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Abstract

Statistical inference using message passing on factor graphs provides a use-
ful and versatile tool for the design of iterative receivers in wireless com-
munications, as shown by the large number of research articles proposing
such solutions during the last decade. Among the different methods, belief
propagation (BP), the mean field (MF) approximation, and expectation prop-
agation (EP) have been prevalent. Each of these methods is especially suited
for different types of problems, which has motivated the use of algorithms
combining two or more of them. These combinations, whether heuristic or
based on well-founded theoretical grounds, allow for overcoming tractability
and complexity issues present in the individual methods.

In this thesis, we research the application of message passing methods
and – combination thereof – to the design of receivers for various wireless
communication systems. BP is firstly considered as it typically leads to better
performance, while MF or EP can be used when the computation of BP mes-
sages is highly complex or intractable. Among others, we study the design
of message passing receivers for turbo-equalization of inter-symbol interfer-
ence channels, frequency domain turbo-equalization, channel estimation and
decoding in multicarrier systems, and phase noise estimation and decod-
ing. By appropriately combining message computation rules belonging to
different frameworks, we obtain designs that are superior to the state-of-art
counterparts in decoding performance, computational complexity, or both.
Moreover, in order to obtain feasible receiver algorithms for these concrete
problems, we propose approximations of intractable messages produced by
BP, that are shown to be practical, have low-complexity, and do not degrade
the performance of the receivers significantly.

Based on the good performance of our proposed receivers, we conclude
that there is the room and the need for further research towards the theoret-
ical formalization of statistical inference algorithms combining two or more
message passing methods. This would further expand the set of tools avail-
able for finding the best possible compromise between receiver performance
and computational complexity in future wireless receivers.
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Resumé

Statistisk inferens ved brug af message passing metoder baseret på faktor
grafer er et brugbart og fleksibelt værktøj til design af iterative modtager
algoritmer til trådløs kommunikation, hvilket bevidnes af det store antal
forskningsartikler der er udgivet om emnet gennem det sidste årti. Adskel-
lige typer af metoder har været anvendt, hvoraf modtagere baseret på be-
lief propagation (BP), mean-field (MF) approksimationen samt expectation
propagation (EP) har været fremherskende. Hver af disse metoder er særligt
egnede for forskellige typer problemer, hvilket har motiveret brugen af hy-
bridalgoritmer hvor flere metoderne kombineres. Disse hybridalgoritmer,
hvad enten de er baseret på heuristik eller et velfunderet teoretisk grundlag,
gør det muligt at reducere beregnings- og kompleksitets problemer ved de
oprindelige algoritmer.

I denne afhandling, undersøger vi anvendelsen af message passing metoder,
særligt hybride algoritmer, til modtagerdesign for forskellige trådløse kom-
munikationssystemer. BP betragtes først, da den typisk giver bedre resultater,
mens MF eller EP kan bruges ved de noder hvor BP beskederne er meget
komplekse eller analytisk uhåndterlige. Yderligere undersøges en metode til
at approksimation af beskederne for at til nedbringelse af algoritmens bereg-
ningskompleksitet. Her undersøges bland andet design af message pass-
ing modtagere til turbo-equalisering af kanaler med inter-symbol interferens,
frekvens-domæne turbo-equalisering, kanalestimering og dekodning i syste-
mer med flere bærebølger, samt estimering af fasestøj og dekodning. Ved
at kombinere forskellige message passing metoder, opnås modtagere med
højere dekodningspræcision og lavere kompleksitet. For at opnå brugbare
modtageralgoritmer til disse konkrete problemer, foreslår vi metoder til at
tilnærme de uhåndterlige beskeder der opstår i BP algoritmer. Det vises at
disse tilnærmede metoder er praktisk anvendelige, har lav kompleksitet og
at de kun medfører en ubetydelig reduktion af modtagernes ydeevne.

Baseret på den gode ydeevne der opnås af vores foreslåede modtagere,
konkluderer vi at der er mulighed og behov for yderligere studier der søger
at finde en teoretisk formalisme af message passing metoder der kombinerer
flere principper for inferens. Dette vil yderligere øge udvalget af tilgængelige
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værktøjer til at opnå det bedste kompromis mellem algoritmisk kompleksitet
og modtager ydeevne ved design af fremtidige modtager algoritmer.
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Chapter 1

Introduction

The ultimate goal of a digital receiver is to optimally recover a sequence of in-
formation bits that modulate a signal sent from a transmitter through a prop-
agation channel. Since these bits are unknown in the first place, and the trans-
mitted signal is distorted by an unknown propagation channel, unknown in-
terferences and noise before it reaches the receiver, a common approach used
to design the receiver is to consider such entities –information bits, channel
response, various types of interferences, noise, and other unknowns– as ran-
dom variables or processes. This probabilistic modeling forms the baseline
for a mathematical formalization of the process of recovery of the transmitted
information using methods from statistical inference, and allows us to define
what optimal recovery means in this context.

The probabilistic model describing a modern digital communication sys-
tem often includes both discrete random variables, such as information bits,
codewords and modulated data symbols, and continuous random variables,
such as channel attenuations and noise. While most engineers in information
technology areas, such as communications, signal processing, etc., prefer to
distinguish between the concepts of estimation of continuous variables and
detection of discrete variables [1, 2], in this doctoral thesis we deliberately
avoid such a distinction. We exploit unified inference methods to globally
deal with continuous and discrete variables in the probabilistic model de-
scribing the whole digital communication system. We call on Bayesian infer-
ence [3, 4], which will allow us to formulate a suitable optimization problem,
the solution of which will give our desired optimal data recovery. Hence,
before considering the design of practical receivers, we briefly introduce the
background of it.

There are two important optimality criteria in Bayesian inference: the min-
imum mean square error (MMSE) criterion and the maximum a posteriori
(MAP) criterion [1, 5]. To compute the optimal (MMSE or MAP) estimate of
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Chapter 1. Introduction

a given variable from some observation, one requires the knowledge of the
posterior probability density function (pdf) of that variable given said obser-
vation – the received signal in the context of digital communications. When
the observed data also statistically depends on several unknown random vari-
ables, the computation of the desired posterior pdf involves marginalization
operations over all unknown variables but the variable of interest. One gen-
erally computes the marginal posterior pdf by means of the total probability
theorem and Bayes theorem. Computing this pdf is referred to as exact in-
ference [1, 3, 4]. Unfortunately, modern communication systems may involve
thousands or even more random variables, which renders exact inference
impractical at best, and simply infeasible in most cases. Indeed, one can typ-
ically not obtain a closed-form expression of the desired posterior pdf except
for the simplest types of probabilistic models, which often do not faithfully
represent the reality observed in practical communication systems.

One popular approach for coping with such cases is based on particles
representation of probability distributions. The Markov chain Monte Carlo
(MCMC) method [6–8] is a typical implementation of this approach. Particle-
based methods operate with samples drawn from the variables’ distributions.
These samples are used to compute approximations of cumbersome distribu-
tions, and/or their characteristics, e.g. their moments. To achieve a sufficient
accuracy of the estimates obtained with such methods, however, requires a
large number of samples drawn; hence these methods involve high compu-
tational complexity. Our focus in this thesis is on an alternative methodology
for approximate statistical inference that is based on variational inference
methods [9, 10] and their applications in the design of receivers for commu-
nication systems [11–16].

Variational inference methods can often be iteratively implemented by
means of algorithms passing messages along the edges of a factor graph [17]
that represents the probabilistic (system) model under consideration. Fac-
tor graphs are particularly well-suited for representing large probabilistic
systems. Out of all message passing techniques, we focus on three main
methods: belief propagation (BP) [17], expectation propagation (EP) [18, 19],
and the mean field (MF) [20–22] approximation. All three methods have in
common the fact that they are derived from the stationary point equations
of the variational free energy or approximations thereof, subject to specific
constraints [10, 23]. Recently, unified message passing frameworks in which
BP and MF [23] or EP [24, 25] can be combined on a single factor graph have
been proposed. These combined schemes keep the virtues of each of the
methods but avoid their respective drawbacks.

In this thesis, we investigate combined message passing methods and
their application to the unified design of receivers for different wireless com-
munication systems. The receivers obtained in this way exhibit an itera-
tive structure in which different blocks implementing specific tasks – such

4



as channel estimation, noise precision (inverse variance) estimation, phase
noise estimation, channel equalization or decoding – exchange information.
Since, occasionally, direct application of the message passing methods yields
receivers with impractically high computational complexity, we also explore
approximate techniques aimed to reduce the computational burden. For sim-
plicity, we restrict our study to single-input single-output wireless commu-
nication links operating in interference-free scenarios. Hence, the effects of
multi-user and co-channel interferences are not taken into account in the con-
sidered systems. We emphasize, however, that the proposed techniques can
be extended to multi-antenna and/or multi-user systems by appropriately
modifying the probabilistic models of the studied problems.

This thesis is organized as a collection of scientific articles, found in Part
II. To put the contributions of these papers in a common context and pro-
vide necessary background information, a brief introduction to the articles is
provided in Chapters 2 through 5 of Part I. We introduce the background of
variational inference in Chapter 2. The message update rules for BP, EP and
MF are presented in Chapter 3. In this chapter we also describe combined
message passing methods and some approximate techniques to simplify the
computation of problematic messages. Chapter 4 introduces the state of the
art on receivers for the considered communication systems and summarizes
the key contributions of the PhD thesis. Conclusions and outlook are given
in Chapter 5. Papers A-F in Part II are the articles listed in Chapter 4. They
contain the main scientific contributions of this thesis.
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Chapter 2

Variational Inference

In this chapter, we shortly review the fundamental concepts related to varia-
tional Bayesian inference on large probabilistic systems. First, we set the no-
tation that we will use henceforth to describe a generic probabilistic system
or model, and introduce the graphical representation of it via factor graphs.
Then we briefly discuss Bayesian inference on such a model before address-
ing the approximate variational inference methods that we will use in this
work.

1 Large Probabilistic Systems, Factor Graph Rep-
resentation and Exact Inference

Bayesian inference is an important method of statistical inference whereby
the variables of interest in the underlying probabilistic system are considered
to be random. In this section, we will describe the framework of Bayesian
inference and two important Bayesian estimators both for continuous and for
discrete variables. Standard works on Bayesian theory can be found in [1, 5].

1.1 Large Probabilistic Systems

Let {Xi; i ∈ I} be a finite family of random variables, indexed by I = [1 : N].
Let xi ∈ Xi represent a realization of random variable Xi, which takes values
in the range Xi. Define the vectors X = [Xi; i ∈ I ]T and x = [xi; i ∈ I ]T.
We often do not observe the instance x of X directly, but only through an
observation y ∈ Y of a random vector Y . The joint pdf of X and Y is denoted
by pX,Y (x, y) : X1 × X2 × · · · × XN × Y → R. A common task on such
models is to infer the value of the realizations of X given the observation of
a realization of Y . Typically this is done based on the a-posteriori pdf of X,

7



Chapter 2. Variational Inference

which according to Bayes’ theorem can be expressed as

pX|Y (x|y) = pX,Y (x, y)
pY (y)

.

For a fixed observation Y = y, y can be treated as a constant and the above
pdf can be represented by the more general relation:

pX|Y (x|y) = 1
Z ∏

a∈A
fa(xa). (2.1)

where the explicit dependence on y has been omitted on the right hand side,
and only dependence on x is explicitly denoted. In the general expression
(2.1), ∏a∈A fa(xa) represents a given factorization of the joint pdf pX,Y (x, y),
while Z takes the place of pY (y), which is just a normalization constant for a
fixed observation Y = y. The set A = [1 : M] is the indices set of the factors,
and factor fa(xa) has as argument the vector xa of which the entries are a
subset of {xi; i ∈ I}. Without loss of generality, we assume that the index
sets fulfill A∩ I = ∅.

1.2 A Short Introduction to Factor Graphs

A factor graph provides a graphical representation of the functional relation-
ships between the variables in a probabilistic model that can be expressed
as a product of factors as in (2.1). The factor graph representation has been
widely applied in coding, signal and image processing, statistical machine
learning and artificial intelligence in recent years [17, 26]. It is a useful tool
to design efficient iterative message passing algorithms within various vari-
ational inference frameworks. The factor graph representation is a simple
and intuitive alternative to Markov random fields [27] and Bayesian (belief)
networks [28].

A factor graph is a bipartite graph that expresses the relationships between
the random variables Xi, i ∈ I and the factors fa, a ∈ A in the factoriza-
tion (2.1). A factor graph has a variable node for each variable Xi, typically
depicted by a circle, a factor node for each factor fa, commonly drawn as a
square, and an edge – connecting variable node Xi to factor node fa, if, and
only if, the variable xi is an argument of the factor fa.

We give an example of a joint pdf and its factor graph next.

Example 1 (Factor Graph Representation). Let pX(x1, x2, x3, x4, x5) be the joint
pdf of five random variables X1, X2, X3, X4, X5 and suppose that pX can be factorized
as

pX(x1, x2, x3, x4, x5) =
1
Z fA(x1) fB(x2) fC(x1, x2, x3) fD(x3, x4) fE(x3, x5). (2.2)

The factor graph representing the factorization (2.2) is depicted in Fig. 2.1.

8
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X1 X2

fA

X3 X4 X5

fEfDfCfB

Fig. 2.1: A factor graph representing the factorization of the joint pdf (2.2)

For convenience of description, we use N(i) ⊆ A to denote the set of indices
of factors connected to the variable node Xi by an edge, and N(a) ⊆ I stands
for the set of indices of variables nodes connected to the factor node fa.

1.3 Optimal Estimators and Exact Inference

Given the probabilistic system described in Subsection 1.1, a common task
is the estimation of the random variables Xi, i ∈ I or a selection of them
given the observation y. In Bayesian theory, estimators can be formulated
based on different optimality criteria. Two of the most widely used estimators
are the MMSE and the MAP estimators [1, 5]. The former minimizes the
mean square error (MSE), while the latter maximizes the probability that the
estimate is correct. Specifically, the MMSE and MAP estimators of Xi, i ∈ I ,
are formulated as

x̂i(y)MMSE , arg min
x̂i

E[‖Xi − x̂i‖2|y] =
∫
Xi

xi pXi |Y (xi|y)dxi (2.3)

x̂i(y)MAP , argmax
x̂i

Pr(Xi = x̂i|y) = argmax
xi∈Xi

pXi |Y (xi|y). (2.4)

From these expressions, we can see that both estimators require the knowl-
edge of the posterior pdf pXi |Y (xi|y) of the unknown variable Xi. This poste-
rior pdf can be obtained by marginalizing the joint posterior pX|Y (x|y) with
respect to all unknown variables but Xi:

pXi |Y (xi|y) =
∫

X ī

pX|Y (x|y)dxī (2.5)

where X ī and xī represent the vectors X and x with their i-th entry removed.
The methods that compute (2.5) perform exact inference [1, 3, 4]. When

exact inference is feasible, the optimal estimators in (2.3) and (2.4) can be
computed exactly. Unfortunately, this is seldom the case for large proba-
bilistic systems, i.e. M and N large, as those representing communication
systems. For those systems, one needs to resort to some approximation of
pXi |Y (xi|y) instead.

9



Chapter 2. Variational Inference

Remark: When pXi |Y (xi|y) is a Gaussian distribution, its mode coincides
with its mean. Thus, the MAP estimate coincides with the MMSE estimate in
this case.

2 Principle of Variational Inference

As mentioned above, exact inference in large probabilistic systems is often
intractable, and approximate solutions need to be sought instead. Variational
approximation methods [9, 10, 20] compute approximations of the marginal
pdfs of variables of interest from a joint pdf. These methods attempt to
minimize some objective function under some specific constraints. In this
section, we introduce the objective functions associated with the methods
that we will consider in the thesis, i.e. the variational free energy and its
region-based approximations. In the next chapter we will derive the update
equations of these methods that result from the stationary point equations of
the objective functions subject to the specified constraints.

2.1 Variational Free Energy

Assume that pX(x) = 1
Z ∏a∈A fa(xa) is the pdf of a large probabilistic system.

The exact computation of marginals from pX(x) is often difficult. An avenue
to compute approximations of the sought marginals consists of postulating
a simple trial function b(x), often called “belief”. The belief b(x) is used in
place of the true system’s pdf and, as such, should be normalized and obey
0 ≤ b(x) ≤ 1 for all x. The variational free energy (also called Gibbs free
energy) associated to b(x) [10] is defined as

F (b) = U(b)− H(b) (2.6)

where U(b) = −∑x b(x)∑a∈A ln fa(xa) is called the variational average en-
ergy and H(b) = −∑x b(x) ln b(x) is the variational entropy.

From the above definitions of variational free energy F (b), variational
average energy U(b), and variational entropy H(b), we readily obtain the
identity

F (b) = FH + KLD(b‖pX) (2.7)

where FH = − ln Z is a constant –called the Helmholtz free energy of the
system in statistical mechanics– and

KLD(b‖pX) , ∑
x

b(x) ln
b(x)

pX(x)

is the Kullback-Leibler (KL) divergence of pX(x) from b(x). Since the KL
divergence is non-negative, we have the inequality F (b) ≥ FH , with equality
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if, and only if, b(x) = pX(x). From this result, we clearly see that minimizing
the variational free energy F (b) in (2.7) with respect to the belief b(x) is
equivalent to minimizing the KL divergence of pX(x) from b(x). Thus, if
there are no restrictions on the trial pdf b(x), one obtains the exact FH and
recover pX(x) by computing the minimizer of F (b).

Instead, one can impose some factorization constraint on the belief func-
tion b(x) so that the computation of marginals from it becomes tractable. In
this case, the minimizer of the free energy is the belief fulfilling the constraint
that minimizes the KL divergence. One simplifying assumption commonly
employed in variational inference is that the belief function is of the factor-
ized form

bMF(x) = ∏
i∈I

bi(xi). (2.8)

Substituting (2.8) into (2.6) yields the MF free energy

FMF = ∑
i∈I

∑
xi

bi(xi) ln bi(xi)− ∑
a∈A

∑
xa

∏
i∈N(a)

bi(xi) ln fa(xa). (2.9)

Note that each factor bi(xi) satisfies the normalization constraint
∫

bi(xi)dxi =
1.

The belief function (of the form (2.8)) that minimizes (2.9) is called the MF
approximation.

This approach assumes that the marginal beliefs of the variables Xi, i ∈ I
are independent. Hence, the minimizer of the MF free energy is already a
product of the sought approximate marginals, and no further operations are
needed to compute them.

2.2 Region-Based Free Energy

While the variational free energy (or KL divergence) is often a useful objective
function for approximate inference, there are systems in which other objective
functions may be preferred. Here we introduce an approximation of the
Gibbs free energy, called region-based free energy [10, Sec. IV].

The region-based approximation method is based on the principle of di-
viding the factor graph of the probabilistic system into different regions. A
region R , (IR,AR) consists of subsets of indices IR ⊆ I and AR ⊆ A with
the restriction that a ∈ A implies that N(a) ⊆ IR. There is also a counting
number cR ∈ Z associated to each region R. A set R , {(R, cR)} of regions
and associated counting numbers is called valid if, and only if,

∑
(R,cR)∈R

cR IAR(a) = ∑
(R,cR)∈R

cR IIR(i) = 1 (2.10)

11
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for all a ∈ A and i ∈ I , where IS (x) is the set-membership indicator function,
equal to 1 if x ∈ S and equal to 0 otherwise.

For a valid set R of regions and associated counting numbers, the region-
based free energy approximation is defined as [10]

FR({bR}) , UR({bR})− HR({bR}), (2.11)

where

UR({bR}) , − ∑
(R,cR)∈R

cR

∫
bR(xR) ∑

a∈AR

ln fa(xa)dxR

HR({bR}) , − ∑
(R,cR)∈R

cR

∫
bR(xR) ln bR(xR)dxR.

A typical example of a valid region-based approximation is the one con-
sidered in Bethe’s method used to derive BP and EP. Its regions are defined
as follows:

1) small regions Ri , ({i}, ∅), with ci = cRi = 1− |N(i)| for all i ∈ I ;

2) large regions Ra , (N(a), {a}), with ca = cRa = 1 for all a ∈ A.

The above regions assignment fulfils (2.10). This yields a valid set of regions
and associated counting numbers:

RBethe , {(Ri, ci); i ∈ I} ∪ {(Ra, ca); a ∈ A}. (2.12)

With this selection, (2.11) becomes

FBethe = ∑
a∈A

∫
ba(xa)) ln

ba(xa)

fa(xa)
dxa

−∑
i∈I

(|N(i)| − 1)
∫

bi(xi) ln bi(xi)dxi. (2.13)

This approximation of the variational free energy is commonly called the
Bethe free energy [10, 19]. The beliefs of the regions in RBethe are non-
negative and are normalized, i.e.∫

ba(xa)dxa = 1, ∀a ∈ A∫
bi(xi)dxi = 1, ∀a ∈ I . (2.14)

One can easily show that if the factor graph is a tree, then FBethe = F (b) with

b(x) = ∏a∈A ba(xa)

∏i∈I bi(xi)ci−1 ,

12



2. Principle of Variational Inference

i.e. the Bethe free energy coincides with the Gibbs free energy of b(x).
In this thesis a variational inference method is any method that computes

the minimizer of the MF free energy or a region-based free energy or an
approximation of this minimizer.
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Chapter 3

Variational Inference Via
Message Passing Algorithms

In this chapter, we present the variational inference tools that we will use
in the rest of this thesis. Actually, we present their implementation as mes-
sage passing algorithms. Messages passing algorithms are iterative. At each
iteration, functions that are interpreted as messages passed along edges of
the factor graph representing the underlying probabilistic model are com-
puted. Update rules determine how these messages are computed from the
messages obtained at the previous iteration. The message passing algorithms
considered in the thesis attempt to compute beliefs that minimize a given free
energy while fulfilling some constraints (e.g. normalization and marginaliza-
tion or moment matching constraints). These algorithms are obtained by
using the following procedure:

Procedure 1 (Derivation of message passing algorithms). In a first step the
stationary point equations of the Lagrangian function obtained by adding terms that
account for the beliefs’ constraints to the considered free energy are obtained. In a
second step these stationary point equations and the matching constraints are refor-
mulated as implicit equations involving messages. These implicit equations are the
fixed point equations of the update rules, or–put differently–the update equations are
selected so that their fixed point are solutions to the implicit equations.

Below we briefly discuss the three message passing algorithms that will
be the baseline of all message passing algorithms considered in the thesis:
BP, EP and MF.

BP, also known as sum-product algorithm [17], has been widely used in
the design of wireless receivers. It is shown in [10] that the fixed point equa-
tions of BP are obtained by applying Procedure 1 while considering the Bethe
free energy, normalization constraints, and marginalization constraints that

15
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relate the beliefs of the factor nodes and the beliefs of the variable nodes.
BP computes exact marginals when the factor graph is free of cycles. Its
remarkable performance, especially when applied to linear Gaussian or dis-
crete probabilistic models and the factor graph has no short cycles, justifies its
popularity. However, the complexity of BP may become intractable in certain
application contexts, e.g. when the probabilistic model includes both discrete
and continuous random variables. In this case, one must resort to alternative
methods.

The MF approximation [29] have been initially used in quantum and sta-
tistical physics. The fixed point equations of MF are obtained by applying
Procedure 1 while considering the Gibbs free energy, some constraint on
how b(x) factorizes, and the fact that the integral of this belief is equal to
one. The MF approximation has also been formulated as a message passing
algorithm, referred to as variational message passing (VMP) [9, 21, 22]. It
has simple update rules, in particular for conjugate-exponential models and
it always converges. However, MF is not compatible with hard constraints.

EP [18, 19] can be seen as a relaxed version of BP: The same procedure
is used except the marginalization constraints that are replaced by looser
constraints requiring some moments of the beliefs of the factor nodes and
the beliefs of the variable nodes to match. First- and second-moments are
typically considered. EP is typically regarded as an approximation of BP, in
which the beliefs of the variable nodes are approximated by pdfs belonging
to specific exponential families (e.g. Gaussian). The approximate beliefs are
obtained so that the expectations of their natural statistics coincide with those
of the non approximated BP beliefs. In this way, EP solutions can circumvent
the high complexity of BP-based algorithms in certain applications.

Recently, a unified message passing framework which combines BP with
MF [23] on a same factor graph has been proposed, which keeps the virtues
of BP and MF but avoids their respective drawbacks. Following an analogous
methodology, we formulate another unified framework which combines BP
and EP [24] (Paper A) on a single factor graph in this chapter.

Notation: In the sequel, we define an m-type message m fa→xi
(xi) and an n-

type message nxi→ fa(xi) to be a message from factor node fa to variable node
xi and a message from variable node xi to factor node fa, respectively. We
use this default definition in the rest of thesis, unless otherwise specified.

1 Mean Field Message Passing

A message passing representation of the MF approximation was derived in
[20] using Markov random fields, in [21] using Bayesian networks, and in
[9, 22] on factor graphs.
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Considering the MF free energy (2.9) and the normalization constraints∫
bi(xi)dxi = 1, ∀i ∈ I , we use the method described in Procedure 1 to derive

the fixed point equations of MF:

m fa→xi
(xi) = exp


∫

log fa(xa) ∏
j∈N(a)\i

nxj→ fa(xj)dxj

 ,

a ∈ A, i ∈ N(a) (3.1)

nxi→ fa(xi) = ∏
b∈N(i)

m fb→xi
(xi), i ∈ I . (3.2)

The beliefs of the variable nodes are obtained as

bi(xi) ∝ ∑
a∈N(i)

m fa→xi
(xi), i ∈ I . (3.3)

The update equations of MF result by interpreting the "=" and "∝" signs
in (3.1) - (3.3) as the assignment operator (":=").

2 Belief Propagation

BP [17], also called sum-product algorithm, computes the exact marginal dis-
tribution pi(xi) of the variable xi when the factor graph is a tree. In [10, Sec.
VI] the fixed point equations of BP are obtained by using the method de-
scribed in Procedure 1 while considering the Bethe free energy, the normal-
ization constraints (2.14), and the following marginalization constraints.

The beliefs of the small regions Ri, i ∈ I , and their neighbouring large
regions Ra, a ∈ A, are related via the marginalization constraints

bi(xi) =
∫

ba(xa)dxa\xi, i ∈ I , a ∈ N(i). (3.4)

The resulting fixed point equations of BP read

m fa→xi
(xi) =

∫
fa(xa) ∏

j∈N(a)\i
nxj→ fa(xj)dxj, a ∈ A, i ∈ N(a) (3.5)

nxi→ fa(xi) = ∏
b∈N(i)\a

m fb→xi
(xi), i ∈ I , a ∈ N(i). (3.6)

The beliefs of the variable nodes are obtained as

bi(xi) ∝ ∏
b∈N(i)

m fb→xi
(xi), i ∈ I . (3.7)

Interpreting the "=" and "∝" signs in (3.5) - (3.7) as the assignment operator
yields the update equations of BP.
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3 Expectation Propagation

EP [18, 19] constrains the beliefs bi(xi), xi ∈ Xi, i ∈ I , to belong to special
exponential families Ei, yielding lower complexity than BP. Heskes et. al. [19]
derived the fixed point equations of EP by applying Procedure 1 while con-
sidering the Bethe free energy (2.13), the normalization constraints (2.14), and
the following expectation constraints.

The expectations of the sufficient statistics φi(xi) over the beliefs of the
small regions Ri and their neighboring large regions Ra, a ∈ N(i), match.
Specifically:∫

φi(xi)bi(xi)dxi =
∫

φi(xi)ba(xa)dxa, i ∈ I , a ∈ N(i). (3.8)

Following Procedure 1, we obtain the stationary point equations for the
beliefs:

bi(xi) ∝ exp

 1
|N(i)| − 1 ∑

a∈N(i)
µT

a,iφi(xi)

 , i ∈ I (3.9)

ba(xa) ∝ fa(xa) ∏
i∈N(a)

exp
{

µT
a,iφi(xi)

}
, a ∈ A, (3.10)

where µT
a,i is the Lagrangian multiplier associated with the expectation con-

straints (3.8).
From these equations and the moment constraints we obtain the fixed

point equations of EP messages

m fa→xi
(xi) =

ProjEi

{∫
fa(xa)∏j∈N(a)\i nxj→ fa(xj)dxjnxi→ fa(xi)

}
nxi→ fa(xi)

,

a ∈ A, i ∈ N(a) (3.11)

nxi→ fa(xi) = ∏
b∈N(i)\a

m fb→xi
(xi), i ∈ I , a ∈ N(i). (3.12)

In (3.11), ProjE{·} is the projection operator on the class of exponential pdfs
E :

Q(x) = ProjE { f (x)}
, arg min

Q′(x)∈E
KLD{Q′(x)|| f (x)}

= arg min
Q′(x)∈E

∫
Q′(x) log

Q′(x)
f (x)

dx.
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The projection Q(x) = arg minQ′(x)∈E KLD{Q′(x)|| f (x)} is the element in
Q′(x) ∈ E such that the expectations of φ(x) over Q(x) and f (x) are equal:∫

φ(x)Q(x)dx =
∫

φ(x) f (x)dx.

The beliefs of the variable nodes are given by

bi(xi) ∝ ∏
b∈N(i)

m fb→xi
(xi), i ∈ I . (3.13)

It is easily seen that due to (3.11) and (3.12) the belief bi(xi) in (3.13) belongs
to the exponential family Ei, and fulfills (3.9).

The update equations of EP are obtained by interpreting the "=" and "∝"
signs in (3.11) - (3.13) as the assignment operator.

Notice that in EP the variable (small region) beliefs match the factor (large-
region) beliefs in terms of their moments, according to (3.8). In BP the former
beliefs match the latter in the sense that the former are marginals of the latter,
as expressed by (3.4). This is the distinction between BP and EP. The different
types of constraints imposed on the minimization of the Bethe free energy
–(3.8) for BP and (3.4) for EP– constitute the only difference in the derivation
of the two message passing algorithms.

4 Combined Message Passing Frameworks

In this section, we present two message passing methods each of which com-
bines two of the previously discussed methods: BP-MF and BP-EP. In Subsec-
tion 4.1 we present the derivation of combined BP-MF [23], which we later ap-
ply to frequency domain turbo equalization in Paper C and sparse Bayesian
learning in Paper D. In Subsection 4.2 we derive BP-EP by minimizing the
Bethe free energy. We apply this algorithm in Paper A for turbo equaliza-
tion. Other unified message passing frameworks combining more than two
techniques, such as combined BP-EP-MF, can be deduced straightforwardly.

4.1 BP-MF [23]

We first group the local functions fa(xa), a ∈ A in factorization (2.1) into two
disjoint sets, a BP set { fa(xa); a ∈ ABP} and a MF set { fa(xa); a ∈ AMF}.
Here, ABP and AMF stand for the index sets of the factors in the BP and MF
sets, respectively. Furthermore, we set

IMF ,
⋃

a∈AMF

N(a), IBP ,
⋃

a∈ABP

N(a)
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and

NMF(i) , AMF ∩ N(i), NBP(i) , ABP ∩ N(i).

Next, we define the following regions and counting numbers:

1) one MF region RMF , (IMF,AMF), with cRMF = 1;

2) |IBP| small regions Ri , ({i}, ∅), with cRi = 1− |NBP(i)| − IIMF(i) for all
i ∈ IBP;

3) |ABP| large regions Ra , (N(a), {a}), with cRa = 1 for all a ∈ ABP.

This yields the valid set of regions and associated counting numbers

RBP,MF , {(Ri, cRi ); i ∈ IBP} ∪ {Ra, cRa ; a ∈ ABP} ∪ {RMF, cRMF}
and its region-based free energy

FBP,MF = ∑
a∈ABP

∫
ba(xa) ln

ba(xa)

fa(xa)
dxa

− ∑
a∈AMF

∫
∏

i∈N(a)
bi(xi) ln fa(xa)dxa

−∑
i∈I

(|NBP(i)− 1|)
∫

bi(xi) ln bi(xi)dxi. (3.14)

Normalization constraints are given by∫
bi(xi)dxi = 1, i ∈ IMF/IBP,∫

ba(xa)dxa = 1, a ∈ ABP, (3.15)

and marginalization constraints for BP regions are

bi(xi) =
∫

ba(xa)dxa/xi, a ∈ ABP, i ∈ N(a). (3.16)

Once again, Procedure 1 is invoked using the region-based free energy in
(3.14), the normalization constraints in (3.15), and the marginalization con-
straints in (3.16), to obtain the fixed point equations of BP-MF:

mBP
fa→xi

(xi) =
∫

fa(xa) ∏
j∈N(a)\i

nxj→ fa(xj)dxj, a ∈ ABP, i ∈ N(a) (3.17)

mMF
fa→xi

(xi) = exp


∫

log fa(xa) ∏
j∈N(a)\i

nxj→ fa(xj)dxj

 , a ∈ AMF, i ∈ N(a)

(3.18)

nxi→ fa(xi) = ∏
b∈N(i)∩ABP\a

mBP
fb→xi

(xi) ∏
c∈N(i)∩AMF

mMF
fc→xi

(xi), i ∈ I , a ∈ N(i).

(3.19)
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The variables’ beliefs are given by

bi(xi) ∝ ∏
a∈N(i)

⋃ABP

mBP
fa→xi

(xi) ∏
b∈N(i)

⋃AMF

mMF
fb→xi

(xi). (3.20)

Interpreting the "=" and "∝" signs in (3.17) - (3.20) as the assignment operator
results in the update equations of BP-MF.

4.2 BP-EP

The variable nodes xi, i ∈ I of a given factor graph are grouped into two
disjoint BP and EP sets. The sets IBP and IEP denote the indices sets of the
variables in the BP and EP sets, respectively, with

I = IBP ∪ IEP, IBP ∩ IEP = ∅. (3.21)

We impose the normalization constraints (2.14) for every factor node and
variable node, the marginalization constraints (3.4) for the variables in the BP
set and their neighbouring factors, and the expectation constraints (3.8) for
the variables in the EP set and their neighbouring factors.

The Lagrangian function of the Bethe free energy in (2.13) that accounts
for all the above constraints is of the form

LBethe = FBethe − ∑
a∈A

∑
i∈N(a)∩IBP

∫
λa,i(xi)

(
b(xi)−

∫
ba(xa)dxa/xi

)
dxi

− ∑
a∈A

∑
i∈N(a)∩IEP

µT
a,i

(∫
φi(xi)b(xi)dxi −

∫
φi(xi)ba(xa)dxa

)

−∑
i∈I

γi

(∫
bi(xi)dxi − 1

)
− ∑

a∈A
γa

(∫
ba(xa)dxa − 1

)
, (3.22)

where λa,i, µa,i, γi and γa, i ∈ I , a ∈ A, denote Lagrange multipliers.
Taking the derivatives of LBethe in (3.22) with respect to bi(xi), i ∈ I and

ba(xa), a ∈ A, respectively, and equating the derivatives to zero, yields the
stationary point equations

(|N(i)| − 1) ln bi(xi) = ∑
a∈N(i)

λa,i(xi) + γi − |N(i)|+ 1, i ∈ IBP (3.23)

(|N(i)| − 1) ln bi(xi) = ∑
a∈N(i)

µT
a,iφi(xi) + γi − |N(i)|+ 1, i ∈ IEP (3.24)

ln ba(xa) = ln fa(xa) + ∑
i∈N(a)∩IBP

λa,i(xi)

+ ∑
i∈N(a)∩IEP

µT
a,iφi(xi) + γa − 1, a ∈ A. (3.25)
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From these equations and the marginalization and expectation constraints
we obtain the fixed point equations of BP-EP:

mBP
fa→xi

(xi) =
∫

fa (xa) ∏
j∈N(a)/i

nzj→ fa

(
xj
)

dxj, i ∈ I , a ∈ N(i) (3.26)

mEP
fa→xi

(xi) =
ProjEi

{
mBP

fa→xi
(xi) nxi→ fa (xi)

}
nxi→ fa (xi)

, i ∈ IEP, a ∈ N(i) (3.27)

nxi→ fa (xi) = ∏
b∈N(i)/a

mBP
fb→xi

(xi) , i ∈ IBP, a ∈ N(i) (3.28)

nxi→ fa (xi) = ∏
b∈N(i)/a

mEP
fb→xi

(xi), i ∈ IEP, a ∈ N(i). (3.29)

The beliefs of the variable nodes are given by

bi(xi) ∝ ∏
a∈N(i)

mBP
fa→xi

(xi) , i ∈ IBP (3.30)

bi(xi) ∝ ∏
a∈N(i)

mEP
fa→xi

(xi), i ∈ IEP. (3.31)

The update equations of BP-EP are obtained by interpreting the "=" and "∝"
signs in (3.26) - (3.31) as the assignment operator.

5 Gaussian Approximate Message Techniques

BP, EP and MF can sometimes still result in high complexity as some of the
messages may involve cumbersome expressions which, in turn, make their
computation intractable. Gaussian messages are parametric functions of their
mean and variance. They are particularly well suited when these parameters
can be easily computed. Hence, several techniques to approximate messages
by Gaussian functions have been proposed in the literature. Here, we shortly
discuss two of them. The first is based on minimizing a KL divergence and
the second relies on a second-order Taylor’s expansion. In some applications,
having the ability to select some messages that are to be approximated by
Gaussian functions allows for a flexible trade-off between complexity and
performance. The partial Gaussian approximation (PGA) principle [30] is a
good example of this strategy. We have applied it to design an efficient turbo
equalization algorithm in Paper B.
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5.1 Minimizing Kullback-Leibler Divergence

A message m(x) can be approximated by a Gaussian function mG(x) as fol-
lows:

mG(x) = arg min
m′(x)∈N

KLD{m′(x)‖m(x)} ≈ m(x). (3.32)

where N denotes the Gaussian family.
The method matches the first and second moments of m(x) and mG(x), i.e.

E[X]m(x) = E[X]mG(x) and E[X2]m(x) = E[X2]mG(x). When one is not able to
obtain E[X]m(x) and E[X2]m(x) in closed form, the minimization in (3.32) can
be performed by using numerical methods, such as gradient descent method,
steepest descent method and Newton’s method [31].

5.2 Second Order Taylor’s Expansion

Suppose that a message m(x) can be expressed in the exponential form
m(x) = e− f (x), where f (x) has first and second derivatives. We can expand
f (x) in a second-order Taylor’s series at a given point x∗,

f (x) ≈ f (x∗) + f ′(x∗)(x− x∗) + f ”(x∗)(x− x∗)2. (3.33)

Using this result, a Gaussian message approximating m(x) can be obtained
as

mG(x) ∝ exp{− f ′(x∗)(x− x∗)− f ”(x∗)(x− x∗)2} ≈ m(x). (3.34)

This method is one of the main contributions of Paper F.

6 Other Approximate Message Passing Algorithms

In our work we have focused on the message passing methods and the
approximation techniques discussed in the previous sections of this chap-
ter. There are, however, other alternative methods that can be used for the
design of iterative signal processing algorithms. We close this chapter by
shortly mentioning two methods that have attracted considerable interest
from the research community in recent years: approximate message passing
(AMP) [32], and its more general form, generalized AMP (GAMP) [33].

The AMP algorithm was proposed as a computationally efficient and ac-
curate tool to perform inference on signal models of the form

y = Ax + w (3.35)

where the entries of a unknown vector x are observed through a known
mixing matrix A of large dimensions, with some additive white Gaussian
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noise (AWGN) w. The mixing matrix is typically a dense matrix, so that
the factor graph representation of the model is densely connected graph.
Keeping this factor graph representation in mind, the AMP algorithm can be
interpreted as EP message passing [34] on the densely connected graph, in
which the large dimensions of A are used to simplify the algorithm using
large system argumentations. GAMP is derived based on similar principles,
but overcoming the assumption of AWGN channel. Both techniques have
been extensively applied since they were proposed [14, 15, 35], especially
within the context of compressed sensing and sparse estimation problems.

We have used GAMP to benchmark some of our proposed receiver de-
signs, as e.g. in Paper C. We also embedded it into the BP-MF framework to
design a low-complexity OFDM receiver in Paper E.
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Chapter 4

Design of Wireless Receivers:
State-of-the-Art and Thesis
Contributions

With the principles of variational inference and message passing algorithms
laid out in Chapters 2 and 3, we proceed in this chapter to describe their
application to the design of receiver algorithms in digital communications
systems. We start with a short description of the problem of receiver design
for digital communications. After this generic discussion, we review in more
depth the specific problems that have been approached in this thesis, detail-
ing the state-of-art and our contributions to solve them. These are collected
in Papers A-F, and constitute the main contribution of this thesis.

Digital communications deal with the transmission of binary information
from a transmitter to a receiver. The transmitter converts the binary infor-
mation to an analogue waveform and sends this waveform over a physical
medium, such as a wire or open space, which we call the channel. At the
receiver, the received signal appears distorted by channel and interference
and is further corrupted due to thermal noise. Not only has the receiver to
recover the original binary information, but it must also deal with channel
and interference effects, thermal noise, and synchronization issues. In ad-
dition, channel coding is often used to mitigate the effects of intersymbol
interference (ISI), so the particular code structure needs to be accounted for
as well. In such a context, iterative signal processing based on message pass-
ing techniques emerges as a feasible tool for receiver design, as it allows to
perform approximate inference in large probabilistic systems including both
continuous and discrete random variables.

The idea of iterative turbo processing dates back to 1993, when Berrou et
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al. [36] proposed an encoding structure concatenating two simple encoders
(turbo-codes) in parallel, associated with a feasible decoding procedure (turbo-
decoding) that exchanges soft information between two soft-in-soft-out (SISO)
decoders operating in parallel. The drastic performance improvement achieved
with this turbo-code and turbo-decoder has lead to a paradigm shift in the
coding community. It has also sparkled feverish activities worldwide [37–41]
aiming at generalizing the turbo-principle to incorporate –in addition to the
decoding procedure– other functionalities of receivers, such as channel esti-
mation, channel equalization, synchronization, multi-user interference can-
cellation, etc. Well-investigated applications today are turbo-equalization as
well as joint channel estimation and decoding in multi-user systems. It has
been recently recognized that turbo-algorithms are particular instances of the
variational Bayesian method. For instance, Berrou’s turbo-decoding is known
to be an instance of BP algorithm [42]. Other principles, such as VMP or EP,
have also been widely applied to design iterative receiver structures.

In this thesis, we focus on the design of iterative receivers for different
communication systems integrating tasks such as channel estimation, phase
noise estimation, equalization, and decoding. With this aim, we rely on es-
tablished message passing frameworks, namely BP, the MF approximation,
and EP. For each of the studied problems, a probabilistic model of the sys-
tem is developed. Subsequently, the message passing tool (or combination
of tools) most suitable to perform variational inference in such model is cho-
sen, applied, and the performance of the resulting algorithm is evaluated
against previously proposed solutions. In the following, we describe each of
the problems that have been studied in the thesis, including a short review
of their state-of-art, and specify the contributions made for each of the areas.

1 Turbo Equalization

Iterative equalization and decoding of ISI channels has been thoroughly stud-
ied over the last two decades, and many currently well known iterative equal-
izer structures have been derived, e.g. decision feedback equalizers [43] and
turbo-equalizers [39, 41]. More recently, the popularization of message pass-
ing algorithms and factor graphs [17] has inspired the proposal of various
message passing solutions. For instance, a BP-based turbo equalizer has been
proposed in [44]. BP-based equalizers suffer, however, from a large compu-
tational complexity that scales exponentially with the modulation order and
the amount of channel taps L.

Other message passing algorithms, alternative to BP, have been proposed
to circumvent the aforementioned complexity problem. In [45], the residual
interference plus noise component is approximated as a Gaussian variable,
similarly to [11], in an approach that can be interpreted as direct approxima-
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tion of BP messages by Gaussian messages. While this Gaussian approxima-
tion successfully reduces the complexity of the receiver to O(L2) per symbol,
this is achieved at the expense of a significant degradation in bit-error-rate
(BER). The trade-off between complexity and BER can be adjusted by resort-
ing to algorithms which apply the same Gaussian approximation as [11], but
only on a subset of the interfering symbols. This approach, presented in [30],
is coined partial Gaussian approximation (PGA). The PGA algorithm for a
generic channel matrix was developed in [30]. Another alternative to obtain
Gaussian messages and, consequently, low-complexity equalization is to use
Gaussian EP, as proposed in [25] and Paper A. As shown in Paper A, ap-
plying EP yields a significant improvement in the equalizer’s performance,
compared to directly approximating BP messages as Gaussian.

The computational complexity (O(L2) per symbol [11, 24, 39, 41, 45])
of the linear MMSE SISO equalizer in time domain is still too high when
the length of channel taps L is long. For instance, in broadband wireless
and underwater acoustic communications, L may often be dozens or hun-
dreds [46, 47]. This has motivated researchers to pursue alternative equaliza-
tion algorithms and, in particular, algorithms that perform in the frequency
domain, rather than the time domain. Along these lines, single carrier fre-
quency domain equalization (SC-FDE) technique is an attractive technology
for wireless communications due to its ability to cope with the temporal
dispersion introduced by multipath channels. It preserves the performance,
efficiency and low complexity benefits of its OFDM counterpart, while being
less sensitive to power amplifier nonlinearities and carrier frequency offsets,
in addition to exhibiting a lower peak-to-average transmitted power ratio [46].
For these reasons, SC-FDE has been selected as the access scheme for the up-
link of the 3GPP long term evolution (LTE) and LTE advanced standards [48].

Recently, the linear MMSE equalizer has been implemented in the fre-
quency domain (with or without the assistance of cyclic prefixing), reducing
the equalizer’s complexity to logarithmic level [49–52]. Although its low com-
plexity makes it attractive, the frequency domain linear MMSE (FD-LMMSE)
equalizer may suffer from significant performance loss when the transmitted
signal is severely distorted by the ISI channel. Guo et. al. developed a turbo
frequency domain equalization (FDE) algorithm [53] based on GAMP [33],
which can achieve significant performance gain with slight complexity in-
crease compared to FD-LMMSE equalization. This turbo FDE algorithm can
be regarded as the state-of-the-art solution for equalization in frequency do-
main.

In this thesis, we apply the message passing frameworks to design re-
ceivers performing iterative equalization and decoding in time domain (see
Papers A and B ) and frequency domain (see Paper C).
Paper A: Iterative Receiver Design for ISI Channels Using Combined Belief-
and Expectation-Propagation In this contribution, we formulate an approx-
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imate inference method combining BP and EP and apply it to design a turbo
equalization and decoding receiver for ISI channels. The proposed receiver,
using Gaussian message passing approximated by EP in channel equalization
part, avoids the exponential complexity problem of BP-based turbo equaliz-
ers. The numerical assessment of our proposed receiver illustrates the advan-
tages of applying the combined BP-EP framework over receivers using solely
BP and using BP with direct Gaussian approximation of its messages.
Paper B: Turbo-Equalization Using Partial Gaussian Approximation We
further develop the BP-EP receiver in Paper A, by applying the PGA principle
proposed in [30] to modify the output messages from equalization. Since
PGA allows the receiver to tune the number of symbols that are considered
as strong interferers, the proposed receiver enables a flexible performance-
complexity tradeoff. The simulation results illustrate the merits of the new
turbo equalization receiver compared to the receiver we proposed in Paper A
and other benchmarks.
Paper C: Message-Passing Receivers for Single Carrier Systems with Fre-
quency Domain Equalization In this contribution, we design a turbo equal-
ization receiver based on the BP-MF framework for SC-FDE systems. Two re-
ceiver algorithms with, respectively, parallel and sequential message passing
schedules are proposed in the MF part for channel equalization. Monte Carlo
simulations show that our proposed design outperforms a similar structure
derived using GAMP, and performs very closely to the matched filter bound.

2 Sparse Channel Estimation

Turbo equalizers in time or frequency domain are designed under the as-
sumption that exact channel state information (CSI) is known. However, it is
typically unknown and should be estimated in communication receivers. It is
well-known that the accuracy of channel estimation is a crucial factor deter-
mining the overall performance in wireless communication systems and net-
works, in terms of BER and throughput. In addition, as the communication
bandwidth increases, multipath propagation channels are usually dominated
by a small number of significant paths, resulting in most of the channel co-
efficients being either zero or nearly zero, and therefore compressive sensing
and sparse signal reconstruction become very powerful tools for the design
of channel estimators. Consequently, we also investigate sparse channel es-
timation which can provide CSI for detection and equalization in OFDM or
SC-FDE receivers.

Various Bayesian and non-Bayesian approaches have been proposed for
sparse signal reconstruction in the literature. Greedy constructive algorithms
such as orthogonal matching pursuit (OMP) [54] and compressive sampling
MP (CoSaMP) [55] share the common characteristic that a proper iteration
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number or a predetermined sparsity is required to stop the iteration. More-
over, these greedy algorithms are non-Bayesian, and are therefore not very
suitable to be embedded in receiver structures derived using Bayesian for-
malisms. There are many convex optimization based methods, such as the
very popular LASSO regression [56, 57] using l1 norm or Laplace prior, FO-
CUSS (focal undetermined system solver) algorithm [58] using l2 norm or
Gaussian prior and smooth l0 (SL0) algorithms [59, 60] using smoothly ap-
proximate of the l0 pseudo norm. These convex optimization based methods
can usually be recast into a Bayesian MAP estimation form, by designing
appropriate prior pdfs for the entries of the sparse vector that play the role
of the different regularization terms in the convex optimization formulation.
Sparse Bayesian learning (SBL) [61–64] has also been proposed for sparse sig-
nal reconstruction methods. Instead of working directly with a prior, SBL
approaches often model a two-layer (2-L) or three-layer (3-L) hierarchical
structure using random hyper-parameters.

Given that direct computation of a Bayesian estimate is often intractable
for most choices of a prior pdf, the hierarchical modeling approach allows for
the use of iterative estimation approaches instead. For instance, the gener-
alized expectation-maximization (EM) algorithms has been a popular choice
for this task, along with variational inference approaches. Most recently, SBL
has been efficiently implemented using BP [65, 66] and AMP [35, 67]. How-
ever, these methods assume that the power of noise is known, which may not
be true in many applications.

Using 2-L and 3-L hierarchical prior models, Pedersen et al. proposed a
MF-based algorithm [68] to approximate a sparse Bayesian estimate of radio
channels in OFDM systems. Since the MF-based iterative algorithm updates
the estimates of all channel taps with length L at once –i.e. it jointly updates
the full vector of channel taps– its computational complexity is as high as
O(L3) per iteration. Such large complexity stems from the inversion of an
L × L matrix required at each iteration. A low complexity MF-based SBL
algorithm, which decomposes the inversion of said matrix into a set of inver-
sions of matrices with smaller dimension, was later developed to reduce the
high complexity for OFDM systems [69]. The tradeoff between complexity
and performance of channel estimation can be adjusted by selecting the size
of such matrix inversions, implying that the reduction of complexity is at the
cost of performance loss. Recently, a low complexity MF-based SBL algorithm
which completely avoids matrix inversions has been applied to estimate both
gains and delays of channel propagation paths [16].

In our work, we have sought to find low-complexity and accurate SBL
algorithms that, in addition, include the estimation of the noise variance.
Our main contribution is described next.
Paper D: Low Complexity Sparse Bayesian Learning Using Combined BP
and MF with a Stretched Factor Graph In this contribution, a low complex-
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ity SBL algorithm is proposed based on the BP-MF framework for in under-
determined linear systems. We also simplify the BP messages passed on the
densely connected subgraph by approximating some BP messages to further
reduce the computational complexity, yielding an approximate BP-MF SBL
algorithm. The proposed SBL algorithms present better MSE performance
and lower complexity than the original algorithm derived using solely MF.

3 Receivers Performing Iterative Estimation, Equal-
ization and Decoding

Many diverse iterative receiver architectures performing joint estimation (in-
cluding channel response, noise power and/or phase noise), equalization and
decoding (JEED) for a multiplicity of communication systems have been pro-
posed by signal processing researchers over the last 20 years. While many
of the early designs [38, 51, 52, 70–73] were based on ad-hoc extensions of
the turbo equalization principle to include estimation, which was designed
individually as described in Section 2 of this chapter, holistic design method-
ologies [12–16, 74–77] have dominated the scene in the recent past. Among
the latter, the use of message passing frameworks in which a global objective
function is iteratively optimized has been one of the main approaches. We
shortly review some of them next.

As we discussed in Chapter 3, BP often presents good performance and
therefore has been widely applied for designing receivers iteratively per-
forming joint estimation, equalization and decoding in communication sys-
tems [14, 74, 75, 77]. However, such modern systems usually involve a
complicated signal model with a densely connected factor graph in which
both discrete and continuous random variables coexist, along with non-linear
functions, cumbersome distributions, such as large mixtures of distributions.
Those lead to the computations of messages being significantly complex and
even intractable when BP is applied directly. Due to this fact, researchers have
sought to exploit approximate message techniques, often involving Gaussian
approximations, to achieve feasible solutions.

Considering the respective advantages and disadvantages of BP, MF and
EP, the combinations of two or more of them can be exploited to design
receivers in modern communication systems in complicated scenarios. The
BP-MF framework has been applied to JEED receivers for OFDM systems [12,
16, 76] and MIMO-OFDM systems [13]. Paper [15] uses combined BP-EP to
design JEED receiver for OFDM systems and also investigates methods to re-
duce the computational complexity by approximating some of the messages.

In this thesis, we propose designs for JEED receivers in two different com-
munication scenarios. These contributions are detailed next.
Paper E: A Low Complexity OFDM Receiver with Combined GAMP and
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MF Message Passing In this contribution, we apply the approximate BP-
MF algorithm proposed in Paper D to carry out channel estimation in time-
frequency domain for a JEED OFDM receiver. Our numerical assessment
demonstrates the advantages the proposed receiver in terms of BER perfor-
mance, complexity and convergence rate.
Paper F: A BP-MF-EP Based Iterative Receiver for Joint Phase Noise Es-
timation, Equalization and Decoding This contribution is the extension
of BP-EP-based turbo equalization proposed in Paper A to the scenario of
unknown phase noise. We exploit the BP-MF-EP framework to design an it-
erative receiver for joint phase noise estimation, equalization and decoding.
In addition, a second-order Taylor expansion is chosen to approximate some
MF messages, so that it provides a Gaussian prior for the phase noise estima-
tion subgraph. Simulation results confirm that remarkable performance gain
can be achieved with the proposed approach.
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Chapter 5

Conclusions and Outlook

In this thesis, we exploit the formulation of signal processing problems in
digital communications as approximate inference problems in probabilistic
models. This, in turn, allows for the design of iterative signal processing so-
lutions via message passing algorithms in (probabilistic) factor graphs. This
general methodology has the advantage of providing large flexibility in the
design of the signal processing algorithms. This flexibility is due to two main
reasons:

• On the one hand, there is flexibility in the modeling of each particular
problem, i.e. the definition of the probabilistic system that represents
the problem. In turn, this results in flexibility regarding the definition
of the factor graph representation of the system.

• On the other hand, there is as well flexibility with respect to the approx-
imate inference methods, i.e. the particular message passing technique
used to perform estimation in the probabilistic system and associated
factor graph.

By finding appropriate combinations of the two aspects mentioned above,
receiver algorithms that attain remarkable performance can be derived.

While the advantages of using message passing techniques to design dig-
ital receivers are nowadays well established in the signal processing com-
munity, most instances of receivers are derived using only a single message
passing technique. For some specific systems, such designs may yield solu-
tions with intractably high computational complexity or unsatisfactory per-
formance. An important contribution of this thesis is the proposal of signal
processing algorithms that combine different message passing approaches.
We have shown that, for many problems, algorithms derived following a
combination of different message passing methods lead to better designs
than algorithms derived based on a single inference approach. Depending on
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the particular problem, the superiority of our receivers is in terms of perfor-
mance, or in terms of computational complexity and convergence speed. For
instance, a low complexity iterative equalization and decoding receiver has
been proposed for ISI channels based on combined BP-EP (see the method
in Paper A), which performs better than approximate BP-based receiver, and
has lower complexity than standard BP-based receiver. In addition, we have
also proposed approaches to approximate messages that lower the computa-
tional complexity of the designed receivers without severely degrading their
performance, as done e.g. in Papers E and F.

To sum up, the insights obtained through the work described in this thesis
can be synthesized in the following procedure to design a message passing
based receiver for digital communications:

1. In a first step, BP message passing is considered as the first priority.

2. Different probabilistic descriptions of the system and, correspondingly,
different factor graph representations should be explored.

3. For each of the models obtained in 2, if BP does not provide tractable
solutions, an appropriate combination of techniques needs to be sought.
A common solution is to replace BP by EP or MF for those graph nodes
leading to messages with intractable complexity.

4. If the above step still results in high complexity, then approximate mes-
sage passing approaches should be considered.

To finalize, the above discussion leads to the conclusion that further re-
search is needed in the theoretical formalization of message passing ap-
proaches combining two or more inference principles. Some of the mixed
message passing approaches applied in this work have been obtained by
heuristic combinations of existing techniques. As such, the resulting algo-
rithms cannot be guaranteed to optimize any known, global objective func-
tion. In spite of this, the ad-hoc combination of message updating rules has
proved to result in receiver algorithms with excellent performance when an
appropriate combination for a particular problem is found. This fact hints
at the idea that it may be possible to justify such mixtures of inference ap-
proaches by sound theoretical arguments. While the BP-MF framework or,
more generally, region-based approaches have provided a significant step
towards that goal, there are still many open aspects. For instance, the em-
bedding of approximate message passing algorithms (AMP or GAMP) with
other techniques such as BP or MF is still an open problem that should be
addressed in the future.
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1. Introduction

Abstract

In this letter, a message-passing algorithm that combines belief propagation and ex-
pectation propagation is applied to design an iterative receiver for intersymbol inter-
ference channels. We detail the derivation of the messages passed along the nodes of
a vector-form factor graph representing the underlying probabilistic model. We also
present a simple but efficient method to cope with the “negative variance" problem of
expectation propagation. Simulation results show that the proposed algorithm out-
performs, in terms of bit-error-rate and convergence rate, a LMMSE turbo-equalizer
based on Gaussian message passing with the same order of computational complex-
ity.

1 Introduction

Since optimal detection of data transmitted across an intersymbol interfer-
ence (ISI) channel, like the multipath wireless channel, is typically impracti-
cal, suboptimal receiver structures that approach the performance of the opti-
mal detector have been proposed, with turbo equalization [1] being the most
emblematic instance. In turbo equalization, the turbo principle –originally
used for decoding concatenated codes [2]– is applied by regarding the ISI
channel as an encoder acting on the transmitted symbols.

The above “turbo”-processing algorithms are instances of belief propaga-
tion (BP) applied on a factor graph representing the underlying probabilistic
model [3]. Additional equalizer structures, which implement other variants
of BP, have been proposed, e.g. [4]. However, BP-based equalizers suffer from
an inherent drawback: their complexity grows exponentially with the chan-
nel length or the number of non-zero coefficients (depending on the selected
factor graph representation) and the modulation order.

Different approaches have been proposed to circumvent the aforemen-
tioned complexity issue. Basically, they introduce approximations that make
the messages passed in the subgraph representing the ISI channel Gaussian.
In [5] this is achieved by assuming the interference plus noise component
with respect to each modulation symbol to be Gaussian and exploiting a re-
lationship between the extrinsic values of the symbols when the channel is
driven by these symbols and the LMMSE symbol estimates when the channel
is driven by Gaussian inputs. This approach turns out to be equivalent to that
in [6] when applied to turbo-equalization [5]. In [7] a combined use of Gaus-
sian expectation propagation (EP) [8, 9] and BP is proposed. The use of EP,
however, leads to an unstable algorithm due to the fact that computed Gaus-
sian EP messages may have a negative variance. In [7] the authors propose
to circumvent this problem by replacing each EP message with a geometric
mixture of said message and a standard Gaussian message, parameterized
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with a damping/mixing factor. However, “good" sequences of values of the
damping factor versus the iteration index of the algorithm need to be tuned
in advance via simulations, which severely limits the practicability of the
proposed approach.

In this paper we formulate an approximate inference method combining
BP and EP and apply it to a vector-form factor graph representation of the
probabilistic model for ISI channels to design a receiver algorithm performing
joint equalization of ISI channels and data detection. The obtained design is
similar to that presented in [7]. We propose a simple solution to avoid the in-
stability problem of EP that leads to a fast converging algorithm. We present
a detailed derivation of the turbo-equalizer and a numerical evaluation that
compares its performance with that of the receiver proposed in [5]. The sim-
ulation results show that for the same complexity our design performs better
and converges faster than that in [5], while avoiding the practical issues in-
herent to that in [7].

Notation- Boldface lowercase and uppercase letters denote vectors and ma-
trices, respectively. The identity matrix of size M is represented by IM. Su-
perscript (·)T indicates transposition of a vector or matrix. The probability
density function (pdf) of a multivariate Gaussian distribution with mean vec-
tor m and covariance matrix V is represented by N (x; m, V). The relation
f (x) = cg(x) for some positive constant c is written as f (x) ∝ g(x).

2 System Model

The information bit vector b = [b1, . . . , bK]
T is encoded and interleaved,

yielding the codeword vector c = [c1, . . . , cN ]
T. The coded bits are then

mapped onto a binary phase shift keying (BPSK) constellation, resulting in
the vector of modulated symbols x = [x1, . . . , xN ]

T, which are then trans-
mitted over a frequency-selective channel corrupted with AWGN. The (base-
band discrete-time) signal observed at the receiver is described by the vector
r = [r1, . . . , rN+L−1]

T with entries

ri =
L−1

∑
l=0

hl xi−l + ni = hTsi + ni. (A.1)

Here, si = [xi−L+1, . . . , xi]
T with xi = 0 for i < 1 and i > N, h = [hL−1, . . . , h0]

T

denotes the vector of channel weights, and ni is the ith sample of a white
Gaussian noise vector with component variance σ2.
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3. Combined BP-EP Message-passing Rule

2.1 Probabilistic Model and Factor Graph

The posterior probability mass function (pmf) of vectors b, c, x and s given
the received signal vector r reads

p (b, c, x, s|r) ∝
K

∏
k=1

fbk
(bk)× fc (c, b)

×
N

∏
i=1

fri (ri, si) fGi (si, si−1, xi) fMi (xi, ci)

×
N+L−1

∏
i=N+1

fri (ri, si) fGi (si, si−1, 0) . (A.2)

In this expression fbk
(bk) is the uniform prior pmf of the kth information

bit, fc(c, b) stands for the coding and interleaving constraints, fri (ri, si) ,
p(ri|si) ∝ N (ri; hTsi, σ2) denotes the likelihood term for si, and fMi (xi, ci)
represents the modulation mapping. Finally, fGi (si, si−1, xi) expresses the
deterministic relationship between si, si−1 and xi, given by

si = Gsi−1 + exi (A.3)

with the L× L matrix G = [0 IL−1; 0 0T] and the L vector e = [0T 1]T,
where 0 is a zero column vector with length L− 1. Note that G factorizes as
G = G′′G′ with G′′ = [ IL−1 0 ]T and G′ = [ 0 IL−1 ] [5].

The vector-form factor graph representation [5] of the posterior pmf in
(A.2) is depicted in Fig. A.1. It will be used for the derivation of the BP-
EP-based receiver described in Section 4. Note that in this representation
the subgraph representing the ISI channel (left part) in Fig. A.1 has a tree
structure1.

3 Combined BP-EP Message-passing Rule

We consider a factor graph of a generic probabilistic model made of a set
of factor nodes F , and a set of variable nodes Z . The variable nodes are
grouped into two disjoint subsets ZBP and ZEP, i.e. ZBP ∪ ZEP = Z and
ZBP ∩ ZEP = ∅. Let m f→z(z) denote the messages from a factor node f ∈ F
to a variable node z ∈ Z , and nz→ f (z) be the message from variable node z

1Cycles appearing in “channel” subgraph of the scalar-form factor graph representation of
the probabilistic model (A.2) are absorbed in the vector-form representation [5].
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fri−1 s i−1

fri

fri+1

s i

s i+1

fGi

fGi+1

xi

xi+1 ci+1

ci

b1

bK

bk

fbK

fbk

fb1

fc

fMi

fMi+1

Fig. A.1: Vector-form factor graph representation of the probabilistic model (A.2).

to factor node f . With these definitions, the message update rules read

m f→z (z) = ∑
∼{z}

f (z) ∏
z′∈N ( f )\{z}

nz′→ f
(
z′
)

, z ∈ ZBP (A.4)

m f→z (z) =
ProjEz

[
mBP

f→z (z) nz→ f (z)
]

nz→ f (z)
, z ∈ ZEP (A.5)

nz→ f (z) = ∏
f ′∈N (z)\{ f }

m f ′→z (z) , z ∈ Z . (A.6)

Here, ∑∼{z} is the sum over all variables of f = f (z) excluding z, N (z) and
N ( f ) denote respectively the set of factor nodes connected to variable node z
and the set of variable nodes connected to the factor node f . The superscript
BP of the message in the right-hand expression in (A.5) indicates that this
message from factor f to z ∈ ZEP is computed using the BP rule, i.e. (A.4).
Moreover in this expression ProjEz

[·] is the projection of the pdf given as
an argument on a specified exponential family Ez

2. Note that computing the
messages from any factor node to any variable node requires the computation
of a BP message. Moreover, messages passed from and to a variable node
z ∈ ZBP (z ∈ ZEP) are computed using the BP (EP) rule.

4 Iterative Receiver Design

In this section we derive a receiver that performs joint equalization and de-
coding for ISI channels by passing messages along the edges of the factor
graph depicted in Fig. A.1. The complexity of standard BP applied on this
factor graph grows exponentially with L, the dimension of the state vectors si,

2 For a pdf b(z) ProjE [b(z)] = arg minb′(z)∈E D (b(z)||b′(z)), with D(·||·) denoting the
Kullback-Leibler divergence, and E being a specific exponential family.
As indicated by the indexing, Ez might depend on the variable node.
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∀i. Such intractable complexity can be reduced by approximating messages
passed along the edges of the channel part of the graph (to the left of and in-
cluding the variable nodes xi, ∀i) with Gaussian messages. This can be done
by approximating the messages from xi to fGi , ∀i, with Gaussian messages.
The EP framework provides an elegant and efficient tool to do so. Similarly
to [7] we split the variable nodes in the graph as follows: ZEP = {xi; ∀i} and
ZBP = Z \ZEP. Moreover we set Exi = G, ∀i, where G is the Gaussian family.

4.1 Calculation of Messages

Equalization–Input Messages

Assuming that, for the ith symbol, the message from fMi to xi can be ex-
pressed as mBP

fMi
→xi

(xi) = βi,1δ (xi + 1) + βi,2δ (xi − 1) and the message from

xi to fMi has the form nxi→ fMi
(xi) ∝ N (xi; ~mxi ,~vxi ), the belief b(xi) ∝ mBP

fMi
→xi

(xi) nxi→ fMi
(xi)

of xi has mean and variance

mp
xi =

βi,2 exp {2~mxi /~vxi} − βi,1

βi,2 exp {2~mxi /~vxi}+ βi,1
, (A.7)

vp
xi = 1− (mp

xi )
2. (A.8)

The message m fMi
→xi (xi) is computed from (A.5) to be

m fMi
→xi (xi) =

ProjG [m
BP
fMi
→xi

(xi) nxi→ fMi
(xi)]

nxi→ fMi
(xi)

∝ N (xi; ~mxi , ~vxi ) (A.9)

where

~vxi = [(vp
xi )
−1 −~v−1

xi
]−1 (A.10)

~mxi = ~vxi [(v
p
xi )
−1mp

xi −~v−1
xi

~mxi ]. (A.11)

We further have nxi→ fGi
(xi) = m fMi

→xi (xi) by (A.6).
When running the BP-EP algorithm, it can be observed that the variance

parameter ~vxi in (A.10) and (A.11) sometimes takes negative values, which
results in a bad performance, see also [7]. To avoid this problem, the variance
~vxi is replaced by its absolute value | ~vxi | in both (A.10) and (A.11). We will

see in the numerical evaluations that this simple “trick" is very efficient and
provides a viable alternative to the damping method proposed in [7], see
Section 1.
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Equalization–Downward Messages

Assuming that the message nsi−1→ fGi
(si−1) ∝ N (si−1; m↓

si−1 , V ↓
si−1

) is known,
the message m fGi

→si
(si) is obtained via (A.4) to be

m fGi
→si

(si) ∝ exp
{
−1

2
(si −m⇓

si
)TV ⇓−1

si
(si −m⇓

si
)

}
(A.12)

with

m⇓
si

= Gm↓
si−1

+ e ~mxi (A.13)

V ⇓
si

= GV ↓
si−1

GT + eeT ~vxi . (A.14)

The message nsi→ fGi+1
(si) is calculated from (A.6) to be

nsi→ fGi+1
(si) = m fGi

→si
(si)m fri→si

(si) (A.15)

∝ exp
{
−1

2
(si −m↓

si
)TV ↓−1

si
(si −m↓

si
)

}
where

m↓
si = m⇓

si +
1

σ2+hTV⇓si h
(ri − hTmi

⇓)V ⇓
si

h (A.16)

V ↓
si
= V ⇓

si
− 1

σ2+hTV⇓si h
V ⇓

si
hhTV ⇓

si
(A.17)

and m fri→si
(si) = fri (ri, si).

Equalization–Upward Messages

With the message from variable node si+1 to factor node fGi+1 being of the
form nsi+1→ fGi+1

(si+1) ∝ N (si+1; m↑
si+1 , V ↑

si+1
), the message m fGi+1

→si
(si) from

fGi+1 to si is obtained as

m fGi+1
→si

(si) ∝

exp
{
− 1

2 (Gsi −m⇑
si )

TV ⇑−1
si

(Gsi −m⇑
si )
}

(A.18)

with

V ⇑−1
si

m⇑
si

= −
V ↑−1

si+1
e(eTV ↑−1

si+1
m↑

si+1 + ~v−1
xi+1

~mxi+1)

~v−1
xi+1

+ eTV ↑−1
si+1

e

+V ↑−1
si+1

m↑
si+1

(A.19)

V ⇑−1
si

= V ↑−1
si+1
−

V ↑−1
si+1

eeTV ↑−1
si+1

~v−1
xi+1

+ eTV ↑−1
si+1

e
. (A.20)
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As a consequence, the message nsi→ fGi
(si) reads

nsi→ fGi
(si) ∝ exp

{
−1

2
(si −m↑

si
)TV ↑−1

si
(si −m↑

si
)

}
(A.21)

where

V ↑−1
si

m↑
si

= GTV ⇑−1
si

m⇑
si
+

hri
σ2 (A.22)

V ↑−1
si

= GTV ⇑−1
si

G +
hhT

σ2 . (A.23)

Equalization–Output Messages

The message mBP
fGi
→xi

(xi) reads

mBP
fGi
→xi

(xi) ∝ exp

{
− (xi − ~mxi )

2

2~vxi

}
(A.24)

with

~mxi = eTm↑
si
+ eTV ↑

si
G′′
[

G′V ↓
si−1

G′T + G′′TV ↑
si

G′′
]−1

×
[

G′m↓
si−1
−G′′Tm↑

si

]
(A.25)

~vxi = eTV ↑
si

e− eTV ↑
si

G′′
[

G′V ↓
si−1

G′T + G′′TV ↑
si

G′′
]−1

×G′′TV ↑
si

e. (A.26)

Because both messages mBP
fGi
→xi

(xi) and nxi→ fGi
(xi) in (A.9) are Gaussian, we

obtain from (A.5)
m fGi

→xi
(xi) = mBP

fGi
→xi

(xi). (A.27)

Decoding

Decoding is performed by using the BCJR algorithm, which is an instance
of BP [10]. After completion of the forward/backward processing the BCJR
decoder returns the messages mBP

fMi
→xi

(xi), ∀i. We remark that any other

code that can be decoded using a BP-based algorithm, e.g. a turbo- or LDPC
code, could be used instead within the proposed BP-EP framework.

4.2 Scheduling of the Messages

After initializing m fMi
→xi

(xi), ∀i, the messages m fGi
→si

(si) and nsi→ fGi+1
(si),

with i ranging from 1 to N + L− 1, are calculated in the downward recursion
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using (A.12) and (A.15) respectively. Likewise, m fGi+1
→si (si) and nsi→ fGi

(si),
with i ranging from N + L− 1 to 1, are obtained from (A.18) and (A.21), re-
spectively, in the upward recursion3. Equations (A.24) and (A.27) are used to
get the messages m fGi

→xi
(xi), ∀i, which are then passed to the BCJR decoder.

The decoder outputs the messages mBP
fMi
→xi

(xi), ∀i, and finally m fMi
→xi (xi),

∀i, are updated via (A.9).

4.3 Reduction of Complexity

Since they are performed in the update of each symbol, the two matrix in-
versions in (A.25) and (A.26) make up a significant part of the computational
complexity of the BP-EP-based algorithm. To reduce the complexity, the ap-
proach proposed in [5] can be adopted. We calculate the belief of variable si,
i.e. b(si) ∝ m fGi

→si (si) nsi→ fGi
(si) ∝ N (si; mi, V i), where

V i = (V ⇓
si
−1 + V ↑

si
−1)−1

mi = V i(V ⇓
si
−1m⇓

si
+ V ↑

si
−1m↑

si
). (A.28)

According to the deterministic relationship given in (A.3), the messages from
factor node fGi−l to variable nodes xi−l , l = 0, 1, . . . , L− 1, are obtained as

m̃BP
fGi−l

→xi−l
(xi−l) ∝

∫
b(si)δ (si,L−l − xi−l) dsi

nxi−l→ fGi−l
(xi−l)

∝ exp

{
− (xi−l − ~mxi−l )

2

2~vxi−l

}
(A.29)

where

~vxi−l = (V−1
i,L−l − ~m−1

xi−l
)−1 (A.30)

~mxi−l = ~vxi−l (V
−1
i,L−lmi,L−l − ~v−1

xi−l
~mxi−l ) (A.31)

with si,L−l and mi,L−l representing the (L− l)th element of vector si and mi
respectively, and Vi,L−l denoting the (L− l)th diagonal entry of the matrix V i.
Using this, only two matrix inversions are needed in the update of each block
of L symbols [5]. Replacing the messages in (A.24) by those in (A.29) reduces
the complexity order from O(L3) to O(L2). The proof of the equivalence of
these messages is provided in Appendix A.

3Note that these recursions coincide with those of a Kalman smoother [7].
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5 Simulation Results

We evaluate the performance of the communication system described in Sec-
tion 2 by means of Monte Carlo simulations. Two different lengths of infor-
mation bit vectors are considered: K = 32768 (long) and K = 8192 (short).
The information bits are coded using a 1/2 rate convolutional code (23, 35)8.
The vector of channel weights is set to h = [0.227 0.460 0.668 0.460 0.227]T,
which corresponds to a severe time-dispersive (5-tap) channel [11].

Fig. A.2 and Fig. A.3 depict the performance of the investigated algo-
rithms: the proposed algorithm (BP-EP), the algorithm presented in [5]
(GABP), the algorithm implementing MAP equalization (BP) (reproduced
from Fig. 5 in [5]), and a receiver operating in an ISI-free channel (AWGN).
In Fig. A.2, the BER performance after 30 receiver iterations is shown when
the SNR ranges from 4dB to 6dB. We observe that BP-EP significantly outper-
forms GABP. It also performs close to BP, the loss expressed in terms of the
SNR value where the threshold effect occurs being about 0.3 dB. In Fig. A.3,
the BER performance at 5.5dB SNR of BP-EP and GABP is depicted as a func-
tion of the iteration index. We observe that BP-EP converges much faster and
is less sensitive to shorter codeword lengths than GABP.

Both BP-EP and GABP receivers exhibit the same complexity order per
symbol. They differ only in their respective equalization parts, both having
O(L2) order of complexity per symbol. The former algorithm approximates
the messages from fMi to xi based on the messages passed by both the de-
coder and the equalizer, while the latter only makes use of the messages
passed by the decoder for doing this. The observed superior performance
indicates that the BP-EP approximation is better.

6 Appendix A: Proof of the Equivalence Between
(A.24) and (A.29)

The proof is by induction. Thus, we merely need to show the equivalence for
l = 0 and l = 1.
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Fig. A.2: BER performance versus Eb/N0 of the investigated receivers.
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For l = 0 we have according to (A.29)

m̃BP
fGi
→xi

(xi) ∝
∫

b(si)δ (si,L − xi) dsi/nxi→ fGi
(xi)

∝
∫

nsi−1→ fGi
(si−1) nxi→ fGi

(xi) fGi (si, si−1, xi) dsi−1dxi

× nsi→ fGi
(si) δ (si,L − xi) dsi/nxi→ fGi

(xi)

=
∫

nsi−1→ fGi
(si−1) nsi→ fGi

(si) fGi (si, si−1, xi) dsi−1dsi

= mBP
fGi
→xi

(xi). (A.32)
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For l = 1 we first obtain from the BP rule (A.4)∫
b(si)δ (si,L−1 − xi−1) dsi

∝
∫

b(si−1)δ (si−1,L − xi−1) dsi−1. (A.33)

Then, using (A.32) and (A.33) yields

m̃BP
fGi−1

→xi−1
(xi−1) ∝

∫
b(si)δ (si,L−1 − xi−1) dsi

nxi−1→ fGi−1
(xi−1)

∝

∫
b(si−1)δ (si−1,L − xi−1) dsi−1

nxi−1→ fGi−1
(xi−1)

∝ mBP
fGi−1

→xi−1
(xi−1).

References

[1] R. Koetter, A. C. Singer, and M. Tücher, “Turbo equalization,” IEEE Sig-
nal Processing Mag., vol. 21, pp. 67–80, Jan. 2004.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo codes,” in Proc. IEEE In-
ternational Conference on Communications, (ICC’93), May 1993, pp. 1064–
1070.

[3] R. McEliece, D. MacKay, and J. Cheng, “Turbo decoding as an instance of
Pearl’s belief “propagation” algorithms,” IEEE J. Select. Areas Commun.,
vol. 16, no. 2, pp. 140–152, Feb. 1998.

[4] G. Colavolpe and G. Germi, “On the application of factor graphs and the
sum-product algorithm to ISI channels,” IEEE Trans. Commun., vol. 53,
no. 5, pp. 818–825, May 2005.

[5] Q. Guo and L. Ping, “LMMSE turbo equalization based on factor
graphs,” IEEE J. Select. Areas Commun., vol. 26, no. 2, pp. 311–319, Feb.
2008.

[6] X. Wang and H. Poor, “Iterative (turbo) soft interference cancellation and
decoding for coded CDMA,” IEEE Trans. Commun., vol. 47, pp. 1046–
1061, Jul. 1999.

[7] J. Hu, H.-A. Loeliger, J. Dauwels, and F. Kschischang, “A general compu-
tation rule for lossy summaries/messages with examples from equaliza-
tion,” in Proc. 44th Allerton Conf. Communication, Control, and Computing,
Sep. 2006, pp. 27–29.

57



References

[8] T. Heskes, M. Opper, W. Wiegerinck, O. Winther, and O. Zoeter, “Ap-
proximate inference techniques with expectation constraints,” Journal of
Statistical Mechanics – Theory and Experiment, Sep. 2005.

[9] T. P. Minka, “Expectation propagation for approximate Bayesian infer-
ence,” in Proceedings of the 17th Conf. on Uncertainty in Artificial Intelli-
gence, 2001, pp. 362–369.

[10] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 498–
519, Feb. 2001.

[11] J. Proakis, Digital Communications, 4th ed. McGraw-Hill, Aug. 2000.

58



Paper B

Turbo-Equalization Using Partial Gaussian
Approximation

Chuanzong Zhang, Zhongyong Wang,
Carles Navarro Manchón, Peng Sun, Qinghua Guo

and Bernard Henri Fleury

The paper has been accepted by the
IEEE Signal Processing Letters, 2016.



The layout has been revised.



1. Introduction

Abstract

This paper deals with turbo-equalization for coded data transmission over intersym-
bol interference (ISI) channels. We propose a message-passing algorithm that uses
the expectation-propagation rule to convert messages passed from the demodulator-
decoder to the equalizer and computes messages returned by the equalizer by using
a partial Gaussian approximation (PGA). We exploit the specific structure of the
ISI channel model to compute the latter messages from the beliefs obtained using
a Kalman smoother/equalizer. Doing so leads to a significant complexity reduction
compared to the initial PGA implementation. Results from Monte Carlo simulations
show that the proposed approach leads to a significant performance improvement
compared to state-of-the-art turbo-equalizers and allows for trading performance with
complexity.

1 Introduction

Historically, turbo equalization of coded data transmission across a known
inter-symbol interference (ISI) channel found its inspiration from turbo-decoding
of turbo-codes, see [1] and references therein. Since its introduction turbo
equalization has prevailed over more traditional equalization techniques avail-
able at that time due to its tremendous performance gain. Turbo-equalization
is a collective name for joint data decoding and channel equalization algo-
rithms that pass messages iteratively along the edges of a factor graph rep-
resenting the probabilistic model of the considered transmission system. The
most prominent message-passing algorithm – inherited from turbo-decoding
of turbo-codes – is the sum-product algorithm [2, 3], which is also known as
belief propagation (BP) [4].

Different factor graphs representing the ISI channel can be drawn, which
lead to different message-passing algorithms for equalization, see e.g. [3, 5, 6].
In this letter, we use a tree graph [3] that explicitly represents the channel
state evolution. Applying BP on this graph yields the BCJR algorithm [1], [2],
the complexity of which scales exponentially with the modulation order and
the channel memory. Proposed solutions that circumvent this complexity
problem convert the discrete messages returned by the demodulator-decoder
into Gaussian functions that are passed as messages to the equalizer [7–9].
Due to the linearity of the channel and the Gaussianity of additive noise,
the equalizer processes Gaussian messages, i.e. it coincides with a Kalman
smoother. The discrete-to-Gaussian conversion can be done in two ways:
either directly by matching the first and second moments of the discrete mes-
sages [8], or by using the formal rule of expectation propagation (EP) [10], [7],
[9]. Numerical studies have shown that the latter conversion leads to better
performance [7], [9].
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Inspired by the partial Gaussian approximation (PGA) proposed in [11]
we modify the messages returned by the Kalman smoother/equalizer and
passed to the demodulator-decoder in [9]. To equalize each channel sym-
bol the new equalizer combines discrete messages from the demodulator-
decoder for the symbols strongly interfering with said symbol and Gaussian-
converted messages for the weakly interfering symbols. In this way the
equalizer enforces the modulation constellation of strong interfering symbols,
unlike the Kalman smoother that uses Gaussian-converted messages for all
symbols. The reported simulation results show that doing so leads to a signif-
icant performance improvement compared to the turbo-equalizers in [8], [11]
and [9]. Our turbo-equalizer allows for trading complexity with performance
by varying the set of symbols that are regarded as “strong” interferers.

Our turbo-equalizer differs from the PGA-based one in [11] in two re-
spects. First, in the former the Gaussian conversion of the discrete messages
returned by the demodulator-decoder is done by using the formal EP rule,
while direct conversion is employed in the latter. Second, due to the partic-
ular structure of the ISI channel model, the messages returned by our equal-
izer can be obtained in a simple way from beliefs computed with the Kalman
equalizer. This leads to a significant complexity reduction compared to the
turbo-equalizer in [11].

Notation- For a natural number N, we write [N] = {1, . . . , N}. Boldface
lowercase and uppercase letters denote vectors and matrices, respectively.
The identity matrix of size M is represented by IM. Superscript (·)T desig-
nates transposition of a vector or matrix. We write N(x; m, V) for the pdf of a
multivariate Gaussian distribution with mean vector m and covariance matrix
V . Depending on the context δ(·) denotes either the Dirac delta function or
the Kronecker delta. The relation f (·) = cg(·) for some positive constant c is
written as f (·) ∝ g(·). The notations ∑x\y f (x) and

∫
f (x)d(x \ y) denote re-

spectively the partial summation and partial integration of the function f (x)
with respect to all entries of the vector x except those entries common to x
and y.

2 System Model

The vector b = [b1, . . . , bK]
T of information bits is encoded and interleaved,

yielding the codeword c = [cT
1 , . . . , cT

N ]
T with ci = [c1

i , · · · , cQ
i ]

T. The coded
bits are then mapped onto a 2Q-order modulation alphabet X ⊆ R 1, re-
sulting in the vector of symbols x = [x1, . . . , xN ]

T ∈ X N . These symbols
are transmitted over a linear, time-invariant, frequency-selective channel cor-
rupted by additive white Gaussian noise (AWGN). The received vector r =

1For simplicity we consider a real baseband model. The extension to a complex model is
straightforward.
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[r1, . . . , rN+L−1]
T has entries

ri =
L−1

∑
l=0

hl xi−l + ni = hTsi + ni, i ∈ [N + L− 1] (B.1)

where si = [xi−L+1, . . . , xi]
T with xi = 0 for i < 1 and i > N, h = [hL−1, . . . , h0]

T

represents the channel impulse response, and n = [n1, . . . , nN+L−1]
T is a

white noise vector with component variance σ2.

2.1 Probabilistic Model and Factor Graph

The posterior probability mass function (pmf) of vectors b, c, x and s given
the received signal r reads

p (b, c, x, s|r) ∝
K

∏
k=1

fBk (bk)× fC (c, b)

×
N

∏
i=1

fOi (ri, si) fTi (si, si−1, xi) fMi (xi, ci)

×
N+L−1

∏
i=N+1

fOi (ri, si) fTi (si, si−1, 0) (B.2)

where fBk (bk) is the uniform prior pmf of the kth information bit, fC(c, b)
stands for the coding and interleaving constraints, fOi (ri, si) , p(ri|si) =

N(ri; hTsi, σ2) denotes the likelihood of si, and fMi (xi, ci) represents the mod-
ulation mapping. Finally, fTi (si, si−1, xi) expresses the deterministic relation-
ship between si, si−1 and xi, i.e.,

fTi (si, si−1, xi) = δ(Gsi−1 + exi − si) (B.3)

with the L× L matrix G =
[

0 IL−1; 0 0T ], e =
[

0; 1
]

and 0 being a
zero column vector of length L− 1.

Fig. B.1 depicts the factor graph [2] representing the factorization of the
posterior pmf in (B.2). The factorization and its graph will be used as the
baseline for the derivation of the turbo-equalizer described in Section 3. To
ease the subsequent discussions we identify two subgraphs. The channel
subgraph includes the nodes of the channel symbols xi, i ∈ [N] and all factor
nodes, variable nodes and edges “to the left” of these symbol nodes. The
transmitter subgraph includes the channel symbol nodes and all factor nodes,
variable nodes, and edges “to the right” of these symbol nodes.

3 Design of the Iterative Receiver

In a nutshell, we obtain the new turbo-equalizer by replacing the messages
passed from the Kalman smoother/equalizer to the demodulator-decoder
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Fig. B.1: Factor graph representing the probabilistic model (B.2).

(from nodes fTi to nodes xi, i ∈ [N]) in the turbo-equalizer in [9] with mes-
sages computed using the PGA approach in [11]. The latter message can be
computed at low complexity from beliefs calculated in the Kalman smoother.
The next two subsections describe the messages computed in the new turbo-
equalizer. The last subsection sketches the scheduling of these messages.

3.1 Equalization and Demodulation-decoding

Equalization and demodulation-decoding are implemented by passing mes-
sages along the edges of the channel subgraph and the transmitter subgraph
respectively. Unless otherwise stated, these messages are computed using the
BP rule [4].

Demodulation-decoding

The variables in the transmitter subgraph are discrete and so are the com-
puted messages and beliefs. Decoding of the convolution code is done us-
ing the BCJR algorithm, an instance of BP. The messages from the mod-
ulator nodes to the channel symbol nodes are of the form m fMi

→xi
(xi) ∝

∑x∈X βxδ (xi − x) with βx ≥ 0, xi ∈ X , i ∈ [N].

Equalization

The latent variables si, i ∈ [N] in the channel subgraph are approximated
as Gaussian variables. Since the channel is linear and noise is additive and
Gaussian, the messages and beliefs are Gaussian functions. We write for the
belief of node si (i ∈ [N]),

bG(si) ∝ N(si; msi , Vsi ). (B.4)

The computation of this belief is given in [8] and [9, Eq. (28)].
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3.2 Messages Exchanged Between the Equalizer and the Demodulator-
decoder

Demodulator-decoder (D) → Equalizer (E)

The EP rule [10] is used to convert the discrete messages m fMi
→xi

(xi), i ∈ [N]

into Gaussian messages [7], [9, Eq. (29)]:

mG
fMi
→xi

(xi) =
ProjG [m fMi

→xi
(xi)nG

xi→ fMi
(xi)]

nG
xi→ fMi

(xi)

∝ N(xi; mxi , vxi ), i ∈ [N]. (B.5)

For a pdf b(z), ProjG [b(z)] = arg minb′(z)∈G D (b(z)||b′(z)), with D(·||·) de-
noting the Kullback-Leibler divergence and G being the family of Gaussian
pdfs. The parameters mxi and vxi in (B.5) are given by [9, Eq. (10) & (11)].
With this conversion, Gaussian messages nG

xi→ fTi
(xi) = mG

fMi
→xi

(xi), i ∈ [N]

are passed to the equalizer.

E → D

This is where the new turbo-equalizer differs from the one described in [7],
[9].

In [7], [9] the Gaussian messages from fTi to xi, i ∈ [N] are converted into
discrete messages according to 2

m fTi
→xi

(xi) ∝ mG
fTi
→xi

(xi) , i ∈ [N]. (B.6)

The messages nxi→ fMi
(xi) = m fTi

→xi
(xi), i ∈ [N] are then passed to the

demodulator-decoder.
Consider a specific symbol xi (i ∈ [N]). Clearly the computation of

m fTi
→xi

(xi) using (B.6) makes use of the Gaussian approximation of the mes-

sages from the other symbols, i.e. nG
xj→ fTj

(xj), j ∈ [N] \ {i} by the conver-

sion (B.5). The idea is to use the original discrete messages rather than their
Gaussian approximation for a selected subset of channel symbols which sig-
nificantly interfere with xi. It is inspired from the PGA proposed in [11].

First we identify those channel symbols “significantly” interfering with
symbol xi. Let qk = ∑L−1

l=0 hlhl+k, k ∈ Z with hl = 0 whenever l ∈ Z \
{0, . . . , L − 1} be the autocorrelation function of the channel impulse re-
sponse. Define Kρ = {k ∈ {−(L− 1), . . . , L− 1} : |qk| > ρq0} the set of lag
indices at which the magnitude of the autocorrelation function is larger than
ρq0, ρ ∈ [0, 1). Then ID

i = {i + k : k ∈ Kρ} ⊆ Ii = {i− (L− 1), . . . , i + L− 1}
2Note that (??) means that m fTi

→xi (xi) is proportional to the restriction to X of mG
fTi
→xi

(xi).
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contains the indices of the modulation symbol xi and those symbols that
interfere with xi at correlation level ρ. We collect these symbols in the M-
dimensional vector xD

i = [xj : j ∈ ID
i ]

T, with M = |Kρ|. We assume that
k̄ = max Kρ fulfills 1 + 2k̄ ≤ L. Then we can readily show that all entries in
xD

i are components of si′ whenever i + k̄ ≤ i′ ≤ i + (L− 1)− k̄. Notice that
the assumption on k̄ guarantees that i + k̄ ≤ i + (L− 1)− k̄.

With the above definitions we can now specify the message from fTi to xi:

mPG
fTi
→xi

(xi) = ∑
xD

i \xi

∏κ∈ID
i \i

nxκ→ fTκ
(xκ)

∏k∈ID
i

nG
xk→ fTk

(xk)
bG

i′ (xD
i ) (B.7)

where nxκ→ fTκ
(xκ) = m fMκ→xκ

(xκ) and bG
i′ (xD

i ) =
∫

bG(si′)d(si′\xD
i ) with

bG(si′) given in (B.4). The latter term is the belief of xD
i obtained by marginal-

ization of the belief bG(si′). The index i′ in bG
i′ (xD

i ) indicates that this belief
depends on the time instant i′, i + k̄ ≤ i′ ≤ i + (L− 1)− k̄. Notice that the se-
lection i′ = i + k̄ minimizes the time instant ahead of i to wait for computing
m fTi

→xi
(xi). The derivation of (B.7) is provided in the appendix.

All Gaussian functions occurring in (B.7) combine as ∏
κ∈ID

i

nG
xκ→ fTκ

(xκ)

−1

bG
i′ (xD

i ) ∝ N(xD
i ; me

xD
i

, V e
xD

i
) (B.8)

with

V e
xD

i
=
[
(Pi′V si′P

T
i′)
−1 − (V xD

i
)−1
]−1

me
xD

i
= V e

xD
i

[
(Pi′V si′P

T
i′)
−1Pi′msi′ − (V xD

i
)−1mxD

i

]
.

In these expressions, the M × L selection matrix Pi′ extracts the vector xD
i

from si′ , i.e. xD
i = Pi′si′ . The entries of the vector mxD

i
and the diagonal entries

of the diagonal matrix V xD
i

are the first moments mxκ and the second central

moments vxκ respectively of the messages nG
xκ→ fTκ

(xκ), κ ∈ ID
i . Inserting (B.8)

into (B.7) yields the PGA-based messages

m fTi
→xi

(xi) ∝ ∑
xD

i \xi

N(xD
i ; me

xD
i

, V e
xD

i
) ∏
κ∈ID

i \i
nxκ→ fTκ

(xκ),

i ∈ [N] (B.9)

which replace the messages in (B.6) in the new equalizer.

3.3 Messages Scheduling

The turbo-equalizer implements the following scheduling:

66



4. Analysis, Performance and Complexity

S1: Initialization: nxi→ fTi
(xi) ∝ 1 and nG

xi→ fTi
(xi) = N (xi; 0, 1), i ∈ [N].

S2: Equalization: The messages mG
fTi
→si

(si) and nG
si→ fTi+1

(si), i ∈ [N + L− 1]

are recursively computed using (12) and (15) respectively in [9]. In paral-
lel, the messages mG

fTi
→si−1

(si−1) and nG
si−1→ fTi−1

(si), i ∈ {N + L− 1, . . . , 1}
are recursively calculated from (18) and (21) respectively in [9]. Finally,
the beliefs bG(si), i ∈ [N] (see (B.4)) are obtained by (28) in [9].

S3: E → D: The messages mPG
fTi
→xi

(xi), i ∈ [N] are obtained from (B.8) and

(B.9).

S4: Demodulation-decoding: The messages mPG
fTi
→xi

(xi), i ∈ [N] are passed to

the demodulator. The BCJR algorithm, an instance of BP, is run in the
decoder, yielding the discrete messages nxi→ fTi

(xi) = m fMi
→xi

(xi), i ∈ [N].

S5: D → E: The Gaussian messages nG
xi→ fTi

(xi) = mG
fMi
→xi

(xi), i ∈ [N] are

updated using (B.5).

Steps S2–S5 constitute an iteration that is repeated until a maximum number
of iterations is reached.

4 Analysis, Performance and Complexity

4.1 Comparison with Existing Turbo-equalizers

We compare the performance of the new turbo-equalizer (we denote it as BP-
EP-PGA) with that of four other turbo-equalizers by means of Monte Carlo
simulations: (a) BP: the MAP-based turbo equalizer obtained by applying
solely BP, which runs the BCJR algorithm for both equalization and decod-
ing [2]; (b) BP-EP: the combined BP-EP algorithm in [9]; (c) BP-PGA: an
implementation of the PGA algorithm in [11] for the equalization of ISI chan-
nels; (d) BP-GA: the LMMSE-based turbo-equalizer, which is equivalent to
Gaussian-approximated BP [8]. In our implementation BP-PGA is obtained
from BP-EP-PGA by substituting the EP rule (B.5) with a direct Gaussian ap-
proximation of the discrete messages from fMi to xi, i ∈ [N]. For the BP turbo-
equalizer, no conversion of messages between the demodulator-decoder and
equalizer is performed. The other four turbo-equalizers solely differ in the
types of messages exchanged between the equalizer and the demodulator-
decoder. The table below reports these distinctive features.
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Turbo-equalizer D → E E → D
BP No conversion No conversion
BP-GA [8] Direct conversion GA
BP-EP [9] EP-rule GA
BP-PGA [11] Direct conversion PGA
BP-EP-PGA (new) EP-rule PGA

As the selected threshold ρ in BP-EP-PGA approaches 1, ID
i typically shrinks

to the singleton {i} (M = 1). With this configuration, the messages mPG
fTi
→xi

,

i ∈ [N] in (B.9) coincide with the messages mG
fTi
→xi

, i ∈ [N] in (B.6) and,

consequently, BP-EP-PGA and BP-EP become equivalent. Notice that both
schemes compute the same messages in stage S2-Equalization. They solely
differ in S5-D → E.

4.2 Computational Complexity

The complexity of the PGA algorithm in [11], which was designed for generic
channel matrices, is O(N2 + M22QM) per symbol. The main contribution to
the complexity of the BP-EP-PGA is at (B.4), which requires a L× L matrix
inversion (see [9, (28)]), and at (B.7). Thus, the complexity is O(L3 + M22QM)
per symbol. The complexity reduction method described in [9, Subsec. IV.C]
can, however, also be applied to BP-PGA and BP-EP-PGA. Since the beliefs
bG

i′ (xD
i ) (see (B.7)) are obtained from the beliefs bG(si′), i ∈ [N] (B.4) needs

only be computed once every (L−M + 1) symbols when Kρ = {−k̄, . . . , k̄}
(M = 1 + 2k̄). In this case, the complexity of BP-PGA and BP-EP-PGA is
O(L3/(L−M + 1) + M22QM) per symbol. For this latter case, we summarize
the complexities of all discussed turbo-equalizers in the table below 3:

Turbo-equalizer Equalizer Complexity per Symbol
BP O(2QL)
BP-GA [8] O(L2)
BP-EP [9] O(L2)

BP-PGA [11] O(L3/(L−M + 1) + M22QM)

BP-EP-PGA (new) O(L3/(L−M + 1) + M22QM)

4.3 Numerical Assessment

We compare the BER performance of the above turbo-equalizers and a re-
ceiver designed for and operating in a non-dispersive AWGN channel. A
sequence of 2048 information bits is encoded using a 1/2 rate convolutional
code with generator polynomials (23, 35)8. The coded bits are interleaved
and then mapped onto BPSK symbols (X = {−1,+1}), which are trans-
mitted over a severely distorted ISI channel with impulse response h =

3As all turbo-equalizers use the same type of demodulation-decoding, we focus solely on the
complexity due to equalization and message conversion.
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Fig. B.2: BER performance of the considered turbo-equalizers.

[0.227 0.460 0.668 0.460 0.227]T. The BER performance is evaluated after 30
iterations. For BP-PGA and BP-EP-PGA, we set ρ so that M = 3.

The results are depicted in Fig. B.2. As expected, the BP turbo-equalizer
performs best and approaches the AWGN bound as the SNR increases, al-
though at the expense of a large computational complexity. We observe a
remarkable performance improvement of BP-EP-PGA compared to the other
turbo-equalizers. We attribute this improvement to the fact that BP-EP-PGA
combines the advantages of both BP-EP and BP-PGA. Firstly, implementing
the EP-based conversion (B.5) instead of a direct conversion of the discrete
messages from fMi to xi, i ∈ [N] provides an advantage over BP-GA and BP-
PGA. Secondly, implementing (B.9) leads to better performance than when
computing the right-hand messages in (B.6) at the expense of a complexity in-
crease, as can be seen by comparing BP-EP and BP-EP-PGA. Since BP-EP can
be seen as an instance of our proposed BP-EP-PGA with the setting M = 1,
we conclude that the tuning of the parameter M (or equivalently ρ) allows
for trading performance and computational complexity in the receiver.

5 Appendix

We compute (B.7) for a specific symbol xi (i ∈ [N]). Select si′ with i′ satisfying
i + k̄ ≤ i′ ≤ i + (L− 1)− k̄, see E → D in Subsection 3.2. By applying the BP
rule we obtain for the Gaussian belief of si′

bG(si′) = mG
fTi′→si′

(si′)m
G
fOi′→si′

(si′)m
G
fTi′+1

→si′
(si′). (B.10)

To compute mG
fTi′→si′

(si′) we use the BP rule in a forward recursion along the

variable and factor nodes fTi′−L+1
, si′−L+1, . . . , si′−1, fTi′ . Doing so and insert-

ing in (B.10) yields the expression in (B.11). Notice that the product in the
first pair of brackets and the integral are functions of si = [xi−L+1, . . . , xi]

T.
From the choice of i′, the entries of xD

i = [xj : j ∈ ID
i ]

T are also entries of si′ ,
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see E → D in Subsection 3.2. Thus, the product in the first bracket in (B.11)
contains as factors the messages nG

xj→ fTj
(xj), j ∈ ID

i .

bG(si′) = mG
fTi′+1

→si′
(si′)mG

fOi′→si′
(si′)

[
L−1

∏
l=0

nG
xi′−l→ fTi′−l

(xi′−l)

]

×
∫ [L−1

∏
l=1

mG
fOi′−l

→si′−l
(si′−l)

]
nG

si′−L→ fTi′−L+1
(si′−L)dsi′−L (B.11)

We implement a PGA by substituting these messages with their discrete
counterparts nxj→ fTj

(xj), j ∈ ID
i . This substitution can be formally expressed

as

bPG(si′) = ∏
κ∈ID

i

nxκ→ fTκ
(xκ)

nG
xκ→ fTκ

(xκ)
bG(si′). (B.12)

By using the marginalization constraint of BP we can write

mPG
fTi
→xi

(xi)nxi→ fTi
(xi) = ∑

xD
i \xi

∫
bPG(si′)d(si′\xD

i ). (B.13)

Notice that the right-hand term is a marginal belief of xi. Solving for mPG
fTi
→xi

(xi)

in (B.13) yields (B.7).
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1. Introduction

Abstract

In this paper, we design iterative receiver algorithms for joint frequency-domain
equalization and decoding in a single carrier system assuming perfect channel state
information. Based on an approximate inference framework that combines belief prop-
agation (BP) and the mean field (MF) approximation, we propose two receiver algo-
rithms with, respectively, parallel and sequential message-passing schedules in the
MF part. A recently proposed receiver based on generalized approximate message
passing (GAMP) is used as a benchmarking reference. The simulation results show
that the BP-MF receiver with sequential passing of messages achieves the best BER
performance at the expense of higher computational complexity compared to that of
the GAMP receiver. The parallel BP-MF receiver has complexity similar to that of
GAMP, but its low convergence rate yields poor performance, especially under high
signal-to-noise ratio conditions.

1 Introduction

Single carrier system with frequency domain equalization (SC-FDE) tech-
nique is an attractive technology for wireless communications due to its abil-
ity to cope with the temporal dispersion introduced by multipath channels.
It has the performance, efficiency and low complexity advantages over its or-
thogonal frequency division multiplexing (OFDM) counterpart, while being
less sensitive to power amplifier nonlinearities and carrier frequency offsets,
in addition to exhibiting a lower peak-to-average transmitted power ratio [1].
For these reasons, SC-FDE has been selected as the access scheme for the up-
link of the 3GPP long term evolution (LTE) and LTE advanced standards [2].

Belief propagation (BP) on factor graphs, also known as sum-product al-
gorithm [3], is a message-passing inference technique that has been widely
used in the design of iterative wireless receivers. Its remarkable performance,
especially when applied to discrete probabilistic models, justifies its popular-
ity. However, its complexity may become intractable in certain application
contexts, e.g. when the probabilistic model includes both discrete and con-
tinuous random variables.

As an alternative to BP, variational methods based on the mean field (MF)
approximation [4] have been initially used in quantum and statistical physics.
The MF approximation has also been formulated as a message passing algo-
rithm, referred to as variational message passing (VMP) algorithm [5]. It has
primarily been used on continuous probabilistic conjugate-exponential mod-
els. Recently, a method that combines BP and MF [6] as a unified message
passing framework on a same factor graph has been proposed, which keeps
the virtues of BP and MF but avoids their respective drawbacks. The BP-MF
method was applied to joint channel estimation and decoding in MIMO-
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OFDM systems [7].
As an alternative approach to deal with the high complexity problem of

BP, researchers are also pursuing approximate BP methods. The approxi-
mate message passing (AMP) approach was derived from BP by approximat-
ing some messages to be Gaussian by invoking the central limit theorem and
Taylor expansions, and was initially proposed for compressed sensing [8]. Re-
cently, Rangan extended AMP to the general estimation problem with linear
mixing and developed the so-called the generalized approximated message-
passing (GAMP) algorithm [9]. GAMP operates as a parallel message passing
scheme. It has been previously used for turbo sparse channel estimation and
frequency-domain equalization in OFDM systems [10], turbo equalization
in SC-FDE systems [11], and iterative channel estimation and detection in
OFDM systems impaired by impulsive noise [12].

In this paper, based on the combined inference technique presented in [6],
we develop a parallel and a sequential message-passing receiver for a SC-FDE
system and compare its performance with an analogous iterative receiver,
inspired by [11], implementing GAMP in the equalization part.

Notation- Boldface lowercase and uppercase letters denote vectors and ma-
trices, respectively, while superscripts (·)∗, (·)T and (·)H represent conjuga-
tion, transposition and Hermitian transposition, respectively. The expecta-
tion operator with respect to a density g(x) is expressed by 〈 f (x)〉g(x) =∫

f (x)g(x)dx/
∫

g(x′)dx′, while var[x]g(x) =
〈
|x|2

〉
g(x) − | 〈x〉g(x) |2 repre-

sents the variance. The pdf of a complex Gaussian distribution with mean µ
and variance ν is represented by CN (x; µ, ν). The relation f (x) = cg(x) for
some positive constant c is written as f (x) ∝ g(x). We use ‖ · ‖ to stand for
Euclidian norm. The N × N normalized discrete Fourier matrix is denoted
by F, with entries Fai = 1/

√
Ne−2π(a−1)(i−1)/N .

2 System Model

The finite sequence of information bits b = [b1, . . . , bK]
T of an SC-FDE block

is encoded and interleaved by using a rate R channel code and a random
interleaver, yielding the codeword vector c = [cT

1 , . . . , cT
N ]

T, where the ith
sub-vector is ci = [c1

i , . . . , cQ
i ]

T with Q denoting the modulation order. The
codeword c is complex modulated, resulting in the vector of data symbols
x = [x1, . . . , xN ]

T, which is transmitted over the wireless channel after the
addition of a cyclic prefix (CP). At the receiver end, the CP is removed and
the received signal is Fourier transformed, yielding

y = Hz + w = HFx + w, (C.1)

where H = diag(h) with h = [h1, h2, . . . , hN ]
T representing the vector of

frequency-domain channel weights, z = Fx is a vector containing the equiv-
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Fig. C.1: Factor graph representing the probabilistic model in (C.2).

alent frequency-domain data symbols and w is a complex additive white
Gaussian noise vector with covariance matrix λ−1 I.

2.1 Probabilistic Representation and Factor Graph

Based on (C.1), we can factorize the joint pdf of all unknown random vari-
ables conditioned on the observation y as

p(x, c, b|y)

∝
N

∏
a=1

fYa(ya, x)
N

∏
i=1

fMi (xi, ci) fC(c, b)
K

∏
k=1

fBk (bk)
(C.2)

where fYa(ya, x) , p(ya|x) = CN
(
ya; haFax, λ−1) with Fa being the ath row

of F and ha being the ath entry of h, fMi (xi, ci) and fC(c, b) stand for the
modulation and coding constraints, and fBk (bk) , p(bk) is the prior of the kth
information bit. In (C.2), we have used the fact that, given x, y is conditionally
independent of c and b. The factor graph [3] shown on Fig. C.1 represents
the above factorization.

3 Combined BP and MF Framework

In this section, we derive the messages passed on the factor graph shown in
Fig. C.1 by using the BP-MF message updating rules [6] and discuss their
scheduling.

We group the factor nodes in two disjoint subsets, a BP part for demodu-
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lation and decoding, and an MF part for equalization,

AMF = { fYa ; a ∈ [1 : N]}
ABP = { fMi ; i ∈ [1 : N]} ∪ { fC} ∪ { fBk ; k ∈ [1 : K]},

where AMF and ABP denote the sets of factor nodes in the MF and BP parts,
respectively. For factor nodes in the BP part, we calculate the messages to
neighboring variable nodes using the sum-product rule, and send extrinsic
messages. For factor nodes in the MF part, messages to neighboring variable
nodes are computed by the VMP rule, and beliefs are passed.

Due to the factor nodes { fMi} being in the BP part, the extrinsic messages
passed from Xi to fMi , i = 1, . . . , N, read

nXi→ fMi
(xi) ∝

N

∏
a=1

m fYa→Xi
(xi)

, CN (xi; µXi→ fMi
, νXi→ fMi

). (C.3)

Messages {m fMi
→Xi

(xi)}, yielded by the sum-product rule, come from the
soft demodulation part. Messages from Xi to fYa in the MF part correspond,
for all a, to the belief b(xi), which is computed by collecting the messages
from all neighbors of Xi, i.e.

b(xi) = nXi→ fYa
(xi) ∝

N

∏
a=1

m fYa→Xi
(xi)m fMi

→Xi
(xi)

∝ nXi→ fMi
(xi)m fMi

→Xi
(xi), (C.4)

µXi→Y , 〈xi〉b(xi)
, (C.5)

νXi→Y , var[xi]b(xi)
. (C.6)

We group the parameters {µXi→Y} into the vector µX→Y = [µX1→Y, µX2→Y, . . . , µXN→Y]
T.

Using the VMP rule and the messages {nXi→ fYa
(xi)}, the messages from

fYa to Xi are obtained as

m fYa→Xi
(xi) ∝ exp

{
〈log fYa(ya, x)〉∏j 6=i b(xj)

}
∝ CN

(
xi; µ fYa→Xi

, ν fYa→Xi

)
, (C.7)

where µ fYa→Xi
, F∗aih

∗
a(ya− haFaµXī→Y)/

(
F∗aih

∗
a haFai

)
, µXī→Y is equal to µX→Y

with its ith entry replaced by 0, and ν fYa→Xi
, 1/

(
λF∗aih

∗
a haFai

)
.

Substituting (C.7) into (C.3), we obtain

µXi→ fMi
=

1
C

F
H

i H
H
(

y− HFµXī→Y

)
(C.8)

νXi→ fMi
= (λC)−1 (C.9)
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where F i is the ith column of F, and C , F
H

i H
H

HF i =
‖h‖2

N .
The factor graph in Fig. C.1 is very densely connected, especially in the

MF part. Hence, there is a multitude of different options for scheduling the
messages. In this paper, the standard message-passing schedule is chosen
for the BP part. Messages are passed from the modulation nodes to the
coding node in parallel, followed by a round of decoding using the forward-
backward (BCJR) algorithm [3], and the outcome messages are passed to
the modulation nodes simultaneously. For the MF part, we propose two
kinds of scheduling, a parallel schedule and a sequential schedule, which are
described next.

3.1 The Parallel Schedule

The messages {nt
Xi→ fYa

(xi)} (beliefs) from variable nodes {Xi} to factor nodes
{ fYa} are computed from (C.3) and (C.4). The superscript t denotes the it-
eration index. All the messages {mt

fYa→Xi
(xi)} from factor nodes { fYa} to

variable nodes {Xi} are simultaneously computed using (C.7). The afore-
mentioned process is carried out twice per iteration. Subsequently, messages
{nt

Xi→ fMi
(xi)} from {Xi} to { fMi} are computed using (C.8) and (C.9) and

passed on to the BP part. The above procedure is summarized in Algo-
rithm 1.

Algorithm 1 BP-MF with Parallel Scheduling

1: for all i: initialize m0
fMi→Xi

(xi), µ0
Xi→ fMi

, ν0
Xi→ fMi

.

2: for all i: µ0
Xi→Y ← 〈xi〉CN

(
xi ;µ0

Xi→ fMi
,ν0

Xi→ fMi

)
m0

fMi→Xi
(xi)

3: for t = 1→Iteration do
4: µt

Z ← y− HFµt−1
X→Y

5: for all i: µt
Xi→ fMi

← 1
C F

H

i H
H

µt
Z + µt

Xi→Y

6: for all i: νt
Xi→ fMi

← 1
λC

7: for all i: µt
Xi→Y ← 〈xi〉

CN
(

xi ;µt
Xi→ fMi

,νt
Xi→ fMi

)
mt−1

fMi→Xi
(xi )

8: µt
Z ← y− HFµt

X→Y
9: for all i: µt

Xi→ fMi
← 1

C F
H

i H
H

µt
Z + µt

Xi→Y

10: for all i: νt
Xi→ fMi

← 1
λC

11: for all i: CN
(

xi; µt
Xi→ fMi

, νt
Xi→ fMi

)
→ BP part

12: for all i: mt
fMi→Xi

(xi)← BP part
13: for all i: µt

Xi→Y ← 〈xi〉
CN

(
xi ;µt

Xi→ fMi
,νt

Xi→ fMi

)
mt

fMi→Xi
(xi )

14: end for t
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3.2 The Sequential Schedule

Similar to the parallel schedule, the messages {nt
Xi→ fYa

(xi)} from variable
nodes {Xi} to factor nodes { fYa} are computed first. Then, sequentially for
each i from 1 to N, the messages {mt

Ya→Xi
(xi)} are computed using mes-

sages {nt−1
Xk→ fYa

(xk); k ∈ [i + 1 : N], a ∈ [1 : N]} and {nt
Xj→ fYa

(xj); j ∈ [1 :

i − 1], a ∈ [1 : N]}. Before calculating messages from factor nodes { fYa}
to variable node Xi+1, the messages {nt

Xi→ fYa
(xi)} are updated using (C.4).

Finally, extrinsic messages {nt
Xi→ fMi

(xi)} are delivered to the BP part. The

above procedure is illustrated in Algorithm 2.

Algorithm 2 BP-MF with Sequential Scheduling

1: for all i: initialize m0
fMi
→Xi

(xi), µ0
Xi→ fMi

, ν0
Xi→ fMi

.

2: for all i: µ0
Xi→Y ← 〈xi〉CN

(
xi ;µ0

Xi→ fMi
,ν0

Xi→ fMi

)
m0

fMi→Xi
(xi)

3: for t = 1→ Iteration do
4: µt

Z ← y− HFµt−1
X→Y

5: for i = 1→ N do
6: µt

Xi→ fMi
← 1

C F
H

i H
H

µt
Z + µt−1

Xi→Y

7: νt
Xi→ fMi

← 1
λC

8: µt
Xi→Y ← 〈xi〉CN

(
xi ;µt

Xi→ fMi
,νt

Xi→ fMi

)
mt−1

fMi→Xi
(xi)

9: µt
Z ← µt

Z + HF i

(
µt

Xi→Y − µt−1
Xi→Y

)
10: end for i
11: for all i: CN

(
xi; µt

Xi→ fMi
, νt

Xi→ fMi

)
→ BP part

12: for all i: mt
fMi→Xi

(xi)← BP part
13: for all i: µt

Xi→Y ← 〈xi〉
CN

(
xi ;µt

Xi→ fMi
,νt

Xi→ fMi

)
mt

fMi→Xi
(xi )

14: end for t

3.3 Noise Precision Estimation

The above algorithms assume that the noise precision λ is known. However,
the BP-MF framework allows for estimating the noise precision if necessary.
In this case λ is an unknown variable and the probabilistic model (2) is mod-
ified as follows: p(x, c, b|y) becomes p(x, c, b, λ|y), fYa(ya, x) is replaced by
fYa(ya, x, λ) , p(ya|x, λ) and an additional factor fΛ(λ) , p(λ), denoting the
prior distribution of λ, is inserted in the factorization. A variable node Λ and
a factor node fΛ are drawn on factor graph Fig. C.1 with fΛ connected to Λ,
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and Λ also linked to the factor nodes { fYa}. With the improper prior pdf
p(λ) ∝ 1/λ, the update for λ̂ reads [7]

λ̂ = N/(‖µZ‖2 + ‖h‖2
N

∑
i=1

νXi→Y), (C.10)

where νXi→Y = var [xi]CN
(

xi ;µXi→ fMi
,νXi→ fMi

)
m fMi

→Xi
(xi)

.

If the noise precision is to be estimated, λ is replaced by λ̂t in the algo-
rithms and is updated using (C.10) following Steps 4 and 8 in Algorithm 1
and Step 4 in Algorithm 2.

4 BP and GAMP Method

We briefly present the application of the GAMP algorithm to the SC-FDE
system. As for the BP-MF method, the factor graph shown in Fig. C.1 is also
divided into two parts, a BP part and a GAMP part. GAMP [9] is imple-
mented for equalization and BP is used for demodulation and decoding. The
messages from the BP part {mt

fMi
→Xi

(xi)} are used to compute the means

{µt
Xi
} and variances {νt

Xi
} of the beliefs {b(xi)}. The extrinsic messages from

nodes {Xi} to nodes { fMi}, {mt
Xi→ fMi

(xi) = CN (xi; µt
ri

, νt
ri
)}, are used for

soft demodulation. The BP-GAMP algorithm, proposed in [11], is described
in Algorithm 3.

5 Simulation Results

We consider an SC-FDE system with N = 256 data symbols per block and a
bandwidth of W = N ∗ 15 KHz. A block of data symbols is obtained from
a sequence of information bits encoded using a rate R = 1/3 convolutional
code with generator polynomials (133, 171, 165)8, or a rate R = 1/2 code
with (5, 7)8. Random interleaving and QPSK or 16QAM modulation are sub-
sequently applied. The realizations of the channel transfer function are gen-
erated using the 3GPP ETU channel model and their samples h are assumed
to be known at the receiver side. We assess the performance of receivers
implementing three different algorithms: BP-MF with sequential scheduling
(BP-MF-s), BP-MF with parallel scheduling (BP-MF-p), and BP-GAMP. For
the BP-MF receivers, we allow two different variants: one in which the noise
precision (NP) λ is assumed to be known (Known NP) and one in which it is
re-estimated at every iteration of the algorithms (Unknown NP). To include
an ideal reference, the matched-filter bound (MFB) is also evaluated. The
MFB is the performance of a receiver which, when detecting a symbol in an
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Algorithm 3 BP-GAMP Receiver

1: for all i: initialize µ0
Xi

, ν0
Xi

.
2: µ0

S ← 0; µZ = y./h; νZ = 1./(λh� h∗)
3: for t = 1→ Iteration do
4: νt

P ← 1 ∑N
i=1 νt−1

Xi
/N

5: µt
P ← Fµt−1

X − µt−1
S � νt

P,
6: νt

S ← 1./(νZ + νt
P)

7: µt
S ← (µZ − µt

P)� νt
S

8: νt
R ← 1N/(∑N

a=1 νt
Sa
)

9: µt
R ← µt−1

X + νt
R � (F

H
µt

S)

10: for all i: CN
(

xi; µt
Ri

, νt
Ri

)
→ BP part.

11: for all i: mt
fMi→Xi

(xi) ← BP part.

12: for all i: µt
Xi
← 〈xi〉CN

(
xi ;µt

Ri
,νt

Ri

)
mt

fMi→Xi
(xi)

13: for all i: νt
Xi
← var [xi]CN

(
xi ;µt

Ri
,νt

Ri

)
mt

fMi→Xi
(xi)

14: end for t
where µt

X = [µt
X1

, . . . , µt
XN

]
T

, � and ./ stand for component-wise product and division, respec-
tively, and νt

Sa
denotes the ath entry of νt

S.

SC-FDE block, has perfect knowledge of every other symbol in the block and
the noise precision.

In Fig. C.2, the BER of the receivers operating at a SNR of 10dB is depicted
as a function of the iteration index. Two different modulation schemes and
coding rates have been selected: a low-rate (R=1/3) system using QPSK mod-
ulation, and a high-rate (R=1/2) system employing 16QAM. For the BP-MF
receiver, we observe that convergence is dramatically improved by using the
sequential schedule as compared to the parallel schedule. The latter requires
more than 30 iterations to converge in the low-rate case.1 The reason for this
is that, with the serial schedule, the estimates of the data symbols that have
already been obtained in the course of the tth iteration are immediately used
to estimate those data symbols which have not yet been estimated during it-
eration t. Conversely, with the parallel schedule such estimates are not used
for equalization until the (t + 1)th iteration. The BP-GAMP algorithm, for its
part, exhibits an erratic BER behavior in the first iterations, before stabilizing
to BER values slightly higher than those achieved by the BP-MF-s receiver.

In Fig. C.3, the BER performance of the receivers is shown over a wide
range of SNR values, with all receivers running 20 iterations of their respec-

1This effect is even more pronounced for the high-rate case. Results have been omitted in the
plot.
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Fig. C.2: BER performance of the considered receivers versus iteration index for an Eb/N0 of 10
dB.

tive algorithms. As already observed in Fig. C.2, the BP-MF-s receiver per-
forms best of all receivers, with gains of 0.5dB and 1dB with respect to the
BP-GAMP receiver for the low- and high-rate systems, respectively. The BP-
MF-p receiver achieves a performance similar to that of its sequential coun-
terpart in the lowest SNR range, but its convergence is too slow to be used at
larger SNR values.

Interestingly, including the estimation of the noise precision in the BP-MF-
s receiver has two effects, as seen from Figs. C.2 and C.3: on the one hand,
it slightly slows down the convergence speed of the algorithm; on the other
hand, the performance obtained after convergence is slightly better than that
of the receiver which has knowledge of the true noise precision. As the vari-
ance of the estimates of the data symbols are integrated in the noise precision
estimates, the algorithm including the noise precision estimation exhibits a
more robust behaviour, at the expense of a slightly lower convergence speed.

In terms of computational complexity, we point out that all three receivers
differ only in the equalization part. For this part, the BP-MF-p and BP-GAMP
receivers have similar complexity, in the order of O(N log2 N) complex oper-
ations, as FFT processing can be used due to the passing of messages being
parallel. The FFT cannot be used when messages are passed sequentially,
which increases the complexity of the BP-MF-s equalization part to O(N2)
per SC-FDE block.
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6 Conclusion

Based on the BP-MF inference framework, we have developed parallel and
sequential message-passing receivers for joint equalization and decoding in
an SC-FDE system and compared their performance to that of an analogous
receiver using GAMP for equalization.

Our numerical assessment shows that, for the considered SC-FDE system,
the receiver using the BP-MF framework with sequential message-passing
schedule is superior, in terms of performance, to its parallel counterpart and
the receiver using GAMP. This performance improvement comes at the ex-
pense of an increase in computational complexity. Additionally, our results
show that embedding the estimation of the noise precision parameter in the
iterative algorithm improves the receiver’s performance even when the true
value of this parameter is known beforehand.
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1. Introduction

Abstract

This paper concerns message passing based approaches to sparse Bayesian learning
(SBL) with a linear model corrupted by additive white Gaussian noise with unknown
variance. With the conventional factor graph, mean field (MF) message passing based
algorithms have been proposed in the literature. In this work, instead of using the
conventional factor graph, we modify the factor graph by adding some extra hard
constraints (the graph looks like being ‘stretched’), which enables the use of combined
belief propagation (BP) and MF message passing. We then propose a low complexity
BP-MF SBL algorithm based on which an approximate BP-MF SBL algorithm is also
developed to further reduce the complexity. Thanks to the use of BP, the BP-MF SBL
algorithms show their merits compared with state-of-the-art MF SBL algorithms:
they deliver even better performance with much lower complexity compared with the
vector-form MF SBL algorithm and they significantly outperform the scalar-form
MF SBL algorithm with similar complexity.

1 Introduction

Recently, compressed sensing [1, 2] has received tremendous attention and
it has found wide applications in a large variety of engineering areas, e.g.
biomagnetic imaging, sparse channel estimation, bandlimited extrapolation
and spectral estimation, echo cancellation and image restoration [3]. In com-
pressed sensing, a vector α ∈ CL×1 which exhibits sparsity is estimated based
on the measurement vector y ∈ CN×1 with the following model

y = Φα + ω (D.1)

where Φ ∈ CN×L is called dictionary matrix and ω represents an additive
white Gaussian noise (AWGN) vector with zero mean and covariance matrix
λ−1 I. In this work, we are particularly interested in the case that the variance
of the AWGN (or the precision parameter λ) is unknown.

Besides convex [4] and greedy [5] methods, sparse Bayesian learning
(SBL) [6–8] is an alternative method of sparse signal estimation, which aims at
finding a sparse maximum a posteriori (MAP) estimate α̂ = argmax

α
p(α|y) of

the vector α by specifying a priori probability density function (pdf) p(α). In-
stead of working directly with a prior p(α), SBL typically employs a two-layer
(2-L) hierarchical structure [9] that assumes a conditional prior pdf p(α|γ)
and a hyper-priori pdf p(γ), so that p(α) =

∫
γ p(α|γ)p(γ)dγ has a sparsity-

inducing nature. Most recently, SBL has been efficiently implemented using
belief propagation (BP) [10, 11] and approximate message passing [12, 13].
However, these methods assume that λ is known, which may not be true in
many applications. This work deals with message passing based approaches
to SBL with unknown λ.
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Mean field (MF) based message passing [14–16], which is also often re-
ferred to as variational message passing (VMP), has been widely used for ap-
proximate Bayesian inference, especially for exponential distributions. With
2-L or 3-L hierarchical priori structures, Pedersen et al. proposed an MF SBL
algorithm (with unknown λ) [17], which was applied to sparse channel esti-
mation in OFDM. As the MF SBL algorithm deals with the sparse signal α in
a vector-form, matrix inversion is involved in each iteration and its computa-
tional complexity is as high as O(L3). To address the issue of complexity, a
low complexity MF SBL algorithm [18] is then proposed, where the inverse of
a large matrix is decomposed into a number of matrix inverses with smaller
size. Flexible trade-off between complexity and performance can be achieved
by adjusting the size of smaller matrices, which means that the reduction of
complexity comes at the cost of performance loss. Apparently, the size of the
smaller matrices can be set to be 1, so that the matrix inverses are avoided
and we call it scalar-form MF SBL algorithm. Recently, the scalar-form MF
SBL algorithm was used for channel gain and delay estimation in [19]. We
note that an efficient hyperprior p(α) with 2-L structure was proposed in [6],
which performs better than the 2-L and 3-L structures in [17].

Different from MF which supposes all the beliefs of variable nodes are
independent, BP considers the joint belief of variable nodes neighbouring a
factor node and makes the most of their correlation. BP, which may achieve
exact Bayesian inference, is efficient to deal with discrete probability models
and linear Gaussian models. However, BP may have a high complexity, when
especially dealing with models involving both discrete and continuous ran-
dom variables. Recently, a unified message passing framework was proposed
in [20] where BP and MF are merged to keep the merits of BP and MF while
avoid their drawbacks.

In this work, a low complexity BP-MF SBL algorithm with a 2-L hierarchi-
cal prior is proposed. Instead of using the conventional factor graph shown
in Fig. D.1(a), we modify the factor graph by adding a number of extra hard
constraint factors as shown in Fig. D.1(b), i.e., the factor graph looks like be-
ing ‘stretched’. The hard constraint factors seem redundant, which however
facilitates the use of BP in the graph, leading to considerable performance
improvement. As we assume that the noise variance λ−1 is unknown, MF
can be used to tackle the exponential factors, while BP is used to handle the
hard constraint factors. As we factorize the signal α in a scalar form, the
developed BP-MF SBL algorithm avoids matrix inversion and has a low com-
plexity. Inspired by the derivation of the generalized approximate message
passing (GAMP) [21], we further simplify the BP message passing by ignor-
ing some minimal terms and develop an approximate BP-MF SBL algorithm.
Numerical examples show that the proposed BP-MF SBL algorithms provide
even better mean-square-error (MSE) performance with much lower com-
plexity compared with the vector-form MF SBL algorithm [17], and achieve
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noticeable MSE performance gain with similar complexity compared with
the scalar-form MF SBL algorithm [18, 19].

Notation- Boldface lowercase and uppercase letters denote vectors and
matrices, respectively. The expectation operator with respect to a pdf g(x)
is expressed by 〈 f (x)〉g(x) =

∫
f (x)g(x)dx/

∫
g(x′)dx′, while var[x]g(x) =〈

|x|2
〉

g(x)− | 〈x〉g(x) |2 stands for the variance. The pdf of a complex Gaussian
distribution with mean µ and variance ν is represented by CN (x; µ, ν). The
relation f (x) = cg(x) for some positive constant c is written as f (x) ∝ g(x).

2 Factor Graph Model

The joint a posteriori pdf of α, γ and λ in (D.1) with a 2-L hierarchical prior [9]
can be factorized as

p(α, γ, λ|y) ∝ fλ(λ)∏
n

fyn(α, λ)∏
l

fαl (αl , γl) fγl (γl), (D.2)

where fyn(α, λ) , p(yn|α, λ) = CN (yn; Φnα, λ−1), with Φn being the n-th
row of matrix Φ, and fλ(λ) denotes the prior of noise precision parameter λ.
The factor fαl (αl , γl) denotes the conditional pdf p(αl |γl) = CN (αl ; 0, γ−1

l ),
which is chosen as a Gaussian prior of αl and fγl (γl) represents a hyperprior
p(γl) = Ga(γl ; ε, η)1 of the hyperparameter γl . The factorization in (D.2) can
be visually depicted on the factor graph [22] shown in Fig. D.1(a), which is
similar to those in [18] and [19]. We assume that λ is unknown, and MF
can be used to deal with factor nodes { fyn , ∀n ∈ [1 : N]}, which leads to
the scalar-form MF SBL algorithm [18]. In [17], the vector-form MF SBL
algorithm is derived based on a conventional factor graph, where the vector
α is treated as a single variable node.

To facilitate the use of both BP and MF, we modify the factor graph in
Fig. D.1(a) by adding hard constraint factors { fδn(hn, α) = δ(hn −Φnα), ∀n ∈
[1 : N]} with a new variable vector h = Φα. Therefore, factor fyn denotes
the likelihood function p(yn|hn, λ) = CN (yn; hn, λ−1). The new factor graph,
shown in Fig. D.1(b), looks like a stretched version of the graph in Fig. D.1(a).
In the new graph, MF rules with fixed points equations can be used to com-
pute the messages for the exponential factors, while BP rules, often yielding
better performance, can be used to deal with the hard constraint factors. The
message computations and scheduling are detailed in the following section.

1Ga(·; a, b) denotes a Gamma pdf with shape parameter a and rate parameter b. Note that, as
in [6], we use the Gama prior for the parameter of precision, rather than for variance [17].
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Fig. D.1: Two factor graph representations for the probabilistic model (D.2).

3 BP-MF Based SBL

In this section, with the combined BP-MF message update rule [20], we de-
tail the message computations and scheduling on the factor graph shown in
Fig. D.1(b) to perform sparse signal estimation. All the factors in Fig. D.1(b)
are represented by set A, and it is divided into two disjoint subsets, a BP
subset and an MF subset, which are denoted by ABP = { fδn , ∀n} and AMF =
A \ ABP, respectively.

3.1 Message Computations

The computations for messages passing from left to right (forward) and from
right to left (backward) are elaborated. The computations of some forward
messages may need relevant backward messages, which we assume are pro-
duced from the previous iteration.
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Froward message computations

Assuming that the belief b(λ), later defined in (D.24), of noise precision λ is
known, the message m fyn→hn(hn) from observation factor fyn ∈ AMF to hn is
calculated by the MF rule, as follows

m fyn→hn(hn) = exp
{〈

log fyn(hn, λ)
〉

b(λ)

}
∝ CN

(
hn; yn, λ̂−1

)
, (D.3)

where λ̂ = 〈λ〉b(λ).
The message m fδn→αl

(αl) from the hard factor fδn ∈ ABP to variable node
αl is computed by the BP rule with the messages nhn→ fδn

(hn) = m fyn→hn(hn)

and {nαl′→ fδn
(α′l), ∀l′ 6= l}, later defined in (D.18), yielding

m fδn→αl
(αl) = 〈 fδn(hn, α)〉nhn→ fδn

(hn)∏l′ 6=l nαl′→ fδn
(αl′ )

∝ CN
(
αl ; α̂n→l , ναn→l

)
, (D.4)

where

α̂n→l ,
yn − p̂n + Φnl α̂l→n

Φnl
(D.5)

ναn→l ,
λ̂−1 + νpn − |Φnl |2ναl→n

|Φnl |2
(D.6)

p̂n , ∑
l

Φnl α̂l→n (D.7)

νpn , ∑
l
|Φnl |2ναl→n . (D.8)

For convenience of description, the product of all the Gaussian messages
{m fδn→αl

(αl), ∀n ∈ [1 : N]} is denoted by

ql(αl) = ∏
n

m fδn→αl
(αl)

∝ CN
(
αl ; q̂l , νql

)
, (D.9)

where

νql ,

(
∑
n

1
ναn→l

)−1

(D.10)

q̂l , νql

(
∑
n

α̂n→l
ναn→l

)
. (D.11)
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Given the message m fαl→αl
(αl) ∝ CN

(
αl ; 0, γ̂−1

l

)
, later defined in (D.16), the

belief b(αl) of variable αl is obtained as

b(αl) ∝ ql(αl)m fαl→αl
(αl)

∝ CN (αl ; α̂l , ναl ), (D.12)

where

α̂l ,
q̂l

1 + νql γ̂l
(D.13)

ναl ,
(
1/νql + γ̂l

)−1 . (D.14)

Since the factor fαl is classified into the MF subset, the message m fαl→γl
(γl)

is calculated by using the MF rule,

m fαl→γl
(γl) = exp

{
〈log fαl (αl , γl)〉b(αl)

}
∝ γl exp

{
−γl(|α̂l |2 + ναl )

}
, (D.15)

so that the belief b(γl) of hyperparameter γl reads

b(γl) ∝ m fαl→γl
(γl) fγl (γl)

∝ γε+1
l exp

{
−γl(η + |α̂l |2 + ναl )

}
.

Backward Message

We firstly compute the message m fαl→αl
(αl) from fαl to αl by the MF rule, as

follows

m fαl→αl
(αl) = exp

{〈
log fαl (αl , γl)

〉
b(γl)

}
∝ CN

(
αl ; 0, γ̂−1

l

)
, (D.16)

where

γ̂l = 〈γl〉b(γl)
=

ε + 1
η + |α̂l |2 + ναl

. (D.17)

Since factor node fδn ∈ ABP, the message nαl→ fδn
(αl) from variable node

αl to fδn is updated by the BP rule,

nαl→ fδn
(αl) =

b(αl)

m fδn→αl
(αl)

∝ CN (αl ; α̂l→n, ναl→n), (D.18)
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where

ναl→n ,
(

1
ναl

− 1
ναn→l

)−1
(D.19)

α̂l→n , ναl→n

(
α̂l
ναl

− α̂n→l
ναn→l

)
. (D.20)

Then the message m fδn→hn(hn) can be computed with the BP rule for fδn ∈
ABP, yielding

m fδn→hn(hn) = 〈 fδn(hn, α)〉∏l nαl→ fδn
(αl)

, CN
(
hn; p̂n, νpn

)
. (D.21)

We compute the belief b(hn) of variable hn by

b(hn) ∝ m fδn→hn(hn)nhn→ fδn
(hn)

∝ CN (hn; ĥn, νhn),

where

νhn ,
(
λ̂ + 1/νpn

)−1
(D.22)

ĥn , νhn

(
ynλ̂ + p̂n/νpn

)
. (D.23)

The message m fyn→λ(λ) ∝ λexp{−〈|yn − hn|2〉b(hn)} is calculated by the MF
rule. With the conjugate prior pdf fλ(λ) ∝ 1/λ, the belief b(λ) is updated by

b(λ) ∝ m fyn→λ(λ) fλ(λ)

∝ λN−1 exp

{
−λ ∑

n

〈
|yn − hn|2

〉
b(hn)

}
(D.24)

and the parameter λ̂ in (D.3) is computed as

λ̂ = 〈λ〉b(λ) =
N

∑n 〈|yn − hn|2〉b(hn)
. (D.25)

3.2 Message Scheduling for BP-MF SBL Algorithm

The factors in Fig. D.1(b) are very densely connected and thus there are a
multitude of different options for message scheduling. In this paper, we sim-
ply choose a schedule, where the messages are sequentially updated in both
forward and backward directions, while the messages in vertical direction
are simultaneously computed for all n ∈ [1 : N] and l ∈ [1 : L]. The BP-MF
SBL algorithm with such scheduling is summarized in Algorithm 4.
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Algorithm 4 BP-MF SBL Algorithm

1: Initialize p̂n, νpn , α̂l→n, ναl→n , γ̂l , ∀n, ∀l and λ̂.
2: for t = 1→ # of Iterations do
3: ∀n, l: update α̂n→l and ναn→l by (D.5) and (D.6).
4: ∀l: update νql and q̂l by (D.10) and (D.11).
5: ∀l: update α̂l and ναl by (D.13) and (D.14).
6: ∀l: update γ̂l by (D.17).
7: ∀l: update α̂l and ναl again, by (D.13) and (D.14).
8: ∀n, l: update ναl→n and α̂l→n by (D.19) and (D.20).
9: ∀n: update p̂n and νpn by (D.7) and (D.8).

10: ∀n: update νhn and ĥn by (D.22) and (D.23).
11: update λ̂ by (D.25), with b(hn) = CN (hn; ĥn, νhn).
12: end for t

4 Approximate BP-MF SBL

It is observed that there are NL edges between variable nodes {αl , ∀l} and
factor nodes { fδn , ∀n}, so we have to compute 2NL messages (see Lines 3 and
8 in Algorithm 4) for both forward and backward directions in each iteration.
To simplify the BP-MF SBL, we approximate the means and variances of
Gaussian messages in the BP part by eliminating some small terms, leading
to the approximate BP-MF SBL algorithm.

4.1 Approximation of Messages

By substituting (D.14) into (D.19),

ναl→n =
(
1/νql + γ̂l − 1/ναn→l

)−1 ≈ ναl (D.26)

can be obtained as 1/νql � 1/ναn→l from (D.10) when the number N is large
enough. Similarly, substituting (D.5) and (D.6) into (D.20), yields2

α̂l→n = ναl→n

(
α̂l
ναl

− Φ∗nl(yn − p̂n + Φnl α̂
t−1
l→n)

λ̂−1 + νpn − |Φnl |2νt−1
αl→n

)

≈ α̂l − ναl

yn − p̂n

λ̂−1 + νpn

Φ∗nl

= α̂l − ναl snΦ∗nl , (D.27)

where
sn ,

yn − p̂n

λ̂−1 + νpn

. (D.28)

2To distinguish the parameters of messages in different iterations, we append a superscript
(t− 1) to denote the index of the previous iteration.
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4. Approximate BP-MF SBL

The above approximation is made by assuming that the length L of variable
vector α is very large, so that p̂n � Φnl α̂l→n and νpn � |Φnl |2ναl→n from (D.7)
and (D.8).

Substituting (D.26) and (D.27) into (D.8) and (D.7) respectively, we obtain
the approximate variance and mean

νpn ≈ ∑
l
|Φnl |2ναl (D.29)

p̂n ≈ ∑
l

Φnl
(
α̂l − ναl snΦ∗nl

)
(D.29)≈ ∑

l
Φnl α̂l − snνpn . (D.30)

We further substitute (D.6) and (D.5) into (D.10) and (D.11), and approximate
them for a large L, as follows,

νql =

(
∑
n

|Φnl |2
λ̂−1 + νpn − |Φnl |2ναl→n

)−1

≈
(

∑
n

|Φnl |2
λ̂−1 + νpn

)−1

(D.31)

q̂l = νql

(
∑
n

Φ∗nl(yn − p̂n + Φnl α̂l→n)

λ̂−1 + νpn − |Φnl |2ναl→n

)
(D.28)≈ νql ∑

n

(
Φ∗nlsn +

|Φnl |2
λ̂−1 + νpn

α̂l→n

)
(D.27)(D.31)≈ α̂l + νql ∑

n
Φ∗nl

(
sn −

|Φnl |2
λ̂−1 + νpn

ναl sn

)
≈ α̂l + νql ∑

n
Φ∗nlsn. (D.32)

The approximation in (D.32) is according to |Φnl |2
λ̂−1+νpn

� ν−1
αl

, since ν−1
αl

=

∑n
|Φnl |2

λ̂−1+νpn
+ γ̂l is obtained by inserting (D.31) into (D.14).

4.2 Message Scheduling for Approximate BP-MF SBL Algo-
rithm

We choose the similar message scheduling to BP-MF SBL shown in Algo-
rithm 4, where the corresponding parameters are replaced by the above ap-
proximate computations. The parameters νql and q̂l are updated by (D.31)
and (D.32) instead of (D.10) and (D.11). The parameters νpn and p̂n are cal-
culated by (D.29) and (D.30) rather than (D.8) and (D.7). In addition, the
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computations of parameters α̂n→l , ναn→l , ναl→n and α̂l→n in Lines 3 and 8 of
Algorithm 4 are avoided, while a set of intermediate parameters sn, ∀n, have
to be inserted. We summarize the approximate BP-MF SBL in Algorithm 5.
It is interesting that the message computations for the densely connected BP
subgraph as shown in Fig. D.1(b) coincide with the GAMP [21] algorithm.

Algorithm 5 Approximate BP-MF SBL Algorithm

1: Initialize νpn , sn, ∀n, α̂l , γ̂l , ∀l and λ̂.
2: for t = 1→ # of Iterations do
3: ∀l: update νql and q̂l by (D.31) and (D.32).
4: ∀l: update α̂l and ναl by (D.13) and (D.14).
5: ∀l: update γ̂l by (D.17).
6: ∀l: update α̂l and ναl again, by (D.13) and (D.14).
7: ∀n: update νpn and p̂n by (D.30) and (D.29).
8: ∀n: update sn by (D.28).
9: ∀n: update νhn and ĥn by (D.22) and (D.23).

10: update λ̂ by (D.25), with b(hn) = CN (hn; ĥn, νhn).
11: end for t

5 Numerical Simulation Results

In this section, we assess the proposed SBL algorithms by means of Monte
Carlo simulations. Consider the sparse signal model (D.1) with a random
M× N(M = 100, N = 200) dictionary matrix Φ, whose entries are indepen-
dent and identically distributed (i.i.d.) zero-mean complex Gaussian random
variables with unit variance. We assume that the length-N vector α has K
nonzero elements which are randomly dispersed in vector α. In addition, the
nonzero elements are i.i.d. and also drawn from a zero-mean complex Gaus-
sian distribution with unit variance. All curves are produced based on 200
Monte-Carlo runs, and for each run with a new realization of the dictionary
matrix Φ, the vector α and the AWGN vector ω are generated.

We compare the MSE performance of our proposed algorithms and the
state-of-the-art algorithms. “BP-MF" and “A-BP-MF" denotes our proposed
BP-MF and approximate BP-MF SBL algorithms, i.e., Algorithms 4 and 5,
respectively. “MF-vector" and “MF-scalar" stand for MF SBL algorithms in
vector-form [17] and in scalar-form (sequentially estimating each element of
the sparse signal α) [19], respectively. For a fair companion, all the above al-
gorithms use 2-L hierarchical structure with the hyperprior proposed in [6].
In addition, we also provide the performance of the vector-form MF algo-
rithm using 3-L hierarchical prior in [17], denoted by “MF-vector-3L".
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Fig. D.2: MSE performance of different algorithms, where K = 26.

In Fig. D.2, the MSE performance of the algorithms is shown over a wide
range of signal-to-noise ratios (SNRs), where all algorithms run 20 iterations
and the number of nonzero elements K = 26. We can observe that the
proposed BP-MF and A-BP-MF algorithms deliver slightly better MSE per-
formance than MF-vector, and significantly outperform MF-scalar and MF-
vector-3L. Fig. D.3 depicts MSE performance with an SNR of 14dB versus the
number of non-zero elements K. It shows that all the algorithms have similar
performance when K is small. However, with the increase of K, the MF SBL
algorithms exhibit considerable performance loss compared to the proposed
BP-MF and A-BP-MF SBL algorithms. It is also seen that BP-MF performs
slightly better than A-BP-MF.

Fig. D.4 illustrates the convergence of the algorithms, where SNR = 14dB
and K = 26. We can see that MF-scalar has the fastest convergence rate due to
its sequential message updating schedule. Our proposed BP-MF algorithms
converge slower but achieve better MSE performance compared to MF-salar
and MF-vecotr-3L. It can also be seen that our proposed algorithms have
similar convergence rate and performance compared to MF-vector.

In addition, our simulation results in Figs. D.2, D.3 and D.4 also show
that the 2-L hierarchical priori structure proposed in [6] outperforms 3-L
hierarchical priori structure [17].

5.1 Computational Complexity

As the message computations for updating λ and γl are the same for all the
algorithms, we only analyze the complexity of message computations related
to h and α. Due to the matrix inversion involved, MF-vector has a com-
plexity of O(L3) per iteration, while MF-scalar O(NL). Since the proposed
BP-MF and A-BP-MF algorithms using scalar-form factor graph shown in
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Fig. D.3: MSE performance companions with number of nonzero components K, where SNR
= 14dB.
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Fig. D.4: MSE performance versus iteration index, where K = 26 and SNR = 14dB.

Fig. D.1(b), they have similar complexity to MF-scalar. In details, BP-MF
needs to compute O(NL) messages and O(NL) memory cells to store the
parameters (means and variances) of messages (see Lines 3 and 8 in Al-
gorithm 4), while MF-scalar and A-BP-MF only need to update and store
O(N + L) messages. However, in updating the belief b(αl), ∀l ∈ [1 : L] MF-
scalar with sequential message schedule may take longer running time than
BP-MF algorithms.

6 Conclusion

In this paper, we have investigated message passing based approaches to
SBL. Two low complexity BP-MF SBL algorithms have been proposed based
on a stretched factor graph which is obtained by adding extra hard constraint
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factors to the conventional factor graph. It has been shown that the BP-MF
SBL algorithms outperform the state-of-the-art MF SBL algorithms in terms
of computational complexity or performance.

Acknowledgement

This work is supported by the National Natural Science Foundation of China
(NSFC 61172086, NSFC U1204607, NSFC 61201251).

References

[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[2] E. Candès and M. Wakin, “An introduction to compressive sampling,”
IEEE Signal Processing Mag., vol. 25, no. 2, pp. 21–30, March 2008.

[3] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,”
IEEE Trans. Signal Processing, vol. 52, no. 8, pp. 2153–2164, Aug. 2004.

[4] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basic
pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61,
Aug. 1998.

[5] J. A. Tropp, “Greed is good: algorithmic results for sparse approxima-
tion,” IEEE Trans. Inform. Theory, vol. 50, no. 10, pp. 2231–2242, Oct. 2004.

[6] M. E. Tipping, “Sparse Bayesian learning and the relevance vector ma-
chine,” Journal of Machine Learning Research, vol. 1, pp. 211–244, June
2001.

[7] M. E. Tipping and A. C. Faul, “Fast marginal likelihood maximisation
for sparse Bayesian models,” Proc. 2003 9th international Workshop on Ar-
tificial Intelligence and Statistics,, 2003.

[8] D. Shutin, T. Buchgraber, S. R. Kulkarni, and H. V. Poor, “Fast varia-
tional sparse Bayesian learning with automatic relevance determination
for superimposed signals,” IEEE Trans. Signal Processing, vol. 59, no. 12,
pp. 6257–6261, Dec. 2011.

[9] N. L. Pedersen, C. Navarro Manchón, M.-A. Badiu, D. Shutin, and B. H.
Fleury, “Sparse estimation using Bayesian hierarchical prior modeling
for real and complex linear models,” Signal Processing, vol. 115, no. 0,
pp. 94 – 109, Oct. 2015.

101



References

[10] X. Tan and J. Li, “Computationally efficient sparse Bayesian learning via
belief propagation,” in 2009 Conference Record of the Forty-Third Asilomar
Conference on Signals, Systems and Computers, Nov. 2009, pp. 1566–1570.

[11] D. Baron, S. Sarvotham, and R. Baraniuk, “Bayesian compressive sensing
via belief propagation,” IEEE Trans. Signal Processing, vol. 58, no. 1, pp.
269–280, Jan. 2010.

[12] S. Som and P. Schniter, “Compressive imaging using approximate mes-
sage passing and a Markov-tree prior,” IEEE Trans. Signal Processing,
vol. 60, no. 7, pp. 3439–3448, July 2012.

[13] M. Al-Shoukairi and B. Rao, “Sparse Bayesian learning using approxi-
mate message passing,” in 2014 48th Asilomar Conference on Signals, Sys-
tems and Computers, Nov. 2014, pp. 1957–1961.

[14] E. P. Xing, M. I. Jordan, and S. Russell, “A generalized mean field al-
gorithm for variational inference in exponential families,” in Proceed-
ings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, ser.
UAI’03, San Francisco, CA, USA, 2003, pp. 583–591.

[15] C. M. Bishop and J. Winn, “Structured variational distributions in
VIBES,” Proceedings Artificial Intelligence and Statistics, pp. 3–6, 2003.

[16] J. Dauwels, “On variational message passing on factor graphs,” in Proc.
IEEE International Symposium on Information Theory (ISIT 2007), Jun. 2007,
pp. 2546–2550.

[17] N. L. Pedersen, C. Navarro Manchón, D. Shutin, and B. H. Fleury, “Ap-
plication of Bayesian hierarchical prior modeling to sparse channel esti-
mation,” pp. 3487–3492, June 2012.

[18] N. L. Pedersen, C. Navarro Manchón, and B. H. Fleury, “Low complexity
sparse Bayesian learning for channel estimation using generalized mean
field,” 20th European Wireless Conference, pp. 838–843, June 2014.

[19] T. L. Hansen, P. B. Jørgensen, M. Badiu, and B. H. Fleury, “Joint
sparse channel estimation and decoding: Continuous and discrete
domain sparsity,” CoRR, vol. abs/1507.02954, 2015. [Online]. Available:
http://arxiv.org/abs/1507.02954

[20] E. Riegler, G. E. Kirkelund, C. Navarro Manchón, M.-A. Badiu, and B. H.
Fleury, “Merging belief propagation and the mean field approximation:
A free energy approach,” IEEE Trans. Inform. Theory, vol. 59, no. 1, pp.
588–602, Jan. 2013.

102

http://arxiv.org/abs/1507.02954


References

[21] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in Proc. IEEE Int. Symp. on Inform. Theory
(ISIT 2011), Aug. 2011, pp. 2168–2172.

[22] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 498–
519, Feb. 2001.

103



References

104



Paper E

A Low Complexity OFDM Receiver with Combined
GAMP and MF Message Passing

Zhengdao Yuan, Chuanzong Zhang, Zhongyong Wang,
Qinghua Guo, Sheng Wu and Xingye Wang

The paper has been submitted to the
IEEE Transactions on Vehicular Technology, April 2016.



The layout has been revised.



1. Introduction

Abstract

With a unified belief propagation (BP) and mean field (MF) framework, we propose
an iterative message passing receiver, which performs joint channel state and noise
precision (the reciprocal of noise variance) estimation and decoding for OFDM sys-
tems. The recently developed generalized approximate message passing (GAMP) is
incorporated to the BP-MF framework, where MF is used to handle observation factor
nodes with unknown noise precision and GAMP is used for channel estimation in
the time-frequency domain. Compared to state-of-the-art algorithms in the literature,
the proposed algorithm either delivers similar performance with much lower com-
plexity, or delivers much better performance with similar complexity. In addition,
the proposed algorithm exhibits fastest convergence.

1 Introduction

Due to the excellent performance, especially when applied to discrete prob-
abilistic models, belief propagation (BP) [1] on factor graphs has attracted
much attention in the design of iterative receivers for communication sys-
tems [2–4]. However, BP may suffer from high or even intractable computa-
tional complexity in certain applications [5]. An alternative to BP is the mean
field (MF) approximation (also known as variational message passing) [6],
which can efficiently deal with continuous probabilistic models involving
probability density functions (pdfs) belonging to an exponential family. An-
other notable approximate inference technique is expectation propagation
(EP) [7], which can be seen as an approximation of BP where some beliefs
are approximated by pdfs in a specific exponential family. Recently, to take
advantage of the merits of different message passing techniques, unified mes-
sage passing frameworks have been investigated and applied to low com-
plexity communication receiver design, e.g., the combined BP-EP receivers
in [8, 9] and the combined BP-MF receivers in [5, 10–13].

With the unified BP and MF framework in [5], a message passing OFDM
receiver for joint channel estimation and decoding was proposed in [10],
which involves high computational complexity due to the operation of a large
matrix inversion required in each iteration. An alternative message passing
receiver that allows flexible complexity-performance trade-off was proposed
in [11], where groups of contiguous channel weights are assumed to obey a
Markov model, leading to an algorithm whose complexity is adjustable by
changing the size of each group. In addition, the noise precision is treated
as a random variable and estimated by using MF. A similar method for noise
precision estimation was also used in [12] and [13].

With combined BP and EP, an OFDM receiver performing joint channel
estimation and decoding was designed in [8], where the recently developed
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generalized approximate message passing (GAMP) [14] is employed to re-
duce the complexity. GAMP was firstly used in [15] for sparse channel es-
timation (jointly performed with decoding) in OFDM systems. Compared
to the algorithm in [10], the algorithm in [8] achieves better performance
with lower complexity. However, the precision of the noise is assumed to be
known at receivers in [8] and [15], and the extension of the receivers to the
case of unknown noise precision is not straightforward.

This work concerns the design of message passing receiver for joint chan-
nel estimation and decoding with unknown noise precision. The unified MF
and BP framework in [5] is used, and the GAMP algorithm is incorporated
into the BP-MF framework to significantly reduce the complexity. With a
stretched factor graph which is inspired by [16], modified GAMP is devel-
oped to handle a densely connected subgraph (functioning as channel esti-
mation). In addition, MF is used to deal with observation factor nodes with
unknown noise precision, while BP is used for the subgraph of demodulation
and decoding. Compared to the BP-EP receiver in [8], the proposed receiver
has the capability of noise precision estimation, and can achieve the same
performance as the receiver in [8] with known noise precision. Compared
to the state-of-the-art BP-MF receivers in [10], the proposed receiver delivers
same performance while with much lower complexity. In addition, the pro-
posed receiver can achieve much better performance than the receiver in [9]
(for a fair comparison, the group size of the receiver in [11] is adjusted so
that it has similar complexity to the proposed receiver). It is also shown that
the proposed receiver exhibits fastest convergence compared to the receivers
in [8], [10] and [11].

This paper is organized as follows. In Section 2, the OFDM system model
is described and a factor graph representation is presented. The new low
complexity OFDM receiver is proposed in Section 3. Performance compar-
isons and complexity analyses are provided in Section 4 and conclusions are
drawn in Section 5.

Notation- Boldface lower-case and upper-case letters denote vectors and
matrices, respectively. Superscripts (·)∗ and (·)T represent conjugation and
transposition, respectively. The expectation operator with respect to a density
g(x) is expressed by 〈 f (x)〉g(x) =

∫
f (x)g(x)dx/

∫
g(x′)dx′. The probability

density function (pdf) of a complex Gaussian distribution with mean x̂ and
variance νx is represented by CN (x; x̂, νx). The relation f (x) = cg(x) for
some positive constant c is written as f (x) ∝ g(x). The notation � represents
the element-wise product between two vectors.
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2. System Model

2 System Model

Consider an OFDM system employing N data and P pilot subcarriers with
disjoint sets of indices D and P , respectively, where D ∪P = [1 : N + P] and
D ∩ P = ∅. A sequence of K information bits b = {bk, k = 1, ...K} is en-
coded and interleaved using a rate R = K/(NQ) channel code and a random
interleaver, yielding an interleaved codeword vector c, where Q denotes the
order of modulation. Q coded bits in each sub-vector cn are mapped to a data
symbol xin ∈ SD, in ∈ D, where SD denotes modulation alphabet of size 2Q.
The data symbols {xi, i ∈ D} are multiplexed with pilot symbols {xj, i ∈ P}
which are randomly selected from SP, resulting in a vector of transmitted
symbols x = {xi, i ∈ D ∪ P}T. The transmitted symbols are modulated by
IFFT and then a cyclic prefix (CP) is added before transmission through a
wireless channel with L taps, α = (α1, ..., αL)

T.
After the removal of CP and the Fourier transform at the receiver side,

the received signal in the frequency domain can be represented as

y = h� x + ω (E.1)

where h = Φα stands for the vector of frequency-domain channel weights,
Φ represents the first L columns of a (N + P) × (N + P) discrete Fourier
transform matrix, and ω is an AWGN vector with zero mean and covariance
matrix λ−1 I.

2.1 Probabilistic Formulation and Factor Graph Representa-
tion

The joint pdf of the collection of observed and unknown variables in the
OFDM system can be factorized as

p(y, h, x, c, b, λ) = fM(x, c, b) fλ(λ) ∏
i∈D

fDi (xi, hi, λ)

×∏
j∈P

fPj(hj, λ) ∏
i∈D∪P

fδi (hi, α) ∏
l∈[1:L]

fαl (αl) (E.2)

where fDi (xi, hi, λ) , p(yi|xi, hi, λ) = CN (hixi; yi, λ−1) for all i ∈ D, fPj(hj, λ) ,

p(yj|hj, λ) = CN (hj; yj, λ−1) for all j ∈ P , fδi (hi, α) , p(hi|α) = δ(hi −Φiα)

with Φi denoting the i-th row of matrix Φ. The local function fαl (αl) , p(αl)
represents the priori pdf of the l-th channel tap, and fM(x, c, b) stands for the
modulation, coding and interleaving constraints.

The factorization in (E.2) can be visually depicted by the factor graph
shown in Fig. E.1, where fM(x, c, b) is represented by the subgraph in the
dashed box. More details about fM(x, c, b) can be found in [10]. It is worth
mentioning that, the factor graph used in this paper is a stretched version of
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Fig. E.1: Factor graph representation for the factorization in (E.2)

that in [8] where the extra variable nodes {hi} and the corresponding hard
constraint factor nodes { fδi} are added. This enables the use of combined BP
and MF message passing framework. We use MF to handle the observation
nodes where the noise precision is treated as a random variable, and use
GAMP for message updating in the densely connected subgraph in Fig. 1.

3 Joint Channel State and Noise Precision Estima-
tion and Decoding

In this section, a joint channel state and noise procession estimation and de-
coding receiver is proposed by using the combined BP-MF message passing
framework [5] on the factor graph shown in Fig. E.1.

We denote the set of all factor nodes by A and divide it into two disjoint
subsets, an MF set AMF , { fDi , i ∈ D} ∪ { fPj , j ∈ P}, and a BP set ABP ,
A/AMF. For factor nodes in the BP part, the messages are updated using the
BP rule, and extrinsic messages are passed to their neighbor nodes. For factor
nodes in the MF part, messages are computed by the MF rule, and beliefs are
used [5].

3.1 Message Passing for Channel Estimation

It can be seen from the graph shown in Fig. 1 that there is a densely connected
part between variable nodes {αl , ∀l ∈ [1 : L]} and factor nodes { fδi (hi, α)}, ∀j ∈
D ∪ P . As the relevant factor nodes are in the BP node set, we propose to
apply the GAMP algorithm for this part to achieve low complexity message
updating. Next, we detail the computations of incoming messages and out-
going messages for this part.
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3. Joint Channel State and Noise Precision Estimation and Decoding

Incoming message (from the observation nodes) computations

We assume that the beliefs of noise precision λ and data symbol xi are known,
which are denoted by b(λ) and b(xi) and given in (E.12) and (E.16) respec-
tively. Then the message m fDi

→hi
(hi), for j ∈ D, from observation node fDi to

hi is computed by the MF rule [5] as,

m fDi
→hi

(hi) = exp
{
〈log fDi (hi, xi, λ)〉b(xi)b(λ)

}
∝ CN

(
hi;

yi〈xi〉b(xi)

〈|xi|2〉b(xi)

,
1

λ̂ 〈|xi|2〉b(xi)

)
, CN

(
hi; θ̂i, νθi

)
(E.3)

where λ̂ = 〈λ〉b(λ).
Since for the observation nodes m fPj

→hj
(hj), for j ∈ P the value of xj is

known at the receiver, the message m fPj
→hj

(hj) is computed as

m fPj
→hj

(hj) = exp
{
〈log fPj(hj, λ)〉b(λ)

}
∝ CN

(
hj;

yj

xj
,

1
λ̂|xj|2

)
, CN

(
hj; θ̂j, νθj

)
. (E.4)

For the convenience of description, the Gaussian messages m fPj
→hj

(hj), ∀j ∈
P and m fDi

→hi
(hi), ∀i ∈ D are uniformly denoted as m fyi→hi

(hi) ∝ CN (hi; θ̂i, νθi ), ∀i ∈
D ∪ P .

Outgoing message (to the observation nodes) computations

For the first iteration, we initiate the messages fδi→hi
(hi), ∀i ∈ D ∪ P as

m fδi
→hi

(hi) = CN (hi; ξ̂i, νξi ), which are later updated in (E.10). The belief

b(αl) for αl , ∀l ∈ [1 : L] is initiated as b(αl) , CN (αl ; α̂l , ναl ), which will be
updated by (E.9).

We divide the computations of the messages into the following 5 steps:

S1: Using [14, Eq. (35)], the belief b(hi) of each frequency-domain channel
weight hi can be calculated as1

b(hi) ∝ m fyi→hi
(hi)m fδi

→hi
(hi)

∝ CN
(

hi; ĥi, νhi

)
,

1From the probabilistic understanding of message passing, the message m fyi→hi (hi) ∝

CN (hi ; θ̂i , νθi ) characterizes the likelihood function p(y|hi), which is used to define function
fout in [14, Eq. (15a)]. Therefore, the Fout in [14, Eq. (26)] is given by Fout(hi , ξ̂i , νξi , θ̂i , νθi ) =

log m fyi→hi (hi)− 1
2νξi
|hi − ξ̂i |2, which is equivalent to the belief b(hi) in log-domain.
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where

νhi
=

(
1

νθi

+
1

νξi

)−1
; ĥi = νhi

(
θ̂i
νθi

+
ξ̂i
νξi

)
. (E.5)

S2: Compute the two intermediate parameters ŝi and τsi for each i by using
[14, Eqs. (6a), (6b), (36) and (37)]2

ŝi = gout(ξ̂i, νξi , θ̂i, νθi ) =
ĥi − ξ̂i

νξi

(E.6)

τsi = −
∂

∂ξ̂i
gout(ξ̂i, νξi , θ̂i, νθi ) =

1
νξi

(
1− νhi

νξi

)
. (E.7)

S3: Update the variance νrl and mean r̂l of message nαl→ fαl
(αl) ∝ CN (αl ; r̂l , νrl )

for each l by using [14, Eqs. (7a) and (7b)],

νrl =

(
∑

i∈P∪D
τsi

)−1

; r̂l = νrl ∑
i∈P∪D

ŝiΦ∗il + α̂l . (E.8)

S4: With the Gaussian priori distribution of the channel tap αl in time-domain
p(αl) = CN (αl ; q̂l , νql ), calculate the belief b(αl) of each αl

b(αl) ∝ p(αl)nαl→ fαl
(αl) , CN

(
αl ; α̂l , ναl

)
where

ναl =

(
1

νrl

+
1

νql

)−1
; α̂l = ναl

(
r̂l
νrl

+
q̂l
νql

)
. (E.9)

The mean and variance coincide those computed by [14, Eqs. (8a), (8b),
(31) and (32)]3 in this Gaussian scenario.

S5: The variance νξi and mean ξ̂i of each message

m fδi
→hi

(hi) = CN
(
hi; ξ̂i, νξi

)
(E.10)

is updated by using [14, Eqs. (5a) and (5b)]

νξi = ∑
l

ναl ; ξ̂i = ∑
l

Φil α̂l − ŝiνξi . (E.11)

It is noted that the computations of {r̂l} and {ξ̂i} in Steps S3 and S5 can be
implemented using the inverse fast Fourier transform (IFFT) and fast Fourier
transform (FFT) respectively, leading to lower complexity.

2Similar to Fout, we also denote gout, defined in [14, Eq. (36)], by gout(ξ̂i , νξi , θ̂i , νθi ).
3The belief b(αl) in (E.9) is equivalent to the posterior function defined in [14, Eq. (33)].
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3.2 Noise Precision Estimation

The message m fPj
→λ(λ) from pilot observation node fPj(hj, λ) to λ, ∀j ∈ P is

calculated by the MF rule,

m fPj
→λ(λ) = exp

{
〈 fPj(hj, λ)〉b(hj)

}
∝ λexp

{
−λ〈|yj − xjhj|2〉b(hj)

}
.

Analogously, the message m fDi
→λ(λ) from data observation node fDi to λ,

∀i ∈ D, can be represented as

m fDi
→λ(λ) = exp

{
〈 fDi (hi, λ)〉b(hi)b(xi)

}
∝ λexp

{
−λ〈|yi − xihi|2〉b(hi)b(xi)

}
.

Supposing that the priori pdf p(λ) of λ is set to be 1/λ, the belief b(λ) of
noise precision λ is updated as,

b(λ) ∝ p(λ) ∏
j∈P

m fPj
→λ(λ) ∏

i∈D
m fDi

→λ(λ) (E.12)

and its mean value is given by

λ̂ =
P + N

∑
j∈P
〈|yj − xjhj|2〉b(hj)

+ ∑
i∈D
〈|yi − xihi|2〉b(hi)b(xi)

. (E.13)

3.3 Soft Demodulation and Decoding

The message m fDi
→xi

(xi) from data observation node fDi to variable node xi,
∀i ∈ D, is computed by using the MF rule,

m fDi
→xi

(xi) = exp
{〈

log fDi (hi, xi, λ)
〉

b(hi)b(λ)

}
∝ CN

(
xi;

yi ĥi

νhi
+ |ĥi|2

,
1

λ̂(νhi
+ |ĥi|2)

)
. (E.14)

Massages {nxi→ fM(xi) = m fDi
→xi

(xi), for all i ∈ D} are passed to soft de-
modulation and decoding models, where demodulation is performed by the
standard BP message update rule and decoding is implemented with the
forward-backward (BCJR) algorithm [1]. Then the discrete extrinsic messages

m fM→xi
(xi) = ∑

s∈S
βi(s)δ(xi − s) (E.15)
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are passed back, where S stands for modulation constellation, and βi(s) rep-
resent extrinsic information on symbol xi. At last, the belief b(xi) of data
symbol xi, ∀i ∈ D is updated by

b(xi) ∝ nxi→ fM(xi)m fM→xi
(xi). (E.16)

3.4 Message Passing Schedule

From the factor graph in Fig. 1 we can find that there are multitude of mes-
sage passing schedules. In this paper, we firstly perform channel state and
noise precision estimation with only pilots, and the number of iterations is
denoted by Tp. Secondly, the joint channel state and noise precision estima-
tion and decoding is carried out iteratively using both the pilots and data,
and the number of iterations is denoted by Td. The aforementioned schedule
and the corresponding message updating are summarized in Algorithm 1,
where lines 2-10 correspond to channel and noise precision estimation with
only pilots and lines 12-22 correspond to joint channel and noise precision
estimation and decoding with both pilots and data. Note that, the message
computations in lines 6 and 9 are special forms of (E.8) and (E.13), since only
pilots are used in lines 6 and 9.

Table E.1: Parameters setting of the OFDM system

Subcarrier spacing 15KHz
Subcarrier number 512
Number of evenly spacing pilot symbols 32
Modulation for pilot symbols QPSK
Modulation for data symbols 16QAM
Channel interleaver Random
Number of channel taps 32

4 Simulation Results

We consider an OFDM system with parameters given in Table E.1, and com-
pare our proposed algorithm and the state-of-the-art algorithms in literatures
in terms of BER performance. We use “BP-MF-GAMP” to denote our algo-
rithm, and use “BP-MF-4”, “BP-MF-32” and “BP-MF-512” to denote the al-
gorithm in [11] with group size (the state-space dimension of the Markov
model) of 4, 32 and 512, respectively. Note that, when the group size G is
selected to be 512, it is equivalent to the algorithm proposed in [10]. We also
provide a comparison with the receiver [8] denoted by “EP-GAMP”, where
the noise precision is assumed to be known. As a reference, the performance
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Algorithm 6 The Proposed OFDM Receiver

1: Initialize λ̂, α̂l , ναl , ξ̂ j, νξ j , ∀j ∈ P , ∀l ∈ [1 : L].
2: for t = 1→ Tp do
3: ∀j ∈ P : update θ̂j and νθj by (E.4).

4: ∀j ∈ P : update νhj
and ĥj by (E.5).

5: ∀j ∈ P : update ŝj and τsj by (E.6) and (E.7).
6: ∀l ∈ [1 : L]: νrl ← (∑j∈Pτsj)

−1,
r̂l ← νrl ∑j∈P ŝjΦ∗jl + α̂l .

7: ∀l ∈ [1 : L]: update ναl and α̂l by (E.9).
8: ∀j ∈ P : update νξ j and ξ̂ j by (E.11).

9: λ̂← P/{∑j∈P 〈|yj − xjhj|2〉b(hj)
}.

10: end for t
11: Initialize ŝi, θ̂i, νθi , ∀i ∈ D.
12: for t = 1→ Td do
13: ∀i ∈ D ∪ P : update νξi and ξ̂i by (E.11).
14: ∀i ∈ D ∪ P : update νhi

and ĥi by (E.5).
15: ∀i ∈ D: update m fDi

→xi
(xi) by (E.14), send to soft demodulation and

decoding part, and then yield m fM→xi
(xi) using standard BP.

16: ∀i ∈ D: update b(xi) by (E.16).
17: ∀i ∈ D: update θ̂i and νθi by (E.3),

∀j ∈ P : update θ̂j and νθj by (E.4).
18: ∀i ∈ D ∪ P : update ŝi and τsi by (E.6) and (E.7).
19: ∀l ∈ [1 : L]: update νrl and r̂l by (E.8).
20: ∀l ∈ [1 : L]: update ναl and α̂l by (E.9).
21: update λ̂ by (E.13).
22: end for t
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of the receiver with perfect channel state information h and noise precision
λ is also included, denoted by “Perfect CSI”. The receivers, except “Perfect
CSI", first carry out Tp = 5 iterations for channel (and noise precision) esti-
mation with only pilots. Then joint channel (and noise precision) estimation
and decoding are performed with Td = 15 iterations.

In Fig. E.2, the BER performance of the receivers versus different SNRs
is shown. It can be seen that “BP-MF-GAMP” and “BP-MF-512” perform
similar to “EP-GAMP" with known λ. But the performance of “BP-MF-G”
(denoting the algorithm in [11] with group size G) deteriorates with the de-
crease of group size G, and the performance degrades severely when G = 4.
Note that, the complexity of “BP-MF-GAMP” is approximately the same as
“BP-MF-4”.

Fig. E.3 shows the performance of the receivers operating at an SNR of
10dB versus the iteration index. We can see that the proposed “BP-MF-
GAMP” receiver converges faster than “BP-MF-G” receivers, and even faster
than “EP-GAMP” with known λ. It is also observed that, the convergence of
“BP-MF-G” also becomes slower with the decrease of the group size G.

4.1 Computational Complexity Comparison

The complexity of the proposed algorithm and those in [10] and [11] is dom-
inated by the channel estimation part, so we only analyze the complexity of
channel estimation. In [10], an inverse operation of a large matrix with di-
mension (N + P)× (N + P) is required in each iteration, so it has cubic com-
plexity O((N + P)3). By assuming that the channel weight obey a Markov
model, the large matrix inverse is converted into a number of small matrix
inverses (with size G) in [11], and the complexity of the algorithm in [11] is
reduced to O(G2(N + P)).

Designed based on the factor graph in Fig. E.1 where all variables are in
scalar form, the proposed receiver avoids matrix inverses and its complexity
is O((N + P)L). Moreover, the computational complexity can be reduced to
O((N + P) log(N + P)) by using the IFFT and FFT for Steps S3 and S5.

5 Conclusion

By incorporating the GAMP algorithm into a unified BP-MF framework, we
have designed a low complexity message passing receiver to perform joint
channel state and noise precision estimation and decoding. The MF rule is
used to tackle the observation factor nodes and GAMP is used to handle the
message computations for the densely connected part of the factor graph. It
has been shown that, the proposed algorithm outperforms the state-of-the-art
algorithms in terms of computational complexity or performance.
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Fig. E.2: BER performance of the receivers versus SNR.
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1. Introduction

Abstract

In this work, with combined belief propagation (BP), mean field (MF) and expectation
propagation (EP), an iterative receiver is designed for joint phase noise (PN) estima-
tion, equalization and decoding in a coded communication system. The presence
of the PN results in a nonlinear observation model. Conventionally, the nonlinear
model is directly linearized by using the first-order Taylor approximation, e.g., in
the state-of-the-art soft-input extended Kalman smoothing approach (Soft-in EKS).
In this work, MF is used to handle the factor due to the nonlinear model, and a
second-order Taylor approximation is used to achieve Gaussian approximation to the
MF messages, which is crucial to the low-complexity implementation of the receiver
with BP and EP. It turns out that our approximation is more effective than the di-
rect linearization in the Soft-in EKS with similar complexity, leading to significant
performance improvement as demonstrated by simulation results.

1 Introduction

Local oscillators, which provide a reference signal for time and frequency
synchronization, are one of the key modules in a communication system.
The instability of oscillators results in phase noise (PN), which may severely
affect the system performance [1].

Various Bayesian and non-Bayesian approaches have been proposed to
solve the PN problem. Bhatti et al. modelled the PN with a discrete cosine
transform (DCT) expansion [2], where the DCT coefficients can be easily es-
timated. However, the DCT method is a non-Bayesian one, and it does not
make use of the time dependence of the PN process. In Bayesian methods
such as particle filter [3], Tikhonov parametric estimation [4], and extended
Kalman smoothing (EKS) [5], PN is modelled as a Wiener process. The par-
ticle filtering method [3] needs to sample the posteriori probability density
function (PDF) of continuous-valued PN variables, where a larger number
of particles yields better performance at the cost of higher complexity. The
Tikhonov parametrization method [4] (or called a von Mises distribution [6])
is an iterative method to deal with the presence of strong PN for AWGN chan-
nels. The intractable integral operation associated with continuous variables
is circumvented by constraining the PDF to Tikhonov distribution. However,
the work in [4] was focused on AWGN channel, and a straightforward ex-
tension to the inter-symbol interference (ISI) channel which is allowed by in-
corporating a MAP equalizer will lead to complexity growing exponentially
with the channel memory length. In the soft input EKS (Soft-in EKS) method1

proposed in [5], the nonlinear observation model is directly linearized by

1The EKS method in [5] was proposed for AWGN channels. It can be extended to the case of
ISI channels, e.g., by incorporating the BP-EP algorithm [7] to handle ISI channels.
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using the first order Taylor expansion. Soft-in EKS has been used in single-
input single-output (SISO) and multiple-input multiple-output (MIMO) sys-
tems [5, 8–10].

Recently, the message passing techniques, such as belief propagation (BP)
[11] and variational message passing (VMP) [12], have been widely used for
iterative receivers design. BP is effective for discrete probability models and
linear Gaussian models. A BP-based equalizer proposed in [13] has a linear
complexity, which is much lower than that of the equalizer in [14]. The VMP
method, also referred as mean filed (MF), is especially suitable for handling
variables with exponential distributions. Recently, a unified message passing
framework was proposed in [15], where BP and MF are merged to keep the
virtues of BP and MF while avoid their drawbacks. It has been applied to
joint channel estimation and decoding in orthogonal frequency division mul-
tiplexing (OFDM) system [16, 17] and single carrier frequency domain equal-
ization (SC-FDE) system [18]. In addition, expectation propagation (EP) [19]
has been used to achieve Gaussian approximation to non-Gaussian messages,
and combined EP and BP has been applied to flat-fading or ISI channel equal-
ization, e. g., in [7, 20].

In this paper, with combined BP, MF and EP, we propose an iterative ap-
proach to joint PN estimation, equalization and decoding for a coded system
over ISI channels. BP and EP are used to deal with the linear model for PN
process and modulation and coding, while MF is used to handle the factor
due to the nonlinear observation model. Furthermore, the non-Gaussian MF
messages are approximated to be Gaussian by using the second-order Tay-
lor expansion, which enables low-complexity implementation of the receiver
with BP and EP. Our approximation is more effective than the direct lineariza-
tion of the nonlinear model in the soft-in EKS [5], which is demonstrated
by the significant performance gain of the proposed approach in terms of
mean-square-error (MSE) of PN estimation and system bit-error-rate (BER)
performance.

Notation-The superscriptions (·)Tand (·)Hdenote the transpose and con-
jugate transpose, respectively. We use ∝ to denote equality of functions up
to a scale factor, and use IN to denote an N × N identity matrix. The real
part of a complex quantity is denoted by <[·]. The functions N (x; x̂, σ2

x) and
CN (x; x̂, σ2

x) stand for real and proper complex Gaussian probability distri-
butions with mean x̂ and variance σ2

x , respectively.

2 System Model and Factor Graph Representation

We consider a coded communication system. An information bit sequence
b = [b0, ..., bNb−1 ]

T is encoded and interleaved, yielding an interleaved code-
word c = [c0, ..., cNc−1 ]

T. Then sequence c is mapped to a symbol sequence
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3. Iterative Receiver Design with BP-MF-EP

x = [x0, ..., xM−1]
T which is transmitted over an ISI channel with coefficients

h = [hL−1, ..., h0]
T. The channel coefficients are assumed to be constant dur-

ing each transmitted block and they are available to the receiver. By con-
sidering the effect of PN, the received baseband signal at time instant k,
(k = 0, 1, ..., M + L− 2), can be represented as [21]

yk = ejθk
L−1

∑
l=0

hl xk−l + nk = ejθk hTsk + nk (F.1)

where sk , [xk−L+1, ..., xk]
T with xk = 0 for k < 0 and k > M − 1, and nk

is a sample of the complex Gaussian noise with variance σ2
n . The phase θk

represents the PN at time instant k, and the PN can be modelled as a random-
walk (Wiener) process [4], [5]

θk = θk−1 + ∆θk (F.2)

where ∆θk is a white real Gaussian process with distribution N (∆θk; 0, σ2
∆),

and θ0 is assumed to have a uniform distribution over [0, 2π). We define
θ = [θ0, θ1, ..., θM+L−2]

T.
The joint probability of b, c, x, s and θ with given observation y = [y0, y1, . . . , yM+L−2]

T

can be expressed as

p(b, c, x, s, θ|y) ∝
M+L−2

∏
k=0

fyk (sk, θk) fsk (sk, sk−1, xk)

fθ0

M+L−2

∏
k=1

fθk (θk, θk−1) fX(x, c, b) (F.3)

where fyk (sk, θk) , p(yk|sk, θk) ∝ CN (yk; ejθk hTsk, σ2
n) denotes the likelihood

function of sk and θk, fθk (θk, θk−1) , p(θk|θk−1) = N (θk; θk−1, σ2
∆) is the

conditional PDF of θk given θk−1, and fX(x, c, b) denotes the mapping, in-
terleaving and coding constraints. Function fsk (sk, sk−1, xk) represents the
deterministic relationship between sk, sk−1 and xk which is given by sk =
Gsk−1 + exk, where the L× L matrix G = [0 IL−1; 0 0T], the length-L vector
e = [0T 1]T, and 0 is a zero column vector with length L− 1.

A factor graph representation of (F.3) is shown in Fig. F.1, which will be
employed to develop a combined BP-MF-EP based receiver to achieve joint
PN estimation, equalization and decoding in next section.

3 Iterative Receiver Design with BP-MF-EP

Due to the presence of PN, the observation model in (F.1) is nonlinear. In
EKS, the nonlinear model is directly linearized with the first order Taylor

125



Paper F.

θk−1 θk θk+1

sk−1 sk sk+1

xk xk+1

fθk fθk+1

fyk−1 fyk fyk+1

fsk
fsk+1

fX(x, c, b)ABP−EP

AMF

ABP

Fig. F.1: Factor-graph representation of the probabilistic model (F.3)

approximation. The nonlinear model is represented by the factors { fyk , ∀k}
in Fig. F.1. In this work, we use MF to handle the factors.

As shown in Fig. F.1, we partition the graph into three parts: BP-EP sub-
graph, MF subgraph and BP subgraph. Accordingly, the factor nodes are
classified into three disjoint sets: ABP-EP , { fsk , fX; ∀k}, AMF , { fyk ; ∀k} and
ABP , { fθk ; ∀k} with ABP-EP

⋂AMF
⋂ABP = ∅. In the following, we detail

the messages updating in each subgraph.

3.1 Message Passing in BP Subgraph

As shown in Fig. F.1, message passing for PN estimation operates in the BP
subgraph, where we need to calculate the forward and backward messages
and the outgoing messages which are input to the MF subgraph.

We assume that the incoming messages from the MF subgraph are avail-
able, and they are Gaussian, i.e., we have {m fyk→θk

(θk) ∝ N (θk; θ̂↓k , σ2
θ↓k
), ∀k}.

The details on the calculations of the incoming messages are delayed to Sec-
tion 3.3. It is worth mentioning that, with the incoming Gaussian messages,
all the messages running in the subgraph are Gaussian.

With the Gaussian message m fθk−1
→θk−1

(θk−1) ∝ N (θk−1; θ̂→k−1, σ2
θ→k−1

), the

message from variable θk−1 to factor fθk is calculated as nθk−1→ fθk
(θk−1) =
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m fθk−1
→θk−1

(θk−1)m fyk−1→θk−1
(θk−1). The forward message m fθk

→θk
(θk) reads

m fθk
→θk

(θk) ∝
∫

fθk (θk, θk−1)nθk−1→ fθk
(θk−1)dθk−1

∝ N (θk; θ̂→k , σ2
θ→k

), (F.4)

We assume that the initial phase noise θ0 is absorbed into the channel in the
acquisition of the channel state information [8], so the initial message for the
forward recursive process θ̂0 = 0, σ2

θ0
= 0.

Same to the forward messages, the backward message m fθk+1
→θk

(θk) ∝

N (θk; θ̂←k , σ2
θ←k

).
According to [15], the outgoing messages input to the MF subgraph should

be the belief of θk, which can be calculated as

b(θk) = m fyk→θk
(θk)m fθk

→θk
(θk)m fθk+1

→θk
(θk)

∝ N (θk; θ̂k, σ2
θk
), (F.5)

where

σ−2
θk

= σ−2
θ↓k

+ σ−2
θ←k

+ σ−2
θ→k

(F.6)

θ̂k = σ2
θk
(σ−2

θ↓k
θ̂↓k + σ−2

θ←k
θ̂←k + σ−2

θ→k
θ̂→k ). (F.7)

3.2 Message Passing in BP-EP Subgraph

We assume that the incoming messages from the MF subgraph are available,
and they are Gaussian. The calculations of the incoming messages will be
detailed in Section 3.3. So this subgraph involves the incoming Gaussian
messages from the MF subgraph and discrete binary messages from the de-
coder. For this subgraph, we simply borrow the BP-EP algorithm developed
in [7] where the use of EP produces Gaussian messages for xk, which will
in turn lead to Gaussian output messages in the BP-EP subgraph. We refer
readers to [7] for the details of the BP-EP algorithm.

With the BP-EP algorithm, we can calculate the messages m fsk→sk
(sk) ∝

CN (sk; ŝ→k , Σs→k ) and m fsk+1→sk
(sk) ∝ (sk; ŝ←k , Σs←k ), which are all Gaussian.

According to [15], the outgoing messages are the belief of sk denoted by
b(sk), which are Gaussian again and can be expressed as

nsk→ fyk
(sk) ∝ m fyk→sk

(sk)m fsk→sk
(sk)m fsk+1→sk

(sk)

∝ exp
{
−(sk − ŝk)

HΣ−1
ŝk

(sk − ŝk)
}

(F.8)
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where m fyk→sk
(sk) is obtained by (F.15) and

Σ−1
sk

= Σ−1
s→k

+ Σ−1
s↑k

+ Σ−1
s←k

(F.9)

Σ−1
sk

ŝk = Σ−1
s→k

ŝ→k + Σ−1
s↑k

ŝ↑k + Σ−1
s←k

ŝ←k . (F.10)

3.3 Message Passing in the MF Subgraph

As shown by the middle part of the graph in Fig. F.1, the MF subgraph con-
sists of the observation factors fyk . We need to compute the outgoing mes-
sages to the BP-EP subgraph (BP subgraph) based on the incoming messages
from the BP subgraph (BP-EP subgraph).

Assume that the incoming message b(sk) from the BP-EP subgraph is
available. According to the rules [15] the outgoing messages to the BP sub-
graph can be computed as

m fyk→θk
(θk) ∝ exp

{∫
log( fyk (θk, sk))b(sk)dsk

}
∝ exp

{
<[rkejθk ]

}
(F.11)

where rk , 2σ−2
n y∗k hTŝk, and ŝk is the mean parameter vector of the Gaussian

belief b(sk). Note that the message m fyk→θk
(θk) yielded in (F.11) is no longer

Gaussian. However, Gaussian messages are expected for the BP subgraph
for PN estimation, which is crucial to its low complexity implementation.
To achieve this, we use the second-order Taylor expansion of <[rkejθk ] at the
estimate of θk, i.e.,

m fyk→θk
(θk)

≈ exp
{
−1

2
<[rkejθ̂k ]θ2

k +<[rkejθ̂k (j + θ̂k)]θk

}
∝ N (θk; θ̂↓k , σ2

θ↓k
) (F.12)

where θ̂k denotes the mean of θk computed in (F.7), and

σ−2
θ↓k

= <[rkejθ̂k ] (F.13)

σ−2
θ↓k

θ̂↓k = <[rkejθ̂k (j + θ̂k)]. (F.14)

It is noted that the Soft-in-EKS algorithm [5] uses the first-order Taylor
expansion to locally linearize model (F.1) directly. In contrast, we use the
second order Taylor series to approximate the MF message m fyk→θk

(θk). It
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turns out that the performance of our algorithm is much better than that of
the Soft-in-EKS algorithm, as demonstrated by simulation results.

Similarly, we also apply MF message update rules to the computation of
the outgoing message m fyk→sk

(sk) for the BP-EP subgraph

m fyk→sk
(sk) = exp

{∫
log( fyk (θk, sk))b(θk)dθk

}
∝ exp

{
−sH

k Σ−1
s↑k

sk + 2<[sH
k Σ−1

s↑k
ŝ↑k ]
}

(F.15)

where

Σ−1
ŝ↑k

= σ−2
n hhT (F.16)

Σ−1
s↑k

ŝ↑k = σ−2
n <[ yk〈e−jθk 〉b(θk)

h]. (F.17)

An approximation to the term 〈e−jθk 〉b(θk)
in (F.17) can be obtained by exploit-

ing the second-order Taylor expansion, and it can be calculated as 〈e−jθk 〉b(θk)
≈

e−jθ̂k (1− 0.5σ2
θk
).

3.4 Message Passing Scheduling

The overall message passing schedule for joint PN estimation, equalization
and decoding is summarized in Algorithm 7.

Algorithm 7 The combined BP-MF-EP Algorithm

1: input y, h, θ̂0, σ2
θ0

2: initialize nθ0→ fθ1
(θ0), m fyk→θk

(θk), ∀k
3: for i = 1→Iteration do
4: for k = 1→ M + L− 2, compute m fθk→θk

(θk) using (F.4)
5: for k = M + L− 3→ 1, compute m fθk+1

→θk
(θk)

6: for all k: compute nθk→ fyk
(θk) using (F.5)

7: for all k: compute m fyk→sk
(sk) using (F.15)

8: Run the BP-EP algorithm [7] in the BP-EP subgraph
9: for all k: update nsk→ fyk

(sk) using (F.8)
10: for all k: update m fyk→θk

(θk) using (F.12)
11: end for i

3.5 Complexity Analysis

Note that the BP-EP algorithm in [7] is incorporated in both the Soft-in EKS
method and the proposed BP-MF-EP method to handle ISI channels. Hence,

129



Paper F.

5 5.5 6 6.5 7 7.5 8 8.5 9
10

−3

10
−2

10
−1

SNR (dB)

M
S

E

 

 
Iteration index=4
Iteration index=5
Iteration index=6
Iteration index=7

BP−MF−EP

Soft−in EKS

Fig. F.2: MSE performance of the phase noise estimation.

both methods involve the computation of (F.8), which requires a complexity
of O(L3). We can also see that PN estimation in both the Soft-in EKS method
and the BP-MF-EP method (i.e., the computation of (F.12) and the message
passing in the BP subgraph shown in Fig.F.1) have similar complexity, which
is in the order of L. From the above analysis, the BP-MF-EP method and the
Soft-in EKS method have similar complexity.

4 Simulation Results

In this section, we evaluate the performance of the proposed method and
compare it with the Soft-in EKS method (where the BP-EP algorithm in [7] is
incorporated to handle ISI channels) in terms of MSE for PN estimation and
BER for the system performance. The system settings are as follows. The
length of symbols in each frame is 1024. A rate-1/2 nonsystematic convolu-
tional code with generator (23, 35)8 is used to encode the bits sequence, and
the coded sequence is permuted with a pseudo random interleaver. QPSK
with Gray mapping is used. In simulations, the phase noise is generated
using a Wiener process (F.2) with innovation variance σ2

∆ = 1 × 10−4 and
the Proakis-C channel with coefficients h = [0.227, 0.460, 0.668, 0.460, 0.227]T

is used to examine the performance of the receiver. As in [4], 5 pilot symbols
are inserted every 256 symbols to make the iterative process bootstrap.

We compare the MSE performance of the proposed algorithm with that
of the Soft-in EKS algorithm for PN estimation. The results with different
number of iterations are shown in Fig. F.2. It can be seen that the proposed
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Fig. F.3: BER performance versus SNR.

BP-MF-EP method significantly outperforms the Soft-in EKS method.
The comparisons of system BER performance are shown in Fig. F.3, where

the performance with known PN is also included for reference. It can be
seen that considerable performance gains can be achieved by the proposed
BP-MF-EP method compared to the Soft-in EKS method.

5 Conclusion

In this paper we have proposed an iterative receiver for joint PN estimation,
equalization and decoding based on combined BP, MF and EP. In particular,
MF is used to tackle the factors due to the nonlinear observation model and
the second-order Taylor expansion is used to achieve Gaussian approxima-
tion to the MF messages, which is crucial to the low complexity implementa-
tion of the receiver. The approximation is more effective than the direct local
linearization of the observation model in the Soft-in EKS. As shown by the
simulation results, the proposed method significantly outperforms the Soft-in
EKS with similar complexity.
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