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Abstract
We compare different types of autoencoders for
generating interpolations between four-instruments
musical patterns in the acid jazz, funk, and soul
genres. Preliminary empirical results suggest the
superiority of Wasserstein autoencoders. The pro-
cess of generation produces musically sound and
creative transitions between different genres and
can be of interest to practitioners in the field.

1 Introduction
Automatic music generation is a fast growing area with appli-
cations in diverse domains such as gaming, virtual environ-
ments, and entertainment industry (see [Pasquier et al., 2017]
and references therein). In these days, it intersects another
growing area in unsupervised learning, where we are inter-
ested in generating (sampling) new patterns from the distri-
bution that produced the dataset.

In previous work [Borghuis et al., 2018], we proposed a
generation approach based on the idea of interpolating MIDI
drum patterns across different electronic dance music (EDM)
genres. The technique is fairly simple and related to ap-
proaches in the context of image generation: the autoencoder
is trained on a dataset of existing patterns and at prediction
time we select a start and a goal pattern (belonging to differ-
ent genres), compute the corresponding codes generated by
the encoder network, interpolate (linearly or spherically) in
the embedding space, and use the decoder to produce a se-
quence of novel patterns that interpolate smoothly from the
start to the goal. The approach was successful as measured
by human subjects using the creative product analysis matrix
(CPAM) approach.

In this work, we deal with the significantly more challeng-
ing task of producing genre interpolations for a whole band
consisting of four instruments: drums, bass, electric piano,
and jazz organ. Genres in our experimentation are Acid Jazz,
Funk, and Soul. Human musicians have achieved successful
cross-overs between these genres, and the four instruments
are integral to all three. Compared to drumming, the present
task forces us to deal with the complexity of several musical
aspects beyond rhythm such as harmony, melody, and inter-
play among different instruments. Many researchers have at-
tempted music generation from other angles such as scores
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Figure 1: Tensor representation of MIDI patterns

described as symbolic sequences [Eck e Schmidhuber, 2002;
Boulanger-Lewandow ski et al., 2012; Hadjeres et al., 2017]
or wave audio files [van den Oord et al., 2016]. Our approach
is more closely related to [Yang et al., 2017] with some ma-
jor differences: the use of autoencoders instead of GANs (to
allow interpolations between two given patterns) and the si-
multaneous generation of a MIDI score for four musicians,
which requires the learner to capture aspect related to their
interplay.

Although this work is still preliminary and in progress, we
have obtained some musically interesting results that can be
accessed at http://ai.dinfo.unifi.it/Cirox-and-the-Michs/.

2 Materials and Methods
Our dataset consists of 891 patterns composed and played by
a professional musician under instructions from the authors.
It is approximately balanced across the three genres (361 pat-
terns of Acid Jazz, 255 of Funk and 274 of Soul). Within
genres, patterns were constructed in thematic families (shar-
ing musical ideas), taking song structure into account (pat-
terns for verse, chorus, bridge and intro). Each MIDI pattern
corresponds to a measure, i.e. four bars (in a 4/4 division) and
notes are quantized at 1/32th of a beat, yielding 128 temporal
positions. It is represented as a tensor (see Figure 1) where
the first axis corresponds to time (size 128), the second axis
corresponds to a MIDI note (10 percussive instruments in the
drumset, 3 octaves extension for the bass, and four octaves
for both the electric piano and the rock organ, yielding a total
size of 142), and the third axis is used to distinguish between
velocities and durations of MIDI events. In the first channel,
a value between 1 and 127 encodes the note velocity on a
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note-on event while in the second channel, a value between 1
and 128 encodes the note duration in 32th’s. This representa-
tion is similar to color image representations (except for the
different semantics of channels) and therefore suggests a very
natural strategy for learning based on convolutional networks.

We employed three different types of autoencoders, that
have been extensively discussed in the vision literature,
namely variational (VAE) [Kingma e Welling, 2013], ad-
versarial (AAE) [Makhzani et al., 2015] and Wasserstein
(WAE) [Tolstikhin et al., 2017]. While in computer vision it
is widely accepted that VAEs tend to produce blurry images,
the difference between these kinds of generative models for
music has not been evaluated before.

VAEs consist of an encoder which maps an input pattern
x ∈ Rm to the mean and diagonal covariance µ(x), σ(x)
of a distribution q(z|x), and a decoder that takes as input
a vector z sampled from a prior distribution p(z) (typically
z ∼ N (0, 1)) in order to obtain p(x|z). VAEs are trained to
minimize KL(q(z)||p(z)) − log(p(x|z)), where KL is the
Kullback-Leibler divergence.

AAEs are similar to VAEs but are trained to minimize
KL(q(z|x)||p(z)) − log(p(x|z)). KL(q(z|x)||p(z)) is usu-
ally replaced with the adversarial loss which, by introduc-
ing a discriminator network ∆, tries to separate real latent
code vectors generated from the prior p(z) (positive exam-
ples) from fake latent code vector generated by the encoder
(negative examples).

Finally WAEs are a generalization of AAEs, trained to
minimize a penalized form of the Wasserstein distance be-
tween the the model distribution and the target distribution

inf
q(z|x)∈Q

Ex∼p(x)Ez∼q(z|x)[c(x, x̃)] + λ D(q(z), p(z)),

where x̃ is the reconstructed pattern associated to x, c is a re-
construction cost function (e.g. ‖x− x̃‖2),Q is any nonpara-
metric set of probabilistic encoders, D is an arbitrary diver-
gence between q(z) and p(z) (the maximum mean discrep-
ancy in the experiments), and λ > 0 is a hyperparameter
which we set large enough (λ = 2 in the experiments) to
ensure that a well filled latent space.

We designed encoders and decoders of VAE, AAE, and
WAE using the same structure, with the only exception for the
VAE’s encoder output. The encoder consists of four stacked
2D convolutional layers (each followed by batch normaliza-
tion and rectifiers) with filter size 8 × 8. Layers have 32, 64,
128, and 256 filters, respectively. The last convolutional layer
is linked to a 3-units fully connected layer with linear activa-
tion for the AAE and WAE, while to two 3-units fully con-
nected layers with linear activation for the VAE. The decoder
consists of a fully connect reshaped layer of (128,138,256)
units with rectifiers, three stacked 2D deconvolution layers
(each followed by batch normalization and rectifiers, except
for the last layer that has a sigmoidal activation function). Fil-
ter size was also 8× 8 and layers have 128, 64, and 2, filters,
respectively. For the reconstruction part of the loss we chose
different weights for the velocites (0.05) and the durations
(0.25) since the latter appeared more difficult to reconstruct
correctly. Finally, we trained on 90% of the available data
running 20k epochs of Adam with learning rate 2 × 10−4

(and 5× 10−4 for the adversarial training).

3 Results and discussion
We trained several variants of the above models before ob-
taining musically acceptable results. Unlike other areas of
machine learning, a major limitation of music generation is
the lack of an objective and computable measure of perfor-
mance of the trained model. Hyperparameter optimization in
this context is therefore extremely hard, cannot be automated,
and seems to require a trial-and-error approach where the ma-
chine learning designer constantly interacts with the musi-
cians to get feedback about the quality of the results. A possi-
ble remedy could be to manually label generated patterns ac-
cording to their quality to enable a supervised assessment, but
this is beyond the scope of this work. Although VAEs were
shown to be effective for drums only data, here they tend to
either produce patterns with limited variability and interplay
between instruments (with small codes) or deconstructed pat-
terns with many short and low-velocity notes. These effects
are much reduced when using AAEs and WAEs but the net-
work size still plays a significant role. We found that wide
filters (8x8) and tiny codes (3-dimensional) produce the best
results both with AAEs and WAEs. Also, we noted that un-
derfitting (i.e., a large reconstruction error both in training
and test patterns) does not necessarily imply a poor musical
quality, provided that note-on recall is sufficiently high.
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