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ABSTRACT

The subject of this thesis is the development of linear parameter varying (LPV) con-
trollers and observers for control of induction motors. The induction motor is one of
the most common machines in industrial applications. Being a highly nonlinear system,
it poses challenging control problems for high performance applications. This thesis
demonstrates how LPV control theory provides a systematic way to achieve good per-
formance for these problems. The main contributions of this thesis are the application of
the LPV control theory to induction motor control as well as various contributions to the
field of LPV control theory itself.

Within the last decade the theoretical background for control of LPV systems has been
developed. LPV systems constitute a large class of nonlinear systems with a special
structure allowing for a systematic approach to controller design. Based on a widely used
model of the induction motor and the well-known rotor flux-oriented control scheme, it
is demonstrated how LPV methods can be applied to several subproblems in induction
motor control.

The current equations of the induction motor have a particular structure, which allows
them to be written on a complex form. It is shown that for an LPV system with this
structure, the optimal controller will also possess this structure. This knowledge can be
employed to improve the numerics of the controller synthesis and to reduce the compu-
tational burden in the implementation.

Viewing the rotational speed as an external parameter, the current equations of the in-
duction motor constitute an LPV system. This is used to design an LPV flux observer.
The result is an observer with good performance and very little tuning needed.
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At the cost of some conservatism the LPV control theory can be applied to an even
wider range of systems known as quasi-LPV systems. It is demonstrated how this can
be applied to the design of a stator current controller. As in the case of the flux observer
design, the resulting controller performs well and requires very little tuning.

In certain cases it is difficult to obtain accurate models using physical principles. We
therefore turn our attention to nonlinear black-box modelling with multi-layer percep-
trons (MLPs). A novel method for transforming MLP models into quasi-LPV models is
presented. An MLP model of an induction motor system is obtained, and the aforemen-
tioned model transformation is performed. The resulting quasi-LPV model is then used
in the design of a speed controller. This demonstrates how LPV methods can be used in
a systematic approach all the way from modelling to controller implementation.

Finally, robustness to uncertainty in the time-varying parameters is considered. More
specifically, we consider the case where the parameter variation is represented by a diag-
onal gain matrix, which is fully known except for some small perturbation. A novel type

of sufficient conditions for robustness is presented, and it is illustrated how this can be
used in the speed controller design.

All controllers and observers are tested on a laboratory setup.

The key results have been presented at international conferences or have been submitted
for publication in international journals.



DANSK
SAMMENEATNING

Denne afhandling omhandler udviklingen af linesere parameter-varierende (LPV) regula-
torer og observere til regulering af induktionsmotorer. Induktionsmotoren er en af de mest
anvendte maskiner i industrien. Dens ikke-linesere dynamik giver anledning til kompli-
cerede reguleringsproblemer i forbindelse med kreevende anvendelser. | denne afhand-
ling demonstreres det, hvorledes LPV-reguleringsteori abner muligheden for en syste-
matisk tilgang til disse problemer. Afhandlingens veesentligste bidrag er anvendelsen
af LPV-teori til regulering af induktionsmotorer, samt diverse bidrag til omradet LPV-
reguleringsteori.

Den teoretiske baggrund for regulering af LPV-systemer er udviklet i Igbet af det seneste
arti. LPV-systemer udger en omfattende klasse af ikke-linegere systemer med en speciel
struktur, der muligggr en systematisk tilgang til regulatordesign. Med udgangspunkti en
ofte anvendt model for induktionsmotoren og det velkendte rotorflux-orienterede regu-
leringsprincip demonstrerer denne afhandling, hvordan LPV-metoder kan anvendes péa
flere delproblemer indenfor regulering af induktionsmotorer.

Induktionsmotorens stramligninger har en speciel struktur, der ggr det muligt at skrive
dem pé kompleks form. Det vises, at for et LPV-system med denne struktur, vil den
optimale regulator ogsa besidde denne struktur. Denne viden kan benyttes til at forbedre
regulatorsyntesens numeriske egenskaber og til at opna en mindre beregningskreevende
implementation.
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Ved at betragte omdrejningshastigheden som en udefra kommende parameter kan induk-
tionsmotorens strgmligninger betragtes som et LPV-system. Dette udnyttes til at udvikle
en flux-observer. Resultatet er en velfungerende observer med meget lille behov for tu-
ning.

Pa bekostning af konservatisme kan LPV-teori anvendes pa en langt starre klasse af ikke-
lineaere systemer kaldet kvasiLPV-systemer. Dette demonstreres ved udviklingen af en
statorstrgmsregulator, der, ligesom fgrnaevnte observer-design, resulterer i en velfunge-
rende regulator med meget lille behov for tuning.

| visse tilfeelde er det vanskeligt at opnd en tilfredsstillende model baseret pa fysi-
ske betragtninger. Derfor rettes opmaerksomheden herefter mod ikke-lineaer black-box-
modellering ved hjaelp af multi-lags perceptroner (MLPer). En ny metode til transforma-
tion af MLP-modeller til kvasiLPV-modeller preesenteres. En MLP-model af et induk-
tionsmotorsystem optraenes, og den nye tranformationsmetode anvendes. Den resulte-
rende kvasiLPV-model anvendes som grundlag for syntese af en hastighedsregulator. P&
denne made demonstreres det, hvordan LPV-metoder danner grundlag for en systematisk
tilgang til hele proceduren fra modellering til regulatorimplementation.

Til sidst betragtes robusthed overfor usikkerheder i de tidsvarierende parametre. Speci-
fikt betragtes det tilfeelde, hvor parametervariationen kan repraesenteres ved en diagonal
forsteerkningsmatrix, som er fuldsteendigt kendt bortset fra en lille afvigelse. En ny type
tilstreekkelige betingelser for robusthed praesenteres, og det illustreres, hvorledes disse
kan anvendes i udviklingen af hastighedsregulatoren.

Alle regulatorer og observere er afprgvet eksperimentelt pa en laboratorieopstilling.

Hovedresultaterne er preesenteret ved internationale konferencer eller er indsendt til pu-
blikation i internationale tidsskrifter.
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Chapter 1

INTRODUCTION

This Ph.D. thesis considers the application of linear parameter varying (LPV) control
theory to induction motor control. The aim is to develop novel controllers and observers
for field-oriented control of induction motors and to provide theoretical contributions in
the field of LPV control theory.

1.1 Background

The induction motor has a wide range of applications in industry converting elec-
trical power into mechanical power, for instance in pumps and ventilators. In-
deed, in the industrialised countries approximately 60 % of the entire electrical
power available is consumed by AC motors, whereof most are induction motors
[Kazmierkowski and Tunia, 1994]. Recent advances in computer technology allows em-
ploying control techniques yielding a performance for the induction motor similar to that
of the more expensive and less reliable DC motor. This does, however, pose complicated
control problems.

Several approaches to induction motor control exist, see for instance [Vas, 1998] or
[Kazmierkowski and Tunia, 1994]. This thesis will focus on one particular approach,
the rotor-flux oriented control.

The induction motor is a highly nonlinear system calling for advanced control techniques.
Within the last decade the theoretical background for control of linear parameter varying
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(LPV) systems has been developed. LPV systems constitute a large class of systems with
a special structure allowing for a systematic approach to controller design. At the cost of
conservatism the approach can be applied to an even wider range of systems known as
guasi-LPV systems.

An LPV system is essentially a linear time-varying system which can be written on the
form

i = AB®)z + BO())u
y = C)z+ DO,

wheref is a time varying parameter vector. As such it has a structure which is similar to a
linear time-invariant state space system, and control design methods with some similarity
to linear state space methods can indeed be used.

One of the main reasons for LPV control theory being the object of increasing interest is
that performance analysis and controller synthesis for these systems can be formulated
as linear matrix inequalities (LMIs). LMIs pose convex problems and can be efficiently
solved by numerical software such as the MatLab LMI toolbox [Gahinet et al., 1995]. In
this sense, once a problem has been cast as an LMI, it can be considered as solved.

An early suggestion that a system on the LPV form could be controlled by a controller
of the same form was given in [Becker et al., 1993]. The method given here did however
not lead to a convex problem, but the result was later extended in several steps. In
[Apkarian et al., 1995] a non-conservative LMI solution was given under the assumption
of affine parameter dependence. In [Scherer, 2001] the result is extended to the more
general rational parameter dependence. This result seemingly has not been applied to
any real-life systems yet. In this thesis it will be applied to the control of an induction
motor.

In [Shamma and Athans, 1992] it was suggested that an even wider range of nonlinear
systems could be treated as LPV system at the cost of some conservatism. In this quasi-
LPV approach the parameters are allowed to depend on the states. By disregarding the
explicit dependence and treating these systems as LPV systems, theoretical guarantees
of stability and performance can be obtained.

In this thesis these ideas will be used and further developed, aiming for control of induc-
tion motors with a rigorous theoretical basis.

1.2 Obijectives

The aim of this thesis is to develop novel controllers and observers for field-oriented
control of induction motors and to provide theoretical contributions in the field of LPV
control theory.
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In order to limit the scope we will focus on a particular type of controller, more specif-
ically the rotor-flux oriented controller as discussed in for instance [Rasmussen, 1995],
[Vas, 1998], or [Leonhard, 1990]. This controller consists of subblocks as shown in Fig-
ure1.1.

oo
r,ref speed _
T ] _ a _
_ and Vst ref stator sref | power | Ys |induction| | shaft
'mR,ref magnetising current device motor | | load
— current control
control
1\ estimates
obsarvers measurements

Figure 1.1:Sketch of the rotor flux oriented speed control scheme.

The controller objective is to track references for the magnetising curiggt, and

the speedw,. The observers provide estimates of the stator and magnetising currents
and of the speed. The speed and magnetising current controllers provide a reference
signal,isr,,,ef, for the stator current. The stator current controller tracks this reference
by providing the power device with a stator voltage commang,.. .

The main aim of this thesis is to provide novel methods for designing these sub-blocks
using LPV control theory. The theoretical parts will focus on the method described in
[Scherer, 2001], which is very general and non-conservative.

1.3 Contributions

The contributions of this thesis are in both the induction motor application and the LPV
control theory areas.

The main contributions in the theoretical area are:
e A discrete time version of the continuous time LPV control method presented in
[Scherer, 2001] is given.

e The current equations of the induction motor have a particular structure, which
allows them to be written on a complex form. It is shown that for an LPV system
with this structure, the optimal controller will also possess this structure.

e A systematic approach for transforming neural network state space models into
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quasi-LPV models suitable for control design is given. This was presented in the
conference paper [Bendtsen and Trangbaek, 2000b].

¢ A novel approach to robust LPV control for a special class of LPV systems
is presented. This has partially been presented in the submitted journal paper
[Bendtsen and Trangbaek, 2000a].

The main contributions in the induction motor application area are:
¢ Itis pointed out that the proof of convergence for the speed observer presented in

[Kubota et al., 1993] is incorrect and that divergence is possible.

e The discrete time version of the LPV theory is applied to the design of a
flux observer. This has partially been documented in the conference paper
[Trangbeek, 2000].

e The discrete time version of the LPV theory is applied to the design of a stator
current controller using the quasi-LPV approach. This has been documented in
the submitted journal paper [Bendtsen and Trangbaek, 2001b].

¢ A neural network is applied for black-box identification of the motor system.

¢ The obtained neural network model is transformed into a quasi-LPV model and a
speed controller is designed.

e The robust LPV control method is applied to the same model.

1.4 Outline of the thesis

The thesis is organised as follows:

Nomenclature

Provides a list of symbols and abbreviations used throughout the thesis.

Chapter 1 - Introduction

This introduction.
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Chapter 2 - Preliminaries

Introduces some basic concepts needed later in the thesis. The theoretical parts of Chap-
ters 5-7 rely heavily on matrix inequalities and in particular linear matrix inequalities
(LMIs). These concepts will be briefly discussed.

The model structure used in the same chapters s linear fractional transformations (LFTSs).
This chapter also discusses interconnections of such systems including the Redheffer star
product.

Finally, the use of multi-layer perceptrons (MLPS) as state space models is discussed.

Chapter 3 - Induction Motor System

Describes the dynamic model of a symmetrical three-phase induction motor with a squir-
rel cage rotor. The part of the model describing the currents is written as a complex
second order state space model with the shaft speed as a time-varying parameter. The
concept of rotating reference frames is then discussed.

In order to control the speed of the motor it is necessary to use a power device. A
commonly used type of power device, the voltage sourced inverter, is described.

Finally, the laboratory setup is discussed. Experiments will be performed on a laboratory
system with al.5kW induction motor.

Chapter 4 - Rotor Flux Oriented Control

The rotor flux oriented control scheme for the induction motor is described. The purpose
of the controller is to track a reference speed and a reference magnetising current while
rejecting disturbances from the load torque.

First it is discussed how the dynamical equations of the motor are simplified by writing
them in a reference system following the angle of the rotor flux. Then the rotor flux
oriented control method is described. The method is observer-based and requires an
estimate of the rotor flux. A short discussion of flux and speed observers is also given.

Chapter 5 - Linear Parameter Varying Flux Observer

This chapter reviews the LPV synthesis method in [Scherer, 2001] and applies it to the
design of a flux observer for the induction motor.
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First the historical background of LPV control is reviewed. Then robust quadratic per-
formance analysis of LPV systems is discussed and the so-called full block S-procedure
controller synthesis is described. A discrete-time version of these results is then given.

Considering the speed as a time-varying parameter allows writing the induction motor
model as either a real fourth order LPV model or as a complex second order LPV model.
This is due to a special symmetry in the transfer function. Theoretical justification for
the fact that controllers and observers for this type of system can be assumed to have the
same type of symmetry without loss of performance is presented.

Finally a discrete-time flux observer is designed using the above theory. The observer is
tested on the laboratory setup.

Chapter 6 - Quasi-LPV Current and Speed Controllers

The quasi-LPV approach allows the use of LPV theory for a very general class of non-
linear systems. First a discussion of the quasi-LPV structure is given. The approach is
then applied to the design of a stator current controller.

It is then discussed how to transform a neural network state space model into a quasi-
LPV model suitable for control design. This method is then applied to the design of a
speed controller.

Chapter 7 - Robust LPV Speed Controller

In this chapter a novel approach is given for robust LPV design for systems where the
time-varying parameters are uncertain. The method is applied to the design of a speed
controller.

Chapter 8 - Conclusions

This chapter contains conclusions and recommendations for further work.

Appendix A - Experimental Setup

In this appendix the experimental setup is discussed in detail.
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Appendix B - Lemmas and Proofs

This appendix contains lemmas with no appropriate place in the main thesis as well as
proofs which were deemed too long and tedious for the main thesis.
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Chapter 2

PRELIMINARIES

This chapter introduces some basic concepts needed later in the thesis. The theoretical
parts of Chapters 5-7 rely heavily on matrix inequalities and in particular linear matrix
inequalities (LMIs). These concepts are described in Sections 2.2 and 2.3.

The model structure used in the same chapters s linear fractional transformations (LFTSs).
Section 2.4 discusses interconnections of such systems including the Redheffer star prod-
uct.

Chapter 6 describes the use of multi-layer perceptrons (MLPs) as a basis for obtaining
quasi-LPV models. Multi-layer perceptrons are described in Section 2.5, whereas the
discussion of the quasi-LPV structure will be left for Chapter 6.

2.1 Notation
Most of the notation in this thesis is standard with the following exceptions.
Definition 2.1 (Hermitian part,herm (-))

Let X be a square matrix. Then

herm (X) £ —(X + X*).

N | =
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The Hermitian part is a natural extension of the real part of scalars, since the eigenvalues
of a Hermitian matrix are real.

The symboll is used as a right annihilator in e.g. [Scherer, 2001] and as a left annihilator
in e.g. [Helmersson, 1995]. To avoid confusion when comparing with other literature we
shall use the symbols and- respectively.

Definition 2.2 (Left annihilator,)

A™ denotes any full row rank matrix such tHatr A™ = im A.

A only exists ifA has linearly dependent rows and thénA = 0.

Definition 2.3 (Right annihilator )

AF denotes any full column rank matrix such thatA™ = ker A.

Note thatim A*"™ = im A",

Finally, in order to reduce the width of certain matrix equations we will need the follow-
ing notation. Given a matriX and a Hermitian matrix the following expressions are
equivalent

2.2 Matrix inequalities

A square matrixX is Hermitianif X = X*. Let H"*™ denote the linear space of
Hermitiann x n matrices and lek’ € H**™. Leth € C" and define theuadratic form

|h|% & h*Fh. (2.1)
We say thatt is positive semidefinité
|h|7 >0 Vh (2.2)
and thatF' is positive definitef
Je > 0:|h|% > €lh* Vh. (2.3)

We simply denote thig" > 0 andF' > 0, respectively.F' < 0 (negative semidefinite
andF < 0 (negative definite) are defined similarly.is apositive subspacef F if

Je>0:|h|% > €lh*> VheS (2.4)
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and we write this as
F>0o0onS.

A negative subspads defined similarly.

A Hermitian matrix has real eigenvalues and the maximal dimension of its positive sub-
space is equal to the number of positive eigenvalues. Consequently a Hermitian matrix
is positive definite if and only if all of its eigenvalues are positive.

Definition 2.4 (Inertia, in)
The inertia of a Hermitian matri¥f is defined as
in(H) 2 (in_(H),ing(H), in,(H)) (2.5)

wherein_ (H),ing(H), in;. (H) denote the number of negative, zero and positive eigen-
values ofH, respectively.

Definition 2.5 (Inertia on subspacén(+|.))
For any subspacé& c C*,
in(H|s) £ in(S*HS) (2.6)

for any basis matrixs of S.

The following lemma is a generalisation of the well-known Schur complement lemma.

Lemma 2.6(Schur complement) [Scherer, 2001]

If A is non-singular andd and B are Hermitian then

in ([é} g]) =in(4) +in(B — C*A™'(C) (2.7)

This lemma is very useful in many situations. An example will be given in Section 2.3.2.
The following lemma will be used in the proof of Lemma 2.9.

Lemma 2.7(Dualisation Lemma) [Scherer, 2001]

Let P be any non-singular Hermitian matrix, and &t be any subspace such that
ing(P|s) = 0. Then

in(P) = in(P|s) +in(P *|g1) (2.8)



12 Preliminaries

Now let F' € H"*™ be a matrix function of a vector afecision variables.. We will call
F(z) > 0 amatrix inequalityin z. Thefeasibility seif a matrix inequality is defined as

Xfeas = {z: F(z) > 0}, (2.9)

and we say that the matrix inequalityfesasibleif X ¢.q, is non-empty. Of coursg can
be replaced by, <, or < in the above.

Remark 2.8The decision variables are usually in the form of one or more matrices, but
the problem can always be reformulated into the vector form.

Matrix inequalities arise in many control analysis and synthesis problems. There is no
general way to solve them, except whBrdepends affinely om. In this case, the affine
matrix inequality can be solved with convex methods. This will be discussed further in
Section 2.3. If the matrix is a quadratic functionsothere is generally no way to solve

the inequality except in special cases such as the following.

Lemma 2.9(Elimination Lemma for quadratic matrix inequalities) [Scherer, 1999]
[Helmersson, 1999]

Assume thaf’ has dimensiom x m and that
in(P) = (m,0,n) (2.10)

The quadratic matrix inequality

I : I
[A*XB + C] P [A*XB + C] <0 (2.11)

in the unstructured unknowX has a solution if and only if

*

e [T 17 ..
B [C] P[C]B <0 (2.12)
and
e [0 1 [0 4
A [1 P ;|4 >0 (2.13)

Proof: A constructive proof is given in Appendix B on page 173.

Remark 2.10X beingunstructuredmeans that there are no constraints on the structure,
e.g. that it must be Hermitian or block diagonal.

This lemma is the basis for the synthesis method described in Section 5.3.
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2.3 Linear matrix inequalities

As mentioned in the previous section there is no general way to solve matrix inequali-
ties. However if the matrix depends affinely on the decision variables it is callebar

Matrix Inequality(LMI) and fast and efficient numerical solvers are available. If a prob-
lem can be cast as an (finite-dimensional) LMI it can therefore be considered practically
solved. This section contains a formal definition of an LMI, a short description of some
of the available software packages and the types of problems they can solve, and finally a
few examples of control problems that can be cast as LMIs. A more thorough discussion
can be found in [Boyd et al., 1994].

Definition 2.11 (Linear matrix inequality, LMI)
A linear matrix inequality is an inequality
F(z) >0

whereF' is an affine (i.e. a constant plus a linear) function mapping a finite dimensional
vector space to a Hermitian matrix set'*™. The elements of the vectorare called
thedecision variables

Remark 2.12In the usual definition the mapping is to a set of real symmetric matrices,
andz belongs to a real vector space. Indeed, most available solvers work only with this
formulation. The above definition can however be reformulated as an equivalent problem
with real matrices of double dimensions. This will be discussed further in Section 5.5.

LMIs have several nice features. For instance the feasibility set is convex. This means
that given a set of solutions of an LMI, angnvex combinatioaf these is also a solution.

Definition 2.13 (Convex combination)

Let M = {z1, 2o, ...,2,} be a subset of a linear vector space, and{let, as, ..., an }
be a set on non-negative real numbers such Jidt, a; = 1. Then

n
A
r = E Q;T;
i=1

is called aconvex combinationf M.

Definition 2.14 (Convex huliCo)
Theconvex hul] Co(M) of a setM is the intersection of all convex sets containikg
If M is a subset of a linear vector space, tli&m(,M) is the set of all convex combina-

tions of elements ipM. The convexity of the feasibility set can be used to convert some
infinite-dimensional problems into finite-dimensional ones.
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Example 2.15Consider the problem of finding a¥ such that
AX + X*A* >0 (2.14)

forall A € A, whereA is convex. IfA has infinitely many elements, then this is an
infinite-dimensional LMI, since (2.14) puts infinitely many constraintsiarfor a fixed

X we can also view (2.14) as an LMI iA. This means that iX fulfills (2.14) for a
number of4s, then it is also a solution for a convex combination of these.

Now if A is the convex hull of a finite number g&rtices(or generatos) A;, A,, .., Ar_L,
we only need to solve (2.14) for these vertices in order to obtain a solution féralH.
This is a finite-dimensional problem.

LMIs rarely have an explicit solution but must be solved by numerical iteration. One
exception is the LMI inX given by
F(X)=A"XB+B*X*"A+D > 0. (2.15)

This inequality typically needs to be solved as a last step in a controller synthesis, where
A, B, andD have been found as solutions to other LMIs. By multiplying from both sides
by A™ or B" it is immediately obvious that

AT"DA" >0andB""DB" >0 (2.16)

are necessary conditions for the feasibility of (2.15). In fact they are also sufficient.
This was shown in [Gahinet and Apkarian, 1994], where a constructive proof can also be
found. Here we will give an alternative proof based on (2.15) being a special case of the
guadratic matrix inequality (2.11).

Lemma 2.16[Gahinet and Apkarian, 1994]

LetD € H**™. The LMI (2.15) inX is feasible if and only if (2.16) is satisfied.

Proof:

(2.15) is a special case of (2.11) with

-1, 0

The inertia condition (2.10) is then immediately fulfilled and the conditions (2.12) and
(2.13) can easily be seen to be exactly (2.14).

Remark 2.17Since the proof of Lemma 2.9 is constructive, this proof can also be con-
sidered constructive.
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Remark 2.18In Lemmas 2.9 and 2.14 can of course be replaced byand vice versa,
but the sufficiency parts do not hold for non-strict inequalitiesad <). Consider for
instance the non-strict LMI

Y ct+y
) "ty c+c*+y]_

in the real scalag. This can be written as (2.15) with

X+X*=y, A=B=[1 1], D:[(i ¢ ]

c* cH+c*

F(y) has eigenvalues(2y + c + c* £ 1/(2y + ¢ + c*) + 4cc*) which are clearly of
different signs no matter howis chosen. In other words the non-strict LMy) > 0
has no finite solution, but the non-strict versions of the conditions (2.16) both read

O O A ol I O I T B

wherez is an arbitrary non-zero number.

2.3.1 LMI solvers

Several software packages are available for solving LMIs. The most widely used is
probably the LMI toolbox for MatLab [Gahinet et al., 1995]. Free alternatives are LMI-
TOOL [Nikoukhah et al., 1995] and sdpsol [Wu and Boyd, 1996]. The MatLab toolbox
can solve three different types of problems in addition to an explicit solution of (2.15).
The first is thefeasibility problem

e find, if it exists, a solutiorx to the LMI F(z) > 0.
The second problem is tHi@ear objective minimisation problem
e min,{cz: F(z) > 0}.
This is a generalisation of thesgenvalue problemminy , {\ : \I — F(z) > 0,G(z) >
0}.
The third problem that can be solved by the MatLab toolbox igtreeralised eigenvalue

problem

e miny ,{\: \G(z) — F(z) > 0,G(z) > 0, H(z) > 0}.
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The first two problems are convex and are solved by interior point methods. The third is
only quasi-convex but can be solved by similar techniques [Gahinet et al., 1995].

It is beyond the scope of this thesis to discuss how these methods work.
For an introduction to interior point algorithms in convex programming see
[Nesterov and Nemirovski, 1994] or [Nemirovski and Gahinet, 1994] describing the al-
gorithm used in the toolbox.

2.3.2 Examples of LMIs in control

Two examples of LMIs arising in connection with control problems will be given here.
For more examples see [Boyd et al., 1994] and [Packard et al., 1991].

Lyapunov stability
Consider the autonomous system

z = Az,
whereA is a constant square matrix. This system is Lyapunov stable if and only if there
exists a positive definiteyapunov matrixX such that
A" X + XA<O.
A test for stability can therefore be cast as a feasibility problem in X:

—A*X-XA 0 <0
0 X '

Riccati inequality
H~ control problems often lead ®Riccati inequalitiesuch as

A*X + XA+ X(BB* = DD*)X +C*C <0, X >0.

Because of the quadratic term this is not an LMNn However, if we assum8B* >
DD* (meaningBB* — DD* > 0) then we can use Schur complement (Lemma 2.6) to
arrive at the equivalent

A* X + XA+ C*C X

o (BB~ ppr-t| <& X >0 (2.17)

which is indeed an LMI inX. If on the other handB* — DD* is indefinite then we
cannot use this trick. But i€*C' is non-singular (and consequently positive definite)
then we multiply from both sides by = X! to arrive at

YA* + AY + (BB* — DD*) +YC*CY <0, Y >0.
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This can then be converted into an LMI¥. A problem with this last approach arises
if (2.17) is just one of several constraints dneven if the other constraints are LMiIs.
Then we will have LMI constraints o andY but also the constraigf —! = Y which

is not convex. This problem arises in most robust synthesis problems.

2.4 Linear system interconnection

This section is a short introduction to the interconnection of linear systems. The concepts
of linear fractional transformations and Redheffer star product will be described. For
further details see [Doyle et al., 1991], [Zhou et al., 1996], and [Helmersson, 1995].

My Mio
LetM =

[Mm M,
mation(LFT) with respect ta), is defined as [Doyle et al., 1991]

] be a complex matrix. Then tHewer linear fractional transfor-

Fi(M,A;) £ My + MipAi(I — Mao ) Moy
Theupper linear fractional transformatiowith respect toA is defined similarly as
Fu(M,Ay) & Moy + My Ay (I — M1 Ay) ™ Mys.
The transformations are only defined if the inverses exist.

Definition 2.19 (well-posed, well defined)

The lower LFTF; (M, A;) is said to bewell-posed(or well defined if I — MaA; is
non-singular. The upper LFTF, (M, A,) is said to be well-posed if — M;; A, is
non-singular.

The LFTs are another formulation of the interconnections in Figure 2.1. OQftefe-
scribes a known and time-invariant system akdontains unknown or time-varying
gains.

M

A M

Figure 2.1:Lower and upper linear transformations.
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TheRedheffer star produck, represents the interconnection in Figure 2.2, i.e.
BRI
€2 W2

Note thatd x B depends on a partitioning of and B. This patrtitioning will always be
clear from the context.

€1 <« le— W1

er v — wp
= AxB

ez ™ T we

B

ez ™ T we

Figure 2.2: Redheffer star product.

o . Aqq A1z] [Bn B12]
Let the partitioning be given by = andB = . Then we
P ghed A [A21 Ao By B
have [Doyle et al., 1991]
A+B = Fi(A, By1) A (I - BllAzz)lBlz]
By (I - A22311)71A21 Fu(B, Az2) '

Again we need the inverses to be defined.

Definition 2.20 (well-posed,well defined)

We say that the interconnectiohx B is well-posed iff — By, A>s andI — As3 By, are
non-singular.

Remark 2.21The star product is defined even if for instargeandw, are of zero size,
i.e.A = As. ThenAx B = fu(B,Azg).

The star product is associative [Helmersson, 1995] i.e.

(AxB)xC =A% (B*C).

Furthermore[? é] is theunit elemenbf the star product ostar product identityi.e.

0 I 0 I
A*[I 0]_A_[I 0]*A.
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These two facts can be used for transforming problems into special forms. The following
example demonstrates how to do this if a given design method requires a system to
be strictly proper. The example system has more inputs and outputs than needed to
demonstrate the idea, but it has been chosen this way, so that it can be directly applied to
the theory described in Section 5.3.

Example 2.22The synthesis method described in Section 5.3 requires the system

& A| B, B, B T

= 2.18
Zp Cp | Dpu Dpp Ep Wp ( )
Y C | F, F, F; U

to be strictly proper in the channel from the control signal¢o the measurementg,
i.e. F3 must be0. Then (under some assumptions) a suboptimal controller on the form

Te A | B.y  Beo Te
U = Ce1 | Deir Deia y (2.19)
Ze Ce2 | Deor Deao We

can be constructed. The meaning of the signglsw,, wc, 2y, 2p, andz, is unimportant
for now, and will be discussed in Chapter 5.

In practice it may happen that the system we wish to design a controller for is not strictly
proper. This problem can be overcome by finding a contrdildor the corresponding
system withF; = 0 and then transforming the controller into another controlter
yielding the same closed loop system for the actual system. Denote the system matrix in
(2.18) by M, and define

o1 o 1
=0 ) =] 2l

and observethdt x ' * =T *x I = [? é] is the Redheffer star product identity,

and that
A| B, B, B
Mp é MS*F — Cu Duu Dup Eu
Cp Dpu Dpp Ep

c|F, F, 0

Now assume that a controlle;, has been obtained for the system definedy and
write this controller as
u | } Dey Ca Dez

| =K |z | K.= | Ba A, Beo
e W, De21 Ce2 De2
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Then, assuming thdt+ F; K. is non-singular, the closed loop is given by

T x

Zu Wy
zp| = M: |wp
Te Te
Zc We

in which

M, 2 MyxK.=MyxT*+xT)xK,
(M, +T™*) % (T« K,) = My % ([ x K_,).

A controller for the system defined i, is thus given by

{5] =K. {j] K,=T*K.). (2.20)

e L

2.5 Multi-layer perceptron

This section provides a short introduction to a particular type of artificial neural network,
the multi-layer perceptron (MLP), which can be used to model nonlinear functions. It is
beyond the scope of this thesis to go into detail with this subject. For a more thorough in-
troduction see for instance [Suykens et al., 1996] or [Bendtsen, 1999] and the references
therein. First the MLP structure will be discussed.

It is then discussed specifically how to obtain nonlinear state space models from input
and output measurements using the MLP structure.

Themulti-layer perceptroifMLP) is composed of layers of perceptrons coupled in par-
allel. A perceptronconsists of a memoryless scalar function, ieeiron functionacting
on a weighted sum of input signals, as shown in Figure 2.3.

The neuron function (or simplgeuron can be either linear or nonlinear. Some of the
traditional neuron functions in MLPs are the unit gain

Plin (ZE) =T
and thehyperbolic tangent

T —T

e —e

¢tanh(x) = tanh(m) = m
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U1 6
U2 02

e

G(3ie Oiu; + 0)

&

o

Un

)
Figure 2.3: A single perceptron.

In this thesis only these two will be used.

A block diagram of an MLP with one hidden layer is shown in Figure 2.4. The input
vectorz;, is multiplied by theinput weight matrix9;. Thebias vector®, is then added
and the sum is input t¢ containing a number of neurons in parallel. The resulting output
is multiplied by theoutput weight matrix®, producing the final output,,;. Notice that

the weightd,, ..., 8, in Figure 2.3 form a row in the matri®; and that the weight, is

an element ir®,. The output weight matri®- can be seen as stemming from a layer
with linear neurons and no biases. The resulting function is

Zout = ©20(O12in + Op) & My, (2in, O1, 02, 0p). (2.21)

By choosing®1, ©2, and®, appropriately the MLP can be used to approximate a given
static nonlinear function. It has been shown [Hornik et al., 1989] that with a sufficient
number of neurons and under certain continuity conditions, the MLP with one hidden
layer can act as a universal approximator.

1)

Zin G T ¢() O, Zout

Oy

Figure 2.4: Block diagram of an MLP with one hidden layer.

2.5.1 Training

Adjusting the weights of a neural network is knownteaning. For an MLP this is
typically done by trying to approximate a setaftput targetsn the following manner.
Given a set of target output vectosss, ...z, and a corresponding set of input vectors
Zin,1, -+ Zin,m 0efine the approximation error

6(m) £ Zt,m — Rout,m = ft,m — Mm(zin,ma 617 627 eb)
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and the quadratic performance functional

k
=1

The aim is now to minimise the performance functional over the weights and biases, i.e.

J= (@) Te(i).

| =
NSRS

min J.
01,02,0;

Remark 2.23Minimising the performance functional for an MLP with nonlinear neuron
functions is a non-convex problem and problems with local minima can arise.

The simplest way to attempt to minimideis by theBack Propagation Error Algorithm
(BPEA). This is an iterative method, where the weights and biases are updated by the
following rule

dJ
Oiv1 = 0; — 36"
wheren > 0 is the step size an@; is the collection of all elements &, 0,, or O, at
the i'th iteration. This corresponds to going in the opposite direction of the gradient, i.e.
to move downbhill until the bottom is reached. This method is very stable but also very
slow. Including the second order derivative as in the Gauss-Newton learning rule

g\ tdJ
i =0i— [ ——) ==
1 (daid0f> db;

increases the convergence rate drastically. This corresponds to approximation the perfor-
mance function by a paraboloid and jumping directly to the bottom. For linear neuron
functions this will immediately yield the global minimum solution. The Levenberg-
Marquardt algorithm combines these two to obtain the fast convergence of the Gauss-
Newton algorithm with the stability of the BPEA. See [Suykens et al., 1996] and the
references therein for a more thorough description of training algorithms.

2.5.2 MLPs as state space models
Assume that we wish to obtain a model of the discrete time nonlinear state space system

Yk+1 = f(yka "'7yk—ny+17uka "'7uk—nu+1)a (222)

wherey is a measured output andis a known input. This is known as a nonlinear
autoregressive model with exogenous inputs (NARX).
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Yr+1

Yks ooy Yhmny 41 —

Uy ooy Uk —ny+1 7

€k4+1

Figure 2.5: MLP as state space model.

-1

q
N Yrk+1
Tk
Ug M,, | H — =)
Th+1 Yr+1
€k \\ €kt1
q_l

Figure 2.6: Recurrent MLP as state space model.

A way to obtain a model for this system is shown in Figure 2.5. Old measurements of
outputs and inputs are fed to the MLP, which provides a predictiof{bf+ 1). The
prediction errok(k + 1) can then be used to adjust the parameters in the MLP. Using a
large number of measurements to train the MLP, the effects of white measurement noise
can be removed, yielding a model with a prediction error with the same variance as the
noise assuming that the MLP has enough neurons to model the system, and that local
minima are avoided. A more thorough discussion of this model structure can be found
in e.g. [Lightbody and Irwin, 1996].

Once a model has been obtained it could for instance be used as a predictor as already
seen. By feeding the predicted outputs back into the MLP, it can also be used as an open-
loop simulator of the system. Thirdly, it can be used as a system model for a control
design.

The model type (2.22) is somewhat limited due to the fact that the noise must be white.



24 Preliminaries

A more general system structure is

rrr1 = f(zr) + g(zr)ur + galor)dr, yr = Hazy, (2.23)

wherez is the stated;, is white noise, and{ is a known matrix. This is a specialised
version of the nonlinear autoregressive moving average model with exogenous inputs
(NARMAX). An approach to training of this type of model is illustrated by Figure 2.6,
whereg~! is the delay operator. The MLP provides a state estimate, which is delayed
and fed back into the MLP. This is known agexurrent MLP. The output prediction

error is again used to adjust the MLP parameters but are also used as inputs to the MLP.
In this way it is possible to include more general noise types. The state estimates,

not necessarily correspond directly to the actual stateblotice that some of the state
estimates could for instance be delayed version of the prediction error.

If there is no noise, it has been shown [Siegelmann et al., 1997] that there is no loss of
generality in the mappings that can be achieved by assuming that the state estimates
are delayed versions of the output But when the noise is not white, then the more
general training structure in Figure 2.6 must be used. It is beyond the scope of this thesis
to go into details with how the parameters are adjusted. For a discussion of this model
and its training see e.g. [Korbicz and Janczak, 1996] or [Bendtsen, 1999]. It should just
be noted that from input and output measurements it is possible to obtain a state space
model of very general nonlinear systems. Unfortunately there are no training rules for
the NARMAX model guaranteeing convergence.

The MLP will be used in Chapter 6 to obtain a model of the induction motor to be used
for speed control.

2.6 Summary

This chapter has given an introduction to some of the basic concepts used in this thesis.
A matrix inequality is an expressiadif (z) > 0, whereM is a Hermitian matrix function

of the decision variables. M > 0 means that all the eigenvalues &f are positive.

There is in general no way to solve matrix inequalities, bu/ifs a quadratic function

of z with a certain structure and certain inertia properties are fulfilled, then it is possible
to construct a solution.

Another case is i depends affinely om. ThenM (z) > 0 is a linear matrix inequality
(LMI) and fast and efficient software solvers exist. If a problem can be formulated as an
LMl it can therefore be considered solved. Examples of LMIs arising in control problems
were given.

The star productk, is used to denote interconnection of systems. It was demonstrated
how the associativity of the star product could be used to transform certain problems into
ones with a simpler form.



2.6 Summary 25

Finally, the multi-layer perceptron and its application as nonlinear state space model was
discussed.
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Chapter 3

INDUCTION MOTOR
SYSTEM

This chapter describes the system considered in this thesis. First, in Section 3.1, a model
for an induction motor with squirrel cage rotor and three star connected stator windings
is derived. A number of assumptions are made in order to obtain a simple model. The
electro-magnetic model is developed using complex space vector representation, where
three real signals are combined into one complex signal. The result is a complex third
order nonlinear model. In Section 3.2 the model is written in a stator-fixed reference
frame.

In Section 3.3 the part of the model describing the currents is written as a complex second
order state space model with the shaft speed as a time-varying parameter. The concept
of rotating reference frames is then discussed. This will be used in Chapter 4.

In Section 3.4 the uncertainty on some of the motor parameter values is discussed. The
resistances can change due to temperature variations, and the shaft speed can also be
considered a time varying parameter.

In order to control the speed of the motor it is necessary to use a power device. In Section
3.5 a commonly used type of power device, the voltage sourced inverter, is described.

Experiments will be performed on a laboratory system with5 W induction motor.
This system is discussed in Section 3.7. The laboratory system includes a DC-motor
connected to the shaft in order to allow simulation of load torques.
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3.1 Induction motor model

This section describes the dynamic model of a symmetrical three-phase induction mo-
tor with a squirrel cage rotor. The description is mainly based on [Leonhard, 1990],
[Rasmussen, 1995], and [Kianierkowski and Tunia, 1994].

The induction motor mainly consists of two parts, gtatorand therotor. The rotor is
rotating inside the stator separated byasirgap, as shown by the cross section in Figure
3.1. The rotor is in principle built from parallel conductors short-circuited by a ring at
each end, as illustrated in Figure 3.2.

The windings of the three stator coils (A, B and C) are parallel to the rotor bars and
distributed sinusoidally around the cylinder displaced by 120 degrees, so that the total
number of windings at each angle is approximately constant. Figure 3.1 illustrates the
distribution of winding A by the width of the gray area. The stator shown is of the one
pole pair type, meaning that the coils will produce one magnetic north and one magnetic
south pole. Often a motor will be constructed with several pole pairs by connecting
coils in parallel and displacing the coils i20/Z, degrees, wher&, is the number

of pole pairs. This works as a gearing giving a larger torque and a slower mechanical
rotational speed. The derivation of the electrical equations will be for a one pole pair
motor. Adapting to multiple pole pairs is simply a question of modifying the mechanical
model as in Section 3.1.4.

Figure 3.1:Cross section of induction motor

The stator windings are fed sinusoidal voltages to create a rotating magnetic field. When
the rotor and the magnetic field of the stator rotate at different speeds, currents will be
induced in the rotor rods. These currents result in a magneto-motive force perpendicular
to the current and to the magnetic field resulting in a torque on the rotor.
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Figure 3.2:Squirrel cage rotor

3.1.1 Modelling assumptions

A number of assumptions are made in order to permit a simple model to be obtained.

w

© © N o a &

10.

The motor is symmetrical.
The rotor is concentric and the air gap has a constant width,

Only the basic harmonics of the spatial field distribution and of the magneto-
motive force in the air gap are considered.

The stator windings are star connected (see Figure 3.3) and the neutral is isolated.
The ends of the rotor bars are short circuited.

The permeability of the iron parts is infinite.

The flux density is radial in the air gap.

Slotting effects, iron losses and end-effects are negligible.

The effects of anisotropy, magnetic saturation and eddy currents are negligible.

The coil resistances and reactances are constant or slowly varying.
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usA%

iﬁ\% neutral
I

ing isc

Figure 3.3:Stator coils in star connection.

One simplification resulting from these assumptions is that the rotor can be considered
as consisting of 3 short-circuited windings distributed in the same way as the stator coils
[Leonhard, 1990, page 152]. In the following these virtual coils will be referred to as the
rotor coils or rotor windings The currents in these coils are referred ta,as,, and

ire. Since the rotor currents cannot be measured, the number of virtual rotor windings
can be chosen arbitrarily.

3.1.2 Electro-magnetic model

The electro-magnetic model describes the torque on the rotor as a function of the stator
currentsi, 4, 1,5 andi,c. Due to the isolated neutral

isA(t) + 5B (t) + isC(t) =0 (31)

is valid at any instant.

The distribution of the stator coils results in the magneto-motive force wave excited by
the stator currents at an an@éeing (see Figure 3.4)

fs(6,t) = N (isa(t) cos(8) + isp(t) cos(§ — 2m/3) + isc(t) cos(f — 4m/3)) .
Note that mathematically it may be more correct to write the above equation as
fs(isAa isBa isCa 9) =
N (i54 cos(0) + isp cos(6 — 2w /3) + isc cos(6 — 4n/3)),

since it is not a time-varying function, but the former notation is the one used in most of
the literature on the subject and this style will be adopted throughout this chapter.
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Figure 3.4: The magneto-motive fb*r‘c‘e*bfdduced by the stator currents at the Gigyle
the sum of all currents inside the semi-circle.

N is the number of windings on each coil. Likewise the magneto-motive force wave
excited by the rotor currents, at the anglis

fr(0,t) = Np(ira(t)cos(0 — 6,(t)) + irp(t)cos(0 — 6,(t) — 2m/3)
+ipc(t)cos(8 — 0,.(t) — 47 /3)).

0. is the electrical angle of rotation of the rotor. For a one pole pair machine this angle
is the same as the mechanical amlg.y, (6, = Z,0mecn). Ny is a fictive number of
windings on the rotor coils.

As the permeability of the iron is assumed infinite the magneto-motive force is effective
only at the air gap, giving the flux density on the stator side:

By(6,8) = 52 (fu(8,8) + & £,(6,1)), (3:2)

wherepy is the vacuum permeability constant aniés a coupling factor compensating
for magnetic leakage. On the rotor side the flux density is given by

B,(6,t) = ;‘—2 (kfs(6,1) + £,(6,1)). (3.3)

The part of the flux density on the rotor surface due to the stator currents is

B,s(0,t) = ’;_/2) 5(6,1). (3.4)

The current distribution along the surface of the rotgr,is the derivative of the rotor
magneto-motive force:
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_ L 0f(6,1)
[¢7% (97 t) - 27" 80 9
wherer is the radius of the rotor. The tangential forffeacting on an axial strip of width
rdf is the (vector) product of the flux density and the current distribution:

(3.5)

df = _Brs(aat)a'r(aat)lrdﬁa (36)

wherel is the length of the rotor. Integrating this gives the electro-magnetic torque in
the direction of rotation

27T
mo(t) = r / df = —r? / Bya(8, )an (6, £)d6. (3.7)
0

Surface

The flux linkage in stator coil AW, 4, is the integrated effect of the stator flux through

all loops of coil A. The loop formed by the conductors at andles= /2 and\ + 7/2 is
penetrated by the field lines passing through the stator between these angles. Assuming
a continuous distribution of turns with the incremental den§m cos A (for coil A) at

this angle, the flux linkage can be obtained as

A3

\IISA(t):%NS / cos \{ / Ir B, (6, £)d0}d. (3.9)
A3

A=—3 0=

The flux linkages in the rotor coils are found in the same manner;
z A+ 5 +6n
1
U,..(t) = §NT / cos \{ / IrB,.(0,t)d0}dA. (3.9

A=—Z O=A—Z+6,

The corresponding equations for the other coils are:

z A+ 3

U,5(t) = %NS / cos(\ — 2/3){ / IrB,(0,t)do}d), (3.10)
A=—3 9=A7%
5 A3

U,o(t) = %NS / cos(\ — 47 /3){ / IrB,(0,1)d0}d), (3.11)

A 3 0=\—%
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z A+5+6,
\I!rb(t):%Nr / cos(A — 21 /3){ / Ir B, (6, £)d0}d), (3.12)

z 0=A—T+0,
z A+ 5+,
U,o(t) = %NT / cos(A — 4 /3){ / IrB,(6,t)do}dA. (3.13)

A= f=A—3+0,

The input to neutral voltage in the stator coils are assumed to be given by:

usA(t) = Rstsa(t) + %\IJSA(t), (3.14)
. d

UsB (t) = RsZsB(t) + E‘I’sB(t)v (3.15)
. d

U’SC(t) = RslsC(t) + %‘I’SC(t)v (3.16)

where the stator resistandg,, is the resistance of the stator windings, and the equivalent
equations for rotor coils are:

d

= rira(t _‘I,rata

0 R.i ()+dt (t)
d

= rirp(t _‘I,Tta

0 Rlb()+dt b(t)
d

= rirc(t _‘I,rctv

0 Rz()+dt (t)

where the rotor resistanca,., is the resistance of the (virtual) rotor windings.

3.1.3 Complex space vector notation

To simplify the equations a complex notation based on the value® e727/3 is intro-
duced. The complex space vector of the stator current is defined as

. 2

is(t) & g(isA(t) + agisp(t) + ol isc(t)). (3.17)

For the rotor currents a space vector is defined as well:

5 (0) 2 2 (ira(0) + in(0) + 02 iel0) (3.18)
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Notice that no information is lost in this transformation from three to two degrees of
freedom. Using (3.1) the three stator currents can be reconstructed from the space vector.
Similarly the rotor currents can be reconstructed dugte- .., + .. = 0.

The space vector for the stator voltage is

Us(t) 2 S (usa(t) + aspusp(t) + o usc(t)). (3.19)

Wl o

The three stator voltages cannot be reconstructed from this value without adding an
additional demand, for instaneg 4 (¢) + usp(t) + usc(t) = ¢, wherec is some chosen
constant, but due to the isolated neutral the value of this constant is of no importance.

We also define space vectors for the stator and rotor flux linkages:

T, (1) 2 S (,a(t) + s Tep(t) + a2, ¥,0(1)), (3.20)

2
3

U (t) £ 2(Pra(t) + o Trp(t) + 2, ¥pe(t)). (3.21)

Wl o

Inserting equations (3.8), (3.10), and (3.11) in (3.20) after some calculations gives:

U, (1) = Lyis(t) + Linin(t)e?”, (3.22)
where the stator inductanck,, and the mutual inductancg,,, are
IrN?2 IrNgN,
L, & 37r,u08—hs, Ly, & 3110 8; " k. (3.23)
A similar equation can be obtained for the rotor:
U, () = Ly (t) + Linis(t)e 0, (3.24)
where the rotor inductancé,., is
IrNZ2
L, & 3mu, 8hr ) (3.25)

Combining (3.14)-(3.16) with the space vector definitions (3.19)-(3.17) results in the
simple equation:

s(t) = Rgis(t 3.26
(1) = Rfa() + — (3.26)
A similar result can be obtained for the rotor:
_ v,
0= Ri.(t) + d (t). (3.27)

dt
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By inserting space vector expressions in the flux density equation (3.4) and inserting this
in the torque equation (3.7) the integral can be calculated to get the following expression
for the electro-magnetic torque tangential to the rotation:

me(t) = 5 2, LS {0 G (07 )°). (3.28)

Inserting (3.22) and (3.24) in (3.26) and (3.27) gives:

() = RaTa(t) + Ls-270(0) + L (5 (1) ®) (3.29)
dt dt
- d - d - —i0 (t)
0= Ryi,(t) + Lp—ir(t) + Lp—(i5(t)e™ 7). (3.30)

dt dt

3.1.4 Mechanical system

The mechanical rotational speeg,..;, is affected by the electro-magnetic torque
and the load torquerr:

1

Wiech(t) = j(me(t) —mpg(t)), (3.31)

whereJ is the collective moment of inertia of the rotor and the load, assuming the shaft
to be rigid. m contains the actual load along with the speed-dependent viscous and
coulomb friction. The electrical rotational speed is defined as

Wy (t) = 0, (t) = Zpwimeen(t). (3.32)

Equations (3.28)-(3.32) form the model to be used below.

3.2 Stator-fixed coordinates

The model of the induction motor can be expressed in various coordinate systems. Ex-
pressing the model in a coordinate system which rotates with the rotor or stator flux gives
a model in which the states are constant in steady state operation (canstenttm,).

This model is often desirable for control purposes but in order to perform the non-linear
change of coordinates it is necessary to know the rotor flux angle. For flux estimation
purposes it is therefore often desirable to work with a model in stator-fixed coordinates.

In (3.29) and (3.30%, and:, are already in stator-fixed coordinates, whileis in
rotor-fixed coordinates. By defining the stator-fixed rotor current

ins(t) 2 7,(t)e ) (3.33)
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the following stator-fixed model is found:

(R L Yis 1) + L 7,a(0) = (0, (3.3

d d o
Lm(% - ]wr(t))ls(t) + (Rr + Lr(% - ]wr(t)))lrs(t) = 07 (335)
me(t) = 3 2y LS (0 (0)°), (3.36)
n(t) = Zpiomoen () = %(me(t) p— (3.37)

To summarise;, andi,, are the stator and rotor currents.is the stator voltage, which
is often controlled through a voltage sourced inverter as described in Sectian, 3.
the rotational speed of the roton. is the electro-magnetic torquewr, is the load torque
acting as a disturbanceéZ,, R;, R,, L, L,, andL,,, are the parameters of the motor,
andJ is the collective lumped moment of inertia of rotor and load.

3.3 State space model

For several analysis and synthesis methods a state space model is desired. This model
will be formulated here. For convenience the time dependency will be dropped in the

notation. From (3.34) and (3.35) a complex state space model for the current equations
can be obtained:

Tsre = Asrcxsrc + Bsrcﬂsa
is
Te = = y
lrs

L.Rs+jL2 w. Ly (=RypLm+Lrjwy)
Ao = L2 " L.L, L2 " L,L,
src — )

—R;Lyy—jLsLmwy LR, —jLsL,w,
I2,-L.L, I2-L.L,

L,
I.L. L2
Bspe = L .

m

L.L,— L2
The speed,. could be included in the state vector as a third state, but the above form has

the advantage that the state space part can be seen as a linear parameter varying system
with w,. as the varying parameter, see Chapter 5.
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3.3.1 State transformations

For control purposes it is often desirable to work with another state vector{fﬁ%m A

Irs

state transformation is obtained by multiplication of a state transformation matrix, T,
Tnew = Tmsa Anew - TAsrcTilv Bnew - TBsrc (338)
An important choice of states is
s [is 10 is
2 2% = . 3.39
w2 [i]-0 2] ] @3

The magnetising current,,, has the same angle as the rotor flux

Vs £ \ilrejor = Linim = Limis + Lyiys. (3.40)

The resulting state space system is

Tsc = Ascxsc + Bscasv

is
Tsc = | = s
tm

(3.41)

This particular choice of states has some nice properties for control purposes which will
be discussed in Chapter 4.

3.3.2 Real state space model

To obtain areal state space model the space vectors are first split into real and imaginary
parts:

Us = Usp + jusQa (342)

gs = isD +j7:SQ7 (343)
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im = imD + JimQs (3.44)

whereusp, usQ, isp, 5@, imp andi,g are real signals. A real state space model can
now be obtained by substituting the complex system and input matrices by real matrices
of double size

Ar+in—)|:AT —A,:|

3.45
A A, (3.45)
and by substituting the signal vectors
. Ty
Ty +jT; = [ ] . (3.46)
Ti
This gives the following model:
jjsr = Asrmsr + Bsrusr
isD
tmD _ UsD
Tsr = . s Usr = [ :|
15Q UsQ
ImQ
L2 R,+R,L? —L2% R, 0 L2 w,
L.(L2—L.L,) L.(L%,—L.L,) L2 —L.L,
= — 7 0 —w
Asr = OT L2, L2 R,+R,L? _L2R, ’
L2 -L,L, L.(L2—L.,L,.) L.(L%—-L.L,)
0 Wy R —1F
L
L.L.—L2, 0
0 0
Bsr = L )
0 L.L.—L2,
0 0
3Z,,L72n . .
Me = (ZSQZmD - ZsD'LmQ), (347)
2L,
. . Z
Wr = LpWmech = 7p(me - mL)-

(3.48)
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3.3.3 Rotating reference frames

In normal operation the inputs and states will be rotating, i.e. following circular trajec-
tories in the complex plane. For control and simulation purposes it is often desirable to
work with the system in a rotating coordinate system. Defining the signals

z, 2 ze P uy 2 ue P (3.49)
the system = Az + Bu can be written as
&, = (A — jwl)z, + Bu, (3.50)

A d
wherew = % p.

3.3.4 Steady state

In normal operation the space vectors will rotate around the origin in the complex plane.

Definition 3.1 (Steady state)
The complex state space system
& = Ax + Bu (3.51)
is in steady state if there exists a reference frame rotating at angular velositigh that
&, = (A — jwl)z, + Bu, =0, anda, = 0, (3.52)

wherez,. andu, are defined as in (3.49).

Let the system (3.41) be in steady state and defipg = %ﬂs such that

(Asc - jme)xsc + Bscﬁ's =0. (353)

Thena,, £ aze i@mat, [_, “] £ [_,S] e~Jwmrt gre all constant and the states are

ms tm
given from
lss _ A . -1 &
- = _( sc ]me) sclss
ms
as
lgs =

(R’l‘ + j(me - wr)Lr)ass
Rs;R, + j(me - wr)Rer + jwmrLs Ry + me(me - wr)(L%n - LrLs)

(3.54)
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tms =
Rrﬂ'ss
Rer + j(me - wr)Rer + jmeLer + me(me - wr)(L%n - LrLs) )
(3.55)

The quantityws;;, £ wmr—w, is known as thslip frequencyand is related to the torque
by

37,L% _
Me = 2’}’2Tm|zm|2wslip. (3.56)

3.4 Uncertain and time-varying parameters

The dynamical behaviour of the induction motor is affected by time variations in the
parameters.

The rotor resistanc®,. can change as much as 50 % due to heating. Furthermore it
can be difficult to obtain an accurate estimate of its value especially during steady state
operation.

The stator resistanc®, can also change, but the stator windings are usually better ven-
tilated than the rotor windings, so the variations will not be quite as large. In addition
obtaining an accurate estimate is easier. Since both of these variations are caused by
temperature changes, baf) and R will be slowlyvarying.

The rotational speed,. can change due to load disturbances or as a result of a command
change to the controller. This variation will typically be fast compared to some of the
other dynamics of the motor. Sometimgs(or the positior..) is measured, but avoiding

the use of a speed (and position) sensor is often desirable, due to the relatively high cost
and high sensitivity to the environment of these sensors.

The mutual inductancg,,, (and to some extert; andL,) will be affected by magnetic
saturation effects when the magnetisation changes. Notice that in the derivation of (3.29)
and (3.30) it was assumed that these inductances are constant, so modelling this uncer-
tainty is more complicated than simply assuming the inductances to be time-varying in
the above model.
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3.5 Power device

In a control context the control objective is usually controlling the angular velocity or
position of the rotor shaft. The control signals are usually the stator voltages or currents
depending on the type giower device The description here will be limited to a (three-
phase bridgeyoltage sourced invertgl Sl). For a thorough discussion of power devices
including current sourced inverters see faérkowski and Tunia, 1994].

Figure 3.5 is a sketch of the power device in connection with the induction motor. The DC
voltage source converts a three-phase AC supply to a DC voltage which is then supplied
to the inverter. The signal conditioning supplies the inverter with a modulation signal to
generate the reference stator voltages.

——=1 Signal conditioning ‘

Us,ref
$u+,u- ipwm ]
U+ SA
UsC
AC U-
supply  pc voltage VSl _
o

Figure 3.5:\Wwltage sourced inverter connected to an induction motor.

The inverter is sketched in Figure 3.6. By applying pulse width modulation signals
to the input terminalsis 4 pywm, UsB pwm, aNdusc pwm the output voltages 4, usa,
andusc can be switched betwedi™ andU~. Since the stator currents only depend

on the lower frequency part of the stator voltage this is equivalent to applying a low
pass filtered version of the switched voltages. The signal conditioning computes the
modulation signals to accompli%‘(usA + agpusp + a2 usc) ~ Us,ref, Where the
approximation is only considered for the low frequency part.
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UsA UsB UsC

U+ °

UsA, pwm UsB,pwm U'sc,pwm
Figure 3.6:Three-phase bridge voltage sourced inverter.

3.6 Parameter identification

For control purposes it is necessary to know the motor param&ter®,., L,,, Ls,

and L,. These can be identified from stator current and voltage measurements. There
is however an infinite number of motor parameters all yielding the same behaviour
[Gorter, 1997]. It is therefore necessary to make some assumption on the param-
eters, for instance thak, = L,. The parameters can then be identified for in-
stance by auto-commissioning at standstill as described in e.g. [Rasmussen, 1995] and
[Rasmussen et al., 1995]. The voltage reference is chosen in such a way that the gener-
ated torque is not large enough to pull the shaft out of standstill. If voltage measurements
are not available the reference voltages for the power device must be used.

3.7 Experimental setup

In this thesis several experiments will be performed on a laboratory induction motor
system illustrated in Figure 3.7.
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power induction |__Shaft brushless

device \ motor i DC motor
trans- 4L

ducers encoder
power
0T device
s's
O
r"'L,ref
PC

Figure 3.7:Laboratory induction motor system.

The induction motor has two pole pair8 = 2), a squirrel-cage rotor, and three star
connected stator windings. Its nominal data are

Nominal power 1.5 kW
Nominal speed 1420 rpm
Nominal torque 10 Nm

Nominal currentat380V 3.6 A

The nominal speed df420rpm = 148.7rad/s is equivalent to the electrical rotational
speedv, = 297.4rad/s. The electrical rotational speed#ad/s will be the representa-
tion used in the following chapters.

In [Rasmussen, 1995] the parameters of the induction motor were identified at standstill
at20°C under the assumptioh; = L, as

Ly=1L,=0352H, L, =0341H, R,=50Q, R,=3.3. (3.57)

The PC runs the control program to be tested providing a reference voltage for the in-
duction motor power device and a torque reference to the DC motor power device. The
brush-less DC motor can be used to simulate a load torque on the shaft. Since the PC re-
ceives measurements of the rotor angular position from the encoder this can for instance
be a position or speed dependent load.

In addition to the encoder data the PC receives measurements of the stator current and
voltage.

The equipment is described in further detail in Appendix A.
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3.8 Summary

This chapter described the induction motor system. The following complex state space
model of the induction motor in the stator-fixed reference frame was derived:

Toe = AscTsc + By s,

i
Tsc = = )
tm

L2 R.+R; L2 (jLrwr»—Ry)
L b

L
L.(L j . (L2 ~L.L,)

2
m

B L, L L2
sc 0
Z

L
Me = i?
L.

Asc =

FIEJ
S,
E
S
rl

Wr = pwmec

is and @, are the stator current and voltage, respectively, @pds the magnetising
current.w, is the rotational speed of the shafi, is the torque produced by the induction
motor. m, is the load torque on the shaft acting as a disturbahgg.Lg, L., R, R,
Z,, andJ are constant or slowly varying real parameters.

The stator voltageii,, is the control signal and is supplied to the motor by a power
device, the voltage sourced invertég. and,, and in some configurations., can be
measured.

This constitutes the model to be used in the following chapters. Experiments will be

performed on a laboratory system described at the end of this chapter and in Appendix
A.



Chapter 4

ROTOR FLUX
ORIENTED
CONTROL

In this chapter the rotor flux oriented controller (or rofieid oriented controller) scheme

for the induction motor is described. The purpose of the controller is to track a reference
speedw,. .. f, and a reference magnetising currépiz .. r, While rejecting disturbances
from the load torque.

The main purpose of this chapter is to present an existing induction motor control method.
This controller is a cascade coupling of several sub-blocks. The aim of the following
chapters is to develop replacements by new methods for some of these sub-blocks. It has
therefore been chosen to focus on field oriented control and in particular the rotor flux
orientation rather than give a full review of all the many control methods for induction
motors.

Section 4.1 shows the simplification in the dynamical equations of the motor achieved
by writing them in a reference system following the angle of the rotor flux. Section
4.2 then describes the rotor flux oriented control method. The method is observer-based
and requires an estimate of the rotor flux. A short discussion of flux estimation is given
in Section 4.3. If a speed or position measurement is not available it is furthermore



46 Rotor Flux Oriented Control
necessary to estimate the speed. A brief introduction to speed observers is given in
Section 4.4.

The controllers and observers described in this chapter have all been described before.
The only new contribution is the discovery of the potential instability of the speed ob-
server described in [Kubota et al., 1993]. An example of this instability is given in Sec-
tion 4.4.2.

4.1 Model in rotor flux coordinates
By expressing the model in a coordinate system fixed to the rotor flux angle
PELY, = Lin, (4.1)

wherei,, is as given in Section 3.3.1, i.6,, = i, + LL—*ETS, a partial linearisation of the
torque and magnetising current equations can be achieved. Equations (3.34) and (3.35)
in rotor flux coordinates are:

d - d
(Rs + (5 +jme)Lls)isr + (5 + jme)L;nimR = Usr, (4.2)
dt dt
! = d . ! -
R, (imr — isr) + (% + j(wmr — wr)) Lpyime = 0, (4.3)

where the following definitions have been used

EST‘ é E567'ij 17’87‘ é ﬂse*jﬂ!

imR = ime 9P =i, Wmr = %P!

o £ 1-12/(L.Ly), L £ oL,

L. 2 (-o)Ly=12/L, R, £ (Lp/Ly)*R,.

The stator current in rotor flux coordinates is split into two real values, the direct and
guadrature components:
R{ie 7P} = R{is},

ise P} = S{is )}

isd

> 1>

isq

By taking the real part of (4.3), a dynamic equation for the magnetising cuirgnt,
can be found as

L, d. . .

L im mR = Gsd. 4.4

ertl R+ imR = lsd (4.4)

The quantityl’. = %= is called therotor time constant
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The imaginary part gives the slip frequency

1 g
Wslip = 77 = . 4.5
b Ty imr (4-3)
The produced torque can be found from (3.28) as
3 .
me = Ll imRisq- (4.6)

As seen a decoupling is achieved so thatis used for controlling,,,z andi, is used
for controlling the torquen.. Even though,,,r does affectn., the changes are slow,
makingm,. an almost linear function af,.

4.2 Rotor flux oriented control

Several speed or torque control schemes for induction motors exist, see for in-
stance [Kamierkowski and Tunia, 1994] or [Vas, 1998]. Also worth mentioning is the
passivity-based approach described in e.g. [Ortega et al., 1996]. In this thesis we will
however focus on one particular type of induction motor control, namely direct rotor flux
oriented control which will be described in this section. The basic principle is shown
in Figure 4.1 and is based on the partial decoupling of the torque and the magnetising
current achieved in the rotor flux oriented reference frame.

[N
r,ref speed -
—_— - u, -
. and lsr ref stator sref | bower | Ys  [induction| | shaft
"mR ref magnetising current device motor load
—_— current control
control
1\ estimates
observers measurements

Figure 4.1:Sketch of the rotor flux oriented speed control scheme.

The controller objective is to track references for the magnetising cuirgpt,and the
speedw, (or torque or position). The observers provide estimates of the stator and mag-
netising currents,, andi,,, and of the speed. These estimates are based on measurement
of some of these three signals. In some cases the stator voitage,also measured.
Otherwise the voltage commanil,,. .. can be used. The speed and magnetising cur-
rent controllers operate in the rotor flux oriented reference frame and provide a reference
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signal,is, e f, for the stator current. The stator current controller tracks this reference
by providing the power device with a stator voltage commang. ¢, in the stator-fixed
reference frame.

Examples of how to implement the different blocks will be given in the following. The
examples in Sections 4.2.1-4.2.3 are from [Rasmussen, 1995].

4.2.1 Speed control

The speed can be controlled through the torgug, given by equation (4.6). Since the
torque usually is not measured, nothing will be gained by estimating and controlling it
in a feedback loop [Rasmussen, 1995]. Instead, the reference valijg éan be found
from (4.6) as

2
lsgref = ————Meref. 4.7
aref 3L i f 4.7)

The speed can then be controlled for instance by a PI-controller tuned by a relay feedback
experiment. Since the speed controller is in a cascade coupling with the stator current
controller, the tuning must be performed with the intended stator current controller in
operation. The tuning will also be affected by the bandwidth of the speed sensor or
estimation.

The torque is limited by the maximum stator current allowed. The limit is found as

3ZpLlimR [y
Me,maz = % Ir2nam - Zid,ref' (48)

Anti-windup must therefore be implemented if the speed controller contains an integra-
tion.

The scheme is illustrated in Figure 4.2. The PI-controller acts on the control error
wr ref —@p. The Pl-controller outpute, v s is limited byme y,q, cOmputed from (4.8).
The torque reference. . is converted into a current referenigg .5 using (4.7).

W i
rref ¥ Pl Me, ref torque sq,ref
T_ control
N
w, Me max
N
maximal [ mR
torque
computation

Figure 4.2:Example of a simple speed control scheme.
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4.2.2 Magnetising current control

The magnetising curretit,  is governed by (4.4). The aim of the controller is to keep

impg CONstant at some predetermined value. At speeds above rated speed it may be neces-
sary to reduce this value in order to avoid saturation of the voltage supply. This situation
will not be considered here.

Since the steady state transfer function is 1 independent of physical parameters a propor-
tional controller with gaink,, will have zero steady state error if the reference value is

premultiplied by% assuming that the stator current controller has zero steady state
error. A proportional controller tuned by a relay-feedback experiment can therefore be
used.

4.2.3 Stator current control

As described in Section 4.2 a decoupling is achieved in the rotor flux oriented coordinate
system so that;; controls the magnetising current afyg controls the torque. The stator
currentsi;q andi,, are controlled through the direct and quadrature components of the
stator voltagey s andu,,, defined as

Usd

> >
|

S(Usr).

Usq

Unfortunately the equations for the currents are cross-coupled so a decoupling is neces-
sary.

Splitting (4.2) into the real and imaginary parts gives

d.. . d.

Ugd = (Rs + L;%)lsd - meL;qu + L;n%Zmlb (49)
d.. . .

Ugqg = (Rs + L;E)qu + UJmRL;'Lsd + L;nmeZmR- (410)

Inserting (4.4) in (4.9) a decoupling scheme can be identified from

d
(Rs + L;E)st = Ugq + meLfgisq - R;-(st - imR), (411)
d
(RS + L;E)qu = Ugq — meL;isd — L;nmeimR- (412)

Decoupling can be achieved by adding the feed-forward voltages

Usdf f £ - meLfgisq + R;-(isd - imR)v (413)
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Usqff = WmrLyisd + LiywmRimR (4.14)

to the outputs of the current controllerg;. andus,.. We then achieve

d..
(RS+L;E)ZSd = Usdc,
d..

(Rs + L;E)qu = ’Ll,sqc.

The stator current can therefore be controlled by for instance Pl-controllers tuned by
relay-feedback experiments. This current control system is illustrated in Figure 4.3. In
practice the values atg, is4, i g, andw,, g all have to be replaced by their respective

estimates. Anti-windup again has to be implemented due to limits in the voltage supply.

A

isd Usdff

[ \L - Usdc )L\ u
sd,refo P 'sd
isq,ref Usqc Usq

T_ Pl >
/i\sq /PUSfo

Figure 4.3:Example of a simple stator current controller.

4.3 Rotor flux estimation

In the stator current, magnetising current, and torque controllers estimates of the magni-
tude and angle of the magnetising current (or equivalently the rotoRfjyx= L,,i,,)

are needed. This section will give an example of how to estimateased on measure-
ments ofi,, ,, and possibly,.. A flux observer can be based on respectivelwibleage

model (3.34) and theurrent mode(3.35) or a combination of these. The observer based
on the current model (3.35) is:

N

i. . - R
im = (= + jwp)im + —

I I is (4.15)

Note that this model requires accurate estimateR,0andw,.. It is essentially an open
loop simulation of the motor regarding the stator current as input.
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Another observer is based on integrating the voltage model

- d¥,
s = Rgig 4.16
U is + 7 ( )
to obtain an estimate fob, and then finding,,, from
- L, - L.Lg. -
T = éws +(1- L’"%ns)zs. (4.17)

The voltage model method does not need valueR,0édndw,., but it can be very noise
sensitive especially for low frequencies due to the pure integration.

4.3.1 Closed-loop observer of Jansen and Lorenz

The rotor flux observer described in [Jansen and Lorenz, 1992)], here callellthe
observer is an example of a combination of the current and the voltage model. This
observer combines the good qualities of the current model in low speed operation with
the good qualities of the voltage model in high speed operation. The JL-observer is
shown in Figure 4.4.

| |
H | |
s — Olm !
| R 1-0 |
current model } | - |
Tttt ! Us ——=() |
s |RrLm Hre! : Y | Ly | "m
R >T_>f e ~{ ke~ Tl T
| I |
! | gr— | v---ccopoccecaaaaa r
! ?r joold ! voltage model
! r I
! |

Figure 4.4:Flux observer of Jansen and Lorenz (JL-observer).

The K- and K>-blocks constitute a frequency dependent weighting between the two
observer types. For frequencieswhereK; + K,s! is large (low frequencies), the

main emphasis will be on the current model. For + s~ 1K, = 0 the JL-observer is
exactly the voltage model observer. The idea is that at high frequencies we can exploit
the robustness of the voltage model to uncertaintidg,iandw, and at low frequencies

we can use the current model which has lower gains and therefore is less noise sensitive.
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The JL-observer can be written as the state space system:

Eji = Ajizj + Bjiym,

tm = Cixji + Djiym,

o,
T = Ag )
\Iirc
is
Ym = i )
- _KBLT K2 Kl W
Ajy=| - 0 1 ,
0 0 -2 +jw,
KyLoLs _ Kle - Rs 1 |
Bgl - Lf—f:s _Lm 0 )
LR,
= L7‘ 0 J
Cﬂ—[ LLg; 0 0}, Dle[l——LL”ZLS 0]

4.4 Speed estimation

For systems without speed or position sensors the spgadust be estimated. This
section presents two ways of doing this. Section 4.4.1 presents a simple method based
on equation (3.35). The method presented in Section 4.4.2 is based on adaptive control
theory. Section 4.4.3 presents simulation results.

4.4.1 Speed estimation from rotor equation

One way to estimate the speed is to isolate it from the rotor equation (3.35). In the
stator-fixed reference frame this gives

R, - - -
m s m 4.1
L, (@ is) dt' (4.18)

Jimwy =

In the rotor flux oriented reference frame the equivalent equation is

B tsq (4.19)

Wr = WmR — - .
Lr YmR
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Note that the last term is an expression for the slip frequency and that the accuracy of
the estimate oR,. is essential, especially at high slip frequencies. Both versions require
estimates of the flux. The bandwidth and noise sensitivity of the speed observer therefore
depends on the choice of flux observer. A flux estimate based on the rotor equation (JL-
observer withK; — oo, K5 — 00) is useless since it will always return the same speed
estimate as the flux estimate is based on due to the open-loop nature of this flux observer.
The main problems with a flux observer based on the voltage model (JL-observer with
K, = K> = 0) is that it depends on the stator resistaf;e and that it contains a pure
integration. To obtain a reasonable speed estimate a compromise between the two must
be found.

4.4.2 Speed estimation method by Kubota et al.

An alternative approach based on adaptive control theory is suggested by Kubota et al.
in [Kubota et al., 1993]. The scheme is illustrated in Figure 4.5.

Ug Induction is
motor
A
N IS -
1,1 %sc
BSC Sl C

Speed
adaptive |« |
scheme

Elesiy'd

Figure 4.5:Adaptive flux and speed estimation scheme of Kubota et al.

~

A, is the system matrix of the model based on the current estimate of the dpges.
the input matrix of the model”’ = [1  0]. G is the observer gain matrix and is chosen
so that the observer poles are proportional to the motor model poles. The state estimate
is updated by the equation
d N

d—;f; = Ayoiye + Byotis + G(is — is), (4.20)
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where the first two terms provide an open-loop simulation and the last term provides a
correction based on the stator current estimation error.

In [Kubota et al., 1993] it is shown through Lyapunov theory that the speed adaption
scheme

d . w2
7o = AcS{elim} (4.21)
wheree;; = i, — Z and thespeed estimate update gaipis any positive constant, will
make the estimation error converge to zero. Unfortunately the proof is incorrect. The
proof is based on the Lyapunov function

V =c"e+ (A,,)?/N (4.22)

wheree = z,. — 5., Ay, = &r — wy, andX is a positive constant. The time derivative
of Vis
LV =¢*e+ere+20, A, /N =
2e*herm(Ase + GC)e — 2herm(e* (Ase — Ase)Zse) + 20, wr /A =
2e*herm(Asc + GC)e+
24, g{%egim + E:nzm - imim} + 2Awr‘dr/)‘ = (4.23)
2e*herm(As. + GC)e + 24, %S{e;‘jm}-{—
280, ${5im} + 204, Gp/ 2

where it has been assumed tiat= 0. However, in [Kubota et al., 1993] the third term,
2A,, ${i%,im }, has been forgotten. It is then stated tHal’ can be made negative by
choosing so thatherm(A;. + GC) < 0, and by setting

4 o = a—Lm _qperin (4.24)
dtwr_ Ler—L?n\s €islm J- .

SinceS{u*y} = |ully| sin(Ly — Zu), whereZ(-) is the angle of a complex number, the
forgotten term will be positive whesin(/4,, — Zi,,) has the same sign as,, , which

is always true in steady state. This can be seen from (3.55) in the following way: Write
(3.55) as

C1

Tms(wy) = (4.25)

co + cwy’
wherecy, c2, c3 are complex constants (dependinggyg andaz s, but these are constant
in steady state). Then, observing that the denominator is non-zero duéto> L2,
we have

C1 C1

Ly — Ly, = £ 4 =
C2 + Cc3wy C2 + C3wy

L(eco + czwy)(co + c3wy)*.  (4.26)
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Tedious computations will show that
3{(e2 + cawy)(ca + c3@p)*} = Ay Rp(R2Ly, + w2, g Ls(Ls Ly — L2)))  (4.27)

which has the same sign ds,,. In other words the forgotten term will be positive in
steady state and probably in most other cases as well, so there is no guarantee that the
Lyapunov function will converge to zero.

The reason that the method usually works anyway, is that the speed estimate in most
cases will converge to the true value, and subsequently the state estimates will converge
too.

-45-

= 0
10 10

10 10° 10°
@ lracts]

Figure 4.6:The angle/e;; — ﬁm in steady state for the example motor.

Whensin(Ze;, —ﬁm) has the same sign @s,, , the speed estimation error will increase.
Figure 4.6 shows the angle

Leiy — Lim =
z []- 0] ((_Asc +jme)7l - (_Asc +jme)71) Bsc -
z [0 1] (_/isc +jme)7lBsc (428)

in steady state fow, = 10rad/s and®, = 15rad/s, as a function of the angular
velocity of the flux,w,,r for an example motor with the parameters in (3.57). As seen
the speed estimation error will increase whgpg < 5rad/s (regenerative mode). This

is also demonstrated by the simulation shown in Figure 4.7. The system is in steady state
atw, = 10rad/s andw,,g = 4rad/s. The estimator constants are choserzas: 0
(guaranteeBerm (As. + GC) < 0) and . = 1000.
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Figure 4.7: Simulation of the speed estimator with the system in steady statg at
10rad/s andw,,r = 4rad/s. The two figures to the left show the estimates,andi ,,
respectively, in a coordinate system rotating at the same angular velocity as the flux. The
actual currents are constant in this coordinate system and are markedle initial
estimates are marked by, The bottom figure shows the speed estimate as a function of
time. The speed estimate is seen to diverge from the actual speed.

As seen the speed estimate diverges from the true speed. Initially the current estimates
converge towards the true values, but the increasing speed estimation error causes them
to diverge eventually as well.

4.4.3 Speed estimation simulation results

Figure 4.8 shows a test of the two speed estimation schemes. The actual speed changes
from 10rad/s to 12rad/s and back again after 0.5 seconds. This is done for both a low
(2Nm) and a high 9N m) load situation. The figure shows this test for three different
versions of the rotor equation scheme (Figures A, B, and C). The JL-observer has been
used to provide the flux estimates and the difference between the three figures is the
choice of frequency weighting constaiit andK,. All three have been low-pass filtered

to reduce measurement noise. In Figure A the weighting is mainly on the current model
showing the expected reluctance to change away from the current speed estimate. In
Figure B the weighting has been chosen to give a reasonable result. In Figure C the
weighting is mainly on the voltage model. The fluctuations in the high slip case have
the frequency,,,r and are due to the almost pure integration which causes an almost
constant offset error. This causes the fluctuations when the nonlinear transformation from
im 104, R iS performed.
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Figure 4.8:Speed estimation at low and high load. In Figure A the weighting is mainly
on the current model. In Figure B the weighting has been chosen to give a reasonable
result. In Figure C the weighting is mainly on the voltage model. Figure D shows the
same test for the method by Kubota et al.

Figure D shows the same test for the method by Kubota et al. with the observer poles at
1.2 times the system poles. The performance is similar to the one obtained in Figure B. It
is found that performances similar to Figures A and C can also be obtained by changing
the ratio between observer and model poles.

Instantaneous changes in the speed are not realistic. Figure 4.9 shows a more realistic
simulation where the speed is controlled by a rotor flux oriented controller with speed
measurements available along where the speed reference is changed in steps. Also plotted
is the speed estimate from Kubota’s method. Figure 4.10 shows the speed estimation
error.
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Figure 4.9:Speed changes performed by rotor flux oriented controller with speed mea-
surements, and the speed estimate of Kubota's method (dashed)
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Figure 4.10:Speed estimation error

Notice that the speed estimation error resulting from the steps is practically the same for
low and high speed. This indicates that the main problems for the flux observer caused by
speed uncertainty will be greatest at low speeds since a change of for exdmpie s

causes a bigger difference in the model for low speeds than for high.

Figure 4.11 shows a similar simulation, where the speed reference sweeps slowly from
—15rad/s to 15rad/s and back again. Every 2 seconds the load changes in a step from

3Nm to TNm or back. The figure also shows the speed estimation. Figure 4.12 shows

the speed estimation error.
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Figure 4.11: Speed sweep with step changes in load and speed estimate of Kubota’s
method (dashed).
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Figure 4.12:Speed estimation error

4.5 Summary

In this chapter the rotor flux oriented control method has been described. The controller
consists of a cascade coupling with a stator current controller in the inner loop. The outer
loop controls the shaft speed and the magnitude of the rotor flux. Examples of how to
construct these controllers were given.

The control method is observer-based and requires an estimate of the rotor flux. An exam-
ple of a flux observer, the JL-observer presented in [Jansen and Lorenz, 1992], was given.
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If a speed or position measurementis not available it is furthermore necessary to estimate
the speed. An example of a speed observer, the one presented in [Kubota et al., 1993],
was given. It was shown that under certain conditions the observer will diverge. How-
ever, in normal operation the estimate will usually converge to the correct value assuming
that the correct motor parameters are used.



Chapter 5

LINEAR
PARAMETER
VARYING FLUX
OBSERVER

In recent years efficient ways to design controllers for a particular type of non-linear
systemslinear parameter varyingLPV) systems, have been developed.

This chapter will review the LPV synthesis method in [Scherer, 2001] and apply it to the
design of a flux observer for the induction motor. In Section 5.1 the historical background
of LPV control is reviewed. In Section 5.2 robust quadratic performance analysis of
LPV systems is discussed. In Section 5.3 the so-called full block S-procedure controller
synthesis is discussed. Section 5.4 discusses how to obtain a discrete-time version of the
results in Sections 5.2 and 5.3. This turns out to be surprisingly simple.

Considering the speed. as a time-varying parameter allows writing the induction motor
model obtained in Section 3.3.1 as either a real fourth order LPV model or as a complex
second order LPV model. This is due to a special symmetry in the transfer function.
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Section 5.5 provides theoretical justification for the fact that controllers and observers
for this type of system can be assumed to have the same type of symmetry without loss
of performance.

In Section 5.6 a discrete-time flux observer for a wide range of speeds is designed using
the theory described in the previous sections. The observer is tested on the laboratory
setup. Even though the performance is not significantly better than the JL-observer de-
scribed in Section 4.3.1 it is worth noting that practically no tuning had to be done.

5.1 LPV background

In the famous DGKF paper [Doyle et al., 1989] state space solutions for the standard
suboptimalH ., problem were given, that is, for an LTI state space system and a given
~v > 0, find all controllers such that th# ..-norm of the closed-loop system is less
thanvy. The solution was found by solving two coupled Riccati equations. In two
independent papers [Gahinet and Apkarian, 1994] (continuous and discrete time) and
[lwasaki and Skelton, 1994] (continuous time only) the problem was reformulated into
three coupled Riccathequalitiesyielding an LMI problem. There were many advan-
tages to this approach. The DGKF solution required several assumptions on the system
that were not inherent to the problem, but rather to the solution method. Most of these
assumptions could be removed with the inequality formulation. Furthermore it became
more obvious how to extend the resullittear parameter varyingLPV) systems.

Definition 5.1 (Continuous time linear parameter varying system, LPV system)

A continuous time linear parameter varying system is a system which can be written on
the form

& A(B(t))z + B(O(t))u
y = C0(t)z + D))y,

wheref is a bounded time-varying parameter vector which can be measured online.

(5.1)

Definition 5.2 (Discrete time linear parameter varying system, LPV system)

A discrete time linear parameter varying system is a system which can be written on the
form

Try1 = A(Gk):z;k +B(0k)uk
yr = COr)rr + D(Or)us,

whered is a bounded time-varying parameter vector which can be measured online.

There are two important points to make about the parameter vector. Firstly, it is not
necessarily known a priori but can be measured in real-time, so traditional time-varying
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control methods based on future as well as past values cannot be used. Secondly, the
variations can be fast, so traditional gain scheduling between a finite grid of linearised
operation points will not necessarily work.

These facts were pointed out in [Shamma and Athans, 1992], where it was also suggested
that the problem might be solved by designing a controller with the same type of struc-
ture, i.e. anLPV controller An early suggestion of a controller design of this type is
given in [Becker et al., 1993]. The synthesis method is convex, but unless the parameter
dependence is affine, it requires an infinite number of constraints.

If the parameter vector enters the state space matrices in a rational manner an LPV system
can be written as an LFT as illustrated in Figure 5.1, whereutiwertainty blockor
residual gain$ A is a matrix function of(¢) andM is an LTI system. (Despite the term
"uncertainty block”,A is assumed to be fully known in real time, but it is uncertain in

the sense that it is not known a priori.)

2y Y
y M u

Figure 5.1:LPV system on LFT form.

In two independent papers, [Apkarian and Gahinet, 1995] (continuous and discrete time)
and [Packard, 1994] (discrete time), controller synthesis for LPV systems on the LFT
form were given in terms of LMIs. The idea was to provide the controller with a copy of
the uncertainty block as illustrated in Figure 5%2,(¢) = A(t).

rEny
M

Yy u

ZC . We

Figure 5.2:LPV system with LPV controller.

If z, can be reconstructed from the measuremgntien by setting. = z, we will
havew. = w,,. w. can then be used to compensate for the effects,06n the system.
But even if z,, is not fully known, some of the effects can still be compensated by an
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observer-based estimate.

The methods in [Packard, 1994, Apkarian and Gahinet, 1995] are based on the scaled
Small Gain Theorem. The scaling is donetyltipliers J, which have to commute

with A, i.e. JA = AJ for all possibleA. This condition greatly limits the available
multipliers thereby introducing conservatism. In addition these multipliers allowfor

to be complex even if it is actually known to be real introducing further conservatism.
Furthermore the Small Gain Theorem is more conservativerttarst quadratic perfor-
mancegZhou et al., 1992] (Robust quadratic performance is discussed in Section 5.2).

Under the assumption that the systenp@ytopicthese problems are all dealt with in
[Apkarian et al., 1995]. The system being polytopic means that the matrix

A(6) B(9)
[0(0) D(e)] (52)

belongs to the convex hull of a finite number of matrices. The controller resulting from
the synthesis is also on polytopic form, i.e. the controller matrices are found as a convex
combination ofvertex matrices

Staying in the LFT setting [Helmersson, 1995] takes realnegs imito account using a
structured singular value approach, but due to the frequency domain nature of the result
the improvement is only useful for time-invariant parameters.

In [Scorletti and Ghaoui, 1995] the analysis results in [Rantzer and Megretski, 1994] (for

journal versions see [Scorletti and Ghaoui, 1998] and [Megretski and Rantzer, 1997]) are
extended to synthesis. By using skew-symmetric multipliers the realness of the time-

varying parameters are taken into account. However, the multipliers are still required to
be block diagonal, maintaining a lot of conservatism.

In [Scherer, 2001] the controller synthesis problem for systems with rational parameter
dependence is solved with full block multipliers. In other words, the conservatism due to
the block diagonal multipliers is removed. The result has the least possible conservatism
if we allow for arbitrarily fast parameter variations. The only downside to the method is
that thescheduling functionA ., now has to be a nonlinear function Af

This chapter will review the synthesis method in [Scherer, 2001] and apply it to the design
of a flux observer for the induction motor. In Section 5.2 robust quadratic performance
analysis of LPV systems is discussed. Assuming that the state space matrices depend on
# in a rational manner a full block S-procedure is used to transform between the LPV
on the form in (5.1) and an equivalent system on LFT form. In Section 5.3 full block
controller synthesis is discussed. These two sections contain no new contributions except
for Lemma 5.12, which provides a partial solution to some of the numerical problems
associated with Lemma 2.9. Furthermore Scherer’s results are extended to complex sys-
tems. Careful inspection reveals that this is mainly a question of substituting transposed
(-T) with complex conjugated transposet) (
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5.2 LPV analysis

This section reviews the robust quadratic performance (RQP) analysis method that is
the basis for the controller synthesis described in [Scherer, 2001]. First the concept of
RQP is introduced. Then the equivalence between LPV systems on the form (5.1) and
a generalised LFT representation is discussed. The latter provides a separation into an
LTI system and time-varying parameters which is essential to the following section on
controller synthesis.

5.2.1 Robust quadratic performance

Consider the LPV system

3 A(A)E + B(A)wy
zp = C(A)E+D(A)wy,
where the state space matrices dependan a linear fractional manner, which we will

discuss laterA is a time-varying matrix belonging to a compact and path-connected set
A.

(5.3)

Definition 5.3 (Robust quadratic performance,RQP)

We say that the system (5.3) achievasust quadratic performanedth performance
index

i S
PP = Pp 2 [gf RI;,:I ’ RII Z 0 (54)
P

e Positive constant& anda exist such that
€)1 < |I€(ko) || Ke~@ =% for t; > to and all A € A if w,(t) = 0.

e The quadratic performance specification

t1

3500 [ [0 5017, [’“((f))] dt < —¢ / wp(8) w0, ()t

to to

holds for allt; > to and all A(t) € A if £(tg) = 0.

The first condition guarantees exponential stability. The second condition provides a
performance specification depending on the choicB,ofFor instance the choice

2
—v°I 0
w0
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provides the,-induced norm bound

sup |I2]2 -
w0 ||w]]2

Other possibilities are passivity and positive real constraints. RQP has been shown to be
less conservative than small gain conditions [Zhou et al., 1992].

RQP analysis can be formulated as a (possibly infinite-dimensional) LMI:

Theorem 5.4[Scherer, 1999](Robust quadratic performance analysis)

Suppose there exist &l > 0 satisfying the LMI

[ I 0 ] 0 X‘ 0 0 [ I 0 ]
A(A)  B(A) X 0| 00 A(A)  B(A)
0o I 00]Q, S, o 1 [0 69
C(A) D(A) 0 0[S R, | |C(A) DA

for all A € A and with P, satisfying (5.4). Then the system (5.3) achieves robust
quadratic performance with performance indéx

Proof: A proof by standard dissipativity arguments is given in [Scherer, 1999]. A proof
for the discrete-time version is given in Section 5.4<2.

5.2.2 Linear fractional dependency

Now consider the following LPV system on a generalised LFT form:

3 Al B, B. B, ¢
2y Cu | Dyy Duyc Dup Wy,

= 5.6
Zc Ce | Dew  Dee Dcp We ( )
Zp Co | Dpu Dpc Dpp Wp

with a parameter dependency given by

Wy,
We . . Sal (A)

- € Su(A) =im S, (A) =im S (D) ) (5.7)
Ze

where¢ € Crtne 2, € C=v 2, € Cke 2z, € C*»,w, € C' w, € C™, and
wp € C™». This type of parameter dependency is more general than what is usually
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seen in LPV literature. 15,5 is nonsingular we have a standard feedback loop

H = Sa1(A)Su2(A) ! [w] ‘

Zc We

If we haveS,; (A) = A andS,2(A) = I we recover the standard LFT representation.
This more general representation allows for instance for affine parameter dependence. It
turns out in the synthesis problem, that even if the plant has a standard LFT dependency,
it may still be necessary to let the controller have the more general form in order to avoid
conservatism [Scherer, 2001].

Notice that the interconnection of the system in (5.6) and the parameter dependency in
(5.7) is only well-posed if [Scherer, 2001]

I 0
SeAy@im | 0 T | = grewtmetnathe ya € A,
DUU DUC
Dey  Dpp

uw DUC

In the standard LFT case this simply amount$ te [
forall A.

] A being non-singular
cu PP

If we would like to examine RQP for the system (5.6)-(5.7), we need to put it on the form
in (5.3). The following lemma from [Scherer, 2001] provides a way to do this.

Lemma 5.5Assume tha$, (A) is a continuous function. If the interconnection of (5.6)
and (5.7) is well-posed, then

Saz _ |:Duu DUC:I Sal

Dew  Dyp

has full row rank for allA € A. Therefore

T
D,y D
Sun [saz— [7;:; D;j sal]

is continuous iMA. Furthermore the system (5.3) with

[A(A) B(A)] _ [A B,,] .

C(A) DAY (G D
.1.
Bu Bc Duu Duc C’u DUP
on ool o ] e B eo

has the same trajectories f§(t), w,(t), andz,(t) as (5.6)-(5.7).
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In other words the system (5.6)-(5.7) is equivalent to (5.3) with (5.8).
The following theorem provides a way to check for RQP for the LFT system.

In order to align the notation with the one in the following section define the following
subspace by swapping coordinatesSpf

S1u(A)
S m |20
(A)

Theorem 5.6(Full block S-procedure for LPV system) [Scherer, 2001]
Robust quadratic performance for the system (5.6)-(5.7) is achieved if the following two
equivalent conditions are fulfilled:
1. The interconnection (5.6)-(5.7) is well-posed and there exists an0 such that
(5.8) satisfies (5.5) for al\ € A.

2. dim(S,(A)) > ny + k. and there exis®’ > 0 and a Hermitian multiplier

Q S | Q2 Si2
S* R | S% Ru

P2 >00nS.(A), VAE€A, 5.9
Qi S | @ S ) &9
sz sz Sz* R,
satisfying
* T ro X 0 0 0 0 0 0 W I 0 0 0 17
ko X 0 0 0 0 0 0 0 A B, B. B,
* 0 0 Q S Q12 Sio 0 0 0 I 0 0
ko 0 0 S* R S31 R 0 0 Cuo Duy Duc Dup <0
% 0 0 QIQ 521 Qz SQ 0 0 0 0 I 0 )
ko 0 0[Sy, Ri,| S5 R 0 0 Cc Dew Dee Dep
* 0 0 0 0 0 0 Qp Sp 0 0 0 I
* J L 0 O 0 0 0 0 S, R, J L Cp Dpu Dpe Dpp |
(5.10)
Proof:

We have already seen that 1. guarantees RQP. The equivalence of 1. and 2. follows from
the so called full block S-procedure found in [Scherer, 2001], where it is given for real
systems. Careful inspection reveals that extending it to complex systems is merely a
question of substitutingd’ — .* andR — C. «
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The main advantage of using 2. instead of 1. is that the parameter dependency only affects
the choice of multipliers. This turns out to be very helpful in the synthesis to follow in
Section 5.3.

5.3 LPV controller synthesis

This section reviews the LPV controller synthesis described in [Scherer, 2001]. First the
interconnection of an LPV system and an LPV controller on the generalised LFT form
described in the previous section is described. This leads to a closed-loop system on the
same form. The Elimination Lemma for quadratic matrix inequalities (Lemma 2.9) is
then applied in order to turn the analysis equation for the closed-loop into LMI synthesis
equations. A partial proof is then given providing a construction for the controller. The
synthesis LMIs are infinite-dimensional. In Section 5.3.3 an example is given of how to
make them finite-dimensional. Finally Section 5.3.4 discusses how to overcome some of
the numerical problems associated with solving the quadratic matrix inequality.

5.3.1 Closed-loop system

Consider the LPV system

& A|B, B, B T
Zu _ Cu | Dyu Dup E, Wy (5 11)
Zp Cp | Dpu Dpp Ep Wp
Y C | F, F, 0 u

with z € C*,u € C™ andy € CP representing states, inputs and outputs.c C*w»
contains disturbance, noise, and command sigrgls. C*=» is the performance output,
i.e. the signals to be controlledv,, € C™+, 2, € C"= are the channels connecting
the time-varying parameters ik with the nominal system described by (5.11). Let the
time-variations be given by

{lz“—:} € 8(A) =im$(A) = im g:gi; : (5.12)

This type of parameter dependency was discussed in Section 5.2.2. Assume that the
time-varying parameters are known to be boundedby A.

Remark 5.7As seen the system is required to be strictly proper in the channel from
controller inputu to the measuremenis In Section 2.4 it was discussed what to do
when presented with a non-strictly proper system.
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As discussed in the introduction to this chapter, the main idea behind LPV control is to
let the controller have online access to the time-varying parameters. If both the system
and the controller have standard LFT parameter dependency this can be represented as
in Figure 5.3.

Zu A Wy,
oAl
Zec J We
2p M Wp
y U
K

Figure 5.3:Expanding the time-varying block\, by a scheduling functior)..

Remark 5.8This could be viewed as a robust synthesis problem: Design the controller
K such that the closed loop system is stable and fulfills some performance specification
forany A € A. This would normally be a non-convex problem except for special
cases such as state-feedback. Luckily, due to the particular structure of the problem,
copying A into A, will allow a wider set of multipliers, making the problem convex
with some conservatism. Lettiny, be a nonlinear function ok will even remove this
conservatism.

Now let the controller be given by

jfc Ac | Bcl BcZ Tc
u - Ccl Dcll Dcl2 Yy ) (513)
Zec Ce2 | Dea1 D2 We

wherez, € C*, 2z, € CF, andw, € C™-. Let thecontroller scheduling subspade
given by

(5.14)
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We then have a closed-loop system on the form (5.6) with

- A 0| B, 0| B
Al B, B | By 00/ 0 o0
Cu Duu Duc Dup — Cu 0 Du 0 Dup +
Cc Dcu Dcc Dcp 0 0 0 0 0
Cp | Dpu Dype | D
L P p p pp Cp 0 Dpu 0 Dp
[ 0 B 0
I,, 0 0 A, B B 0 I..|0 oo
0 E, O Coi D1 Do c 0|F, 0 |F |, (515)
0 0 I Ce Dei Deos 0 0|0 In]|oO
| 0 E, 0

and a parameter dependency given by (5.7), with

’VSM(A)‘l [Sl(A) 0

S1e(A) | 0 Se1(A)
Sou(A)]  [S2(A) 0 )
Sa2c(A) 0 Sea(A)

We can now analyse the stability and performance of the closed-loop system by directly
inserting in Theorem 5.6. Notice that

Se(A) = S(A) x Se(A).

5.3.2 Controller synthesis

Assuming that (5.9) defines a convex set of possible multipliers, analysing the stability
and performance of the closed-loop system by testing the feasibility of (5.10) is a convex
problem since the only unknown¥,andP,, enter linearly. In connection with synthesis

it becomes a non-convex problem due to the presence of products of the multipliers
and the closed-loop matrices. However, due to the specific structure of the problem,
by applying the Elimination Lemma for quadratic matrix inequalities (Lemma 2.9), the
synthesis problem can be cast as an LMI. This is due to the following lemma, which has
been instrumental in most LPV results in the literature:

Lemma 5.9(Hermitian multiplier extension) [Packard, 1994]

LetX > 0,Y > 0 € H**", and letr be a positive integer. Then there exist matrices
X, € Cv*7", X3 € H"*" such that

-1

_ [Y *] (5.16)

* *

[X X5

X X,
X; X3]>Oand[ ]

X X,
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if and only if
X I, X I,

> < .
[In Y] > 0 and rank [In Y] <n+r (5.17)
Proof: See [Packard, 1994] or [Helmersson, 1995].
Lemma B.3 gives a construction for the full rank Hermitian case.

Before giving the theorem for controller synthesis we need the following assumption on
the performance index:

iIl(Pp) = (dlm(Qp)a 07 dlm(RP))a

which is needed in order to fulfill the inertia condition in the Elimination Lemma. This
condition is non-restrictive, since most sensible choices of quadratic performance objec-
tives do indeed fulfill this.

Partition the inverse of the performance matfjxas
L [@ S
Pl = [gf P (5.18)
P D.
and define the multipliers

AQS "AQ
SEE A

S

partitioned to conform witt§ (A).

Theorem 5.10(LPV controller synthesis) [Scherer, 2001]

The following two statements are equivalent

1. Acontroller on the form (5.13) exists such that the closed loop system (5.15) admits
anX > 0 and a Hermitian multiplierP, satisfying (5.9) and (5.10).
2. There exist Hermitian X,Y and Hermitian multipliers

P >00nS(A)andP <0onS(A)*t, VAeA (5.20)

satisfying the linear matrix inequalities

HHE -
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- -k - - -

x 0 X|oo| 0o I 0 0
x| | X 0jJoo0] 00O A B, B,
x 00[Q S| 00 0o I 0
v v 0 (5.22
L 0 0 S* R 0 0 Cu Duu Dup < ( )
x 00[00]Q S 0 I
L «] L oo0o] 00 |S R ][ Cy Dpu Dypp |
'ﬂ*'oy ool oo ([ -4 -c; -C; ]
x| |Y 0Joo0 | 00 I 0 o0
x 00[Q S| 00 -B; -D., -D;
o* ¥ 2 v TTuw T | g0 (5.23
% 0 0|8 R|[ 00O 0 I 0 >0 6.2)
x 00[00/[Q S -B: -D;, -Di,
*J L 00|00 |8 R, J[ 0 0 I
where
o=[B* B E], ¥=[C F. F) . (5.24)

Proof: For the full proof see [Scherer, 2001]. Here only a constructive proof ef 2.
will be given with the following assumptions.

We assume that the system is on the standard LFT-form, i.e.
wy, (1) = A(t) 2y () (5.25)

or equivalently

and thatA is square so that
A
Nzy = Nwu = Nuy-

Then we have

We furthermore assume that

in_(P)=n, (5.26)

which simplifies the proof greatly. With this condition it is possible to let the controller
be on the standard LFT form as well. The scheduling function will however still have to
be a nonlinear function aA.
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The proof will be in the form of a controller construction algorithm comprised of the
following steps. First the extended multipli&; is constructed fron® and P and X

is constructed fronX andY. Then a controller scheduling function is constructed to
assure (5.9). The LTI part of the controller can then be found using Lemma 2.9. Assume
now thatP, P, X andY satisfying (5.20)-(5.23) have been found.

Extension of multipliers ~
By compactness oA and by the strictness of (5.20) we can, if necessary, pefuiim
render it nonsingular. Define

N&2p_pt (5.27)
and letU be an orthonormal basis for the imageMfsuch that

N_ 0

U*NU =
[0 Ny

] , N_<0, N;>0. (5.28)
Choose the scheduling function dimensiongas- dim(N,) andm, = dim(N_) and
define

[V_(A) Vi(A)] =S(A)yU (5.29)
with V_, V. havingm,, k. columns respectively. By defining the extended multiplier as

p U

P, = _
U* (U*NU)™*

(5.30)

we find by Lemma B.3 and Schur complement (Lemma 2.6) Bha$ nonsingular and

Pl= [P *] . in(P,) = in(U*NU) + in(P) = (me + nu, 0, ke + n4). (5.31)

€ * %

To constructY we pick Z, as an orthonormal basis of the image¥f- Y —! and set

X Zg

X =
zy (Z;(X -Y™1)Z,)

. (5.32)

By Lemma B.3 and Schur complement (Lemma 236will be positive definite and
Y x
X1 [ ]

* *
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Scheduling function

Defining S.(A) = [AC‘;A)] we need to find @\, such that

P, >00nimS(A) x im S.(A), VA€ A. (5.33)
With the above definitions this can be written as

[ S(A)*PS(A) V_(A)AL(A) + Vi (A)

A (A V_(A)* + Vi (A)* AC(A)*N:lAC(A) n N;1 > 0. (5.34)

Using Schur complement and a congruence transformation this is equivalent to
[ Nt AC(A)*] B
A.(A) —-N_
[« ] [S(A)*PS(A) — V_(A)N_V_(A)*] " [Vi(A) V_(A)N*] >0. (5.35)
By choosing
Ag(A) = N_V_(A)* (S(A)*PS(A) — V_(A)YN_V_(A)*) ' Vi (A) (5.36)
to make the off-diagonal blocks equal to zero, inequality (5.35) is equivalent to

NT' = Vi (A)* [S(A)*PS(A) — V_(A)N_V_(A)*] " V(A) >0
and

—N_ — N_V_(A)* [S(A)*PS(A) — V_(A)N_V_(A)*] " V_(A)N* > 0.

These are equivalent to

[ A Vi(A)

Vo(A) S(A)*PS(A) — V(A)NV(A)*] >0

and

~N_ N_V_(A)* 0
[V_(A)N_ S(A)*PS(A) _V_(A)N_V_(A)*] ~

by Schur complement arguments. By Schur complement the latter is equivalent to
S(A)*PS(A) > 0, which is always true due to (5.20). The first inequality is by Schur
complement equivalent to

S(A)*PS(A) — V_(A)N_V_(A)* — Vi (A)N,. Vi (A)* = S(A)*P1S(A) > 0,
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where the equality follows from the definitions &f, V_, andV,. From Lemma 2.7,
(5.20), and (5.26) we have

in(P~|s(a)) = in(P) — in(Plsayr) = (4, 0,n4) — (n4,0,0) = (0,0,ny),
i.e. the first inequality is also always true.

Controller construction

Once the multipliers have been constructed and the fulfilment of (5.9) has been assured
through (5.36), the controller matrices can be found as a solution to (5.10). This is a
guadratic matrix inequality in the form given in Lemma 2.9, which can be seen after
some rearrangements of rows and columns and by observing that

- 1
0 I, 0 0 0 0
B* 0 E; 0 E; =[P, (5.37)
0 0 0 I, 0 0
o3
and
vy
}7
0 I, 0 0 0 0
cC 0 F, 0 F, = |y, (5.38)
0 O 0 In, 0 0
U3
where
®, Uy
P, =@ and Uy| =W, (539)
2 s

The inertia condition (2.10) is satisfied if the inner factor in (5.10) has negative inertia
(ns + ne + Ny + me + nyyp) and positive inertign, + ne + ny, + ke + nyp). Thisis
clearly fulfilled since

. ({0 X

in (X 0) = (ns+ne0,ns +n.), (5.40)
in(]:)e) = (nu +me,0,n, + kC)a (541)
in(P,) = (Nwp,0,mzp). (5.42)
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Remark 5.11The proof given here is less general than in [Scherer, 2001]. For instance,
the inertia condition (5.26) ot is not necessary, but the constructive proof is a lot
more complicated, and the scheduling function is given in a less explicit manner. The
condition is non-convex, so it is not easy to enforce. However, practical experience
shows that it often is fulfilled anyway, at least if enforcing the convex inertia restrictions
discussed below in Section 5.3.3.

To summarise, assuming that the parameter dependency is given by (5.25), the algorithm
for finding an LPV controller is as follows

e Solve the LMIs (5.21)-(5.23) with the additional conditions (5.20) and (5.26) to
obtainX, Y, P,andP.

e ConstructP, as in (5.30) andt’ as in (5.32).

e Solve the quadratic matrix inequality (5.10) to obtain the controller matrices.

e The controller is now given by (5.13) with, = A.z., whereA. is given by
(5.36).

5.3.3 Finite dimensional global solution

SinceA usually has infinitely many elements, (5.20) poses an infinite number of con-
straints onP and P. Let us again consider the LFT case. Then (5.20) is equivalent
to

[ﬂ [g f%] [?] > 0and [—IA*]* [g fz] [_i*] <0, (5.43)

Let us assume thak can be described by

=Co(d,), A, ={) LAK;:A; €A},

i=1

[

whereA; are finite sets and;, K; are matrices of full column rank. Since (5.43) is
not linear inA it is necessary to introduce constraints Brand P in order to have
(5.43) onA implied by (5.43) on the finite generator s&t. EnforcingQ < 0 and

R > 0 is sufficient to have this implication [Scherer, 1999]. Notice that if the parameter
dependency is affine, i.®,,, = 0, then the(2, 2)-block of (5.22) isQ +D;,,, R, Dy, < 0.

Due toR, > 0 this impliesQ < 0. Similarly (5.23) impliesR > 0, so in the affine
parameter dependency case there is no need for conservatism.

In the general rational case the least conservative constraints would appear to be

L:QL; <0, K!RK;>0, Vi€l .,n.
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With these constraints, (5.43) oA, implies (5.43) onA [Scherer, 2001]. By
adding these constraints, the synthesis inequalities (5.21)-(5.23) are therefore a finite-
dimensional LMI, which can be implemented in a standard LMI solver as described in
Section 2.3.1.

5.3.4 Solving the quadratic matrix inequality

The proof of Lemma 2.9 in Appendix B on page 173 provides a way to construct a solu-
tion to the quadratic matrix inequality (2.11). Numerical problems may arise, especially
if P is ill-conditioned. The only inversions in the proof which need to be performed are
the inversions o6*ILS in equation (B.19) and of;. The following lemma provides a
choice of L that will makeS*ILS ~ —1I, making it easy to invert. Refer to the proof in
the Appendix for definitions of the matrices.

Lemma5.12LetUp [Sp 0] V5 = B be a singular value decomposition Bf With
the definitions in the proof of Lemma 2.9 and with

| Jre| e [T I
J- [sz J22] _— [C] P[C] Ve, (5.44)

partitioned saJy, € H(™m—cz)*x(m—cz) choosing

I 0 " —
L=Vp [0 Q], QQ* = —J3;' (5.45)
will provide
S*IIS = —1. (5.46)
. D12 0
Proof: Insertin = K*CV; and
g[Dzz] b [Q]
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we have
0 T 0
SIS = T ol I o1l =
ROV [Q] CVs [Q]
[0 0
Va o) R ) _
ovalg)|  veg)
[g] J |:602] =Q"J2Q = —1. (5.47)

The existence of @ fulfiling QQ* = —J," follows from S*IIS < 0 = Jy; < 0. <

Of course finding a suitabl@ is no more numerically tractable than invertidg, but
the point is that it does not have to be exact, an approximate solution will still make
inversion ofS*ILS well-conditioned.

5.4 Discrete time controller synthesis

When a model has been obtained based on physical considerations, it will be usually
in continuous time. On the other hand, the controller usually has to be implemented
in discrete time. There are two ways to do this. Either the controller is designed in

continuous time and then discretised, or the model is discretised first, and a controller is
then designed in discrete time.

Some of the advantages and disadvantages of the first method (controller discretisation)
compared to the second method (model discretisation) are:

e Since the real plant operates in continuous time, stability and performance require-
ments are more naturally expressed in continuous time.

e The optimal sampling rate may depend more on the controller dynamics than on
the plant dynamics. If the sampling frequency can be chosen freely, then it might
be better to determine this after the controller synthesis.

e On the other hand, if the sampling frequency is given beforehand, then controller
synthesis in continuous time might result in a controller with very high gains or
unstable open-loop dynamics, which could result in the closed-loop behaviour not
being preserved when implemented in discrete time. Limitations on the sampling
frequency will be taken into account with model discretisation.
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¢ Time delays can be modelled easily in discrete time, whereas in continuous time
approximations such as Padé approximants (see e.g. [Franklin et al., 1994]) must
be used.

e Depending on the type of parametrisation, it might be necessary to perform the
discretisation of the controller at each sample. This may be computationally de-
manding.

e On the other hand, discretisation of a continuous time model with a simple
parametrisation may result in a discrete time model with a more complicated
parametrisation.

No matter which of the two ways is chosen, a discretisation has to be performed. Dis-
cretisation of LPV systems is less trivial than discretising LTI systems, since the system
changes from sample to sample. Section 5.4.1 discusses discretisation of LPV systems
on the LFT form. If the model is discretised, a discrete time version of the theory in Sec-
tions 5.2-5.3 is needed. Section 5.4.2 gives the discrete time version of robust quadratic
performance. Section 5.4.3 describes LPV synthesis for discrete time synthesis. Finally,
Section 5.4.4 discusses a few issues of discrete time controller design and implementa-
tion.

5.4.1 Discretisation

In [Apkarian, 1997] some suggestions on discretisation of LPV controllers are given.
One of the main problems is that the controller has to be discretised at each sample,
which is not necessarily feasible in real-time. If discretising the model instead, this will
not be a problem. On the other hand, it is unclear how to contain the infinitely many
models obtained at different parameter values in a simple LPV representation.

Fortunately, the LFT representation allows for a simpler alternative due to associativity
of the star product. Define

o[ 1 VT
bl — \/TSI %Ia

whereT is the sampling period. A trapezoidal approximation (or bilinear transforma-
tion) of the continuous time system

MR ElH

Tr+1| A B T
[ Y ] _Dbl*[(] D] [“k]

is then given by
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Now consider the LPV system (5.11) with, (t) = A(t)z,(¢) and write this as

, A|B, B B,
z ¢, | D,y E, D i
— p pp P pu A . 5.48
“ c|F o F |7 “r (5.48)
Y Cu | Dup Eu Duu
From the associativity of the star product we have
A| B, B B,
C, | D E, D
D P Dp P pu Al =
"Nl el E o B |7
Cu Dup Eu Duu
A| B, B B,
C, | D E, D
D * p pp D pu *A.
““'c|F, 0 F,
Cu Dup Eu Duu

Since the inside of the bracket on the right hand side is constant, it needs only be com-
puted once, and the LFT structure is maintained.

A(t) is replaced byA, = A(ETs). Notice that an underlying assumption is
A(t) = A(kTs), forkTs <t < (k+ 1)Ts.

5.4.2 Discrete time analysis

Consider the discrete time version of the LPV system (5.3):
b1 = A(Aw)&k + B(Ar)wpr
Zpk C(Ak)&k + D(Ag)wp,k-

Notice that it is an underlying assumption that the parameters are constant during the
entire sampling period from tim&T’s to (k + 1)T, whereT is the sampling period.

(5.49)

We will also define robust quadratic performance for discrete time systems:

Definition 5.13 (Robust quadratic performance,RQP)

We say that the system (5.49) achierasust quadratic performaneéth performance
index

Pp — P* é |:QP

> .
s |5 R,,] , R,>0 (5.50)
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e Positive constant& anda exist such that

1€k || < [|€ko 1K e=*1=50) for ky > ko and all A € A if wy,j, = 0.

e The quadratic performance specification

kl kl
w
E>0: 3 (w2 Pp[ ””“] <Y Wl pwp, (5.51)
k=ko b k=ko

holds for allk; > ko and all Ay, € A if &, = 0.

We can now formulate the discrete time equivalent to Theorem 5.4. A similar result for
thel»-induced norm was given in [Doyle et al., 1991].

Theorem 5.14(Robust quadratic performance analysis)

Suppose there exists &n > 0 satisfying the LMI

[ I 0 1 X 0‘ 00 [ I 0 }
A(D) B(A) 0 x| 00 |[AQ) B
0 I 00 |Q S, o 1 |<°0 %)
c(A) D(A) 00 | S R ||Cc(a) D)

for all A € A and with P, satisfying (5.4). Then the system (5.49) achieves robust
quadratic performance with performance index

Proof: Letw, ;, = 0in (5.49) and choose
Vi = §X&,

as a Lyapunov candidate for the unforced system. The difference from sample to sample
is

Vit1 — Vi = AA) XY A(A)Er — §p X ks

which implies that the system is uniformly exponentially stabld (A)* X A(A) < X.
But this is immediately deduced from the upper left block in (5.52), which can be written
as

A(A)* XY A(A) — X + D(A)*R,D(A) < 0.

SinceR,, > 0itis seen that ift’ renders (5.52) satisfied, the unforced system is uniformly
exponentially stable.
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Furthermore, due to the strictness of (5.52), we can add a small perturbasiof} % |
to the left-hand side of the inequality without rendering it unsatisfied. Multiplying from

the left and right by[wgk ] then gives

p.k

] Polaain ™ s el o]

T Tt o] 2L o] (4] T 0L <

which reduces to

* Wy k i Wy, k "
(€k+1 - fk) X (€k+1 - fk) + [Zp’k] Pp [an] + EWp, 1, Wp,k <0.

D,k Dk

Summing fromk = kg to k = k; with &,, = 0, & > 0 then implies (5.51).<

Notice that the only difference between Theorems 5.4 and 5.14 is the block containing
X. It turns out that this change can be carried through all the way to the synthesis LMIs.

Consider the discrete time version of the closed-loop LPV system (5.6) on LFT form

glc A | Bu Bc Bp glc
Zu,k Cu | Dyy Dyc Dup Wy, k
, — ’ 5.53
Ze,k Ce | Dew  Dee Dcp We, k ( )
Zp,k Cp | Dpu Dpc Dpp Wp,k
with a parameter dependency given by
€ S (Ag) =im Sy (Ag) = im , (5.54)

where¢ € Ctne 2, € C=v 2, € Cke 2z, € C*»,w, € C* w, € C™, and
wy € Cer,

The trajectories of (5.53) are then the same as for (5.49) with (5.8). Furthermore the full
block S-procedure providing an RQP test for the LFT form is exactly as in Theorem 5.6
except for the change of the block containikig

5.4.3 Discrete time synthesis

As discussed in the previous section, the only difference between the continuous and

discrete time versions of RQP analysis of LPV systems is the block wh%{% is 0]
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in continuous time anc{_OX 2}] in discrete time. Since these two blocks have the

same inertia, we can still apply the Elimination Lemma for quadratic matrix inequalities
(Lemma 2.9). Furthermore, the annihilators still cancel the same rows and columns as in
the continuous time case. This means that it is again the upper left blogksodx —!

which are preserved.

Consider the discrete time system

Thal A| B, B, B Tk
Zu,k _ Cu | Dyu Dup E, Wy, k (5 55)
Zp,k Cp | Dpu Dpp Ep Wp,k
Yk C|F, F 0 Up

with parameter dependence given by

Wk . . |Si(Ag)
{TJ@} € S(Ar) =im S(Ag) =im AR (5.56)

The controller will be on the form

Te k+1 A, | B Beo Te,k
up, = | Cec | D1 Der2 e | (5.57)
Zek CcZ Dc2l Dc22 We, k

with the controller scheduling subspace

We, k . . Scl(Ak)-_
{T,k} € S8:(Ar) =im S.(Ag) = im S| (5.58)

Theorem 5.15Discrete time LPV controller synthesis)
The following two statements are equivalent
1. A controller on the form (5.57)-(5.58) exists for the LPV system (5.55)-(5.54) such

that the closed loop system achieves robust quadratic performance with perfor-
mance index’, satisfying (5.50).

2. There exist Hermitian X,Y and Hermitian multipliers
P>00nS(A)andP <0onS(A)t, VAeA (5.59)

satisfying the linear matrix inequalities

[)1( ;] >0 (5.60)
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T+1°T-=x 0|00 0 0 W [ I 0 0 W
kS 0 X 0 0 00 A B, Bp
% 00 |Q S| oo 0 I 0
T U 0 (5.61
L 0 0 S* R 0 0 Cu Duu Dup < ( )
* 0 0 001[Q, S, 0 o0 I
L« ] | 00 00 |S; R,,J_Cp Dy, D,,,,J
'*T'—Yo 00| 00 W'—A* -y —=C
x 0 Y| 00 0 0 I 0 0
* 00 |Q S| oo —_B* —D* —D
(}* = ~ u uuw pu (} 0
x 00 |S* R| 00 0 I 0 >
* 0 0 001[Q S -B; -D;, -Di,
*J | 00 00 |S; pJ 0 0 I
(5.62)
where

o=[B* E: E]' v=[C F, F)]

Proof: The proof follows the same lines as the proof of Theorem 5X.& constructed
in exactly the same way frotl¥ andY. <

As indicated the controller construction follows the exact same lines as in the proof of
Theorem 5.10.

5.4.4 Discrete time controller design and implementation

This section discusses a few issues on designing and implementing discrete time LPV
controllers.

Restrictions on pole placement

The LMI approach to control allows for simple ways to restrict the closed-loop poles to
certain areas of the s- or z-plane, see for instance [Chilali et al., 1999]. Note that it does
not really make sense to take about poles for a time-varying system, but restricting the
eigenvalues ofA(A) has a similar meaning. For example, it is very easy to ensure a
certain decay rate in discrete time by restricting the eigenvalues to be within a margin
B of the unit circle, i.ep(A(A)) < 1 -3, VA € A, wherep denotes the spectral

radius. This can be enforced by replacing t[h_eOX ;(\)(] -block in Theorem 5.52 by
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- 0 _5.,|- In the synthesis in Theorem 5.15 this corresponds to changing
0 (1-p*x
-X 0 -X 0 . -Y 0 -Y 0 .
[ 0 X] to[ 0 (1—5)—2X] in (5.61) and[ 0 Y] to[ 0 a —B)QY] in
(5.62).

Implementation

A controller on the form (5.57)-(5.58) can be be implemented through a reformulation
along the lines of Lemma 5.5. The controller (5.57)-(5.58) can be written as

Teprr = Ac(Ap)zer + Be(Ak)ys

5.63
m = Cc(Ar)zer + Do(Ar)yr (5.63)

where

iy an) e Lo ol

[BCZ

2] S (80 [Sa(8) - DeasSa ()] [Coa Do) (6:64
cl2

Some computation power may be saved be working with the scheduling vegtarsl
z. rather than computing the entire matrix in (5.64) along the following lines

Zew = Cozer + D21y,
Wer = Ser(Ar)[Se2(Ak) = DeaaSer(Ap)]' Zeop,
upy = Cazer + Deoryr + Derawe g,
Tekt1 = Acer + Beyr + Beawe g,

but unlessD 2> happens to be zero, there is in general no way to avoid the inversion.

5.5 Complex LPV systems

Certain systems with a particular structure can be transformed into an equivalent system
with half the number of states, inputs, and outputs, assuming that the output can be de-
composed in a meaningful way. We shall refer to this type of systesnraplex-formed

since the transformation will typically be from a real-valued system to a complex-valued
one.

The current part of the induction motor model in Section 3.3.2 is complex-formed if we
view w, as a parameter rather than a state.
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One would expect that if a system is complex-formed, then the optimal controller is
complex-formed as well. This section establishes theoretical evidence of this. Section
5.5.1 shows that addition, multiplication, and inversion of complex-formed matrices pre-
serves the structure. Section 5.5.2 considers complex-formed linear systems and shows
that for a special case, restricting the controller to be complex-formed as well does not
limit the achievable performance. Section 5.5.3 considers LMIs with complex-formed
matrices and shows that for a simple type, restricting the solution to be complex-formed
as well will not affect the feasibility. Finally Section 5.5.4 considers LPV controller syn-
thesis. It is shown that for a complex-formed LPV system the optimal controller is also
complex-formed.

5.5.1 Complex-formed matrices

Define the following convex set:
Definition 5.16 (Complex-formed matrix;;,*>)

M, —M;

Cii?&{M: M= [M. Iy

] , My, M; € C™*"}.
If a matrix is inC3,** we will call it complex-formed.

Itis obvious that ifM;, My € 32", M5 € Cap**” we also have
M, + M, € C]2\/7[n><2n andM; M; € Ci/[mx2p‘
If My € C57**™ is non-singular we also havel, - € C3/***™:
Lemma 5.17Let M € C57***™ be nonsingular. ThedM —* € C37"*™ as well.
Proof: A proofis given in the appendix on page 175.
Define the following transformation fro@g;* ™ to C™ "

Definition 5.18 (T¢ (-)-transformation)

M, —M]\ a o
e ([ ) 21,4, s

Remark 5.19This transformation has no unique inverse unless some specific constraints
on M, andM; are given, for instance that they should be real.

We can now give the following extension to Lemma5.17:
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Lemma 5.20Let M € C37***™ be nonsingular. Then

Te (M™Y) =Te (M) ', (5.66)

Proof:

A proof is given in the appendix on page 176.

5.5.2 Complex-formed linear systems

By Lemma 5.17 it follows that if all matrices of a state space system are of this particular
form, then the transfer function is too.

Define the following set of matrix transfer functions:
Definition 5.21 (Complex-formed systeifis)
Cam ™ = {T(s) : T(s) € C3***™,  Vs}.
Corollary 5.22Consider the state space system
& = Az + Bu, y = Cz + Du,

and assumel € CIP?" B € CIM O € C**", and D € C¥**™. Then the
transfer functionG(s) = C(sI,, — A)~'B + DisinCs:

G(s) € CZP**™,
Furthermore
Te (G(s)) = Te (C) (sIs — Te (A)) ™ Te (B) + Te (D).

Remark 5.23The eigenvalues of a square complex-formed real matfixconsist of
complex conjugated and double real pairs. The eigenvalu&s @i) consist of one
from each pair.

Remark 5.24The transfer function(Z(s) of a state space system with real matrices is
symmetric around the real axis. This is not necessarily tru€§dG(s)). One conse-
guence is that bode plots need to be shown for both positive and negative frequencies.

The following theorem shows that for a special system with complex-formed transfer
functions there is no loss in achievable performance by restricting the controller to be
complex-formed as well.
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Define the matrix

Q= [? é] (5.67)

where the dimension will be apparent from the context.

Lemmab.25LetG,H,F = F* € Cs and
QG+ G Q+QHH"Q+F <0 Vs (5.68)
Then
F<o0 Vs (5.69)

Proof: Obviously (5.68) impliesV £ QG + G*Q + F < 0. Then also

0 —I 0 I
[I . ]N[_I 0]+N_2F<0 (5.70)

<

Theorem 5.26Let

MA [Mn Mo

Moy = 71
M>, Mzz]’ 22 =0, ®.71)

whereMy1, M3, Ms; € Cs. If a controller K exists yielding closed-looH ., perfor-
mance||M x K||~ < 7 then a controllerK; € Cg exists with equal or better closed
loop performance, i. &|M * K ||oo < 7.

Proof: The closed loop transfer function@ = M;; + M12 K Ma;. ||C]]|« < 7y ifand
only if C;C; < y*I. Decomposel asK = K; + K»Q, whereK, K> € Cs. When
calculatingC;C; — %I it can be put on the form in (5.68), whe€and H are zero
whenkK is zero and wheré’ does not depend ofi;. By Lemma 5.25 the performance
will then at least be maintained by settiia = 0. <

Remark 5.27Note that since the performance holds at all frequencies, Theorem 5.26
holds equally well forH, performance.

Remark 5.28The system in (5.71) is somewhat specialised due to the condifign=
0. Given a non-zero (but stabld)»», we can design & for M with M2, = 0 and then
implement the controller

I —M>;

If M22 € Cs then sois (5.72a@ssuminghat (—Ms2) * K is well-posed. Otherwise the
controller has to be implemented as the two separate blocks in (5.72).

[0 g ]*K. (5.72)

The special system (5.71) witlo, = 0 can be seen as an observer problem.
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5.5.3 Complex-formed LMIs

We will now turn our attention to LMIs where the known matrices are complex-formed.
We will show that for a basic type of LMI, there is no loss of feasibility by restricting the
solution to be complex-formed as well.

Lemma 5.29Define

Jk - |:Ik 0 ] ’
and assumet € C37***". Then
ImA = AJ,

Proof: By trivial calculation. <

Notice thatT¢ (Jy) = 7.

Theorem 5.30Let A € C37**™, B € Ca*®",C = C* € C37**". If the LMI
L(X)=AXB+B*X*A*+C >0 (5.73)

has a solutionX € C2™*2, then it also has a solutioX. € C3;"**.
Proof: DefineJ;, as in Lemma 5.29. Let

=[x %l

X; X,
be a solution to (5.73). Decompo&Xeas

0 I

X:XC+[I 0

] Xz X, €CIX X, € CIXn,

X, is unique and given by

1 " 1[X) 4+ Xy —(X5—X2)
X.==-(X XJ) == 74
o= (X + T X0 2[X3_X2 o X (5.74)
L(X) > 0implies
JIL(X)J, >0, (5.75)
and thus
1 1
2 (LX) + JXL(X)J,) = 3 (L(X+J,XJ)) = LX) > 0o
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<

In this theorem X is assumed to be unstructured, but the statement holds whenever the
projection in (5.74) preserves the structure, for instancgif X», X3, and X4 all have
the same block-diagonal structure.

SinceJ,, is real the above theorem also holds in the real domain:

Corollary 5.31LetA € C2*2mAOR*2m B € CA2nOR2X2n O = C* € 02072
R2%2n |f the LMI

AXB+BTXTAT + C >0 (5.76)

has a solutionX € R2>™*2! then it also has a solutioX, € C2m*2 0 R2mx2L,

5.5.4 Complex-formed LPV synthesis

Consider the system (5.11) and assume all matrices to be complex-formed. Assume
furthermore that the parameter dependency is given by (5.12)Syithh) and Sz(A)
complex-formed for alA € A.

Now consider controller synthesis to obtain RQP with a performance index with
complex-formed sub-matrices. Since the annihilators can be chosen as complex-formed,
all sub-matrices in the LMIs in statement 2. of Theorem 5.10 are complex-formed. By
suitable permutations, all the synthesis LMIs can be brought onto the form (5.73). To
illustrate this, consider the following simple example.

Example 5.32Consider the LMIinQ, S, andR

w1

whereD e C2m2HP) [ g 22t g ¢ pnx2n andR € H2PX2P. Partition the
decision variables as

_[Qun Qa2 _ |Ri1 R
Q‘[% sz]’ R‘[sz R] 5

Define the permutation matrix

|:Sll SlZ]
521 8’22 ’

o o o &
o5 o o
oo fSo
o oo
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SincePP* = I, 1y, We then have

*

e[ e (2 e

E S* R E
——— —— —— —
Dy X, D,

whereD, € 2™+ >2(" ) The important point now is that performing the projection

in (5.74) onX,, and then swapping the rows and columns back preserves all structural
requirements o), .S, and R, for instance the projections 6f and R will still be Her-
mitian. In conclusion, if we hav€y, Sy, andR, solving M > 0, then so will

Q S 1 . « *
[S* o= 5(PXOP + PJ: X0 dnipP")

where

_ p* QO SO
X, =P [56 w| P

This method can be applied to all the LMIs in statement 2. of Theorem 5.10. We can
therefore always restrict ourselves to a solution wher&, Q, R, S, Q, S, and R are

all complex-formed. The extended multipli&s, the scheduling functiof.(A) and the
Lyapunov matrixt’ will then have complex-formed submatrices. When permuting (5.10)
in order to make it correspond to the quadratic matrix inequality in (2.11), it can be done
in such away thatl, B, C, andP in (2.11) are all complex-formed. It is then possible to
solve the quadratic matrix inequality along the lines of the proof in the appendix in such
a way that all controller matrices are also complex-formed.

Corollary 5.33Consider system (5.11) and assume all matrices to be complex-formed.
Assume furthermore that the parameter dependency is given by (5.129i) and
S»(A) complex-formed for alA € A. In addition, let the performance inde%, have
complex-formed sub-matrices.

If a controller exists achieving RQP with performance ind&xthen there exists a con-
troller with complex-formed matrices and scheduling function also achieving this.

In practical situations we will typically be dealing with an LPV system widal
complex-formed matrices. The best way to design a controller would then seem to be

e Solve the synthesis LMIs in Theorem 5.10 restricti¥igV, Q, R, S, Q, S, andR
to be have complex-formed submatrices. This approximately halves the number
of decision variables.

e Perform theT¢ (-)-transformation on all submatrices, thereby obtaining complex
matrices of half the original size.
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e Extend the multiplier and the Lyapunov matrix.
e Solve the quadratic matrix inequality. Doing these last two steps in the complex
domain makes the problems slightly sounder numerically.

How to implement the controller depends on whether complex arithmetic is available on
the particular platform for implementation. If so, then convert the measurement

[m] — Y1+ Jy2
Y2

R{u}
S{u}
If no complex arithmetic is available, then the controller matrices must be transformed
back, for instance

and compute the control signal Output the signa[ ] to the system.

1= [507 wi)

Care should be taken to exploit the complex-formed structure in order to reduce compu-
tational complexity, for instance in computing the inverse in (5.36).

5.6 LPV flux observer

An essential part of the rotor flux oriented control scheme discussed in Chapter 4 is
the rotor flux observer. If a good estimate of the rotor flux (or equivalent magnetising
current) is not available, the partial decoupling of the stator current into torque and rotor
flux controlling parts, as described in Section 4.1, will not be achieved, and the closed-
loop performance will be degraded.

As discussed in Section 3.3 the induction motor model can be considered as an LPV
system by considering the rotor speed as a time-varying parameter. In this section a
discrete time flux observer is designed using the synthesis method described in Sections
5.2-5.4. The aim is to design an observer with theoretically guaranteed convergence,
which works well over a wide range of speeds, is simple to implement in real-time, and
furthermore requires very little tuning.

In Section 5.6.1, the induction motor model is put on the LFT form needed for the syn-
thesis, and itis discussed how it is discretised. In Section 5.6.2 the actual synthesis of the
observer is discussed. Finally, experiments are performed on the laboratory setup. This
is done both with and without a speed sensor. The experiments are described in Section
5.6.3.
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First, some other flux observers found in the literature are briefly discussed. The flux
observer presented in [Jansen and Lorenz, 1992] (the JL-observer) has already been de-
scribed in Section 4.3.1. Based on physical insight a simple combination of two basic
models were combined. The JL-observer can be tuned to have fast convergence and is
relatively simple to implement.The main complication is the tuning of the two complex
constants to ensure satisfactory behaviour over a wide speed range. The following is a
non-exhaustive review of other existing rotor flux observer designs. Common to all of
the following (as well as the JL-observer) is that they are based on measurements of the
rotor speed, the stator current, and the stator voltage. In some of the following papers the
voltage command is used instead of stator voltage measurements, but in general some
representation of the stator voltage is needed. In several of the papers adaption of the
rotor time constant and other parameters is also discussed. We will, however, not focus
on parameter adaption.

In [Nilsen and Kamierkowski, 1992] the stator current is considered as the input to the
induction motor, and the stator voltage prediction error is used to update the flux estimate.
The observer gain is chosen from physical considerations. The observer would appear
to work well in practice, but the theoretical justification is somewhat unclear. The paper
also suggests how to observe parameter variations in the rotor time cdfistamd the
mutual inductancé.,,,.

In [Manes et al., 1996] it is suggested to use an extended Luenberger observer with the
load torquemy, to be slowly varying. Even though the design requires the inversion of

a (sparsep x 6 matrix at each time step, the observer performance is demonstrated on

a real-time system and performs well. The main problem is that it requires tuning of six
parameters. Even though these six parameters can be directly interpreted as closed-loop
eigenvalues, this tuning may be tricky.

In [Martin and Rouchon, 2000] two simple flux observers are discussed. The first is
basically an open-loop simulation of the motor. It is shown that if the correct parameters
are used, the estimate will converge to the true value. The convergence rate is, however,
very slow. The second observer is somewhat similar to the JL-observer although it is less
obvious how to interpret it from a physical point of view. It is proved that the estimate
converges to the true value. The convergence rate can be made arbitrarily fast. Just as the
JL-observer it requires the tuning of two complex parameters, which may be difficult. In
addition it is unclear how well the observer works in practice.

In [Benchaib and Edwards, 2000] a sliding mode observer is designed as part of a slid-
ing mode control. The overall control systems displays some chattering, but the flux
estimates are satisfactory. It would, however, be tricky to implement the scheme in real-
time.

In [Marino et al., 1996] a controller is designed using a backstepping method. The
scheme includes an observer which also estimates the rotor time constant and the load
torquemr,, assuming the latter to be constant. Simulation results indicate a good perfor-
mance, but no real-time experiments are presented.



5.6 LPV flux observer 95

In [Petersen and Pulle, 1998] it is suggested to use a Kalman filter with the gain designed
from a deterministic viewpoint. In [Petersen and Pulle, 1997] it is described how to ex-
tend the method to be robust to parameter uncertainty. The basic idea of the deterministic
viewpointis not to compute the Kalman gain from an estimate of the noise variance, since
it can be difficult to obtain a reasonable model of the noise. Instead, the noise variance
is used as a tuning parameter. At each time step an ellipsoid containing all the possible
system states that are consistent with the measurements are found. The centre of this
ellipsoid is then used as the current estimate. This method is somewhat ad hoc, but is on
the other hand easy to tune. The main problem is that it is computationally heavy.

In [Trangbaek, 2000] an LPV observer was designed using the structured singular value
approach with block-diagonal multipliers. The performance was good, but the conser-
vatism due to restrictions on the multipliers made it necessary to restrict operation to a
small range of speeds.

The following describe a novel approach, the use of full block multipliers, to flux observer
design. The performance is theoretically justified in a wide range of speeds. The resulting
observer is easy to implement and most importantly requires practically no tuning in
order to perform well.

Simultaneously with this work, a similar LPV observer design has been developed in
[Darengosse et al., 2000]. As the main difference it is designed in continuous time and a
somewhat unorthodox online discretisation has to be performed.

5.6.1 Induction motor model
From Section 3.3.1 we have the following model of the induction motor:
isc = Ascxsc + Bscasv

is
Tsc = | = s
tm

L2 R,+R,L> L2 (jL,w,—R,)
L.L. (5.77)

(5.78)

We assume that we can measure the stator voliggéhe stator current,, and the
rotational speedv,. The aim is to estimate the magnetising currgptusing these
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measurements. We will assume that the rotational speed belongs to a finite interval,
wr(t) € [~Wrmaz;Wrmaz)- We shall make no assumptions on the load torgue
Consequently, very little information aboi)t can be recovered by considering the me-
chanical equations (5.78). We will therefore considgras a time-varying parameter

and base the observer on the current equations (5.77). The stator voltage is considered
as a measurable disturbance.

The model can now be written directly on the basic LPV form (5.1), With = w,,
A(0(t)) = Ase, B(O(t)) = Bse, andu = as.

LFT form

The model can easily be put on the LFT form by the standard "pulling out the uncertain-
ties” procedure (see [Zhou et al., 1996]). First weite. as

Asc = AO + erun“v
and factor4,,, as
Awr = AlA;

whereA; and A, are of full column rank. The model can now be put on the form in
(5.11) with

A= AO, B, = 1/ wr,mamAla Bp = Bsca (579)
C, = V wr,mazA;a Dy, =0, Dup =0, (580)

and a parameter dependency given by the standard LFT representation

Wy, _ = A =
‘H S S(A) = lmS(A)7 S(A) B |:I:| ’ A= wr,maz‘

Notice that the synthesis method in Section 5.3 does not requinde scaled td-1; 1].
A larger interval would simply limit the range of multipliers allowed by (5.20). The
scaling is performed here for numerical reasons.

The rest of the system matrices are designed in order to pose the observer problem as a
control problem:

B =0,
Eu—07
Cp,=1[0 -1, Dp=0, Dy=[0 0 0],
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This setup is also illustrated in Figure 5.4 as the part within the dashed box.

- Im induction _

éﬁ% S |
! motor model !

observer

Figure 5.4: Model setup for the formulation of the flux observer as a generic control
problem.

Us

The performanceinput, = | w; | consists of the stator voltage acting as a disturbance,
Wy

and scaled measurement noise. The measurement vector

y = s+ ojWw;
Ug + Ty Wy,

consists of stator current and voltage corrupted by noise. The performance output is
Zp = u—1,,. The observer will be designed to minimise thénduced norm of the gain

from w,, to z,, and thus the controller outputwill be an estimate of,,, i.e. u = i,,.

The measurement noise is added to avoid the observer having very high gain at low
frequencies. The norm boundsando,, can be seen as tuning parameters.

Discretisation

Since the induction motor model was obtained in continuous time and the observer must
be implemented in discrete time, a choice must be made. Either the observer is designed
in continuous time and then discretised, or the model is discretised first, and an observer
is designed by the discrete time version of the synthesis described in Section 5.4.3.

Based on practical experience it is chosen to discretise the model and then design the
observerin discrete time. The discretisation was performed by the bilinear transformation
method described in Section 5.4.1. In practice the discretisation was only performed on
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the part of the model specified by the matrices in (5.79). After this the rest of the matrices
were chosen as above.

5.6.2 Observer synthesis

An observer for the example motor with the parameters in (3.57) and a sampling fre-
guency of3k H z was synthesised using Theorem 5.15. The noise bounds were chosen
rather arbitrarily agr; = 10~* ando,, = 1074,

As seen in Section 5.5, nothing will be gained from transforming the second order com-
plex model into a fourth order real model and allowing for solution that are not complex-

formed. By restricting the solution to be complex-formed we have the following advan-

tages

¢ Fewer decision variables. Since the problem is fairly small, this is not so important
here.

e Better numerics for the quadratic matrix inequality solution.

¢ A complex-formed scheduling function. This is a great advantage, since instead
of inverting a2 x 2 real matrix, we only have to perform a complex division.

Before solving the LMI, the model was balanced to better the numerics. The balancing
was performed on the model including parameter dependence and performance channels.

The performance indeR, was chosen as thg-induced norm specification

2
—v*I 0
e[

and a bisectional search was performed to determine the lowest vatuéofvhich

the LMIs were feasible. Figure 5.5 shows the achievabldenotedy,, as a function

of w, maez. Each observer computation was done in a few seconds using the MatLab
LMI toolbox [Gahinet et al., 1995]. The small increaseyinfor small speed ranges is

due to the combined effect of the balancing and bounds on the Frobenius norm of the
multipliers, i.e. a numerical effect.
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Figure 5.5: The achievablé.-induced norm;y,, as a function of range of rotational
speedswr,mag-

An observer witho,. ..., = 200rad/s was chosen for further experiments. The observer
was computed with a suboptimgal= 1.1y, = 0.0003 in order to improve the numerics.

The observer will be compared to a JL-observer, which has been hand-tuned to yield
reasonable behaviour over the speed range. The constari§ are32(1 + 0.1;) and

K> = 2(1 4 0.15). In Figure 5.6 bode plots of the two observers are givenJfoe
10rad/s. For comparative purposes, a JL-observer wiith= 10000 and K> = 0is also
given. This is practically an open-loop simulation of the current model, which is probably
the most commonly used observer in induction motor control due to its simplicity. We
will refer to the observer designed above as the LPV observer.

The bode plots are shown for positive frequencies fitdm!rad/s to 10*rad/s. Notice

that since the observer is complex, there is no symmetry between positive and negative
frequencies. However, the positive frequencies are the most important for a positive
wy, SO only these are shown. The left column shows the gain from stator current to
magnetising current estimate. The right column shows the gain from stator voltage to
magnetising current estimate.
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Figure 5.6:Bode plots of three observers operatingat= 10rad/s, the LPV observer
(solid), the JL-observer (dashed), and the current model (dotted).

As seen, the gains are similar in amplitude for the LPV and the JL-observer in the fre-
quency area around the rotational speed. A major difference is at low frequencies, where
the JL-observer will always be based on the current model and thus only current mea-
surements. The LPV observer in contrast uses a combination of both current and voltage
measurements. It does, however, not have the very high gains that an observer based on
the voltage model has at low frequencies.

5.6.3 Experiments

Experiments to confirm the performance of the LPV observer are performed on the labo-
ratory setup. Since the flux cannot be measured, the only way to test the observers, is to
examine the closed-loop behaviour of the rotor flux oriented control, when the observer
is inserted. All the other parts of the control scheme are implemented as described in
Section 4.2.

Figure 5.7 shows an experiment, where the speed referengg.dg = 10rad/s. The
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motor is disturbed by the load torquer, which switches betweedNm and3Nm
everyl/3 seconds. The load is plotted by the dashed lines. The plot on the left shows
the closed-loop behaviour with the LPV flux observer. The plot on the right shows the
same for the JL-observer.

16 T T T 16 T T T
. 14} a
4 12 |- -
10+

| 8 4
| 6 L i
4 4 |- -

r— — — - - 7 r— ——
| I : ! | | | \
\ I 2r ! I | I 4
\ [ ‘ ! [ | [ :
| | : : | | | |
l ‘ 0 1 1 1 ‘L ‘ 1 ‘ ‘
1.5 2 0 0.5 1 1.5 2

Time [s] Time [s]

Figure 5.7: Closed-loop operation ai, ..y = 10rad/s. The left plot shows the be-
haviour with the LPV observer. The right plot shows the same for the JL-observer.

Figure 5.8 shows a similar experiment, but now the speed reference is changed in steps
of 15rad/s every0.6s from —150rad/s to 150rad/s and then back te-150rad/s. The
load torque changes betwe@Nm and3sign(w, ) Nm every0.1 seconds.
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Figure 5.8:Stepwise sweep through the speed range. The left plot shows the behaviour

with the LPV observer. The right plot shows the same for the JL-observer. The dashed
lines show the reference speed, ;.

The main conclusion from these two tests is that the behaviour of the two observers is
very similar.

Speed sensor-less control

Very often it is desirable to avoid the use of a speed or position sensor. The speed (or
position) then has to be estimated by a speed observer such as Kubota’s speed observer
described in Section 4.4.2. The following tests are similar to those above, but the speed
measurements were replaced by the speed estimates from Kubota'’s speed observer with a
speed estimate update gainef= 1000 and the current observer gathchosen so that

the observer closed-loop eigenvalues (eigenvaluels of- GC) were equal td.1 times

the eigenvalues of,.. Since the speed observer reacts slower than the speed sensor, the
speed controller was retuned to preserve stability.

In addition to the LPV observer and the JL-observer, tests are also performed using
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the magnetising current estimate provided by Kubota’'s speed observer as suggested in
[Kubota et al., 1993].

It should be noted that both the LPV observer and the JL-observer were designed under
the assumption of exact knowledgewf. There is therefore no theoretical guarantee
that either will work.

Figures 5.9 and 5.10 show the same experiments as above but now using the observed
speed instead of the measured. The left columns show the behaviour with the LPV
observer. The middle and the right columns show the same for the JL-observer and
the Kubota observer, respectively. The top rows show the estimated speed, whereas the
bottom rows show the actual (measured) speed.

215 15
]
3
&
=~
<310 10
S
=5 5
_ - _ L . _ __
S P : o o
ol N 0 R
0 1 2 0 1 2
20 20 20
El5 15 15
3
3
&
~
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0 1 2 0 1 2 0 1 2
Time [s] Time [s] Time [s]

Figure 5.9:Speed sensor-less operatiowat. s = 10rad/s. The left column shows the
behaviour with the LPV observer. The middle and the right column show the same for
the JL-observer and the Kubota observer, respectively. The top row shows the estimated
speed. The bottom row shows the measured speed.
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Figure 5.10:Speed sensor-less stepwise sweep through the speed range. The left column
shows the behaviour with the LPV observer. The middle and the right column show the
same for the JL-observer and the Kubota observer, respectively. The top row shows the
estimated speed. The bottom row shows the measured speed.

The behaviour of the closed-loop system with the three different observers are quite
similar. If anything, the LPV observer is slightly better, especially in the large speed
reversal step, but not enough to claim that it is superior to the other observers.

A difficult task in speed sensor-less control is to operate around zero speed. Figure 5.11
shows the results of a test where the speed reference slowly sweeps ffbmad/ s to
10rad/s and then back again. On the upward slope the load torque is given; by
6signw,) Nm. On the downward slope the load torque is zero. The large spikes are
caused by the sudden change in load.
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Figure 5.11:Speed sensor-less slow sweep through zero speed. The left column shows
the behaviour with the LPV observer. The middle and the right column show the same for
the JL-observer and the Kubota observer, respectively. The top row shows the estimated
speed. The bottom row shows the measured speed.

As expected, there is some degradation of performance close to zero speed. The perfor-
mance with the three different observers is very similar. Again the LPV observer might
be slightly better than the others.

5.7 Summary

In this chapter a controller synthesis method for LPV systems was described and applied
to the design of a rotor flux observer.

First, the controller synthesis method of [Scherer, 2001] was described. By using full
block scalings the method provides the least conservative way of designing controllers
yielding robust quadratic performance for an LPV system with rational parameter depen-
dence. A new result on how to improve the numerics of a part of the synthesis method
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was given.

Secondly, it was discussed how to change the theory to the discrete time domain. This
can be done by a simple substitution of some of the matrix blocks in the LMIs.

Inspired by the special structure of the current part of the induction motor model, which
allows it to be written either as a fourth order real model or as a second order complex
model, some theoretical results on this type of structure were then given. The main result
was that for an LPV system with this particular type of structure, the controller can be
restricted to have the same structure without loss of achievable performance. This have
several advantages, especially in implementation of the controller.

Finally the theory was applied to the design of a discrete time LPV flux observer. The
observer was then tested on a laboratory setup. It was used as part of a speed control
scheme, both with and without speed sensor. The resulting performance was compared
to the performance when using the JL-observer or the flux estimates from Kubota'’s speed
observer, both described in Chapter 4. Although the performance was not significantly
better, it is worth noting that practically no tuning had to be performed for the LPV
observer.



Chapter 6

QUASI-LPV
CURRENT AND
SPEED
CONTROLLERS

The quasi-LPV approach allows the use of LPV theory for a very general class of non-
linear systems. In Section 6.1 a discussion of the quasi-LPV structure is given. The
approach is then applied to the design of a stator current controller in Section 6.2.

In Section 6.3 a novel method is presented for transforming a multi-layer perceptron state
space model into a quasi-LPV model suitable for control design.

This method is then applied to the design of a speed controller in Section 6.4.
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6.1 Quasi-LPV systems

The following is a short introduction to the concept of using quasi-LPV models as a
basis for control of nonlinear system. For a more thorough discussion see the survey
paper [Rugh and Shamma, 2000].

Before the 1990’s, theoretical treatments of gain scheduling in nonlinear control systems
was very rare [Rugh and Shamma, 2000]. A theoretical discussion of potential problems
of traditionallinearisation schedulingvas given in [Shamma and Athans, 1990].

Linearisation scheduling, the traditional approach to gain scheduling as a means of de-
signing controllers for nonlinear systems, is based on Jacobian linearisations of the sys-
tem model in a finite number of equilibria. For each of these linearised models a con-
troller is designed by linear design methods. As the system moves between these points,
the control system then switches between these controllers. This provides a theoretical
guarantee olocal stability and performance around the equilibria, but there is no guar-
antee in between these points. Furthermore, the method also assumes that the system
dynamics change islow.

An early suggestions that a quasi-linear approach could overcome these problems was
given in [Shamma and Athans, 1992]. The idea is to view some of the system state
variables as both state variabbasd time-varying parameters

Consider the nonlinear system

x

fewuo), 2= 7).
l
= ple,u,w,v), ©

= h(xﬁ w’ U)’
wherez is the system statey is the control inputy is the measurement vectar,is

the performance outputy are measurable inputs, amds noise. Assume that these
nonlinear functions can be written as

flzyu,w,v) = A(o)z +B(o)up(o,u)  +Bp(o)v,

p(z,u,w,v) = Cp(o)x +Ep(o)up(o,u) —+Dpp(o)v, 6.2)

h(z,u,w,v) = C(o)z +F,(o)v, '
o = S(mpv U]),

whereu, is invertible with respect ta, i.e. there exists a functiom, ' such that

uy (up(o,u), o) = u.

Notice that this representation is valid anywhere and not just in equilibria. We then have
the followingquasi-LPV system

|-m-| |-é4(0) B(o) BP(O')-| |- z -|
z{ = (Cplo) Dpy(o) Ep(o) v ) o = 5(zp,w). (6.3)
|.yJ |_C(U) Fp(o) 0 J |.“p(aa U)J
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Assume that is known to belong to some bounded $eat all times. The nonlinear
system (6.1) is then contained in tiredaxed quasi-LPV model

M |'A(9) B(6) B,,(o)” z ]
2l =1C,0) D,y(0) E,6) v |, #es (6.4)
L) Lew me o | lwew)

We can now apply LPV control design techniques, such as those discussed in Chapter
5, to this system. Once an LPV controller has been obtained, we simply implement the
controller and input, = u;l (up(o,u), o) to the system. The advantage of this approach
over the traditional linearisation scheduling is that stability and performance is conserved
in all of S and not just locally at a finite number of equilibria. Furthermore, there is no
restriction on how fast the parameters are allowed to vary. A few points must be made
about this approach:

e Conservatism is introduced, since the model (6.4) allows for any parameter trajec-
tory within S, whereas the possible trajectoriesrafay be far more restricted.

e The representation in (6.2) is not unique. Some representations may yield better
results than others.

e The state variables, and the inputsv must be known in real-time in order to
allow gain scheduling control.

¢ A necessary condition for writing (6.1) as (6.2) is that (6.1) has an equilibrium at
the origin (after a possible transformatiomgf Otherwise a coordinate transfor-
mation must be performed first, see [Packard and Kantner, 1996].

Example 6.1Consider the nonlinear system
T1 = sinzi + X2, To = (Cl?l + 1)5172 + us. (65)

This system can be written as the quasi-LPV system

[2] - [HT (xllﬂ) [2] + m up (6.6)

Bj - [3«"—2 ﬂ [Z] " m tps (6.7)

1
whereu = 3. If only z; is measured, then only the representation (6.6) can be used for
LPV control, since the system matrix in (6.7) contains

or alternatively
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6.1.1 LFT representation

Obtaining a relaxed quasi-LPV model in LFT form follows the same lines as above, as
illustrated by the following example.

Example 6.2Consider again the system (6.5). This can be written on the LFT form by
"pulling out the nonlinearities” (see [Zhou et al., 1996]):

il (1R R

z
Wy = Q(Zu), 2y = [ U1:| =T,

Zu2

Q) = [sinzul] '

Zullu2

A possible quasi-LPV representation is then obtained by rewriting the nonlinearities as

sin(zu1) 0
Wy, = A(24) Zu, Az,) = | 7= .
0 Zul

A relaxed quasi-LPV model is then obtained by viewih@s a time-varying gain rather
than a nonlinearity. Notice that in order to apply LPV control design techniques, we
again need to have accessrtoin order to know this gain in real-time.

Definition 6.3 (Residual gains)

We will refer to the functiom\ when used as above assidual gains

6.2 Quasi-LPV stator current controller

In this section we will use the quasi-LPV approach to design a novel type of stator
current controller. Recall the configuration of the control scheme as shown in Figure
4.1. The speed and magnetising current controller provides a stator current reference
for the stator current controller, which controls the stator current by sending a reference
for the stator voltage to the power device. A wide variety of schemes for stator current
control exists, both in hardware and software. For surveys on current controllers see
[Kazmierkowski and Dzieniakowski, 1994] and [Kmaierkowski and Malesani, 1998].
Here we will focus on the situation where the hardware is already given as a PWM
voltage sourced inverter. We will furthermore assume that the switching frequency of
the inverter is fixed and furthermore is so much higher than the sampling frequency of
the control system that we can consider the inverter as being able to produce any com-
plex stator voltage within a given limit of magnitude. Some current control schemes, for
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instance [Liu et al., 1998], do not consider the rotor dynamics. It is expected that better
performance can be achieved by considering these dynamics, which is also indicated by
experiments in [Rasmussen, 1995].

Several continuous-time controllers have been presented, for instance using a simple Lya-
punov approach [Shyu and Shieh, 1995], minimum-time control [Choi and Sul, 1998],
sliding mode control [Shiau and Lin, 2001], as well as a special type of decoupling with
special regard to robustness [Jung et al., 1997].

A general problem with these schemes is that it is unclear if they will work well when im-
plemented in discrete time at a sampling frequency which is not considerably faster than
the motor dynamics. Here we will design a novel type of controller based on a discrete-
time model, thus incorporating the limitations in the sampling frequency. Other examples
of discrete-time designs can be found in [Blaabjerg et al., 1996], where RST-controllers
are designed, and in [Yang and Lee, 1999] where a simple decoupling is designed un-
der the assumption that the change in speed and rotor flux from sample to sample is
negligible.

Section 6.2.1 describes the quasi-LPV model used for the controller design. Section
6.2.2 describes the controller design. The sampling frequency is chosen as 600 Hz, both
due to the computational complexity and in order to demonstrate that it is possible to
achieve good results at a low sampling frequency. In Section 6.2.3 the closed-loop is
simulated in order to verify the stability before implementation. Finally, in Section 6.2.4
the controller is tested on the laboratory setup. The results are satisfactory considering
the low sampling frequency.

6.2.1 Quasi-LPV model

In Section 3.3.1 we found the following model of the induction motor:

Tsc = Ascxsc + Bscasv

is
Tsc = | = s
tm

L2 R.+R,L? L2 (jL,w.»—R;) 6.8
A. — | T.(L2-L.L,) L.(L%,L,L,) (6.8)
sc — R, R R, 9
T, JWr — L,
L,
_ | T.L.-L2
By = ™ )
3Z,L2% ~ 7 Tk
me = == S{isin, )
. (6.9)
Wr = ZpWmech = TP(me —mr).

is and @, are the stator current and voltage, respectively, @ands the magnetising
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current.w, is the rotational speed of the shafi, is the torque produced by the induction
motor. my, is the load torque on the shaft acting as a disturbahgge.Ls, L., R,, R,
Z,, andJ are real parameters.

With the definitions of the referred parameters in Section 4.1 and with a transformation
to a rotating coordinate system as discussed in Section 3.3.3 we can write the subsystem
(6.8) as

de cc s , = ; L 7 Us,cc
L 2 = — (7}2 + RT +jCUcc> is,cc + <& _j_mwr> im,cc + “ ’ (610)

dt L . L L
i, e R _ ( R’ . > -
’ = L ts,cc — & + ](wcc - wr) tm,cey (611)
a L, L

where all signals are given in a reference frame with the gnglég.e.

Peccs ?s,cc
,

Wee ise—JPcc,

> 1>
> 1>

tm,cc tye IPee, Us,cc Uge IPee.

We wish to design a controller for the complex stator curggnt using the complex
stator voltagei, .. as the control input.

The reference frame is chosen as the same as the one used by the outer control loop, since
the reference signal for the stator current will be constant in steady state in this frame. We
assume that the flux observer is the simple observer (4.15) based on the current model,
and that the reference frame is the angle of the rotor flux estimate as discussed in Chapter
4. In estimated rotor flux coordinates this observer is

X 1 N
imR = E(isd - imR), (612)
Wee = Wyt 220 (6.13)

With i5q = R{7; cc} andigy = {5 cc}-

(6.10)-(6.11) can be viewed as an LPV system withandw,. as time-varying param-
eters, but we wish to exploit the knowledge that the slip frequengy = wee — wy is
usually small compared to the maximal valuewef This can of course be exploited by
restricting the parametess. andw,. to the polygon

Wy Wy
|:ch:| € {|:ch:| : |wr| S Wrmaz |wcc - wr| S wslip,mam}- (614)
We will instead exploit this knowledge by inserting (6.13) in (6.10)-(6.11) resulting in

dgs,cc R, + R, . . R, L isq - Us,cc
dt = - 7 T+ jWee ls,cc T L_{: —J L?: Wee — m tm,ce T L ,
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dgm,cc RI = Rl . Z.sq =
dt - ils,cc - L;; + ]TT%mR m,cc-

The subsystem (6.8) can now be written as

. )
Tee = (AO + 61 A1 + 62A2) Tee + Bscus,cca Tcc £ |:; 37cc:| s (6-15)
m,cc
in which
__R.+R. R, 1
Ay = e L, ] andB,, = LQ]
. I 0

represent the nominal model, which is a linear time invariant system, and

1

o L L
7T andA4,; =
0

0 Jpir
0 —jz

represent the nonlinearities entering through the residual gains

Ay =
0

51(t) 2 wee(t) andds(t) 2 ;sqd((tt)).

To put the system on an LFT form we write (6.15) as

jjcc - AOmcc + Bquu + Bscas cey

’ 6.16

Wy = ADzy, 2o = CuoZee. ( )

First we observe thatl; and A, are both of rank 1. Consequently we can parametrise
these as

o1 0] [vf,]

A = U121V1* = [Ul,l U1,2]

L0 0] [of )]
and
Ay =UsSoVy' = [ua1  u2o] o 0 U%l
[0 0] [v32]
and let

o
By = [ulylal U,Q’ldz] andCuo = 1’l:| .

V2,1
The parameter variation can then be written agA;z.. + 242z, =
B.o [%1 502] Cuotec. The parameter variation channgl — w,, is hence defined as

Wee(t) 0
wu(t)zA(nzu(t):[ . A] 2alt) (6.17)

Tmd (t)
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The main advantage of this representation over the one obtained directly from the poly-
gon (6.14) is the simplicity oAA. With the methods in most of the references in Section
5.1, using (6.14) directly, we would have to use the parameter variation

w 0
A=
[0 UJCCIQ:| ’
since the dependency om.. has rank 2. With the full block S-procedure in
[Scherer, 2001] (described in Sections 5.2-5.3) we can simply use

L
A = Wee L_’Swr
0 (wee—wr)
with z, = —jz... The representationin (6.17) is slightly simpler. On the other hand we

do introduce a singularity for smai,4. In normal operation this is not a problem, but
during startup the performance may be degraded.

6.2.2 Controller synthesis

A stator current controller was designed for the example motor with the parameters in
(3.57). The first step of the controller synthesis was to augment the LPV system defined
by (6.16) and (6.17) with performance and control channels to get the system

Tee Ay | Byo 0 B, Tece
Zu | Cw | O 0 0 Wy,
Zp a Cp 0 Dy E Wp
Y C 0 F, 0 Us,ce

The noise signab,, = FS’CC’”f] consists of the reference signal for the stator current
n

m

vs,cc — Us,cc,ref

and measurement noise. The performance output ] consists of

Uuus,cc
the stator current error and the stator voltage scaled by the wejghtorder to punish
large control signals. The measurement is .. — is cc,ref + onnm IS the stator current
error corrupted by the measurement noise scaled by the weighthis was achieved

. . 1 -1
with the matricesC, = [0 g] D,y = [0 g] B, = [UOU], C =11 0], and
F, = [—1 an]. The first element in the performance output, the stator current error,
was then augmented by a first-order low-pass filter with a pole a p; in order to
put more emphasis on the low frequency error. The consgants,,, ando,, can be
considered as tuning parametegs:. is used to obtain a low steady state errey, is
mainly included to compensate for the fact that saturation of the stator voltage is not
included in the model.
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The LPV system was then discretised by the bilinear transformation described in Sec-
tion 5.4 under the assumption thatis approximately constant from sample to sample.
The sampling frequency was chosen as 600 Hz. The main reason for this choice is the
computational complexity of the LPV controller.

A discrete time stator current controller was synthesised by the LPV method described
in Section 5.4.3 with the parameters = —100, o, = 1075, ando,, = 1078, The
time-varying parameters were allowed to vary in the interdals: w.. € [—800 ; 800]

andd, = ;—Z € [-10 ; 10]. The performance indeR, was chosen as thg-induced

norm specification

2
—v*I 0
e[

and a bisectional search was performed to determine the lowest vajueiofvhich the

LMIs were feasible. With the above parameterg & 0.0011 was achieved. The left
hand side of (5.60) became close to singular making it possible to reduce the controller
orderto 2.

6.2.3 Simulation results

Before implementation, the closed-loop behaviour was simulated in order to verify the
stability and performance. In the simulations the reference sequence was chosen as a
series of steps of a duration of 250 samples. For each step, the referenggeviers
allowed to take random values in the interf/all0 ; 10], while the reference fai,4 was

chosen from the intervdl ; 3]. The system was disturbed by a load torgug, which

was a sequence of uniformly distributed white noise filtered through a first-order filter
with a time constant of /2 second. Subject to these external signals, the nonlinear model
generated thé; andd, sequences based on which the controller scheduling function
was calculated. Motivated by limitations of the hardware of the experimental setup, a
saturation on the control voltagg .. at 600 V was imposed.
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Time [sec]

Figure 6.1:LPV current control, simulation. The top figure shows the real and imaginary
components of the control voltage generated by the controller. The middle figures show
the real and imaginary componernitg;, andi,,, of the controlled currents, plotted with

full lines (—) along with their reference signals, plotted with dash-dotted lires).

The bottom plot shows, (—) andd, (— - —) scaled to the interval-1 ; 1]. As can be

seen, the tracking of the current reference satisfies the performance requirement except
when the control voltage saturates (at around 4 sec).

Figure 6.1 shows a simulation of the closed loop system. It is seen that the control loop
achieves good tracking, in accordance with the performance value achieved for all values
of the parameter variations, except when the control signal saturates. The parameter
variations are shown in the bottom plot in Figure 6.1, scaled to the intppdat 1].

It is noted that the generated stator voltage compensates for the parameter variations
throughout the allowed range.
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6.2.4 Experimental results
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Figure 6.2: LPV current control, experimental results. The top figures show the real
and imaginary components of the control voltage generated by the implemented LPV
controller. The lower figures show the controlled currigpt The reference signals are
shown with dash-dotted lines-(- —), while the measurements are shown with full lines
(—). The left figures are with no load, while the right figures are recorded with a load
torque ofmy = 4ANm.

The controller was implemented on the laboratory setup described in Appendix A using
the algorithm discussed in Section 5.4.4.

In the first two experiments, the stator current reference was generated in open-loop, i.e.
there was no speed controller. The aim was to keep the magnetising current constant
and make the imaginary part of the stator current follow a series of steps. The first
experiment was conducted without load, while in the second experiment the motor shaft
was subjected to a load torque4¥m. The results are shown in Figure 6.2, where it is
observed that the current tracks the reference steps adequately well. Looking at the stator
voltage, it is noted that the imaginary part of the voltage is significantly different between
the two experiments. This is due to the two different disturbance load torques, which
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cause the scheduling controller to yield significantly different control signals. Some
variation can be noted in the real part of the voltage as well, caused by the cross couplings.
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Figure 6.3:LPV current control in cascade with rotational speed controller, experimental
results. The top figure shows the real and imaginary components of the control voltage
generated by the implemented LPV controller. The middle and lower figures show the
controlled current, and the rotational speed, respectively. The reference signals are
shown with dash-dotted lines-(- —), while the measurements are shown with full lines
(—). The current reference signal was generated by an outer loop speed controller.

In the third experiment the speed loop was closed using an outer Pl-controller. In this
case the stator current reference signals were thus generated by the Pl-controller, and
the LPV controller had to track these signals. The results of this experiment is shown in
Figure 6.3. As can be seen, the control loop performs satisfactorily.
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6.3 Quasi-LPV control based on neural network mod-
elling

So far we have only dealt with control based on grey-box identification of physical mod-
els. In some cases it may however be desirable to work with nonlinear black-box models
such as the multi-layer perceptron (MLP) discussed in Section 2.5, especially if a physi-
cal model is hard to obtain. This may for instance be the case if the load torque is some
unknown nonlinear function of the rotational speed. In that case a neural network such
as an MLP could be used to obtain a nonlinear model of the system.

The problem is now how to design a controller for a system modelled in this way. The
classical approach has been to linearise the system model in some set of operating points
and design one or more linear controllers for the system in said points. As discussed in
Section 6.1 this approach has several hazards.

Other applications of neural network models in control theory are for instance for feed-
back linearisation [Chen and Khalil, 1995, He et al., 1998, Levin and Narendra, 1993]
and sliding mode control laws [Mears and Polycarpou, 1999]. They have also
been proven useful as observers [Kimetal., 1997], in direct adaptive control
[French and Rogers, 1998, Su and Annaswamy, 1998], and in other roles. However, not
much work has been done on achieving gain scheduling control based on artificial neural
networks. In [Lee et al., 1996] a previously tuned gain scheduling controller was ap-
proximated by a neural network which then replaced the gain scheduling controller in
the loop. Other approaches (e.g. [Chai et al., 1996]) use a neural network to schedule be-
tween a finite set of previously designed classical controllers, and have been somewhat
ad hoc.

[Suykens et al., 1999] (with the corrections in [Bendtsen and Trangbeek, 2001a]) presents
an analysis method of stability and performance of a closed-loop interconnection of two
MLPs. In other words, the suggestion is to let the system modelled by an MLP be
controlled by a controller also containing an MLP. The method is essentially based on
diagonal multipliers. The problem with this analysis method is that it is unclear how to
extend it to synthesis, in particular how to choose the MLP part of the controller. The
problemis that any coupling between the nonlinearities in the system and in the controller
are not exploited.

With the emergence of LPV control theory based on LMlIs, as discussed in Chapter 5,
a door has been opened for an efficient approach to gain scheduling control based on
neural state space models. Such an extension of controller synthesis ideas from linear
theory to the nonlinear framework of neural networks is a fundamentally sound idea, of
course, but requires a method for reformulating the neural network model as an LPV
model suitable for controller synthesis. More specifically, we would like to transform an
MLP model into a quasi-LPV model on the LFT form as discussed in Section 6.1.1.

Some work along these lines has already been presented in [Suykens et al., 1995a] and
[Suykens et al., 1995b] with robu&t,, control in mind. The idea was to split the MLP
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model into a linear part and a nonlinear part and then design a rahustontroller for
the linear system treating the nonlinear part as an uncertainty.

However, the fact that the nonlinearities are actually known at the design stage means
that the controller can be designed by LPV methods taking advantage of this informa-
tion as well, achieving a nonlinear and less conservative controller. In addition to this
idea the method described in this section extends the results in [Suykens et al., 1995a,
Suykens et al., 1995b] by achieving less conservative bounds on the nonlinear part. This
improvement was presented in [Bendtsen and Trangbaek, 2000b].

6.3.1 From neural state space model to an LFT framework

We consider a system of the form
i=f(z,a), §=C0C% (6.18)

wherez € R" is the state vecto; € R™ is a control signal ang € R? is the output
vector for the systemf(-,-) : R* x R™ — R™ is an unknown continuous function of
the states and inputs describing the system dynamics.

As discussed in Section 2.5 we can approximate this function to a desired accuracy with
a single hidden layer MLP withneurons (assumings chosen large enough):

F(# @) = Op0 (@z:z + 04+ éb) ten

where®, € R**! and®, € R**", 0, € R*™ contain the output and hidden layer
weights, respectivelyo(-) : R — R! is a continuous, diagonal, static nonlinearity.

0, € R contains a set of biases which will allow us to model non-odd functions with
odd neuron functions(-) such as the hyperbolic tangent. We assume it is possible to
achieve a smaller modelling error than the measurement noise by choosing the MLP large
enough and train it long enough on a sufficiently rich training set.

Consider a system for which a neural state space model has been trained according to the
guidelines given above, until, is small enough to be ignored:

5 =0,0 (@z:z + 0,0+ éb) . §=Ci. (6.19)
We wish to rewrite the neural model (6.19) as the linear fractional transformation
& = Az + Bu+ B,Q(¢)
§ = O,z+04u (6.20)
y = Cz
where theresidual functionQ(-) : R — R is a static diagonal nonlinear-

ity, and where the coordinatgs, ) only differ from (#,4) by the possible sub-
traction of an equilibrium point. The presented method was first discussed in
[Bendtsen and Trangbaek, 2000b].
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We assume that there exists an equilibridia) = (z°, @°), i.e.
0 = 0,0(0,2° + 0,i° + 0y).

We can then change the network coordinates in such a way that instead of the arbitrary
equilibrium point(z°, @°) we haved = ©,0'(0) (¢’ is a new neuron function mapping
which will be defined shortly). Let the new coordinates be givem as z — #°,u =

4 — @°. Then (6.19) can be written as

&= 0,0 (@z(x +2°) 4 Oy(u +a°) + (:)b) .

Here we will define a new bias vect®r, = ©,7° + 0,4° + 0, and the new neuron
functiono’ (§), wheret is defined as in (6.20):

ad§ = o (5 +0,3° + 0,4° + éb) — 0 ()
= 0 (Gz(m +2°) 4+ Oy (u+a°) + (3),,) —0(0p).
Adding and subtractin®,0(0;) in (6.19) then gives
i = O (@wi’ + 0.+ é,,) + 0,0 (0)) — 0,0 ()
= 0, (a (@z:z + 04+ (i)b) p (@b)) + 0,0 (0)
= 0,0 (0,7 + Oyuu) = O,0'(§).
©,0(0;) = 0, because this is in fact the equilibrium point.

Remark 6.4Note that, apart from providing a way to shift the operating point to
the origin, the main purpose of the steps given above is to remove the bias from
o instead of having to consider it as a constant disturbance input, as suggested in
[Suykens et al., 1995h].

Remark 6.51t should furthermore be noted that the method given above applies equally
well to sampled-data systerfig, 1 = f(Zx, Gx). In this case the MLP equilibrium point
is of the formzy  ; = f(&y,dy), Vk, but the definition ob'(-) turns out to be the same.

Now we can find the effective range of the input arguments to the neuron functions. This
is simply done by calculating

gj,maz = sup {®sz(t) + Qiu(t)} ’
0>t>T
Simin = Inf {©7z(t) + OLu(t)}

for1 < j <, wheret € [0; T] is the time interval in which the training data have been
acquired an®?, ©J, denote the’th rows in the hidden layer weight matrices. Then we
have the following bounds on the active input range ofjtkieneuron:

& = ©%x + OLu € [&),min; &jmaz] -
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Hence the neuron function response to the active input range belongs to ther$eetor
(Kjmin » kj,maz] Where

! .
K min = inf {JJ (&) } (6.21)
€€l mini€imaz]\{0} &
and
o’ (&
k‘j,maz = sup {ﬁ} . (6.22)
€5€lEsminitimas\ {0} U &

In other words, theector boundare determined such that
kg,mzné? S Ul(gj)gj S kj,mazgjg- (623)

The actual expressions for these sector bounds must be found for each neuron function
individually and will in general depend on the bias, but the bounds obviously exist and
are the least conservative easily achievable bounds. A procedure for finding these for
tanh(-) neuron functions is given below in Section 6.3.2.

Once the sector bounds are found, we return to vector notation and define the nonlinear
functionw(-) : R**™ — R™ as
, 1
w(©) =0'(6) - 5
whereK,,;n, = diag{k; min — €} aNd Koy = diag{kjmez +€},1 < j <l €eisa
small positive quantity included to make the sector bounds strict. It is observed(that
belongs to the sector

1
(_Q(Kmaz - szn) )

We can now write the equation faéras
T = 0,0 (0, + Oyu)

_ o, (w(f) 45 Koin + Konae) é)

(Kmin + Kmam)g (624)

1
Q(Kma:t - szn))

= Az + Bu+ B,Q(¢),
in which A, B, B,, and2 are given by
A = %@0 (Kmin + Kmaz) O (6.25)
B = %@0 (Kmin + Kimaz) Ou (6.26)
Bu = 500 (Knaw = Kin) (627)
Q8 = 2(Kmaw — Kpnin) (9. (6.28)

Note that the diagonal scaling bb/(Kmaz — Kynin) is included in order to make the
diagonal static nonlinearitf belong to the sectqr—1, 1).
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Remark 6.6When designing LPV or quasi-LPV controllers, we are interested in the
tightest possible boundk,,,... — K.:n in order to avoid conservatism. Although the
LPV synthesis method described in Section 5.3 is essentially non-conservative, it is usu-
ally necessary to use simplified multipliers, for instance by disregarding knowledge on
the rate of change of the gains of the residual function, to make the synthesis imple-
mentable and to avoid controller switching. A quasi-LPV representation potentially in-
troduces further conservatism due to non-uniqueness of the nonlinear function represen-
tation. For the sake of the controller synthesis we are therefore interested in keeping
these gains from varying too much.

6.3.2 Sector bounds for tangent hyperbolic neuron functions

Neuron response

Neuron response

Neuron response

0
Neuron inpuﬁj

Figure 6.4:Extraction of linear content from a hyperbolic tangent neuron.

In order to illustrate the procedure above we will provide an expression for the sector
bounds (6.21) and (6.22) for thanh(-) neuron function, which is probably the most
popular neuron function employed in MLPs. Consider the neus¢§)) = tanh(¢;+6,)
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wheref,, is the scalar bias on the inp§it. Refer to Figure 6.4, where the top plot shows
the parallel translation of the original neuron function with fiaso the origin. We will
without loss of generality assume tltgt> 0. Only the section of the neuron function,
which corresponds to the input inter&g), in; &j,maz], is considered.

On the middle plot the straight lin€s; ,»:».&; andk; ...&; have been added. Since
4 tanh(s) < 0fors > 0itis immediately concluded tha; ,,.:,, is given by

ds?
U;’ (gj,mam)

gj,maz

kj,min —

k; maz, ON the other hand, can either be given%é#f’f%” if the endpoint of the input
range is sufficiently close to zero, or by the slope of the tangent to the neuron function
which intersect®. The relationship between the bias and the arguficior which said

tangent coincides with the neuron function has been found numerically as
& = —0.0037965 + 0.0727467 — 1.51466,.

A closed form most likely does not exist. The polynomial given here provides values of
kj.maz With errors of the order of magnitud®—5.

Hence we have

i #, for & > & min
pmar =) gmin) o gore <o
&iomin 7 b = Sjmin-

Note that there is no loss of generality in the assumpfion> 0 since the fact that

the (original) neuron function is odd ensures that the expressions given above hold for
negative biases as well, with a few simple sign changes and swapping of minimum and
maximum values.

To summarise, this section has presented a systematic method for transforming an MLP
state space model of a nonlinear into a quasi-LPV model on the LFT form with a static
and diagonal residual gain function. The transformation is performed in a way making
the model suitable for LPV controller synthesis.

6.3.3 Uncertainty on the residual gains

Once the sector bounds for the nonlinearity have been determined we also have an ex-
plicit, smooth expression for the new set of neuron functions (given by egns. (6.24) and
(6.28)). If there is any uncertainty in the knowledge:@fndu, then this will of course re-

sultin an uncertainty on the knowledge(f-). However, if we assume that some bound

on the uncertainty of the inputs to the nonlinearity is known, then the above expression
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can be exploited to provide a bound on the uncertainty of the gain of the nonlinearity:

QJ(&J) — Qj(gj) +EQja |EQj| < &TQ]'

£ &
where(; is the j’'th diagonal element of2. Such a bound can for instance be found
by conducting a numerical search over the range of all permissible valugs Diie
bound on the measurement noise can be used togethe®witmd©,, to estimate the
uncertainty org; then this uncertainty can be used to calculate an upper bousg.on

6.4 Quasi-LPV speed controller

In Section 6.2 a stator current controller was designed based on a physical model of the
induction motor. It is not always possible to construct a good model of a system based
on physical considerations. In that case a nonlinear black-box model approach can be
used, for instance using an MLP as a model. As discussed in Section 2.5, under certain
assumptions itis possible to train an MLP as a nonlinear state space model with the same
behaviour as the system using only input and output measurements.

When designing a speed controller the dynamics are heavily affected by the profile of the
load torque. Thus a controller designed by linear methods in one operating point may
not work in another operating point. This kind of problem can be overcome by obtaining
a nonlinear model capturing the behaviour in the entire range of operation, and then use
a nonlinear control design method.

In this section we will design a speed controller by the following steps:

e The system to be controlled is modelled by an MLP state space model.

e The obtained model is transformed into a quasi-LPV model on the LFT form by
the method presented in Section 6.3.

¢ A controller is designed by the method described in Section 5.4.3.

6.4.1 Strategy

The overall aim in this section is to design a controller for the rotational spgadd the
magnetising current,,. The controller should work in the cascade coupling discussed
in Section 4.2. This is illustrated in Figure 6.5. The entire block on the right containing
the stator current controller, the power device, the induction motor system, as well as the
speed and flux observers is considered as the system to be controlled.
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Figure 6.5:Speed and magnetising current control scheme.

Ideally, by using a black-box modelling strategy of the entire block, the speed and mag-
netising current controller should be able to compensate for errors introduced by the
model used for the stator current control and to some extent for those introduced by the
observers. This of course requires that the system behaviour can be modelled by the
black-box model, and that an accurate model is indeed obtained.

The aim is to model the system by an MLP, and transform this into a quasi-LPV model
on the LFT form as discussed in Section 6.3. This model will then by used for designing
an LPV controller.

In order to simplify the controller, it is decided to assume that only the estimates of the
rotor speedy, and the magnitudg,,z of the magnetising current are needed in order

to obtain a good model of the system. An estimate of the angular velocity of the flux
wmr could for instance have been used as an input to the model. In the final controller
design this would then have entered as a parameter when calculating the residual gains.
Similarly, measurements of the stator voltage could have been used.

A main factor in choosing the sampling frequency is the computational complexity of an
LPV controller. The stator current controller as well as the observers are implemented
at a sampling frequency &k H z, but the complexity of the LPV controller and the
limitations of the available hardware makes it necessary to implement the controller at
a sampling frequency of ju$i00H z. Since the magnetising current is governed by
relatively slow dynamics, this is no problem for this part of the controller. On the other
hand it may limit the achievable performance for the speed controller slightly.

Two different types of model structures for MLPs were discussed in Section 2.5. The
NARX model structure assumes that the output can be accurately predicted based only
on old outputs and inputs. This limits the types of noise than can be modelled. On the
other hand, the NARMAX allows for a very general model structure. However due to
the possibility of convergence problems with the NARMAX model structure it is chosen
to work with a NARX model here. For this problem, this means that the load torque
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must be chosen as a function of the speganly. Providing measurements of the shaft
position to the model would allow for a position dependence as well, but it would still
not be possible to let the load torque depend dynamically on some unknown disturbance.

Itis chosen to let the load torque be a nonlinear function of the speed:

2

mp, = 8(1 - 1 + e0-0Lw,

)

wherew, is in radians per second amdy, is in Newton meter. Notice that this infor-
mation is only used to control the DC motor simulating the load torque and is assumed
unknown in the modelling.

It is furthermore chosen to let the flux observer be the simple observer (4.15) based on
the current model. In rotor flux coordinates the part concerning the magrnitygef
the magnetising curreny, is simply

=

ng = L_:(isd - imR) (629)

If we assume that,, is equal toi,e, ¢ then this estimate is a known function of the
input, and there is no need to attempt to model it with the MLP. This is a reasonable
assumption, since the magnetising current dynamics are much slower than the stator
current dynamics. Thus the MLP is to predigtbased on old measurements.gfand
estimates of,,r.

6.4.2 MLP model

The first step in the control design procedure is to obtain an MLP model of the system.
This consists of the following steps:

¢ Create data sets for training and validation.

e Choose the model type and parameters, for instance the model order.

e Train the MLP.

¢ Validate the achieved model.
The reason that we need both a training set and a validation set is the inherent danger in
training neural networks advertraining If the MLP has a large number of neurons and
therefore a large number of adjustable parameters, it may happen that the MLP learns

the behaviour of the training set including noise rather than that of the actual underlying
system. It is therefore necessary to test the behaviour of the MLP on a validation set.
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Training set

When black-box modelling a nonlinear system, it is not sufficient for the data to contain
a large number of frequencies in the range of interest. Since the dynamic behaviour can
vary between operating points and even with the magnitude of the signals, it is necessary
for the training set to cover a large number of operating points and signal amplitudes as
well. This can be achieved by letting the input signals be pseudo-random signals, for
instance steps of varying amplitude and length at various operating points.

It is chosen to create the data in partial closed-loop operation with a loosely tuned PI-
controller for the following reasons. Firstly, the signals obtained from closed-loop exper-
iments will mimic an environment which is closer to the one, in which the final controller
will operate. Secondly, the range of operation will typically be specified in terms of the
outputs rather than the inputs. Closed-loop operation allows us to make sure that data
from the entire range are obtained. Finally, it may not be desirable to impose open-loop
input signals which could cause the system to leave some allowed region of operation.

There are two problems with the closed-loop approach. Firstly, it is necessary to already
have a functioning controller available. On the other hand, this controller does not have

to achieve a good performance, so any loosely tuned controller which just stabilises the
system in the entire operating range is all that is needed. The second problem is that
the measured behaviour will be that of the closed-loop system rather than the open-loop
system to be controlled. This problem can be alleviated by adding small pseudo-random
signals to the output of the controller [Billings et al., 1992].

A section of the training set is shown in Figure 6.6. The reference for the speed was
varied in steps of random length and amplitude in the range from -250 rad/s to 250
rad/s. The speed was controlled by a loosely tuned Pl-controller of the type discussed in
Section 4.2.1 generating a referencedgr The reference for the magnetising current
was generated in a similar manner in the range from 0.8 A to 2.8 A. The magnetising
current was controlled by a P-controller generating a referencg fas discussed in
Section 4.2.2. Random signals with an amplitude of 0.8 A were added to the stator
current references generated by these controllers.
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Figure 6.6:6000 samples of the training set. First (top) figure: measured speed. Second
figure: estimated magnitude of magnetising current. Third and fourth figures: references
for the stator current controller.

The control loop generating the data set operated at a sampling frequency of 3 kHz. The
data was sampled at 600 Hz after being filtered by first order filters with bandwidths of
100 Hz.

A validation set was generated in exactly the same way. Both the training and the vali-
dation set consist of 22000 samples. The data was scaled before the training:

I —1 W (Wr —wrp),

;/:mR = U;l (imR - ZmR 0)7
ng7T€f 2 Ud_l (st ref — isd ref, 0)
< A _1
lsqref = O4 (isqref — sqref,0)s

where thes’s denote standard deviances of the respective signals, and the zero subscripts
denote a known operating point.
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Model type

Rather than using,, ..y as an input to the model, we will attempt to precompensate for
the known nonlinearity in (4.6) by instead using the input

. A . o

tr = lsq,ref'mR-
As mentioned above we will attempt to model the system by a NARX MLP model as the
one discussed in Section 2.5.2, i.e., we wish to predict the next valuelmsed on old

values ofw,, img, isd,ref, ANdigg rer. More specifically we wish to find weigh®,,
0, and®; such that

(f)r,k £ Mm(zk7 617 627 Gb)a i a)r,k

whereM,, is defined as in (2.21), and
[ (I}r,k—l W
a)r,kfn
%mR,k—l

imR,kfn,-

(1>

isd,ref,kfl

isd,ref,k—nu

Z.T,kfl

i‘r,k—nu J
With i, £ 6-1(i; — isg.ref0imp.0), Whereo, is the standard deviation of.

We choose the neuron functions to be tangent hyperbolic. Alternatively we could have
chosen a combination of tangent hyperbolic and linear neuron functions, but the tangent
hyperbolic neuron can yield almost linear behaviour simply by making the input weights
small and the output weights large. The only thing remaining is now to specify the
number of neurons, the order of the modeland the number of delayed inpuig

andn;. These choices are left for the training, since some experimentation is usually
necessary.

Training

Since the training of an MLP is nonconvex problem, the initial values of the parameters
are important. This was found to be even more important, when the model is to be used
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for designing a quasi-LPV controller. It was found that many different models gave the
same performance in terms of summed squared prediction errors, but that in order to
construct a controller yielding a good closed-loop performance it was necessary for the
sector bounds (as discussed in Section 6.3.1) to be small. This is partially due to some
conservatism discussed below in Section 6.4.3.

Define theinput matrix
M; £ [zs Zg—1 e zn+1]
and thetarget matrix
M, 2 (@5 @roc1 oo @pnga]
wheres is the number of samples in the training set.

The linear (ARX) model minimising the least-squares prediction error performance index

1 s
A T
Ji = Z €1,i€L,i»

s—n .
i=n+1

where the prediction erray is defined as
A~ 2
€Lk = Wrk — Wrlk,
is given by
(f)r,l,k-&-l = Mz,
with the linear gainV/; defined as [Elbert, 1984]
M; 2 M,M].

One could train the MLP to only learn the nonlinear part, i.e. defining the targets for
the MLP as the prediction errors of the ARX model. This could potentially reduce the
number of neurons needed as well as improving the chances of converging to a global
minimum, but it was found that this lead to unpleasantly large sector bounds.

Instead the ARX model is used to generate the initial weights for the MLP training. We let
the initial MLP model approximate the ARX model by lettifg = 0 and©.0; = M;.

We perform the factorisation df; such tha®. is very large an®; is very small. Then

M, (2) =~ M;z.

A number of MLPs were trained with various numbers of neurons and model orders
using the Levenberg-Marquardt training algorithm to minimise the prediction error

1 s
A T
Im = § €m,i€m,is

Ss—n .
i=n+1




132 Quasi-LPV Current and Speed Controllers

where the prediction errar,, is defined as
A~ 2
€m,k = Wrk — Wrk-

A reasonable prediction error for both the training and validation sets was obtained with
4 neurons, a fourth order model & 4), n; = 1, andn,, = 2.

Model validation

Figure 6.7 shows the prediction error for 500 samples of the training set. The top figure
shows the prediction error for the MLP model, the bottom figure shows the prediction

error for the ARX model. Figure 6.8 shows the same for the validation set. It may be

difficult to see any significant difference in the plots but the unscaled prediction error

performances show that the MLP predicts the system behaviour better than the ARX
model:

Model Training set| Validation set
MLP, o, J;, = 1.04 1.02
ARX, o, J; = 1.71 1.82

The performances indicate that the MLP model has captured at least some of the non-
linear behaviour of the system, and that, since the validation set prediction error is not
larger than for the training set, it has not been overtrained.
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Prediction error, MLP
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Figure 6.7:Prediction error for 500 samples of the training set. The top figure shows the
prediction error for the MLP model, the bottom figure shows the prediction error for the

ARX model.
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Figure 6.8:Prediction error for 500 samples of the validation set. The top figure shows

the prediction error for the MLP model, the bottom figure shows the prediction error for
the ARX model.

An alternative way of validating the model is to test the auto-correlation of the prediction
error. ldeally there should be no correlation between the prediction errors. Figure 6.9
shows the scaled auto-correlation of the prediction error for the validation set. The plot
indicates that the prediction error of the MLP model is not entirely uncorrelated, but on
the other hand it is much better than for the linear model.
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Figure 6.9:Scaled auto-correlation of the prediction error for the validation set. The top
figure shows the auto-correlation of the prediction error for the MLP model, the bottom
figure shows the same for the ARX model.

Another way of testing the obtained model is to use it as an open-loop simulator, i.e.
replacing the delayed measurementspfvith the values predicted by the model. This

is shown in Figure 6.10 for the training set and in Figure 6.11 for the validation set.
The top figures show the simulation using the MLP model. The middle figures show the
simulation using the ARX model. The bottom figures show the simulation error for the
MLP model.
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Figure 6.10:0pen-loop simulation of the speed using the MLP model (top figure) and the
ARX model (middle figure) for 6000 samples of the training set. The solid lines show the
simulated speed, the dotted lines show the actual (measured) speed. The bottom figure
shows the simulation error for the MLP model.
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Figure 6.11:0pen-loop simulation of the speed using the MLP model (top figure) and
the ARX model (middle figure) for 6000 samples of the validation set. The solid lines
show the simulated speed, the dotted lines show the actual (measured) speed. The bottom
figure shows the simulation error for the MLP model.

The simulations show that the MLP model is a much better open-loop simulator than the
ARX model. On the other hand, it does still show some systematic errors.

The overall conclusion of the validation procedure is that an MLP model of the system
has been obtained which yields satisfactory performance both as a predictor and as an
open-loop simulator.

6.4.3 Controller design

The aim is now to transform the MLP model into a quasi-LPV model on the LFT form
suitable for LPV control design. The first step is to perform the transformation discussed
in Section 6.3.1. The sector bounds were found by the method presented in Section 6.3.2
as
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j kj,mam - kj,min
1 0.0114
2 0.0092
3 0.0062
4 0.0035

The transformation provided a model on the form

Ci
Wy, k
|:Ck+1:| _ [Ao B, By B Bz] 3
- "mR,k
Zu,k Cy 0 D; Dyi Dy s ’
Ug
Uk—1
where
(I}r,k
Wy o 1 3
Ck N ~r,k 1 anduk -y |:szi,ref,l»:| ,
wr,k72 ZT,]C
(‘Dr,k—B

andw,, = Q(z,,%), WwhereQ(-) is a static nonlinearity. This is also illustrated in Figure
6.12, wherey—! denotes the delay operator.

Zu Wy,

Z-sdﬂ'ef

q

Figure 6.12:MLP model on LFT form.

In order to design the controller this system was expanded into the one in Figure 6.13.
Thei,,r observer block contains the discrete time version of equation (6.29) replacing
isq With 54 rc¢. A reference signab, ,.; for the speed is subtracted from the actual
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speed yielding a control errar. This control error is low-pass filtered by the filter
fp yielding part of the performance output. The performance fiffers a first order
filter with a bandwidth of 5 Hz. Before feeding the control error to the contrdiier
measurement noisg, with varianced.50_, ! is added. The controller outputs the control
signalsisg, rey andi, .

Q
Zu Wy,
~ ImR imR
Wr ref m
observer
Zp]_ f e - (D’r‘
p
M -1
q
Zp2
-
= —1
Wn q
ir
K =
lsd,ref
We Zc
Qc

Figure 6.13:Setup for LPV speed controller synthesis.

The final thing to notice about the setup is that there is no reference signal to or perfor-
mance signal from the magnetising current. Instead a penalty has beenipyt gnby
outputting it as the performance signgt. This is due to the fact that an early attempt

to design a controller for bott, andi,,r resulted in a controller relying heavily on
Esd,,,ef for speed control. From our knowledge of the nonlinearities, we know that this
is not desirable, but this information is hidden in the residual g&inand the control
design procedure only employs knowledge of the bounds on the gains, thus ignoring this
knowledge of the nonlinearities. The setup in Figure 6.13 results in a controller setting
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Esd,mf ~ 0. This control signal is then replaced by the control signal from a traditional
magnetising current controller. This method is an ad hoc approach and most likely not
the best approach. One problem is that the speed controller as?s;gmgsw 0, where

it would probably be a better idea to incluﬂ,qref as a measurable disturbance. This
should certainly be attempted in future versions.

The overall result is an eighth order model: four orders from the MLP model, two from
the input delays, one from the observer, and one from the performance filter. A controller
K and a scheduling functidn, were designed using the method described in Section 5.4
attempting to minimise thg-gain froma, s andwy, t0 2,1 andzy,. In order to obtain

a controller which could be implemented in real-time it was necessary to disregard the
two residual gains with the smallest sector bounds. It was possible to solve the LMI with
anl»-gain less tha.016. However, due to numerical problems in solving the quadratic
matrix inequality it was necessary to increase the bound te 0.018 in order to obtain

a controller. For comparison, designing a controller disregarding the residual gains, an
l>-gain less than; = 0.011 could be achieved.

There are two sources of conservatism to the method employed here. First we consider
the residual gains as a diagonal gain with no correlation between the individual gains.
Finding a way to first obtain information of the correlation and secondly using this in

a finite-dimensional scheme would be a lot more troublesome. Secondly, the rate of
variation in the residual gains are not taken into account. It would seem a relatively
straight-forward task to expand the procedure discussed in Section 6.3 in order to obtain
bounds on the rate of variation. However, this is a matter for further research.

The obtained controller is on the form (5.57)-(5.58), where the scheduling subSpace
depends or\;, which is a diagonal gain matrix such that

Apzyr = QUzuk).

This poses an algebraic loop problem, singg, depends oru. Thus, in order to
computeS, at sample k it is necessary to knaw, and in order to computey, it is
necessary to know.. If the sampling frequency is sufficiently high, and the controller
has a reasonably low high-frequency gain, then the control signal can be expected to
change only slightly from sample to sample, and; can be used as an estimateugf

in computingA . Alternatively, an iterative scheme could be used to alternately compute
up andAy, in an algebraic loop until the results (hopefully) converge. Since the sample
rate is mainly limited by the computational power of the PC, this latter approach does
not seem viable.

The controller was implemented using the first of these approaches, i.e. asstming
ug, when computing the scheduling subspace.
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6.4.4 Closed-loop experiments

A closed-loop experiment was performed using the LPV speed controller. The result
is shown in Figure 6.14, where the measured speed is shown by the solid line and the
speed reference is shown by the dotted line. The reference moves in small steps from
—250rad/s to 200rad/s and then back te-250rad/ s in one large step.

0 0.5 1 1.5 2 2%5 Z; 3.5 4 4.5 5
Time [s]
Figure 6.14: Closed-loop experiment using the LPV speed controller. The speed
reference is shown by the dotted line. The three figures show the behaviour with
three different settings for the magnetising current. Topi rey = 2.8A. Middle:
imR,ref = 2.2A. Bottom:ip,gr rep = 1.0A.

The experiment is performed for three different degrees of magnetisatign..; =

2.84, tmR,ref = 2.2A, andiy, g oy = 1.04 respectively. The behaviour is satisfac-

tory for all three situations, although fég,r .y = 1.0A the performance is somewhat
degraded for large (positive and negative) speeds. This is to be expected since the achiev-
able torque is limited by the allowable stator current.

For comparisons an experiment is performed with a Pl-controller tuned by the Ziegler-
Nicholls relay method around, = Orad/s. The results are shown in Figure 6.15.
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Figure 6.15:Closed-loop experiment using a Pl speed controller. The speed reference
is shown by the dotted line. The three figures show the behaviour with three different
settings for the magnetising current. TaRg rer = 2.8A. Middle: ipg rer = 2.2A.
Bottom: iy, rer = 1.0A.

As seen the performance of the Pl-controller is somewhat better than that of the LPV
controller. This is partially due to the Pl-controller being implemented at a sample rate
of 3kH z, whereas the LPV controller was implemented at a sample ra680 z,
although this cannot explain the entire difference. However, the main purpose of this
section was to demonstrate how a controller could be designed for a nonlinear system
using a systematic approach from MLP modelling to LPV controller design.

6.5 Summary

In this chapter the quasi-LPV approach was used to construct both a stator current con-
troller and a speed controller. The quasi-LPV approach makes it possible to use LPV
control methods on very general nonlinear systems.
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A stator current controller was designed based on the model obtained in Chapter 3 and a
satisfactory performance was achieved.

The speed controller was based on an MLP model. The MLP was used to form a non-
linear state space model of a system including the induction motor, the stator current
controller, and the flux observer. It was shown that the MLP model had captured the
behaviour of the system. The MLP model was transformed into a quasi-LPV model on
the LFT form, and a speed controller was designed yielding a reasonable performance.
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Chapter 7

RoBUSTLPV
SPEED
CONTROLLER

The LPV controller design methods described in Chapter 5 assumed that the time-varying
parameters were fully known. However, very often the parameters are only known with
some small uncertainty. This would for instance be the case if the parameters are mea-
sured under the influence of measurement noise. In the case of quasi-LPV control the
parameters can depend on the system states, and then any uncertainty in the knowledge
of the states gives rise to an uncertainty on the parameters.

Very little research has been done on the subject of synthesising controllers for LPV
systems with small uncertainties on the time-varying parameters. In [Helmersson, 1995]
a method is given for the situation where some parameters are fully known and oth-
ers are completely unknown except for some bounds. The unknown parameters lead
to non-convex rank constraints on the multipliers, i.e. we have to enforce for instance
P = P-1. Such constraints can in lucky cases be solved, for instance, using al-
ternating projections, as discussed in for instance [Grigoriadis and Skelton, 1996] and
[Beran and Grigoriadis, 1996]. This approach was used for a robust flux observer design
in [Trangbeek, 2000]. This approach can also be used for the situation, where the time-
varying parameters are known except for some small uncertainty, simply by splitting the
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time-varying parameter into a known part and a small unknown part. It is however be-
lieved that the method presented below is simpler and will yield better result, possibly
after further developments.

In the approach described in Chapter 5 we can achieve robustness by ensuring that the
scheduling function is void. Consider the scheduling function in (5.36)N_Ifhas no

rows or if V. has no columns then the scheduling functionis void, and the controller

is actually robust to the parameter variations. These constraints correspapd+t® or

k. = 0, respectively. These are again equivalenPte P~ or P < P~1, respectively.
Unfortunately this will rarely be the case when just solving the synthesis LMIs. Again
some non-convex approach would have to be applied.

In Section 7.1 we will give an alternative approach for the case when the parameters
are known except for some uncertainty, which is small compared to the actual parameter
variations. We will end up with constraints on the multipliers, which are also non-convex,
but are, however somewhat easier to satisfy than the rank constraints.

In order to simplify matters, we shall restrict ourselves to diagonal residual gains and
diagonal multipliers. Diagonal residual gains arise, for instance, when using the trans-
formation method for MLPs presented in Section 6.3. Restricting ourselves to diagonal
multipliers restores the conservatism, which was removed by using the full block S-
procedure rather than more traditional LPV control methods as discussed in Section 5.1.
It is however hoped that this can serve as a first step towards a less conservative method.

In Section 7.2 the method is applied to the same speed controller problem as in Section
6.4 but this time taking uncertainty on the residual gains into account.

7.1 Robust LPV control of systems with diagonal vari-
ation

In this Section we will consider the problem of designing LPV controllers for the system
(5.112), with

wu(t) = A(t)2u (1),

whereA is a diagonal matrix, which is known in real-time except for some small diagonal
uncertainty. We shall assume that all matrices are real.

If for instanceA(t) depends on parameters which can be measured in real-time, then
noise on these measurements result in uncertaint;kqm, i.e. instead of using\ to
form the scheduling function, we have to use an estimate

Due to the LFT representation achieved through the full block S-procedure, the uncer-
tainty only affects (5.9) in the analysis LMIs.
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Hence, assuming both the system and the controller to be on the standard LFT form,
instead of ensuring (5.9), we need to fulfill

T

AcA) | p =X CYN N (7.1)

o~ B
o ~Nlo b

0 0
( (
0 0
I I
If this can be fulfilled for all(A, A), then the quasi-LPV controller will stabilise the

system and achieve the required robust quadratic performance.

The problem that will be addressed in this section is thus to find additional constraints
on the multipliersP and P such that we can satisfy (7.1) even in the presence of un-
certainty onA(t). To simplify the derivations, we will only consider constant, diagonal
multipliers.

Theorem 7.1(Robust diagonal LPV control)

Consider the LPV system (5.11) with

wy = A(t)zy, A(t) €A,
where
A2{A:A= diag; <;<,,, {di}, [0i] < 1}.

Assume that\(¢) is known in real-time except for some small diagonal uncertalfty
ie.

~

A(t) = A(t) + E(t), E = diag; <;<,,, {ei}, lei] < &;.

If there existX,Y and

Q = diagi<;<,, {g:} <0 (7.2)
Q = diag; <;<,,{Gi} <0 (7.4)
R = diagjcicp,, {7} >0 (7.5)

satisfying the inequalities (5.21)—(5.23) with

S =0, S=0 (7.6)
g(14+é&)2+7r>0,1<i<n, (7.7)
G l+e)+7 " >0,1<i<n,. (7.8)

and for each = 1..n,, oneof the following three conditions holds
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1.
(gi—q H(ri—71)>0 (7.9)
2.
(: >t and (i <7 %) (7.10)
and
(L+&)q+7 )G + 7 ) (g +ri) >
(L+é&)g -7 )2 (Ft —rmi)(ai — g ') (7.10)
3.
(i< ') and (ri>7 ") (7.12)
and

(L+&)2G " +r)(q +ra) (@ +77") >

(L+&)gt —r)e(r -7 G —q) (7.13)

then there exists a controllgk (A) on the form (5.13) withu, = A, (A(t))z(¢t) that
yields robust quadratic performance with performance inbgx

Proof: ltis first of all noted that the inequalities in (5.20) are implied by (7.2)—(7.8),
and that the estimated residual gaifisonly appear in the inequalities involving the
extended multiplie?,. In order to prove the result, we hence need to show that with
the extra requirements given above, (7.1) can be fulfilled. If that can be shown, then
Theorem 5.10 ensures the existence of the desired contf6{l&). We construciV, P,
andA.(A) as in the proof of Theorem 5.10, thoughmust be constructed in a particular
way, which will be addressed below. Then (5.9) is satisfied, which is equivalent to

T
A A
[I] P[I] V-Be+ Ve | oy,
ATVT + VI ATNZ'A.+ N7!
By a Schur argument, this is equivalent to

T

B P[] vacew o
> 0.

ATVT 4+ vT Nt AT

0 A, —N_
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Via a congruence transformation, this expression can be rewritten as

T

[ﬂ P [ﬂ -V_N_VT Vi, VLN_
r . s | >0 (7.14)
Ve N Al
N_VT A, —-N_
Furthermore, sinc fulfills (5.20) or equivalently
T T
A Al A A T T
B =[] P[] - venorr v oo
we have by Schur complement that
T
A A T
B o] v v ],
N_VT —N_

This implies that we can apply the Schur complement to (7.14) and obtain the equivalent
inequality

T

-1
[NA+1 _Aj\;] —1I ([ﬂ P [ﬂ —VNV_T> o’ >o (7.15)

wherell = [V, V_N_] ”. With the diagonal structure of the multiplier, we can define
the matrix

D2AQA+R-V_N_VT
and write (7.15) as

[Nﬁ AT

—1p-tu”
N _N_] >0,

and (5.36) asA.(A) = N_VTD~'V,, respectively. We will now choosE in the
following way. LetU = [T} T3] suchthal/_ = [A I]|TyandV, = [A ] T>. If
necessary we can pertufbsuch that it is nonsingular. Since the columng/oform an
orthogonal basis of the image &f— P~1 (if this matrix happens to be singular, we can
again perturlP such that it is nonsingular as well), it is possible to partition it such that

Tiu 0 |Tay O
0 T1l| 0 Ty

U=[T|T» ]| =

in which the number of rows d¥ is 2/ and the upper and lower parts each haxaws,
and where each column contains exactly one 12ind 1 zeros. IfL; is some2[ x 2]
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diagonal matrix then the produ@{ L, T} is a diagonal matrix with the elements bf
corresponding to the negative entriedr- P! in its main diagonal. Similarly, iL, is

some diagonal matrix of appropriate dimensions then the praduet7,’ is a diagonal

2l x 2[ matrix with zero entries everywhere except for the entries corresponding to the
negative entries i — P~'. T, has the corresponding effect for the positive entries in
pP—-pL

Tedious calculations based on equations (5.27) and (5.29) show ftisadf the form
D = diag; <;«; {67 max{q;,q; '} + max{r;,7; '}} (7.16)

sincel/ rearranges the negative and positive diagonal elemerits-oP~! into N_ and
N, respectively, which means thdt. contains exactly those elements whereg;” <
0,r; — r’[l < 0. With perfect knowledge abou it is then easy to choosk&.(A) such
that (7.15) is fulfilled, for instance as in (5.36) where the off-diagonal blocks are made

to vanish, leaving a positive definite block diagonal matrix on the left hand side.

However, as stated above we are not scheduling the controller based on thé\exact
but rather on the estimatk. This prompts us to define the diagonal matriéas/
andf/Jr analogously with (7.16) and (5.29) (replacifignith §;) and rewrite (7.15) with

A (A) = N_V_(A)TD(A)~'V, (A) instead ofN_V_(A)T D(A)~1V, (A):

N VID-'W_N_
N_VTD-V, —N_

[ VD=V, VID™'V_N_

N VID 'V, NV_TDlVN]>0' (.17

Let D denote the matrix

o[ B -G BT

This allows us to rewrite (7.17) as

A A"
TT(N-' — [I] D1 [1] )T TIDT,TTNT, S0
TINT, T DT, —~N_(N-'4+VTD'V_)N_

Some straightforward computations reveal tBiatonsists of diagonal submatrices

~ D1, D12]
D=1~ 7
[D12 D>
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given by
- . 62 — 62)rms
Dy = diagicic§ 6, z)2
= (07Gmi + Tmi) (07 gmi + Tmi)
> : 8;02 = 826;)qmi + (8 — 8i)Tmi
D,y = diagj«;« ( > )a 5 ( ) ,
- (67 qmi + Tmi) (07 @mi + T'mi)
. . 02 = 62)qumi
Dy = diagicici§ = (65 Z)Zq ,
= (07Gmi + Tmi) (07 gmi + Tmi)
where

gmi = max{g;,q; '} andr,,; £ max{r;,7 '}, 1 <i <Ll (7.18)

Applying the Schur complement lemma to the inequality above and simplifying gives
the following equivalent matrix inequality:

T
Ty (N—l — [ﬂ D™t [ﬂ ) T,
+TIDT, (N2'+VID W) 1T DT, > 0. (7.19)

Let
T T
A A A A
A ar—1 -1 A ar—1 -1
6ot [3 o 3] ana 2 v [B 0 4]
such that (7.19) can be written as
TIG Ty + TIDTV(TEGL.Th) *TIDT, > 0 (7.20)

in which, using (7.16), it is seen th&t_ andG ;. must be of the form

G_1 G12:| [G+11 G+12]
G_ = andG; = )
[Glz G 2 T G2 Gaa
where
, 1 52
Gin = diagi<; . —(L_l + Famitrmi ) (7.21)
. d;
Gﬁ:12 = dlaglgigl {im} ) (722)

1 1
Gim = diag.; + . 7.23
+22 BL<i<i {7’,’ - fi_l 61'2(]mi + Tmi } ( )
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Now Lemma B.4 (in the Appendix) implies that
TIDT (TIGL ) ' TT DTy = T ATy,

where

which means that (7.20) is equivalent to

TS (G- + ATz > 0. (7.24)

A is diagonal and\; ; = \s; = 0 for thei’s for whichg; > ;' andr; > 77!, We

also know from Lemma B.4 that, ; = cffw/gﬁz,i for thei’s for which ¢; > [j[l

andr; < 7' andA i1 = dis /9411, for thed's for whichg; > ¢; " andr; < 77"
(lower-case letters with subscrifrtefer to thei’th diagonal element of the matrix denoted

by the corresponding upper-case letter). Furthermore, the pre- and postmultiplication by
T.F andT>, respectively, eliminates the elements for whighc [j;l andr; < r"[l.

By a permutation (7.24) can then be seen to be equivalent to the fulfilment of a number
of 1 x 1 or2 x 2 matrix inequalities of the form

6>t >l [gll,i glz,i] + [M,i 0 ] >0 (7.25)
g-12 G-22,i 0 Aoy

¢ >q i <F' ot gt AL >0 (7.26)

q; < (L»_l,T‘i > fi_l Dog-22,;+ )\271' > 0. (7.27)
As mentioned above we have ; = A ; = 0 for thes’s for whichg; > (j{l,ri > r’;l.
Furthermore, the submatrix @f_ can be seen to be positive definite by combining
equations (7.21)—(7.23) with the basic assumptions (7.8), which implytpat- r; >
0,52[1'{1 + f{l < 0. Hence, (7.25) is automatically satisfied.

This leaves us with (7.26) and (7.27), which represent a set of simple scalar inequali-
ties. By combining (7.21) and (7.23) with the definition Bf> we can rewrite these
inequalities as

L L. ( L 1 >_1 >0
— - — + — —
-4 ' Slq+7! ri— 7 L g7

(2

forg; > g ',r; < 7', and

L 63 + ( L + ! >l >0
1 T o K2 po po
7'2'_7"1 51'2%'1"‘7'@' Qi_qil 51'2qi1+7'i

(3
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forg; < g ',r; > 7', in which

s 006 — )i + (6 — 5')7:_1
@ o+ 7 )8+

s 0:0:(6; — 5 )q; ((5 — (51)7“Z
a 8 q; +7'2)(52Qz +73) ‘

M1

M2

Finally, applying Lemma B.5 to each of these inequalities shows that they are satisfied if

(L4 &) g+ 7 )@ + 7 ) (g + i) —
(1+e&)q —7 )2eF  —ri)(a—d ') >0

if ¢; > g; " andr; <7; ' or

(L+&)%qG " +r)(a+r) (@G +77") >
(1&g —r)’e (ri = 77)(@ " —a)

if ¢; < g; * andr; > 7, 1. Hence, (7.24) will be fulfilled if for each= 1..n,, one of the
three conditions in equations (7.9)-(7.13) is satisfied, which is what we wanted to show.
<

Remark 7.2Normally, if P — P~! loses rank, i.e(g; — g; *)(r; — 7; *) = 0 for some

1, it would be more efficient to construct an extended multiplier of lower dimension.
However, to keep the proof simple, it was chosen to ignore this possibility, since there
is no loss of generality in assuming that— P! is indeed invertible. If necessary, it

is always possible (due to the strictness of the matrix inequalities) to pePturtP !

in the right direction, such that there is no need to schedule according to the particular
diagonal elements which are the cause of loss of rankAi.ewill be independent of
these elements.

The conditions will usually not hold automatically when just solving the LMI (5.21)—
(5.23) so it is necessary to find some additional convex constraints which will guarantee
the fulfilment of one of the three conditions.

Of course the convex constraints

R I
I R

-]>m Q+Q>-2I (7.28)

would guarantee (7.9), but would also be far too conservative.

The three conditionsin (7.9), (7.10), and (7.12) discriminate between the signsgf*
andr;—;*. If these have the same sign foralthen there will be no scheduling function
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and the controller will be robust. To assure (7.11) or (7.13) in the other cases, convex
constraints of the form

R+(I+86)Q >0 (7.29)
Q+(I+&ER<0 (7.30)
& =diagicicp, € € > 28+ & (7.31)

can be used.

The best way to synthesise the robust controller is probably to keep increasing the rele-
vant elements of until the solution of the LMI leads to a solution fulfilling the condi-
tions (7.11) or (7.13). At each iteration, the multipliers should be kept small, for instance
by minimising the trace oR — Q. This is a linear objective minimisation problem as
discussed in Section 2.3.1. Alternatively the following lemmas can be used to provide
sufficient condition beforehand, thereby only requiring one solution of the LMI.

Lemma 7.3Assume thatr > 7! > r > 0andg—! < ¢ < 0, and lete be larger than
the largest real root of the polynomial

P,(ep) = (12613, + (€*(a® — a® — a) + @® — a — 2ae) 612, +
28%(a — a®)e, + &(a—a® —a® +1) (7.32)
in €, and assume alsb+ € > (1 + &)*.
Then
r+(1+eqg>0, F'+(1+e)g >0 (7.33)
implies
(T+&)?q+7 )G +7 (g +r) >
(L+8g—F)eF " —r)(g—q ") (7.34)

Proof: Given in the appendix on page 174

Lemma 7.3 can be used to assure (7.11). The convex consifajnt> 7, ' can be

implemented as

R G
[G R] >0, (7.35)
where
G = diag; i, {a; /*}. (7.36)

Lemma 7.3 can of course also be used for guaranteeing (7.13) with the substitution
q < G Nat e q,r < 77 < . Unfortunately the constraint;7; ' >

is not jointly convex inr and7. However, there seems to be no way around this kind of
constraint. A convex conservative constraint is given by the following proposition
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Proposition 7.4Assumes > 0,b > 0,d > 0, anda > 0. Then
a’a+db<2ad=ab<d (7.37)

By this propositiomii‘;l > r; isimplied bya?r,» + a;7; < @;a;.

Corollary 7.5Consider the system (5.11) wity, = A(t)z, where A =
diag; <;<,,, 1d:}, |6:] < 1. Assume tha\(¢) is known except for some small uncertainty

e, i A(t) = A(t) + E(t), E = diag, ;. {e:}, |ei] < &.

Choose somel; = diag;;<, {ai} > 0,a = diag;;<, {a;} > 0and& =
diag; <;<,,, {€:} > 0 such that for eacti = 1..n,, ¢; is larger than the largest real
root of the polynomial

P, (ep) = a?eg + (éz(al2 - a? —a;)+ a? —a; — 2aié) 6?, +

2&%(a; — ad)e, + & (a; —ad —a? + 1) (7.38)
and larger thare? + 2¢;.

If there existX,Y and

S* R
satisfying the inequalities (5.21)—(5.23) with

Q = diag;<;<,,, {ai} <0
R = diag; <;<,, {ri} >0,S=0
R+(I+&6)Q >0
Q@ =diagy i, {6} <0
R = diagy <;<p, {Fi} > 0,5=0 (7.40)
R'+(I+&6)Q1t>0
R A71/2
A7 R
o’R + AfR < 20[Af.

P:[Q S] P:[g 5] (7.39)

>0

Then there exists a controllgt (A) on the form (5.13) withw, = A.(A(t))z.(t) that
yields robust quadratic performance with performance inbgx

If Ay anda are chosen a priori then we are left with conditions that can easily be imple-
mented in an LMI solver. If thé;’s are small then any large choice 4% should work.
Notice that ifa; is large ands; is small then the roots of (7.38) are approximately equal
to the roots of

ef, +(1- ea)e?, — 2e46p — €4 (7.41)

wheree, = a;&2. This would suggest choosing proportional t0§;2.
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Example 7.6With e; = 0.01 anda; = 100, ¢; > 0.11 will suffice.

Remark 7.7In LMI problems, slacking on one condition will often increase the range
of the feasibility set drastically. So for instance by allowing a small degradation of
performance, it will often by possible to greatly increase the robustness.

In [Bendtsen and Trangbaek, 2000a] an example is given of a control design for a simple
system, where the above method significantly improves the performance.

Remark 7.8Since the requirements for robustness given above are only related to the
multipliers, the theory works equally well for continuous and discrete time.

7.2 Robust speed controller

In this section we will use the robust LPV synthesis presented in Section 7.1 to design a
robust version of the speed controller presented in Section 6.4.

Using the MLP model obtained in Section 6.4, the first step is to obtain an estimate of
the uncertainty on the residual gains. As discussed in Section 6.4.3 we consider two
residual gains with sector boun@9114 and0.0092 respectively. We will assume that

w, is known except for a measurement noise bounde@.byad/s. Using the method
described in Section 6.3.3 we find that this results in uncertainties on these gain%of
and2.5% respectively.

The same synthesis as in Section 6.4.3 was performed but now the multipliers were
chosen as

—(1+€1)717'1 0 0 0
p— 0 —(1-}-62)717'2 0 0
N 0 0 rr 0
0 0 0 T2
—(1+€1)7:1 0 0 0
}5 _ 0 —(1+62)7‘2 9 0
0 0 1 0
0 0 0 7

By iteratively performing the synthesis, checking for robustness using (7.9)-(7.13), and
increasing the correspondirgf robustness was not achieved, a robust controller was
designed. It was necessary to increase the bouné:tbein,, from 0.018 to 0.034.
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The resulting multipliers were given by = 3.8, 7o = 3.0, 71 = 4.0, 7» = 10.7,
€, = 0.15, ande; = 0.16.

The same experiment as in Section 6.4.4 was performed now using the robust speed
controller. The result is shown in Figure 7.1.

0 0.5 1 15 2 2%5 é 3.5 4 4.5 5
Time [s]
Figure 7.1:Closed-loop experiment using the robust LPV speed controller. The speed
reference is shown by the dotted line. The three figures show the behaviour with three
different settings for the magnetising current. TORg rey = 2.8A. Middle: ipg rer =
2.2A. Bottom:imp rer = 1.0A.

Comparing with Figure 6.14 it is seen that there are only small differences in the perfor-
mance. If anything, the robust LPV controller is slightly harder tuned than the nominal
LPV controller. This is due to the fact that the bound onithhgain for the nominal LPV
controller had to be increased due to numerical problems in solving the quadratic matrix
inequality. This was not necessary for the robust LPV controller, since increasieg the
improved the numerics.
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7.3 Summary

In this chapter a novel method was presented for robust LPV design for systems where
the time-varying parameters are uncertain. It was assumed that the time-varying gain was
diagonal and that the diagonal elements were known except for some small uncertainty.
Atheorem was presented guaranteeing the existence of an LPV controller yielding robust
guadratic performance under the condition of a new type of constraints on the multipliers.
Even though these constraints were nonconvex, it was demonstrated how the theorem
could be used as a basis for controller synthesis.

The method was applied to the design of a speed controller, which was robust to measure-
ment errors of the speed. There was no significant difference compared to the controller

designed in Chapter 6.



Chapter 8

CONCLUSIONS

This thesis demonstrated how the theory of linear parameter varying (LPV) systems
could be applied to several subproblems in induction motor control resulting in a novel
flux observer and novel current and speed controllers. Various contributions to the field
of LPV control theory were also presented. This chapter summarises and concludes on
the work presented in this thesis and gives recommendations for further work. Section
8.1 gives a summary of the thesis. Section 8.2 concludes on the work in general. Finally,
Section 8.3 gives suggestions for further work.

8.1 Summary of the thesis

Chapter 3 described the dynamic model the induction motor. The part of the model
describing the currents was written as a complex second order state space model with
the shaft speed as a time-varying parameter. The laboratory setup on which experiments
were performed was also discussed.

In Chapter 4 the rotor flux oriented control scheme for the induction motor was described.
First it was discussed how the dynamical equations of the motor could be simplified
by writing them in a reference system following the angle of the rotor flux. Then the
rotor flux oriented control method was described. A short discussion of flux and speed
observers was also given.

Chapter 5 reviewed a recently developed LPV synthesis method found in [Scherer, 2001],
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the so-called full block S-procedure. An equivalent discrete-time version of the theory
was developed. Then the special symmetry of the current equations of the induction
motor was investigated. It was shown that controllers and observers for LPV systems
with this type of symmetry can be assumed to have the same type of symmetry without
loss of performance. Finally a discrete-time flux observer was designed and tested on the
laboratory setup. A good performance was achieved with very little need for tuning.

In Chapter 6 it was described how the quasi-LPV approach allows the use of LPV theory

for a very general class of nonlinear systems. The approach was then applied to the
design of a stator current controller. Again, a good performance was achieved with very
little need for tuning. A new method for transforming a neural network state space model

into a quasi-LPV model suitable for control design was then presented. This method was
then applied to the design of a speed controller based on a neural network model. The
main purpose of the speed controller design was to demonstrate how a controller could
be designed for a nonlinear system using a systematic approach from neural network
modelling to LPV controller design.

In Chapter 7 a novel method was presented for robust LPV design for systems where the
time-varying parameters are uncertain. The method was applied to the design of a speed
controller, which was robust to measurement errors of the speed.

8.2 Conclusions

The following general conclusions on LPV controller design can be drawn from the work
in this thesis:

e The LPV control theory provides a systematic way to approach controller design
for nonlinear systems. Once an LPV model of the system to be controlled has been
obtained, it is straightforward task to design the controller.

e Good results could be achieved without adding a large number of filters as is often
necessary with robust,, techniques such ag-synthesis. Consequently the
resulting controllers were of low order and very little tuning was needed.

With respect to the application of LPV control to induction motor control the following
conclusions can be drawn:

¢ LPV controllers are computationally heavy considering the fast dynamics of small
and medium sized induction motors. Thus actual industrial implementation may
still be premature except for large motors. However, it is expected that the coming
decade will bring faster and cheaper processors making implementation of LPV
controllers a viable option.
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e The described synthesis method provides numerical solutions to the control design
rather than solutions given directly in terms of the motor parameters. This is a
disadvantage of LPV methods compared to for instance feedback linearisation as
in [Rasmussen et al., 1997] or backstepping design as in [Rasmussen et al., 1999].

e Good results could be obtained for the flux observer and the stator current con-
troller using only a minimum amount of trial and error.

8.3 Recommendations for further work

The following topics would benefit from further examinations:

RobustnessThe robustness of the proposed flux observer and stator current controller
to parameter variations should be further investigated, for instance through simula-
tion studies. Since the LPV methods do not rely on inversion or exact cancellation
of the nonlinearities, good robustness properties should be expected.

Numerics Constructing the LPV controllers involved solving the quadratic matrix in-
equality in Lemma 2.9. This can be numerically problematic even for small prob-
lems. A suggestion for improving the nhumerics was given in Lemma 5.12, but
even better results could probably be achieved by finding an alternative to the con-
struction given in the proof of Lemma 2.9.

Saturation The stator voltage saturates, constituting an input saturation for the stator
current controller. In addition the stator current has to be limited to protect the
motor. This constitutes an input saturation for the speed controller. These satura-
tions were not included in the LPV models, mainly because it is difficult to do this
in a meaningful way. In [Scorletti and Ghaoui, 1998] it is suggested to make the
controller robust to the difference between the commanded input and the actual
input. However, this will probably yield very conservative solutions.

In addition the work could be extended in the following directions:

Rates of changelf bounds on the rates of variation of the time-varying parameters are
known, then this can be exploited by making the Lyapunov matrix parameter-
dependent, see [Rugh and Shamma, 2000] and the references therein. This can be
used to reduce conservatism and thus obtain a better performance. For the pre-
sented flux observer and stator current controller, a bound on the rate of variation
of the shaft speed could be achieved through assumptions on the load torque and
by considering the bound on the stator current. It would probably also be fairly
simple to obtain bounds on the rate of variations for the quasi-LPV model obtained
from a neural network model, as described in Section 6.3, through a gridding of
the parameter space.
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Multipliers for robust LPV It would probably be a straightforward though tedious task
to replace the requirements (7.6) with requirements similar to (7.2)-(7.5), i.e. al-
lowing S to be diagonal. This would in some cases reduce conservatism greatly.

One unified controller It may be possible to avoid the cascaded controllers and instead
attempt to design one large LPV controller for the entire system. The success of
this attempt would probably depend on the choice of quasi-LPV representation for
the system.

Neural network implementation The main source of computational complexity of the
implemented LPV controllers was the computation of the scheduling function and
the subsequent inversion duelps> being non-zero (see Section 5.4.4). As an
alternative a neural network could be trained to mimic these functions. If a suffi-
ciently small network yielding a good approximation in the entire range of oper-
ation could be obtained, then it would only be necessary to implement the multi-
plications and tangent hyperbolic functions of the neural network, which in many
cases could reduce the computational complexity.



Appendix A

EXPERIMENTAL
SETUP

In this thesis several experiments will be performed on a laboratory induction motor sys-
tem illustrated in Figure A.1. The system was designed in the student project described
in detail in [Skougaard and Wenzel, 1997].

power induction |__Shaft brushless

device \ motor i DC motor
trans- 4L

ducers encoder
power
0T device
s's
O
mL,ref
PC

Figure A.1:Laboratory induction motor system.
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The PC runs the control program to be tested providing a reference voltage for the in-
duction motor power device and a torque reference to the DC motor power device. The
brushless DC motor can be used to simulate a load torque on the shaft. Since the PC re-
ceives measurements of the rotor angular position from the encoder this can for instance
be a position or speed dependent load.

A.1 Induction motor

The induction motor is a Bauknecht ATB drive with two pole paifg & 2), a squirrel-
cage rotor, and three star connected stator windings. Its nominal data are

Nominal power 1.5 kW
Nominal speed 1420 rpm
Nominal torque 10 Nm

Nominal currentat380V 3.6 A

In [Rasmussen, 1995] the parameters of the induction motor were identified at standstill
at20°C under the assumptioh; = L, as

L,=1L,=0352H, L, =0341H, R,=50Q, R,=3.3q. (A.1)

A.2 Power device

The power device is of the VSI-type described in Section 3.5. It is a VLT5003 from
Danfoss A/S. It has been customised, so that the voltage references can be set via the
ISA bus of the PC. The voltages are generated by pulse-width modulation (PWM) with

a switching frequency of 15 kHz.

A.3 Current transducers

The three stator currents are measured by LEM-modules, which are essentially trans-
formers. A current transducer is illustrated in Figure A.2. The stator current induces a
smaller currentin the LEM-module, which is converted to an equivalent voltage through
a resistor. This voltage can then be measured by the AD-converter in the PC.



A.4 Voltage transducers 165

stator
current /

LEM module

.

voltage
Figure A.2:LEM module for stator current measurement.

A.4 \Voltage transducers

The stator voltages are measured through a star connected resistor bridge as shown in
Figure A.3. Each leg of the bridge consists of two resistors providing a voltage division.
The resistors are chosen so large that no significant current is drawn. The neutral is
isolated and is therefore equivalent to the stator neutral. Since the stator voltages are
generated by PWM, it is necessary to filter the measurements before feeding them to the
AD-converter in the PC. A second-order analog hardware filter with a cut-off frequency
of 1 kHz was chosen.
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Figure A.3: Resistor bridge for stator voltage measurement.

A.5 Encoder

An encoder from Heidenhahn is connected to the shaft making it possible to measure the
position or speed. The encoder essentially consists of a disc with alternately opaque and
transparent sectors and two pairs of light transmitters and receivers. As the disc rotates,
the light from the transmitters will either be interrupted be the disc or allowed to pass
though to the receiver depending on the position. By measuring the light at two slightly
offset positions it is possible not only to know the number of sectors which have passed
but also the direction. Counting the number of sectors that have passed in a sampling
period gives an estimate of the speed. This particular encoder has 1024 transparent
sectors. At a sampling frequency of 3kHz this gives a resolution of the mechanical speed
of approximately 4.6 rad/s at each sample. By low pass filtering a more accurate estimate
can be obtained.

A.6 DC motor

The DC motor used to simulate a load torque is an Indramat permanent magnet motor
from Mannesmann/Rexroth. Itis driven by a power device containing a current controller

receiving its references from a torque controller. The reference load torque is supplied
as an analog signal from the DA-converter in the PC.
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A7 PC

The PC controlling the entire system is a Siemens-Nixdorff Scenic Pro M6 with a 200
MHz Pentium Pro processor and 32 MB of RAM. To allow measurements of stator cur-
rents and voltages, a DataTranslation DT2829 I/O-card has been inserted. The sampling
frequency of the control system has been chosen as 3 kHz.

The control system is designed in MatLab Simulink [MathWorks, Inc., 1993] with Real
Time Workshop [MathWorks, Inc., 1994] (RTW). The RTW converts the Simulink pro-
gramto a C-program, which is then compiled to work with a VxWorks kernel and down-
loaded over the internet to the PC using a Tornado/VxWorks software package from
WindRiver [WindRiver Systems, 1995]. When the program is running on the PC, data
can be collected over the internet using the Stethoscope package from Real-Time Inno-
vations [Real-Time Innovations, ]. The system allows selected parameters of the control
system to be changed in real-time from within the Simulink environment.
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Appendix B

LEMMAS AND
PROOFS

This appendix contains lemmas with no appropriate place in the main thesis as well as
proofs which were deemed too long and tedious for the main thesis.

B.1 Lemmas

B.1.1 Lemma B.1: Matrix Inversion Lemma
Lemma B.1(Matrix Inversion Lemma) e.g. [Helmersson, 1995]

Let A and D be non-singular. Then

(D+CAB) '=D'-D'C(BD'C+A ') 'BD* (B.1)
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B.1.2 Lemma B.2: Partitioned matrix inversion
Lemma B.2 (Partitioned matrix inversion) [Horn and Johnson, 1985]

Let A be a square matrix partitioned as

A A12]
A= ,
[AZl Ao

whereA;; and A, are square. If4;; is nonsingular ther is nonsingular if and only if
the Schur complemem\ £ A,y — As; A7 A;5 is nonsingular. Furthermore the inverse
is then

Al = [Alll A ARAT Ay Ay —AlfA”A_l]

—A_lAglAfll AL

Dually, if A2 is nonsingular them is nonsingular if and only if th&chur complement
A & Ay — A A, Az is nonsingular. Furthermore the inverse is then

A_l —A_lAlgAgzl

A~ = ~ <
—A2_21A21A_1 A2_21 + A2_21A21A_1A12A2_21

B.1.3 Lemma B.3: Full rank multiplier extension

Lemma B.3LetX,Y, Z € H**™ and assume that, Z, and X — Y ~! are non-singular
and choose

v | X Z (8.2)
Tz [z x -y hHz] '
ThenX is non-singular and
Y =«
—1 _
X t= [* *] (B.3)

Proof: It is seen tha®” is the Schur complement 4%~ (X — Y—l)Z—*]_1 in X.
Thus the nonsingularity of’ is implied, and the upper left part &f—! is Y as seen
from the Partitioned matrix inversion lemma (B.2u

B.1.4 LemmaB.4

Lemma B.4Consider the index sefs , 7, 7 and 7, with cardinalitiesn;,l—nz,ns
and! — ny, respectively, defined suchttet UZ, = J- U Jy = {1,...,l} C N
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Lete;, 1 < i < [, denote the'th unit coordinate vector oR!. LetT; = [TS" 1? ] €
11

Ty, O
0 Ty
are unit coordinate vectors @2, be defined by

R2Xnr+ns gnd T, = [ ] e R2x2=(nr+ns) where the columns & and T

Trei=0&icT,, Tre,=0&icJ,,
Thei=0icTl_, The,=0&ic J_.

Furthermore, letD andG be any two matrices such that

D= [Dn Dlz] c R2ix2

D13 Do
and
Gu Glz] 2021
G = € R**
[Gm Gao
where each of the submatric&s, D1, ... , G2 € R*! are diagonal.

Then, assuming th&t GT; is invertible, we have
Ty DTy (TEGT) ' TI DTy = T AT
where

A= dia&gigz{)‘li} 0 )
0 diaglgz’gz{)\%}

Furthermore, those elements dfthat do not vanish by the pre- and postmultiplication
by T, are given by
i€ NJr = A= =0,
i€ NJ- = Au=di/g, (B.4)
i€I-NJr = Ay =d;/gui,

in whichd;, g1; andgs; are thei’th diagonal elements db; 2, G1; andGss, respectively.

0 D15

Proof: First of all it is noticed thaty DTy = T,f [D 0
12

[sz; 0] [Dn D12] [Tlu 0] _

0 T5] D12 Dy |0 Ty
|:T27;D11Tlu sz;Dllel] _ [ 0 TE D12Ty
TED12Tiy  To DasTy T3 D12Thy 0

] T, since

| @9
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becausd’ andT; do not have non-zero entries on the same rows and hence these par-
ticular products must vanish.

Let us define

T é Tl(TlTGTl)_lTlT — |:F11 F12:| ,

[2 T

wherel';;, 19, oo € R It is deduced that each of the submatrites, I'y» andl'y;
are diagonal with

= 91_1%2' for ieZ_nJs,,
I'1;,=0 for i€y,

Tasi =gy, for i€Z,NnJ., (B.6)
[e2;=0 for i€ J,,
I2;=0 for ieZ,UJ;.

This is seen by noticing thafT GT; is equivalent, via a permutation, to a block di-
agonal matrix where each sub-block is either of dimendox 2 arising from ele-
ments corresponding tbe Z_ N J—, or 1 x 1 arising from elements corresponding
toi € (ZxNJ-)U(Z_-NJ+). Matrix inversion preserves this equivalence, and pre- and
postmultiplying byT; andT{ then produces a matrix where the newly formed elements
are rearranged back to the corresponding positiois in

In light of (B.5) it can then be seen that

TT Dy5T99 D15 T: TT D1oT12D12T:
TZTDTl(TlTGTl)_lTlTDng [ sull12l22 D122, suld12112 D12 2l:|.

T D1oT12D15Toy T D12T11 D121y
The off-diagonal blocks in this matrix can furthermore be seen to be zero Isinge= 0

fori € I, U J; and pre- and postmultiplying b, andT5,, eliminates the elements
correspondingté € Z_ U J_. That leaves us with

TEL D555 D15 T 0
TTDT TTGT 71TTDT — |: 2 /121 22712 1L 2y ] _
> DRIy GTh) 1y DT> 0 TE D511 DizTon
D12T'25D1 0 T
Ty Ty = T ATs.
? [ 0 D12F11D12] ? 22

Looking at the diagonal elements, we see that pre- and postmultiplyig pbsgnd 7>,
eliminates the elements corresponding tge Z_, while pre- and postmultiplying by
T3} and Ty, eliminates the elements correspondingfto. This implies that only those
diagonal elements if;5I'11 D12 and D212 D12 corresponding té € 7, andi € 7,
respectively, will not vanish by this operation. Sincg andT'2» have the structures
given in (B.6) we deduce that the non-vanishing elemen¥/in T, must be of the form
(B.4), which completes the prooki
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B.1.5 LemmaB.5

Lemma B.5Consider the inequality
1 52 1 1 -
— 0 B.7
g—q! 62q+f—1+“<r—f—1+62q+f—1> -0 B.7)

d8(5—8)g+(3—o)7F~? . g -1
e Assuming thay| < 1,]6 — 4| <e,0>¢> g ' (1+

e?)g+r > 0,and7~! > r > 0, (B.7) is satisfied if
(L+e)’qg+7 )G +7 ) (g +7) > (L+e)g—r)?(F ! —r)(g =G ).

wherey =

Proof: Rewriting (B.7) as a single fraction gives
t1 +t2 +t3
(q—71)(8%q +71)2(62q + 7=1) (6% + 1)

>0,

where
tr o= (Pq+7 H2(q+7 1) (62q +7),
ty = —(g—§ ") (q+7")?(8q+1)d7,
ts = (80(6—08)g+(6—08)r)(r—7")g—q").

It is seen that the denominator is positive sigce ¢! andg +7 % > g+ > 0 by
assumption. Furthermore it is obvious that the inequality is hardest to satisfy-fot,
so we will leté = 1. Similarly, the worst case faf is for 6 — & + e, so we will let
0 = 1+ e and examine the numerator inequalify+ t» > —t3 or:

(T+eq+7 ) ((g+7 Ng+7)—(@—7 Ng+7))
>((1+e)g—r)e(F ' —r)(g—q"). (B.8)

In other words, if (B.8) is satisfied, then (B.7) will be satisfied as well. It is now easy to
see that (B.8) can be simplified to

(L+e)q+7 )G +7 Na+r) > (1+e)g—r)e  —r)g—q")

which was what we wanted to showq

B.2 Proofs

B.2.1 Proof of Lemma 2.9

Proof: [Scherer, 2001].
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(=): First observe that
1

e [ @]

for any X. Using this with Lemma 2.7 we see that (2.11) is equivalent to

[—(A*XB + O)*] " e [—(A*XB + C)*] > 0.

; / (B.10)

Pre- and postmultiplication b$" in (2.11), and byA™ in (B.10) we arrive at (2.12) and
(2.13).

(«): First define the nonsingular matric&sand L so thatAK = [A; 0] andBL =
[B1 0], whered; andB; have full column rank. With

D1y D12] A
D = = K*CL B.11
|:D21 D> ( )
(2.11) can be written as
I 01" I 0
0 I L 07 p[L 0 0 I _,
At XB1+ D11 Dis 0 K 0 K *||A;XB1+ D11 Dio ’
Doy Dyy pe Doy Dy
With the definitions
I 0 0 -D3,
A 0 0 A I a | —Ds3y
= = T =
R 0 I 5 Dis|’ 0 ’
Dy O Dyy I
A 2 AIXBl + D11 € Crz XCZ,
this can be written as
R I S *H R I S| <0 (B.12)
7 7 . )

SinceA; andB; are of full column rank, the mappiny — A} X B; + D1, is surjec-
tive, and we can now considér in (B.12) as the unrestricted unknown. By observing

BLL 'B" = BB" = 0 we conclude thaf.~!B" = [2] Using this along with

I, (Lt 01 L [L 0 .
C=K*DL " andP = 0 K II 0 K we can rewrite (2.12) as

S*IIS < 0. (B.13)
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Similarly, (2.13) can be written as
T*II7'T > 0. (B.14)

Performing the multiplication in (B.12) and using a Schur complement argument we find
that it is equivalent to

*

H (RTIR — RTILS(S"I1S) ™ S7ILR) [I

Z VA

] < 0. (B.15)
We now only need to show that this has a solutioXirSince
imT =im[R S]", (B.16)
Lemma 2.7 gives
in ([R S]"N[R ])=
in_ (M) —in_(T*TT'T) =in_(P) —0 =m. (B.17)
Applying Lemma 2.6 then yields
in_ (R*IIR — R*ILS(S*ILS) 'S*II*R) =
in_ ([R S]"I[R §])~in_(STS) =m — (m - cz) =cz. (B.18)
Itis thus possible to find a nonsinguldy € C°z *¢z and aZ, fulfilling

Zy

[Zl] (R*IIR — R*IIS(S*I1S) " S*IIR) [z
2

7 ] <0. (B.19)

A solution to (B.15) is thelf = Z»Z; . <«

B.2.2 Proof of Lemma 5.17
Proof:

DenoteM as

and partitionM/ ~! as
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comformably to the partitioning a¥/. FromM M ~! = I we have

MM, — M; M;» I, (B.20)
MM,y + M, Mi, = 0, (B.21)
MyM> — MMy = I, (B.22)
—~M;M,y — M,My; = 0. (B.23)
Define
XéMiZ_Mila YéMrl_MTZ-
Subtracting (B.22) from (B.20) yields
X
[M, M;] [Y] =0. (B.24)
Adding (B.21) and (B.23) yields
Y
(M, M;] [_ X] =0. (B.25)

Now (B.24) and (B.25) imply

M, MY X]_,
M, M. ||x -v|

SjnceM is nonsingular this implieX = 0 andY = 0 or equivalently]\Zfiz = ]\Zfil and

M, = M,», which is exactly what we needed to show.

B.2.3 Proof of Lemma 5.20

Proof: From the proof of Lemma 5.17 we have

M, —M;
M*l — T e .

FromMM~—! = TandM~'M = I we have

MM, — M;M; = I, (B.26)
M;M, + M,M; = 0, (B.27)
MM, — M;M; = I, (B.28)
M;M, + M,M; = 0. (B.29)
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Then we immediately have

Te (M) Te (M™Y) = (M, + jM;) (M, + jM;) =
MM, — M;M; + j(M;M, + M,M;) =1+0 (B.30)

as well as

Te (M) Te (M™Y) = (M, + jM;) (M, + jM;) =
M, M, — M;M; + j(M;M, + M,M;) =I+0 (B.31)

which are equivalent to (5.66x1

B.2.4 Proof of Lemma 7.3

Proof: Due to (7.33), it is then seen that

~\2 ~—1\2 € -
(@+e)g+7 ) g +r) 7
S\ m—1y2227=—1 1
> ((1+e)g—r )% e (F r)<q+1+€r > (B.32)
implies (7.34). Since
5\2 =1 5\2 =1
(1+e>—qu7‘1 :(He)(l“)—fﬁf_l S l4e
g+ o (I+eqg+7
we observe that (B.32) is implied by
(L+e)2q+7F (g+r)Ffte>((1+e)g—7 )2F L —r) (B.33)

which is again implied by (due to (7.33))

(1+e)? 4\ € 1 afltE =1 ’ =1
> + —T). .
( Tre (=r)+7 Tre S G T) (B.34)

With b £ 7= /r this is equivalent to
b(b(1+e)— (1+8)2) e —&(b(1+¢€)+1)°(b—1)>0. (B.35)

The left hand side can be written as a third order polynomiabiiith the coefficient for
the third order term being positive:

Py(e) = b?e® + [E2(b* — b® — b) + b® — b — 20b¢) ¢
+28%(b—b%)e +&%(b—b* —b> +1). (B.36)
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Then (B.35) is equivalent t8,(¢) > 0. Now choose larger than the largest real root of
P,(€). ThenP,(e) is positive forb = a. All we have to show now is tha®,(¢) > 0 for

1 > b > a. With € fixed, P, is a third degree polynomial iy, & b — 1 with a negative
coefficient for the third order term and a positive constant term. The only wayPthat
can be negative for sonte> b,, > a — 1 is then if all the roots of, in b,, are real and
positive. This requires the coefficients for the second order and first order terms being
positive and negative respectively. But the coefficient of the first order term can be shown
to be positive. <
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complex-formed, 86 trix inequalities, 12, 71, 84
complex-formed LMI, 90 encoder, 43, 164, 166
complex-formed matrix, 87 example motor, 43, 98, 114
complex-formed system, 88 extended multiplier, 74
controller scheduling subspace, 70, 84
convex, 13 feasibility problem, 15, 16
convex combination, 13, 64 feasibility set, 12, 13, 156
convex hull, 13, 64 feasible, 12
current control, 49, 110 flux estimation, 50
current model, 50 flux observer, 50, 93
current transducers, 164 friction, 35
full block S-procedure, 64, 68, 83, 114,
DC motor, 43, 164 146
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gain scheduling, 108
generalised eigenvalue problem, 15
generator, 14, 77

herm, 9

Hermitian, 10

Hermitian multiplier extension, 71
Hermitian part, 9

hyperbolic tangent, 20, 120

implementation, 86, 117
induction motor, 28, 86, 164
inertia, 11

initialisation, 130

input matrix, 131

input weight matrix, 21
interior point method, 16
inverter, 41

iron loss, 29

Jacobian linearisation, 108
JL-observer, 51, 99

Kubota's speed observer, 53, 102

leakage constant, 46

Left annihilator, 10

Levenberg-Marquardt, 22, 131

LFT, 17,63, 113

LFT form, 96

linear fractional transformation, 17, 120

linear matrix inequality, 13

linear objective minimisation problem,
15,154

linear parameter varying, 61, 62

linear parameter varying system, 62

linearisation scheduling, 108

LMI, 13, 62

LMI toolbox, 15

load torque, 35, 43, 127, 164

lower linear fractional transformation,
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LPV, 62, 65, 70, 81, 112

LPV controller, 63

LPV observer, 99

Lyapunov matrix, 16
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magnetising current, 37, 46
magnetising current control, 49
magnetising current estimation, 50
magnetising current observer, 50, 93
MatLab, 15

matrix inequality, 12

Matrix Inversion Lemma, 169
maximal torque, 48

measurement noise, 97
mechanical angle, 31

MLP, 20, 119, 120, 125-127,130
model validation, 132

moment of inertia, 35

multi-layer perceptron, 20, 119
multiplier, 68, 72

multipliers, 64

mutual inductance, 34

NARMAX, 24, 126
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negative definite, 10

negative semidefinite, 10

negative subspace, 11

neural network, 20

neural state space model, 120

neuron, 20

neuron function, 20

neutral, 29

non-strict, 15

nonlinear autoregressive model with ex-
ogenous inputs, 22

nonlinear autoregressive moving aver-
age model with exogenous in-
puts, 24

number of neurons, 21

on, 11

open-loop simulator, 23
output targets, 21
output weight matrix, 21
overtraining, 127

parameter dependency, 66, 69
parameter vector, 62
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perceptron, 20

performance functional, 22
performance index, 65, 72, 81
pole pairs, 28

polytopic, 64, 112

position sensor, 40

positive definite, 10

positive semidefinite, 10
positive subspace, 10

power device, 41, 164
pseudo-random, 128

PWM, 110, 164

guadratic form, 10

guadratic matrix inequality, 12, 14, 78,
140, 157, 161

guadrature component, 46, 49

guasi-convex, 16

quasi-LPV, 108, 126

quasi-LPV model, 108

quasi-LPV system, 108

rank constraints, 145

rates of variation, 161

real symmetric, 13

recurrent MLP, 24

Redheffer star product, 17, 18

reference frame, 39, 112

referred parameters, 46, 112

relaxed quasi-LPV model, 109

residual function, 120

residual gains, 63, 110, 113

Riccati equations, 62

Riccati inequality, 16, 62

Right annihilator, 10

robust quadratic performance, 64, 65,
81,84

robustness, 161

rotating coordinate system, 39, 112

rotating reference frame, 39, 112

rotational speed, 35

rotor, 28
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rotor coils, 30

rotor flux, 34

rotor flux coordinates, 46, 112
rotor flux observer, 93

rotor flux oriented control, 47, 93
rotor inductance, 34

rotor resistance, 33, 40

rotor shaft, 41

rotor time constant, 46

rotor windings, 30

RQP, 65, 81

sampling frequency, 79, 98, 110, 111,
115, 126, 167

sampling rate, 79

saturation, 115, 161

scheduling function, 64

scheduling subspace, 140

Schur complement, 11, 16, 170

sector bounds, 122, 123, 131, 137

sensor-less control, 102

shaft, 35

simulation, 115

skew-symmetric multipliers, 64

slip frequency, 40, 47, 53, 112

space vector, 33, 39

speed control, 48

speed controller, 48, 125

speed estimate update gain, 54, 102

speed estimation, 52

speed sensor, 40

standard LFT representation, 17, 67,
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star product, 17, 80

star product identity, 18

state space model, 36

stator, 28

stator current control, 49, 110

stator current controller, 48, 49, 114

stator flux, 34

stator inductance, 34

stator resistance, 33, 40

stator-fixed coordinates, 35

steady state, 39

step size, 22
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structured singular value, 64
suboptimatH ., 62

switching frequency, 110, 164

tangent hyperbolic neuron function, 20,
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tanh, 20, 123

target matrix, 131

time variation, 40

torque, 47

torque control, 48

training, 21, 130

training algorithms, 22

training set, 127, 128

trapezoidal approximation, 80

tuning, 93, 106

uncertainty, 124, 156

uncertainty block, 63

unit element, 18

unit gain, 20

unstructured, 12

upper linear fractional transformation,
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validation set, 127

vertex matrices, 14, 64

vertices, 14, 64

voltage filters, 165

voltage model, 50

voltage sourced inverter, 41, 110
voltage transducers, 165
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well defined, 17, 18
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windings, 28
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