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Abstract 
In this thesis, the effects of experimental human pain on cerebral activation were 

investigated by use of both spontaneous EEG activity and somatosensory 

evoked potentials (SEP). Two pain models was used, tonic cuff-pressure (studies 

1 and 2) pain and tonic glutamate evoked muscle pain with simultaneous phasic 

electrical stimuli (studies 3 and 4), to investigate the effects on human pain 

processing (and chronic pain, study 4). Significant findings in EEG frequency 

power analysis provided evidence for different pain-EEG relationship between 

high alpha vs. low alpha groups (Hα vs. Lα) and males vs. females. Study 1 

showed clear differences between the Hα and Lα groups in alpha1 and alpha2 

EEG powers but no differences in psychophysical responses to pain. In study 2, 

the male group had higher power in delta activity during pain and the female 

group had higher power in alpha2 and beta1, but no differences in 

psychophysical responses to pain. SEP and source analysis showed significant 
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findings between homotopic vs. heterotopic tonic pain and chronic tension type 

headache (CTTH) vs. healthy controls. Study 3 showed that the N100 peak 

latency increased during heterotopic tonic pain and the P200 peak latency 

increased during homotopic tonic pain. Homotopic and heterotopic tonic pain 

modulated the y-coordinate of the P200 dipole differently and specific changes in 

dipole localizations were found for homotopic and heterotopic tonic pain. In study 

4, a significant reduction in magnitude during and after induced tonic muscle pain 

was found in controls at the P200 dipole whereas there were no differences 

found for patients. No consistent difference was found in localization or peak 

latency of the dipoles. Taken together, we conclude that (a) EEG frequency 

power analysis can reflect differences in pain processing between two diverse 

groups, (b) heterotopic tonic muscle pain causes local changes in cortical 

processing and homotopic tonic muscle pain causes general and long-lasting 

changes in cortical processing, and (c) CTTH patients have impaired inhibition of 

nociceptive inputs. 

 

Key words: Experimental human pain, EEG, tonic pain, somatosensory evoked 

potentials 
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Danish summary 
 

Forord 

I denne afhandling undersøges effekten af eksperimentel menneskelig smerte på 

cerebral aktivering ved brug af både spontan EEG aktivitet og somatosensoriske 

evokerede potentialer (SEP). To smertemodeller benyttes, tonisk manchet-

trykalgometri (studier 1 og 2) og tonisk glutamat evokeret muskel smerte med 

samtidig fasisk elektrisk stimulering (studier 3 og 4), til undersøgelse af effekten 

på menneskelig smerteprocessering. Signifikante fund i EEG frekvens analyse 

viste forskellige smerte-EEG forhold mellem høj alfa vs. lav alfa grupper (Hα vs. 

Lα) (studie 1) og mænd vs. kvinder (studie 2). Studie 1 viste klare forskelle 

mellem Hα og Lα grupper i alfa1 og alfa2 EEG styrke men ingen forskelle i 

psykofysiske responser til smerte. I studie 2, havde gruppen af mænd højere 

styrke i delta EEG aktivitet under smerte og den kvindelige gruppe havde højere 

styrke i alfa2 og beta1 EEG styrke, men ingen forskelle i psykofysiske responser 

til smerte. SEP og cerebral positions analyse viste signifikante forskelle mellem 

homotopisk vs. heterotopisk tonisk smerte (studie 3) og mellem kronisk 

spændingshovedpine (CTTH) vs. raske kontroller (studie 4). Studie 3 viste, at 

N100 latenstid forøges under heterotopisk tonisk smerte og P200 latenstiden 

forøges under homotopisk tonick smerte. Homotopisk og heterotopisk tonisk 

smerte modulerede y-koordinaten af P200 dipolen forskelligt, og specifikke skift i 

dipollokalisationer blev fundet for homotopisk og heterotopisk tonisk smerte. I 

studie 4 blev der fundet en signifikant reduktion i dipolstyrke ved P200 dipolen 
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under og efter induceret tonisk muskel smerte, hvorimod der ikke blev fundet 

nogle forskelle for patienter. Der var ingen konsistente fund i lokalisation eller 

latenstid for dipolerne hverken for patienter eller kontroller. Sammenfattet 

konkluderer vi, at (a) EEG frekvens styrke analyse kan reflektere forskelle i 

smerteprocessering mellem to uens grupper, (b) homotopisk, men ikke 

heterotopisk tonisk muskelsmerte fremkalder detekterbar kort-tids kortikal 

plasticitet efterfølgende repetitiv intramuskulær elektrisk stimulering, og (c) CTTH 

patienter har svækket hæmning af smertefulde inputs. 

 

Nøgleord: Eksperimental menneskelig smerte, EEG, tonisk smerte, 

somatosensoriske evokerede potentialer 
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1. Introduction 
 

1.1. Pain 

1.1.1 Pain physiology (nociception) 

Pain sensation (pricking, burning, aching, stinging, and soreness) is a protective 

somatic sensation which warns of potential injury. Pain has an urgent and 

primitive quality and is an unpleasant sensory and emotional experience 

associated with actual or potential tissue damage (IASP Definition of Pain). Pain 

is divided into pain perception (the experience of pain) and nociception (the 

neural mechanisms). Nociceptors (thermal, mechanical and polymodal) are 

activated by harmful stimuli to the skin, joints and muscles and are mediated by 

thinly myelinated Aδ-fibers (first pain, thermal and mechanical nociceptors) and 

unmyelinited C-fibers (second pain, polymodal nociceptors) which terminate in 

the superficial layers of the dorsal horn (first order neurons). The dorsal horn 

neurons send their axons across the midline of the spinal cord and ascend 

contralaterally in the spinothalamic tract of the anterolateral column directly to the 

thalamus. In the thalamus third-order neurons send axons to the primary 

somatosensory cortex (SI) which interacts with the secondary somatosensory 

cortex (SII) which again projects to the insular cortex and other subcortical 

structures (Kandel et al., 2000) resulting in the feeling of pain. The 

somatosensory cortices are responsible for the perception of sensory features 

such as the location and duration of pain, whereas the limbic and paralimbic 
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structures (e.g. anterior cingulate cortex, insular cortex) are involved in the 

emotional and motivational aspects of pain (pain perception) (Kandel et al., 2000). 

 

1.1.2 Pain perception.  

Nociception does not necessarily lead to pain perception. Pain perception is the 

affective and emotional aspect of pain which is a product of the brain‟s 

abstraction and elaboration of sensory input (Kandel et al., 2000). Pain 

perception normally varies among individuals and depends of the mental state of 

the individual. Attention, anxiety, fear, and sociocultural factors can modulate the 

pain experience (Staehelin Jensen et al., 2003). 

Increased attention towards pain (hypervigilance) causes an intensified pain 

sensation whereas distraction from pain decreases the pain sensation; distraction 

only possible during short-lasting pains whereas hypervigilance towards pain is 

usually developed in recurring and chronic pain states (Staehelin Jensen et al., 

2003). 

Anxiety is the feeling of uncontrollability and unpredictability and future-oriented 

mental state where one is prepared to attempt to cope with upcoming negative 

events (Barlow, 1991). Anxiety is associated with distortions in information 

processing and results in disruption of concentration and performance (Barlow, 

1991). The level of anxiety during pain (as measured by pain anxiety symptoms 

scale) has shown to have a negative effect on the perceived pain (Kandel et al., 

2000);  
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Fear is a primitive “fight-or-flight” response; fear of pain causes individuals to 

selectively attend towards pain related material (words, dot-probe test) and may 

be vulnerability factor which predisposes individuals to react more negatively 

towards pain (Keogh et al., 2001b). 

Sociocultural factors such as gender, age, nationality, and past pain experiences 

affect the pain experience, according to the gate-control theory, because 

attitudes, expectations, meaning for experiences, and appropriate emotional 

expressiveness are learned through observation of other who are similar to in 

identity to oneself (Bates, 1987). 

Pain is a complex perception which is influenced by many factors and the context 

in which the nociceptive input occurs and it involves a complex cortical network. 

 

1.1.3. Pain-related brain structures 

Pain experiences are divided into four components: sensory, motor, 

affective/emotional and autonomic. 

Neurons in selective areas in the cortex respond to nociceptive inputs after relay 

in the thalamic sensory nuclei. These areas include primary somatosensory 

cortex, premotor area, secondary somatosensory cortex, insula and cingulate 

cortex (Niddam et al., 2005). The primary somatosensory cortex has a 

somatotopical representation of the body. The area dedicated to processing 

information from a particular part of the body becomes active when noxious 

inputs are received from that specific part. The primary somatosensory cortex 

sends inputs to the prefrontal cortex and the premotor cortex to prepare and 
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select the appropriate movement which is then projected to the primary motor 

cortex. The prefrontal, the premotor and the primary motor cortices constitute the 

motor component of pain perception. The neurons of the primary somatosensory 

cortex innervate the secondary somatosensory cortex which contain neurons that 

code spatial, temporal and intensive aspects of noxious (and innoxious) stimuli. 

The primary and secondary cortices constitute the sensory component of pain 

perception. The secondary somatosensory cortex projects to the insular cortex 

which process information of the internal state of the body contributing to the 

autonomic component of the overall pain response. The cingulate cortex 

together with the frontal lobes, amygdala, hypothalamus and the brainstem is 

responsible for the conscious feeling/emotion constituting the 

affective/emotional component of the pain experience. 

 

1.1.4. Pain pathophysiology 

Pain can be acute or chronic. Acute pain is short lasting and usually disappears 

when treated while chronic pain is long lasting and does not respond well to 

treatment. It is believed that cerebral plasticity, a so-called central sensitization is 

the cause of many chronic pain syndromes. Central sensitization can be induced 

by frequent nociceptive inputs and it is defined as an increase in excitability of 

spinal neurons (Woolf, 1983). It manifests as an abnormal or heightened 

sensitivity and the generation of pain by low activation of Aβ mechanoreceptors 

(Kandel et al., 2000; Herrero et al., 2000). Three terms are commonly used for 

pain pathophysiology caused by central sensitization: allodynia, hyperalgesia and 
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neuropathic pain. Allodynia creates a painful sensation to non-painful stimuli but 

does not lead to pain in the absence of stimulus. Hyperalgesia is a condition 

where spontaneous pain occurs and noxious stimuli create an excessive 

response. Neuropathic pain is constant or persistent and a result of direct injury 

to the nerves and is often characterized by a burning or electric sensation. 

Lowered pain sensation (i.e. higher pain thresholds) to painful stimuli is termed 

hypoalgesia and analgesia. Hypoalgesia is a decreased sensitivity to painful 

stimuli and analgesia is the loss pain sensation both of which are caused by an 

interruption in the nervous system pathway between periphery and brain. 

 

1.2. Human experimental pain research 

Experimental pain is evoked in validated models mimicking aspects of acute pain 

(phasic pain) or chronic pain (tonic pain). These pain models are safe and 

include thermal, mechanical, chemical, electrical stimulation paradigms which 

produce reliable and meaningful data.  

1.2.1. Phasic and tonic pain 

Experimental pain is classified into phasic or tonic pain according to the duration 

of pain. Short-lasting phasic pain reflects the immediate impact of the onset of 

injury. Phasic pain is intrinsic pain-specific discomfort which triggers fear and 

anxiety (Wall and Melzack, 1999). In experimental settings, phasic pain 

stimulation can be applied to skin, muscle and viscera by electrical, tactile, and 

thermal stimulation. 

http://www.britannica.com/eb/article-9058009/pain
http://www.britannica.com/eb/article-9016178/brain
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Long-lasting tonic pain persists or increases for a variable time period until 

stimulation stops or the effects of the stimulation disappears. In experimental 

settings, tonic pain can be applied to skin, muscle and viscera by electrical, 

tactile, thermal and chemical stimulation. 

 

1.3 Electroencephalogram (EEG) and pain 

Since Hans Berger (1933) first recorded EEG from man; the technology and 

analysis of EEG has become very advanced and has been used in basic 

research as well as clinical settings. EEG is complex signals which change over 

time and have different properties depending on the place over the head where 

they are recorded. EEG allows non-invasive access to brain processes at an 

integrative level of the central nervous system with high degree of spatio-

temporal resolution by use of high-density recording and interpolation. EEG 

dynamically reflects the cerebral function with co-activation of the different 

regions of the brain and it is now regarded that only high-density EEG can 

provide sufficient temporal as well as spatial resolution of brain activation.  

These signals can be analyzed with various methods which can be divided into 

two categories: nonparametric and parametric methods. Two methods have been 

used in this thesis; (1) (nonparametric) frequency analysis (power spectra) and (2) 

(parametric) source analysis (inverse problem). 
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1.3.1. EEG frequency analysis and pain 

Frequency analysis is a classical way of describing the EEG signals. Fourier 

analysis and the common EEG frequency bands are used to obtain information 

from the frequency components of the EEG signals. The EEG frequency bands 

are typically comprised of 7 bands; delta (0.5-3.5Hz), theta (4.0-7.0 Hz), alpha1 

(7.5-9.5 Hz), alpha2 (10-12 Hz), beta1 (13-23 Hz), beta2 (24-34 Hz), and gamma 

(35-45 Hz). 3D topographic maps (plots) on a head model display the power 

distribution of the brain activity (as measured from the surface of the scalp).  

In response to tonic pain relatively consistent changes in EEG frequency bands 

have been found; (a) increase in low frequency delta power; (b) rare change in 

theta power; (c) decrease in alpha power; and (d) increase in beta power (for 

reviews see Chen, 2001; Bromm and Lorenz, 1998). 

 

1.3.2. Somatosensory Evoked Potentials (SEPs) and pain 

The ultimate goal of EEG potentials recorded at the scalp is to find the 

intracranial sources. The intracranial sources can be determined by solving the 

“inverse problem” from the distribution of evoked potentials at the scalp. Evoked 

potentials are the electrical signals generated by the nervous system in response 

to sensory stimuli. These time-locked electrical signals are analyzed according to 

the amplitude and peak latency from which the intracranial sources can be 

computed by using the model of the volume conductor (brain, cerebral spinal fluid, 

skull and scalp). 

The early painful SEP components (20ms -50 ms) are the somatotopic projection 

to the primary sensory cortex (Allison et al., 1989) and are elicited by fast 
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myelinated Aδ fibers. The middle components (50ms – 200ms) are diffuse 

distributed but they have been suggested to be compatible with Aδ myelinated 

fibers (Babiloni et al., 2001). The late components (200ms - 300ms) could partly 

be related to Aδ fiber and partly non-myelinated C-fiber activation (Chen, 2001) 

and are typically located around the cingulate cortex (Bromm and Lorenz, 1998).  

 

1.4. Aim of the Ph.D. 

Neuro-imaging has been used extensively to investigate the cerebral activation of 

human pain (for review see e.g. Chen, 2001; Apkarian et al., 2005). Two EEG 

analysis techniques were used to asses the cerebral processing of pain. Two 

basic studies (study 1 and study 3) and two applied studies (study 2 and study 4) 

were conducted employing two different experimental pain models (tonic and 

phasic pain) and psychophysical evaluation. Tonic pain was used as a pain 

model in all four studies; in studies 1 and 2 a tonic cuff-pressure pain model was 

used and in studies 3 and 4 intramuscular injection of glutamate was used. In 

studies 3 and 4 electrical phasic pain was applied in conjunction with the tonic 

pain model. The logical outline of the project is illustrated in Figure 1. The aims of 

the four studies are described below: 

 

Study 1: The aim of this study was to examine the effect of tonic pain stimulation 

on occipital alpha EEG activity during different levels of pain. It was investigated 

if high versus low alpha groups have different pain reactions and pain-EEG 

relationships. 
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Study 2: The aims were to study the gender differences in (1) cuff pressure pain 

and distress ratings, and (2) the evoked ongoing EEG activity and its 

topographical distribution.   

 

Study 3: This study aimed to identify (1) short-term cortical plasticity before; 

during and after glutamate evoked tonic pain or sham stimulation and (2) short-

term cortical plasticity evoked by different sites of the glutamate induced tonic 

muscle pain.  

 

Study 4: The aim of this study was to identify differences in dipole components 

(peak latency, magnitude, localization) CTTH patients and controls before, during 

and after glutamate evoked tonic pain in response to single and repeated phasic 

electrical stimuli. Further, differences in quantitative sensory parameters between 

patients and controls were assessed. 
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Figure 1: Outline of the Ph.D. project. 
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2. Experimental pain models 
Phasic and tonic pain models are applied in experimental settings with different 

purposes. Clinical pain is persistent and recurring which is modeled with a tonic 

pain paradigm whereas phasic pain is typically used to evoke spinal or cortical 

responses. In this thesis, two pain stimulation paradigms were used; tonic cuff-

pressure stimulation (studies 1 and 2) and glutamate evoked tonic muscle pain 

with simultaneous phasic intramuscular electrical stimuli (studies 3 and 4). 

 

2.1. Tonic cuff-pressure stimulation 

Mechanical pressure is an established method for estimation in normal and 

sensitized muscles. Mechanical pressure (pressure pain thresholds) is used to 

study and as diagnostic tool in musculoskeletal pain syndromes such as 

fibromyalgia, myofacial pain, temporomandibular disorder and tension type 

headache (for review see Treede et al., 2002). These musculoskeletal pain 

syndromes exhibit lower pressure pain thresholds in so-called tender and/or 

trigger points.    

Pneumatic cuffs are used in clinical settings for arterial pressure measurement 

and tourniquet application in surgery. Tourniquets (cuffs) are used in pain 

research to study and evaluate ischemia (Torebjork and Hallin, 1973). Cuff-

pressure directly activates mechanoreceptors of all tissues under the cuff; 

however, the pain is deeply located. When tonic cuff-pressure is applied to 

humans the pain increases with time (ischemic pain) (Wall and Melzack, 1999). 

Thus it appears that C-fiber afferents are involved in tonic pressure pain. 
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Previous EEG studies have consistently demonstrated systematic changes in 

specific frequency bands during experimental tonic pain; a decrease in alpha 

power (7.5 Hz – 12 Hz) and increase in beta power (13 Hz – 34 Hz) have been 

suggested to be pain specific (Chang et al., 2002a; Chang et al., 2002b; Chang 

et al., 2003; Chang et al., 2004; Chang et al., 2001). 

 

2.2. Glutamate evoked tonic muscle pain 

Artificial elevation of glutamate (NMDA receptor) concentration by injection of the 

excitatory amino acid glutamate induces mechanical allodynia (sensitization) and 

the duration of the muscle sensitization is considerably longer than the duration 

of the acute pain from the injection itself (Svensson et al., 2003). Injection of 

glutamate usually generates short-term muscle hyperalgesia to pressure 

stimulation (Svensson et al., 2003; Arendt-Nielsen et al., 2008; Cairns et al., 

2002; Cairns et al., 2003). Injection of glutamate in the rat masseter muscle 

activates peripheral NMDA (N-methyl-D-aspartate) and/or non-NMDA receptors 

(Cairns et al., 2003). NMDA receptors participate in the windup of dorsal horn 

neurons (Dougherty et al., 1992). Windup is believed to be one of the triggers of 

central sensitization (Woolf and Thompson, 1991; Woolf, 1996) and NMDA 

receptors are reported to play a role in the maintenance of central sensitization 

(Dickenson et al., 1997; Carlton, 2001). 

2.3. Phasic intramuscular electrical stimulation 

Intramuscular electrical stimulation (IMES) evokes sensory and motor fibers 

within the muscle and is used for functional purposes such as functional electrical 
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therapy (FES) and neuroprostheses. A limited number of studies have 

investigated IMES somatosensory evoked potentials. The disadvantage of IMES 

is that muscle twitches are evoked and that the stimulus activates both 

nociceptive and non-nociceptive afferents (Laursen et al., 1999). However, non-

specific intra-muscular electrical stimulation (IMES) has been used in 

experimental studies to investigate cortical plasticity, by use of somatosensory 

evoked potentials (SEPs), related to muscle pain (Niddam et al., 2005; Niddam et 

al., 2001; Niddam et al., 2007; Niddam et al., 2008; Svensson et al., 1997). SEPs 

from intra-muscular electrical stimulation do not elicit detectable early SEP 

components (< 80 ms) (Niddam et al., 2005) but generates larger mid-latency 

components (Shimojo et al., 2000). SEPs from repeated painful muscle 

stimulation, as compared to single stimulation, decrease in amplitude at 100 ms 

(N100) and 250 ms (P250) and the P450 peak disappears (Chen et al., 2000). 

Dipole source reconstruction techniques, based on high resolution SEP 

recordings, have been used to identify cortical areas involved in pain processing 

of electrically evoked muscle pain (Niddam et al., 2005). The areas activated 

include primary sensorimotor area, premotor area, secondary somatosensory 

area, insula and cingulate cortex (Niddam et al., 2005). Functional imaging 

studies (PET, fMRI) (Niddam et al., 2007; Niddam et al., 2008; Svensson et al., 

1997; Niddam et al., 2002) of experimentally evoked muscle pain have found 

additional activity in the thalamus, parietal cortex, lenticular nucleus, superior 

temporal gyrus, supplementory motor gyrus, precuneus, claustrum, caudate and 

putamen. 
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3. Methods 

3.1. Pain ratings 

The Verbal Rating Scale (VRS) was used in all 4 studies and was defined as: 0= 

no change (in pain perception), 1= barely intense, no pain, 2= intense, no pain, 

3= fairly intense, but no pain, 4= slight pain (pain-threshold), 5= mild pain, 6= 

moderate pain, 7= moderate-strong pain, 8= strong pain, 9= severe pain, 10= 

unbearable pain. 

 

3.2. EEG Data Acquisition 

The EEG was recorded from 128 surface electrodes including two EOG (Electro 

OculoGram – voltage difference between the cornea and retina) channels and 

two mastoid reference channels using a standard EEG-cap (Waveguard cap 

system, Cephalon A/S) employing the 10-5 montage system (Oostenveld and 

Praamstra, 2001). Bipolar EOG was recorded, horizontal EOG was measured 

with tin electrodes attached to the outer canthus of each eye, and vertical EOG 

was recorded from supra-orbital electrodes placed in line with the pupil of the 

right and left eye, so that the portion of EOG contamination of each scalp trace 

could be removed offline. Impedance was kept below 5 KΩ. EEG signals were 

sampled at 512 Hz for studies 1 and 2 and 2048Hz for studies 3 and 4. Sixteen 

bit resolution in EEG quantification was used. The EEG was recorded by use of 

the EEProbe Software (ANT-Software A/S, Netherlands).  
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3.2. Studies 1 and 2: tonic pressure stimulation 

3.2.1. Experimental Procedures  

A single tourniquet cuff and manometer (up to 600 mm/Hg) with hand inflator 

(Braun Scandinavia A/S Copenhagen, Denmark) was used to induce tonic cuff-

pressure pain (Polianskis et al., 2002b; Polianskis et al., 2002c; Polianskis et al., 

2002a; Polianskis et al., 2001) in the upper right arm. Before the experiment 

started, all three pressure levels corresponding to VRS2 (intense, but no pain), 

VRS4 (pain threshold) and VRS6 (moderate pain) were identified by averaging 5 

ascending trials separated by 1 min. The pressure level detection was 

implemented by pumping the hand inflator every 2 seconds until the subject 

indicated that the pain level was reached. 

The experiment consisted of a resting baseline EEG (2 min with eyes closed and 

2 min with eyes open) and three experimental conditions with pain levels 

corresponding to the Verbal Rating Scale (VRS) 2, 4, and 6 pain levels each 

maintained for 3 minutes. The experimental conditions were performed in the 

following order: baseline (2 min eyes closed), baseline (2 min eyes open), tonic 

cuff-pressure pain VRS2, VRS4 and VRS6 (performed in this order) with a 5 

minute rest period between the experimental conditions. The subjects were 

instructed to stop anytime during the experiment if it was too unpleasant. During 

each experimental condition, EEG (128 channels) was recorded while the 

subjects held their eyes closed. The subjects rated their pain verbally every 15 

seconds on the VRS scale over the 3 min stimulation period to measure 

subjective pain intensity changes over time. 
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3.2.3. Analysis of EEG Data 

The EEG was band pass (0.5 Hz – 100 Hz) and notch (50 Hz) filtered and 

divided into 2 second epochs. The epochs were subjected to automatic artifact 

rejection (above +80 and below -80 µV) followed by visual artifact rejection on the 

remaining epochs. The valid epochs were subjected to Fast Fourier Transform in 

order to produce the power density.  Bad electrodes were detected and 

interpolated in the frequency domain with the four neighboring electrodes located 

on the anteroposterior axis and the mediolateral axis from the bad electrode (bad 

electrodes located on the edge of the electro cap were interpolated with 3 

neighboring electrodes). The EEG powers were group averaged in baseline and 

each experimental condition in order to identify the activation area in each broad 

band.  

3.2.4. Focal Areas 

The focal areas consisting of the focal maximum and the 4 neighboring 

electrodes (total area at 9.9 cm² given the inter-electrode distance at 3.0 x 3.3 cm 

of the 10-5 system) were extracted from the groups (study 1: Hα and Lα; study 2: 

male and female). Bilateral electrodes were chosen for all frequency bands; 

except for the theta band where focal maximum was located central. The 

following focal maxima were chosen for analysis in study 1 (expressed by 

band(electrode)): alpha1(PO3), alpha1(PO4), alpha1(PO7), alpha1(PO8), 

alpha2(PO3), alpha2(PO4). In study 2 all EEG frequency bands were analyzed 

hence additional focal maxima were chosen: delta(AF7), delta(AF8), delta(Fp1), 
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delta(Fp2), theta(FCz), beta1(PO3), beta1(PO4), beta2(T7), beta2(T8), 

gamma(T7), gamma(T8). 

3.2.5. Correlation between EEG power and subjective ratings 

The average subjective rating for each subject was calculated over the 3 min 

period for VRS2, VRS4 and VRS6 to have one pain rating describing the 

experimental condition (12 pain ratings were recorded for each experimental 

condition and pain increased over time). The average subjective pain rating for 

experimental conditions VRS2, VRS4 and VRS6 for each subject was paired with 

the corresponding EEG power in the each focal area. 

3.2.6. Statistical Analysis  

Cuff-pressure levels and pain ratings were analyzed with a t-test to determine 

differences between the high alpha (Hα) vs. the low alpha (Lα) groups (study 1) 

and the male vs. female groups (study 2). Analyses to identify EEG differences 

and responses to tonic pain between the Hα and Lα were conducted with a Two 

Way RM ANOVA (factor A: intensity; factor B: group) on the EEG power change 

relative to baseline (subtracting the EEG recorded during baseline from that 

recorded during the VRS2, VRS4, and VRS6 tonic cuff-pressure conditions). 

Graphical representations of EEG changes are expressed in relative power (%) 

in respect to baseline. 

Analyses to identify EEG differences between the male vs. female were 

conducted with a Two Way RM ANOVA (factor A: intensity; factor B: gender). All 

statistical analysis on EEG was conducted with log-transformed values to 
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enhance the normality distribution in the EEG. The results were expressed in 

mean values ±SE. The SigmaStat 2.03 program was employed and p<0.05 was 

considered a significance. A post-hoc Tukey HSD test was employed to verify the 

significance and correction for multiple comparisons.  

Correlations between EEG power and the corresponding average subjective pain 

ratings were calculated with linear regression for the Hα, the Lα and with 

Pearson‟s correlation for the male and female groups separately in each focal 

area.  

 

3.3. Studies 3 and 4: intramuscular electrical stimulation and 
tonic muscle pain 

3.3.1. Experimental Procedures  

The subjects were asked for demographic data (weight, height, age, hand 

orientation) and were seated in a hospital bed. Before the experiment, the 

subjects were familiarized with the electrical stimulation and injection procedures.  

The reference point on trapezius was marked 2 cm lateral to the halfway point 

between the spinous process of the seventh cervical vertebra (C7) and the lateral 

edge of the acromion. The needle electrodes (Medtronic, disposable sensory 

needle electrode, 20mm x 0.35mm (28G), recording area 2.0 mm²) were placed 

with a 10 mm distance in a 5 mm depth in the muscle. The electrodes were 

placed 5 mm anterior and 5 mm posterior to the reference point.  

Electrical pain thresholds for the single stimulation (PTsingle, duration of 1ms) and 

repeated stimulation (PTrepeated, 5 pulses, 1 ms duration, repeated with 2Hz) 
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(Chen et al., 2000) were determined by method of limits. PTsingle and PTrepeated 

were measured 3 times before each session with 1 min interval, starting from 0 

mA and increasing slowly with 0.1 mA steps. The electrical stimuli intensities 

were constant in individual subjects in all experimental conditions (in study 3 

stimulation intensities were constant in one session). Measurement of PTsingle 

and PTrepeated was repeated approximately 20 minutes post-injection (post- 

PTsingle and post- PTrepeated).  

Constant current electrical stimulation (NoxiTest Biomedical A/S, Aalborg, 

Denmark) was controlled and programmed with LabVIEW (National Instruments). 

Electrical stimuli (60 single and 60 repeated stimuli) were given in randomized 

order with inter stimulus interval between 4 and 6 sec. Single stimuli were given 

at the PTsingle intensity and train stimuli were given at the PTrepeated intensity.  

 

3.3.2. Injection procedures 

The injection (0.2 ml of glutamate (L-monosodiumglutamate 1M, 1mmol – 187 

mg, 2 ml) or isotonic saline (isotonic saline 0.9 %, 2 ml - only for study 3)) was 

given with 1 ml syringe and a 27 G X 3⁄4 inch cannula. The injection site of 

trapezius was in the center between the two intramuscular stimulation electrodes 

and in the thenar (only for study 3) the injection site was in the muscle belly.  

The subjects rated the perceived tonic muscle pain intensity on the VRS scale 

every 30 seconds until the pain disappeared. When the pain rating fell below 4 on 

the VRS scale, another glutamate injection was given. For study 3 in the control 
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(sham pain) session, two isotonic saline injections were given, one 1 min prior to 

the SEP recording and one 5 min after SEP recording started.  

The experiment (each session in study 3) consisted of 3 experimental conditions, 

(1) baseline recordings (pre injection SEP recording), (2) tonic pain SEPs with 

simultaneous glutamate injection (or isotonic saline (study 3)), and (3) post-

baseline recordings (post injection SEP recording). The stimulation period was 

approximately 10 min for each experimental condition. Each experimental 

condition was followed by a 5-10 min break or until the pain disappeared. 

 

3.3.3. Analysis of EEG Data 

Epoching, artifact rejection, and averaging were performed by use of custom 

made Matlab/LabVIEW based software. Single sweeps were cut into epochs with 

a length of 700 ms, 100 ms before and 600 ms after the stimulus onset. The 

repeated sweeps were cut into 5 separate (repeat(1-5)) epochs of 600 ms, one 

epoch for each of the 5 stimuli, 100 ms before and 500 ms after the stimulus 

onset and they were analyzed separately. The single pulse SEP, 1st (repeat(1)) 

and the 5th (repeat(5)) stimuli of the repeated SEP were analyzed.  

The epochs for single, repeat(1) and repeat(5) were forward and reverse filtered 

with 4th order Butterworth band pass filter (0.5-100Hz) in Matlab 7.0. All epochs 

were transformed to a common average reference offline. Artifact rejection was 

done by visual inspection on each epoch and the valid epochs in each 

experimental condition for each subject were averaged. This average 

represented the SEP. Each SEP was further processed with the Matching Pursuit 
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algorithm (Mallat and Zhang, 1993; Gratkowski et al., 2006; Gratkowski et al., 

2008) which decomposes the signal into frequency components. These 

components can be enabled or disabled and thus the 50 Hz component and any 

other outer and/or inner disturbances can be eliminated and thereafter the SEP 

can be recreated. Bad electrodes were detected and interpolated with the four 

neighboring electrodes (bad electrodes located on the edge of electrocap was 

interpolated with 3 electrodes) located on the anteroposterior axis and the 

mediolateral axis from the bad electrode.  

Peak latencies around 100 ms (N100), 200 ms (P200), and 300 ms (P300) were 

extracted for each SEP from the compressed waveform (butterfly plot). The 

corresponding current dipole components were computed with the moving dipole 

model for the 3 peak latencies (N100, P200, P300). The dipole coordinates x, y, z 

are expressed in the Subjects Coordinate System as provided by the 

manufacturer (ANT-Software A/S, Netherlands); where the positive x-axis is 

directed toward the nasion, the positive y-axis is directed toward the left pre-

auricular point, and the positive z-axis is directed toward the vertical central 

parietal. The calculated dipole was superimposed on MRI slices of the MNI 

standard brain. Topographic maps and source analysis was performed with 

commercial available software ASA 3.0 (Advanced Source Analysis, ANT-

Software A/S, Netherlands) and dipole MRI maps created with BrainVoyager 

Brain Tutor 2.0 (© 2003-2007 Rainer Goebel, 

http://www.brainvoyager.com/BrainTutor.html). 
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3.3.4. Statistical Analysis  

A paired t-test was employed at 0 sec, 300 sec, and 600 sec after injection to test 

for pain adaptation or sensitization during tonic pain/sham pain (sham pain was 

only studied in study 3) (VRS score) and VRS score differences between the two 

groups in the sham pain (study 3) and glutamate conditions (study 3 and 4). Pre- 

and post injection pain thresholds were compared with a paired t-test. Pain 

thresholds (PTsingle and PTrepeated) differences between the two groups were 

tested with a Two Way RM ANOVA (factor A: injection substance, factor B (study 

3): muscle, factor B (study 4): patient/control). Differences in SEP and dipole 

components (peak latency, x, y, x, magnitude) were tested with a Two Way RM 

ANOVA (factor A: experimental condition, factor B (study 3): muscle, factor B 

(study 4): patient/control). Accordingly, „condition‟ x „group‟ interaction and „group‟ 

effect (difference between the two groups when all conditions were analyzed 

together) were analyzed. The SigmaStat 2.03 program was employed and 

p<0.05 was considered a significance. A post-hoc Tukey HSD test was employed 

to verify the significance and correction for multiple comparisons. The results 

were expressed in mean values ±SE. 

 

4. Results 

4.1. High vs. low alpha EEG in response to tonic pressure pain 
(study 1) 

4.1.1. Group separation 

Study 1 divided 40 subjects into high (Hα) and low (Lα) alpha groups based on the 

median split of total occipital alpha EEG activity at baseline (Figure 2). subjects 
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with total occipital alpha EEG activity above 600 µV² was in the Hα and subjects 

with total occipital alpha EEG activity below 600 µV² was in the Lα. The Hα 

consists of 14 females and 6 males; the Lα consists of 6 females and 13 males.   

 

 

Figure 2: The alpha (alpha1 + alpha2 EEG power at baseline) power in all subjects. The line 

illustrates the separation of subjects into high alpha (Hα, above the 600 µV² line) and low alpha (Lα, 

below the 600 µV² line) groups. 
 

4.1.2. Hα and Lα differences in EEG power 

The patterns of EEG topography (absolute power in μV²) in the alpha1 and 

alpha2 bands for Hα and Lα groups are illustrated in Figure 3. Alpha1 activity is 4 

folds (40 µV² versus 10 µV²) higher in the Hα (left side Figure 3). Maximal alpha2 

activity is 5 folds larger (100µV² versus 20µV²) in the Hα. Differences in alpha1 

EEG changes relative to baseline between the Hα and the Lα groups have been 

detected in alpha1(PO3) (F=10.933, P=0.002, post hoc=0.002), alpha1(PO4) 
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(F=11.978, P=0.001, post hoc=0.001), alpha1(PO7) (F=9.734, P=0.003, post 

hoc=0.004), and alpha1(PO8) (F=10.866, P=0.002, post hoc=0.002). Further, 

differences between the Hα and the Lα groups were identified in alpha1 EEG 

power changes relative to baseline in all experimental conditions; VRS2 

(alpha1(PO3): post hoc=0.032; alpha1(PO4): post hoc=0.034; alpha1(PO7): post 

hoc=0.041; alpha1(PO8): post hoc=0.038) VRS4 (alpha1(PO3): post hoc=0.007; 

alpha1(PO4): post hoc=0.003; alpha1(PO7): post hoc=0.009; alpha1(PO8): post 

hoc=0.004) and VRS6 (alpha1(PO3): post hoc=0.001; alpha1(PO4): post 

hoc≤0.001; alpha1(PO7): post hoc=0.002; alpha1(PO8): post hoc=0.002). 

 

 

 

 

 

 

 

 

 

 

 

4.1.3. Changes within Hα and Lα 

The Lα group desynchronizes from baseline to VRS2 and desynchronization 

decreases as pain increases, whereas the desynchronization for the Hα group 

VRS2B

Alpha1

(Hα -  Lα)

VRS4 VRS6

Difference map (Hα -  Lα)

Alpha2

(Hα -  Lα)

 
Figure 3: Difference map showing the clear differences between the Hα and the Lα groups in the alpha1 and 

alpha2 EEG bands. The difference map was created by subtracting the Lα from the Hα  group (absolute power 

maps for Lα and the Hα are illustrated in study 1). The differences between Hα and Lα subjects are illustrated in 

red (positive difference=Hα have higher power) and blue colors (negative difference=Lα have higher power).  B = 

baseline, VRS2 = non-painful pressure level, VRS4 = slightly painful pressure level, pain threshold, and VRS6 = 

moderately painful pressure level. 
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increases as pain increases (Figure 4). Additionally, the Hα group shows an 

increase in alpha2(PO3) EEG power changes relative to baseline from 

experimental conditions VRS2 to VRS6 (alpha2(PO3): F=3.634, P=0.031, post 

hoc=0.009) (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4:Significant differences between Hα (grey) and Lα (black) for alpha1 (electrode location in brackets). Changes in 

VRS2, VRS4 and VRS6 are expressed relative to baseline. Statistical significance is marked with: * = P<0.05, ** = P 

<0.001. 

 
 

 

 
Figure 5:The significant alpha2(PO3) EEG power increase 

from VRS2 to VRS4 (P=0.009) for the Hα. Changes in 

VRS2, VRS4 and VRS6 are expressed relative to baseline. 
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4.1.4. Pain-EEG relationships 

The Hα did not show any significant relationship between alpha1 EEG activity and 

average subjective pain ratings as indicated in Figure 4 (alpha1(PO3): 

pain=4.486 – 0.00308*alpha1(PO3), R=0.210, F=2.677, P=0.107; alpha1(PO4): 

pain=4.580 – 0.00364*alpha1(PO4), R=0.234, F=3.350, P=0.072; alpha1(PO7): 

pain=4.476 – 0.00323*alpha1(PO7),R=0.217, F=2.285, P=0.096; alpha1(PO8): 

pain=4.545 – 0.00349*alpha1(PO8), R=0.242, F=3.601, P=0.063). The Lα 

showed a significant positive relationship between alpha2(PO3) EEG activity and 

average subjective pain ratings (pain=3.161+0.00919 *alpha2(PO3), R=0.349, 

F=7.628, P=0.008) and no significant relationship between alpha2(PO4) and 

average subjective pain ratings (pain=3.473+0.0054*alpha2(PO4), R=0.243, 

F=3.454, P=0.068) (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6:The significant (P=0.008) positive correlation between alpha2(PO3) EEG activity and average 

subjective pain ratings for the low alpha group (Lα) is illustrated with the solid black line. 
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4.1.5. Degrees of unpleasantness and arousal 

The Hα and Lα groups estimated their degrees of unpleasantness and negative 

arousal (Chang et al., 2002a) associated with tonic cuff-pressure pain after each 

experimental condition. The Hα group increased in the degree of unpleasantness 

between conditions VRS2 vs. VRS6 (-1.48±0.26 vs. -2.96±0.46, P<0.001) and 

VRS4 vs. VRS6 (-1.90±0.31 vs. -2.96±0.46, P=0.003). Further, the Hα group 

increased in the degree of negative arousal between conditions VRS2 vs. VRS6 

(0.28±0.44 vs. 2.07±0.48, P<0.05). The Lα increased in the degree of 

unpleasantness between conditions VRS2 vs. VRS6 (-1±0.43 vs. -2.51±0.34, 

P<0.05) and in the degree of negative arousal between conditions VRS2 vs. 

VRS6 (0.85±0.44 vs. 1.75±0.48, P=0.028) (Figure 7). 
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Figure 7: Degrees of negative arousal and unpleasantness associated with tonic cuff-pressure pain. In VRS2 the individual 

degrees of arousal and unpleasantness are marked with ♦, inVRS4 the individual degrees of arousal and unpleasantness are 

marked with ■, and in VRS6 the individual degrees of arousal and unpleasantness are marked with ▲. 
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4.2. Gender differences in EEG responses to tonic pressure pain 
(study 2) 

4.2.1. Gender effect in total EEG power 

The differences between male and female subjects in EEG topography 

(difference map, absolute power in μV²) for all bands in all conditions are 

illustrated in Figure 8. Gender differences were found in the delta band (total 

activity across all experimental conditions) (Fp2: F=15.189, P=0.034, post 

hoc<0.001; Fp1: F=4.850, P=0.034, post hoc=0.034) with the males exhibiting 

higher activity than the females. The alpha2 band showed a significant difference 

with the females having the highest power (PO3: F=5.037, P=0.031, post 

hoc=0.031; PO4: F=6.565, P=0.015, post hoc=0.015). In the beta1 power the 

females had higher activity than the males (PO3: F=11.420, P=0.002, post 

hoc=0.002; PO4: F=8.392; P=0.006, post hoc=0.006).   

 

 

 

 

 

 

 

 

 

 

Delta Theta Alpha1 Alpha2 Beta1 Beta2 Gamma
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Figure 8: Difference map female subjects subtracted male subjects (absolute power maps for the female and male 

groups are presented in study 2). The differences between male and female subjects are illustrated in red (positive 

difference=males have higher power) and blue colors (negative difference=females have higher power). B = baseline, 

VRS2 = non-painful pressure level, VRS4 = slightly painful pressure level, pain threshold, and VRS6 = moderately 

painful pressure level. 
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4.2.2. Gender differences in EEG power during pain processing 

Alpha2(PO3) shows gender differences during pain in baseline (B), VRS4, and 

VRS6 (gender x condition: F=5.214, P=0.002, post hoc: B=0.007, VRS4=0.046, 

VRS6=0.041), alpha2(PO4) showed gender differences in all pain conditions 

(gender x condition: F=3.426, P=0.020, post hoc: B=0.005, VRS2=0.037, 

VRS4=0.018, VRS6=0.018), both alpha2(PO3) and alpha2(PO4) powers the 

female group exhibiting higher powers than the male group. Beta2(T7) showed 

gender differences within the VRS4 condition with the female group having 

higher power in activity than the male group (gender x condition: F=3.189, 

P=0.027, post hoc=0.018). 

 

4.2.3. Gender differences in pain-EEG relationship 

The males show a significant negative correlation between theta EEG activity 

and subjective pain ratings (Pearson‟s correlation coefficient= -0.261, P=0.0495, 

Figure 9). The remaining EEG bands for the males did not show any relationship 

between EEG activity and subjective pain ratings. The female group did not show 

any relationship between EEG activity and subjective pain ratings. 
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Figure 9: The theta(FCz) EEG for the males (pooled from all 3 experimental conditions) is negatively 

correlated with the verbal pain ratings pooled from all 3 experimental conditions (image taken from 

study 2). 

 

4.2.3. Degrees of unpleasantness and arousal 

The male and female groups estimated their degrees of unpleasantness and 

negative arousal (Chang et al., 2002a) associated with tonic cuff-pressure pain 

after each experimental condition and were significantly different in the degree of 

overall (difference between the two groups when all conditions were analyzed 

together) arousal (male vs. female: 0.86±0.27 vs. 1.56±0.27, P=0.043). Further, 

the male and female groups had a significantly higher degree of unpleasantness 

between conditions VRS2 vs. VRS6 (males:-0.84±0.33 vs. -2.75±0.30, P<0.001; 

females: -1.52±0.37 vs. -2.66±0.47, P≤0.05, see Figure 10). Pooled data from 
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both groups showed significant differences in the degree of unpleasantness 

between experimental conditions VRS2 vs. VRS6 (-1.18±0.25 vs. -2.71±0.27, 

P<0.05) and VRS4 vs. VRS6 (-1.88±0.21 vs. -2.71±0.27, P<0.05) and in the 

degree of arousal between experimental conditions VRS2 vs. VRS6 (0.55±0.30 

vs. 1.88±0.33, P<0.05). 
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Figure 10: Degrees of negative arousal and unpleasantness associated with tonic cuff-pressure pain. In VRS2 the individual degrees of 

arousal and unpleasantness are marked with ♦, inVRS4 the individual degrees of arousal and unpleasantness are marked with ■, and in 

VRS6 the individual degrees of arousal and unpleasantness are marked with ▲. 
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4.3. Short-term cortical plasticity to shoulder muscle pain (study 

3) 

All subjects completed the experiment; however, 2 subjects were excluded from 

analysis because of large EEG artifacts, hence the analysis was based on 18 

subjects. 

 

4.3.1. Pre and post injection pain thresholds 

The thenar injection group did not show any significant differences in pre and 

post glutamate injection trapezius electrical pain thresholds (PTsingle: 6.8±4.4 mA 

vs. 11.3±7.6 mA, t = -1.399, P = 0.195; PTrepeated: 4.4±2.8 mA vs. 10.0±7.5, t = -

1.203, P = 0.260). No differences pre and post isotonic saline injection thresholds 

were found (PTsingle: 5.1±2.6 mA vs. 6.8±3.2, t = -2.231, P = 0.053; PTrepeated: 

4.4±2.2 mA vs. 6.1±3.2 mA, t = -1.705, P = 0.122).  

The trapezius injection group showed a significant difference between pre and 

post glutamate injection trapezius PTsingle (11.0±7.2 mA vs. 15.9±7.9 mA, t = -

2.535, P = 0.032) and PTrepeated (4.3±2.4 mA vs. 8.1±3.3 mA, t = -3.539, P = 

0.006) (Fig 1). No differences in trapezius electrical pain thresholds pre and post 

isotonic saline injection were found (PTsingle: 11.7±7.6 mA vs. 14.7±7.9 mA, t = -

1.926, P = 0.086, PTrepeated: 4.8±2.4 mA vs. 7.9±4.2 mA, t = -1.673, P = 0.129).  

 

4.3.2. Peak latency 

The peak latency at N100 to single pulse stimulation showed an interaction 

between injection site and experimental condition (F=3.048, P=0.015), where the 
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SEPs during heterotopic tonic pain had a significantly longer N100 peak latency 

than SEPs during homotopic tonic pain (120.4±7.8 vs. 96.2±5.0, post hoc 

HSD=0.034, see Figure 11). Further, the peak latency for repeat(5) at P200 

showed a significant difference between homotopic tonic pain and heterotopic 

tonic pain where homotopic pain had a significantly longer peak latency than 

heterotopic pain (207.4±7.3 vs. 181.4±6.7, post hoc HSD=0.020). 

 

 

Figure 11: The compressed waveform for single pulse stimulation in the tonic pain condition 

(glutamate injection) for the heterotopic injection group (left) and the homotopic injection group 

(right) with the extracted peaks marked and the corresponding topography (image taken from study 

3). The latency for the thenar injection group at N100 is longer than latency for the N100 component 

for the trapezius injection group. P<0.05 is denoted with * (image taken from study 3). 

 

4.3.3. Dipole localization 

The y coordinate for repeat(1) stimulation showed for the P200 a significant 

interaction between injection site and experimental condition (F=3.274, P=0.010), 
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where the y coordinate was different during homotopic tonic pain compared to 

heterotopic tonic pain (homotopic: y = 9.17 mm vs. heterotopic: y = -14.59; post 

hoc HSD=0.024) and during homotopic sham pain and heterotopic sham pain 

(homotopic: y= -12.56 vs. heterotopic=12.10; post hoc HSD=0.024). The y 

coordinate for repeat(1) at P300 showed a significant shift between baseline and 

heterotopic tonic pain (baseline: y=9.34 mm vs. heterotopic tonic pain: y=-22.26, 

post hoc HSD=0.041) (Figure 12). The z coordinate for repeat(1) at P300 showed 

a significant shift between homotopic tonic pain and post baseline (homotopic 

tonic pain: z=-9.39 mm vs. post baseline: z=11.74 mm, post hoc HSD=0.037) 

(Figure 13).  

 

Figure 12: Changes in dipole localization (y-coordinate) from baseline to heterotopic tonic pain at 

P300 for repeat(1). At baseline the dipole was located in the cingulate gyrus and during heterotopic 

tonic pain the dipole was located in the superior frontal gyrus (image taken from study 3). 
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Figure 13: Changes in dipole localization (z-coordinate) from homotopic tonic pain to post baseline at 

P300 for repeat(1). During homotopic tonic pain the dipole was located in the superior temporal 

gyrus and at post baseline the dipole was located in the cingulate gyrus (image taken from study 3). 

 

4.3.4. Dipole magnitude 

There was a significant interaction (F=2.347, P=0.049) between muscle and 

experimental condition in current dipole magnitude for the train(5) stimulation at 

P300 but it was not confirmed by the post hoc test (post hoc>0.05).  

 

4.4. Abnormal pain processing in tension type headache 
patients (study 4) 

All participants completed the experiment, but three healthy controls were 

excluded because of large artefacts in the EEG data. The patients had been 

suffering from CTTH for a minimum of 1 year. Mean duration was 10.4 years 

(range 1- 25 years). 
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4.4.1. Electrical pain thresholds 

There was no difference in PTsingle (3.1 mA vs. 3.8 mA, p = 0.4) or in PTrepeat (1.2 

mA vs. 2.1 mA, p = 0.3) between patients and controls. 

 

4.4.2. Peak latency 

There was no significant difference in peak latencies between patients and 

controls or between the baseline, tonic muscle pain and post- tonic muscle pain 

conditions. 

4.4.3. Dipole localization 

The dipole localization in patients at P200 for the 5th train stimulus was different 

(F = 3.83, p = 0.03, Post Hoc: y-coordinate, p = 0.03) from the localization in 

controls (patients: y = 0.67 mm; controls: y = -19.79 mm); but only at baseline 

recordings (Figure 14). During induced tonic muscle pain, no differences in the 

localizations of the dipoles between patients and controls were found (p>0.05). 

Likewise, no difference in dipole localization (x, y, z) at N100, P200 or P300 

between baseline and induced tonic muscle pain were found either in patients or 

in controls (p>0.05).  
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Figure 14: Baseline dipole localizations at P200 5th train. The marked lines intersect in the dipole. 

Note: because the localization of the dipole for each group (CTTH and controls) is a calculated mean 

it is not constrained to a location within a gray-matter compartment (image taken from study 4). 

 

 

4.4.4. Dipole magnitude 

In controls, a reduction in magnitude between the conditions was found at the 

P200 dipole in response to both the 1st (F = 3.3, p = 0.04) and the 5th train stimuli 

(F = 3.3, p = 0.04) (Figure 15). Compared with baseline recordings the magnitude 

was lower during the tonic muscle pain condition (1st: p = 0.001; 5th: p = 0.04) 

and the post-tonic muscle pain condition (1st: p = 0.002; 5th: p = 0.04). This was 

in contrast to patients, where none of the post-hoc analyses showed significant 

differences in magnitude between the three conditions. At baseline, patients had 

a lower magnitude than controls at P200 according to the 1st train stimuli (F = 3.3, 

p = 0.04, Post Hoc: CTTH vs. controls = 0.01). In the tonic muscle pain and the 
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post-tonic muscle pain conditions there was no difference in magnitude of the 

dipoles between patients and controls.  

 

Figure 15: Magnitude of the dipoles (mean values ± SE ) in controls and patients at the three 

experimental conditions in response to single, 1st train and 5th train stimuli (image taken from study 

4). * indicates significant difference at the 0.05 level.
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5. Discussion 

5.1. Pain-EEG relationships 

Spontaneous EEG can reflect some aspects of pain processing since cerebral 

electrical activity can be changed when sensory information is processed in the 

brain. EEG frequency analysis may not allow comprehensive physiological 

interpretations, but each of the seven typical frequency bands (delta, theta, 

alpha1, alpha2, beta1, beta2, and gamma) can be related to functional aspects of 

pain processing. 

 

5.1.1. Pain characteristics in low frequency EEG: delta and theta 

EEG with a prefrontal focal maximum can be related to the novelty of attention 

and noxious stress on the eyes blinking and eyeball movement (Chang et al., 

2001). Delta activity is usually also considered to be an expression of cortical 

inhibition (Ferracuti et al., 1994; Low, 2005). Ferracutti et al. (Ferracuti et al., 

1994) suggested that their finding of increase in delta activity during cold pressor 

test may represent an attempt to inhibit sensorial perception of the nociceptive 

input. Increases in delta EEG power during cold pressor test have also been by 

Chang et al. (2002b) and Chen et al. (1989). Huber et al. (2006) also found 

increases in delta EEG power during tonic heat pain. We found that the males 

had higher delta EEG power than the females (study 2), however increasing delta 

EEG activity was not identified for the males or females. The higher delta EEG 

power for the males could imply activation of inhibitory processes which may 

reflect that men are less willing to report pain than women (Robinson et al., 2001).  
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Theta EEG activity responds selectively to the encoding of new information into 

episodic memory and reflects unspecific factors such as e.g. attentional demands, 

task difficulty and cognitive load (Klimesch, 1999). Theta activity in response to 

pain has been related to motivational regulation of the frontal cortex to produce 

habituation effects (Chang et al., 2002b). Dowman et al. (2008) found a decrease 

in the theta EEG amplitude during pain anticipatory cold pressor test when 

compared to arithmetic control condition which they suggested to be related to 

increases in working memory load. During tonic pain, decreases in theta EEG 

power have been documented in response to heat (Huber et al., 2006) and cold 

pressor test (Chang et al., 2002b; Chen et al., 1989); however there are 

inconsistent findings in the literature. In study 2 we found a negative relationship 

between theta EEG power and pain ratings for the males which may be related to 

encoding of new information in episodic memory (Klimesch, 1999) and 

habituation effects (Chang et al., 2002b). 

 

5.1.2. Pain characteristics in middle frequency EEG: alpha1 and 

alpha2 

Alpha is the dominant frequency in the human EEG. Alpha (alpha1 and alpha2) 

EEG rhythms are modulated by wakefulness or arousal (Cantero et al., 2002; 

Fumoto et al., 2004; Lindsey, 1960), speed of information processing (Surwillo, 

1963a; Surwillo, 1963b), perception (Basar et al., 2000), motor functions 

(Pfurtscheller and Andrew, 1999), and pain (Chang et al., 2002a). Further, the 
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lower alpha band (alpha1) has been associated with attention processes where a 

decrease in alpha1 EEG activity reflects an increase in attention (Klimesch, 

1999). The upper alpha band (alpha2) has been associated with retrieval 

processes in semantic memory (Klimesch, 1996). Alpha block has been reported 

to one of the main effects of tonic pain. Alpha block has been reported in 

response to cold pressor test (Chang et al., 2002b; Ferracuti et al., 1994; Chen et 

al., 1989; Dowman et al., 2008; Chen and Rappelsberger, 1994), injection of 

capsaicin (Chang et al., 2001), injection of hypertonic saline (Chang et al., 2003) 

and tonic heat pain (Huber et al., 2006). Huber et al. (2006) hypothesized that 

directing attention towards or away from pain affects the alpha EEG activity 

generated by the visual cortices. Subjects focusing on pain will exhibit an 

increase in posterior alpha and subjects attempting to cope with pain will exhibit a 

decrease in posterior alpha. This is in accord with our finding of a decrease in 

alpha1 EEG power for the female group (study 2) and the alpha1 

desynchronization for the Hα (study 1) which may have a greater repertoire of 

pain-related coping strategies that include active behavioral and cognitive coping, 

avoidance, emotion-focused coping (see review Unruh, 1996). The increase of 

alpha2 EEG power for the male group (study 2) and the positive relationship 

between alpha2 EEG power and pain ratings for the Lα (study 1) may indicate 

increased information transfer and/or more attention towards painful stimulation. 

This attention may be selective attentional bias (vigilance) towards painful stimuli 

which mediates a negative reaction to pain and reduces their ability to cope with 

pain (Keogh et al., 2001b; Keogh et al., 2001a). 
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5.1.3. Pain characteristics in high frequency EEG: beta1, beta2 and 

gamma 

Beta (beta1 and beta2) is a higher frequency activity and is characterized by 

cognitive and emotional processes (Ray and Cole, 1985), heightened vigilance in 

pain and discomfort (Chen et al., 1989) and scanning mechanisms that govern 

both perceptual and cognitive functions (Giannitrapani, 1971).  

Increases in beta EEG activity have been related to alterations in sensory 

processing (Lalo et al., 2007). Pain broadly interferes with sensory, motor and 

cognitive processes and high beta activity may represent a physiological alerting 

function of pain (Ploner et al., 2004; Ploner et al., 2006). The increase of beta 

EEG power was also observed by Le Pera et al. (2000); the authors suggested 

that it was related to the emotional/attentional component of human pain 

responsiveness. Our results in study 2 are in accord with the results of Le Pera et 

al. and may indicate that the female groups‟ physiological alerting function is 

highly sensitive and activates coping responses to painful stimuli.  

Gamma oscillations are particularly prominent during high vigilance. Gamma 

activity has band activity has been suggested to be task- and stimulus-related 

and to be involved in perceptual binding of multiple inputs (Engel and Singer, 

2001). Gamma activity is also related to short-term working memory (Tallon-

Baudry et al., 1998). It has been suggested that there is a relationship between 

alpha and gamma EEG activity. This relationship predicts a tonic experimental 

pain stimulus will produce a decrease in alpha and an increase in gamma EEG 
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amplitudes (Pfurtscheller, 1992; Edwards et al., 2005). Detectable changes in the 

gamma band were not found between the groups in studies 1 and 2. 

 

5.2. Short-term cortical plastic changes measured by EEG 
source analysis 

Cortical plasticity is a manifestation in many chronic pain syndromes (Flor, 2002a; 

Flor, 2002b; Knost et al., 1999) and has been studied by somatosensory evoked 

potentials (SEPs) (e.g. Shimojo et al., 2000; Wang et al., 2006; Waberski et al., 

2007; Waberski et al., 2008; Hari and Forss, 1999; Murakami et al., 2008). Non-

specific intra-muscular electrical stimulation (IMES) has been used in 

experimental studies to investigate cortical plasticity related to muscle pain 

(Niddam et al., 2005; Niddam et al., 2001; Niddam et al., 2007; Niddam et al., 

2008; Svensson et al., 1997). Similar SEP topographies and waveforms are 

found for sensory inputs from skin and muscle and seem to be processed in 

nearly the same cerebral areas (Shimojo et al., 2000), although differences exist. 

Muscle SEPs does not contain detectable early SEP components (Niddam et al., 

2005; Niddam et al., 2001), but has the first peak after 80-90 ms (Niddam et al., 

2005). The middle components (50ms – 200ms) are diffuse distributed but they 

have been suggested to be compatible with A-delta myelineted fibers (Babiloni et 

al., 2001). The late components (200ms - 300ms) could partly be related to A-

delta fiber activation (Chen, 2001). Further, SEPs from repeated painful muscle 

stimulation, as compared to single stimulation, decrease in amplitude at 100 ms 

(N100) and 250 ms (P250) and the P450 peak disappears (Chen et al., 2000).   
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5.2.1. Peak latency changes indicates changes in pain perception 

It is generally agreed that the peak latency decreases as the stimulus intensity 

increases and that the peak latency increases as pain intensity decreases (Kakigi 

and Watanabe, 1996). Further, tonic muscle pain has shown to interfere with 

painful cutaneous somatosensory evoked potentials; both in latency and in 

amplitude (Valeriani et al., 2005). Findings of decreased latencies have been 

shown by Valeriani et al. (2008) who found that moderately painful IMES has a 

shorter latency at N120 than slightly painful and non-painful IMES. Decreased 

latencies have also been shown by Beitel and Dubner (1976) after application of 

noxious heat stimuli to a monkey‟s face and Shimoto et al. (2000) for reduction in 

P250 latency during painful intramuscular stimulation. In contrast, Babiloni et al. 

(2001) found longer latencies following painful galvanic stimulation as compared 

to non-painful galvanic stimulation. We found that heterotopic tonic shoulder 

muscle pain increased the latency of the N100 SEP (+24 ms, 20%) and that 

homotopic tonic shoulder muscle pain increased the latency of the P200 (+26 ms, 

+12.5%) (study 3). The prolonged peak latency for heterotopic tonic pain at N100 

and for homotopic tonic pain at P200 suggest that both heterotopic and 

homotopic tonic induce pain relief. Further, this indicates that homotopic and 

heterotopic tonic painful counter stimulation modulate acute phasic pain 

differently. No changes in latency was found for the CTTH and the control group 

(study 4), however, these two groups did not get heterotopic but only homotopic 

tonic shoulder muscle pain and did not undergo a control session (sham pain); 

thus changes in latency could not be obtained. 
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5.2.2. Pain and cortical plasticity 

Chronic pain patients often show lowered pain tolerance and thresholds related 

to the degree of chronicity. Cortical plastic changes may be involved in these 

alterations in sensitivity as well as peripheral and thalamic mechanisms (Flor, 

2002a). It has been shown that chronic pain patients exhibit an expansion of the 

cortical representation zone related to nociceptive input and that this pain-related 

cortical plastic change develops over time (Flor, 2002a). However, short-term 

cortical plastic changes can also be detected in healthy volunteers after repeated 

phasic nociceptive inputs (e.g. Niddam et al., 2005; Babiloni et al., 2001; Niddam 

et al., 2001; Shimojo et al., 2000; Wang et al., 2006; Waberski et al., 2007; 

Waberski et al., 2008; Valeriani et al., 2005).  We found that homotopic and 

heterotopic tonic pain modulated the y-coordinate of the P200 dipole differently 

(study 3). The P200 dipole component has been suggested to be an inhibitory 

process for irrelevant somatosensory information and involuntary motor 

responses (Babiloni et al., 2001). Changes in P300 dipole localization specific for 

homotopic and heterotopic tonic pain were also found. The P300 dipole is 

typically located around the cingulate gyrus (Bromm and Lorenz, 1998). 

The P300 dipole localization (z-coordinate) changed from homotopic tonic pain 

(superior temporal gyrus) to post baseline (cingulate gyrus) suggesting that 

homotopic tonic muscle pain counter stimulation can induce general long-lasting 

(during and after counter stimulation) short-term cortical plastic changes to 

painful intramuscular electrical stimulation which also was confirmed by the 

hypoalgesia present 20 minutes after tonic pain had disappeared. The P300 

dipole localization (y-coordinate) changed from baseline (cingulate gyrus) to 
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heterotopic tonic pain (superior frontal gyrus) suggesting that ipsilateral 

heterotopic tonic muscle pain counter stimulation can induce local (only during 

counter stimulation) short-term cortical plastic changes to painful intramuscular 

electrical stimulation. Changes in dipole localization to nociceptive counter 

stimulation have not been reported so far. In fact, dipole localizations have been 

found to be identical with and without heterotopic counter stimulation (Naka et al., 

1998; Dowman, 2002). 

5.2.3. Dipole magnitude as measurement of deficient descending 
inhibition 

Stimulus rate has been identified as a major factor influencing the source 

strengths i.e. dipole magnitude (e.g. Mauguiere et al., 1997); frequent and regular 

stimulus results in suppressed the middle to late SEP responses (Allison et al., 

1992; Forss et al., 1995). Long (ISI > 3 sec) and/or random stimulus rate result in 

optimal late SEP responses because it allows a full recovery cycle for e.g. the SII 

and the posterior cingulate cortex (PPC) (Forss et al., 1994). With random 

stimulus rate and ISI ≥ 4 sec; the stimulus rate should not have significant 

influence on the dipole magnitude. Further, no differences in dipole magnitude 

between homotopic vs. heterotopic tonic muscle pain were observed (study 3). 

This is in accordance with Niddam et al. (2001) who showed that dipole 

magnitudes most likely reflect the stimulus intensity rather than the modality of 

pain.  

The observation of a reduction in magnitude of the dipoles from baseline to the 

tonic muscle pain and post-tonic muscle pain condition in controls but not in 
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patients (study 4) is the first report of abnormal supraspinal response to muscle 

pain in patients with CTTH. Moreover, it is the first evidence that the brain 

processing in patients with CTTH are different on a functional level from healthy 

controls. The reduction in magnitude of the dipoles between the conditions in 

controls but not in patients may be explained by deficient descending inhibition of 

the nociceptive input in patients. Deficient descending inhibition is also expected 

to play an important role in other chronic pain conditions and our finding is most 

likely not specific to CTTH.  

5.4. EEG frequency analysis vs. source localization 

Frequency analysis or source localization estimates alone does not tell the whole 

story about the brain functions involved in pain processing. Studies of 

spontaneous EEG typically utilize FFT power maps which are of considerable 

clinical interest for diagnosis of brain disease. Power maps are influenced by the 

overall levels of neural activity and may give a partly incorrect picture of brain 

function. Thus, estimates of the intracerebral sources may provide additional 

information about pain processing, however, this technique relies on the “inverse 

problem” which does not have a unique solution. The cerebrum generates 

rhythmic activity which often is not phase-locked to stimulus timing. This rhythmic 

activity is averaged out or eliminated when SEP data is averaged across trials 

(Laaksonen et al., 2008) although it may provide information about the neural 

activity not contained in the evoked responses (Salmelin et al., 2000). Hence, a 

combination of results from both methods may give us a more complete 

description. 
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EEG frequency analysis in response to tonic pain have reported relatively 

consistent changes; (a) increase in delta power; (b) rare changes in theta power; 

(c) decrease in alpha power; and (d) increase in beta power (for reviews see 

Chen, 2001; Bromm and Lorenz, 1998). 

During tonic pain, the P200 dipole y-coordinate was different for the homotopic 

injection group as compared to the heterotopic injection group. The P200 dipole 

has been suggested to be involved in inhibition (Babiloni et al., 2001). 

Heterotopic (Martikainen et al., 2004) and homotopic (Pud et al., 2005; 2006; 

Yarnitsky et al., 1997) counter stimulation have been indicated to have pain 

relieving effects. The mechanism of counter stimulation is generally explained by 

the gate control theory of pain inhibition (Melzack and Wall, 1965) and/or DNIC 

(Le Bars et al., 1979). Delta EEG activity originating from the frontal lobes is 

usually also considered to be an expression of cortical inhibition (Ferracuti et al., 

1994; Low, 2005) and may represent an attempt to inhibit sensorial perception of 

the nociceptive input (Ferracuti et al., 1994). Hence, the change in the P200 

dipole localization may also be related to alterations in delta EEG power. 

 

Alpha EEG rhythms are assumed to arise in the thalamus and from here 

transmitted via thalamocortical tracts to the cortex (Schmidt, 1985). The alpha 

rhythms can be modified by inputs to the thalamus which synchronizes or 

desynchronizes the rhythmic alpha activity (Schmidt, 1985). It is generally agreed 

that the peak latency decreases as the stimulus intensity increases (Arendt-

Nielsen, 1994). When stimulus intensity increases the subject becomes more 
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attentive towards the painful stimuli. Alerting a relaxed subject results in a 

desynchronization of the EEG where alpha activity decreases and beta activity 

increases. Further, alpha EEG activity has been associated with attention 

(Klimesch, 1999) and beta EEG activity has been related to alterations in sensory 

processing (Lalo et al., 2007). Changes in peak latency may also be related to 

alpha EEG desynchronization. 

 

5.4.1. Source localization by FFT dipole approximation 

Although sources are typically found close to the focal maxima or minima of the 

EEG power maps (Salmelin and Hamalainen, 1995), the relationship between 

cortical sources and EEG power spectra is difficult to identify. Power maps are 

influenced by the overall levels of neural activity and noise and may be slightly 

distorted in view of brain function and source analysis is based on assumptions 

and the solution of the inverse problem which does not have a unique solution. 

There are strengths and weaknesses in both approaches and they each provide 

different aspects of brain processing. Combining both methods and calculating 

the intracerebral dipole sources from the EEG FFT power maps (FFT dipole 

approximation method) is a technique which has been developing in the past two 

decades (e.g. Salmelin and Hamalainen, 1995; Lehmann and Michel, 1989; 

Lehmann and Michel, 1990; Michel et al., 1993, Zheng and Wan, 2005). The FFT 

approximation method is based on a map-oriented interpretation of the FFT 

coefficients and uses an optimization strategy (Lehmann and Michel, 1989). The 

Fast Fourier Transform of multichannel EEG data results in a sine and a cosine 
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coefficient for each electrode and each frequency point. These points are plotted 

in a sine-cosine diagram (NYQUIST) from where the phase information can be 

used to assign polarity to the amplitudes. The points plotted in the sine-cosine 

diagram typically form an ellipsoid-like pattern. A straight line is optimally 

approximated to these points in terms of phase angles. This is done by rotating 

the straight line around the mean of the sine-cosine points and calculating the 

orthogonal distances between the points and the line. These distances can be 

seen as inter-electrode voltages and be used to construct a potential distribution 

map. This potential map distribution is used for three-dimensional source 

localization by use of field theory (Kavanagh et al., 1978). 

Dipole source analysis using the FFT approximation method has shown that the 

cortical generator of the human delta rhythm is located in the delta/theta band 

dipole is located anterior and deeper than the corresponding alpha band dipole 

(Michel et al., 1993). Further, the dipole localization for the delta/theta band was 

found to be significantly different from that of the alpha band, thus the authors 

concluded that different neural generator populations are involved in the 

generation of these different frequency components. However, the exact 

localizations of these dipoles were not specified. Further, localization of the alpha 

(alpha1 and alpha2) rhythm has been shown to be in the rolandic region and 

localization of the beta (beta1) rhythm has shown to be in the occipital region 

(Salmelin and Hamalainen, 1995). The FFT approximation method is an 

alternative to traditional time domain source analysis, however, it requires more 

processing time; it is also dependent on assumptions of the forward problem and 
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it is sensitive to band-pass filtering around the spectral maxima and FFT 

transformation lengths. 

5.7. Methodological considerations 

EEG has high temporal resolution and can provide information on a millisecond-

by-millisecond basis and is suitable to study brain activity to brief phasic painful 

stimulation and to study the changes after painful conditions e.g. experimental 

tonic pain. 

This thesis employed two different EEG analysis techniques: frequency analysis 

and source analysis.  

 

5.1.1. Frequency analysis 

EEG patterns are distinct for each individual which shows marked interindividual 

variations. Pain evokes physical as well as emotional aspects which eventually 

are reflected in the EEG. Spontaneous EEG has shown to change during e.g. 

fear, anxiety, attention and arousal and has a high degree of genetic 

determination (Vogel et al., 1979). This genetic variation in EEG indicates a 

corresponding variation in the function of the brain structure determining the EEG 

(Vogel et al., 1979). Frequency analysis does not consider temporal aspects but 

calculates an average power map over a chosen or measured time period. Power 

maps employ both spectral and spatial information but they do not allow 

comprehensive physiological interpretations, however, functional aspects of brain 

processing can be assessed.  
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5.1.2. Source analysis 

The dipole sources are based on solving the inverse problem and it is based on 

many assumptions. These assumptions comprise a parametric model and this 

model makes it possible to obtain a unique solution, however, it is impossible to 

determine an arbitrary complex source distribution from a finite number of surface 

measurements (Kavanagh et al., 1978). Therefore, there are limitations and 

uncertainties of the inverse solution on which EEG source reconstruction is 

based. It is possible that the computed current sources corresponding to identical 

topographical maps may vary in location and strength (Shimojo et al., 2000). The 

position of the source is a rough indication of the center of gravity of the activated 

cortical area (Lopes da Silva et al., 1991). The inter-individual variability in the 

localization of the dipoles could most likely have been reduced by superimposing 

the dipoles on individual brain images and by using Polhemus (Polhemus 

FASTRACK ®, www.polhemus.com) to mark the positions of the recording 

electrodes (and individual MRI) .  

6. Concluding remarks 
Treatment of pain is one of the major challenges in clinical medicine and the pain 

mechanisms in many diseases are poorly understood. Human experimental pain 

models allow the investigation of pain in controlled settings. The human brain and 

hence neuroimaging has become a major interest over the years. Human 

cerebral responses, both spontaneous EEG responses and somatosensory 

evoked responses, have been used to study pain processing. This thesis used 

spontaneous EEG responses and somatosensory evoked responses to study 

human pain processing according to two different pain models.  

http://www.polhemus.com/
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The results presented in this thesis indicate that EEG is a proper tool for 

investigating human pain and identifying differences in pain processing and/or 

stimulation modalities. EEG frequency power analysis in response to pain has 

proven to be useful to classify (high alpha and low alpha groups, study 1) and 

identify differences between groups (males and females, study 2). Further, it 

seems that there are two different phenomenon in pain-EEG relationships, 

gender and high/low alpha. The gender and high/low alpha phenomenon exhibit 

different EEG characteristics in response to tonic painful stimuli and EEG-pain 

rating correlations. These results may provide a new perspective of the 

differences that exist not only between male and female pain processing but also 

between groups which have different degrees of anxiety, vigilance, and fear 

towards pain. 

EEG and somatosensory evoked potentials is able to show distinct differences 

between homotopic vs. heterotopic tonic pain and chronic pain patients vs. 

controls. Cortical plastic changes can be induced by experimental pain in healthy 

volunteers but not in patients which may be an indication of an existing cortical 

reorganization of the nociceptive system. These results may facilitate our 

understanding of human pain processing as well as inspire new approaches to 

assess/investigate chronic pain syndromes. 
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