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ABSTRACT 

Purpose: The sudden rise in the injury incidence during adolescence, is also evident in soccer 

related injuries to the groin. Submaximal passing applies high stress on the adductor muscles and 

pubic symphysis and is therefore likely to be connected to the occurrence of groin injuries. 

Therefore, the purpose of the study was to compare hip joint kinematics and adductor muscle 

forces of different adolescent age groups during submaximal soccer passing.  

Methods: Sixty participants, in four groups, below 12, 15, 16 and 23 years (U12, U15, U16, 

U23), were analyzed. A Footbonaut, equipped with a 3D motion capture system consisting of 16 

cameras, was used to capture kinematic data of short passes. Inverse dynamic analysis was 

performed to calculate muscle forces of ten passes of each subject.  

Results: The U15 group showed reduced angular velocities. A rise in hip adductor muscle forces 

was evident from the youngest group up to the oldest groups. The largest increase (49%) was 

found between U12 and U15. Lower limb mass was identified as the best predictor for the 

increasing adductor force.  

Conclusion: The reduced angular velocities of the U15 and the increase in muscle forces 

between all age groups was attributed to the increasing segment masses and length. This 

increases the moments of inertia of the leg segments thereby demanding higher forces to 

accelerate the segments. Most likely, the stress put upon the adductors apophyses increases 

during adolescence, as tendons are known to adapt slower than muscles, increasing the risk for 

overuse injuries. Coaches could use lower limb mass as an indicator for fast increases in the 

force demand to identify players who would benefit from a reduced training volume. Key 

Words: Sports (MeSH), Biomechanical Phenomena (MeSH), Sprains and Strains (MeSH), 

Growth and Development (MeSH), Wounds and Injuries (MeSH), Football  
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INTRODUCTION 

The incidence of sports injuries among children is generally low until the beginning of puberty. 

It has been reported that young soccer players have a constant injury incidence of 10 to 20% 

until the age of 14 after which it more than doubles (>40%) (1). A similar rise has been shown 

for different types of injuries and different injury locations (2–4). Among other reasons for this 

increase, a more aggressive playing style, greater risk-taking, lack of coordination (1), as well as 

participating in organized competitive sports (2) have been named. While some of the observed 

injuries might be considered minor injuries with no long-term effect, injuries of the groin region 

can have tremendous negative effects on the person concerned because of their characteristics as 

often having consequential damages (5,6) and increasing the risk for future groin injuries (7). 

Apart from the above-mentioned speculations regarding the reasons, there exists no 

biomechanical evidence to the underlying cause for the adolescent injury increase. 

 

Groin injuries are one of the most frequent types of injuries among soccer players (8,9). The term 

‘groin injury’ covers a wide range of injuries (7) with osteitis pubis and adductor strains or tears 

being the most prominent subcategories (10). Data demonstrating a rise in the groin specific 

injury incidence is limited with only one study investigating the specific incidence between age 

groups (3). Although this study found only six groin injuries in total in the investigated 

population, they were all found in players aged 13 or older. Therefore, it is plausible that an 

increase in the incidence as described above is also evident in groin injuries. A previous groin 

injury has been shown to increase the risk for future groin injuries (11,12) and two studies found 

recurring groin injuries in 17% of previously injured players (10,13). Furthermore, reoccurring 

groin injuries often lead to longer absence from training than primary injuries (12). Young 
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players sustaining a groin injury early in their soccer career are thereby more susceptible to re-

injury (10) and might suffer an early end of their career or sports participation. Therefore, 

identifying the underlying mechanisms leading to the abrupt rise in injury incidence is crucial to 

provide a basis for injury prevention and rehabilitation.  

 

A growing body of literature acknowledges that repetitive movements such as kicking, quick 

changes of direction and fast accelerations could be a contributing factor to the onset of groin 

injuries (14–16). While all of these movements are frequently performed in soccer, only passing 

has been investigated regarding the load these movements induce on the musculoskeletal system 

(17). Results from this study showed, that musculus gracilis in particular, is subject to high 

muscle stress during submaximal inside passing. Gracilis and its adjacent muscle, adductor 

longus, are the most affected muscles in groin injuries (18). As both are attached to the pubic 

symphysis through the inferior pubic ligament, their combined forces are acting on this ligament. 

Furthermore, because the apophysis has a smaller cross-sectional area than the muscles, the 

stress that is applied here is substantially higher (17). When considering that passing is the most-

frequently performed action during soccer play (19), the adductor muscles, and especially their 

tendons, experience repetitive high stresses, thus accumulating high loads during games and 

training. This accumulation could explain the high incidence of overuse injuries in the groin 

region (16) in adults, but does not explain why adolescents below the age of 15 are much less 

affected by injuries in general and groin injuries specifically.  

 

The accumulation of high loads could put adolescent players under an increased risk during their 

growth spurt, when their body proportions are changing fast and their body is already busy 
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adapting to these change (20). This might induce changes in movement techniques due to fast 

changes in the anthropometrics. Only a limited number of studies have investigated kicking 

mechanics of adolescent soccer players (21,22) while no study has compared soccer kicking or 

passing mechanics between adults and younger players. Potential alterations from the adult 

kinematics or kinetics in combination with changes in the anthropometrics could increase the 

load on the musculoskeletal structures of the groin area, hinting at reasons for the abrupt increase 

in injury incidence during adolescence.  

 

Therefore, the purpose of this study was to compare the hip joint kinematics and calculated 

muscle forces of adductor longus and gracilis between four different age groups of soccer players 

performing soccer inside passing. Additionally, the potential influence of the lower limb 

anthropometrics on the calculated muscle forces was investigated.  

 

METHODS 

Design 

A cross-sectional design was used to investigate if hip joint kinematics and adductor muscle 

force development differs between age groups in soccer. A three-dimensional (3D) motion 

capture system was used to collect kinematic data. From this, an inverse dynamics approach was 

utilized to calculate hip adductor muscle forces of four different age groups. The following 

parameters were investigated: Lower extremity anthropometrics, 3D hip joint kinematics (angles 

and angular velocities) and forces of the muscles adductor longus and gracilis. 
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Participants 

Testing for the present study was performed on the training grounds of TSG 1899 Hoffenheim, 

one of Germany's highest-ranking soccer clubs. Sixty-Three healthy male participants, without 

any recent acute injuries to the lower extremities, from three different TSG academy teams (U12, 

U15, U16) and their second team (U23) were tested for this study. Three participants had to be 

excluded due to marker loss during testing or too few completed passes with their dominant leg. 

The number of participants per group and their anthropometrics are presented group wise in 

Table 1. Each participant and, if necessary, his legal guardian gave written consent prior to 

participation. For this purpose, underage participants received a separate information letter, 

specifically worded for children. The study was designed in accordance with the Declaration of 

Helsinki and approved by the German Sport University's ethics committee (No. 125/2016). 

 

Procedure 

In addition to the information letter, the testing procedure and measurement equipment to be 

used was explained in detail to the participants before physical preparation. Afterwards, 41 

anthropometric measurements of each participant were taken, which were later used to scale the 

musculoskeletal model (see Table, Supplemental Digital Content 1, which presents an overview 

and detailed explanations of the anthropometric measurements, 

http://links.lww.com/MSS/B859). Seventy-one retro-reflective markers were attached to 

anatomical reference points on the participants’ skin. Markers on the toe and inside of the foot 

were temporarily attached for the standing reference trial. These were removed immediately after 

the reference to allow for unhindered passing during the dynamic measurement. Participants 

ACCEPTED

Copyright © 2019 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.



were instructed to perform an individual warm-up prior to the measurement. U12 players were 

instructed during warm-up by their coach.  

 

All data was collected in a Footbonaut, which is a ball machine for soccer-players. A detailed 

description of it can be found in a previous publication (17). The methods employed there were 

the same as in the present study except for the following differences: Every player performed a 

preliminary session of ten passes inside the Footbonaut to conclude the warm-up. During the 

actual testing, participants performed a standardized session consisting of 32 passes. Although 

the order of passes was standardized, participants were not familiar with the protocol, implying 

that the order seemed random to them. The target field could be on any side of the Footbonaut 

but only on ground level. Participants were allowed to pass with both feet. A video showing 

short passes performed in the Footbonaut can be found in the supplementary material (see Video, 

Supplemental Digital Content 2, which shows a short section of passes performed in the 

Footbonaut during preliminary testing, http://links.lww.com/MSS/B860). 

 

Marker trajectories were recorded using 16 infrared cameras operating at 200 Hz (F-40, Vicon, 

Oxford, UK) mounted above the Footbonaut. The Footbonaut was equipped with ~120 

'Torfabrik' (Adidas, Herzogenaurach, GER) soccer balls, which were prepared with six square 

patches of retro-reflective foil each, so that ball trajectories were visible.  

 

Data processing 

Processing of the raw kinematic data was performed in Vicon Nexus 2.3 (Vicon, Oxford, UK). 

The measurements were cut into single passes containing the whole swing phase. The missing 
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toe-marker trajectories were reconstructed before modelling using MATLAB R2017a (The 

MathWorks, Natick, Massachusetts, USA). This was done by using the marker coordinates 

obtained in the standing reference trial, as described in our previous publication (17). Inverse 

dynamics were performed using AnyBody Modelling System (Version 6.0, AnyBody 

Technology, Aalborg, DEN). A modified version of the Anatomical Landmark Scaled Model 

(23) was used. This rigid body model of the lower extremities consists of seven segments with 

16 degrees of freedom. Modifications were made at the knee joints, where the original hinge 

joint was replaced by a ball-socket joint allowing three degrees of freedom. The subtalar and 

talocrural joints of the ankles were each modelled as adjacent hinge joints. Muscle forces were 

calculated using the 'AnyMuscleModel' provided in AnyBody with static optimization and a 

cubic cost function. Previous studies on the validity of the calculated muscle activity have shown 

good accordance with EMG-measurements (24,25). 

 

Swing phases of ten passes performed with the dominant leg of each subject were randomly 

selected for further analysis. Start of the swing phase (toe-off) was defined as the MT5-Marker 

crossing 60 mm above ground level. This height was chosen based on the average height of the 

MT5-Marker during the standing reference being 50 mm. End of the swing phase was defined as 

ball contact which was visually obtained for each trial. The ten passes were time-normalized to 

swing phase and averaged to get the means for each participant, which were then used to 

calculate group means and perform statistics.  

 

Thigh circumference was taken from the anthropometric measures obtained during testing. 

Lower limb length was calculated as the sum of shank and thigh length, obtained from the 
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anthropometric measurements taken during the participant preparation. To calculate the segment  

masses, the shank and thigh segments were regarded as truncated cones from which the volume 

was calculated using the distal and proximal circumference. These volumes were multiplied with 

segment densities from Winter (26) to calculate the masses. Lower limb mass is the sum of 

shank and thigh mass. 

 

Statistics 

Statistical analyses were performed in MATLAB 2017a. Each parameter was tested for 

normality using Shapiro-Wilk-Test. Parameters were then tested for significant main-effects with 

either the Kruskal-Wallis-Test or an analysis of variance. Independent T-Tests or Wilcoxon-

Ranksum-Tests were applied as post-hoc tests where significant main effects were found. The 

alpha-level for all tests was initially set to 0.05. These were Bonferroni-corrected to 0.0083 (P* = 

0.05/6) for the post-hoc tests.  

 

Linear regression analyses were performed to determine the influence of the anthropometric data 

on the calculated muscle forces. Thigh circumference, thigh mass,  lower limb mass, lower limb 

length and the product of both (length × mass) were used as predictor variables for the muscle 

forces in adductor longus and gracilis. 

 

RESULTS 

Mean values of each parameter in each group and their corresponding standard deviations are 

presented in Table 2. The peak hip joint angles differed significantly between age groups in the 

frontal plane but not in the sagittal and transversal planes. U12 had a significantly lower 
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minimum abduction angle compared to U16 (p=0.0034) and U23 (p=0.0007). U15 also had 

significantly lower minimum abduction angles compared to U16 (p=0.006) and U23 (p=0.0011). 

The minimum hip abduction angle occurred at toe-off while the maximum hip abduction angle 

occurred at around 70% of the swing phase on average (Figure 1). Maximum hip abduction angle 

was significantly different between the U15 and U23 groups (p=0.0069).  

 

Angular velocities at the hip joint were significantly different in the sagittal and frontal plane. 

Maximum flexion velocity was significantly lower in the U15 group compared to the U12 

(p=0.0005) and U16 group (p=0.0025), respectively, and occurred at around 70% of the swing 

phase (Figure 2). Maximum extension velocity was significantly higher in U16 compared to 

U23. Maximum adduction velocity was significantly lower in the U15 group compared to the 

U16 (p=0.0029) and U23 group (p=0.0025). Maximum abduction velocity was significantly 

higher in the U12 group compared to U15 (p=0.0001), U16 (p=0.0005) and U23 (p<0.0001). In 

all four groups, the highest abduction velocity occurred at around 50% of the swing phase 

(Figure 2). 

 

U12 showed significantly lower peak muscle force in adductor longus compared to U15 

(p<0.0001), U16 (p<0.0001) and U23 (p<0.0001). U15 also showed significantly lower muscle 

forces compared to U16 (p=0.0045) and U23 (p=0.0017). Gracilis muscle force was significantly 

lower in the U12 group compared to U15 (p<0.0001), U16 (p<0.0001) and U23 (p<0.0001). U15 

also showed significantly lower muscle forces compared to U16 (p=0.0066) and U23 (p=0.0003) 

in the gracilis. Maximum forces in both muscles occurred on average at about 70% of the swing 

phase in all groups (Figure 3), coinciding with the maximum hip abduction (Figure 1). 
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The linear regression identified lower limb mass as the best predictor (highest R
2
) for an increase 

in calculated muscle force for both investigated muscles (Table 3). 

 

DISCUSSION 

The aim of this study was to investigate whether hip joint kinematics and calculated adductor 

muscle force differ between four age groups during soccer inside passing. Furthermore, the aim 

was to investigate the influence of lower extremity anthropometrics on the adductor muscle 

forces. We found that hip adductor muscle forces are different between different age-groups of 

soccer players, rising across groups from the youngest to the older groups. The highest relative 

and total increase in muscle force was found between the U12 and U15 teams with a 49% rise in 

hip adductor muscle force. An increase in lower limb mass was identified as the variable best 

capable of predicting an increase in hip adductor muscle force. 

 

Previous research has mainly investigated kicking scenarios with a static ball (21,27,28). To the 

authors’ knowledge, the present study is the second to investigate submaximal passing in a 

dynamic situation. Hip joint angles of the U23 group (Table 2) are in good accordance with joint 

angles previously reported on submaximal passing in adult soccer players (17). Such an 

agreement could be expected as the setup of the two studies and the two groups of participants 

were similar. Despite these similarities, the maximum muscle forces in the present study were 

slightly lower than in the previous study (17). The lower forces might be a result of a more 

complex pass protocol used here, where the subjects had to perform passes in all directions, 

whereas the previous study only investigated passes to the front of the participants. This easier 

configuration could result in harder passing and therefore higher muscle forces. Furthermore, 
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existing research often reports higher maximum hip angles and angular velocities in all three 

movement planes (21,28) which is likely due to the investigation of full effort kicking, as 

compared to submaximal passing in the present study. 

 

The statistical analyses of the passing kinematics revealed only few differences between the four 

age groups. Those significant differences were concentrated in the frontal plane where most of 

the movement is executed by the adductor and abductor muscles. While the groups of U23 and 

U16 showed only a significantly different maximum hip extension velocity compared to each 

other, there were several significant differences between the U12 and U15 groups in respect to 

each other but also compared to the two older groups. These differences indicate an alteration of 

the passing technique between younger and older players. U12 and U15 both experienced less 

minimum hip abduction, which occurred at toe-off, than the older groups. U15 also showed a 

lower maximum hip abduction than U23, resulting in an overall reduced range of motion for the 

U15. However, the U12 group was able to reach a similar maximum abduction angle by 

increasing their maximum abduction velocity (Table 2 and Figure 2). Without the increase in 

abduction velocity, the U15 showed a time series of the hip frontal plane angle similar to the 

older groups but shifted towards a lower degree of abduction by approximately five degrees. 

They also exhibited a significantly lower maximum adduction velocity compared to the older 

groups and a significantly lower hip flexion velocity compared to both, the U12 and the U16 

groups. The different kinematics could be a result of the U15 group experiencing their growth 

spurt. The adolescent growth spurt occurs on average at the age of 14 (29) leading to a fast 

increase in the adolescents segments’ length. These fast changes could lead to a loss of 

coordination and changes in movement strategies which have already been shown for landing 
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tasks in pubescent girls (30). Additionally, this phase has previously been associated with 

“adolescent awkwardness” which describes a reduction in performance or motor control (29) 

during puberty.  

 

Furthermore, the longitudinal growth of the bones, during the adolescent growth spurt, occurs 

prior of the increase in muscle mass (31). This implies an increase in the moments of inertia of 

the athletes’ segments, as the bones grow, which might not be met with sufficient muscle 

capacity. In passing movements, the highest muscle forces occur close to the end of the back 

swing (17) when the leg needs to be decelerated using eccentric muscle force. Reducing the 

abduction velocity reduces the required force to decelerate the leg. Additionally, far joint 

excursions also require relatively higher muscle force when the movement has to be reversed. As 

the muscles get stretched further, their ability to produce force decreases. The reduced range of 

motion and reduced angular velocities that were found in the U15 group might therefore be 

results of a reduced maximum muscle force and/or a reduced flexibility of the adductor muscles, 

as a reaction to the increased moments of inertia. Previous studies have found reduced isometric 

hip adductor strength and reduced hip range of motion to be risk factors for groin injuries (7,32).  

 

The role of the increasing moments of inertia is also important when considering the increase in 

calculated adductor muscle force (Table 2). A significant increase in force in both investigated 

muscles was found between the youngest group and each of the older groups. The increase in 

muscle force was expected, as the participants in the older groups were both heavier and taller, 

and presumably also stronger. More mass and longer segments lead to higher moments of inertia 

in the segments, thereby requiring more muscle force to accelerate or decelerate the leg to an 
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equal angular velocity. More considerable is the percentage by which the muscle forces 

increased between the groups. Between U12 and U15, there was an increase of 49.4% in the 

gracilis force despite similar adduction velocity. There was also an increase of 22.1% in adductor 

longus force between U15 and U16 but only 5.6% between U16 and U23. This substantial 

increase coincides with the adolescent growth spurt that normally occurs around the age of 14 

(29). This phase is characterized by the fastest increase of segment length and mass during 

childhood and adolescence. As written above, this increases the moments of inertia and thereby 

the demand for higher muscle forces. However, the fast increase in muscle force (and strength) 

might not be met by a similar fast adaptation of the other musculoskeletal structures. A previous 

study found an increase in the isometric knee extensor force by ~75% between a group of 10-12 

and 13-15 year old boys, while the corresponding cross sectional areas increased by less than 

50% between these two groups (33). The increase in muscle force is thought to be accomplished 

through a better intra-muscular control. This would presumably cause a substantial increase in 

the stress on the muscle and the tendons, since they would have to withstand the increase in force 

without an equal increase in cross-sectional area. Tendons have been shown to respond 

differently to mechanical loading (34), and have been reported to increase their cross sectional 

area slower than the adjoining muscles during adolescence (35). An imbalance between muscle 

and tendon growth causes an increase in tendon stress during adolescence (35,36). High tendon 

stress has been linked to patellar tendinopathy (37). High stress in the tendons of the adductor 

muscles is therefore a likely risk factor for overuse injuries like tendinopathy and osteitis pubis 

(38). Overall, these findings suggest, that adolescent players are under an increased injury risk, 

especially during or shortly after their growth spurt due to the increased moments of inertia. 

Although there is no data supporting this assumption specifically for groin injuries, a recent 
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study found an increased overall injury incidence for players that were just past their growth 

spurt (39). This supports the general assumption, that the fast increase in the moments of inertia 

increases the load on muscles and tendons in general and thereby increases the overall injury 

incidence.  

 

It is probably of high importance to identify when young athletes experience phases of fast 

growth in order to prevent the occurrence of overuse injuries since they might be more 

vulnerable than usually due to the increased tendon stress. For this purpose, lower limb mass 

could be used as an indicator. In both investigated muscles, lower limb mass was the strongest 

predictor for the calculated muscle forces. This outcome was not expected, as the moment of 

inertia is calculated from the squared distance of the center of mass to the rotation center while 

mass is not squared. However, Table 2 shows that the relative increase in lower limb mass 

between the age groups (44.8% between U12 and U15) is substantially higher than that of the  

lower limb length (14.8% between U12 and U15). This more than compensates for the squared 

influence of the lower limb length in the moment of inertia. Fast increases in lower limb mass 

could therefore be an indicator of phases with higher susceptibility to injury. Athletes should 

probably be trained more carefully and sudden increases in training load should be avoided 

during these growth phases. Using the calculation described in the methods section, lower limb 

mass can easily be determined by coaches. Additionally, the use of specific adductor strength 

training like the Copenhagen Adduction Exercise (40) could be used to prepare the adductor 

muscles for the repetitive loading of submaximal passing. 

 

With the participant sample of this study, no cause and effect can be established between the 

movement technique and the muscle force to identify movement strategies that might cause 
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higher muscle forces. The effect of the moments of inertia on the increase in muscle force is too 

dominant between the age groups to find other influences that might increase the muscle forces. 

Future studies should investigate large homogenous samples to identify movement strategies that 

increases hip adductor muscle force. The muscle forces were calculated from inverse dynamics 

analyses and are therefore an estimation of the actual forces based on static optimization. 

However, a recent study found good accordance between the calculated activity of this model 

and the measured activity during dynamic movements (25). Although muscle activity and force 

are not the same, comparing measured to calculated activity is a standard method for model 

validation (24). The use of retroreflective markers might have influenced the movement of the 

participants, as this was their first participation in such a measurement. Although such influence 

cannot be ruled out, it is unlikely that the use of markers influenced the subjects to a degree of 

unreliability as the markers were both small and light. Additionally, players were familiarized 

with the markers during warm-up. The cross-sectional design of the present study is only a 

snapshot of the participants development. Ideally, future studies will use a longitudinal design to 

investigate year to year effects of maturation on groin injury related parameters.  

 

CONCLUSION 

The results of the current study suggest that adolescent soccer players have to cope with the rapid 

increase of their segments’ inertia, inevitably caused by the anthropometric alterations during 

their growth spurt. This is evident through the reduced angular velocities in the U15 group but 

also by the high increases in muscle force between the youngest groups. This could suggest an 

increased risk for overuse injuries among adolescent soccer players. Monitoring the increase of 

the thigh mass seems to be an easy and applicable method to identify players who could be at 

increased risk.   
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FIGURE CAPTIONS 

 

Figure 1: Represented are the time series of the hip joint angles as mean values for each of the 

four age groups. Every subfigure shows one plane of movement. Shaded areas indicate ± one 

standard deviation. Data is presented time-normalized between toe-off (0%) and ball contact 

(100%).  

 

Figure 2: Represented are the time series of the hip joint angular velocities as mean values for 

each of the four age groups. Every subfigure shows one plane of movement. Shaded areas 

indicate ± one standard deviation. Data is presented time-normalized between toe-off (0%) and 

ball contact (100%). 

 

Figure 3: Represented are the time series of the muscle force in the adductor longus and gracilis 

as mean values for each of the four age groups. Shaded areas indicate ± one standard deviation. 

Data is presented time-normalized between toe-off (0%) and ball contact (100%).  
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Figure 2 
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Figure 3 
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Table 1: Distribution and characteristics (Mean ± standard deviation) of the anthropometric data 

for the four groups of players. 

 

Group N Age (a) Height (cm) Mass (kg) 

U12 14 11.1 ± 0.5 149.7 ± 7.8 38.3 ± 4.8 

U15 17 14.7 ± 0.4 171.8 ± 7.6 60 ± 9.6 

U16 14 15.8 ± 0.2 172.1 ±7.8 64.8 ± 8.6 

U23 15 20.2 ± 0.9 179.2 ± 8.7 75 ± 7.8 
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Table 2: Means and standard deviations of the four different groups for the maximum hip joint 

angles, angular velocities and muscle forces. Data was calculated from ten shots of each 

participant between toe-off and ball contact. * indicates significant difference to the mean of 

U15, † indicates significant difference to the mean of U16, ‡ indicates significant difference to 

the mean of U23. The bottom section shows the measured and calculated anthropometrics of the 

four groups without indications of statistical differences. 

 
 U12 U15 U16 U23 

Hip angles (°) 

Flexion 36.12 ± 7.42 34.62 ± 5.52 36.46 ± 5.77 38.06 ± 5.29 

Extension 6.76 ± 5.49 3.08 ± 5.37 4.99 ± 6.96 2.75 ± 4.52 

Min. abduction 7.5 ± 3.14 †‡ 7.88 ± 3.28 †‡ 11.34 ± 3.17 12.21 ± 3.5 

Max. abduction 25.27 ± 4.03 22.06 ± 3.81 ‡ 25.25 ± 5.3 26.79 ± 5.38 

Internal rotation 21.05 ± 7.03 19.15 ± 6.07 17.76 ± 7.5 18.01 ± 5.79 

External rotation 8.59 ± 6.12 7.46 ± 4.83 9.74 ± 6.22 9.37 ± 5.57 

Hip angular velocities (°/s) 

Flexion 530.84 ± 69.3 * 439.18 ± 61.26 † 526.56 ± 85.64 485.07 ± 81.82 

Extension 196.01 ± 36.63 170.5 ± 33.67 208.97 ± 46.41 ‡ 154.76 ± 51.85 

Adduction 187.85 ± 38.6 179.02 ± 44.77 †‡ 238.61 ± 57.46 230.46 ± 43.3 

Abduction 204.11 ± 22.89 *†‡ 158.1 ± 32.36 156.69 ± 37.93 151.09 ± 28.56 

Internal rotation 335.65 ± 61.25 282.13 ± 61.52 323.89 ± 71.58 331.39 ± 74.49 

External rotation 598.2 ± 110.95 556.94 ± 106.97 590.21 ± 77.28 552.14 ± 88.82 

Muscle forces (N) 

Adductor Longus 101.3 ± 16.03 *†‡ 150.19 ± 29.76 †‡ 183.38 ± 27.59 193.71 ± 37.3 

Gracilis 92.37 ± 13.45 *†‡ 137.98 ± 30.18  †‡ 167.5 ± 24.91 185.9 ± 36.66 

Anthropometrics 

Thigh circumference (cm) 43.46 ± 3.46         51.45 ± 5.17 54.31 ± 3.29 57.98 ± 2.6 

Thigh mass (kg) 4.41 ± 0.67 6.34 ± 1.03 6.82 ± 0.84 7.82 ± 1.05 

Lower limb length (cm) 70.26 ± 4.07 80.64 ± 4.67 78.9 ± 4.37 83.48 ± 5.46 

Lower limb mass (kg) 6.36 ± 0.98 9.21 ± 1.43 9.89 ± 1.29 11.18 ± 1.44 

Lower limb mass × 

lower limb length 

(kg × cm) 

450.06 ± 92.26 745.46 ± 139.59 784.25 ± 138.92 939.49 ± 179.26 
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Table 3: Results of the linear regression analysis using the anthropometric parameters as 

predictive variables for the calculated muscle forces.  

 
Response Variable Predictor R² p-value 

Adductor longus muscle force 

Thigh circumference .618 < 0.001 

Thigh mass .653 < 0.001 

Lower limb mass .696 < 0.001 

Lower limb length .507 < 0.001 

Lower limb mass × Lower limb length .675 < 0.001 

    

Gracilis muscle force 

Thigh circumference .647 < 0.001 

Thigh mass .694 < 0.001 

Lower limb mass .734 < 0.001 

Lower limb length .535 < 0.001 

Lower limb mass × Lower limb length .719 < 0.001 
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Supplemental digital content 1: Overview of the anthropometric measurements. Except for body mass (measured in kg), measurements were taken in meters. 

Category Parameter Description Method 

General Body height Absolute body height Ruler 

 Body mass Absolute body mass Scale 

Heights Height of the medial malleolus Ground to malleolus Tape measure 

 Height of the medial knee epicondyle Ground to epicondyle Tape measure 

 Functional leg length Ground to bottom of the pelvis Spirit level + tape measure 

 Waist height Ground to smallest point of trunk Ruler  

 Height of the xiphoideus Ground to xiphoideus Ruler 

 Height of suprasternal notch Ground to suprasternal notch Ruler  

 Height of C7 vertebra Ground to C7 Ruler  

 Height of C1 vertebra Ground to C1 Ruler  

Length, width  

and thickness 

Absolute hip width Distance between the two trochanters Anthropometric caliper 

Hip joint  width Distance between the joint centers Anthropometric caliper 

 Waist width Smallest circumference of the trunk Anthropometric caliper 

 Thorax width Measured at the height of the xiphodieus Anthropometric caliper 

 Thorax depth Measured at the height of the xiphodieus Anthropometric caliper 

 Shoulder width Wrist to tip of third finger Anthropometric caliper 

 Hand length Wrist to tip of third finger Anthropometric caliper 

 Hand width Widest point of the flat hand Anthropometric caliper 

 Hand thickness Measured in the middle of the hand Anthropometric caliper 

 Foot length Heel to tip of first toe Anthropometric caliper 

 Foot width Widest point of the foot Anthropometric caliper 

 Biggest head height Measured from chin to top of the head Anthropometric caliper 

 Head breadth Temple to temple Anthropometric caliper 

 Head depth Forehead to back of the head Anthropometric caliper 

 Smallest head height Measured from C1 vertebra to top of the head Anthropometric caliper 

 Trunk height Measured as C7 to L5 along the trunk Tape measure 

 Thigh length Trochanter to lateral femur epicondyle Tape measure 

 Shank length Lateral knee epicondyle to lateral malleolus Tape measure 

 Upper arm length Shoulder joint to lateral humerus epicondyle Tape measure 

 Lower arm length Lateral humerus epicondyle to wrist Tape measure 

Circumference Thigh circumference Measured at the widest point of the thigh Tape measure 

 Biggest shank circumference Measured at the widest point of the shank Tape measure 

 Smallest shank circumference Measured at the thinnest point of the shank Tape measure 

 Biggest upper arm circumference Measured at the widest point of the upper arm Tape measure 

 Biggest lower arm circumference Measured at the widest point of the lower arm Tape measure 

 Smallest lower arm circumference Measured at the wrist Tape measure 

 Hip circumference Measured at the height of the trochanters Tape measure 

 Waist circumference Measured smallest point of the trunk Tape measure 

 Thorax circumference Measured at the height of the xiphoideus Tape measure 

 Neck circumference Measured around the neck Tape measure 

Calculated Pelvis Height C7 height - (functional leg length + trunk height) Calculated 
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