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ABSTRACT

Permanent Magnet (PM) machines are important in the electrification of trans-

portation for the reduction of CO2 emissions and reducing global warming. In

order to maintain the increasing demand for Hybrid and Electrical Vehicles

((H)EVs) a stable supply of Rare Earth Elements (REEs) used in the pro-

duction of PMs is required. Nowadays, some REEs (e.g. Neodymium and

Dysprosium) are classified as critical raw materials by the European Commis-

sion, due to the high risk in their supply. Such a risk was demonstrated in 2011

when the REE crisis reached its peak with the dramatic increase of the prices

of REEs, specially Dysprosium, when export quotas were introduced from the

main producing country, China.

With the current economic and political scenarios at global level, the proba-

bility of having a similar crisis as in 2011 remains high. Hence, securing the

supply of REEs is still of major relevance and have increased awareness in re-

cent years. Despite of being a subject of extensive research, recycling of PMs

remains a challenging task. Some of the existing technologies either have poor

efficiency or are highly polluting. Consequently, the European Training Net-

work for the Design and Recycling of Rare-Earth Permanent Magnet Motors

and Generators in Hybrid and Full Electric Vehicles (DEMETER) project was

created. DEMETER project works toward the evaluation an improvement of

the recycling routes of REEs in (H)EVs. Additionally, it intends to develop

innovative techniques for the production of PMs, and both life-cycle assessment

and life-cycle costing of PMs with recycled REEs.

Regardless of the recycling method, separation and classification of PM mate-

rial are important steps in order to start a recycling process. Therefore, the

improvement of the recycling methods would be insufficient unless the electri-

cal machines are designed so that the access to the PMs is facilitated once the

End of Life of the machine is reached and the motor is scrapped. Hence, this

thesis work proposes an alternative machine topology. Such machine consists

of a hybrid rotor structure in conjunction with a modular stator.

The Finite Element Method (FEM) has been used to create a design that has

subsequently been validated with measurements from a manufactured proto-

type. Although the performance of the prototype was substantially lower in

comparison to a Synchronous Permanent Magnet Surface Mounted (SPMSM)

xi
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machine, from the recyclability perspective it is considered that the proposed

structure has a potential as glue is not required for the assembly of PMs on

the rotor. In addition, the 3D nature of the flux in the magnetic system allows

the use of non-traditional materials (e.g. iron based amorphous laminations,

SMC, grain oriented electrical sheet, etc.). Finally, a recyclability index has

been developed to provide a quantitative evaluation of the recyclability of PM

electrical machines in the context of e-mobility.



RESUME

Elmotorer med permanente magneter (PM) er vigtige mht. at elektrificere

transport sektoren, hvorved CO2 udledningerne og den globale opvarmning

kan begrænses. For at bibeholde den øgede efterspørgelse p̊a el- og hybrid-biler

(HEV) kræves en stabil forsyningssikkerhed af de sjældne jordarter (REE),

der anvendes i produktionen af de permanente magneter. I dag klassificeres

nogle REE’er (f.eks. Neodymium og Dysprosium) som kritiske r̊avarer af EU-

Kommissionen da der er en hvis risiko i forsyningskæden. En s̊adan risiko blev

demonstreret i 2011, da REE-krisen n̊aede sit højdepunkt med en dramatisk

stigning i priserne p̊a REE’er, specielt Dysprosium, da der blev indført ek-

sportkvoter fra det vigtigste producerende land, Kina.

Med de nuværende økonomiske og politiske scenarier p̊a globalt plan er sandsyn-

ligheden for en lignende krise, som i 2011, fortsat høj. Derfor er det stadig

vigtigt at sikre udbuddet af REE’er og bibeholde den øgede opmærksomhed.

P̊a trods af at genanvendelse har været genstand for omfattende forskning, er

denne måde at bibeholde forsyningen p̊a stadig en udfordrende opgave. Nogle

af de udviklede genanvendelses teknologier har enten en d̊arlig effektivitet eller

er meget forurenende. Som følge heraf blev det europæiske træningsnetværk til

design og genanvendelse af sjældne jordarter fra motorer og generatorer i hy-

bride og fulde elektriske køretøjer (DEMETER-projektet) oprettet. Formålet

med DEMETER-projekt er at kunne evaluere og forbedre af genvindingsveje

for REEs i hybrid og fuld elektrisk (H)EV køretøjer. Derudover har det til

hensigt at udvikle innovative teknikker til produktion af PM’er og give livscyk-

lusvurderinger og livscyklusudgifter for PM’er med genanvendte REE’er.

Uafhængig af genvindingsmetoden er adskillelse og klassificering af PM-materiale

et vigtigt trin for at starte en genvindingsproces. Derfor vil fremskridtene med

forbedring af genanvendelsesmetoderne være utilstrækkelige, hvis ikke de elek-

triske maskiner er konstrueret s̊aledes, at der er nem adgang til magneterne

n̊ar motor skrottes. I denne afhandling foresl̊as der derfor en alternativ motor

teknologi der efterfølgende evalueres. Motor teknologien best̊ar af en hybrid

rotor konstruktion og en modulær stator.

3D Finite Element Metoden (FEM) er blevet brugt til at lave et design der

efterfølgende er blevet valideret med målinger fra en fremstillet prototype.

Selvom ydelsen af den fremstillede prototype var væsentligt lavere i sammen-
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ligning med en Synkron Permanent Magnet maskine med overflade magneter

(SPMSM), betragtes det fra genanvendelighedsperspektiv, at den foresl̊aede

struktur har et potentiale, da der ikke skal bruges lim til samlingen af mag-

neterne p̊a rotoren. Derudover tillader fluksens 3D-natur i det magnetiske

system brugen af ikke-traditionelle materialer (f.eks. Amorf st̊al lamineringer,

SMC, kornorienteret elektrisk blik osv.). Endelig er der udviklet et energiin-

deks for at give en kvantitativ evaluering af genanvendeligheden af elektriske

maskiner med permanente magneter i forbindelse med e-mobilitet.
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Chapter 1 INTRODUCTION

1.1 BACKGROUND

The development and production of Hybrid and Electrical Vehicles ((H)EVs)

have gained significant relevance due to the reduction of the environmental

impact related to CO2 emissions with source in transportation. Part of the

successful implementation of (H)EVs is related to the type of electric motor

implemented for their propulsion. Permanent Magnet Synchronous Machines

(PMSMs) are widely used given their high efficiency, torque and power densi-

ties, when compared with other types of machines [1], [2]. The application of

PMSMs in (H)EVs is based on two main technological advances:

• The application of Rare Earth Elements (REEs) in the production of

Permanent Magnets (PMs) with high energy product (i.e., Samarium

Cobalt (SmCo) and Neodymium Iron Boron (NdFeB)).

• The development and implementation of power electronics and motor

control techniques.

According to reports on critical raw materials, carried out by the European

Commission, REEs are considered to be the most problematic due to the high

rate of supply risk [3], [4]. The criticality of REEs was demonstrated in 2011

with the REEs crisis; in that occasion the prices of REEs reached a historical

maximum, due to the imposition of exporting quotas by the main producers.

Despite the falling prices since 2011, REEs remain listed as critical materials [5].

Moreover, during the REEs crisis of 2011, alternative solutions were evaluated:

• Exploring mines in new locations.

• Developing REE free PMs, with similar energy product as either SmCo,

or NdFeB PMs.

• Increasing the recovery of REEs by recycling.

Although deposits of REEs have been explored in Europe, it might take sev-

eral years before such deposits become operational [6]. On the other hand,

car manufacturers have started working toward the reduction of the content of

REEs in their PMs [7]. Nevertheless, REEs are still required in order to obtain

PMs with a large energy product. Consequently, the recovery of REEs through

recycling emerged as a valuable option in order to guarantee the supply of such
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materials. Currently, methods applied for recycling REEs (i.e. hydrometallur-

gical and pyrometallurgical) have both low efficiency and large environmental

impact [8], [9]. Hence, it is required to re-think the recycling of PMs in electri-

cal machines, by bringing it to the dimensioning and design stages. Although

work has been carried out in the evaluation of the use of recycled PM material

in electrical machines [10], the recycling of these materials at a larger scale re-

mains a challenge from both economical and ecological perspectives [11]. The

recycling of REEs in PMs have been addressed with two approaches:

• Developing and improving recycling techniques of REEs, making them

more efficient and less hazardous for both population and environment.

• Investigating and developing alternative machine topologies which facili-

tate an efficient recycling of the PMs.

Figure 1.1. Three recycling loops for REEs of PMs in (H)EVs.

Figure 1.1 describes the various recycling loops of PM materials in (H)EVs [3].

These loops may be summarized as follows for a machine which has reached its

End of Life (EoL):

• Reuse: The PMs extracted are used directly in a new machine.

• Direct Recycling: The PMs extracted are processed as raw material and

manufactured as new PMs to be used in electrical machines for (H)EVs.

• Indirect Recycling: The PMs extracted are processed as raw material and

transformed to their basic elements.

The thesis work presented in this report belongs to Work Package 3 (WP3):

“Design for Reuse of SmCo and NdFeB Magnet Motors in (H)EVs”, part of

the European Training Network for the Design and Recycling of Rare-Earth

Permanent Magnet Motors and Generators in Hybrid and Full Electric Vehicles

(DEMETER) [3].

2
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A large percentage of the market share of NdFeB PMs belongs to motors and

generators according to the review presented in [9] and [12]. Therefore, the

recycling of REEs requires to be addressed due to the increasing demand of

electric vehicles. Such increment on the demand of zero emission vehicles is

linked to the environmental policies which main goals are to reduce the emis-

sions of green house gases by making the transition to zero emission vehicles

by 2050 in Europe [13].

The recyclability of REEs has been addressed in various reports. For example,

in [14], a forecast of the recyclable available material is carried out, showing the

potential and the importance of recycling in the development of (H)EVs. In [15]

a methodology is developed for the recovery of PMs in electrical machines that

have reached the EoL. In [16] and [17] hydrogen is used to separate and recycle

NdFeB PMs used in hard disk drives, showing a good efficiency, but at a small

scale. New rotor structures are proposed in [18] and [19], in which the PM

material is encapsulated in the rotor, facilitating the recovery at the EoL of

the machine. However, one disadvantage of the recycling process is that the

handling of the PM material should be under a protective atmosphere in order

to avoid the oxidation of the recycled powder, thus, increasing the complexity

of the overall process. Figure 1.2 illustrates the dismantled rotor used where

the PM powder is encapsulated in a metallic container. Additionally, the re-

use of the PMs is evaluated in a wind power generator study case, in which

the poles are formed with PMs of smaller size in a ”LEGO” like structure [20].

However, such approach might not result convenient due to the large amount of

air-gaps between PMs which might affect the resulting air-gap remanence and

posing difficulties if very accurate tolerances are required. Additionally, the re-

use of PMs might not be convenient since both the magnetic and mechanical

properties of the PMs after their use, might be subjected to degradation (i.e.

demagnetization, corrosion, etc.). Regarding the specific case of recyclable

electrical machines in (H)EVs, in [21] a claw-pole TFM topology is proposed.

Using Soft Magnetic Composites (SMC) in both the stator and rotor structures

and a SmCo PM ring, such structure was expected to facilitate the recovery of

the PM material at the EoL. Figure 1.3 depicts the geometry of the machine

structure. Finally, and most recently, a claw-pole machine is proposed in which

the PMs are inserted in the structure of the rotor. The structure have been

conceived in such fashion that the direct reuse would be possible [22]. The

structure proposed is illustrated in Figure 1.4.

3
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Figure 1.2. Dismantled rotor con-
tainer [18].

Figure 1.3. Claw-pole TFM SMC
machine [21].

Figure 1.4. Rotor of a claw pole machine, conceived for reuse of PMs [22].

1.2 INTRODUCTION TO THE STATE OF THE ART

1.2.1 REVIEW OF ELECTRICAL MACHINES IN (H)EVS

Machines designed for traction applications, shall fulfil the following main de-

sign and performance characteristics [23], [24]:

• High torque and power densities.

• High torque at starting, low speed and climbing. High power for high-

speed cruising.

• Wide speed range with a constant power speed range of around 3 to 4

times the base speed. A good ratio between the peak torque and the

nominal power supplied by the inverter (i.e. power factor).
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• High efficiency over both the speed and torque ranges including low torque

operations.

• High instantaneous overload capacity. Generally, 200%.

• High reliability and robustness appropriate to the vehicle environment.

• Acceptable costs.

In addition to the aforementioned characteristics, and according to what is

proposed in this thesis, the PMs used in the machine should be easily recy-

clable at the EoL. Figure 1.5 shows the three main types of machine found

predominantly in the market of (H)EVs [25], [26]:

• Induction Machine.

• Interior Permanent Magnet machine.

• Synchronous machine (i.e. rotor wounded).

3 Phase AC

DC Field

(a)

3 Phase AC

(b)

3 Phase AC

(c)

Figure 1.5. Machine topologies found in (H)EVs, (a) synchronous, (b) induction,
and (c) interior permanent magnet [27].

The advantages of each machine over another have been subject of extensive

investigation and may be found in the literature proposed in this work [23],

[2], [28]. Furthermore, synchronous, induction, and interior permanent magnet

machines are out of the scope of this thesis, the main reasons:

• All of the three types of machines are of radial field operation principle.

• PM material is not required by both induction, and synchronous ma-

chines.

• Interior permanent magnet machines are not ideal for recycling, since the

PMs are ”buried” in the rotor, restraining their recovery at the EoL.

5
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Therefore, further description of the advantages and disadvantages, and work-

ing principles, of each type of machine are not included in this document. The

fact that electrical machines with 3D-flux paths are not widespread in (H)EVs

is consequence of technical challenges. Further discussion on machines with

3D-flux paths will be presented in coming sections, since it is considered that

there is potential for their study in the context of (H)EVs.

1.2.2 TRANSVERSE FLUX MACHINE (TFM)

This type of machine was first proposed in the 80’s [29]. Though different

variants have been developed, all of them work under the same principle: a

toroidal shaped coil producing a Magneto Motive Force (MMF) in the air-gap.

This MMF is modulated by a combination of stator poles interacting with PMs

placed on the rotor. The number of stator poles is usually half of the number

of rotor poles, and it is much higher than conventional PM machines.

Such topology allows the increment of the number of poles without reducing

the MMF distribution per pole. In this regard, the TFM is similar to claw-pole

topologies, having up to three times higher torque density than conventional

PM machines [30]. Therefore, TFMs are excellent candidates for applications

that require low speed and high torque (e.g. wind turbines, ship propulsion

systems, etc.). Additionally, applications where there are limitations of size

and space. Although many variants of the TFM have been proposed, there is

no report of commercial production. Furthermore, TFM have disadvantages to

overcome. Some of them are listed as follows:

• High complex construction.

• Requires in most of the cases a true 3D-flux structure, only possible to

achieve with SMC materials [31].

• Low power factor, due to a high amount of leakage which is basically

translated to an oversized converter [32], [33].

Variations of the TFM topologies include the Surface Mounted Transverse Flux

Machine (SMTFM), Flux Concentrated Surface Mounted Transverse Flux Ma-

chine (FCSMTFM). In addition, TFMs might not include PMs in the rotor,

in which case the Transverse Flux Reluctance Machine (TFRM) have similar

features as a Switched Reluctance Machine (SRM) [34].

Regarding the construction of the stator, it might have a single or double sided

construction as it is shown in Figures 1.6a and 1.6b. In the case of a TFM with

permanent magnets the rotor may be of surface mounted topology or with

buried PMs. In either of the cases, TFMs shall have two or more phases form-
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(a) (b)

Figure 1.6. Basic topologies of a TFM, (a) single sided SMTFM, (b) double sided
SMTFM [35].

ing a stacked structure in order to produce a starting torque. Consequently,

increasing their complexity during the manufacturing process.

1.2.3 AXIAL FLUX MACHINE (AFM)

The earliest AFMs were reported in the 19th century. In theory, any conven-

tional radial flux machine should have its counterpart in an axial version [36].

Generally, AFMs may be divided into two major groups: single-sided and dou-

ble sided, and the stator may have several variants as well as the topology of

the rotor. In [37] and [38] extensive reviews of this type of machines are carried

out. However, the description done in [36] is fair enough for an introduction to

what is intended in this work. When compared with conventional radial flux

PM machines, some advantages may be identified as:

• The air-gap of AFMs is planar and adjustable to some extent.

• Higher power density design capabilities with savings in core materials

[39].

• AFMs are ideal for designing in a modular approach.

In Table 1.1 some of the topologies of AFMs are summarized. Additionally, in

Figure 1.7 each topology is described. Special attention shall be paid to AFM

topologies, since the work presented in this document is based on the structure

illustrated in Figure 1.7f. The principle of operation will be described in coming

sections.
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PM

Stator
Core

Winding

Rotor
Back

(a)

PM

Stator
Core

Winding

Rotor
Back

(b)

PM

Stator
Core

Winding

Rotor

(c)

PM

Winding

Rotor
Back

(d)

PM

Stator
Core

Winding

(e)

PM

Stator
Core

Winding

Rotor
Back

(f)

Figure 1.7. Main topologies of AFMs, (a) Single sided slotted, (b) double sided
slot-less, (c) double sided slotted, (d) double sided core-less, (e) double sided external
salient pole stator and internal rotor, (f) double sided internal salient pole stator and
external twin rotor.
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Topology Variant Sub-variant

Single-sided

Slotted stator

Slot-less stator

Salient-pole stator

Double-sided

Slotted stator

Slot-less stator

Internal stator Iron core stator

Core-less stator

No rotor/stator cores

Salient-pole stator

Slotted stator

Internal rotor Slot-less stator

Salient-pole stator

Table 1.1. Summary of AFM topologies.

Although the widespread of this type of machines have been slow [37], [40],

in recent years, there has been an increment in the production of this type of

machines for traction applications. Some examples of companies specialized on

the production of AFMs are: YASA e-motors [41], MAGNAX yokeless AFMs

[42] and EMRAX innovative e-motors [43].

1.2.4 THE HYBRID STEPPER MOTOR (HSM)

The term hybrid given to this type of stepper motor is the result of the working

principle which combines both PM and variable reluctance machines. Hence,

the rotor structure is composed by an axially magnetized ring or disk and a

toothed structure which resembles a variable reluctance machine. The PM is

placed in the rotor, between two laminated stacks, which are generally made

of electrical sheet as shown in Figure 1.8. Although two and four phases are

the most widely spread configurations for this type of machine, the three and

five phases structures are also used. In any case, the constructive structure of

the rotor has basically no difference independent of the number of phases.
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Figure 1.8. Rotor of a HSM.

As it is observed in Figure 1.9a, there is an axial direction of the flux produced

in the rotor, which makes the HSM a machine with 3D-flux paths, although

the flux in the stator is still of radial nature. The working principle of the

HSM is as follows; if phase X in figure 1.9b is energized, the coils X and X’

will generate south and north polarity respectively. Consequently, the north

polarized stack will rotate for aligning with coil X, and the south polarized rotor

stack will rotate for aligning with coil X’. Once the alignment is achieved, the

torque produced by the current applied to phase X will be zero, and then it

will be necessary to energize the remaining phases of the machine. A complete

rotation is then achieved by energizing both phases X and Y in the required

sequence.

N

N S

S

Stator

Shaft

PM ring

Rotor 
stack

(a)

’

(b)

Figure 1.9. Magnetic paths in the HSM, (a) flux produced by the PM in the rotor,
(b) flux produced by the currents in the stator [44].
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1.3 MAGNETIC MATERIALS IN ELECTRICAL MACHINES

Magnetic losses may be divided into two main components: hysteresis losses

and eddy current losses. The former are due to the movement of the ferro-

magnetic domains when these align with the time changing flux. The latter,

are generated by the changing flux circulating in the material. Eddy currents

are the main reason for using laminations in the magnetic systems of most

electrical machines (e.g., transformers, motors, actuators, etc.). Figure 1.10

shows the behaviour of both hysteresis and eddy current losses with frequency.

It shows, that hysteresis losses vary linearly with the frequency, whereas eddy

current losses vary approximately with the frequency squared. Consequently,

magnetic losses might get to be dominant at high frequencies.

eddy loss

hysteresis loss

Frequency

L
o
ss
es

Figure 1.10. Rise in magnetic loss with frequency.

In order to reduce the losses due to eddy currents, the laminations are required

either to be as thin as possible, to have a large resistivity or both. In electrical

machines there are various materials for the design of the magnetic systems.

Figure 1.11 describes some of them. From the conventional Silicon Iron (SiFe)

electrical sheets with Oriented and Non-Oriented Grains (GO and NO). The list

continues with Nickel Irons (NiFe), Cobalt Irons (CoFe), composite materials,

microcrystalline alloys and amorphous metals.

Amorphous Metals

In addition to the reduction of the losses as a goal in the design of electrical ma-

chines, the increment of the permeability is of interest. Given that permeability

indicates the magnetization level in any material. A large value of permeability

is achieved by the increment of the perfect crystal orientation and the purity

of the metals used. In addition, when a metallic alloy is cooled at a rate of

millions of degrees Celsius per second, the material becomes solid without the

presence of crystallization. Hence, energy minimization associated with regu-

lar crystal formation in the atoms does not take place. The resulting structure

11
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Amorphous
Metals Co,

FeB

NiFe

Electrical
Steels, GO/

NO
CoFe

Micro
Crystalline Composite

Figure 1.11. Niche applications of soft magnetic materials [45].

may be compared with ordinary glass which is an unstable structure able to

form crystals under appropriate conditions. In addition, due to the rapid cool-

ing of the material, the formation of the nucleation centres is avoided. From

a macroscopic point of view, the material is isotropic, which means that the

material may be magnetized in any direction. Figures 1.12a, 1.12b and 1.12c

describe both the process of manufacturing amorphous materials and the final

products, respectively. Amorphous materials for applications in electrical ma-

chines are alloys composed mainly by Iron, with the addition of materials such

as Silicon, Boron, Manganese and Carbon.

The superior properties of amorphous metal arise from the thinness (e.g. 25

μm) and high electrical resistivity of the alloy (e.g. over 100 μΩ·cm), which re-

strains eddy currents [46]. Additionally, domain walls can move freely through

the random atomic structure. The rapid cooling results in a strip which is

highly stressed and requires a stress-relief anneal. A low temperature of ap-

proximately 250 degrees Celsius, must be used to avoid destructive crystalliza-

tion of the metal. Magnetic losses in amorphous alloys are around 1/3 of those

for grain-oriented electrical sheet. However, the cost of production and the

problems of handling it and avoiding compressive stress, limit its widespread

use for large machines. Figure 1.13 shows the comparison of the BH curves for

both standard electrical sheet and amorphous metals. Note that a logarithmic

scale was necessary in order to evaluate its behaviour at low values of H. It

is important to highlight that the saturation value of amorphous materials is

lower in comparison to the electrical sheet. Which yields a reduction on the

performance of the machine, as it will be shown in coming sections of this thesis

report.
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(a)

(b)

(c)

Figure 1.12. Amorphous metals, (a) melt-spinning diagram for the production [46],
(b) final product: ribbon [47], (c) final C-shaped cores.
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Figure 1.13. BH curves of electrical sheet and amorphous materials.
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Review of the Implementation of Amorphous Materials in Electrical

Machines

Although the use of amorphous metals in electrical machines is not widespread,

various studies of machines implementing such material have been found in the

literature. For example, a prototype of an induction motor was developed

in [48]. The stator was build with amorphous laminations as it is shown in

Figure 1.14. A comparison of the no-load losses is performed with standard

electrical sheet. Additionally, in [49] an experimental evaluation of an IPM

prototype is performed. Such prototype implements amorphous laminations in

a segmented stator, as it is illustrated in Figure 1.15. Similarly, a comparison

of the iron losses between standard and amorphous laminations is performed

in [50] on a prototype of an IPM machine, the stator built with laminated

amorphous material is shown in 1.16. Finally, in [51] a Surface Permanent

Magnet Synchronous Motor (SPMSM) was built. The evaluation of the iron

losses in three different materials, including amorphous alloys, is performed

in a machine with a modular teeth structure. Figure 1.17 shows the stator

structure used in this type of machine.

Figure 1.14. Stator made of amor-
phous laminations [48].

Figure 1.15. Modular teeth stator
structure [49].
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Figure 1.16. Stator made of amor-
phous laminations [50].

Figure 1.17. Segmented stator made
of amorphous laminations [51].

Amorphous laminated materials have been also evaluated in machines with

3D-flux paths. In [52] an AFM was constructed and tested. In addition to

the evaluation of the iron losses implementing amorphous materials, a new

approach in the manufacturing of the rotor is proposed by using water-jet

cutting. Figure 1.18 shows the structure of the stator, uncut 1.18a and after

the cutting process 1.18b. An additional approach, with AFMs is proposed

in [53]. The prototype tested is built with wounded amorphous modules, as

shown in Figure 1.19. Finally, a segment of a claw-pole TFM rotor structure

was developed and studied in [54]. Such machine implements C-shaped cores

made of laminated amorphous material in conjunction with SMC in order to

complete the claw structure. A comparison between standard electrical sheet

and amorphous laminations is carried out. The measurement of the no-load

losses was performed to one pole pair in the stator, which is shown in Figure

1.20.

(a) (b)

Figure 1.18. AFM rotor structure; (a) uncut, (b) cut [52].
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1.4. PROPOSED STRUCTURE OF A 3D-FLUX MACHINE

Figure 1.19. AFM with wounded amorphous stator cores [53].

Figure 1.20. Modular stator pieces of a claw-pole TFM [54].

The review on electrical machines developed, confirms that there has been

relevant work on the evaluation of amorphous materials in electrical machines.

Furthermore, its beneficial low level of iron losses have been demonstrated with

experimental results in most of the publications described above and summa-

rized in Table 1.2. In contrast, it is shown that its implementation is challenging

from the manufacturing and assembling perspectives (i.e. cutting, punching,

annealing). Therefore, there is still work to be carried out in finding alternatives

in order to deal with the mechanical challenges that amorphous laminations

have.

1.4 PROPOSED STRUCTURE OF A 3D-FLUX MACHINE

The machine proposed in this thesis may be summarized with the following

analysis: if one coil of the AFM machine in Figure 1.7f is taken, the section in

Figure 1.21a is obtained. Then, if the iron core is stretched as in Figure 1.21b,

it will be long enough to be bended as in Figure 1.21c. Then the axial air-gap

has been changed to a radial air-gap as in Figure 1.21d. The result is a stator
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Reference Type of Machine Power [kW] Results

[48] IM 0.88 Max. reduction by a factor
of 6.8 compared to electrical
sheet.

[49] IPM 20 Max. reduction by a factor
of 1.8 compared to electrical
sheet.

[50] IPM Not specified Max. reduction by a factor
of 2 compared to electrical
sheet.

[51] SPMSM 0.4 Max. reduction by a factor
of 2 compared with electrical
steel.

[52] AFM 1.5 -

[53] AFM 0.2 -

[54] TFM - Max. reduction by a factor
of 11, compared with electri-
cal steel.

Table 1.2. Summary of research on amorphous materials in electrical machines.

with a convenient C shape. Thus, allowing the implementation of a modular

stator, and the use of C-shaped cores. The geometry may be further extended

for using two C-shaped cores as in Figure 1.21e obtaining a stator structure

similar to the E-core TFM [34] [55]. Additionally, the SM rotor structure may

be modified as in Figure 1.22 to obtain a rotor structure which resembles the

HSM rotor.

Figure 1.22. Hybrid rotor topology.
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(a)

(b)

(c)

(d) (e)

Figure 1.21. Proposed machine geometry, (a) section of an AFM, (b) stator core
stretched, (c) stator core bended, (d) C-shaped stator core and (e) C-shaped stator
final approximation.
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The recyclability of PMs is expected to be improved by adopting a stator with

a modular structure. The development of stator with modular structures have

been investigated in [56], [55], [57]. On the other hand, the use of amorphous

laminations will allow to have a machine with a high pole count, which is ideal

in order to improve the torque production. The use of laminated amorphous

C-shaped cores have been investigated in a simulation study of a linear machine

in [58] and the experimental evaluation of a claw-pole TFM in [54]. This thesis

will focus on the topologies presented in Figures 1.21e and 1.22, exploring

their main advantages and disadvantages. In addition, the definition of two

demonstrators for prototyping will be carried out in coming chapters.

1.5 OBJECTIVES AND LIMITATIONS OF THE PROJECT

The main objectives and limitations are presented in this section. The work

has been carried out around the definition of a PM machine with 3D-flux

paths which allows both the efficient extraction of the PMs and the use of non-

traditional materials. In addition, validations of the models developed with the

Finite Element Method (FEM) are performed with the experimental evalua-

tion of a prototype. Finally, the definition of a methodology for evaluation of

recyclability of PMs in electrical machines has been developed.

1.5.1 OBJECTIVES

The main objectives of this thesis may be summarized as follows:

1. Studying the advantages of using non-traditional materials, in electrical

machines for use in (H)EVs.

2. Evaluating the possibility of using non-traditional materials in conjunc-

tion with the recyclability of the PMs.

3. Designing electrical machines for (H)EVs, allowing recyclability of the

PMs and using non-traditional materials.

4. Defining, manufacturing and testing of a machine prototype.

1.5.2 LIMITATIONS

This project is limited to the definition and study of an alternative machine

with 3D-flux paths based on existing topologies (i.e. AFMs, TFMs and HSMs).

Such machine is required to comply with recyclability feasibility and shall ac-

count for the use of non-traditional materials. The recyclability feasibility is
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evaluated by developing a recycling index which allows to quantify the re-

cyclability of PMs in electrical machines for (H)EVs. In addition, the term

”non-traditional materials” might cover a wide range of materials. Initially,

two non-traditional materials were considered as possible candidates: SMC

and iron based laminated amorphous material. SMC materials were discarded

at early stages of this work due to previous un-successful attempts of using

them. Initially, in 2004 in a TFM [59] and in 2016 in a motor integrated mag-

netic gear [60]. In both projects, poor mechanical properties were identified.

Hence, an electrical machine with a modular stator made of C-shaped cores of

laminated amorphous material is proposed.

1.6 MOTIVATION

The successful electrification of the transportation in order to reduce CO2 emis-

sions depends largely on the production of electric vehicles and consequently,

the production of electrical machines. Therefore, in order to secure the supply

of critical materials such as REEs for the production of PMs, it is required to

explore the existing recycling technologies. However, as it was explained in the

introduction, it is not enough with the development of large scale recycling pro-

cesses. It is also required to facilitate the access to PMs in electrical machines

once the vehicle has reached its EoL. That is, the development of innovative

electrical machine topologies which make recyclability an efficient process.

1.7 OUTLINE OF THE THESIS

The remainder of the thesis report presented here has the following outline:

Chapter 1: Introduction

In this first Chapter a brief review of the recycling of PMs in electrical ma-

chines was presented. In addition, an initial introduction to various types of

machines with 3D-flux paths was included. Furthermore, a description of the

properties of amorphous alloys was carried out along with a review of the use of

amorphous materials in electrical machines. Finally, an alternative of a 3D-flux

machine was proposed, based on the TFM, AFM and HSM topologies. The

main objectives and motivation were also introduced.

Chapter 2: A Surface Mounted 3D-Flux PM Machine

In this chapter the study of a SPMSMmachine with 3D-flux paths is performed.

A preliminary dimensioning and definition is carried out through sensitivity
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analyses. Both 2D and 3D-FEM models are developed in order to evaluate

various parameters. In addition, a characterization of the iron losses in amor-

phous laminated materials is performed. Afterwards, a demonstrator was built

and measurements of various parameters such as back-EMF, iron losses, no-

load losses, PM losses, etc., are investigated. Finally, the models developed are

validated with measurements.

Chapter 3: Hybrid Rotor 3D-Flux PM Machine

After the work on the surface mounted rotor was developed, an alternative

rotor is defined and investigated. Similarly to Chapter 2, sensitivity analyses

and calculations with FEM are carried out. The main dimensions of a hybrid

rotor 3D-flux machine are proposed for manufacturing a final prototype. This

chapter includes both the measurements and the calculated values with the

models developed throughout this project.

Chapter 4: Recyclability Evaluation of PMs in Electrical Machines

The definition of a methodology for evaluation of the recyclability of PMs in

electrical machines, is proposed and discussed in this chapter. Such definition

was required in order to perform a quantitative evaluation of the recyclability

potential of the machines designed within WP3 of DEMETER project. The

recyclability of PMs in electrical machines was addressed from two perspectives;

an assembly and disassembly approach and an energy consumption approach.

The former, was based on the Failure Mode and Effect Analysis (FMEA).

The latter, based on the evaluation of the energy consumption of the machine

through its life time. The energy consumption investigation was performed on

the hybrid rotor 3D-flux machine developed in Chapter 3.

Chapter 5: Conclusion

Lastly, the results obtained are discussed in this chapter. Additionally, conclu-

sions are drawn and future work is proposed.

1.7.1 PUBLICATIONS

Dissemination of the findings of this research work was carried out through

oral presentations and poster sessions in international conferences. Both pub-

lications as first author and co-author are listed in chronological order.

P1 A. G. Gonzalez, J. Millinger and J. Soulard. ”Magnet losses in inverter-

fed two-pole PM machines”. In: 2016 XXII International Conference on

Electrical Machines (ICEM). Sept. 2016, p.p. 1854-1860.

21



1.7. OUTLINE OF THE THESIS

P2 A. G. Gonzalez, A. K. Jha, Z. Li, P. Upadhayay and P. Rasmussen. ”Vali-

dation of Efficiency Maps of an Outer Rotor Surface Mounted Permanent

Magnet Machine for Evaluation of Recyclability of Magnets”. In: 2018

IEEE International Magnetic Conference (INTERMAG). April 2018.

P3 A. K. Jha, Z. Li, A. Garcia, P. Upadhayay, P. O. Rasmussen, A. Kedous-

Lebouc and L. Garbuio. ”Weighted Index of Recycling and Energy

(WIRE) Cost for Motors in Electric Vehicles”. In: 2018 International

Symposium on Power Electronics, Electrical Drives, Automation and Mo-

tion (SPEEDAM). June 2018. p.p. 407-412.

P4 P. Upadhayay, A. G. Garcia, Z. Li, A. K. Jha, P. O. Rasmussen, A.

Kedous-Lebouc and J. Mipo. ”Evaluation of Energy Cost Index for an

Electric Vehicle Motor Over a Particular Drive Cycle with Recycled Mag-

net Concept”. In: 2018 XIII International Conference on Electrical Ma-

chines (ICEM). Sept. 2018. p.p. 738-744.

P5 A. G. Gonzalez, W. Dong and P. O. Rasmussen. ”Investigation of a Sur-

face Mounted PM Machine Concept with 3D-Flux Paths, Modular Stator

and Amorphous Material”. In: 2019 International Electric Machines and

Drives Conference (IEMDC). May. 2019.

P6 A. G. Gonzalez, W. Dong, J. M. Dubus, and P. O. Rasmussen. ”De-

sign and Experimental Investigation of a Machine with 3D Flux Paths,

Accounting for Recyclability of Permanent Magnets”. Paper to be sub-

mitted to IEEE access.
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Chapter 2 A SURFACE MOUNTED
3D-FLUX PM MACHINE

In this chapter an initial approach to the dimensioning of a Surface Mounted

3D-Flux machine (SM3D) is carried out. In order to obtain the initial di-

mensions, analytical calculations were performed with models available in the

literature. Afterwards, both 2D and 3D models of the machine were built and

FEM calculations were carried out in order to estimate values of torque, induc-

tance, permanent magnet flux, among others. Additionally, sensitivity analyses

were performed in order to evaluate the performance of the machine with vari-

ation of some key dimensions. At the end a demonstrator was built and some

parameters were measured allowing the validation of the models developed.

2.1 ANALYTICAL APPROACH AND WORKING PRINCIPLE

2.1.1 CONSTRUCTION OF THE RELUCTANCE NETWORK

A simplified reluctance network of the SM3D machine is described in the fol-

lowing. The importance of this step is that it allows preliminary calculations

of parameters such as PM flux and inductance. Initially, the geometry corre-

sponding to a single module and a portion of the rotor are depicted in Figure

2.1. Such geometry differs from the geometry described in Section 1.4 in that

the rotor is composed by a solid cylinder, allowing a returning path for the

PMs flux. A simplified reluctance network for the calculation of the PM flux

is shown in Figure 2.2. As it might be noticed, some components of the reluc-

tance network are neglected. For example, the reluctance path followed by the

PM leakage between PMs and between PMs and the rotor back.

Generally, the material of both the rotor back and the stator modules have a

large value of relative permeability. In addition, such materials have a non-

linear characteristic. Therefore, in order to facilitate an analytical approxima-

tion for the calculation on the PM flux, the reluctances corresponding to these

regions might be neglected (i.e. Rrot1, Rrot2, Rrot3, Rleg1, Rleg2, Rback1 and

Rlkg). Consequently, the reluctance network shown in Figure 2.2, might be

further simplified to the magnetic circuit in Figure 2.3. Hence, the calculation

of the PM flux Ψm is reduced to the following expression:
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Figure 2.1. Simplified SM3D geome-
try.

ℛlkgℛrot2

ℛleg

ℛback

ℛgap

ℛlegℛgap

ℛrot1

ℛrot1

ϕr1

ϕr2

ℛpm

ℛpm

Figure 2.2. Simplified reluctance net-
work of the SM3D.

Ψm =
φrRPM

RPM +Rgap
(2.1)

Figure 2.3. Simplified equivalent circuit of the SM topology.

Where φr, RPM and Rgap are given by:

φr = BrAm, RPM =
lm

μPMμ0Am
and Rgap =

lg
μ0Ag

(2.2)

With Br as the remanence of the PMs, Am = wmhm is the surface area of the

PM and lm is the PM thickness. In Figure 2.4, the PM dimensions are shown,

with the PM geometry simplified as a rectangular solid.

The reluctance network for the calculation of the inductance is shown in Figure

2.5. The contribution of the PM flux is neglected, consequently φr has been

extracted from the magnetic circuit in Figure 2.2. On the other hand, the

contribution of the MMF of the coils in inserted in the circuit.

The self inductance is given by the ratio of the flux linked by the coil and the

current that is producing it, that is:

L =
λ

I
(2.3)
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Figure 2.4. Main PM dimensions.
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ℛleg
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+
-

ℛpm
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Ni

Figure 2.5. Reluctance network for
the calculation of the inductance.

Figure 2.6. Simplified circuit of the
SM3D.

Where λ = Nφ, with N the number of turns in the winding. Since φ = NI/R,

then (2.3) becomes:

L =
N2

R (2.4)

The approaches presented so far allow a rough estimation of the PM flux linkage

and inductance. Both approximations are assuming lineal materials with a high

permeability, that is, the non-linearity of the magnetic materials in both the

stator and rotor are disregarded. Consequently, in order to account for the

non-linearity of the materials and to perform an accurate calculation of such

parameters FEM models are required. Nonetheless, a comparison between the

analytical models developed so far with 2D-FEM calculations is performed in

2.3.1.
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2.1.2 DESCRIPTION OF THE WORKING PRINCIPLE

In order to give an overview on the working principle of the SM3D machine,

a preliminary 3D-FEM model was built. It consists of a single module as it is

shown in Figure 2.7. When the PMs of the rotor are aligned with the stator

module, as in Figure 2.7a a maximum PM flux Ψm is reached. If the rotor is

moving clockwise, the position described in Figure 2.7b is reached, and there is

virtually no PM flux linking flowing throw the stator module, hence Ψm is zero.

If the rotor continues moving in the same direction, the position described in

Figure 2.7c is obtained. Hence Ψm has a minimum value. The behaviour of

Ψm is depicted in Figure 2.8. Thus, the SM3D machine may be driven simply

as any PM machine with sinusoidal flux linkage/back-EMF.

The working principle is extended to a 3-phase topology. Therefore, the model

of a machine with 21 stator modules and 28 poles is presented in Figures 2.9

and 2.10. Although the rotor configuration is different in both cases, the be-

haviour of the PM flux is similar. Furthermore, an initial calculation of the

values of PM flux Ψm showed a deviation of approximately 1.6%. The results

are included in Table 2.1. Where the geometry described in Figures 2.9 and

2.10 have been defined as solid and divided rotor back respectively.

Similarly to the working principle for a single module, the PM flux paths are

estimated in the 3-phase configuration. As it is observed, the flux main paths

are concentrated in the top and bottom regions of the rotor, where the PMs are

located, and the flux linking from the PMs of the top and the bottom regions

is minimum. Which explain the low deviation between the values calculated in

Table 2.1.

Geometry Value [mWb]

Solid rotor back 4.50

Divided rotor back 4.57

Table 2.1. Calculated PM flux of the SM3D machine.

The study is extended to investigate the flux linked by the MMF generated

by the current in the windings. A current is applied to the winding in the

middle module or phase b. Additionally, the permanent magnet remanence

was set as zero. The results for both geometries are depicted in Figures 2.11

and 2.12. As it is observed, the flux generated by the MMF of the winding

describes a different path when contrasted to the PM flux. In order to quantify

the difference between the two geometries, the flux linked by the coils λa, λb,
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(a)

(b)

(c)

Figure 2.7. SM3D machine principle, isometric view, xy-plane view and yz -plane,
(a) at maximum, (b) zero, and (c) minimum positions.

and λc was calculated. The results are presented in Table 2.2. The largest

difference is present in the adjacent phases a and c. Which is clear since

with the modification the axial path of the flux in the rotor in Figure 2.11a is

eliminated, therefore, the flux finds its way of circulating through the remaining

phases, which in turn represents an increment in the mutual inductance of the

system. At this preliminary stage, the machine with the divided rotor back is

selected. It will be demonstrated that the division of the rotor back into two

regions allows the simplification of the magnetic system to a 2D model.
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(b)

Ψm

-Ψm

(a)

(c)

Rotor displacement

Figure 2.8. PM flux linkage distribution of the SM3D machine.

(a) (b) (c)

Figure 2.9. SM3D machine with 21 stator modules and 28 poles, solid rotor back.

(a) (b) (c)

Figure 2.10. SM3D machine with 21 stator modules and 28 poles, divided rotor
back.

2.2 DIMENSIONING OF THE SM3D MACHINE

As a start, the specification of a machine for application on (H)EVs was fol-

lowed. Some of the requirements are listed in Table 2.3.
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(a) (b)

Figure 2.11. SM3D machine with 21 stator modules and 28 poles, solid rotor back
MMF flux distribution.

(a) (b)

Figure 2.12. SM3D machine with 21 stator modules and 28 poles, divided solid
rotor back MMF flux distribution.

Geometry λa [mWb] λb [mWb] λc [mWb]

Solid rotor back -0.11 0.64 -0.11

Divided rotor back -0.15 0.60 -0.15

Table 2.2. Flux linkage generated by the MMF in the winding.

As it was discussed in Chapter 1, the low value of specific losses that amorphous

materials have, might allow the operation of the machine at higher frequencies

when compared with electrical sheet. Consequently, having a higher pole count-

ing is of interest for enhancing the performance of the machine [61], [62]. The

limitation is then set by the converter used and the fundamental frequency. In

addition, the modular structure of the stator is ideal for the manufacturing of

a non-overlapping concentrated winding as it was suggested in Section 1.4. In
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Parameter Value

Nominal speed [rpm] 1000

Continuous torque [Nm] 100

Maximum torque [Nm] 200

Rated speed at maximum torque [rpm] 2300

Nominal power [kW] 24

Nominal rms current density Jrms [A/mm2] 6.5

Table 2.3. Specification for the design of the SM3D machine.

theory, having one coil per module would facilitate the manufacturing of the

winding, for example, by using coil bobbins. Therefore, the manufacturing of

the coils might be automated, facilitating the assembly process.

Hence, combinations of stator modules and rotor pole combinations yielding a

slot per pole per phase q lower than 1 are of interest. A study of the wind-

ing factor in machines with non-overlapping concentrated windings was devel-

oped in [63], where the combinations yielding the higher winding factors are

recommended. However, as it is highlighted in [62], some combinations with

0.25 < q < 0.5 might have issues of noise and vibration. Following such prin-

ciples, combinations with a large value of symmetry were selected for studying

in this chapter. As an initial approach, and following the procedure proposed

in [64], the aspect ratio of a synchronous machine χ is the ratio of the stack

length Lstack over the air-gap diameter Dg:

χ =
Lstack

Dg
(2.5)

An initial estimate of χ may be obtained as:

χ =
π
√
p

4 · p (2.6)

Where p is the number of poles. Then it is possible to approximate the value

of Lstack if the value of torque T is known with the expression:

T = σFtan

πD2
g

2
Lstack (2.7)

Where σFtan is the tangential stress of the machine, with typical values between

21 to 48 kPa for surface mounted PM machines. Table 2.4 summarizes the

results for various machines with different number of poles.
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Rotor poles Stator modules Dg [mm] χ [%] Lstack [mm]

8 6 198 39.3 78

12 9 212 32.1 68

16 12 222 27.8 62

20 15 230 24.8 57

24 18 237 22.7 54

28 21 244 20.1 51

32 24 249 19.6 49

36 27 254 18.5 47

Table 2.4. Air-gap diameters of various combinations of stator modules and rotor
poles.

2.3 2D-FEM MODELLING

A 2D-FEM model was built in order to evaluate the performance of the SM3D

machine. The division of the rotor into two sections as described in Section

2.1.2, allows the simplification of the SM3D as shown in Figure 2.13. That is,

the inner and outer rotors, represent the top and the bottom sections of the

rotor in the model described in Figure 2.10. In an additional step, the geometry

described previously may be reduced by using symmetries. In addition, the

boundary conditions in the external edge of the modules is set as the field is

normal (Neumann boundary condition) in Figure 2.14. Hence, only one air-gap

is required to be modelled.

At this stage some of the dimensions of the C-shaped cores are not required.

That is, only the width of the stator modules (i.e. dimension D) needs to

be defined. The torque, calculated in Nm per unit length is required to be

multiplied by the dimension A of the module in Table 2.5. Furthermore, D

was set as a parameter, varying with the air-gap diameter of the machine.

An analysis with the complete set of dimensions is required when building the

3D-FEM model, which will be investigated in coming sections of the report.

Some assumptions are required in order to start the calculations of torque with

various combinations of stator modules and poles:

• The rotor outer radius rro was varied in increments of 4 mm. In addition,

the outer diameter of the machine was kept fixed. Consequently, the

winding height hwin is reducing with the increased rro. On the other

hand, the winding width wwin is increasing with the perimeter of the
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Figure 2.13. SM3D 2D simplified geometry. Figure 2.14. SM3D 2D
symmetry.

air-gap.

• The PM coverage PMcov is assumed to be 70%. In addition, the dimen-

sion D of the module is equal to the PM pitch and is kept constant.

• The air-gap length lg is kept at a constant value of 0.5 mm. Consequently,

the thickness of the permanent magnet lm is kept constant at a value of

5 mm in all cases.

• The current density was assumed to be 6.5 A/mm2 rms.

The values of the calculated torque with 2D-FEM model are illustrated in

Figure 2.15, where it may be observed that for each stator modules and rotor

combinations there is a rotor radius rro and a copper area which yields a

maximum value of torque. Therefore, reducing the air-gap radius for allowing

a larger copper area results in a reduction of the produced torque (left region

of the plots from the maximum torque in Figure 2.15). Similar situation is

present if the diameter is increased. Then the area available for copper is

reduced. Thus, the torque production is reduced as it is observed in the right

points from the maximum torque points in Figure 2.15. According to the

specifications presented in Table 2.3, there is one machine which delivers the

torque required with the lowest rotor radius. The machine with 15 stator

modules and 20 rotor teeth delivers its maximum torque of approximately 100

Nm with rro= 0.1 m of air-gap radius. Therefore, this combination was selected

for further calculations with 3D-FEM.
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Figure 2.15. Torque comparison for various rotor poles and stator module combi-
nations.

2.3.1 COMPARISON BETWEEN ANALYTICAL AND 2D-FEM MODELS

The comparison between the analytical model developed in 2.1.1 and the 2D-

FEM approach is shown in Figure 2.16. The values of maximum torque and

radius in Figure 2.15 were selected for performing analytical calculations. As

it may be observed, the analytical values follow a similar trend when compared

with 2D-FEM simulations. However, the deviations vary from 20 to 34%.

Despite such deviations, the analytical calculations might serve as an initial

approach in order to perform the dimensioning of the SM3D machine. The

values of torque calculated analytically, are obtained with the expression:

T =
3

2
Ψ̂m · Îq · 2p (2.8)

Where Ψm is obtained with (2.1) and Îq is the peak q-axis current obtained

with:

Îq =
√
2Jrmshwinwwinkfill (2.9)

With kfill as the slot fill factor.
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Figure 2.16. Calculated torque with analytical and 2D-FEM models.

2.4 3D-FEM MODELLING

Although the simplification of the machine was possible and both analytical

and 2D-FEM models were developed, there are certain phenomena that shall be

accounted for with a full 3D model. Therefore, parameters such as permanent

magnet flux, torque production, inductance, power factor, among others, are

evaluated through sensitivity analyses in order to investigate the behaviour

of the SM3D machine. Initially, a geometry is selected, and the effect of the

magnet coverage, and PM thickness is investigated. Finally, a definition of

the number of stator modules and rotor poles is carried out. At the end of

this section, a combination of stator modules and rotor poles is selected and

analysed in depth. An SM3D machine with 15 stator modules and 20 rotor

poles was selected. In Figure 2.17a 1/5 of the geometry and half the axial length

is illustrated. The main parameters described in Figure 2.17b for starting of

the study are summarized in Table 2.5, along with a description of the main

dimensions of the C-shaped modules. Note that the dimension D is estimated

with the outer radius of the rotor rro with the expression:

D =
2π · rro · 0.7

p
(2.10)

Where the factor 0.7 accounts for the space available for the end windings

between modules.
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(a) (b)

Figure 2.17. Geometry defined for sensitivity analysis, (a) isometric view, (b)
definition of the main dimensions.

2.4.1 EVALUATION OF THE PM COVERAGE

The impact of the variation of PM coverage PMcov on the production of PM

flux Ψm is of interest since this parameter is directly related with torque pro-

duction. Additionally, when addressing the recycling issue, it is also important

to optimize the amount of PM material that is being used. Hence, the PMcov

is evaluated from 50% to 100% the pole pitch. The results are shown in Figure

2.18.

As observed in Figure 2.18, the increment of the permanent magnet flux slows

down as the value of PMcov reaches unity. An increment of 40% of PM volume

(i.e. PMcov = 70%), results in an increment of approximately 29% of Ψm.

In contrast, an increment of 60% (i.e PMcov = 80%), results in an increment

of approximately 39% of Ψm. Finally, an increment of 100% of PM volume

(i.e PMcov = 100%) yields an increment of approximately 46% of Ψm. Hence,

the increment of Ψm does not follow the increment of PM material introduced

with the variation of PMcov due to the presence of leakage between PMs, which

starts to be significant as PMcov reaches unity.
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Parameter Value [mm]

Rotor outer radius rro 100

Rotor inner radius rri 97

Rotor back radius rback 84

Stator outer radius rso 152.5

Stator inner radius rsi 101.5

Winding width wwin 10

Winding height hwin 39.5

Module dimension A 19

Module dimension B 25

Module dimension C 41.5

Module dimension D 22

PM thickness lm 3

Air-gap length lg 0.5

Table 2.5. Main dimensions of a SM3D
machine with 15 stator modules and 20
poles.

Main dimensions of the amorphous
C-shaped cores.
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Figure 2.18. Ψm vs. PM coverage.

Additionally, values of torque were estimated in order to quantify the impact
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of the PM leakage. Once the torque was estimated, the torque per mass of PM

was obtained. As it is shown in Figure 2.19, this parameter reduces as 100%

coverage is reached. Which is a result of the large leakage due to the presence of

large air spaces among modules due to the modular topology of the stator. The

PM mass was calculated assuming a density of 7500 kg/m3 for sintered PMs.

In order to continue with the study of the SM3D machine, a PM coverage of

80% was selected. Additional parameters such as inductance and power factor

are not evaluated, since the permeability of the PM is close to unity. Hence,

variations of inductance with PM coverage would not be expected.
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Figure 2.19. Torque per PM mass vs. PMcov.

2.4.2 EVALUATION OF THE PM THICKNESS

The PM thickness lm was varied from 3 to 8 mm and values of PM flux,

inductance, torque and power factor were calculated. Parameters such as the

rotor inner radius rri, rotor back radius rback, winding width and wwin and

height hwin, and the module dimensions A, B and C were kept fixed. The

parameters stator inner and outer radius rsi and rso varied with the thickness

of the permanent magnet lm. As lm is varying, rro is also varying, consequently

D is varying according to (2.10).
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Permanent Magnet Flux

An increment of maximum 13% in the production of PM flux linkage was

obtained when increasing the PM thickness by 166%. Hence, increasing the

PM thickness further, did not show a significant increment of the production

of Ψm, as it is observed in Figure 2.20. On the contrary, the increment of the

PM thickness would result in the sub-utilisation of the material. Nevertheless,

it is required to evaluate the effect of the increment of the PM thickness in

additional parameters such as torque, inductance and power factor.
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PM thickness [mm]

Ψ
m

[p
.u
.]

PM flux linkage vs. PM thickness

Ψm 3D-FEM

Figure 2.20. Ψm vs. PM thickness.

Torque

The torque production was evaluated with the increment of the PM thickness.

A current density Jrms= 6.5 A/mm2 was applied to the windings. The results

are presented in Figure 2.21. Since the production of torque is proportional to

Ψm as in (2.8), a similar trend in the production of torque is expected as for

the case of the PM flux Ψm.

Inductance

The synchronous inductance and power factor are also evaluated in this section

of the report. The results are presented in Figure 2.22. The synchronous

inductance corresponds to the value of flux linkage calculated when a current

is applied to the q-axis. Then, the contribution of the PM flux is subtracted,
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Figure 2.21. Torque vs. PM thickness.

and the result is divided by the applied current Ia, as in the expression:

La =
Ψa −Ψm

Ia
(2.11)

As the dimension lm increases, the PM reluctance RPM (see Figure 2.5) in-

creases. Since the inductance L is inversely proportional to the reluctance, the

result is the decreasing of the value of L. The trend showed in Figure 2.22 is

consistent with this description.

Power Factor

The power factor of the machine was estimated with the values of PM flux Ψm,

inductance La and applied current Ia with the expression [59]:

cosϕ = arctan

(
LaIa
Ψm(1)

)
(2.12)
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Figure 2.22. Inductance vs. PM thickness.
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Figure 2.23. Power factor vs. PM thickness.

As discussed previously, the increment of the PM thickness, did not yield a

significant increment of the production of permanent magnet flux and con-

sequently torque production. However, it shows a significant impact in the

calculated values of inductance and power factor. Therefore, the selection of

the PM thickness should account for these two parameters. As an additional

step, the distribution of magnetic flux density in the stator modules was verified
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in order to evaluate the saturation levels. Three points in the stator modules

were selected for the calculation of the magnetic flux density. Figure 2.24,

shows the definition of such points. The results are shown in Figure 2.25.

(a) (b) (c)

Figure 2.24. Definition of points for plotting the magnetic flux density, (a) isometric
view, (b) isometric view, and (c) xy-view.
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Figure 2.25. Magnetic flux density vs. PM thickness.

At load, the levels of magnetic flux density in the stator modules have a low

value bearing in mind that the knee point in the BH plot is approximately 1.5 T

for electrical sheet. On the other hand, for amorphous laminated material, the

saturation knee point is reached at approximately 1.4 T, as shown in Figure

1.13. Which results in a reduction of the performance of the machine with

amorphous laminated material. In addition, the optimization process of the
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SM3D machine is limited to the fixed dimensions of the modules available [65],

[47], [66]. Moreover, the winding width wwin is much lower than the dimension

B of the module as it is shown in Figure 2.26, resulting in the under-utilisation

of the available window of the module.

Figure 2.26. SM3D geometry yz -plane.

Generally, the optimization process of the machine is performed by varying the

air-gap diameter, the slot dimensions and the length of the machine. However,

in the case of the SM3D, most of the dimensions are fixed. Hence the optimiza-

tion process becomes challenging since all module dimensions A, B, C and D

are changing non-uniformly from module to module. Therefore, it was decided

to use a different approach in the optimization process which is discussed in

the following section.

2.4.3 EVALUATION OF THE SELECTION OF STATOR MODULES AND
ROTOR POLES

As it has been described previously, the C-shaped cores are already available

at standardized dimensions, which makes the optimization of the stator cores

a challenging task. Therefore, a different approach is suggested. According to

the window area available (B × C/2), there will be a minimum diameter at

which such window area is fully utilised. Initially, the modules dimensions in

Table 2.7 are selected.
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Core dimensions [mm]

A B C/2 D F

13 15 28 25 82

16 20 35 25 102

19 25 41.5 35 121

Table 2.7. C-shaped core main dimen-
sions.

Main dimensions of the amorphous
C-shaped cores.

According to the stator topology described in Figure 2.26, the copper area is

maximum when the winding width wwin is equal to the dimension B of the

module. Hence, with the dimension D of the module and the number of sta-

tor modules, it is possible to determine the air-gap radius rgap as described in

(2.13), and consequently to calculate the torque production of such combina-

tion. The calculated air-gap radius rgap and the values of torque are shown in

Table 2.9. The values of air-gap radius are calculated with the expression:

rgap =
(2B +D)Nmod

2π
(2.13)

Where Nmod is the number of stator modules. The calculations of torque,

were performed with the 2D-FEM approximation. Therefore, the results of

torque per unit length were multiplied by the dimension A of each module. In

addition, the air-gap length was kept constant with lg= 0.5 mm, as well as, the

PM thickness which was kept as lm= 5 mm.

Modules Poles
A= 19 [mm] A= 16 [mm] A= 13 [mm]

air-gap
radius
[mm]

Torque
[Nm]

air-gap
radius
[mm]

Torque
[Nm]

air-gap
radius
[mm]

Torque
[Nm]

6 8 71.6 67.7 62.1 35.2 52.5 15.18

9 12 (107.4 157.2) 93.1 82 78.8 35.5

12 16 143.2 283.7 (124.1 148.2) 105 64.3

15 20 179.0 447.5 155.2 236.1 131.3 101.4

18 24 214.9 640.3 186.2 335.5 (157.6 145.9)

21 28 250.7 874.9 217.2 458.7 183.8 199.7

Table 2.9. Torque and radius per combination of poles and stator modules.
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The combinations in brackets, are of interest for an optimization process given

the values of torque and air-gap radius. Various criteria were evaluated for

each one of the three machines. The first criterion is the torque density Tden.

Torque density is defined as the ratio of the torque produced by a machine and

its active volume. Therefore, it can be evaluated with the expression:

Tden =
T

πr2soLstack
(2.14)

The second criterion is the stator surface current density of the machine Aload.

It is defined as the ratio of the total current rms in the stator windings and the

perimeter described by the rotor radius [67]. For the SM3D machine it might

be estimated with the expression:

Aload =
JrmsCBkfill

2πrgap
(2.15)

Where kfill is assumed to be 0.5, and the current density was assumed to be

6.5 A/mm2 rms. The third criterion was the machine constant KT which is the

ratio between the torque produced and the square root of the copper losses [68]:

KT =
T√
pcu

(2.16)

Parameter
Combination

9/12 12/16 18/24

Torque density [Nm/L] 11.6 12.2 11.8

Current load (rms) [kA/m] 45 35 24.8

Copper losses [W] 581 412 310

Machine constant KT [Nm · W-0.5] 6.5 7.3 8.3

Table 2.10. Selection of SM3D machines.

All these three parameters were evaluated on the three machines selected. The

results are summarized in Table 2.10. As it is observed, the combination of 12

stator modules and 16 poles yielded the higher value of torque density. On the

other hand, in terms of size, the machine with 9 stator modules and 12 poles

would be a suitable choice. However, the higher level of copper losses might

not be convenient. Hence, the combination of 12 stator modules and 16 poles

was selected.
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2.5 STUDY OF THE SURFACE MOUNTED 3D-FLUX PER-
MANENT MAGNET MACHINE

The dimensions of the machine with a combination of 12 stator modules and

16 poles are summarized in Table 2.11.

Parameter Value [mm]

Rotor outer radius rro 115

Rotor inner radius rri 106

Rotor back radius rback 88

Stator outer radius rso 166.5

Stator inner radius rsi 115.5

Window width wwin 20

Window height hwin 30

Module dimension A 16

Module dimension B 20

Module dimension C 35

Module dimension D 24

PM thickness lm 9

PM coverage cov [%] 90

Air-gap length lg 0.5

Table 2.11. Main dimensions of a SM3D machine with 12 stator modules and 16
poles.

2.5.1 NO-LOAD BACK-EMF

The no-load back-EMF of the SM3D machine is shown in Figure 2.27, evaluated

with both electrical sheet and amorphous material. As it is observed, at no-load

the deviation of the values of both materials is negligible.
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Figure 2.27. Back-EMF at 2300 rpm.

2.5.2 PRODUCTION OF TORQUE

The torque was estimated at various values of current density. Static, non-

linear simulations were run, and the values obtained are shown in Figure 2.28.

The requirement is that the machine delivers a maximum torque of 200 Nm. In

addition, a comparison between both electrical sheet and amorphous materials

was performed. The materials in 3D-FEM were modelled with the BH curves

in Figure 1.13. The torque production with amorphous material, shows a lower

value when compared with electrical sheet. Due partially to the lower satura-

tion point that amorphous material have. In addition, the stacking factor of

amorphous material, is much lower than for the electrical sheet. That is, for

amorphous laminations it is approximately 82%, whereas for electrical sheet,

it is larger than 90% depending on the thickness of the lamination. However,

as it is observed in the results, the linear behaviour of the torque shows that

the knee of the BH plot of the material is not reached. The magnetic flux dis-

tribution in both stator and rotor is shown in Figure 2.29 with electrical sheet.

Large variations of the magnetic flux density in the PMs may be identified.

Such variations are due to the permeance variation seen by the PMs with the

transition from air to iron. Additionally, Figure 2.30 shows the torque of the

SM3D machine at 6.5 A/mm2 with amorphous C-shaped cores. The torque

ripple of the machine is estimated in 11.6%.
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Figure 2.28. Torque production vs. current density.

Figure 2.29. Magnetic flux density distribution at 13 A/mm2.

2.5.3 INDUCTANCE PROFILE VS. CURRENT DENSITY

An additional step in the calculation of the SM3D machine calculation is the

variation of the inductance with the increment of the current. These calcu-

lations were performed with both electrical sheet and amorphous material.

Figure 2.31 shows the results of the calculations. The results are for a single
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Figure 2.30. Static torque of the 12 stator modules 16 rotor poles.

turn. That is, the values are required to be scaled by the final number of turns,

which are annexed in Table 2.12.

As it is observed, the inductance calculated in the machine with amorphous

laminations, presents a larger reduction, which is an indication that the lami-

nation is closer to the saturation point.

2.5.4 CALCULATION OF THE IRON LOSSES

For the estimation of the iron losses the model described in [69] is followed.

Therefore, the magnetic flux density in the radial b̂r, tangential b̂t and axial

b̂z directions, at each finite element was calculated in both stator and rotor

regions. Afterwards, a Fourier transformation was applied and the losses were

estimated for each harmonic component. The results are shown in Figure 2.32,

for both SiFe and amorphous material. The iron losses were estimated in 3

cases of current density, and a quadratic fit was performed in order to approx-

imate them in the whole speed range up to 2300 rpm. As it is observed, the

standard laminations show the largest losses. In contrast, lower losses are ob-

tained with amorphous laminations. Moreover, the iron losses with amorphous

materials show a linear trend which might be due to the reduced eddy current

loss component. The impact of the MMF of the windings is negligible as it is

observed.
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Figure 2.31. Inductance vs. current density.
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Figure 2.32. Iron losses vs. speed.

2.5.5 MAGNET LOSSES OF THE SURFACE MOUNTED 3D-FLUX MA-
CHINE

An important aspect of the SM3D machine, is the variation of the permeance

in the air-gap. Given that the stator is built in a modular fashion, such vari-
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ation is large and the permanent magnets located on the surface of the rotor,

are exposed to such variations. In general, for radial flux machines the calcu-

lation of this type of magnet losses is not interesting, since the slot openings

are small. Therefore, in most calculations the effect of these losses is disre-

garded. As described in Figure 2.29 previously, the variation of the magnetic

flux density inside the PMs showed to be large in the SM3D machine. In [70]

and [71] analytical models are proposed for the calculation of these type of

losses. However, as it was demonstrated in [72] and [73], both analytical and

2D-FEM approaches are valid under the assumption of a permanent magnet

length much larger than its thickness hm >> lm. Therefore, in order to calcu-

late the PM losses due to slotting effect, transient simulations were performed

to the 3D-FEM model, at three speeds: 1000, 2000 and 3000 rpm. The results

are shown in Figure 2.33. The calculations were performed with the machine

modelled at no-load. Hence, the model does not account for losses due to time

and space harmonics (i.e. the effect of the harmonics due to the PWM modula-

tion and the winding distribution). Additionally, the conductivity of the PMs

was selected as 1.25 MS/m.
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Figure 2.33. Calculated PM losses vs. speed.

Note that the calculation was performed at 3 speeds, and the curve is a

quadratic fitting of the losses. In addition to the calculated values of PM

losses, the distribution of the current density Jmag inside the magnets is shown

in Figures 2.34a and 2.34b. It shows both the direction and the magnitude.

It is observed, the fashion in which eddy currents are produced in the bound-

aries where there is a transition from iron to air and vice-versa, showing a

pronounced slotting effect. In addition, these losses show a rather high value,
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which might represent a risk of demagnetization, due to the high temperatures

generated by having such large values of losses in a small volume.

(a) (b)

Figure 2.34. PM current density distribution @ 3000 rpm, (a) isometric view, (b)
yz -plane view.

2.5.6 MAIN PARAMETERS OF THE SM 3D-FLUX MACHINE

The analysis of the SM3D machine ends with the description of the main pa-

rameters. The values summarized in Table 2.12 are implementing amorphous

C-shaped stator cores.
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Parameter Value

Torque density [Nm/L] @ 6.5 A/mm2 11.2

PM mass [kg] 2.7

Rotor iron mass [kg] 5.4

Stator iron mass [kg] 7

Copper mass [kg] 5.8

Torque per active weight [Nm/kg] @ 6.5 A/mm2 4.9

Volume [m3] 9.1× 10−3

Number of turns per phase [-] 104

Back-EMF constant [Wb/rad] 0.093

Iron losses [W] @ 2300 rpm 108.3

Copper losses [W] @ 80o 632

Synchronous inductance [mH] 0.71

Phase Resistance [mΩ] @ 20o 29.6

Line voltage [V] 400

PM losses @ 2300 rpm [W] 1816

Power factor [-] 0.8

Rated torque @ 6.5 A/mm2 [Nm] 100

Table 2.12. Main parameters of the SM3D machine.

2.6 A SURFACE MOUNTED PM 3D-FLUX
DEMONSTRATOR

In order to validate the models developed in the calculation of the SM3D ma-

chine, a demonstrator was built. Such demonstrator is shown in Figure 2.35. It

consists of a single phase machine with two C-shaped modules made of amor-

phous laminated material and 40 rotor poles. In order to simplify the man-

ufacturing process, some of the components of an outer rotor machine were

used [74]. That is, shaft, end-shields and rotor back. New permanent magnets

were used and it was necessary to manufacture a new stator structure for keep-

ing the modules and coils in place. Various parameters were evaluated. The

test set-up is shown in Figure 2.36 and the results of the study of this machine

were reported in [75].
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Figure 2.35. Demonstrator assembly
[75].

Figure 2.36. Set-up for testing of the
demonstrator [75].

2.6.1 CHARACTERIZATION OF IRON LOSSES IN AMORPHOUS
C-SHAPED CORES

Initially, the potential loss reduction of amorphous laminated materials was

evaluated. Samples of C-shaped cores made with iron based amorphous al-

loy, as in Figure 1.12c were obtained and a test coil was manufactured. The

C-shaped cores corresponded to the quality 2605SA1, specified by the sup-

plier [65]. The specimen for the characterization of the iron losses is shown in

Figure 2.37. The iron losses in the C-shaped laminated amorphous modules

were determined as the difference between the total measured losses and the

copper losses.

Figure 2.37. Test coil for characterization of the iron losses.

Figure 2.38 shows the superior performance of the amorphous laminations in

terms of specific losses. It shows that the reduction of iron losses might get
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Figure 2.38. Specific losses comparison between amorphous iron and SiFe lamina-
tions.

to reach 68% when compared with standard electrical sheet. Furthermore, the

reduction of losses is more noticeable as the frequency increases. Meaning that

having a large pole count machine and/or higher frequency are possible by

using amorphous laminated materials. The values of specific losses of M300-

35A laminations are taken from data-sheet of the manufacturer [76].

2.6.2 VALIDATION OF FEM CALCULATIONS WITH TEST MEASURE-
MENTS

Various parameters were measured with the test set-up presented in Figure

2.36. A FEM model was built with the main dimensions presented in Table

2.13 and Figure 2.39. Figure 2.40 shows the model built in 3D-FEM.

Measurement of Back-EMF

The measurement of back-EMF was performed at a range of speeds from 100

to 500 rpm. Figure 2.41 illustrates the waveform of the back-EMF at 100

rpm, of both measured and calculated with 3D-FEM simulations. The results

shows that the waveforms have a similar trend. In addition, the rms values of

back-EMF at speeds of 200, 300, 400 and 500 rpm, are illustrated in Figure

2.42.

As it may be observed, the trend of the calculations follows the values measured
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Dimension Value

Rotor outer radius rro [mm] 139

Rotor inner radius rri [mm] 128

Stator outer radius rso [mm] 127.5

Stack Length [mm] 52

Air-gap length [mm] 0.5

PM thickness lm [mm] 3

PM width wm [mm] 15

PM length hm [mm] 15

PM remanence Br [T] 1.37

Number of turns per coil 150

Pole pairs 2p 20

Table 2.13. Main dimensions of the demonstrator [75].

at different speeds. However, these might be subjected to deviations. That is,

in the FEM model the air-gap length has a constant value. However, in the

prototype the PMs are of rectangular shape. In addition, the value of air-gap

during the assembly could have changed. The deviation between measurements

and 3D-FEM was of approximately 12%.

Measurement of Inductance

The measurement of the inductance was performed using a Precision Magnetics

Analyser c© equipment. The values were obtained at various frequencies within

a range from 50 to 500 Hz. Figure 2.43, shows the results of measurements.

Similarly, the inductance was calculated with the model developed in 3D-FEM,

the results are included in Table 2.14. As the frequency reached 500 Hz, a

reduction of the inductance value was identified as 17% of the initial value

at 50 Hz. The calculation of the inductance with the 3D-FEM model, was

performed applying a current density of 5 A/mm2 to the windings, removing

the contribution of the PMs (i.e. the PMs were modelled as air). Since it is a

single phase machine, the inductance La was obtained as:

La =
Ψa

Ia
(2.17)

The results of the calculations show a good agreement with the measurements,

with a deviation of approximately 9%.
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Figure 2.39. Main dimensions of the
SM demonstrator.

Figure 2.40. SM demonstrator 3D-
FEM model geometry.
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Figure 2.41. Back-EMF measured and calculated with 3D-FEM @ 100 rpm [75].

Measurement of Rotational Losses

Two approaches were used for measuring the total rotational losses:

• Case 1: The torque was read from the torque transducer, with the ma-

chine running without any load connected to its terminals, the rotational

losses are p0 = T0 · ωmech.

• Case 2: A decay test was performed on the machine. The rotor was pulled

to rotate, and the decaying waveform of the back-emf was recorded. The

losses are estimated by quadratic fitting.
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Figure 2.42. Back-EMF measured and calculated with 3D-FEM at various speeds
[75].

50 100 200 300 400 500

0.95

1

1.05

1.1

1.13
·10−2

Frequency [Hz]

In
d
u
ct
a
n
ce

[H
]

Inductance vs. Frequency

L measured

Figure 2.43. Inductance measured at various frequencies.

In both approaches, the effect of the MMF of the windings is neglected. How-

ever, as it was shown in 2.5.4, such effect is negligible. The results are presented

in Figure 2.44. There is a maximum deviation of 19% between the losses mea-

sured with the approach described in Case 1 and Case 2. Such deviation might

be explained by the fact that a mathematical approximation is used in the Case
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Measured [mH] 3D FEM [mH]

11.3 10.3

Table 2.14. Measured and calculated values of inductance.

2 approach. In addition, for calculating the losses with the decay test it is nec-

essary to know the inertia of the rotor of the machine, which estimation might

add to the deviation of the calculations.
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Figure 2.44. No-load losses measured at various speeds [75].

Measurement of Mechanical Losses

The study of the losses continued with the measurement of the mechanical

losses (i.e. bearing losses). Such measurement was performed extracting the

stator components of the demonstrator. Thus, eliminating iron, rotor and PM

losses. In addition, the contribution of the PM forces to the bearing losses is

neglected with this approach. The measured torque of the machine running

under these conditions, corresponds to the bearing losses, which are estimated

indirectly as the product of torque and speed pmech = T0 · ωmech. The results

are shown in Figure 2.45.

The measured losses show a linear behaviour, which corresponds to the char-

acteristics expected for bearing losses [77]. The measurement of these losses is

crucial in order to contrast the measured and calculated values of rotational
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Figure 2.45. Measured mechanical losses at various speeds [75].

losses p0. That is, the calculated rotational losses will correspond to the sum-

mation of the bearing losses, measured previously and the calculated PM, rotor

back and stator iron losses. Such values are estimated in the coming section of

this report.

Calculation of Rotational Losses

PM Losses

In order to estimate PM losses, transient simulations were carried out at no-

load. PM losses were evaluated at 100, 200, 300, 400 and 500 rpm. A crucial

parameter in the calculation of the PM losses, is the conductivity of the mate-

rial. In the investigation performed on an outer rotor PM machine (Chapter 4)

a characterization of the conductivity of sintered NdFeB PMs was carried out.

Such measurement was performed with the Physical Property Measurement

System (PPMS) from Quantum Design R©, at CRISMAT laboratory in ENSI-

CAEN, France. At 80 oC the conductivity was of approximately 1.25 MS/m

according to Figure 2.46.

The current density distribution is shown in Figure 2.47. It is shown the way

the current density is generated in the PMs at the vicinity of the stator mod-

ules. The results at various speed are included in Figure 2.48.
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Figure 2.46. Resistivity of PM material vs. temperature [75].

(a) (b)

Figure 2.47. PM current density distribution at 500 rpm and t=6 ms, (a) isometric
view, (b) zoomed view.

Rotor Back Losses

The rotor back is a solid piece of steel, therefore, the calculation of the losses

in this component followed a similar procedure as in the calculation of the PM

losses. In the FEM model, the region corresponding to the rotor was modelled

with a value of conductivity of 10.3 MS/m. The results are shown in Figure

2.48 along with the calculated PM losses and stator iron losses.

Stator Iron Losses

The calculation of the iron losses was performed following the method proposed
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in [69]. Hence, similar approach was used as in Section 2.5.4. The results are

illustrated in Figure 2.48.
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Figure 2.48. Stator iron, PM and rotor back losses vs. speed [75].

2.6.3 COMPARISON OF MEASURED AND CALCULATED ROTATIONAL
LOSSES

Once the three components of the no-load losses were calculated (i.e. stator

iron, rotor back and PM losses), it was possible to contrast them with the

measured values. The no-load losses may be expressed as the summation of

the bearing, PM, rotor back iron and stator iron losses. The measured values

and the calculated values are contrasted in Figure 2.49. Which illustrates that

the calculations with 3D-FEM are over-estimating the measured values. With

a largest deviation of 11% at the highest speed.

2.6.4 ESTIMATION OF THE TORQUE

For closing the analyses presented in this chapter, the calculation of the torque

was performed in order to contrast it with measurements. In order to perform

the calculation of torque, the measured current and estimated load angle were

applied to the 3D-FEM model [75]. The measured values and the results from

simulations, are reported in Figure 2.50.
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Figure 2.49. Measured and calculated rotational losses [75].
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Figure 2.50. Torque production [75].

2.7 SUMMARY

Despite the axial path described by the flux in the stator modules, the working

principle of the SM3D machine resembles any SPMSM machine. Consequently,

it was possible to simplify the SM3D machine with a two dimensional model.

62



CHAPTER 2. A SURFACE MOUNTED 3D-FLUX PM MACHINE

Moreover, a preliminary dimensioning of the SM3D with both analytical and

2D-FEM models was carried out. An investigation of the torque production

with the variation of the air-gap diameter was performed for various combina-

tions of stator modules and rotor poles. Additionally, the initial dimensioning

of the SM3D was complemented with the development of a 3D-FEM model,

in order to investigate additional parameters such as inductance, PM flux and

torque, accounting for the additional phenomena present in a 3D structure such

as the one found in the SM3D machine.

As the dimensions of the C-shaped cores were already fixed, an alternative for

optimizing the machine dimensions was proposed. Such approach was evalu-

ated on various combinations of stator modules and rotor poles. An SM3D

machine for investigating additional parameters such as iron and PM losses

was selected. The performance of such machine was investigated with both

electrical sheet and amorphous laminated material. The SM3D machine with

electrical sheet showed to have a better performance due to both the higher

saturation level of the material and a higher stacking factor. However, the iron

losses with electrical steel showed to be 3.5 times higher than the iron losses

with amorphous material. Furthermore, such difference is expected to increase

at higher frequencies, according to the loss characterization performed in Sec-

tion 2.6.1.

Additionally, a study of the PM losses due to slotting effect was carried out. It

showed that the losses generated in the PMs due to the variations of permeance

with the transition from air to iron in the air-gap region, are significantly large.

Furthermore, such losses increase with the square of the frequency. Therefore,

as the speed increases these reaches values in order of kW and demagnetization

of the PMs might occur. Hence, a topology with a surface mounted rotor and

a modular stator might not be convenient. Although segmentation of the PMs

is a solution for the reduction of the PM losses, that option is not explored in

this work. Moreover, it might contradict the recyclability principle, in which

having a large number of PM pieces in the rotor in conjunction with the use of

glue, might difficult the assembly and disassembly processes, and consequently

the recovery of the PMs at the EoL of the machine.

In order to validate some of the models proposed in this chapter, the manu-

facturing of a demonstrator was carried out. The values calculated with sim-

ulations were validated with measurements, showing a fair agreement. It was

possible to evaluate the losses in the rotor (i.e. PM losses, rotor back losses),

and the behaviour of these with speed showed a similar trend as in simula-

tions. It was found that the rotor back losses were the larger component in

the no-load losses, since the rotor back of the machine used is composed by a

solid iron cylinder. In addition, the bearing losses were large in comparison to
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the overall power of the demonstrator. Hence, the efficiency had a low value,

estimated approximately in 30%, which could be improved by adding more

modules to the stator structure. Finally, the modularity of the stator, showed

also an advantage in terms of assembly and disassembly, which is one of the

goals when addressing recyclability. Part of the work performed in this chapter

was published [75].
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Chapter 3 HYBRID ROTOR 3D-FLUX
MACHINE

The large values of PM losses due to slotting effect exhibited by the SM3D

machine, required the exploration of alternatives to the surface mounted SM3D

machine. Therefore, an introduction to the 3D-Flux Hybrid Rotor (HM3D)

machine is carried out in this chapter. The study of such structure is based

on the results obtained with the SM3D machine. As described in Chapter 1,

the rotor of the machine is based on the HSM. A modular stator as in the

SM3D machine is selected. As a start, the working principle of the machine

is described, a 3D-FEM model is built in order to perform various sensitivity

analyses. At the end, the dimensions of a machine for manufacturing of a

prototype are defined.

3.1 DESCRIPTION OF THE WORKING PRINCIPLE

3.1.1 PRODUCTION OF PM FLUX

In order to illustrate the behaviour of the PM flux linkage of the HM3D ma-

chine, a preliminary geometry of a HM3D machine with 27 stator modules

and 18 rotor (27/18) teeth was built. Figure 3.1 shows the complete geometry

modelled in FEM. In addition, the solution of the magnetic flux density is il-

lustrated in Figure 3.2.

A preliminary simulation at no-load was carried out. The analysis presented

here will focus on the stator module labelled as ”1” in Figure 3.3a. Then, a sim-

ilar analysis as for the SM3D machine might be carried out. When rotor tooth

is aligned with a stator module as in Figure 3.3a, a maximum value of Ψm is

reached. If the rotor continues moving counter-clockwise, Ψm starts reducing,

and an intermediate position is reached as in Figure 3.3d. This is important,

since the point reached represents the ”q-axis” of the HM3D machine. If the

rotor continues moving in the same direction, the unaligned position is reached

with a minimum value of Ψm, represented in Figure 3.3e. The magnetic flux

density arrows represents both the direction of the flux and its magnitude. As

it is observed in Figures 3.3b, 3.3d, and 3.3f the direction of the flux does not
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Figure 3.1. 3D-FEM model of the
27/18 HM3D machine.

Figure 3.2. Magnetic flux density distri-
bution of the 27/18 HM3D machine .

vary. In addition, the color of the arrows indicates the reduction of the PM

flux in the transition from aligned, to unaligned.

The behaviour of Ψm in the HM3D machine is illustrated in Figure 3.4. As

it was shown in Figure 3.3, the direction of the flux remained constant, con-

sequently, Ψm shows a homo-polar trend. However, the behaviour of Ψm is

still of sinusoidal nature, with an offset value. The introduction to the flux

principle in the HM3D machine is complemented with the calculation of the

PM flux linkage Ψm in phase 1 (Figure 3.3a). Figure 3.5 shows the evolution

of Ψm with angular position. In addition, a Fourier analysis is performed to

the waveform in order to determine its harmonic spectrum. The results are

illustrated in Figure 3.6.

As discussed previously, the maximum value of Ψm in Figure 3.5 corresponds

to the aligned position. In contrast, the minimum value of Ψm in Figure 3.5

corresponds to the unaligned position. As it was anticipated, the value of Ψm

does not reach zero. Furthermore, the PM flux linkage Ψm has a large offset

component Ψm(0), as it is described by Figure 3.6. Furthermore, such value

is larger than the fundamental Ψm(1). Some preliminary conclusions may be

drawn at this stage regarding these two facts:

• At unaligned position, there is permanent magnet flux flowing through

the coils in the stator, which reduces the amplitude of the fundamental

of Ψm.

• The saturation of the stator core will be increased, due to the offset of

the waveform of the air-gap magnetic flux distribution.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3. HM3D machine principle, xy and yz -plane views, (a) at aligned, (b)
intermediate, and (c) unaligned, positions.
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Figure 3.4. Permanent magnet flux distribution of the HM3D machine.
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Figure 3.5. PM flux linkage Ψm varia-
tion with angular position, HM3D 27 sta-
tor modules and 18 rotor teeth.
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Figure 3.6. Harmonic spectrum of Ψm,
27 stator modules 18 rotor teeth.

• Due to the homo-polar nature of the waveform, the amplitude of Ψm(0)

will be equal or larger than the amplitude of the fundamental Ψm(1).

In the following, several sensitivity analyses are performed in order to evaluate

parameters such as permanent magnet flux, torque, inductance, power factor,

etc. At first, the effect of the tooth width on the production of torque is evalu-

ated. Secondly, the effect of the variation of the permanent magnet dimensions

(i.e., thickness and width) is studied.
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3.1.2 VARIATION OF THE TOOTH WIDTH

Figure 3.7 shows the geometry and the main parameters of an HM3D machine

with a combination of 27 stator modules and 18 rotor teeth. Note that only

1/9 of the machine was modelled. The main dimensions of the selected HM3D

machine are presented in Table 3.1.

Figure 3.7. Description of the main dimensions HM3D machine 27/18.

Parameter Value [mm]

Rotor outer radius rro 102

Rotor inner radius rri 84

Rotor back radius rback 64

Stator outer radius rso 153.5

Stator inner radius rsi 102.5

Window width winw 20

Window height winh 30

Module dimension A 16

Module dimension B 20

Module dimension C 35

Module dimension D 24

PM thickness lm 3

Air-gap length lg 0.5

Table 3.1. Main dimensions of a HM3D machine with 27 stator modules and 18
rotor teeth.
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Permanent Magnet Flux

As it has been reported in [78] and [44], the variation of the tooth width has

a major impact in the production of torque in the case of HSMs. Therefore,

an evaluation of this dimension was carried out. The rotor tooth width was

changed from 70% to 110% of the dimension D of the stator modules. Here,

the term duty cycle %duty is introduced and follows the ratio:

%duty =
τtooth
D

(3.1)

Where τtooth is the rotor tooth width and D is the thickness of the stator

modules (Figure 3.7). Both the fundamental of the PM flux Ψm(1) and the

offset Ψm(0) were estimated through 3D-FEM static simulations. The results

are presented in Figure 3.8.
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Figure 3.8. Variation of Ψm with rotor tooth width.

The base value selected for plotting of the results in Figure 3.8 corresponds to

the value of permanent magnet flux at 100% of tooth width (i.e. the tooth width

is equal to the dimension D of the stator module). The maximum value was

found when the tooth width was of 70% with an increment of approximately

23%. Regarding the value of Ψm(0), its behaviour is approximately constant,

remaining at a value much larger than the fundamental Ψm(1).

Torque

The production of torque with the variation of tooth width is also evaluated.

A current density of 6.5 A/mm2 was applied to the windings. As it was shown

previously, the reduction of the tooth width yielded an increment of Ψm(1).
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However, the torque increases up to a %duty=80%. As the effective area of

the tooth is reduced, if a similar current is applied, saturation effect will start

being significant, and the value of torque would not increase further. That may

be observed in the behaviour of the torque, illustrated in Figure 3.9.
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Figure 3.9. Variation of torque with rotor tooth width.

Inductance

The variation of the inductance with rotor teeth width was also investigated.

The values are illustrated in Figure 3.11. It might be observed that the induc-

tance L is reducing with the duty cycle %duty, as a result of the decreasing

teeth section. As it is shown in 3.10, the section of the tooth is changing with

the variation of τtooth. Therefore, the equivalent area A × τtooth changes. If

such area reduces, the equivalent reluctance Rgap increases, and consequently,

the inductance reduces. Note that the calculation of inductance with FEM was

performed with (2.11).

Power Factor

The calculation of the power factor was performed with (2.12). Hence, both

the reduction of inductance and increment of Ψm(1) yield an improvement on

the value of power factor as the tooth width is reduced.

As a conclusion of this preliminary study, the reduction of the duty cycle yielded

an improvement of PM flux production of approximately 20% when compared

to the initial %duty= 100%. In addition, as described in Figure 3.9, a maximum

value of torque is reached when the rotor teeth width is 80% of the dimension
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Figure 3.10. Rotor tooth dimensions.

D of the module. So that, an increment on torque production of approximately

18% was achieved. The power factor is also improved with the reduction of the

tooth width, showing a maximum value when the tooth width is 70%. Finally,

since the maximum torque was obtained with a tooth width of 80% this value

was selected for the coming analyses.

3.1.3 STUDY OF THE VARIATION OF THE PM THICKNESS

In the following analyses, both PM thickness lm and width wm are varied in

order to evaluate the effect in various parameters. Figure 3.13 illustrates these

two dimensions. The dimensions of the machine described in Table 3.1 were

kept, and a %duty= 80% was selected.

Permanent Magnet Flux

The impact of the variation of the PM ring thickness lm was investigated by

increasing its value from 3 to 7 mm. Similarly to the study on the variation of

the rotor tooth width, both Ψm(0) and Ψm(1) were calculated.

Figure 3.14 shows that the increment of Ψm(1) reaches approximately 20%,

when increasing lm from an initial value of 3 mm to 7 mm. It is important

to note that for a larger value of PM thickness the increment of Ψm(1) is not

significant, due to the PM leakage. Such behaviour is reflected in the value of

Ψm(0) which is much larger when contrasted to Ψm(1). Therefore, selecting a

low value of PM thickness lm might result convenient.

Torque

The torque was estimated for similar values of PM thickness. A current density

of 6.5 A/mm2 was applied to the windings. The results are shown in Figure
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Figure 3.11. Variation of inductance with rotor tooth width.
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Figure 3.12. Variation of power factor with rotor tooth width.

3.15. An increment of torque of approximately 11% is reached with a PM ring

thickness lm of 7 mm. In addition, increasing the PM volume to almost twice

only yields an increment of 10% in torque production, which is not efficient in

terms of PM utilization.
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Figure 3.13. PM ring on the rotor structure.
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Figure 3.14. Variation of Ψm with PM thickness lm.

Inductance

Continuing the analysis of the HM3D machine at load, the calculation of the

inductance for every case of PM thickness was performed. The results are

reported in Figure 3.17. As it is observed, the inductance starts reducing

as the PM thickness is increased. As the only dimension varying is the PM

thickness, such variation is directly related with the reluctance of the PM ring

air-gap PMgap, as it is show in 3.16. The reduction of the inductance reaches

a minimum of approximately 79%.

Power Factor

As it was shown previously, the inductance is varying with the thickness of

the PM lm. This section of the report is intended to show the effect of this

behaviour in the power factor. The results of power factor are illustrated in

Figure 3.18. As it is expected, the power factor is increasing with the increment
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Figure 3.15. Variation of torque with PM thickness lm.

of PM thickness.

Some preliminary conclusions might be drawn from the study performed in

previous sections. It was found that a reduction of the tooth width by 20%,

yielded an increment of torque of approximately 18%. In addition, it was

found that varying the PM thickness lm did not yield substantial increment.

Furthermore, it yielded an increment of the PM leakage, reflected in the increase

value of Ψm(0). For the coming analysis a PM thickness lm= 4mm was selected.

3.1.4 STUDY OF THE VARIATION OF THE PM WIDTH

The PM width wm (Figure 3.13) was varied at 3 mm intervals. In order to keep

the most dimensions of the HM3D machine fixed, the inner diameter of the ring

was varied along with the inner rotor back radius rback. Similar dimensions of

the machine analysed in 3.1.3 were adopted. However, a PM thickness of lm=4

mm was selected. The PM width wm was varied from 10 to 25 mm.

Permanent Magnet Flux

Figure 3.19 shows the behaviour of the PM flux linkage Ψm with the increment

of wm.

Both Ψm(0) and Ψm(1) follow a similar trend, with a constant deviation of ap-

proximately 40%. In addition, the overall increment of Ψm is of approximately

40%. Which shows that increasing the PM ring width wm has a much more
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Figure 3.16. PM equivalent air-gap.
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Figure 3.17. Variation of inductance with PM thickness lm.

significant effect in the production of PM flux linkage when contrasted with

the increments obtained varying the PM thickness lm in 3.1.3.

Torque

Similarly to the calculation of Ψm, the increment of the torque is of approxi-

mately 40% with the variation of wm. Which confirms that the variation of wm

might be more convenient in an optimization process of the HM3D machine.

The results with an increment of approximately 40% of torque are shown in

Figure 3.20.
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Figure 3.18. Variation of power factor with PM thickness lm.
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Figure 3.19. Variation of Ψm with PM width wm.

Inductance

The calculation of the inductance shows a decreasing behaviour with the in-

crement of wm. As the only parameter varying is the PM width, and the PM

flux linkage is increased significantly, the reduction of the inductance, might

be the result of saturation of the stator. However, such reduction is of approx-

imately 4%, which is low if it is compared to the reduction of inductance when
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increasing the PM thickness lm (approx. 17%).
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Figure 3.21. Inductance vs. PM width.

Power Factor

As Ψm is increasing, and the inductance is reducing with the increment of wm,

the result is the increment of the power factor, which is illustrated in Figure
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3.22.
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Figure 3.22. Power factor vs. PM thickness.

3.2 PRELIMINARY CALCULATION OF THE HYBRID RO-
TOR 3D-FLUX MACHINE

Following the results obtained in the previous analyses, a preliminary HM3D

machine was selected. Furthermore, in order to perform a comparison, similar

stator dimensions as for the SM3D studied in Chapter 2 were selected. In

addition, a rotor with 8 teeth, a PM ring with lm= 4 mm and wm= 25 mm

was selected. Initial calculations of torque were performed. The remaining

dimensions of the HM3D machine selected are summarized in Table 3.2.

The calculated values of torque with various values of current density are shown

in Figure 3.23.
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Parameter Value [mm]

Rotor outer radius rro 115

Rotor inner radius rri 89

Rotor back radius rback 64

Stator outer radius rso 166.5

Stator inner radius rsi 115.5

Module dimension A 16

Module dimension B 20

Module dimension C 35

Module dimension D 24

PM thickness lm 4

Air-gap length lg 0.5

Table 3.2. Main dimensions of a HM3D machine with 12 stator modules and 8
teeth.
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Figure 3.23. 3D-FEM calculated torque HM3D machine.

As it may be observed, the torque of the HM3D machine is significantly lower

than the torque of the SM3D machine in Figure 2.28 of Chapter 2. Hence, a

comparison between the PM flux linkage of the SM3D and the HM3D machines

is presented in Figure 3.24. Hence, it is demonstrated that the lower value of
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torque is a result of the lower value of the fundamental of the PM flux linkage

Ψm(1) of the HM3D machine.
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Figure 3.24. PM flux linkage vs. mechanical angle.

3.3 INCREMENT OF TORQUE PRODUCTION

The low value of the fundamental of the PM flux linkage Ψm(1), poses a different

scenario. It was required to investigate alternatives in order to improve the

torque production of the HM3D machine. Hence, it was decided to evaluate

the Vernier’s, or magnetic gear principle. Such principle is illustrated in Figure

3.25 for a surface mounted PM machine [59].

Although the geometry in Figure 3.25 corresponds to a linear machine, the

same principle may be applied to a rotating electrical machine. Consequently,

the force in a machine like the one in Figure 3.25a is given by the ratio of the

product of the flux linked by the PMs ΔΨ, the current in the windings Ni and

the dimension D travelled by the PMs on the rotor. In the case of the machine

in Figure 3.25a:

Fav =
ΔΨ ·Ni

D
(3.2)

Then, if the dimension D is equally sub-divided in a given number of segments

nseg, the machine in Figure 3.25b is obtained. Hence, the resulting force Fav

is increased by nseg, that is:
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(a) (b)

Figure 3.25. Demonstration of Vernier’s principle, (a) conventional machine, (b)
multiple teeth per pole topology.

Fav =
ΔΨ ·Ni

D
nseg (3.3)

Given that the variation of both PM flux ΔΨ and MMF of the windings Ni

remain constant, the increment of the force would be proportional to the factor

nseg. Nevertheless, (3.3) neglects phenomena such as leakage, and fringing

fluxes. Hence, in order to investigate the increment of the torque, with the

increment of the factor nseg, an HM3D machine with 6 stator modules and 8

rotor teeth was selected. The selection of such combination is based on two

main constrains:

• The fundamental frequency.

• Manufacturing complexity.

The former, is related to the limitations of the converter required for feeding the

machine. The latter, is related to the fact that having a large amount of stator

modules would make the assembly of the stator a complex task. Furthermore,

for a fixed air-gap radius, the increment of the number of modules per coil

will yield a reduction of the dimension D of the stator modules. Consequently,

requiring a narrow cut of the modules, putting under risk their integrity. Con-

sidering these two constrains, four models were built in FEM for the calculation

of torque, among other parameters.

The geometries of the original machine and machines with sub-division of the

stator modules and rotor teeth by factors nseg of 2, 4 and 8 are illustrated in

Figures 3.26a, 3.26b, 3.26c, and 3.26d, respectively. Note that only half of the

machine is described. The calculations were performed with the dimensions of

A, B, and C of the modules, as well as, air-gap length lg as described in Tables

3.1 and 3.2. In addition, some changes to the dimensions were introduced:
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• The air-gap radius rro was selected as 91 mm.

• A value of PM thickness lm=4 mm was adopted.

• With the selected dimensions of lg, A, and C, the outer stator radius rso
was 142.5 mm.

• The calculation of the number of turns was performed for a nominal

voltage of 230 V rms, line to neutral.

Such changes were performed in an attempt to reduce the dimensions of the

HM3D machine. Thus, increasing the torque density. Table 3.3 summarizes

key dimensions of the machines selected along with the results of 3D-FEM

calculations. Note that the calculated values of inductance and PM flux linkage

are given for one turn. That is, they are required to be scaled by the number

of turns. Additionally, the iron losses were estimated with electrical sheet.

Parameter original nseg=2 nseg=4 nseg=8

Rotor inner radius rri [mm] 62.2 76.6 83.8 87.4

Rotor back radius rback [mm] 38.4 58.9 68 72.4

Dimension D of the module [mm] 36 18 9 4.5

Synchronous Inductance [μH] 0.84 1.11 1.30 1.43

Power factor [-] 0.34 0.26 0.17 0.08

PM flux (fundamental) [mWb] 0.98 0.95 0.71 0.37

Torque @ 6.5 A/mm2 [Nm] 17 31 44 46.5

Iron losses @ 1000 rpm [W] 91.3 152.2 368.5 1085.5

PM mass [kg] 0.45 0.45 0.45 0.45

Number of turns [-] 68 29 13 6

Table 3.3. Main parameters of a HM3D machine with 6 stator modues and 8 teeth,
and nseg=2, 4, and 8.

An increment of PM flux leakage is observed in the increasing magnetic flux

density in the stator modules at unaligned position in Figures 3.26a to 3.26d.

Such increment is the result of the variation of the equivalent air-gap length.

Since the surface of the stator modules facing the air-gap is flat, the equivalent

air-gap length is reducing as the dimension D of the modules is reducing for

a fixed value of rotor diameter. Figure 3.27 is intended for giving a better

explanation of the variation of the air-gap with the increment of the factor

nseg.
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(a) (b)

(c) (d)

Figure 3.26. Magnetic flux density distribution of the HM3D machine at no-load;
(a) original geometry, (b) nseg=2, (c) nseg=4, and (d) nseg=8.

(a) (b)

Figure 3.27. Detail of the air-gap of the HM3D machine with 6 stator and 8 teeth;
(a) original geometry, and (b) nseg=8.

Some preliminary conclusions may be drawn from the results in Table 3.3.

• Increasing the number of sub-divisions further than nseg=4, would not

yield substantial increment on the production of torque.
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• The increment of nseg yielded an increment of the fundamental frequency,

which in turn, increases the iron losses of the machine.

• Increasing nseg results in the variation of the equivalent air-gap length.

Which in turn, increases both the flux leakage in unaligned position and

the inductance. Consequently, as nseg increases, the power factor reduces

drastically.

At this point, the main goal was to maximize the torque density of the HM3D

machine. As it was demonstrated with the results of the analysis performed in

this section, the machine with nseg=4 showed the larger increment of torque.

In addition, with the use of amorphous material, the consequent increment of

fundamental frequency was not a concern regarding iron losses. Therefore, the

HM3D machine with 6 stator modules, 8 rotor teeth and 4 subdivisions (Figure

3.26a) was selected for manufacturing of a prototype.

3.3.1 PM LOSSES OF THE HYBRID ROTOR 3D-FLUX MACHINE

One of the main hypothesis was the possible reduction of PM losses by placing

the PM between stacks in the rotor. In order to estimate the PM losses,

transient simulations were run at no-load. In addition, similar conductivity

was set to the PM region in the rotor as in the SM3D machine case (i.e. 1.25

MS/m). The distribution of the current density inside the PM region is shown

in Figure 3.28.

Figure 3.28. Current density in the PM ring at 2300 rpm, nseg=4. t=685 μs.

Finally, the PM loss waveform during one electrical period is shown in Figure

3.29, where it is observed the oscillation of the losses over one electrical period.

In addition, the average value of the PM losses was estimated in approximately

6 W, which is significant lower in comparison to the SM3D machine which

reached approximately 1.8 kW.

85



3.4. A HYBRID ROTOR 3D-FLUX PROTOTYPE

0 2 4 6 8

·10−4

4

8

12

time [s]

L
o
ss

[W
]

PM losses

PM loss

Figure 3.29. PM losses of the HM3D machine with nseg= 4.

3.4 A HYBRID ROTOR 3D-FLUX PROTOTYPE

In this section a description of the assembly process of the HM3D is carried

out. In addition, the test results of the manufactured prototype are presented

along with the simulation results in order to validate the models developed

throughout this thesis work. The CAD model of the HM3D machine is shown

in Figure 3.30. Both Figures 3.30a and 3.30b give an insight of the main

components and the sequence to be followed in the assembly of the HM3D

machine. Note that the windings are not included in the CAD model. Special

emphasis is put on the description of the assembly process, given the modular

configuration of the stator aimed at recycling the PMs. In addition, the main

dimensions of the demonstrator are summarized in Table 3.4.
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(a) (b)

Figure 3.30. CAD model of the HM3D machine; (a) exploded view, and (b) section
view.

Parameter Value [mm]

Rotor outer radius rro 91

Rotor inner radius rri 84

Rotor back radius rback 68

Stator outer radius rso 142.5

Stator inner radius rsi 91.5

Module dimension A 16

Module dimension B 20

Module dimension C 35

Module dimension D 9

PM thickness lm 4

Air-gap length lg 0.5

Stack length Lstack 104

Table 3.4. Main dimensions of the HM3D
prototype.

Main dimensions of the amorphous
C-shaped cores.

VALEO Electrical Systems was in charge of the mechanical design and man-

ufacturing of the components of the HM3D machine. During the definition of
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the mechanical design of the prototype of the HM3D machine, changes were

required because of various issues. For example, the lead time of some of the

components, the materials and dimensions available at the moment of the def-

inition, the standard parts used by the manufacturer, etc. Therefore, it is

worth to highlight the main changes of the final prototype in comparison to

the models proposed from the beginning of the project:

• The rotor PM rings defined in the models were changed to PM blocks.

The dimensions of the PM blocks, according to Figure 2.4 in Chapter 2

are: lm=11 mm, wm=13.8 mm, and hm=12.1 mm.

• The material of the stator, was changed to standard electrical sheet.

• The manufacturing of the windings was carried out at Aalborg University.

3.4.1 ASSEMBLY OF THE PROTOTYPE

Stator Assembly

The stator bracket was defined with a slotted structure for accommodating the

modules, which are fixed by screws. Such concept requires the stator mod-

ules to have a defined shape, which the suppliers of amorphous C-shaped cores

could not provide. Therefore, the material selected for the stator modules was

electrical sheet, specifically M300-35A laminations. In addition, the C-shaped

cores were replaced by E-shaped cores. The stator modules supplied are de-

scribed in Figure 3.31. With a general view in Figure 3.31a, and a detailed

view of the stacking in the middle region in Figure 3.31b. Nevertheless, having

the laminations stacked as in the original amorphous C-shaped cores (Figure

1.12c) would have been beneficial. That is, having the laminations stacked

perpendicular to the direction described in Figure 3.31 facilitates the use of

alternative laminations, such as Grain Oriented electrical sheet. Consequently,

having reduced iron losses and improved performance due to the higher satu-

ration level, when compared with Non-Oriented Grain electrical sheet.

The use of E-cores, as the ones illustrated in Figure 3.31, results in the incre-

ment of eddy current losses in the middle region of the core. In addition, the

weld on the surfaces facing the air-gap, might result in the increment of losses

and in a reduction of the performance of the machine. The effect of the welds

on the performance of the machine has not been accounted for in the models

developed so far. However, a investigation of the impact of the welds in the

stator modules is carried out in the measurement sections of the report.
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(a) (b)

Figure 3.31. Stator modules in electrical sheet; (a) general view, and (b) zoomed
view of the stack.

The assembly process started with the manufacturing of the coils. After the

modules corresponding to one coil were placed on the stator bracket, the coils

were inserted manually and held in place with fibreglass wedges. That is, stan-

dard materials were used for the assembly of the coils to the stator frame,

which is convenient when considering the recyclability of the machine. The

assembly of the initial two coils are shown in Figure 3.32. The manufacturing

of the winding was carried out at Aalborg Universities facilities, and the man-

ufacturing was performed by hand. Hence, the slot fill factor of 0.5 defined in

the models was not achieved.

Figure 3.32. Assembly of modules and coils.

Once the windings were completed and the connections made, the stator did not

required further assembly process, showing a fair degree of simplicity. Figure

3.33 shows the stator completely assembled.
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Figure 3.33. Completed assembly of the stator.

Rotor Assembly

Although the PMs of the rotor were conceived as rings at modelling stages,

difficulties with the supply were the main reason for using PM blocks. Despite

of the simplicity on the assembly of the PM blocks on the rotor stacks, it was

necessary to verify a correct alignment between rotor stacks. For example, if

a PM ring was used, it would be expected that the time of assembly was re-

duced. In addition, using a ring would be more convenient since at the EoL of

the machine it would be simpler to manipulate a single component. That is,

having least PM pieces when addressing the recyclability of PM material could

be beneficial. However, having simple shapes, like PM blocks could reduce the

complexity in their definition and manufacturing.

The PM blocks supplied are made of sintered NdFeB material protected by a

sprayed layer of epoxy. The grade of the PM blocks corresponds to F40SH, with

a remanence Br of 1.31 T, as it is stated in the manufacturers catalogue [79].

Having a layer of epoxy facilitates the recyclability of the PMs since the re-

moval of coating materials might pose a disadvantage when processing the PM

material at the recycling stages.

Similarly to the stator assembly, the assembly of the PM blocks on the rotor

stacks was performed manually. Part of the assembly is shown in Figure 3.34.

In contrast, for completing the assembly of the rotor, the use of a lathe was

required due to the forces generated when placing two rotor stacks together.

The process of the assembly of the rotor is shown in Figures 3.35a and 3.35b.

Noting that for fixing the PMs no glue was required, which is crucial when

focusing on recycling.
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Figure 3.34. Assembly of the PM blocks in one of the rotor stacks.

(a) (b)

Figure 3.35. Rotor assembly on a lathe; (a) stack assembly, and (b) shaft assembly.

Quality issues were identified in the rotor stacks which cutting, stacking and

alignment among laminations and rotor stacks might not guarantee a constant

surface on the area facing the air-gap region. In addition, the welds create a

path for eddy currents which are not accounted for in the models developed.

Complete Assembly

The assembly of the complete machine was carried out on a milling machine in

order to guarantee the correct alignment of both the rotor and stator compo-

nents. The process is shown in Figure 3.38.
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Figure 3.36. Rotor stack zoomed view.

Figure 3.37. Rotor assembly general view.

Figure 3.38. Complete assembly.
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3.5 TESTING OF THE HM3D MACHINE

Figure 3.39. Test set-up of the HM3D machine as generator.

3.5.1 NO-LOAD BACK-EMF

The test set-up is described in Figure 3.39. The no-load back-EMF test was

performed coupling the prototype to a servo-motor, and measuring the back-

EMF in the three phases. At a speed of 500 rpm, the voltages obtained are

illustrated in Figure 3.40. Note, that the values correspond to phase voltages

(i.e. line to neutral). A deviation of the amplitude in each phase was esti-

mated at 4%. Such deviation, might be the result of an eccentricity of the

stator. Given that the stator modules are placed individually, it is likely that

the air-gap length is not uniform around the circumference of the stator.

A comparison between the back-EMF calculated with 3D-FEM, and measured

is illustrated in Figure 3.41. There are substantial differences between the two

waveforms, in both amplitude and shape. Therefore, it was decided to evaluate

the impact of the welds on the middle region of the stator modules as it is

illustrated in Figure 3.42a. In order to investigate this hypothesis, a modifi-

cation was performed on the 3D-FEM model. It consisted in the introduction

of a ”short circuited” coil, represented by a conductive region built around

the stator module, as it is illustrated in Figure 3.42b. Given that the direct

measurement of the resistance introduced by the welds was not possible, the

dimensions of the short circuited coils in the model were approximated with

the dimension of the welds in Figure 3.42a. The conductivity of the material of

the short-circuited coils was varied until a back-EMF waveform similar to the

measured value was obtained. Such conductivity was found to be 1.68 MS/m.
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Additionally, the material was modelled with a relative permeability μr=4000.

Figure 3.43 illustrates the calculated back-EMF with the modification.
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Figure 3.40. Measured back-EMF vs. time at 500 rpm.
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Figure 3.41. Back-EMF vs. time at 500 rpm.
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(a) (b)

Figure 3.42. Stator modules; (a) welds in the middle region, (b) ”short circuited”
coils modelled in 3D-FEM.
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Figure 3.43. Back-EMF vs. time @ 500 rpm.

It is evident the incidence that the welds have on the back-EMF. Hence, the

back-EMF was measured at various speeds. The measured rms values of back-

EMF are illustrated in Figure 3.44 along with the calculated results, with both

original and modified FEM models.
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Figure 3.44. Measured back-EMF vs. speed.

Ideally, the back-EMF increment with speed should follow a linear trend as

it is observed in the calculated values with the original FEM model in Figure

3.44. However, the welds on the stator modules facilitate a path for the flow

of eddy currents. Such currents create a flux which opposes the main PM flux

linkage in the module. Hence, the resulting PM flux linkage is reduced, and

consequently, the back-EMF is reduced. As the speed increases, eddy currents

are larger, and the reduction of the back-EMF is larger. In Figure 3.44 the

measured back-EMF and the calculated with the modified model follow such

behaviour.

3.5.2 TORQUE MEASUREMENT

The set-up used on the measurement of the torque is described in Figure 3.45.

The prototype was connected to a VLT R© AutomationDrive FC302 from Dan-

foss. Readings of torque, speed, and input power were registered. In order to

perform a comparison between the measured and calculated values, the input

current measured was applied to the models developed in FEM. The results of

both measured and simulated torque, at 500 rpm are shown in Figure 3.46.
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Figure 3.45. Set-up for measuring torque with a load machine.
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Figure 3.46. Measured and calculated steady state torque at 500 rpm.

As it is observed, the calculated value of torque follow a similar trend with the

measurements. However, the deviation is large. The absolute error varies from

approximately 5 to 15 Nm. It is worth mentioning that only iron losses were

calculated with FEM. Hence, the mechanical losses and the additional losses

induced by the PWM modulation are not included in the calculation of the

torque. In addition, the effect of the welds on the torque production, was not

evaluated. Despite the deviations obtained in the calculation of torque, the

efficiency was measured at various working points of torque and speed. Figure

3.47 shows the efficiency measured.
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Figure 3.47. Efficiency vs. current density at various speeds.

Due to the high level of rotational losses, it was not possible to reach higher

speeds and higher torque-speed points without tripping the over-current pro-

tections of the driver. In addition, the power factor obtained varied from

approximately 0.9 to 1.9. The large level of losses and low value of torque

are reflected in poor efficiency as it is illustrated in Figure 3.47. In order to

isolate the incidence of both the PWM modulation and the welds in the stator

modules on the measurement of the torque, a DC torque test was performed.

Such test consisted in attaching a metallic arm to the shaft, in order to rotate

it manually, while the windings were connected to a DC power source. Figure

3.48 illustrates the set-up used during the test. The peak value of torque was

registered at various levels of DC current. The connection used during the test

is illustrated in the circuit diagram in Figure 3.49.
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Figure 3.48. Set-up for measurement
of torque with a DC power source.

Figure 3.49. Circuit for measuring
torque with a DC power source.
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Figure 3.50. Measured torque with DC current.

Figure 3.50 describes both measured and calculated torque when applying a

DC current. Although a lower deviation was expected, the torque difference

remain approximately constant at a value of 7 Nm. Tolerances on the prototype

that were not accounted for in the FEM models might be attributed as cause

of such deviations.

3.5.3 INDUCTANCE MEASUREMENT

The inductance of the machine was measured with a Precision Magnetics Anal-

yser. The measurement was performed at various frequencies and the results
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of the measurement per phase are illustrated in Figure 3.51. As it is observed

increasing the frequency up to 1 kHz led to a decreasing of the inductance value

of approximately 31%. Such behaviour demonstrates the incidence of the welds

on the stator modules on the increment of eddy currents.
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Figure 3.51. Measured inductance vs. frequency.

A comparison between the measured values of both inductance and DC re-

sistance is presented in Table 3.6. As it is observed, the deviation between

measured and calculated values of inductance is 12%. On the other hand,

the deviation between the measured and calculated values of DC resistance is

approximately 3%.

Parameter Calculated Measured

d-axis inductance Ld [μH] 170 152

q-axis inductance Lq [μH] 153 144

Phase Resistance [mΩ] @ 20o 7.8 7.6

Table 3.6. Inductance and DC resistance of the HM3D machine.

The calculation of the inductances Ld and Lq in Table 3.6 was performed at a

current density of 6.5 A/mm2. In addition, both inductances were estimated

with (2.11) applying -Id to the d-axis and Iq in q-axis. According to measured

values, the deviation between Lq and Ld is of approximately 5%, which means

that the saliency of the HM3D is low, despite of being a double salient structure.
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3.5.4 THERMAL TEST OF THE HM3D MACHINE

The thermal evaluation of the prototype was performed by connecting the

windings to a DC power source. A constant DC current of IDC=100 A was

applied during the test, which corresponds to a current density of 6.4 A/mm2,

close to the rated current of the prototype. The diagram in Figure 3.52 de-

scribes the connection used for performing the test, which was extended for

few hours until the temperature in various parts of the machine was stable.

Three T-type thermocouples were placed on the windings, stator modules and

the stator bracket as it is illustrated in Figure 3.53.

Figure 3.52. Equivalent circuit for thermal measurement of the HM3D fed with a
DC current.

(a) (b)

Figure 3.53. Placement of the thermocouples for temperature measurement; (a)
general view, (b) zoomed view.

The temperature stabilised after 14700 seconds, as it is illustrated in Figure
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3.54. The highest temperature, corresponds to the windings, which maximum

value reached 116 oC. In contrast, the temperatures in both the stator modules

and stator bracket reached a value of 70 oC. That is, the temperature difference

between winding and stator frame is of 46 K. Noting that the room tempera-

ture during the test remained at 25.5 oC.

In order to evaluate the thermal capability of the machine, the equivalent con-

vection coefficient heq is introduced. Such coefficient is determined with the

expression:

heq =
1

RthAhe
(3.4)

Where, Ahe is the area of the heat exchange surface, and Rth is the equivalent

thermal resistance, given by Rth = ΔT/pcu. With ΔT and pcu as the measured

temperature difference and copper losses, respectively. With the dimensions of

the HM3D prototype, the estimated heq is of approximately 190 W/(m2·oC),
which according to the literature, would correspond to a machine with air forced

convection [80]. Although the mechanical design of the HM3D machine was

conceived for water cooling, such option was not tested. However, the thermal

behaviour of the HM3D would be improved by enabling this feature.
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Figure 3.54. Temperature evolution with time.
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3.5.5 ROTATIONAL LOSSES

Three approaches were used in order to measure the rotational losses of the

HM3D machine:

1. A decay test. Such test consisted in rotating the shaft of the prototype

by an external device, in this case, a drill. The decaying waveform of

the back-EMF was registered and the iron losses were obtained with the

inertia Jm of the prototype.

2. Running the prototype as a generator with a servo-motor and registering

the values of torque and speed. The rotational losses were obtained as

the product of the mechanical speed and the torque measured at no-load.

3. Running the prototype as a motor, fed with a converter and registering

the torque output and the power input in order to obtain the rotational

losses.

Figure 3.55 illustrates the results of both the simulated and measured values

of rotational losses. The calculated values with 3D-FEM simulations with elec-

trical sheet and amorphous material are also included in the figure. It is worth

noting that the losses calculated with the 3D-FEM model, does not account for

the mechanical losses in the HM3D prototype. Preliminary conclusions might

be drawn from the results:

• The losses estimated with amorphous laminated material are half of the

losses calculated with electrical sheet. Such low reduction is the reflection

of the larger loss component of the rotor, which material is electrical sheet.

In addition, the calculated losses in Figure 3.55, do not account for the

effect of the welds on the stator modules.

• The deviation between the rotational losses estimated with the decay

test and the losses measured in generator mode, might be caused by

uncertainties in the calculations. For example, during the decay test,

it was not possible to reach the nominal speed, which might affect the

quadratic fit performed to obtain the losses.

• The deviation between the losses measured in motor mode and in gener-

ator mode are due to the effect of both the modulation of the PWM of

the drive and the MMF of the windings.
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Figure 3.55. Evolution of the rotational losses with speed, measured and calculated.

In order to evaluate the incidence of the MMF of the windings on the rotational

losses, these were estimated at various levels of current. Figure 3.56 illustrates

the behaviour of the calculated rotational losses with increasing current den-

sity. As it is observed, at half the rated current density, the rotational losses

are increased approximately 1.5 times. At rated current density, the rotational

losses are increased approximately 2.7 times. The study of the rotational losses

is finished with the comparison of the measured losses at various current den-

sities. The rotational losses p0 were obtained as the difference of the input and

output power, and the copper losses, that is:

p0 = Pin − Pout − pcu (3.5)

Where, Pin is the input electrical power measured with the power analyser, and

Pout is the output power measured in the shaft. The rotational losses measured

accounting for both the harmonics induced by the PWM modulation and the

MMF of the windings are illustrated in 3.57. It is observed that the losses are

increasing with the current density. The increment of the rotational losses with

the current density is of approximately 2.3 when increasing the current density

from 3.25 to 6.5 A/mm2.
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Figure 3.56. Calculated rotational losses at various current densities.
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Figure 3.57. Measured rotational losses in motor mode.

3.5.6 SUMMARY OF THE MAIN DIMENSIONS OF THE HM3D MACHINE

Table 3.7 summarizes key figures of the HM3D machine.
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Parameter Value

Torque density [Nm/L] @ 5.9 A/mm2 4.6

PM mass [kg] 0.9

Rotor iron mass [kg] 8.9

Stator iron mass [kg] 7.3

Copper mass [kg] 3.9

Torque/PM mass [Nm/kg] 33.7

Torque per active weight [Nm/kg] @ 5.9 A/mm2 1.4

Volume [m3] 6.6× 10−3

Number of turns per phase 22

Back-EMF constant @ 1000 rpm [mWb/rad] 6.3

Iron losses [W] @ 500 rpm, 5.9 A/mm2 2120

Copper losses [W] @ 80oC, 5.9 A/mm2 247

d-axis inductance [μH] 152

Phase Resistance [mΩ] @ 20o 7.6

Power Factor [-] 0.15

Nominal voltage (line to neutral) [V] 230

Table 3.7. Main measured parameters of the SM3D machine.

3.6 SUMMARY

A hybrid rotor machine with 3D-flux paths was defined and investigated. Ini-

tially, the working principle was explained, and sensitivity analyses were carried

out in order to evaluate the effect of the variation of the PM dimensions on

various parameters. Additionally, it was found that the performance of the

HM3D machine was inferior in contrast to the SM3D version.

Hence, the Vernier’s principle was studied, as an alternative for increasing the

torque capability. The sub-division of the magnetic system was evaluated as a

solution in order to increase the torque density. Despite of the improvement of

the torque production, the level of complexity for manufacturing was increased,

and parameters such as power factor and iron losses were negative affected with

the increment of sub-divisions. Nevertheless, a machine with 6 stator modules,

8 rotor teeth and 4 sub-divisions was selected for prototyping. In addition,
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it was demonstrated that the PM losses were significantly reduced by using a

hybrid rotor. Finally, the elimination of the use of glue for assembly of the PMs

on the rotor may be highlighted as one important advantage when addressing

recycling.

Unfortunately, there were three main setbacks during the manufacturing of the

machine components. The first one, was the change of the PM ring to PM

blocks. The second, it was not possible to find a winding supplier. Hence, the

coils had to be manufactured at Aalborg University. Consequently, the slot fill

factor was significantly reduced. Finally, and the most important, there were

difficulties in the supply of the stator modules manufactured with amorphous

material. Hence, it was agreed that the stator modules would be manufactured

in standard electrical sheet. As it was shown, the solution provided had issues,

which affected the performance of the machine (i.e. welds in the stator mod-

ules). In addition, quality issues were spotted on the rotor structure. However,

it provided an opportunity to study additional phenomena.

The temperature rise exhibited by the HM3D machine confirmed that the mod-

ular structure of the stator might have issues regarding its thermal efficiency.

However, as the slot fill factor may be improved and the winding resistance

reduced, it is expected that the temperature reduces.
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Chapter 4 RECYCLABILITY
EVALUATION OF PMs IN
ELECTRICAL MACHINES

The Weighted Index of Recycling and Energy Cost (WIRE) is introduced in

this chapter. As described in Chapter 1, the main objective of DEMETER

project is the study, development and improvement of recycling technologies of

REEs used in PMs for electrical machines in (H)EVs. In addition, the design

for recycling plays a crucial role in the recyclability of PM material at the EoL

of this type of machines. Hence, it is required to give a quantitative evaluation

of the recyclability criterion. For this purpose, two methodologies are proposed:

• Evaluation of the assembly and disassembly processes.

• Evaluation of the energy consumption of the machine.

The former, is intended to grade the feasibility of the machine based in both

the manufacturing processes and the materials used. The latter, is based on

the evaluation of the energy consumption of the machine during its lifetime.

Eventually, contrasting both the total energy consumption cost and the initial

cost of PM material. That is, evaluating the use of PMs of recycled material

from an economic perspective. For such analyses, a machine was disassembled

and a test set-up was built in order to perform measurements at various working

points of torque and speed.

4.1 RECYCLABILITY EVALUATION DEFINITION

The proposed WIRE methodology was investigated and validated on a com-

mercially available machine as in Figure 4.1. Such machine is used in electrical

scooters and small city cars.

In order to define the recyclability evaluation the disassembly of the machine

under investigation was performed. For extracting the non-drive end-shield

and the rotor, it was necessary to mount the specimen on a lathe. Figure 4.2a

shows the machine without the end-shield. Once the end-shield was extracted,

it was possible to extract the rotor, which is the most challenging part due to

the forces that are present due to the magnetization of the PMs. Figures 4.2b

and 4.2c describe the rotor and the stator once the disassembly was completed.
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Figure 4.1. Motor used for recyclability evaluation definition [74].

After the disassembly process, a complete dismantling of the remaining parts

was carried out, with a complete registration of the main dimensions, materials

and weights. Additionally, a characterization of the permanent magnets used

in this machine was carried out in order to built the FEM models.

4.1.1 EVALUATION OF THE ASSEMBLY AND DISASSEMBLY
PROCESSES

The methodology proposed for the evaluation of both the assembly and disas-

sembly processes is based on the Failure Mode and Effect Analysis (FMEA) [81].

Ideally, for performing an FMEA analysis, specialists with diverse backgrounds

within the design of electrical machines would be required (i.e. mechanical,

electrical, etc.). Nevertheless, this exercise was performed within the ESRs

participating in WP3. As in FMEA analyses, the main goal is to provide a

quantitative evaluation of the assembly and disassembly processes of any given

PM machine. Thus, it would be possible to determine at an early stage of the

design the degree of recyclability of the machine under investigation.

Furthermore, one of the objectives of the method is to serve as a tool for helping

designers in deciding the type of machine that might be advantageous from a re-

cycling perspective by evaluating the assembly and disassembly processes, and

the materials used for manufacturing. Therefore, the method is by no means

analysing the performance of the machine. The methodology is evaluated on

two main aspects: ”Standard” and ”Cost”.
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(a)

(b)

(c)

Figure 4.2. Disassembly process, (a) machine mounted on a lathe for rotor extrac-
tion, (b) disassembled rotor and (c) disassembled stator.
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Standard

The main goal of this section is to evaluate the processes and materials in terms

of their standardization. That is, the availability of both the processes and the

materials at the time of manufacturing the machine. Thus, three main fields

are considered:

• Material.

• Assembly.

• Disassembly.

In these three fields, two values are required in order to perform the evalua-

tion. The first is the Score S depending on its relative scale in its corresponding

section. The second is the Importance I, which is graded according to its criti-

cality with regards to the recyclability of the material. In the case of the factor

I, its value needs to be agreed and fixed from a start. The final grade is the

product of S and I. Following the methodology, the use of standard materials

will have higher S than materials that are not usual in the manufacturing of

machines. For example, a machine which is designed to be manufactured with

round, copper wire will have a higher S, than a machine which implements the

use of, for example, Litz wire. Similar comparison might be made regarding

the assembly and disassembly perspectives. If a completely new method that

requires highly qualified personnel and costly tools shall be used for assembling

or disassembling the machine, then S will have a low value. In contrast, if

standard tools are sufficient for the assembly or disassembly of the machine S

will be high. Such way to evaluate represents a challenge, since an innovative

design with unconventional materials will inherently have a low S. Thus pun-

ishing innovation in design and manufacturing of electrical machines, which

might be identified as a weakness of this approach.

Cost

A similar procedure is followed for evaluation of the assembly and disassembly

processes. That is, the higher the cost, the lower S in terms of recyclability.

However, a different approach was adopted for the calculation of the importance

I, regarding the cost of the materials. The principle is that a machine with

a large amount of certain material encourages its recycling. Therefore, the

importance I of that material will have a high value. Following that principle,

the assignment of the importance I of the remaining materials is carried out

proportionally with respect to the material with the larger mass. For example,

a machine has a given mass of copper Wc and a mass of electrical sheet Ws.

If it is assumed that the highest mass corresponds to the electrical sheet, the

factor I of the copper will be given by the ratio of the copper and the electrical

sheet masses times the highest score, as follows:
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I(Wc) =
Wc · 5
Ws

(4.1)

Where 5 is the maximum achievable score.

Final Scoring of WIRE Sheet

The final scoring Rw is obtained with the summation of all the products S × I

divided by the total sum of the factor I as in (4.2). The grading of both

factors S and I have a range from 1 to 5. In the specific case of factor S in

the ”Standard” Section, 5 corresponds to a machine where all processes and

materials are standard. In the case of the factor I, 5 indicates that the assembly

or disassembly processes are highly crucial in order to achieve recyclability. On

the other hand, same principle applies in the fields Assembly and Disassembly

of the ”Cost” Section. However, in the field Material the higher Importance I

is given to the material with the larger mass. The Score factor S determines

its cost, assigning a 5 to the more costly material.

Rw =

∑n
i=1 SnIn∑n
i=1 In

(4.2)

At the end, this methodology was applied to the machines within WP3. The

results, and a detailed description of the methodology are reported in [82].

4.1.2 EVALUATION OF THE ENERGY CONSUMPTION

The energy evaluation is the second approach of the WIRE methodology. Fig-

ure 4.3 describes the various steps required in order to obtain the energy con-

sumption of the electrical machine. In the following, a brief description of each

step is carried out.

FE Analysis of Machine and Efficiency Map

Measurements of torque and speed were performed to the outer rotor PM ma-

chine (Figure 4.1). The test set-up is described in Figure 4.4. An FEM model

was built with the main dimensions of the disassembled machine. In addition,

the measured values of current were used as inputs in the FEM models and the

results contrasted with the measured values, showing a fair agreement. Thus,

it was possible to determine the losses at any working point of the machine.

Consequently, facilitating the elaboration of the efficiency map. Figure 4.5

shows the FEM geometry and the distribution of the magnetic flux density.
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Figure 4.3. Flow chart of the calculation of the energy consumption [83].

The FEM modelling of the machine was not straightforward, since the calcula-

tions required certain inputs that were unknown. For example, it was necessary

to perform a characterization of the PMs of the test machine, in order to deter-

mine their remanence. Hence, samples of the PMs were processed and sent to

the Laboratory of Cristallography and Material Sciences CRISMAT at ENSI-

CAEN. In the case of the laminations of the stator, their quality was assumed

to be of a standard electrical sheet, specifically M400-50. The efficiency map

of the machine under analysis is illustrated in Figure 4.6.

In order to evaluate recyclability with the energy consumption approach, a

study case was performed in which the PMs were assumed to be recycled.

Therefore, their remanence was set as 20% lower, than the remanence of virgin

PMs. Such reduction in remanence was selected based on the results presented

in [84]. The methodology followed up to this point, and the efficiency compar-

ison between virgin PMs and recycled PMs was published in [85].

Figure 4.4. Set-up used for measurements [85].
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Figure 4.5. Geometry modelled in FEM, magnetic flux density distribution [85].

Driving Cycle and Vehicle Dynamics

Driving cycles are designed for emulating real driving conditions under a con-

trolled environment, for the measurement of road vehicle emissions. The con-

ditions of the tests may vary according to the type of vehicle under study.

There exists, however, various types of driving cycles and there has been dis-

cussion about the accuracy they have in representing real driving conditions.

Since 2017, the European Union have replaced the outdated NEDC [86] with

the newest Worldwide Harmonised Light Vehicle Test Procedure (WLTP) [87].

Although there are not driving cycles specifically defined for (H)EVs, it is pos-

sible to utilise a driving cycle for the estimation of the energy consumption

of the machine, given that the vehicle dynamics are identical. As a matter of

comparison, both NEDC and WLTP driving cycles are described in Figures 4.7

and 4.8.

For the estimation of the energy consumption, a model of the vehicle is required.

The model will allow the calculation of the forces to accelerate the vehicle at

the various intervals of the driving cycle. Consequently, there are dimensions

that are required to be determined in order to perform the calculation [88], [89]:

1) Rolling resistance force: This parameter is directly related with the fric-

tion produced by the vehicle on the road. Hence, the parameter is related

with the mass of the car m and the acceleration of gravity g. And it is

described by the expression:

Frr = μrrmg (4.3)
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Figure 4.6. Efficiency map of the outer rotor PM motor [85].

The rolling resistance coefficient μrr may be expressed in terms of the

speed as μrr = 0.01(1 + v/44.4).

2) Aerodynamic drag: This parameter is related to the friction of the vehicle

as it moves through air. Therefore, it is highly dependent on the geometry

of the car. This parameter may be estimated as:

Fad =
1

2
ρAfCdv

2 (4.4)

Where ρ is the density of the air, Cd is the drag coefficient, Af and v are

the frontal area and speed of the vehicle, respectively.

3) Acceleration force: Given that the speed of the vehicle is continuously

changing, it is required to provide the force that will allow such accelera-

tion. Therefore, for the estimation of this force the Newtonian equation

suffices:

Fa = ma (4.5)

The total tractive effort corresponds to the summation of all the components

described previously.

Energy Consumption

Finally, the calculation of the energy consumption is performed with the effi-

ciency map, the driving cycle and the dynamics of the vehicle. The process for

calculating the energy consumption is summarized as follows:
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Figure 4.7. NEDC driving cycle.
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Figure 4.8. WLTP driving cycle.

• The speed vs. time characteristic of the driving cycle (Figure 4.8) should

be converted to acceleration vs. time.

• Once the acceleration vs. time is obtained, the tractive force is calculated

with the parameters of the vehicle.

• The torque vs. speed characteristic for a specific vehicle is obtained.

• The power consumed by the machine is determined at each point by

interpolation of the losses from the efficiency map.

• Finally the energy consumption is computed as the integral of the power

at a defined time interval, which is, in this case the life span of the vehicle.

The study is finalized by performing an economic evaluation of the cost of the

energy consumed by the machine during the entire life of the vehicle, with virgin

PMs, and the energy consumed when using recycled PMs. For such purpose,

the energy cost index ECi is presented and it is evaluated as the ratio:

ECi =

(
Ec(j)

Ec(b)

)
(4.6)

Where Ec(b) corresponds to the initial cost of the energy consumed by the

machine with virgin PMs, and EC(j), corresponds to the energy consumed by

the machine using recycled PMs. In [83], the recyclability of the PMs was

involved, by multiplying ECi by the ratio Magc(j)/Magc(b), where Magc(b)

represents the cost of virgin PMs, and Magc(j) is the cost of recycled PMs.

However, such approach might become misleading, since the cost of the PMs

might represent only a fraction of the energy consumed by a vehicle. Hence, a

modification is proposed in this work. In order to account for the recyclability of

the PMs, the energy cost index ECi should be given by the following expression:
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ECi =

(
Ec(j) +Magc(j)

Ec(b) +Magc(b)

)
(4.7)

Where all four variables are weighted evenly. The evaluation of the energy index

as proposed in [83] is not complete. That is, the reduction on the environmental

impact of recycling shall be accounted for in the evaluation. Therefore, it is

proposed to evaluate the CO2 emissions during the processing of REEs at

the mining location. Various publications have reported the estimation of the

environmental impact of mining. For example, in [90] the impact on global

warming of the use of energy and resources in the production or Rare Earth

Oxides (REO) is carried out. Both mass-based and price-based allocations

approaches are included in the report. In addition, the investigation is focused

on the production of the mine Bayan Obo in China. In [91], the production of

REOs in Bayan Obo mine is compared in a study case with the mine Norra

Kärr in Sweden. In addition, the allocation method used is a combination

of the mass of produced REEs and their prices on the market. A broader

investigation is reported in [92]. In addition to Bayan Obo mine, the study of

the environmental impact of the production of REOs is extended to Sichuan

and seven southern provinces in China. The findings regarding the emissions

of CO2 in the production of REOs are reported in Table 4.1.

REO CO2 [eq./kg]

Nd [90] 66

Dy [90] 739

Nd [91] 289

Dy [91] 709

Not specified [92] 2040

Table 4.1. CO2 equivalent emissions in production of REOs.

Note that in this evaluation only Dysprosium and Neodymium are investigated

due to their criticality. In order to estimate the footprint of the virgin PMs

used, the amount of both Dysprosium and Neodymium in NdFeB PMs is re-

quired. However, the percentage of both REEs depends on the grade of PM

used, and it might vary widely. According to [93], [94], the percentages of both

Neodymium and Dysprosium might vary from 23 to 26%, and 3.5 to 5%, re-

spectively.
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4.2 ENERGY EVALUATION OF THE HM3D MACHINE

4.2.1 EFFICIENCY MAP OF THE HM3D MACHINE

The energy consumption evaluation is applied to the HM3D machine. As it

was described in Chapter 4, the performance of the machine with stator mod-

ules of electrical sheet was poor. Hence, for this study, it is assumed that the

stator modules are built with amorphous laminated material, and the efficiency

maps are obtained from calculations with FEM. In addition, a study case is

performed, in which similarly to [85] and [83] PMs manufactured with recycled

material are evaluated. That is, the remanence of the PMs manufactured with

recycled materials is assumed to be Br =1.08 T. The efficiency map of the ma-

chine with virgin PMs and in motor mode is shown in Figure 4.9. Similarly, the

efficiency map of the machine with PMs manufactured with recycled material

is shown in Figure 4.10.
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Figure 4.9. Efficiency map of HM3D machine with amorphous stator modules and
virgin PMs.

The reduction of Br as a result of the use of recycled material, resulted in a

reduction of torque production in a range that varies from 5.5 to 8.7%. Hence,

in order to compensate such reduction, keeping similar dimensions of the ma-

chine, with similar stator current, two approaches were available. The first,

increasing the PM thickness lm. Increasing the PM thickness did not yield sig-

nificant increment of torque, even when increasing the PM thickness from 11

mm to 20 mm. Hence, increasing the dimension hm of the PM blocks (Figure
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Figure 4.10. Efficiency map of HM3D machine with amorphous stator modules and
recycled PMs.

2.4 in Chapter 2) was verified, obtaining an increment of the required torque,

increasing hm by approximately 22%. In addition, there is an improvement of

the efficiency by reducing the remanence of the PMs, as it is observed when

comparing both 4.9 and 4.10. The reduction of the iron losses, results in the

improvement of the electromagnetic torque, which is the difference between the

simulated torque, and the equivalent torque of the iron losses.

4.2.2 DRIVE CYCLE AND VEHICLE MODELLING

A small city car with the parameters presented in Table 4.2 and under the

WLTP driving cycle (Figure 4.8), has the torque-speed envelope presented in

Figure 4.11. Once the operating points of torque and speed are calculated, it is

possible to estimate the energy consumed during a defined period of time [83].

120



CHAPTER 4. RECYCLABILITY EVALUATION OF PERMANENT MAGNETS
IN ELECTRICAL MACHINES

Parameter Value

Vehicle Mass [kg] 500

Air density [kg/m3] 1.225

Frontal area [m2] 1.85

Drag coefficient [-] 0.4

Tyre radius [m] 0.273

Table 4.2. Main vehicle parameters [88]
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Figure 4.11. Torque vs. speed envelope for a small city car under WLTP driving
cycle.

4.2.3 ENERGY CONSUMPTION INVESTIGATION

Both motoring and generating modes of the HM3D machine are considered

in the calculation of the energy consumption. In addition, as it is shown in

Figure 4.11 the maximum torque requirement is of 200 Nm. Hence, a number

of 4 HM3D machines would be required. Thus, the results summarized in Table

4.3 is given by machine unit. Various assumptions are required:

• It is assumed that the life time of the vehicle is 10 years, and that is

driven two hours in a daily basis.
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• The price of the electricity corresponds to 0.21 e/kWh, the average in

Europe at the end of 2018 [95].

• The price of virgin PMs is 55.91 e/kg, the actual cost of the PMs supplied

by VALEO.

• Finally, according to [96], the CO2 emitted per kWh of electricity was of

296 g/kWh in 2016.

Parameter HM3D virgin PM HM3D recycled PM

Total energy consumption [kWh] 7495 7388

Total energy re-generated [kWh] -643 -664

Total energy cost [e] 1439 1412

Total mass of PM material [kg] 0.9 1.2

Price of PMs [e/kg] 55.91 27.96

Total PM cost [e] 50.4 33.5

CO2 usage [kg] 2028 1990

CO2 mining [kg] 175 -

Table 4.3. Energy evaluation of the HM3D machine with virgin and recycled PM
material.

As it was discussed in 4.2.1, the efficiency of the machine with recycled PMs

is higher. Hence, it has a lower energy consumption. Unfortunately, there is

not certainty about the price of PMs with recycled materials, but as exercise

it is assumed that the price would be half of the price of virgin PMs. The

field CO2 usage in Table 4.3 corresponds to the equivalent emissions of the

electricity consumed during the life time of the vehicle. Hence its calculation

is straightforward. On the other hand, the field CO2 mining corresponding to

the emissions from mining activities, requires further steps. As described in

4.1.2, two parameters are required: the equivalent CO2 emissions from mining

and the amount of Neodymium and Dysprosium in the virgin PMs. Hence,

for this evaluation, the values presented in [90], [93] are adopted. That is 26%

Neodymium and 5% Dysprosium. In contrast, the value of CO2 emissions cor-

responding to the recycled PMs is assumed to be zero. Nevertheless, there will

be emissions during the recycling processes, and they will depend on the type

of method used for recycling. Hence, their estimation require further study as

this is a topic that is subject of ongoing research, therefore the discussion is

open.

As a conclusion, the HM3D machine with recycled PMs showed to have lower
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energy consumption. In addition, with the assumptions adopted, it also showed

to be economically and environmentally beneficial. However, further investiga-

tion is required with regard to the cost of PMs with recycled material and the

CO2 emissions from the recycling processes.

4.3 SUMMARY

In this chapter a methodology for evaluation of recyclability was defined and

applied in a study case to an outer rotor PM machine. A first approach was

adopted from the perspective of both assembly and disassembly processes and

the cost of the materials used for manufacturing. A preliminary comparison

among the machines in WP3 was carried out, and the results were reported

in [82]. As it was discussed above, the machine proposed in this project had

the lowest score, due mainly to the unusual topology, which is not a standard

nowadays.

The second approach accounted for the energy consumption of the machine

during the life time of the vehicle. Such approach required as inputs, the ef-

ficiency of the machine and a model of a car under a given driving cycle. As

a final step, an energy consumption index was determined in which an electri-

cal machine with recycled PMs may be contrasted with a machine with virgin

PMs. The method was validated with an outer rotor PM machine [85], and

the study over various scenarios were reported in [83]. In addition, suggestions

that are believed might improve the evaluation of such index were formulated.

An evaluation of the energy consumption was carried out on the HM3D ma-

chine. The efficiency maps were estimated assuming the use of stator modules

with amorphous material. Additionally, it was necessary to assume the use

of several motor units to match the requirement of the vehicle under analy-

sis. Afterwards, a study case was selected in which the remanence of the PMs

manufactured with recycled material was assumed to be 20% less than the re-

manence of the virgin PMs. In order to compensate the torque production with

PMs of lower remanence, it was necessary to increase the PM mass by 22%. It

was found that the energy consumption was not drastically affected when using

PMs with lower remanence. In addition, in order to account for recyclability,

the evaluation of the PM prices was carried out assuming the price of recycled

material to be half of the virgin PMs. Hence, using recycled materials showed

to be beneficial. Nevertheless it is necessary to perform the evaluation with

the real cost of the recycled PMs.

Finally, the energy consumption index was complemented with an evaluation
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of the CO2 emissions in order to account for the environmental impact of using

either virgin or recycled PMs. Nevertheless, more investigation is required in

order to estimate the emissions associated with the recycling methods.
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Chapter 5 CONCLUSION

The work carried out during this Ph.D. project is summarized in this chapter.

In addition, the main contributions are highlighted, conclusions are drawn, and

future work is proposed.

5.1 SUMMARY

The motivation of this thesis project along with the main objectives were pre-

sented in Chapter 1. In addition, a literature review was provided, covering

the following topics:

• Recyclable electrical machines.

• Electrical machines with 3D-Flux paths.

• Laminated amorphous metals in electrical machines.

The literature review was complemented with the description of an alternative

machine topology based on existent technologies, along with the objectives

and limitations of the project. The remainder of the thesis was focused on the

research objectives, that were described in Chapter 1 as:

Studying the advantages of using non-traditional materials, in elec-

trical machines for use in (H)EVs.

The use of non-traditional materials was investigated in Chapter 2. Both sim-

ulations and experimental work were carried out in order to evaluate non-

traditional materials on the proposed topology. Specifically, amorphous lami-

nated material was investigated and contrasted to electrical sheet. FEM sim-

ulations showed a superior torque production when using electrical sheet. In

contrast, a reduction of iron losses was achieved with amorphous laminated

material. In addition, it was found that the PM losses on the SM3D machine

had a large value due to slotting effect.

Chapter 2 was finished with the definition of a single phase outer rotor sur-

face mounted demonstrator. The stator consisted of two C-shaped laminated

amorphous cores. Hence, the advantage of such material on the reduction of
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the iron losses was validated. Furthermore, a loss characterization of the amor-

phous C-shaped cores was carried out. Finally, a study on the rotational losses

was performed in order to validate the calculation of PM losses.

Evaluating the possibility of using non-traditional materials in con-

junction with the recyclability of the PMs.

Chapter 3 was focused on the definition of a hybrid rotor 3D-flux machine

(HM3D). The evaluation of an alternative to the SM3D machine was required,

due to the high levels of PM losses that the SM3D machine yielded. An identi-

cal stator structure was chosen combined with a hybrid rotor. FEM simulations

were carried out and the performance of the HM3D machine was inferior when

compared with the SM3D machine.

A HM3D prototype was built. However, due to issues with lead time of suppli-

ers, the experimental validation of the HM3D machine with amorphous lami-

nated alloys was not possible. Instead, electrical sheet was used. Nevertheless,

it is believed that the modular structure of the stator, conceived for the use of

C-shaped amorphous laminated material, allows the use of alternatives such as

SMC, oriented grain electrical sheet, etc. Finally, the recycling of the PMs was

addressed by removing the requirement of glue for assembling the PMs on the

rotor structure.

Designing electrical machines for (H)EVs, allowing recyclability of

the PMs and using non-traditional materials.

Given that the dimensions of the amorphous C-shaped cores available in the

market are already defined, an alternative approach for dimensioning an SM3D

machine was proposed on Chapter 2. Furthermore, an SM3D machine topology

was defined and studied in depth with FEM. Finally, extra steps were defined

for the increment of the torque of the HM3D machine by applying Vernier’s

principle.

Defining, manufacturing and testing of a machine prototype.

As mentioned above, two demonstrators were manufactured during this project:

a proof of concept of an SM3D machine, and a final prototype of the HM3D

machine. The SM3D demonstrator was developed and investigated in Chapter

2. A final prototype was defined and built in Chapter 3. The testing was per-

formed in the drives traction lab at Aalborg University. Due to the combination

of changes of the design and quality issues of the supplied parts, the values of

torque and efficiency obtained during tests, were significantly low. Hence, the
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poor power factor and the low value of torque achieved raise questions about

the HM3D topology.

5.2 MAIN CONTRIBUTIONS

Few work focused on electrical machines designs focused on recycling was found

in the literature. On the other hand, the use of non-traditional materials,

specifically, laminated amorphous alloys, have been investigated on prototypes

of various machines topologies. Hence, the believed main contributions of this

thesis work covers three main aspects:

• The definition of a machine structure intended to facilitate the extraction

of the PMs, and consequently the recycling of REEs.

• The investigation of alternative materials in electrical machines. Specifi-

cally, iron based laminated amorphous alloys.

• The definition of an methodology, in order to quantify the recyclability

of PMs in electrical machines.

Hence, based on the aforementioned aspects, the main contributions of this

thesis work, are believed to be the following:

• A machine with a modular stator intended to facilitate the recycling

process of PMs is proposed. The 3D flux working principle of the machine

allows the use of non-traditional materials. Moreover, the investigation

focused on iron based amorphous laminated alloys and non-oriented grain

electrical sheet. Nevertheless, it is expected that such structure allows

the use of alternative materials such as SMC, grain oriented electrical

sheet, etc.

• A relevant study of the PM losses was performed. It was demonstrated

that the combination of a machine with a modular stator and a rotor

with surface mounted PMs might not be a convenient approach. The

large variations of the air-gap permeance resulted in a large level of eddy

currents induced in the PMs due to slotting effect.

• In connection with the previous item, a rotor with hybrid structure is

proposed. The implementation of such structure showed to solve the

issue of large PM losses of the surface mounted topology. In addition,

it allowed the assembly of the PMs without requiring the use of glue.

Therefore, facilitating the extraction of the PMs for a recycling process.

• A methodology was developed in order to quantify and evaluate the re-

cycling potential of PM machines. Such methodology evaluates the recy-

cling from two perspectives; assembly and disassembly, and energy con-

sumption. Additionally, the methodology is intended to be used at design
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stages in order to help designers to identify electrical machine topologies

that allow an efficient recycling.

5.3 FUTURE WORK

Activities related with the investigation carried out in this thesis project are

proposed as future work:

• Unfortunately, lead time did not allow the manufacturing of the stator in

the final prototype with amorphous material. Hence, improvements on

the mechanical design for fixing the modules to the stator are proposed

as future work.

• During the mechanical design stage, it was decided to use PM blocks

instead of a PM ring. It is considered that having a single PM ring

will improve the recyclability potential since less PM pieces would be

required. Thus, reducing the assembly and disassembly times. Hence,

the manufacturing of a prototype with a PM ring is set as future work in

order to verify the feasibility of such approach.

• In addition, the modular structure showed to have poor thermal perfor-

mance. Such issue might be improved by casting the stator coils with

a thermal epoxy in order to improve the thermal conductivity between

coils and stator bracket. Additionally, increasing the slot fill factor is set

as future work. Furthermore, there is potential for automating the man-

ufacturing of the coils, in order to improve the assembly and disassembly

processes.

• As it was discussed in Chapter 3, the quality of the supplied components,

specifically the rotor, along with the welds on the stator modules had a

negative impact on the performance of the HM3D machine. Hence, a bet-

ter cutting and stacking technique shall be adopted in the manufacturing

of the rotor. In addition, the use of welds should be avoided.

• Additional mechanical aspects, such as noise and vibration on the final

prototype were not investigated in this work. However, they are stated

as future work, in order to have a complete picture on the performance

of the HM3D machine.

• The calculation of the PM losses did not accounted for neither time nor

space harmonics. It is required to perform the corresponding calculations

in order to have the complete picture of this losses in both the SM3D and

the HM3D machine.

• Regarding the definition of the methodology for evaluating recycling. The

energy consumption evaluation, requires information that is either un-

available or uncertain. For example, the cost of recycled PMs, as well
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as, the CO2 emissions during the recycling process. These two topics

required to be addressed in order to have the complete picture of the

recyclability in electrical machines.
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Magnet Losses in Inverter-Fed Two-Pole PM
Machines

A. Garcia Gonzalez, J. Millinger and J. Soulard, Member, IEEE

Abstract—This article deals with the estimation of magnet
losses in a permanent-magnet motor inserted in a nut-runner.
This type of machine has interesting features such as being two-
pole, slot-less and running at a high speed (30000 rpm). Two
analytical models were chosen from the literature. A numerical
estimation of the losses with 2D Finite Element Method was
carried out. A detailed investigation of the effect of simulation
settings (e.g., mesh size, time-step, remanence flux density in
the magnet, superposition of the losses, etc.) was performed.
Finally, calculation of losses with 3D-FEM were also run in
order to compare the calculated losses with both analytical and
2D-FEM results. The estimation of the losses focuses on a range
of frequencies between 10 and 100 kHz.

Index Terms—Eddy currents, 2D-FEM, 3D-FEM, magnet
losses, nut-runner, PM motor, slot-less winding.

I. INTRODUCTION

In general, a nut-runner system is composed by an elec-

trical motor fed by a converter via a filter [1]. New emerging

technologies like Silicon Carbide (SiC) transistors, allow a

higher switching frequency and in consequence a possible

reduction of the size of both inverter and filter [2]. However,

it is of prime importance to estimate the consequences of

a component change in the performance of the motor, for

example in terms of losses. Rare-earth elements used in the

manufacturing of the magnets used in PM machines are

critical due to the elevated prices they have reached in recent

years [3]. Hence, it is appropriate to investigate thoroughly

how to best design the magnets in the motor.

Many articles about losses in magnets of PM machines

have been published recently. However, there are certainly

few articles reporting both 3D-FEM simulations and val-

idations through experimental measurements. Furthermore,

only [4] and [5] proposed models of machines with similar

characteristics to the machine studied in this project (i.e., slot-

less with a magnetized ring). However, the results obtained

when implementing the models described in these articles

were not satisfactory and in consequence other models were

investigated. Since these models neglect the end-effects, it is

necessary to investigate to which extent they are adequate for
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calculating the losses in the machine under study, where the

length of the magnet is lower than the magnet width (l < w).

The main goal of this article is to enhance the interpreta-

tion of the losses appearing in the magnets of a PM machine

as a result of the harmonics fed by the Pulse Wide Modulation

(PWM) in the inverter. Furthermore, different parameters

when calculating magnet losses in FEM software are studied

for 2D and 3D models. The main dimensions of the machine

and the working characteristics are presented in Section II.

In order to predict the value of magnet losses, an extensive

literature review was performed. Section III is devoted to the

description of the analytical models selected to determine

the losses in the magnets. The influence on the losses of

mesh elements size, time-step and the remanence flux density

of magnet material is studied and presented in Section IV.

In addition, the evaluation of the principle of superposition,

simulations at zero speed of the rotor and 3D-FEM results are

included. The analysis of the results obtained by analytical

models, 2D and 3D-FEM simulations is presented in Section

V. Lastly, conclusions are drawn and future work is proposed.

II. DESCRIPTION OF THE MACHINE

A. Main dimensions

The main dimensions of the slot-less machine analysed in

this study are shown in table I. The analytical calculations and

2D and 3D FEM simulations were performed on a machine

with a length equal to a single magnet segment l.

TABLE I: Main machine dimensions.

PARAMETER VALUE

Active length La [mm] 65
Maximum speed nmax [rpm] 30000
Air-gap length lg [mm] 0.5
Number of winding turns per phase Nc 65
Magnet axial length l [mm] 4.5
Magnet thickness h [mm] 5
Magnet radius Rm [mm] 7.5
Shaft diameter Rr [mm] 2.5
Inner stator diameter Rs [mm] 23.2
Outer stator diameter [mm] 31
Number of poles p 2
Peak phase current I [A] 1
Fundamental frequency f0 [Hz] 500

Winding type: distributed q = 1

B. Working characteristics

The machine analysed in this project is applied to the

power drive of a nut-runner. The working cycle of this type

of machine (figure 1) is divided in two stages. The first, in



which the machine is running at maximum speed with zero

torque for reaching the tightening point. The second, at which

the machine reaches nominal speed as the torque is increased

to reach the correct value to be applied to the nut. This study

was focused on the first operational stage, since it is this

region in which the company manufacturing the nut-runner

has more interest.

Fig. 1: Typical nut-runner operational characteristic [1].

Fig. 2: FFT of PWM voltage [1].

Given the PWM technique implemented in the converter,

the running at no-load may involve relatively high losses

due to the appearance of harmonics concentrated at 1 time

and 2 times the switching frequency fsw. Figure 2 shows

the harmonic distribution of the inverter output voltage at

no-load. For the coming analyses, it is assumed that the

switching frequency fsw is 10 kHz. Additionally, the fun-

damental frequency f0 is calculated as f0 = nmax/60 where

nmax is the maximum speed. For this study one harmonic

at fsw and one harmonic at 2fsw are selected. Thus, the

harmonics indexes n1 and n2 are given by n1 = fsw/f0
and n2 = 2fsw/f0. The harmonic currents applied in the

simulations are expressed as:

Ia = I cos (n1ωt) + I cos (n2ωt)

Ib = I cos (n1 (ωt− 2π/3)) + I cos (n2 (ωt− 2π/3))

Ic = I cos (n1 (ωt− 4π/3)) + I cos (n2 (ωt− 4π/3))

(1)

III. REVIEW OF ANALYTICAL MODELS

A. Eddy Currents

The mechanisms governing the eddy currents in a magnet

are the same as for the eddy currents in electrical sheets and

solid conductors. A time varying magnetic flux density, in

this case generated by the mmf of the currents in the stator

windings Bδw, penetrates the surface of the magnet. This

incident magnetic flux density originates eddy currents as

illustrated in figure 3a. It is appropriate to clarify that eddy

currents are originated only by time and space harmonics in

the stator mmf. That is, the fundamental in space of the mmf

at synchronous frequency is seen by the magnets in the rotor

as a DC field, consequently, does not create eddy currents. A

method to counteract these losses, similar to the lamination

technique implemented in a stator core, is the implementation

of circumferential and axial segmentations to the magnets [6],

[7], [8], [9].

(a)
(b)

Fig. 3: (a) Eddy currents generation, (b) Skin effect in a long

straight round single conductor.

The major consequence of these eddy currents is the

heat generated by Joule effect, as the magnets are made

of a material with a high conductivity. Additionally, two

important phenomena by which the calculation of losses in

the magnet can be affected are the reaction field of eddy

currents Beddy and the skin effect. The Beddy is generated by

the eddy currents themselves, since these are varying in time

as well [10]. This Beddy opposes to the external magnetic

field Bδw which is inducing the eddy currents. Consequently,

the value of Bδw is reduced. In addition, Bδw causes the

displacement of the current inside the conductor (figure 3b),

being forced to flow close to the conductor’s surface. Hence,

the effective area is reduced with increasing frequency. This

is the definition of skin effect [11].

B. Model neglecting the reaction effect of eddy currents

As described in [12] the calculation of the losses in the

magnet when the skin effect is disregarded (low frequencies)

is given by the following expression:

Pm =
VmB̂2

rω
2
h

16ρm
· w2l2

l2 + w2
(2)

Where Vm is the volume of the magnet (assuming that this is

of a rectangular section), w is the radial span of the magnet,

B̂r is the peak magnetic flux density in the air-gap due to

the mmf of the stator current, ωh is the electrical angular

frequency of the applied harmonic current and ρm is the

resistivity of the magnet. The assumptions adopted for the

calculation of the losses by this model include neglecting

skin effect, considering homogeneity of B over the width w
of the magnet and neglecting end effects. In addition, this

study presents an alternative for the calculation of losses for

higher frequencies. Taking [13] as reference, the power losses

per area exposed to a field H can be calculated as:

P/S = 1/2 ·H2
tanRs (3)



With Htan as the peak tangential incident magnetic field, S
being the tangential surface given by S = 2h(l + w), and
Rs is the surface impedance Rs = 1/(δmσm) where δm, the
skin depth, is given by:

δm =

√
2

ωhσmμmμ0
(4)

With σm and μm as the conductivity and permeability of the

magnet. The criterion for selecting either of the two methods

is based on how large the skin depth is in comparison to

the magnet dimensions w, h and l. In coming sections of

this article these two models are denominated Huang a and

Huang b, respectively.

C. Model accounting for the reaction effect of the eddy
currents

This model presented in [14] defines the losses in the
magnet region as:

PIII = 2αpπLaR
2
sωrμ0μmμ2

sl

∞∑
n=1

∞∑
m=−∞

(n+m)

m
J2
nm

·Re

{
j
C9

K

[(
τmRr

m
Ym−1(τmRr)−Ym(τmRr)

)
Jm(τmRm)

−
(
τmRr

m
Jm−1(τmRr)− Jm(τmRr)

)
Ym(τmRm)

]

·C
∗
9

K∗

[(
τmRr

m
Ym−1(τmRr)−Ym(τmRr)

)

·
(
τmRm

m
Jm−1(τmRm)− Jm(τmRm)

)

−
(
τmRr

m
Jm−1(τmRr)− Jm(τmRr)

)

·
(
τmRm

m
Ym−1(τmRm)−Ym(τmRm)

)]∗}

(5)
Where, the sub-indexes m and n correspond to space and

time harmonics, respectively. αp and ωr are the pole arc to
pole pitch ratio and the rotor angular velocity, respectively.
The functions Jm and Ym are Bessel functions of first and
second kind of m order, respectively. And the harmonic
amplitude of the equivalent current sheet distribution:

Jnm =
3NcIKdpνKsoν

πRs
(6)

Where, Ksoν and Kdpν the slot opening and winding factors

defined in [15]. Other parameters such as C9, K, τm, τsl and

μsl are described and derived in the reference, as well as,

the main assumptions adopted for this model. Therefore, for

sake of simplicity and to prevent any misinterpretation, their

descriptions are omitted in this article. In coming sections of

this document, this model is referred to as Zhu.

The analytical models selected were developed for ma-

chines with different geometry and characteristics than the

slot-less machine under investigation. Therefore, it was re-

quired to adapt the expressions to the actual machine. Note

that for evaluating the losses with models Huang a and b,

the magnet ring is assumed to have a rectangular section

with a total width of (Rr + Rm)/2. On the other hand,

for model Zhu, the coefficient Ksoν is assumed to be equal

to 1, due to the absence of slots in the actual machine.

Additionally, the thickness of the retaining sleeve described in

the reference is set to zero and the corresponding permeability

and conductivity set to 1 and zero, respectively.

IV. FEM SIMULATIONS

A. 2D-FEM Simulations

The FEM software selected was FLUXTM v12 from

Cedrat. All simulations were performed in the Transient
Magnetic module. Figure 4 shows the geometry of the 2D

model.

Fig. 4: 2D geometry in FLUX software.

1) Mesh Size Validations: For validating the size mesh

required to calculate losses in magnet, three options were

adopted. The selection of mesh size was focused on the

regions which are believed to be more critical. For all three

meshes, the smallest mesh elements are located within the

shaft, magnet and air-gap regions. Furthermore, the size of

the elements in these regions was selected to be lower than

the skin depth of the magnet δm at 10 kHz. Additionally, it

was decided to link the time-step for each mesh to the size

of the elements.

• Mesh 1: Aided mesh. For this type of mesh, the aided

mesh option was activated. The selection of the time-

step in this case, was based on the suggestions from the

tutorials of FLUXTM. With a number of steps nsteps =
140 the time-step was selected as tstep1 = T0/nstep.

With T0 as the period of the fundamental frequency f0 =
500 Hz the time-step was calculated as t = 14.3 μs.

• Mesh 2: Coarse mesh. This type of mesh is of lower

quality when compared with the ”aided mesh”. Some

parameters defining the mesh in the software were set

up manually and the aided mesh was disabled. The

software offers several options for defining the size

of the elements required. Among them, the number of

elements that a mesh line should have (Arithmetic). A

rough calculation of the size of the elements inside the

magnet can be done with the perimeter described by the

magnet radius Rm and the number of segments nseg

defined for this line size2 = 2πRm/nseg . This yields

size2 = 1.31 mm which is lower than the skin depth

by a factor of 3 approximately. Note that the skin depth

for frequencies of 10 and 20 kHz are 5.8 and 4.1 mm

respectively (according to equation 4). The definition

of the time-step was achieved by introducing size2 in

equation 4. An equivalent frequency fstep2 = 197.11



kHz was obtained. Consequently, the time-step for Mesh
2 was tstep2 = 5.07 μs.

• Mesh 3: Fine mesh. For this mesh type the elements

are finer in comparison to those of the ”aided mesh”.

For the calculation of the time-step, similar procedure

was followed as for Mesh 2. The equivalent frequency

for the calculated segment size size3 is fstep3= 1404.40

kHz and the time-step tstep3 = 0.712 μs.

The results for each mesh type with its own time-step are

shown in figure 5a. The average values of losses for meshes

1, 2 and 3 are; 1.67, 2.67 and 2.81 W, respectively. Showing

a highest deviation of 67.95% between Mesh 3 and Mesh 1
and the lowest deviation equals to 5.07% between Mesh 2
and Mesh 3.
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Fig. 5: Magnet losses for different mesh densities; (a) differ-

ent time-step, (b) same time-step (t = 0.712 μs).

In addition, it was decided to investigate the magnet losses

calculated with each mesh type keeping the same time-step

(i.e., equals to tstep3 = 0.712 μs). The results are shown in

figure 5b. A very good agreement between the three different

meshes was obtained with approximately zero deviation. Here

an important conclusion may be drawn; the value of the time-

step showed to have a stronger effect on the losses than the

density of the mesh. In addition, the reduction of both the size

of the mesh elements and the value of time-step increased the

simulation time. Consequently, it was decided to investigate

further the effect of time-step on the calculation of the magnet

losses.
2) Time-step validations: As shown in previous sections,

the magnet losses were not varying with the size of the mesh

elements for the three tested meshes. However, there was a

dependence with the time-step, the frequency and the skin

depth. Therefore, it was necessary to investigate to what

extent the calculation of the losses is affected by changes in

the value of the time-step. Thus, the time-step was formulated

as a function of the frequency, as tstep = 1/(fswktime).
Where ktime is the number of samples per period. The factor

ktime was taken from 5 to 50 in steps of 5 and applied to the

fine mesh (i.e., Mesh 3). The variation of the losses with the

number of points per period ktime is shown in figure 6. The

lower ktime, the lower the calculated value of losses and as

the number of sampling points increased, the results became

more stable converging to a value of 2.64 [W].
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Fig. 6: Magnet losses for different time-step.

The trend is that the deviation in losses between two

consecutive values of ktime is reducing as the number of

samples is increased. Then, it is required to define at which

level of deviation is considered that a reliable value has been

reached. For example, if it is assumed that the solution is

reached when a variation of 1 % is achieved, a number of

sampling points ktime = 50 is required. On the other hand,

if a higher level of accuracy is required, the factor ktime

may increase up to 80. Consequently, the simulation time is

increased. Hence, the selection of this factor is a compromise

between time and accuracy.
3) Effect of remanence magnetic flux density on losses:

These simulations were intended to evaluate the effect that Br

could have in the calculation of the magnet losses. Hence, it

was decided to evaluate the losses in two different scenarios:

• Magnet OFF: Setting the magnet region as a solid

conducting region (Br = 0 T).

• Magnet ON: Setting the magnet as a Linear magnet
described by the Br module. That is, setting the value

of Br = 1.12 T.

In addition to these two scenarios, it was decided to

evaluate the effect at a frequency range from 10 to 100 kHz.

The losses calculated at 10 kHz are presented in figure 7.

The results show a good fit for both cases (magnet ON and

OFF). Consequently, the value of the remanence magnetic

flux density Br is not expected to have a significant influence

on the losses. Similar results were obtained for a frequency

of 100 kHz. In addition, the current density distribution in

the magnet is shown in figures 8a and 8b for frequencies 10

and 100 kHz, respectively. Similarly, no influence of Br in

the current density distribution and losses was identified. A

symmetrical behaviour of the current density in the magnet

was expected. However, an undulating behaviour may be

observed in figures 8a and 8b. This is a result of the

reaction field of eddy currents Beddy . The skin effect is more

pronounced as the frequency increases in figure 8b for a

frequency of 100 kHz.
4) Superposition of the losses: It was then verified if the

principle of superposition might be applied to the simulations

for different harmonic indexes. This was performed keeping
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Fig. 8: Current density distribution magnet off; (a) 10 kHz,

t = 0.5ms. (b) 100 kHz, t = 0.1ms.

the rotor speed at a value of 30000 rpm, and varying the

harmonic indexes n1 and n2 accordingly in order to obtain

a variation of the switching frequency fsw from 10 to 100

kHz in steps of 1 kHz. Three different cases were studied:

• Case 1: Losses only due to the harmonic index n1 and

a phase shift of π/3.

• Case 2: Losses only due to the harmonic index n2 and

a phase shift of π/2.

• Case 3: Total losses due to both n1 and n2.
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Fig. 9: Magnet losses vs. frequency.

Figure 9 shows that a perfect fit between the two methods

was obtained with deviations lower than 1%. This confirms

that for this type of machine superposition may be applied

and that there will be no interaction between harmonics at

fsw and harmonics at 2fsw.

5) Simulations at zero speed in the rotor: An alternative

for running the simulations was setting the speed of the rotor

nmax as zero. Consequently, the only parameter varying with

time would be the applied current. However, it was necessary

to determine the direction of rotation of the harmonic indexes

n1 and n2 in order to define the relative speed of rotation.

This condition was evaluated at frequencies of 10 and 100

kHz. Figure 10 shows the results for the losses when the

rotor is rotating at a fixed speed and when its speed is set

to zero. A similar behaviour was obtained at a frequency of

100 kHz. This machine can be simulated at no speed since

the space harmonics from the current loading are negligible.

A reduction of the simulation times is expected by using this

simulation method. However, in 2D-FEM simulation times

were in the same range with both type of simulations.
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Fig. 10: Losses at 10 kHz.

B. 3D-FEM Simulations

The simulation settings presented in Subsection IV-A

apply to the calculation of the losses in 3D-FEM. That is,

same time-step factor and a fine mesh were selected in order

to guarantee that the values calculated are representative and

that a fair comparison can be done with 2D-FEM simulation

results. Figure 11a shows the current density distribution over

the surface of the magnet at 10 kHz. Yellow colours and large

arrows indicate maximum values. At first glance the magnet

could be divided into two regions in terms of the eddy current

flow indicating the two incident values of Bδw. In addition,

some hot-spots of critical regions in which these currents are

the highest are identified as the boundaries between the shaft

and magnet regions at the top and bottom faces of the magnet.

This is due to the curvature described by these regions in

which the currents are forced to vary their trajectory.

For performing a better analysis of the behaviour of the

eddy currents inside the magnet, a 2D sub-region was defined

inside the magnet volume parallel to xz axis. The eddy current

plots for grid xz are shown in figure 11b. As predicted in

the literature, the eddy currents are forced to flow in the

periphery of the magnet finding a common returning path.

The plane xy is a transition region in which currents change

from the top region to the bottom region, thus closing the

loop. The distribution of the losses is shown in figure 12. It

follows the behaviour of the eddy currents since the losses

are proportional to the square of the current.

The distribution of the losses in the xy plane is shown

in figure 13. Here it is shown how the distribution of the

current density and consequently the distribution of losses

has a more symmetrical behaviour. This indicates that Beddy



(a)
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Fig. 11: Current density distribution at 10 kHz t = 52 μs; (a)

over the surface, (b) plane xz.

Fig. 12: Magnet loss distribution at 10 kHz; t = 52 μs.

in 3D-FEM simulations is less pronounced than for the 2D-

FEM simulations.

Fig. 13: Magnet loss distribution at 10 kHz; t = 52 μs, plane

xy.

In addition, the superposition principle, the effect of the

remanence magnetic flux density of the magnet Br and

simulations of zero speed in the rotor were evaluated for

3D-FEM simulations. There were no significant deviations

when calculating the losses with the three cases (Case 1,

Case 2 and Case 3). The effect of Br in the magnet losses

was negligible. Lastly, the simulations with zero speed of

the rotor yielded a reduction of the simulation time of 28%.

Same conclusion would be drawn at 100 kHz.

V. RESULTS ANALYSIS AND COMPARISON

Figure 14 summarizes the losses calculated with the

selected analytical models and with 2D and 3D-FEM sim-

ulations. The calculations of losses in the magnet were per-

formed at frequencies from 10 to 100 kHz. As the frequency

increases, model Huang a neglecting the skin effect, shows

the highest deviation. In contrast, the model Huang b shows

a similar trend when compared with 2D-FEM results but still

with a large deviation. Regarding model Zhu, the results show

not only a similar trend but also the lowest deviation. This

allows to confirm that model Zhu may be applied to a slot-

less machine with a diametrically magnetized ring. However,

there is a large deviation between the results of 2D and 3D-

FEM.
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Fig. 14: Losses vs frequency 2D-FEM, 3D-FEM and analyt-

ical models.

Table II summarizes the values of losses obtained with

both 2D and 3D-FEM calculations with their respective

deviations at frequencies of 10, 40, 70 and 100 kHz for a

magnet length of l. Values of the magnetic flux density in

the air-gap Bδw are also included.

TABLE II: Magnet losses vs. frequency 2D and 3D-FEM.

Freq.
[kHz]

Loss magnet length=l Bδw

2D
FEM
[W]

3D
FEM
[W]

ΔError
[%]

2D
FEM
[mT]

3D
FEM
[mT]

ΔError
[%]

10 2.59 0.44 -83.01 9.83 14.43 46.80
40 6.39 4.99 -21.91 6.51 13.11 101.38
70 8.43 11.16 32.38 5.35 11.99 124.11

100 10.13 16.96 67.42 4.75 10.01 110.74

At 100 kHz, the losses calculated with 3D-FEM are

67.42 % higher than predicted by 2D-FEM. In contrast, the

simulation times were of 4419 and 660 seconds, respectively.

The explanation to such large deviations at both low and

high frequencies is the reaction field of eddy currents Beddy .

In 2D-FEM simulations, the end-effects are neglected, the

equivalent impedance seen by the current is low and the

eddy currents flowing in the magnet are high as a result.

As a consequence, the reaction field of eddy currents Beddy

is higher and increasing with frequency. The magnetic flux

density in the air-gap Bδw is being reduced, which in return,

yields lower losses. This is confirmed in table II where Bδw

for 2D-FEM has a diminution of its value of around 50 %. On

the other hand, for 3D-FEM simulations, the eddy currents



described a different flow path, including the end-effects.

The impedance seen by the current is much higher and

consequently the eddy currents are more limited, resulting

in a lower value. This is clarified in table II, where the value

of Bδw is reduced by approximately 30 %.

The investigation was extended to the case in which the

magnet length l was affected by a factor of 2. The motivation

for this selection, is to show that for a given value of l, the

deviation between the losses calculated with both 2D and 3D-

FEM should start reducing. The reduction of the deviation

between 2D and 3D-FEM simulations is around 27% and

12% at lower and higher frequencies, respectively. In addi-

tion, the losses for a magnet length of l and 2l are shown in

figure 15. The results from 2D-FEM simulations correspond

to the values calculated in Subsection IV-A multiplied by 2.

In figure 15, two frequencies at which the calculated losses

in both 2D and 3D-FEM simulations are equal exist. These

frequencies are at around 48 kHz for l and 30 kHz for 2l. As

the length of the magnet increases, the curve representing the

losses calculated by 2D-FEM starts approaching to the curve

representing 3D-FEM results as expected. This happens when

the end-effect of the returning loop for the current in 3D-FEM

simulations start to be insignificant (i.e., l � w).
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Fig. 15: Magnet losses comparison 2D and 3D-FEM simula-

tions with l and 2l.

VI. CONCLUSIONS

A thorough investigation of FEM simulation settings

for calculating magnet losses in a 2-pole PM motor was

presented. It was shown that skin and end-effect are not neg-

ligible, requiring 3D-FEM simulations. The validity of losses

values obtained with models needs to be confirmed. This

can only be done through experimental measurements in the

actual machine, dealing with the issue of separating the losses

in the machine. Additionally, while doing measurements, the

machine is fed by harmonic voltage sources. This means that,

in another study, the amplitudes of the current harmonics will

need to be derived accounting for the variation of the machine

impedance with frequency introduced by the eddy currents in

the magnets.
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The goal of this paper is proposing a methodology for the evaluation of the recyclability criterion of permanent magnets (PMs)
in electrical machines for Hybrid and Electric Vehicles ((H)EVs). Such methodology was validated with measurements performed
to a PM machine of the hub type. In addition, the methodology proposed here is approached in terms of energy consumption.
Hence, measurements of torque and speed were taken at various working points. This study comprises the disassembly of one unit
in order to determine the main dimensions of the machine for modelling in 2D Finite Element Method (FEM). Additionally, samples
of the magnets in the rotor were taken for characterization of their properties. The results of simulations were contrasted with
the measurements for the validation of the efficiency maps. Finally, a study case was selected, in which the use of recycled magnet
material was simulated and the reduction of efficiency was quantified.

Index Terms—Efficiency maps, 2D-FEM, driving cycle, energy consumption, magnet recyclability.

I. INTRODUCTION

THE global trend towards the implementation of (H)EVs

is challenging from the perspective of energy supply and

the use of materials with high fluctuation of prices in the

international market such as Rare Earth Elements (REEs).

Recycling of REEs has been proposed as an alternative for

counteracting this situation. Furthermore, work has been car-

ried out in the design of electrical machines with recycled

materials [1], [2], [3]. However, there is a lack of tools

allowing to determine the feasibility of the recycling of PMs in

electrical machines. Hence, this article attempts to set the base

for a methodology for evaluating of the recyclability of their

PMs [4]. In this regard, two approaches might be adopted. One

from the perspective of the disassembling process [5], [6]. The

second one from the perspective of the energy consumption

in the life cycle of the machine. The evaluation of the energy

consumption of a machine used in (H)EVs may be done under

any of the defined driving cycles [7]. Therefore, it is required

to determine the efficiency of the machine at any given

working point. In this sense, the methodology proposed here

is validated with measurements performed to an outer rotor

surface mounted PM machine of the hub type commercially

available and used in both electrical scooters and small city

cars.

Efficiency maps have shown to be useful at representing the

performance of electrical machines in propulsion applications

[8]. In addition, work has been carried out with efficiency

maps as optimization tool [9]. Furthermore, the analysis of

different machines under various driving cycles have been

addressed in earlier studies [10]. However, the work presented

here is aimed to validate a methodology for the evaluation of

Corresponding author: A Garcia Gonzalez. (email: agg@et.aau.dk). “A.
Garcia Gonzalez, A. Kumar Jha, Z. Li, P. Upadhayay and P. Rasmussen
contributed equally.”

the recyclability criterion from an economic perspective (i.e.

energy consumption).

Experimental results focused on the determination of effi-

ciency of the machine are presented in Section II. In section III

results of simulations are included, as well as, the elaboration

of the efficiency maps. Section IV is devoted to the determi-

nation of the efficiency maps in a study case assuming the use

of recycled magnets. The analysis of the results obtained are

shown in section V. Lastly, conclusions are drawn and future

work is proposed.

II. EXPERIMENTAL SET-UP

Measurements were performed on an outer rotor surface

mounted PM which is generally used in electrical scooters or

small city cars [11]. The set-up is shown in figure 1. A resistive

load was connected to the machine operating as generator,

and values of input and output power were measured. The

results of efficiency at different values of torque and speed

are illustrated in figure 2.

Fig. 1: Experimental set-up.

A. Disassembly

The disassembly of the machine was carried out in order

to obtain the main dimensions for the elaboration of the 2D

c© c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.



FEM model. Samples of the magnets were taken and analysed

with the Physical Property Measurement System (PPMS) from

Quantum Design R©.

100 200 300 400 500 600
0

20

40

60

Torque vs. Speed

speed [rpm]

To
rq

ue
 [N

m
]

η measured

E
ffi

ci
en

cy
 [%

]

70

75

80

85

90

Fig. 2: Measured efficiency at different values of torque and

speed.
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Fig. 3: (a) Disassembly process, (b) Magnet samples.

B. Main dimensions

The main dimensions of the outer rotor machine analysed

in this study are shown in table I.

TABLE I: Main machine dimensions.

Parameters Value
Stack length Lstack [mm] 40
Maximum speed [rpm] 700
Air-gap length [mm] 0.6
Magnet axial length [mm] 40
Magnet thickness [mm] 3
Magnet width [mm] 14
Stator radius [mm] 126.5
Number of poles 56
Number of slots 63

Winding type: concentrated

III. ELABORATION OF EFFICIENCY MAPS

Figure 4 illustrates the model implemented in 2D FEM.

In addition to the dimensions in table I, the properties of

the materials were required as inputs. The test performed

to the magnet with PPMS yielded a value of remanence of

approximately Br = 1.2 T. On the other hand, the quality

of the material of the stator laminations was unknown. Nev-

ertheless, the properties of a standard SiFe lamination with

similar thickness were modelled. Hence, the lamination M400-

50 was selected. Simulations were run applying the measured

current. The efficiency of the measured working points was

estimated with the calculated no-load losses (i.e. stator and

rotor iron losses and PM losses) and copper losses. The effect

of harmonics induced by the modulation of the inverter were

disregarded in the simulations. The results are shown in figure

5. Most of the results follow the trend of the measurements

illustrated in figure 2.

Fig. 4: Geometry modelled in FEM and magnetic flux density

distribution at T=11.6 Nm and n=105 rpm.
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Fig. 5: Measured and calculated efficiency at different values

of torque and speed.
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Fig. 6: Deviation in measured and calculated torque at different

values of torque and speed.
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Fig. 7: Deviation in measured and calculated efficiency at

different values of torque and speed.

Figure 6 shows the deviation in the calculation of the torque

compared with measurements. The maximum deviation was



estimated of approximately 17 %. In addition, the deviation in

the calculation of the efficiency is illustrated in figure 7, with a

maximum value of approximately 9 %. Various factors might

be the source of such differences. In the case of the torque, the

quality of the lamination might influence the performance of

the machine regarding torque production. The deviations in the

efficiency calculations are due to the absence of the mechanical

losses in the simulation results. In addition, simulations do not

account for processes such as cutting, stacking, etc. that might

diminish the quality of the laminations, thus increasing the

losses. Additionally, errors in the measurements may influence

the deviations between measured and simulated efficiencies.

Further analysis in this regard is presented in section V.

After contrasting the simulated values with the measure-

ments, the magnet flux linked with the stator windings Ψm

was determined and the torque was obtained analytically with

the expression:

T =
3

2
(Ψm · Iq · p) (1)

Where Iq is the current applied in the q-axis and p is

the pole-pairs number. This expression allows having torque

values at currents that were not measured, enhancing the

resolution for the elaboration of the efficiency maps. The

copper losses pcu were obtained with the DC resistance of

the windings Rw and the measured current Im as:

pcu = 3 · I2m ·Rw (2)

For obtaining the stator and rotor iron losses and PM

losses at any speed, quadratic fitting was applied to the

losses calculated with 2D FEM simulations. Consequently,

the efficiency was determined at any working point of the

machine. The resulting efficiency map is presented in figure

8. This efficiency map agrees with the efficiency map of a

Surface Mounted PM machine, which values of efficiency are

higher as the machine is at its highest performance. In addition,

it shows the incremental behaviour of the iron losses with

the speed, and the increment of the copper losses with the

increment of the torque.
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Fig. 8: Efficiency map of the original machine.

IV. STUDY CASE

The main goal of DEMETER project [12] is the study of

the recyclability and reuse of magnets in (H)EVs. Therefore, a

study case was defined in order to verify the methodology fol-

lowed so far. Magnets manufactured with recycled material are

expected to have lower remanence [13]. Hence, the remanence

adopted for this study case was assumed to be 20 % lower,

that is, Br = 0.96 T. In order to perform a fair comparison,

some assumptions were adopted for the study case presented

here:

• Same geometry as in figure 4 was analysed. That is,

similar values of current were applied to a new set of

simulations with PMs of lower remanence.

• For performing a valid comparison, same performance in

terms of torque production was required. Consequently,

the axial length of the machine was increased by 15 %,

that is, the new stack length was Lstack = 46 mm.

• The thermal aspects of having higher copper losses were

disregarded for the analysis.

The procedure described previously was followed for the

elaboration of the efficiency maps for this study case. Figure

9, illustrates the efficiency maps resulting from the use of

assumed recycled magnets. Here it is observed the reduction

of the efficiency in the region at low speed and high torque,

where the copper losses are dominant. In the region at high

speed low torque, where the no-load losses are dominant, the

variation is less noticeable.
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Fig. 9: Efficiency map of the machine for the study case.

A. Comparison of efficiency maps

Figure 10 shows the deviations between the efficiency map

for the original machine and the efficiency map obtained for

the study case. The differences are more noticeable in the

regions at high torque and low speed. That is, where the copper

losses are dominant due to the higher current. In contrast, in

regions at low torque and high speed, the deviations are lower.

In this region the iron losses are dominant due to the higher

frequency. However, the reduction of the iron losses due to

the reduction of the remanence of the PMs is compensated by

the increment of the length of the machine.
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Fig. 10: Absolute error of efficiencies between efficiency

map of original machine and machine with magnets of lower

remanence.



V. RESULTS ANALYSIS

This section is intended to enhance the understanding of the

results in the presence of deviations between measurements

and calculations. Furthermore, the analyses reported in this

section were carried out on the original machine for similar

values of torque and speed as for measurements. Hence, a de-

cay test was performed on the original machine. It consisted in

running the machine solely by pulling the shaft and recording

the back-emf waveforms in an oscilloscope. A time decaying

back-emf wave-form was obtained, and the no-load losses

pdecay (i.e. core losses, PM losses and mechanical losses) were

obtained with the expression [14]:

pdecay(ωm) = −ωmJ
dωm

dt
(3)

Where J is the inertia of the machine and ωm is the

mechanical angular speed. The inertia J was estimated with

the main dimensions of the machine. The no-load losses as

function of the speed of the machine were approximated

by quadratic curve fitting. Figure 11 shows the decay test

results, the calculated losses performed with 2D FEM and the

measured no-load losses.
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Fig. 11: Measured and calculated no-load losses in the original

machine.
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Fig. 12: Deviations in the no-load losses.

The deviations between measured and simulated results are

shown in figure 12. The maximum deviation was estimated in

approximately 50 %. The main source for this deviation would

correspond to the portion of the mechanical and stray losses

that are not included in the 2D FEM model. Additionally,

the specific losses of the laminations in the actual machine

remain unknown. Furthermore, as mentioned in section III the

processing of the laminations (i.e. cutting, stacking, etc.) is

not accounted in the simulations. Regarding the decay test

results, figure 12 shows the largest deviations of approximately

79 %. The no-load losses p0 with the machine running were

determined with the following expression:

p0 = Pm − Po − pcu (4)

Where Pm is the input power measured with the power

analyser and Po is the output power obtained with the mea-

surements of torque and speed in the torque transducer. Note

that p0 contains the mechanical losses, core losses and PM

losses.

A. Effect of the calculation of J

In order to evaluate the sensitivity of the value of inertia J
in the losses calculated with the decay test, J was modified

by ±10 %. The results are shown in figure 13.
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Fig. 13: Comparison of no-load losses with various values of

inertia J .
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Fig. 14: Deviation of losses calculation with changing J .

As shown in figure 14 the maximum deviation was esti-

mated in 10 %. In this work, the calculation of J was per-

formed both analytically and with the help of CAD software.

The relative error between the two methods was approximately

3 %. The inertia calculated analytically was Jana = 0.0899
kg·m2. With CAD software, this value was estimated in

Jcad = 0.0905 kg·m2. The maximum calculated deviation due

to the variation of the value of J was estimated in 3 %.

B. Effect of the measurement of torque

During the test with load in the machine, oscillations in the

reading of torque were observed. In addition, an offset value

was present in the interface used to read the values of torque.

Such offset was identified having a value of approximately

0.35 Nm. The goal in this section is to identify the behaviour

of the measured losses accounting for such deviations of the

torque measurements. Hence, expression 4 was evaluated for

the calculation of the no-load losses, accounting for the torque

offset, by subtracting its value from the measurements. The

results after applying quadratic curve fitting to the data are

shown in figure 15 together with the decay test results and the

values obtained with simulations.
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As it can be observed in figure 16, the subtraction of the

torque offset from the measured values leads to the increment

of the no-load losses. The maximum deviation between the de-

cay test results and the measured values is of approximately 32

%. Which shows that the calibration of the torque transducer

might have a significant impact in the estimation of the no-load

losses as in equation 4. In addition, the losses calculated in 2D

FEM are still close or even higher than the measured values.

This might be the indication that in the original machine, an

electrical lamination of lower specific losses was used. As

future work, it would be interesting to determine the type

of lamination that is being used by the manufacturer of this

product.

VI. CONCLUSIONS

A reduction of efficiency when recycled magnets are used

was quantified at 4.5%. This maximum value was obtained

in the region at low speed and high torque in figure 10. Such

deviation in the efficiency has its source in the increment of the

stack length for obtaining the same torque as in the original

machine. In addition, the increment of the resistance of the

windings with increased stack length, had a significant impact

in the copper losses. On the other hand, in the region at high

speed and low torque the reduction in efficiency was estimated

in 1%. This is consistent with having a reduced remanence

of the magnets compensated with the increment of the stack

length of the machine.

In general, a larger consumption of energy is expected

if magnets manufactured with recycled materials and with

lower remanence are used for electrical machines in (H)EVs.

However, for future work it has been defined the study of

the energy consumption of the machine analysed here under

various driving cycles, including the European urban driving

cycle ECE-15. Additionally, the prices of both energy and

magnet materials will be evaluated for establishing a recycling

index [15]. Furthermore, the methodology proposed here is

expected to facilitate the comparison of diverse types of PM

machines (e.g. surface mounted PM, inset PM, Halbach rotor,

etc.) from an early design stage.
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Abstract—With increasing demand of electric vehicles it is very
important to recycle critical rare earth materials used in the
permanent magnet motors such as Neodymium (Nd), Dysprosium
(Dy) and Cobalt (Co) etc. To achieve easy recycling, focus of
the motor design shall shift to design for recycling. The article
presents a methodology (WIRE) to evaluate and benchmark the
motor in terms of their recyclability. The method can be used to
compare different motors. The method was used for evaluation
of a commercial permanent magnet based HUB motor and the
results are presented. A comparison between recyclability index
of four different motors topology is also presented.

Index Terms—Motor Recycling, Magnet Recycling, Motor
Benchmarking

I. INTRODUCTION

The demand for cleaner mode of urban transport is increas-

ing and many countries like UK, France, Norway, Sweden

etc have already announced the phasing out of diesel and

petrol cars from their streets in couple of decades and likely

more countries will join soon [1]. The sales of electric vehicle

(EV) and hybrid electric vehicle (HEV) in recent years is

growing every year and is projected to continue at higher

rate in coming years [2]. At present, almost all automobile

manufacturers are using permanent magnet (PM) motors to

achieve high efficient vehicles [3]- [4]. The amount and quality

of PM is critical for high performance motors. Therefore,

to maintain the vehicle growth it is very important to have

sufficient and sustainable supply of magnets. At present,

Neodymium Iron Boron (NdFeB) magnets are the strongest

magnets. The magnet contains critical rare earth materials

like Nd and Dy. Due to limited availability of these materials

it is very crucial to recycle them and use again in motors.

In recent years, there has been some focus from industry

and researchers on recycling of magnets. The projects like

EREAN, RARE3 etc are focusing on developing methods to

recycle extracted magnets. The extraction of magnets from

the existing electric motor design has been investigated in the

project called MORE. The motor designs present today are

not designed for recycling i.e. extraction of magnet is very

difficult [3] & [5]. In Demeter (H2020) project one of the

goals is to design motor for recycling. However, the challenge

for the motor designers is to evaluate motors with respect

to the recyclability and comparison of different designs. At

present there is no tool to analyze the motors design for the

recycling and benchmark them. In this article a method is

presented to analyze and evaluate the recycling of the motors

for EVs and HEVs. The method is divided in two parts.

The first part evaluates recyclability of the motor considering

standardization, assembly and disassembly of the motor. The

second part evaluates the impact of the motor design on the

performance of the motor considering energy consumption

over the complete life cycle. In this article only first part is

presented and discussed. The method was used to evaluate the

recycling index of a commercial hub motor and the results are

presented. The evaluation of four different motors designed for

DEMETER project were carried out by using WIRE method.

The comparison of scores are also presented and analysed.

II. METHODOLOGY

The first part of the WIRE methodology is to evaluate

the ease of assembly/disassembly of electric motors. The

evaluation process is divided in two parts - Standard and

Cost. Each part has three categories Material, Assembly and

Disassembly. Moreover, the evaluation of each material or

process in each category is done in two parts. The first is

Score (S) which depends on its relative scale in respective

section. The second is Importance (I) which depends on

material/process relative criticality in terms of recyclability of

materials. The final score is the product of both i.e. (SxI). The

score for each activity is in the range of 1-5. For evaluation

of WIRE it is recommended to have a group of 5-6 people

from different fields, involved in design and manufacturing

process of the motor. Figure 1 shows the evaluation sheet

for the different materials of the motor for both the parts-

standard and cost. Although, the evaluation largely depends

on the mutual agreement of the group formed for evaluation

i.e. standard and cost, certain guidelines are formed to evaluate

different sections. Furthermore, the process/ materials in dif-

ferent sections are different depending on the criticality of the

material/process. For example, the wires of sensor is important

while assembling however, their importance is negligible while

disassembly.



Scoring pattern 0-5 1 - Lowest 
score

5 - Highest  
score

1 - Lowest 
score

5 - Highest  
score

3 = neutral 
score

Assumption The motor developed is new and for the rst time and manual disassembly with high volumes i.e. 50,000

MOTOR ID Hub motor for in-wheel application

Component/ Parts
Standard Cost Recyclability 

SCORE
S I SxI S I SxI

Materials

- Stator

Lamination S 5 5 25 1 5 5 30

Copper 5 5 25 2 1 2 27

- Rotor 0

Steel R 5 5 25 1 4 4 29

Magnets 5 4 20 5 1 5 25

-Shaft 0

Shaft 4 5 20 1 2 2 22

-Endshileds 0

Drive Side 2 5 10 1 2 2 12

Non-Drive side 2 5 10 1 2 2 12

34 135 17 22 157

section score 79.41 % 25.88 %

Fig. 1: Evaluation sheet of material for standardization and

cost

A. Definitions of WIRE sheet

As mentioned earlier, the WIRE evaluation is relative and

hence, the accuracy of the method largely depends on the

definitions of different sections. Different process/materials

has different significance in the final recycling of the motor. It

is important to note that the scoring is relative and hence the

tool is good for comparing two motors evaluated keeping same

scaling in consideration. In the following section definitions

of different terms used for the evaluation are given.

• Standard : The category focuses on the use of standard

material/processes. The evaluation for Standard category

is done with the view that use of standard parts/process

will simplify and encourage the recycling. Furthermore,

higher the number of standard component in the motor

easier it will be for recycling and further improves the

quality of the recycled output.

1) Material

– ’S’ depends on the standardization of the mate-

rial. The score is higher for material, which are

easily available (off the shelf) and widely used.

For example, random wound copper winding are

more used and widely available then rectangular

strand cable of certain dimension.

– ’I’ depends on materials recyclability. For exam-

ple, NdFeB magnet with and without coating is

easily available however, in terms of recyclability

the magnet without coating will be easier for

recycling and hence its index shall be higher.

2) Assembly

– ’S’ depends on the process/activity standardiza-

tion. While scoring it is also important to con-

sider the tools used. More non-standard tools

or process used in assembly shall lower the

score. For example, if special heat treatment/ or

other special environment is needed for assembly,

process will be non-standard and thus the index

shall be lower.

– ’I’ depends on the criticality of the step/process

for recycling of the part. For example, if the

assembly of the copper affects the recycling of

the copper. Therefore, the index shall be high.

3) Disassembly

– ’S’ depends on the process/activity standardiza-

tion. While scoring it is also important to con-

sider the tools used. More non-standard tools

or process used in disassembly shall lower the

index. For example, if some chemical is needed

for extraction of certain component the score

shall be lower for the process.

– ’I’ depends on the criticality of the step/process

for recycling of the part. Same as assembly, if

disassembly process of copper make recycling

easier the index shall be high.

• Cost : The category focuses on the cost of mate-

rial/processes and its impact on recycling. The evaluation

for Cost category is done with the view that higher cost

of any process will increase the overall recycling cost

and hence, has negative impact on the recycling. On the

other hand, higher material cost incentives the recycling

of that particular material like magnets and encourages

recycling.

1) Material

– ’S’ depends on the cost of the material. Higher

the material cost higher the score. The process-

ing cost of the component varies over a wide

range. Therefore, to keep the tool simple and to

avoid processing cost variation of the component

only material cost is considered. Moreover, the

non-standard design or the impact of processing

will be taken care while scoring standard cate-

gory. For example, NdFeB magnet is roughly 10

times costlier than the laminations in the motor.

Therefore, score of magnet will be higher than

the laminations. The impact of different shapes

of magnet should be considered while scoring

standard material category.

– ’I’ depends on the impact of the material on

recycling of the whole motor. For example, if

the weight of the material is very low comparing

to other materials, the material recovered will be

very small. Therefore, the recovery in terms of

economic value will be small, even with high

price of the material.

2) Assembly

– ’S’ depends on cost required to execute the

assembly process/activity. Higher the assembly

cost lower the score shall be as it impacts the re-

cycling process negatively. For example, if there



TABLE I: Scoring of Material for Standard Category

Magnet Type S I Magnet Type
Rectangular small pieces with/ without
coating sintered, Bonded Magnet

5 5
Rectangular small pieces or
powder without coating or binder

Sintered/bonded shape parallel/radially magnetized 4 4 Sintered with coating
Halbach bonded 3 3 Sintered any shape with coating/glue
Sintered or Bonded powder
but magnetised in rotor

2 2 Bonded magnets

Sintered halbach multipole 1 1 Bonded magnets with glue

Lamination Type S I Lamination Type

Silicone iron 0.35-0.6mm, Single solid rotor 5 5
Any silicone iron lamination
or solid rotor or Aluminum

Silicone steel modular type 4 4 Cobalt steel
Cobalt Steel 3 3 Amorphous Steel
Amorphous, different shapes 2 2 Soft Magnet Composites (SMC)
SMC 1 1 Any new special handling material

Winding Type S I Winding Type
Copper / aluminium strand circular 5 5 Copper any type
Copper rectangular standard, aluminium cast rotor 4 4 Aluminium wire/Cast aluminium /Copper rotor
Copper rectangular/cricular non standard 3 2 Any new special handling material
Hollow circular copper wire 2
Any thing special 1

is a need of special environment for assembly, it

increases the complexity and hence cost.

– ’I’ depends on the impact of cost of the process

in recycling. For example, if a motor uses powder

NdFeB magnet technology. The assembly cost is

higher but this cost does not impact the recycling

of the magnet at the end of life (EOL) of the

motor. Therefore, the index shall be neutral.

3) Disassembly

– ’S’ depends on cost required to execute the disas-

sembly process/activity. Higher the disassembly

cost lower the score shall be as it impacts the re-

cycling process negatively. For example, if there

is a need of special environment for disassembly,

it increases the complexity and hence, cost which

in turn discourages recyclability economically.

– ’I’ depends on the impact of cost of the process in

recycling. For example, the cost of disassembly

of the magnet is very critical for the recycling

of the magnet. Therefore, the index shall be high

for that process.

B. Calculation of Recyclability Index

The final weighted recyclability index (R) is calculated

using equation 1 and 2. The Rw is in the scale of 1-5 and

using equation (2) is expressed in percent, R.

Rw =
S1 ∗ I1 + S2 ∗ I2 + · · ·+ Sn ∗ In∑

I
(1)

TABLE II: S of assembly/disassembly for Cost category

Assembly / Disassembly Cost S
Easy assembly/disassembly without any tool 5
Easy assembly/disassembly with standard tools /process 4
Complex / Hard process with standard tools
or more than one person required

3

Special pre/post treatment with special tools 2
New extra method to extract magnet from rotor 1

R =
Rw ∗ 100

5
(2)

C. General Guidelines for scoring

The section provides some general guidelines, which can be

used to score different sections of WIRE sheet. It is important

to note here that the scores are relative and can be varied

on general consensus or when scenario changes. The authors

decided the scores after discussing different scenarios.

1) Scoring of materials for Standard category: Table I

shows the scoring of material and its importance for recy-

clability with respect to their standardization. The table shows

the scores for main components of the motor like lamination,

magnet and copper. The materials are scored based on the

definition given in section II-A.

2) Assembly/Disassembly score for Cost: Table II gives the

scoring guideline for assembly/disassembly in terms of cost.

Simpler the process higher the score shall be.

3) Assembly/Disassembly of stator and rotor: The scoring

guideline for individual components (stator, rotor, bearing etc)



(a) Outer Rotor Motor (1) (b) 3D Flux Hybrid Motor (2)

(c) Claw Pole Motor (3) (d) Radial IPM Motor (4)

Fig. 2: Flux density distribution in different motors

is shown in Table II. However, there is one more critical step

in assembly/disassembly, which is separation of a rotor from

a stator. The complexity of the process is even higher in PM

motors. The ease of assembly / disassembly mainly depends

on the force of extraction and its size. Therefore, to scale

the process following method is used. Larger the volume and

airgap flux density i.e. power of the motor, separation of rotor

and stator will be difficult and hence, the score shall be lower.

Mathematically it can be presented by equation 3. Figure 2

shows the flux density distribution in motor for 4 different

topologies designed in framework of DEMETER project.

Motor 3 has lowest flux density and hence, disassembly will

be much easier compared to other motors.

S ∝ 1

V ∗B2
δ

(3)

where, V is volume of the motor and Bδ is the airgap flux

density.

4) Scoring ’I’ of material for Cost category: The scoring

of ’I’ depends on the weight of the material in the motor.

Higher the weight of the material higher will be the recovery

of material from recycling. The proposed method to estimate

that is as follows. Lets assume, the motor has Wc kg of Copper,

Ws kg of Stator steel, Wr kg of rotor steel and Wm weight

of Magnet and the weight (Ws) of stator steel is maximum.

The I score for stator steel Ws is 5 and the rest is scaled in

proportion to the Ws. The fraction numbers are rounded to

nearest integer.

I for magnet is Wm∗5
Ws

I for copper is Wc∗5
Ws

TABLE III: Score of material cost in motor

Material Cost S
Sintered Magnet 5
Bonded Magnet 4
SMC,Amorphous steel 3
Copper 2
Silicone Steel lamination 1

TABLE IV: Importance of Assembly/Disassembly process

Process Standard
Importance

Cost
Importance

Assembly of stator lamination 3 3
Assembly of copper winding 3 3
Assembly of rotor lamination 3 3
Assembly of magnet and rotor 5 3
Assembly of sensor wires 1 3
Assembly of rotor and stator 3 3
Assembly of end shields 3 3
Assembly of shaft 3 3
Disassembly of end shields 3 3
Separation of rotor and stator 4 4
Disassembly of copper 3 4
Disassembly of stator 3 3
Disassembly of magnets from rotor 5 5
Disassembly of rotor 3 3

Table III shows the relative score of material used in the

motors.

5) ’I’ of assembly/disassembly for Standard & Cost cate-
gory: The criticality of each step during assembly and disas-

sembly is shown in table IV. While indexing, the recycling of

steel, copper and magnet was considered important and hence,

the process affecting their recycling was index accordingly.

If some step of assembly is very important for recycling of

that material then it shall have high indexed. For example,

assembly of magnet and rotor is very significant for extraction

of magnet and hence, has high index.

III. WIRE EVALUATION FOR HUB MOTOR

The developed methodology was used for evaluating com-

mercial permanent magnet based HUB motor. The motor was

disassembled manually with standard tools and the process

was observed keeping in mind the recycling of the parts.

Figure 3 shows the different stages while disassembly of

the motor. After complete disassembly of the motor the

WIRE sheet, was filled by the authors. For simplicity many

assembly/disassembly steps are clubbed together and score and

importance were given. The scores of standard and cost of the

WIRE evaluation is shown in figure 4. The final cost index is

lower than the final standard index. The motor is a commercial

motor and has used more standard parts and processes. The

index for cost of the material is lower compared to assembly

and disassembly. It is important to note here that the index is

relative and in absolute terms cost of material can be higher

than the assembly and disassembly of the motor. As mentioned

earlier the method is developed to compare different motors

recyclability. The final recycling index (R) of the motor is



(a) Motor (b) Motor without End-shields

(c) Stator (d) Rotor

Fig. 3: HUB Motor Diassembly

68.5%. The low index was expected as motor is not designed

for recycling.

IV. COMPARISON OF RECYCLABILITY INDEX OF FOUR

MOTORS

Figure 4 shows the four different motors designed for

(H)EVs with ease of recycling in the framework of DEMETER

project. Motor 1 is an outer rotor topology motor with an ideal

Halbach magnet manufactured using bonded magnet. Motor

2 is a 3D flux hybrid motor using modular amorphous steel

stator core and the rotor has sintered magnet placed between

rotor laminations. Motor 3 is a permanent magnet based claw

pole motor topology designed for easy extraction of magnet

for mild hybrid vehicle. Motor 4 is an interior PM(IPM) motor

using thermoplastic type bonded magnets and can be magne-

tized inside a rotor core. The motors were evaluated using

WIRE method to compare the recyclability index. Figure 6

presents the index of all 4 motors in standard and cost category

for assembly, disassembly and material. It can be seen that

motor 3 has highest score in assembly subcategory because

the process for the claw pole is highly industrialized and the

design change made for easy recycling is minor. On the other

side motor 2 has lowest score because the 3D flux machine has

U core laminations for stator which requires special process

to assembly. Moreover, due to the magnets position and glue

that used for magnet fixing, the rotor assembly is also more

complicated than the rest. The disassembly of motor 1 has

maximum score because of simple rotor structure and no glue

is used for magnet assembly, whereas motor 2 has the lowest

because to extract magnet special processing is required. The

material used in all 4 motors are standard and hence, have

similar scores. The material cost of motor 2 has the highest

Standard

0 %

25 %

50 %

75 %

100 %

Category

73 %74 %

65 %

79 %

Materials Assembly
Disassembly Final Standard

(a) Standard Distribution

Cost

0 %
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50 %

75 %
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Fig. 4: Distribution of Recycling index of the sample motor

score shows that the recovery of high valued material from

motor 2 is maximum compared to others. For assembly and

disassembly in terms of cost the trend is same for all the

motors. Motor 1 has the highest score because of simple

structure. Thus, the disassembly process does not need any

special treatment of magnets before extraction. Whereas, some

pretreatments are required for other motors to extract magnet,

which contributes to lower indexes. The final recyclability

index of four motors are 71%, 63%, 71% and 64% respectively

V. CONCLUSION AND DISCUSSION

The WIRE method is developed for indexing the

recyclability (R) and energy impact of the motors. In this

article recyclability part of the method is presented. The

method is simple to use and can be modified as per the

requirement. The methodology takes standardization and cost

into consideration for determining the recyclability of the

motor. The recycling of any motor depends on the materials

used, assembly and disassembly. The evaluation is relative in

nature and hence, will be effective in comparison of motors

done keeping the scaling same. To make method evaluation

objective, different scoring guidelines is also presented and

can be modified if the evaluating team finds suitable. The

motor designed for recycling should have higher standard

components with easy assembly and disassembly process.



(a) Outer Rotor Motor (1) (b) 3D Flux Hybrid Motor (2)

(c) Claw Pole Motor (3) (d) Radial IPM Motor (4)

Fig. 5: Four Different Motors Designed in DEMETER project

The evaluation was done for a commercial hub motor and the

scores are presented. Many processes in assembly/disassembly

were clubbed together to keep the evaluation simple due

to lack of certain information. The recycling index for the

motor is 68.5%, which is low as motor is not designed for

the recycling and the index can be improved by modifying

small design changes.

The final recyclability index of four motors are 71%, 63%,

71% and 64% respectively. The scores obtained reflect that the

method is able to distinguish the features of motor for easy

recyclability. The WIRE score comparison of the 4 motors

show that the recyclability increases with the high utilization

of standard materials. It further improves if machine design is

such that it can be assembled and disassembled using conven-

tional process and tools. The use of glue for magnet assembly

makes recovery of magnet from motor difficult and lowers

the recyclability index. Furthermore, use of complicated motor

structure also lowers the recyclability index. However, one

has to keep in mind the method by its nature scores lower

for new / innovative designs / method as can be seen in the

case of motor 2. Therefore, the designers must strive to use

conventional/ standard method of assembly and disassembly

with magnet assembly without any glue to make motor easier

for recycling.
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ΦAbstract – Nowadays, in automotive applications, the 
electric vehicle (EV) motors generally utilize permanent magnet 
(PM) motors due to their various advantages like high torque 
density, high efficiency, compactness and ease of control. In this 
paper emphasis is given to the evaluation of energy cost index 
for an EV motor over a particular drive cycle during motors 
operational lifetime. Performance evaluation over the entire 
drive cycle, instead of at rated conditions, provides a better idea 
of the efficiency and energy consumption of an electric motor. 
Therefore, energy cost evaluation for the urban part of New 
European Driving Cycle (NEDC) i.e. ECE-15 is selected in this 
study and the energy cost index is evaluated for an EV motor 
for virgin and recycled magnets utilized in the machine. The 
comparison shows that utilizing recycled magnets can provide 
economical advantage over using virgin magnets albeit under 
certain assumptions. 
 

Index Terms—automotive, cost, driving cycle, electric 
motors, electric vehicles, energy, finite element analysis, 
permanent magnets, recycle, reuse. 

I.   INTRODUCTION 
HE electric and hybrid electric vehicles (HEV) are the 
new key developments in the automotive industry with 

the implementation of new regulations and norms in various 
countries around the world. Generally, the EV machines used 
in automotive applications are PM machines due to various 
advantages like high torque density, high efficiency, 
compactness and ease of control [1]. The PMs deployed in 

                                                           
The research leading to these results has received funding from 

European Community’s Horizon 2020 Programme ([H2020/2014-2019)] 
under Grant Agreement no. 674973 (MSCA-ETN DEMETER). This 
publication reflects only the author’s view, exempting the Community from 
any liability. Project website: http://etn-demeter.eu/. 
First four authors contributed equally to this work.  

P. Upadhayay is with Valeo - Equipements Electriques Moteur, 2 rue 
André Boulle, 94000 Créteil, France & also with Univ. Grenoble Alpes, 
CNRS, Grenoble INP, G2Elab, 38000 Grenoble, France (e-mail: 
pranshulink@gmail.com). 

A. G. Gonzalez is with the Department of Energy Technology, Aalborg 
University, Aalborg 9220, Denmark (e-mail: agg@et.aau.dk). 

Ziwei Li is with Valeo - Equipements Electriques Moteur, 2 rue André 
Boulle, 94000 Créteil, France & also with Univ. Grenoble Alpes, CNRS, 
Grenoble INP, G2Elab, 38000 Grenoble, France (e-mail: 
ziwei.li@valeo.com). 

A. K. Jha is with Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 
38000 Grenoble, France (e-mail: amit-kumar.jha@grenoble-inp.fr). 

P. O. Rasmussen is with the Department of Energy Technology, Aalborg 
University, Aalborg 9220, Denmark (e-mail: por@et.aau.dk). 

A. Kedous-Lebouc is with Univ. Grenoble Alpes, CNRS, Grenoble INP, 
G2Elab, 38000 Grenoble, France (e-mail: afef.lebouc@grenoble-inp.fr). 

J. C. Mipo is with Valeo - Equipements Electriques Moteur, 2 rue André 
Boulle, 94000 Créteil, France (e-mail: jean-claude.mipo@valeo.com). 

these EV motors are commonly rare earth (RE) magnets i.e. 
Neodymium Iron Boron (NdFeB) magnets.  However, due to 
price fluctuations and supply-demand issues of RE materials 
utilized in NdFeB magnets, lot of research is being 
undertaken to reduce or utilize RE free magnets in PM 
machines. In recent years, numerous studies are being carried 
out in recycling of critical materials, and NdFeB magnets 
contain a few of these critical materials i.e. Neodymium (Nd) 
and Dysprosium (Dy) [2]. Due to the use of NdFeB magnets 
in PM machines, reuse and recycle of PMs in electric motors 
is being re-analyzed in some of the applications around the 
world [3]-[4]. Nevertheless, there are challenges in 
developing methodologies for reuse or recycle of magnets in 
electric motors due to varying motor topologies, techn-
ologies, material characteristics, proper disposal at end-of-
life (EoL) and economic/environmental implications. 

In this regard a methodology is being developed to 
analyze the recyclability of PM motors with two main 
aspects. First, recyclability of the motor considering 
standardization, assembly and disassembly of the motor and 
second, considering energy consumption by the electric 
motor during its complete lifetime with variation in 
permanent magnet compositions [5]-[6]. In this paper a 
commercial PM based HUB motor is used to evaluate the 
second part of the above methodology development. In 
Section II benchmarking of sample HUB motor is done by 
disassembly, experimentation and finite element (FE) 
analysis. Then in Section III efficiency map and energy 
consumption of sample HUB motor with virgin magnets for 
the urban part of NEDC drive cycle i.e. ECE-15 drive cycle 
[7] is evaluated. Similarly, machine performance and energy 
consumption with recycled magnets for the same ECE-15 
drive cycle is evaluated in Section IV. Finally in Section V, 
comparison in energy consumption between virgin magnets 
and recycled magnets for sample HUB motor is done to 
obtain the energy cost index. Finally, conclusion is presented 
in the last section. 

II.   BENCHMARKING OF SAMPLE ELECTRIC VEHICLE MOTOR 
The sample EV motor is a commercial PM based HUB 

motor with outer rotor topology. The sample motor is 
utilized in high speed electric two wheeler or small compact 
low speed city cars. Fig. 1 shows the sample HUB motor. 
The DC bus voltage for the sample motor is 72 V, maximum 
speed of 700 rpm and output power upto 3.5 kW. The motor 
controller is a standard three-phase power electronic inverter 
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with hall sensor inputs used for position sensing. 

 
Fig. 1. A commercial PM based HUB motor 

A.   Experimental measurements 
The motor was assembled on a test bench with high 

precision torque transducer connected to the shaft. The input 
power measurements were recorded using an industrial grade 
power analyzer so as to limit the uncertainties in 
measurement. Fig. 2 shows the experimental test setup 
utilized for the measurements and performance evaluation. 

 
Fig. 2. Experimental test setup for performance evaluation 

Two machines were assembled back to back and a 
resistive load was connected to the machine which would 
operate as a generator and load the test machine. Different 
resistance values were used with a set of speed variations to 
get the torque, speed, voltage, output power and input power 
of the test machine. Fig. 3 depicts the experimental torque vs. 
speed with the corresponding efficiency values. 

 
Fig. 3. Experimental torque vs. speed with corresponding efficiency values 
by virgin magnets 

B.   Disassembly and dimensions 
The major dimensions, weight and materials were 

identified by disassembling the machine in step by step 
process. Fig. 4 shows the disassembled machine and the 
magnets. Table I depicts the main machine dimensions which 
would be utilized later on for 2-dimensional (2D) FE analysis 
so as to obtain simulated performance of the machine. 

  
Fig. 4. Disassembled machine and permanent magnets 

TABLE I 
MAIN DIMENSIONS OF THE MACHINE 

Parameters Value 
Stack length [mm] 40 
Maximum speed [rpm] 700 
Air-gap length [mm] 0.6 
Magnet axial length [mm] 40 
Magnet thickness [mm] 3 
Magnet width [mm] 14 
Stator outer diameter [mm] 253 
Number of poles 56 
Number of slots 63 

The PMs were shaped in appropriate sizes so as to be 
analyzed for their magnetic properties. They were put to test 
in Magnetic Property Measurement System (MPMS®) from 
Quantum Design. It was observed that the magnetization (M) 
at 0 Oe applied field (H) of the magnet is around 130 emu/g 
which corresponds to around 1.2 T as remanence flux density 
(Br) at temperature of 300 K i.e. approximately 27 °C. 

C.   Finite element analysis & comparison with test results 
The machine was modeled in commercially available FE 

analysis software by using the dimensional details obtained 
earlier in Section II (B). The magnet properties were utilized 
from the MPMS measurements with 1.2 T as the Br value. 
The stator lamination was a standard silicon iron soft 
magnetic material with loss of around 5 W/kg at 1.5 T, 50 
Hz. Time-stepping 2D motion analysis was carried out to get 
the various performance parameters like back electromotive 
force (EMF), cogging torque, electromagnetic torque, iron 
losses, copper losses and winding voltages. Fig. 5 shows the 
2D model along with the flux density plot at no-load by FE 
analysis. 

The experimental winding current values were fed as an 
input in the FE analysis at various speed points to get the 
developed torque and losses of the machine. Finally the input 
power, output power, voltage and efficiency were evaluated 
by simulation results. In Fig. 6 it can be noticed that the 
comparison of simulated and experimental results for torque 
vs. speed with corresponding efficiency values of the 
machine. 



 

It can be observed that the simulated and experimental 
results match fairly well and there is a maximum percentage 
error of 9% in torque and 5% in efficiency values. 

 
Fig. 5. Flux density plot of the sample HUB motor with virgin magnets 

 
Fig. 6. Comparison of experimental & simulated torque vs. speed with 
corresponding efficiency values by virgin magnets 

III.   EFFICIENCY MAP AND ENERGY EVALUATION OF THE 
SAMPLE HUB MOTOR WITH VIRGIN MAGNETS 

Energy consumption for a reference drive cycle requires 
performance parameters of the machine for the complete 
torque vs. speed envelope. As a result, efficiency map of the 
motor needs to be evaluated so as to acquire the precise 
torque and efficiency points for the corresponding speed 
values in the reference drive cycle.  

A.   Methodology for energy consumption evaluation 
A methodology has been developed to evaluate the energy 

consumed by the machine for a particular drive cycle. 
Various literatures depict the importance of evaluating the 
energy consumption of a machine for different drive cycles 
with diverse vehicle dynamics [8]-[17]. Fig. 7 shows the 
flow diagram of the developed methodology. In this, the 
machine performance is evaluated using FE analysis and 
utilizing the flux map of the machine, efficiency map is 
generated. Along with this, vehicle parameters like wheel 
radius, vehicle weight, rolling resistance, air density, drag 
coefficient and frontal area are used as input for deriving 
torque vs. time curve from speed vs. time of drive cycle. 

Now, these are used as input to the efficiency map and 
energy consumption for one cycle of the drive cycle is 
evaluated. Finally, total energy consumed in the lifetime of 
the machine is estimated by assuming that the motor operates 
for 2 hours daily for 10 years. 

 
Fig. 7. Flow diagram for energy evaluation methodology 

In this study it is assumed that the vehicle is a compact 
city car with the vehicle parameters as listed in Table II. 

TABLE II 
VEHICLE PARAMETERS 

Parameters  Value 
Vehicle weight [kg] 920 
Density of air [kg/m3] 1.225 
Frontal area [m2]  1.85 
Drag coefficient 0.4 
Coefficient of rolling resistance 0.01 
Tyre radius [mm] 0.21 

B.   Efficiency map and energy consumption 
The efficiency mapping of the machine is evaluated by 

utilizing the flux map with different values of direct axis 
current (Id) and quadrature axis current (Iq). Similarly, iron 
loss mapping is also required for various values of machine 
flux induction and current levels. Therefore, by utilizing 
optimization algorithm, the efficiency mapping is obtained 
for the sample motor. Fig. 8 illustrates the efficiency map of 
the sample motor with virgin magnets. 

 
Fig. 8. Efficiency map of the sample HUB motor with virgin magnets 

The drive cycle selected for this study is the urban part of 
the NEDC cycle i.e. ECE-15 [7]. Fig. 9 shows the speed vs. 
time profile of the ECE-15 drive cycle. 

The instantaneous wheel torque can be derived by using 



 

the following equation [8]-[17]: 

              (1) 

where, Tw is wheel torque, m is mass of vehicle, a is 
acceleration, g is gravity, Cr is coefficient of rolling 
resistance, a is density of air, Cd is coefficient of drag, Af is 
vehicle frontal area, v is velocity of vehicle and rw is radius 
of the wheel. Hence, using Eq. (1), vehicle parameters as in 
Table II and ECE-15 drive cycle, the wheel torque vs. time 
profile can be obtained. Fig. 10 shows the wheel torque vs. 
time profile for the selected vehicle and ECE-15 drive cycle. 

 
Fig. 9. Speed vs. time profile of the ECE-15 drive cycle 

 
Fig. 10. Wheel torque vs. time profile for the specified vehicle and ECE-15 

It can be observed that maximum torque required at 
wheel is around 220 Nm. The maximum motor torque which 
can be delivered is around 65 Nm. Hence, it is assumed that 
four motors would be used in the vehicle with direct drive 
configuration to achieve required wheel torque. 

As per the flow diagram in Fig. 7, this torque vs. speed 
profile and efficiency map are employed together to get the 
energy consumed by one motor during the lifetime of 10 
years with 2 hours of daily operation. The energy 
consumption can be calculated as: 

                               (2) 

where, Ec is total energy consumed, E(t) is energy input as 
function of time and t is time. The regenerative braking and 

negative torque values are assumed to be zero in the energy 
calculations. As a result, for the sample HUB motor with 
virgin magnets, the total energy consumed for the complete 
lifetime is 3071 kWh from Eq. (2). The harmonized 
electricity price for Europe region is considered as 0.22 
€/kWh [18]. Therefore, the energy cost for one motor with 
virgin magnets is € 676 for the entire assumed lifetime. The 
weight of total magnet in the motor is 0.7 kg, and NdFeB 
material price considered is 45 €/kg [19], consequently the 
total magnet price is € 31.5 in one motor. 

The study has utilized ECE-15 drive cycle, but the 
methodology can be used to evaluate any drive cycle like 
NEDC, Urban Dynamometer Driving Schedule (UDDS), 
Worldwide Harmonized Light Vehicles Test Procedure 
(WLTP), etc. and this is considered as future work. 

IV.   MACHINE PERFORMANCE WITH RECYCLED MAGNETS 
It has been observed for past many years that the rare 

earth material price fluctuates a lot due to regulatory factors, 
supply-demand issues, political and economical factors. It is 
for this reason recycling and reuse of rare earth materials 
from electronic components, computer hard drives and 
automotive components, have garnered a lot of interest [2]. 
Research is been carried out in recycling the PM scrap from 
various sources and fabricate recycled magnets by hydrogen 
decrepitation (HD) and hydrogenation, disproportionation, 
desorption, recombination (HDDR) [20]-[22]. 

In this study the magnetic property of the recycled 
magnet considered is around 0.96 T as Br. This is as per 
reference [20], where the new magnet material has 1.36 T as 
Br and the recycled magnet has 1.08 T as Br, hence 20% 
reduction in the Br. In this study the virgin magnet has 1.2 T 
as Br, and taking 20% reduction for recycled magnet, the Br 
evaluated is 0.96 T. 

A.   Performance characteristics 
For the evaluation of machine performance with recycled 

magnets in the sample motor, the methodology utilized is 
similar to performance calculated with virgin magnets as in 
Section II (C). The sample motor’s dimensional parameters 
are kept same as that with virgin magnets; only the magnet 
properties are altered with recycled magnet properties i.e. 
having 0.96 T as Br and increased length of the motor to 
achieve same torque as obtained with virgin magnets. The 
length of stator, rotor and magnets is increased from 40mm 
to 46mm. Henceforth, 2D time-stepping FE analysis is 
carried out to get the performance characteristics like back 
EMF, cogging torque, electromagnetic torque, iron losses, 
copper losses and winding voltages. Performance has been 
evaluated with similar current values as used in test and 
simulations during the study with virgin magnets in Section 
II (C). Fig. 11 shows the simulated torque vs. speed with 
corresponding efficiency values by virgin and recycled 
magnets. It can be observed that torque values match fairly 
well for virgin and recycled magnets. But the efficiency at 
certain points has increased with recycled magnets due to 
cumulative decrease of total losses, as iron losses has 
reduced but copper losses has increased. 



 

 
Fig. 11. Simulated torque vs. speed with corresponding efficiency values by 
virgin and recycled magnets 

B.   Efficiency map and energy consumption 
The efficiency map and energy consumption of the 

sample motor with recycled magnets is evaluated similarly as 
done while using virgin magnets in Section III (B). By 
utilizing the flux map with different values of Id and Iq and 
iron loss map for various values of machine flux induction 
and current levels, the efficiency map is generated for the 
motor with recycled magnets. Fig. 12 illustrates the 
efficiency map of the sample motor with recycled magnets. 

 
Fig. 12. Efficiency map of the sample HUB motor with recycled magnets 

Hereafter employing the flow diagram in Fig. 7, torque 
vs. speed profile and efficiency map together can provide 
energy consumed by one motor during the lifetime of 10 
years with 2 hours of daily operation with recycled magnets. 
Consequently, for sample motor with recycled magnets, total 
energy consumed for complete lifetime is calculated as 2995 
kWh from Eq. (2). Similarly, assuming the harmonized 
electricity price for Europe region as 0.22 €/kWh [18], the 
energy cost for one motor with recycled magnets is € 659 for 
the assumed lifetime. 

It is difficult to comment on the price of recycled 
magnets as it is subject to ongoing research studies. But as it 
is assumed to be prepared from scrap PMs the price is 
assumed to be lower compared to virgin PMs. Due to 
increased length the PM weight increases from 0.7 kg to 0.81 
kg with recycled magnets. Therefore, assuming the price of 
recycled magnet material as half of virgin magnets i.e. 22.5 

€/kg with certain estimates, the total PM price calculated 
would be € 18.23 since motor contains 0.81 kg of magnets. 

V.   ENERGY COST INDEX AND COMPARISON BETWEEN 
VIRGIN AND RECYCLED MAGNETS 

Energy cost evaluation considering the machine 
performance on a particular drive cycle or duty cycle gives 
more insights than evaluating machine performance at rated 
loads. Since machine performance could be optimized for 
rated conditions but their operation may not be subjected to 
rated conditions during a specific duty cycle. Therefore, 
comparing machine performance at a particular drive cycle 
with different magnet scenarios would provide information 
about the importance of energy and magnet cost. 

For this purpose, an index has been proposed to compare 
the energy cost in relation to magnet cost. The temperature 
for both the machines has been assumed the same. For 
instance, in this study energy consumption cost with virgin 
magnets is € 676 and magnet cost is € 31.5 for the sample 
motor. Considering this as the base scenario and naming it as 
Scenario 1 and/or Scenario base. The energy cost computed 
with recycled magnets is € 659 and magnet cost is € 18.23 
for the sample motor; and naming it as Scenario 2. The 
energy cost index is defined as follows: 

                      (3) 

where, ECi is the energy cost index, Ec(j) is energy cost for 
Scenario j, Magc(j) is magnet cost for Scenario j, Ec(b) is 
energy cost for Scenario base and Magc(b) is magnet cost for  
Scenario base. As a result, energy cost index for Scenario 2 
as per Eq. (3) is evaluated as 0.564. From Fig. 13 it can been 
observed that the design with recycled magnets has low 
efficiency in low speed high torque region and high 
efficiency in high speed low torque region as compared to 
efficiencies with virgin magnets. However, the drive cycle 
has most of the points in high speed low torque region; hence 
energy consumption is low with recycled magnets for this 
drive cycle. Hence, it can be deduced that energy consum-
ption depends on both drive cycle and machine design. 

 
Fig. 13. Efficiency vs. time profile for virgin and recycled magnets 

For analysis purpose, few more scenarios are assumed, 
for example, Scenario 3 where energy cost is € 676 (energy 
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cost for virgin magnets) and magnet cost is € 18.23 (magnet 
cost for recycled magnets) and Scenario 4 where energy cost 
is € 659 (energy cost for recycled magnets) and magnet cost 
is € 31.50 (magnet cost for virgin magnets). Table III 
represents the comparison of energy cost index for different 
scenarios, computed using Eq. (3). 

TABLE III 
COMPARISON OF ENERGY COST INDEX FOR DIFFERENT SCENARIOS 

  Energy 
cost (€) 

PM material 
price (€/kg) 

Magnet 
cost (€) 

Energy 
cost index

Scenario 1 676 45.0 31.50 1.000 
Scenario 2 659 22.5 18.23 0.564 
Scenario 3 676 22.5 18.23 0.579 
Scenario 4 659 45.0 31.50 0.975 
Scenario 5 700 37.6 30.46 1.000 

Hence, it can be observed that the energy cost index for 
Scenario 3 is 0.579 and Scenario 4 is 0.975. This indicates 
that lower the energy cost index, better is the machine in 
economic aspects and is advantageous as compared to base 
scenario. Considering one more hypothetical scenario 
(Scenario 5), where the recycled magnet cost is approxi-
mately equal to virgin magnets i.e. € 30.46 and energy cost is 
€ 700; the energy cost index computed is 1.000, as shown in 
Table III. This is equal to energy cost index of base scenario, 
indicating that even if the price of recycled magnet are 
similar to virgin magnet and have higher energy 
consumption, the economic impact is same. Other than the 
above cited advantages, with recycled magnets one can 
observe one more advantage which is that, they have low 
environmental impact as compared to virgin magnets. The 
mining of rare earth materials have negative repercussions in 
terms of environmental and human conditions. The 
preparation of recycled magnets has lower implications on 
human labour aspects as no mining is required. Additionally 
they have environmental benefits like reduction in air and 
water pollution. It can be argued that even for the preparation 
of recycled magnets a number of environmental hazards are 
possible like storage of hydrogen gas and its use in HD and 
HDDR process, and use of certain chemicals for separation 
of materials. But if both the circumstances are weighed 
together, the authors assume that mining would have higher 
negative impact than producing recycled magnets from scrap 
[23]. The authors recommend future studies and research into 
economic-environmental comparison between virgin and 
recycled magnet production and usage phase. 

A general representation of the index is tabulated in 
Table IV, where energy cost index varies with the cost of 
virgin and recycled magnets. In this the Ec virgin magnet is € 
676, Ec recycled magnet is € 659 and weight of virgin 
magnet is 0.7 kg and weight of recycled magnet is 0.81 kg. 
Hence, it can be observed that as the PM material price 
varies for virgin and recycled magnets the index varies 
accordingly. The greener the index it is better economically 
when compared to red coloured cells in Table IV. Similar, 
hypothesis can be generated with variable energy costs for 
different grades of magnets and the index would indicate the 
cases which are economically more advantageous. 

TABLE IV 
ENERGY COST INDEX WITH VARYING MAGNET COSTS 

VIRGIN MAGNETS 

PM. mat. 
price(€/kg) 20 35 50 65 80 95 

PM. 
cost (€) 14.0 24.5 35.0 45.5 56.0 66.5 

R
E

C
Y

C
L

E
D

 M
A

G
N

E
T

S 5 4.05 0.282 0.161 0.113 0.087 0.071 0.059

20 16.20 1.128 0.645 0.451 0.347 0.282 0.237

35 28.35 1.974 1.128 0.790 0.607 0.494 0.416

50 40.50 2.820 1.611 1.128 0.868 0.705 0.594

65 52.65 3.666 2.095 1.466 1.128 0.917 0.772

80 64.80 4.512 2.578 1.805 1.388 1.128 0.950

95 76.95 5.358 3.062 2.143 1.649 1.340 1.128

VI.   CONCLUSION 
In this paper, the energy cost index evaluation 

methodology over ECE-15 drive cycle for an EV motor with 
PMs has been presented. The methodology is utilized to 
present different scenarios where virgin magnets and 
recycled magnets were employed and energy cost index was 
computed. It has been observed that the recycled magnets 
can provide better economical advantage than virgin magnets 
as it is assumed that the cost of recycled magnets would be 
lower than virgin magnets in this case study. Lower the 
energy cost index, the machine is better in terms of economic 
evaluation as compared to base scenario. The recycled 
magnets also provide benefits in terms of environmental 
aspects as they would be less polluting in their production 
than new magnet materials mined from various sources 
around the world. The methodology for energy cost index 
evaluation is a comparative tool and can be adjusted as per 
the individuals’ needs and calculations. The scenarios can 
vary from motor design and different drive cycles, which can 
provide varied results and conclusions. Thus, generating an 
index for comparison provides reasonably good inspiration 
on using recycled magnets in electrical machines. 
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Abstract—This paper deals with the design and investigation
of a surface mounted machine concept targeted at the efficient
recycling of rare-earth materials used in permanent magnets.
The proposed machine has an outer rotor, single phase and a
modular stator. In addition, the use of laminated iron based
amorphous material is investigated. The implementation of this
type of material in electrical machines is of interest due to
their performance in terms of reduced losses when compared
with standard electrical steel. However, the widespread use of
amorphous materials is limited mainly due to their hardness and
brittleness that make their processing (i.e. cutting and punching)
a challenging task. Hence, an alternative for the use of such
material is proposed in this paper, with the combination of
both laminated C-shaped amorphous cores and a modular stator.
3D-FEM calculations of various parameters such as back-EMF,
torque, inductance and losses, were validated with measurements
performed on a demonstrator.

Index Terms—amorphous materials, magnet losses, 3D-FEM,
3D-flux, modular stator, recyclability

I. INTRODUCTION

The criticality of Rare Earth Elements (REEs) has increased

awareness of the recycling of Permanent Magnet (PM) mate-

rial in electrical machines [1]. Although there are methods

available for recycling REEs, some of them are either high

energy consuming or have a large environmental impact or

may not be used at a large scale [2]. Therefore, developing

new machine topologies with special focus on recycling of PM

material have obtained special interest. The machine proposed

in this work is an attempt to evaluate an alternative topology

with non-traditional materials. The use of amorphous materials

in electrical machines, have been studied on various types of

machines [3] [4] [5] [6]. Furthermore, the use of laminated

C-shaped amorphous cores has been investigated with both

FEM simulations performed on a linear machine [7] and

the experimental investigation of a claw pole transverse flux

machine [4]. Regarding designs focused on recyclability of

electrical machines, few work has been found [8]. Hence, the

main goal of this paper is to propose an electrical machine

design, aiming to the recyclability of the PMs, concurrently

implementing amorphous material. In Section II both the

definition of the concept and the description of the working

principle are carried out. In Section III the assembly and

the model built in 3D-FEM are explained. In Section IV the

results of both calculations and measurements are presented

and discussed. In Section V conclusions are drawn and future

work is proposed.

II. DESCRIPTION OF THE PROPOSED MACHINE

A. Definition of the Concept

Ideally, having a machine with a large number of poles

is of interest since it allows to improve the torque capabil-

ity. However, an increased number of poles results in the

increment of the iron losses in the stator, since these are

proportional to the square of the frequency. Although the

use of amorphous materials might be beneficial due to their

intrinsic low value of specific losses, their magnetic properties

might be degraded during their handling, cutting and punching.

Hence, the use of laminated C-shaped amorphous cores [9]

[10] is proposed as an alternative in order to restrict such

degradation. As mentioned above, the use of this type of cores

have been studied previously with both FEM simulations [7]

and experimental results [4]. However, the machine proposed

in this paper is based on the axial flux machine in Fig. 1

[11] [12] [13]. After few modifications applied to the stator

core and the rotor in Fig. 2a, the geometry shown in Fig. 2b

is obtained. That is, the axial air-gap has been modified in

such fashion, that the result is a radial air-gap. Additionally,

the stator core has been transformed to a C-shaped magnetic

path, allowing the use of C-shaped cores and consequently,

the use of laminated amorphous materials, as illustrated in

Fig. 3. In order to simplify the manufacturing process, the

remaining pieces (i.e. shaft, rotor back and end plates) of

a HUB type, radial flux machine were re-used and a stator

frame was built in order to house two laminated C-shaped

cores of amorphous material. Fig. 4 shows the parts used for

assembling the demonstrator.

B. Description of the Working Principle

The working principle is described in Fig. 5. When the

permanent magnets on the rotor are aligned with the stator

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.



Fig. 1: Double sided internal salient
pole stator and external twin rotor
AFM.

(a)

(b)

Fig. 2: Definition of the geometry of
the machine proposed.

Fig. 3: C-shaped iron based lami-
nated amorphous material 2605SA1
[9].

Fig. 4: Assembly of the demonstra-
tor.

module as in Fig. 5a, the PM flux Ψm is maximum. If

it is assumed that the rotor is travelling to the right for

half a period, the position illustrated in Fig. 5b is reached.

Hence, Ψm is equal to zero. Finally, when the rotor travels

an additional half a period as in Fig. 5c, the PMs in the

rotor are aligned with the stator modules but with opposite

polarity. Therefore, a minimum is reached. The variation of

Ψm with the displacement of the rotor is of sinusoidal nature

as it is shown in Fig. 5d. Thus, the proposed machine may

be driven simply as other PM machines with sinusoidal flux

linkage/back-EMF.

III. ASSEMBLY AND FEM MODELLING

A. Main Dimensions

Once the dimensions of the active part of the machine were

fixed, the construction of a 3D-FEM model was carried out.

The main dimensions of the demonstrator are summarized in

Table I. New magnets and iron based amorphous cores were

obtained for building the new active part of the demonstrator.

In addition, it was necessary to build a supporting frame for

the stator modules and the windings. Fig. 6 shows the 3D-

FEM modelled geometry where each one of the modules is

included along with the PMs, in dark blue, mounted on the

rotor cylinder. Additionally, Fig. 7 shows the definition of the

main dimensions of the demonstrator. A detailed picture of the

(a) (b)

(c)

(d)

Fig. 5: Working principle.

Fig. 6: 3D-FEM model geometry.

rro

rri

rso

Fig. 7: Main dimensions of the
demonstrator, xy-plane.

stator structure (i.e. coil, stator C-shaped core and supporting

frame) is shown in Fig. 8. The test set-up is described in Fig.

9, and the machine was driven as a generator.

IV. ANALYSIS OF RESULTS

A. Back-EMF

Fig. 10 shows the waveform of back-EMF measured and

calculated at 100 rpm. Although the calculated back-EMF

has a similar waveform when compared with measurements,

Fig. 8: Assembly of the coil and stator module to the supporting frame.



Fig. 9: Test bench used for experiment.

a deviation of approximately 11.8% was obtained. There are

several factors that introduce uncertainties in the calculation

of this parameter.

• The PMs were modelled in 3D-FEM with the curvature

of the inner radius of the rotor rri. However, these are

of rectangular shape.

• There might be deviations in the length of the air-gap

during the assembly process.

Additional measurements of back-EMF at speeds of 200,

300, 400 and 500 rpm are reported in Fig. 11. The deviation

between measured and calculated values remained at a value

of approximately 12%.

TABLE I: Main dimensions of the demonstrator.

Dimension Value
Rotor outer radius rro [mm] 139
Rotor inner radius rri [mm] 128
Stator outer radius rso [mm] 127.5
Stack Length [mm] 52
Air-gap length [mm] 0.5
PM thickness [mm] 3
PM width [mm] 15
PM length [mm] 15
PM remanence Br [T] 1.37
Number of turns per coil 150
Pole pairs 20

0 1 2 3

·10−2

−2

−4

−6

2

4

6

8

0

time [s]

B
ac

k
-e

m
f

[V
]

Back-EMF vs. time

Measured

3D-FEM

Fig. 10: Back-EMF measured and calculated at 100 rpm.
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Fig. 11: Back-EMF measured and calculated at various speeds.

TABLE II: Inductance measured and calculated.

Inductance [mH]
Measured 11.3
3D-FEM 10.3

B. Estimation of the Inductance

For calculating the inductance, the PMs on the rotor were

modelled as air and a current applied to the windings. Then

the inductance La was estimated as:

La =
λa

Ia
(1)

Where λa is the flux linkage due to the applied current Ia.

In contrast, the measurement of the inductance was performed

with a Precision Magnetics Analyzer© equipment. The calcu-

lations yielded a deviation of 8.9%.The results are summarized

in Table II.

C. Estimation of No-Load Losses

The no-load losses p0 (i.e. bearings, stator iron, PM and ro-

tor back losses) were measured with two different approaches:

• Case 1: The machine running at no-load. The product of

torque and mechanical speed of the rotor corresponds to

the total no-load losses of the machine. That is, p0 =
T0 · ωmech.

• Case 2: A spin down test was performed. The rotor was

pulled to rotate and decaying waveform of back-EMF was

recorded. The no-load losses were estimated by quadratic

fitting of the expression p0 = Jm · dωmech/dt · ωmech.

Where Jm is the moment of inertia of the machine.

The results are shown in Fig. 12 showing a good agreement.

With Case 1 as reference, the deviation of Case 2 was

estimated in a range of 9.7 to 19%. Such deviation might

be result of the numerical approach that is required for its

calculation, and the dependence on the accurate estimation of

the inertia.

D. Segregation of the Losses

1) PM and Rotor Back Losses: Generally, PM losses due

to slotting effect are insignificant. However, the study of these

losses become relevant as a result of the changes of permeance
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Fig. 12: No-load losses vs. speed.

TABLE III: Parameters used for calculation of losses.

Resistivity Value [μΩ/m]
Rotor back ρfe 0.1
PM ρPM 0.8

seen by the PMs due to the modular structure of the stator

(i.e. large air openings between stator modules). In [14] and

[15] analytical approximations are proposed. However, neither

2D-FEM nor analytical approaches yield reliable results since

such models are appropriate when the length of the PMs

is much larger than the thickness [16]. In order to validate

the calculated values with the measurements, PM and rotor

back losses were estimated with 3D-FEM simulations. The

conductivity of the PMs was acquired from measurements

performed to samples of sintered magnets of similar quality by

the Physical Property Measurement System PPMS of Quantum

Design® [17]. The variation of the resistivity with temperature

is shown in Fig. 13. The conductivity of iron was assigned to

the rotor back region. The values of conductivity implemented

in the calculations are summarized in Table III.

2) Stator Iron Losses: The calculation of the iron losses

in the stator modules was performed in order to validate

the hypothesis of low iron losses in laminated amorphous

materials exposed in Section I. The method proposed in

[18] was followed. Therefore, a Fourier transformation of the

waveform of the magnetic flux density at each finite element

in the stator core region was applied to the radial, tangential

and axial components of the magnetic flux density, b̂r, b̂t and

b̂z . The results are shown in Fig. 14 along with the calculated

values of PM and rotor back losses.

As it was expected, the losses in the stator are significantly

low, showing a linear behaviour and reaching a maximum

value of approximately 1 W at 500 rpm. Thus, showing the

convenience of the use of this type of material. Regarding

the PM and rotor back losses, their increment is proportional

to the square of the speed, confirming the significant slotting

effect, due to the modular structure of the stator.

3) Bearing Losses: In order to perform the measurement

of the bearing losses, it was necessary to extract the stator

assembly (Fig. 8) (i.e. supporting frames, coils and stator

modules) out of the demonstrator. Then, the machine was run

Fig. 13: PM resistivity vs. temperature [17].
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Fig. 14: 3D-FEM calculated losses vs. speed.

and measurements of torque and speed were registered. The

bearing losses were estimated as the product of the measured

torque and the rotational speed, that is, pbear = T ′
0 · ωmech.

The measured bearing losses are illustrated in Fig. 15. Once

the bearing losses were measured, it was possible to contrast

both measured and calculated values of no-load losses p0. The

results are shown in Fig. 16, where the calculated values of

no-load losses are the summation of the calculated PM, stator

iron, rotor back losses and the measured bearing losses. On

the other hand, the measured values of p0 illustrated in Fig.

16 correspond to the values of Case 1 calculated in Section

IV-C.

A maximum deviation of approximately 10.7% was ob-

tained at 500 rpm. The source of such deviation might be

the uncertainties in the measurements (e.g. vibration, mis-

alignment of the test set-up, etc.), which might result in

the underestimation of the measured losses. Additionally, the

uncertainty of the conductivity of the back iron, which material

is unknown and as described in Section IV-A the air-gap

uncertainties. The distribution of the current density in the

PMs due to slotting effect is shown in Fig. 17.

E. Estimation of Torque

A resistive load Rload was connected to the terminals of

the machine and measurements of torque, current, voltage and

power factor were registered at 100, 200, 300, 400 and 500

rpm. In all cases, the resistive load was kept fixed. Fig. 18

shows the equivalent circuit of the test. The power factor at the

load is approximately unity given the predominantly resistive

nature of the load. Therefore, the current Is and voltage Vs
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are in phase, as shown in the phasor diagram in Fig. 19. In

order to calculate the air-gap torque Tem both the amplitude

and angle of Is were required. The current as phasor may be

estimated as:

Is =
E

Rw +Rload + jωL
(2)

Where E is the measured back-EMF, Rw and L are the mea-

sured winding resistance and inductance, respectively. Such

currents were applied to the FEM models and the torque was

calculated. Since the machine was operating as a generator,

the measured shaft torque Tshaft, the air-gap torque Tem and

the no-load losses p0 follow the relation:

Tshaft = Tem +
p0

ωmech
(3)

The results are shown in Fig. 20. As it is observed, from

measurements, the torque does not increase with the increment

of the current Is. Furthermore, its value starts reducing due to

the variation of the load angle γ. The calculated torque follows

a similar trend as the measured values. However, the large

deviations (approx. 21.6%) might be caused by uncertainties

in the measurements for the reasons exposed in Section IV-D3.

V. CONCLUSIONS AND FUTURE WORK

A single phase PM surface mounted machine topology is

proposed in which the use of amorphous material is investi-

gated. The modular structure of the stator showed to be easily

Fig. 17: PM current density at 100 rpm, t=4.6 ms.

Fig. 18: Equivalent circuit of load
test.

Fig. 19: Phasor diagram in generator
mode.

assembled and disassembled, which might be convenient when

addressing the recyclability of the PMs. However, further eval-

uation of the recyclability potential is required. Additionally,

various parameters such as back-EMF, inductance and losses

were validated with measurements. Due to the modularity of

the motor, it was possible to perform a segregation of the

no-load losses in order to evaluate the rotor losses due to

slotting effect. Furthermore, as PM losses are increasing with

the square of the speed, a surface mounted rotor structure

might not be convenient for a machine either running at higher

speeds or with a higher pole count. Alternatives such as PM

segmentation, and the use of bonded PMs are proposed as

future work in the limitation of PM losses.

In addition to the rotor topology studied in this paper, the
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Fig. 20: Torque vs. current comparison.



geometry presented in Fig. 2b allows further modifications.

Consequently, it would be possible to consider various rotor

topologies (e.g. interior permanent magnet). Hence, the per-

manent magnets would be protected from the variation of the

permeance of the air-gap, which might be beneficial in the

reduction of the PM losses.

Unfortunately, the re-use of the parts of a larger motor

introduced a large value of bearing losses, which results in

a low value of efficiency for this demonstrator (approximately

30%). However, this might be improved by the construction

of a complete 3-phase machine, adding stator modules to

the structure, consequently improving the torque production.

Finally, the concept was demonstrated to work and showed a

fair agreement with the calculated values.
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