hence,
the simulations tends towards resonance in the fundamental eigenmode as ω 0/Ω0 is increased.

2.2.2 Variational equations

In order to investigate the stability of a given motion q i,0(t), consider the following perturbed
motion assumed to fulfill (2.79)

qi(t) = qi,0(t) + ∆qi(t). (2.83)

where ∆qi(t) is a small perturbation to the referential solution. Insertion of (2.83) in (2.79) and
disregarding quadratic and cubic terms of ∆q i(t) gives the following equations of motion for the
perturbation ∆qi(t)

M1

(
∆q̈1 + 2ζ1ω1∆q̇1 + ω2

1∆q1
)

+ c12(t)∆q̇2 + k11(t)∆q1 + k12(t)∆q2

+ 2a111(t)q1,0∆q1 +
(
a112(t) + a121(t)

)(
q1,0∆q2 + q2,0∆q1

)
+ b111(t)

(
q1,0∆q̇1 + q̇1,0∆q1

)
+ b112(t)

(
q1,0∆q̇2 + q̇2,0∆q1

)
+ b121(t)

(
q2,0∆q̇1 + q̇1,0∆q2

)
+ 3d1111q

2
1,0∆q1

+
(
d1112 + d1121 + d1211

)(
2q1,0q2,0∆q1 + q21,0∆q2

)
+ g1111

(
2q̇1,0q1,0∆q̇1 + q̇21,0∆q1 + 2q̈1,0q1,0∆q1 + q21,0∆q̈1

)
+ g1211

(
2q̇1,0q2,0∆q̇1 + q̇21,0∆q2 + q̈1,0q2,0∆q1 + q1,0q̈1,0∆q2 + q1,0q2,0∆q̈1

)
= 0,

(2.84)
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Figure 2.16 Influence of linear parametric, quadratic parametric and cubic terms, u0 = 0.3 m, ζ1 = ζ2 = 0.01,
ω0/Ω0 = 3.0, ω2/ω1 = 2.0. ( ) 0th order solution. a) ( ) 0th order solution in combination with the linear
parametric terms. b) ( ) 0th order solution in combination with the quadratic parametric terms. c) ( ) 0th
order solution in combination with the cubic parametric terms. d) ( ) the full model.
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Figure 2.17 Poincaré map at various excitations frequency ratios and the corresponding time series of q1(t) shown for
one response period T . u0 = 0.3 m, ζ1 = ζ2 = 0.01, ω2/ω1 = 2.0, ω0/ω1 = 0.8. a) ω0/Ω0 = 3, n = 3. b)
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M2

(
∆q̈2 + 2ζ2ω2∆q̇2 + ω2

2∆q2
)

+ c21(t)∆q̇1 + k21(t)∆q1 + k22(t)∆q2

+ 2a211(t)q1,0∆q1 +
(
a212(t) + a221(t)

)(
q1,0∆q2 + q2,0∆q1

)
+ b211(t)
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q1,0∆q̇1 + q̇1,0∆q1

)
+ b212(t)

(
q1,0∆q̇2 + q̇2,0∆q1

)
+ b221(t)

(
q2,0∆q̇1 + q̇1,0∆q2

)
+ 3d2111q

2
1,0∆q1

+
(
d2112 + d2121 + d2211

)(
2q1,0q2,0∆q1 + q21,0∆q2

)
+ g2111

(
2q̇1,0q1,0∆q̇1 + q̇21,0∆q1 + 2q̈1,0q1,0∆q1 + q21,0∆q̈1

)
+ g2211

(
2q̇1,0q2,0∆q̇1 + q̇21,0∆q2 + q̈1,0q2,0∆q1 + q1,0q̈1,0∆q2 + q1,0q2,0∆q̈1

)
= 0.

(2.85)

The variational equations (2.84) and (2.85) may be recast into the following state vector formu-
lation

v̇(t) = A(t)v(t),

v(t) = [∆q1(t) ∆q2(t) ∆q̇1(t) ∆q̇2(t)]T , A(t) =
[
I 0
0 M(t)

]−1 [
0 I

−K(t) −C(t)

]
,

(2.86)

where the components of K(t), C(t) and M(t) are given as

K11(t) = M1ω
2
1 + k11 + 2a111q1,0 +

(
a112 + a121

)
q2,0 + b111q̇1,0 + b112q̇2,0 + 3d1111q

2
1,0

+ 2
(
d1112 + d1121 + d1211

)
q1,0q2,0 + g1111

(
q̇21,0 + 2q̈1,0q1,0

)
+ g1211q̈1,0q2,0,
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)
q1,0 + b121q̇1,0

+
(
d1112 + d1121 + d1211

)
q21,0 + g1211

(
q̇21,0 + q1,0q̈1,0

)
,

K21(t) = k21 + 2a211q1,0 +
(
a212 + a221

)
q2,0 + b211q̇1,0 + b212q̇2,0 + 3d2111q

2
1,0

+ 2
(
d2112 + d2121 + d2211

)
q1,0q2,0 + g2111

(
q̇21,0 + 2q̈1,0q1,0

)
+ g2211q̈1,0q2,0,

K22(t) = M2ω
2
2 + k22 +

(
a212 + a221

)
q1,0 + b221q̇1,0

+
(
d2112 + d2121 + d2211

)
q21,0 + g2211

(
q̇21,0 + q1,0q̈1,0

)
, (2.87)

C11(t) = 2M1ζ1ω1 + b111q1,0 + b121q2,0 + 2g1111q̇1,0q1,0 + 2g1211q̇1,0q2,0,

C12(t) = c12 + b112q1,0,

C21(t) = c21 + b211q1,0 + b221q2,0 + 2g2111q̇1,0q1,0 + 2g2211q̇1,0q2,0,

C22(t) = 2M2ζ2ω2 + b212q1,0, (2.88)
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M11(t) = M1 + g1111q
2
1,0 + g1211q1,0q2,0,

M12 = 0,

M21(t) = g2111q
2
1,0 + g2211q1,0q2,0,

M22 = M2. (2.89)

Solving (2.79) for q1,0(t) and q2,0(t), the time dependent components of K(t), C(t) and M(t)
are found, and the linearized equations (2.84) and (2.85) may be solved. The stability of the
system may then be evaluated by Floquet theory in case of periodic response (Nayfeh and Mook
1995) or by Lyapunov exponents as described by Wolf et al. (1984). Both methods are described
in Appendix B.

2.2.3 Parametric stability analysis

In this section numerical analyses are carried out with independent variation of the frequency
ratios ω0/ω1, ω2/ω1 and with ω0/Ω0 and u0 = 0.3 m and 0.5 m. In light of the previous
analysis showing the insufficiency of the Floquet theory, stability boundaries are found using
Lyapunov exponents. In all the following analyses the circular eigenfrequency of the first mode
is kept constant at ω1 = 5.14 rad/s. At the numerical integration (2.79) and (2.86) are solved
simultaneously. The RMS values of the response Q1 and Q2 are determined using time series of
1000 excitation periods T0. The numerical integration is performed by a 4th order Runge Kutta
scheme with a time step ∆t = T0/500.

The first analysis is made with constant excitation ratio ω0/Ω0 = 3.0. The result is il-
lustrated in Figure 2.18 in terms of contour curves of the various response quantities. Figure
2.18a-b show contour curves of Q1 at 5, 10 and 20 m and Q2 at 0.5, 2 and 4 m as functions of
ω0/ω1 and ω2/ω1. In Figure 2.18c the contour curve at 0 is shown for the largest Lyapunov ex-
ponent, indicating areas where the solution is unstable. The blue regions indicate where chaotic
response occur and red indicates regions with infinite response. Since ω 1 is kept constant and
only ω2 is varied in the fraction ω2/ω1, the positions of resonance peaks of the first mode are
independent of ω2/ω1. Correspondingly, the positions of resonance peaks of the second mode
vary linearly with ω2/ω1. In Figure 2.18a peaks are present at ω0/ω1 � 0.75 and 1.0, which
remain constant to variations in ω2/ω1, and hence represent resonance peaks of the first mode.
At frequencies ω0/ω1 > 1.1 large regions of unstable response occur. The limit ω0/ω1 = 1.1
is relatively constant with variation of ω2/ω1. Within the region ω0/ω1 > 1.1 there exists two
different areas divided by an almost constant line with respect to variation of ω 0/ω1 located at
ω2/ω1 � 2.2. Below this limit the system produces infinite response in most part of the un-
stable region, while above the limit chaotic response exists in all unstable regions. Close to the
boundary at ω2/ω1 � 2.2 large regions of stable response exists even above ω0/ω1 > 1.1.

Figure 2.19a, 2.19b and 2.19c show contour curves for Q 1, Q2 and λ with u0 = 0.3 m, a
constant eigenfrequency ratio ω2/ω1 = 2.0, and with variable excitation ratio ω0/Ω0. Looking at
the figures from left to right it is seen that the primary resonance peaks located at ω 0/ω1 = 0.75
and 1.0 are relatively unaffected by the excitation ratio. The combined peak at ω 0/ω1 = 1.5 tends
to divide into two peaks as ω0/Ω0 are varied from 3.0. Finally, the large unstable region to the far
right is stabilized as the excitation ratio is increased, while the unstable region at ω 0/ω1 � 1.25
stablizes with increasing ω0/Ω0. It should be noted that all unstable regions produce chaotic
response with ω2/ω1 = 2.0, except for a large region at the bottom right, which produces infinite
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Figure 2.18 Contour curves for analysis made with constant excitation ratio ω0/Ω0 = 3.0. u0 = 0.3 m.
a) Q1 [m]. (�) Q1 > 5 m. (�) Q1 > 10 m. (�) Q1 > 20 m.
b) Q2 [m]. (�) Q2 > 0.5 m. (�) Q2 > 2 m. (�) Q2 > 4 m.
c) Largest Lyapunov exponent λ [-]. (�) λ > 0. (�) Infinite response.
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response. No instability occurs below ω0/ω1 = 1.1, except for a small region at ω0/ω1 � 0.9
and ω0/Ω0 � 2.5.

Figure 2.20a, 2.20b and 2.20c showQ1, Q2 and λ, respectively. Comparing with the results
of Figure 2.19 it is seen that all unstable regions produce chaotic response. Also, the amplitude
of the response are significantly reduced, especially Q2 < 2 m in the considered parameter
space. Also in this case the main regions at ω0/ω1 > 1.1 are unstable. However, regions
around ω0/ω1 = 1.5 and 2.1 produce stable response. Within these stable regions relatively
large response is produced compared with the surrounding chaotic regions.

Finally, the corresponding analysis as shown in Figs. 2.19 and 2.20 are carried out with
u0 = 0.5 m. Contour lines of λ are shown in Figure 2.21a and 2.21b with ω 2/ω1 = 2.0 and
ω2/ω1 = 2.2, respectively. Comparing Figure 2.21a with Figure 2.19c reveals that, no significant
changes is seen on the stability regions at ω0/ω1 < 1.5. The regions with infinite response is
slightly increased due to the influence of quadratic parametric terms.

Comparing Figure 2.21b with Figure 2.20c shows that for ω 2/ω1 = 2.2 no significant
changes of the stability regions occur when increasing u 0. It should be noted that no regions
with infinite response occur.

To validate the stability determined by Lyapunov exponents, stability is determined as func-
tion of u0 and ζ1 with ω0/Ω0 = 3.0, ω2/ω1 = 2.2 and ω0/ω1 = 1.7. While simulating the
response the periodicity of the response is investigated by a residual r given as

r =
((
q1(t)−q1(t+T )

)2+(q2(t)−q2(t+T )
)2+(q̇1(t)−q̇1(t+T )

)2+(q̇2(t)−q̇2(t+T )
)2)1/2

,

(2.90)

where T is found from (2.82). A periodic response is assumed when r < 0.001 and when
r > 0.001 either chaotic response or response going to infinity is assumed. The result is shown
in Figure 2.22 where ( ) indicate the contour line for λ = 0 and ( ) is the contour line
for r = 0.001. As seen, good agreement exists between the stability boundary determined by the
residual and determined by the Lyapunov exponent.

2.2.4 Concluding remarks

The nonlinear parametric instability of a wind turbine wing model as a two-degrees-of-freedom
system retaining up to cubic terms has been analysed at various excitation ratios between the
support point excitation frequency and the rotational frequency of the rotor and at various eigen-
frequency ratios.

For ordinary three bladed wind turbines, the dominating tower frequency in proportion to
the rotational frequency is close to 3. For large wind turbines the eigenfrequency ratio of the
fundamental modes may be close to 2. Since this may introduce internal 2:1 resonance, the
numerical analysis is centred around these frequency ratios.

It is shown that the parametric instability mainly is influenced by quadratic parametric
terms. These terms may produce large regions of chaotic response for fixed excitation ratios.
Furthermore, it is shown that cubic nonlinear terms have a significant stabilizing effect at reso-
nance frequencies.

At irrational excitation ratios the response is shown to be almost periodic. Hence, Floquet
theory is not applicable for analysing the stability of the system. At rational excitation ratios
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the response becomes periodic. However, the Floquet theory is only useful for finding stability
boundaries in case of relatively short response periods. Instead, the theory of Lyapunov expo-
nents is used for analysing the stability of the system.

Using numerical simulations it is shown that within a relatively small frequency band around
ω2/ω1 = 2.2 large stable regions appear for ω0/ω1 > 1.1 in all other cases unstable response
mainly occur in this region. With ω2/ω1 > 2.2 chaotic response is produced while the response
becomes infinite at ω2/ω1 < 2.2. No significant changes of the stability regions appear when
increasing u0 except for smaller regions, which change character from chaotic to infinite response
when ω2/ω1 = 2.0

The indicated results refers to a two-degrees-of-freedom reduced system including only the
two lowest fundamental modes. The reduced model is convenient when working with control
algorithms of wind turbines where only a few modes are observable. However, at resonance
excitation frequencies, energy may transfer to higher modes via nonlinear couplings. The energy
leakage from lower to higher modes may introduce qualitatively and quantitatively changes to the
frequency response. This leakage can be investigated by two methods. Firstly, two extra modes
may be included in the present formulation with an increase from 62 terms to 346 terms in the
equations of motion. This approach will only include energy transfer from the first to the second
modes, which may not provide a full picture of the energy transfer. Secondly, a nonlinear finite
element approach can be used. The work of creating and analysing a nonlinear beam model using
co-rotational beam elements formulated by Krenk (2004b) is in progress and will be presented
within the paper Holm-Jørgensen et al. (2005).
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Figure 2.19 Contour curves for analysis made with constant eigenfrequency ratio ω2/ω1 = 2.0. u0 = 0.3 m.
a) Q1 [m]. (�) Q1 > 5 m. (�) Q1 > 10 m. (�) Q1 > 20 m.
b) Q2 [m]. (�) Q2 > 0.5 m. (�) Q2 > 2 m. (�) Q2 > 4 m.
c) Largest Lyapunov exponent λ [-]. (�) λ > 0. (�) Infinite response.
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Figure 2.20 Contour curves for analysis made with constant eigenfrequency ratio ω2/ω1 = 2.2. u0 = 0.3 m.
a) Q1 [m]. (�) Q1 > 5 m. (�) Q1 > 10 m. (�) Q1 > 20 m.
b) Q2 [m]. (�) Q2 > 0.5 m. (�) Q2 > 2 m. (�) Q2 > 4 m.
c) Largest Lyapunov exponent λ [-]. (�) λ > 0. (�) Infinite response.
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Figure 2.21 Contour curves for λ = 0 at various constant eigenfrequency ratio. u0 = 0.5 m. (�) λ > 0. a)
ω2/ω1 = 2.0. b) ω2/ω1 = 2.2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

ζ 1
[-

]

u0 [m]

StableStable

Unstable

Unstable

Figure 2.22 Contour curves for λ and r. ω2/ω1 = 2.2, ω0/Ω0 = 3.0, ω0/ω1 = 1.7. ( ) contour line for
λ = 0. ( ) contour line for r = 0.001.

Jesper Winther Larsen



CHAPTER 3
Dynamic Stall Models of Wind

Turbine Airfoils

In Chapter 2 a nonlinear structural model of a wind turbine wing is formulated. In the
numerical analysis constant lift coefficients was assumed. In this chapter a model is presented
for the aerodynamic lift of wind turbine profiles undergoing dynamic stall conditions. The model
combines memory delay effects under attached flow with reduced lift due to flow separation
under dynamic stall conditions. The lift coefficient of the separated flow is represented as a
function of the degree of attachment. Non-stationary effects are included by three mechanisms:
a memory integral representation of the lift coefficient of fully attached flow via a 2nd order
filter, a delay of the development of separation represented via a first order filter, and a lift effect
due to leading edge separation also represented via a first order filter. The presented model is
fully described by 4 state variables. At present mainly three different dynamic stall models are
used in the aeroelastic codes used by manufactures of wind turbines as described in chapter 1.
A brief description of these models are given together with other models listed in the literature,
which mainly have been used on helicopter wing profiles. All the presented models assume two
dimensional flow and are one degree of freedom models in the angle of attack. The performance
of the various models are compared with experimental data for fully attached flow conditions
and dynamic stall conditions, respectively. Finally, a description is given on how to encompass
elastic deformation of the wing and turbulence components into the model, i.e. how to include
aeroelastic effects.

3.1 Introduction

Wind turbines are designed with increasingly slender blades and blade controls that can react
rapidly to changing loading conditions. Thus it becomes increasingly important to account for
load effects from dynamic stall. The basic mechanism is illustrated in Fig. 3.1, showing a typical
airfoil profile with relative flow velocity V , angle of attack α, and lift force L per unit length.
The lift force is represented via the non-dimensional lift coefficient cL, defined by

L = cL
1
2ρV

2c (3.1)

where c is the chord length. It is well established that under stationary attached flow conditions
the lift force L acts approximately in the forward quarter-point named the aerodynamic centre
and is approximately a linear function of the angle of attack α, when α is sufficiently small
(Bisplinghoff 1996).

— 55 —
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Figure 3.1 Principles of attached and separated flow.

At a limiting value of the angle of attack αs the flow pattern changes, and the lift force
passes through a maximum. This is the phenomenon of static stall. A typical curve of the static
lift coefficient cL is shown as ( ) in Figure 3.2, (Leishman 2000, p. 385). Stall is associated
with separation of the flow at the suction side of the profile as illustrated in Fig. 3.1b. The degree
of separation can be represented in an approximate way by the distance cf from the leading edge
to the separation point , where the non-dimensional parameter f is a measure of the degree of
separation. For fully attached flow f = 1, and for separated flow f decreases towards zero with
increasing separation.

Under non-stationary conditions it takes some time for the flow to approach the stationary
flow pattern. For fully attached flow analytic solutions can be obtained for harmonic motion of
the airfoil as well as for a step function change in position, (Fung 1993, p. 206 ff). In principle
these solutions involve translation as well as rotation of the airfoil, but for the present purpose it
is sufficient to combine the effect of the motion into an effective angle of attack. The analytical
solutions indicate delayed lift during fully attached conditions with a lower lift at increasing α
and higher lift at decreasing α compared to the quasi static solution. This effect is also seen
on the dynamic lift in Fig. 3.2 at low angles of attack. When the flow is separated during the
motion the degree of attachment, represented by the parameter f , also exhibits delay with respect
to its stationary value. The delay in the flow and the degree of separation for harmonic motion
influences the stall phenomenon. A typical dynamic stall curve is plotted as ( ) in Figure 3.2.
It is seen that for a harmonic variation of the angle of attack α between 0 ◦ and 15◦ the occurrence
of dynamic stall is delayed, and the lift during the phase of decreasing α is considerably lower
than during the increasing phase. Thus, dynamic stall typically involves an increased range of
attached flow and different branches for increasing and decreasing angle of attack.

Finally, in addition to trailing edge separation, a separation bubble may develop in the
boundary layer at the suction side of the profile close to the leading edge, a phenomena char-
acteristic for thin profiles. In front of the bubble the boundary layer is attached, whereas behind
the bubble two situations can occur. In one case the boundary layer downstream of the bubble is
turbulent, enhancing the tendency of attachment. This situation is illustrated in Fig. 3.1b. In the
other case the boundary layer detaches fully, creating separation from the leading to the trailing
edge. Under quasi-static conditions the situation is very unstable, and in fact both situations can
occur at the same angle of attack. Hence, two different lift curves can occur. This phenomena is
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Figure 3.2 Lift coefficient under static and dynamic stall situations. ( ) Static lift. ( ) Dynamic lift.

called double stall. Under dynamic oscillations the flow will separate immediately to the sepa-
ration bubble. Even though the flow is fully separated over the profile, experimental data shows
an almost linearly increasing lift force (Leishman 2000). This increase in lift is generated by
a rising pressure peak at the leading edge and a large vortex created in the turbulent wake as
the trailing edge separation point moves abruptly to the leading edge. At low pitch velocities
leading edge separation is usually no problem, but within recent years a wish for active control
of tower and blade vibrations have lead to pitch control of large wind turbine wings with pitch
velocities of up to 20◦/s. Also, large deformations due to flexible wings, may produce high
amplitude changes in the angle of attack. Under such conditions leading edge separation may
contribute significantly to the lift. As the angle of attack is increased the vortex builds up in
strength and finally detach from the leading edge travelling downstream. CFD calculations indi-
cate the creation of a secondary vortex with opposite circulatory contribution at the trailing edge
during dynamic stall conditions. The trailing edge vortex builds up during dynamic stall, and
at some point it detaches and convects downstream similar to the leading edge vortex. A CFD
calculation of a NACA-0015 profile in dynamic stall conditions is illustrated in Figure 3.3. The
dynamic stall calculation have been performed by Risø National Laboratory, Wind Energy and
Atmospheric Physics Department within the EC project VISCWIND (VISCWIND 1999). The
red dots indicate particles added to the flow at the suction side of the profile, and the blue dots
illustrate particles added at the pressure side. Figure 3.3a illustrates the onset of leading edge
separation with the entire boundary layer starting to detach. Figure 3.3b shows the buildup of the
leading edge vortex, which in Figure 3.3c detaches and moves downstream, while a trailing edge
vortex starts building up. Finally, Figure 3.3d shows the detachment of the trailing edge vortex
and breakdown of the leading edge travelling vortex. Both experimental data and CFD calcula-
tions indicate that the flow changes, caused by the leading edge separation vortex, generates an
increased suction contribution, leading to increased lift.

At low frequency changes of the angle of attack, flow situations including trailing edge
separation occur. As the frequency increases leading edge flow condition are likely to happen,
especially for thin profiles. Flow reattachment mainly happens with the separation point moves
from the leading to the trailing edge.
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a) b)

c) d)

Figure 3.3 CFD calculation of a NACA-0015 wing section during dynamic stall conditions. a) Leading edge separation
starts. b) Vortex buildup at the leading edge. c) Detachment of leading edge vortex and buildup of trailing edge vortex.
d) Detachment of trailing edge vortex and breakdown of leading edge vortex.

The angle of attack α between the profile and the resulting wind may change due to rotations
of the wing as a whole (pitch) or elastic torsional motions of the local cross-section. Additionally,
the oscillation in the direction orthogonal to the chord c will introduce an apparent change of
the angle of attack. Turbulent velocity components in the incoming wind field will cause a
fluctuating change of the angle of attack. If the wavelength of the turbulence is large compared
to the chord length these effects may be treated by a simple quasi-static modification of the angle
of attack from the mean wind and rotational speed. For a pitching airfoil the downwash over
the profile is not uniform. To satisfy the stationary attached flow conditions that the fluid must
leave the trailing edge smoothly, it can be shown that the downwash at the 3

4c-point must follow
the chamber line of the profile, (Fung 1993, p. 401 ff). This assumption motivates the use of
so called one-dimensional load models, where the lift load is specified by an equivalent angle
of attack determined from the downwash at the 3

4c-point alone, which will also be used in this
outline.

In summary, delay of lift during fully attached conditions and the motion of the separation
point as well as leading edge separation and the dynamic interaction between leading and trailing
edge vortices are constituent properties of a load model for which dynamic stall phenomena
occur. A good model of dynamic stall should describe these phenomena for different frequencies
and different amplitude ranges.

There exists a great variety of dynamic stall models in the literature. These models may be
categorized into three main groups.

1 The effects of the different flow conditions described above is modelled, e.g. lift reduction
due to separation, contribution from leading edge separation etc.

2 The characteristics of the lift curve is modelled, e.g. a linear growing curve at low angles of
attack, a drop in lift at a given stall angle etc.
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3 A modification of the angle of attack is made introducing a so-called dynamic angle of
attack

In a series of papers (Leishman and Beddoes 1986b; Leishman and Beddoes 1986a; Leish-
man 1988) Beddoes and Leishman have developed a model for dynamic stall combining the flow
delay effects of attached flow with an approximate representation of the development and effect
of separation. This model was developed with helicopter rotor dynamics in mind and therefore
includes a fairly elaborate representation of the non-stationary attached flow depending on the
Mach number and a rather complex structure of the equations representing the time delays. In
contrast, a model proposed by Øye (1991) omits the transient effects of the attached flow, and
represents the dynamic stall by introducing a first order filter on a static equivalent degree of
attachment, obtained by a simple interpolation relation. Hansen et al. (Hansen et al. 2004) de-
veloped a reduced version of the Beddoes-Leishman model at Risø National Laboratories, Den-
mark, omitting the effects of compressible flow and leading edge separation. They introduced a
interpolation relation similar to the one used by Øye to make the model valid in the entire range
of the angle of attack. The Beddoes-Leishman model, Øye and Risø models may be categorized
into the first group of models aiming to model the effects of the flow conditions. Tran and Petot
(1981) developed a model, named ONERA, where the load coefficients are described by a 3rd
order differential equation. The differential equation is split into a linear domain at low angles of
attack determined by a first order differential equation, and a stall domain determined by a sec-
ond order differential equation. The ONERA model may be categorized into the second group
of models which seeks to describe the loads from the curve characteristics. Finally, Tarzanin
(1972) developed a model also named the Boeing-Vertol model, based on a relation between the
dynamic stall angle and static stall angle determined by Gross and Harris (1969). From this re-
lationship a dynamic angle of attack is determined and the load coefficients is interpolated from
the static data. Obviously this final model falls into the group of models which modifies the angle
of attack.

In recent year also Navier-Stokes solver have been used to determine airfoil loads under
dynamic stall situations. Due to the extensive cost of these calculation, practical applications
doesn’t seem within a near future, but solving the Navier-Stokes equations gives an insight into
the flow and pressure changes occurring during a dynamic stall cycle. Srinivasan et al. (1995)
used a Navier-Stokes solver to evaluate a variety of turbulence models. Du and Selig (1998,
2000) studied 3D effects on the boundary layer flow of a rotating wind turbine blade by solving
the steady boundary layer equations. They found that the separation is slightly postponed due to
rotation of the wing, which induces an increase in lift. They suggested a modification of the 2D
static data to incorporated the rotational 3D effects. Akbari and Price (2003) studied the effects of
several parameters including reduced frequency, mean angle of attack, location of the pitch axis
and the Reynolds number. They found that the Reynolds number and position of the pitch axis
have little effect on the characteristics of the lift cycle however the position of pitch axis have ma-
jor effect on the pitching moment. Wernert et al. (1996) used Particle Image Velocimetry (PIV)
and Laser Sheet Visualization to validate a numerical code based on Navier-Stokes equations,
they found that the numerical and experimental results agreed but some discrepancies were ob-
served. A completely different approach is suggested by Suresh et al. (Suresh et al. 2003) using
neural network for identifying nonlinear unsteady lift. Comparing with experimental data, they
show good agreement with their numerical model. They also argue, that the proposed method is
easily implemented in available codes and should be less expensive than the ONERA model.
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It should be noticed that larger discrepancies between numerical and experimental results
seems to be accepted within the so-called semi-empirical models described above than for the
Navier-Stokes solver. The goals of the semi-empirical models are not to capture every variation
in the load, but to model the main characteristics in a fast and efficient way. The main drawback
of the semi-empirical models is, that all of them are dependent on available static data and use
interpolation into tabulated values or curve fitting techniques to determine quasi-static lift values.
A semi-empirical model should be able to reproduce these static values for quasi-static rates of
the angle of attack, i.e. α̇ � 0.

In the next section a semi-empirical dynamic stall model for the lift is formulated. The
model is developed mainly with concern to realistic wind turbine flows, hence compressibility
effects are omitted. An essential part is, that the model should fit into the first group of semi-
empirical models, hence, the lift contributions introduced in the model should be explained by
certain changes in flow and resulting changes in pressure. The model should be applicable both
at high pitch rates during e.g. active control or large gust, and during normal operation conditions
with low pitch rates.

Next, the numerical algorithms for the Beddoes-Leishman, Øye, Risø, ONERA and Boeing-
Vertol models are shortly described. After that, numerical simulations are made and the per-
formance of the presented models are studied and compared with existing experimental data.
Finally, the inclusion of aeroelastic contributions and 3D-effects are discussed.

3.2 A Dynamic Stall Model for Wind Turbines

The model combines a simple two-term memory kernel for the transient behaviour of the at-
tached flow with a lift reduction due to separation, represented via a first order filter, giving two
state parameters to describe the flow delay under full attachment and one state parameter to de-
scribe the delayed placement of the separation point. The reason for using two timescales under
attached flow conditions, is to model with sufficient accuracy both high pitch frequencies occur-
ring e.g. during active control or normal operating conditions. Furthermore, an additional first
order filter is used to model the increased lift under leading edge separation. The advantage of
this compromise is that within a fairly simple model the transients of the flow are included in
a manner that is sufficiently accurate for wind turbines, and the dynamic effect of trailing edge
separation in essence only introduces one additional time-scale.

3.2.1 Stationary lift and separation

An essential part of a non-linear load model is the lift reduction due to separation. The lift
coefficient of the profile under fully attached flow is denoted cL0 and is often linearized for small
α in the following manner

cL0 =
∂cL
∂α

∣∣∣
α0

(α− α0), (3.2)

where α0 is the angle of attack at zero lift. For a thin plate the coefficient ∂cL/∂α = 2π whereas
the coefficient is somewhat smaller for a real profile. The lift coefficient cL under separated flow
can be found from Kirchhoff flow theory using complex mapping, see (Thwaites 1960, p. 170),
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or more directly by a singular integral formulation of linearized airfoil flow theory (Krenk 2004a)
as

cL �
(

1 +
√
f

2

)2

cL0. (3.3)

According to (3.3), the total static lift coefficient is determined as a reduction of the linear lift
according to the attachment degree f . At fully attached flow, where f = 1, cL follows cL0.
As α increases the separation point moves towards the leading edge and f decreases. When the
separation point reaches the leading edge f = 0 and cL � 1

4cL0 according to (3.3). A further
increase in α will not change the location of the separation point, hence f = 0, but cL0 given
by (3.2) increases linearly with α. As a consequence (3.3) predicts a linear increase with α of
cL � 1

4cL0 for fully separated flow. However, according to measured values cL remain constant
or even decreases with increasing α in this regime. To remedy this inconsistency a modification
is needed. Here the correction will be made on cL0, which for f > 0 is determined as the
linearized lift coefficient given in (3.2), and for f = 0 is set to 4cL from measurements. This
modification allows the use of (3.3) in the entire range of α.

The motion of the separation point may be modelled in the physical plane as done in the
models of Beddoes and Leishman (1986b, 1986a) and Øye (1991). However, as follows from
(3.3) changes of the lift coefficient are related to changes of the attachment degree as

dcL = 1
4

(
1 +

1√
f

)
cL0df. (3.4)

Hence, at fully separated conditions (f � 0) an increment of the separation degree results in a
large increment of the lift coefficient. In order to circumvent this singularity the physical profile
is mapped on a unit circle as traditionally performed in airfoil theory, see Figure 3.4, where the
idea is to use the angle θ indicating the separation point in the complex map, rather than f . The
functional relationship transforming f into θ is given by

2f = 1 + cos θ, (3.5)

which inserted in (3.3) gives

cL = cos4(1
4θ) cL0. (3.6)

This formulation removes the square root singularity around f = 0, corresponding to θ = π.
θ(α) is found from the inverse relation of (3.6). Hence, in the numerical algorithm a set of
measured lift data cL(α) is needed to determine the separation parameter θ(α).

3.2.2 Dynamic lift and separation

Up to now only stationary conditions have been considered. In this section the non-stationary
lift is modelled due to time dependent flow changes. Two main flow situations are considered.
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θ

Figure 3.4 Transformation into the complex plane.

One at low angles of attack with fully attached flow, where the flow adjust so that the separation
point is located at the trailing edge, and a situation with separated flow where the movement of
the trailing edge separation point is delayed compared to the quasi static movement.

First consider the fully attached flow situation. For a change dα in the angle of attack a small
separation occurs before the separation point is reestablished at the trailing edge by circulation
built up around the profile. This change in circulation creates a corresponding change in lift.

The increment dcL0 of the linear lift due to an increment dα of the angle of attack is not
achieved instantaneously. Given the linearized conditions (3.2) this delay can be modelled via
the introduction of an impulse response function Φ(t), so the increment dcL0,d(t) at time t due
to an increment dα(τ) at an earlier time τ can be written

dcL0,d = Φ(t− τ)dcL0(τ). (3.7)

In (3.7) and below the dynamic lift is indicated by the lower index d. The impulse response
function fulfills Φ(∞) = 1. For incompressible flow it can be shown for a thin profile that
half the increment is felt instantaneously, so Φ(0) = 1

2 , see (Fung 1993, p. 206 ff). Upon
superposition of the effects of all previous increments, the linear dynamic lift, valid for attached
flow conditions, is given as

cL0,d(t) =
∫ t

−∞
Φ(t− τ)ċL0(τ)dτ. (3.8)

The approach chosen here for the linear lift coefficient is similar to that of the Beddoes-Leishman
model, described in section 3.3.1. However, the compressibility terms are neglected. The ana-
lytical solution of Φ(t) may be approximated by a first order filter with a single timescale with
the initial condition Φ(0) = 1

2 and the limit Φ(∞) = 1, but as mentioned earlier, both high and
low frequency components needs to be modelled accurately, hence, two timescales are needed.
In what follows it is assumed that Φ(t) may be approximated with the expression

Φ(t) = 1 −A1e−ω1t −A2e−ω2t, (3.9)

where A1, A2, ω1 and ω2 are profile dependent variables describing the time delay. For a thin
profile in incompressible flow A1 +A2 � 1

2 , and ω1 and ω2 represents the timescale for low and
high frequency rotations, respectively. Then a differential description of the convolution integral
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(3.8) can be obtained as follows. Let c1(t) and c2(t) be state variables related to the filter, defined
by the 1st order differential equations

ċj(t) + ωjcj(t) = Aj ċL0(t) , j = 1, 2 (3.10)

Then, cL0,d(t) as given by (3.8) can be represented by the following output equation

cL0,d(t) = cL0(α) − c1(t) − c2(t) (3.11)

Next consider a situation under separated flow conditions. According to (3.6) a step change
in α is felt instantaneously through a direct change in θ. In a real flow situation a time interval is
observed during which the separation angle moves to the new stationary value. Due to this delay
the attachment angle is lower at increasing α and larger at decreasing α than the corresponding
stationary value giving larger and lower lift forces, respectively.

Due to the relation between changes in separation and lift given in (3.4) the non-stationary
effect on cL from the delayed separation is modelled as a delay on the separation variable. The
delayed motion of the separation point and hence the separation angle under dynamic condi-
tions is described via a dynamic attachment angle θd obtained as the solution to the first order
differential equation

θ̇d(t) = −ω3(θd(t) − θ(α)) (3.12)

A similar approach has been used in the Beddoes-Leishman model (Leishman and Beddoes
1986b; Leishman and Beddoes 1986a) and by Øye (Øye 1991), where a dynamic attachment
degree fd is used, obtained from the differential equation

ḟd(t) = −ω3(fd(t) − f(α)) (3.13)

Notice that the time constants ω3 in (3.12) and (3.13) are identical. Although only valid for
static conditions, the reduction of the dynamic linear lift coefficient cL0,d(t) due to the dynamic
attachment angle is again calculated via (3.6) as follows

cL,d(t) = cos4
(

1
4θd

)
cL0,d(t) (3.14)

3.2.3 Leading edge separation

As mentioned earlier experimental data indicates that leading edge separation generates a linear
increasing lift curve even at full separation due to a pressure peak forming at the leading edge
and a large vortex forming in the wake of the profile at increasing α. Instead of modelling these
contributions separately a combined lift correction is added to cL,d(t) to create this linear lift
curve. This is possible because the total lift is assumed to follow the linear curve cL0,d(t) as
long as the vortex is found on the profile, and the pressure peak is present. Assuming this, the
additional lift contribution ∆cL(t) becomes

∆cL(t) = cL0,d(t) − cL,d(t) (3.15)
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Figure 3.5 Illustration of lift components used to described leading edge separation.

At a certain angle αv the leading edge vortex detaches from the leading edge and travels
downstream over the profile with the velocity V

3 . Green et al. (1992) came to approximately the
same vortex convection velocity for a variety of profiles, hence showing that the vortex travelling
velocity is independent of profile shape. The travelling vortex keeps building up strength as long
as it is located somewhere on the profile. As it reaches the trailing edge the vortex contribution
stops building up corresponding to ∆ċL(t) = 0, and a vortex with opposite circulation is formed
at the trailing edge, see Figure 3.3. The trailing edge vortex counteracts the leading edge travel-
ling vortex and the lift starts diminishing. This diminishing effect is assumed to be described by
the following first order differential equation

ċL,v(t) + ω4cL,v(t) =

{
∆ċL(t) for α ≤ αv

0 for α ≤ αv

(3.16)

where cL,v(t) is the actual value of the induced lift after the initiation of the diminishing effect.
Hence, the total lift becomes

cL(t) = cL,d(t) + cL,v(t) (3.17)

This introduces one additional state variable cL,v(t) into the model. Furthermore, two profile
dependent parameters are introduced, namely ω 4, which controls the diminishing rate of the
vortex lift, and the critical angle αv at which the leading edge vortex detaches from the leading
edge. A variable τ should also be included to control the position of travelling vortex. However,
assuming the travel velocity being given, this will not introduce additional parameters to be
calibrated

3.2.4 State formulation

The present model includes four state variables for every wing section at which the lift is cal-
culated. Two variables c1 and c2 to describe the delayed linear lift, one variable θd to describe
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the dynamic movement of the separation angle and one variable cL,v to describe the induced lift
from the pressure peak and vortex forming under leading edge separation. In matrix formulation
the linear differential equations describing these state variables can be organized as follows

ż(t) = Az(t) + b0(α) + b1ċL0(t), (3.18)

where

z(t) =

⎡
⎢⎢⎣
c1(t)
c2(t)
θd(t)
cL,v(t)

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣
−ω1 0 0 0

0 −ω2 0 0
0 0 −ω3 0
0 0 0 −ω4

⎤
⎥⎥⎦ ,

b0(α) =

⎡
⎢⎢⎣

0
0

ω3θ(α)
∆ċL(t)H(αv − α)H(α̇)

⎤
⎥⎥⎦ , b1 =

⎡
⎢⎢⎣
A1

A2

0
0

⎤
⎥⎥⎦ , (3.19)

where H(x) is the unit step function. The total lift coefficient then follows from (3.11), (3.14)
and (3.17) as

cL(t) = cos4
(

1
4θd(t)

)[
cL0(α) − c1(t) − c2(t)

]
+ cL,v(t). (3.20)

The static coefficients to be determined are cL0(α), ċL0(t) and θ(α) which all can be found
from experimental static lift coefficients. The first two are determined from the slope of cL(α)
at α = α0, with the earlier mentioned modification at f = 0, where cL0 = 4cL at angles of
attack larger than the angle of attack at which full separation occurs. θ(α) is then found from
(3.14). Furthermore a series of profile dependent constants are used in the model. A 1, A2, ω1

and ω2 are determined from fully attached conditions, i.e. on the linear part of the lift curve.
For a thin plate profile, these parameters may be determine by an appropriate 2nd order filter
approximation to the Wagner function, see e.g. R. T. Jones (1940). For an actual profile the
parameters may be determined from dynamic test data at low angles of attack. ω 3, ω4 and αv

may all to be determined from dynamic test data at high angle of attack.
The delay flow conditions varies with the mean velocity V and the chord length of the

profile c. It is often used, to introduce a reduced time variable depending on these quantities, see
e.g. (Fung 1993, p. 207). However, a convenient way of introducing these effects is to adopt
the variation of the timescale parameters ωj , j = 1, 2, 3, 4. This approach is also used by the
Risø model described in section 3.3.4. At low Mach numbers the following non-dimensional
parameter ω̂j is, for a thin plated profile at fully attached flow conditions, constant during scaling
of the chord length and incoming wind velocity

ω̂j = ωj
c

2V
. (3.21)

In the following various dynamic stall models are presented. In the referenced literature
some of the models are presented in terms of reduced time. To avoid confusion, all the models
are given in terms of dimensional time parameters ω j , which vary according to (3.21), ω̂ j being
constant.
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3.3 Other Dynamic Stall Models

3.3.1 Beddoes-Leishman model

The Beddoes-Leishman model presented in what follow has been developed with the main pur-
pose of calculating lift loads on helicopter profiles.(Leishman 2000; Leishman and Beddoes
1986b; Leishman and Beddoes 1986b; Leishman 1988; Beddoes 1978) This semi-empirical
model takes into account the effect of flow compressibility under high frequency movements.
Additionally, the model includes time delays under attached flow, and the contribution to the
load coefficient from a discrete vortex forming under leading edge separation.

Under fully attached flow conditions, where the load response is basically linear, the time
delays of the lift coefficient is modelled by the following relations

cL0,d(t) = cL0(α) − c1(t) − c2(t) + c3(t) + c4(t), (3.22)

where c3(t) and c4(t) are impulsive contributions diminishing in time due to wave propagation.
Beddoes and Leishman gives the following expression for finding the impulsive contributions

ċ3 + ω5c3 =
4
M
A3α̇, ċ4 + ω6c4 =

1
M
A4

c

V
α̈. (3.23)

M is the Mach number given as M = V/V0, with V0 as the speed of sound. c1(t) and c2(t)
is determined from (3.10) with A1 + A2 = 1. It should be noticed that while c1(t) and c2(t)
are found using αeq(t), c3(t) and c4(t) should be found using the actual pitch rate α̇ and pitch
acceleration α̈.

To determine the dynamic attachment degree fd, two state variables are introduced in the
following way. First a retarded linear lift c ′L0,d(t) is introduced as a delayed state variable of
the linear lift cL0,d(t), which should give a one-to-one correspondence between the pressure
coefficient and the dynamic lift at changing pitch rates. The following differential equation is
used for c′L0,d(t)

ċ′L0,d(t) = −ω7(c′L0,d(t) − cL0,d(t)) (3.24)

An effective angle of attack αf = c′L0,d(t)/
dcL

dα |α0 + α0 is then used to find the actual static
attachment degree by which fd can be found from (3.13) substituting α with αf . Inserting the
dynamic linear lift coefficient cL0,d and attachment degree fd into (3.3) gives the dynamic lift
coefficient. Notice that the Beddoes-Leishman model uses the approach of a modified angle of
attack, which falls into the third group of models.

The approach for finding the leading edge separation contribution to the lift is similar to
that described in equation (3.15) and (3.16). Beddoes and Leishman relates this contribution to
the discreet vortex forming as the flow separates. When a certain pressure level is reached at the
leading edge the vortex is said to separate and start moving across the profile. Hence, when c ′

L0,d

is increased above a critical value, here named c ′L0,v, the vortex starts to move at a velocity V
3 .

As it reaches the trailing edge it is released into the wake after which ∆ċL(t) = 0.
Thus, one extra profile dependent parameter is introduced to describe the leading edge con-

tribution namely the critical retarded lift c ′L0,v and the travel velocity of the vortex. Beddoes
(1978) found that the travel velocity of the vortex at low Mach number is approximately V/3.
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The Beddoes-Leishman model includes seven state variables for every wing section at which
the lift is calculated. Four variables c1, c2, c3 and c4 to describe the delayed linear lift, two
variables c′L0,d and fd to describe the dynamic movement of the separation angle and one variable
cL,v to describe the induced lift from vortex forming under leading edge separation. In matrix
formulation the linear differential equations describing these state variables can be organized as
follows

ż(t) = Az(t) + b0(α, α̇, α̈) + b1ċL0(t), (3.25)

where

z(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1(t)
c2(t)
c3(t)
c4(t)
c′L0,d(t)
fd(t)
cL,v(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ω1 0 0 0 0 0 0
0 −ω2 0 0 0 0 0
0 0 −ω5 0 0 0 0
0 0 0 −ω6 0 0 0

−ω7 −ω7 ω7 ω7 −ω7 0 0
0 0 0 0 0 −ω3 0
0 0 0 0 0 0 −ω4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

b1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b0(α, α̇, α̈) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

4
MA3α̇

1
MA4

c
V α̈

ω7cL0(α)

ω3f(αf )

∆ċL(t)H(1 − τ)H(α̇)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.26)

where τ is a dimensionless variable describing the placement of the leading edge separation
vortex. For the vortex placed at the leading and trailing edge τ = 0 and τ = 1, respectively. The
timely change of τ can, for a travel velocity of the vortex at V/3, be found as

τ̇ =
V

3c
H(c′L0,d − c′L0,v) (3.27)

The total lift coefficient then follows from the state variables as

cL(t) =
(

1 +
√
fd(t)

2

)2[
cL0(α) − c1(t) − c2(t) + c3(t) + c4(t)

]
+ cL,v(t), (3.28)

where fd(t) is a function of c′L0,d(t) through αf .

3.3.2 ONERA model

The ONERA model is based on the characteristics of the lift curve. The same arguments and
system of equations are used for dealing with the drag and moment curves. Here we first assume
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that the lift is independent of the Mach number and that the difference between the unsteady and
steady lift coefficient is small. A classical way, which is also adopted in the previous described
models, is to introduce the history effects of the lift as a differential equation. A functional
dependence between cL,d and α, and the time derivatives of up to order N of both is postulated,
as follows

A
(
cL,d, α, ċL,d, α̇, c̈L,d, α̈. · · ·

)
= 0, (3.29)

The functionA is nonlinear, since it is assumed to describe the dynamic stall behaviour. However,
it is assumed that the dynamic lift may be linearized around the static lift cL,s at α, corresponding
to the first order Taylor expansion

∂A

∂cL,d
(cL,d − cL,s) +

∂A

∂ċL,d
ċL,d +

∂A

∂c̈L,d
c̈L,d + · · · + ∂A

∂α̇
α̇+

∂A

∂α̈
α̈+ · · · = 0, (3.30)

where it has been used that A(cL,d, α, 0, 0, · · · ) = 0. This linearization is only valid for small
changes of the angle of attack with small deviations between the dynamic and static lift. During
a dynamic stall cycle these variation may become rather large, but comparison with experimental
data seems to justify (3.30). Derivatives with respect to α of higher order than two may be
neglected, and in terms of frequencies one real pole and two complex conjugated poles seems to
capture the characteristics of the lift. Hence, derivatives of higher order than three with respect
to cL,d may be neglected. This reduces (3.30) to

∂A

∂cL,d
cL,d +

∂A

∂ċL,d
ċL,d +

∂A

∂c̈L,d
c̈L,d +

∂A

∂
...
cL,d

...
cL,d =

∂A

∂cL,d
cL,s − ∂A

∂α̇
α̇− ∂A

∂α̈
α̈ (3.31)

Additionally, the following observations is made. At low angles of attack, in the linear
regime, measured frequency response functions are smooth and continues. By contrast, in the
stall regime rapid variation is registered. The first statement leads to the conclusion, that in the
linear regime the lift may be modelled by a first order differential equation with one real negative
pole. In the stall area the lift development may then be modelled as a second order differential
equation with two complex conjugated poles with negative real part. The derivatives of A in
(3.31) is further assumed to be time independent. This leads to the following set of equations

ċ1 + ω1c1 = ω1cL0 + (ω1B1 +B2)α̇+B1α̈, (3.32)

c̈2 + 2ζω2ċ2 + ω2
2(1 + ζ2)c2 = −ω2

2(1 + ζ2) (∆cL +B3∆ċL) , (3.33)

cL,d = c1 + c2. (3.34)

where ∆cL = cL0−cL,s. (3.32) accounts for the negative real pole −ω1 and (3.33) accounts
for the complex conjugated poles −ζω2 ± iω2. The right hand side of (3.33) ensures that the
complex conjugated poles only affect the solution in the stall regime, where ∆cL �= 0. In the
static limit c1 = cL0 and c2 = −∆cL giving cL,d = cL0 − (cL0 − cL,s) = cL,s.

Assuming that the memory effect on the circulation built-up is modelled by a single first
order filter, rather than the two first order filter used in the present model. It is then possible to

Jesper Winther Larsen



3.3 Other Dynamic Stall Models 69

express the differential equation for cL0,d(t), using the first two terms of (3.9) inserted in (3.8)
and differentiating with respect to time, giving

ċL0,d + ω1cL0,d = ω1cL0 + (1 −A1)
∂cL
∂α

α̇. (3.35)

Comparing (3.35) and (3.32) reveals that for a first order filter the dynamic lift is uninfluenced
by α̈. Hence, B1 = 0 and B2 = (1 −A1)∂cL/∂α. It should be noticed that the ONERA model,
as is the case for the proposed model and the Beddoes-Leishman model, includes a contribution
from ∆ċL. The first two models relate this contribution to the leading edge vortex buildup.

Small amplitude oscillations in the linear regime makes it possible to determine the variables
ω1 and B2. With these determined, small amplitude oscillations in the stall regime are used to
determine the parameters ζ, ω2 and B3. The performance of the model should then be verified
from large amplitude oscillations at various frequencies.

Finally, the state formulation of the ONERA model reads

ż = Az + b + Bα,

z =

⎡
⎣c1c2
ċ2

⎤
⎦ , A =

⎡
⎣−ω1 0 0

0 0 1
0 −2ζω2 −ωd

⎤
⎦ , α =

[
α
α̇

]

b =

⎡
⎣ 0

0
ωdcL

⎤
⎦ , B =

⎡
⎣ ω1

∂cL

∂α |α0 (1 −A1)∂cL

∂α |α0

0 0
−ω2

d
∂cL

∂α |α0 −ω2
dA2

(
∂cL

∂α |α0 − ∂cL

∂α |α
)
⎤
⎦ ,

cL,d = c1 + c2 , (3.36)

where ωd = ω2

√
1 + ζ2 and B3 is changed to A2 for consistency in notation. It should be

noticed, that the second term of row three, column two of B includes the slope of c L at the present
angle of attack. The ONERA model includes three state variables and 5 unknown parameters ω 1,
ω2, A1, A2 and ζ to be determined from experimental data

3.3.3 Øye model

As mentioned the nonlinearity in the aeroelastic load model is essentially due to the motion of
the separation point on the back side of the profile. Øye (1991) has suggested a simple linear 1st
order filter model, which is based on the same static data requirements as the Beddoes-Leishman
model and the present model. The essence of the Øye model is that the relationship (3.3) for
finding f is replaced by an interpolation between the lift coefficient at fully attached flow c L0(α)
determined from (3.2) and the static lift coefficient cL1(α) at fully separated flow, corresponding
to attachment degrees f = 1 and f = 0, respectively. The flow is defined to be fully separated
at a given large angle of attack, αsep, so f = 0 for α ≥ αsep. Øye assumes that the initial
and final slopes of cL1(α) may be chosen as ∂cL1/∂α|α0 = 1

2dcL/dα|α0 and ∂cL1/∂α|αsep =
1
12dcL/dα|α0 . Intermediate values of cL1(α) are determined by Hermite interpolation. The
interpolation curves cL0 and cL1 are shown in Fig. 3.6. Then, for α < αsep the static attachment
degree f is determined by linear interpolation between the functional values cL0 and cL1, i.e.
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Figure 3.6 Interpolation curves in the Øye model.

f =
cL − cL1

cL0 − cL1
. (3.37)

Using f in (3.13) the dynamic attachment degree can be found. Øye proposed that a value of
ω3 = V/4c can be used (Øye 1991). Finally, the dynamic lift coefficient is determined from
(3.37) by substituting f with fd giving

cL(t) = fd(t)cL0 + (1 − fd(t))cL1 (3.38)

The Øye model is based on only one state variable fd(t), which introduces the dynamic
effects under dynamic stall. However, no dynamic effects are introduced during attached flow
conditions. Four parameters are introduced being the initial and final slopes of c L1, the time
scale parameter ω3 and the angle of attack defining full separation α sep. The first two are defined
by Øye and are assumed to be profile independent. Hence, 2 profile dependent parameters needs
calibration.

3.3.4 Risø model

The Risø model developed by Hansen et al. (2004) at Risø National Laboratory, Denmark, is
a modified version of the Beddoes-Leishman model using only 4 state variable. Two to model
the unsteady lift for attached flow conditions, and two to model the dynamics of trailing edge
separation. Leading edge separation and the dynamics between the travelling and trailing edge
vortices are disregarded in this model.

An approach similar to the Øye model is used to model the nonlinear quasi-static lift. As-
suming knowledge of the separation point and the lift under fully attached flow and fully sepa-
rated flow conditions, respectively, the lift is given by
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cL = fcL0 + (1 − f)cL1 (3.39)

The linear lift cL0 is found from the lift slope at α0, and the position of the separation point given
by f is evaluated from (3.3). The restriction is that if f as determined from (3.3) is larger than
1.0, it is set equal to 1.0, and when full separation occur, f is set equal to 0. From a given set
of measured cL, f is found from (3.3) and cL1 may be determined from (3.39). Inverting (3.39)
creates a singularity at f = 1, i.e. at fully attached flows. Under such conditions cL1 is set to
half the linear lift, i.e. cL1(f = 1) = cL0/2.

To introduce dynamic effects f and cL0 is modified, as was the case for the proposed,
Beddoes-Leishman and Øye models. Under fully attached flow conditions the Risø model works
on a modified angle of attack instead of directly on the linear lift. The dynamic angle of attack
αd is given as

αd(t) = α(1 −A1 −A2) + c1(t) + c2(t) (3.40)

where

ċi +
(
ωi +

V̇

V

)
ci = ωiAiα (3.41)

Now the dynamic linear lift is evaluated as

cL0,d = cL0(αd) +
πcα̇

2V
(3.42)

The Risø model includes contribution from added mass. This term doesn’t introduce additional
state variables or parameters to be calibrated, hence it may easily be included in any of the other
models. To introduce dynamic effects on the separation point motion the same approach as the
Beddoes-Leishman model is used. A retarded linear lift c ′L0(t) is found from (3.24), an effective
angle of attack, not to be compared with the equivalent angle of attack described in section 3.5, is
found as αf = c′L0/

dcL

dα |α0 +α0, and the delayed separation point fd is determined from (3.13).
This introduces additional 2 state variables c ′L0 and fd. In state space formulation the Risø may
be written as follows
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ż = Az + b, (3.43)

z =

⎡
⎢⎢⎣
c1
c2
c′L0

fd

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎣
−
(
ω1 + V̇

V

)
0 0 0

0 −
(
ω2 + V̇

V

)
0 0

0 0 −ω7 0
0 0 0 −ω3

⎤
⎥⎥⎥⎥⎦ ,

b =

⎡
⎢⎢⎢⎢⎣

ω1A1α

ω2A2α

ω7

(
cL0(αd) + πcα̇

2V

)
ω3f(αf )

⎤
⎥⎥⎥⎥⎦ (3.44)

cL,d(t) = fd(t)cL0(αd) + (1 − fd)cL1(αd), (3.45)

3.3.5 Boeing-Vertol model

The Boing-Vertol model presumes a relationship between the static and dynamic stall angle to
determine a dynamic angle of attack αd in the entire range of α. The relationship obtained by
Liiva et al. (1969) is given as

αds − αs = A1

√
c|α̇|
2V

, (3.46)

where αds is the dynamic stall angle as indicated in Figure 3.7. Hence, the dynamic angle of
attack should in some way be delayed with the right hand side of (3.46) compared with the static
angle of attack. This suggests the following setting

αd = α−A1

√
c|α̇|
2V

α̇

|α̇| , (3.47)

where a sign factor has been included in the delay term in order to consider both positive and
negative values of α̇. Now cL,d is determined as

cL,d = cL(0) +
cL(αd) − cL(0)

αd
α. (3.48)

The theory of the model is illustrated in Figure 3.7, where the static and dynamic lift curves
are plotted as ( ) and ( ), respectively. Firstly, consider an angle of attack α 1 in the
linear domain during increasing α, hence α̇ > 0. Using (3.47) gives a related dynamic angle of
attack αd1 which is less than α1. Now, cL(αd1) is evaluated indicated by ( �), the slope of the
line going from cL(αd) is evaluated, giving the fraction in (3.48). Finally, cL,d illustrated by ( �)
is determined from (3.48). In the linear domain, the slope determined at α d is equal to the slope
of the static lift, thus, no distinction can be made between the static and dynamic lift curve. Now,
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Figure 3.7 Illustration of the Boing-Vertol model. ( ) Static lift. ( ) Dynamic lift. ( �) Quasi-static angle of
attack. ( �) Dynamic angle of attack.

consider an angle of attack α2 in the stall regime. Again, the corresponding dynamic angle of
attack αd2 is found from (3.47). Then, the slope determined at α d is less than that of the fully
attached region, making cL,d(α2) less than that of a linear growing lift. This creates a dynamic
stall cyclic behaviour as indicated in Figure 3.7.For α̇ = 0 it is easily seen that the combination
of (3.47) and (3.48) generates the static lift, i.e. the dynamic curve crosses the static curve for
α̇ = 0.

3.4 Comparison of Models

The main input to all the models are the quasi-static lift data. The dynamic stall models should
be able to reproduce these in the entire range of α. At low reduced frequencies and at angles
of attack below the point of full separation, all the models generate results close to the static lift
curve. At angles of attack above this point the Beddoes-Leishman model is no longer capable
of reproducing static data, whereas the proposed model follow the static curve nicely due to the
modificationCL0. This is illustrated in Figure 3.8, where static data from a NACA 63-418 profile
(Abbott and von Doenhoff 1959) is extrapolated linear from 20 ◦ into the deep stall regime to the
point cL(90◦) = 0.

The Beddoes-Leishman model also seems to perform badly at angles of attack just below
fully separated flow conditions (approximately 32◦), where the lift seems to curve away from
the measured values. This is caused by the way the effective attachment degree is determined
from the static data set, where linear interpolation is used in this simulation. The problem may
be solved by using quadratic interpolation, which obviously is more time consuming.

In the following examples is the performance of the various models validated against ex-
perimental results from Wind-tunnel tests on a Vertol 23010-1.58 airfoil. The test results are
presented by Liiva (1969), and are used to verify the Boing-Vertol model (Tarzanin 1972). The
experimental data are produced for harmonic rotation of the airfoil at various mean angle of at-
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Table 3.1 Profile dependent parameters for the various dynamic stall models determined from dynamic test data from
Vertol 23010-1.58 profile. ω̂j = ωj2V/c.

Presented Beddoes-
Leishman

ONERA Øye Risø Boing-
Vertol

ω̂1 0.0455 0.125 0.125 - 0.0455 -
ω̂2 0.3 0.375 0.1 - 0.3 -
ω̂3 0.1 0.275 - 0.07 0.0875 -
ω̂4 0.075 0.075 - - - -
ω̂5 - 2.5 - - - -
ω̂6 - 2.5 - - - -
ω̂7 - 0.4 - - 0.4125 -
A1 0.165 0.3 0.3 - 0.165 0.87
A2 0.335 0.7 0.1 - 0.335 -
A3 - 1.0 - - - -
A4 - 1.0 - - - -
αv 14.75◦ - - - - -
c′L0,v - 1.6 - - - -
αsep - - - 32◦ - -
ζ - - 0.7 - - -
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Figure 3.8 Lift coefficient for a NACA 63-418 at low reduced frequency. k = 0.001, αmean = 25◦, ∆α = 15◦ ,
( ) Static test data. a) ( ) Presented model. b) ( ) Beddoes-Leishman model

tack, the amplitude ∆α is held constant at 4.85◦ and the reduced frequency k = cω
V is kept con-

stant at 0.124, where c is the chord length of the profile set equal to 1.5 m, V is the undisturbed
incoming wind velocity equal to 60 m/s and ω is the rotational frequency of the oscillation. Ide-
ally, to calibrate the various models a series of test data should be available at a range of reduced
frequencies, amplitude and mean value of oscillation. The rather limited set of test data makes
the calibration of the parameters very uncertain, but the performance of the models may to some
extend be analysed. Under fully attached flow conditions the proposed, Beddoes-Leishman, ON-
ERA and Risø models all perform well. For the presented and Risø models the incompressible
parameters given by Jones (1940) are used. The parameters of the various models during stall
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conditions are calibrated by least-square-error method between the model output and test data.
The data point used in the least square method are evenly distributed, hence, all regions of the
model are prioritized equally. The calibrated parameter values are listed in Table 3.1. It is ob-
vious that the Boing-Vertol and the Øye models are relative easy to calibrate since only a few
parameters needs to be identified. The presented model have 7 parameters, the ONERA model
have 5 parameters and the Beddoes-Leishman model have 12 parameters that needs to be cali-
brated. The many parameters of the Beddoes-Leishman model makes optimal calibration virtual
impossible. Tran and Petot (1981) devised a method of calibrating the ONERA model from small
amplitude, low and high frequency test data below and above stall. Since no such variety of test
data have been available, the calibration is also done by least square error method.
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Figure 3.9 Comparison between dynamic stall models and lift coefficient for a Vertol 23010-1.58 profile at various
mean angles of attack. k = 0.124 rad. ( ) Static test data. (×) Dynamic test data. a)-b) ( ) Presented model.
c)-d) ( ) Beddoes-Leishman model. e)-f) ( ) Risø model.

In Figure 3.9 and Figure 3.10 are the various models compared experimental data from the
Vertol 23010-1.58 profile. Test data are indicated by (×), measured static data which serves as
input are illustrated as ( ), and the results from the calibrated dynamic stall models using
parameters given in table 3.1 are plotted as ( ). From the top down in Figure 3.9 the nu-
merical results are plotted obtained from the proposed, Beddoes-Leishman and Risø models, and
in Figure 3.10 ONERA, Øye and Boing-Vertol models, respectively. The cyclic direction of the
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Figure 3.10 Comparison between dynamic stall models and lift coefficient for a Vertol 23010-1.58 profile at various
mean angles of attack. k = 0.124 rad. ( ) Static test data. (×) Dynamic test data. a)-b) ( ) ONERA model.
c)-d) ( ) Øye model. e)-f) ( ) Boing-Vertol model.

experimental data are indicated by a red arrow, and are placed on the upper part of the cycle,
whereas the cyclic direction of the numerical simulations are indicated by a blue arrow placed
on the lower part of the cycle. Hence, the red and blue arrow should point in opposite directions
for the cyclic behaviour to be alike. The subfigures to the left illustrate the results of a test sit-
uation under fully attached flow condition with a mean angle of attack of 7.33 ◦. As seen, the
proposed, Beddoes-Leishman, Risø and ONERA models capture the cyclic behaviour, whereas
both the Øye and Boing-Vertol models produce results, which travels in the opposite direction of
the test data. To the right in Figures 3.9 and 3.10 the mean angle of attack is increased to 14.92 ◦,
which is in the stall regime. All models capture the correct travel direction but especially the
Øye and the ONERA models predict a maximum lift which is approximately 10-15% below the
measured value. The Øye model fails mainly because of no travelling vortex contribution, which
is significant at high reduced frequencies. Especially, the Boing-Vertol model captures the test
data very effectively, but also the presented, Risø and Beddoes-Leishman models perform well.
The presented and Beddoes-Leishman models predicts the declining lift after the dynamic stall
peak too high. Beddoes and Leishman (1986a) suggest an increase of the vortex dissipation after
the vortex leaves the profile, i.e. increasing ω4. This modification will produce better results in
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this particular case for both the present and Beddoes-Leishman models. The Risø model predicts
a maximum lift, which is a little below that of the two other models but still within acceptable
range. It should be noted that even though the state variable c ′L0,d in the Beddoes-Leishman and
the Risø model should describe the same effect the calibrated parameter ω 3 are very different.
This is due to the fact that the Risø model does not include contributions from leading edge sep-
aration, why these contributions are absorbed into the first trailing edge separation state variable.
As seen from Figure 3.9f, this work nicely for the presented case.

Next the performance of the presented model is analysed. Figure 3.11 shows the static
values of cL0 and θ indicated by ( ) corresponding to the static lift coefficient from NACA
63-418. The reason for using the NACA 63-418 profile is to illustrate the variation of the static
and dynamic variables also during fully separated flow conditions, which is not obtained within
the angle of attack limits of the Vertol profile. A simulation of cL0,d and θd is shown as ( ).
As seen full separation occurs at approximately 32◦, where θ = π and cL0 is changed from the
linear approximation to 4cL.
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Figure 3.11 State variables of the present model during dynamic stall cycle of a NACA 63-418 profile, k = 0.124 rad,
αmean = 25◦, ∆α = 15◦. ( ) Quasi-static component. a) ( ) cL0,d. b) ( ) θd.

Figure 3.12 illustrate the performance of the present model at various variation of para-
meters. The static input indicated by ( ) is from the Vertol 23010-1.58 profile, and ( )
indicate a reference case using the parameters given in 3.1 column 2. In Figure 3.12a the result of
a simulation at low angles of attack in the fully attached flow domain is plotted. ( ) illustrate
a simulation with A1 = 0.3 and A2 = 0.7 which matches the compressible parameters of the
Beddoes-Leishman model. The hysteretic loop becomes wider due to no initial change of the lift
for a step change of angle of attack for compressible condition, i.e. when A 1 + A2 = 1. Figure
3.12b-d illustrate numerical results during dynamic stall conditions with αmean = 15◦ at variation
of ω3, ω4 and αv, respectively. As seen from Figure 3.12b, a change of ω 3 doesn’t influence the
maximum lift significantly. Also increasing ω3 by 50% from the reference value indicated by
( ) only introduces small deviations from the reference value. However, decreasing ω 3 by
50% indicated by ( ) introduce significant changes to the lift both at flow reattachment at
low angles of attack and also in the deep stall regime at high angles of attack. At low values of ω 3

small variations in the static lift is filtered out and the curve becomes more smooth. Variation of
ω4 and αv illustrated in Figure 3.12c and 3.12d, basically moves the dynamic stall point up and
down and sideways, respectively. In Figure 3.12c the dynamic lift without the vortex contribu-
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tion cL,d is plotted as ( ), the vortex contribution at these relative high reduced frequencies
is significant.

2 4 6 8 10 12
0

0.5

1

1.5

10 12 14 16 18 20
0.5

1

1.5

2

10 12 14 16 18 20
0.5

1

1.5

2

10 12 14 16 18 20
0.5

1

1.5

2

α [◦]α [◦]

α [◦]α [◦]

c L
[-

]

c L
[-

]

c L
[-

]

c L
[-

]

a) b)

c) d)

Figure 3.12 Lift curve of the Vertol 23010-1.58 profile at various parameter values. k = 0.124 rad, ∆α = 10◦ .
( ) Quasi-static component. ( ) reference case using the parameters of table 3.1 column 2.
a) Variation of A1 and A2. αmean = 7◦ . ( ) A1 = 0.3, A2 = 0.7.
b) Variation of ω3. αmean = 15◦. ( ) ω3 = 4. ( ) ω3 = 12.
c) Variation of ω4. αmean = 15◦. ( ) ω4 = 4. ( ) ω4 = 8.
d) Variation of αv . αmean = 15◦ . ( ) αv = 13.75◦ . ( ) αv = 15.75◦.

3.5 Other aspects of dynamic stall models

3.5.1 Aeroelastic Modelling

All the dynamic stall models are one-degree-of-freedom models in α(t). Assume that the profile
has the translation velocity u̇′

1(t) and u̇′2(t) in the blade and edgewise direction, respectively,
the pitch velocity α̇(t) around the aerodynamic centre A, and exposed to turbulence components
v′1(t) and v′2(t). Assuming the wavelength of the turbulence is significantly larger than the chord
length of the profile, the structural deformation velocities and turbulence components will in-
troduce a uniform flow change over the entire profile. Whereas, the pitch motion introduces a
linear flow variation over the section. These effects are included through the introduction of an
equivalent angle of attack αeq(t). From the profile the deformation velocities and turbulence
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components can be regarded as a variation of the incoming velocity field, however, due to the
flow variation over the profile from the pitch velocity, this contribution cannot be included di-
rectly. Under fully attached flow conditions with a pitch motion α̇(t) it can be shown that α eq(t)
should be found from the downwash velocity at the 3

4c point for the flow to follow the profile
and separate at the trailing edge fulfilling the so-called Kutta condition, see Fung (1993, p. 401
ff). This is illustrated in Figure 3.13.

V

x′1

x′2

1
4 c

3
4 c

α̇(t) αeq(t)
A

V1 + v′1 − u̇′1

V2 + v′2 − u̇′2

Figure 3.13 Definition of αeq .

Including turbulence components and deformation velocities as variation of the mean wind
gives the following expression for αeq

sinαeq(t) =
V1(t) + v′1(t) − u′1(t) + c

2 α̇(t)
V (t)

(3.49)

where V (t) is the resulting wind speed including contributions from both turbulence components
and deformations velocities. This gives the following linearized expression for α eq(t)

αeq(t) � α(t) +
c

2V
α̇(t) +

v′1(t) − u̇′1(t)
V (t)

(3.50)

where α(t) is the mean wind contributions to the angle of attack. In (3.50) it is presumed that
u̇′1(t), v

′
1(t), α(t) and α̇(t) are sufficiently small, so that linearization is possible. Even though,

only valid under fully attached flow, it is common practise to determine α eq(t) from the down-
wash at the 3

4c-point under separated flow conditions. Now, α(t) in (3.19) is simply replaced
with αeq(t) to introduce aeroelastic contributions.

3.5.2 3-D effects

The presented models all assume 2D flow conditions, but the rotating blade will experience an
outwards axial wind component generating so-called 3D effects on the load components. A
widely adopted approach for including 3D effects is to modify the 2D quasi-static input to the
models. Chaviaropoulos and Hansen (2000) proposed a correction law of lift drag and moment
coefficients including the influence of twist angle throughout the wing. Harris (1966) came up
with a simple correction used in the Boeing-Vertol model where the static 2D lift simply is
divided by cosΛ where Λ is the yawed flow angle. This approach indicates that 3D effects tend
to delay the static stall and hereby increase the maximum lift.
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3.6 Concluding Remarks

In the present work a model for determining the dynamic lift coefficient of a wind turbine wing
profile has been developed, based on the effects of various flow conditions. In the model three
basic features have been included. Firstly, a time delay is introduced under fully attached flow
situations using two filter equations. Secondly, the time delay in the motion of the separation
point is described by one filter equation. And last, a contribution from leading edge separation
vortex and pressure peak is included by one filter equation.

The characteristics of the present model are a simplified description of attached flow, cal-
culating lift by analytical linearized flow theory in the entire range of the angle of attack and
inclusion of a contribution from leading edge separation. Additionally, a modified model for the
delay on the attachment degree has been suggested, which operates on a mapping of the profile
onto a circle in the complex plane.

The model has been validated against dynamic test data of the Vertol 23010-1.58 profile.
It has been demonstrated that the present model is capable of producing the correct cyclic be-
haviour of the lift under fully attached conditions. Also under dynamic stall cycle is the present
model capable of modelling the maximum lift and reproducing lift data to a satisfactory degree.
A variety of different approaches of modelling dynamic stall has been described including the
Beddoes-Leishman, Risø, ONERA, Øye and Boing-Vertol methods. Only the present model,
Risø and Beddoes-Leishman models are capable of reproducing the experimental data both at
fully attached flow conditions and in the stall regime. 7 parameters are introduced in the present
model compared to 12 in the Beddoes-Leishman model making calibration considerable less
complicated. The Risø model introduces an arbitrary interpolation comparable to that devised of
the Øye model, to introduce the effects of trailing edge separation. Further, it includes an extra
state variable to model trailing edge separation. However, the present model perform equally
well using only one state variable for trailing edge separation and introducing an extra state vari-
able to account for leading edge separation, making the present model capable of reproducing
effects under a greater variety of flow conditions.

Jesper Winther Larsen



CHAPTER 4
Coupling of

Two-Degrees-of-Freedom
Structural Model and Dynamic

Stall Model

In this chapter a combined formulation is made of the nonlinear structural equations of mo-
tion given in chapter 2 and the dynamic stall model presented in chapter 3. To analyse the
behaviour of the combined system various numerical examples are carried out. At first, the wing
is assumed to rotate in a constant incoming wind field while the entire wing is pitch harmoni-
cally below and above stall. Then, the wing is subject to support point motion in a constant wind
field at various constant pitch settings. Next, the wing is assumed to rotate in a boundary layer
flow with effect of tower passage. Finally, the performance of the wing is illustrated under active
vibration control using pitch actuation of the wing.

4.1 Formulation of the Combined Problem

The combined numerical analysis may be divided into three sub problems. First, the wind com-
ponents at a given section of the wing should be determined, giving an effective angle of attack of
that particular section. Then, the aeroelastic forces throughout the wing is determined using the
dynamic stall model. Finally, the structural deformation of the wing subjected to the aeroelastic
loading and support point motion is determined.

4.1.1 Wind profile

Two different wind profiles are considered.

1 Constant wind field used to analyse the effect of harmonic pitching of the wing and support
point motion at different constant pitch settings.

2 Logarithmic boundary layer profile including tower passage modelled as potential flow
around a cylinder, in order to analyse the effects of periodic variation of the wind profile
and rotational effects.

— 81 —



82 Chapter 4 – Coupling of Two-Degrees-of-Freedom Structural Model and Dynamic Stall Model

In this chapter the qualitatively behaviour of the combined models is sought. To simplify matters
the induced velocities, often determined by the BEM method, see e.g. (Hansen 2000), are disre-
garded. However, for a quantitatively analysis the induced velocity may in some cases contribute
significantly and they should be incorporated into the model if more accurate results are needed.

The mean wind velocity in the undisturbed flow is modelled as

V = −V0, (4.1)

V (x3) = −V0kt ln
(x3

z0

)
, (4.2)

where V0 is the basic wind velocity, kt is the terrain factor, and z0 is the roughness length.
According to the Danish standard (1998) k t and z0 are chosen as 0.17 and 0.01, respectively,
for open land or sea. The effect of tower passage is included as a potential flow over a cylinder
composed of the sum of a uniform flow and a doublet. The flow velocities V 1 and V2 in the local
x1- and x2-directions indicated in Figure 2.2 are found to be, see e.g. (Anderson 2001)

V ′
1 (x1, x2, x3) =

(
1 +R2(x3)

x2
2 − x2

1

(x2
1 + x2

2)2

)
V (x3),

V ′
2 (x1, x2, x3) = x′3Ω0 −R2(x3)

2x1x2

(x2
1 + x2

2)2
cos(Φ(t))V (x3). (4.3)

where R(x3) is the radius of the cylinder, i.e. the tower radius at a given height. It should be
noticed that V ′

1 is positive according to the transformation (2.3) between the global and local
coordinate systems. Further, in addition to the initiated V ′

2 component from the tower passage,
the rotational velocity x′

3Ω0 is added to V ′
2 . In Figure 4.1 is the reduction factor of V ′

1 indicated
by the colour map for a given tower diameter, also the flow lines at discrete points are shown
as black lines. (4.3) is used when the considered wing section is below the tower height, and
(4.2) is used when the section is above the tower height. To avoid a discontinuity in the flow
velocity when the section moves from below to above the tower height, the diameter of the tower
is reduced linearly with height from the actual diameter to zero over a given length.

0

1

2

x2

x1

Correction on V ′
1

Figure 4.1 Potential flow around tower. The colours indicate the correction factor on V′
1 .
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4.1.2 Aeroelastic forces

From the mean wind velocities, an angle of attack is evaluated at given two dimensional wing
sections throughout the wing. The dynamic stall state variables are determined from (3.18) for
N sections as indicated in Figure 4.2, giving a lift force at discrete values of x ′

3. The lift is then
projected onto the local x′

1- and x′2-directions to evaluate the aerodynamic forces p ′
1,A(x′3, t) and

p′2,A(x′3, t).

c
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Figure 4.2 Dynamic stall state variables evaluated at discreet sections throughout the wing. Upper index indicate section
number.

4.1.3 Structural system

The structural equations of motion (2.79) can now be integrated using e.g. a fourth order Runge
Kutta algorithm. Only the coefficients aijk,0 and fi,0 given in (2.70) are affected by the dynamic
variation of the lift. The integral expressions for a ijk,0 and fi,0 are evaluated numerically. Differ-
entiating (2.59) with respect to time and only including contributions from the first two modes,
the modal coordinate velocities determined from solving (2.79) are used to determine the veloc-
ity components u̇′

1(t) and u̇′2(t) throughout the wing. These velocities are finally introduced in
the expression of the equivalent angle of attack αeq from (3.50), making it possible to iterate
forward in time. In short the numerical procedure is as follows

1 Give initial conditions at ti = t0 of: Φ(t0), q1(t0), q2(t0), q̇1(t0), q̇2(t0), c
(j)
1 (t0), c

(j)
2 (t0),

θ
(j)
d (t0) and c(j)L,v(t0), j = 1, 2, . . . , N .

2 Use (2.59) to determine the velocities u̇ ′(j)
1 (ti) and u̇′(j)2 (ti).

3 Determine global coordinates of N wing sections from Φ(t i) and transformation matrix
(2.3).

4 Calculate local wind velocities from (4.1) or (4.2) and (4.3), depending on the chosen pro-
file.

5 Calculate α(j)
eq (ti) from (3.50) using u̇′(j)

1 (ti) and u̇′(j)2 (ti).

6 Solve (3.18) for N wing sections, calculate the aerodynamic lift and project onto the local

x′1- and x′2-directions in order to determine p ′(j)α,A(x′3, ti).
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7 Evaluate aijk,0(ti) and fi,0(ti) from (2.70), using the distribution of p ′′
α,A((x′3, ti).

8 Solve the structural equations of motion (2.79) for q ′
1(ti+1), q′2(ti+1), q̇′1(ti+1) and q̇′2(ti+1).

9 Increment time and repeat step 2 to 8.

4.2 Numerical Examples

4.2.1 Data used in numerical simulations

The data used in the numerical examples are divided into three groups: wind field, structural
system and dynamic stall parameters. Due to insufficient experimental data for the actual wing
sections of the wing, the parameters calibrated for the Vertol 23010-1.58 profile in chapter 3
are used for all sections throughout the wing. The static lift data, used as input, is extrapolated
lift data from the NACA 63-418 profile (Abbott and von Doenhoff 1959). The extrapolation is
carried out from 20◦ to 90◦ as a linear variation to cL(90◦) = 0. The static data is illustrated in
Figure 4.3a with ( ) being measured data and ( ) being extrapolated values. To create an
overview of the parameters needed within the model, the calibrated values for the dynamic stall
model from Table 3.1 are repeated in Table 4.1 column 1. In order not to confuse the dynamic
stall timescale parameters with the eigenfrequencies of the wing, the notation of the timescale
parameters is changed from ωi to νi. The parameters ν1, ν2, ν3 and ν4 are determined from a
wind velocity of 60 m/s and a chord length of 1.5 m, which matches a section at approximately
x′3 = 37 m. These values are used as constants throughout the wing. In Table 4.1 column 2 and 3,
the parameters used to define the wind field and the structural system are listed. The parameter
values for ω2, Ω0 and u0 are varied within the different numerical simulations to analyse the
behaviour of the system. The wing properties: twist, moment of inertia mass per unit length
and chord length, are those illustrated in Figure 2.11, and the components of the eigenmodes are
illustrated in Figure 2.9. Then, the time independent coefficients of the structural system match
those given in (2.78).

Table 4.1 Parameters used within the numerical simulations. Th is the tower height, Td,bottom is the tower diameter at
ground level, and Td,top is the tower diameter at top level. NL is the distance from the tower centre to the rotor plane.

Dynamic stall Wind field Structural system
ν1 3.64 rad/s kt 0.17 ζ1 0.01
ν2 24 rad/s z0 0.01 m ζ2 0.01
ν3 8 rad/s V0 12 m/s ω1 5.14 rad/s
ν4 6 rad/s ω2 variable
A1 0.165 Ω0 variable
A2 0.335 u0 variable
αv 14.75◦ ω0 3Ω0

Th 90 m
Td,bottom 4 m
Td,top 2 m
NL 5 m
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4.2.2 Pitch of wing in constant wind field
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Figure 4.3 a) Static data for a NACA 63-418 profile. ( ) Measured values. ( ) Extrapolated values. b)
Variation of angle of attack throughout the wing. ( ) αp = 0◦. ( ) αp = 10◦ . ( ) Static stall angle.

This example is created to investigated the effect of pitching the wing. The incoming flow
field is constant 12 m/s, and no support point motion is applied. Hence, changes in excitation of
the wing only occur due to change in pitch setting αp.

In Figure 4.3a the static lift data is plotted for the NACA 63-418 profile used throughout
the wing. It is seen that the static stall angle is approximately 12.5◦. Figure 4.3b illustrates
the angle of attack at Ω0 = 1.6 rad/s with αp = 0◦ and αp = 10◦ indicated by ( ) and
( ), respectively. The static stall angle at 12.5◦ is plotted as ( ). The angle of attack is
approximately constant from x ′

3 = 8 m to x′3 = 40 m with a slight increase at the tip because
of the twist of the wing sections throughout the wing. At the root of the wing the meeting wind
velocity is close to zero, which produces angles of attack close to 90 ◦. However, the lift from the
root sections contributes insignificantly to the deformation of the wing and will be disregarded in
the following analyses. For αp = 0◦ most sections of the wing are below stall. When the pitch
is increased to 10◦, all sections are in the stall region.

The pitch is varied harmonically as αp = αp,0 + 5◦ cos(Ω0t) with variable mean values
αp,0. The simulation is performed with Ω0 = 1.6 rad/s and u0 = 0 m. The results for the mean
pitch equal to -5◦ and 10◦ are plotted to the left and right in Figure 4.4, respectively. In Figure
4.4a-b the static lift is indicated by ( ) and the dynamic lift is plotted as ( ) for a section
located at x′3 = 32 m. As illustrated, the pitch setting -5◦ produces attached flow conditions
for this particular section, whereas the pitch setting 10◦ creates stalled flow conditions. Figure
4.4c-j show time series of q1(t) and q2(t) and the corresponding one-sided autospectral density
function obtained through FFT. It is seen that both a change in amplitude and frequency occur
when changing the pitch setting. At attached flow conditions the main frequency component of
both q1 and q2 is equal to the pitch frequency 1.6 rad/s. When the wing is pitched into the stall
region, the amplitude of q1 decreases since the variation in lift decreases, but a significant high
frequency contribution close to the first eigenfrequency is present in the response. The amplitude
of q2 increases, and the primary frequency is close to the eigenfrequency of the second mode.
This indicates that aerodynamic damping is lost as the pitch is increased to 10 ◦.
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Figure 4.4 Numerical results at various pitch settings. Ω0 = 1.6 rad/s, ω2/ω1 = 2.0, u0 = 0 m. Left: αp,0 = −5◦.
Right: αp,0 = 10◦. a)-b) Lift coefficient. ( ) Static lift. ( ) Dynamic lift cL(αeq(t)). c)-d) q1(t). e)-f)
Sq1 (ω) obtained through FFT. g)-h) q2(t). i)-j) Sq2 (ω) obtained through FFT.
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4.2.3 Support point motion in constant wind field

The behaviour of the wing is analysed when excited by support point motion. The support point
motion is varied harmonically at various constant pitch settings and eigenfrequency ratios. The
frequency of the support point motion is ω0/ω1 = 1.0, the amplitude is kept constant u0 = 0.3
m, and the excitation frequency ratio is ω0/Ω0 = 3.0. Comparing with the analyses performed
in section 2.2 the system is stable for ω2/ω1 = 2.0 and unstable for ω2/ω1 = 1.8. Figure 4.5
shows results from a simulation with ω2/ω1 = 1.8. First the pitch setting is set to -5◦ with
the results illustrated to the left of Figure 4.5. From the top down, Figure 4.5 shows results
from cL(αeq) of section x′3 = 32 m, q1(t), q2(t), Poincaré map of q1(t) and q̇1(t) for 500
excitation periods T0, and the one-sided autospectral density function of q 1(t) corresponding
to the illustrated time series. For the harmonic case with constant lift, these conditions creates
chaotic response. At fully attached flow conditions, the response becomes periodic with the
period T = 3T0, indicated by three distinct circles in the Poincaré map. Also, the amplitude
of q2(t) is relative limited, and three main components are observed in the response located at
2
3ω1, ω1 and 4

3ω1. It should be noticed from Figure 4.5a that the equivalent angle of attack
varies with an amplitude of approximately 3◦. Now, the pitch is increased to 10◦ and the results
are plotted to the right in Figure 4.5. As seen, the amplitude of both q 1(t) and q2(t) increases
significantly. From the Poincaré map it is seen that q1(t) seems chaotic to the extend of the
simulated time series. The one-sided autospectral density function reveals the presence of several
new peaks, especially a significant component is present at 1.8ω1, which is due to the nonlinear
coupling terms. Finally, the amplitude of αeq is increased dramatically due to the aeroelastic
contributions, creating large variation in cL. From Figure 4.5b it is seen that the hysteretic loop
of cL seems chaotic. Hence, the loading on the profile resembles that of a broadbanded stationary
process. Furthermore, the system is lightly dampened under dynamic stall conditions. Basic
stochastic vibration theory suggests that the response at the undamped circular eigenfrequency
will be amplified relatively to other frequencies, see e.g. Nielsen (2000), which, by comparing
Figure 4.5i and Figure 4.5j, is also the case here.

Next, the eigenfrequency ratio is changed to ω2/ω1 = 2.0. The results are plotted in Figure
4.6. For the constant lift analysis, this situation is stable with a response period of T = 3T 0.
This is also the case when introducing dynamic variation of the lift at attached flow condition
illustrated to the left in Figure 4.6. The response is virtual identical to the results at ω 2/ω1 = 1.8
illustrated in Figure 4.5. However, when the pitch setting is equal to 10 ◦ the solution becomes
unstable due to loss of aerodynamic damping. The Poincaré map in Figure 4.6h illustrates a
non-periodic response. The strange attractor seems to be located around a three period motion
with three distinct areas of the Poincaré points, but within the simulation limits the response does
not become periodic. Comparing Figure 4.6i and Figure 4.6j reveals some changes in the relative
importance of the various frequency components. Especially, the resonance peak at ω/ω 1 = 1.0
is more marked, as also is clear from the time series in Figure 4.6d. Again this is a result of the
broadbanded chaotic excitation.

To illustrate the behaviour of the dynamic stall state variables, the support point motion is
varied harmonically with u0 = 0.3 m and ω0/ω1 = 1.0, ω2/ω1 = 2.0 and ω0/Ω0 = 3, while
αp is changed slowly from -5◦ to 5◦ and back again. The variation of the pitch is illustrated in
Figure 4.7a. The corresponding time series of q1(t) and q2(t) are plotted as ( ) in Figure
4.7b-c, and the mean values µq1(t) and µq2(t) are indicated by ( ). A significant increase
in oscillation amplitude is registered in both q1(t) and q2(t) as the pitch is increased into the
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stall regime, due to the loss of aerodynamic damping. The mean level of q 1(t) increases due to
increase in lift, while the mean level of q2(t) decreases as a result of the increased lift component
in the negative x′2-direction.

Time series of the dynamic stall state variables c1(t), c2(t), θd(t) and cL,v(t) are plotted
in Figure 4.8 for various wing sections corresponding to the pitch variation illustrated in Figure
4.7a. Variation of the state variables for three sections located at x ′

3 = 24 m, x′3 = 32 m
and x′3 = 40 m are plotted as ( ), ( ) and ( ), respectively. The amplitude of
the variations decreases clearly as the section is taken closer to the root, due to a decrease in
deformation velocities. The twist makes the mean angle of attack almost constant throughout
the considered sections, see Figure 4.3b, which causes the behaviour of the state variables to be
similar, i.e. all sections enters the dynamic stall region with increasing mean value of θ d and cL,v.
The mean value increase of θd and cL,v is a direct consequence of the section entering stall. The
increase in amplitudes of c1, c2, θd and cL,v are caused by the loss of damping resulting in large
oscillations. This introduces high amplitude oscillations of αeq , which results in an amplitude
increase of the state variables.

4.2.4 Rotation of wing in boundary layer flow with tower passage

The variation of the wind field is now included in the numerical simulation. The incoming flow
is assumed to be described by (4.2) and (4.3) including variation both from the logarithmic wind
field and the tower passage. The support point motion is assumed to vary harmonically with
an amplitude u0 = −0.1 m. The minus sign is to ensure that the support point motion is in
phase with the variation in the wind field. When Φ(t) = 0◦ the wing is in downwards position
located in the tower shadow, see Figure 2.2. Then, two wings are positioned at the upper part
of the flow field, introducing a high load situation with a resulting movement of the tower in the
negative x1-direction. The support point circular frequency is given as ω 0 = 3Ω0, corresponding
to a three bladed rotor. A primary resonance case is considered with ω 0/ω1 = 1.0. First, a
simulation is performed with a pitch setting of −5◦. In Figure 4.9 results from two simulations
are illustrated. The first simulation, indicated by ( ), includes contributions from elastic
deformation velocities q̇1(t) and q̇2(t) in the angle of attack, thus, aeroelastic contributions are
considered. Results from a simulation where the aeroelastic contributions are disregarded are
indicated by ( ). Time series of q1(t), q2(t), and V ′

1(t)+u̇′1(t) and αeq(t) of section x′3 = 32
m are plotted in Figure 4.9. A significant increase in deformation amplitude is registered, when
the aeroelastic contributions are disregarded, which occur since the aerodynamic dampening is
introduced via these terms. Also, from Figures 4.9c-d a clear support point frequency component
is seen in bothV ′

1+u̇′1 andαeq when including aeroelastic effects. This introduces high frequency
components in the loading together with an increased maximum wind component. An increase of
both wind velocity and angle of attack produces higher lift, but the aerodynamic damping keeps
the oscillations low compared with the situation where the aeroelastic effects are disregarded.

Next, q1(t) and q2(t) are plotted in Figure 4.10 with corresponding one-sided autospectral
densities at various pitch settings. Simulations with pitch settings −5◦, 5◦ and 9◦ are indicated
by ( ), ( ) and ( ), respectively. As the pitch setting is changed from −5 ◦ to 5◦

the mean level of q1(t) increases, because attached flow conditions produces increasing lift with
increasing angle of attack. However, the mean level of q2(t) decreases, because the lift compo-
nent in the negative x′

2-direction increases with increasing angle of attack. As the pitch setting
is changed to 9◦, the system becomes unstable, and especially the amplitude of q2(t) increases,
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introducing a frequency component at ω = 2ω1 in q1(t).

4.2.5 Active Vibration Control of Wind Turbine Wings under Dy-
namic Stall

The final numerical example introduces an active vibration algorithm using pitch actuation. A
closed loop control algorithm is used. Hence, the control law is determined from observable state
variables. In recent years most wind turbines are manufactured with pitch control systems, with
actuation systems which can induce pitch velocities close to 20◦/s. This limit will be used as
a cut-off limit for the control. To investigate the qualitative behaviour of the wing during active
control, a simple linear closed loop control law is used with a side condition of α̇ p(t) ≤ α̇p,max.
As mentioned in Chapter 2, two modal coordinates can at most be observed during operating
conditions. Correspondingly, the control law may be written as

αp(t) = αp,0 − k1

(
q̇1(t) + κ1ω1q1(t)

)
+ k2

(
q̇2(t) + κ2ω2q2(t)

)
,

α̇p(t) = −k1

(
q̈1(t) + κ1ω1q̇1(t)

)
+ k2

(
q̈2(t) + κ2ω2q̇2(t)

)
, (4.4)

where αp(t) is the control angle of attack, αp,0 is the initial pitch setting, k1, k2, κ1 and κ2 are
control gains. (4.4) is valid as long as |α̇p(t)| ≤ α̇p,max, where α̇p,max indicates the maximal
pitch rate of the actuator system. When α̇p crosses out of the barriers ±α̇p,max, αp is determined
from

αp(t) = ±(t− t̂)α̇p,max, α̇p(t) = ±α̇p,max, (4.5)

where t̂ is the time, when α̇p crosses out of the barrier.
To monitor the performance of the controlled system, the time variation of three variables

are used, being the mean deformation level µq1(t) of q1(t), the standard deviation σq1(t) of q1(t),
and the mean level µW (t) of the produced effect. To monitor the change of these variable, a time
average is taken over 6 support point excitation periods backwards in time. The selection of 6
periods for averaging interval seems to provide a fair tradeoff between localization in time and
accuracy. The average operator< · > t is introduced, defined as

< · >t=
1

6T0

∫ t

t−6T0

(·)dτ. (4.6)

Then, µq1(t), σq1(t), and µW (t) are defined from

µq1(t) =< q1(t) >t,

σq1 (t) =
√
< q21(t) >t −µ2

q1
,

µW (t) =< W (t) >t, (4.7)
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where W (t) is determined as

W (t) = Ω0

∫ L

0

p′2,A(x′3, t)x
′
3dx

′
3. (4.8)

In the following a series of simulations are performed with constant incoming wind field
and harmonic varying support point motion. The following parameters are used, u 0 = 0.5 m,
ω2/ω1 = 2.0, ω0/ω1 = 1.0 and ω0/Ω0 = 3.0. The initial pitch setting αp,0 is kept constant
through the various simulations, however, after approximately 25 s, the gain factors are changed
from 0 to k1 = 0.007 s/m, k2 = 0.014 s/m and κ1 = 0.7, i.e. the active control is initialized.
The term defined by κ2 turns out to introduce very little effect on the response, and κ 2 is set to 0
in the subsequent analyses.

At first a simulation is carried out with αp,0 = −1◦. The results are illustrated in Figure
4.11 to the left, where, from the top down, cL(αeq) of section x′3 = 32 m, α̇p(t), q1(t), µW and
σq1 (t) are plotted. In Figure 4.11c it is seen that the pitch velocity does not reach the maximum
of 20◦/s for this particular choice of gains. Figure 4.11i and Figure 4.11g shows a decrease
of approximately 37% in standard deviation and no significant change in produced effect, after
initialization of the control. Next, αp,0 is increased to 5◦. The results are illustrated to the
right in Figure 4.11. At this pitch setting the section operate under separated flow conditions
during the entire cycle. Here the pitch rate reaches the limit of 20 ◦/s. The efficiency of the
controller is approximately the same as before. The efficiency in the stall region is kept due to
the dynamic stall effect. No significant changes in the mean power level is observed, but the
level increases with increasing αp,0, since a larger portion of the lift component works in the
negative x′2 direction. In these simulations the drag coefficient is kept constant, but at angles of
attack close to the static stall angle a significant increase in drag is found keeping the power level
constant or even decreasing with increasing angle of attack.

Figure 4.12 shows the dynamic lift coefficient at various sections throughout the wing. Sec-
tion x′3 = 32 m, corresponding to Figures 4.11a-b, are indicated by ( ), while results from
section x′3 = 24 m and x′3 = 40 m are plotted as ( ) and ( ), respectively. To the
left the dynamic lift is plotted before initialization of the control, the right illustrates the corre-
sponding results after the control is started. Figure 4.12a-b shows results from a simulation with
αp,0 = −1◦, and Figure 4.12c-d illustrate results with αp,0 = 5◦. The static lift is plotted as
( ). For the low initial pitch case, illustrated in Figures 4.12a-b, no significant change in the
qualitatively behaviour is registered in the angle of attack and lift after the controller is started.
However, an increase in the amplitude of the effective angle of attack is noticed, especially for
the inner part of the wing. This is due to the active pitching motion. Whereas, for the outer part
of the wing, the effect is partly counteracted by the decrease in deformation velocities. For the
high initial pitch conditions the same effect is noted. Before the initialization of the control the
system exhibited chaotic behaviour, whereas after initialization of the control the motions seems
to stabilize and the loading becomes periodic.

The optimal choices of control gains are dependent on the pitch setting. A limit in efficiency
exists, when the pitch rate barrier is reached. By the method of trial and error the optimal gains
are found to be k1 = 0.02, k2 = 0.019 and κ1 = 0.6. A simulation with these gains is made
and the results are illustrated in Figure 4.13. This choice of gains induce a decrease in standard
deviation of approximately 45%, however, the strain on the pitch actuation system is severe with
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the pitch rate being equal to the maximum most of the time. Also, the variation of angle of attack
is relatively large, making calibration of the dynamic stall model essential.

4.3 Concluding Remarks

In this chapter the qualitative behaviour of the combine nonlinear two-degrees-of-freedom struc-
tural model and the 4 state variable dynamic stall model is analysed. The performance is illus-
trated through four different numerical examples. Firstly, the support point motion is disregarded
and the wing is pitched harmonically around a mean level in the attached flow region and in the
stall region. It is shown that a considerable damping is present in the attached flow region.
Consequently, the pitch frequency becomes the main component in both q 1(t) and q2(t). In
the stall region the aerodynamic damping is lost and significant eigenfrequency components are
present in both q1(t) and q2(t). Next, the support point motion is assumed to vary harmonically
at various constant pitch settings and at various values of the eigenfrequency ratio ω 2/ω1. At
eigenfrequency ratio equal to 1.8 the response is chaotic under constant lift. During attached
flow conditions all eigenfrequency ratios produces periodic response due to the significant aero-
dynamic damping. In the stall region non-periodic response exists for all eigenfrequency ratios,
but at ω2/ω1 = 2.0 the strange attractor of the system is close to a period three motion, while for
ω2/ω1 = 1.8 dynamic instability occur with large amplitudes of the state variables.

The significance of aeroelastic contributions is illustrated by simulations using a logarithmic
wind field including effects from tower passage. Considerable aeroelastic damping is introduced
via the aeroelastic contributions keeping low levels of oscillations at attached flow conditions.
Also, a clear rotational frequency component and a support point frequency is present in the
angle of attack when including aeroelastic effects. Under attached flow conditions the rotational
frequency component is also present in the response, but as the pitch is increased into the stall
region, this component becomes less significant.

Finally, a simple linear active control algorithm using the pitch system is devised with a side
condition for maximum pitch velocity. The performance is evaluated with respect to standard de-
viation of q1(t) and mean level of power output. The intend is to decrease the standard deviation
while keeping the mean power level approximately constant. The controller is shown to work
well with a possible decrease in standard deviation of 37%, when the pitch setting is set for the
wing to be in the stall region. If the pitch setting is increased a drop in efficiency is observed
due to decrease of aerodynamic damping. The efficiency may be further increased, however,
this would induce unrealistic strains on the pitch system. At high pitch settings the system may
exhibit chaotic behaviour, which is shown to be stabilized by introducing the controller. In both
cases no observable change of the power output is registered by introducing the controller. Using
the observable state variable the control algorithm is easily implemented into the system. The
qualitatively behaviour of the controlled system has been illustrated by numerical examples, but
no stability issues of the controller has been addressed. In Larsen and Nielsen (2005a), which is
under preparation, these issues are to be investigated.
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CHAPTER 5
Stochastic Stability of Linear
and Nonlinear Parametrically

Excited Systems

In this chapter work is presented on the stochastic stability of three different mechanical sys-
tems. Firstly, the stability of a linear mechanical system under stochastic parametric excitation
is analysed using Lyapunov exponents. The stochastic excitation is modelled as a renewal jump
process. Secondly, a two-degrees-of-freedom system of a support point excited cable is analysed
under both harmonic and stochastic support point motion. The first two analyses are made as
preliminary studies to the stability analysis of the nonlinear wind turbine wing under stochastic
variation of the support point motion, where parametric excitation play a significant role. The
work presented in section 5.1 and section 5.2 is based on the work of (Iwankiewicz et al. 2005)
and (Larsen and Nielsen 2004b), respectively.

5.1 Stochastic Stability of Mechanical Systems Under
Renewal Jump Process Parametric Excitation using
Lyapunov Exponents

Dynamic stability of elastic systems under parametric stochastic excitation has been a subject
of research for several decades. Most of the papers on stochastic stability which have appeared,
deal with the systems under Gaussian white noise or wide-band parametric excitations. Ariarat-
nam (1966) was among the first to deal with the problem of dynamic stability of a beam-column
under a Gaussian white noise parametric stochastic loading. Ariaratnam et al. (1991), Gries-
baum (1999) and Simon and Wedig (2001) considered problems concerning stochastic stability
of problems including more than two state variables. Griesbaum (1999) and Simon and Wedig
(2001) considered problem governed by two coupled, white-noise driven, equations. For the
four state variables they used a hyperspherical transformation and under the ergodicity assump-
tion they investigated the Lyapunov exponents with the aid of ensemble averaging rather than
time averaging.

Much less attention has been given to non-Gaussian stochastic parametric excitations for
example to random pulse trains. Samuels (1963) was one of the first authors to deal with para-
metric excitation in form of a random train of impulses. Kotulski and Sobczyk (1988) dealt
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with the moment stability of a system under a stochastic jump process excitation in form of the
random telegraph process X(t) = (−1)N(t), where N(t) is a Poisson counting process.

The stochastic parametric excitation considered here is a random train of non-overlapping
rectangular pulses with equal, deterministic heights. The excitation, or dynamic loading, of this
kind may occur in some control systems where the controlling device switches the clutch on and
off. Thereby different parts of the system are coupled or decoupled, thus giving rise to sudden
dynamic loading or unloading. The dynamic loading may act both as an external or as a para-
metric excitation. The duration of pulses are assumed to be negative exponential-distributed ran-
dom variables, and the time gaps between two consecutive pulses are also negative exponential-
distributed random variables. The parameters of the interval distributions are different. The pulse
arrival times of the described load process define a specific renewal counting process, which is
termed a generalized Erlang process (Iwankiewicz and Nielsen 1999, pp. 85). The excitation
process is shown to allow for a reformulation of the original non-Markovian stochastic differ-
ential equation into a nonlinear generalized Itô differential equation driven by 2 independent
Poisson counting processes at the expense of the introduction of an extra state variable. More-
over, if two state variables are introduced the problem may be recasted into an equivalent linear
generalized Itô differential equation. The response in a single mode is investigated. Hence, the
original problem is governed by the state vector made up of the velocity and displacement.

The objective is to investigate the asymptotic moment stability and Lyapunov asymptotic
(sample curve) stability with probability 1. Asymptotic stability of first- and second-order or-
dinary moments is investigated analytically, by evaluating the largest of the real parts of all the
eigenvalues. In order to investigate the asymptotic sample stability via Lyapunov exponents the
transformation of the four state variables of the equivalent linear formulation to hyperspherical
coordinates is made and two methods are used. One is the direct simulation of the stochas-
tic equation governing the natural logarithm of the hyperspherical amplitude process and of the
stochastic equations governing the angular processes. The other one is based on the ergodic-
ity assumption where the time averaging of the pertinent expressions is replaced by ensemble
averaging. A modification of the approach used in (Griesbaum 1999) and (Simon and Wedig
2001) has been developed. The numerical results show good qualitative agreement between the
two methods of evaluating the Lyapunov exponents. However, direct simulation is found to be
more robust and less time consuming and therefore more suitable for the problem. The asymp-
totic mean-square stability condition is more conservative than Lyapunov asymptotic (sample)
stability with probability 1 (Arnold 1984; Kozin and Sugimoto 1977). It is however not overly
conservative and may provide a good estimate of the asymptotic stochastic stability. The outline
is based on (Iwankiewicz et al. 2005).

5.1.1 Statement of the problem

Consider a beam-column under an axial compressive force, or a plate under in-plane compressive
forces. Using a single mode approximation we obtain the differential equation for the modal
coordinate Y (t)

Ÿ (t) + 2ζωẎ (t) + ω2Y (t) − βω2Z(t)Y (t) = 0, (5.1)

where the parametric load Z(t) specify the time variation of the dynamic compressive force, or
a parametric excitation. The values β = 1 and Z(t) = const. = 1 correspond to the classical,
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Euler critical force for the static buckling problem.
The stochastic excitation Z(t) is modelled as a jump process, in the form of a random train

of step forces of equal deterministic magnitude, with random force pulses T p and random time
gaps Tg between two consecutive forces. A sample of the excitation is shown in Figure 5.1.

5
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Tg1 Tg2 Tg3 Tg4 Tg5

1

t

t

t

Z(t)

Nµ(t)

Nν(t)

Figure 5.1 A sample path of the stochastic processes Nµ(t), Nν(t) and Z(t). (×) indicate Nµ-driven points and (◦)
indicate Nν -driven points.

The height of the pulses may be absorbed in the parameter β, so the amplitude of Z(t) can
be chosen as 1. It is assumed that the durations of all pulses are identically, negative-exponential
distributed random variables Tp with the parameter µ corresponding to the probability density
function

fTp(t) = µe−µt , t > 0. (5.2)

Likewise, all time gaps are assumed to be identical, negative exponential-distributed random
variables Tg with the parameter ν, so

fTg (t) = νe−νt , t > 0. (5.3)

The arrival times of the force pulses make up a renewal counting process with the inter-arrival
times Ta = Tg + Tp. The excitation Z(t) is governed by the stochastic equation, (Iwankiewicz
2002; Iwankiewicz 2003)
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dZ(t) = (1 − Z)dNν(t) − ZdNµ(t), (5.4)

where Nν(t) and Nµ(t) are mutually independent homogeneous Poisson counting processes
with parameters ν and µ, respectively. The differentials in (5.4) are dZ(t) = Z(t+ dt) − Z(t),
dNα(t) = Nα(t + dt) − Nα(t), α = µ, ν. Hence, the increments are interpreted in the It ô
sense as related to the succeeding differential time interval to present time t. Assume that the
initial condition for the Z(t) variable is Z(0) = 0. Then according to the equation (5.4) at the
first Nν(t)-driven point the variableZ(t) jumps from 0 to 1, at the first subsequentNµ(t)-driven
point it jumps back to 0, at the first subsequent Nν(t)-driven point it jumps again to 1 and so
forth. Due to memorylessness property of the Poisson counting processes N µ(t) and Nν(t),
this situation implies that the time-intervals Tp and Tg become negative-exponential distributed
(Iwankiewicz 2003).

Every sample function of Z(t) as governed by the equation (5.4) is a discontinuous func-
tion of time of bounded variation. Consequently the sample function of Ÿ (t) is discontinues
as follows from (5.1). In turn this means that Ẏ (t) is continues, and the sample function of
Y (t) is differentiable. Then, the existence and uniqueness of solutions of (5.1) is ensured, see
e.g. (Kreyszig 1999). Combining (5.1) and (5.4) the following state space formulation of the
dynamic system is achieved.

dY(t) = c(Y(t))dt + bν(Y(t))dNν (t) + bµ(Y(t))dNµ(t), (5.5)

where

Y(t) =

⎡
⎣YẎ
Z

⎤
⎦ , c(Y(t)) =

⎡
⎣ Ẏ

−ω2Y − 2ζωẎ + βω2Y Z
0

⎤
⎦ ,

bν(Y(t)) =

⎡
⎣ 0

0
1 − Z

⎤
⎦ , bµ(Y(t)) =

⎡
⎣ 0

0
−Z

⎤
⎦ . (5.6)

(5.5) appears as a generalized Itô-differential equation driven by the Poisson counting processes
Nµ(t) andNν(t). Due to the Markov property of the Poisson counting processes, the state vector
Y(t) becomes a Markov vector. The drift vector c(Y(t)) is quadratic nonlinear due to the term
Y Z . However, an equivalent linear system may be introduced at the expense of the introduction
of 2 new state variables Y3 = Y Z and Y4 = Ẏ Z as follows

dY3 = Ẏ Zdt+ Y dZ = Ẏ Zdt+ Y (1 − Z)dNν − ZdNµ,

dY4 = Ÿ Zdt+ Ẏ dZ = (−2ζωẎ − ω2Y + βω2ZY )Zdt+ Ẏ (1 − Z)dNν + Ẏ ZdNµ . (5.7)

Since, Z(t) is evaluated to either 0 or 1, Z 2(t) is also evaluated to 0 or 1. Hence, in the second
equation of (5.7) Z 2(t) may be replaced by Z(t). Combining (5.1) and (5.7) the following
generalized Itô differential equation may be formulated
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dZ(t) = AZ(t)dt + bν(Z(t))dNν (t) + bµ(Z(t))dNµ(t), (5.8)

where

Z(t) =

⎡
⎢⎢⎣
Y

Ẏ
Y Z

Ẏ Z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Y1

Y2

Y3

Y4

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

0 1 0 0
−ω2 −2ζω βω2 0

0 0 0 1
0 0 ω2(β − 1) −2ζω

⎤
⎥⎥⎦ ,

bν(Z(t)) =

⎡
⎢⎢⎣

0
0

Y1 − Y3

Y2 − Y4

⎤
⎥⎥⎦ , bµ(Z(t)) =

⎡
⎢⎢⎣

0
0

−Y3

−Y4

⎤
⎥⎥⎦ . (5.9)

It is worthwhile to note that Y3 = Y Z and Y4 = Ẏ Z are also jump processes. Both are equal to
zero in the time intervals, where Z(t) = 0.

5.1.2 Moment stability

Performing the averaging of the stochastic equations (5.5) does not result in a closed set of
equations for the mean values due to the presence of the term Y Z . However, this is not the case
for the linear stochastic equations (5.8). Taking the mean value of (5.8) provides

dE
[
Zi(t)

]
= AijE

[
Zj(t)

]
dt

+ E
[
Bν,i(Z)

]
E
[
dNν(t)

]
+ E

[
Bµ,i(Z)

]
E
[
dNµ(t)

]
, i, j = 1, 2, 3, 4 (5.10)

where index notation is used. In (5.10) it is utilized thatZ i(t) and dNµ(t) are mutual independent
as a consequence of the Itô interpretation, as is the case ofZi(t) and dNν(t). SinceE

[
dNµ(t)

]
=

µdt and E
[
dNν(t)

]
= νdt the following ordinary differential equations are obtained for the

mean values mj(t) = E
[
Yj(t)

]

d

dt

⎡
⎢⎢⎣
m1

m2

m3

m4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−ω2 −2ζω βω2 0
ν 0 −(ν + µ) 1
0 ν ω2(β − 1) −(2ζω + ν + µ)

⎤
⎥⎥⎦
⎡
⎢⎢⎣
m1

m2

m3

m4

⎤
⎥⎥⎦ (5.11)

In order to derive a closed set of differential equations for the second order moments, letm ij(t) =
E
[
Zi(t)Zj(t)

]
. Then

dmij(t) = E
[
Żi(t)Zj(t)

]
dt+ E

[
Zi(t)Żj(t)

]
= Aikmkj(t)dt +Ajkmki(t)dt+

(
E
[
Bν,iZj(t)

]
+ E

[
Bν,jZi(t)

])
E
[
dNν(t)

]
+
(
E
[
Bµ,iZj(t)

]
+ E

[
Bµ,jZi(t)

])
E
[
dNµ(t)

]
. (5.12)
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By use of the symmetric property mij(t) = mji(t), (5.12) produces 10 equations. Using the
identities E

[
Ẏ Y Z

]
= E

[
Y Ẏ Z

]⇒ m23 = m14 and E
[
Y ZẎ Z

]
= E

[
Y Ẏ Z

]⇒ m34 = m14,
the 6 equations specifying the development of m11,m12,m22,m13,m14 and m24 form a closed
set of equations listed as

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

m11

m12

m22

m13

m14

m24

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0 0
−ω2 −2ζω 1 βω2 0 0

0 −2ω2 −4ζω 0 2βω2 0
ν 0 0 −(ν + µ) 2 0
0 ν 0 ω2(β − 1) −(2ζω + ν + µ) 1
0 0 ν 0 2ω2(β − 1) −(4ζω + ν + µ)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

m11

m12

m22

m13

m14

m24

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(5.13)

First- and second-order moments are asymptotically stable if all the eigenvalues of the coefficient
matrices in (5.11) and (5.13) have negative real parts. The eigenvalues are evaluated numerically
and the regions are determined where all the eigenvalues have negative real parts.

5.1.3 Transformation to hyperspherical coordinates

First the following change of variables is performed

X1 = Y1, X2 = Y2/ω, X3 = Y3, X4 = Y4/ω, (5.14)

The stochastic differential equations (5.8) are then written in the following form

dX(t) = CX(t)dt+ B(X(t))dN(t),

X(t) =

⎡
⎢⎢⎣
X1

X2

X3

X4

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

0 ω 0 0
−ω −2ζω βω 0
0 0 0 ω
0 0 ω(β − 1) −2ζω

⎤
⎥⎥⎦ , N(t) =

[
Nν(t)
Nµ(t)

]

B(X(t)) = [Bµ(X(t))Bν(X(t))], Bµ(X(t)) =

⎡
⎢⎢⎣

0
0

X1 −X3

X2 −X4

⎤
⎥⎥⎦ , Bν =

⎡
⎢⎢⎣

0
0

−X3

−X4

⎤
⎥⎥⎦ . (5.15)

In Lyapunov exponents approach to stochastic stability problems it is convenient to transform
the original coordinates to hyperspherical ones (Khasminskii 1967; Griesbaum 1999; Simon and
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Wedig 2001), which are made up of the amplitude process A(t) and the angular processes Ψ(t),
Φ1(t) and Φ2(t). The advantage of such a transformation is that the equations are easier to han-
dle, as the introduced angular processes are always bounded and the equation for the logarithm
of the amplitude process may be directly integrated with respect to time. The hypergeometrical
transformation, which is a generalization of the van der Pol transformation for the 2D case, is
defined as follows

X1(t) = A(t) cosΨ(t) cosΦ1(t) cosΦ2(t),

X2(t) = A(t) sin Ψ(t) cosΦ1(t) cos Φ2(t),

X3(t) = A(t) sin Φ1(t) cos Φ2(t),

X4(t) = A(t) sin Φ2(t). (5.16)

The hyperspherical coordinates are expressed by the inverse transformations as

A(t) =
√
X2

1 (t) +X2
2 (t) +X2

3 (t) +X2
4 (t), 0 ≤A(t) <∞,

Ψ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arctan
(
X2(t)
X1(t)

)
, X1(t) ≥ 0,

arctan
(
X2(t)
X1(t)

)
+ π, X1(t) < 0,

, −π
2
<Ψ(t) <

3π
2
,

Φ1(t) = arctan

(
X3(t)√

X2
1 (t) +X2

2 (t)

)
, −π

2
<Φ1(t) <

π

2
,

Φ2(t) = arctan

(
X4(t)√

X2
1 (t) +X2

2 (t) +X2
3 (t)

)
, −π

2
<Φ2(t) <

π

2
. (5.17)

The generalized Itô’s differential rule, see e.g. (Iwankiewicz and Nielsen 1999) reads

dV (X(t)) =
∂V (X(t))
∂Xi

CijXj(t)dt+
∑

α=µ,ν

(
V (X(t) + Bα(X(t))) − V (X(t))

)
dNα(t),

(5.18)

where V (·) is an arbitrary differentiable function. The first term on the right hand side of (5.18)
specifies the increment of V according to conventional differential theory, whereas the last term
specifies the increment due to jumps of the Poisson processes. If a jump dNα(t) = 1 occurs, the
state vector changes from X(t) to X(t) + Bα(t). Then, the increment of the function becomes
V (X(t)+Bα(t))−V (X(t)) as indicated by (5.18). The stochastic equations for the transformed
variables are obtained as
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d
(

lnA(t)
)

= h1

(
Ψ(t),Φ1(t),Φ2(t)

)
dt+ g1ν

(
Ψ(t),Φ1(t),Φ2(t)

)
dNν

+ g1µ

(
Ψ(t),Φ1(t),Φ2(t)

)
dNµ

d
(
Ψ(t)

)
= h2

(
Ψ(t),Φ1(t),Φ2(t)

)
dt+ g2ν

(
Ψ(t),Φ1(t),Φ2(t)

)
dNν

+ g2µ

(
Ψ(t),Φ1(t),Φ2(t)

)
dNµ,

d
(
Φ1(t)

)
= h3

(
Ψ(t),Φ1(t),Φ2(t)

)
dt+ g3ν

(
Ψ(t),Φ1(t),Φ2(t)

)
dNν

+ g3µ

(
Ψ(t),Φ1(t),Φ2(t)

)
dNµ,

d
(
Φ2(t)

)
= h4

(
Ψ(t),Φ1(t),Φ2(t)

)
dt+ g4ν

(
Ψ(t),Φ1(t),Φ2(t)

)
dNν

+ g4µ

(
Ψ(t),Φ1(t),Φ2(t)

)
dNµ, (5.19)

where the drift terms are given by

h1 = cosΦ2(t)
(
− 2ζω sin2 Ψ(t) cos2 Φ1(t) cosΦ2(t)

+ βω sin Ψ(t) sinΦ1(t) cos Φ1(t) cosΦ2(t) + βω sinΦ1(t) sin Φ2(t)
)
− 2ζω sin2 Φ2(t),

h2 = −ω − 2ζω sin Ψ(t) cosΨ(t) + βω cosΨ(t) tanΦ1(t),

h3 = 2ζω sin2 Ψ(t) cosΦ1(t) sin Φ1(t) − βω sin Ψ(t) sin2 Φ1(t) + ω cosΦ1(t) tan Φ2(t),

h4 = 2ζω sin2 Ψ(t) cos2 Φ1(t) cosΦ2(t) sin Φ2(t)
− βω sin Ψ(t) cosΦ1(t) sin Φ1(t) cosΦ2(t) sin Φ2(t)

− ω sin Φ1(t) + βω sin Φ1(t) cos2 Φ2(t) − 2ζω cosΦ2(t) sin Φ2(t), (5.20)

and the diffusion terms are expressed as
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g1ν =
1
2

ln 2 + ln
(

cosΦ1(t) cosΦ2(t)
)
,

g1µ = ln
(

cosΦ1(t) cosΦ2(t)
)
,

g2ν = 0,

g2µ = 0,

g3ν = arctan
(

cosΨ(t)
)
− Φ1(t),

g3µ = −Φ1(t),

g4ν = arctan
( sinΨ(t)√

1 + cos2 Ψ(t)

)
− Φ2(t),

g4µ = −Φ2(t). (5.21)

The angular process Ψ(t) is not a jump process driven by the Poisson processes, as it is seen in
(5.19) and (5.21) (g2ν = 0 and g2µ = 0) this process develops only due to drift. However, it
is a discontinuous, or a jump, process of another kind. As it follows from its definition (5.17)
at the time instants when the displacement response X1(t) changes the sign, the process Ψ(t)
reveals jumps of magnitude 2π. Between these jumps the time evolution of Ψ(t) is due to drift
only. The angular processes Φ1(t) and Φ2(t) are exactly equal to zero in the time intervals where
Z(t) = 0. This can be observed directly in (5.17), but it also follows from the coefficients h 3,
h4 as given by (5.20) and from g3ν , g3µ, g4ν , g4µ, as given by (5.17). If the processes Φ1(t) and
Φ2(t) start, in some time interval, from zero values, then h3 = 0 and h4 = 0, hence there is
no drift development and these processes continue to be zero. At the first N ν-driven point there
are jump changes in both Φ1(t) and Φ2(t) and at the first subsequent Nµ-driven point there is a
jump back to zero. The drift development is only present when Z(t) = 1, hence Φ 1(t) �= 0 and
Φ2(t) �= 0.

5.1.4 Lyapunov exponents and stability with probability 1

The trivial solution X(t) ≡ 0 of (5.15), is almost surely asymptotically stable, if the largest
Lyapunov exponent is negative, hence if

λ = lim
t→∞

1
t

ln
( |X(t)|
|X(0)|

)
< 0, (5.22)

where |X(t)| =
√
X2

1 (t) +X2
2 (t) +X2

3 (t) +X2
4 (t). This definition of λ is used by Xie (2005),

who devised a numerical approach for determining the pth moment Lyapunov exponents by the
use of Monte carlo simulation. This approach is convenient when the noise excitation cannot be
described in such a form it can be treated easily. Here the sample stability governed by (5.22) is of
interest and the first and second moment stability is governed by the eigenvalues of the matrices
of (5.11) and (5.13), respectively. The sample stability could be investigated numerically, by
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simulating the stochastic equations (5.15). However when the sample curve is unstable, the
values of the state variables become very large, which causes some numerical problems. It is
more convenient to make use of the fact that

√
X2

1 (t) +X2
2 (t) +X2

3 (t) +X2
4 (t) = A(t) and

find the Lyapunov exponent as

λ = lim
t→∞

1
t

ln
(
A(t)
A(0)

)
< 0, (5.23)

simulating directly the stochastic equation for lnA(t), as given by (5.19). The advantage of this
kind of simulation is that the only functions involved at the right-hand sides of the equations
(5.19) are the angular processes Ψ(t), Φ1(t) and Φ2(t), which are bounded, see (5.17). As the
amplitude processA(t) is not involved at the right-hand side of (5.20) for lnA(t), cf. (Griesbaum
1999; Simon and Wedig 2001), this equation can be directly integrated with respect to time and
substituted into (5.23) which results in a time-average integral

λ = lim
T→∞

1
T

T∫
0

(
h1

(
Ψ(t),Φ1(t),Φ2(t)

)
dt+g1ν

(
Φ1(t),Φ2(t)

)
dNν+g1µ

(
Φ1(t),Φ2(t)

)
dNµ

)

(5.24)

Assuming ergodicity of h1

(
Ψ(t),Φ1(t),Φ2(t)

)
, g1ν

(
Φ1(t),Φ2(t)

)
, and

g1µ

(
Φ1(t),Φ2(t)

)
we can make the following replacement

λ = lim
T→∞

1
T

T∫
0

(
E
[
h1

(
Ψ(t),Φ1(t),Φ2(t)

)]
dt+ E

[
g1ν

(
Φ1(t),Φ2(t)

)
dNν

]

+ E
[
g1µ

(
Φ1(t),Φ2(t)

)
dNµ

])
(5.25)

where E
[
g1ν

(
Φ1(t),Φ2(t)

)
dNν

]
= E

[
g1ν

(
Φ1(t),Φ2(t)

)]
νdt and

E
[
g1µ

(
Φ1(t),Φ2(t)

)
dNµ

]
= E

[
g1µ

(
Φ1(t),Φ2(t)

)]
µdt. Further, it is assumed that the processes

Φ1(t), Φ2(t) and Ψ(t) are stationary, hence, there exist time-invariant marginal probability den-
sities p(ψ, φ1, φ2) and p(φ1, φ2). Then the expectations in (5.25) are also time-invariant and we
obtain

λ = E
[
h1

(
Ψ(t),Φ1(t),Φ2(t)

)]
+ νE

[
g1ν

(
Φ1(t),Φ2(t)

)]
+ µE

[
g1µ

(
Φ1(t),Φ2(t)

)]

=

3π/2∫
−π/2

π/2∫
−π/2

π/2∫
−π/2

h1(ψ, φ1, φ2)p(ψ, φ1, φ2)dψdφ1dφ2

+

π/2∫
−π/2

π/2∫
−π/2

(
νg1ν(φ1, φ2) + µg1µ(φ1, φ2)

)
p(φ1, φ2)dφ1dφ2. (5.26)
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The probability densities p(ψ, φ1, φ2) and p(φ1, φ2) are evaluated from Monte Carlo sim-
ulations of the hyperspherical angular coordinate processes Ψ(t), Φ 1(t) and Φ2(t) based on the
equations (5.19). Due to the jump nature of the angular processes Φ 1(t) and Φ2(t), and the fact
that they are equal to zero during some significant time intervals, the marginal probability densi-
ties p(ψ, φ1, φ2) and p(φ1, φ2) are very spiky, the spikes being at φ1 = 0, φ2 = 0. This makes
the numerical evaluation of the integrals (5.26) cumbersome. The evaluation is significantly
improved if those spikes are represented in the probability densities in the following way

p(ψ, φ1, φ2) = P0δ(φ1)δ(φ2)p(ψ) + (1 − P0)p0(ψ, φ1, φ2), (5.27)

p(φ1, φ2) = P0δ(φ1)δ(φ2) + (1 − P0)p0(φ1, φ2), (5.28)

where δ(...) is the Dirac delta, p(ψ) is the marginal probability density of Ψ(t) and p 0(ψ, φ1, φ2),
p0(φ1, φ2) are conditional probability densities p0(ψ, φ1, φ2) = p(ψ, φ1, φ2|φ1 �= 0, φ2 �= 0),
p0(φ1, φ2) = p(φ1, φ2|φ1 �= 0, φ2 �= 0), whose areas are normalized to one. The heights P0

of the spikes are obtained by collecting the counts for which φ 1 = 0, φ2 = 0. The integrals in
(5.26) reduce to

λ = −2ζωP0

3π/2∫
−π/2

sin2 ψp(ψ)dψ

+ (1 − P0)

3π/2∫
−π/2

π/2∫
−π/2

π/2∫
−π/2

h1(ψ, φ1, φ2)p0(ψ, φ1, φ2)dψdφ1dφ2

+
1
2
νP0 ln 2 + (1 − P0)

π/2∫
−π/2

π/2∫
−π/2

(
νg1ν(φ1, φ2) + µg1µ(φ1, φ2)

)
p0(φ1, φ2)dφ1dφ2.

(5.29)

The simulation scheme for the hyperspherical angular processes governed by (5.19) is as follows.
Between the Poisson points the Runge-Kutta scheme is used. At the first Nν(t)-driven point and
at every first Nν(t)-driven point tkν subsequent to an Nµ(t)-driven point there is an increment
dNν = 1, hence according to (5.19) and (5.21) there is a jump change in Φ i(t) of magnitude
giν

(
Ψ(t−kν),Φ1(t−kν),Φ2(t−kν)

)

Φi(t+kν) = Φi(t−kν) + giν

(
Ψ(t−kν),Φ1(t−kν),Φ2(t−kν )

)
. (5.30)

At the first Nµ(t)-driven point tkµ subsequent to an Nν(t)-driven point dNµ = 1, hence accord-
ing to (5.20) there is a jump change in Φ i(t) of magnitude giµ

(
Ψ(t−kν),Φ1(t−kν),Φ2(t−kν)

)
=

−Φi(t−kν)

Φi(t+kµ) = Φi(t−kµ) + giµ

(
Ψ(t−kµ),Φ1(t−kµ),Φ2(t−kµ)

)
= 0. (5.31)
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Thus the initial conditions Φi(t+kν) or Φi(t+kµ) for the subsequent time interval starting at t+kν or

t+kµ are determined.

5.1.5 Numerical results

As the pulses and time gaps are negative-exponential distributed the mean pulse is E[T p] = 1/µ
and the mean time gap isE[Tg] = 1/ν. The mean inter-arrival time of the pulses equalsE[Ta] =
E[Tp] + E[Tg] = µ+ν

µν . Computations have been performed for pulses with parameters:

� (µ, ν) = (0.1, 0.1); long pulses/long gaps.

� (µ, ν) = (1, 1); moderate pulses/moderate gaps.

� (µ, ν) = (10, 10); short pulses /short gaps.

� (µ, ν) = (0.1, 10); long pulses/short gaps.

The respective mean inter-arrival times are E[Ta] = 20; 2; 0.2; 10.1 [s]. A non-dimensional
parameter τ = (µ+ν)ω

µνπ is introduced, which is the ratio of the mean inter-arrival time E[T a] of
the pulses to half of the natural period Tn = 2π/ω of the system. In other words, τ is a relative
measure of the density of the pulse train or of its mean arrival rate. This setting is inspired by
the fact that a corresponding harmonic parametric excitation with the circular frequency 2ω will
cause instability for ζ = 0. Example sample functions of the displacement response Y (t) and of
the velocity response Ẏ (t) for the stable behaviour, obtained for the initial conditions Y (0) = 1
and Ẏ (0) = 0 are shown in Figures 5.2a and 5.2b, respectively. It is seen that the system is
performing essentially the natural vibrations.
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a) b)

Figure 5.2 Sample function of the stable response. Moderate pulses/moderate gaps: µ = 1.0s−1, ν = 1.0s−1,
ζ = 0.05, β = 0.5, τ = 0.5. a) Displacement Y (t). b) Velocity Ẏ (t).

Figure 5.3a shows an example phase plot of the stable response obtained for the initial
conditions Y (0) = 1 and Ẏ (0) = 0. An example phase plot of the unstable response is shown in
Figure 5.3b.

Simulated sample function of Z(t) obtained for the initial condition Z(0) = 0 giving the
stable response in Figures 5.2 and 5.3a is shown in Figure 5.4.
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Figure 5.3 Phase plot of the response. ζ = 0.05, µ = 1.0, ν = 1.0, τ = 0.5. (×) indicate start conditions. a) Stable
condition β = 0.5. b) Unstable condition β = 1.2.
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Figure 5.4 Simulated sample function of Z(t) for µ = 1.0, ν = 1.0.

Figure 5.5a shows lnA(t) for the stable response behaviour illustrated in Figure 5.2 and
5.3a. The example sample functions of the angular processes Ψ(t), Φ 1(t) and Φ2(t) corre-
sponding to the sample function of Z(t) shown in the Figure 5.4 are shown in Figures 5.5b-d,
respectively. The behaviour of Φ1(t), Φ2(t) is in agreement with the one predicted from the gov-
erning stochastic equations (5.19)-(5.21). The process Ψ(t) reveals jumps of magnitude 2π at the
time instants separated by the intervals equal to the natural periods. This is in agreement with the
fact that the system is performing essentially the natural vibrations (cf. Figure 5.2), hence X 1(t)
changes the sign periodically.

The spectrum of the sample function of Ψ(t), obtained by FFT, is plotted in Figure 5.6. Ω
indicates the running frequency and the abscissae axis has been normalized with respect to the
undamped circular eigenfrequency ω. The spectrum reveals the peak at the natural frequency
Ω � ω and some finite value at Ω = 0, which corresponds to the non-zero time average of the
sample function.

Final, sample functions of the marginal probability densities p0(Ψ) and p0(Φ1,Φ2) used in
(5.27) are illustrated in Figures 5.7a-b, respectively. The spiked behaviour of p 0(Φ1,Φ2) is due
to the numerical sorting of simulated Φ1 and Φ2, which is done in a cartesian grid with sides of
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length 0.01. As seen, a polar grid would be more convenient in this case.
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Figure 5.7 Marginal probability densities of the sample function for ζ = 0.05, µ = 1.0, ν = 1.0, β = 0.5, τ = 0.5.
a) p0(Ψ). b) p0(Φ1, Φ2).

In Figure 5.8 the stability regions are plotted against the non-dimensional parameter τ . The
curves in Figure 5.8 show the stability regions border lines. The stability region is below the
curve. ( ) and ( ) indicate lines of zero real parts of the eigenvalue with the largest real
part, for the mean and mean-square stability, respectively. ( ) indicates the zero Lyapunov
exponent as obtained by direct simulation of the equation for lnA(t), as given by (5.19). ( )
corresponds to the zero Lyapunov exponent as evaluated by ensemble averaging, in terms of in-
tegrals (5.27). The results for Lyapunov exponents obtained from both methods are qualitatively
the same. It is seen that the lines of zero Lyapunov exponents lie above the lines obtained from
the mean-square stability.

If µ = ν, i.e. the mean duration of the pulses and mean time gaps are the same, the curves
showing stability regions have very similar shape, see Figures 5.8a-c. As the natural frequency
ω of the system decreases, so does the parameter τ and the stability region increases. The curves
for the moment stability have identical shapes. However the stability regions are not the same,
because the results are shown against the relative parameter τ . When µ and ν are large the same
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Figure 5.8 Stability curves as function of τ and β. ζ = 0.05. ( ) mean stability. ( ) mean-square stability.
( ) Lyapunov exponents by direct simulations. ( ) Lyapunov exponents by ensemble averaging.
a) Long pulses/long gaps: µ = 0.1s−1, ν = 0.1s−1.
b) Moderate pulses/moderate gaps: µ = 1.0s−1, ν = 1.0s−1.
c) Short pulses /short gaps: µ = 10s−1, ν = 10s−1.
d) Long pulses /short gaps: µ = 0.1s−1, ν = 10s−1.

value τ as for small µ and ν corresponds to a higher natural frequency. For example for a pulse
train with (µ, ν) = (0.1, 0.1) and E[Ta] = 20 (Figure 5.8a) the natural frequency corresponding
to a value τ = 1 equals π/20, while for (µ, ν) = (1, 1) with E[Ta] = 2 (Figure 5.8b) it is π/2.
It is seen that a larger stability region corresponds to ω = π/20 in Figure 5.8b than in Figure
5.8a. This means that as the mean inter-arrival time of the pulses decreases the stability region
for the same oscillator increases. In other words, the stability region is larger for the pulse train
with short pulses and short gaps then for long pulses and long gaps.

When the pulses have long mean pulses and short mean gaps (Figure 5.8d), it corresponds
to the load which is almost constant and quasi-static. The lines for mean, mean-square and
Lyapunov stability by the direct simulations coincide. The stability region is essentially the same
as for the classical buckling problem, i.e. β = 1 is the critical value.

Regarding the computational effort, it should be commented that the direct simulation con-
verges much faster than the time-averaging method, with a factor of 100. Further, the direct
simulation is simpler to program. The main problem of the time-averaging method is to deter-
mine the probability density functions p(ψ, φ1, φ2) and p(φ1, φ2) which is very time consuming.
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In all examined cases the asymptotic sample stability condition reveals larger regions of
stability than the asymptotic mean square condition. This observation is in agreement with the
general fact that the asymptotic moment stability is more conservative than Lyapunov asymptotic
stability with probability one (asymptotic sample stability) (Arnold 1984; Kozin and Sugimoto
1977). In particular, the asymptotic mean square stability implies, for the linear systems, stability
with probability 1 (Lin and Cai 1995).

5.1.6 Concluding remarks

Asymptotic stability of first- and second-order moments as well as Lyapunov asymptotic (sam-
ple) stability with probability 1 are investigated for the dynamic system under a renewal driven
jump process parametric excitation. The original state vector of the system is a non-Markov
process, however the excitation process is shown to be governed by the stochastic equation driven
by two independent Poisson processes, with different parameters, which allows to convert the
original non-Markov problem into a Markov one. The original state vector has been augmented
by two additional equations. It has been shown that the set of equations for the mean values is
closed by appending the equations for two extra second-order moments and the equations for
second-order moments form a closed set if the equations for three extra third-order moments are
added. In order to investigate the asymptotic sample stability the transformation of the four state
variables to hyperspherical coordinates is made. The Lyapunov exponents have been evaluated
with the aid of two methods. The first one is direct simulation of the stochastic equation govern-
ing the natural logarithm of the hyperspherical amplitude process. In the second approach, based
on ergodicity assumption, time averaging of the pertinent expressions is replaced by ensemble
averaging and the modification of the approach used in (Griesbaum 1999) and (Simon and Wedig
2001) has been developed. The numerical results show good qualitative agreement between two
methods of evaluating the Lyapunov exponents. Direct simulation is however more robust and
less time consuming, hence it is more suitable for the problem. The asymptotic mean-square
stability condition is more conservative than Lyapunov asymptotic (sample) stability with prob-
ability 1. However, the asymptotic mean-square stability condition is shown not to be overly
conservative and therefore provides a good estimate of the asymptotic stochastic stability.
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5.2 Stochastic Stability of Whirling Motion of a Shallow
Cable Using Floquet Theory

Cables used as structural support elements of masts, towers and cable-stayed bridges are char-
acterised by a sag-to-chord-length ratio below of 0.01, which means that the natural frequencies
for the vertical and the horizontal vibrations are pairwise close. The slenderness of the cables
makes them prone to vibrations, either induced by direct loads on the cables from the wind or
a combination of wind and rain (Cao et al. 2001; Geurts et al. 1998), or via motion of the
supported structure. Typically, the supported structure is performing narrow-banded random vi-
brations, with the implication that the cables will be subjected to narrow-banded support-point
motions. Especially, the component of the relative support-point motion along the chord is im-
portant for the cable dynamics. Primarily, the said displacement component is exciting the cable
as an additive load term in the in-plane equation of motion. Additionally, the component ap-
pears as parametric load terms in both the in-plane and the out-of-plane equations of motion.
If the centre frequency of this excitation is close to a pair of cable eigenfrequencies strong 1:1
internal resonance vibrations in the involved modes take place. Since the eigenfrequencies of
the symmetric in-plane modes are increasing with the Irvine stiffness parameter, similar inter-
nal resonance couplings involving the first symmetric in-plane mode, the second antisymmetric
in-plane and the second antisymmetric out-of-plane modes may occur at a somewhat higher sag-
to-chord-length ratio corresponding to the so-called cross-over eigenfrequency of the cable. At
a still higher sag-to-chord-length ratio nonlinear interactions between the first symmetric mode
and the second symmetric out-of-plane modes may occur. Similar interaction patterns exist for
the second and higher order symmetric in-plane modes.

For shallow cables additional internal resonances caused by nonlinear or parametric cou-
pling terms occur, if the excitation frequency is a multiple of the eigenfrequencies of the consid-
ered pair of modes (super-harmonic response), or a fraction of these frequencies (subharmonic
response). Normally, the subharmonic response is more pronounced. Also coupled or uncou-
pled harmonic responses with the frequency fraction 2/3 (combinatorial harmonic response) may
occur.

Forced response with coupled vertical and horizontal responses has been analysed in a num-
ber of studies based on Galerkin based reduced two-degrees-of-freedom models. Tadjbakhsh and
Wang (1990) investigated the response of wind induced cables modelled as a three-degrees-of-
freedom system including quadratic nonlinearities with the internal resonant conditions ω 3 �
2ω2 and ω2 � 2ω1 with the second mode excited (Ω � ω2). They found that the system ex-
hibits both saturation and jump phenomena. It was demonstrated that the stable response to the
vertical excitation at a certain vibration level was a whirling motion involving a phase lag of
approximately ± π

2 between the modal coordinates.

Multiple internal resonances in cables were also investigated by Lee and Perkins (1995),
Benedettini et al. (1995a, 1995b), Rega et al. (1997), Benedettini and Rega (1994, 1997), Chang
and Ibrahim (1997), and Rega et al. (1999). Alternatively, Pakdemirli et al. (1995) suggest direct
attack on the partial differential equation since Galerkin reduced-order models of distributed-
parameter systems with quadratic and cubic nonlinearities in some cases may lead to erroneously
quantitative and even qualitative results.

Al-Noury and Ali (1985) considered the harmonic response due to a uniformly distributed
load with harmonic time variation, using a two-degrees-of-freedom Galerkin approach with sine
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functions used as functional basis, identical to the eigenmodes of the undamped taut cable. The
same problem was dealt with by Rao and Iyengar (1991), who used the undamped eigenmodes of
the parabolic equilibrium approximation as a functional basis at the reduction to a two-degrees-
of-freedom system. The use of the parabolic approximation is restricted to relatively small sag-
to-chord-length ratios. Vibrations caused by forced motions of the support points are especially
important for supporting cables used in stay bridges and TV-towers. The main effect on the non-
linear response is the introduction of significant parametric terms, which may cause significant
sub-, super- and combinatorial harmonic responses either in-plane or coupled with the out-of-
plane component, (Nielsen and Kirkegaard 2002). Nielsen and Krenk (2003) investigated the
nonlinear response of a shallow cable with linear viscous dampers placed close to the lower sup-
port point, loaded in the static equilibrium state. The analysis focused on the whirling motion of
the considered system under resonance using the complex eigenmode functions as a functional
basis.

Chang et al. (1996), Chang and Ibrahim (1997) and Ibrahim and Chang (1999) considered
the nonlinear stochastic response of a cable with a sag corresponding to the cross-over point with
the intention to study nonlinear interaction in a 4-degrees-of-freedomsystem including the lowest
two in-plane and the lowest two out-of-plane modes. Only the fundamental in-plane mode was
loaded in terms of a distributed Gaussian white noise. The variance of the response was analysed
by both a Gaussian closure scheme and a fourth order cumulant neglect closure scheme. Close
to the bifurcation of the out-of-plane solution a so-called "on-off intermittence" was observed
in which Monte Carlo simulation unveiled that multipeaked pdfs of all state variables occurred.
Both the Gaussian closure and the fourth order cumulative closure scheme failed to give accurate
predictions in this region. Moment methods such as Gaussian closure (equivalent linearization)
and cumulant neglect closure works well in cases of a monomodal state variables, and fails to
work satisfactory for multi-modal problems (Langley 1988; Sun and Hsu 1987).

Tagata (1978, 1989) studied the vibrations of a single-degree-of-freedom in-plane model of
a nonlinear string with a van der Pol type of damping mechanism and a Duffing type of stiffness
term. The excitation was a narrow-banded Gaussian excitation, obtained by filtering Gaussian
white noise through a second order filter. The numerical results were obtained by Monte Carlo
simulations.

Richard and Anand (1983) considered a two-degrees-of-freedom nonlinear string excited by
a distributed in-plane weakly stationary narrow-banded Gaussian random process. They studied
the existence of an upper bound on the bandwidth and a lower bound on the excitation intensity
for the occurrence of multiple response states. A method for determining necessary and sufficient
conditions for almost sure asymptotic stability is also presented.

The aim is to give an explanation of the mentioned "on-off intermittence" region reported by
Ibrahim and co-workers. It is demonstrated that the multipeaked pdfs in the intermittence region
is caused by random jumps between various periodic motions, which are stable under harmonic
excitation, but become unstable with probability 1 under stochastic excitation. Especially, it
is demonstrated that the jumps between vibration states in case of narrow-banded excitation are
related to out-crossings of the envelope of the non-dimensional chord elongation at barrier levels.

Here a Galerkin based reduction of the nonlinear shallow cable equations to a two-degrees-
of-freedom system is carried out using the fundamental in-plane and out-of-plane linear modal
modes as a functional basis. At first possible stable periodic motions are identified under 1:1
internal resonance between the considered modes due to harmonically varying support points.
These turn out to be a whirling and two in-plane modes of vibration. The in-plane modes are
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characterized with large and small amplitudes, respectively. Next, the support point motion is
changed to a narrow banded excitation with centre frequency Ω and envelope process comparable
to the frequency and amplitude of the harmonic excitation. During the stochastic excitation the
modal coordinates perform stochastic vibrations around the identified stable periodic motions,
which form a kind of mean value response. Although stochastic, these motions are distinguish-
able by qualitatively different levels of amplitudes and phases, for which reason they will be
referred to as "states". During narrow banded stochastic excitation it turns out that the motion in
all states are unstable with probability 1 with the implication that jumps take place to one of the
two other possible states. Correspondingly, the response of the cable is modelled as a three states
homogeneous continuous time Markov chain, (Papoulis 1984). The transitional probability rate
for jumps from state i to state j is denoted νij , where the index values i = 1, 2, 3 denote the
plane mode with small amplitude, the plane mode with large amplitude and the whirling mode,
respectively. Hence, ν13 represent the probability rate of jumping from the plane mode with
small amplitude to the whirling mode.

5.2.1 Modal equations of motion

f

l + ∆l

x

k1 k2 HH

vy

wz u

Figure 5.9 Cable in equilibrium configuration.

Figure 5.9 shows a cable with the chord placed along the horizontal x-axis and the static
equilibrium state y(x) in the (x, y)-plane. The cable is supported by springs k 1 and k2 modelling
the flexibility of the support point. The material point of the initial cable configuration with the
coordinates

(
x, y, 0

)
undergoes the displacement vector [u(x, t), v(x, t), w(x, t)]T in the three

coordinate directions. The cable is elastic with the modulus of elasticity E and cross-sectional
area A. The sag, the chord length, the total weight of the cable and the horizontal cable force in
the equilibrium state are denoted as f , l, W and H , respectively.

The vibrations of the cable are caused by elongations ∆l(t) of the chord due to forced
motions of the support point. Assuming a parabolic approximation to the equilibrium suspension,
and retaining up to cubic geometric nonlinear terms, the following derivation of the equation of
motion is based on conventional approximations in shallow cable theory, (Irvine 1992).

Within the shallow cable approximation the static curve of the cable is the parabola

y = 4f
(
1 − x

l

)x
l
, (5.32)

where f and l are related to the chord force H as
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Hf =
1
8
Wl. (5.33)

The unit tangential vector at a certain point of the initial cable configuration with the coordinates
(x, y, 0) is given as

t(x) =
d

ds

⎡
⎣xy

0

⎤
⎦ , (5.34)

where ds denotes an infinitesimal cable element at the considered position. The unit tangential
vector at the considered point in the new configuration becomes

t1(x, t) =
∂

∂s1

⎡
⎣x+ u
y + v
w

⎤
⎦ =

⎛
⎝t(x) +

∂

∂s

⎡
⎣uv
w

⎤
⎦
⎞
⎠ ds

ds1
. (5.35)

It follows from (5.35) that the initial and deformed length of the considered cable element are
related as

(ds1
ds

)2

= 1 + 2
(dx
ds

∂u

∂s
+
dy

ds

∂v

∂s

)
+
(∂u
∂s

)2

+
(∂v
∂s

)2

+
(∂w
∂s

)2

. (5.36)

The axial strain ε then follows from (5.36) as

ε =
ds1 − ds

ds
� dx

ds

∂u

∂s
+
dy

ds

∂v

∂s
+

1
2

(∂v
∂s

)2

+
1
2

(∂w
∂s

)2

. (5.37)

The term 1
2 (∂u/∂s)2 is of magnitude ε2, and has been omitted in comparison to the remaining

terms on the right hand side of (5.36), which are all of the magnitude ε. To the same order of
approximation

d(x + u)
ds1

=
(
1 +

∂u

∂x

) dx
ds1

� dx

ds
. (5.38)

The increment of the component of the cable force in the x-direction must balance ∆H ,

∆H =
(
F + ∆F

)d(x+ u)
ds1

− F
dx

ds
� ∆F

dx

ds
, (5.39)

where (5.38) has been used. The elasticity equation of the cable may then be written as

∆H
ds

dx
= EAε. (5.40)
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Insertion of (5.37) and the introduction of x as independent parameter then provides

∆H
( ds
dx

)3

= EA

(
∂u

∂x
+
dy

dx

∂v

∂x
+

1
2

(∂v
∂x

)2

+
1
2

(∂w
∂x

)2
)
. (5.41)

Due to the springs the chord length will change by

∆L(t) = −∆H(t)
(

1
k1

+
1
k2

)
+ ∆l(t). (5.42)

Next, integration over l is performed in (5.41), and ∆L(t) = u(l, t) − u(0, t) is eliminated by
means of (5.42), leading to

∆H(t)L0 = EA

(
∆l(t) + 8

f

l2

∫ l

0

vdx +
1
2

∫ 1

0

((∂v
∂x

)2

+
(∂w
∂x

)2
)
dx

)
, (5.43)

where

L0 = Le + EA

(
1
k1

+
1
k2

)
, (5.44)

and Le denotes the so-called effective cable length,

Le =
∫ l

0

( ds
dx

)3

dx �
∫ l

0

(
1 +

3
2

(dy
dx

)2
)
dx = l + 8

f2

l
. (5.45)

The approximation in the derivation of (5.45) introduces an error of the magnitude f 4/l4.

Since no external dynamic loads are acting the equations of motion for nonlinear vibrations
become

(
H + ∆H

)∂2v

∂x2
−m

∂2v

∂t2
− 8

f

l2
∆H = 0,

(
H + ∆H

)∂2w

∂x2
−m

∂2w

∂t2
= 0, (5.46)

where m denotes the mass per unit length of the cable. Insertion of (5.43) into (5.46) provides
the following coupled nonlinear integro-differential equations
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8fe(t) =
(
1 + e(t)
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(5.47)

where the non-dimensional coordinate ξ = x/l and the following parameters have been intro-
duced

e(t) =
EA

H

∆l(t)
L0

, λ2 = 64
EA

H

f2

L0l
, ω0 =

1
l

√
H

m
. (5.48)

e(t) is a non-dimensional representation of the chord-length elongation ∆l(t) of the order of
magnitude 1, and λ2 denotes the stiffness parameter defined by Irvine and Caughey (1974), which
controls the linear as well as the nonlinear parts of the dynamics. ω 0 denotes the fundamental
frequency for the taut wire. As seen, the differential equation for the in-plane displacement
v(ξ, t) is exposed to both parametric and additive excitation from the load term e(t). By contrast,
the differential equation for the out-of-plane displacement field w(ξ, t) is only parametrically
excited by e(t).

Due to the shallowness of the cable the eigenfrequencies will be pairwise closely spaced.
Further, the static equilibrium plane forms a symmetry plane for which reason the eigenvibrations
decouple in the in-plane modes, only affecting the displacement component v(x, t), and out-
of-plane vibrations affecting the displacement component w(x, t). Then, the following modal
expansions for the displacements in the y- and z-directions are valid

v(x, t) =
∞∑

j=1

Φ2j(x)q2j(t), w(x, t) =
∞∑

j=1

Φ2j−1(x)q2j−1(t). (5.49)

Based on the parabolic approximation for the static equilibrium state the following solutions
for the in-plane modes Φ2j(x) and out-of-plane modes Φ2j−1(x), as well as the related circular
eigenfrequencies ω2j and ω2j−1, may be derived for the jth eigenmode pair, cf. Irvine and
Caughey (1974)

Φ2j(x) =
cos
(

Ωj

2

(
1 − 2x

l

))− cos Ωj

2

1 − cos Ωj

2

, ω2j = Ωjω0,

Φ2j−1(x) = sin(jπ
x

l
), ω2j−1 = jπω0. (5.50)
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Odd and even numbers of j denote symmetric and antisymmetric modes, respectively. ω 0 denotes
the fundamental eigenfrequency of the taut wire, (5.48). As seen the eigenmodes have been
normalized to one at the midpoint of the cable. Ω j are non-zero solutions to the equation

tan
Ωj

2
=

Ωj

2
− 4
λ2

(Ωj

2

)3

. (5.51)

λ2 as defined by (5.48) is the non-dimensional parameter for the cable stiffness introduced by
Irvine and Caughey (1974).

In what follows emphasize will be on the case where the chordwise elongation causes si-
multaneous resonance in the lowest in-plane and out-of-plane modes. This means that all other
modes may be considered small, and consequently interaction from these modes on the directly
loaded modes may be disregarded. Then only the first terms in the expansion (5.49) are con-
sidered in what follows. Upon insertion into the nonlinear field equations (5.47), and use of the
relevant orthogonality properties, provides the following coupled ordinary differential equations
for the pertinent modal coordinates q1(t) and q2(t)

− 1
ω2

0

b1q̈1 −
(
1 + e(t)

)
c1q1 − λ2

8f
a2c1q1q2 − λ2

128f2
c1
(
c1q

2
1 + c2q

2
2

)
q1 = 0,

− 1
ω2

0

b2q̈2 −
(
1 + e(t)

)
c2q2 − λ2a2

2q2 −
λ2

16f
a2

(
c1q

2
1 + 3c2q22

)
− λ2

128f2
c2
(
c1q

2
1 + c2q

2
2

)
q2 = 8a2fe(t). (5.52)

where e(t) is a non-dimensional chord elongation of the magnitude O(1) as given by (5.48). The
remaining parameters are defined from

a1 =
∫ 1

0

Φ1dξ =
2
π
, b1 =

∫ 1

0

Φ2
1dξ =

1
2
, c1 =

∫ 1

0

(dΦ1

dξ

)2

dξ =
π2

2
,

a2 =
∫ 1

0

Φ2dξ =
2 sin Ω1

2 − Ω1 cos Ω1
2

Ω1

(
1 − cos Ω1

2

) � 2
π

(
1 − 4 + 2π − π2

4π
∆Ω
)
,

b2 =
∫ 1

0

Φ2
2dξ =

−3 sinΩ1 + Ω1

(
2 + cosΩ1

)
2Ω1

(
1 − cos Ω1

2

)2 � 1
2

(
1 − π − 3

π
∆Ω
)
,

c2 =
∫ 1

0

(dΦ2

dξ

)2

dξ =
Ω2

1 − Ω1 sin Ω1

2
(
1 − cos Ω1

2

)2 � π2

2

(
1 − π − 3

π
∆Ω
)
. (5.53)

ξ = x/l denotes a non-dimensional abscissa, and ∆Ω = Ω1 − π. ∆Ω is a non-dimensional
measure of the difference ω2 − ω1 between the in-plane and out-of-plane frequencies. (5.52)
may be written in the following slightly simpler form
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q̈1 + 2ζ1ω1q̇1 + ω2
1

(
1 + e(t)

)
q1 + β1q1q2 + q1

(
γ1q

2
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2
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)
= 0,
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)
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2
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2
2

)
= −δe(t), (5.54)
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Additionally, linear viscous damping terms with the modal damping ratios ζ 1 and ζ2 have
been included in the equations of motion. Since λ2a2 � c2 it follows from (5.55) that α � 1,
which means that the parametric excitation is equally strong in both modes. Further, within an
error of the magnitude O

(
(∆Ω)2

)
it follows that β3 = 3

2β1, γ3 = γ1 and γ4 = γ2. The latter
approximate relations will be used in the following, which means that the problem is defined
merely by the parameters α, β1, β2, γ1, γ2, δ and e(t).

5.2.2 Harmonic analysis

The data of the considered cable refer to the longest stay in the cable-stayed bridge across the
Øresund between Denmark and Sweden. The supports are assumed fixed, corresponding to
k1 = k2 = ∞. The stiffness of the cable is EA = 2.17 · 109 N, and the equilibrium force H =
5.5 · 106 N. The chord length is 260 m, and the cable mass per unit length is m = 81.05 kg/m,
corresponding to a total weight of W = 2.038 · 105 N. The referential amplitude of the chord
elongation is ∆l0 = 0.5 m corresponding to e0 = 0.76.

First a deterministic harmonic excitation with the circular frequency Ω � ω 1 � ω2 is
considered, which means that
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e(t) = e0 cos
(
Ωt+ a

)
. (5.56)
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Figure 5.10 One-sided auto-spectral densities of whirling motion. ζ1 = ζ2 = 0.01, e0 = 0.76, Ω/ω1 = 1.2.

The phase a will influence the attraction to various stable motions, when (5.54) is integrated
with given initial values.

The stationary periodic response from the harmonic excitation is denoted as q i,0(t). On
Figure 5.10 the one-sided auto-spectral densities of q1,0(t) and q2,0(t) under whirling motion
have been shown at the excitation frequency Ω/ω1 = 1.2. From the figure the amplitudes of
the second and third harmonics may be estimated to 6-8% and 0.3-0.6% of those of the first
harmonics, respectively. Additionally, significant non-zero mean values are present.

As a consequence the following truncated Fourier expansions of the periodic motion are
presumed

qi,0(t) � Ai +Bi cos
(
Ωt+ bi

)
+ Ci cos

(
2Ωt+ ci

)
, i = 1, 2. (5.57)

The amplitudes Ai, Bi and Ci are independent of the phase a of the excitation (5.56), whereas
the phases bi and ci depend on this quantity. However, if b2,0 and ci,0 indicate the phases corre-
sponding to a = 0, the corresponding quantities at the phase a are determined from

bi = bi,0 − a, ci = ci,0 − 2a. (5.58)

In Appendix A the equations for the 6 unknown amplitudes A i, Bi, Ci and the 4 phases bi and
ci are listed. The root-mean-square (RMS) equivalent amplitudes of (5.57) are defined as

Qi =
√

2A2
i +B2

i + C2
1 . (5.59)

Figure 5.12 shows possible solution of (5.52) solved with various start conditions at a fixed
excitation amplitude e0 = 0.76 and frequency Ω = 1.2. At these conditions three different
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Figure 5.11 Response during harmonic excitation as a function of excitation frequency Ω, e0 = 0.76. ( ) Stable
solutions in 3D. ( ) Stable solutions in 2D. ( ) Unstable solutions. (×) Numerical solutions.a) Q2. b) Q2.

solutions are obtainable. A so-called whirling motion, a plane motion with low amplitude and a
plane motion with large amplitude.

Figure 5.11 shows possible solutions of the equivalent amplitudesQ 1 andQ2 as function of
the excitation frequency Ω. Analytical solutions, which are stable in 3D, i.e. where the out-of-
plane component q1(t) is free to move, have been indicated by ( ), whereas stable analytical
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Figure 5.12 Phase plane of possible solutions at Ω = 1.2ω1 and e0 = 1.2. ζ1 = ζ2 = 0.01. a) Whirling motion w1

obtained with q1(0) = q2(0) = 6 m. b) Plane motion p3 obtained with q1(0) = q2(0) = 1 m. c) Plane motion r1
obtained with q1(0) = q2(0) = 3 m

solutions in 2D, where the out-of-plane component is suppressed so q 1(t) ≡ 0, are marked
as ( ). Finally, unstable solutions are indicated by ( ). The quality of the analytic
solutions has been checked by numerical integration of (5.54) for the stable branches, and has
been indicated by a (×) on the plot. In this case Q1 and Q2 have been obtained from RMS
values obtained as time average over one period T = 2π/Ω. The stability analysis of the various
solutions has been carried out by means of Floquet theory as explained in Appendix B.

The branches indicated by p1, p2 and p3 indicate the harmonic response in 2D. p1 is stable
up to a certain maximum excitation frequency Ω, where a fold instability takes place. p 3 is stable
in certain disjoint sub intervals of the Ω-axis.

In 3D the stable plane motion (i.e. q1(t) = 0, but is free to move) is indicated by r1,
whereas r2 and r3 signify corresponding unstable solutions. r1 is formed by bifurcation from p1

at a critical frequency and remain stable up to a certain maximum excitation frequency Ω, where
a fold instability takes place. Attraction to r1 takes place if the system is started with very small
initial values q1(0) �= 0 or q̇1(0) �= 0 along with relatively large values of q2(0) and q̇2(0). If
q1(0) = q̇1(0) ≡ 0 the system is attracted to p1. The amplitudes of the mode of vibration p1 and
r1 are comparable, whereas the phases are completely different.

w1 indicates a whirling motion. This motion is also formed by bifurcation from r 1 which
takes place at a slightly larger frequency than the bifurcation into the branch p 1. The whirling
motion remains stable up to a certain maximum frequency.

At the frequency in the vicinity of Ω ∼ 2ω1, where p3 is unstable, a stable branch s2 exists.
In this mode q2(t) is harmonic with the frequency Ω � 2ω1, whereas q1(t) is subharmonic of
the order n = 2, resulting in an eight-shaped trajectory. s 1 indicates the corresponding plane
subharmonic in 2D. No analytic solutions have been indicated for the subharmonic responses.

5.2.3 Stability analysis of harmonic solutions

The stability of the solutions obtained in Appendix A can be determined by Floquet theory
(Nayfeh and Mook 1995). Let ∆q i(t) be a perturbation to the periodic solution q i,0(t)

qi(t) = qi,0(t) + ∆qi(t). (5.60)
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Both the perturbed solution qi(t) and the periodic solution qi,0 are assumed to fulfil (5.54). In-
sertion of (5.60) in (5.54) and disregarding quadratic and cubic terms of ∆q i(t) then give the
following equations of motion for the perturbation ∆q i(t)

∆q̈1 + 2ζ1ω1∆q̇1 + ω2
1

(
1 + e(t)

)
∆q1 + β1

(
q1,0∆q2 + q2,0∆q1

)
+ 3γ1q

2
1,0∆q1

+ γ2

(
q22,0∆q1 + 2q1,0q2,0∆q2

)
= 0,

∆q̈2 + 2ζ2ω2∆q̇2 + ω2
2

(
1 + αe(t)

)
∆q2 + 2β2q1,0∆q1 + 2β3q3,0∆q3 + 3γ4q

2
2,0∆q2

+ γ3

(
q21,0∆q2 + 2q1,0q2,0∆q1

)
= 0. (5.61)

(5.61) may be rewritten into the following state vector formulation

Ẋ(t) = A(t)X(t), X(t) = [∆q1(t) ∆q2(t) ∆q̇1(t) ∆q̇2(t)]T , A(t) =
[

0 I
−k(t) −c

]
,

(5.62)

where the components of k(t) and c are given as

k11 = ω2
1

(
1 + e(t)

)
+ β1q2,0 + 3γ1q

2
1,0 + γ2q

2
2,0, k12 = β1q1,0 + 2γ2q1,0q2,0,

k21 = 2β2q1,0 + 2γ3q1,0q2,0, k22 = ω2
2

(
1 + αe(t)

)
+ 2β3q2,0 + 3γ4q

2
2,0 + γ3q

2
1,0,

c11 = 2ζ1ω1, c12 = c21 = 0, c22 = 2ζ2ω2. (5.63)

For a certain periodic solution qi,0(t), i = 1, 2, characterized by the amplitudes Ai, Bi,
Ci, the phases bi, ci and the circular frequency Ω, the fundamental set of solutions Φ(T ) are
determined by numerical integration of (5.62) over the interval [0 T ], see Appendix B. Then, the
stability is determined from the eigenvalues νi of Φ(T ). If |νi| < 1 are fulfilled the solution is
found to be stable according to the Floquet theory. Notice that the stability criteria is independent
of the phase a of the excitation as given by (5.56). Figure 5.13 shows the four eigenvalues of
Φ(T ) for the four solution branches r1, p1, w1 and p3.

As seen from figure 5.13 solution branches r1 and w1 are stable while solution branch p1

becomes unstable at the bifurcation point at Ω/ω1 = 1.08. Solution branch p3 is stable up to the
point at Ω/ω1 = 1.6 then becomes unstable up to Ω/ω1 = 2.4 where stable solutions again are
possible.

5.2.4 Narrow-banded excitation

The stochastic model for the non-dimensional elongation of the chord-length e(t) is obtained as
a second order filtration of Gaussian white noise

ë(t) + 2µΩė(t) + Ω2e(t) =
√

2µΩ3e0W (t), (5.64)

where µ is a bandwidth parameter, Ω is a circular centre frequency, and W (t) is a unit Gaussian
white noise process defined by the auto-covariance function
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κWW (τ) = E
[
W (t)W (t+ τ)

]
= δ(τ). (5.65)

δ(τ) signifies the Dirac Delta function. The normalization (5.65) insures that the standard devi-
ation σe of e(t) becomes

σe =
√

2
2
e0. (5.66)

Hence, e0 is a characteristic amplitude, and Ω is a characteristic frequency of the excitation which
should be related to the amplitude and frequency of the harmonic excitation (5.56).

A realization of e(t) and the related envelope processE(t) are shown on Figure 5.14. e 1 and
e2 represent the minimum and maximum value of the amplitude e 0 where a certain periodic mo-
tion may exist under harmonic excitation with the circular frequency Ω. As seen at t � 50 s the
upper envelope process performs a first passage out of the interval [e 1, e2] at the upper boundary
e2. We shall later see that such an out-crossing causes a transition from one periodic motion to
another. The energy envelope E(t) =

√
e2(t) + ė2(t)/Ω2 is not differentiable. In order to have

a more smooth envelope in relation to Monte Carlo simulation the Cramér-Leadbetter envelope
(Cramér and Leadbetter 1967), will alternatively be considered, defined as

E(t) =
√
e2(t) + ê2(t), (5.67)

where ê(t) denotes the Hilbert transform of e(t)

ê(t) =
1
π

∫ ∞

−∞

e(t)
t− τ

dτ. (5.68)

Under narrow banded conditions the envelope process may be shown to be a one-dimensional
Markov process. The corresponding distribution function for the first passage time can then be
determined analytically by integration of the backwards Kolmogorov equation, (Helstrom 1959).
Instead, this distribution will be determined by Monte Carlo simulation along with other first
passage time distributions to be considered.

5.2.5 Homogeneous continuous time Markov chain

Let Tij be the first passage time interval until transition to state j takes place on condition that
the system starts in state i. Similarly, Ti denotes the first passage time interval of occupancy in
state i until transition to any of the other states.

It is assumed that the transition from one state to another may be described by a three state
homogeneous continuous time Markov chain. Let P i(t) describe the probability of being in the
ith state. Then Pi(t+ ∆t) may be written as

P1(t+ ∆t) = P1(t)
(
1 − ν12∆t− ν13∆t

)
+ P2(t)ν21∆t+ P3(t)ν31∆t,

P2(t+ ∆t) = P2(t)
(
1 − ν21∆t− ν23∆t

)
+ P1ν12∆t+ P3ν32∆t,

P3(t+ ∆t) = P3(t)
(
1 − ν31∆t− ν32∆t

)
+ P1(t)ν13∆t+ P2ν23∆t. (5.69)
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Figure 5.15 Monte Carlo simulation of distribution function for the time interval in a given state, Ω = 1.25ω1,
µ = 0.0003, e0 = 1.5. ( ) Low-amplitude in-plane mode p3. ( ) High-amplitude in-plane mode r1.
( ) Whirling mode w1.

Rearranging and letting ∆t→ 0 gives the following differential equations for determining P i(t)

Ṗ(t) = νP(t), P(t) = [P1(t) P2(t) P3(t)],

ν =

⎡
⎣−(ν12 + ν13) ν21 ν31

ν12 −(ν21 + ν23) ν32
ν13 ν23 −(ν31 + ν32)

⎤
⎦ . (5.70)

Under the conditions stated the distribution function of T ij becomes

FTij (t) = 1 − e(−νijt). (5.71)

Let j1 and j2 denote the possible transition states from state i. Then the distribution function of
Ti follows from

P
(
Ti > t

)
= P

(
Tij1 > t ∧ Tij2 > t

)
= e(−νij1 t)e(−νij2 t) ⇒

FT1 (t) = 1 − e
(
−(ν12+ν13)t

)
,

FT2 (t) = 1 − e
(
−(ν21+ν23)t

)
,

FT3 (t) = 1 − e
(
−(ν31+ν32)t

)
. (5.72)

The transition rates are then found from

νij =
1

E[Tij ]
, (5.73)

where E[Tij ] denotes the expected first passage time interval until transition. The results (5.72)
have been verified by Monte Carlo simulation using the following procedure. At first the system
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(5.54) is integrated with an equivalent harmonic excitation until stationarity is achieved in state i.
Next, the excitation is changed to a stochastic excitation by integrating (5.64) with initial values
e(0) and ė(0) determined by the terminal values of the harmonic excitation. In the numerical pro-
cedure the unit white noise process is replaced by an equivalent broad-banded Gaussian process
(broken-line process). Figure 5.15 shows plots of the resulting histograms based on 2500 sample
values. ln

(
1 − FTi (t)

)
should map into a straight line as a function of time for an exponentially

distributed random variable.

5.2.6 Triggering mechanisms for transition between states

Figure 5.11 shows the harmonic amplitude response in the resonance area as a function of the
excitation frequency Ω at a fixed amplitude e0 = 0.76. In Figure 5.16 the corresponding ampli-
tude plots of Q2 have been shown, when the amplitude e0 is varied, and the frequency Ω is fixed
at the indicated values.

The response branch r1 (state i = 2) only exists for excitation amplitudes e0 in the interval
[e21, e23]. As e0 is decreased towards the limit e21 the maximum point (fold instability point) in
Figure 5.11 is achieved at smaller and smaller frequencies. For e 0 = e21 the maximum value
takes place at a frequency equal to the excitation frequency Ω. If e 0 is decreased below e21 the
branch r1 cannot be achieved at harmonic excitation with the frequency Ω, for which reason a
jump to another state must take place, which is to the state p3 (i = 1) as shown in the figures.
In the same way, as e0 is increasing towards the limit e23 the bifurcation of the branch r1 from
p3 will take place at increasingly larger frequencies. For e0 = e23 the bifurcation takes place
at the excitation frequency Ω. If e0 is increased above e23 no bifurcation to r1 takes place at
harmonic excitation with the frequency Ω, which means that r 1 does not exist at the frequency
Ω for e0 > e23. Instead, a jump to another state takes place, which in the present case is to the
whirling mode w1 (i = 3).

As seen, the whirling mode w1 ceases to exist at sufficient large values of e0, where the
curve is continued into p1. The limit point, noticeable as a bend on the w1-p1 curve, represents
the highest value of e0, where bifurcation of w1 from p1 is possible. Due to the continued
extension of the branches w1 and p1 we shall consider the combination of w1 and p1 as a single
branch, which exists for e0 in the interval [e32,∞[. As e0 is decreased towards e32 the instability
point of w1 (the right-most point on Figure 5.11) is achieved at smaller and smaller frequencies.
For e0 = e32 the instability point is achieved at a frequency equal to the excitation frequency
Ω. Consequently, if e0 is decreased below e32 the branchw1 cannot be achieved under harmonic
excitation with the frequency Ω, for which reason a jump to another state takes place, which
happens to the state r1 if this exists at the amplitude e32, see Figures 5.16a-b. Else the jump
takes place to p3, see Figure 5.16c.

Similarly, the branch p3 exists for excitation amplitudes e0 in the interval [0, e2]. As e0
is increased towards the limit e2 the instability point of p3 (the left-most point with a vertical
tangent on Figure 5.11) is achieved at larger and larger frequencies. For e 0 = e2 the instability
point is achieved at the excitation frequency. Consequently, if e 0 is increased above e2 the branch
p3 cannot be achieved under harmonic excitation with the frequency Ω, for which reason a jump
to another state takes place. In the present case the jump takes place to r1 if this exists at the
amplitude e2 = e12 (Figure 5.16c), else the jump takes place tow1 (Figure 5.16a and 5.16b) with
e2 = e13. As e0 is increased the bifurcation point between p3 and the subharmonic solution s1

moves towards the left on Figure 5.11. At sufficiently large values of the excitation frequency Ω
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Figure 5.16 Q2 during harmonic excitation as a function of amplitude e0. a) Ω = 1.1ω1. b) Ω = 1.25ω1. c)
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and at increasing e0 the bifurcation point between p3 and s1 passes the present frequency before
the instability point of p3. Hence, at large values of Ω the p3 branch continues into the s1 branch
(Figure 5.16c) before p3 becomes unstable.

In Figure 5.18 the transition of the equivalent amplitude Q 2(t) is plotted during transition
between the in-plane states r1 and p3 at Ω = 1.25ω1. The excitation is harmonic with the
amplitude e0 = 1.5 and response in state r1 up to the time t = 100 s, where the stochastic
excitation is switched on. Succeedingly, the envelope process decreases to 0.55 at t = 200 s,
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which also caused a continued decrease of the equivalent amplitude Q 2(t). At t = 180 s the
envelope process E(t) crosses the critical barrier level e21 = 0.58 for existence of the state r1,
which causes a state transition to p3 to take place, noticeable by the oscillations in response. The
figure also shows a rather lengthy transition phase approximately of length 150 s before a steady
vibration is achieved in vibration mode p3. The transition mode to a whirling state turns out to
be even longer.

Under the assumption of narrow banded excitation, the results show that the main triggering
mechanism of transition from one state to another is the outcrossing of the envelope process of
the non-dimensional chord elongations. If broad banded excitation is considered other triggering
mechanisms may arise. One is the phase lag between the excitation and the response which also
may trig jumps between vibration modes.

5.2.7 Numerical example

First the modal expansion into two modes is validated against a difference scheme solving the
equations of motion (5.46) devised by Zhou et al. (2005). The numerical analysis uses 30 el-
ements across the cable. In Figure 5.17 the results from solving the modal equations of mo-
tion (5.54) are plotted as ( ), compared with results from the difference model indicated by
( ). The exitation is stochastic with various values of µ and e0. The Figure shows good
agreement between the reduced and difference model, but some discrepancies occur at high
bandwidth and high mean amplitude values. Figure 5.17d shows an initial match between the
models, but after approximately 20 s a transition occur of the reduced model to r 1, whereas the
difference model stays in w1. This indicates that the transition boundaries changes slightly due
to the reduction of the model, hence, transition to new states occur at different times. However,
the qualitatively behaviour, and at low bandwidths and mean amplitudes also the quantitatively
behaviour, is retained in the reduced model. Only the harmonic solutions are considered within
this work, however, Zhou et al. (2005) also showed good agreement between the reduced and the
difference model during subharmonic response under harmonic excitation. But, as was the case
for harmonic response, the reduced model fails under stochastic excitation with large amplitude
and bandwidth parameter.

In this example the mean first-passage time E[Tij ] until transition to state j, given the
process starts in states i is evaluated by two methods. In one case the transition is defined to
take place, when the envelope makes a first-passage at the barrier e ij . In the other case transi-
tion is determined from the qualitative behaviour of the responses q 1(t) and q2(t). Because the
transition of states is only visible in the responses after rather long transition intervals the latter
method will predict larger mean values than the former. In the numerical simulation based on
the response the following procedure for identification of state transitions was used. A transition
from w1 to p3 is registered when Q1 and Q2 are decreased below Q1 < 1.0 and Q2 < 2.2 for
Ω = 1.1ω1. A transition from w1 to r1 is registered, either when Q1 < 1.0 and E(t) < 1.8
for Ω = 1.25ω1, or Q1 < 1.0 and E(t) < 2.5 for Ω = 1.4ω1. The reason for using the enve-
lope levels in the criteria is to exclude transitions from w1 to p1 in the sample, since these states
are grouped as explained above. Correspondingly, a transition from r 1 to p3 is registered when
Q2 < 2.2 and a transition from r1 to w1 is registered when Q1 > 1.0. Finally, a transition from
p3 to w1 is registered when Q2 > 3.5. In all cases at least 500 sample values are used in the
estimate of E[Tij ]. Based on this estimate νij is next determined from (5.73).

The transition rates are listed in Table 5.1. The results of the two numerical methods
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agree qualitatively, but the transition rates determined from the response are 100%-300% smaller
than those determined from the expected first passage time of the envelope process of the non-
dimensional chord elongation. The reason for this discrepancy is the difficulty in observing the
state transition from the response due to the long transition interval. Since it has been demon-
strated that the triggering mechanism unambiguously is related to the crossing of the envelope
process, it is concluded that state observations based on the response may be erroneously.

Table 5.1 Transition rates found from the envelope process of the chord elongation and from the response using Monte
Carlo simulation.

e0 = 1.0 , µ = 0.0003 e0 = 1.5 , µ = 0.0003 e0 = 1.9 , µ = 0.0003
Ω = 1.10ω1 Ω = 1.25ω1 Ω = 1.40ω1

Envelope Response Envelope Response Envelope Response
ν12 0 0 0 0 0.0699 0.0210
ν13 0.000707 0.000481 0.000495 0.000491 0 0
ν21 0.0130 0.00457 0.00298 0.00189 0.00174 0.00134
ν23 0.0126 0.00309 0.00408 0.00134 0 0
ν31 0.000801 0.000498 0 0 0 0
ν32 0 0 0.00235 0.00121 0.0230 0.00412
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Figure 5.18 Q2(t) and E(t) during transition from state
r1 to state p3, Ω = 1.25ω1. ( ) E0(t). ( )
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Figure 5.19 Probability density function for Q2. The
system is started in state r1. Ω = 1.25ω1, E0 = 1.5,
µ = 0.0006.

Finally, Figure 5.19 shows a plot of the marginal stationary probability density function
of Q2 obtained by ergodic sampling with 1,000,000 periods. As seen, the pdf is multi-peaked
corresponding to the temporary occupancy in the various states. The multi-peaked pdfs registered
by Chang et al. (Chang et al. 1996; Chang and Ibrahim 1997; Ibrahim and Chang 1999) in
the so-called intermittence area are believed to be caused by similar transitions between stable
attractors.
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5.2.8 Concluding remarks

In order to analyse nonlinear resonance phenomena in the lowest modes of vibration of a shallow
cable a reduced two-degrees-of-freedom model has been formulated involving a mode represent-
ing motion in the static equilibrium plane, and a mode representing out-of-plane motion. Due
to the shallowness of the cable the retained modes have closely separated eigenfrequencies. At
first possible periodic solutions to the reduced equations of motion under harmonically varying
support point motion have been identified based on truncated Fourier series, and the stability has
been checked by the Floquet theory.

It is shown that up to three stable periodic motions may co-exist: An in-plane low ampli-
tude motion, an in-plane large amplitude motion, and a whirling motion involving the in-plane
and out-of-plane modal coordinates. Above a certain frequency the in-plane large amplitude mo-
tion has a slightly different amplitude and a completely different phase from the corresponding
motion with the out-of-plane component suppressed, which turns out to be unstable.

Next, the excitation is changed to a narrow-banded Gaussian process with centner frequency
and mean envelope equal to the frequency and amplitude of the harmonic excitation. It turns
out that vibrations in any of the three states sooner or later become unstable, followed by a
jump to another state. Based on Monte Carlo simulations it is demonstrated that the transition
between the states may be described by a homogeneous, continuous time three states Markov
chain. Additionally, it is demonstrated that the jump is related to critical values of the envelope
process of the non-dimensional chord elongation, which represent limit values for excitation
of the harmonic motions at the frequency Ω. A unique correspondence exists between out-
crossings of the envelope process and the initiation of state transitions. Hence, the transitional
probability rates of the Markov chain may be calculated from the mean first-passage times of the
envelope process relative to the indicated limit values. Finally, due to relatively long transition
time intervals between the states, it is demonstrated that estimates of the transitional probability
rates from the response may lead to significant errors.

It is demonstrated that the jumps between the various states result in multi-peaked proba-
bility density functions which have previous been registered by Chang et al. (Chang et al. 1996;
Chang and Ibrahim 1997; Ibrahim and Chang 1999).
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5.3 Stochastic Stability of a Nonlinear Parametrically Ex-
cited Wind Turbine Wing

The studies made in section 5.1 and 5.2 have been made as preliminary studies of the stability
of nonlinear stochastically parametrically excited systems. In this section, the two-degrees-of-
freedom system described in Chapter 2 is studied. In Chapter 2 the movement of the tower-
nacelle system was assumed to vary harmonically with the frequency ω 0 and the amplitude u0.
For wind turbines as is the case for all structural systems under natural loading, a harmonic
variation is only an unobtainable approximation to a more or less narrow-banded variation. In
this section stability of the nonlinear wing system excited by a narrow-banded variation of the
support point motion is analysed. The aerodynamic loading is modelled as described in Chapter
2.

5.3.1 Narrow-banded support point motion

H(ω) = α2

iω+α
H(ω) = 1

−ω2+2µω0iω+ω2
0

W (t) X(t) u(t)

Figure 5.20 Block diagram illustrating the used filtration of white noise W (t).

The nonlinear wing model assumes knowledge of u(t), u̇(t) and ü(t), see the coefficients
listed in (2.69). Hence, the stochastic model of the support point motion should be twice dif-
ferentiable. The second order filtration of white noise described in section 5.2.4 is only once
differentiable. To solve this, the white noise process is first filtered through a first order fil-
ter with the timescale parameter α. The output process X(t), a so-called Ornstein-Uhlenbeck
process, is continues and non-differentiable. Next, X(t) is filtered through a second order filter
with centre frequency ω0 and bandwidth µ. u(t) forms the output process, which is Gaussian
and twice differentiable. The frequency response functions of the filters are illustrated in Figure
5.20. The state vector formulation of this procedure is

Ż(t) = AZ(t) + bW (t), (5.74)

where

Z(t) =

⎡
⎣X(t)
u(t)
u̇(t)

⎤
⎦ , A =

⎡
⎣α 0 0

0 0 1
1 −ω2

0 −2µω0

⎤
⎦ , b =

⎡
⎣α2

0
0

⎤
⎦ . (5.75)

W (t) is a unit white noise with the auto-covariance function

κww(τ) = E
[
W (t)W (t+ τ)

]
= δ(τ). (5.76)
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The standard deviation σu of u(t) is written as

σu =
√

2
2
u0. (5.77)

This is ensured if the filter variable α is chosen as

α = ω0

(
− µ+

√
µ2 +

2µω3
0u

2
0

1 − 2µω3
0u

2
0

)
. (5.78)

(5.78) can be derived by means of residual calculus, see e.g. (Nielsen 2000). Hence, the charac-
teristic amplitude u0 and frequency ω0 may be related to the harmonic case. µ is the bandwidth
parameter for the stochastic support point motion u(t). To ensure α being real the following
restriction exists

2µω3
0u

2
0 < 1. (5.79)

A typical realization of the driving equivalent white noise process W (t), the corresponding
Ornstein-Uhlenbeck processX(t), the displacement u(t) and acceleration ü(t) as given in (5.74)
is shown in Figure 5.21. As seen, the acceleration ü(t) becomes "fuzzy", but continuous.
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Figure 5.21 Typical realization of W (t), X(t), u(t) and ü(t). ω0/ω1 = 1.0, µ = 0.01, u0 = 0.5 m. a) Equivalent
white noise process W (t). b) Ornstein-Uhlenbeck process X(t). c) Displacement process u(t). d) Acceleration process
ü(t).
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5.3.2 Numerical analysis

In the following stability of the nonlinear wing is evaluated for situations corresponding to the
ones made in Chapter 2 for harmonic variation of the support point motion.

In Figure 5.22 contour regions for the largest Lyapunov exponent indicating stability bound-
aries are shown as function of u0 and ζ1. The numerical simulation is done with ω2/ω1 = 2.2,
ω0/Ω0 = 3.0 and ω0/ω1 = 1.7. ( ) indicate the stability boundaries for the harmonic case
also shown in Figure 2.22. (�) indicate unstable regions for bandwidth parameters µ = 0.0001.
The analysis shows that the stable region increases as the excitation becomes stochastic. The sta-
bility regions become more distorted as the bandwidth increases, which is due to the limitation
in the length of the simulated time series and the fact that the convergence rate of λ decreases
with increase of bandwidth.
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Figure 5.22 Contour curves for λ = 0 at harmonic and stochastic variation of the support point motion at varying u0
and ζ1. ω2/ω1 = 2.2, ω0/Ω0 = 3.0 and ω0/ω1 = 1.7. ( ) Harmonic support point motion, µ = 0. (�)
Stochastic support point motion, µ = 0.0001.

In Figure 5.23 time variations of λ are shown during unstable and stable conditions together
with the corresponding realization of q1(t). As seen, the convergence of λ is very close to 0 for
the unstable solution. Close to the stability boundary convergence may not be obtained since the
solution may cross in and out of the unstable region, which will make λ oscillate around 0. This
is partly the reason why the boundaries in Figure 5.22 become not well defined. However, it is
seen that the stable region expands as the support point motion becomes stochastic, hence, the
system becomes increasingly stable with increasing bandwidth. It should be noted that increased
stability with increasing bandwidth is not the case for all frequency regions.

Next, the analysis is made for variation of ω2/ω1 at various values of µ with ω0/Ω0 = 3.0
and u0 = 0.3 m. The result for µ = 0.0001 is shown in Figure 5.24 with ( ) indicating
stability boundary for the harmonic case matching that of Figure 2.18, and (�) signifies the
stability boundaries for a simulation with µ = 0.0001. As seen, the stability boundaries with
respect to variation of ω2/ω1 are fairly insensitive to variations in µ.

Now, the stability is evaluated with respect to variation of ω0/Ω0 at various values of ω2/ω1.
Results of the corresponding harmonic analyses are plotted in Figures 2.19-2.21. Figures 5.25a-b
show the contour lines of λ = 0 of simulations with u0 = 0.3 m for ω2/ω1 = 2.0, and with
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Figure 5.24 Contour curves for λ = 0 at stochastic variation of the support point motion. ζ1 = 0.01, u0 = 0.3 and
ω0/Ω0 = 3.0. ( ) Harmonic support point motion, µ = 0. (�) Stochastic support point motion, µ = 0.0001.

µ = 0.0001 and 0.001, respectively. In Figures 5.26a-b the corresponding analyses are made
with ω2/ω1 = 2.2. The stability boundaries for the harmonic cases are indicated by ( )
and simulations with stochastic variation of the support point motions are plotted as (�). The
stability boundaries with respect to variation of ω0/Ω0 are in many cases relatively insensitive
to variation of the bandwidth. Most regions become slightly more stable with increasing µ.
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However the region defined by 1.6 < ω0/ω1 < 1.8 and 2.6 < ω0/Ω0 < 2.8 tends to become
increasingly unstable with increasing bandwidth.
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Figure 5.25 Contour curves for λ = 0 at harmonic and stochastic variation of the support point motion. ζ1 = 0.01,
u0 = 0.3 m, ω2/ω1 = 2.0. ( ) Harmonic support point motion, µ = 0. (�) Stochastic support point motion. a)
µ = 0.0001 . b) , µ = 0.001.

Figure 5.27 shows a variation of u0 from 0.3 m to 0.6 m over 100 excitation periods keeping
u0 = 0.6 m for 900 periods and finally changing u0 from 0.6 m to 0.3 m over 100 periods. The
analysis is made with constant ζ1 = 0.01, ω0/Ω0 = 3.0, ω2/ω1 = 2.2 and ω0/ω1 = 1.7.
Comparing with Figure 5.22 for the harmonic variation of u(t), this corresponds to moving from
the stable region into the unstable region and back to the stable region. The response changes
character, as the envelope process crosses into the unstable region. The same behaviour was
observed for the whirling motion of a shallow cable analysed in section 5.2. However, for this
particular case the response becomes unstable as u0 changes back to unstable conditions.
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Figure 5.26 Contour curves for λ = 0 at harmonic and stochastic variation of the support point motion. ζ1 = 0.01,
u0 = 0.3 m, ω2/ω1 = 2.2. ( ) Harmonic support point motion, µ = 0. (�) Stochastic support point motion. a)
µ = 0.0001 . b) , µ = 0.001.

5.3.3 Concluding remarks

The stability of the nonlinear wing model, formulated in chapter 2, has been analysed by Monte-
Carlo simulations, when the wing is excited by stochastic support point motion. Due to the
demand of a twice differentiable support point motion, the stochastic variation is modelled by a
filtration of a unit Gaussian white noise through a first order filter followed by a filtration through
a second order filter. The stability boundaries are found by means of the largest Lyapunov expo-
nent as described in Appendix B. With respect to variation of the frequency ratios ω 2/ω1, ω0/Ω0

and ω0/ω1 the stability boundaries are found to be relative uninfluenced by variation of the band-
width of the stochastic excitation. However, significant changes are registered with changes of
bandwidth for the stability boundaries plotted as function of the characteristic amplitude of the
excitation. This indicates that for a given eigenfrequency ratio and excitation frequency ratio
stability may be determined as an outcrossing problem of the excitation envelope process. The
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Figure 5.27 u0(t) and q1(t) during transition from stable to unstable region. ζ1 = 0.02, ω0/Ω0 = 3.0, ω2/ω1 = 2.2
and ω0/ω1 = 1.7. a) Variation of u0. b) Variation of q1(t). c) Variation of q1(t) during stable conditions. d) Variation
of q1(t) during unstable conditions. e) Poincaré map of response during (◦) stable conditions, (×) chaotic conditions

same behaviour was observed for the nonlinear cable system described in section 5.2. The be-
haviour of the strange attractor under chaotic response is to be analysed within the paper (Larsen
et al. 2005), which is under preparation.
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CHAPTER 6
Conclusion

In the present thesis a number of analyses have been carried out regarding nonlinear dynam-
ics of wind turbine wings. This final chapter gives an overview of the results achieved throughout
the project, and the main conclusions are summarized.

6.1 Overall Conclusions

In the previous chapters a nonlinear structural beam model excited by aerodynamic loading and
support point motion is formulated together with a nonlinear dynamic stall model. The models
are analysed independently as well as in combination. Finally, the nonlinear wing model is sub-
jected to a narrow banded support point motion and the stability behaviour is analysed. Previous
to the stochastic stability analysis of the wing, stability analyses are carried out for two simpler
systems stochastically excited by parametric terms in a similar manner as the wing.

Chapter 2 A nonlinear two-degrees-of-freedom model including the nonlinear interactions
between the fundamental blade and edgewise modes is formulated retaining nonlinear terms
up to cubic order. The model includes inertial nonlinearities from support point motions and
geometrical nonlinearities from a nonlinear description of the curvature, and rotation of the aero-
dynamic loads caused by deflection of the beam. Assuming a harmonic variation of the support
point, the important nonlinear couplings are identified and a reduced system is indicated retaining
all terms of importance for the quantitative and qualitative behaviour of the system.

Four different frequencies influence the response of the two-degrees-of-freedom system,
these are the rotational frequency of the rotor, the frequency of the support point motion and the
eigenfrequencies of the fundamental eigenmodes. Keeping the rotational frequency constant, it
is demonstrated that significant resonances may occur due to nonlinear parametric excitation.

Next, the nonlinear parametric instability of the system is analysed at various excitation
ratios between the support point excitation frequency and the rotational frequency of the rotor
and at various eigenfrequency ratios.

It is shown that the parametric instability mainly is influenced by quadratic parametric terms
and cubic terms. In combination these terms may produce large regions of chaotic response for
fixed excitation ratios. On the other hand the cubic terms at low excitation frequencies tend to
stabilize the resonance peaks.

At rational excitation ratios the response becomes periodic, but only certain ratios produces
relative short response periods. At irrational excitation ratios the response is shown to be almost
periodic with infinitely long response periods. Furthermore, the quadratic parametric terms may
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induce chaotic response. In order to determine the stability of the periodic, almost periodic or
chaotic response, the theory of Lyapunov exponents is used.

By means of numerical simulations it is shown that within a relative small frequency band
around ω2/ω1 = 2.1 the resonance peaks of the first mode remain stable even at large excitation
frequencies, whereas large unstable chaotic regions appear when ω 2/ω1 > 2.1, and infinite
response occur when ω2/ω1 < 2.1 at high excitation frequencies. At ω2/ω1 = 2.0 it is shown
that the unstable regions produce large amplitude oscillations, while the amplitude is significantly
reduced by increasing the eigenfrequency ratio to 2.2, especially the response second of the
second mode is significantly reduced.

Chapter 3 In the present chapter a model for determining the dynamic lift coefficient of a
wind turbine wing profile is developed based on the effects of variation in flow conditions. The
model includes three basic features . The first is a time delay introduced under fully attached flow
situations using two filter equations. The second is a time delay in the motion of the separation
point described by one filter equation. Finally, a contribution from leading edge separation vortex
is included by one filter equation.

The model uses a simplified description of attached flow, calculating lift by analytical lin-
earized flow theory in the entire range of the angle of attack, and include a contribution from
leading edge separation. Additionally, a modified model for the delay on the attachment degree
has been suggested, which operates on a mapping of the profile onto a circle in the complex
plane. This removes a singularity problem in the lift description when the flow is close to full
separation conditions.

The model is validated against dynamic test data of the Vertol 23010-1.58 profile. It is
demonstrated that the present model is capable of producing the correct cyclic behaviour of
the lift under fully attached conditions. Also under dynamic stall cycle the present model is
capable of modelling the maximum lift and reproducing lift data to a satisfactory degree. The
performance of the present model is compared with a variety of different models. Only two
others are capable of reproducing experimental data, which are the so-called Risø model and
Beddoes-Leishman model. 7 parameters are introduced in the present model compared to 12 in
the Beddoes-Leishman model making calibration considerable less complicated. The Risø model
introduces a linear interpolation, to introduce the effects of trailing edge separation, comparable
to that devised within the Øye model. Further, the Risø model includes two state variables to
model trailing edge separation. The present model perform equally well using only one state
variable for trailing edge separation and introducing an extra state variable to account for leading
edge separation, making the present model capable of reproducing effects under a greater variety
of flow conditions.

Chapter 4 In this chapter the qualitative behaviour of the combine nonlinear structural model
and the dynamic stall model is analysed by means of numerical simulations. To investigate the
effect of changing the mean pitch angle the support point motion is set equal to zero, while the
pitch is varied harmonically around various mean values. A considerable damping exists in the
attached flow region, whereas the aerodynamic damping is lost when the pitch is set in the stall
region. Under attached flow conditions the pitch frequency component is the main component in
the response, while the eigenfrequency component is significant when the main part of the wing
is in the stall region. Next, the support point motion is assumed to vary harmonically at various
constant pitch settings and at various values of the eigenfrequency ratio. At the eigenfrequency
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ratio equal to 1.8. The response for the chosen frequency ratios is chaotic when using constant
lift coefficients. During attached flow conditions all eigenfrequency ratios produces periodic
response due to the significant aerodynamic damping. In the stall region non-periodic response
exists for all eigenfrequency ratios, but at ω2/ω1 = 2.0 the strange attractor of the system is close
to a period three motion, while for ω2/ω1 = 1.8 dynamic instability occur with large amplitudes
of the state variables. Hence, a qualitative difference exists in the response between simulations
with an eigenfrequency ratio of 2.0 and 1.8.

The significance of aeroelastic contributions are illustrated by simulations using a loga-
rithmic wind field including effects from tower passage. Considerable aeroelastic damping is
introduced via the aeroelastic contributions keeping low levels of oscillations at attached flow
conditions. Also, a rotational frequency component and a support point frequency are present in
the angle of attack when including aeroelastic effects. Under attached flow conditions the rota-
tional frequency component is also present in the response, but as the pitch is increased into the
stall region this component becomes less significant.

Finally, a simple linear active control algorithm using the pitch system is devised. The
intend of the controller is to decrease the standard deviation while keeping the power output
approximately constant. The controller is shown to work well with a decrease of 37% in standard
deviation of the blade modal coordinate, when the pitch setting is set for the wing to be in the
stall region. If the pitch setting is increased a drop in efficiency is observed due to decrease of
aerodynamic damping. At high pitch settings the system may exhibit chaotic behaviour, which
is shown to be stabilized by introducing the controller. In both cases no observable change of
the power output is registered by introducing the controller. By a more optimal choice of control
gains, the efficiency may be increased, but this will introduce severe strains on the pitch system.

Chapter 5 In this chapter three different systems are analysed with respect to stochastic sta-
bility. The nonlinear wing system includes several nonlinear parametric terms. In order to under-
stand the behaviour of systems subjected to such terms two simpler systems including nonlinear
parametric excitation are analysed.

The first investigation is of the asymptotic stability of first- and second-order moments as
well as Lyapunov asymptotic (sample) stability with probability 1 for a dynamic system under
a renewal driven jump process parametric excitation. It is shown that the original non-Markov
problem can be converted into a Markov one by augmenting two additional equations. Closed
sets of equations for the mean values and second-order moments are given.

In order to investigate the asymptotic sample stability a transformation of the four state
variables to hyperspherical coordinates is made. The Lyapunov exponents have been evaluated
by two methods. The first one is direct simulation of the stochastic equation governing the natural
logarithm of the hyperspherical amplitude process. In the second approach, based on ergodicity
assumption, time averaging of the pertinent expressions is replaced by ensemble averaging. The
numerical results show good qualitative agreement between the two methods of evaluating the
Lyapunov exponents. However, direct simulation turns out to be more suitable for the problem.
The asymptotic mean-square stability condition is shown to be more conservative than Lyapunov
asymptotic (sample) stability with probability 1. However, the asymptotic mean-square stability
condition is shown not to be overly conservative and therefore provides a good estimate of the
asymptotic stochastic stability.

The second system, which has been analysed, is a reduced two-degrees-of-freedom modal
model of a shallow cable. Due to the shallowness of the cable the retained modes have closely
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separated eigenfrequencies. At first possible periodic solutions to the reduced equations of mo-
tion under harmonically varying support point motion has been identified based on truncated
Fourier series, and the stability has been checked by Floquet theory.

It is shown that up to three stable periodic motions may co-exist: an in-plane low amplitude
motion, an in-plane large amplitude motion and a whirling motion involving the in-plane and
out-of-plane modal coordinates.

Now, the excitation is changed to narrow-banded Gaussian process with centre frequency
and mean envelope process equal to the frequency and amplitude of the harmonic excitation. It
turns out that vibrations in any of the three states sooner or later become unstable followed by
a jump to another state. Based on Monte Carlo simulations it is demonstrated that transition
between states may be described by a homogeneous, continues time three state Markov chain.
Additionally, it is demonstrated that jumps are related to critical values of the envelope process
of the non-dimensional chord elongation, which represent limit values for excitation of the har-
monic motions. A unique correspondence exists between out-crossings of the envelope process
and the initiation of state transitions. Hence, the transitional probability rates of the Markov
chain may be calculated from the mean first-passage times of the envelope process relative to the
indicated limit values. Finally, due to very long transition time intervals between the states, it is
demonstrated that estimates of the transitional probability rates from the response may lead to
significant errors.

The stability of the nonlinear wing model, is analysed by Monte-Carlo simulations, when
the wing is excited by stochastic support point motion. Due to the demand of a twice differen-
tiable support point motion, the stochastic variation is modelled by a filtration of a unit Gaussian
white noise through a first order filter followed by a filtration through a second order filter. The
stability boundaries are found by means of the largest Lyapunov exponent. With respect to vari-
ation of the same frequency ratios as for the harmonic case, the stability boundaries are found
to be relatively uninfluenced by variation of the bandwidth of the stochastic excitation. How-
ever, significant changes are registered with changes of bandwidth for the stability boundaries
determined as function of the characteristic amplitude of the excitation. This indicates that for a
given eigenfrequency ratio and excitation frequency ratio the stability may be determined as an
outcrossing problem of the excitation envelope process.

The stability of the harmonic solutions of the shallow cable is analysed using the Floquet
theory. However, the nonlinear wing only produces one stable response solution for each excita-
tion frequency. Also, the shallow cable exhibits periodic response at all excitation frequencies,
whereas the wing may produce close to periodic or chaotic response. This renders the Floquet
theory impractical with regards to stability analysis of the wing. Instead the Lyapunov expo-
nents are used. Within the stability analysis of the mechanical system subjected to a renewal
jump process, two different methods of determining the Lyapunov exponents are given. A third
method is used for the wing model, however, the three methods essential describe the same mea-
sure. The third method is introduced to be able to classify response with limited amplitude as
unstable, i.e. chaotic response.

The main conclusions with regards to the nonlinear wing system and dynamic stall model
may be summarized in the following points:

� The behaviour and stability of the nonlinear wing system are mainly influenced by quadratic
parametric terms originating from rotation of the aeroelastic loading and support point mo-

Jesper Winther Larsen



6.1 Overall Conclusions 149

tion, and cubic terms originating from the nonlinear description of curvature and displace-
ment of mass due to bending.

� Under certain eigenfrequency ratios and excitation frequencies the nonlinear system exhibits
chaotic behaviour. At irrational ratios between the frequency of the support point motion
and the rotational frequency of the rotor the response period becomes infinite. Even at
rational ratios the response period may become relatively long.

� Due to the above characteristics, the Floquet theory is impractical for analysing the stability
behaviour. Instead the Lyapunov exponent is used for stability analysis, which turns out to
be very efficient.

� Three main flow conditions describe a dynamic stall cycle, which are fully attached flow
conditions, trailing edge separation and leading edge separation.

� The main characteristics mentioned above can be modelled with sufficient accuracy by four
state variables.

� Elastic deformation velocities of the wing should be introduced into the load model, i.e.
aeroelastic contributions should be included in order to model the correct behaviour of the
aerodynamic damping.

� With the intent to keep the mean power output at a relatively constant level, an effective
control law can be formulated from the observable state variables when the main part of the
wing is under dynamic stall conditions.

� The efficiency of the control can be significant when the wing is within the stall region.
Chaotic behaviour, occurring in the deep stall region, may be effectively stabilized by the
control system.

� The stability of the nonlinear wing model subjected to stochastic support point motion may
be evaluated by the Lyapunov exponent.

� The stochastic stability with regards to excitation frequency ratio and eigenfrequency ratio
turns out to be relative uninfluenced by the bandwidth parameter of the stochastic excitation.

� The stochastic stability with fixed excitation frequency ratio and eigenfrequency ratio is
related to a one-dimensional outcrossing problem of the excitation envelope process.

The presented models have been used to determine the behaviour of a single wing system.
Within a multi-body-dynamic system the combined structural and dynamic stall models may
be included without further problems. However, the accuracy of the two-degrees-of-freedom
reduction should be further investigated. The stochastic excitation is to be introduced as either a
turbulence perturbation in the wind field or as a tower support excitation.
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APPENDIX A
Analytical Solution of Cable

Equations Using a Truncated
Fourier Expansion

In the following analytical solutions are listed to the equations of motion for the shallow
cable given in (5.54). The Fourier expansion (5.57) is inserted and terms of sin(Ωt + bi),
cos(Ωt+bi), sin(2Ωt+ci), cos(2Ωt+ci) and constant terms are collected giving 10 equations
used to determine the 10 unknowns Ai, Bi, bi, Ci and ci. In the derivations the phase a of the
excitation has been assumed equal 0. For ease the corresponding phases have been denoted bi
and ci rather than bi,0 and ci,0. The equations should be solved iteratively. For the in-plane
solutions the equations are solved with A1 = B1 = C1 = 0.

0 = ω2
1A1 +

1
2
ω2

1e0B1 cos b1 + β1

(
A1A2 +

1
2
B1B2 cos(b1 − b2) +

1
2
C1C2 cos(c1 − c2)

)

+ γ1

(
A3

1 +
3
2
A1(B2

1 + C2
1 ) +

3
4
B2

1C1 cos(2b1 − c1)
)

+ γ2

(
A1

(
A2

2 +
1
2
B2

2 +
1
2
C2

2

)

+B1A2B2 cos(b1 − b2) +
1
2
B1B2C2 cos(b1 + b2 − c2) +

1
4
C1B

2
2 cos(c1 − 2b2)

+ C1A2C2 cos(c1 − c2)
)
, (A.1)

0 = (ω2
1 − Ω2)B1 +

1
2
ω2

1e0

(
2A1 cos b1 + C1 cos(b1 − c1)

)
+ β1

(
A1B2 cos(b1 − b2) +B1A2 +

1
2
B1C2 cos(2b1 − c2) +

1
2
C1B2 cos(b1 − c1 + b2)

)

+
3
4
γ1

(
4A2

1 +B2
1 + 2C2

1 + 4A1C1 cos(2b1 − c1)
)
B1 + γ2

(
B1

(
A2

2 +
1
2
B2

2 +
1
2
C2

2

)

+ 2A1A2B2 cos(b1 − b2) +A1B2C2 cos(b1 + b2 − c2) +
1
4
B1B

2
2 cos(2b1 − 2b2)

+B1A2C2 cos(2b1 − c2) + C1A2B2 cos(b1 − c1 + b2)

+
1
2
C1B2C2

(
cos(b1 − c1 − b2 + c2) + cos(b1 + c1 − b2 − c2)

))
, (A.2)
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0 = 2ζ1ω1ΩB1 − 1
2
ω2

1e0

(
2A1 sin b1 + C1 sin(b1 − c1)

)
− β1

(
A1B2 sin(b1 − b2) +

1
2
B1C2 sin(2b1 − c2) +

1
2
C1B2 sin(b1 − c1 + b2)

)

− 3γ1A1B1C1 sin(2b1 − c1) + γ2

(
− 2A1A2B2 sin(b1 − b2) −A1B2C2 sin(b1 + b2 − c2)

− 1
4
B1B

2
2 sin(2b1 − 2b2) −B1A2C2 sin(2b1 − c2) − C1A2B2 sin(b1 − c1 + b2)

− 1
2
C1B2C2

(
sin(b1 − c1 − b2 + c2) + sin(b1 + c1 − b2 − c2)

))
, (A.3)

0 = (ω2
1 − 4Ω2)C1 +

1
2
ω2

1e0B1 cos(b1 − c1)

+ β1

(
A1C2 cos(c1 − c2) + C1A2 +

1
2
B1B2 cos(b1 − c1 + b2)

)

+
3
4
γ1

(
(4A2

1 + 2B2
1 + C2

1 )C1 + 2A1B
2
1 cos(2b1 − c1)

)
+ γ2

(
C1

(
A2

2 +
1
2
B2

2 +
1
2
C2

2

)

+
1
2
A1B

2
2 cos(c1 − 2b2) + 2A1A2C2 cos(c1 − c2) +B1A2B2 cos(b1 − c1 + b2)

+
1
2
B1B2C2

(
cos(b1−c1−b2 +c2)+cos(b1 +c1−b2−c2)

)
+

1
4
C1C

2
2 cos(2c1−2c2)

)
,

(A.4)

0 = 4ζ1ω1ΩC1 +
1
2
ω2

1e0B1 sin(b1 − c1)−β1

(
A1C2 sin(c1 − c2)− 1

2
B1B2 sin(b1 − c1 + b2)

)

+
3
2
γ1A1B

2
1 sin(2b1 − c1) + γ2

(
− 1

2
A1B

2
2 sin(c1 − 2b2) − 2A1A2C2 sin(c1 − c2)

+B1A2B2 sin(b1 − c1 + b2)+
1
2
B1B2C2

(
sin(b1 − c1 − b2 + c2)− sin(b1 + c1 − b2 − c2)

)
− 1

4
C1C

2
2 sin(2c1 − 2c2)

)
, (A.5)

0 = ω2
2A2 +

α

2
ω2

2e0B2 cos b2 +
3
4
β1

(
2A2

2 +B2
2 + C2

2

)
+

1
2
β2

(
2A2

1 +B2
1 + C2

1

)
+ γ2

(
A3

2 +
3
2
A2(B2

2 + C2
2 ) +

3
4
B2

2C2 cos(2b2 − c2)
)

+ γ3

((
A2

1 +
1
2
B2

1 +
1
2
C2

1

)
A2 +A1B1B2 cos(b1 − b2) +

1
2
B1C1B2 cos(b1 − c1 + b2)

+
1
4
B2

1C2 cos(2b1 − c2) +A1C1C2 cos(c1 − c2)
)
, (A.6)
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− δe0 cos b2 = (ω2
2 − Ω2)B2 +

α

2
ω2

2e0

(
2A2 cos b2 + C2 cos(b2 − c2)

)
+

3
2
β1

(
2A2 + C2 cos(2b2 − c2)

)
B2 + β2

(
2A1 cos(b1 − b2) + C1 cos(b1 − c1 + b2)

)
B1

+
3
4
γ2

(
4A2

2 +B2
2 + 2C2

2 + 4A2C2 cos(2b2 − c2)
)
B2 + γ3

((
A2

1 +
1
2
B2

1 +
1
2
C2

1

)
B2

+ 2A1B1A2 cos(b1 − b2) +B1C1A2 cos(b1 − c1 + b2) +
1
4
B2

1B2 cos(2b1 − 2b2)

+A1C1B2 cos(c1 − 2b2) +A1B1C2 cos(b1 + b2 − c2)

+
1
2
B1C1C2

(
cos(b1 − c1 − b2 + c2) + cos(b1 + c1 − b2 − c2)

))
, (A.7)

δe0 sin b2 = 2ζ2ω2ΩB2 − α

2
ω2

2e0(2A2 sin b2 + C2 sin(b2 − c2)) − 3
2
β1B2C2 sin(2b2 − c2)

+ β2

(
2A1 sin(b1 − b2) − C1 sin(b1 − c1 + b2)

)
B1 − 3γ2A2B2C2 sin(2b2 − c2)

+ γ3

(
2A1B1A2 sin(b1 − b2) −B1C1A2 sin(b1 − c1 + b2) +

1
4
B2

1B2 sin(2b1 − 2b2)

+A1C1B2 sin(c1 − 2b2) −A1B1C2 sin(b1 + b2 − c2)

+
1
2
B1C1C2

(
sin(b1 − c1 − b2 + c2) + sin(b1 + c1 − b2 − c2)

))
, (A.8)

0 = (ω2
2 − 4Ω2)C2 +

α

2
ω2

2e0B2 cos(b2 − c2) +
3
4
β1

(
B2

2 cos(2b2 − c2) + 4A2C2

)
+

1
2
β2

(
B2

1 cos(2b1 − c2) + 4A1C1 cos(c1 − c2)
)

+
3
4
γ2

(
(4A2

2 + 2B2
2 + C2

2 )C2 + 2A2B
2
2 cos(2b2 − c2)

)
+ γ3
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A2

1 +
1
2
B2

1 +
1
2
C2

1

)
C2

+
1
2
B2

1A2 cos(2b1 − c2) + 2A1C1A2 cos(c1 − c2) +A1B1B2 cos(b1 + b2 − c2)

+
1
2
B1C1B2

(
cos(b1−c1−b2 +c2)+cos(b1 +c1−b2−c2)

)
+

1
4
C2

1C2 cos(2c1−2c2)
)
,

(A.9)
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0 = 4ζ2ω2ΩC2 +
α

2
ω2

2e0B2 sin(b2 − c2) +
3
4
β1B

2
2 sin(2b2 − c2)

+
1
2
β2

(
B2

1 sin(2b1 − c2) + 4A1C1 sin(c1 − c2)
)

+
3
2
γ2A2B

2
2 sin(2b2 − c2) + γ3

(
1
2
B2

1A2 sin(2b1 − c2) + 2A1C1A2 sin(c1 − c2)

+A1B1B2 sin(b1 + b2 − c2)− 1
2
B1C1B2

(
sin(b1 − c1 − b2 + c2)− sin(b1 + c1 − b2 − c2)

)
+

1
4
C2

1C2 sin(2c1 − 2c2)
)
. (A.10)
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APPENDIX B
Stability Analysis Using

Lyapunov Exponents and
Floquet Theory

Two different stability theories are applied the various systems analysed throughout the
present project. In this appendix the algorithm, due to Wolf et al. (1984), used for determining
the entire spectrum of Lyapunov exponents from a given time series is described. For systems
with periodic response the stability may be evaluated by the Floquet theory, see e.g. Nayfeh and
Mook (1995). The algorithm for the Floquet theory is given in the final part of this appendix.

B.1 Lyapunov Exponents

Consider a dynamical system in an n-dimensional phase space. Then, an n-dimensional set
of start conditions spanning a sphere will in time evolve into an n-dimensional set of vectors
spanning an ellipsoid due to the time dependent deformation of the dynamical system. In this
case the ith Lyapunov exponent is defined in terms of the length of the principal axis of the
ellipsoid pi(t)

λi = lim
t→∞

1
t

ln
pi(t)
pi(0)

(B.1)

where λi are ordered as λ1 ≥ λ2 ≥ ... ≥ λn. The linear length of the ellipsoid grows as eλ1t,
the area defined by the first and second principal axis grows as e (λ1+λ2)t and so on.

The centre of the n-dimensional sphere is defined from the evolution of the nonlinear equa-
tions of motion subjected to some initial conditions, whereas trajectories of points on the surface
are defined from a set of linearized equations of motions. Hence, the principal axes of the el-
lipsoid can be found from the evolution of the linearized equations of motion of an initially
orthonormal vector set attached to the trajectory of the nonlinear equations of motion.

The algorithm goes as follows. The reference trajectory of the centre of the sphere is de-
termined from integration of the nonlinear equations of motion. Simultaneously, the linearized
equations of motion are integrated for n different orthonormal initial conditions. The n set of or-
thonormal initial conditions are found by Gram-Schmidt reorthonormalization procedure given
as
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ṽk =

vk −
k−1∑
i=1

(
vkṽT

i

)
ṽi

∣∣∣∣vk −
k−1∑
i=1

(
vkṽT

i

)
ṽi

∣∣∣∣
(B.2)

where k is running from 1 to n, | · | indicate the vector norm, v k is a given vector set spanning
the n-dimensional space, and ṽk is an orthonormal vector set spanning the same n-dimensional
space as vk.

q1

q̇1

t
t0 t1 t2

ṽ1(t0)

ṽ2(t0)

ṽ1(t1)
ṽ2(t1) ṽ1(t2)

ṽ2(t2)
v1(t1)

v2(t1)

v1(t2)

v2(t2)

reference trajectory

Figure B.1 Evolution and replacement procedure used to estimate the Lyapunov spectrum.

The algorithm is illustrated in Figure B.1 for a two state variable nonlinear system given
from q1(t) and q̇1(t). At a given initial time t = t0, after the initial conditions on the reference
trajectory has dissipated away, the linearized equations are started with an orthonormal set of
initial conditions ṽ1(t0) and ṽ2(t0). The linearized equations are integrated until t = t1 where
the state vector ṽ1(t0) and ṽ2(t0) have evolved into v1(t1) and v2(t1). v1(t1) is normalized
to ṽ1(t1) while the direction is kept free, v2(t1) is then orthonormalized through (B.2) giving
ṽ2(t2), which is used in the linearized equation to continue the algorithm until t = t 2, when the
orthonormalization is carried out again. Hence, the state vectors v 1(t) and v2(t) stay limited
as they are normalized at chosen intervals. v1(t) is free to move in the most rapidly expanding
direction, hence |v1| is proportional to eλ1t, whereas, v2(t) is prevented from moving in this
direction due to the orthonormalization procedure. However, the span of v 1(t) and v2(t) is
proportional to the most rapidly growing two-dimensional subspace with the area e (λ1+λ2)t =
|v1(t)||v2(t)|. Hence, the Lyapunov spectrum can be determined from

λi = lim
t→∞

1
t

ln |vi| , i = 1, 2. (B.3)

The arguments presented here are easily expanded to n-dimensional space in which the full
spectrum is found from (B.3) with i = 1, ..., n using n orthonormal start conditions.

To determine the entire Lyapunov spectrum of a two-degrees-of-freedom system with 4
state variables, 20 equations of motions are solved simultaneously in time. Firstly, the four
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nonlinear equations of motion for the four state variables. Then, the four linearized equations
of motions determined from the solution of the nonlinear equation are solved with four different
start conditions, v(0) = [1 0 0 0]T , v(0) = [0 1 0 0]T , v(0) = [0 0 1 0]T and v(0) =
[0 0 0 1]T , respectively. If λi > 0, then the trajectories will diverge exponentially and the system
is unstable. Since the relation λ1 ≤ λ2 ≤ . . . ≤ λn exists, it suffice to investigate the sign of λ1

to evaluate the stability of the system.

B.2 Floquet Theory

Assuming periodic response of a nonlinear system Floquet theory may be used to evaluate the
stability. Given the following state vector formulation of the linearized equations of motion

v̇(t) = A(t)v(t), (B.4)

where v(t) is the state vector and A(t) is the time dependent coefficient matrix assumed to
be periodic with the period T . Now, let Φ(t) denote the fundamental set of solutions to (B.4)
fulfilling the initial value Φ(0) = I. Then at t = T

v(T ) = Φ(T )v(0). (B.5)

Further, since A(t+ T ) = A(t), it follows that

v(2T ) = Φ(T )v(T ) = Φ2(T )v(0),
...

v(nT ) = Φ(T )v((n− 1)T ) = Φn(T )v(0).

(B.6)

Φ(T ) may be written as

Φ(T ) = PNP−1, (B.7)

where P is a matrix storing the 4 eigenvectors of Φ(T ) column wise, and N is a diagonal matrix
with the corresponding eigenvalues ν1, · · · , ν4 in the main diagonal. Then

v(nT ) = PNnP−1v(0), n = 1, 2, . . . . (B.8)

Hence, for arbitrary initial value v(0), v(nT ) → 0 as n→ ∞, if Nn → 0. This is the case if all
4 eigenvalues fulfil

|νi| < 1, i = 1, . . . , 4. (B.9)

According to (B.5), Φ(T ) can be determined by numerical integration of the linearized equations
of motion over the interval [0 T ]. Using initial conditions v(0) = [1 0 0 0], [0 1 0 0], [0 0 1 0] and
[0001], respectively, v(T ) will assume the form of the fundamental solutions Φ(T ). Solving for
the eigenvalues of Φ(T ) provides νi, and (B.9) may then be evaluated to determine the stability.


