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ABSTRACT

The subject of this thesis is the development of linear parameter varying (LPV) con-
trollers and observers for control of induction motors. The induction motor is one of
the most common machines in industrial applications. Being a highly nonlinear system,
it poses challenging control problems for high performance applications. This thesis
demonstrates how LPV control theory provides a systematic way to achieve good per-
formance for these problems. The main contributions of this thesis are the application of
the LPV control theory to induction motor control as well as various contributions to the
field of LPV control theory itself.

Within the last decade the theoretical background for control of LPV systems has been
developed. LPV systems constitute a large class of nonlinear systems with a special
structure allowing for a systematic approach to controller design. Based on a widely used
model of the induction motor and the well-known rotor flux-oriented control scheme, it
is demonstrated how LPV methods can be applied to several subproblems in induction
motor control.

The current equations of the induction motor have a particular structure, which allows
them to be written on a complex form. It is shown that for an LPV system with this
structure, the optimal controller will also possess this structure. This knowledge can be
employed to improve the numerics of the controller synthesis and to reduce the compu-
tational burden in the implementation.

Viewing the rotational speed as an external parameter, the current equations of the in-
duction motor constitute an LPV system. This is used to design an LPV flux observer.
The result is an observer with good performance and very little tuning needed.
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At the cost of some conservatism the LPV control theory can be applied to an even
wider range of systems known as quasi-LPV systems. It is demonstrated how this can
be applied to the design of a stator current controller. As in the case of the flux observer
design, the resulting controller performs well and requires very little tuning.

In certain cases it is difficult to obtain accurate models using physical principles. We
therefore turn our attention to nonlinear black-box modelling with multi-layer percep-
trons (MLPs). A novel method for transforming MLP models into quasi-LPV models is
presented. An MLP model of an induction motor system is obtained, and the aforemen-
tioned model transformation is performed. The resulting quasi-LPV model is then used
in the design of a speed controller. This demonstrates how LPV methods can be used in
a systematic approach all the way from modelling to controller implementation.

Finally, robustness to uncertainty in the time-varying parameters is considered. More
specifically, we consider the case where the parameter variation is represented by a diag-
onal gain matrix, which is fully known except for some small perturbation. A novel type
of sufficient conditions for robustness is presented, and it is illustrated how this can be
used in the speed controller design.

All controllers and observers are tested on a laboratory setup.

The key results have been presented at international conferences or have been submitted
for publication in international journals.



DANSK

SAMMENFATNING

Denne afhandling omhandler udviklingen af lineære parameter-varierende (LPV) regula-
torer og observere til regulering af induktionsmotorer. Induktionsmotorener en af de mest
anvendte maskiner i industrien. Dens ikke-lineære dynamik giver anledning til kompli-
cerede reguleringsproblemer i forbindelse med krævende anvendelser. I denne afhand-
ling demonstreres det, hvorledes LPV-reguleringsteori åbner muligheden for en syste-
matisk tilgang til disse problemer. Afhandlingens væsentligste bidrag er anvendelsen
af LPV-teori til regulering af induktionsmotorer, samt diverse bidrag til området LPV-
reguleringsteori.

Den teoretiske baggrund for regulering af LPV-systemer er udviklet i løbet af det seneste
årti. LPV-systemer udgør en omfattende klasse af ikke-lineære systemer med en speciel
struktur, der muliggør en systematisk tilgang til regulatordesign. Med udgangspunkt i en
ofte anvendt model for induktionsmotoren og det velkendte rotorflux-orienterede regu-
leringsprincip demonstrerer denne afhandling, hvordan LPV-metoder kan anvendes på
flere delproblemer indenfor regulering af induktionsmotorer.

Induktionsmotorens strømligninger har en speciel struktur, der gør det muligt at skrive
dem på kompleks form. Det vises, at for et LPV-system med denne struktur, vil den
optimale regulator også besidde denne struktur. Denne viden kan benyttes til at forbedre
regulatorsyntesens numeriske egenskaber og til at opnå en mindre beregningskrævende
implementation.
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Ved at betragte omdrejningshastigheden som en udefra kommende parameter kan induk-
tionsmotorens strømligninger betragtes som et LPV-system. Dette udnyttes til at udvikle
en flux-observer. Resultatet er en velfungerende observer med meget lille behov for tu-
ning.

På bekostning af konservatisme kan LPV-teori anvendes på en langt større klasse af ikke-
lineære systemer kaldet kvasiLPV-systemer. Dette demonstreres ved udviklingen af en
statorstrømsregulator, der, ligesom førnævnte observer-design, resulterer i en velfunge-
rende regulator med meget lille behov for tuning.

I visse tilfælde er det vanskeligt at opnå en tilfredsstillende model baseret på fysi-
ske betragtninger. Derfor rettes opmærksomheden herefter mod ikke-lineær black-box-
modellering ved hjælp af multi-lags perceptroner (MLPer). En ny metode til transforma-
tion af MLP-modeller til kvasiLPV-modeller præsenteres. En MLP-model af et induk-
tionsmotorsystem optrænes, og den nye tranformationsmetode anvendes. Den resulte-
rende kvasiLPV-model anvendes som grundlag for syntese af en hastighedsregulator. På
denne måde demonstreres det, hvordan LPV-metoder danner grundlag for en systematisk
tilgang til hele proceduren fra modellering til regulatorimplementation.

Til sidst betragtes robusthed overfor usikkerheder i de tidsvarierende parametre. Speci-
fikt betragtes det tilfælde, hvor parametervariationen kan repræsenteres ved en diagonal
forstærkningsmatrix, som er fuldstændigt kendt bortset fra en lille afvigelse. En ny type
tilstrækkelige betingelser for robusthed præsenteres, og det illustreres, hvorledes disse
kan anvendes i udviklingen af hastighedsregulatoren.

Alle regulatorer og observere er afprøvet eksperimentelt på en laboratorieopstilling.

Hovedresultaterne er præsenteret ved internationale konferencer eller er indsendt til pu-
blikation i internationale tidsskrifter.
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Chapter 1

INTRODUCTION

This Ph.D. thesis considers the application of linear parameter varying (LPV) control
theory to induction motor control. The aim is to develop novel controllers and observers
for field-oriented control of induction motors and to provide theoretical contributions in
the field of LPV control theory.

1.1 Background

The induction motor has a wide range of applications in industry converting elec-
trical power into mechanical power, for instance in pumps and ventilators. In-
deed, in the industrialised countries approximately 60 % of the entire electrical
power available is consumed by AC motors, whereof most are induction motors
[Kaźmierkowski and Tunia, 1994]. Recent advances in computer technology allows em-
ploying control techniques yielding a performance for the induction motor similar to that
of the more expensive and less reliable DC motor. This does, however, pose complicated
control problems.

Several approaches to induction motor control exist, see for instance [Vas, 1998] or
[Kaźmierkowski and Tunia, 1994]. This thesis will focus on one particular approach,
the rotor-flux oriented control.

The induction motor is a highly nonlinear system calling for advanced control techniques.
Within the last decade the theoretical background for control of linear parameter varying



2 Introduction

(LPV) systems has been developed. LPV systems constitute a large class of systems with
a special structure allowing for a systematic approach to controller design. At the cost of
conservatism the approach can be applied to an even wider range of systems known as
quasi-LPV systems.

An LPV system is essentially a linear time-varying system which can be written on the
form

_x = A(�(t))x +B(�(t))u

y = C(�(t))x +D(�(t))u;

where� is a time varying parameter vector. As such it has a structure which is similar to a
linear time-invariant state space system, and control design methods with some similarity
to linear state space methods can indeed be used.

One of the main reasons for LPV control theory being the object of increasing interest is
that performance analysis and controller synthesis for these systems can be formulated
as linear matrix inequalities (LMIs). LMIs pose convex problems and can be efficiently
solved by numerical software such as the MatLab LMI toolbox [Gahinet et al., 1995]. In
this sense, once a problem has been cast as an LMI, it can be considered as solved.

An early suggestion that a system on the LPV form could be controlled by a controller
of the same form was given in [Becker et al., 1993]. The method given here did however
not lead to a convex problem, but the result was later extended in several steps. In
[Apkarian et al., 1995] a non-conservative LMI solution was given under the assumption
of affine parameter dependence. In [Scherer, 2001] the result is extended to the more
general rational parameter dependence. This result seemingly has not been applied to
any real-life systems yet. In this thesis it will be applied to the control of an induction
motor.

In [Shamma and Athans, 1992] it was suggested that an even wider range of nonlinear
systems could be treated as LPV system at the cost of some conservatism. In this quasi-
LPV approach the parameters are allowed to depend on the states. By disregarding the
explicit dependence and treating these systems as LPV systems, theoretical guarantees
of stability and performance can be obtained.

In this thesis these ideas will be used and further developed, aiming for control of induc-
tion motors with a rigorous theoretical basis.

1.2 Objectives

The aim of this thesis is to develop novel controllers and observers for field-oriented
control of induction motors and to provide theoretical contributions in the field of LPV
control theory.



1.3 Contributions 3

In order to limit the scope we will focus on a particular type of controller, more specif-
ically the rotor-flux oriented controller as discussed in for instance [Rasmussen, 1995],
[Vas, 1998], or [Leonhard, 1990]. This controller consists of subblocks as shown in Fig-
ure 1.1.

observers

speed
and 

magnetising
current
control

stator
current
control

isr,ref
imR,ref

power
device

sr,refu
induction

motor
shaft
load

ωr,ref

us

measurements

estimates

Figure 1.1:Sketch of the rotor flux oriented speed control scheme.

The controller objective is to track references for the magnetising current,imR, and
the speed,!r. The observers provide estimates of the stator and magnetising currents
and of the speed. The speed and magnetising current controllers provide a reference
signal,�isr;ref , for the stator current. The stator current controller tracks this reference
by providing the power device with a stator voltage command,�usr;ref .

The main aim of this thesis is to provide novel methods for designing these sub-blocks
using LPV control theory. The theoretical parts will focus on the method described in
[Scherer, 2001], which is very general and non-conservative.

1.3 Contributions

The contributions of this thesis are in both the induction motor application and the LPV
control theory areas.

The main contributions in the theoretical area are:

� A discrete time version of the continuous time LPV control method presented in
[Scherer, 2001] is given.

� The current equations of the induction motor have a particular structure, which
allows them to be written on a complex form. It is shown that for an LPV system
with this structure, the optimal controller will also possess this structure.

� A systematic approach for transforming neural network state space models into
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quasi-LPV models suitable for control design is given. This was presented in the
conference paper [Bendtsen and Trangbæk, 2000b].

� A novel approach to robust LPV control for a special class of LPV systems
is presented. This has partially been presented in the submitted journal paper
[Bendtsen and Trangbæk, 2000a].

The main contributions in the induction motor application area are:

� It is pointed out that the proof of convergence for the speed observer presented in
[Kubota et al., 1993] is incorrect and that divergence is possible.

� The discrete time version of the LPV theory is applied to the design of a
flux observer. This has partially been documented in the conference paper
[Trangbæk, 2000].

� The discrete time version of the LPV theory is applied to the design of a stator
current controller using the quasi-LPV approach. This has been documented in
the submitted journal paper [Bendtsen and Trangbæk, 2001b].

� A neural network is applied for black-box identification of the motor system.

� The obtained neural network model is transformed into a quasi-LPV model and a
speed controller is designed.

� The robust LPV control method is applied to the same model.

1.4 Outline of the thesis

The thesis is organised as follows:

Nomenclature

Provides a list of symbols and abbreviations used throughout the thesis.

Chapter 1 - Introduction

This introduction.
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Chapter 2 - Preliminaries

Introduces some basic concepts needed later in the thesis. The theoretical parts of Chap-
ters 5-7 rely heavily on matrix inequalities and in particular linear matrix inequalities
(LMIs). These concepts will be briefly discussed.

The model structure used in the same chapters is linear fractional transformations (LFTs).
This chapter also discusses interconnections of such systems including the Redheffer star
product.

Finally, the use of multi-layer perceptrons (MLPs) as state space models is discussed.

Chapter 3 - Induction Motor System

Describes the dynamic model of a symmetrical three-phase induction motor with a squir-
rel cage rotor. The part of the model describing the currents is written as a complex
second order state space model with the shaft speed as a time-varying parameter. The
concept of rotating reference frames is then discussed.

In order to control the speed of the motor it is necessary to use a power device. A
commonly used type of power device, the voltage sourced inverter, is described.

Finally, the laboratory setup is discussed. Experiments will be performed on a laboratory
system with a1:5kW induction motor.

Chapter 4 - Rotor Flux Oriented Control

The rotor flux oriented control scheme for the induction motor is described. The purpose
of the controller is to track a reference speed and a reference magnetising current while
rejecting disturbances from the load torque.

First it is discussed how the dynamical equations of the motor are simplified by writing
them in a reference system following the angle of the rotor flux. Then the rotor flux
oriented control method is described. The method is observer-based and requires an
estimate of the rotor flux. A short discussion of flux and speed observers is also given.

Chapter 5 - Linear Parameter Varying Flux Observer

This chapter reviews the LPV synthesis method in [Scherer, 2001] and applies it to the
design of a flux observer for the induction motor.
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First the historical background of LPV control is reviewed. Then robust quadratic per-
formance analysis of LPV systems is discussed and the so-called full block S-procedure
controller synthesis is described. A discrete-time version of these results is then given.

Considering the speed as a time-varying parameter allows writing the induction motor
model as either a real fourth order LPV model or as a complex second order LPV model.
This is due to a special symmetry in the transfer function. Theoretical justification for
the fact that controllers and observers for this type of system can be assumed to have the
same type of symmetry without loss of performance is presented.

Finally a discrete-time flux observer is designed using the above theory. The observer is
tested on the laboratory setup.

Chapter 6 - Quasi-LPV Current and Speed Controllers

The quasi-LPV approach allows the use of LPV theory for a very general class of non-
linear systems. First a discussion of the quasi-LPV structure is given. The approach is
then applied to the design of a stator current controller.

It is then discussed how to transform a neural network state space model into a quasi-
LPV model suitable for control design. This method is then applied to the design of a
speed controller.

Chapter 7 - Robust LPV Speed Controller

In this chapter a novel approach is given for robust LPV design for systems where the
time-varying parameters are uncertain. The method is applied to the design of a speed
controller.

Chapter 8 - Conclusions

This chapter contains conclusions and recommendations for further work.

Appendix A - Experimental Setup

In this appendix the experimental setup is discussed in detail.



1.4 Outline of the thesis 7

Appendix B - Lemmas and Proofs

This appendix contains lemmas with no appropriate place in the main thesis as well as
proofs which were deemed too long and tedious for the main thesis.

Bibliography

Index
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Chapter 2

PRELIMINARIES

This chapter introduces some basic concepts needed later in the thesis. The theoretical
parts of Chapters 5-7 rely heavily on matrix inequalities and in particular linear matrix
inequalities (LMIs). These concepts are described in Sections 2.2 and 2.3.

The model structure used in the same chapters is linear fractional transformations (LFTs).
Section 2.4 discusses interconnections of such systems including the Redheffer star prod-
uct.

Chapter 6 describes the use of multi-layer perceptrons (MLPs) as a basis for obtaining
quasi-LPV models. Multi-layer perceptrons are described in Section 2.5, whereas the
discussion of the quasi-LPV structure will be left for Chapter 6.

2.1 Notation

Most of the notation in this thesis is standard with the following exceptions.

Definition 2.1 (Hermitian part,herm (�))

LetX be a square matrix. Then

herm (X) ,
1

2
(X +X�):
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The Hermitian part is a natural extension of the real part of scalars, since the eigenvalues
of a Hermitian matrix are real.

The symbol? is used as a right annihilator in e.g. [Scherer, 2001] and as a left annihilator
in e.g. [Helmersson, 1995]. To avoid confusion when comparing with other literature we
shall use the symbols̀ anda respectively.

Definition 2.2 (Left annihilator,a)

Aa denotes any full row rank matrix such thatkerAa = imA.

Aa only exists ifA has linearly dependent rows and thenAaA = 0.

Definition 2.3 (Right annihilator,̀ )

A` denotes any full column rank matrix such thatimA` = kerA.

Note thatimA�` = imAa
�

.

Finally, in order to reduce the width of certain matrix equations we will need the follow-
ing notation. Given a matrixX and a Hermitian matrixP the following expressions are
equivalent �

X
�� �

P
� �
X
�
�
�
�
�� �

P
� �
X
�
:

2.2 Matrix inequalities

A square matrixX is Hermitian if X = X�. Let H n�n denote the linear space of
Hermitiann�n matrices and letF 2 H

n�n . Leth 2 C
n and define thequadratic form

jhj2F , h�Fh: (2.1)

We say thatF is positive semidefiniteif

jhj2F � 0 8h (2.2)

and thatF is positive definiteif

9� > 0 : jhj2F � �jhj2 8h: (2.3)

We simply denote thisF � 0 andF > 0, respectively.F � 0 (negative semidefinite)
andF < 0 (negative definite) are defined similarly.S is apositive subspaceof F if

9� > 0 : jhj2F � �jhj2 8h 2 S (2.4)
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and we write this as

F > 0 onS:

A negative subspaceis defined similarly.

A Hermitian matrix has real eigenvalues and the maximal dimension of its positive sub-
space is equal to the number of positive eigenvalues. Consequently a Hermitian matrix
is positive definite if and only if all of its eigenvalues are positive.

Definition 2.4 (Inertia, in)

The inertia of a Hermitian matrixH is defined as

in(H) , (in�(H); in0(H); in+(H)) (2.5)

wherein�(H); in0(H); in+(H) denote the number of negative, zero and positive eigen-
values ofH , respectively.

Definition 2.5 (Inertia on subspace,in(�j�))

For any subspaceS � C
n ,

in(H jS) , in(S�HS) (2.6)

for any basis matrixS of S.

The following lemma is a generalisation of the well-known Schur complement lemma.

Lemma 2.6(Schur complement) [Scherer, 2001]

If A is non-singular andA andB are Hermitian then

in

��
A C

C� B

��
= in(A) + in(B � C�A�1C) (2.7)

This lemma is very useful in many situations. An example will be given in Section 2.3.2.
The following lemma will be used in the proof of Lemma 2.9.

Lemma 2.7(Dualisation Lemma) [Scherer, 2001]

Let P be any non-singular Hermitian matrix, and letS be any subspace such that
in0(P jS) = 0. Then

in(P ) = in(P jS) + in(P�1j
S
?) (2.8)
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Now letF 2 H
n�n be a matrix function of a vector ofdecision variablesx. We will call

F (x) > 0 amatrix inequalityin x. Thefeasibility setof a matrix inequality is defined as

Xfeas , fx : F (x) > 0g; (2.9)

and we say that the matrix inequality isfeasibleif Xfeas is non-empty. Of course> can
be replaced by�,�, or< in the above.

Remark 2.8The decision variables are usually in the form of one or more matrices, but
the problem can always be reformulated into the vector form.

Matrix inequalities arise in many control analysis and synthesis problems. There is no
general way to solve them, except whenF depends affinely onx. In this case, the affine
matrix inequality can be solved with convex methods. This will be discussed further in
Section 2.3. If the matrix is a quadratic function ofx there is generally no way to solve
the inequality except in special cases such as the following.

Lemma 2.9(Elimination Lemma for quadratic matrix inequalities) [Scherer, 1999]
[Helmersson, 1999]

Assume thatC has dimensionn�m and that

in(P ) = (m; 0; n) (2.10)

The quadratic matrix inequality�
I

A�XB + C

��
P

�
I

A�XB + C

�
< 0 (2.11)

in the unstructured unknownX has a solution if and only if

B`
�

�
I

C

��
P

�
I

C

�
B` < 0 (2.12)

and

A`
�

�
�C�

I

��
P�1

�
�C�

I

�
A` > 0 (2.13)

Proof: A constructive proof is given in Appendix B on page 173.�

Remark 2.10X beingunstructuredmeans that there are no constraints on the structure,
e.g. that it must be Hermitian or block diagonal.

This lemma is the basis for the synthesis method described in Section 5.3.
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2.3 Linear matrix inequalities

As mentioned in the previous section there is no general way to solve matrix inequali-
ties. However if the matrix depends affinely on the decision variables it is called aLinear
Matrix Inequality(LMI) and fast and efficient numerical solvers are available. If a prob-
lem can be cast as an (finite-dimensional) LMI it can therefore be considered practically
solved. This section contains a formal definition of an LMI, a short description of some
of the available software packages and the types of problems they can solve, and finally a
few examples of control problems that can be cast as LMIs. A more thorough discussion
can be found in [Boyd et al., 1994].

Definition 2.11 (Linear matrix inequality, LMI)

A linear matrix inequality is an inequality

F (x) > 0

whereF is an affine (i.e. a constant plus a linear) function mapping a finite dimensional
vector space to a Hermitian matrix setH n�n . The elements of the vectorx are called
thedecision variables.

Remark 2.12In the usual definition the mapping is to a set of real symmetric matrices,
andx belongs to a real vector space. Indeed, most available solvers work only with this
formulation. The above definition can however be reformulated as an equivalent problem
with real matrices of double dimensions. This will be discussed further in Section 5.5.

LMIs have several nice features. For instance the feasibility set is convex. This means
that given a set of solutions of an LMI, anyconvex combinationof these is also a solution.

Definition 2.13 (Convex combination)

LetM = fx1; x2; :::; xng be a subset of a linear vector space, and letfa1; a2; :::; ang
be a set on non-negative real numbers such that

Pn
i=1 ai = 1. Then

x ,

nX
i=1

aixi

is called aconvex combinationofM.

Definition 2.14 (Convex hull,Co)

Theconvex hull,Co(M) of a setM is the intersection of all convex sets containingM.

If M is a subset of a linear vector space, thenCo(M) is the set of all convex combina-
tions of elements inM. The convexity of the feasibility set can be used to convert some
infinite-dimensional problems into finite-dimensional ones.
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Example 2.15Consider the problem of finding anX such that

AX +X�A� > 0 (2.14)

for all A 2 �A, where �A is convex. If �A has infinitely many elements, then this is an
infinite-dimensional LMI, since (2.14) puts infinitely many constraints onX . For a fixed
X we can also view (2.14) as an LMI inA. This means that ifX fulfills (2.14) for a
number ofAs, then it is also a solution for a convex combination of these.

Now if �A is the convex hull of a finite number ofvertices(or generators)A1; A2; ::; An,
we only need to solve (2.14) for these vertices in order to obtain a solution for allA 2 �A.
This is a finite-dimensional problem.

LMIs rarely have an explicit solution but must be solved by numerical iteration. One
exception is the LMI inX given by

F (X) = A�XB +B�X�A+D > 0: (2.15)

This inequality typically needs to be solved as a last step in a controller synthesis, where
A,B, andD have been found as solutions to other LMIs. By multiplying from both sides
byA` orB` it is immediately obvious that

A`
�

DA` > 0 andB`
�

DB` > 0 (2.16)

are necessary conditions for the feasibility of (2.15). In fact they are also sufficient.
This was shown in [Gahinet and Apkarian, 1994], where a constructive proof can also be
found. Here we will give an alternative proof based on (2.15) being a special case of the
quadratic matrix inequality (2.11).

Lemma 2.16[Gahinet and Apkarian, 1994]

LetD 2 H
n�n . The LMI (2.15) inX is feasible if and only if (2.16) is satisfied.

Proof:

(2.15) is a special case of (2.11) with

C + C� = D, P =

�
0 �In
�In 0

�
:

The inertia condition (2.10) is then immediately fulfilled and the conditions (2.12) and
(2.13) can easily be seen to be exactly (2.16).�

Remark 2.17Since the proof of Lemma 2.9 is constructive, this proof can also be con-
sidered constructive.
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Remark 2.18In Lemmas 2.9 and 2.16< can of course be replaced by> and vice versa,
but the sufficiency parts do not hold for non-strict inequalities (� and�). Consider for
instance the non-strict LMI

F (y) =

�
y c+ y

c� + y c+ c� + y

�
� 0

in the real scalary. This can be written as (2.15) with

X +X� = y; A = B =
�
1 1

�
; D =

�
0 c

c� c+ c�

�
:

F (y) has eigenvalues1
2
(2y + c + c� �

p
(2y + c+ c�)2 + 4cc�) which are clearly of

different signs no matter howy is chosen. In other words the non-strict LMIF (y) � 0
has no finite solution, but the non-strict versions of the conditions (2.16) both read

�
1 1

�`� � 0 c

c� c+ c�

� �
1 1

�`
=

�
z

�z

�� �
0 c

c� c+ c�

� �
z

�z

�
= 0 � 0;

wherez is an arbitrary non-zero number.

2.3.1 LMI solvers

Several software packages are available for solving LMIs. The most widely used is
probably the LMI toolbox for MatLab [Gahinet et al., 1995]. Free alternatives are LMI-
TOOL [Nikoukhah et al., 1995] and sdpsol [Wu and Boyd, 1996]. The MatLab toolbox
can solve three different types of problems in addition to an explicit solution of (2.15).
The first is thefeasibility problem:

� find, if it exists, a solutionx to the LMIF (x) > 0.

The second problem is thelinear objective minimisation problem:

� minxfcx : F (x) > 0g.

This is a generalisation of theeigenvalue problem: min�;xf� : �I � F (x) > 0; G(x) >
0g.

The third problem that can be solved by the MatLab toolbox is thegeneralised eigenvalue
problem:

� min�;xf� : �G(x) � F (x) > 0; G(x) > 0; H(x) > 0g.
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The first two problems are convex and are solved by interior point methods. The third is
only quasi-convex but can be solved by similar techniques [Gahinet et al., 1995].

It is beyond the scope of this thesis to discuss how these methods work.
For an introduction to interior point algorithms in convex programming see
[Nesterov and Nemirovski, 1994] or [Nemirovski and Gahinet, 1994] describing the al-
gorithm used in the toolbox.

2.3.2 Examples of LMIs in control

Two examples of LMIs arising in connection with control problems will be given here.
For more examples see [Boyd et al., 1994] and [Packard et al., 1991].

Lyapunov stability
Consider the autonomous system

_x = Ax;

whereA is a constant square matrix. This system is Lyapunov stable if and only if there
exists a positive definiteLyapunov matrixX such that

A�X +XA < 0:

A test for stability can therefore be cast as a feasibility problem in X:�
�A�X �XA 0

0 X

�
> 0:

Riccati inequality
H1 control problems often lead toRiccati inequalitiessuch as

A�X +XA+X(BB� �DD�)X + C�C < 0; X > 0:

Because of the quadratic term this is not an LMI inX . However, if we assumeBB� >

DD� (meaningBB� �DD� > 0) then we can use Schur complement (Lemma 2.6) to
arrive at the equivalent�

A�X +XA+ C�C X

X �(BB� �DD�)�1

�
< 0; X > 0 (2.17)

which is indeed an LMI inX . If on the other handBB� � DD� is indefinite then we
cannot use this trick. But ifC�C is non-singular (and consequently positive definite)
then we multiply from both sides byY = X�1 to arrive at

Y A� +AY + (BB� �DD�) + Y C�CY < 0; Y > 0:
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This can then be converted into an LMI inY . A problem with this last approach arises
if (2.17) is just one of several constraints onX even if the other constraints are LMIs.
Then we will have LMI constraints onX andY but also the constraintX�1 = Y which
is not convex. This problem arises in most robust synthesis problems.

2.4 Linear system interconnection

This section is a short introduction to the interconnection of linear systems. The concepts
of linear fractional transformations and Redheffer star product will be described. For
further details see [Doyle et al., 1991], [Zhou et al., 1996], and [Helmersson, 1995].

LetM =

�
M11 M12

M21 M22

�
be a complex matrix. Then thelower linear fractional transfor-

mation(LFT) with respect to�l is defined as [Doyle et al., 1991]

Fl(M;�l) ,M11 +M12�l(I �M22�l)
�1M21:

Theupper linear fractional transformationwith respect to� is defined similarly as

Fu(M;�u) ,M22 +M21�u(I �M11�u)
�1M12:

The transformations are only defined if the inverses exist.

Definition 2.19 (well-posed, well defined)

The lower LFTFl(M;�l) is said to bewell-posed(or well defined) if I �M22�l is
non-singular. The upper LFTFu(M;�u) is said to be well-posed ifI � M11�u is
non-singular.

The LFTs are another formulation of the interconnections in Figure 2.1. OftenM de-
scribes a known and time-invariant system and� contains unknown or time-varying
gains.

∆ l

∆ uM

M

Figure 2.1:Lower and upper linear transformations.
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TheRedheffer star product, ?, represents the interconnection in Figure 2.2, i.e.�
e1
e2

�
= (A ? B)

�
w1

w2

�

Note thatA ? B depends on a partitioning ofA andB. This partitioning will always be
clear from the context.

A

B

�

�

�

�

�

�

e1

e2

w1

w2

� A ? B

�

�

�

�

e1

e2

w1

w2

Figure 2.2: Redheffer star product.

Let the partitioning be given byA =

�
A11 A12

A21 A22

�
andB =

�
B11 B12

B21 B22

�
. Then we

have [Doyle et al., 1991]

A ? B =

�
Fl(A;B11) A12(I �B11A22)

�1B12

B21(I �A22B11)
�1A21 Fu(B;A22)

�
:

Again we need the inverses to be defined.

Definition 2.20 (well-posed,well defined)

We say that the interconnectionA ?B is well-posed ifI �B11A22 andI �A22B11 are
non-singular.

Remark 2.21The star product is defined even if for instancee1 andw1 are of zero size,
i.e.A = A22. ThenA ? B = Fu(B;A22).

The star product is associative [Helmersson, 1995] i.e.

(A ? B) ? C = A ? (B ? C):

Furthermore

�
0 I

I 0

�
is theunit elementof the star product orstar product identity, i.e.

A ?

�
0 I

I 0

�
= A =

�
0 I

I 0

�
? A:
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These two facts can be used for transforming problems into special forms. The following
example demonstrates how to do this if a given design method requires a system to
be strictly proper. The example system has more inputs and outputs than needed to
demonstrate the idea, but it has been chosen this way, so that it can be directly applied to
the theory described in Section 5.3.

Example 2.22The synthesis method described in Section 5.3 requires the system2
6664

_x

zu
zp

y

3
7775 =

2
6664

A Bu Bp B

Cu Duu Dup Eu

Cp Dpu Dpp Ep

C Fu Fp F3

3
7775
2
6664

x

wu

wp

u

3
7775 (2.18)

to be strictly proper in the channel from the control signals,u, to the measurements,y,
i.e.F3 must be0. Then (under some assumptions) a suboptimal controller on the form2

64 _xc
u

zc

3
75 =

2
64 Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22

3
75
2
64 xc

y

wc

3
75 (2.19)

can be constructed. The meaning of the signalswu; wp; wc; zu; zp, andzc is unimportant
for now, and will be discussed in Chapter 5.

In practice it may happen that the system we wish to design a controller for is not strictly
proper. This problem can be overcome by finding a controller~K for the corresponding
system withF3 = 0 and then transforming the controller into another controllerK

yielding the same closed loop system for the actual system. Denote the system matrix in
(2.18) byMs and define

� =

�
0 I

I �F3

�
; ��? =

�
0 I

I F3

�

and observe that� ? ��? = ��? ? � =

�
0 I

I 0

�
is the Redheffer star product identity,

and that

Mp ,Ms ? � =

2
6664

A Bu Bp B

Cu Duu Dup Eu

Cp Dpu Dpp Ep

C Fu Fp 0

3
7775 :

Now assume that a controller,~K, has been obtained for the system defined byMp, and
write this controller as2

4 u_xc
zc

3
5 = ~Kc

2
4 y

xc

wc

3
5 ; ~Kc =

2
4Dc1 Cc1 Dc12

Bc1 Ac Bc2

Dc21 Cc2 Dc2

3
5 :
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Then, assuming thatI + F3 ~Kc is non-singular, the closed loop is given by2
666664
_x

zu

zp

_xc
zc

3
777775 =Mc

2
666664
x

wu

wp

xc
wc

3
777775

in which

Mc , Mp ? ~Kc =Mp ? (�
�? ? �) ? ~Kc

= (Mp ? �
�?) ? (� ? ~Kc) =Ms ? (� ? ~Kc):

A controller for the system defined byMs is thus given by2
4 u_xc
zc

3
5 = Kc

2
4 y

xc

wc

3
5 ; Kc = (� ? ~Kc): (2.20)

2.5 Multi-layer perceptron

This section provides a short introduction to a particular type of artificial neural network,
the multi-layer perceptron (MLP), which can be used to model nonlinear functions. It is
beyond the scope of this thesis to go into detail with this subject. For a more thorough in-
troduction see for instance [Suykens et al., 1996] or [Bendtsen, 1999] and the references
therein. First the MLP structure will be discussed.

It is then discussed specifically how to obtain nonlinear state space models from input
and output measurements using the MLP structure.

Themulti-layer perceptron(MLP) is composed of layers of perceptrons coupled in par-
allel. A perceptronconsists of a memoryless scalar function, theneuron function, acting
on a weighted sum of input signals, as shown in Figure 2.3.

The neuron function (or simplyneuron) can be either linear or nonlinear. Some of the
traditional neuron functions in MLPs are the unit gain

�lin(x) = x

and thehyperbolic tangent

�tanh(x) = tanh(x) =
ex � e�x

ex + e�x
:
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Figure 2.3: A single perceptron.

In this thesis only these two will be used.

A block diagram of an MLP with one hidden layer is shown in Figure 2.4. The input
vectorzin is multiplied by theinput weight matrix�1. Thebias vector�b is then added
and the sum is input to� containing a number of neurons in parallel. The resulting output
is multiplied by theoutput weight matrix�2 producing the final outputzout. Notice that
the weights�1; :::; �n in Figure 2.3 form a row in the matrix�1 and that the weight�b is
an element in�b. The output weight matrix�2 can be seen as stemming from a layer
with linear neurons and no biases. The resulting function is

zout = �2�(�1zin +�b) ,Mm(zin;�1;�2;�b): (2.21)

By choosing�1, �2, and�b appropriately the MLP can be used to approximate a given
static nonlinear function. It has been shown [Hornik et al., 1989] that with a sufficient
number of neurons and under certain continuity conditions, the MLP with one hidden
layer can act as a universal approximator.

- �1
- - �(�) - �2

-

6
zin zout

�b

Figure 2.4: Block diagram of an MLP with one hidden layer.

2.5.1 Training

Adjusting the weights of a neural network is known astraining. For an MLP this is
typically done by trying to approximate a set ofoutput targetsin the following manner.
Given a set of target output vectorszt;1; :::zt;m and a corresponding set of input vectors
zin;1; :::; zin;m define the approximation error

�(m) , zt;m � zout;m = zt;m �Mm(zin;m;�1;�2;�b)
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and the quadratic performance functional

J =
1

k

kX
i=1

1

2
�(i)T �(i):

The aim is now to minimise the performance functional over the weights and biases, i.e.

min
�1;�2;�b

J:

Remark 2.23Minimising the performance functional for an MLP with nonlinear neuron
functions is a non-convex problem and problems with local minima can arise.

The simplest way to attempt to minimiseJ is by theBack Propagation Error Algorithm
(BPEA). This is an iterative method, where the weights and biases are updated by the
following rule

�i+1 = �i � �
dJ

d�i
;

where� > 0 is the step size and�i is the collection of all elements of�1, �2, or�b at
the i’th iteration. This corresponds to going in the opposite direction of the gradient, i.e.
to move downhill until the bottom is reached. This method is very stable but also very
slow. Including the second order derivative as in the Gauss-Newton learning rule

�i+1 = �i �
�

d2J

d�id�
T
i

��1
dJ

d�i

increases the convergence rate drastically. This corresponds to approximation the perfor-
mance function by a paraboloid and jumping directly to the bottom. For linear neuron
functions this will immediately yield the global minimum solution. The Levenberg-
Marquardt algorithm combines these two to obtain the fast convergence of the Gauss-
Newton algorithm with the stability of the BPEA. See [Suykens et al., 1996] and the
references therein for a more thorough description of training algorithms.

2.5.2 MLPs as state space models

Assume that we wish to obtain a model of the discrete time nonlinear state space system

yk+1 = f(yk; :::; yk�ny+1; uk; :::; uk�nu+1); (2.22)

wherey is a measured output andu is a known input. This is known as a nonlinear
autoregressive model with exogenous inputs (NARX).
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Figure 2.6: Recurrent MLP as state space model.

A way to obtain a model for this system is shown in Figure 2.5. Old measurements of
outputs and inputs are fed to the MLP, which provides a prediction ofy(k + 1). The
prediction error�(k + 1) can then be used to adjust the parameters in the MLP. Using a
large number of measurements to train the MLP, the effects of white measurement noise
can be removed, yielding a model with a prediction error with the same variance as the
noise assuming that the MLP has enough neurons to model the system, and that local
minima are avoided. A more thorough discussion of this model structure can be found
in e.g. [Lightbody and Irwin, 1996].

Once a model has been obtained it could for instance be used as a predictor as already
seen. By feeding the predicted outputs back into the MLP, it can also be used as an open-
loop simulator of the system. Thirdly, it can be used as a system model for a control
design.

The model type (2.22) is somewhat limited due to the fact that the noise must be white.
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A more general system structure is

xk+1 = f(xk) + g(xk)uk + gd(xk)dk; yk = Hxk; (2.23)

wherex is the state,dk is white noise, andH is a known matrix. This is a specialised
version of the nonlinear autoregressive moving average model with exogenous inputs
(NARMAX). An approach to training of this type of model is illustrated by Figure 2.6,
whereq�1 is the delay operator. The MLP provides a state estimate, which is delayed
and fed back into the MLP. This is known as arecurrent MLP. The output prediction
error is again used to adjust the MLP parameters but are also used as inputs to the MLP.
In this way it is possible to include more general noise types. The state estimates,x̂, do
not necessarily correspond directly to the actual states,x. Notice that some of the state
estimates could for instance be delayed version of the prediction error.

If there is no noise, it has been shown [Siegelmann et al., 1997] that there is no loss of
generality in the mappings that can be achieved by assuming that the state estimatesx̂

are delayed versions of the outputy. But when the noise is not white, then the more
general training structure in Figure 2.6 must be used. It is beyond the scope of this thesis
to go into details with how the parameters are adjusted. For a discussion of this model
and its training see e.g. [Korbicz and Janczak, 1996] or [Bendtsen, 1999]. It should just
be noted that from input and output measurements it is possible to obtain a state space
model of very general nonlinear systems. Unfortunately there are no training rules for
the NARMAX model guaranteeing convergence.

The MLP will be used in Chapter 6 to obtain a model of the induction motor to be used
for speed control.

2.6 Summary

This chapter has given an introduction to some of the basic concepts used in this thesis.
A matrix inequality is an expressionM(x) > 0, whereM is a Hermitian matrix function
of the decision variablesx. M > 0 means that all the eigenvalues ofM are positive.
There is in general no way to solve matrix inequalities, but ifM is a quadratic function
of x with a certain structure and certain inertia properties are fulfilled, then it is possible
to construct a solution.

Another case is ifM depends affinely onx. ThenM(x) > 0 is a linear matrix inequality
(LMI) and fast and efficient software solvers exist. If a problem can be formulated as an
LMI it can therefore be considered solved. Examples of LMIs arising in control problems
were given.

The star product,?, is used to denote interconnection of systems. It was demonstrated
how the associativity of the star product could be used to transform certain problems into
ones with a simpler form.
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Finally, the multi-layer perceptron and its application as nonlinear state space model was
discussed.
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Chapter 3

INDUCTION MOTOR

SYSTEM

This chapter describes the system considered in this thesis. First, in Section 3.1, a model
for an induction motor with squirrel cage rotor and three star connected stator windings
is derived. A number of assumptions are made in order to obtain a simple model. The
electro-magnetic model is developed using complex space vector representation, where
three real signals are combined into one complex signal. The result is a complex third
order nonlinear model. In Section 3.2 the model is written in a stator-fixed reference
frame.

In Section 3.3 the part of the model describing the currents is written as a complex second
order state space model with the shaft speed as a time-varying parameter. The concept
of rotating reference frames is then discussed. This will be used in Chapter 4.

In Section 3.4 the uncertainty on some of the motor parameter values is discussed. The
resistances can change due to temperature variations, and the shaft speed can also be
considered a time varying parameter.

In order to control the speed of the motor it is necessary to use a power device. In Section
3.5 a commonly used type of power device, the voltage sourced inverter, is described.

Experiments will be performed on a laboratory system with a1:5kW induction motor.
This system is discussed in Section 3.7. The laboratory system includes a DC-motor
connected to the shaft in order to allow simulation of load torques.
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3.1 Induction motor model

This section describes the dynamic model of a symmetrical three-phase induction mo-
tor with a squirrel cage rotor. The description is mainly based on [Leonhard, 1990],
[Rasmussen, 1995], and [Ka´zmierkowski and Tunia, 1994].

The induction motor mainly consists of two parts, thestatorand therotor. The rotor is
rotating inside the stator separated by anair gap, as shown by the cross section in Figure
3.1. The rotor is in principle built from parallel conductors short-circuited by a ring at
each end, as illustrated in Figure 3.2.

The windings of the three stator coils (A, B and C) are parallel to the rotor bars and
distributed sinusoidally around the cylinder displaced by 120 degrees, so that the total
number of windings at each angle is approximately constant. Figure 3.1 illustrates the
distribution of winding A by the width of the gray area. The stator shown is of the one
pole pair type, meaning that the coils will produce one magnetic north and one magnetic
south pole. Often a motor will be constructed with several pole pairs by connecting
coils in parallel and displacing the coils by120=Zp degrees, whereZp is the number
of pole pairs. This works as a gearing giving a larger torque and a slower mechanical
rotational speed. The derivation of the electrical equations will be for a one pole pair
motor. Adapting to multiple pole pairs is simply a question of modifying the mechanical
model as in Section 3.1.4.

SHAFT
GAP
AIR

ROTOR BARS

ROTOR

STATOR COIL A

STATOR

Figure 3.1:Cross section of induction motor

The stator windings are fed sinusoidal voltages to create a rotating magnetic field. When
the rotor and the magnetic field of the stator rotate at different speeds, currents will be
induced in the rotor rods. These currents result in a magneto-motive force perpendicular
to the current and to the magnetic field resulting in a torque on the rotor.
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Figure 3.2:Squirrel cage rotor

3.1.1 Modelling assumptions

A number of assumptions are made in order to permit a simple model to be obtained.

1. The motor is symmetrical.

2. The rotor is concentric and the air gap has a constant width,h.

3. Only the basic harmonics of the spatial field distribution and of the magneto-
motive force in the air gap are considered.

4. The stator windings are star connected (see Figure 3.3) and the neutral is isolated.

5. The ends of the rotor bars are short circuited.

6. The permeability of the iron parts is infinite.

7. The flux density is radial in the air gap.

8. Slotting effects, iron losses and end-effects are negligible.

9. The effects of anisotropy, magnetic saturation and eddy currents are negligible.

10. The coil resistances and reactances are constant or slowly varying.



30 Induction Motor System

neutral

i
sB

sA

sC

i

i

u sC

u

u

sA

sB

Figure 3.3:Stator coils in star connection.

One simplification resulting from these assumptions is that the rotor can be considered
as consisting of 3 short-circuited windings distributed in the same way as the stator coils
[Leonhard, 1990, page 152]. In the following these virtual coils will be referred to as the
rotor coils or rotor windings. The currents in these coils are referred to asira, irb and
irc. Since the rotor currents cannot be measured, the number of virtual rotor windings
can be chosen arbitrarily.

3.1.2 Electro-magnetic model

The electro-magnetic model describes the torque on the rotor as a function of the stator
currentsisA, isB andisC . Due to the isolated neutral

isA(t) + isB(t) + isC(t) = 0 (3.1)

is valid at any instant.

The distribution of the stator coils results in the magneto-motive force wave excited by
the stator currents at an angle� being (see Figure 3.4)

fs(�; t) = Ns (isA(t) cos(�) + isB(t) cos(� � 2�=3) + isC(t) cos(� � 4�=3)) :

Note that mathematically it may be more correct to write the above equation as

fs(isA; isB ; isC ; �) =

Ns (isA cos(�) + isB cos(� � 2�=3) + isC cos(� � 4�=3)) ;

since it is not a time-varying function, but the former notation is the one used in most of
the literature on the subject and this style will be adopted throughout this chapter.
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θ

Figure 3.4:The magneto-motive force produced by the stator currents at the angle� is
the sum of all currents inside the semi-circle.

Ns is the number of windings on each coil. Likewise the magneto-motive force wave
excited by the rotor currents, at the angle� is

fr(�; t) = Nr(ira(t)cos(� � �r(t)) + irb(t)cos(� � �r(t)� 2�=3)

+irc(t)cos(� � �r(t)� 4�=3)):

�r is the electrical angle of rotation of the rotor. For a one pole pair machine this angle
is the same as the mechanical angle�mech (�r = Zp�mech). Nr is a fictive number of
windings on the rotor coils.

As the permeability of the iron is assumed infinite the magneto-motive force is effective
only at the air gap, giving the flux density on the stator side:

Bs(�; t) =
�0

2h
(fs(�; t) + �fr(�; t)) ; (3.2)

where�0 is the vacuum permeability constant and� is a coupling factor compensating
for magnetic leakage. On the rotor side the flux density is given by

Br(�; t) =
�0

2h
(�fs(�; t) + fr(�; t)) : (3.3)

The part of the flux density on the rotor surface due to the stator currents is

Brs(�; t) =
��0

2h
fs(�; t): (3.4)

The current distribution along the surface of the rotor,ar, is the derivative of the rotor
magneto-motive force:
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ar(�; t) =
1

2r

@fr(�; t)

@�
; (3.5)

wherer is the radius of the rotor. The tangential forcedf acting on an axial strip of width
rd� is the (vector) product of the flux density and the current distribution:

df = �Brs(�; t)ar(�; t)lrd�; (3.6)

wherel is the length of the rotor. Integrating this gives the electro-magnetic torque in
the direction of rotation

me(t) = r

Z
Surface

df = �lr2
2�Z
0

Brs(�; t)ar(�; t)d�: (3.7)

The flux linkage in stator coil A,	sA, is the integrated effect of the stator flux through
all loops of coil A. The loop formed by the conductors at angles�� �=2 and�+ �=2 is
penetrated by the field lines passing through the stator between these angles. Assuming
a continuous distribution of turns with the incremental density1

2
Ns cos� (for coil A) at

this angle, the flux linkage can be obtained as

	sA(t) =
1

2
Ns

�
2Z

�=��
2

cos�f
�+�

2Z
�=���

2

lrBs(�; t)d�gd�: (3.8)

The flux linkages in the rotor coils are found in the same manner:

	ra(t) =
1

2
Nr

�
2Z

�=��
2

cos�f
�+ �

2
+�rZ

�=���
2
+�r

lrBr(�; t)d�gd�: (3.9)

The corresponding equations for the other coils are:

	sB(t) =
1

2
Ns

�
2Z

�=��
2

cos(�� 2�=3)f
�+�

2Z
�=���

2

lrBs(�; t)d�gd�; (3.10)

	sC(t) =
1

2
Ns

�
2Z

�=� �
2

cos(�� 4�=3)f
�+�

2Z
�=���

2

lrBs(�; t)d�gd�; (3.11)
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	rb(t) =
1

2
Nr

�
2Z

�=��
2

cos(� � 2�=3)f
�+ �

2
+�rZ

�=���
2
+�r

lrBr(�; t)d�gd�; (3.12)

	rc(t) =
1

2
Nr

�
2Z

�=��
2

cos(� � 4�=3)f
�+ �

2
+�rZ

�=���
2
+�r

lrBr(�; t)d�gd�: (3.13)

The input to neutral voltage in the stator coils are assumed to be given by:

usA(t) = RsisA(t) +
d

dt
	sA(t); (3.14)

usB(t) = RsisB(t) +
d

dt
	sB(t); (3.15)

usC(t) = RsisC(t) +
d

dt
	sC(t); (3.16)

where the stator resistance,Rs, is the resistance of the stator windings, and the equivalent
equations for rotor coils are:

0 = Rrira(t) +
d

dt
	ra(t);

0 = Rrirb(t) +
d

dt
	rb(t);

0 = Rrirc(t) +
d

dt
	rc(t);

where the rotor resistance,Rr, is the resistance of the (virtual) rotor windings.

3.1.3 Complex space vector notation

To simplify the equations a complex notation based on the value�sv , ej2�=3 is intro-
duced. The complex space vector of the stator current is defined as

�is(t) ,
2

3
(isA(t) + �svisB(t) + �2svisC(t)): (3.17)

For the rotor currents a space vector is defined as well:

�ir(t) ,
2

3
(ira(t) + �svirb(t) + �2svirc(t)): (3.18)
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Notice that no information is lost in this transformation from three to two degrees of
freedom. Using (3.1) the three stator currents can be reconstructed from the space vector.
Similarly the rotor currents can be reconstructed due toira + irb + irc = 0.

The space vector for the stator voltage is

�us(t) ,
2

3
(usA(t) + �svusB(t) + �2svusC(t)): (3.19)

The three stator voltages cannot be reconstructed from this value without adding an
additional demand, for instanceusA(t) + usB(t) + usC(t) = c, wherec is some chosen
constant, but due to the isolated neutral the value of this constant is of no importance.

We also define space vectors for the stator and rotor flux linkages:

�	s(t) ,
2

3
(	sA(t) + �sv	sB(t) + �2sv	sC(t)); (3.20)

�	r(t) ,
2

3
(	ra(t) + �sv	rb(t) + �2sv	rc(t)): (3.21)

Inserting equations (3.8), (3.10), and (3.11) in (3.20) after some calculations gives:

�	s(t) = Ls�is(t) + Lm�ir(t)e
j�r(t); (3.22)

where the stator inductance,Ls, and the mutual inductance,Lm are

Ls , 3��o
lrN2

s

8h
; Lm , 3��o

lrNsNr

8h
�: (3.23)

A similar equation can be obtained for the rotor:

�	r(t) = Lr�ir(t) + Lm�is(t)e
�j�r(t); (3.24)

where the rotor inductance,Lr, is

Lr , 3��o
lrN2

r

8h
: (3.25)

Combining (3.14)-(3.16) with the space vector definitions (3.19)-(3.17) results in the
simple equation:

�us(t) = Rs
�is(t) +

d�	s(t)

dt
: (3.26)

A similar result can be obtained for the rotor:

0 = Rr
�ir(t) +

d�	r(t)

dt
: (3.27)
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By inserting space vector expressions in the flux density equation (3.4) and inserting this
in the torque equation (3.7) the integral can be calculated to get the following expression
for the electro-magnetic torque tangential to the rotation:

me(t) =
3

2
ZpLm=f�is(t)(�ir(t)ej�r(t))�g: (3.28)

Inserting (3.22) and (3.24) in (3.26) and (3.27) gives:

�us(t) = Rs
�is(t) + Ls

d

dt
�is(t) + Lm

d

dt
(�ir(t)e

j�r(t)) (3.29)

0 = Rr
�ir(t) + Lr

d

dt
�ir(t) + Lm

d

dt
(�is(t)e

�j�r(t)): (3.30)

3.1.4 Mechanical system

The mechanical rotational speed!mech is affected by the electro-magnetic torqueme

and the load torquemL:

_!mech(t) =
1

J
(me(t)�mL(t)); (3.31)

whereJ is the collective moment of inertia of the rotor and the load, assuming the shaft
to be rigid. mL contains the actual load along with the speed-dependent viscous and
coulomb friction. The electrical rotational speed is defined as

!r(t) = _�r(t) = Zp!mech(t): (3.32)

Equations (3.28)-(3.32) form the model to be used below.

3.2 Stator-fixed coordinates

The model of the induction motor can be expressed in various coordinate systems. Ex-
pressing the model in a coordinate system which rotates with the rotor or stator flux gives
a model in which the states are constant in steady state operation (constant!r andmL).
This model is often desirable for control purposes but in order to perform the non-linear
change of coordinates it is necessary to know the rotor flux angle. For flux estimation
purposes it is therefore often desirable to work with a model in stator-fixed coordinates.

In (3.29) and (3.30)�us and�is are already in stator-fixed coordinates, while�ir is in
rotor-fixed coordinates. By defining the stator-fixed rotor current

�irs(t) , �ir(t)e
j�r(t) (3.33)
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the following stator-fixed model is found:

(Rs + Ls
d

dt
)�is(t) + Lm

d

dt
�irs(t) = �us(t); (3.34)

Lm(
d

dt
� j!r(t))�is(t) + (Rr + Lr(

d

dt
� j!r(t)))�irs(t) = 0; (3.35)

me(t) =
3

2
ZpLm=f�is(t)�irs(t)�g; (3.36)

_!r(t) = Zp _!mech(t) =
Zp

J
(me(t)�mL(t)): (3.37)

To summarise,�is and�irs are the stator and rotor currents.�us is the stator voltage, which
is often controlled through a voltage sourced inverter as described in Section 3.5.!r is
the rotational speed of the rotor.me is the electro-magnetic torque.mL is the load torque
acting as a disturbance.Zp, Rs, Rr, Ls, Lr, andLm are the parameters of the motor,
andJ is the collective lumped moment of inertia of rotor and load.

3.3 State space model

For several analysis and synthesis methods a state space model is desired. This model
will be formulated here. For convenience the time dependency will be dropped in the
notation. From (3.34) and (3.35) a complex state space model for the current equations
can be obtained:

_xsrc = Asrcxsrc +Bsrc�us;

xc =

�
�is
�irs

�
;

Asrc =

"
LrRs+jL

2

m!r
L2
m�LrLs

Lm(�RrLm+Lrj!r)

L2
m�LrLs

�RsLm�jLsLm!r
L2
m�LrLs

LsRr�jLsLr!r
L2
m�LrLs

#
;

Bsrc =

"
Lr

LrLs�L2
m

�Lm
LrLs�L2

m

#
:

The speed!r could be included in the state vector as a third state, but the above form has
the advantage that the state space part can be seen as a linear parameter varying system
with !r as the varying parameter, see Chapter 5.
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3.3.1 State transformations

For control purposes it is often desirable to work with another state vector than

�
�is
�irs

�
. A

state transformation is obtained by multiplication of a state transformation matrix, T,

xnew = Txs; Anew = TAsrcT
�1; Bnew = TBsrc (3.38)

An important choice of states is

xsc ,

�
�is
�im

�
=

"
1 0

1 Lr
Lm

# �
�is
�irs

�
: (3.39)

The magnetising current,�im, has the same angle as the rotor flux

�	rs , �	re
j�r = Lm�im = Lm�is + Lr�irs: (3.40)

The resulting state space system is

_xsc = Ascxsc +Bsc�us;

xsc =

�
�is
�im

�
;

Asc =

"
L2

mRr+RsL
2

r

Lr(L2
m�LsLr)

L2

m(jLr!r�Rr)

Lr(L2
m�LsLr)

Rr

Lr
j!r � Rr

Lr

#
;

Bsc =

"
Lr

LsLr�L2
m

0

#
;

me =
3ZpL

2

m

2Lr
=f�is(�im ��is)

�g = 3ZpL
2

m

2Lr
=f�is�i�mg;

_!r = Zp _!mech =
Zp
J
(me �mL):

(3.41)

This particular choice of states has some nice properties for control purposes which will
be discussed in Chapter 4.

3.3.2 Real state space model

To obtain areal state space model the space vectors are first split into real and imaginary
parts:

�us = usD + jusQ; (3.42)

�is = isD + jisQ; (3.43)
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�im = imD + jimQ; (3.44)

whereusD, usQ, isD, isQ, imD andimQ are real signals. A real state space model can
now be obtained by substituting the complex system and input matrices by real matrices
of double size

Ar + jAi !
�
Ar �Ai

Ai Ar

�
(3.45)

and by substituting the signal vectors

xr + jxi !
�
xr
xi

�
: (3.46)

This gives the following model:

_xsr = Asrxsr +Bsrusr

xsr =

2
664

isD
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isQ

imQ

3
775 ; usr =

�
usD
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�
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Rr
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77775 ;

Bsr =

2
6664

Lr
LsLr�L2

m
0

0 0

0 Lr
LsLr�L2

m

0 0

3
7775 ;

me =
3ZpL

2
m

2Lr
(isQimD � isDimQ); (3.47)

_!r = Zp _!mech =
Zp

J
(me �mL): (3.48)
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3.3.3 Rotating reference frames

In normal operation the inputs and states will be rotating, i.e. following circular trajec-
tories in the complex plane. For control and simulation purposes it is often desirable to
work with the system in a rotating coordinate system. Defining the signals

xr , xe�j� ur , ue�j� (3.49)

the system_x = Ax+Bu can be written as

_xr = (A� j!I)xr +Bur (3.50)

where! , d
dt
�.

3.3.4 Steady state

In normal operation the space vectors will rotate around the origin in the complex plane.

Definition 3.1 (Steady state)

The complex state space system

_x = Ax+Bu (3.51)

is in steady state if there exists a reference frame rotating at angular velocity! such that

_xr = (A� j!I)xr +Bur = 0, and _ur = 0; (3.52)

wherexr andur are defined as in (3.49).

Let the system (3.41) be in steady state and define!mR = d
dt
\�is such that

(Asc � j!mR)xsc +Bsc�us = 0: (3.53)

Then �uss , �use
�j!mRt;

�
�iss
�ims

�
,

�
�is
�im

�
e�j!mRt are all constant and the states are

given from �
�iss
�ims

�
= �(Asc � j!mR)

�1Bsc�uss

as

�iss =

(Rr + j(!mR � !r)Lr)�uss
RsRr + j(!mR � !r)RsLr + j!mRLsRr + !mR(!mR � !r)(L2

m � LrLs)
(3.54)
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�ims =

Rr�uss
RsRr + j(!mR � !r)RsLr + j!mRLsRr + !mR(!mR � !r)(L2

m � LrLs)
:

(3.55)

The quantity!slip , !mR�!r is known as theslip frequencyand is related to the torque
by

me =
3ZpL

2
m

2Rr

j�imj2!slip: (3.56)

3.4 Uncertain and time-varying parameters

The dynamical behaviour of the induction motor is affected by time variations in the
parameters.

The rotor resistanceRr can change as much as 50 % due to heating. Furthermore it
can be difficult to obtain an accurate estimate of its value especially during steady state
operation.

The stator resistanceRs can also change, but the stator windings are usually better ven-
tilated than the rotor windings, so the variations will not be quite as large. In addition
obtaining an accurate estimate is easier. Since both of these variations are caused by
temperature changes, bothRr andRs will be slowlyvarying.

The rotational speed!r can change due to load disturbances or as a result of a command
change to the controller. This variation will typically be fast compared to some of the
other dynamics of the motor. Sometimes!r (or the position�r) is measured, but avoiding
the use of a speed (and position) sensor is often desirable, due to the relatively high cost
and high sensitivity to the environment of these sensors.

The mutual inductanceLm (and to some extentLs andLr) will be affected by magnetic
saturation effects when the magnetisation changes. Notice that in the derivation of (3.29)
and (3.30) it was assumed that these inductances are constant, so modelling this uncer-
tainty is more complicated than simply assuming the inductances to be time-varying in
the above model.
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3.5 Power device

In a control context the control objective is usually controlling the angular velocity or
position of the rotor shaft. The control signals are usually the stator voltages or currents
depending on the type ofpower device. The description here will be limited to a (three-
phase bridge)voltage sourced inverter(VSI). For a thorough discussion of power devices
including current sourced inverters see [Ka´zmierkowski and Tunia, 1994].

Figure 3.5 is a sketch of the power device in connection with the induction motor. The DC
voltage source converts a three-phase AC supply to a DC voltage which is then supplied
to the inverter. The signal conditioning supplies the inverter with a modulation signal to
generate the reference stator voltages.

DC voltage
supply

VSI
Induction
motor

Signal conditioning
us,ref

U+

U-

usB

usA

usC

U+,U- PWM

AC
supply

Figure 3.5:Voltage sourced inverter connected to an induction motor.

The inverter is sketched in Figure 3.6. By applying pulse width modulation signals
to the input terminalsusA;pwm, usB;pwm, andusC;pwm the output voltagesusA, usB ,
andusC can be switched betweenU+ andU�. Since the stator currents only depend
on the lower frequency part of the stator voltage this is equivalent to applying a low
pass filtered version of the switched voltages. The signal conditioning computes the
modulation signals to accomplish2

3
(usA + �svusB + �2svusC) � �us;ref , where the

approximation is only considered for the low frequency part.
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usA

u u u

u usB sC

sA,pwm sB,pwm sC,pwm

U–

U+

Figure 3.6:Three-phase bridge voltage sourced inverter.

3.6 Parameter identification

For control purposes it is necessary to know the motor parametersRs, Rr, Lm, Ls,
andLr. These can be identified from stator current and voltage measurements. There
is however an infinite number of motor parameters all yielding the same behaviour
[Gorter, 1997]. It is therefore necessary to make some assumption on the param-
eters, for instance thatLr = Ls. The parameters can then be identified for in-
stance by auto-commissioning at standstill as described in e.g. [Rasmussen, 1995] and
[Rasmussen et al., 1995]. The voltage reference is chosen in such a way that the gener-
ated torque is not large enough to pull the shaft out of standstill. If voltage measurements
are not available the reference voltages for the power device must be used.

3.7 Experimental setup

In this thesis several experiments will be performed on a laboratory induction motor
system illustrated in Figure 3.7.
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Figure 3.7:Laboratory induction motor system.

The induction motor has two pole pairs (Zp = 2), a squirrel-cage rotor, and three star
connected stator windings. Its nominal data are

Nominal power 1.5 kW
Nominal speed 1420 rpm
Nominal torque 10 Nm
Nominal current at 380 V 3.6 A

The nominal speed of1420rpm = 148:7rad=s is equivalent to the electrical rotational
speed!r = 297:4rad=s. The electrical rotational speed inrad=s will be the representa-
tion used in the following chapters.

In [Rasmussen, 1995] the parameters of the induction motor were identified at standstill
at20ÆC under the assumptionLs = Lr as

Ls = Lr = 0:352H; Lm = 0:341H; Rs = 5:0
; Rr = 3:3
: (3.57)

The PC runs the control program to be tested providing a reference voltage for the in-
duction motor power device and a torque reference to the DC motor power device. The
brush-less DC motor can be used to simulate a load torque on the shaft. Since the PC re-
ceives measurements of the rotor angular position from the encoder this can for instance
be a position or speed dependent load.

In addition to the encoder data the PC receives measurements of the stator current and
voltage.

The equipment is described in further detail in Appendix A.
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3.8 Summary

This chapter described the induction motor system. The following complex state space
model of the induction motor in the stator-fixed reference frame was derived:

_xsc = Ascxsc +Bsc�us;

xsc =

�
�is
�im

�
;

Asc =

"
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mRr+RsL
2

r

Lr(L2
m�LsLr)

L2

m(jLr!r�Rr)

Lr(L2
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#
;

Bsc =

"
Lr

LsLr�L2
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#
;

me =
3ZpL

2

m

2Lr
=f�is�i�mg;

_!r = Zp _!mech =
Zp
J
(me �mL):

�is and �us are the stator current and voltage, respectively, and�im is the magnetising
current.!r is the rotational speed of the shaft.me is the torque produced by the induction
motor.mL is the load torque on the shaft acting as a disturbance.Lm, Ls, Lr, Rr, Rs,
Zp, andJ are constant or slowly varying real parameters.

The stator voltage,�us, is the control signal and is supplied to the motor by a power
device, the voltage sourced inverter.�is and�us, and in some configurations!r, can be
measured.

This constitutes the model to be used in the following chapters. Experiments will be
performed on a laboratory system described at the end of this chapter and in Appendix
A.



Chapter 4

ROTOR FLUX

ORIENTED

CONTROL

In this chapter the rotor flux oriented controller (or rotorfieldoriented controller) scheme
for the induction motor is described. The purpose of the controller is to track a reference
speed,!r;ref , and a reference magnetising current,imR;ref , while rejecting disturbances
from the load torque.

The main purpose of this chapter is to present an existing induction motor control method.
This controller is a cascade coupling of several sub-blocks. The aim of the following
chapters is to develop replacements by new methods for some of these sub-blocks. It has
therefore been chosen to focus on field oriented control and in particular the rotor flux
orientation rather than give a full review of all the many control methods for induction
motors.

Section 4.1 shows the simplification in the dynamical equations of the motor achieved
by writing them in a reference system following the angle of the rotor flux. Section
4.2 then describes the rotor flux oriented control method. The method is observer-based
and requires an estimate of the rotor flux. A short discussion of flux estimation is given
in Section 4.3. If a speed or position measurement is not available it is furthermore
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necessary to estimate the speed. A brief introduction to speed observers is given in
Section 4.4.

The controllers and observers described in this chapter have all been described before.
The only new contribution is the discovery of the potential instability of the speed ob-
server described in [Kubota et al., 1993]. An example of this instability is given in Sec-
tion 4.4.2.

4.1 Model in rotor flux coordinates

By expressing the model in a coordinate system fixed to the rotor flux angle

� , \�	rs = \�im; (4.1)

where�im is as given in Section 3.3.1, i.e.�im =�is +
Lr
Lm

�irs, a partial linearisation of the
torque and magnetising current equations can be achieved. Equations (3.34) and (3.35)
in rotor flux coordinates are:

(Rs + (
d

dt
+ j!mR)L

0

s)�isr + (
d

dt
+ j!mR)L

0

mimR = �usr; (4.2)

R0

r(imR ��isr) + (
d

dt
+ j(!mR � !r))L

0

mimR = 0; (4.3)

where the following definitions have been used

�isr , �ise
�j�, �usr , �use

�j�,
imR , �ime

�j� = jimj, !mR , d
dt
�,

� , 1� L2
m=(LrLs), L0s , �Ls,

L0m , (1� �)Ls = L2
m=Lr, R0

r , (Lm=Lr)
2Rr.

The stator current in rotor flux coordinates is split into two real values, the direct and
quadrature components:

isd , <f�ise�j�g = <f�isrg;
isq , =f�ise�j�g = =f�isrg:

By taking the real part of (4.3), a dynamic equation for the magnetising current,imR,
can be found as

Lr

Rr

d

dt
imR + imR = isd: (4.4)

The quantityTr , Lr
Rr

is called therotor time constant.
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The imaginary part gives the slip frequency

!slip =
1

Tr

isq

imR

: (4.5)

The produced torque can be found from (3.28) as

me =
3

2
ZpL

0

mimRisq : (4.6)

As seen a decoupling is achieved so thatisd is used for controllingimR andisq is used
for controlling the torqueme. Even thoughimR does affectme, the changes are slow,
makingme an almost linear function ofisq .

4.2 Rotor flux oriented control

Several speed or torque control schemes for induction motors exist, see for in-
stance [Ka´zmierkowski and Tunia, 1994] or [Vas, 1998]. Also worth mentioning is the
passivity-based approach described in e.g. [Ortega et al., 1996]. In this thesis we will
however focus on one particular type of induction motor control, namely direct rotor flux
oriented control which will be described in this section. The basic principle is shown
in Figure 4.1 and is based on the partial decoupling of the torque and the magnetising
current achieved in the rotor flux oriented reference frame.

observers

speed
and 

magnetising
current
control

stator
current
control

isr,ref
imR,ref

power
device

sr,refu
induction

motor
shaft
load

ωr,ref

us

measurements

estimates

Figure 4.1:Sketch of the rotor flux oriented speed control scheme.

The controller objective is to track references for the magnetising current,imR, and the
speed,!r (or torque or position). The observers provide estimates of the stator and mag-
netising currents,�is and�im, and of the speed. These estimates are based on measurement
of some of these three signals. In some cases the stator voltage,�us, is also measured.
Otherwise the voltage command,�usr;ref can be used. The speed and magnetising cur-
rent controllers operate in the rotor flux oriented reference frame and provide a reference
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signal,�isr;ref , for the stator current. The stator current controller tracks this reference
by providing the power device with a stator voltage command,�us;ref , in the stator-fixed
reference frame.

Examples of how to implement the different blocks will be given in the following. The
examples in Sections 4.2.1-4.2.3 are from [Rasmussen, 1995].

4.2.1 Speed control

The speed can be controlled through the torque,me, given by equation (4.6). Since the
torque usually is not measured, nothing will be gained by estimating and controlling it
in a feedback loop [Rasmussen, 1995]. Instead, the reference value forisq can be found
from (4.6) as

isq;ref =
2

3ZpL0mîmR

me;ref : (4.7)

The speed can then be controlled for instance by a PI-controller tuned by a relay feedback
experiment. Since the speed controller is in a cascade coupling with the stator current
controller, the tuning must be performed with the intended stator current controller in
operation. The tuning will also be affected by the bandwidth of the speed sensor or
estimation.

The torque is limited by the maximum stator current allowed. The limit is found as

me;max =
3ZpL

0

mîmR

2

q
I2max � i2sd;ref : (4.8)

Anti-windup must therefore be implemented if the speed controller contains an integra-
tion.

The scheme is illustrated in Figure 4.2. The PI-controller acts on the control error
!r;ref � !̂r. The PI-controller outputme;ref is limited byme;max computed from (4.8).
The torque referenceme;ref is converted into a current referenceisq;ref using (4.7).

maximal
torque

computation

torque
control

me,max

-

+ω

ω

r,ref

r
^

i
mR

^

me,ref isq,ref
PI

Figure 4.2:Example of a simple speed control scheme.
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4.2.2 Magnetising current control

The magnetising currentimR is governed by (4.4). The aim of the controller is to keep
imR constant at some predetermined value. At speeds above rated speed it may be neces-
sary to reduce this value in order to avoid saturation of the voltage supply. This situation
will not be considered here.

Since the steady state transfer function is 1 independent of physical parameters a propor-
tional controller with gainKp will have zero steady state error if the reference value is
premultiplied byKp+1

Kp
assuming that the stator current controller has zero steady state

error. A proportional controller tuned by a relay-feedback experiment can therefore be
used.

4.2.3 Stator current control

As described in Section 4.2 a decoupling is achieved in the rotor flux oriented coordinate
system so thatisd controls the magnetising current andisq controls the torque. The stator
currentsisd andisq are controlled through the direct and quadrature components of the
stator voltage,usd andusq , defined as

usd , <(�usr);
usq , =(�usr):

Unfortunately the equations for the currents are cross-coupled so a decoupling is neces-
sary.

Splitting (4.2) into the real and imaginary parts gives

usd = (Rs + L0s
d

dt
)isd � !mRL

0

sisq + L0m
d

dt
imR; (4.9)

usq = (Rs + L0s
d

dt
)isq + !mRL

0

sisd + L0m!mRimR: (4.10)

Inserting (4.4) in (4.9) a decoupling scheme can be identified from

(Rs + L0s
d

dt
)isd = usd + !mRL

0

sisq �R0

r(isd � imR); (4.11)

(Rs + L0s
d

dt
)isq = usq � !mRL

0

sisd � L0m!mRimR: (4.12)

Decoupling can be achieved by adding the feed-forward voltages

usdff , � !mRL
0

sisq +R0

r(isd � imR); (4.13)
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usqff , !mRL
0

sisd + L0m!mRimR (4.14)

to the outputs of the current controllersusdc andusqc. We then achieve

(Rs + L0s
d

dt
)isd = usdc;

(Rs + L0s
d

dt
)isq = usqc:

The stator current can therefore be controlled by for instance PI-controllers tuned by
relay-feedback experiments. This current control system is illustrated in Figure 4.3. In
practice the values ofisd, isq , imR, and!mR all have to be replaced by their respective
estimates. Anti-windup again has to be implemented due to limits in the voltage supply.

PI

PI

i u u

isd,ref

isd
^

- usdc

usdff

usd

-

uî

sq,ref

sq

sqc

sqff

sq

Figure 4.3:Example of a simple stator current controller.

4.3 Rotor flux estimation

In the stator current, magnetising current, and torque controllers estimates of the magni-
tude and angle of the magnetising current (or equivalently the rotor flux�	rs = Lm�im)
are needed. This section will give an example of how to estimate�im based on measure-
ments of�is, �us, and possibly!r. A flux observer can be based on respectively thevoltage
model (3.34) and thecurrent model(3.35) or a combination of these. The observer based
on the current model (3.35) is:

_̂�im = (�Rr

Lr
+ j!r )̂�im +

Rr

Lr
�is (4.15)

Note that this model requires accurate estimates ofRr and!r. It is essentially an open
loop simulation of the motor regarding the stator current as input.
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Another observer is based on integrating the voltage model

�us = Rs
�is +

d�	s

dt
(4.16)

to obtain an estimate for�	s and then finding�im from

�im =
Lr

L2
m

�	s + (1� LrLs

L2
m

)�is: (4.17)

The voltage model method does not need values ofRr and!r, but it can be very noise
sensitive especially for low frequencies due to the pure integration.

4.3.1 Closed-loop observer of Jansen and Lorenz

The rotor flux observer described in [Jansen and Lorenz, 1992], here called theJL-
observer, is an example of a combination of the current and the voltage model. This
observer combines the good qualities of the current model in low speed operation with
the good qualities of the voltage model in high speed operation. The JL-observer is
shown in Figure 4.4.
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Figure 4.4:Flux observer of Jansen and Lorenz (JL-observer).

TheK1- andK2-blocks constitute a frequency dependent weighting between the two
observer types. For frequencies,s, whereK1 + K2s

�1 is large (low frequencies), the
main emphasis will be on the current model. ForK1 + s�1K2 = 0 the JL-observer is
exactly the voltage model observer. The idea is that at high frequencies we can exploit
the robustness of the voltage model to uncertainties inRr and!r and at low frequencies
we can use the current model which has lower gains and therefore is less noise sensitive.
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The JL-observer can be written as the state space system:

_xjl = Ajlxjl +Bjlym;

�̂im = Cjlxjl +Djlym;

xjl =

2
64

�̂	s

g

�̂	rc

3
75 ;
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�
�is
�us

�
;

Ajl =
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64 �K1Lr
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K2 K1

� Lr
Lm

0 1

0 0 �Rr

Lr
+ j!r

3
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K1LrLs
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�K1Lm �Rs 1
LrLs
Lm

� Lm 0
LmRr

Lr
0

3
75 ;

Cjl =
h

Lr
L2
m

0 0
i
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h
1� LrLs

L2
m

0
i
:

4.4 Speed estimation

For systems without speed or position sensors the speed!r must be estimated. This
section presents two ways of doing this. Section 4.4.1 presents a simple method based
on equation (3.35). The method presented in Section 4.4.2 is based on adaptive control
theory. Section 4.4.3 presents simulation results.

4.4.1 Speed estimation from rotor equation

One way to estimate the speed is to isolate it from the rotor equation (3.35). In the
stator-fixed reference frame this gives

j�im!r =
Rr

Lr
(�im ��is) +

d

dt
�im: (4.18)

In the rotor flux oriented reference frame the equivalent equation is

!r = !mR �
Rr

Lr

isq

imR

: (4.19)
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Note that the last term is an expression for the slip frequency and that the accuracy of
the estimate ofRr is essential, especially at high slip frequencies. Both versions require
estimates of the flux. The bandwidth and noise sensitivity of the speed observer therefore
depends on the choice of flux observer. A flux estimate based on the rotor equation (JL-
observer withK1 !1;K2 !1) is useless since it will always return the same speed
estimate as the flux estimate is based on due to the open-loop nature of this flux observer.
The main problems with a flux observer based on the voltage model (JL-observer with
K1 = K2 = 0) is that it depends on the stator resistanceRs, and that it contains a pure
integration. To obtain a reasonable speed estimate a compromise between the two must
be found.

4.4.2 Speed estimation method by Kubota et al.

An alternative approach based on adaptive control theory is suggested by Kubota et al.
in [Kubota et al., 1993]. The scheme is illustrated in Figure 4.5.
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Figure 4.5:Adaptive flux and speed estimation scheme of Kubota et al.

Âsc is the system matrix of the model based on the current estimate of the speed.Bsc is
the input matrix of the model.C = [1 0]. G is the observer gain matrix and is chosen
so that the observer poles are proportional to the motor model poles. The state estimate
is updated by the equation

d

dt
x̂ = Âscx̂sc +Bsc�us +G(̂�is ��is); (4.20)
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where the first two terms provide an open-loop simulation and the last term provides a
correction based on the stator current estimation error.

In [Kubota et al., 1993] it is shown through Lyapunov theory that the speed adaption
scheme

d

dt
!̂r = �c=fe�is�̂img; (4.21)

whereeis =�is � �̂is and thespeed estimate update gain�c is any positive constant, will
make the estimation error converge to zero. Unfortunately the proof is incorrect. The
proof is based on the Lyapunov function

V = e�e+ (�!r)
2=� (4.22)

wheree = xsc � x̂sc, �!r = !̂r � !r, and� is a positive constant. The time derivative
of V is

d
dt
V = _e�e+ e� _e+ 2�!r

_�!r=� =

2e�herm(Asc +GC)e� 2herm(e�(Âsc �Asc)x̂sc) + 2�!r
_̂!r=� =

2e�herm(Asc +GC)e+

2�!r=f �L2

m

LsLr�L2
m
e�is

�̂im +�i�m�̂im � �̂i
�

m
�̂img+ 2�!r

_̂!r=� =

2e�herm(Asc +GC)e+ 2�!r
�L2

m

LsLr�L2
m

=fe�is�̂img+
2�!r=f�i�m�̂img+ 2�!r

_̂!r=�

(4.23)

where it has been assumed that_!r = 0. However, in [Kubota et al., 1993] the third term,
2�!r=f�i�m�̂img, has been forgotten. It is then stated thatd

dt
V can be made negative by

choosingG so thatherm(Asc +GC) < 0, and by setting

d

dt
!̂r = �

L2
m

LsLr � L2
m

=fe�is�̂img: (4.24)

Since=fu�yg = jujjyj sin(\y�\u), where\(�) is the angle of a complex number, the

forgotten term will be positive whensin(\�̂im � \�im) has the same sign as�!r , which
is always true in steady state. This can be seen from (3.55) in the following way: Write
(3.55) as

�ims(!r) =
c1

c2 + c3!r
; (4.25)

wherec1; c2; c3 are complex constants (depending on!mR and�uss, but these are constant
in steady state). Then, observing that the denominator is non-zero due toLsLr > L2

m,
we have

\�̂im �\�im = \
c1

c2 + c3!̂r
�\ c1

c2 + c3!r
=

\(c2 + c3!r)(c2 + c3!̂r)
�: (4.26)
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Tedious computations will show that

=f(c2 + c3!r)(c2 + c3!̂r)
�g = �!rRr(R

2
sLr + !2

mRLs(LsLr � L2
m)) (4.27)

which has the same sign as�!r . In other words the forgotten term will be positive in
steady state and probably in most other cases as well, so there is no guarantee that the
Lyapunov function will converge to zero.

The reason that the method usually works anyway, is that the speed estimate in most
cases will converge to the true value, and subsequently the state estimates will converge
too.
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Figure 4.6:The angle\eis �\�̂im in steady state for the example motor.

Whensin(\eis�\�̂im) has the same sign as�!r , the speed estimation error will increase.
Figure 4.6 shows the angle

\eis �\�̂im =

\
�
1 0

� �
(�Asc + j!mR)

�1 � (�Âsc + j!mR)
�1
�
Bsc �

\
�
0 1

�
(�Âsc + j!mR)

�1Bsc (4.28)

in steady state for!r = 10rad=s and !̂r = 15rad=s, as a function of the angular
velocity of the flux,!mR for an example motor with the parameters in (3.57). As seen
the speed estimation error will increase when!mR < 5rad=s (regenerative mode). This
is also demonstrated by the simulation shown in Figure 4.7. The system is in steady state
at !r = 10rad=s and!mR = 4rad=s. The estimator constants are chosen asG = 0
(guaranteesherm (Asc +GC) < 0) and�c = 1000.
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Figure 4.7:Simulation of the speed estimator with the system in steady state at!r =
10rad=s and!mR = 4rad=s. The two figures to the left show the estimates of�is and�im,
respectively, in a coordinate system rotating at the same angular velocity as the flux. The
actual currents are constant in this coordinate system and are marked by�. The initial
estimates are marked by2. The bottom figure shows the speed estimate as a function of
time. The speed estimate is seen to diverge from the actual speed.

As seen the speed estimate diverges from the true speed. Initially the current estimates
converge towards the true values, but the increasing speed estimation error causes them
to diverge eventually as well.

4.4.3 Speed estimation simulation results

Figure 4.8 shows a test of the two speed estimation schemes. The actual speed changes
from 10rad=s to 12rad=s and back again after 0.5 seconds. This is done for both a low
(2Nm) and a high (9Nm) load situation. The figure shows this test for three different
versions of the rotor equation scheme (Figures A, B, and C). The JL-observer has been
used to provide the flux estimates and the difference between the three figures is the
choice of frequency weighting constantK1 andK2. All three have been low-pass filtered
to reduce measurement noise. In Figure A the weighting is mainly on the current model
showing the expected reluctance to change away from the current speed estimate. In
Figure B the weighting has been chosen to give a reasonable result. In Figure C the
weighting is mainly on the voltage model. The fluctuations in the high slip case have
the frequency!mR and are due to the almost pure integration which causes an almost
constant offset error. This causes the fluctuations when the nonlinear transformation from
�im to imR is performed.
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Figure 4.8:Speed estimation at low and high load. In Figure A the weighting is mainly
on the current model. In Figure B the weighting has been chosen to give a reasonable
result. In Figure C the weighting is mainly on the voltage model. Figure D shows the
same test for the method by Kubota et al.

Figure D shows the same test for the method by Kubota et al. with the observer poles at
1.2 times the system poles. The performance is similar to the one obtained in Figure B. It
is found that performances similar to Figures A and C can also be obtained by changing
the ratio between observer and model poles.

Instantaneous changes in the speed are not realistic. Figure 4.9 shows a more realistic
simulation where the speed is controlled by a rotor flux oriented controller with speed
measurements available along where the speed reference is changed in steps. Also plotted
is the speed estimate from Kubota’s method. Figure 4.10 shows the speed estimation
error.
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Figure 4.9:Speed changes performed by rotor flux oriented controller with speed mea-
surements, and the speed estimate of Kubota’s method (dashed)
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Figure 4.10:Speed estimation error

Notice that the speed estimation error resulting from the steps is practically the same for
low and high speed. This indicates that the main problems for the flux observer caused by
speed uncertainty will be greatest at low speeds since a change of for example10rad=s
causes a bigger difference in the model for low speeds than for high.

Figure 4.11 shows a similar simulation, where the speed reference sweeps slowly from
�15rad=s to 15rad=s and back again. Every 2 seconds the load changes in a step from
3Nm to 7Nm or back. The figure also shows the speed estimation. Figure 4.12 shows
the speed estimation error.
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Figure 4.11:Speed sweep with step changes in load and speed estimate of Kubota’s
method (dashed).

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

15

20

Time [s]

S
pe

ed
 e

st
im

at
io

n 
er

ro
r 

[r
ad

/s
]

Figure 4.12:Speed estimation error

4.5 Summary

In this chapter the rotor flux oriented control method has been described. The controller
consists of a cascade coupling with a stator current controller in the inner loop. The outer
loop controls the shaft speed and the magnitude of the rotor flux. Examples of how to
construct these controllers were given.

The control method is observer-based and requires an estimate of the rotor flux. An exam-
ple of a flux observer, the JL-observer presented in [Jansen and Lorenz, 1992], was given.
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If a speed or position measurement is not available it is furthermore necessary to estimate
the speed. An example of a speed observer, the one presented in [Kubota et al., 1993],
was given. It was shown that under certain conditions the observer will diverge. How-
ever, in normal operation the estimate will usually converge to the correct value assuming
that the correct motor parameters are used.



Chapter 5

LINEAR

PARAMETER

VARYING FLUX

OBSERVER

In recent years efficient ways to design controllers for a particular type of non-linear
systems,linear parameter varying(LPV) systems, have been developed.

This chapter will review the LPV synthesis method in [Scherer, 2001] and apply it to the
design of a flux observer for the induction motor. In Section 5.1 the historical background
of LPV control is reviewed. In Section 5.2 robust quadratic performance analysis of
LPV systems is discussed. In Section 5.3 the so-called full block S-procedure controller
synthesis is discussed. Section 5.4 discusses how to obtain a discrete-time version of the
results in Sections 5.2 and 5.3. This turns out to be surprisingly simple.

Considering the speed!r as a time-varying parameter allows writing the induction motor
model obtained in Section 3.3.1 as either a real fourth order LPV model or as a complex
second order LPV model. This is due to a special symmetry in the transfer function.
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Section 5.5 provides theoretical justification for the fact that controllers and observers
for this type of system can be assumed to have the same type of symmetry without loss
of performance.

In Section 5.6 a discrete-time flux observer for a wide range of speeds is designed using
the theory described in the previous sections. The observer is tested on the laboratory
setup. Even though the performance is not significantly better than the JL-observer de-
scribed in Section 4.3.1 it is worth noting that practically no tuning had to be done.

5.1 LPV background

In the famous DGKF paper [Doyle et al., 1989] state space solutions for the standard
suboptimalH1 problem were given, that is, for an LTI state space system and a given

 > 0, find all controllers such that theH1-norm of the closed-loop system is less
than 
. The solution was found by solving two coupled Riccati equations. In two
independent papers [Gahinet and Apkarian, 1994] (continuous and discrete time) and
[Iwasaki and Skelton, 1994] (continuous time only) the problem was reformulated into
three coupled Riccatiinequalitiesyielding an LMI problem. There were many advan-
tages to this approach. The DGKF solution required several assumptions on the system
that were not inherent to the problem, but rather to the solution method. Most of these
assumptions could be removed with the inequality formulation. Furthermore it became
more obvious how to extend the result tolinear parameter varying(LPV) systems.

Definition 5.1 (Continuous time linear parameter varying system, LPV system)

A continuous time linear parameter varying system is a system which can be written on
the form

_x = A(�(t))x +B(�(t))u

y = C(�(t))x +D(�(t))u;
(5.1)

where� is a bounded time-varying parameter vector which can be measured online.

Definition 5.2 (Discrete time linear parameter varying system, LPV system)

A discrete time linear parameter varying system is a system which can be written on the
form

xk+1 = A(�k)xk +B(�k)uk

yk = C(�k)xk +D(�k)uk;

where� is a bounded time-varying parameter vector which can be measured online.

There are two important points to make about the parameter vector. Firstly, it is not
necessarily known a priori but can be measured in real-time, so traditional time-varying
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control methods based on future as well as past values cannot be used. Secondly, the
variations can be fast, so traditional gain scheduling between a finite grid of linearised
operation points will not necessarily work.

These facts were pointed out in [Shamma and Athans, 1992], where it was also suggested
that the problem might be solved by designing a controller with the same type of struc-
ture, i.e. anLPV controller. An early suggestion of a controller design of this type is
given in [Becker et al., 1993]. The synthesis method is convex, but unless the parameter
dependence is affine, it requires an infinite number of constraints.

If the parameter vector enters the state space matrices in a rational manner an LPV system
can be written as an LFT as illustrated in Figure 5.1, where theuncertainty block(or
residual gains) � is a matrix function of�(t) andM is an LTI system. (Despite the term
”uncertainty block”,� is assumed to be fully known in real time, but it is uncertain in
the sense that it is not known a priori.)

∆

My u

zu wu

Figure 5.1:LPV system on LFT form.

In two independent papers, [Apkarian and Gahinet, 1995] (continuous and discrete time)
and [Packard, 1994] (discrete time), controller synthesis for LPV systems on the LFT
form were given in terms of LMIs. The idea was to provide the controller with a copy of
the uncertainty block as illustrated in Figure 5.2,�c(t) = �(t).

z w

K

∆

y u

z wc c
c

∆u u

M

Figure 5.2:LPV system with LPV controller.

If zu can be reconstructed from the measurementsy, then by settingzc = zu we will
havewc = wu. wc can then be used to compensate for the effects ofwu on the system.
But even ifzu is not fully known, some of the effects can still be compensated by an
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observer-based estimate.

The methods in [Packard, 1994, Apkarian and Gahinet, 1995] are based on the scaled
Small Gain Theorem. The scaling is done bymultipliers, J , which have to commute
with �, i.e. J� = �J for all possible�. This condition greatly limits the available
multipliers thereby introducing conservatism. In addition these multipliers allow for�
to be complex even if it is actually known to be real introducing further conservatism.
Furthermore the Small Gain Theorem is more conservative thanrobust quadratic perfor-
mance[Zhou et al., 1992] (Robust quadratic performance is discussed in Section 5.2).

Under the assumption that the system ispolytopicthese problems are all dealt with in
[Apkarian et al., 1995]. The system being polytopic means that the matrix�

A(�) B(�)

C(�) D(�)

�
(5.2)

belongs to the convex hull of a finite number of matrices. The controller resulting from
the synthesis is also on polytopic form, i.e. the controller matrices are found as a convex
combination ofvertex matrices.

Staying in the LFT setting [Helmersson, 1995] takes realness of� into account using a
structured singular value approach, but due to the frequency domain nature of the result
the improvement is only useful for time-invariant parameters.

In [Scorletti and Ghaoui, 1995] the analysis results in [Rantzer and Megretski, 1994] (for
journal versions see [Scorletti and Ghaoui, 1998] and [Megretski and Rantzer, 1997]) are
extended to synthesis. By using skew-symmetric multipliers the realness of the time-
varying parameters are taken into account. However, the multipliers are still required to
be block diagonal, maintaining a lot of conservatism.

In [Scherer, 2001] the controller synthesis problem for systems with rational parameter
dependence is solved with full block multipliers. In other words, the conservatism due to
the block diagonal multipliers is removed. The result has the least possible conservatism
if we allow for arbitrarily fast parameter variations. The only downside to the method is
that thescheduling function,�c, now has to be a nonlinear function of�.

This chapter will review the synthesis method in [Scherer, 2001] and apply it to the design
of a flux observer for the induction motor. In Section 5.2 robust quadratic performance
analysis of LPV systems is discussed. Assuming that the state space matrices depend on
� in a rational manner a full block S-procedure is used to transform between the LPV
on the form in (5.1) and an equivalent system on LFT form. In Section 5.3 full block
controller synthesis is discussed. These two sections contain no new contributions except
for Lemma 5.12, which provides a partial solution to some of the numerical problems
associated with Lemma 2.9. Furthermore Scherer’s results are extended to complex sys-
tems. Careful inspection reveals that this is mainly a question of substituting transposed
(�T ) with complex conjugated transposed (��).
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5.2 LPV analysis

This section reviews the robust quadratic performance (RQP) analysis method that is
the basis for the controller synthesis described in [Scherer, 2001]. First the concept of
RQP is introduced. Then the equivalence between LPV systems on the form (5.1) and
a generalised LFT representation is discussed. The latter provides a separation into an
LTI system and time-varying parameters which is essential to the following section on
controller synthesis.

5.2.1 Robust quadratic performance

Consider the LPV system

_� = A(�)� + B(�)wp

zp = C(�)� +D(�)wp;
(5.3)

where the state space matrices depend on� in a linear fractional manner, which we will
discuss later.� is a time-varying matrix belonging to a compact and path-connected set
��.

Definition 5.3 (Robust quadratic performance,RQP)

We say that the system (5.3) achievesrobust quadratic performancewith performance
index

Pp = P �

p ,

�
Qp Sp

S�p Rp

�
; Rp � 0 (5.4)

if

� Positive constantsK and� exist such that

k�(t1)k � k�(t0)kKe��(t1�t0) for t1 � t0 and all� 2 �� if wp(t) = 0:

� The quadratic performance specification

9" > 0 :

t1Z
t0

�
wp(t)

� zp(t)
�
�
Pp

�
wp(t)

zp(t)

�
dt � �"

t1Z
t0

wp(t)
�wp(t)dt;

holds for allt1 � t0 and all�(t) 2 �� if �(t0) = 0.

The first condition guarantees exponential stability. The second condition provides a
performance specification depending on the choice ofPp. For instance the choice

Pp =

�
�
2I 0

0 I

�
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provides theL2-induced norm bound

sup
w 6=0

jjzjj2
jjwjj2

< 
:

Other possibilities are passivity and positive real constraints. RQP has been shown to be
less conservative than small gain conditions [Zhou et al., 1992].

RQP analysis can be formulated as a (possibly infinite-dimensional) LMI:

Theorem 5.4[Scherer, 1999](Robust quadratic performance analysis)

Suppose there exist anX > 0 satisfying the LMI2
6664

I 0

A(�) B(�)

0 I

C(�) D(�)

3
7775
�
2
6664

0 X
X 0

0 0

0 0

0 0

0 0

Qp Sp

S�p Rp

3
7775
2
6664

I 0

A(�) B(�)

0 I

C(�) D(�)

3
7775 < 0 (5.5)

for all � 2 �� and withPp satisfying (5.4). Then the system (5.3) achieves robust
quadratic performance with performance indexPp.

Proof: A proof by standard dissipativity arguments is given in [Scherer, 1999]. A proof
for the discrete-time version is given in Section 5.4.2.�

5.2.2 Linear fractional dependency

Now consider the following LPV system on a generalised LFT form:2
6664

_�

zu
zc

zp

3
7775 =

2
6664
A Bu Bc Bp
Cu Duu Duc Dup

Cc Dcu Dcc Dcp

Cp Dpu Dpc Dpp

3
7775
2
6664

�

wu

wc

wp

3
7775 (5.6)

with a parameter dependency given by2
6664
wu

wc

zu

zc

3
7775 2 Sa(�) = imSa(�) = im

"
Sa1(�)

Sa2(�)

#
= im

2
6664
S1u(�)

S1c(�)

S2u(�)

S2c(�)

3
7775 ; (5.7)

where� 2 C
ns+nc ; zu 2 C

nzu ; zc 2 C
kc ; zp 2 C

nzp ; wu 2 C
nwu ; wc 2 C

mc , and
wp 2 C

nwp . This type of parameter dependency is more general than what is usually
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seen in LPV literature. IfSa2 is nonsingular we have a standard feedback loop�
zu
zc

�
= Sa1(�)Sa2(�)�1

�
wu

wc

�
:

If we haveSa1(�) = � andSa2(�) = I we recover the standard LFT representation.
This more general representation allows for instance for affine parameter dependence. It
turns out in the synthesis problem, that even if the plant has a standard LFT dependency,
it may still be necessary to let the controller have the more general form in order to avoid
conservatism [Scherer, 2001].

Notice that the interconnection of the system in (5.6) and the parameter dependency in
(5.7) is only well-posed if [Scherer, 2001]

Sa(�) � im

2
664

I 0

0 I

Duu Duc

Dcu Dpp

3
775 = C

nwu+mc+nzu+kc ;8� 2 ��:

In the standard LFT case this simply amounts toI �
�
Duu Duc

Dcu Dpp

�
� being non-singular

for all �.

If we would like to examine RQP for the system (5.6)-(5.7), we need to put it on the form
in (5.3). The following lemma from [Scherer, 2001] provides a way to do this.

Lemma 5.5Assume thatSa(�) is a continuous function. If the interconnection of (5.6)
and (5.7) is well-posed, then

Sa2 �
�
Duu Duc

Dcu Dpp

�
Sa1

has full row rank for all� 2 ��. Therefore

Sa1

�
Sa2 �

�
Duu Duc

Dcu Dpp

�
Sa1

�y

is continuous in�. Furthermore the system (5.3) with

�
A(�) B(�)

C(�) D(�)

�
=

�
A Bp
Cp Dpp

�
+

�
Bu Bc
Dpu Dpc

�
Sa1

�
Sa2 �

�
Duu Duc

Dcu Dpp

�
Sa1

�y �Cu Dup

Cc Dcp

�
(5.8)

has the same trajectories for�(t); wp(t); andzp(t) as (5.6)-(5.7).
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In other words the system (5.6)-(5.7) is equivalent to (5.3) with (5.8).

The following theorem provides a way to check for RQP for the LFT system.

In order to align the notation with the one in the following section define the following
subspace by swapping coordinates ofSa:

Se(�) , im

2
664
S1u(�)

S2u(�)

S1c(�)

S2c(�)

3
775 :

Theorem 5.6(Full block S-procedure for LPV system) [Scherer, 2001]

Robust quadratic performance for the system (5.6)-(5.7) is achieved if the following two
equivalent conditions are fulfilled:

1. The interconnection (5.6)-(5.7) is well-posed and there exists anX > 0 such that
(5.8) satisfies (5.5) for all� 2 ��.

2. dim(Sa(�)) � nzu + kc and there existX > 0 and a Hermitian multiplier

Pe ,

2
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(5.10)

Proof:

We have already seen that 1. guarantees RQP. The equivalence of 1. and 2. follows from
the so called full block S-procedure found in [Scherer, 2001], where it is given for real
systems. Careful inspection reveals that extending it to complex systems is merely a
question of substituting:T ! :� andR ! C . �
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The main advantage of using 2. instead of 1. is that the parameter dependency only affects
the choice of multipliers. This turns out to be very helpful in the synthesis to follow in
Section 5.3.

5.3 LPV controller synthesis

This section reviews the LPV controller synthesis described in [Scherer, 2001]. First the
interconnection of an LPV system and an LPV controller on the generalised LFT form
described in the previous section is described. This leads to a closed-loop system on the
same form. The Elimination Lemma for quadratic matrix inequalities (Lemma 2.9) is
then applied in order to turn the analysis equation for the closed-loop into LMI synthesis
equations. A partial proof is then given providing a construction for the controller. The
synthesis LMIs are infinite-dimensional. In Section 5.3.3 an example is given of how to
make them finite-dimensional. Finally Section 5.3.4 discusses how to overcome some of
the numerical problems associated with solving the quadratic matrix inequality.

5.3.1 Closed-loop system

Consider the LPV system2
6664

_x

zu

zp

y

3
7775 =

2
6664

A Bu Bp B

Cu Duu Dup Eu

Cp Dpu Dpp Ep

C Fu Fp 0

3
7775
2
6664

x

wu

wp

u

3
7775 (5.11)

with x 2 C
ns ; u 2 C

m andy 2 C
p representing states, inputs and outputs.wp 2 C

nwp

contains disturbance, noise, and command signals.zp 2 C
nzp is the performance output,

i.e. the signals to be controlled.wu 2 C
nwu ; zu 2 C

nzu are the channels connecting
the time-varying parameters in� with the nominal system described by (5.11). Let the
time-variations be given by"

wu

zu

#
2 S(�) = imS(�) = im

"
S1(�)

S2(�)

#
: (5.12)

This type of parameter dependency was discussed in Section 5.2.2. Assume that the
time-varying parameters are known to be bounded by� 2 ��.

Remark 5.7As seen the system is required to be strictly proper in the channel from
controller inputu to the measurementsy. In Section 2.4 it was discussed what to do
when presented with a non-strictly proper system.
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As discussed in the introduction to this chapter, the main idea behind LPV control is to
let the controller have online access to the time-varying parameters. If both the system
and the controller have standard LFT parameter dependency this can be represented as
in Figure 5.3.

�

�c

M

K

-

�
�� wpzp
�

�

y u

zc wc

zu wu

�

-

Figure 5.3:Expanding the time-varying block,�, by a scheduling function,�c.

Remark 5.8This could be viewed as a robust synthesis problem: Design the controller
K such that the closed loop system is stable and fulfills some performance specification
for any � 2 ��. This would normally be a non-convex problem except for special
cases such as state-feedback. Luckily, due to the particular structure of the problem,
copying� into �c will allow a wider set of multipliers, making the problem convex
with some conservatism. Letting�c be a nonlinear function of� will even remove this
conservatism.

Now let the controller be given by2
64 _xc

u

zc

3
75 =

2
64 Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22

3
75
2
64 xc

y

wc

3
75 ; (5.13)

wherexc 2 C
nc ; zc 2 C

kc , andwc 2 C
mc . Let thecontroller scheduling subspacebe

given by "
wc

zc

#
2 Sc(�) = imSc(�) = im

"
Sc1(�)

Sc2(�)

#
: (5.14)
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We then have a closed-loop system on the form (5.6) with

2
6664
A Bu Bc Bp
Cu Duu Duc Dup

Cc Dcu Dcc Dcp

Cp Dpu Dpc Dpp

3
7775 =

2
666664

A 0

0 0

Bu 0

0 0

Bp

0

Cu 0

0 0

Du 0

0 0

Dup

0

Cp 0 Dpu 0 Dp

3
777775+

2
666664

0 B 0

Inc 0 0

0 Eu 0

0 0 Ikc
0 Ep 0

3
777775
2
4 Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22

3
5
2
4 0 Inc

C 0

0 0

0 0

Fu 0

0 Imc

0

Fp

0

3
5 ; (5.15)

and a parameter dependency given by (5.7), with2
6664
S1u(�)

S1c(�)

S2u(�)

S2c(�)

3
7775 =

2
6664
S1(�) 0

0 Sc1(�)

S2(�) 0

0 Sc2(�)

3
7775 :

We can now analyse the stability and performance of the closed-loop system by directly
inserting in Theorem 5.6. Notice that

Se(�) = S(�) � Sc(�):

5.3.2 Controller synthesis

Assuming that (5.9) defines a convex set of possible multipliers, analysing the stability
and performance of the closed-loop system by testing the feasibility of (5.10) is a convex
problem since the only unknowns,X andPe, enter linearly. In connection with synthesis
it becomes a non-convex problem due to the presence of products of the multipliers
and the closed-loop matrices. However, due to the specific structure of the problem,
by applying the Elimination Lemma for quadratic matrix inequalities (Lemma 2.9), the
synthesis problem can be cast as an LMI. This is due to the following lemma, which has
been instrumental in most LPV results in the literature:

Lemma 5.9(Hermitian multiplier extension) [Packard, 1994]

LetX > 0; Y > 0 2 H
n�n , and letr be a positive integer. Then there exist matrices

X2 2 C
n�r ; X3 2 H

r�r such that�
X X2

X�

2 X3

�
> 0 and

�
X X2

X�

2 X3

��1
=

�
Y �
� �

�
(5.16)



72 Linear Parameter Varying Flux Observer

if and only if �
X In
In Y

�
� 0 and rank

�
X In
In Y

�
� n+ r (5.17)

Proof: See [Packard, 1994] or [Helmersson, 1995].�

Lemma B.3 gives a construction for the full rank Hermitian case.

Before giving the theorem for controller synthesis we need the following assumption on
the performance index:

in(Pp) = (dim(Qp); 0; dim(Rp));

which is needed in order to fulfill the inertia condition in the Elimination Lemma. This
condition is non-restrictive, since most sensible choices of quadratic performance objec-
tives do indeed fulfill this.

Partition the inverse of the performance matrixPp as

P�1
p =

�
~Qp

~Sp
~S�p ~Rp

�
(5.18)

and define the multipliers

P ,

�
Q S

S� R

�
; ~P ,

�
~Q ~S
~S� ~R

�
; (5.19)

partitioned to conform withS(�).

Theorem 5.10(LPV controller synthesis) [Scherer, 2001]

The following two statements are equivalent

1. A controller on the form (5.13) exists such that the closed loop system (5.15) admits
anX > 0 and a Hermitian multiplierPe satisfying (5.9) and (5.10).

2. There exist Hermitian X,Y and Hermitian multipliers

P > 0 onS(�) and ~P < 0 onS(�)?; 8� 2 �� (5.20)

satisfying the linear matrix inequalities�
X I

I Y

�
� 0 (5.21)
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I 0 0
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uu �D�
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0 I 0

�B�

p �D�

up �D�

pp

0 0 I

3
77777775
� > 0 (5.23)

where

� =
�
B� E�

u E�

p

�`
; 	 =

�
C Fu Fp

�`
: (5.24)

Proof: For the full proof see [Scherer, 2001]. Here only a constructive proof of 2.) 1.
will be given with the following assumptions.

We assume that the system is on the standard LFT-form, i.e.

wu(t) = �(t)zu(t) (5.25)

or equivalently

S(�) =

�
�

I

�
;

and that� is square so that

nzu = nwu , nu:

Then we have

S(�)? = im ~S(�); ~S(�) ,

�
I

���

�
:

We furthermore assume that

in�( ~P ) = nu (5.26)

which simplifies the proof greatly. With this condition it is possible to let the controller
be on the standard LFT form as well. The scheduling function will however still have to
be a nonlinear function of�.
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The proof will be in the form of a controller construction algorithm comprised of the
following steps. First the extended multiplierPe is constructed fromP and ~P andX
is constructed fromX andY . Then a controller scheduling function is constructed to
assure (5.9). The LTI part of the controller can then be found using Lemma 2.9. Assume
now thatP; ~P ;X andY satisfying (5.20)-(5.23) have been found.

Extension of multipliers
By compactness of�� and by the strictness of (5.20) we can, if necessary, perturb~P to
render it nonsingular. Define

N , P � ~P�1 (5.27)

and letU be an orthonormal basis for the image ofN such that

U�NU =

�
N� 0

0 N+

�
; N� < 0; N+ > 0: (5.28)

Choose the scheduling function dimensions askc = dim(N+) andmc = dim(N�) and
define �

V�(�) V+(�)
�
= S(�)�U (5.29)

with V�, V+ havingmc, kc columns respectively. By defining the extended multiplier as

Pe =

"
P U

U� (U�NU)
�1

#
(5.30)

we find by Lemma B.3 and Schur complement (Lemma 2.6) thatPe is nonsingular and

P�1
e =

�
~P �
� �

�
; in(Pe) = in(U�NU) + in( ~P ) = (mc + nu; 0; kc + nu): (5.31)

To constructX we pickZx as an orthonormal basis of the image ofX � Y �1 and set

X =

"
X Zx

Z�x
�
Z�x(X � Y �1)Zx

�
�1

#
: (5.32)

By Lemma B.3 and Schur complement (Lemma 2.6)X will be positive definite and

X�1 =

�
Y �
� �

�
.
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Scheduling function

DefiningSc(�) =

�
�c(�)

I

�
we need to find a�c such that

Pe > 0 on imS(�)� imSc(�); 8� 2 ��: (5.33)

With the above definitions this can be written as�
S(�)�PS(�) V�(�)�c(�) + V+(�)

�c(�)�V�(�)� + V+(�)� �c(�)�N�1
�

�c(�) +N�1
+

�
> 0: (5.34)

Using Schur complement and a congruence transformation this is equivalent to

�
N�1
+ �c(�)�

�c(�) �N�

�
�

�
� �

�� �
S(�)�PS(�)� V�(�)N�V�(�)�

��1 �
V+(�) V�(�)N�

�

�
> 0: (5.35)

By choosing

�c(�) = N�V�(�)� (S(�)�PS(�)� V�(�)N�V�(�)�)
�1

V+(�) (5.36)

to make the off-diagonal blocks equal to zero, inequality (5.35) is equivalent to

N�1
+ � V+(�)�

�
S(�)�PS(�)� V�(�)N�V�(�)�

��1
V+(�) > 0

and

�N� �N�V�(�)�
�
S(�)�PS(�)� V�(�)N�V�(�)�

��1
V�(�)N�

�
> 0:

These are equivalent to�
N�1
+ V+(�)�

V+(�) S(�)�PS(�)� V�(�)N�V�(�)�

�
> 0

and �
�N� N�V�(�)�

V�(�)N� S(�)�PS(�)� V�(�)N�V�(�)�

�
> 0

by Schur complement arguments. By Schur complement the latter is equivalent to
S(�)�PS(�) > 0, which is always true due to (5.20). The first inequality is by Schur
complement equivalent to

S(�)�PS(�)� V�(�)N�V�(�)� � V+(�)N+V+(�)� = S(�)� ~P�1S(�) > 0;
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where the equality follows from the definitions ofN , V�, andV+. From Lemma 2.7,
(5.20), and (5.26) we have

in( ~P�1jS(�)) = in( ~P )� in( ~P j
S(�)?) = (nu; 0; nu)� (nu; 0; 0) = (0; 0; nu);

i.e. the first inequality is also always true.

Controller construction
Once the multipliers have been constructed and the fulfilment of (5.9) has been assured
through (5.36), the controller matrices can be found as a solution to (5.10). This is a
quadratic matrix inequality in the form given in Lemma 2.9, which can be seen after
some rearrangements of rows and columns and by observing that

2
4 0 Inc

B� 0

0 0

0 0

E�

u 0

0 Ikc

0

E�

p

0

3
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`
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�1
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777775 ; (5.37)

and

2
4 0 Inc

C 0

0 0

0 0

Fu 0

0 Imc

0

Fp
0

3
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`

=

2
666664
	1

0

	2
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	3

3
777775 ; (5.38)

where 2
4�1

�2

�3

3
5 = � and

2
4	1

	2

	3

3
5 = 	: (5.39)

The inertia condition (2.10) is satisfied if the inner factor in (5.10) has negative inertia
(ns + nc + nu +mc + nwp) and positive inertia(ns + nc + nu + kc + nzp). This is
clearly fulfilled since

in

�
0 X
X 0

�
= (ns + nc; 0; ns + nc); (5.40)

in(Pe) = (nu +mc; 0; nu + kc); (5.41)

in(Pp) = (nwp; 0; nzp): (5.42)

�
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Remark 5.11The proof given here is less general than in [Scherer, 2001]. For instance,
the inertia condition (5.26) on~P is not necessary, but the constructive proof is a lot
more complicated, and the scheduling function is given in a less explicit manner. The
condition is non-convex, so it is not easy to enforce. However, practical experience
shows that it often is fulfilled anyway, at least if enforcing the convex inertia restrictions
discussed below in Section 5.3.3.

To summarise, assuming that the parameter dependency is given by (5.25), the algorithm
for finding an LPV controller is as follows

� Solve the LMIs (5.21)-(5.23) with the additional conditions (5.20) and (5.26) to
obtainX , Y , P , and ~P .

� ConstructPe as in (5.30) andX as in (5.32).

� Solve the quadratic matrix inequality (5.10) to obtain the controller matrices.

� The controller is now given by (5.13) withwc = �czc, where�c is given by
(5.36).

5.3.3 Finite dimensional global solution

Since �� usually has infinitely many elements, (5.20) poses an infinite number of con-
straints onP and ~P . Let us again consider the LFT case. Then (5.20) is equivalent
to �

�

I

�� �
Q S

S� R

��
�

I

�
> 0 and

�
I

���

�� � ~Q ~S
~S� ~R

��
I

���

�
< 0: (5.43)

Let us assume that�� can be described by

�� = Co( ��g); ��g = f
nX
i=1

Li�iK
�

i : �i 2 ��ig;

where ��i are finite sets andLi;Ki are matrices of full column rank. Since (5.43) is
not linear in� it is necessary to introduce constraints onP and ~P in order to have
(5.43) on �� implied by (5.43) on the finite generator set��g . EnforcingQ < 0 and
~R > 0 is sufficient to have this implication [Scherer, 1999]. Notice that if the parameter

dependency is affine, i.e.Duu = 0, then the(2; 2)-block of (5.22) isQ+D�puRpDpu < 0.

Due toRp � 0 this impliesQ < 0. Similarly (5.23) implies~R > 0, so in the affine
parameter dependency case there is no need for conservatism.

In the general rational case the least conservative constraints would appear to be

L�iQLi < 0; K�

i
~RKi > 0; 8i 2 1; :::; n:
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With these constraints, (5.43) on��g implies (5.43) on �� [Scherer, 2001]. By
adding these constraints, the synthesis inequalities (5.21)-(5.23) are therefore a finite-
dimensional LMI, which can be implemented in a standard LMI solver as described in
Section 2.3.1.

5.3.4 Solving the quadratic matrix inequality

The proof of Lemma 2.9 in Appendix B on page 173 provides a way to construct a solu-
tion to the quadratic matrix inequality (2.11). Numerical problems may arise, especially
if P is ill-conditioned. The only inversions in the proof which need to be performed are
the inversions ofS��S in equation (B.19) and ofZ1. The following lemma provides a
choice ofL that will makeS��S � �I , making it easy to invert. Refer to the proof in
the Appendix for definitions of the matrices.

Lemma 5.12LetUB
�
�B 0

�
V �

B = B be a singular value decomposition ofB. With
the definitions in the proof of Lemma 2.9 and with

J =

�
J11 J12
J�12 J22

�
= V �

B

�
I

C

��
P

�
I

C

�
VB ; (5.44)

partitioned soJ22 2 H
(m�cZ )�(m�cZ), choosing

L = VB

�
I 0

0 Q

�
; QQ� = �J�122 (5.45)

will provide

S��S = �I: (5.46)

Proof: Inserting

�
D12

D22

�
= K�CVB

�
0

Q

�
and

� ,

�
L 0

0 K��

��
P

�
L 0

0 K��

�



5.4 Discrete time controller synthesis 79

we have
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775 =

�
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Q

��
J

�
0

Q

�
= Q�J22Q = �I: (5.47)

The existence of aQ fulfilling QQ� = �J�122 follows fromS��S < 0) J22 < 0. �

Of course finding a suitableQ is no more numerically tractable than invertingJ22, but
the point is that it does not have to be exact, an approximate solution will still make
inversion ofS��S well-conditioned.

5.4 Discrete time controller synthesis

When a model has been obtained based on physical considerations, it will be usually
in continuous time. On the other hand, the controller usually has to be implemented
in discrete time. There are two ways to do this. Either the controller is designed in
continuous time and then discretised, or the model is discretised first, and a controller is
then designed in discrete time.

Some of the advantages and disadvantages of the first method (controller discretisation)
compared to the second method (model discretisation) are:

� Since the real plant operates in continuous time, stability and performance require-
ments are more naturally expressed in continuous time.

� The optimal sampling rate may depend more on the controller dynamics than on
the plant dynamics. If the sampling frequency can be chosen freely, then it might
be better to determine this after the controller synthesis.

� On the other hand, if the sampling frequency is given beforehand, then controller
synthesis in continuous time might result in a controller with very high gains or
unstable open-loop dynamics, which could result in the closed-loop behaviour not
being preserved when implemented in discrete time. Limitations on the sampling
frequency will be taken into account with model discretisation.
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� Time delays can be modelled easily in discrete time, whereas in continuous time
approximations such as Padé approximants (see e.g. [Franklin et al., 1994]) must
be used.

� Depending on the type of parametrisation, it might be necessary to perform the
discretisation of the controller at each sample. This may be computationally de-
manding.

� On the other hand, discretisation of a continuous time model with a simple
parametrisation may result in a discrete time model with a more complicated
parametrisation.

No matter which of the two ways is chosen, a discretisation has to be performed. Dis-
cretisation of LPV systems is less trivial than discretising LTI systems, since the system
changes from sample to sample. Section 5.4.1 discusses discretisation of LPV systems
on the LFT form. If the model is discretised, a discrete time version of the theory in Sec-
tions 5.2-5.3 is needed. Section 5.4.2 gives the discrete time version of robust quadratic
performance. Section 5.4.3 describes LPV synthesis for discrete time synthesis. Finally,
Section 5.4.4 discusses a few issues of discrete time controller design and implementa-
tion.

5.4.1 Discretisation

In [Apkarian, 1997] some suggestions on discretisation of LPV controllers are given.
One of the main problems is that the controller has to be discretised at each sample,
which is not necessarily feasible in real-time. If discretising the model instead, this will
not be a problem. On the other hand, it is unclear how to contain the infinitely many
models obtained at different parameter values in a simple LPV representation.

Fortunately, the LFT representation allows for a simpler alternative due to associativity
of the star product. Define

Dbl =

�
I

p
TsIp

TsI
Ts
2
I

�
;

whereTs is the sampling period. A trapezoidal approximation (or bilinear transforma-
tion) of the continuous time system�

_x

y

�
=

�
A B

C D

��
x

u

�
is then given by �

xk+1
yk

�
= Dbl ?

�
A B

C D

� �
xk
uk

�
:
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Now consider the LPV system (5.11) withwu(t) = �(t)zu(t) and write this as

2
64 _x

zp

y

3
75 =

0
BBB@
2
6664

A Bp B Bu

Cp Dpp Ep Dpu

C Fp 0 Fu

Cu Dup Eu Duu

3
7775 ?�

1
CCCA
2
64 x

wp

u

3
75 : (5.48)

From the associativity of the star product we have

Dbl ?

0
BBB@
2
6664

A Bp B Bu

Cp Dpp Ep Dpu

C Fp 0 Fu

Cu Dup Eu Duu

3
7775 ?�

1
CCCA =

0
BBB@Dbl ?

2
6664

A Bp B Bu

Cp Dpp Ep Dpu

C Fp 0 Fu
Cu Dup Eu Duu

3
7775
1
CCCA ?�:

Since the inside of the bracket on the right hand side is constant, it needs only be com-
puted once, and the LFT structure is maintained.

�(t) is replaced by�k , �(kTs). Notice that an underlying assumption is

�(t) � �(kTs); for kTs � t � (k + 1)Ts:

5.4.2 Discrete time analysis

Consider the discrete time version of the LPV system (5.3):

�k+1 = A(�k)�k + B(�k)wp;k

zp;k = C(�k)�k +D(�k)wp;k:
(5.49)

Notice that it is an underlying assumption that the parameters are constant during the
entire sampling period from timekTs to (k + 1)Ts, whereTs is the sampling period.

We will also define robust quadratic performance for discrete time systems:

Definition 5.13 (Robust quadratic performance,RQP)

We say that the system (5.49) achievesrobust quadratic performancewith performance
index

Pp = P �

p ,

�
Qp Sp

S�p Rp

�
; Rp � 0 (5.50)

if
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� Positive constantsK and� exist such that

k�k1k � k�k0kKe��(k1�k0) for k1 � k0 and all� 2 �� if wp;k = 0:

� The quadratic performance specification

9" > 0 :

k1X
k=k0

h
w�p;k z�p;k

i
Pp

�
wp;k

zp;k

�
� �"

k1X
k=k0

w�p;kwp;k; (5.51)

holds for allk1 � k0 and all�k 2 �� if �k0 = 0.

We can now formulate the discrete time equivalent to Theorem 5.4. A similar result for
thel2-induced norm was given in [Doyle et al., 1991].

Theorem 5.14(Robust quadratic performance analysis)

Suppose there exists anX > 0 satisfying the LMI2
6664

I 0

A(�) B(�)

0 I

C(�) D(�)

3
7775
�
2
6664
�X 0

0 X
0 0

0 0
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0 0

Qp Sp
S�p Rp

3
7775
2
6664

I 0

A(�) B(�)

0 I

C(�) D(�)

3
7775 < 0 (5.52)

for all � 2 �� and withPp satisfying (5.4). Then the system (5.49) achieves robust
quadratic performance with performance indexPp.

Proof: Letwp;k = 0 in (5.49) and choose

Vk = ��kX �k

as a Lyapunov candidate for the unforced system. The difference from sample to sample
is

Vk+1 � Vk = ��kA(�)�XA(�)�k � ��kX �k ;

which implies that the system is uniformly exponentially stable ifA(�)�XA(�) < X .
But this is immediately deduced from the upper left block in (5.52), which can be written
as

A(�)�XA(�) �X +D(�)�RpD(�) < 0:

SinceRp � 0 it is seen that ifX renders (5.52) satisfied, the unforced system is uniformly
exponentially stable.
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Furthermore, due to the strictness of (5.52), we can add a small perturbationG = [ 0 0
0 "I ]

to the left-hand side of the inequality without rendering it unsatisfied. Multiplying from

the left and right by

�
�k

wp;k

�
then gives

�
�k
wp;k

�� �A(�)�XA(�)� X A(�)�XB(�)

B(�)�XA(�) B(�)�XB(�)

� �
�k
wp;k

�
+

�
�k

wp;k

�� �
0 I

C(�) D(�)

��
Pp

�
0 I

C(�) D(�)

� �
�k

wp;k

�
+

�
�k

wp;k

��
G

�
�k

wp;k

�
� 0

which reduces to

(�k+1 � �k)
� X (�k+1 � �k) +

�
wp;k

zp;k

��
Pp

�
wp;k

zp;k

�
+ "w�p;kwp;k � 0:

Summing fromk = k0 to k = k1 with �k0 = 0, X > 0 then implies (5.51).�

Notice that the only difference between Theorems 5.4 and 5.14 is the block containing
X . It turns out that this change can be carried through all the way to the synthesis LMIs.

Consider the discrete time version of the closed-loop LPV system (5.6) on LFT form2
6664

�k

zu;k

zc;k
zp;k

3
7775 =

2
6664
A Bu Bc Bp
Cu Duu Duc Dup

Cc Dcu Dcc Dcp

Cp Dpu Dpc Dpp

3
7775
2
6664

�k

wu;k

wc;k

wp;k

3
7775 (5.53)

with a parameter dependency given by2
6664
wu;k

wc;k

zu;k

zc;k

3
7775 2 Sa(�k) = imSa(�k) = im

"
Sa1(�k)

Sa2(�k)

#
= im

2
6664
S1u(�k)

S1c(�k)

S2u(�k)

S2c(�k)

3
7775 ; (5.54)

where� 2 C
ns+nc ; zu 2 C

nzu ; zc 2 C
kc ; zp 2 C

nzp ; wu 2 C
nwu ; wc 2 C

mc , and
wp 2 C

nwp .

The trajectories of (5.53) are then the same as for (5.49) with (5.8). Furthermore the full
block S-procedure providing an RQP test for the LFT form is exactly as in Theorem 5.6
except for the change of the block containingX .

5.4.3 Discrete time synthesis

As discussed in the previous section, the only difference between the continuous and

discrete time versions of RQP analysis of LPV systems is the block which is

�
0 X
X 0

�
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in continuous time and

�
�X 0

0 X

�
in discrete time. Since these two blocks have the

same inertia, we can still apply the Elimination Lemma for quadratic matrix inequalities
(Lemma 2.9). Furthermore, the annihilators still cancel the same rows and columns as in
the continuous time case. This means that it is again the upper left blocks ofX andX�1

which are preserved.

Consider the discrete time system2
6664

xk+1

zu;k
zp;k

yk

3
7775 =

2
6664

A Bu Bp B

Cu Duu Dup Eu

Cp Dpu Dpp Ep

C Fu Fp 0

3
7775
2
6664

xk

wu;k

wp;k

uk

3
7775 (5.55)

with parameter dependence given by"
wu;k

zu;k

#
2 S(�k) = imS(�k) = im

"
S1(�k)

S2(�k)

#
: (5.56)

The controller will be on the form2
64 xc;k+1

uk

zc;k

3
75 =

2
64 Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22

3
75
2
64 xc;k

yk

wc;k

3
75 ; (5.57)

with thecontroller scheduling subspace"
wc;k

zc;k

#
2 Sc(�k) = imSc(�k) = im

"
Sc1(�k)

Sc2(�k)

#
: (5.58)

Theorem 5.15(Discrete time LPV controller synthesis)

The following two statements are equivalent

1. A controller on the form (5.57)-(5.58) exists for the LPV system (5.55)-(5.54) such
that the closed loop system achieves robust quadratic performance with perfor-
mance indexPp satisfying (5.50).

2. There exist Hermitian X,Y and Hermitian multipliers

P > 0 onS(�) and ~P < 0 onS(�)?; 8� 2 �� (5.59)

satisfying the linear matrix inequalities�
X I

I Y

�
� 0 (5.60)
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	�

2
66666664

�
�
�
�
�
�

3
77777775

� 2
66666664

�X 0

0 X

0 0

0 0

0 0

0 0

0 0

0 0

Q S

S� R

0 0

0 0

0 0

0 0

0 0

0 0

Qp Sp

S�p Rp

3
77777775

2
66666664

I 0 0

A Bu Bp

0 I 0

Cu Duu Dup

0 0 I

Cp Dpu Dpp

3
77777775
	 < 0 (5.61)

��

2
66666664

�
�
�
�
�
�

3
77777775

� 2
66666664

�Y 0

0 Y

0 0

0 0

0 0

0 0

0 0

0 0

~Q ~S
~S� ~R

0 0

0 0

0 0

0 0

0 0

0 0

~Qp
~Sp

~S�p ~Rp

3
77777775

2
66666664

�A� �C�

u �C�

p

I 0 0

�B�

u �D�

uu �D�

pu

0 I 0

�B�

p �D�

up �D�

pp

0 0 I

3
77777775
� > 0

(5.62)

where

� =
�
B� E�

u E�

p

�`
	 =

�
C Fu Fp

�`
Proof: The proof follows the same lines as the proof of Theorem 5.10.X is constructed
in exactly the same way fromX andY . �

As indicated the controller construction follows the exact same lines as in the proof of
Theorem 5.10.

5.4.4 Discrete time controller design and implementation

This section discusses a few issues on designing and implementing discrete time LPV
controllers.

Restrictions on pole placement

The LMI approach to control allows for simple ways to restrict the closed-loop poles to
certain areas of the s- or z-plane, see for instance [Chilali et al., 1999]. Note that it does
not really make sense to take about poles for a time-varying system, but restricting the
eigenvalues ofA(�) has a similar meaning. For example, it is very easy to ensure a
certain decay rate in discrete time by restricting the eigenvalues to be within a margin
� of the unit circle, i.e.�(A(�)) < 1 � �; 8� 2 ��, where� denotes the spectral

radius. This can be enforced by replacing the

�
�X 0

0 X

�
-block in Theorem 5.52 by
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�
�X 0

0 (1� �)�2X

�
. In the synthesis in Theorem 5.15 this corresponds to changing�

�X 0

0 X

�
to

�
�X 0

0 (1� �)�2X

�
in (5.61) and

�
�Y 0

0 Y

�
to

�
�Y 0

0 (1� �)2Y

�
in

(5.62).

Implementation

A controller on the form (5.57)-(5.58) can be be implemented through a reformulation
along the lines of Lemma 5.5. The controller (5.57)-(5.58) can be written as

xc;k+1 = Ac(�k)xc;k +Bc(�k)yk
uk = Cc(�k)xc;k +Dc(�k)yk

(5.63)

where�
Ac(�k) Bc(�k)

Cc(�k) Dc(�k)

�
,

�
Ac Bc1

Cc1 Dc11

�
+�

Bc2

Dc12

�
Sc1(�k) [Sc2(�k)�Dc22Sc1(�k)]

y
�
Cc2 Dc21

�
: (5.64)

Some computation power may be saved be working with the scheduling vectorswc and
zc rather than computing the entire matrix in (5.64) along the following lines

~zc;k = Cc2xc;k +Dc21yk;

wc;k = Sc1(�k) [Sc2(�k)�Dc22Sc1(�k)]
y ~zc;k;

uk = Cc1xc;k +Dc11yk +Dc12wc;k;

xc;k+1 = Acxc;k +Bc1yk +Bc2wc;k;

but unlessDc22 happens to be zero, there is in general no way to avoid the inversion.

5.5 Complex LPV systems

Certain systems with a particular structure can be transformed into an equivalent system
with half the number of states, inputs, and outputs, assuming that the output can be de-
composed in a meaningful way. We shall refer to this type of system ascomplex-formed,
since the transformation will typically be from a real-valued system to a complex-valued
one.

The current part of the induction motor model in Section 3.3.2 is complex-formed if we
view!r as a parameter rather than a state.



5.5 Complex LPV systems 87

One would expect that if a system is complex-formed, then the optimal controller is
complex-formed as well. This section establishes theoretical evidence of this. Section
5.5.1 shows that addition, multiplication, and inversion of complex-formed matrices pre-
serves the structure. Section 5.5.2 considers complex-formed linear systems and shows
that for a special case, restricting the controller to be complex-formed as well does not
limit the achievable performance. Section 5.5.3 considers LMIs with complex-formed
matrices and shows that for a simple type, restricting the solution to be complex-formed
as well will not affect the feasibility. Finally Section 5.5.4 considers LPV controller syn-
thesis. It is shown that for a complex-formed LPV system the optimal controller is also
complex-formed.

5.5.1 Complex-formed matrices

Define the following convex set:

Definition 5.16 (Complex-formed matrix,C2��2�M )

C2m�2nM , fM :M =

�
Mr �Mi

Mi Mr

�
;Mr;Mi 2 C

m�ng:

If a matrix is inC2��2�M we will call it complex-formed.

It is obvious that ifM1;M2 2 C2m�2nM ;M3 2 C2n�2pM we also have

M1 +M2 2 C2m�2nM andM1M3 2 C2m�2pM :

If M4 2 C2m�2mM is non-singular we also haveM�1
4 2 C2m�2mM :

Lemma 5.17LetM 2 C2m�2mM be nonsingular. ThenM�1 2 C2m�2mM as well.

Proof: A proof is given in the appendix on page 175.�

Define the following transformation fromC2m�2nM to Cm�n :

Definition 5.18 (TC (�)-transformation)

TC

��
Mr �Mi

Mi Mr

��
,Mr + jMi: (5.65)

Remark 5.19This transformation has no unique inverse unless some specific constraints
onMr andMi are given, for instance that they should be real.

We can now give the following extension to Lemma 5.17:
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Lemma 5.20LetM 2 C2m�2mM be nonsingular. Then

TC
�
M�1

�
= TC (M)

�1
: (5.66)

Proof:

A proof is given in the appendix on page 176.�

5.5.2 Complex-formed linear systems

By Lemma 5.17 it follows that if all matrices of a state space system are of this particular
form, then the transfer function is too.

Define the following set of matrix transfer functions:

Definition 5.21 (Complex-formed system,CS)

C2m�2nS = fT (s) : T (s) 2 C2m�2nM ; 8sg:

Corollary 5.22Consider the state space system

_x = Ax+Bu; y = Cx+Du;

and assumeA 2 C2n�2nM ; B 2 C2n�2mM ; C 2 C2p�2nM , andD 2 C2p�2mM . Then the
transfer functionG(s) , C(sIn �A)�1B +D is in CS :

G(s) 2 C2p�2mS :

Furthermore

TC (G(s)) = TC (C)
�
sIn

2
� TC (A)

�
�1

TC (B) + TC (D) :

Remark 5.23The eigenvalues of a square complex-formed real matrix,A, consist of
complex conjugated and double real pairs. The eigenvalues ofTC (A) consist of one
from each pair.

Remark 5.24The transfer function,G(s) of a state space system with real matrices is
symmetric around the real axis. This is not necessarily true forTC (G(s)). One conse-
quence is that bode plots need to be shown for both positive and negative frequencies.

The following theorem shows that for a special system with complex-formed transfer
functions there is no loss in achievable performance by restricting the controller to be
complex-formed as well.
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Define the matrix

Q ,

�
0 I

I 0

�
(5.67)

where the dimension will be apparent from the context.

Lemma 5.25LetG;H; F = F � 2 CS and

QG+G�Q+QHH�Q+ F < 0 8s (5.68)

Then

F < 0 8s (5.69)

Proof: Obviously (5.68) impliesN , QG+G�Q+ F < 0. Then also�
0 �I
I 0

�
N

�
0 I

�I 0

�
+N = 2F < 0 (5.70)

�

Theorem 5.26Let

M ,

�
M11 M12

M21 M22

�
; M22 = 0; (5.71)

whereM11, M12, M21 2 CS . If a controllerK exists yielding closed-loopH1 perfor-
mancejjM ? Kjj1 < 
 then a controllerK1 2 CS exists with equal or better closed
loop performance, i. e.jjM ?K1jj1 < 
.

Proof: The closed loop transfer function isCl =M11+M12KM21. jjCljj1 < 
 if and
only if C�

l Cl < 
2I . DecomposeK asK = K1 +K2Q, whereK1;K2 2 CS . When
calculatingC�

l Cl � 
2I it can be put on the form in (5.68), whereG andH are zero
whenK2 is zero and whereF does not depend onK2. By Lemma 5.25 the performance
will then at least be maintained by settingK2 = 0. �

Remark 5.27Note that since the performance holds at all frequencies, Theorem 5.26
holds equally well forH2 performance.

Remark 5.28The system in (5.71) is somewhat specialised due to the conditionM22 =
0. Given a non-zero (but stable)M22, we can design aK for M with M22 = 0 and then
implement the controller �

0 I

I �M22

�
? K: (5.72)

If M22 2 CS then so is (5.72)assumingthat(�M22) ? K is well-posed. Otherwise the
controller has to be implemented as the two separate blocks in (5.72).

The special system (5.71) withM22 = 0 can be seen as an observer problem.
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5.5.3 Complex-formed LMIs

We will now turn our attention to LMIs where the known matrices are complex-formed.
We will show that for a basic type of LMI, there is no loss of feasibility by restricting the
solution to be complex-formed as well.

Lemma 5.29Define

Jk ,

�
0 �Ik
Ik 0

�
;

and assumeA 2 C2m�2nM . Then

JmA = AJn:

Proof: By trivial calculation.�

Notice thatTC (Jk) = jIk.

Theorem 5.30LetA 2 C2n�2mM ; B 2 C2l�2nM ; C = C� 2 C2n�2nM . If the LMI

L(X) = AXB +B�X�A� + C > 0 (5.73)

has a solutionX 2 C
2m�2l , then it also has a solutionXc 2 C2m�2lM .

Proof: DefineJk as in Lemma 5.29. Let

X =

�
X1 X2

X3 X4

�

be a solution to (5.73). DecomposeX as

X = Xc +

�
0 I

I 0

�
X�c; Xc 2 C2l�2nM ; X�c 2 C2l�2nM :

Xc is unique and given by

Xc =
1

2
(X + J�mXJl) =

1

2

�
X1 +X4 �(X3 �X2)

X3 �X2 X1 +X4

�
: (5.74)

L(X) > 0 implies

J�nL(X)Jn > 0; (5.75)

and thus

1

2
(L(X) + J�nL(X)Jn) =

1

2
(L(X + J�mXJl)) = L(Xc) > 0:
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�

In this theorem,X is assumed to be unstructured, but the statement holds whenever the
projection in (5.74) preserves the structure, for instance ifX1; X2; X3, andX4 all have
the same block-diagonal structure.

SinceJk is real the above theorem also holds in the real domain:

Corollary 5.31LetA 2 C2n�2mM \R2n�2m ; B 2 C2l�2nM \R2l�2n ; C = C� 2 C2n�2nM \
R
2n�2n . If the LMI

AXB +BTXTAT + C > 0 (5.76)

has a solutionX 2 R
2m�2l , then it also has a solutionXc 2 C2m�2lM \ R

2m�2l .

5.5.4 Complex-formed LPV synthesis

Consider the system (5.11) and assume all matrices to be complex-formed. Assume
furthermore that the parameter dependency is given by (5.12) withS1(�) andS2(�)
complex-formed for all� 2 ��.

Now consider controller synthesis to obtain RQP with a performance index with
complex-formed sub-matrices. Since the annihilators can be chosen as complex-formed,
all sub-matrices in the LMIs in statement 2. of Theorem 5.10 are complex-formed. By
suitable permutations, all the synthesis LMIs can be brought onto the form (5.73). To
illustrate this, consider the following simple example.

Example 5.32Consider the LMI inQ;S, andR

M =

�
D

E

�� �
Q S

S� R

� �
D

E

�
> 0;

whereD 2 C2m�2(n+p)M , E 2 C2l�2(n+p)M , Q 2 H
2n�2n , andR 2 H

2p�2p . Partition the
decision variables as

Q =

�
Q11 Q12

Q�

12 Q22

�
; R =

�
R11 R12

R�

12 R22

�
; S =

�
S11 S12

S21 S22

�
:

Define the permutation matrix

P ,

2
664
In 0 0 0

0 0 In 0

0 Ip 0 0

0 0 0 Ip

3
775 :
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SincePP � = I2(n+p) we then have

M =

�
D

E

��
P| {z }

D�

p

P �

�
Q S

S� R

�
P| {z }

Xp

P �

�
D

E

�
| {z }

Dp

> 0;

whereDp 2 C2(m+l)�2(n+p)
M . The important point now is that performing the projection

in (5.74) onXp and then swapping the rows and columns back preserves all structural
requirements onQ;S, andR, for instance the projections ofQ andR will still be Her-
mitian. In conclusion, if we haveQ0; S0, andR0 solvingM > 0, then so will�

Q S

S� R

�
=

1

2

�
PX0P

� + PJ�n+pX0Jn+pP
�
�
;

where

X0 = P �

�
Q0 S0
S�0 R0

�
P:

This method can be applied to all the LMIs in statement 2. of Theorem 5.10. We can
therefore always restrict ourselves to a solution whereX;Y;Q;R; S; ~Q; ~S, and ~R are
all complex-formed. The extended multiplierPe, the scheduling functionSc(�) and the
Lyapunov matrixX will then have complex-formed submatrices. When permuting (5.10)
in order to make it correspond to the quadratic matrix inequality in (2.11), it can be done
in such a way thatA;B;C, andP in (2.11) are all complex-formed. It is then possible to
solve the quadratic matrix inequality along the lines of the proof in the appendix in such
a way that all controller matrices are also complex-formed.

Corollary 5.33Consider system (5.11) and assume all matrices to be complex-formed.
Assume furthermore that the parameter dependency is given by (5.12) withS1(�) and
S2(�) complex-formed for all� 2 ��. In addition, let the performance indexPp have
complex-formed sub-matrices.

If a controller exists achieving RQP with performance indexPp, then there exists a con-
troller with complex-formed matrices and scheduling function also achieving this.

In practical situations we will typically be dealing with an LPV system withreal
complex-formed matrices. The best way to design a controller would then seem to be

� Solve the synthesis LMIs in Theorem 5.10 restrictingX;Y;Q;R; S; ~Q; ~S, and ~R
to be have complex-formed submatrices. This approximately halves the number
of decision variables.

� Perform theTC (�)-transformation on all submatrices, thereby obtaining complex
matrices of half the original size.
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� Extend the multiplier and the Lyapunov matrix.

� Solve the quadratic matrix inequality. Doing these last two steps in the complex
domain makes the problems slightly sounder numerically.

How to implement the controller depends on whether complex arithmetic is available on
the particular platform for implementation. If so, then convert the measurement�

y1

y2

�
! y1 + jy2

and compute the control signalu. Output the signal

�
<fug
=fug

�
to the system.

If no complex arithmetic is available, then the controller matrices must be transformed
back, for instance

Ac !
�
<fAcg �=fAcg
=fAcg <fAcg

�
:

Care should be taken to exploit the complex-formed structure in order to reduce compu-
tational complexity, for instance in computing the inverse in (5.36).

5.6 LPV flux observer

An essential part of the rotor flux oriented control scheme discussed in Chapter 4 is
the rotor flux observer. If a good estimate of the rotor flux (or equivalent magnetising
current) is not available, the partial decoupling of the stator current into torque and rotor
flux controlling parts, as described in Section 4.1, will not be achieved, and the closed-
loop performance will be degraded.

As discussed in Section 3.3 the induction motor model can be considered as an LPV
system by considering the rotor speed as a time-varying parameter. In this section a
discrete time flux observer is designed using the synthesis method described in Sections
5.2-5.4. The aim is to design an observer with theoretically guaranteed convergence,
which works well over a wide range of speeds, is simple to implement in real-time, and
furthermore requires very little tuning.

In Section 5.6.1, the induction motor model is put on the LFT form needed for the syn-
thesis, and it is discussed how it is discretised. In Section 5.6.2 the actual synthesis of the
observer is discussed. Finally, experiments are performed on the laboratory setup. This
is done both with and without a speed sensor. The experiments are described in Section
5.6.3.
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First, some other flux observers found in the literature are briefly discussed. The flux
observer presented in [Jansen and Lorenz, 1992] (the JL-observer) has already been de-
scribed in Section 4.3.1. Based on physical insight a simple combination of two basic
models were combined. The JL-observer can be tuned to have fast convergence and is
relatively simple to implement.The main complication is the tuning of the two complex
constants to ensure satisfactory behaviour over a wide speed range. The following is a
non-exhaustive review of other existing rotor flux observer designs. Common to all of
the following (as well as the JL-observer) is that they are based on measurements of the
rotor speed, the stator current, and the stator voltage. In some of the following papers the
voltage command is used instead of stator voltage measurements, but in general some
representation of the stator voltage is needed. In several of the papers adaption of the
rotor time constant and other parameters is also discussed. We will, however, not focus
on parameter adaption.

In [Nilsen and Ka´zmierkowski, 1992] the stator current is considered as the input to the
induction motor, and the stator voltage prediction error is used to update the flux estimate.
The observer gain is chosen from physical considerations. The observer would appear
to work well in practice, but the theoretical justification is somewhat unclear. The paper
also suggests how to observe parameter variations in the rotor time constantTr and the
mutual inductanceLm.

In [Manes et al., 1996] it is suggested to use an extended Luenberger observer with the
load torquemL to be slowly varying. Even though the design requires the inversion of
a (sparse)6 � 6 matrix at each time step, the observer performance is demonstrated on
a real-time system and performs well. The main problem is that it requires tuning of six
parameters. Even though these six parameters can be directly interpreted as closed-loop
eigenvalues, this tuning may be tricky.

In [Martin and Rouchon, 2000] two simple flux observers are discussed. The first is
basically an open-loop simulation of the motor. It is shown that if the correct parameters
are used, the estimate will converge to the true value. The convergence rate is, however,
very slow. The second observer is somewhat similar to the JL-observer although it is less
obvious how to interpret it from a physical point of view. It is proved that the estimate
converges to the true value. The convergence rate can be made arbitrarily fast. Just as the
JL-observer it requires the tuning of two complex parameters, which may be difficult. In
addition it is unclear how well the observer works in practice.

In [Benchaib and Edwards, 2000] a sliding mode observer is designed as part of a slid-
ing mode control. The overall control systems displays some chattering, but the flux
estimates are satisfactory. It would, however, be tricky to implement the scheme in real-
time.

In [Marino et al., 1996] a controller is designed using a backstepping method. The
scheme includes an observer which also estimates the rotor time constant and the load
torquemL, assuming the latter to be constant. Simulation results indicate a good perfor-
mance, but no real-time experiments are presented.
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In [Petersen and Pulle, 1998] it is suggested to use a Kalman filter with the gain designed
from a deterministic viewpoint. In [Petersen and Pulle, 1997] it is described how to ex-
tend the method to be robust to parameter uncertainty. The basic idea of the deterministic
viewpoint is not to compute the Kalman gain from an estimate of the noise variance, since
it can be difficult to obtain a reasonable model of the noise. Instead, the noise variance
is used as a tuning parameter. At each time step an ellipsoid containing all the possible
system states that are consistent with the measurements are found. The centre of this
ellipsoid is then used as the current estimate. This method is somewhat ad hoc, but is on
the other hand easy to tune. The main problem is that it is computationally heavy.

In [Trangbæk, 2000] an LPV observer was designed using the structured singular value
approach with block-diagonal multipliers. The performance was good, but the conser-
vatism due to restrictions on the multipliers made it necessary to restrict operation to a
small range of speeds.

The following describe a novel approach, the use of full block multipliers, to flux observer
design. The performance is theoretically justified in a wide range of speeds. The resulting
observer is easy to implement and most importantly requires practically no tuning in
order to perform well.

Simultaneously with this work, a similar LPV observer design has been developed in
[Darengosse et al., 2000]. As the main difference it is designed in continuous time and a
somewhat unorthodox online discretisation has to be performed.

5.6.1 Induction motor model

From Section 3.3.1 we have the following model of the induction motor:

_xsc = Ascxsc +Bsc�us;

xsc =

�
�is
�im

�
;

Asc =

"
L2

mRr+RsL
2

r

Lr(L2
m�LsLr)

L2

m(jLr!r�Rr)

Lr(L2
m�LsLr)

Rr

Lr
j!r � Rr

Lr

#
;

Bsc =

"
Lr

LsLr�L2
m

0

#
;

(5.77)

me =
3ZpL

2

m

2Lr
=f�is�i�mg;

_!r = Zp _!mech =
Zp
J
(me �mL):

(5.78)

We assume that we can measure the stator voltage�us, the stator current�is, and the
rotational speed!r. The aim is to estimate the magnetising current�im using these
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measurements. We will assume that the rotational speed belongs to a finite interval,
!r(t) 2 [�!r;max;!r;max]. We shall make no assumptions on the load torquemL.
Consequently, very little information about�im can be recovered by considering the me-
chanical equations (5.78). We will therefore consider!r as a time-varying parameter
and base the observer on the current equations (5.77). The stator voltage is considered
as a measurable disturbance.

The model can now be written directly on the basic LPV form (5.1), with�(t) = !r,
A(�(t)) = Asc, B(�(t)) = Bsc, andu = �us.

LFT form

The model can easily be put on the LFT form by the standard ”pulling out the uncertain-
ties” procedure (see [Zhou et al., 1996]). First writeAsc as

Asc = A0 + !rAwr;

and factorAwr as

Awr = A1A
�

2;

whereA1 andA2 are of full column rank. The model can now be put on the form in
(5.11) with

A = A0; Bu =
p
!r;maxA1; Bp = Bsc; (5.79)

Cu =
p
!r;maxA

�

2; Duu = 0; Dup = 0; (5.80)

and a parameter dependency given by the standard LFT representation"
wu

zu

#
2 S(�) = imS(�); S(�) =

�
�

I

�
; � =

!r

!r;max

:

Notice that the synthesis method in Section 5.3 does not require� to be scaled to[�1; 1].
A larger interval would simply limit the range of multipliers allowed by (5.20). The
scaling is performed here for numerical reasons.

The rest of the system matrices are designed in order to pose the observer problem as a
control problem:

B = 0;

Eu = 0;

Cp =
�
0 �1

�
; Dpu = 0; Dpp =

�
0 0 0

�
;

C =

�
1 0

0 0

�
; Fu = 0; Fp =

�
0 �i 0

1 0 �u

�
:
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This setup is also illustrated in Figure 5.4 as the part within the dashed box.

observer

motor model

induction

w
is

i

pz mi

m

iw u

su

Figure 5.4:Model setup for the formulation of the flux observer as a generic control
problem.

The performance inputwp =

2
4 �uswi

wu

3
5 consists of the stator voltage acting as a disturbance,

and scaled measurement noise. The measurement vector

y =

�
�is + �iwi

�us + �uwu

�

consists of stator current and voltage corrupted by noise. The performance output is
zp = u��im. The observer will be designed to minimise thel2-induced norm of the gain

fromwp to zp, and thus the controller outputu will be an estimate of�im, i.e.u = �̂im.

The measurement noise is added to avoid the observer having very high gain at low
frequencies. The norm bounds�i and�u can be seen as tuning parameters.

Discretisation

Since the induction motor model was obtained in continuous time and the observer must
be implemented in discrete time, a choice must be made. Either the observer is designed
in continuous time and then discretised, or the model is discretised first, and an observer
is designed by the discrete time version of the synthesis described in Section 5.4.3.

Based on practical experience it is chosen to discretise the model and then design the
observer in discrete time. The discretisation was performed by the bilinear transformation
method described in Section 5.4.1. In practice the discretisation was only performed on
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the part of the model specified by the matrices in (5.79). After this the rest of the matrices
were chosen as above.

5.6.2 Observer synthesis

An observer for the example motor with the parameters in (3.57) and a sampling fre-
quency of3kHz was synthesised using Theorem 5.15. The noise bounds were chosen
rather arbitrarily as�i = 10�4 and�u = 10�4.

As seen in Section 5.5, nothing will be gained from transforming the second order com-
plex model into a fourth order real model and allowing for solution that are not complex-
formed. By restricting the solution to be complex-formed we have the following advan-
tages

� Fewer decision variables. Since the problem is fairly small, this is not so important
here.

� Better numerics for the quadratic matrix inequality solution.

� A complex-formed scheduling function. This is a great advantage, since instead
of inverting a2� 2 real matrix, we only have to perform a complex division.

Before solving the LMI, the model was balanced to better the numerics. The balancing
was performed on the model including parameter dependence and performance channels.

The performance indexPp was chosen as thel2-induced norm specification

Pp =

�
�
2I 0

0 I

�
;

and a bisectional search was performed to determine the lowest value of
 for which
the LMIs were feasible. Figure 5.5 shows the achievable
, denoted
a, as a function
of !r;max. Each observer computation was done in a few seconds using the MatLab
LMI toolbox [Gahinet et al., 1995]. The small increase in
a for small speed ranges is
due to the combined effect of the balancing and bounds on the Frobenius norm of the
multipliers, i.e. a numerical effect.
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Figure 5.5: The achievablel2-induced norm,
a, as a function of range of rotational
speeds,!r;max.

An observer with!r;max = 200rad=s was chosen for further experiments. The observer
was computed with a suboptimal
 = 1:1
a = 0:0003 in order to improve the numerics.

The observer will be compared to a JL-observer, which has been hand-tuned to yield
reasonable behaviour over the speed range. The constants areK1 = 32(1 + 0:1j) and
K2 = 2(1 + 0:1j). In Figure 5.6 bode plots of the two observers are given for!r =
10rad=s. For comparative purposes, a JL-observer withK1 = 10000 andK2 = 0 is also
given. This is practically an open-loop simulation of the current model, which is probably
the most commonly used observer in induction motor control due to its simplicity. We
will refer to the observer designed above as the LPV observer.

The bode plots are shown for positive frequencies from10�1rad=s to 104rad=s. Notice
that since the observer is complex, there is no symmetry between positive and negative
frequencies. However, the positive frequencies are the most important for a positive
!r, so only these are shown. The left column shows the gain from stator current to
magnetising current estimate. The right column shows the gain from stator voltage to
magnetising current estimate.
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Figure 5.6:Bode plots of three observers operating at!r = 10rad=s, the LPV observer
(solid), the JL-observer (dashed), and the current model (dotted).

As seen, the gains are similar in amplitude for the LPV and the JL-observer in the fre-
quency area around the rotational speed. A major difference is at low frequencies, where
the JL-observer will always be based on the current model and thus only current mea-
surements. The LPV observer in contrast uses a combination of both current and voltage
measurements. It does, however, not have the very high gains that an observer based on
the voltage model has at low frequencies.

5.6.3 Experiments

Experiments to confirm the performance of the LPV observer are performed on the labo-
ratory setup. Since the flux cannot be measured, the only way to test the observers, is to
examine the closed-loop behaviour of the rotor flux oriented control, when the observer
is inserted. All the other parts of the control scheme are implemented as described in
Section 4.2.

Figure 5.7 shows an experiment, where the speed reference is!r;ref = 10rad=s. The
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motor is disturbed by the load torquemL, which switches between0Nm and3Nm

every1=3 seconds. The load is plotted by the dashed lines. The plot on the left shows
the closed-loop behaviour with the LPV flux observer. The plot on the right shows the
same for the JL-observer.
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Figure 5.7:Closed-loop operation at!r;ref = 10rad=s. The left plot shows the be-
haviour with the LPV observer. The right plot shows the same for the JL-observer.

Figure 5.8 shows a similar experiment, but now the speed reference is changed in steps
of 15rad=s every0:6s from�150rad=s to 150rad=s and then back to�150rad=s. The
load torque changes between0Nm and3sign(!r)Nm every0:1 seconds.



102 Linear Parameter Varying Flux Observer

0 2 4 6 8 10 12

−150

−100

−50

0

50

100

150

Time [s]
0 2 4 6 8 10 12

−150

−100

−50

0

50

100

150

Time [s]

!
r
[r
a
d
=
s
]

Figure 5.8:Stepwise sweep through the speed range. The left plot shows the behaviour
with the LPV observer. The right plot shows the same for the JL-observer. The dashed
lines show the reference speed,!r;ref .

The main conclusion from these two tests is that the behaviour of the two observers is
very similar.

Speed sensor-less control

Very often it is desirable to avoid the use of a speed or position sensor. The speed (or
position) then has to be estimated by a speed observer such as Kubota’s speed observer
described in Section 4.4.2. The following tests are similar to those above, but the speed
measurements were replaced by the speed estimates from Kubota’s speed observer with a
speed estimate update gain of�c = 1000 and the current observer gainG chosen so that
the observer closed-loop eigenvalues (eigenvalues ofÂsc+GC) were equal to1:1 times
the eigenvalues of̂Asc. Since the speed observer reacts slower than the speed sensor, the
speed controller was retuned to preserve stability.

In addition to the LPV observer and the JL-observer, tests are also performed using
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the magnetising current estimate provided by Kubota’s speed observer as suggested in
[Kubota et al., 1993].

It should be noted that both the LPV observer and the JL-observer were designed under
the assumption of exact knowledge of!r. There is therefore no theoretical guarantee
that either will work.

Figures 5.9 and 5.10 show the same experiments as above but now using the observed
speed instead of the measured. The left columns show the behaviour with the LPV
observer. The middle and the right columns show the same for the JL-observer and
the Kubota observer, respectively. The top rows show the estimated speed, whereas the
bottom rows show the actual (measured) speed.
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Figure 5.9:Speed sensor-less operation at!r;ref = 10rad=s. The left column shows the
behaviour with the LPV observer. The middle and the right column show the same for
the JL-observer and the Kubota observer, respectively. The top row shows the estimated
speed. The bottom row shows the measured speed.
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Figure 5.10:Speed sensor-less stepwise sweep through the speed range. The left column
shows the behaviour with the LPV observer. The middle and the right column show the
same for the JL-observer and the Kubota observer, respectively. The top row shows the
estimated speed. The bottom row shows the measured speed.

The behaviour of the closed-loop system with the three different observers are quite
similar. If anything, the LPV observer is slightly better, especially in the large speed
reversal step, but not enough to claim that it is superior to the other observers.

A difficult task in speed sensor-less control is to operate around zero speed. Figure 5.11
shows the results of a test where the speed reference slowly sweeps from�10rad=s to
10rad=s and then back again. On the upward slope the load torque is given bymL =
6sign(!r)Nm. On the downward slope the load torque is zero. The large spikes are
caused by the sudden change in load.
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Figure 5.11:Speed sensor-less slow sweep through zero speed. The left column shows
the behaviour with the LPV observer. The middle and the right column show the same for
the JL-observer and the Kubota observer, respectively. The top row shows the estimated
speed. The bottom row shows the measured speed.

As expected, there is some degradation of performance close to zero speed. The perfor-
mance with the three different observers is very similar. Again the LPV observer might
be slightly better than the others.

5.7 Summary

In this chapter a controller synthesis method for LPV systems was described and applied
to the design of a rotor flux observer.

First, the controller synthesis method of [Scherer, 2001] was described. By using full
block scalings the method provides the least conservative way of designing controllers
yielding robust quadratic performance for an LPV system with rational parameter depen-
dence. A new result on how to improve the numerics of a part of the synthesis method
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was given.

Secondly, it was discussed how to change the theory to the discrete time domain. This
can be done by a simple substitution of some of the matrix blocks in the LMIs.

Inspired by the special structure of the current part of the induction motor model, which
allows it to be written either as a fourth order real model or as a second order complex
model, some theoretical results on this type of structure were then given. The main result
was that for an LPV system with this particular type of structure, the controller can be
restricted to have the same structure without loss of achievable performance. This have
several advantages, especially in implementation of the controller.

Finally the theory was applied to the design of a discrete time LPV flux observer. The
observer was then tested on a laboratory setup. It was used as part of a speed control
scheme, both with and without speed sensor. The resulting performance was compared
to the performance when using the JL-observer or the flux estimates from Kubota’s speed
observer, both described in Chapter 4. Although the performance was not significantly
better, it is worth noting that practically no tuning had to be performed for the LPV
observer.



Chapter 6

QUASI-LPV
CURRENT AND

SPEED

CONTROLLERS

The quasi-LPV approach allows the use of LPV theory for a very general class of non-
linear systems. In Section 6.1 a discussion of the quasi-LPV structure is given. The
approach is then applied to the design of a stator current controller in Section 6.2.

In Section 6.3 a novel method is presented for transforming a multi-layer perceptron state
space model into a quasi-LPV model suitable for control design.

This method is then applied to the design of a speed controller in Section 6.4.
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6.1 Quasi-LPV systems

The following is a short introduction to the concept of using quasi-LPV models as a
basis for control of nonlinear system. For a more thorough discussion see the survey
paper [Rugh and Shamma, 2000].

Before the 1990’s, theoretical treatments of gain scheduling in nonlinear control systems
was very rare [Rugh and Shamma, 2000]. A theoretical discussion of potential problems
of traditionallinearisation schedulingwas given in [Shamma and Athans, 1990].

Linearisation scheduling, the traditional approach to gain scheduling as a means of de-
signing controllers for nonlinear systems, is based on Jacobian linearisations of the sys-
tem model in a finite number of equilibria. For each of these linearised models a con-
troller is designed by linear design methods. As the system moves between these points,
the control system then switches between these controllers. This provides a theoretical
guarantee oflocal stability and performance around the equilibria, but there is no guar-
antee in between these points. Furthermore, the method also assumes that the system
dynamics change isslow.

An early suggestions that a quasi-linear approach could overcome these problems was
given in [Shamma and Athans, 1992]. The idea is to view some of the system state
variables as both state variablesand time-varying parameters.

Consider the nonlinear system

_x = f(x; u; w; v); x =

�
xp
xl

�
;

z = p(x; u; w; v);

y = h(x;w; v);

(6.1)

wherex is the system state,u is the control input,y is the measurement vector,z is
the performance output,w are measurable inputs, andv is noise. Assume that these
nonlinear functions can be written as

f(x; u; w; v) = A(�)x +B(�)up(�; u) +Bp(�)v;

p(x; u; w; v) = Cp(�)x +Ep(�)up(�; u) +Dpp(�)v;

h(x; u; w; v) = C(�)x +Fp(�)v;

� = s(xp; w);

(6.2)

whereup is invertible with respect tou, i.e. there exists a functionu�1p such that

u�1p (up(�; u); �) = u:

Notice that this representation is valid anywhere and not just in equilibria. We then have
the followingquasi-LPV system:2

4 _xz
y

3
5 =

2
4A(�) B(�) Bp(�)

Cp(�) Dpp(�) Ep(�)

C(�) Fp(�) 0

3
5
2
4 x

v

up(�; u)

3
5 ; � = s(xp; w): (6.3)
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Assume thats is known to belong to some bounded setS at all times. The nonlinear
system (6.1) is then contained in therelaxed quasi-LPV model2

4 _xz
y

3
5 =

2
4A(�) B(�) Bp(�)

Cp(�) Dpp(�) Ep(�)

C(�) Fp(�) 0

3
5
2
4 x

v

up(�; u)

3
5 ; � 2 S: (6.4)

We can now apply LPV control design techniques, such as those discussed in Chapter
5, to this system. Once an LPV controller has been obtained, we simply implement the
controller and inputu = u�1p (up(�; u); �) to the system. The advantage of this approach
over the traditional linearisation scheduling is that stability and performance is conserved
in all of S and not just locally at a finite number of equilibria. Furthermore, there is no
restriction on how fast the parameters are allowed to vary. A few points must be made
about this approach:

� Conservatism is introduced, since the model (6.4) allows for any parameter trajec-
tory within S, whereas the possible trajectories of� may be far more restricted.

� The representation in (6.2) is not unique. Some representations may yield better
results than others.

� The state variablesxp and the inputsw must be known in real-time in order to
allow gain scheduling control.

� A necessary condition for writing (6.1) as (6.2) is that (6.1) has an equilibrium at
the origin (after a possible transformation ofu). Otherwise a coordinate transfor-
mation must be performed first, see [Packard and Kantner, 1996].

Example 6.1Consider the nonlinear system

_x1 = sinx1 + x2; _x2 = (x1 + 1)x2 + u3: (6.5)

This system can be written as the quasi-LPV system�
_x1
_x2

�
=

"
sinx1
x1

1

0 (x1 + 1)

# �
x1
x2

�
+

�
0

1

�
up (6.6)

or alternatively �
_x1
_x2

�
=

"
sin x1
x1

1

x2 1

# �
x1

x2

�
+

�
0

1

�
up; (6.7)

whereu = u
1

3

p . If only x1 is measured, then only the representation (6.6) can be used for
LPV control, since the system matrix in (6.7) containsx2.
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6.1.1 LFT representation

Obtaining a relaxed quasi-LPV model in LFT form follows the same lines as above, as
illustrated by the following example.

Example 6.2Consider again the system (6.5). This can be written on the LFT form by
”pulling out the nonlinearities” (see [Zhou et al., 1996]):

_x =

�
0 1

0 1

�
x+

�
1

1

�
wu +

�
0

1

�
up;

wu = 
(zu); zu =

�
zu1
zu2

�
= x;


(zu) =

�
sinzu1

zu1zu2

�
:

A possible quasi-LPV representation is then obtained by rewriting the nonlinearities as

wu = �(zu)zu; �(zu) =

"
sin(zu1)

zu1
0

0 zu1

#
:

A relaxed quasi-LPV model is then obtained by viewing� as a time-varying gain rather
than a nonlinearity. Notice that in order to apply LPV control design techniques, we
again need to have access tox1 in order to know this gain in real-time.

Definition 6.3 (Residual gains)

We will refer to the function� when used as above asresidual gains.

6.2 Quasi-LPV stator current controller

In this section we will use the quasi-LPV approach to design a novel type of stator
current controller. Recall the configuration of the control scheme as shown in Figure
4.1. The speed and magnetising current controller provides a stator current reference
for the stator current controller, which controls the stator current by sending a reference
for the stator voltage to the power device. A wide variety of schemes for stator current
control exists, both in hardware and software. For surveys on current controllers see
[Kaźmierkowski and Dzieniakowski, 1994] and [Ka´zmierkowski and Malesani, 1998].
Here we will focus on the situation where the hardware is already given as a PWM
voltage sourced inverter. We will furthermore assume that the switching frequency of
the inverter is fixed and furthermore is so much higher than the sampling frequency of
the control system that we can consider the inverter as being able to produce any com-
plex stator voltage within a given limit of magnitude. Some current control schemes, for
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instance [Liu et al., 1998], do not consider the rotor dynamics. It is expected that better
performance can be achieved by considering these dynamics, which is also indicated by
experiments in [Rasmussen, 1995].

Several continuous-time controllers have been presented, for instance using a simple Lya-
punov approach [Shyu and Shieh, 1995], minimum-time control [Choi and Sul, 1998],
sliding mode control [Shiau and Lin, 2001], as well as a special type of decoupling with
special regard to robustness [Jung et al., 1997].

A general problem with these schemes is that it is unclear if they will work well when im-
plemented in discrete time at a sampling frequency which is not considerably faster than
the motor dynamics. Here we will design a novel type of controller based on a discrete-
time model, thus incorporating the limitations in the sampling frequency. Other examples
of discrete-time designs can be found in [Blaabjerg et al., 1996], where RST-controllers
are designed, and in [Yang and Lee, 1999] where a simple decoupling is designed un-
der the assumption that the change in speed and rotor flux from sample to sample is
negligible.

Section 6.2.1 describes the quasi-LPV model used for the controller design. Section
6.2.2 describes the controller design. The sampling frequency is chosen as 600 Hz, both
due to the computational complexity and in order to demonstrate that it is possible to
achieve good results at a low sampling frequency. In Section 6.2.3 the closed-loop is
simulated in order to verify the stability before implementation. Finally, in Section 6.2.4
the controller is tested on the laboratory setup. The results are satisfactory considering
the low sampling frequency.

6.2.1 Quasi-LPV model

In Section 3.3.1 we found the following model of the induction motor:

_xsc = Ascxsc +Bsc�us;

xsc =

�
�is
�im

�
;

Asc =

"
L2

mRr+RsL
2

r

Lr(L2
m�LsLr)

L2

m(jLr!r�Rr)

Lr(L2
m�LsLr)

Rr

Lr
j!r � Rr

Lr

#
;

Bsc =

"
Lr

LsLr�L2
m

0

#
;

(6.8)

me =
3ZpL

2

m

2Lr
=f�is�i�mg;

_!r = Zp _!mech =
Zp
J
(me �mL):

(6.9)

�is and �us are the stator current and voltage, respectively, and�im is the magnetising
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current.!r is the rotational speed of the shaft.me is the torque produced by the induction
motor.mL is the load torque on the shaft acting as a disturbance.Lm, Ls, Lr, Rr, Rs,
Zp, andJ are real parameters.

With the definitions of the referred parameters in Section 4.1 and with a transformation
to a rotating coordinate system as discussed in Section 3.3.3 we can write the subsystem
(6.8) as

d�is;cc
dt

= �
�
Rs +R0

r

L0s
+ j!cc

�
�is;cc +

�
R0

r

L0s
� j

L0m
L0s

!r

�
�im;cc +

�us;cc
L0s

; (6.10)

d�im;cc

dt
=

R0

r

L0m
�is;cc �

�
R0

r

L0m
+ j(!cc � !r)

�
�im;cc; (6.11)

where all signals are given in a reference frame with the angle�cc, i.e.

wcc , _�cc; �is;cc , �ise
�j�cc ,

�im;cc , �ime
�j�cc ; �us;cc , �use

�j�cc .

We wish to design a controller for the complex stator current�is;cc using the complex
stator voltage�us;cc as the control input.

The reference frame is chosen as the same as the one used by the outer control loop, since
the reference signal for the stator current will be constant in steady state in this frame. We
assume that the flux observer is the simple observer (4.15) based on the current model,
and that the reference frame is the angle of the rotor flux estimate as discussed in Chapter
4. In estimated rotor flux coordinates this observer is

_̂
imR =

1

Tr
(isd � îmR); (6.12)

!cc = !r +
isq

Tr îmR

; (6.13)

with isd , <f�is;ccg andisq , =f�is;ccg.

(6.10)-(6.11) can be viewed as an LPV system with!r and!cc as time-varying param-
eters, but we wish to exploit the knowledge that the slip frequency!slip = !cc � !r is
usually small compared to the maximal value of!r. This can of course be exploited by
restricting the parameters!r and!cc to the polygon�

!r

!cc

�
2 f
�
!r

!cc

�
: j!rj � !r;max; j!cc � !rj � !slip;maxg: (6.14)

We will instead exploit this knowledge by inserting (6.13) in (6.10)-(6.11) resulting in

d�is;cc
dt

= �
�
Rs +R0

r

L0s
+ j!cc

�
is;cc +

�
R0

r

L0s
� j

L0m
L0s

�
!cc �

isq

Tr îmR

��
�im;cc +

�us;cc
L0s

;
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d�im;cc

dt
=

R0

r

L0m
�is;cc �

�
R0

r

L0m
+ j

isq

Tr îmR

�
�im;cc:

The subsystem (6.8) can now be written as

_xcc = (A0 + Æ1A1 + Æ2A2)xcc +Bscus;cc; xcc ,

�
�is;cc
�im;cc

�
; (6.15)

in which

A0 =

"
�Rs+R

0

r

L0s

R0r
L0s

R0r
L0m

� R0r
L0m

#
andBsc =

"
1
L0s

0

#

represent the nominal model, which is a linear time invariant system, and

A1 =

"
�j �j L

0

m

L0s

0 0

#
andA2 =

"
0 j

L0m
TrL0s

0 �j 1
Tr

#

represent the nonlinearities entering through the residual gains

Æ1(t) , !cc(t) andÆ2(t) ,
isq(t)

îmd(t)
:

To put the system on an LFT form we write (6.15) as

_xcc = A0xcc +Bu0wu +Bsc�us;cc;

wu = �zu; zu = Cu0xcc:
(6.16)

First we observe thatA1 andA2 are both of rank 1. Consequently we can parametrise
these as

A1 = U1�1V
�

1 =
�
u1;1 u1;2

� ��1 0

0 0

� �
v�1;1
v�1;2

�
and

A2 = U2�2V
�

2 =
�
u2;1 u2;2

� ��2 0

0 0

� �
v�2;1
v�2;2

�
and let

Bu0 =
�
u1;1�1 u2;1�2

�
andCu0 =

�
v�1;1
v�2;1

�
:

The parameter variation can then be written asÆ1A1xcc + Æ2A2xcc =
Bu0

�
Æ1 0
0 Æ2

�
Cu0xcc. The parameter variation channelzu ! wu is hence defined as

wu(t) = �(t)zu(t) =

"
!cc(t) 0

0
isq(t)

îmd(t)

#
zu(t): (6.17)
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The main advantage of this representation over the one obtained directly from the poly-
gon (6.14) is the simplicity of�. With the methods in most of the references in Section
5.1, using (6.14) directly, we would have to use the parameter variation

� =

�
!r 0

0 !ccI2

�
;

since the dependency on!cc has rank 2. With the full block S-procedure in
[Scherer, 2001] (described in Sections 5.2-5.3) we can simply use

� =

"
!cc

L0m
L0s

!r

0 (!cc � !r)

#

with zu = �jxcc. The representation in (6.17) is slightly simpler. On the other hand we
do introduce a singularity for smallîmd. In normal operation this is not a problem, but
during startup the performance may be degraded.

6.2.2 Controller synthesis

A stator current controller was designed for the example motor with the parameters in
(3.57). The first step of the controller synthesis was to augment the LPV system defined
by (6.16) and (6.17) with performance and control channels to get the system2

6664
_xcc
zu
zp

y

3
7775 =

2
6664

A0 Bu0 0 Bsc

Cu0 0 0 0

Cp 0 Dpp Ep

C 0 Fp 0

3
7775
2
6664

xcc

wu

wp

�us;cc

3
7775 :

The noise signalwp =

�
�is;cc;ref
nm

�
consists of the reference signal for the stator current

and measurement noise. The performance outputzp =

�
�is;cc ��is;cc;ref

�u�us;cc

�
consists of

the stator current error and the stator voltage scaled by the weight�u in order to punish
large control signals. The measurementy =�is;cc��is;cc;ref +�nnm is the stator current
error corrupted by the measurement noise scaled by the weight�n. This was achieved

with the matricesCp =

�
1 0

0 0

�
, Dpp =

�
�1 0

0 0

�
; Ep =

�
0

�u

�
, C =

�
1 0

�
, and

Fp =
�
�1 �n

�
. The first element in the performance output, the stator current error,

was then augmented by a first-order low-pass filter with a pole ins = pf in order to
put more emphasis on the low frequency error. The constantspf , �u, and�w can be
considered as tuning parameters.pf is used to obtain a low steady state error.�u is
mainly included to compensate for the fact that saturation of the stator voltage is not
included in the model.
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The LPV system was then discretised by the bilinear transformation described in Sec-
tion 5.4 under the assumption that� is approximately constant from sample to sample.
The sampling frequency was chosen as 600 Hz. The main reason for this choice is the
computational complexity of the LPV controller.

A discrete time stator current controller was synthesised by the LPV method described
in Section 5.4.3 with the parameterspf = �100, �u = 10�6, and�n = 10�8. The
time-varying parameters were allowed to vary in the intervalsÆ1 = !cc 2 [�800 ; 800]
andÆ2 =

isq

îmd

2 [�10 ; 10]. The performance indexPp was chosen as thel2-induced
norm specification

Pp =

�
�
2I 0

0 I

�
;

and a bisectional search was performed to determine the lowest value of
 for which the
LMIs were feasible. With the above parameters a
 = 0:0011 was achieved. The left
hand side of (5.60) became close to singular making it possible to reduce the controller
order to 2.

6.2.3 Simulation results

Before implementation, the closed-loop behaviour was simulated in order to verify the
stability and performance. In the simulations the reference sequence was chosen as a
series of steps of a duration of 250 samples. For each step, the reference forisq was
allowed to take random values in the interval[�10 ; 10], while the reference forisd was
chosen from the interval[1 ; 3]. The system was disturbed by a load torquemL, which
was a sequence of uniformly distributed white noise filtered through a first-order filter
with a time constant of1=2 second. Subject to these external signals, the nonlinear model
generated theÆ1 andÆ2 sequences based on which the controller scheduling function
was calculated. Motivated by limitations of the hardware of the experimental setup, a
saturation on the control voltage�us;cc at 600 V was imposed.
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Figure 6.1:LPV current control, simulation. The top figure shows the real and imaginary
components of the control voltage generated by the controller. The middle figures show
the real and imaginary components,isd andisq, of the controlled currents, plotted with
full lines (—) along with their reference signals, plotted with dash-dotted lines (� � �).
The bottom plot showsÆ1 (—) andÆ2 (� � �) scaled to the interval[�1 ; 1]. As can be
seen, the tracking of the current reference satisfies the performance requirement except
when the control voltage saturates (at around 4 sec).

Figure 6.1 shows a simulation of the closed loop system. It is seen that the control loop
achieves good tracking, in accordance with the performance value achieved for all values
of the parameter variations, except when the control signal saturates. The parameter
variations are shown in the bottom plot in Figure 6.1, scaled to the interval[�1 ; 1].
It is noted that the generated stator voltage compensates for the parameter variations
throughout the allowed range.
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6.2.4 Experimental results
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Figure 6.2: LPV current control, experimental results. The top figures show the real
and imaginary components of the control voltage generated by the implemented LPV
controller. The lower figures show the controlled currentisq. The reference signals are
shown with dash-dotted lines (� � �), while the measurements are shown with full lines
(—). The left figures are with no load, while the right figures are recorded with a load
torque ofmL = 4Nm.

The controller was implemented on the laboratory setup described in Appendix A using
the algorithm discussed in Section 5.4.4.

In the first two experiments, the stator current reference was generated in open-loop, i.e.
there was no speed controller. The aim was to keep the magnetising current constant
and make the imaginary part of the stator current follow a series of steps. The first
experiment was conducted without load, while in the second experiment the motor shaft
was subjected to a load torque of4Nm. The results are shown in Figure 6.2, where it is
observed that the current tracks the reference steps adequately well. Looking at the stator
voltage, it is noted that the imaginary part of the voltage is significantly different between
the two experiments. This is due to the two different disturbance load torques, which
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cause the scheduling controller to yield significantly different control signals. Some
variation can be noted in the real part of the voltage as well, caused by the cross couplings.
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Figure 6.3:LPV current control in cascade with rotational speed controller, experimental
results. The top figure shows the real and imaginary components of the control voltage
generated by the implemented LPV controller. The middle and lower figures show the
controlled currentisq and the rotational speed, respectively. The reference signals are
shown with dash-dotted lines (� � �), while the measurements are shown with full lines
(—). The current reference signal was generated by an outer loop speed controller.

In the third experiment the speed loop was closed using an outer PI-controller. In this
case the stator current reference signals were thus generated by the PI-controller, and
the LPV controller had to track these signals. The results of this experiment is shown in
Figure 6.3. As can be seen, the control loop performs satisfactorily.
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6.3 Quasi-LPV control based on neural network mod-
elling

So far we have only dealt with control based on grey-box identification of physical mod-
els. In some cases it may however be desirable to work with nonlinear black-box models
such as the multi-layer perceptron (MLP) discussed in Section 2.5, especially if a physi-
cal model is hard to obtain. This may for instance be the case if the load torque is some
unknown nonlinear function of the rotational speed. In that case a neural network such
as an MLP could be used to obtain a nonlinear model of the system.

The problem is now how to design a controller for a system modelled in this way. The
classical approach has been to linearise the system model in some set of operating points
and design one or more linear controllers for the system in said points. As discussed in
Section 6.1 this approach has several hazards.

Other applications of neural network models in control theory are for instance for feed-
back linearisation [Chen and Khalil, 1995, He et al., 1998, Levin and Narendra, 1993]
and sliding mode control laws [Mears and Polycarpou, 1999]. They have also
been proven useful as observers [Kim et al., 1997], in direct adaptive control
[French and Rogers, 1998, Su and Annaswamy, 1998], and in other roles. However, not
much work has been done on achieving gain scheduling control based on artificial neural
networks. In [Lee et al., 1996] a previously tuned gain scheduling controller was ap-
proximated by a neural network which then replaced the gain scheduling controller in
the loop. Other approaches (e.g. [Chai et al., 1996]) use a neural network to schedule be-
tween a finite set of previously designed classical controllers, and have been somewhat
ad hoc.

[Suykens et al., 1999] (with the corrections in [Bendtsen and Trangbæk, 2001a]) presents
an analysis method of stability and performance of a closed-loop interconnection of two
MLPs. In other words, the suggestion is to let the system modelled by an MLP be
controlled by a controller also containing an MLP. The method is essentially based on
diagonal multipliers. The problem with this analysis method is that it is unclear how to
extend it to synthesis, in particular how to choose the MLP part of the controller. The
problem is that any coupling between the nonlinearities in the system and in the controller
are not exploited.

With the emergence of LPV control theory based on LMIs, as discussed in Chapter 5,
a door has been opened for an efficient approach to gain scheduling control based on
neural state space models. Such an extension of controller synthesis ideas from linear
theory to the nonlinear framework of neural networks is a fundamentally sound idea, of
course, but requires a method for reformulating the neural network model as an LPV
model suitable for controller synthesis. More specifically, we would like to transform an
MLP model into a quasi-LPV model on the LFT form as discussed in Section 6.1.1.

Some work along these lines has already been presented in [Suykens et al., 1995a] and
[Suykens et al., 1995b] with robustH1 control in mind. The idea was to split the MLP
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model into a linear part and a nonlinear part and then design a robustH1 controller for
the linear system treating the nonlinear part as an uncertainty.

However, the fact that the nonlinearities are actually known at the design stage means
that the controller can be designed by LPV methods taking advantage of this informa-
tion as well, achieving a nonlinear and less conservative controller. In addition to this
idea the method described in this section extends the results in [Suykens et al., 1995a,
Suykens et al., 1995b] by achieving less conservative bounds on the nonlinear part. This
improvement was presented in [Bendtsen and Trangbæk, 2000b].

6.3.1 From neural state space model to an LFT framework

We consider a system of the form

_~x = f(~x; ~u); ~y = C~x (6.18)

where~x 2 R
n is the state vector,~u 2 R

m is a control signal and~y 2 R
p is the output

vector for the system.f(�; �) : R
n � R

m ! R
n is an unknown continuous function of

the states and inputs describing the system dynamics.

As discussed in Section 2.5 we can approximate this function to a desired accuracy with
a single hidden layer MLP withl neurons (assumingl is chosen large enough):

f(~x; ~u) = �o�
�
�x~x+�u~u+ ~�b

�
+ "x

where�o 2 R
n�l and�x 2 R

l�n ;�u 2 R
l�m contain the output and hidden layer

weights, respectively.�(�) : R
l ! R

l is a continuous, diagonal, static nonlinearity.
~�b 2 R

l contains a set of biases which will allow us to model non-odd functions with
odd neuron functions�(�) such as the hyperbolic tangent. We assume it is possible to
achieve a smaller modelling error than the measurement noise by choosing the MLP large
enough and train it long enough on a sufficiently rich training set.

Consider a system for which a neural state space model has been trained according to the
guidelines given above, until"x is small enough to be ignored:

_~x = �o�
�
�x~x+�u~u+ ~�b

�
; ~y = C~x: (6.19)

We wish to rewrite the neural model (6.19) as the linear fractional transformation

_x = Ax+ Bu+Bu
(�)

� = �xx+�uu (6.20)

y = Cx

where theresidual function
(�) : R
l ! R

l is a static diagonal nonlinear-
ity, and where the coordinates(x; u) only differ from (~x; ~u) by the possible sub-
traction of an equilibrium point. The presented method was first discussed in
[Bendtsen and Trangbæk, 2000b].
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We assume that there exists an equilibrium,(~x; ~u) = (~xÆ; ~uÆ), i.e.

0 = �o�(�x~x
Æ +�u~u

Æ + ~�b):

We can then change the network coordinates in such a way that instead of the arbitrary
equilibrium point(~xÆ; ~uÆ) we have0 = �o�

0(0) (�0 is a new neuron function mapping
which will be defined shortly). Let the new coordinates be given asx = ~x � ~xÆ; u =
~u� ~uÆ. Then (6.19) can be written as

_x = �o�
�
�x(x+ ~xÆ) + �u(u+ ~uÆ) + ~�b

�
:

Here we will define a new bias vector�b = �x~x
Æ + �u~u

Æ + ~�b and the new neuron
function�0(�), where� is defined as in (6.20):

�0(�) = �
�
� +�x~x

Æ +�u~u
Æ + ~�b

�
� � (�b)

= �
�
�x(x+ ~xÆ) + �u(u+ ~uÆ) + ~�b

�
� � (�b) :

Adding and subtracting�o�(�b) in (6.19) then gives

_x = �o�
�
�x~x+�u~u+ ~�b

�
+�o� (�b)��o� (�b)

= �o

�
�
�
�x~x+�u~u+ ~�b

�
� � (�b)

�
+�o� (�b)

= �o�
0(�xx+�uu) = �o�

0(�):

�o�(�b) = 0, because this is in fact the equilibrium point.

Remark 6.4Note that, apart from providing a way to shift the operating point to
the origin, the main purpose of the steps given above is to remove the bias from
� instead of having to consider it as a constant disturbance input, as suggested in
[Suykens et al., 1995b].

Remark 6.5It should furthermore be noted that the method given above applies equally
well to sampled-data systems~xk+1 = f(~xk; ~uk). In this case the MLP equilibrium point
is of the form~xÆk+1 = f(~xÆk; ~u

Æ

k); 8k, but the definition of�0(�) turns out to be the same.

Now we can find the effective range of the input arguments to the neuron functions. This
is simply done by calculating

�j;max = sup
0�t�T

�
�j
xx(t) + �j

uu(t)
	
;

�j;min = inf
0�t�T

�
�j
xx(t) + �j

uu(t)
	

for 1 � j � l, wheret 2 [0;T ] is the time interval in which the training data have been
acquired and�j

x;�
j
u denote thej’th rows in the hidden layer weight matrices. Then we

have the following bounds on the active input range of thej’th neuron:

�j = �j
xx+�j

uu 2 [�j;min; �j;max] :
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Hence the neuron function response to the active input range belongs to the sector�0j 2
[kj;min ; kj;max] where

kj;min = inf
�j2[�j;min;�j;max]nf0g

�
�0j(�j)

�j

�
(6.21)

and

kj;max = sup
�j2[�j;min;�j;max]nf0g

�
�0j(�j)

�j

�
: (6.22)

In other words, thesector boundsare determined such that

kj;min�
2
j � �0(�j)�j � kj;max�

2
j : (6.23)

The actual expressions for these sector bounds must be found for each neuron function
individually and will in general depend on the bias, but the bounds obviously exist and
are the least conservative easily achievable bounds. A procedure for finding these for
tanh(�) neuron functions is given below in Section 6.3.2.

Once the sector bounds are found, we return to vector notation and define the nonlinear
function!(�) : Rn+m ! R

n as

!(�) = �0(�)� 1

2
(Kmin +Kmax) � (6.24)

whereKmin = diagfkj;min � �g andKmax = diagfkj;max + �g; 1 � j � l. � is a
small positive quantity included to make the sector bounds strict. It is observed that!(�)
belongs to the sector

(�1

2
(Kmax �Kmin) ;

1

2
(Kmax �Kmin)):

We can now write the equation for_x as

_x = �o�
0(�xx+�uu)

= �o

�
!(�) +

1

2
(Kmin +Kmax) �

�
= Ax+Bu+Bu
(�);

in whichA;B;Bu and
 are given by

A =
1

2
�o (Kmin +Kmax)�x (6.25)

B =
1

2
�o (Kmin +Kmax)�u (6.26)

Bu =
1

2
�o (Kmax �Kmin) (6.27)


(�) = 2 (Kmax �Kmin)
�1

!(�): (6.28)

Note that the diagonal scaling by1
2
(Kmax � Kmin) is included in order to make the

diagonal static nonlinearity
 belong to the sector(�1 ; 1).
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Remark 6.6When designing LPV or quasi-LPV controllers, we are interested in the
tightest possible boundsKmax � Kmin in order to avoid conservatism. Although the
LPV synthesis method described in Section 5.3 is essentially non-conservative, it is usu-
ally necessary to use simplified multipliers, for instance by disregarding knowledge on
the rate of change of the gains of the residual function, to make the synthesis imple-
mentable and to avoid controller switching. A quasi-LPV representation potentially in-
troduces further conservatism due to non-uniqueness of the nonlinear function represen-
tation. For the sake of the controller synthesis we are therefore interested in keeping
these gains from varying too much.

6.3.2 Sector bounds for tangent hyperbolic neuron functions
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Figure 6.4:Extraction of linear content from a hyperbolic tangent neuron.

In order to illustrate the procedure above we will provide an expression for the sector
bounds (6.21) and (6.22) for thetanh(�) neuron function, which is probably the most
popular neuron function employed in MLPs. Consider the neuron�j(�j) = tanh(�j+�b)



124 Quasi-LPV Current and Speed Controllers

where�b is the scalar bias on the input�j . Refer to Figure 6.4, where the top plot shows
the parallel translation of the original neuron function with bias�b to the origin. We will
without loss of generality assume that�b > 0. Only the section of the neuron function,
which corresponds to the input interval[�j;min; �j;max], is considered.

On the middle plot the straight lineskj;min�j andkj;max�j have been added. Since
d2 tanh(s)

ds2
< 0 for s > 0 it is immediately concluded thatkj;min is given by

kj;min =
�0j(�j;max)

�j;max

:

kj;max, on the other hand, can either be given by
�0j (�j;min)

�j;min
if the endpoint of the input

range is sufficiently close to zero, or by the slope of the tangent to the neuron function
which intersects0. The relationship between the bias and the argument�b for which said
tangent coincides with the neuron function has been found numerically as

�b = �0:00379�3b + 0:07274�2b � 1:5146�b:

A closed form most likely does not exist. The polynomial given here provides values of
kj;max with errors of the order of magnitude10�5.

Hence we have

kj;max =

8<
:

�0j(�b)

�b
; for �b > �j;min

�0j(�j;min)

�j;min
; for �b � �j;min:

Note that there is no loss of generality in the assumption�b > 0 since the fact that
the (original) neuron function is odd ensures that the expressions given above hold for
negative biases as well, with a few simple sign changes and swapping of minimum and
maximum values.

To summarise, this section has presented a systematic method for transforming an MLP
state space model of a nonlinear into a quasi-LPV model on the LFT form with a static
and diagonal residual gain function. The transformation is performed in a way making
the model suitable for LPV controller synthesis.

6.3.3 Uncertainty on the residual gains

Once the sector bounds for the nonlinearity have been determined we also have an ex-
plicit, smooth expression for the new set of neuron functions (given by eqns. (6.24) and
(6.28)). If there is any uncertainty in the knowledge ofx andu, then this will of course re-
sult in an uncertainty on the knowledge of
(�). However, if we assume that some bound
on the uncertainty of the inputs to the nonlinearity is known, then the above expression



6.4 Quasi-LPV speed controller 125

can be exploited to provide a bound on the uncertainty of the gain of the nonlinearity:


̂j(�j)

�j
=


j(�j)

�j
+ "
j ; j"
j j < �"
j

where
j is thej’th diagonal element of
. Such a bound can for instance be found
by conducting a numerical search over the range of all permissible values of�. The
bound on the measurement noise can be used together with�x and�u to estimate the
uncertainty on�; then this uncertainty can be used to calculate an upper bound on"
.

6.4 Quasi-LPV speed controller

In Section 6.2 a stator current controller was designed based on a physical model of the
induction motor. It is not always possible to construct a good model of a system based
on physical considerations. In that case a nonlinear black-box model approach can be
used, for instance using an MLP as a model. As discussed in Section 2.5, under certain
assumptions it is possible to train an MLP as a nonlinear state space model with the same
behaviour as the system using only input and output measurements.

When designing a speed controller the dynamics are heavily affected by the profile of the
load torque. Thus a controller designed by linear methods in one operating point may
not work in another operating point. This kind of problem can be overcome by obtaining
a nonlinear model capturing the behaviour in the entire range of operation, and then use
a nonlinear control design method.

In this section we will design a speed controller by the following steps:

� The system to be controlled is modelled by an MLP state space model.

� The obtained model is transformed into a quasi-LPV model on the LFT form by
the method presented in Section 6.3.

� A controller is designed by the method described in Section 5.4.3.

6.4.1 Strategy

The overall aim in this section is to design a controller for the rotational speed!r and the
magnetising current�im. The controller should work in the cascade coupling discussed
in Section 4.2. This is illustrated in Figure 6.5. The entire block on the right containing
the stator current controller, the power device, the induction motor system, as well as the
speed and flux observers is considered as the system to be controlled.
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Figure 6.5:Speed and magnetising current control scheme.

Ideally, by using a black-box modelling strategy of the entire block, the speed and mag-
netising current controller should be able to compensate for errors introduced by the
model used for the stator current control and to some extent for those introduced by the
observers. This of course requires that the system behaviour can be modelled by the
black-box model, and that an accurate model is indeed obtained.

The aim is to model the system by an MLP, and transform this into a quasi-LPV model
on the LFT form as discussed in Section 6.3. This model will then by used for designing
an LPV controller.

In order to simplify the controller, it is decided to assume that only the estimates of the
rotor speed!r and the magnitude�imR of the magnetising current are needed in order
to obtain a good model of the system. An estimate of the angular velocity of the flux
!mR could for instance have been used as an input to the model. In the final controller
design this would then have entered as a parameter when calculating the residual gains.
Similarly, measurements of the stator voltage could have been used.

A main factor in choosing the sampling frequency is the computational complexity of an
LPV controller. The stator current controller as well as the observers are implemented
at a sampling frequency of3kHz, but the complexity of the LPV controller and the
limitations of the available hardware makes it necessary to implement the controller at
a sampling frequency of just600Hz. Since the magnetising current is governed by
relatively slow dynamics, this is no problem for this part of the controller. On the other
hand it may limit the achievable performance for the speed controller slightly.

Two different types of model structures for MLPs were discussed in Section 2.5. The
NARX model structure assumes that the output can be accurately predicted based only
on old outputs and inputs. This limits the types of noise than can be modelled. On the
other hand, the NARMAX allows for a very general model structure. However due to
the possibility of convergence problems with the NARMAX model structure it is chosen
to work with a NARX model here. For this problem, this means that the load torquemL
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must be chosen as a function of the speed!r only. Providing measurements of the shaft
position to the model would allow for a position dependence as well, but it would still
not be possible to let the load torque depend dynamically on some unknown disturbance.

It is chosen to let the load torque be a nonlinear function of the speed:

mL = 8(1� 2

1 + e0:01!r
);

where!r is in radians per second andmL is in Newton meter. Notice that this infor-
mation is only used to control the DC motor simulating the load torque and is assumed
unknown in the modelling.

It is furthermore chosen to let the flux observer be the simple observer (4.15) based on
the current model. In rotor flux coordinates the part concerning the magnitudeimR of
the magnetising current�im is simply

_̂
imR =

Rr

Lr
(isd � îmR): (6.29)

If we assume thatisd is equal toisd;ref then this estimate is a known function of the
input, and there is no need to attempt to model it with the MLP. This is a reasonable
assumption, since the magnetising current dynamics are much slower than the stator
current dynamics. Thus the MLP is to predict!r based on old measurements of!r and
estimates ofimR.

6.4.2 MLP model

The first step in the control design procedure is to obtain an MLP model of the system.
This consists of the following steps:

� Create data sets for training and validation.

� Choose the model type and parameters, for instance the model order.

� Train the MLP.

� Validate the achieved model.

The reason that we need both a training set and a validation set is the inherent danger in
training neural networks ofovertraining. If the MLP has a large number of neurons and
therefore a large number of adjustable parameters, it may happen that the MLP learns
the behaviour of the training set including noise rather than that of the actual underlying
system. It is therefore necessary to test the behaviour of the MLP on a validation set.
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Training set

When black-box modelling a nonlinear system, it is not sufficient for the data to contain
a large number of frequencies in the range of interest. Since the dynamic behaviour can
vary between operating points and even with the magnitude of the signals, it is necessary
for the training set to cover a large number of operating points and signal amplitudes as
well. This can be achieved by letting the input signals be pseudo-random signals, for
instance steps of varying amplitude and length at various operating points.

It is chosen to create the data in partial closed-loop operation with a loosely tuned PI-
controller for the following reasons. Firstly, the signals obtained from closed-loop exper-
iments will mimic an environment which is closer to the one, in which the final controller
will operate. Secondly, the range of operation will typically be specified in terms of the
outputs rather than the inputs. Closed-loop operation allows us to make sure that data
from the entire range are obtained. Finally, it may not be desirable to impose open-loop
input signals which could cause the system to leave some allowed region of operation.

There are two problems with the closed-loop approach. Firstly, it is necessary to already
have a functioning controller available. On the other hand, this controller does not have
to achieve a good performance, so any loosely tuned controller which just stabilises the
system in the entire operating range is all that is needed. The second problem is that
the measured behaviour will be that of the closed-loop system rather than the open-loop
system to be controlled. This problem can be alleviated by adding small pseudo-random
signals to the output of the controller [Billings et al., 1992].

A section of the training set is shown in Figure 6.6. The reference for the speed was
varied in steps of random length and amplitude in the range from -250 rad/s to 250
rad/s. The speed was controlled by a loosely tuned PI-controller of the type discussed in
Section 4.2.1 generating a reference forisq . The reference for the magnetising current
was generated in a similar manner in the range from 0.8 A to 2.8 A. The magnetising
current was controlled by a P-controller generating a reference forisd as discussed in
Section 4.2.2. Random signals with an amplitude of 0.8 A were added to the stator
current references generated by these controllers.
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Figure 6.6:6000 samples of the training set. First (top) figure: measured speed. Second
figure: estimated magnitude of magnetising current. Third and fourth figures: references
for the stator current controller.

The control loop generating the data set operated at a sampling frequency of 3 kHz. The
data was sampled at 600 Hz after being filtered by first order filters with bandwidths of
100 Hz.

A validation set was generated in exactly the same way. Both the training and the vali-
dation set consist of 22000 samples. The data was scaled before the training:

~!r , ��1! (!r � !r;0);

~̂
imR , ��1i (̂imR � îmR;0);

~isd;ref , ��1d (isd;ref � isd;ref;0);

~isq;ref , ��1q (isq;ref � isq;ref;0);

where the�’s denote standard deviances of the respective signals, and the zero subscripts
denote a known operating point.
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Model type

Rather than usingisq;ref as an input to the model, we will attempt to precompensate for
the known nonlinearity in (4.6) by instead using the input

i� , isq;ref îmR:

As mentioned above we will attempt to model the system by a NARX MLP model as the
one discussed in Section 2.5.2, i.e., we wish to predict the next value of!r based on old
values of!r, îmR, isd;ref , andisq;ref . More specifically we wish to find weights�1,
�2, and�b such that

~̂!r;k ,Mm(zk;�1;�2;�b);� ~!r;k

whereMm is defined as in (2.21), and

zk ,

2
66666666666666666666666664

~!r;k�1
...

~!r;k�n
~̂
imR;k�1

...
~̂
imR;k�ni

~isd;ref;k�1
...

~isd;ref;k�nu
~i�;k�1

...
~i�;k�nu

3
77777777777777777777777775

;

with ~i� , ��1� (i� � isq;ref;0 îmR;0), where�� is the standard deviation ofi� .

We choose the neuron functions to be tangent hyperbolic. Alternatively we could have
chosen a combination of tangent hyperbolic and linear neuron functions, but the tangent
hyperbolic neuron can yield almost linear behaviour simply by making the input weights
small and the output weights large. The only thing remaining is now to specify the
number of neurons, the order of the modeln, and the number of delayed inputsnu
andni. These choices are left for the training, since some experimentation is usually
necessary.

Training

Since the training of an MLP is nonconvex problem, the initial values of the parameters
are important. This was found to be even more important, when the model is to be used
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for designing a quasi-LPV controller. It was found that many different models gave the
same performance in terms of summed squared prediction errors, but that in order to
construct a controller yielding a good closed-loop performance it was necessary for the
sector bounds (as discussed in Section 6.3.1) to be small. This is partially due to some
conservatism discussed below in Section 6.4.3.

Define theinput matrix

Mi ,
�
zs zs�1 : : : zn+1

�
and thetarget matrix

Mo ,
�
~!r;s ~!r;s�1 : : : ~!r;n+1

�
;

wheres is the number of samples in the training set.

The linear (ARX) model minimising the least-squares prediction error performance index

Jl ,
1

s� n

sX
i=n+1

�Tl;i�l;i;

where the prediction error�l is defined as

�l;k , ~!r;k � ~̂!r;l;k;

is given by

~̂!r;l;k+1 =Mlzk;

with the linear gainMl defined as [Elbert, 1984]

Ml ,MoM
y

i :

One could train the MLP to only learn the nonlinear part, i.e. defining the targets for
the MLP as the prediction errors of the ARX model. This could potentially reduce the
number of neurons needed as well as improving the chances of converging to a global
minimum, but it was found that this lead to unpleasantly large sector bounds.

Instead the ARX model is used to generate the initial weights for the MLP training. We let
the initial MLP model approximate the ARX model by letting�b = 0 and�2�1 =Ml.
We perform the factorisation ofMl such that�2 is very large and�1 is very small. Then
Mm(z) �Mlz.

A number of MLPs were trained with various numbers of neurons and model orders
using the Levenberg-Marquardt training algorithm to minimise the prediction error

Jm ,
1

s� n

sX
i=n+1

�Tm;i�m;i;
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where the prediction error�m is defined as

�m;k , ~!r;k � ~̂!r;k:

A reasonable prediction error for both the training and validation sets was obtained with
4 neurons, a fourth order model (n = 4), ni = 1, andnu = 2.

Model validation

Figure 6.7 shows the prediction error for 500 samples of the training set. The top figure
shows the prediction error for the MLP model, the bottom figure shows the prediction
error for the ARX model. Figure 6.8 shows the same for the validation set. It may be
difficult to see any significant difference in the plots but the unscaled prediction error
performances show that the MLP predicts the system behaviour better than the ARX
model:

Model Training set Validation set
MLP, �!Jm = 1:04 1:02

ARX, �!Jl = 1:71 1:82

The performances indicate that the MLP model has captured at least some of the non-
linear behaviour of the system, and that, since the validation set prediction error is not
larger than for the training set, it has not been overtrained.
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Figure 6.7:Prediction error for 500 samples of the training set. The top figure shows the
prediction error for the MLP model, the bottom figure shows the prediction error for the
ARX model.
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Figure 6.8:Prediction error for 500 samples of the validation set. The top figure shows
the prediction error for the MLP model, the bottom figure shows the prediction error for
the ARX model.

An alternative way of validating the model is to test the auto-correlation of the prediction
error. Ideally there should be no correlation between the prediction errors. Figure 6.9
shows the scaled auto-correlation of the prediction error for the validation set. The plot
indicates that the prediction error of the MLP model is not entirely uncorrelated, but on
the other hand it is much better than for the linear model.
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Figure 6.9:Scaled auto-correlation of the prediction error for the validation set. The top
figure shows the auto-correlation of the prediction error for the MLP model, the bottom
figure shows the same for the ARX model.

Another way of testing the obtained model is to use it as an open-loop simulator, i.e.
replacing the delayed measurements of!r with the values predicted by the model. This
is shown in Figure 6.10 for the training set and in Figure 6.11 for the validation set.
The top figures show the simulation using the MLP model. The middle figures show the
simulation using the ARX model. The bottom figures show the simulation error for the
MLP model.
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Figure 6.10:Open-loop simulation of the speed using the MLP model (top figure) and the
ARX model (middle figure) for 6000 samples of the training set. The solid lines show the
simulated speed, the dotted lines show the actual (measured) speed. The bottom figure
shows the simulation error for the MLP model.
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Figure 6.11:Open-loop simulation of the speed using the MLP model (top figure) and
the ARX model (middle figure) for 6000 samples of the validation set. The solid lines
show the simulated speed, the dotted lines show the actual (measured) speed. The bottom
figure shows the simulation error for the MLP model.

The simulations show that the MLP model is a much better open-loop simulator than the
ARX model. On the other hand, it does still show some systematic errors.

The overall conclusion of the validation procedure is that an MLP model of the system
has been obtained which yields satisfactory performance both as a predictor and as an
open-loop simulator.

6.4.3 Controller design

The aim is now to transform the MLP model into a quasi-LPV model on the LFT form
suitable for LPV control design. The first step is to perform the transformation discussed
in Section 6.3.1. The sector bounds were found by the method presented in Section 6.3.2
as
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j kj;max � kj;min

1 0.0114
2 0.0092
3 0.0062
4 0.0035

The transformation provided a model on the form

�
�k+1

zu;k

�
=

�
A0 Bu Bi B1 B2

Cu 0 Di Du1 Du2

�
2
666664

�k

wu;k

~̂
imR;k

uk
uk�1

3
777775 ;

where

�k ,

2
664

~!r;k
~!r;k�1
~!r;k�2
~!r;k�3

3
775 anduk ,

�
~isd;ref;k
~i�;k

�
;

andwu;k = 
(zu;k), where
(�) is a static nonlinearity. This is also illustrated in Figure
6.12, whereq�1 denotes the delay operator.

M

~!r


zu wu

q�1

q�1

~isd;ref

~i�

~̂
imR

Figure 6.12:MLP model on LFT form.

In order to design the controller this system was expanded into the one in Figure 6.13.
The imR observer block contains the discrete time version of equation (6.29) replacing
isd with isd;ref . A reference signal~!r;ref for the speed is subtracted from the actual
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speed yielding a control errore. This control error is low-pass filtered by the filter
fp yielding part of the performance output. The performance filterfp is a first order
filter with a bandwidth of 5 Hz. Before feeding the control error to the controllerK,
measurement noise!n with variance0:5��1! is added. The controller outputs the control
signals~isd;ref and~i� .

K

i

M

mR

observer

ezp1

zp2

~!r;ref

~!r





c

wn

zu wu

q�1

q�1
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~i�

zcwc

~̂
imR

Figure 6.13:Setup for LPV speed controller synthesis.

The final thing to notice about the setup is that there is no reference signal to or perfor-
mance signal from the magnetising current. Instead a penalty has been put on~isd;ref by
outputting it as the performance signalzp2. This is due to the fact that an early attempt

to design a controller for both~!r and~̂imR resulted in a controller relying heavily on
~isd;ref for speed control. From our knowledge of the nonlinearities, we know that this
is not desirable, but this information is hidden in the residual gains
, and the control
design procedure only employs knowledge of the bounds on the gains, thus ignoring this
knowledge of the nonlinearities. The setup in Figure 6.13 results in a controller setting
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~isd;ref � 0. This control signal is then replaced by the control signal from a traditional
magnetising current controller. This method is an ad hoc approach and most likely not
the best approach. One problem is that the speed controller assumes~isd;ref � 0, where
it would probably be a better idea to include~isd;ref as a measurable disturbance. This
should certainly be attempted in future versions.

The overall result is an eighth order model: four orders from the MLP model, two from
the input delays, one from the observer, and one from the performance filter. A controller
K and a scheduling function
c were designed using the method described in Section 5.4
attempting to minimise thel2-gain from~!r;ref and!n to zp1 andzp2. In order to obtain
a controller which could be implemented in real-time it was necessary to disregard the
two residual gains with the smallest sector bounds. It was possible to solve the LMI with
anl2-gain less than0:016. However, due to numerical problems in solving the quadratic
matrix inequality it was necessary to increase the bound to
a = 0:018 in order to obtain
a controller. For comparison, designing a controller disregarding the residual gains, an
l2-gain less than
l = 0:011 could be achieved.

There are two sources of conservatism to the method employed here. First we consider
the residual gains as a diagonal gain with no correlation between the individual gains.
Finding a way to first obtain information of the correlation and secondly using this in
a finite-dimensional scheme would be a lot more troublesome. Secondly, the rate of
variation in the residual gains are not taken into account. It would seem a relatively
straight-forward task to expand the procedure discussed in Section 6.3 in order to obtain
bounds on the rate of variation. However, this is a matter for further research.

The obtained controller is on the form (5.57)-(5.58), where the scheduling subspaceSc
depends on�k, which is a diagonal gain matrix such that

�kzu;k = 
(zu;k):

This poses an algebraic loop problem, sincezu;k depends onuk. Thus, in order to
computeSc at sample k it is necessary to knowuk, and in order to computeuk it is
necessary to knowSc. If the sampling frequency is sufficiently high, and the controller
has a reasonably low high-frequency gain, then the control signal can be expected to
change only slightly from sample to sample, anduk�1 can be used as an estimate ofuk
in computing�k. Alternatively, an iterative scheme could be used to alternately compute
uk and�k in an algebraic loop until the results (hopefully) converge. Since the sample
rate is mainly limited by the computational power of the PC, this latter approach does
not seem viable.

The controller was implemented using the first of these approaches, i.e. assuminguk+1 �
uk when computing the scheduling subspace.
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6.4.4 Closed-loop experiments

A closed-loop experiment was performed using the LPV speed controller. The result
is shown in Figure 6.14, where the measured speed is shown by the solid line and the
speed reference is shown by the dotted line. The reference moves in small steps from
�250rad=s to 200rad=s and then back to�250rad=s in one large step.
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Figure 6.14: Closed-loop experiment using the LPV speed controller. The speed
reference is shown by the dotted line. The three figures show the behaviour with
three different settings for the magnetising current. Top:imR;ref = 2:8A. Middle:
imR;ref = 2:2A. Bottom: imR;ref = 1:0A.

The experiment is performed for three different degrees of magnetisation,imR;ref =
2:8A, imR;ref = 2:2A, andimR;ref = 1:0A respectively. The behaviour is satisfac-
tory for all three situations, although forimR;ref = 1:0A the performance is somewhat
degraded for large (positive and negative) speeds. This is to be expected since the achiev-
able torque is limited by the allowable stator current.

For comparisons an experiment is performed with a PI-controller tuned by the Ziegler-
Nicholls relay method around!r = 0rad=s. The results are shown in Figure 6.15.
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Figure 6.15:Closed-loop experiment using a PI speed controller. The speed reference
is shown by the dotted line. The three figures show the behaviour with three different
settings for the magnetising current. Top:imR;ref = 2:8A. Middle: imR;ref = 2:2A.
Bottom: imR;ref = 1:0A.

As seen the performance of the PI-controller is somewhat better than that of the LPV
controller. This is partially due to the PI-controller being implemented at a sample rate
of 3kHz, whereas the LPV controller was implemented at a sample rate of600Hz,
although this cannot explain the entire difference. However, the main purpose of this
section was to demonstrate how a controller could be designed for a nonlinear system
using a systematic approach from MLP modelling to LPV controller design.

6.5 Summary

In this chapter the quasi-LPV approach was used to construct both a stator current con-
troller and a speed controller. The quasi-LPV approach makes it possible to use LPV
control methods on very general nonlinear systems.
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A stator current controller was designed based on the model obtained in Chapter 3 and a
satisfactory performance was achieved.

The speed controller was based on an MLP model. The MLP was used to form a non-
linear state space model of a system including the induction motor, the stator current
controller, and the flux observer. It was shown that the MLP model had captured the
behaviour of the system. The MLP model was transformed into a quasi-LPV model on
the LFT form, and a speed controller was designed yielding a reasonable performance.
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Chapter 7

ROBUST LPV
SPEED

CONTROLLER

The LPV controller design methods described in Chapter 5 assumed that the time-varying
parameters were fully known. However, very often the parameters are only known with
some small uncertainty. This would for instance be the case if the parameters are mea-
sured under the influence of measurement noise. In the case of quasi-LPV control the
parameters can depend on the system states, and then any uncertainty in the knowledge
of the states gives rise to an uncertainty on the parameters.

Very little research has been done on the subject of synthesising controllers for LPV
systems with small uncertainties on the time-varying parameters. In [Helmersson, 1995]
a method is given for the situation where some parameters are fully known and oth-
ers are completely unknown except for some bounds. The unknown parameters lead
to non-convex rank constraints on the multipliers, i.e. we have to enforce for instance
P = ~P�1. Such constraints can in lucky cases be solved, for instance, using al-
ternating projections, as discussed in for instance [Grigoriadis and Skelton, 1996] and
[Beran and Grigoriadis, 1996]. This approach was used for a robust flux observer design
in [Trangbæk, 2000]. This approach can also be used for the situation, where the time-
varying parameters are known except for some small uncertainty, simply by splitting the
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time-varying parameter into a known part and a small unknown part. It is however be-
lieved that the method presented below is simpler and will yield better result, possibly
after further developments.

In the approach described in Chapter 5 we can achieve robustness by ensuring that the
scheduling function is void. Consider the scheduling function in (5.36). IfN� has no
rows or ifV+ has no columns then the scheduling function�c is void, and the controller
is actually robust to the parameter variations. These constraints correspond tomc = 0 or
kc = 0, respectively. These are again equivalent toP � ~P�1 orP � ~P�1, respectively.
Unfortunately this will rarely be the case when just solving the synthesis LMIs. Again
some non-convex approach would have to be applied.

In Section 7.1 we will give an alternative approach for the case when the parameters
are known except for some uncertainty, which is small compared to the actual parameter
variations. We will end up with constraints on the multipliers, which are also non-convex,
but are, however somewhat easier to satisfy than the rank constraints.

In order to simplify matters, we shall restrict ourselves to diagonal residual gains and
diagonal multipliers. Diagonal residual gains arise, for instance, when using the trans-
formation method for MLPs presented in Section 6.3. Restricting ourselves to diagonal
multipliers restores the conservatism, which was removed by using the full block S-
procedure rather than more traditional LPV control methods as discussed in Section 5.1.
It is however hoped that this can serve as a first step towards a less conservative method.

In Section 7.2 the method is applied to the same speed controller problem as in Section
6.4 but this time taking uncertainty on the residual gains into account.

7.1 Robust LPV control of systems with diagonal vari-
ation

In this Section we will consider the problem of designing LPV controllers for the system
(5.11), with

wu(t) = �(t)zu(t);

where� is a diagonal matrix, which is known in real-time except for some small diagonal
uncertainty. We shall assume that all matrices are real.

If for instance�(t) depends on parameters which can be measured in real-time, then
noise on these measurements result in uncertainty on�(t), i.e. instead of using� to
form the scheduling function, we have to use an estimate�̂.

Due to the LFT representation achieved through the full block S-procedure, the uncer-
tainty only affects (5.9) in the analysis LMIs.
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Hence, assuming both the system and the controller to be on the standard LFT form,
instead of ensuring (5.9), we need to fulfill2

6664
� 0

0 �c(�̂)

I 0

0 I

3
7775
T

Pe

2
6664

� 0

0 �c(�̂)

I 0

0 I

3
7775 > 0: (7.1)

If this can be fulfilled for all(�; �̂), then the quasi-LPV controller will stabilise the
system and achieve the required robust quadratic performance.

The problem that will be addressed in this section is thus to find additional constraints
on the multipliersP and ~P such that we can satisfy (7.1) even in the presence of un-
certainty on�(t). To simplify the derivations, we will only consider constant, diagonal
multipliers.

Theorem 7.1(Robust diagonal LPV control)

Consider the LPV system (5.11) with

wu = �(t)zu; �(t) 2 ��;

where

�� , f� : � = diag1�i�nufÆig; jÆij < 1g:

Assume that�(t) is known in real-time except for some small diagonal uncertaintyE,
i.e.

�̂(t) = �(t) +E(t); E = diag1�i�nufeig; jeij < �ei:

If there existX;Y and

Q = diag1�i�nufqig < 0 (7.2)

R = diag1�i�nufrig > 0 (7.3)

~Q = diag1�i�nuf~qig < 0 (7.4)

~R = diag1�i�nuf~rig > 0 (7.5)

satisfying the inequalities (5.21)–(5.23) with

S = 0; ~S = 0 (7.6)

qi(1 + �ei)
2 + ri > 0; 1 � i � nu (7.7)

~q�1i (1 + �ei)
2 + ~r�1i > 0; 1 � i � nu: (7.8)

and for eachi = 1::nu oneof the following three conditions holds
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1.

(qi � ~q�1i )(ri � ~r�1i ) > 0 (7.9)

2.

(qi > ~q�1i ) and (ri < ~r�1i ) (7.10)

and

((1 + �ei)
2qi + ~r�1i )2(~q�1i + ~r�1i )(qi + ri) >

((1 + �ei)qi � ~r�1i )2�e2i (~r
�1
i � ri)(qi � ~q�1i ) (7.11)

3.

(qi < ~q�1i ) and (ri > ~r�1i ) (7.12)

and

((1 + �ei)
2~q�1i + ri)

2(qi + ri)(~q
�1
i + ~r�1i ) >

((1 + �ei)~q
�1
i � ri)

2�e2i (ri � ~r�1i )(~q�1i � qi) (7.13)

then there exists a controllerK(�̂) on the form (5.13) withwc = �c(�̂(t))zc(t) that
yields robust quadratic performance with performance indexPp.

Proof: It is first of all noted that the inequalities in (5.20) are implied by (7.2)–(7.8),
and that the estimated residual gains�̂ only appear in the inequalities involving the
extended multiplierPe. In order to prove the result, we hence need to show that with
the extra requirements given above, (7.1) can be fulfilled. If that can be shown, then
Theorem 5.10 ensures the existence of the desired controllerK(�̂). We constructN;Pe
and�c(�) as in the proof of Theorem 5.10, thoughU must be constructed in a particular
way, which will be addressed below. Then (5.9) is satisfied, which is equivalent to2

64
�
�

I

�T
P

�
�

I

�
V��c + V+

�T
c V

T
�

+ V T
+ �T

c N
�1
�

�c +N�1
+

3
75 > 0:

By a Schur argument, this is equivalent to2
6664
�
�

I

�T
P

�
�

I

�
V��c + V+ 0

�T
c V

T
�

+ V T
+ N�1

+ �T
c

0 �c �N�

3
7775 > 0:



7.1 Robust LPV control of systems with diagonal variation 149

Via a congruence transformation, this expression can be rewritten as2
6664
�
�

I

�T
P

�
�

I

�
� V�N�V

T
�

V+ V�N�

V T
+ N�1

+ �T
c

N�V
T
�

�c �N�

3
7775 > 0: (7.14)

Furthermore, sinceP fulfills (5.20) or equivalently

�
�

I

�T
P

�
�

I

�
=

�
�

I

�T
P

�
�

I

�
� V�N�V

T
�

+ V�N�V
T
�
> 0

we have by Schur complement that2
64
�
�

I

�T
P

�
�

I

�
� V�N�V

T
�

V�N�

N�V
T
�

�N�

3
75 > 0:

This implies that we can apply the Schur complement to (7.14) and obtain the equivalent
inequality

�
N�1
+ �T

c

�c �N�

�
��

 �
�

I

�T
P

�
�

I

�
� V�N�V

T
�

!�1
�T > 0 (7.15)

where� =
�
V+ V�N�

�T
. With the diagonal structure of the multiplier, we can define

the matrix

D , �Q�+R� V�N�V
T
�

and write (7.15) as �
N�1
+ �T

c

�c �N�

�
��D�1�T > 0;

and (5.36) as�c(�) = N�V
T
�
D�1V+, respectively. We will now chooseU in the

following way. LetU =
�
T1 T2

�
such thatV� =

�
� I

�
T1 andV+ =

�
� I

�
T2. If

necessary we can perturb~P such that it is nonsingular. Since the columns ofU form an
orthogonal basis of the image ofP � ~P�1 (if this matrix happens to be singular, we can
again perturb~P such that it is nonsingular as well), it is possible to partition it such that

U =
�
T1 T2

�
=

"
T1u 0 T2u 0

0 T1l 0 T2l

#

in which the number of rows ofU is 2l and the upper and lower parts each havel rows,
and where each column contains exactly one 1 and2l � 1 zeros. IfL1 is some2l � 2l
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diagonal matrix then the productT T
1 L1T1 is a diagonal matrix with the elements ofL

corresponding to the negative entries inP � ~P�1 in its main diagonal. Similarly, ifL2 is
some diagonal matrix of appropriate dimensions then the productT1L2T

T
1 is a diagonal

2l � 2l matrix with zero entries everywhere except for the entries corresponding to the
negative entries inP � ~P�1. T2 has the corresponding effect for the positive entries in
P � ~P�1.

Tedious calculations based on equations (5.27) and (5.29) show thatD is of the form

D = diag1�i�l
�
Æ2i maxfqi; ~q�1i g+maxfri; ~r�1i g

	
(7.16)

sinceU rearranges the negative and positive diagonal elements ofP � ~P�1 intoN� and
N+, respectively, which means thatN� contains exactly those elements whereqi�~q�1i <

0; ri � ~r�1i < 0. With perfect knowledge about� it is then easy to choose�c(�) such
that (7.15) is fulfilled, for instance as in (5.36) where the off-diagonal blocks are made
to vanish, leaving a positive definite block diagonal matrix on the left hand side.

However, as stated above we are not scheduling the controller based on the exact�,
but rather on the estimatê�. This prompts us to define the diagonal matricesD̂; V̂�
andV̂+ analogously with (7.16) and (5.29) (replacingÆi with Æ̂i) and rewrite (7.15) with
�c(�̂) = N�V̂�(�̂)T D̂(�̂)�1V̂+(�̂) instead ofN�V�(�)TD(�)�1V+(�):

"
N�1
+ V̂ T

+ D̂�1V̂�N�

N�V̂
T
�
D̂�1V̂+ �N�

#
�

�
V T
+D�1V+ V T

+D�1V�N�

N�V
T
�
D�1V+ N�V

T
�
D�1V�N�

�
> 0: (7.17)

Let ~D denote the matrix

~D ,

�
�̂

I

�
D̂�1

�
�̂

I

�T
�
�
�

I

�
D�1

�
�

I

�T
:

This allows us to rewrite (7.17) as2
64T T

2 (N�1 �
�
�

I

�
D�1

�
�

I

�T
)T2 T T

2
~DT1T

T
1 NT1

T T
1 NT1T

T
1
~DT2 �N�(N

�1
�

+ V T
�
D�1V�)N�

3
75 > 0:

Some straightforward computations reveal that~D consists of diagonal submatrices

~D =

�
~D11

~D12

~D12
~D22

�
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given by

~D11 = diag1�i�l

(
(Æ̂2i � Æ2i )rmi

(Æ̂2i qmi + rmi)(Æ2i qmi + rmi)

)
;

~D12 = diag1�i�l

(
(Æ̂iÆ

2
i � Æ̂2i Æi)qmi + (Æ̂i � Æi)rmi

(Æ̂2i qmi + rmi)(Æ2i qmi + rmi)

)
;

~D22 = diag1�i�l

(
(Æ2i � Æ̂2i )qmi

(Æ̂2i qmi + rmi)(Æ2i qmi + rmi)

)
;

where

qmi , maxfqi; ~q�1i g andrmi , maxfri; ~r�1i g; 1 � i � l: (7.18)

Applying the Schur complement lemma to the inequality above and simplifying gives
the following equivalent matrix inequality:

T T
2

 
N�1 �

�
�

I

�
D�1

�
�

I

�T!
T2

+ T T
2
~DT1

�
N�1
�

+ V T
�
D�1V�

��1
T T
1
~DT2 > 0: (7.19)

Let

G� , N�1 �
�
�

I

�
D�1

�
�

I

�T
andG+ , N�1 +

�
�

I

�
D�1

�
�

I

�T
;

such that (7.19) can be written as

T T
2 G�T2 + T T

2
~DT1(T

T
1 G+T1)

�1T T
1
~DT2 > 0 (7.20)

in which, using (7.16), it is seen thatG� andG+ must be of the form

G� =

�
G�11 G�12

G�12 G�22

�
andG+ =

�
G+11 G+12

G+12 G+22

�
;

where

G�11 = diag1�i�l

�
1

qi � ~q�1i
� Æ2i
Æ2i qmi + rmi

�
; (7.21)

G�12 = diag1�i�l

�
� Æi

Æ2i qmi + rmi

�
; (7.22)

G�22 = diag1�i�l

�
1

ri � ~r�1i
� 1

Æ2i qmi + rmi

�
: (7.23)
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Now Lemma B.4 (in the Appendix) implies that

T T
2
~DT1(T

T
1 G+T1)

�1T T
1
~DT2 = T T

2 �T2;

where

� =

�
�1 0

0 �2

�
;

which means that (7.20) is equivalent to

T T
2 (G� +�)T2 > 0: (7.24)

� is diagonal and�1;i = �2;i = 0 for the i’s for which qi > ~q�1i andri > ~r�1i . We
also know from Lemma B.4 that�1;i = ~d212;i=g+22;i for the i’s for which qi > ~q�1i
andri < ~r�1i and�i+l;i+l = ~d212;i=g+11;i for thei’s for which qi > ~q�1i andri < ~r�1i
(lower-case letters with subscripti refer to thei’th diagonal element of the matrix denoted
by the corresponding upper-case letter). Furthermore, the pre- and postmultiplication by
T T
2 andT2, respectively, eliminates the elements for whichqi < ~q�1i andri < ~r�1i .

By a permutation (7.24) can then be seen to be equivalent to the fulfilment of a number
of 1� 1 or 2� 2 matrix inequalities of the form

qi > ~q�1i ; ri > ~r�1i :

�
g�11;i g�12;i
g�12;i g�22;i

�
+

�
�1;i 0

0 �2;i

�
> 0 (7.25)

qi > ~q�1i ; ri < ~r�1i : g�11;i + �1;i > 0 (7.26)

qi < ~q�1i ; ri > ~r�1i : g�22;i + �2;i > 0: (7.27)

As mentioned above we have�1;i = �2;i = 0 for thei’s for which qi > ~q�1i ; ri > ~r�1i .
Furthermore, the submatrix ofG� can be seen to be positive definite by combining
equations (7.21)–(7.23) with the basic assumptions (7.8), which imply thatÆ2qi + ri >

0; Æ2~q�1i + ~r�1i < 0. Hence, (7.25) is automatically satisfied.

This leaves us with (7.26) and (7.27), which represent a set of simple scalar inequali-
ties. By combining (7.21) and (7.23) with the definition of~D12 we can rewrite these
inequalities as

1

qi � ~q�1i
� Æ2i

Æ2i qi + ~r�1i
+ �1

�
1

ri � ~r�1i
+

1

Æ2i qi + ~r�1i

�
�1

> 0

for qi > ~q�1i ; ri < ~r�1i , and

1

ri � ~r�1i
� Æ2i

Æ2i ~q
�1
i + ri

+ �2

�
1

qi � ~q�1i
+

1

Æ2i ~q
�1
i + ri

�
�1

> 0
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for qi < ~q�1i ; ri > ~r�1i , in which

�1 ,
ÆiÆ̂i(Æi � Æ̂i)qi + (Æ̂i � Æi)~r

�1
i

(Æ̂2i qi + ~r�1i )(Æ2i qi + ~r�1i )
;

�2 ,
ÆiÆ̂i(Æi � Æ̂i)~q

�1
i + (Æ̂i � Æi)ri

(Æ̂2i ~q
�1
i + ri)(Æ2i ~q

�1
i + ri)

:

Finally, applying Lemma B.5 to each of these inequalities shows that they are satisfied if

((1 + �ei)
2qi + ~r�1i )2(~q�1i + ~r�1i )(qi + ri)�

((1 + �ei)qi � ~r�1i )2�e2i (~r
�1
i � ri)(qi � ~q�1i ) > 0

if qi > ~q�1i andri < ~r�1i or

((1 + �ei)
2~q�1i + ri)

2(qi + ri)(~q
�1
i + ~r�1i ) >

((1 + �ei)~q
�1
i � ri)

2�e2i (ri � ~r�1i )(~q�1i � qi)

if qi < ~q�1i andri > ~r�1i . Hence, (7.24) will be fulfilled if for eachi = 1::nu one of the
three conditions in equations (7.9)-(7.13) is satisfied, which is what we wanted to show.
�

Remark 7.2Normally, if P � ~P�1 loses rank, i.e.(qi � ~q�1i )(ri � ~r�1i ) = 0 for some
i, it would be more efficient to construct an extended multiplier of lower dimension.
However, to keep the proof simple, it was chosen to ignore this possibility, since there
is no loss of generality in assuming thatP � ~P�1 is indeed invertible. If necessary, it
is always possible (due to the strictness of the matrix inequalities) to perturbP � ~P�1

in the right direction, such that there is no need to schedule according to the particular
diagonal elements which are the cause of loss of rank, i.e.�c will be independent of
these elements.

The conditions will usually not hold automatically when just solving the LMI (5.21)–
(5.23) so it is necessary to find some additional convex constraints which will guarantee
the fulfilment of one of the three conditions.

Of course the convex constraints�
R I

I ~R

�
> 0; Q+ ~Q > �2I (7.28)

would guarantee (7.9), but would also be far too conservative.

The three conditions in (7.9), (7.10), and (7.12) discriminate between the signs ofqi�~q�1i
andri�~r�1i . If these have the same sign for alli, then there will be no scheduling function
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and the controller will be robust. To assure (7.11) or (7.13) in the other cases, convex
constraints of the form

R + (I + E)Q > 0 (7.29)
~Q+ (I + E) ~R < 0 (7.30)

E = diag1�i�nu�i; �i > 2�ei + �e2i (7.31)

can be used.

The best way to synthesise the robust controller is probably to keep increasing the rele-
vant elements ofE until the solution of the LMI leads to a solution fulfilling the condi-
tions (7.11) or (7.13). At each iteration, the multipliers should be kept small, for instance
by minimising the trace ofR � ~Q. This is a linear objective minimisation problem as
discussed in Section 2.3.1. Alternatively the following lemmas can be used to provide
sufficient condition beforehand, thereby only requiring one solution of the LMI.

Lemma 7.3Assume thatar � ~r�1 > r > 0 and~q�1 < q < 0, and let� be larger than
the largest real root of the polynomial

Pa(�p) = a2�3p +
�
�e2(a2 � a3 � a) + a2 � a� 2a�e

�
�2p +

2�e2(a� a3)�p + �e2(a� a3 � a2 + 1) (7.32)

in �p and assume also1 + � > (1 + �e)2.

Then

r + (1 + �)q > 0; ~r�1 + (1 + �)~q�1 > 0 (7.33)

implies

((1 + �e)2q + ~r�1)2(~q�1 + ~r�1)(q + r) >

((1 + �e)q � ~r�1)2�e2(~r�1 � r)(q � ~q�1) (7.34)

Proof: Given in the appendix on page 177.�

Lemma 7.3 can be used to assure (7.11). The convex constraintairi > ~r�1i can be
implemented as �

R G

G ~R

�
> 0; (7.35)

where

G = diag1�i�nufa
�1=2
i g: (7.36)

Lemma 7.3 can of course also be used for guaranteeing (7.13) with the substitution
q $ ~q�1i ; ~q�1 $ qi; r $ ~r�1i ; ~r�1 $ ri. Unfortunately the constraintai~r

�1
i > ri

is not jointly convex inr and~r. However, there seems to be no way around this kind of
constraint. A convex conservative constraint is given by the following proposition
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Proposition 7.4Assumea > 0; b > 0; d > 0, and� > 0. Then

�2a+ db < 2�d) ab < d (7.37)

By this propositionai~r
�1
i > ri is implied by�2i ri + ai~ri < �iai.

Corollary 7.5 Consider the system (5.11) withwu = �(t)zu where � =
diag1�i�nufÆig; jÆij < 1. Assume that�(t) is known except for some small uncertainty

e, i.e. �̂(t) = �(t) +E(t); E = diag1�i�nufeig; jeij < �ei.

Choose someAf = diag1�i�nufaig > 0; � = diag1�i�nuf�ig > 0 and E =
diag1�i�nuf�ig > 0 such that for eachi = 1::nu, �i is larger than the largest real
root of the polynomial

Pai(�p) = a2i �
3
p +

�
�e2(a2i � a3i � ai) + a2i � ai � 2ai�e

�
�2p +

2�e2(ai � a3i )�p + �e2(ai � a3i � a2i + 1) (7.38)

and larger than�e2i + 2�ei.

If there existX;Y and

P =

�
Q S

S� R

�
~P =

�
~Q ~S
~S� ~R

�
(7.39)

satisfying the inequalities (5.21)–(5.23) with

Q = diag1�i�nufqig < 0

R = diag1�i�nufrig > 0; S = 0

R+ (I + E)Q > 0
~Q = diag1�i�nuf~qig < 0

~R = diag1�i�nuf~rig > 0; ~S = 0
~R�1 + (I + E) ~Q�1 > 0"

R A
�1=2
f

A
�1=2
f

~R

#
> 0

�2R+Af
~R < 2�Af :

(7.40)

Then there exists a controllerK(�̂) on the form (5.13) withwc = �c(�̂(t))zc(t) that
yields robust quadratic performance with performance indexPp.

If Af and� are chosen a priori then we are left with conditions that can easily be imple-
mented in an LMI solver. If the�ei’s are small then any large choice ofAf should work.
Notice that ifai is large and�ei is small then the roots of (7.38) are approximately equal
to the roots of

�3p + (1� ea)�
2
p � 2ea�p � ea (7.41)

whereea = ai�e
2
i . This would suggest choosingai proportional to�e�2i .
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Example 7.6With �ei = 0:01 andai = 100, �i � 0:11 will suffice.

Remark 7.7In LMI problems, slacking on one condition will often increase the range
of the feasibility set drastically. So for instance by allowing a small degradation of
performance, it will often by possible to greatly increase the robustness.

In [Bendtsen and Trangbæk, 2000a] an example is given of a control design for a simple
system, where the above method significantly improves the performance.

Remark 7.8Since the requirements for robustness given above are only related to the
multipliers, the theory works equally well for continuous and discrete time.

7.2 Robust speed controller

In this section we will use the robust LPV synthesis presented in Section 7.1 to design a
robust version of the speed controller presented in Section 6.4.

Using the MLP model obtained in Section 6.4, the first step is to obtain an estimate of
the uncertainty on the residual gains. As discussed in Section 6.4.3 we consider two
residual gains with sector bounds0:0114 and0:0092 respectively. We will assume that
!r is known except for a measurement noise bounded by0:5 rad/s. Using the method
described in Section 6.3.3 we find that this results in uncertainties on these gains of3:1%
and2:5% respectively.

The same synthesis as in Section 6.4.3 was performed but now the multipliers were
chosen as

P =

2
664
�(1 + �1)

�1r1 0 0 0

0 �(1 + �2)
�1r2 0 0

0 0 r1 0

0 0 0 r2

3
775

~P =

2
664
�(1 + �1)~r1 0 0 0

0 �(1 + �2)r2 0 0

0 0 ~r1 0

0 0 0 ~r2

3
775 :

By iteratively performing the synthesis, checking for robustness using (7.9)-(7.13), and
increasing the corresponding� if robustness was not achieved, a robust controller was
designed. It was necessary to increase the bound thel2-gain,
, from 0:018 to 0:034.
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The resulting multipliers were given byr1 = 3:8, r2 = 3:0, ~r1 = 4:0, ~r2 = 10:7,
�1 = 0:15, and�2 = 0:16.

The same experiment as in Section 6.4.4 was performed now using the robust speed
controller. The result is shown in Figure 7.1.
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Figure 7.1:Closed-loop experiment using the robust LPV speed controller. The speed
reference is shown by the dotted line. The three figures show the behaviour with three
different settings for the magnetising current. Top:imR;ref = 2:8A. Middle: imR;ref =
2:2A. Bottom: imR;ref = 1:0A.

Comparing with Figure 6.14 it is seen that there are only small differences in the perfor-
mance. If anything, the robust LPV controller is slightly harder tuned than the nominal
LPV controller. This is due to the fact that the bound on thel2-gain for the nominal LPV
controller had to be increased due to numerical problems in solving the quadratic matrix
inequality. This was not necessary for the robust LPV controller, since increasing the�’s
improved the numerics.
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7.3 Summary

In this chapter a novel method was presented for robust LPV design for systems where
the time-varying parameters are uncertain. It was assumed that the time-varying gain was
diagonal and that the diagonal elements were known except for some small uncertainty.
A theorem was presented guaranteeing the existence of an LPV controller yielding robust
quadratic performance under the condition of a new type of constraints on the multipliers.
Even though these constraints were nonconvex, it was demonstrated how the theorem
could be used as a basis for controller synthesis.

The method was applied to the design of a speed controller, which was robust to measure-
ment errors of the speed. There was no significant difference compared to the controller
designed in Chapter 6.



Chapter 8

CONCLUSIONS

This thesis demonstrated how the theory of linear parameter varying (LPV) systems
could be applied to several subproblems in induction motor control resulting in a novel
flux observer and novel current and speed controllers. Various contributions to the field
of LPV control theory were also presented. This chapter summarises and concludes on
the work presented in this thesis and gives recommendations for further work. Section
8.1 gives a summary of the thesis. Section 8.2 concludes on the work in general. Finally,
Section 8.3 gives suggestions for further work.

8.1 Summary of the thesis

Chapter 3 described the dynamic model the induction motor. The part of the model
describing the currents was written as a complex second order state space model with
the shaft speed as a time-varying parameter. The laboratory setup on which experiments
were performed was also discussed.

In Chapter 4 the rotor flux oriented control scheme for the induction motor was described.
First it was discussed how the dynamical equations of the motor could be simplified
by writing them in a reference system following the angle of the rotor flux. Then the
rotor flux oriented control method was described. A short discussion of flux and speed
observers was also given.

Chapter 5 reviewed a recently developed LPV synthesis method found in [Scherer, 2001],
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the so-called full block S-procedure. An equivalent discrete-time version of the theory
was developed. Then the special symmetry of the current equations of the induction
motor was investigated. It was shown that controllers and observers for LPV systems
with this type of symmetry can be assumed to have the same type of symmetry without
loss of performance. Finally a discrete-time flux observer was designed and tested on the
laboratory setup. A good performance was achieved with very little need for tuning.

In Chapter 6 it was described how the quasi-LPV approach allows the use of LPV theory
for a very general class of nonlinear systems. The approach was then applied to the
design of a stator current controller. Again, a good performance was achieved with very
little need for tuning. A new method for transforming a neural network state space model
into a quasi-LPV model suitable for control design was then presented. This method was
then applied to the design of a speed controller based on a neural network model. The
main purpose of the speed controller design was to demonstrate how a controller could
be designed for a nonlinear system using a systematic approach from neural network
modelling to LPV controller design.

In Chapter 7 a novel method was presented for robust LPV design for systems where the
time-varying parameters are uncertain. The method was applied to the design of a speed
controller, which was robust to measurement errors of the speed.

8.2 Conclusions

The following general conclusions on LPV controller design can be drawn from the work
in this thesis:

� The LPV control theory provides a systematic way to approach controller design
for nonlinear systems. Once an LPV model of the system to be controlled has been
obtained, it is straightforward task to design the controller.

� Good results could be achieved without adding a large number of filters as is often
necessary with robustH1 techniques such as�-synthesis. Consequently the
resulting controllers were of low order and very little tuning was needed.

With respect to the application of LPV control to induction motor control the following
conclusions can be drawn:

� LPV controllers are computationally heavy considering the fast dynamics of small
and medium sized induction motors. Thus actual industrial implementation may
still be premature except for large motors. However, it is expected that the coming
decade will bring faster and cheaper processors making implementation of LPV
controllers a viable option.
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� The described synthesis method provides numerical solutions to the control design
rather than solutions given directly in terms of the motor parameters. This is a
disadvantage of LPV methods compared to for instance feedback linearisation as
in [Rasmussen et al., 1997] or backstepping design as in [Rasmussen et al., 1999].

� Good results could be obtained for the flux observer and the stator current con-
troller using only a minimum amount of trial and error.

8.3 Recommendations for further work

The following topics would benefit from further examinations:

RobustnessThe robustness of the proposed flux observer and stator current controller
to parameter variations should be further investigated, for instance through simula-
tion studies. Since the LPV methods do not rely on inversion or exact cancellation
of the nonlinearities, good robustness properties should be expected.

Numerics Constructing the LPV controllers involved solving the quadratic matrix in-
equality in Lemma 2.9. This can be numerically problematic even for small prob-
lems. A suggestion for improving the numerics was given in Lemma 5.12, but
even better results could probably be achieved by finding an alternative to the con-
struction given in the proof of Lemma 2.9.

Saturation The stator voltage saturates, constituting an input saturation for the stator
current controller. In addition the stator current has to be limited to protect the
motor. This constitutes an input saturation for the speed controller. These satura-
tions were not included in the LPV models, mainly because it is difficult to do this
in a meaningful way. In [Scorletti and Ghaoui, 1998] it is suggested to make the
controller robust to the difference between the commanded input and the actual
input. However, this will probably yield very conservative solutions.

In addition the work could be extended in the following directions:

Rates of changeIf bounds on the rates of variation of the time-varying parameters are
known, then this can be exploited by making the Lyapunov matrix parameter-
dependent, see [Rugh and Shamma, 2000] and the references therein. This can be
used to reduce conservatism and thus obtain a better performance. For the pre-
sented flux observer and stator current controller, a bound on the rate of variation
of the shaft speed could be achieved through assumptions on the load torque and
by considering the bound on the stator current. It would probably also be fairly
simple to obtain bounds on the rate of variations for the quasi-LPV model obtained
from a neural network model, as described in Section 6.3, through a gridding of
the parameter space.
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Multipliers for robust LPV It would probably be a straightforward though tedious task
to replace the requirements (7.6) with requirements similar to (7.2)-(7.5), i.e. al-
lowing S to be diagonal. This would in some cases reduce conservatism greatly.

One unified controller It may be possible to avoid the cascaded controllers and instead
attempt to design one large LPV controller for the entire system. The success of
this attempt would probably depend on the choice of quasi-LPV representation for
the system.

Neural network implementation The main source of computational complexity of the
implemented LPV controllers was the computation of the scheduling function and
the subsequent inversion due toDc22 being non-zero (see Section 5.4.4). As an
alternative a neural network could be trained to mimic these functions. If a suffi-
ciently small network yielding a good approximation in the entire range of oper-
ation could be obtained, then it would only be necessary to implement the multi-
plications and tangent hyperbolic functions of the neural network, which in many
cases could reduce the computational complexity.



Appendix A

EXPERIMENTAL

SETUP

In this thesis several experiments will be performed on a laboratory induction motor sys-
tem illustrated in Figure A.1. The system was designed in the student project described
in detail in [Skougaard and Wenzel, 1997].

induction
motor

power
device

trans-
ducers

u  , iss

encoder

rθ
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Figure A.1:Laboratory induction motor system.
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The PC runs the control program to be tested providing a reference voltage for the in-
duction motor power device and a torque reference to the DC motor power device. The
brushless DC motor can be used to simulate a load torque on the shaft. Since the PC re-
ceives measurements of the rotor angular position from the encoder this can for instance
be a position or speed dependent load.

A.1 Induction motor

The induction motor is a Bauknecht ATB drive with two pole pairs (Zp = 2), a squirrel-
cage rotor, and three star connected stator windings. Its nominal data are

Nominal power 1.5 kW
Nominal speed 1420 rpm
Nominal torque 10 Nm
Nominal current at 380 V 3.6 A

In [Rasmussen, 1995] the parameters of the induction motor were identified at standstill
at20ÆC under the assumptionLs = Lr as

Ls = Lr = 0:352H; Lm = 0:341H; Rs = 5:0
; Rr = 3:3
: (A.1)

A.2 Power device

The power device is of the VSI-type described in Section 3.5. It is a VLT5003 from
Danfoss A/S. It has been customised, so that the voltage references can be set via the
ISA bus of the PC. The voltages are generated by pulse-width modulation (PWM) with
a switching frequency of 15 kHz.

A.3 Current transducers

The three stator currents are measured by LEM-modules, which are essentially trans-
formers. A current transducer is illustrated in Figure A.2. The stator current induces a
smaller current in the LEM-module, which is converted to an equivalent voltage through
a resistor. This voltage can then be measured by the AD-converter in the PC.
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LEM module

stator
current

voltage

Figure A.2:LEM module for stator current measurement.

A.4 Voltage transducers

The stator voltages are measured through a star connected resistor bridge as shown in
Figure A.3. Each leg of the bridge consists of two resistors providing a voltage division.
The resistors are chosen so large that no significant current is drawn. The neutral is
isolated and is therefore equivalent to the stator neutral. Since the stator voltages are
generated by PWM, it is necessary to filter the measurements before feeding them to the
AD-converter in the PC. A second-order analog hardware filter with a cut-off frequency
of 1 kHz was chosen.
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Figure A.3:Resistor bridge for stator voltage measurement.

A.5 Encoder

An encoder from Heidenhahn is connected to the shaft making it possible to measure the
position or speed. The encoder essentially consists of a disc with alternately opaque and
transparent sectors and two pairs of light transmitters and receivers. As the disc rotates,
the light from the transmitters will either be interrupted be the disc or allowed to pass
though to the receiver depending on the position. By measuring the light at two slightly
offset positions it is possible not only to know the number of sectors which have passed
but also the direction. Counting the number of sectors that have passed in a sampling
period gives an estimate of the speed. This particular encoder has 1024 transparent
sectors. At a sampling frequency of 3kHz this gives a resolution of the mechanical speed
of approximately 4.6 rad/s at each sample. By low pass filtering a more accurate estimate
can be obtained.

A.6 DC motor

The DC motor used to simulate a load torque is an Indramat permanent magnet motor
from Mannesmann/Rexroth. It is driven by a power device containing a current controller
receiving its references from a torque controller. The reference load torque is supplied
as an analog signal from the DA-converter in the PC.
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A.7 PC

The PC controlling the entire system is a Siemens-Nixdorff Scenic Pro M6 with a 200
MHz Pentium Pro processor and 32 MB of RAM. To allow measurements of stator cur-
rents and voltages, a DataTranslation DT2829 I/O-card has been inserted. The sampling
frequency of the control system has been chosen as 3 kHz.

The control system is designed in MatLab Simulink [MathWorks, Inc., 1993] with Real
Time Workshop [MathWorks, Inc., 1994] (RTW). The RTW converts the Simulink pro-
gram to a C-program, which is then compiled to work with a VxWorks kernel and down-
loaded over the internet to the PC using a Tornado/VxWorks software package from
WindRiver [WindRiver Systems, 1995]. When the program is running on the PC, data
can be collected over the internet using the Stethoscope package from Real-Time Inno-
vations [Real-Time Innovations, ]. The system allows selected parameters of the control
system to be changed in real-time from within the Simulink environment.
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Appendix B

LEMMAS AND

PROOFS

This appendix contains lemmas with no appropriate place in the main thesis as well as
proofs which were deemed too long and tedious for the main thesis.

B.1 Lemmas

B.1.1 Lemma B.1: Matrix Inversion Lemma

Lemma B.1 (Matrix Inversion Lemma) e.g. [Helmersson, 1995]

LetA andD be non-singular. Then

(D + CAB)�1 = D�1 �D�1C(BD�1C +A�1)�1BD�1 (B.1)
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B.1.2 Lemma B.2: Partitioned matrix inversion

Lemma B.2 (Partitioned matrix inversion) [Horn and Johnson, 1985]

LetA be a square matrix partitioned as

A =

�
A11 A12

A21 A22

�
;

whereA11 andA22 are square. IfA11 is nonsingular thenA is nonsingular if and only if
theSchur complement� , A22�A21A

�1
11 A12 is nonsingular. Furthermore the inverse

is then

A�1 =

�
A�111 +A�111 A12�

�1A21A
�1
11 �A�111 A12�

�1

���1A21A
�1
11 ��1

�
:

Dually, if A22 is nonsingular thenA is nonsingular if and only if theSchur complement
�̂ , A11 �A12A

�1
22 A21 is nonsingular. Furthermore the inverse is then

A�1 =

"
�̂�1 ��̂�1A12A

�1
22

�A�122 A21�̂
�1 A�122 +A�122 A21�̂

�1A12A
�1
22

#
:

B.1.3 Lemma B.3: Full rank multiplier extension

Lemma B.3LetX;Y; Z 2 H
n�n and assume thatY; Z; andX�Y �1 are non-singular

and choose

X =

"
X Z

Z�
�
Z�1(X � Y �1)Z��

�
�1

#
: (B.2)

ThenX is non-singular and

X�1 =

�
Y �
� �

�
(B.3)

Proof: It is seen thatY is the Schur complement of
�
Z�1(X � Y �1)Z��

�
�1

in X .
Thus the nonsingularity ofX is implied, and the upper left part ofX�1 is Y as seen
from the Partitioned matrix inversion lemma (B.2).�

B.1.4 Lemma B.4

Lemma B.4Consider the index setsI�; I+;J� andJ+ with cardinalitiesnI ; l�nI ; nJ
and l � nJ , respectively, defined such thatI� [ I+ = J� [ J+ = f1; : : : ; lg � N.
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Let ei; 1 � i � l, denote thei’th unit coordinate vector ofRl . LetT1 =

�
T1u 0

0 T1l

�
2

R
2l�nI+nJ andT2 =

�
T2u 0

0 T2l

�
2 R

2l�2l�(nI+nJ ), where the columns ofT1 andT2

are unit coordinate vectors ofR2l , be defined by

T T
1uei = 0, i 2 I+; T T

1lei = 0, i 2 J+;
T T
2uei = 0, i 2 I�; T T

2lei = 0, i 2 J�:

Furthermore, letD andG be any two matrices such that

D =

�
D11 D12

D12 D22

�
2 R

2l�2l

and

G =

�
G11 G12

G12 G22

�
2 R

2l�2l

where each of the submatricesD11; D12; : : : ; G22 2 R
l�l are diagonal.

Then, assuming thatT T
1 GT1 is invertible, we have

T T
2 DT1(T

T
1 GT1)

�1T T
1 DT2 = T T

2 �T2

where

� =

�
diag1�i�lf�1ig 0

0 diag1�i�lf�2ig

�
:

Furthermore, those elements of� that do not vanish by the pre- and postmultiplication
byT2 are given by

i 2 I+ \ J+ ) �1i = �2i = 0;

i 2 I+ \ J� ) �1i = d2i =g2i; (B.4)

i 2 I� \ J+ ) �2i = d2i =g1i;

in whichdi; g1i andg2i are thei’th diagonal elements ofD12; G11 andG22, respectively.

Proof: First of all it is noticed thatT T
2 DT1 = T T

2

�
0 D12

D12 0

�
T1 since

�
T T
2u 0

0 T T
2l

� �
D11 D12

D12 D22

��
T1u 0

0 T1l

�
=�

T T
2uD11T1u T T

2uD12T1l
T T
2lD12T1u T T

2lD22T1l

�
=

�
0 T T

2uD12T1l
T T
2lD12T1u 0

�
(B.5)
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becauseT1 andT2 do not have non-zero entries on the same rows and hence these par-
ticular products must vanish.

Let us define

� , T1(T
T
1 GT1)

�1T T
1 =

�
�11 �12
�12 �22

�
;

where�11;�12;�22 2 R
l�l . It is deduced that each of the submatrices�11;�12 and�22

are diagonal with

�11;i = g�111;i for i 2 I� \ J+;
�11;i = 0 for i 2 I+;

�22;i = g�122;i for i 2 I+ \ J�; (B.6)

�22;i = 0 for i 2 J+;
�12;i = 0 for i 2 I+ [ J+:

This is seen by noticing thatT T
1 GT1 is equivalent, via a permutation, to a block di-

agonal matrix where each sub-block is either of dimension2 � 2 arising from ele-
ments corresponding toi 2 I� \ J�, or 1 � 1 arising from elements corresponding
to i 2 (I+\J�)[ (I�\J+). Matrix inversion preserves this equivalence, and pre- and
postmultiplying byT1 andT T

1 then produces a matrix where the newly formed elements
are rearranged back to the corresponding positions inG.

In light of (B.5) it can then be seen that

T T
2 DT1(T

T
1 GT1)

�1T T
1 DT2 =

�
T T
2uD12�22D12T2u T T

2uD12�12D12T2l

T T
2lD12�12D12T2u T T

2lD12�11D12T2l

�
:

The off-diagonal blocks in this matrix can furthermore be seen to be zero, since�12;i = 0
for i 2 I+ [ J+ and pre- and postmultiplying byT T

2l andT2u eliminates the elements
corresponding toi 2 I� [ J�. That leaves us with

T T
2 DT1(T

T
1 GT1)

�1T T
1 DT2 =

�
T T
2uD12�22D12T2u 0

0 T T
2lD12�11D12T2l

�
=

T T
2

�
D12�22D12 0

0 D12�11D12

�
T2 = T T

2 �T2:

Looking at the diagonal elements, we see that pre- and postmultiplying byT T
2u andT2u

eliminates the elements corresponding toi 2 I�, while pre- and postmultiplying by
T T
2l andT2l eliminates the elements corresponding toJ�. This implies that only those

diagonal elements inD12�11D12 andD12�22D12 corresponding toi 2 J+ andi 2 I+,
respectively, will not vanish by this operation. Since�11 and�22 have the structures
given in (B.6) we deduce that the non-vanishing elements inT T

2 �T2 must be of the form
(B.4), which completes the proof.�
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B.1.5 Lemma B.5

Lemma B.5Consider the inequality

1

q � ~q�1
� Æ2

Æ2q + ~r�1
+ �

�
1

r � ~r�1
+

1

Æ2q + ~r�1

�
�1

> 0; (B.7)

where� = ÆÆ̂(Æ�Æ̂)q+(Æ̂�Æ)~r�1

(Æ̂2q+~r�1)(Æ2q+~r�1)
. Assuming thatjÆj < 1; jÆ � Æ̂j < e; 0 > q > ~q�1; (1 +

e2)q + r > 0, and~r�1 > r > 0, (B.7) is satisfied if

((1 + e)2q + ~r�1)2(~q�1 + ~r�1)(q + r) > ((1 + e)q � r)2e2(~r�1 � r)(q � ~q�1):

Proof: Rewriting (B.7) as a single fraction gives

t1 + t2 + t3

(q � ~q�1)(Æ̂2q + ~r�1)2(Æ2q + ~r�1)(Æ2q + r)
> 0;

where

t1 = (Æ̂2q + ~r�1)2(Æ2q + ~r�1)(Æ2q + r);

t2 = �(q � ~q�1)(Æ̂2q + ~r�1)2(Æ2q + r)Æ2;

t3 = (ÆÆ̂(Æ � Æ̂)q + (Æ̂ � Æ)r)2(r � ~r�1)(q � ~q�1):

It is seen that the denominator is positive sinceq > ~q�1 andq + ~r�1 > q + r > 0 by
assumption. Furthermore it is obvious that the inequality is hardest to satisfy forÆ ! 1,
so we will let Æ = 1. Similarly, the worst case for̂Æ is for Æ̂ ! Æ + e, so we will let
Æ̂ = 1 + e and examine the numerator inequalityt1 + t2 > �t3 or:

((1 + e)2q + ~r�1)2((q + ~r�1)(q + r)� (q � ~q�1)(q + r))

> ((1 + e)q � r)2e2(~r�1 � r)(q � ~q�1): (B.8)

In other words, if (B.8) is satisfied, then (B.7) will be satisfied as well. It is now easy to
see that (B.8) can be simplified to

((1 + e)2q + ~r�1)2(~q�1 + ~r�1)(q + r) > ((1 + e)q � r)2e2(~r�1 � r)(q � ~q�1)

which was what we wanted to show.�

B.2 Proofs

B.2.1 Proof of Lemma 2.9

Proof: [Scherer, 2001].
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()): First observe that

im

�
I

A�XB + C

�?
= im

�
�(A�XB + C)�

I

�
(B.9)

for anyX . Using this with Lemma 2.7 we see that (2.11) is equivalent to�
�(A�XB + C)�

I

��
P�1

�
�(A�XB + C)�

I

�
> 0: (B.10)

Pre- and postmultiplication byB` in (2.11), and byA` in (B.10) we arrive at (2.12) and
(2.13).

((): First define the nonsingular matricesK andL so thatAK =
�
A1 0

�
andBL =�

B1 0
�
, whereA1 andB1 have full column rank. With

D =

�
D11 D12

D21 D22

�
, K�CL (B.11)

(2.11) can be written as2
664

I 0

0 I

A�1XB1 +D11 D12

D21 D22

3
775
� �
L 0

0 K��

��
P

�
L 0

0 K��

�
| {z }

�

2
664

I 0

0 I

A�1XB1 +D11 D12

D21 D22

3
775 < 0:

With the definitions

R ,

2
664

I 0

0 0

0 I

D21 0

3
775 ; S ,

2
664

0

I

D12

D22

3
775 ; T ,

2
664
�D�

21

�D�

22

0

I

3
775 ;

Z , A�1XB1 +D11 2 C
rZ�cZ ;

this can be written as �
R

�
I

Z

�
S

��
�

�
R

�
I

Z

�
S

�
< 0: (B.12)

SinceA1 andB1 are of full column rank, the mappingX ! A�1XB1 +D11 is surjec-
tive, and we can now considerZ in (B.12) as the unrestricted unknown. By observing

BLL�1B` = BB` = 0 we conclude thatL�1B` =

�
0

�

�
. Using this along with

C = K��DL�1 andP =

�
L�1 0

0 K�

��
�

�
L�1 0

0 K�

�
we can rewrite (2.12) as

S��S < 0: (B.13)
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Similarly, (2.13) can be written as

T ���1T > 0: (B.14)

Performing the multiplication in (B.12) and using a Schur complement argument we find
that it is equivalent to�

I

Z

�� �
R��R�R��S(S��S)�1S��R

� �I
Z

�
< 0: (B.15)

We now only need to show that this has a solution inZ. Since

imT = im
�
R S

�?
; (B.16)

Lemma 2.7 gives

in�

��
R S

��
�
�
R S

��
=

in�(�)� in�(T
���1T ) = in�(P )� 0 = m: (B.17)

Applying Lemma 2.6 then yields

in�
�
R��R�R��S(S��S)�1S���R

�
=

in�

��
R S

��
�
�
R S

��
� in�(S

��S) = m� (m� cZ) = cZ : (B.18)

It is thus possible to find a nonsingularZ1 2 C
cZ�cZ and aZ2 fulfilling�

Z1

Z2

�� �
R��R�R��S(S��S)�1S��R

� �Z1

Z2

�
< 0: (B.19)

A solution to (B.15) is thenZ = Z2Z
�1
1 . �

B.2.2 Proof of Lemma 5.17

Proof:

DenoteM as

M =

�
Mr �Mi

Mi Mr

�

and partitionM�1 as

M�1 =

"
M̂r1 �M̂i1

M̂i2 M̂r2

#
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comformably to the partitioning ofM . FromMM�1 = I we have

MrM̂r1 �MiM̂i2 = I; (B.20)

MiM̂r1 +MrM̂i2 = 0; (B.21)

MrM̂r2 �MiM̂i1 = I; (B.22)

�MiM̂r2 �MrM̂i1 = 0: (B.23)

Define

X , M̂i2 � M̂i1; Y , M̂r1 � M̂r2:

Subtracting (B.22) from (B.20) yields

�
Mr Mi

� �X
Y

�
= 0: (B.24)

Adding (B.21) and (B.23) yields

�
Mr Mi

� � Y

�X

�
= 0: (B.25)

Now (B.24) and (B.25) imply�
Mr �Mi

Mi Mr

� �
Y X

X �Y

�
= 0:

SinceM is nonsingular this impliesX = 0 andY = 0 or equivalentlyM̂i2 = M̂i1 and
M̂r1 = M̂r2, which is exactly what we needed to show.�

B.2.3 Proof of Lemma 5.20

Proof: From the proof of Lemma 5.17 we have

M�1 =

"
M̂r �M̂i

M̂i M̂r

#
:

FromMM�1 = I andM�1M = I we have

MrM̂r �MiM̂i = I; (B.26)

MiM̂r +MrM̂i = 0; (B.27)

M̂rMr � M̂iMi = I; (B.28)

M̂iMr + M̂rMi = 0: (B.29)
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Then we immediately have

TC (M)TC
�
M�1

�
= (Mr + jMi)(M̂r + jM̂i) =

MrM̂r �MiM̂i + j(MiM̂r +MrM̂i) = I + 0 (B.30)

as well as

TC (M)TC
�
M�1

�
= (M̂r + jM̂i)(Mr + jMi) =

M̂rMr � M̂iMi + j(M̂iMr + M̂rMi) = I + 0 (B.31)

which are equivalent to (5.66).�

B.2.4 Proof of Lemma 7.3

Proof: Due to (7.33), it is then seen that

((1 + �e)2q + ~r�1)2(q + r)
�

1 + �
~r�1

> ((1 + �e)q � ~r�1)2�e2(~r�1 � r)

�
q +

1

1 + �
~r�1
�

(B.32)

implies (7.34). Since

(1 + �e)2q + ~r�1

q + 1
1+�

~r�1
= (1 + �)

(1 + �e)2q + ~r�1

(1 + �)q + ~r�1
> 1 + �

we observe that (B.32) is implied by

((1 + �e)2q + ~r�1)(q + r)~r�1� > �e2((1 + �e)q � ~r�1)2(~r�1 � r) (B.33)

which is again implied by (due to (7.33))�
(1 + �e)2

1 + �
(�r) + ~r�1

�
�2

1 + �
r~r�1 � �e2

�
1 + �e

1 + �
r + ~r�1

�2

(~r�1 � r): (B.34)

With b , ~r�1=r this is equivalent to

b
�
b(1 + �)� (1 + �e)2

�
�2 � �e2 (b(1 + �) + 1)

2
(b� 1) � 0: (B.35)

The left hand side can be written as a third order polynomial in� with the coefficient for
the third order term being positive:

Pb(�) = b2�3 +
�
�e2(b2 � b3 � b) + b2 � b� 2b�e

�
�2

+ 2�e2(b� b3)�+ �e2(b� b3 � b2 + 1): (B.36)
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Then (B.35) is equivalent toPb(�) � 0. Now choose� larger than the largest real root of
Pa(�). ThenPb(�) is positive forb = a. All we have to show now is thatPb(�) > 0 for
1 > b > a. With � fixed,Pb is a third degree polynomial inbn , b � 1 with a negative
coefficient for the third order term and a positive constant term. The only way thatPb
can be negative for some0 > bn > a� 1 is then if all the roots ofPb in bn are real and
positive. This requires the coefficients for the second order and first order terms being
positive and negative respectively. But the coefficient of the first order term can be shown
to be positive.�
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decision variables, 12, 13, 91, 92
decoupling, 47, 49
DGKF, 62
direct component, 46, 49
discrete time, 97
discrete time analysis, 81
discretisation, 79, 80, 97, 114
Dualisation Lemma, 11

eigenvalue problem, 15
eigenvalues, 11
electrical angle of rotation, 31
electrical rotational speed, 35, 43
electro-magnetic torque, 32
elimination lemma, 12
Elimination Lemma for quadratic ma-

trix inequalities, 12, 71, 84
encoder, 43, 164, 166
example motor, 43, 98, 114
extended multiplier, 74

feasibility problem, 15, 16
feasibility set, 12, 13, 156
feasible, 12
flux estimation, 50
flux observer, 50, 93
friction, 35
full block S-procedure, 64, 68, 83, 114,
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gain scheduling, 108
generalised eigenvalue problem, 15
generator, 14, 77

herm, 9
Hermitian, 10
Hermitian multiplier extension, 71
Hermitian part, 9
hyperbolic tangent, 20, 120

implementation, 86, 117
induction motor, 28, 86, 164
inertia, 11
initialisation, 130
input matrix, 131
input weight matrix, 21
interior point method, 16
inverter, 41
iron loss, 29

Jacobian linearisation, 108
JL-observer, 51, 99

Kubota’s speed observer, 53, 102

leakage constant, 46
Left annihilator, 10
Levenberg-Marquardt, 22, 131
LFT, 17, 63, 113
LFT form, 96
linear fractional transformation, 17, 120
linear matrix inequality, 13
linear objective minimisation problem,

15, 154
linear parameter varying, 61, 62
linear parameter varying system, 62
linearisation scheduling, 108
LMI, 13, 62
LMI toolbox, 15
load torque, 35, 43, 127, 164
lower linear fractional transformation,

17
LPV, 62, 65, 70, 81, 112
LPV controller, 63
LPV observer, 99
Lyapunov matrix, 16

Lyapunov stable, 16

magnetising current, 37, 46
magnetising current control, 49
magnetising current estimation, 50
magnetising current observer, 50, 93
MatLab, 15
matrix inequality, 12
Matrix Inversion Lemma, 169
maximal torque, 48
measurement noise, 97
mechanical angle, 31
MLP, 20, 119, 120, 125–127, 130
model validation, 132
moment of inertia, 35
multi-layer perceptron, 20, 119
multiplier, 68, 72
multipliers, 64
mutual inductance, 34

NARMAX, 24, 126
NARX, 22, 126, 130
negative definite, 10
negative semidefinite, 10
negative subspace, 11
neural network, 20
neural state space model, 120
neuron, 20
neuron function, 20
neutral, 29
non-strict, 15
nonlinear autoregressive model with ex-

ogenous inputs, 22
nonlinear autoregressive moving aver-

age model with exogenous in-
puts, 24

number of neurons, 21

on, 11
open-loop simulator, 23
output targets, 21
output weight matrix, 21
overtraining, 127

parameter dependency, 66, 69
parameter vector, 62
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parameters, 164
Partitioned matrix inversion, 170
PC, 167
perceptron, 20
performance functional, 22
performance index, 65, 72, 81
pole pairs, 28
polytopic, 64, 112
position sensor, 40
positive definite, 10
positive semidefinite, 10
positive subspace, 10
power device, 41, 164
pseudo-random, 128
PWM, 110, 164

quadratic form, 10
quadratic matrix inequality, 12, 14, 78,

140, 157, 161
quadrature component, 46, 49
quasi-convex, 16
quasi-LPV, 108, 126
quasi-LPV model, 108
quasi-LPV system, 108

rank constraints, 145
rates of variation, 161
real symmetric, 13
recurrent MLP, 24
Redheffer star product, 17, 18
reference frame, 39, 112
referred parameters, 46, 112
relaxed quasi-LPV model, 109
residual function, 120
residual gains, 63, 110, 113
Riccati equations, 62
Riccati inequality, 16, 62
Right annihilator, 10
robust quadratic performance, 64, 65,

81, 84
robustness, 161
rotating coordinate system, 39, 112
rotating reference frame, 39, 112
rotational speed, 35
rotor, 28

rotor coils, 30
rotor flux, 34
rotor flux coordinates, 46, 112
rotor flux observer, 93
rotor flux oriented control, 47, 93
rotor inductance, 34
rotor resistance, 33, 40
rotor shaft, 41
rotor time constant, 46
rotor windings, 30
RQP, 65, 81

sampling frequency, 79, 98, 110, 111,
115, 126, 167

sampling rate, 79
saturation, 115, 161
scheduling function, 64
scheduling subspace, 140
Schur complement, 11, 16, 170
sector bounds, 122, 123, 131, 137
sensor-less control, 102
shaft, 35
simulation, 115
skew-symmetric multipliers, 64
slip frequency, 40, 47, 53, 112
space vector, 33, 39
speed control, 48
speed controller, 48, 125
speed estimate update gain, 54, 102
speed estimation, 52
speed sensor, 40
standard LFT representation, 17, 67,

147
star product, 17, 80
star product identity, 18
state space model, 36
stator, 28
stator current control, 49, 110
stator current controller, 48, 49, 114
stator flux, 34
stator inductance, 34
stator resistance, 33, 40
stator-fixed coordinates, 35
steady state, 39
step size, 22
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strictly proper, 19, 69
structured singular value, 64
suboptimalH1, 62
switching frequency, 110, 164

tangent hyperbolic neuron function, 20,
123

tanh, 20, 123
target matrix, 131
time variation, 40
torque, 47
torque control, 48
training, 21, 130
training algorithms, 22
training set, 127, 128
trapezoidal approximation, 80
tuning, 93, 106

uncertainty, 124, 156
uncertainty block, 63
unit element, 18
unit gain, 20
unstructured, 12
upper linear fractional transformation,

17

validation set, 127
vertex matrices, 14, 64
vertices, 14, 64
voltage filters, 165
voltage model, 50
voltage sourced inverter, 41, 110
voltage transducers, 165
VSI, 41

well defined, 17, 18
well-posed, 17, 18, 67, 89
windings, 28


