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ABSTRACT
By expressing physical laws and control strategies, interopera-
ble physical system models such as Functional Mock-up Units
(FMUs) are playing a major role in designing, simulating, and
evaluating complex (cyber-)physical systems. However, exist-
ing FMU simulation software environments require significant
user/developer effort when such models need to be tightly inte-
grated with actual data from a database and/or model simulation
results need to be stored in a database, e.g., as a part of larger
user analytical workflows. Hence, users encounter substantial
complexity and overhead when using such physical models to
solve analytical problems based on real data. To address this is-
sue, this paper proposes pgFMU - an extension to the relational
database management system PostgreSQL for integrating and
conveniently using FMU-based physical models inside a database
environment. pgFMU reduces the complexity in specifying (and
executing) analytical workflows based on such simulation models
(requiring on average 22x fewer code lines) while maintaining
improved overall execution performance (up to 8.43x faster for
multi-instance scenarios) due to the optimization techniques and
integration between database and an FMU library. With pgFMU,
cyber-physical data scientists are able to develop a typical FMU
workflow up to 11.74x faster than using the standard FMU soft-
ware stack. When combined with an existing in-DBMS analytics
tool, pgFMU can increase the accuracy of Machine Learning
models by up to 21.1%.

1 INTRODUCTION
Cyber-physical system experts, cyber-physical data scientists,
and cyber-physical developers often need to analyze, predict,
and simulate physical systems. For this purpose, physical sys-
tem models are often used to capture time-dependent behaviour
and dynamics of such systems [1]. They offer powerful, rigor-
ous, and cost-effective means to characterize and reason about
such systems, without the need to build, interact, and/or inter-
fere with such systems. Physical system models (physical models
for short) are well supported by a number of physical system
modelling software tools and environments. However, each such
modelling environment often uses a specialized form and for-
mat of a physical model with limited possibilities to utilize such
models across different tools and environments. To mitigate this
problem, Functional Mock-up Interface (FMI) [2] has emerged as
a de-facto standard [3] to facilitate physical model exchange and
co-simulation across a large number of modelling tools. In FMI,
physical models are compiled into a standard representation,
denoted as functional mock-up units (FMUs). FMUs reflect real
physical systems composed of physical and digital components
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interacting in complex ways according to a set of pre-defined con-
trol strategies and physical laws. FMUs allow accurately defining
system behaviour even in the physical states that are not ob-
servable in the real world, unlike what is required by traditional
AI/ML models (e.g., artificial neural networks). Due to these ad-
vantages, FMUs continue gaining popularity in relevant physical
modeling communities [5]. FMI has already been broadly adopted
and supported by 130+ software tools, including well-known sim-
ulation environments Simulink (Matlab) [4] and EnergyPlus [6]
(80.000+ downloads), as well as JModelica [8]/OpenModelica [10]
(more than 20 companies and 30 universities in the consortium)
with 1600+ model components and 1350+ functions from many
domains available in a standard library alone.

Despite comprehensive physical modelling support, existing
FMI-based simulation environments and tools offer poor data-
base (DB) integration and lack built-in support for conveniently
including physical models into user-defined analytical workflows.
Thus, user data (e.g., model parameters, measurements, control
inputs) cannot be conveniently supplied to the model from a DB
and model results cannot be effectively used in larger analytical
workflows (e.g., those encompassing multiple simulations) while
offering convenient declarative approaches to manage such phys-
ical models within a common data management and physical
modelling environment. Without these capabilities, model-driven
analytical tasks become complicated and slow in terms of both de-
velopment time and execution, and less usable for users working
with, e.g., prescriptive analytics applications [12]).

As a running example, consider a prediction problem from
the energy field. The aim is to predict and analyze indoor tem-
peratures inside a house that is heated by an electric heat pump
(HP) under different heating scenarios (e.g., no heating, heating
at max power). For this task, a physical model represented as an
FMU needs to be calibrated and simulated using measurements
and weather data stored in the database. Predictions need to be
stored in the database, for further analysis and visualization. In
this case, as shown in Figure 1, the user has to pick relevant
FMU-compliant software tools (e.g., JModelica [8] or Python [7]
+ PyFMI [14] + ModestPy [3]) and then use these tools to (1)
load a pre-generated FMU file or manually build an FMU file
from a model specification file, (2) read historical measurements
and (future) control inputs from a database, (3) recalibrate the
model (e.g, using ModestPy) in case the model cannot ensure
the good fit with the historical measurements, (4) validate the
model against real measurements, and update the model and/or
parameters values, (5) simulate the updated model to generate
temperature predictions for different scenarios (e.g, using PyFMI),
(6) export predicted values back to the database, and (7) perform
further analysis utilizing a DBMS. This imposes limitations for
the user in terms of number of software tools and libraries to use,
and in terms of the overall complexity and ability to effectively
utilize physical models in larger analytical workflows where both
simulation and optimization are required. In this and similar user
workflows, interleaved data exchange between a database and a



Figure 1: Running example workflow

modelling tool makes the workflows difficult to specify and eval-
uate, leading to significant implementation complexity, developer
and performance overheads. This calls for new solutions offering
more tight integration between a database and a modeling tool.

This paper proposes pgFMU – an extension to the PostgreSQL
[9] DBMS to address these issues. pgFMU is a SQL-based model-
and data management environment that brings benefits to cyber-
physical data scientists and cyber-physical software developers.
pgFMU facilitates FMU model storage, simulation, and parameter
estimation tasks by effectively integrating FMI inside PostgreSQL.
For this purpose, pgFMU offers a number of User-Defined Func-
tions (UDFs) accessible by simple SQL queries for each necessary
operation. As such, our extension exhibits the following advan-
tages: (1) increased user productivity (on average 11.74x faster
for user-defined workflows in terms of development time) due
to the usage of a single integrated system for FMU-specific use
cases, (2) reduced system complexity (22x fewer code lines), (3)
increased performance due to the reduction in I/O operations and
optimization for multi-instance workflows (up to 8.43x faster),
(4) reduced number of error-prone actions by minimizing the
number of software systems and tools a data scientist is required
to work with, and 5) when used in combination with traditional
Machine Learning models, pgFMU can increase model accuracy
by up to 21.1%. These are supported by the results of our ex-
periments which are based on the real-world use cases. Lastly,
pgFMU is an open-source project and can be found on GitHub1.

The rest of the paper is organized as follows: Section 2 elabo-
rates on solving the aforementioned use case using traditional
stack, Section 3 discusses the related work Section 4 highlights
technical challenges of integrating FMUs inside a FMS, Section 5
discusses how pgFMU tackles model storage and specification,
Section 6 presents our pgFMU-based approach for parameter
estimation, Section 7 discusses the model simulation, Section 8
presents the experimental evaluation, and Section 9 concludes
the paper and suggests future research directions.

2 RUNNING EXAMPLE
In this section, we follow Figure 1 and elaborate on the steps of
solving the exemplified case of predicting indoor temperatures
of a house. This example illustrates a typical process, steps, and
software packages a cyber-physical data scientist would adopt to
address this specific and similar problems based on FMU models.

Load / build an FMU model. A Functional Mockup Unit
(FMU) is a .zip file consisting of a number of XML files, model and
underlying solver implementation C-language files and/or their
binary compilations for execution on different hardware plat-
forms. The XML files describe model variables and parameters,
attributes, default stop time, tolerance, etc., to be used, mostly,
by FMU libraries and software tools and not the end-user. The
cyber-physical data scientist can either download a pre-compiled

1https://github.com/OlgaRyb/pgFMU.git

FMU file from the (third-party) system modellers, or build an
FMU file manually using a modelling tool, e.g., Open Modelica
[10]. The latter option requires domain knowledge and modeling
skills to mathematically capture all instantaneous thermal energy
losses (and gains), intensities, and their balance within the build-
ing (e.g., windows, walls). For this problem, at time tk ,k = 1...n,
temperature dynamics of the house can be captured by a generic
linear time invariant state space model (1) (adapted from [11]):

x(tk+1) = F (x(tk ),u(tk ),θ (t), t)

y(tk ) = H (x(tk ),u(tk ),θ (t), t),
(1)

where x(t0) = x0 is the initial state, F is a linear or non-linear
function, F : ℜn ×ℜm ×ℜp ×ℜ → ℜn , x(·) ∈ Rn is the state
variable vector, u(·) ∈ Rm is the model input vector, Θ(·) ∈ Rp is
the parameter vector, y(·) ∈ RO is the model output vector, and
H : ℜn ×ℜm ×ℜp ×ℜ → ℜO is the output function.

This model often needs to be translated into a representation
required by a specific modelling tool, e.g., the Modelica [13]
program shown in Figure 2. There, u is the input variable – heat
pump power rating settings in the range [0 ... 1], corresponding
to [0 .. 100%] of HP power operation; x is the state variable –
indoor temperatures; y is the output variable – energy consumed
by a heat pump. The parameters are represented by A,B,C,D,

and E; A =
(
− 1

R ·Cp

)
, B =

(
P ·η
Cp

)
, C = P , D = 0, E =

(
θa

R ·Cp

)
,

whereCp = 1.5kWh/°C is the thermal capacitance (the amount of
energy needed to heat up by 1 ◦C within 1 hour); R = 1.5°C/kW
is the thermal resistance; P = 7.8kW is the rated electrical power
of the heat pump; η = 2.65 is the performance coefficient (the
ratio between energy usage of the heat pump and the output heat
energy); θa = −10°C is the outdoor temperature.

Read historical measurements and control inputs.Mod-
elling tools often have poor support for database integration
and require model parameters and inputs to be provided in a
predefined format, usually a text file. If model inputs are stored
in a database, the users are required to either manually export
them to use it within the modelling software, or to download and
familiarize themselves with often complex library functionality
(e.g. Matlab Database Explorer app [4] or psycopg2 [16] Python
package ). Yet, storing the measurements in a database has a num-
ber of advantages while handling the concurrent I/O operations
such as managing the information from the multiple sensors
and serving end-user applications. Lastly, the user is required to
retrieve the control inputs from the FMU, and manually match
them with the input data series obtained from the measurements.

Recalibrate the model. Values of one or more model pa-
rameters (e.g., A, B, E in Figure 2) are often either not known,
or tuned for another physical system. This may result in poor
model predictions, or erroneous decisions. Parameter estimation
(or model calibration) is the operation of fitting model parameters
to actual measurements, such that simulated model states and

Figure 2: Heat pump LTI SISO model in .mo format
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outputs acceptably match measured system states and outputs.
In our problem, the unknown model parameter values are A,B
and E (see Figure 2), and the sum of squared errors between the
measured and simulated indoor temperatures is to be minimized.

Parameter estimation can be performed, for instance, using the
ModestPy Python package [3] and its built-in function Estimation.
In this situation, Estimation requires a path to theworking direc-
tory, a path to the FMU model file, input measurements, known
values of the parameters, values to be estimated, and a dataset
with real measurements to calibrate upon. All these formal pa-
rameters need to be specified explicitly by the user. Additionally,
in case the user needs to further use the updated model, parame-
ters update is required to be done manually by calling a specific
function from the PyFMI [14] package.

Often, a set of relevant parameters to be estimated has to
be identified by the user. This operation demands an extensive
domain knowledge, or assistance of the external domain expert.
As an alternative, the user can use the functionality of PyFMI
Python package to retrieve the relevant parameters of an FMU
model. However, the list of retrieved parameters always needs
to be accompanied by often complex filtering. For example, by
default the PyFMI fetches the full list of parameters, including
the parameters related to the built-in solver internally connected
with the FMU model. Such parameters are not relevant for the
parameter estimation operation, therefore, should be filtered out.

Validate and update the FMUmodel. Once parameter esti-
mation is performed, the model needs to be validated before it can
be used for subsequent predictions, e.g., using cross-validation.
In case the model cannot generate predictions with sufficient
accuracy, the model has to be either re-calibrated (e.g., with a
different set of parameters) or further refined or replaced (i.e.,
using another FMU). In our case, validation should be performed
using user-defined Python scripts.

Simulate the recalibratedmodel to predict temperatures.
Next, we need to generate predictions by simulating the cali-
brated FMU model based on the desired input (HP power rating
setting in the range [0 ... 1]/heating scenario). During simulation,
model outputs and states are computed based on the provided
inputs (and previous states), as seen in Figure 3. To simulate
the model in this workflow, the user need to write a (Python)
program (e.g. using the PyFMI ) to load the .fmu file, read input
data, map data to the form required by the simulation library (e.g.
using numpy and pandas [15]), simulate the model (PyFMI ), and
insert simulation results back in the database (psycopg2).

Export predicted values to a database. For further analysis
and visualization, the user needs to export data either directly to
a database or first to a text file and then import the text file into
a database using the respective SQL command.

Perform further analysis. Stored predicted indoor temper-
atures may further be used for subsequent visualization, analysis,
optimization, and/or decision support. However, if predictions

Figure 3: Simplified simulation FMU schematic of the HP
system

Table 1: Workflow operations

Operation Package Code lines
Python pgFMU

Load/build an FMU model PyFMI 4 1
Read historical measure-
ments and control inputs

psycopg2, PyFMI,
pandas

12 -

Recalibrate the model ModestPy, pandas 15 1
Validate & update the FMU
model

PyFMI, pandas 7 -

Simulate the recalibr.
model to predict temp.

PyFMI, Assimulo,
numpy

24 1

Export predicted values to
a DB

psycopg2, pandas 4 -

Perform further analysis psycopg2, PyFMI 22 1
Total 88 4

under different model inputs are required, or by using different
models, this overall process needs to be repeated. When pre-
dictions with multiple FMU model need to be performed, the
cyber-physical data scientist faces additional complexity of man-
aging all these models, their parameters values, and predictions.
As seen in Table 1, for this particular example, the data scien-
tist would have to perform 7 steps utilizing 6 different Python
packages and writing 88 lines of code. The necessity to utilize
multiple software packages makes development time-consuming
and error-prone. At the same time, the usage of different program-
ming interfaces makes such tasks difficult to perform, manage,
and customize. FMU integration inside a DBMS, as in pgFMU,
results in an order of magnitude reduction in the code (as seen
in last table column).

3 RELATEDWORK
FMU model simulation is widely supported by over 130 tools
and packages, most of them being commercial ones. Among
open-source projects are OpenModelica[10], PyFMI [14], and
FMI Library as a part of JModelica[8]. However, even while pro-
viding GUI (e.g., OpenModelica), these tools do not have the solid
support for the import and export of data from/to a DBMS. For
example, OpenModelica requires an intermediary text file to be
created as an input to the simulation engine; this text file should
follow a strict format to be able to continue the simulation.

Another well-known environment for FMU simulation and
parameter estimation is JModelica [8]. JModelica offers a Python
interface, and serves the user with a number of functions re-
quired for a broad range of simulation- and optimization-related
tasks. Another advantage of JModelica is package orchestration:
even though some packages (e.g. PyFMI or Assimulo [20]) are
claimed to be independent of other software, individual package
management still remains a challenge. Nonetheless, JModelica
does not provide yet a direct database input support, so the users
are required to use extra packages (e.g. psycopg2).

At the same time, attempts were made to develop in-DBMS
analytics: SAS [21] in collaboration with Teradata suggested
the integration of DBMS with predictive modelling (including
regression analysis and time series analytics); Tiresias [22] - a
PostgreSQL-based system that supports "how-to" queries for
defining and integrated evaluation of constrained optimization
problems, and SolveDB - an extensible DBMS for SQL-based opti-
mization problems [23]. The existing DBMSes offer only limited
analytical support, such as in-DBMS linear optimization and, to



Table 2: Comparison between in-DBMS analytics tools and
pgFMU

Feature MADlibMicrosoft SQL Ser-
ver ML Services

pgFMU

Data query language SQL SQL SQL
Model integration approach UDFs Stored procedures UDFs
In-DBMS machine learning ✓ ✓ ✗

In-DBMS physical models ✗ ✗ ✓
- FMU management ✗ ✗ ✓
- FMU simulation ✗ ✗ ✓
- FMUparameter estimation ✗ ✗ ✓

some extent, forecasting and simulation. To our best knowledge,
no systems have until now supported in-DBMS storage, analysis,
simulation, and calibration of the FMI-compliant models.

There exists a number of tools that incorporate traditional Ma-
chine Learning (ML) models into a DBMS, e.g., the hugely popular
MADlib [27] and the recently released Microsoft (MS) SQL Server
ML Services [28]. Table 2 shows a comparison of pgFMU with
these systems. As we can see, neither MADlib, nor Microsoft SQL
Server ML Services support physical system models (like FMUs),
unlike pgFMU. MADlib follows the same integration approach
as pgFMU by offering a set of UDFs specialized for ML. MS SQL
Server ML Services provides a single T-SQL stored procedure for
executing external Python and R scripts for ML, which is consid-
erably less user-friendly as two languages (SQL + Python/R) are
involved. While the UDFs of pgFMU can be installed as a DBMS
extension, pgFMU can be used as a complement to existing ML
tools, e.g., MADlib, which we demonstrate in Section 8.

4 CHALLENGES OF INTEGRATING FMUS
INSIDE A DBMS

In the next section, we highlight 3 essential technical challenges
of integrating FMUs inside a DBMS:

Challenge 1. Language Integration Challenge: How to in-
tegrate and expose FMUs in database queries? The challenge is
to offer effective new SQL constructs, so that FMUs and FMU
instances can be created, analyzed, manipulated, and used effec-
tively together with existing SQL constructs.

Challenge 2. FMUMeta-data Challenge. How to optimally
take advantage of FMU meta-data to semi-automate task specifica-
tion and data mapping? Traditionally, the specification of FMU
tasks and mapping between (discrete) data stored in a database
and the FMU variables is manual and very verbose, but there is a
huge opportunity to take advantage of the meta-data stored as a
part of a FMU to automate such specifications.

Challenge 3. FMUPerformanceChallenge.How to increase
system performance when a (generic) FMU needs to be instantiated
and used many times? Individual tasks within FMU workflows
(e.g., Figure 1) often require the same FMU to be instantiated
and simulated many times. When model parameters and inputs
change only marginally, FMU computations/results of FMU sim-
ulation can be reused to increase overall performance. The next
sections elaborate on how pgFMU addresses these challenges.

5 MODEL SPECIFICATION, STORAGE, AND
MANIPULATION

pgFMU aims to facilitate arbitrary user-specified FMU-based
workflows by enabling creation, storage, and manipulation of

FMU models (e.g., in terms of model parameters to be estimated)
in a DBMS through user-specified SQL queries. This leads to
Challenge 1: Language Integration Challenge (Section 4). Here,
pgFMU takes a "session-like" approach where FMU instances are
managed and used by explicitly calling commands in a particular
order for FMU creation, deletion, etc. For this, pgFMU employs
the same approach as MADlib [27] and offers a set of easy-to-use
User-Defined Functions (UDFs) that support the full range of
model management operations. pgFMU packs and offers these
UDFs as a PostgreSQL extension, for ease-of-use and installation.
Thus, FMU-specific functionality of pgFMU can be used with, e.g.,
the functionality of MADlib, for combined machine learning and
physical simulations, as shown later. In this section, we describe
in detail the new DBMS constructs / UDFs for model specification
and storage, explain how they work, and show how users can
take advantage of them when working with FMU models.

In pgFMU, a user can create an instance of an FMU model by
using the function (UDF) fmu_create (modelRef, [instanceId]) 7→
instanceId. As input, the function takes a mandatory textual ar-
gument modelRef, that represents either a path to a pre-compiled
FMU (.fmu) file, a Modelica (.mo) file, or inline Modelica model
code. If modelRef is a Modelica argument, it will be automatically
compiled into an FMU file. The function returns a textual model
instance identifier instanceId, which uniquely identifies the model
instance in the subsequent model management function calls.
The model instance identifier can be set manually by the user by
supplying instanceId as an optional argument.

As explained in Section 4, FMU meta-data can be used to semi-
automate task specification and data mapping (Challenge 2). For
this, pgFMU reads meta-data from the user-defined FMUs once
during FMU load and stores it in a model catalogue in a data-
base. Thus, pgFMU automatically detects simulation parameters
(start/stop timestamp, time step), variable causalities (e.g., input,
output, parameter) and data types (e.g., float, integer, string), au-
tomatically configures simulation, and performs implicit data
conversions when needed. The user can manually override the
detected parameters. As seen in Figure 4, the model catalogue
consists of four basic tables:Model,ModelVariable,ModelInstance,
and ModelInstanceValues. Model captures the essential model at-
tributes. FMU models are identified with a Universally Unique
Identifier (UUID) [25] - a 128-bit string for unique object identi-
fication. All loaded models are stored in the FMU storage (non-
volatile memory). ModelVariable describes the model variables:
the variable name, variable type, and the initial, minimum, and
maximum values. The combination of ModelId and varName at-
tributes serves as the primary key. initialValue, minValue, and
maxValue have the variant [24] type - a specialized PostgreSQL
data type that allows storing any data type in a column, while
keeping track of the original data type. ModelInstance stores the
information about model instances. It uses instanceId as the pri-
mary key, and modelId as a foreign key. In this way, multiple
instances of the same parent model can be stored. ModelInstance-
Values stores the model instance variable values. Here, the com-
bination of modelId, instanceId, and varName is a primary key.
Lastly, we show some fields in all four tables decoded in regular
and italic font. Here, the italic indicates the changes occurred
after executing a query example (e.g., fmu_parest, Section 6). The
initial field value is decoded with regular font.

A user can create an instance of the heat pump model (see
Section 2) using the following intuitive SQL query in pgFMU:

1 SELECT fmu_c rea t e ( ' / tmp / hp1 . fmu ' , ' HP1Ins tance1 ' ) ;



Figure 4: pgFMU model catalogue (filled with example data values)

The result of query execution is shown in Row 1 in Model, Row 1
in ModelInstance, Rows 1-8 in ModelVariable and ModelInstance-
Values, and the object 21736bsxb73sxb in FMU storage. Similarly,
the user can use fmu_create to interact with Modelica model files:

1 SELECT fmu_c rea t e ( ' HP0Ins tance1 ' , ' / tmp / model .mo ' ) ;
2 SELECT fmu_c rea t e ( ' HP0Ins tance1 ' , 'model heatpump

outpu t Rea l x , . . . , y = C ∗ x + D∗ u ; end heatpump ; ' ) ;

The result of executing either of these calls corresponds to Row
2 in Model, Row 3 in ModelInstance, Row 9 in ModelVariable, and
the object 23ksjdjn256smn in FMU storage. The user can also cre-
ate a copy of the model instance by using fmu_copy (instanceId,
[InstanceId2]) 7→ instanceId2 (e.g., when managing many heat
pumps of the same type); it takes the initial instance instanceId
as input, and outputs the copy of this instance with the new in-
stance identifier InstanceId2 (user-defined or pgFMU-generated).
The code snippet below illustrates the usage of fmu_copy (lead-
ing to changes in Row 2 in ModelInstance and Rows 9, 10 in
ModelInstanceValues):

1 SELECT fmu_copy ( ' HP1Ins tance1 ' , ' HP1Ins tance2 ' ) ;

In pgFMU, the initial copy of the FMU file is reused when
either creating a new instance of the same FMU model (Row 2 in
ModelInstance), copying a model instance, or changing a model
state in the database environment. Once loaded (see Figure 4,
FMU storage), an FMU model is used for all further operations;
in this way, we avoid the creation and load of superfluous FMU
model files, and we control andmanipulate model instances while
minimizing memory and computational resources. Algorithm 1
presents the logic behind fmu_create.

Furthermore, pgFMU provides a number of utility functions
to analyse and manipulate the model instance variable values.
For example, the function fmu_variables (instanceId) 7→ (instan-
ceId, varName, varType, initialValue, minValue, maxValue) returns
the details of all variables and parameters of the supplied model
instance instanceId. The result includes the variables’ initial, min-
imum, and maximum values, which can also be retrieved using
the function fmu_get(instanceId, varName) 7→ (initialValue, min-
Value, maxValue). In addition, a user can set the initial, maximum
and minimum values of HP1Instance1 A and B model instance
parameters using fmu_set_initial(instanceId, varName, initial-
Value) 7→ instanceId, fmu_set_minimum (instanceId, varName,
minValue) 7→ instanceId, and fmu_set_maximum (instanceId, var-
Name, maxValue) 7→ instanceId (Row 4 in ModelVariable, italic
font):

1 SELECT fm u _ s e t _ i n i t i a l ( ' HP1Ins tance1 ' , 'A ' , 0 ) ;
2 SELECT fmu_set_minimum ( ' HP1Ins tance1 ' , 'A ' , −10) ;
3 SELECT fmu_set_maximum ( ' HP1Ins tance1 ' , 'A ' , 1 0 ) ;

Furthermore, a user can retrieve all "HP1Instance1" model
variables that serve, for example, as model parameters using the
following query (the query output is shown in Table 3):

1 SELECT ∗ FROM fmu_va r i a b l e s ( ' HP1Ins tance1 ' ) AS f WHERE
2 f . varType = ' paramete r '

The model instance can be brought back to its initial state using
fmu_reset (instanceId) 7→ instanceId (see Rows 4, 5 in ModelVari-
able, and Rows 4, 5, 9, 10; the regular font indicates the initial
values for the specific model instance). The user can delete either
a specific model instance using fmu_delete_instance (instanceId),
or an entire FMU model using fmu_delete_model (modelId). In the

Algorithm 1: fmu_create
Input:

Stored model representation: modelRef;
Optional: Unique model instance identifier [instanceId];

Output:
Model instance identifier instanceId;

1: if modelRef = .fmu file then
2: fmuModel← Construct a model object using PyFMI

function load_fmu(modelRef);
3: else
4: if modelRef = .mo file or inline Modelica model

specification then
5: fmuModel← Construct a model object using PyFMI

function compile_fmu(modelRef);
6: end if
7: end if
8: if instanceId is not given then
9: instanceId← pgFMU-generated instanceId;
10: end if
11: Store the FMU model file in FMU storage;
12: Retrieve model variable names varName, types varType and

values value by means of PyFMI function
fmuModel.get_model_variables;

13: Insert the related sets of records into Model, ModelVariable,
ModelInstances, ModelInstancesValues;

14: Return instanceId;



Table 3: fmu_variables example query output

instanceId varName varType initial-
Value

min-
Value

max-
Value

HP1Instance1 A parameter 0 -10 10
HP1Instance1 B parameter 0 -20 20
... ... ... ... ... ...

latter case, all model instances associated with this FMU model
will be automatically removed from the database.

6 MODEL PARAMETER ESTIMATION
Model parameter estimation is a key functionality in pgFMU.
Model instance parameters in pgFMU can be estimated using
fmu_parest (instanceIds, input_sqls, [pars]) 7→ estimationErrors. It
takes a list of model instances instanceIds as input, updates the
model instances with updated parameter values, and returns the
list of estimation errors for each model instance estimationErrors
(RootMean Square Errors (RMSEs) by default). The user must also
specify a list of SQL queries (input_sqls, one SQL query for each
model instance) that produce the data to use in the parameter
estimation, i.e., model training input and output variable pairs
at different time instances. By default, the function estimates all
model parameters. Optionally, the user can override this list by
supplying a list of specific parameter names pars.

For example, the user can estimate the model parameters "A"
and "B", and then store the updated model instance in the model
catalogue using the following query (output is shown in Rows 4
and 5 in ModelInstanceValues, italic font):

1 SELECT fmu_pare s t ( ' { HP1 Ins tance1 } ' , ' { SELECT ∗ FROM
measurements } ' , ' {A , B } ' )

fmu_parest() adopts the functionality of the ModestPy [3]
Python package, which uses multiple optimization runs of the
Global (denoted as G) and the Local (denoted as LaG) Search
algorithms on different subsets of inputs to ensure result optimal-
ity even in the case of non-convex problems (later Figure 5 will
illustrate the intuition behind this). In pgFMU, we use the Mod-
estPy genetic algorithm implementation as G, and gradient-based
method implemented by scikit-learn as LaG.

fmu_parest is designed to reduce the required amount of com-
putation when parameters of multiple FMU instances need to
be estimated (Challenge 3). Therefore, it automatically detects
the number of model instances supplied and uses different algo-
rithms when estimating parameters of a single model instance
(SI scenario) or multiple instances (MI scenario).

Single instance parameter estimation Algorithm 2 pro-
vides implementation details for fmu_parest within the SI sce-
nario. fmu_parest not only estimates the parameters of the FMU
model instances, but also validates and updates the model in-
stance with the new parameter values.

Multi-instance optimization In many scenarios, a user has
a number of instances of the same model, e.g., 20 instances
(HP1Instance1, HP1Instance2,.., HP1Instance20) of the heat pump
model HP1 corresponding to 20 different houses located in the
same neighbourhood. In this case, pgFMU can apply its MI opti-
mization when estimating parameters for multiple instances.

For example, the user can estimate the parameters "A" and
"B" of HP1Instance1 and HP1Instance2 using the following query
(leading to Rows 4, 5, 9, and 10 inModelInstanceValues, italic font):

Algorithm 2: fmu_parest_SI
Input:

Unique model instance identifier: instanceId;
Query to retrieve measured data: input_sql;
Optional: List of parameters [pars];

Output:
estimationError;

1: Result set measurements← Execute input_sql;
2: uuid← Retrieve FMU model UUID from ModelInstance

table identified by instanceId;
3: if pars is not given then
4: pars← Retrieve parameter variables from ModelVariable

table identified by uuid;
5: end if
6: Retrieve the input variable values from the result set

measurements;
7: parsEstimated, estimationError← Run G & LaG for

pars;
8: Update ModelInstanceValues with parsEstimated;
9: Return estimationError;

1 SELECT fmu_pare s t ( ' { HP1Ins tance1 , HP1 Ins tance2 } ' , ' {
SELECT ∗ FROM measurements , SELECT ∗ FROM
measurements2 } ' , ' {A , B } ' )

Figure 5 illustrates the logic behind theMI optimization of fmu_par-
est. This optimization occurs in two stages. During the first stage,
we estimate the parameters of HP1Instance1 (solid blue line). In
most cases, only the lower and upper bounds of each model
parameter are known, and such bounds are usually defined by
real-world physical constraints (e.g., HP performance coefficient
cannot be negative).We set the initial parameter values to random
numbers between the lower and the upper bounds mentioned
above. Then, we follow the steps described in Algorithm 2, i.e.,
firstly, we run Global Search (G) to reduce the search space. Here,
1_G, 2_G, and 3_G (filled circles) indicate the G iterations for
HP1Instance1. After finding a good place in the search space, Lo-
cal Search after Global (LaG) finetunes the parameter values to
find optimal ones. We denote LaG iterations as 1_LaG, 2_LaG, and
3_LaG (empty circles). 3_LaG (exemplified by Rows 4, 5 in Mod-
elInstanceValues) is the optimal parameter values of HP1Instance1.

The next stage is to perform parameter estimation forHP1Insta-
nce2 (red dashed line). First, we check that the model instances
belong to the same parent FMU. Next, we check whether the
condition for the MI optimization invocation holds, i.e., we only

Figure 5: fmu_parest MI optimization



invoke the MI optimization after ensuring similarity (by calculat-
ing the L2 norm) between the input (and output) measurements
of HP1Instance1 and HP1Instance2. L2 norm (or the Euclidean
norm) is one of the simplest and widely known, but still accu-
rate and robust metrics for measuring the similarity between
time series [26]. It is important to check the similarity between
model instances time series to make sure the optimal solutions
for these model instances lie within the same neighbourhood (see
Figure 5). In case the difference between measurement time series
is greater than a threshold, we do not invoke the MI optimization,
and instead, run Algorithm 2 (a combination of G+LaG) for every
instance. The 1_G, 2_G, and 3_G points (filled circles) indicate
the G iterations, while 1_LaG, 2_LaG, and 3_LaG (empty circles)
illustrate the LaG iterations. 3_LaG would, in this case, be the
optimal parameter values of HP1Instance2.

If the measured time series are sufficiently similar, i.e., the
difference between them is less than threshold, we invoke the
MI optimization. This means the optimal parameters values of
HP1Instance1 (solid blue line, 3_LaG) become the initial parame-
ter values ofHP1Instance2 (red dashed line, 1_LO). In this way, we
run Local Only Search (LO) (which is essentially the same algo-
rithm as LaG, but with different initial parameter values) to obtain
optimum parameter values of HP1Instance2, as its solution lies
within the neighbourhood of the best solution of HP1Instance1.
The points 1_LO, 2_LO, and 3_LO (diamonds) are converging to
those found by LaG. 3_LO (exemplified by Rows 9, 10 inModelIn-
stanceValues) is the optimum parameter values of HP1Instance2.
Algorithm 3 describes MI optimization for n model instances.

In pgFMU, the MI optimization significantly speeds up param-
eter estimation for multiple model instances. This speed-up is
possible because G is much more expensive than LaG (see Sec-
tion 8), and instead of G+LaG only LO is run. pgFMU provides the
gradient-based Local Search algorithm with the good initial pa-
rameter values. In [3] authors emphasize, that "the initial global
search would not be needed if the approximate initial values of
parameters were known. In such a case the gradient-based meth-
ods would easily outperform GA [genetic algorithm]". As it will
be shown later in Section 8, this statement holds. It should also be
noted that the quality of the solution is dependent on the internal
ModestPy algorithms. Within pgFMU, we adapt and enhance
the functionality of ModestPy to best capture user preferences,
streamline parameter estimation, and facilitate user interaction.
The empirical evaluation of the MI parameter estimation shows
identical accuracy with and without MI optimization.

7 MODEL SIMULATION
Users can simulate models by utilizing the function fmu_simulate
(instanceId, [input_sql], [time_from], [time_to]) 7→ (simulation-
Time, instanceId, varName, values), which performs simulation on
the supplied model instance and returns simulation results as a
table of a timestamp, a model instance identifier, a variable name,
and the variable’s simulated value. By default, the simulation
results for all state and output variables are returned. It is also
possible to supply a time series of model input variable values
by specifying an SQL query input_sql. If desired, the user can
also specify a time window for simulation using the time_from
and time_to parameters; otherwise, the start and end time will be
determined by defaultStartTime and defaultEndTime. The system
raises an error, e.g., if insufficient model input time series or an
incomplete simulation time interval is provided.

Algorithm 3: fmu_parest_MI
Input:

List of unique model instance identifiers: instanceIds;
List of queries to retrieve measured data: input_sqls;
Optional: List of parameters [pars], float [threshold].

Output:
List of estimationErrors;

1: if pars is not given then
2: pars← Retrieve parameter variables from ModelVariable

table identified by InstanceIds;
3: end if
4: for i = 0 to length (instanceIds)-1 do
5: Result set measurements[i]← Execute input_sql[i];
6: parsEstimated[0], estimationError[0]← Run

fmu_parest_SI for instanceIds[0];
7: for i = 1 to length (instanceIds)-1 do
8: if modelId[0] ! = modelId[i] then
9: Run fmu_parest_SI for instanceIds[i];
10: else
11: δ = L2 norm of measurements[i] from

measurements[0];
12: if δ ≥ threshold then
13: Run fmu_parest_SI for instanceIds[i];
14: else
15: Update all the initial parameter values of

instanceIds[i] to parsEstimated[0];
16: parsEstimated[i], estimationError[i]←

Run LO for instanceIds[i];
17: end if
18: end if
19: end for
20: Update ModelInstanceValues with parsEstimated;
21: end for
22: Return estimationErrors;

Table 4: fmu_simulate example query output

simulationTime instanceId varName value
08:00 28/02/2015 HP1Instance1 x 20.7507
08:30 28/02/2015 HP1Instance1 y 0.0041
... ... ... ...

For example, the user can simulate the model by supplying
model input values from the table measurements (Table 6) using
the following query (also updating ModelInstanceValues, Row 1
and ModelInstance, Row 1, values in italic):

1 SELECT s imula t ionT ime , i n s t a n c e I d , varName , va l u e
2 FROM fmu_s imu la t e ( ' HP1Ins tance1 ' , ' SELECT ∗ FROM

measurements ' ) WHERE varName IN ( ' y ' , ' x ' ) ;

Table 4 shows the output of this query. If needed, the user can
filter values of the desired columns using the standard WHERE
clause predicates. We note that returning variable values as sep-
arate columns is not possible due to PostgreSQL limitations. In
PostgreSQL, UDFs require fixed output schemas; flexible schemas
are not supported in a convenient and easy-to-use way.

If multi-instance simulations are needed, the user can call a
standard LATERAL join:

1 SELECT ∗ FROM g e n e r a t e _ s e r i e s ( 1 , 1 0 0 ) AS id ,
2 LATERAL fmu_s imu la t e ( ' HP1Ins tance ' | | i d : : t e x t ,
3 ' SELECT ∗ FROM measurements ' ) AS f



Using fmu_simulate, model simulation is performed in two
stages. In the first stage, an input object required for model sim-
ulation is created according to the FMU meta-data. This object
consists of a set of input time series, automatically transformed
for each input variable by taking into account their data types
and variabilities (Challenge 2). In the second stage, an underly-
ing model instance is simulated within the time interval (user-
specified or from the model catalogue) while feeding the simula-
tion algorithm with an input object. The simulation results are
then emitted as a table (Table 4). Algorithm 4 depicts the logic
behind fmu_simulate.

The UDFs described in Sections 5, 6, and 7 can be combined to
solve specific problems. For instance, the example regarding HP
temperature prediction can be specified using a single query (pro-
ducing the same results and updates as fmu_create, fmu_parest,
and fmu_simulate example queries from Sections 5, 6, and 7):

1 SELECT time , v a l u e
2 FROM fmu_s imu la t e ( fmu_pare s t { fmu_c rea t e
3 ( ' HP1Ins tance1 ' , 'C : \ temp \ hp1 . fmu ' ) } ,
4 ' { SELECT ∗ FROM measurements } ' , ' {A , B } ' ) ,
5 ' SELECT time , ' u ' AS varName , va l u e
6 FROM g e n e r a t e _ s e r i e s ( ' ' ' 2015−01−01 ' ' ' : : t imestamp ,
7 ' ' ' 2015−01−02 ' ' ' : : t imestamp , ' ' ' 1 hour ' ' ' : :
8 i n t e r v a l ) AS t ime WHERE varName = ' x '

In addition, there are few important points. Firstly, all pgFMU
UDFs are independent of each other and can be used in any order.
Similar to other modelling software, e.g., Matlab and JModelica,

Algorithm 4: fmu_simulate
Input:

Unique model instance identifier: instanceId;
Optional: Query to retrieve measured data: [input_sql],
[time_from], [time_to];

Output:
Output table (simulationTime, instanceId, varName, values);

1: uuid← Retrieve FMU model UUID from ModelInstance
table identified by instanceId;

2: fmuModel← Load FMU model identified by uuid from FMU
storage;

3: Result set measurements← Execute input_sql;
4: inputs← Retrieve input variables from ModelVariable

identified by uuid;
5: input_object← Empty hash map of (name, time series)

pairs;
6: For each name n in inputs: Insert (n, measurements[n])

into input_object ;
7: if time_from and time_to are not given then
8: (time_from, time_to) ← (Model.DefaultStartTime,

Model.DefaultEndTime) where Model.modelid = uuid;
9: end if
10: result← fmuModel.simulate(input_object,

time_from, time_to);
11: time ← (time_from, time_to)
12: output← [];
13: for time i in result.time do
14: for varName in result.variables do
15: Append (i, instanceId, varName, result[varName][i]) to

output;
16: end for
17: end for
18: Return output;

the user is only requested to create the in-DBMS instance of
an FMU model. pgFMU provides full flexibility when configur-
ing user workflows: if parameter estimation is not required, the
user can simulate the model right away, or change the order of
actions and perform model simulation followed by parameter
estimation. Next, in pgFMU, we eliminate explicit I/O operations
(e.g. historical measurements import, or simulation results export
from a third-party software into DBMS) as all the computations
are done "in-place" inside DBMS. This affects the essential op-
erations (parameter estimation, model simulation) due to the
data-driven nature of these operations. Furthermore, when op-
erating many instances of the same model, we eliminate the
necessity to load the same FMU file multiple times. We store one
single FMU model, and operate with in-DBMS model instances.
These instances share the essential information about the initial
FMU through model catalogue, and can be considered as suffi-
cient substitutes of FMUs. pgFMU is also able to operate several
in-memory FMU model files at a time. Lastly, as we use prepared
SQL queries, we avoid the repeated reevaluation of database
queries for measurements retrieval.

8 EXPERIMENTAL EVALUATION
In this section, we evaluate pgFMU in real-world circumstances.
Firstly, we describe our experimental setup. Then, we present
the results of the evaluation with regard to model quality, perfor-
mance, and usability.

8.1 Experimental Setup
As a baseline, we follow a traditional workflow for model storage,
calibration, simulation, and validation, and perform the steps
described in Figure 1. We consider two scenarios: single instance
(SI) scenario and multi-instance (MI) scenario. In the SI scenario,
we execute parameter estimation and simulation using a single
model instance only. In the MI scenario, we execute parameter
estimation and simulation for many model instances.

Three main system configurations are compared: (1) workflow
execution within a Python IDE (referred as Python), (2) workflow
execution using the non-optimized version of pgFMU (referred
as pgFMU-), and (3) workflow execution using the optimized
version of pgFMU (referred as pgFMU+). Python is based on the
usage of standard Python packages. In pgFMU- configuration
we use the pgFMU system with no multi-instance optimization
activated, and pgFMU+ takes advantage of the MI optimization.
All three configurations are evaluated using Ubuntu 17.1 OS on
a Lenovo ThinkPad with a four-core Intel i7 processor, and 8
GB of DDR3 main memory. For parameter estimation within
pgFMU, we utilize genetic algorithm (GA) for Global Search and
sequential quadratic programming (SQP) for Local Search. The
study argues [3] that this combination of algorithms produces
optimal results in terms of accuracy and performance. For GA, we
use default settings with a fixed randomly derived seed. For SQP,
the default settings were used as well. More information about
default parameters settings is available on the library homepage.

Generalizability was one of the main criteria for choosing the
test models. The models should represent real-world physical sys-
tems with varying numbers of inputs and outputs, and different
physical meaning of model parameters. We follow a workflow
process identical to the one outlined in Figure 1, i.e., we esti-
mate the unknown parameters of the model (model parameter
estimation), validate the model with regard to the real input mea-
surements (model validation), and simulate the model to predict



the values of the model state variable (model simulation). We
have chosen three different FMU models, each of them represent-
ing a real-world physical system. These models are denoted HP0,
HP1, and Classroom, respectively. HP1 corresponds to the running
example model described in Section 2. HP0 is a modification of
HP1 with zero inputs, such that we keep the heat pump power at
a constant rate. Classroom is a thermal network model [17] repre-
sented by a classroom in a 8500m2 university building at the SDU
Campus Odense (Odense, DK). Table 5 summarizes the inputs,
outputs and parameters of the three models. For experimental
evaluation within the MI scenario, we construct 100 synthetic
datasets for each FMU model. We multiply the original dataset
time series values with a constantdelta from the numerical range
δ ∈ {0.8, ..., 1.2}, meaning we amplify or decrease the numerical
values by up to 20% while ensuring the same data distribution as
the original datasets. In Section 6 we explain the reasoning be-
hind such numerical range of δ . We also ensure that the datasets
respect the physical constraints of the real-world systems.

8.2 Model quality
In this subsection, we compare and evaluate model quality for
Python, pgFMU-, and pgFMU+. We perform parameter estimation
and model simulation within the SI scenario and MI scenario.

SI scenario.Within Python, parameter estimation is performed
using the ModestPy package, whereas pgFMU- and pgFMU+ uti-
lize the fmu_parest UDF. HP1 was calibrated using the NIST
dataset [18]. HP0 was calibrated using the same dataset with u
being kept at a constant rate of 1.38%. For both models, we esti-
mate the parameters based on the hourly aggregated data from
February 1-21, while using February 22-28 for validation. The
Classroom model was calibrated using measurements data from
University building O44 in Odense, DK. Table 6 shows an excerpt
of the datasets for all three models. We compare parameter values
and error value for HP0, HP1 and Classroom for Python, pgFMU-,
and pgFMU+. Table 7 shows this comparison. To evaluate the
quality of the model, we use the RMSE metric. RMSE and Mean
Absolute Error (MAE) are two commonly used metrics for model
evaluation. However, a study [19] argues that RMSE is more ap-
propriate to be used when unfavourable conditions should be
given a higher weight, i.e., RMSE penalizes large errors stricter
than MAE. In our case, we want to distinguish every occurrence
when a model fails to secure a good fit with the measured data,
therefore, we choose RMSE for model quality evaluation.

For HP0 (Table 7), the model parameter values have converged
to the same values within Python, pgFMU- and pgFMU+. The RM-
SEs when performing parameter estimation for Python, pgFMU-,
and pgFMU+ are near identical (the relative difference is only
0.013%). For HP1, the RMSEs in all three configurations are ex-
actly the same, and for Classroom the relative difference is at most
0.018%. We consider these differences negligible. Thus, pgFMU-
and pgFMU+ handles single model workflow computations with
the same accuracy as Python. The identical accuracy for all three
configurations is achieved through the usage of the same Python
ModestPy library; however, both pgFMU- and pgFMU+ use a
modified version of ModestPy to provide generalizability and
handle all types of FMU models, and perform data binding and
pre-processing steps discussed in Section 2.

MI scenario. For the MI scenario, we compare RMSE values
for 100 instances of each model (HP0, HP1 and Classroom) side-
by-side. Each model instance is supplied with a synthetic dataset
based on the measured data. For Classroom, the RMSE values

for all three configurations are matching, resulting in the same
average RMSE values (1.61°C). For HP1, RMSE values differ a
bit more, but are still very close, with either Python, pgFMU-, or
pgFMU+ as the better one. The average RMSE values yield in
2.03°C for all three configurations. Thus, the model quality is also
the same here. We observe a similar behaviour for HP0, where for
pgFMU- and Python the average RMSE is 0.68°C , while pgFMU+
estimates the model parameters with 0.66°C average accuracy.

When enabling MI optimization, one must remember the con-
ditions for this feature to produce acceptable results. By default,
parameter estimation is performed using Algorithm 2 (Section 6),
unless the user alters the threshold value. In our case, we have
set the threshold to 20% (Section 8.1) based on the series of exper-
iments reflected in Figure 6. In this Figure, the x-axis represents
dataset dissimilarity in terms of L2 norm distances, the y-axis en-
codes the corresponding RMSE values, and the secondary y-axis
shows the execution time of G+LaG and LO. RMSE is represented
using the same unit as the dependent variable (forHP1, the indoor
temperature in °C). The Figure shows that the execution time of
G+LaG is significantly larger than LO. We see that G takes ap-
proximately 90% of the execution time (considering that LaG and
LO are the same algorithms, with different initial parameter val-
ues). The Figure shows that there is no difference in G+LaG and
LO RMSEs until maximum dissimilarity reached approximately
30%; after this, the difference grows linearly. This is because the
optimal solution for instanceId[0] used as initial parameter values
for the remaining models instanceId[1], ..., instanceId[n-1] (see
Algorithm 3) was not able to provide satisfactory results. Further,
the choice of a threshold value is always contextually dependent,
and a user has to decide about the acceptable RMSE values.

Combining pgFMUandMADlib. To improvemodel quality,
pgFMU can be used in combination with other in-DBMS analytics
tools, e.g., MADlib. If in our Classroom model the number of
occupants in the room is unknown, we can use MADlib to predict
occupancy, e.g., using the ARIMA model and the following query
to train the model:

1 SELECT a r ima _ t r a i n (
2 ' occupan t s ' , −− Source t a b l e
3 ' occupan t s _ou tpu t ' , −− Output t a b l e
4 ' t ime ' , −− Timestamp column
5 ' va lue ' ) ; −− T ime s e r i e s column

In this experiment, we used the original dataset to train the model
and perform the prediction. We divided the dataset into training
(80%) and validation (20%) sets. We created two model instances:
without occupancy information, and with occupancy values pre-
dicted by the MADlib ARIMA model. Then, we simulated the
two models, and compared model RMSEs. The Classroom model

Figure 6: Avg. RMSE & execution time overhead of LO &
G+LaG for datasets of different dissimilarity (HP1 model)



Table 5: FMU models

ModelID Measurements dataset Inputs Outputs Parameters
HP0 NIST Engineering Lab’s

Net-Zero Energy Resi-
dential Test Facility

No inputs HP power consump-
tion y, Indoor tempera-
ture x (state variable).

Thermal capacitance Cp, thermal re-
sistance R.

HP1 NIST Engineering Lab’s
Net-Zero Energy Resi-
dential Test Facility

HP power rating setting in the
range [0 .. 100%] u

HP power consump-
tion y, Indoor tempera-
ture x (state variable).

Thermal capacitance Cp, thermal re-
sistance R.

Class-
room

Data from the class-
room in the test facility
in Odense, DK

Solar radiation solrad, outdoor
temperature tout, number of oc-
cupants occ, damper position dpos,
radiation valve position vpos.

Indoor temperature t
(state variable)

Solar heat gain coeff. shgc, zone ther-
mal mass factor tmass, ext. wall ther-
mal resistance RExt, occupant heat
generation effectiveness occheff.

Table 6: Dataset for HP0, HP1 (top), Classroom (bottom)

No Timestamp x y u
1 2015/02/01 00:00 20.7507 0 0
2 2015/02/01 01:00 23.6231 0.1381 0.0177
... ... ... ... ...
No Timestamp T solrad Tout occ dpos vpos
1 2018/04/04 08:00 21.5727 364.37 11 19.7 0 13.165
2 2018/04/04 08:30 20.8667 396.05 10.5 20.033 0 19.4
... ... ... ... ... ... ... ...

with the occupancy values predicted by MADlib ARIMA showed
up to 21.1% increased accuracy in terms of RMSE.

Reversely, pgFMU can be used to improve the quality of tradi-
tional ML models. In the next experiment, we used the indoor
temperatures of the Classroom computed using pgFMU to in-
crease the accuracy of the logistic regression model that identifies
the position (open/closed) of the ventilation damper dpos. When
we include indoor temperature t into the feature vector of the
model, this yields 5.9% increased model accuracy.

8.3 Performance evaluation
In this subsection, we look into the performance comparison of
Python, pgFMU-, and pgFMU+ for HP0, HP1, and Classroomwithin
SI and MI scenarios.

Single instance scenario. To evaluate pgFMU performance
within the SI scenario, we compare the execution time for all three
models. Table 8 shows this comparison. For all the models, we do
not observe a significant difference in execution time between
Python, pgFMU- and pgFMU+ (for HP0, Python is faster by 0.14%,
for HP1 and Classroom pgFMU- and pgFMU+ perform better by
0.10%, and 0.12%, respectively). We conclude that within Python,

Table 7: SI scenario, model calibration comparison

Python pgFMU-, pgFMU+
Param. values RMSE Param. values RMSE

HP0 Cp: 1.53 0.7701 Cp: 1.53 0.7702R: 1.51 R: 1.51

HP1 Cp: 1.49 0.5445 Cp: 1.49 0.5445R: 1.481 R: 1.481

Classroom

RExt: 4

1.6445

RExt: 4

1.6442occheff: 1.478 occheff: 1.478
shgc: 3.246 shgc: 3.246
tmass: 50 tmass: 50

pgFMU-, and pgFMU+ the performance is practically identical,
as expected. However, in Table 8 we see that model calibration
takes more than 99% of execution time. This imposes limitations
when estimating the parameters of multiple model instances.

MI scenario. For the MI scenario, we use Python, pgFMU- and
pgFMU+, and scale the number of model instances to 100 for
each FMU model. We match the synthetic dataset with each FMU
model instance. Figure 7 shows the execution time for Python,
pgFMU-, and pgFMU+ for HP0, HP1 and Classroom. The execution
workflow of storing, calibrating, simulating, and validating 100
HP0 model instances takes 1083.7 min (18.06 hours) for Python,
1073.7 min (17.9 hours) for pgFMU-, and 204.2 min (3.4 hours)
for pgFMU+. As we can see, pgFMU+ outperforms Python and
pgFMU- by 5.31x. The execution workflow of storing, calibrat-
ing, simulating, and validating 100 HP1 model instances takes
1329.63 min (22.16 hours) for Python, 1319.48 min (21.97 hours)
for pgFMU-, and 241.47 min (4.02 hours) for pgFMU+. In this case,
pgFMU+ outperforms Python and pgFMU- by 5.51x. We observe
an even larger difference in workflow execution time for 100
Classroom model instances. It takes 1380.68 min (23.01 hours)
for Python, 1370.95 min (22.85 hours) for pgFMU-, and 163.6 min
(2.73 hours) for pgFMU+; pgFMU+ is faster by 8.43x.

As we can see, the execution time grows linearly with more
model instances, but the growth rate is different for different
models. The common pattern for all three models is that Python
and pgFMU- exhibit a similar growth rate. For pgFMU+, the execu-
tion time also grows linearly, but slower compared to Python and
pgFMU-. This means pgFMU+ performs user-defined workflows
based on the FMU model calibration and simulation on average
6.42x faster. Such gains in the runtime are achieved through a
number of optimization steps described in Sections 6 and 7.

8.4 Usability
We conducted usability tests to evaluate how the functionality of
pgFMU reflects user needs.We asked a group of 6 PhD-candidates
and 24 master students from four different universities in Den-
mark, Poland, Spain, and Belgium to individually perform the
task of HP1 and Classroom model calibration and simulation. All
the participants were asked to complete the SI workflow based
on Figure 1 using Python and pgFMU. The execution of the MI
workflow was optional. During the usability testing, we recorded
the issues with both configurations, and observed the learning
curve of the participants as they progressed with the task. All
participants were timed.



Table 8: Configurations comparison, SI scenario

ID Operation
execution time, s

HP0 HP1 Classroom
Python pgFMU± Python pgFMU± Python pgFMU±

1 Load FMU 0.02 0.025 0.02 0.021 0.03 0.03
2 Read historical measurements & control inputs 0.02 0.021 0.03 0.031 0.04 0.041
3 (Re)calibrate the model 842.99 844.18 834.68 833.88 830.2 829.16
4 Validate and update FMU model 0.01 - 0.01 - 0.01 -
5 Simulate FMU model 0.16 0.214 0.2 0.22 0.35 0.44
6 Export predicted values to a DBMS 0.06 - 0.06 - 0.05 -

Total 843.26 844.44 835 834.15 830.68 829.67

Figure 7: HP0, HP1, Classroom (from the left to the right) parameter estimation execution time

In the beginning, the userswere asked to answer a pre-assessment
questionnaire aimed at identifying their knowledge about physi-
cal systems modelling. By using the scale from 1(very little) to
5(very much), the participants answered the following questions:

Q1. How familiar are you with energy systems and physical sys-
tem modelling?

Q2. How familiar are you with model simulation and calibration?
Q3. How familiar are you with model simulation software?
Q4. How comfortable are you with using Python IDE(s)?
Q5. How comfortable are you with using SQL?

Based on the participants’ answers, they did not consider them-
selves experts in the energy domain (Q1). Only 2 people estimated
the familiarity with energy systems as "very much". For Q1, Q2
and Q3, the majority (27 out of 30 for Q1 and Q2, 26 out of 30 for
Q3) ranked their knowledge in energy systems, model simula-
tion and calibration processes, and model simulation software
as "very little" or "little". When speaking about programming
environments, 25 out of 30 students knew "much" or "very much"
about the SQL, with only 14 out of 30 giving the same score to the
Python. We concluded that graduate and post-graduate students
possessed more knowledge about SQL, and felt more comfortable
with using SQL-based functions rather than Python packages.

For this session, we set the time limit to 3 hours. The partici-
pants tested the pgFMU functionality first, then the Python. All
participants but one were able to finalize the task within the
defined time range. Figure 8 illustrates the time distribution for
every user performing the steps described in Figure 1 for HP1
and Classroom models. With pgFMU it took under 20 minutes for
all participants to become familiar with the syntax, and complete
the task. The minimum learning time for pgFMU was reported
to be 9.6 minutes, and the maximum was 17.6 minutes, respec-
tively. On average, with pgFMU the participants finished the task
(excluding the runtime) 11.74x faster than with Python.

The main criticism regarding the suggested setup was the
necessity to use multiple Python packages, and the inability to

Figure 8: Users learning anddevelopment time (combined)

perform all the tasks with a single programming package/tool.
The whole workflow was described as "intuitive" and "easy to
understand", but the need to use different libraries was charac-
terized as "confusing" and "unsettling". One of the participants
reported that both PyFMI and ModestPy packages in their docu-
mentation use domain-specific language which was difficult to
grasp. Table 9 shows highlighted feedback that the participants
expressed about the strengths and weaknesses of both systems.

At the end, all users were asked to answer a post-assessment
questionnaire aimed at identifying participants’ opinion regard-
ing the functionality of Python and pgFMU. By using the scale
from 1(very unsatisfactory) to 5(very satisfactory), the partici-
pants were asked to answer the following questions :

Q1. How was it to retrieve information about model variables?
Q2. How was it to set model parameters?
Q3. How was it to calibrate the model?
Q4. How was it to simulate the model?
Q5. How was your satisfaction with systems’ functionality?



Table 9: Strengths and weaknesses of Python and pgFMU

Strong points of Python Strong points of pgFMU

“Better to debug, analyze";
“More functionality”;
“Control over program flow”;
“Data visualization option”;

"Data and model in one place";
"Easy to run and understand";
"Simplicity, no need to use or
import external tools";
"Familiar SQL syntax";

Weak points of Python Weak points of pgFMU
"A lot of unknown new mo-
dules and packages";
"No one ready package to do
everything";
"A lot of code to set up confi-
guration, some functions not
intuitive";
"You need practise[sic] to
understand";

"Not so much configuring
available";
"I don’t see any significant
[weak points] besides
maybe installation of the pac-
kage on postgres
[PostgreSQL];"
"Specific database implemen-
tation";

The questionnaire results show a clear advantage of using pgFMU
over Python. When performing the workflow depicted in Figure 1,
pgFMU scores better when retrieving (3.7 out of 5 for pgFMU vs
3.1 out of 5 for Python) or setting the model variables (3.83 out
of 5 vs 3.26 out of 5 respectively), calibrating (3.66 out of 5 vs
3.1 out of 5 respectively) and simulating the model. In particular,
the model simulation functionality of pgFMU was commended,
scoring 4.17 out of 5 (for the same operation, Python scored only
3.53 out of 5). pgFMU outperforms Python in terms of overall
participants’ satisfaction, scoring 4.2 and 3.6 out of 5, respectively.

Lastly, pgFMU requires substantially fewer lines of code than
does Python; Table 1 shows this comparison. In addition, pgFMU
does not require any customization, meaning it is capable of
working with any number of model inputs, outputs and parame-
ters without UDF adjustment for every specific model or use case.
On the contrary, Python requires the user to manually retrieve
and match model inputs with measurements data.

9 CONCLUSION AND FUTUREWORK
This paper presents pgFMU - the first DBMS extension to support
storage, simulation, calibration, and validation of physical sys-
tem models defined as Functional Mock-up Units (FMUs) within
a single DBMS environment. This extension is developed for
cyber-physical data scientists and cyber-physical software devel-
opers. For such users, pgFMU provides a set of powerful User-
Defined Functions (UDFs) invoked by traditional SQL queries.
The UDFs are designed as stand-alone functions within pgFMU,
and can be used in a user-defined sequence. Furthermore, pgFMU
provides efficient functionality to store, simulate an arbitrary
number of FMU model instances, and estimate the parameters
of such instances. The aforementioned properties all contribute
to supporting FMU model simulation and parameter estimation
tasks within a DBMS environment. Due to its in-DBMS imple-
mentation, pgFMU demonstrates increased performance (up to
8.43x, and on average 6.42x faster for multi-instance workflows)
for data-dependent workflows and improves user productivity
(11.74x times faster in terms of development time). Moreover, it
can increase Machine Learning model accuracy by up to 21.1%
when used in combination with existing in-DBMS analytics tools,
e.g., MADlib.

pgFMU has been tested by the entry level cyber-physical data
scientists. The usability testing showed positive results, reporting

the development time more than an order of magnitude lower
than the traditional approach. As reported by the participants,
pgFMU was capable of addressing the major point of dissatisfac-
tion, namely the variety of software packages and libraries the
user is obliged to use, and the domain-specific nature of such
packages. pgFMU simplifies the overall analytical procedure, and
minimizes the efforts required to specify and calibrate a particu-
lar model; the users are able to perform the necessary operations
with approximately 22x fewer code lines. pgFMU was also re-
ported to provide a more intuitive way of scripting and a better
data organisation.

Future work will continue the development of functionality
to support in-DBMS FMU-based dynamic optimization. This in-
cludes the adoption of various model predictive control means,
covering the optimization of control inputs. Additionally, we will
look into FMU integration challenges in the Big Data setting,
including just-in-time (JIT) FMU compilation to optimize user
queries, and scheduling FMU execution on multi-core multi-node
environments.
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